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Abstract

Corticomuscular coupling analysis using multiple data sets such as electroencepha-

logram (EEG) and electromyogram (EMG) signals provides a useful tool for under-

standing human motor control systems. A popular conventional method to assess

corticomuscular coupling is the pair-wise magnitude-squared coherence (MSC).

However, there are certain limitations associated with MSC, including the diffi-

culty in robustly assessing group inference, only dealing with two types of data

sets simultaneously and the biologically implausible assumption of pair-wise in-

teractions. In this thesis, we propose several novel signal processing techniques

to overcome the disadvantages of current coupling analysis methods. We propose

combining partial least squares (PLS) and canonical correlation analysis (CCA)

to take advantage of both techniques to ensure that the extracted components are

maximally correlated across two data sets and meanwhile can well explain the

information within each data set. Furthermore, we propose jointly incorporating

response-relevance and statistical independence into a multi-objective optimiza-

tion function, meaningfully combining the goals of independent component anal-

ysis (ICA) and PLS under the same mathematical umbrella. In addition, we ex-

tend the coupling analysis to multiple data sets by proposing a joint multimodal

group analysis framework. Finally, to acquire independent components but not

just uncorrelated ones, we improve the multimodal framework by exploiting the

complementary property of multiset canonical correlation analysis (M-CCA) and

joint ICA. Simulations show that our proposed methods can achieve superior per-

formances than conventional approaches. We also apply the proposed methods to

concurrent EEG, EMG and behavior data collected in a Parkinson’s disease (PD)

study. The results reveal highly correlated temporal patterns among the multimodal
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signals and corresponding spatial activation patterns. In addition to the expected

motor areas, the corresponding spatial activation patterns demonstrate enhanced

occipital connectivity in PD subjects, consistent with previous medical findings.
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Chapter 1

Introduction

1.1 Background
During the last two decades, due to advances in molecular biology, electronics,

computational techniques and biosignal acquisition technologies, there have been

increasingly active research activities in studying the nervous system. Recent such

advances allow scientists to investigate fundamental questions in neuroscience re-

search – how the brain is able to perceive, process and act upon the tremendous

amount of information flowing across in a seemingly effortless manner. While the

anatomical structure of the brain is relatively well studied, the underlying mecha-

nism that coordinates various components to act together synergistically is yet to be

elucidated. Of particular interest is how various components of the motor system

interact together to produce coordinated movements. From movement planning

to actual execution, this process involves a series of coordinated actions in func-

tionally specialized brain regions and muscle groups. Understanding movement

control has important implications for the development of brain-computer inter-

face (BCI), prosthetic control, deep brain stimulation therapies and treatment for

movement disorders [1, 2].

The emergence of powerful new measurement techniques such as neuroimag-

ing and electrophysiology has provided researchers new opportunities to explore

unknown aspects of brain functioning from different angles. Among these tech-

niques, electroencephalogram (EEG) and surface EMG (sEMG) have been the
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most popular candidates in many practical biomedical applications, principally

due to their high temporal resolution, noninvasibility, low cost and suitability for

long-term monitoring [11]. For instance, wireless body sensor networks, integrat-

ing electrophysiological signals and positioning sensors, have been attracting in-

creasing attention for health-monitoring applications, e.g., greatly facilitating home

health care in a long-distance manner.

With the availability of multichannel neural signals, earlier works investigating

human motor control systems mainly focus on localization of functionally spe-

cialized brain regions during specific motor tasks [1]. However, such approaches

only provide a limited view of the motor control mechanism. Alternative meth-

ods have been developed to investigate the integration of functionally related neu-

ronal groups, termed as brain connectivity [3]. The study of brain connectivity

has provided not only a system-level view of brain functioning in the normal state

but also an explanatory framework for pathological conditions such as Parkinson’s

disease (PD) [4, 5]. Nevertheless, during motor tasks, it is not convincing to only

analyze brain activity measured by EEG but neglect muscle activity measured by

sEMG. One main reason is that EEG contains a lot of non-task related background

activities. It is desirable to investigate the coupling between EEG and sEMG. Such

coupling analysis allows the identification of underlying components from EEG

signals whose temporal patterns are maximally correlated with those of sEMG

(i.e., highly modulated by a motor task), while meanwhile discards any non-task

related background components. Therefore, jointly analyzing sEMG together with

EEG could highly benefit task-related motor control studies.

1.2 Related Works

1.2.1 Wireless EEG and sEMG systems

EEG Systems

In the late 1800s, Richard Caton (1842-1926) first reported the presence of bipoten-

tials on the surface of the human skull [6]. Later, in 1924, Hans Berger measured

these electrical signals in the human brain for the first time and provided the first

2



systematic description for EEG [7]. EEG monitors the electrical activity caused by

the firing of cortical neurons across the human scalp. EEG activity always reflects

the summation of the synchronous activity of thousands or millions of neurons and

shows oscillations at a variety of frequencies. The human EEG activity is mainly

categorized into five bands by frequency: Delta (1–4 Hz), Theta (4–8 Hz), Alpha

(8–12 Hz), Beta (12–30 Hz) and Gamma (30–100 Hz) [8]. An example is shown

in Fig. 1.1.

Figure 1.1: EEG frequency bands [9].

EEG has been widely used for studying various neurological conditions such

as epilepsy and coma [10]. Diagnostic applications generally focus on spectral

content of EEG, reflecting the type of neural oscillations observable in EEG sig-

nals. As EEG recording remains the most widespread, noninvasive and inexpen-

sive technology with sufficient temporal resolution and it is suitable for continuous

monitoring, the EEG recording systems play an important role in brain studies,

especially in diagnosis of brain diseases such as epilepsy, sleeping disorder and

abnormal behavior [11].

In current EEG recording systems, the EEG recorders based on personal com-

puter (PC) generally communicate with the medical instruments through the com-

puter I/O interface. Such systems usually adopt a wired, serial port interface, such

3



as RS-232C standard, to transmit the measured EEG data. It can be inconvenient

and uncomfortable for daily-life usage because of the wired transmission lines.

Recent advances in electronic, communications and information technologies have

stimulated great interest world-wide in the development of portable, battery op-

erated biomedical instruments [12]. This has been particularly true in the case

of electrocardiogram (ECG) systems, which have been increasingly portable. For

continuous monitoring of EEG signals, it is also desirable to have a portable EEG

measurement system for reliably measuring brain activity. Size, power consump-

tion, and wireless communication capability are important factors to be considered

in designing such EEG systems [13].

sEMG Systems

The first actual recording of electromyogram (EMG) was made by Marey in 1890.

Later in 1922, Gasser and Erlanger used an oscilloscope to show the electrical

signals from muscles. Then, researchers began to use improved electrodes more

widely for the study of muscles. The clinical use of EMG is mainly for diagnosis of

neurological and neuromuscular problems. A typical EMG signal and its amplitude

envelope are illustrated in Fig. 1.2.

Figure 1.2: An example of an EMG signal [9].
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Significant insights have been acquired regarding the underlying neural mech-

anisms controlling movements, via the simultaneous measurement of sEMG and

body kinematics during tasks such as walking, swimming, and scratching [14].

Due to the presence of electrical wires between the electrodes and the sEMG de-

vice, as well as the wire between the sEMG device and the computer, sEMG mea-

surements were subject to an inherent limitation in the past. These sEMG devices

could also be affected by noise, resulting from the movements of the wires. In

recent years, although some commercial wireless sEMG devices, such as Trigno

Wireless System produced by Delsys, have appeared, many research groups are

still developing their own wireless sEMG systems since it is more convenient for

researchers to design and modify their systems according to their specific research

needs. We also have designed a sEMG system by appropriately modifying an orig-

inal wireless EEG system.

Among sEMG applications, hand gesture recognition based on forearm sEMG

has been an active research area due to its broad applications in myoelectric control.

With using wired or wireless sEMG sensors, human motions can be captured non-

invasively by sEMG signals and such sEMG signals can be intelligently recognized

as control commands in many myoelectric systems such as multifunction pros-

thesis, wheelchairs, virtual keyboards, gesture-based interfaces for virtual reality

games etc. [15, 16]. Depending on the involved movements, current sEMG-based

recognition and classification research can be divided into three main categories:

gross hand, wrist and arm movement recognition; individual finger activation and

movement detection; and multiple finger gesture classification.

The majority of previous research has been focused on gross hand, wrist and

arm movement recognition and quite high recognition accuracy can be achieved.

For instance, with two, four, five or eight sEMG channels, a high classification

accuracy which is above 95% was reported for classifying four or six movements

[17–19]. However, it is worth noting that these movements, such as palm extension

and closure, wrist flexion and extension, wrist pronation and supination, represent

relatively easy classification problems since they generate distinguishing sEMG

activation patterns.

For the category of individual finger activation and movements, such as finger

typing, generally involving flexion and extension of the individual thumb, index,
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middle, ring and little fingers, several recent works have been reported along with

this research direction [20–22]. Researchers in [21] used five channels to collect

forearm sEMG signals for a piano-tapping task, in which the subjects tapped a key-

board with each of the five fingers, and a 85% recognition accuracy was achieved

by using artificial neural network classifiers. In [22], though a 98% high accuracy

could be achieved for classifying 12 flexion and extension movements of individ-

ual fingers, 32 sEMG channels were used which is highly impractical for real-life

online applications.

Regarding the research direction of multiple finger gesture classification, to our

knowledge, relatively few research papers were published and they didn’t investi-

gate benchmark multi-finger movement tasks.

1.2.2 Corticomuscular Coupling Analysis

Corticomuscular coupling analysis, i.e. studying simultaneous cortical and mus-

cular activities typically during sustained isometric muscle contraction, is a key

technique to assess functional interactions in the motor control system. The most

popular method is magnitude-squared coherence (MSC), a normalized measure of

correlation between two waveforms or signals in the frequency domain, which is

calculated by

Coh( f ) = |Se∗e◦( f )|2 /(Se∗e∗( f )Se◦e◦( f )), (1.1)

where |Se∗e◦ | is the cross-spectrum between the signals e∗ and e◦; Se∗e∗ is the au-

tospectrum of the signal e∗; Se◦e◦ is the autospectrum of the signal e◦. MSC has

been successfully used to assess the interactions between motor-related brain areas

and the muscles. For example, in monkeys, MSC in the 20-30 Hz band can be de-

tected between cortical local field potentials and the rectified EMG from contralat-

eral hand muscles that are modulated during different phases of a precision grip

task [23]. In humans, similar findings of beta-band corticomuscular coherences

have also been detected during isometric contractions utilizing both magnetoen-

cephalogram (MEG) [24] and electroencephalography EEG [25] recordings over

the primary motor cortex. MSC has proved useful in assessing diseases of the hu-

man motor system, particularly PD. An inverse relation exists between beta-band

corticomuscular MSC and the clinical sign of bradykinesia in PD [26]. Cerebro-
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muscular MSC appears unaffected in early PD, yet beta band oscillations of bilat-

eral primary sensorimotor cortices are already increased at the earliest stages of

PD [27]. Later on, cerebro-muscular MSC is reduced in non-medicated PD, and

medication [28] or deep brain stimulation [26] normalizes this deficiency. Finally

primary motor cortex (M1)–muscular MSC is strongly reduced for both alpha and

beta bands during repetitive movement compared to static contraction, but this is

unaffected by administration of levodopa [29].

Recently, several data-driven multivariate methods, such as partial least squares

(PLS), have been developed for analyzing biological data that may be appropriate

for assessing corticomuscular coupling as they establish a dependency relation-

ship between two types of data sets. PLS relies on latent variables (LVs), which

may enhance aid in the biological interpretation of the results. PLS is widely used

in practical applications, probably because PLS can handle high dimensional and

collinear data - frequently the case in real-world biological applications. PLS ex-

ploits the covariation between predictor variables and response variables and ex-

tracts a new set of latent components that maximally relate them [32]. In other

words, the covariance between the extracted LVs should be maximized as

max
w1,w2

(
w1

T XTY w2
)2
,

s.t. wi
T wi = 1, i = 1,2

(1.2)

where wi’s (i = 1,2) are the weight vectors, X(N× p) is the predictor matrix and

Y (N× q) is the response matrix with N representing the number of observations.

PLS and its variants have been investigated in many medical applications, such as

determining the spatial patterns of brain activity in functional magnetic resonance

imaging (fMRI) data associated with behavioral measures [33], and the common

temporal components between EEG and fMRI signals [34]. In a recent PD study,

PLS has been extended to perform group level analysis and even accommodate

multiway (e.g., time, PLS channel, and frequency) data [30].
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1.3 Challenges and Motivation
Although MSC has been popular in studying corticomuscular coupling, it suffers

from several limitations. First, incorporating inter-subject variability in order to

make a robust group inference is not straightforward with MSC because the exact

frequency of maximum coupling may be inconsistent across subjects, necessitating

post hoc pooled coherence analyses in an attempt to combine the original coher-

ence estimates into a single representative estimate [35]. Second, the pair-wise

MSC concentrates on assessing the role of an individual locus in the brain in driv-

ing the motor system while motor activity is known to be more distributed [36]. In

fact, recent work has suggested that interactions between brain regions correspond

more closely to ongoing EMG than activity at discrete sites [30]. Moreover, when

the brain activity is measured by EEG, applying MSC directly to raw EEG and

EMG signals normally yields a very low coherence value, because only a small

fraction of ongoing EEG activity is related to motor control [31]. Therefore ex-

tensive statistical testing, with all the accompanying assumptions, is required to

determine whether the EEG/EMG coherence is, in fact, significant.

Regarding PLS, there exist several concerns with it and its extended methods,

which hinder their applications to multimodal corticomuscular activity analysis.

First, in the regular PLS, multiway PLS [33] and multiblock PLS [37] frameworks,

only two types of data sets can be processed at the same time, e.g. fMRI and

behavior measurements [33] or EEG and EMG signals [30], while in many cases

more than two types of data sets are available and a better understanding could

be achieved from analyzing multimodal data jointly. Another concern lies in the

goal of PLS, which is to maximize covariance but not correlation. This may make

the extracted underlying components across the data sets highly correlated, but not

maximally correlated. In addition, PLS can only extract uncorrelated LVs and their

interpretations may be difficult in real applications [38] since it might be insuffi-

cient to consider only up to the second-order statistics (e.g. correlation and covari-

ance) for obtaining a unique LV model [39] if the data are not strictly multivariate

Gaussian.

According to the aforementioned limitations, the main technical challenges

could be summarized as poor signal-to-noise ratio, inter-subject variability, hard
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biological interpretation and multimodality. The goal of this research work is to

develop novel multimodal signal processing techniques to address these challenges

arising when modeling corticomuscular activity from EEG, EMG and behavioral

recordings. To make this happen, the corresponding objectives are to correlate EEG

with the task, perform group analysis, explore higher order statistics and establish

multimodal cost functions. Specifically, the main technical contributions are:

1. Investigate the complementary relationship between PLS and canonical cor-

relation analysis (CCA), and combine them to model the cortical and mus-

cular activity.

2. Develop a novel coupling analysis method, termed as IC-PLS, for model-

ing EEG-EMG activity which incorporates the concept of independence to

circumvent the statistical insufficiency of the second-order statistics.

3. Propose a joint multimodal group analysis framework (JMSF) for investi-

gating the relationships between cortical, muscular and behavioral measure-

ments under the uncorrelatedness assumption.

4. Design a three-step method based on the above approach under the indepen-

dence assumption.

Figure 1.3: The overview of challenges and objectives of the thesis work.

Fig. 1.3 illustrates all the challenges, objectives, contributions and their re-

lationships. The developed techniques are applied to EEG, EMG and behavioral

9



data collected from both healthy subjects and PD patients when they perform a

dynamic, visually guided tracking task.

1.4 Thesis Outline
The thesis outline is summarized as follows:

In Chapter 2, we first overview existing coupling analysis methods and summa-

rize their advantages and disadvantages. We then describe the data sets collected

from a visually guided tracking task and explain the data preprocessing procedures.

After that, we propose combining PLS and CCA to improve the performance of the

joint latent variable (LV) extraction. The proposed PLS+CCA has a two-step mod-

eling strategy. PLS first extracts LVs which are able to most explain individual data

set and meanwhile are well correlated to the LVs in the other data set. Then CCA

is utilized to extract the LVs by maximizing the correlation coefficients. The ex-

tracted components are guaranteed to be maximally correlated across two data sets

and meanwhile well explain the information within individual data sets.

In Chapter 3, to overcome the insufficiency of the uncorrelatedness assump-

tion, we propose an IC-PLS framework to simultaneously incorporate response-

relevance and independence into the regression procedure, keeping the LVs maxi-

mally independent and uniquely sorting the LVs in order of relevance. When ap-

plied to corticomuscular coupling analysis, the proposed IC-PLS is able to extract

the most significant LV pairs from concurrent EEG and EMG data in an orderly

manner.

In Chapter 4, to accommodate multimodal data sets, we propose a joint multi-

modal statistical framework to simultaneously model multiple data spaces, keeping

the LVs uncorrelated within each data set and meanwhile highly correlated across

multiple data sets.

In Chapter 5, to facilitate interpretations in real medical applications, we incor-

porate independence into the joint multimodal framework and propose a three-step

method by combining multiset canonical correlation analysis (M-CCA) and joint

independent component analysis (ICA). This method is able to explore the re-

lationships between multimodal data sets and meanwhile extract independent LVs

within each data set. We applied these proposed methods to concurrent EEG, EMG
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and BEH data collected from normal subjects and patients with PD when perform-

ing a dynamic force tracking task. We utilized the proposed methods to extract

highly correlated temporal patterns among the three types of signals (features) and

reported meaningful connectivity patterns.

Finally, the conclusions of the thesis and suggestions for future research are

summarized in Chapter 6.

In Appendix A, we present the entire design process of a wearable and wire-

less EEG recording system and report a few testing examples. Then, we introduce

a real-time sEMG hand gesture recognition system, including the hardware design,

data collection, feature extraction and classification components. For feature ex-

traction and classification, we investigate the most popular methods and compare

their performances systematically. Further, we propose employing multiple kernel

learning support vector machine (MKL-SVM) for hand gesture recognition and

demonstrate its superior performance. The reason we put this part in Appendix

is that we did not use our developed system to collect data for corticomuscular

coupling analysis although our original purpose was to utilize an integrated wire-

less EEG and EMG system for patients’ convenience. We were required to use

commercialized medical devices in scientific publications.
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Chapter 2

Modeling Corticomuscular
Activity by Combining PLS and
CCA

2.1 Introduction
Corticomuscular activity modeling is important for assessing functional interac-

tions in the motor control system, i.e. studying simultaneous cortical and mus-

cular activities during a sustained isometric muscle contraction. As mentioned in

Section 1.2.2, the most common method to assess the interactions between motor-

related brain areas and the muscles is MSC, which is a normalized measure of

correlation between two waveforms or signals in the frequency domain. Although

MSC has been popular in studying corticomuscular coupling, it suffers from sev-

eral limitations. First, addressing the inter-subject variability challenge to make

a robust group inference is not straightforward with MSC because the exact fre-

quency of maximum coupling may be inconsistent across subjects. Second, MSC

emphasizes the role of individual locus in the brain in driving the motor system

while motor activity is known to be more distributed [36]. In fact, recent work

has suggested that interactions between brain regions correspond more closely to

ongoing EMG than activity at discrete sites [30, 71–74]. Moreover, when the brain
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activity is measured by EEG, applying MSC directly to raw EEG and EMG sig-

nals normally yields a very low coherence value, because only a small fraction of

ongoing EEG activity is related to the motor control [31]. This implies that exten-

sive statistical testing is required to determine whether the EEG/EMG coherence is

statistically significant.

Recently, several data-driven multivariate methods have been developed for an-

alyzing biological data, and they seem to be appropriate for modeling corticomus-

cular activity because these methods explore dependency relationships between

data sets. These methods include multiple linear regression, principal component

regression, PLS and CCA [75]. Among these methods, the LV based approaches,

such as PLS and CCA, play a dominating role, probably due to the fact that the

extracted LVs could help the biological interpretations of the results.

PLS, first developed for process monitoring in chemical industry, exploits the

covariation between predictor variables and response variables and finds a new set

of latent components that maximally relate them [32]. An advantage of PLS is

that it can handle high dimensional and collinear data, which is often the case in

real-world biological applications. PLS and its variants have been investigated in

many medical applications, such as assessing the spatial patterns of brain activity

in fMRI data associated with behavioral measures [33], and the common temporal

components between EEG and fMRI signals [34]. In addition to the ability of

handling high dimensional and collinear data, PLS is sufficiently flexible that it

can be extended to perform group level analysis and to accommodate multiway

data [30].

CCA is commonly used to seek a pair of linear transformations between two

sets of variables, such that the data are maximally correlated in the transformed

space. Generally CCA is not as popular as PLS in practical applications [76]. This

is probably because real-world data are usually high dimensional and collinear

and thus applying CCA directly to the raw data can be ill-conditioned. However,

with some appropriate preprocessing strategies, CCA has been shown to be quite

useful in many medical applications. For instance, in [77] Clercq et al. success-

fully removed muscle artifacts from a real ictal EEG recording without altering

the recorded underlying ictal activity. In [79], Gumus et al. found that there were

significant correlations at expected places, indicating a palindromic behavior sur-
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rounding the viral integration site. CCA can be extended to accommodate multiple

data sets simultaneously [78].

However, PLS and CCA can only extract uncorrelated LVs and their interpre-

tations may be difficult in real applications [38]. ICA is based on the notion that

it is insufficient to consider only up to the second-order statistics (e.g. correlation

and covariance) for obtaining a unique LV model [39] if the data are not strictly

multivariate Gaussian. ICA assumes that the multivariate data are composed of a

linear superposition of mutually statistically independent signal sources. In statis-

tics, independence is a much stronger condition than uncorrelatedness, and thus

ICA algorithms typically employ criteria related to information theory and/or non-

Gaussianity. ICA has found many potential biomedical applications [80–82]. For

example, ICA can be used to reliably separate fMRI data into meaningful con-

stituent components, including consistently and transiently task-related physiolog-

ical changes, non-task-related physiological phenomena and machine or movement

artifacts [80].

Independent component regression (ICR) has been developed as an alternative

to traditional LV-based methods (e.g. PLS) [83]. In ICR, independent compo-

nents (ICs) are first extracted from the measurements and then linear regression is

performed to relate the ICs with the response. However, as a two-stage method,

ICR inherits the following drawbacks of ICA. First, ICA can only decompose

one data set at a time and thus ignores the effects of the response variables. Even

though the extracted ICs are maximally independent with each other, they may, and

are typically not, directly informative about the response. Second, unlike princi-

pal component analysis (PCA) which yields unique and ranked principal compo-

nents (PCs) by best explaining the variance in the data, classical ICA with stochas-

tic learning rules can result in ICs that vary by permutation and/or dilation even

when repeatedly performed on the same data set. Such inherent indeterminacy of

classical ICA is due to the fact that the assumptions are mathematically insufficient

to extract the independent sources exactly in their original form. To overcome these

drawbacks, joint independent component analysis (jICA), was developed to max-

imize the independence of joint sources of multiple data sets [84]. However, in

the jICA framework, all modalities are assumed to share the same mixing matrix,

which may not be true in practice [84].
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To address the aforementioned technical challenges arising when modeling

corticomuscular activity, we aim to develop novel signal processing techniques in

the following sections and chapters. We evaluate the performance of the proposed

methods both numerically and practically. We first apply the proposed methods to

synthetic data to illustrate their performance where the underlying truth is well un-

derstood. We then apply the proposed group analysis methods to concurrent EEG,

EMG and behavior data (BEH) collected from normal subjects and patients with

PD when performing a force tracking task.

2.2 Experimental Data
The study was approved by the University of British Columbia Ethics Board, and

all subjects gave written, informed consent prior to participating. Nine PD patients

(mean age: 66 yrs) were recruited from the Pacific Parkinson’s Research Centre at

the University of British Columbia (Vancouver, Canada). They all displayed mild

to moderate levels of PD severity (stage 1-2 on the Hoehn and Yahr scale) and were

being treated with L-dopa medication (mean daily dose of 720mg). All PD subjects

were assessed after a minimum of 12-hour withdrawal of L-dopa medication, and

their motor symptoms were assessed using the Unified Parkinson’s Disease Rating

Scale (UPDRS), resulting in a mean score of 23. In addition, eight age-matched

healthy subjects were recruited as controls. During the experiment, subjects seated

2 m away from a large computer screen. The visual target was displayed on the

screen as a vertical yellow bar oscillating in height at 0.4 Hz. Subjects were asked

to squeeze a pressure-responsive bulb with their right hand. The visual feedback

representing the force output of the subject was displayed as a vertical green bar

superimposed on the target bar as shown in Fig. 2.1. Applying greater pressure

to the bulb increased the height of the green bar, and releasing pressure from the

bulb decreased the height of the green bar. Subjects were instructed to make the

height of the green bar match the height of target bar as closely as possible. Each

squeezing period lasted for 15 seconds and was followed by a 15-second rest pe-

riod. The squeezing task was performed twice. The force required was up to 10%

of each subject’s maximum voluntary contraction (MVC), which was measured at

the beginning of each recording session.
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Figure 2.1: The squeezing task: The subject was instructed to follow the tar-
get bar (yellow) as close as possible. The force exerted by the subject
was shown by the green bar.

The EEG data were collected using an EEG cap (Quick-Cap, Compumedics,

Texas, USA) with 19 electrodes based on the International 10-20 system, refer-

enced to linked mastoids. The EEG and EMG data were sampled at 1kHz using

SynAmps2 amplifiers (NeuroScan, Compumedics, Texas, USA). A surface elec-

trode on the tip of the nose was used as ground. Ocular movement artifacts were

measured using surface electrodes placed above and below the eyes (Xltek, On-

tario, Canada). Data were later processed by a band-pass filter (1 to 70Hz) off-line

and down-sampled to 250 Hz. Artifacts associated with eye blinks and muscular

activities were removed using the Automated Artifact Removal in the EEGLAB

Matlab Toolbox (Gomez-Herrero, 2007). To simplify analysis, the EEG signals

were divided into five regions as shown in Fig. 2.2. The five regions were: Fronto-

Central (FCentral) - FP1, FP2, F7, F3, Fz, F4 and F8; Left Sensorimotor (LSM) -

T7, C3, P7 and P3; Right Sensorimotor (RSM) - T8, C4, P8 and P4; Central - Cz
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and Pz; and Occipital - O1 and O2. While the proposed framework is capable of

handling data at an individual electrode level, we found in our prior work [100] that

averaging recordings within a region has several potential benefits: 1) it reduces the

effects of possible spurious activity measured at individual electrodes, 2) it reduces

inter-subject variability due to slight variations in the placement of the electrode

cap, and 3) regions can be chosen as they are biologically related to the motor task

we are studying based on prior medical knowledge, making neuroscience interpre-

tations easier. Thus, the raw time courses of the electrodes within each region were

averaged as the overall activity of the region, and the averaged time course were

then zero-meaned and normalized to unit variance. For subsequent analysis, data

collected during the squeezing periods were concatenated in time into a single ma-

trix for each individual subject. Data from the rest periods were excluded from the

analysis.

Figure 2.2: Five brain regions: Fronto-Central (FCentral) - FP1, FP2, F7,
F3, Fz, F4 and F8, Left Sensorimotor (LSM) - T7, C3, P7 and P3, Right
Sensorimotor (RSM) - T8, C4, P8 and P4, Central - Cz and Pz and
Occipital - O1 and O2.

The EMG signals were recorded using self-adhesive, silver, silver-chloride pel-

let surface electrodes with 7 mm diameter. A bipolar montage was used with a

fixed inter-electrode distance of 30 mm. The surface EMG signals were simulta-

neously collected together with the EEG signals and were amplified and sampled

at 1000 Hz. To be consistent with the EEG preprocessing, the EMG signals were
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down-sampled off-line to 250 Hz and only the squeezing periods were used for

subsequent analysis. The BEH signals were recorded from the pressure-responsive

bulb, representing the force preformed by the subjects. Similarly, the BEH signal

from each subject was resampled to ensure its proper alignment with other signals.

It is worth noting that it took a graduate student in Neuroscience about six months

to collect these data sets, including recruiting subjects and designing experimental

protocol.

2.3 A Combined PLS and CCA Method

2.3.1 Motivation and Objectives

PLS and CCA have been investigated in many medical applications. However, to

the best of our knowledge, no report has profoundly explored their underlying dif-

ferences, compared their characteristic performances, and combined their advan-

tages to overcome their drawbacks. For corticomuscular activity modeling, as we

will elaborate more in Section 2.3.2, both PLS and CCA have their advantages and

disadvantages, but perhaps more importantly, these two methods can be considered

complementary. In this chapter, we propose combining PLS and CCA to improve

the performance of the joint LV extraction and the proposed method is denoted as

PLS+CCA. More specifically, the proposed PLS+CCA has a two-step modeling

strategy: we first adopt PLS to obtain LVs across two data sets and then perform

CCA on the extracted LVs. In the first step, PLS is performed for preliminary LV

preparation. The aim of this step is to extract LVs which can most explain its own

data set and meanwhile are well correlated to the LVs in the other data set. Besides,

this step can also prevent the ill-conditioned problem when applying CCA directly

to the raw data. In the second step, CCA is applied to the extracted LVs by PLS

to construct the LVs by maximizing the correlation coefficients. With these two

steps, it is ensured that the extracted components are maximally correlated across

two data sets and meanwhile can well explain the information within individual

data sets.

18



2.3.2 Methods

In this subsection, we first analyze the properties of PLS and CCA and demonstrate

their complementarity. Based on this observation, we then propose combining the

two approaches to have the PLS+CCA method. The two zero-meaned data sets

are stored in two matrices, the predictor matrix X(N× p) and the response matrix

Y (N × q), where N means the number of observations and p and q indicate the

numbers of variables in corresponding matrices.

Partial Least Squares

PLS exploits the covariation between predictor variables and response variables

and tries to find a new set of LVs that maximally relate them [76]. In other words,

the covariance between the extracted LVs should be maximized as

max
w1,w2

(
w1

T XTY w2
)2
,

s.t. wi
T wi = 1, i = 1,2

(2.1)

where wi’s (i = 1,2) are the weight vectors. A typical PLS can be implemented

by the classical NIPALS algorithm [32]. Also, an alternative calculation way is

to perform eigenvalue-eigenvector decomposition [85]. Therefore, the maximum

of Equation (2.1) is achieved by having w1 and w2 as the largest eigenvectors of

the matrices XTYY T X and Y T XXTY respectively. To obtain subsequent weights,

the algorithm is repeated with deflated X and Y matrices. The detailed calculation

procedure can be found in Appendix B.1.1.

The number of components to be extracted is a very important parameter of

a PLS model. Although it is possible to extract as many PLS components as the

rank of the data matrix X , not all of them are generally used. The main reasons

for this are the following: the measured data are never noise-free and some trivial

components only describe noise. Therefore appropriate measures are needed to

determine when to stop. Typically, the number of components needed to describe

the data matrices is determined based on the amount of variation remained in the

residual data [32].
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Canonical Correlation Analysis

Different from PLS, CCA is to find linear combinations of both X and Y variables

which have maximum correlation coefficient with each other. This leads to the

same objective function but different constraints compared with Equ. (2.1):

max
v1,v2

(
v1

T XTY v2
)2

s.t. v1
T XT Xv1 = 1, v2

TY TY v2 = 1
(2.2)

where vi’s (i = 1,2) are the weight vectors.

The solutions to this problem are the largest eigenvectors of the matrices –

(XT X)−1XTY (Y TY )−1Y T X and (Y TY )−1Y T X(XT X)−1XTY – respectively. The

subsequent weights are the eigenvectors of the same matrix in the order of decreas-

ing eigenvalues. The predictor LVs UX can be calculated directly from the original

X matrix as UX = XV1, the columns of which are uncorrelated with each other. The

detailed derivation is shown in Appendix B.1.2. However, the solution depends

heavily on whether or not the covariance matrix XT X is invertible. In practice, it

is possible to have rank(XT X) < p so that the invertibility cannot be satisfied and

directly applying eigenvalue decomposition in the raw data space may lead to the

ill-conditioned problem. Therefore, some appropriate preprocessing strategies are

needed in practice before applying CCA.

The Combined PLS+CCA Method

Based on the discussion above, we can see that the fundamental difference be-

tween PLS and CCA is that PLS maximizes the covariance while CCA maximizes

the correlation. The objective of PLS is to construct LVs which could most explain

their own data set and meanwhile are well correlated to the corresponding LVs in

the other set. In other words, the first priority of PLS is to find the LVs which can

explain significant proportion of variance in each data set and the second priority

is to find the LVs with relatively high correlation coefficients between the two data

sets. In contrast, the only objective of CCA in the construction of LVs is to maxi-

mize their correlation coefficients with the LVs in another data set. From this point

of view, the LVs extracted by PLS are able to represent major information for indi-
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vidual data sets while the ones extracted by CCA may be trivial (e.g. noises with

similar patterns) even if their correlation coefficient is maximum. This is an advan-

tage of PLS over CCA. Besides, PLS can handle high dimensional and collinear

data, which is often the case in real-world biological applications, while applying

CCA directly to the raw data may be ill-conditioned. However, we should note

that our goal is to find the relationships between two data sets, not just to explore

the information within individual data sets. It is possible that a higher covariance

merely results from the larger variance of LVs, which may not necessarily imply

strong correlations. To overcome this, CCA is a powerful tool to ensure that the

extracted LVs have similar patterns across the data sets.

For corticomuscular activity modeling, the coupling relationship between EEG

and EMG signals is what to be explored. In practice, EEG and EMG signals can

be contaminated by other types of signals and are never noise-free. In addition, the

signals from adjacent channels generally are similar, which leads to collinear data.

By employing PLS, we can deal with the collinear EEG/EMG data sets and extract

significant LVs, but it can not guarantee that the corresponding LVs are highly

correlated with each other. With using CCA, we can extract highly correlated LVs

from EEG and EMG signals, but it can not ensure that such LVs are non-trivial and

we may face the ill-conditioned problem.

For corticomuscular coupling analysis, both PLS and CCA have their advan-

tages and disadvantages, but perhaps most importantly, these two methods can be

considered complementary. It is natural for us to think of combining PLS and

CCA to form a two-step modeling strategy. In the first step, PLS is performed

for preliminary LV preparation. The aim of this step is to extract LVs which can

most explain its own data set and meanwhile are well correlated to the LVs in an-

other data set. In this case, the trivial and irrelevant information across data sets

could be removed. Besides, this step can also prevent the ill-conditioned problem

when applying CCA directly to the raw data. In the second step, CCA is applied

to the prepared LVs by PLS to construct the LVs by maximizing the correlation

coefficients. After these two steps, it is ensured that the extracted components are

maximally correlated across data sets and meanwhile can well explain the infor-

mation within each individual data set. The details of the proposed PLS+CCA

method are given in Appendix B.1 and the specific implementation procedure is

21



Algorithm 1 The Combined PLS+CCA Method

Input: two data sets X (with size N× p) and Y (with size N×q)
Output: corresponding LVs matrices UX , and UY

The First Step:
1: Solve the eigen decomposition problems:(

XTYY T X
)

w1 = λ1w1 and
(
Y T XXTY

)
w2 = λ2w2.

2: Determine R1 and R2, the numbers of LVs extracted, corresponding to the
above two problems by the ratio of explained variance.

3: Determine the final number of LVs: R = min(R1,R2).
4: Set count = R.
5: Initialize both LVs matrices to be empty, i.e., TX =[ ] and TY =[ ].
6: while count > 0 do
7: Set w1 and w2 to be the largest eigenvectors of the matrices XTYY T X and

Y T XXTY respectively.
8: Calculate the LVs as tX = Xw1 and tY = Y w2.
9: Set TX =[TX tX ] and TY =[TY tY ].

10: Deflate X by subtracting the effects of the LV tX from the data space: X =
X− tX(tX T tX)−1tX T X .

11: Deflate Y by subtracting the effects of the LV tY from the data space: Y =
Y − tY (tY T tY )−1tY TY .

12: Let count = count−1.
13: end while

The Second Step:
14: Solve the following eigen decomposition problems:[

(TX
T TX)

−1TX
T TY (TY

T TY )
−1TY

T TX
]

v1 = η1v1 and[
(TY

T TY )
−1TY

T TX(TX
T TX)

−1TX
T TY
]

v2 = η2v2.
15: Set V1 and V2 to be the R associated eigenvectors respectively.
16: The recovered LVs UX and UX can be calculated by

UX = TXV1 and UY = TYV2.

22



shown in Algorithm 1.

2.3.3 Data Processing and Results

Simulation

In this simulation, we apply the proposed method to synthetic data and also report

the results of the PLS and CCA approaches for comparison. As an illustrative

example, without loss of generality, four sources are generated and analyzed for

each data set.

Synthetic Data The following four source signals are considered for the data set

X :
s11 = 1.5sin(0.025(t +63))sin(0.2t),

s12 = 1.5sin(0.025t),

s13 = sign(sin(0.3t)+3cos(0.1t)),

s14 = uniformly distributed noise in the range [−1.5,1.5],

(2.3)

where t denotes the time index vector, valued from 1 to 1000, and s1i’s (i =

1,2,3,4) represent four simulated sources, as shown in Fig. 2.3a. Note that here

s1i’s are column vectors.

Also, four source signals are considered for the data set Y :

s21 = 1.5sin(0.025(t +69))sin(0.2(t +6))

s22 = 1.5sin(0.025(t +20))

s23 = sign(sin(0.3(t +7))+3cos(0.1(t +7)))

s24 = uniformly distributed noise (the same as s14)

(2.4)

where the notations are similarly defined. The four simulated sources are shown in

Fig. 2.3b.

Two mixed data sets X and Y are generated as follows with each row denoting

one observation in their respective data space:

X = S1 ·A, Y = S2 ·B, (2.5)
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(a)

(b)

Figure 2.3: The four simulated source signals: (a) for X ; (b) for Y .

where S1 = [s11 s12 s13 s14] and S2 = [s21 s22 s23 s24] with

A =


0.76 −0.65 0.77 0.83 0.82

0.49 0.25 0.12 0.22 −0.17

0.28 −0.21 0.11 0.19 −0.11

0.07 0.06 −0.08 0.07 −0.04

 , (2.6)
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Table 2.1: The correlation coefficients between the cor-
responding source pairs of X and Y .

s11 and s21 s12 and s22 s13 and s23 s14 and s24

CC* 0.3655 0.8787 0.5520 1.00
* Here CC stands for correlation coefficient between two source

signals.

B =


0.73 −0.82 0.91 −0.79 0.88

0.42 −0.27 0.17 −0.20 −0.30

0.27 0.26 −0.18 0.17 −0.24

0.08 −0.01 0.01 0.09 −0.01

 . (2.7)

The patterns of the corresponding sources are similar across the two data sets,

representing common information. However, from Equations (2.3) and (2.4), we

can see that there are some time-shifts between corresponding source pairs and

their correlation coefficients are given in Table 2.1. The first pair of sources have

the lowest CC, but in the mixed data sets we intentionally assign the highest weights

to this pair of sources, as shown in the mixing matrices A and B. This pair can repre-

sent the major information within individual data sets, but can not reflect too much

the coupling relationships between the two sets. The second and third pairs have

relatively high CCs and moderate weights in the mixed data sets. These two pairs

generally not only contain the major information within individual data sets but

also represent the coupling relationships across data sets. The fourth pair sources

have the highest CC, but we assign the smallest weights. Although this pair sources

have the highest CC, they do not represent significant information due to the small

weights. Generally, they could be regarded as trivial information. Moreover, dif-

ferent white Gaussian noise with 10% power was added to each source in each data

space.

Results The extracted components using PLS, CCA and the proposed PLS+CCA

methods are shown in Figs. 2.4, 2.5 and 2.6 respectively. The LVs extracted by

PLS are automatically ordered in terms of their significance. To some extent, the

LVs successfully reflect the corresponding relationships of the underlying sources
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(a)

(b)

Figure 2.4: (a) The LVs estimated in X using PLS. (b) The LVs estimated in
Y using PLS.

between X and Y . However, compared with the original sources, the extracted LVs

are distorted, suggesting that a higher covariance may merely result from the larger

variance of LVs, which may not necessarily imply strong correlations. We can see

that CCA can recover the original sources accurately in both data spaces and the

LVs are ordered strictly according to their correlation coefficients, but it completely

ignores the influence of the variance and thus the extracted LVs may only reflect
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(a)

(b)

Figure 2.5: (a) The LVs estimated in X using CCA. (b) The LVs estimated in
Y using CCA.

trivial information of the data sets (e.g., the 1st LV). For instance, although the

first pair of LVs have the highest correlation coefficient, they do not contain major

information of the data spaces. In practice, such LVs generally represent the noises

with similar patterns simultaneously coupled into the two data modalities. When

jointly modeling the data sets, they should be removed. We also note that PLS only

extracts three LVs since they are sufficient to describe the data sets. These LVs
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(a)

(b)

Figure 2.6: (a) The LVs estimated in X using the proposed PLS+CCA. (b)
The LVs estimated in Y using the proposed PLS+CCA.

do not include the first pair recovered by CCA due to their triviality. The above

observations motivates us to employ the proposed PLS+CCA method.

When the proposed method is employed, the dominant sources which make

significant contributions to both data spaces are first identified and ordered in terms

of covariance. At the same time, trivial information is removed. Then, within

the extracted major information, sources that are highly correlated are accurately
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recovered with the focus on correlation. In this case, it is ensured that the extracted

LVs are maximally correlated across two data sets and meanwhile can well explain

the information within each individual data set.

Real Data

In many medical applications, the results of analyzing one subject’s data can not be

generalized to the population level because of the inter-subject variability concern.

Therefore, it is necessary to recruit a proper number of subjects to perform a group

analysis. For modeling the corticomuscular activity, we apply the proposed method

to concurrent EEG and EMG signals collected from normal subjects and patients

with PD during a motor task, described in Section 2.2.

Feature Extraction In most existing studies, the analysis for corticomuscular cou-

pling is performed directly on the raw EEG and EMG data. This typically yields

quite small correlation values. Nonetheless, with appropriate preprocessing steps,

highly correlated EEG and EMG feature(s) can be extracted from the raw signals.

In this chapter, we examine the coupling relationships between time-varying EEG

features and amplitudes of the EMG signals, constituting Xb and Yb respectively

for each subject b (for b = 1,2, ...,B). We have a total of B subjects (B = 17 in

this study). To achieve a group analysis, all subjects’ data sets are concatenated

together as:
X = [X1,X2, ...,XB] , ∀b = 1,2, ...,B

Y = [Y1,Y2, ...,YB] , ∀b = 1,2, ...,B
(2.8)

with the assumption that all subjects share common group patterns in the temporal

dimension [82].

EEG Features: pair-wise Pearson’s correlations [86] are considered in this

study. Pearson’s correlation measures the dependency between a pair of EEG sig-

nals e∗ = (e∗1,e
∗
2, ...,e

∗
n) and e◦ = (e◦1,e

◦
2, ...,e

◦
n) in the time domain as follows:

γe∗e◦ =
∑

n
i=1(e

∗
i − ē∗)(e◦i − ē◦)√

∑
n
i=1(e

∗
i − ē∗)2 ∑

n
i=1(e

◦
i − ē◦)2

, (2.9)

where ē∗ and ē◦ are the sample means of e∗ and e◦. In this chapter, we calculate the
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time-varying pair-wise correlations between EEG channels, using a Hamming win-

dow with length 300 and with a 95% overlap. Therefore, the raw EEG information

can be represented by a two-dimensional matrix with size N×M, where the rows

correspond to the samples at different time points and the columns correspond to

the features, i.e. pair-wise correlations between the EEG channels.

EMG Features: an individual EMG channel signal can be considered as a zero-

mean, band-limited and wide-sense stationary stochastic process modulated by the

EMG amplitude, which represents the overall muscle activity of individual under-

lying muscle fibers [87]. While different techniques have been proposed for accu-

rate amplitude estimation, in this study, we employ the root-mean-square approach

to calculate the EMG amplitude of short-duration EMG signals e = (e1,e2, ...,en):

erms =

√
1
n
(e12 + e22 + · · ·+ en

2). (2.10)

A moving window with length n = 300 and a 95% overlap is applied here, the

same as in the EEG feature calculation, to ensure that the obtained EEG and EMG

features are temporally aligned and matched.

In the above setting, for each subject b (for b = 1,2, ...,B), Xb and Yb represent

the time-varying feature matrices of EEG and EMG respectively. The length of

the time sequences here is 480 associated with the 300-length moving window and

a 95% overlap. For the EEG correlation feature, since we have 19 EEG channels

based on the International 10-20 system and thus there are a total of C19
2 = 171 cor-

relation connections. Therefore, Xb is with size 480×171. For the EMG amplitude

feature, since there are three surface EMG channels, Yb is with size 480×3.

Significance Assessment To determine the statistical significance levels of the ex-

tracted LVs, we employ a non-parametric permutation test [88] in which the tempo-

ral order of EEG features Xb is uniformly permuted for all subjects while keeping

the EMG features Yb intact. Two hundred random permutations are generated. The

proposed PLS+CCA method is applied to each of these permutations. The cor-

relation coefficients among the extracted temporal patterns from permuted EEG

features and unchanged EMG features are then calculated to form an empirical

null distribution. The p-value of the original EEG/EMG correlation coefficient is
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then computed from the null distribution as the proportion of sampled permutations

whose correlation coefficients are greater than or equal to the original correlation

coefficient. The components with p-value being less than 0.05 are considered to

be statistically significant, denoted as LV EEG and LV EMG, both with size (N×K),

where K means the number of significant components.

Spatial Pattern Extraction Our goal is to investigate the differences in spatial pat-

terns of EEG channels between the normal and PD patient groups when the subjects

perform a motor task. After the identification of significant temporal patterns, we

can regress the EEG-related components LV EEG back onto the EEG features Xb

(for b = 1,2, ...,B) for each subject as follows:

pbk =

√
1

lvT
k XbXb

T lvk
Xb

T lvk, k = 1,2, ...,K. (2.11)

where lvk is the k-th column of LV EEG and pbk is the spatial pattern of the k-

th component for subject b. In addition, we also want to determine which EEG

features in the spatial patterns have significant contributions to the corresponding

temporal patterns. This is done by identifying EEG features that have weights

statistically different from zero. To determine the group-level spatial pattern, for

each significant component, we apply a two-tailed t-test to each element of the

spatial patterns of all subjects with each group.

Results In this real data study, we apply the proposed method for corticomuscu-

lar activity modeling to the EEG and EMG features generated using the procedure

described in Section 2.3.3 from 8 normal and 9 PD subjects simultaneously. The

joint modeling of normal and PD data allows the identification of common tem-

poral patterns across the groups. Meanwhile, the spatial patterns may be different

across subjects, from which we could identify specific correlation connections that

are differently recruited by PD subjects during the motor task.

Using the permutation test, two components were deemed significant (P ≤
0.05) (Fig. 2.7). Note that in the figure only connections whose weights are sta-

tistically different from zero are shown. The results based on real data from PD

31



Figure 2.7: The two components from the proposed PLS+CCA method
when using the EEG correlation features and the EMG amplitude fea-
tures as data sets. Top panel: Temporal patterns of the EEG (blue,
solid) and the EMG (red, dashed). The oscillation of the target bar is
also shown (black, solid). Bottom panel: EEG spatial patterns of nor-
mal subjects (left) and PD subjects (right). The connections reflect the
respective spatial patterns in the two groups. CC means correlation co-
efficient.

and normal subjects performing a dynamic motor task are promising. In the past,

most EEG/EMG coupling studies have compared EEG activity at a specific locus

(e.g. sensorimotor cortex contralateral to the hand performing the task) with the

EMG during sustained contractions. However, we found that in normal subjects,

correlations between the contralateral sensorimotor cortex and other regions are

closely associated with ongoing EMG features during dynamic motor tasks (Fig.

2.7). It is likely that the dynamic nature of the task might require the recruitment

of additional regions such as frontal regions for motor selection [89], contralateral

(i.e. ipsilateral to hand movement) sensorimotor cortex for fine modulatory control

[90] and occipital regions for post-error adaptations [91].
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2.3.4 Discussion

From Fig. 2.7, we note similar connections between the PD and control groups,

especially when comparing connections associated with each component, but we

also note significant differences when comparing the PD and control groups. It

is noted that PD subjects have increased connectivity between the frontal regions

and central and sensorimotor cortices, compared with control subjects. This may

reflect the enhanced effort required by PD subjects for motor task switching [92],

a problem common in this PD population [93]. In addition, PD subjects have a

significant connection between the left sensorimotor and occipital regions that is

not present in the control group. We note that the connections with occipital re-

gions are prominent in PD subjects. Compared to normal subjects, the PD subjects

heavily rely on visual cues for the initiation [94] and ongoing control of movement

[95]. Moreover, the increased intra and inter-hemispheric connections observed in

the PD subjects are consistent with the findings in previous MEG studies [5].
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Chapter 3

An IC-PLS Framework for
Corticomuscular Coupling
Analysis

3.1 Motivation and Objectives
In the previous chapter, we have presented the combined PLS+CCA method for

corticomuscular coupling analysis. However, both PLS and CCA can only ex-

tract uncorrelated LVs and their interpretations may be difficult in real applications

[38]. ICA is based on the notion that it is insufficient to consider only up to the

second-order statistics (e.g. correlation and covariance) for obtaining a unique LV

model [39] if the data are not strictly multivariate Gaussian. ICA assumes that the

multivariate data are composed of a linear superposition of mutually statistically

independent signal sources. In statistics, independence is a much stronger condi-

tion than uncorrelatedness. As mentioned in Section 2.1, both PLS and ICA have

their advantages and disadvantages, but most importantly, these two methods can

be considered complementary.

In this chapter, we propose combining their advantages and minimizing their

drawbacks by formulating a multi-objective optimization problem to simultane-

ously incorporate response-relevance and independence into the regression proce-
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dure, to produce a so-called IC-PLS model. The proposed IC-PLS extracts LVs

from both the measured data X and the response Y , keeping the LVs maximally

independent and uniquely sorting the LVs in order of relevance. When applied

to corticomuscular coupling analysis, the proposed IC-PLS can extract the most

significant LV pairs from concurrent EEG and EMG data in an orderly manner.

Furthermore, to infer consistent activation patterns across subjects within a group

in the face of inter-subject variability, we also develop a group analysis framework

based on the proposed IC-PLS model to accommodate the multi-subject case and

achieve robust group inference.

3.2 Methods
In this section, we first formulate the corticomuscular coupling analysis problem

as a multi-objective optimization problem. The basic idea is to extract highly cor-

related, but still maximally independent components in both the EEG and EMG

so that the covariance between each of the extracted EEG and EMG components

is maximized. Since the components are a result of an optimization based on a

weighted combination of statistical independence and response-similarity goals,

we then design some strategies to adjust each sub-objective’s parameters simulta-

neously and make the corresponding sub-objectives change in parallel. Because

of the importance of the initial solution, we also describe the initialization setting

procedure.

3.2.1 A Multi-objective Optimization

To combine the advantages of PLS and ICA and design an overall optimization

objective, the following conditions should be satisfied simultaneously:

First, PLS exploits the covariation between predictor variables and response

variables and tries to find a new set of LVs that maximally relate them [76]. In

other words, the covariance between the extracted LVs should be maximized as

max
w1,w2

(
E((w1

T x)(w2
T y))

)2

s.t. wi
T wi = 1, i = 1,2.

(3.1)
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where wi’s (i = 1,2) are the weight vectors, x is the predictor vector with size p×1

and y is the response vector with size q× 1. Here it is assumed that x and y are

preprocessed (the specific procedure will be presented in Section 3.2.3).

Second, to incorporate the advantages of ICA, the extracted LVs should be as

independent with each other as possible. According to Hyvärinen and Oja [39],

this can be achieved by solving the following problems:

max
w1

(
E(G(w1

T x))−E(G(u1))
)2

s.t. w1
T w1 = 1,

(3.2)

and
max

w2

(
E(G(w2

T y))−E(G(u2))
)2

s.t. w2
T w2 = 1,

(3.3)

where u1 and u2 are standard Gaussian variables and G(·) is a non-quadratic func-

tion. The following choices of G(·) have been previously suggested:

G1(u) =
1
a1

log cosh(a1u) and G2(u) =−exp(−u2

2
) (3.4)

where the constant a1 is generally 1 ≤ a1 ≤ 2. In this chapter, we adopt G1(·) for

G(·) in the following optimization procedure.

To encapsulate the above three maximization objectives, an intuitive approach

is to combine the three objectives into a single aggregate objective function and

achieve a good trade-off between their respective goals. We therefore employ the

well-known weighted linear sum of the sub-objectives, and propose the following

multi-objective optimization problem:

max
w1,w2

α
[
E((w1

T x)(w2
T y))

]2
+β

[
E(G(w1

T x))−E(G(u1))
]2

+θ
[
E(G(w2

T y))−E(G(u2))
]2

s.t. wi
T wi = 1, i = 1,2.

(3.5)

where α , β and θ are the weights for the corresponding sub-objectives respectively,
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and satisfy α +β +θ = 1. In Section 3.2.2, we will further discuss how to adjust

these parameters in detail.

Based on the above optimization formulation, a solution can be calculated us-

ing an approximate Newton iteration approach with the detailed derivation being

shown in Appendix B.2. At each iteration, wi’s are updated as:

wi← wi +di,

i.e., wi← wi− (JΦ(wi))
−1

∇Fwi , i = 1,2.
(3.6)

where JΦ(wi) is the Jacobian matrix and ∇Fwi is the first-order derivative of F(w1,

w2,λ1,λ2) defined in Equation (B.20) with respect to wi.

3.2.2 Determining the Optimization Weights

The primary goal during the multi-objective optimization is to simultaneously op-

timize two or more separate objectives subject to certain constraints. Due to the

complicated and possibly conflicting nature of the sub-objectives, the overall opti-

mal solution obtained depends on the relative values of the weights specified (i.e.,

α , β and θ here). Therefore, to achieve a good trade-off between different sub-

objectives, it is important to determine the weights appropriately. Here two key

issues should be taken into consideration: the different scales and the different

convergence speeds of the sub-objectives [96].

The following strategy was employed to avoid the undesirable situation in

which one sub-objective overwhelms the others: the aforementioned weights α ,

β and θ are decomposed into three factors respectively: αsig ·αscale ·αad j, βsig ·
βscale ·βad j and θsig · θscale · θad j. Here αsig, βsig and θsig, called significance fac-

tors, denote the relative significance attached to each sub-objective. They can be set

subjectively according to the specific application. αscale, βscale and θscale, named

scale factors, are adopted to unify the scales of the three sub-objectives. Just as

their names imply, the scale factors are defined as follows:

αscale =
1

|F1,w1w2 |
, βscale =

1
|F2,w1 |

, θscale =
1

|F3,w2 |
, (3.7)

where the denominators are the absolute values of the corresponding sub-objective
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functions defined as

F1,w1w2 =
(
E((w1

T x)(w2
T y))

)2
+κ11(w1

T w1−1)

+κ12(w2
T w2−1),

F2,w1 =
(
E(G(w1

T x))−E(G(u1))
)2

+κ2(w1
T w1−1),

F3,w2 =
(
E(G(w2

T y))−E(G(u2))
)2

+κ3(w2
T w2−1),

(3.8)

where κ11, κ12, κ2 and κ3 are Lagrange multipliers. αad j, βad j and θad j, called ad-

justable factors, are used to balance their different convergence speeds and can be

updated in real-time during the iterative searching procedure. In general, the gra-

dient of a function can be employed to estimate speed of convergence. Therefore,

the adjustable factors can be defined as below:

αad j =
1

(‖∇F1,w1‖+‖∇F1,w2‖)/2

βad j =
1

‖∇F2,w1‖
, θad j =

1
‖∇F3,w2‖

(3.9)

where the denominators are the L2 norm of the corresponding first-order deriva-

tives, which are calculated in a similar way to the calculation of ∇Fwi (i = 1,2) in

Appendix:

∇F1,w1 = 2E((w1
T x)(w2

T y))E(x(w2
T y))

−2w1
T E((w1

T x)(w2
T y))E(x(w2

T y))w1

∇F1,w2 = 2E((w1
T x)(w2

T y))E(y(w1
T x))

−2w2
T E((w1

T x)(w2
T y))E(y(w1

T x))w2

∇F2,w1 = 2(E(G(w1
T x))−E(G(u1)))E(xg(w1

T x))

−2w1
T (E(G(w1

T x))−E(G(u1)))E(xg(w1
T x))w1

∇F3,w2 = 2(E(G(w2
T y))−E(G(u2)))E(yg(w2

T y))

−2w2
T (E(G(w2

T y))−E(G(u2)))E(yg(w2
T y))w2.

(3.10)

where g(·) represents the first-order derivative of G(·). From the above definitions,

we can see that αad j, βad j and θad j will be adjusted online during the optimization
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procedure. If one sub-objective changes faster, i.e., its gradient norm is larger, the

corresponding adjustable factor will be smaller and vice versa. This makes all sub-

objectives change in parallel. However, when the iteration results are close to the

optima, the gradients will approach zero. Therefore we set the three weights as

below: 

α = αsig ·αscale ·αad j, αad j ≤ T H

β = βsig ·βscale ·βad j, βad j ≤ T H

θ = θsig ·θscale ·θad j, θad j ≤ T H

α = αsig ·αscale, αad j > T H

β = βsig ·βscale, βad j > T H

θ = θsig ·θscale, θad j > T H

(3.11)

where T H is a predefined small threshold that envelops a narrow range around

the optimum. Whenever the searching route enters the range, the corresponding

gradient approximates zero so that the weights should be determined only by the

first two factors. In short, the final weights take into account the effects of all the

three factors.

3.2.3 Initialization Setting

When solving optimization problems, the final solutions not only depend upon

the search algorithm employed, but also upon the initial setting, which determines

the searching path and starting point respectively. In the proposed IC-PLS model,

to prevent the optimization being stuck in an uninformative local minimum, we

introduce a joint statistical analysis method [70, 71] and use the extracted LVs as

initial conditions for the subsequent iterative search.

Suppose the original predictor and response data are denoted by Z1 (with size

N×P) and Z2 (with size N×Q) respectively and define the sub-latent variables

(subLVs) in each data space to be linear combinations of the original variables, i.e.,

Z1v1,Z2v2. One super latent variable (supLV) tg is designed to relate the subLVs
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by solving the following optimization problem:

max (tgT Z1v1)
2 +(tgT Z2v2)

2

s.t. tgT tg = 1, vi
T vi = 1, ∀i = 1,2

(3.12)

with all data assumed to be zero-mean and normalized to unit variance in advance.

The subLV Zivi in each data space carries its associated variation information and

(tgT Zivi)
2 models the covariance information between the subLV Zivi and the su-

pLV tg. The supLV tg relates all subLVs simultaneously and actually plays a role as

a link. It is expected that, by solving the above optimization problem, the extracted

subLVs will carry as much variation as possible in each data space and at the same

time be correlated as closely as possible.

By the method of Lagrange multipliers, the supLV and subLVs can be readily

derived as:

(Z1Z1
T +Z2Z2

T )tg = ρgtg, (3.13)

ti = Zivi =

√
1
ρi

ZiZi
T tg, (3.14)

where ρi = tgT ZiZi
T tg. Thus with Lagrange multipliers the optimization problem

is now characterized as a standard algebra problem.

Several supLVs, represented by Tg and ranked by descending ρg’s can be ex-

tracted and a same number of subLVs, represented by Ti, can be readily calculated

by using Eq. (3.14):

Ti = ZiZi
T TgDi, (3.15)

where Di is a diagonal matrix with corresponding
√

1
ρi

’s as its diagonal elements.

In practice, we need to specify the number of supLVs to be extracted, which can

be done by extracting a sufficient number to explain an adequate fraction of the

variance (e.g. 90%).

From the above derivation, it is apparent that the supLVs Tg are actually the

principal components (PCs) of the concatenated data shown in Equation (3.13)

and the subLVs Ti are extracted by regressing each data space on the supLVs as

shown in Equation (3.15). Hence, the supLVs can represent the general systematic

variations for both data spaces and the subLVs can capture the local systematic
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variations within each data space. However, collinearity may exist in the subLVs

calculated through the above procedure since each data set is used repetitively as

shown in Equation (3.14). Furthermore, the subLVs are not sorted according to

the correlation of the corresponding between-set subLV pairs. To efficiently imple-

ment the subsequent Newton iteration, we need to address the above concerns and

therefore modify the original subLVs as follows:

First, find the maximal correlation and the corresponding supLV t∗g as well as sub-

LVs t∗1 , t
∗
2 ;

Second, exclude t∗g from Tg and update each data space using t∗1 , t
∗
2 in a deflation

manner;

Third, update the original subLVs based on the new supLVs and the updated data

spaces by using Equation (3.15).

After repeating these steps, it is ensured that the modified subLVs (MsubLVs)

are orthogonal to each other and automatically ordered. The extracted MsubLVs

are then used as the initial solutions for the proposed multi-objective optimization

problem.

3.2.4 A Group Analysis Framework

In many medical applications, the desire to make group inferences requires recruit-

ment of an adequate number of subjects and the application of a suitable group

analysis which accommodates inter-subject variability. Here we propose a group

analysis framework for modeling corticomuscular coupling activity, and apply the

proposed group analysis framework to the EEG/EMG data collected from normal

subjects and subjects with PD during a motor task.

As illustrated in Fig. 3.1, there are two stages in this framework. Suppose we

have B subjects in total (e.g. B = 17 in this study) and two types of data sets for

each subject. In the first stage, the subLVs Tb j’s (b = 1,2, ...,B; j = 1,2) for each

subject are calculated by using Equation (3.13) and Equation (3.15). Note that

these subLVs include most of the useful information for further analysis, and there

is no need to use the modified algorithm here because the collinearity and ordering

problems will be solved together in the initialization step of the group level IC-PLS

model.
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Figure 3.1: The diagram of the group analysis framework based on the pro-
posed IC-PLS model.

In the second stage, all subjects’ subLVs are correspondingly concatenated as:

Tgroup j = [T1 j,T2 j, ...,TB j] , ∀ j = 1,2, (3.16)

with the assumption that all subjects share common temporal group patterns [82].

Then the whole initialization procedure described in Section 3.2.3 is applied to the

concatenated data Tgroup j. Finally, the proposed IC-PLS model is employed to pro-

cess the initialized data sets and the expected LVs could be extracted to represent

group patterns.

3.3 Data Processing and Results

3.3.1 Simulation

Synthetic Data

In this simulation, we apply the proposed IC-PLS model to synthetic data and

also implement PLS and ICA for comparison. As an illustrative example, without
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loss of generality, four sources are generated and analyzed, similar to that used by

Hakyin [98].

Figure 3.2: The four source signals.

The following four source signals are considered:

s1 = 2cos(0.08t)sin(0.006t)

s2 = sign(sin(0.3t)+3cos(0.1t))

s3 = uniformly distributed noise in the range [−1.5,1.5]

s4 =


0.01t 1≤ t ≤ 200

−0.01t +4 201≤ t ≤ 600

0.01t +8 601≤ t ≤ 1000

(3.17)

where t denotes the time point index, valued from 1 to 1000, and si’s (i = 1,2,3,4)

represented four simulated sources, as shown in Fig. 3.2.

Two mixed data sets X and Y , shown in Fig. 3.3, were generated as follows:

x = Asx and y = Bsy (3.18)
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(a)

(b)

Figure 3.3: (a) The mixed data X. (b) The mixed data Y.

where sx = [s1 s2 s3]
T and sy = [s1 s2 s4]

T with

A =


0.86 0.79 0.67

−0.55 0.65 0.46

0.17 0.32 −0.28

−0.33 0.12 0.27

0.89 −0.97 −0.74

 (3.19)
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(a)

(b)

Figure 3.4: (a) The LVs estimated in X using PLS. (b) The LVs estimated in
Y using PLS.

B =


0.21 0.69 0.05

0.22 0.98 0.03

0.68 0.74 0.10

0.05 0.63 0.42

0.83 0.10 0.79

 (3.20)

Here x, y, sx and sy are all column vectors, denoting one observation in their re-
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spective data space.

(a)

(b)

Figure 3.5: (a) The LVs estimated in X using ICA. (b) The LVs estimated in
Y using ICA.

The sources s1 and s2 exist in both data spaces X and Y , representing common

information. The source s3 only contributes to X and s4 only to Y , representing

their own unique information. In Y , we intentionally assigned a relatively high

weight to the source s2. Moreover, different white Gaussian noise with 5% power

was added to each source in each data space.
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(a)

(b)

Figure 3.6: (a) The LVs estimated in X using IC-PLS. (b) The LVs estimated
in Y using IC-PLS.

Results

The extracted components using PLS, ICA and the proposed IC-PLS model are

shown in Figs. 3.4, 3.5 and 3.6 separately. The LVs extracted by PLS are au-

tomatically ordered in terms of their significance and successfully reflected the

corresponding relationships of the underlying sources between X and Y . However,
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compared with the original sources, the extracted LVs are distorted, suggesting that

the fact that the PLS sources are uncorrelated are insufficient to accurately recover

the underlying sources. In contrast, ICA recovers the original sources accurately

in both data spaces, but it does not relate the two data spaces and the LVs are un-

ordered. When the proposed IC-PLS model is employed, the dominant sources

which make significant contributions to both data spaces are accurately identified

and ordered, with the focus entirely on sources that are common across the predic-

tor and the response.

3.3.2 Real Data

The experimental data sets have been described in Section 2.2. The concurrently

collected EEG and EMG from controls and PD subjects are utilized here.

Feature Extraction

The basic idea is similar to that in Section 2.3.3. We examined the coupling rela-

tionships between time-varying EEG features and amplitudes of the EMG signals,

constituting Zb1 and Zb2 respectively for Subject b.

EEG Features Two types of EEG features were considered: pair-wise Pearson’s

correlation [86] and band-limited, pair-wise EEG coherences [97]. Pearson’s cor-

relation has been defined in Section 2.3.3 and can be referred to Equation (2.9).

EEG coherence can also be used to examine the relation between two EEG sig-

nals, which includes both power and frequency information. The calculation can

be referred to Equation (1.1). In this chapter, we calculated both the time-varying

pair-wise correlations and coherences between EEG channels, using a Hamming

window with length 300 and with a 95% overlap. To be consistent with com-

mon EEG practice, we further divide the coherence into four frequency bands, i.e.,

theta band (4-8 Hz), alpha band (8-13 Hz), beta band (13-30 Hz) and gamma band

(30-70 Hz). The time-varying energy signals in each band were then used as the

EEG features. Therefore, the raw EEG information can be represented by a two-

dimensional matrix with size N ×M, where the rows correspond to the samples

at different time points and the columns correspond to the features, i.e. pair-wise
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correlations or band-limited coherences between the EEG channels.

EMG Features In this study, we still employ the root-mean-square approach de-

scribed in Equation (2.10) to calculate the EMG amplitude of short-duration EMG

signals by a moving window with length n = 300 and a 95% overlap, the same as

in the EEG feature calculation, to ensure that the obtained EEG and EMG features

are temporally aligned and matched.

Regarding significance assessment and spatial pattern extraction, we could re-

fer to Section 2.3.3.

Results

Figure 3.7: The two components of the group analysis framework when using
the EEG correlations and the EMG amplitude data sets. Top panel:
Temporal patterns of the EEG (red, dashed) and the EMG (blue, solid).
The oscillation of the target bar is also shown (black, solid). Bottom
panel: EEG spatial patterns of normal subjects (left) and PD subjects
(right). The connections reflect the respective spatial patterns in the
two groups and the width is made proportional to the weighting of the
respective connections in the group EEG spatial pattern. CC means
correlation coefficient.

When the proposed group analysis framework is applied to EEG and EMG
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Figure 3.8: The two components of the group analysis framework when using
the EEG coherence and the EMG amplitude data sets.

features generated using the procedure described in Section 3.3.2 from all 8 normal

and 9 PD subjects simultaneously, the identification of common temporal patterns,

but different spatial patterns could be identified. Using the permutation test, two

components are deemed significant (P ≤ 0.05) (Figs. 3.7 and 3.8). Note that in

the figures only connections whose weights are statistically significantly different

from zero are shown.

When using the correlation between brain regions as the EEG feature, many
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connections between are similar between PD and normals, especially when con-

nections seen in either components are considered. The only difference is a con-

nection between the L sensorimotor and frontal regions that is present in controls

but missing in PD (Fig. 3.7).

When the pairwise EEG coherence features are used to couple with the EMG

features, there are also two components deemed significant via the permutation test

(Fig. 3.8). Again, when considering across components, there are similarities in the

connections between PD and controls, but also significant differences. In the beta

band, normal subjects have connections between the R sensorimotor cortex and

occipital, central and frontal regions that are completely missing in PD subjects.

In the gamma band, PD subjects have increased connectivity between the frontal

regions and central and sensorimotor cortices that are missing in controls. Finally,

PD subjects have a significant connection between the L sensorimotor and occipital

regions in the theta and alpha bands that is not present in controls.

3.4 Discussion
In this chapter, we have proposed a new method to assess EEG/EMG coupling

based on combining the favourable properties of ICA and PLS. The simulations

support utilization of proposed method, and results based on real data from Parkin-

son’s and normal control subjects performing a dynamic motor task are promising.

The results we observed in the PD and control subjects are consistent with prior

studies describing the changes in EEG observed in PD. When using the correlation

between brain regions as EEG features, we found widespread connectivity between

central regions and the ipsilateral (right) sensorimotor regions and ongoing EMG

activity. A body of literature suggests that widespread oscillatory disruption in PD

is detectable in the EEG during visually guided tasks (e.g. [100]). This likely rep-

resents compensatory expansion of cortical regions to overcome deficiencies in the

basal ganglia to perform motor tasks, as has been observed in fMRI studies [101].

The lack of fronto-central alpha activity seen in PD subjects compared to controls

may reflect impaired spatial attention [102], as impairment of maintenance of at-

tention has been well described in PD subjects (e.g. [115]). The increased frontal

connectivity we observed in the gamma region in PD may reflect the enhanced ef-
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fort PD subjects required for motor task switching [92], a problem common in this

population [93].The enhanced occipital connectivity seen in PD in the theta and

beta bands likely relates to the fact that PD subjects heavily rely on visual cues for

the initiation [94] and ongoing control of movement [95].

We are able to find common temporal patterns of corticomuscular coupling

in both PD and controls despite having different spatial origins of this common

signal. We note that our results are consistent with a recent study that suggests

the magnitude of traditional MSC is not significantly different early in PD [106].

However, we have shown that the distributed EEG connectivity patterns required

to generate these common temporal patterns differ between PD and controls. One

could envision situations where the spatial extent is similar, but the temporal pro-

files are significantly different (e.g. focal stroke affecting the sensorimotor cortex

contralateral to the hand performing the task) which may not be well-served by the

proposed approach. However, even in this scenario, compensatory mechanisms

would still presumably modify the connectivity patterns giving rise to corticomus-

cular coherence, and this would still be captured by the current approach.

A limitation of our approach is that it treats corticomuscular interactions as

bidirectional; however, in addition to the cortex driving the muscle, there may be

proprioceptive information from the muscle to the cortex. This reflects the inherent

limitation of the PLS step, however recent work on directed partial least squares

(e.g. [107]), may provide future directions to extend the current approach. Another

possible refining is that the cross-validation and bootstrap method may be used to

test the robustness and infer the population level information.
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Chapter 4

A Joint Multimodal Group
Analysis Framework for
Modeling Corticomuscular
Activity

4.1 Motivation and Objectives
In the previous two chapters, we have proposed two novel coupling analysis meth-

ods. However, in both methods, only two types of data sets can be processed at

the same time, while in many cases more than two types of data sets can be avail-

able and a better understanding could be achieved from analyzing multimodal data

jointly. To address the above concern, in this chapter, we design a joint multimodal

statistical framework (JMSF) for corticomuscular coupling analysis to relate mul-

tiple data sets.

Unlike previous approaches where only two data sets are considered and the

interest is to interpret one data set by the other in a unidirectional fashion, the pro-

posed framework models multiple data spaces simultaneously in a multidirectional

fashion. Here, we extend the “bidirection” concept in [108] to be “multidirection”

to accommodate multimodal cases. The framework has a two-step modeling strat-
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egy. In the first step, a multidirectional LV extraction solution (denoted as multi-LV

extraction) is established for preliminary LV preparation. It is formulated by solv-

ing a simple optimization problem. In the second step, a joint postprocessing is

performed on the extracted LVs to acquire common and specific information in

each data space. Furthermore, to address the challenging issue of inter-subject

variability in biomedical applications where the problem is to infer certain activa-

tion patterns consistently shared within a population, we develop a group analysis

architecture based on the proposed JMSF to accommodate the multi-subject case

and to summarize the information from each individual subject’s data to achieve

group inference.

4.2 Methods

4.2.1 The Joint Multimodal Statistical Framework

The main contributions of the proposed method lie in two folds: (1) it changes the

traditional unidirectional regression fashion to a multidirectional fashion where

data spaces are explored under the supervision of each other and (2) it models

multiple data sets/signals simultaneously overcoming the traditional constraint of

having only two types of data sets. In the following subsections, the two-step mod-

eling strategy of the proposed JMSF, which is illustrated in Fig. 4.1, is described

in details.

Multi-LV Extraction

Suppose we have m data sets X1, which is with size N×P1, X2 with size N×P2,

..., and Xm with size N ×Pm, and we define the sub-latent variables (denoted as

subLVs) in each data space to be linear combinations of the original variables, i.e.,

X1w1,X2w2, ...,Xmwm. One super latent variable (denoted as supLV) tg is designed

to relate the subLVs, and it can be obtained by solving the following optimization

problem:

max
tg,wi

m

∑
i=1

(tgT Xiwi)
2,

s.t. tgT tg = 1, wi
T wi = 1, ∀i = 1,2, ...,m.

(4.1)
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All columns of the m data matrices are assumed to be zero-mean and normalized

to unit variance in advance. The subLV Xiwi for the ith data space carries its as-

sociated variation information and (tgT Xiwi)
2 models the covariance information

between each subLV Xiwi and the supLV tg. The supLV tg relates all subLVs si-

multaneously and actually plays a role as a link bridge. By solving the above op-

timization problem, it is expected that the extracted subLVs should carry as many

variations as possible in each data space and at the same time be correlated to each

other as closely as possible.

By employing the method of Lagrange multipliers, we rewrite the initial cost

function as:

Ltg,wi =
m

∑
i=1

(tgT Xiwi)
2−λg(tgT tg−1)−

m

∑
i=1

λi(wi
T wi−1), (4.2)

where λg and λi’s are Lagrange multipliers.

Taking the derivatives of Ltg,wi with respect to tg and wi’s and setting them to

be zero, we have:

∂Ltg,wi

∂ tg
= 2

m

∑
i=1

(tgT Xiwi)Xiwi−2λgtg = 0, (4.3)

∂Ltg,wi

∂wi
= 2(tgT Xiwi)Xi

T tg−2λiwi = 0. (4.4)

By left multiplying Equation (4.3) with tgT and Equation (4.4) with wi
T , we

can easily derive the following equations:

m

∑
i=1

(tgT Xiwi)
2 = λg, (4.5)

(tgT Xiwi)
2 = λi, ∀i = 1,2, ...,m. (4.6)

The above equations indicate that λg is the underlying optimization objective

and λi’s stand for the suboptimal objective parameters, which is actually equivalent

to the following relation:
m

∑
i=1

λi = λg. (4.7)
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According to Equations (4.5) and (4.6), we can modify Equations (4.3) and

(4.4) as follows:
m

∑
i=1

√
λiXiwi = λgtg, (4.8)

1√
λi

Xi
T tg = wi, ∀i = 1,2, ...,m. (4.9)

Then, the above equations can be combined as

(
m

∑
i=1

XiXi
T )tg = λgtg, (4.10)

which means that the optimization problem is now transferred to be a standard

algebra problem. The solution can be easily found through the eigenvalue decom-

position of the matrix (∑m
i=1 XiXi

T ).

After tg is calculated, the suboptimal objective parameters λi’s can be obtained

by combining Equations (4.6) and (4.9):

tgT XiXi
T tg = λi, ∀i = 1,2, ...,m. (4.11)

Finally, in terms of Equations (4.9) and (4.11), the subLVs can be expressed as

ti = Xiwi =

√
1

tgT XiXi
T tg

XiXi
T tg, ∀i = 1,2, ...,m. (4.12)

Usually, using Equation (4.10), several supLVs tg’s, denoted by the matrix Tg,

can be derived according to the descending λg’s. For each data set Xi, the same

number of subLVs, denoted by Ti, can be readily calculated by Equation (4.12),

rewritten as

Ti = XiXi
T TgDi, ∀i = 1,2, ...,m, (4.13)

where Di is a diagonal matrix with corresponding
√

1
λi

’s being its diagonal ele-

ments. A practical issue is to determine the number of supLVs. In our study, we

determine the number by setting a threshold that corresponds to the ratio of ex-

plained variance (e.g. 90%).

From the entire derivation process, we can see that the supLVs Tg are actu-
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ally the principle components (PCs) in the concatenation data space, as shown

in Equation (4.10), and the subLVs Ti’s are extracted by regressing each data set

onto the supLVs, as shown in Equation (4.13). Hence, the supLVs can represent

the general systematic variations for all data spaces and the subLVs Ti’s can cap-

ture the local systematic variations in the ith data space. However, the collinearity

problem may exist in the subLVs calculated through the above procedure since

each data set is used repetitively as shown in Equation (4.12). The extracted sub-

LVs are not necessarily orthogonal to each other. Furthermore, in practice, we

are interested in identifying the most highly correlated components across mul-

tiple data sets. However, the subLVs derived above are not sorted according to

the average correlation coefficient (acc) between corresponding subLV pairs, i.e.

acc(l) = ∑
m
i, j=1
i 6= j

cc(ti,l, t j,l)/(m(m− 1)/2). To effectively implement the joint post-

processing step which is to be described shortly, we need to address these orthog-

onality and sorting issues and thus we design a modified algorithm as described in

Algorithm 2. In Algorithm 2, it can be ensured that the modified subLVs (Msub-

LVs) for each data space are orthogonal to each other and are automatically ordered

according to the descending average correlation.

Figure 4.1: The diagram of the joint multimodal statistical framework.
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Algorithm 2 Multi-LV Extraction

Input: multiple data sets X1 with size N×P1, X2 with size N×P2, ..., and Xm

with size N×Pm

Output: corresponding MsubLVs matrices mT1, mT2, ..., mTm

1: Set count = L, and extract L supLVs Tg = [tg,1, tg,2, ..., tg,L] from the concate-
nated data space [X1,X2, ...,Xm] by using Equation (4.10).

2: Calculate the original subLVs Ti = [ti,1, ti,2, ..., ti,L], ∀i = 1,2, ...,m within
each data space by Equation (4.13).

3: Initialize all MsubLVs matrices to be empty, i.e., mTi =[ ], i = 1,2, ...,m.
4: while count > 0 do
5: For l = 1,2, ...L, calculate the correlation coefficients (cc) between each pair

of subLVs (e.g. cc(ti,l, t j,l), i 6= j, l denotes the l-th subLV).
6: For each l, compute the average correlation coefficient (acc), i.e., acc(l) =

∑
m
i, j=1
i6= j

cc(ti,l, t j,l)/A, where A = m(m− 1)/2 is the total number of possible

unique pairs.
7: Find the maximum acc and the corresponding supLV t∗g as well as the sub-

LVs t∗1 , t
∗
2 , ..., t

∗
m.

8: Set mTi =[mTi t∗i ], i = 1,2, ...,m
9: Deflate Xi’s by substracting the effects of the corresponding subLV from

each data space as follows:
10: for i = 1 to m do
11: pi

T = (t∗i
T t∗i )

−1t∗i
T Xi

12: Ei = Xi− t∗i pi
T

13: end for
14: Exclude t∗g from Tg to obtain an updated supLVs matrix T ∆

g .
15: Calculate the updated subLVs matrices by using Equation (4.13) based on

T ∆
g and Ei

16: Let count = count−1.
17: end while
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Joint Postprocessing

Although the corresponding subLVs for the data spaces may show similar patterns

under the link of supLVs, the correlation among the subLVs can not be necessar-

ily ensured to be maximized. Therefore, a joint postprocessing step is needed to

further decompose the underlying information of the results from the first-step. Re-

cently, joint blind source separation (BSS) techniques on multiple data sets have

been successfully applied to a wide range of applications such as the estimation of

brain activations [82]. Some popular methods include group ICA [82], indepen-

dent vector analysis (IVA) [109] and M-CCA [110]. Through numerical and real

data study, it has been shown that M-CCA can achieve better performance than the

others, especially when the data sets are large [110]. Therefore, in this chapter, we

adopt M-CCA as the joint postprocessing method.

M-CCA extends the theory of CCA to more than two random vectors to identify

canonical variates that summarize the correlation structure among multiple random

vectors by linear transformations. Unlike CCA where correlation between two

canonical variates is maximized, M-CCA aims to optimize an objective function

of the correlation matrix of the canonical variates from multiple random vectors

in order to make the canonical variates achieve the maximum overall correlation.

Details about the implementation procedure of M-CCA can be found in [110].

In this study, the inputs to M-CCA are the extracted MsubLVs from the first-

step, i.e. mT1, mT2, ..., mTm, and the outputs are the extracted canonical components

with maximum correlation, revealing their common information, i.e., T1c, T2c, ...,

Tmc. The associated subspace decomposition can be expressed as below:

Pic
T = (Tic

T Tic)
−1Tic

T Xi

Xi = Xic +Xie = TicPic
T +Xie,

∀i = 1,2, ...,m

(4.14)

where Pic is the loading matrix and Xie is the residual information within the ith data

space. Regarding the number of the canonical components, we can first keep it the

same as the number of subLVs and then apply the permutation test (see Section

4.3.2) to identify significant components as the final common information.

Since the residual Xie may contain some specific information within the data
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space Xi besides noises, it is desirable to explore this kind of underlying infor-

mation, reflecting the unique characteristics of each data space. Here, we adopt

the method of orthogonal signal correction (OSC) [111] to draw the orthogonal

components from the M-CCA residuals, i.e., T1o, T2o, ..., Tmo. The associated de-

composition can be described as

Pio
T = (Tio

T Tio)
−1Tio

T Xi

Xie = Xio +Xir = TioPio
T +Xir,

∀i = 1,2, ...,m

(4.15)

where Pio is the loading matrix, and Xir is the final residual within each data space.

In summary, each original data space Xi is decomposed into three subspaces:

Xi = Xic +Xio +Xir = TicPic
T +TioPio

T +Xir, (4.16)

where the first subspace stands for the similarity among multiple data sets and the

second reveals the unique information in each data space.

4.2.2 A Group Analysis Architecture

To accommodate the multi-subject case, the proposed method in Section 4.2.1 is

extended to the group level and we propose a group analysis method. For modeling

the corticomuscular activity, we apply the proposed group analysis method to con-

current EEG, EMG and BEH signals collected from normal subjects and patients

with PD during a motor task.

Suppose we have a total of B subjects (B = 17 in this study) and m types of

data sets for each subject (m = 3 in this study). As illustrated in Fig. 4.2, there

are mainly three steps in this architecture. In the first step, the subLVs Tb j’s (b =

1,2, ...,B; j = 1,2, ...m) for each subject are calculated using Equations (4.10) and

(4.13). These subLVs include most of the useful information for further analysis. It

is not necessary to use the modification algorithm here because the collinearity and

ordering problems will be solved together later. In the second step, all subjects’
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Figure 4.2: The diagram of the group analysis architecture based on the pro-
posed JMSF in Section 4.2.1.

subLVs are correspondingly concatenated as:

Tgroupi = [T1i,T2i, ...,TBi] , ∀i = 1,2, ...,m, (4.17)

with the assumption that all subjects share common group patterns in the temporal

dimension. In the third step, the proposed JMSF is applied to the m grouped data

sets and correlated components can be extracted.

4.3 Data Processing and Results

4.3.1 Simulation

Synthetic Data

In this simulation, without loss of generality, three data sets are generated and ana-

lyzed as an illustrative example. The following three data space with five variables

are considered, where each data space contains a common source and a unique
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source:
X1 = [s1,s1,s2,s2,s2] , with size 100×5

X2 = [s2,s2,s3,s3,s3] , with size 100×5

X3 = [s4,s4,s2,s2,s4] , with size 100×5

s1 = cos(0.01t)sin(t)

s2 = sin(0.015t)+2cos(0.005t)

s3 = 2sin(0.025t)

s4 = 2cos(0.08t)sin(0.006t)

(4.18)

where t denotes the time point index, valued from 1 to 100, and si’s (i = 1,2,3,4)

represent four major simulated sources, which are uncorrelated with each other. In

each data space, the common source s2 represents the common information shared

with other spaces and the unique source contributes to its different behavior. White

Gaussian noises with 5% power level are added to each source in each data set.

Moreover, to further demonstrate the robustness, we add another two higher noise

levels and summarize the results in Table 4.1.

Results

We apply the proposed JMSF to synthetic data to demonstrate its performance.

We illustrate the entire process of modeling the underlying variations in each data

space under the supervision of each other.

All variables in three data sets are normalized to have zero-means and unit

variances. According to the accumulative explained variance, four supLVs, de-

noted by Tg, are extracted to explain the general systematic information in the

concatenated data space [X1,X2,X3], accounting for more than 90% of the overall

variation. The four supLVs are shown in Fig. (4.3), compared with the original

sources si’s (i = 1,2,3,4). The extracted supLVs are sorted in a descending order

of their associated variances. We can see that the supLVs recover the major sources

in some sense. As expected from our method, the first supLV resembles the com-

mon source s2 in the three data spaces. The second and third supLVs are actually

the combinations of s3 and s4. The fourth is quite similar to s1.

Furthermore, the corresponding subLVs and MsubLVs are also extracted from
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Figure 4.3: The extracted four supLVs (left hand side) and the original four
sources si’s (right hand side).

Figure 4.4: From left to right: the original subLVs of the data spaces X1, X2
and X3 respectively.

each data space, and the results are shown in Fig. (4.4) and Fig. (4.5) respec-

tively. Obviously, the subLVs from each data space are not orthogonal to each

other, which indicates that the information in each data space is repetitively used.

By using the modified algorithm presented in Section 4.2.1, orthogonal MsubLVs

can be extracted and sorted automatically according to their correlation relation-

ships with the supLVs. Compared with the true underlying signal model, we can
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Figure 4.5: From left to right: the modified subLVs for the data spaces X1, X2
and X3 respectively.

see that the first two MsubLVs can summarize the major variation in each data

space and the third one is mainly due to noise.

Finally, the postprocessing step is performed to separate the highly correlated

information from the irrelevant parts. As shown in Fig. (4.6), the recovered CCA

components and OSC components are comparatively present for the three data

spaces. The CCA components are similar to the common source s2 and meanwhile

the OSC components are similar to their corresponding unique source.

This simulation study illustrates the main steps of the proposed framework

and shows that the underlying information in each data space can be effectively

extracted. To further demonstrate its robustness, we consider another two higher

noise levels (i.e., 10% and 15%) and summarize the results in Table 4.1. From the

table, we can see that although the noise power significantly increases, cc and acc

still maintain at quite high values, indicating the good robustness of the proposed

method against additional noise.

4.3.2 Real Data

The detailed description for the experiment can be referred to Section 2.2. The

concurrently collected EEG, EMG and BEH signals from controls and PD subjects

are utilized here.
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Figure 4.6: The postprocessing results for Multi-LVs.

Table 4.1: The estimation performances of the
proposed method at different noise levels.

Noise Level cc1 cc2 cc3 acc

5% 0.9985 0.9982 0.9978 0.9969

10% 0.9943 0.9920 0.9923 0.9871

15% 0.9842 0.9831 0.9880 0.9752
a Here noise level indicates the noise power in terms of the

percentage of the source signal power; cc1 means the
correlation coefficient between the original source s2 and
the correlated LV extracted from X1; cc2 and cc3 are
similarly defined; acc is defined in Algorithm 2.

Feature Extraction

In this chapter, we examine the coupling relationships among the EEG signals,

the amplitudes of the EMG signals and the behavioral performance measurements,

constituting X1, X2, and X3 respectively for each subject.

EEG Features Two types of EEG features are considered: Pearson’s correlation

[86] and EEG spectrum [112]. Pearson’s correlation has been defined in Sec-

tion 2.3.3 and can be referred to Equation (2.9). Spectrum represents the energy
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distribution of an EEG signal x = (x1,x2, ...,xn) in the frequency domain, which

can be generated via a discrete Fourier transform:

Xk =
n

∑
i=1

xie− j2πk i
n , k = 0,1, ...,n−1, (4.19)

where Xk’s represent the frequency domain information. In this chapter, we calcu-

late the time-varying correlations between each two EEG channels and the time-

varying spectra of each EEG channel, using a Hamming window with length 300

and with a 95% overlap. To be consistent with the EEG practice, we further divide

the spectrum into three frequency bands, i.e., theta band (4-8 Hz), alpha band (8-

13 Hz) and beta band (13-30 Hz). The time-varying energy signals in each band

are used as the EEG features. Therefore, now the raw EEG signals can be trans-

ferred into a two-dimensional matrix with size N×M, where the rows correspond

to the samples at different time points and the columns correspond to the features,

i.e. pair-wise correlations between the EEG channels or band-limited energies of

individual EEG channel signals.

EMG and BEH Features The same EMG feature described in Equation (2.10) is

employed here. Note that the window size used here is the same as in the EEG

correlation calculation. This is to ensure that the obtained EEG and EMG features

are temporally aligned and matched. Similarly, the BEH measurement sequence

from each subject is resampled to ensure the same temporal length as that of the

EEG and EMG features.

Significance Assessment

To determine the statistical significance levels of the extracted components, we

exploit the non-parametric permutation test [88] in which temporal correlations

among EEG, EMG and BEH are removed by permuting the temporal order of EEG

features X1 and EMG features X2 uniformly for all subjects while keeping the BEH

features X3 unchanged. In this study, 200 random permutations are generated and

the proposed group analysis architecture is applied to each of these permutations.

The average correlation coefficients among the extracted temporal patterns from
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permuted EEG features, permuted EMG features, and unchanged BEH features are

then calculated to form an empirical null distribution. The p-value of the original

EEG/EMG/BEH average correlation can be computed from the null distribution as

the probability of observing a value at least as extreme as the original correlation

in the null distribution. The components with p-value being less than 0.05 are

considered to be statistically significant, denoted as Tgroup1c, Tgroup2c and Tgroup3c,

all with size (N×K), where K is the number of significant components.

Spatial Pattern Extraction

Spatial patterns of EEG channels represent functional connections between brain

regions. Especially in this study, we want to investigate the differences between

the normal group and the PD patient group when performing a motor task. After

the identification of significant temporal patterns, we regress the EEG-related com-

ponents Tgroup1c back onto the EEG features Xb1 (for b = 1,2, ...,B) for all subjects

as follows:

pbk =

√
1

tkT Xb1Xb1
T tk

Xb1
T tk, k = 1,2, ...,K. (4.20)

where tk is the k-th column of Tgroup1c and pbk is the spatial pattern of the k-th com-

ponent for subject b. For subject b, pbk can reflect which correlation connections

make important contributions to the corresponding significant temporal pattern. To

allow for easier visualization and comparison of spatial patterns between the two

groups (normal vs. PD), for each significant component, we concatenate the spa-

tial patterns of the subjects within a group horizontally, and perform PCA on the

concatenated spatial patterns. The group level spatial pattern is then represented

by the first principal component [30].

Results

In this real data study, we apply the proposed group analysis method for corti-

comuscular activity analysis to concurrent EEG, EMG and BEH signals collected

from normal subjects and patient subjects with PD when they perform a force track-

ing task. We aim to extract common temporal patterns among the three types of

signals and explore the differences in their spatial patterns between the control and

67



PD groups.

The proposed group analysis method is applied to the EEG, EMG and BEH

features generated using the procedure described in Section 4.3.2 from all 8 nor-

mal and 9 PD subjects simultaneously. The joint modeling of normal and PD data

allows the identification of common temporal patterns across the groups. Mean-

while, the spatial patterns may be different across subjects, from which we can

identify the specific correlation connections or brain regions that are differentially

recruited by PD subjects during the motor task.

Figure 4.7: Component 1 of the group JMSF when using the EEG correla-
tions, the EMG amplitude and the force output data sets. Top panel:
Temporal patterns of the EEG (solid), the EMG (dashed) and the BEH
signals (dotted). The oscillation of the target bar is also shown (black,
solid). Bottom panel: EEG spatial patterns of normal subjects (left)
and PD subjects (right). The connections reflect the respective spatial
patterns in the two groups.

In this study, we repeat the analysis to two types of EEG features. For each

case, X1, X2 and X3 represent the time-varying feature matrices of EEG, EMG and
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BEH respectively. The length of the time sequences here is 480, associated with the

300-length moving window and a 95% overlap. For the EEG correlation case, since

the EEG signals are divided into five regions as mentioned in Section 2.2, there are

a total of C5
2 = 10 correlation connections. Thus, X1 is with size 480× 10. For

the EEG band-energy case, there are five brain regions and three frequency bands,

indicating 15 energy features can be generated. Thus, X1 is with size 480×15. For

both cases, X2 and X3 are with size 480×1.

Figure 4.8: Component 2 of the group JMSF when using the EEG correla-
tions, EMG amplitude and force output signals as the three data sets.

EEG Correlation Components Corresponding to EMG and BEH Data Using the

permutation test, three significant components (P≤ 0.05) are identified. The tem-

poral and the corresponding spatial patterns for Component 1 are shown in Fig.

4.7. The average correlation coefficient among the EEG, EMG and BEH scores is

0.86 (with the p-value P = 0.0005). The group-level EEG spatial activation pat-

terns of normal and PD subjects given by PCA are shown in the bottom panel of
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Figure 4.9: Component 3 of the group JMSF when using the EEG correla-
tions, EMG amplitude and force output as the three data sets.

Fig. 4.7. In this EEG feature setting, there are a total of 10 correlation connections.

For easier interpretation, only connections whose weights are greater than 80% of

the maximum value are shown. From Fig. 4.7, we can see that, for both normal

and PD groups, this component is dominated by the connection Central – FCen-

tral, while in PD subjects, there is an additional connection Occipital – RSM. The

temporal and spatial patterns for Component 2 are shown in Fig. 4.8. The average

correlation coefficient among the EEG, EMG and BEH scores is 0.83 (with P =

0.0012). From Fig. 4.8, we can see that, for both normal and PD groups, there

exists the connection Central – FCentral, whereas for the PD group, there are two

additional connections LSM – RSM and Occipital – FCentral. The temporal and

spatial patterns for another significant component are shown in Fig. 4.9. The aver-

age correlation coefficient among the EEG, EMG and BEH scores is 0.77 (with P

= 0.0068). In normal subjects, this component is based largely on the connections

LSM – FCentral, Occipital – LSM and Central – RSM, while in PD subjects, it

is based on the connections LSM – FCentral, Occipital – FCentral and Central –
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LSM.

Figure 4.10: Component 1 of the group JMSF when using EEG band-limited
energies, EMG amplitude and force output signals as data sets. Top
panel: Temporal patterns of EEG (solid), EMG (dashed) and BEH
(dotted). The oscillation of the target bar is also shown (black, solid).
Bottom panel: EEG spatial patterns of normal subjects (left) and PD
subjects (right). The colors reflect the relative weighting of the respec-
tive band-limited energies in five brain regions.
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Figure 4.11: Component 2 of the group JMSF when using the EEG band-
limited energies, EMG amplitude and force output signals as data sets.

EEG Band-Energy Components Corresponding to EMG and BEH Data Using

the permutation test, two significant components (P ≤ 0.05) are identified. The

temporal and spatial patterns for Component 1 are shown in Fig. 4.10. The av-
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erage correlation coefficient among the EEG, EMG and BEH scores is 0.91 (with

P = 0.0004). The group-level EEG spatial activation patterns of normal and PD

subjects given by PCA are shown in the bottom panel of Fig. 4.10. In this EEG

feature setting, there are five brain regions and three frequency bands, i.e. 15 en-

ergy features. For the theta band, in both normal and PD groups, FCentral demon-

strates higher weights, while in PD subjects LSM, Central and Occipital also have

relatively higher weights. For the alpha band, in normal subjects FCentral and

LSM play important roles, whereas in PD subjects there are no obvious differences

among the five regions. For the beta band, in the normal group this component is

largely associated with activities in Central, RSM and Occipital regions, while in

PD the activity is seen more in the RSM and LSM regions. The temporal and spatial

patterns for the other component are shown in Fig. 4.11. The average correlation

coefficient among the EEG, EMG and BEH scores is 0.80 (with P = 0.0284). For

the theta band, in both normal and PD groups RSM and Occipital demonstrates

higher weights, while in normal subjects LSM shows a particularly high weight.

For the alpha band, in normal subjects the right brain area plays an important role,

whereas in PD subjects it is seen more in the frontocentral area. For the beta band,

all regions display low values in normal subjects, while in PD this component is

associated with activity in the Central region.

4.4 Discussion
When the EEG correlation feature is used, we note that the connections with oc-

cipital regions are prominent in PD subjects. Compared to normal subjects, the

PD subjects heavily rely on visual cues for the initiation [94] and ongoing control

of movement [95]. In addition, the increased intra and inter-hemispheric connec-

tions observed in the PD subjects are in accord with the findings in previous MEG

studies during the resting state [5].

For the case when the EEG Band-Energy feature is used, we note that an in-

creased number of brain regions in the theta band are recruited in PD subjects,

which is in line with the observed association between synchronization in the theta

band and motor symptoms, in particular tremor [5]. In addition, the PD subjects

show increased interhemispheric synchronization in the alpha range. This find-
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ing may be positively related to cognitive perseveration in Parkinson’s disease [5].

Besides, compared to normal subjects, the PD subjects heavily rely on the Cen-

tral region in the beta band during the motor task, which is quite consistent with

our previous study in the same experiment setting by mutual information network

[112].
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Chapter 5

A Three-step Method for
Corticomuscular Activity
Modeling

5.1 Motivation and Objectives
In the last chapter, we have proposed a framework to handle multimodal data sets

under the uncorrelatedness assumption. However, LVs that are uncorrelated can

sometimes complicate interpretations in real medical applications [38]. We will

demonstrate this point in the simulation part. In this chapter, we aim to develop

a framework that can explore the relationship between multimodal data sets and

meanwhile can extract independent LVs within each data set. For multimodal cor-

ticomuscular activity analysis, both M-CCA and jICA have their individual ad-

vantages and disadvantages and fortunately, these two methods can be considered

complementary.

In this chapter, we propose combining M-CCA and jICA to improve the over-

all performance of the joint source extraction. More specifically, we first adopt

M-CCA to obtain CVs across multiple data sets and then perform jICA on the

extracted LVs. In contrast to prior approaches [113, 114], we generate common

components from sources rather than the mixing matrices and concentrate on mul-
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timodal/multiset data fusion. In fact, we employ a three-step modeling strategy.

The first two steps are similar to JMSF and the last one is to help improve the

limitation of M-CCA. Because M-CCA requires a stringent assumption that corre-

lation coefficients of the corresponding sources between multiple data sets should

be sufficiently distinct [110], which will be specified in Section 5.2.1 by Equation

(5.2). This assumption may not be satisfied in practice.

5.2 Methods
The main contributions of the proposed method lies in its ability to: (1) model

multiple data sets/signals simultaneously, overcoming the traditional constraint of

analyzing only two types of data sets, and (2) extract maximally correlated compo-

nents across multiple data sets while simultaneously keeping components within

each individual data set maximally statistically independent. In the following sub-

sections, the three-step modeling strategy, illustrated in Fig. 5.1, is described in

detail. However, we will begin from the second step since the first step can be

referred to Section 4.2.1.

Figure 5.1: The diagram of the proposed joint multimodal analysis method.

5.2.1 Multiset Canonical Correlation Analysis

Although the corresponding subLVs for multiple data sets could show similar pat-

terns because of the common supLVs, the correlation coefficients among the sub-

LVs can not be necessarily ensured to be maximized. Therefore, a second step is

needed to further decompose the underlying information of the results from the
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first-step. M-CCA extends the theory of CCA to more than two random vectors

to identify CVs that summarize the correlation structure among multiple random

vectors by linear transformations. Unlike CCA where correlation between two

canonical variates is maximized, M-CCA aims to optimize an objective function

of the correlation matrix of the canonical variates from multiple random vectors

in order to make the canonical variates achieve the maximum overall correlation

[110]. It has been shown that M-CCA can achieve excellent performances, espe-

cially when the data sets are large. Details about the implementation procedure of

M-CCA can be found in [110].

In this study, the inputs to M-CCA are the extracted MsubLVs from the first-

step, i.e. mT1, mT2, ..., mTM, and the outputs are the extracted canonical variates

with maximum correlation, revealing their common information, i.e., CV1, CV2, ...,

CVM. The associated decomposition can be expressed as below:

mTi =CViAi, ∀i = 1,2, ...,M (5.1)

where Ai is the mixing matrix within the ith data set. Regarding the number of

the canonical variates in each data set, we can keep it the same as the number of

MsubLVs.

As mentioned before, M-CCA may fail to separate sources whose correlation

coefficients are equal or very close, which could often occur in real biomedical

applications. In other words, if K sources can be extracted from each of M data sets

correspondingly, the following requirement must be met to successfully recover the

sources by M-CCA:

|r(α)
m,n| 6= |r(β )m,n|, (1≤ α < β ≤ K,∀m,n ∈ 1,2, ...,M) (5.2)

where |r(β )m,n| represents the correlation coefficient between the β -th source from the

m-th data set and the β -th source from the n-th data set. Therefore, CVi should be

regarded as incompletely decomposed sources, i.e. mixtures of the real indepen-

dent components.
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5.2.2 Joint Independent Component Analysis

Due to the possible incompleteness of the source separation, in Step-3, we per-

form jICA on the concatenated CVs to maximize the independence among joint

components by reducing their higher order statistical dependencies as below [84]:

[CV1;CV2; ...;CVM] = [S1;S2; ...;SM]A (5.3)

where A represents the common mixing matrix and Si is the extracted ICs from the

i-th data set. For the implementation of ICA, many algorithms have been developed

based on different cost functions. Here we employ the classical one, FastICA [39].

We then correlate the corresponding columns of Si and calculate the average cor-

relation coefficients, in terms of which the corresponding columns are sorted from

high to low. As to the number of the joint ICs in each data set, we can first keep

it the same as the number of CVs and then apply the permutation test to identify

significant components.

We should note that jICA assumes that all modalities share the same mixing

matrix A. This constraint is not always easily satisfied in practice. In the proposed

method, M-CCA first links multiple data sets via correlation and prepares more

relevant CVs correspondingly across the data sets. Therefore we can perform jICA

on the extracted CVs with more confidence, meaning that M-CCA helps jICA relax

the required constraint. In turn, jICA further decomposes the remained mixtures

in CVs and also helps M-CCA relax the constraint of the distinctiveness for cor-

relation coefficients. In summary, M-CCA and jICA in the proposed method are

complementary to each another and combining them appropriately can somehow

overcome their limitations.

5.3 Data Processing and Results

5.3.1 Simulation

In this simulation, we apply the proposed method to synthetic data and also imple-

ment separate ICA, M-CCA and jICA respectively for comparison.
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Synthetic Data

As an illustrative example, without loss of generality, six sources are generated and

analyzed.

The following six source signals are considered:

s1 = sin(0.015t)+ cos(0.005t)

s2 = 2cos(0.08t)sin(0.006t)

s3 = ECG, s4 = EMG

s5 = 1.5cos(0.01t)sin(0.5t)

s6 = 1.5sin(0.025(t +63))sin(0.2t)

(5.4)

where t denotes the time index vector, valued from 1 to 1000, and si’s (i= 1,2, ...,6)

represent six simulated sources, as shown in Fig. 5.2. Note that here si’s are column

vectors.

Figure 5.2: The six simulated source signals.

Three mixed data sets X1, X2 and X3 are generated as follows, with each row

denoting one observation in their respective data space:

Xi = Si ·Ai, i = 1,2,3 (5.5)
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where S1 = [s1 s2 s3 s4], S2 = [s1 s2 s3 s5] and S3 = [s1 s2 s3 s6] with

A1 =


0.76 −0.55 0.17 −0.33 0.82

0.79 0.65 0.32 0.12 −0.97

0.87 0.46 −0.58 0.27 −0.74

0.59 0.45 0.37 0.22 0.11

 , (5.6)

A2 =


0.73 −0.52 0.21 −0.29 0.78

0.82 −0.67 0.6 −0.20 −0.90

0.78 −0.1 0.71 0.29 −0.51

0.52 0.39 0.30 0.27 0.15

 , (5.7)

A3 =


0.69 −0.55 0.22 −0.34 0.77

0.76 0.69 0.22 0.25 −0.60

0.71 −0.49 −0.35 0.4 −0.9

0.60 0.41 0.30 0.16 0.20

 . (5.8)

The sources s1, s2 and s3 exist in all data sets, representing common informa-

tion. The source s4 only contribute to X1, s5 only to X2 and s6 only to X3, represent-

ing their own unique information. Random Gaussian noise with 5% power were

added to Si’s before generating the mixed data sets.

Results

The extracted underlying components using separate ICA, joint ICA, M-CCA and

the proposed method are shown in Fig. 5.3a, 5.3b, 5.3c and 5.3d respectively. We

also made a quantitative comparison between these methods by calculating average

correlation coefficients for each method (Fig. 5.3e.) The separate ICA approach re-

covered the original sources accurately in all data sets as expected, but was unable

to meaningfully relate the three data sets or rank the ICs appropriately. Although

a subsequent source match via cross-correlation could be used to oder the sources

this may introduce ambiguity especially when the estimated component number

is high. By using joint ICA, the first jointly extracted sources, although perhaps

less accurate, are at least highly relevant to each other. But the remaining extracted

sources seem to be uninformative due to the stringent assumption that all modalities
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(a) (b)

(c) (d)

(e)

Figure 5.3: The extracted underlying components by the following four
methods: (a) separate ICA; (b) joint ICA; (c) M-CCA; (d) the proposed
method; (e) performance comparison of the different methods.

share the same mixing matrix. The LVs extracted by the M-CCA were at least auto-

matically and neatly ordered in terms of their average correlation coefficient values

among the data sets. However, compared with the original sources, the extracted

LVs were distorted, suggesting 1) performance of M-CCA may suffer when the

condition indicated by Equation (5.2) is not satisfied, and 2) uncorrelatedness may
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not be a sufficiently rigorous criterion to accurately recover the underlying sources.

When the proposed method was employed, the dominant sources which made sig-

nificant contributions to all data sets were accurately identified and ordered, with

the focus entirely on sources common across multiple data sets. In summary, the

proposed method mitigates the deficiencies of both M-CCA and joint ICA and can

separate sources accurately and link them correctly in a less-constrained condition.

5.3.2 Real Data

The experiment description can be referred to Section 2.2. In this study, we utilize

concurrently EEG, EMG and BEH signals collected from controls and PD subjects.

Feature Extraction

In this chapter, we examine the coupling relationships among time-varying EEG

features, the amplitude of the EMG signals, and behavioral performance mea-

surements, constituting X1b, X2b, and X3b respectively for each subject b (for b =

1,2, ...,B). Suppose we have a total of B subjects (B = 17 in this study) and m types

of data sets for each subject (m = 3 in this study). To achieve a group analysis, all

subjects’ data sets are correspondingly concatenated as:

X1 = [X11,X12, ...,X1B] ,

X2 = [X21,X22, ...,X2B] ,

X3 = [X31,X32, ...,X3B] ,

(5.9)

with the assumption that all subjects share common group patterns in the temporal

dimension [82].

Band-limited, pair-wise EEG coherences [97] are considered in this chapter

since this type of time-varying features include temporal, spatial and spectrum in-

formation simultaneously. The calculation can be referred to Equation (1.1) and

Section 3.3.2. EMG and BEH Features are exactly the same as in Section 4.3.2.
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Significance Assessment

The non-parametric permutation test performed here is similar to Section 4.3.2.

The p-value of the original EEG/EMG/BEH average correlation was then esti-

mated from the null distribution as the probability of observing a value at least as

extreme as the original correlation in the null distribution. The components with p-

value being less than 0.05 were considered statistically significant, denoted as U1,

U2 and U3, all with size (N×K), where K is the number of significant components.

Spatial Pattern Extraction

In order to aid in the biological interpretation of the results, we also derived connec-

tivity patterns between EEG channels representing functional connections between

brain regions. After the identification of significant temporal patterns, we regressed

the EEG-related components U1 back onto the EEG features X1b (for b= 1,2, ...,B)

for all subjects as follows:

pbk =

√
1

uk
T X1bX1b

T uk
X1b

T uk, k = 1,2, ...,K. (5.10)

where uk is the k-th column of U1 and pbk is the connectivity pattern of the k-th

component for subject b. In addition, we also want to determine which EEG fea-

tures in the connectivity patterns have significant contributions to the correspond-

ing temporal patterns. This is done by identifying EEG features that have weights

statistically significant different from zero. To determine the group-level connec-

tivity pattern, for each significant component, we applied a two-tailed t-test to each

connectivity feature across all subjects in each subject group.

Results

The proposed method was applied to the EEG, EMG and BEH features generated

using the procedure described in Section 5.3.2 from 8 normal and 9 PD subjects

simultaneously. The joint modeling of normal and PD data allows for the iden-

tification of common temporal patterns across the groups, while the connectivity

patterns may be different across subjects. This allows for identification of specific

correlation connections that are differentially recruited by PD subjects during the
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motor task.

Here X1b, X2b and X3b (b = 1,2, ...,B) represent the time-varying feature ma-

trices of EEG, EMG and BEH for the b-th subject respectively. The length of the

original raw EEG and simultaneously recorded EMG data for each subject was

7485 associated with the sampling frequency 250 Hz. As mentioned before, af-

ter using the 300-length moving window and a 95% overlap, the length of time

points (the matrix row) here was 480. For the EEG coherences, there are five brain

regions and four frequency bands, indicating there are a total of C5
2 ×4 = 40 vari-

ables. Thus, X1b is of size 480× 40. For the EMG amplitude feature, since there

are two surface EMG channels, X2b was 480×2, and the BEH data set X3b was size

480× 1. The group analysis data sets X1, X2 and X3 were generated by Equation

(5.9).

Using the permutation test, one significant component (p-value ≤ 0.05) was

identified. The temporal and spatial patterns for this component are shown in Fig.

3.8. The acc among the EEG, EMG and BEH scores was 0.7946 (with p-value =

0.0015). Note that in the figure only connections whose weights were statistically

significantly different from zero are shown.

Although there were some similarities in the brain regions and connections re-

cruited by PD and control groups, there still existed significant differences Fig. 5.4.

In theta and alpha bands, normal subjects demonstrated frontoparietal and fronto-

occipital connections which were completely missing in PD subjects. In the beta

band, normal subjects had connections between the L sensorimotor cortex and the

frontal and R sensorimotor regions that were absent or reduced in PD subjects. In

the gamma band, PD subjects had increased connectivity between the frontal re-

gions and central and sensorimotor cortices that were missing in controls. Finally,

PD subjects had a significant connection between the L sensorimotor and occipital

regions in the theta, alpha and gamma bands that was not present in controls.

5.4 Discussion
In this chapter, we have proposed a three-step multimodel data analysis method

to assess corticomuscular coupling based on combining the advantages of M-CCA

and jICA. The simulation results support the usefulness of the proposed method.
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Figure 5.4: The significant component jointly extracted from the EEG coher-
ence, EMG amplitude and BEH data sets. Top panel: Temporal patterns
of the EEG (solid), EMG (dashed) and BEH signals (dotted). The oscil-
lation of the target bar is also shown (gray, solid). Bottom panel: EEG
connectivity patterns of normal subjects (left) and PD subjects (right).
The connections reflect the respective connectivity patterns in the two
groups with the width of each connection proportional to the weighting
in the group EEG spatial pattern. Here acc refers to average correlation
coefficient.
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Furthermore, when applied to real data promising results based on detecting sig-

nificant differences between Parkinson’s disease subjects and age-matched controls

were detected.

The observed results in PD and control groups are in accord with previous

medical findings. We found widespread connectivity between the frontal, central

and ipsilateral (right) sensorimotor regions and ongoing EMG/BEH activity from

Fig. 5.4. It is suggested that during visually guided tasks PD subjects may generate

detectable widespread oscillatory disruption in the EEG (e.g. [100]). This likely

represents a compensatory mechanism of cortical regions to overcome deficiencies

in the basal ganglia to perform motor tasks, as has been observed in fMRI studies

[101]. The lack of fronto-central and fronto-occipital activities in the theta and

alpha bands seen in PD subjects compared to controls may reflect impaired spatial

attention [102], as impairment of maintenance of attention has been well described

in PD subjects (e.g. [115]). The weaker beta band connection between the L and

R sensorimotor regions in PD may reflect the decreased ability for fine modula-

tory control [90]. The increased gamma connectivity in PD likely represents the

extra effort PD subjects require for motor task switching [73, 92, 116], a problem

common in PD [93]. We also found that connections with occipital regions are

prominent in PD subjects. The enhanced occipital connectivity in the theta, beta

and gamma bands may relate to the fact that PD subjects heavily rely on visual

cues for the initiation [94] and ongoing control of movement [95]. In addition, the

increased intra and inter-hemispheric connections we observed in PD subjects are

consistent with the findings in previous MEG studies during the resting state [5].

It may seem paradoxical that PD subjects have reduced beta-band connectivity

in the sensorimotor cortex compared with controls, especially since PD subjects

may have enhanced beta-band EEG activity associated with the clinical signs of

bradykinesia and rigidity [104, 116]. We believe that this is because the current

method specifically looks at the common sources among the EEG, EMG and be-

havior signals. Because a key aspect in PD is the inability to modulate the beta-

band oscillations [105], it is very likely that the fraction of beta-band activity that

varies with phasic EMG/BEH activity is reduced in PD.

In this chapter, we were able to find common temporal patterns in both PD

and controls assuming different connectivity origins of the common signal. We
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have shown that the distributed EEG connectivity patterns required to generate the

common temporal pattern differ between PD and controls. One could envision sit-

uations where the connectivity patterns are similar, but the temporal profiles are

significantly different. Nevertheless, usually behavioral tasks are specifically cho-

sen so that PD and control subjects can still perform the task with roughly equal

accuracy. Otherwise any differences in brain activation may be dismissed as simply

that the PD and control subjects were performing different tasks.
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Chapter 6

Conclusions and Future Works

6.1 Conclusions
In this thesis, we proposed four novel multimodal signal processing methods for

corticomuscular coupling analysis and investigated different brain connectivity pat-

terns between normal and PD subjects during a dynamic visually guided tracking

task. The goal of all these methods is to maximize the estimated source indepen-

dence within an individual data set and to maximize the source dependence across

datasets. As illustrated in Fig. 6.1, the relationships between these methods can be

summarized as follows: both PLS+CCA and IC-PLS are bimodal approaches for

handling only two types of data; both JMSF and 3-step method can handle multi-

modal data; both PLS+CCA and JMSF can only extract uncorrelated components

within each data set, while either of IC-PLS and 3-step method is able to obtain

independent components using higher-order statistics.

PLS+CCA is a bimodal method which only explores second-order statistics

with a two-stage procedure. It is a simple, yet efficient method to extract uncor-

related components within each data set and meanwhile keep corresponding com-

ponents across data sets highly correlated. It is especially suitable for a situation

where the uncorrelatedness assumption is competent to decompose the signals and

computational speed is the major concern (e.g. online detection). IC-PLS is also

a bimodal method which incorporates both second-order and high-order statistics

into a multi-objective optimization problem. It ensures that the components within
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Figure 6.1: The relationships between the four proposed methods.

each data set are as independent as possible and their orders across data sets are the

same. When two types of data are available and the uncorrelatedness assumption

is insufficient to decompose the signals, IC-PLS is a good option. However, as a

multi-objective optimization problem, IC-PLS represents a compromise between

the conventional PLS and ICA.

JMSF is preferred when more than two types of data are available. It is able to

extract similar temporal patterns from multimodal data sets. It particularly accom-

modates the needs in recent years, e.g., performing data fusion when concurrent

data sets are available (e.g. fMRI, EEG, EMG, etc). However, the estimated com-

ponents within each data set are only uncorrelated, which may not be enough in

certain applications where independent components are preferred. To address this

concern, the proposed 3-step method aims to extract independent components by

assuming all data sets share the same mixing matrix. For the purpose of group

analysis, we could employ both JMSF and the proposed 3-step methods.

One should note that in this thesis we have analyzed the brain spatial patterns

by several data-driven coupling analysis methods based on multimodal data, while

the conventional EEG-EMG coherence only explores individual locus and tradi-

tional EEG-based connectivity analysis ignores EMG-related information. In the

past, most EEG/EMG coupling analysis studies have compared EEG activity at a
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specific locus (e.g. sensorimotor cortex contralateral to the hand performing the

task) with the EMG during sustained contraction. However, we found that spec-

trum/correlation/coherence features between the contralateral sensorimotor cortex

and other regions were closely associated with ongoing EMG/BEH features during

dynamic motor performance. It is likely that the dynamic nature of the task might

require the recruitment of additional regions such as frontal regions for motor se-

lection [89], contralateral (i.e. ipsilateral to hand movement) sensorimotor cortex

for fine modulatory control [90] and occipital regions for post-error adaptations

[91].

While the proposed methods are intentionally developed for corticomuscular

coupling analysis, we would like to emphasize that they can also be applied to

analyze other forms of concurrent signals including but not limited to fMRI, pho-

toplethysmograph (PPG), ECG and kinematic data. Therefore, they are promising

tools for multi-subject and multi-modal data analysis.

In Appendix A, we designed and implemented a wireless wearable EEG/sEMG

recording system. Based on the developed system, we investigated a novel ap-

plication – Chinese number gesture recognition. Number gestures are the most

frequently used hand gestures in real-life especially when there are language com-

munication difficulties. One is able to develop similar applications for their own

languages based on our reported work. We believe that such applications could

be very useful in multifunction prosthesis, remote control, human-computer inter-

face (HCI), etc. We also conducted a complete performance comparison by investi-

gating several most popular feature extraction and recognition methods. To further

improve the recognition accuracy, we proposed using MKL-SVM as a more effec-

tive classifier by fitting the features with multiple kernel functions. Among these

combinations, we noted that 3F + MKL-SVM provided the best performance, but

the efficiency of MKL-SVM is much lower than that of the others. To implement

an online recognition system, we suggest that Hudgins’ time-domain (TD) + lin-

ear discriminant analysis (LDA) can be the best trade-off between efficiency and

performance.
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6.2 Future Research Directions
To better model corticomuscular activity by data-driven coupling methods, we still

need to address several challenges, including relaxing the statistical assumption

(e.g. sharing the same mixing matrix) for independence, dealing with the underde-

termined situation when there exist more sources than the measurement channels,

and developing novel approaches for dynamic/time-varying coupling analysis.

Decomposing signals into independent components has been proven very use-

ful in many biomedical applications [80–82]. An interesting problem is to jointly

model multiple data sets to decompose each into independent components and re-

late corresponding components across the data sets. In this thesis, we have finally

proposed a three-step framework to realize this goal. However, a stringent sta-

tistical assumption has been made in the framework that the mixing matrices are

the same. This assumption could be too strong in practice. We have to relax this

practically-unfavored assumption to explore underlying information in a more re-

alistic setting. A possible solution might lie in a recently popular joint BSS method

– the IVA [109]. IVA, as an extension of ICA from one to multiple datasets, has at-

tracted increasing research attention during the past few years. IVA was originally

designed to address the permutation problem in the frequency domain for the sep-

aration of acoustic sources [117]. Recently, it has been used to do group inference

for fMRI data [118]. In [119], IVA has been investigated under the multivariate

Gaussian model. Nevertheless, the distribution of sources in practice can not be

easily modeled as Gaussian. For the corticomuscular coupling analysis problem,

we will explore the specific distributions of EEG and EMG signals and design

specific coupling analysis methods under the IVA framework.

Another possible future direction is to develop underdetermined coupling anal-

ysis methods. In many biomedical applications, only a limit number of sensors are

available (e.g. one or two EEG/EMG channels), while more underlying sources

actually exist. It is of particular importance for the situations where a large num-

ber of sensors should be avoided such as in the application of health care at home.

Possible solutions may include decomposing signals as a preprocessing step (e.g.

empirical mode decomposition) [120], separating signals into multiple segments

[121] and performing sparse representation [122].
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It is also desirable to develop dynamic models for time-varying coupling anal-

ysis. All previous methods are based on the assumption that the overall signals

are stationary and the corresponding patterns are the same. However, it may not

be the case in practice. A more natural assumption should be that the brain pat-

terns are dynamically changed in terms of their states (e.g. different force levels

during motor tasks). We could combine hidden Markov models with existing cou-

pling methods and dynamically analyze the learned brain patterns. This may allow

researchers obtaining insights into the changing process of brain patterns during

some motor tasks and provide more information about specific diseases.
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Appendix A

Prototype Development

The reason we put this part in Appendix is that we did not use our developed

system to collect data for corticomuscular coupling analysis although our original

purpose was to utilize an integrated wireless EEG and EMG system for patients’

convenience. We were required to use commercialized medical devices in sci-

entific publications. However, the prototype is still very useful to develop novel

applications for daily-life usage.

A.1 Introduction
Biosensor monitoring systems have been attracting increasing interest, stimulated

by recent advances in electronic, communications and information technologies.

For instance, EEG is the most popular non-invasive recording technology stud-

ied in BCI, a hot topic aiming at creating a direct link between the brain and a

computer or a control device. However, most BCI systems use bulky and wired

EEG measurements, which is uncomfortable and inconvenient for users to perform

daily-life tasks. To address this concern, in Section A.2 we design a wearable, wire-

less EEG acquisition and recording system, including a data acquisition unit and a

data transmission/receiving unit. Our testing results show that the proposed design

is effective with high common-mode rejection ratio (CMRR). The developed EEG

system is suitable for biomedical applications such as patient monitoring and BCI.

Based on the developed EEG system, in Section A.3 we modify it and build a
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sEMG hand gesture recognition system. As mentioned in Section 1.2.1, regarding

the research direction of multiple finger gesture classification, to our knowledge,

there are relatively few research works in literature and there has been no multiple

finger gesture benchmark proposed yet. In [40], the authors used BSS and artifi-

cial neural network (ANN) techniques to off-line classify four subtle hand gestures

by four wired sEMG channels and achieved 97% average accuracy for seven sub-

jects, however, only three of the four gestures can be categorized as multiple finger

gesture tasks. In this chapter, we plan to define a set of multi-finger movement

tasks which could be commonly used for benchmark testing. Based on our exten-

sive preliminary investigation, we choose number gestures as an appropriate set of

multi-finger movements because of the following reasons: they satisfy the basic

definition of multi-finger movements; and people use number gestures frequently

in real-life especially when there are language communication difficulties, which

is indeed a major reason why originally number gestures were invented.

In this chapter, we plan to study Chinese number gestures representing the

numbers zero to nine, as illustrated in Fig. A.1. We propose to recognize these

ten classes of subtle hand gestures based on a 4-channel wireless sEMG system.

The recognition procedure is implemented in two phases. In Phase-1, we develop

off-line recognition algorithms to study their recognition performances and check

the feasibility of implementing a real-time recognition system. We first investigate

the most popular feature extraction and classification algorithms; then based on

observed performances we further propose to combine all three features together

and employ multiple kernels to adapt the combined feature set structure by multi-

Figure A.1: Illustration of the Chinese number gestures.
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ple kernel learning (MKL). In support vector machine (SVM), a kernel function

implicitly maps samples to a feature space given by a feature map. It is often un-

clear what the most suitable kernel for the task at hand is, and hence the user may

wish to combine several possible kernels. One problem with simply adding kernels

is that using uniform weights is possibly not optimal. For instance, if one kernel

is not correlated with the labels at all, then giving it a positive weight just adds

noise [41]. MKL is an efficient way of optimizing kernel weights. In Phase-2,

we implement a real-time sEMG recognition system for Chinese number gestures

and demonstrate its online performance as a preliminary study for possible practi-

cal applications. For the two phases, we achieved 97.93% and 95% high average

recognition accuracies respectively.

A.2 A Wireless Wearable EEG Recording System

A.2.1 System Design

The architecture of the designed EEG recording system is shown in Fig. A.2.

Figure A.2: The architecture of the designed EEG recording system.

EEG Acquisition Circuit

In order to achieve a reliable EEG recording system, the design of the data acqui-

sition circuit is the most important step. The schematic of a single channel EEG

acquisition circuit is shown in Fig. A.3. The details of each element in the circuit

will be presented as follows.

1. EEG features: A typical human adult EEG signal is about 10 to 100 µV in
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Figure A.3: The schematic of a single channel EEG acquisition circuit.

amplitude when measured from the scalp and it is about 10 to 20 mV when

measured from subdural electrodes. Since EEG signals are usually acquired

through passive electrodes from head surface, they are easily contaminated

by artifacts that are not directly related to brain electrical activity [42]. The

artifacts in the recorded EEG can be either technical such as AC power line

noise or person-related such as EMG, ECG and electrooculogram (EOG).

2. Voltage follower: The voltage follower is constructed by applying a full se-

ries negative feedback to an operational amplifier (op-amp) simply by con-

necting its output to its inverting input, and connecting the signal source to

the non-inverting input. This circuit has an output which is identical to the

input voltage. The importance of this circuit does not come from any change

in voltage, but from the input and output impedances of the op-amp. The in-

put impedance of the op-amp is very high (usually 1 MΩ to 10 TΩ), meaning

that the input of the op-amp does not load down the source or draw any cur-

rent from it. On the other hand, the output impedance of the op-amp is very

low and thus it behaves as a perfect voltage source. Both the connections

to and from the voltage follower are therefore voltage bridging connections,

which can reduce power consumption in the source, distortion from over-

loading, crosstalk and other electromagnetic interferences. In this design, all

op-amps are OPA333 (Texas Instruments, Inc., Dallas, TX). The OPA333

series of CMOS op-amps adopt a proprietary auto-calibration technique to
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simultaneously provide very low offset voltage (10 µV max) and near-zero

drift over time and temperature. These miniature, high-precision, low qui-

escent current amplifiers offer high-impedance inputs and low-impedance

outputs with micro-power, making them quite suitable for battery-powered,

micro-sized portable medical devices.

3. Instrumentation Amplifier: The function of instrumentation amplifier is to

amplify the voltage difference between the signals from REF and CH1 EEG

electrodes, and simultaneously reject common-mode noise, such as power

line interference, at both inputs. The INA333 (Texas Instruments, Inc., Dal-

las, TX) is the instrumentation amplifier chosen for this design since it is the

industrial lowest power zero-drift instrumentation amplifier. It provides very

low offset voltage, excellent offset voltage drift, micro power consumption,

very low quiescent current and high CMRR (110 dB typically), which en-

sures excellent precision and stability while extending battery life in portable

medical devices. In our design, RG is set to 10 kΩ and the amplification gain

is 11.

4. DC restorator: The direct current (DC) restorator is used to eliminate DC

offset which would otherwise saturate the op-amps subsequent to the instru-

mentation amplifier. Here the DC restorator is implemented by using an

op-amp in the feedback loop of INA333. The model in Fig. A.4 is used to

design the DC restorator.

Figure A.4: The DC restorator model.
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5. Drive Right Leg: To reduce common-mode noise, such as power line in-

terference (50/60Hz) which is unavoidably coupled into the human subject,

the driven right leg (DRL) is necessary to be used in the design. The name,

DRL, has been preserved from its first use in ECG equipment [43], although

the feedback electrode is not connected to the subject’s right leg for EEG

applications. As shown in Fig. A.3, the DRL is a feedback circuit, feeding

the inverse of common-mode voltage back to the human subject, which acts

to reduce the common-mode noise present at the electrodes.

6. Band pass filter: The band pass filter is composed of a first order active high

pass filter and a first order active low pass filter, cutting off the signals with

frequency components below 0.5 Hz and above 150 Hz. The high pass filter

is designed to remove DC voltage offsets and to reduce the baseline drift,

while the low pass filter is used to prevent aliasing in the analog-to-digital

converter (ADC) step. The gain of the band pass filter is set to 1000, which

can be changed by adjusting the adjustable resistor P1. Therefore, the total

amplification gain of the EEG acquisition circuit is 11000.

7. Power supply: Power for the board is supplied by a button battery, Pana-

sonic CR2032 with 3V (VCC) output voltage. Through a voltage divider

and a voltage follower, a stable 1.5V (VCC/2) can be obtained and used as a

virtual ground for the entire system. If we use a CR2032 to supply power for

both EEG acquisition circuit and the TelosB mote (Crossbow, Inc., Milpitas,

CA), the entire system can work normally for at least 8 hours, with most

energy being consumed by the TelosB mote for wireless data transmission.

8. Physical circuit: A two-layer 3.2 cm × 6.6 cm printed circuit board (PCB)

is designed for the 4-channel EEG acquisition unit. The analog channels

are laid out in both sides of the board. A high board density is achieved by

using the second smallest available hand-solderable parts (size 0603 for the

passive components), amplifiers with MSOP8 footprint (3.0 mm× 3.0 mm),

8 mil signal trace width and 35 mil vias with 20 mil drill holes. We feel that

such design is suitable for a portable EEG recording system.
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Wireless Transmission Unit

The wireless transmission unit consists of three parts, which are all based on the

TinyOS platform. Two of the three are TelosB motes (one for the transmission side

and the other for receiver on the server side), and another is a Java package for the

server. TelosB mote is an open source platform designed to enable cutting-edge ex-

perimentation for research community. The TelosB mote bundles all the essentials

for lab studies into a single platform, which includes: Universal Serial Bus (USB)

programming capability, an IEEE 802.15.4 radio with integrated antenna, a low-

power microcontroller (MCU) with extended memory, and an optional sensor suite.

To transmit data wirelessly, the EEG signals acquired from the analogue circuit go

through the ADC equipped with MSP430 on the TelosB mote. It provides 12-bit

resolution, and can be configured in different modes. The sampling frequency is

selectable and is set to be 333 Hz here, satisfying the Nyquist Theory in terms of

the -3dB cutoff frequency of 150 Hz. The data receiver side uses another TelosB

mote as the base station which is connected with the PC via USB, and the PC con-

tinuously saves the received data into files by a Java-based application. The indoor

transmission range can achieve 15 m, which is satisfactory for people’s daily us-

age. The TelosB mote is also a 3.2 cm × 6.6 cm PCB. With the two PCBs, the

height and the weight of the designed system are only 1.2 cm and 56 g (including

the button battery) respectively as in Fig. A.5a, which includes data acquisition

unit, Telosb mote and their combination from top to bottom. Furthermore, since

ZigBees can sleep most of the time, the average power consumption can be very

low, resulting in a longer battery life. To make the device portable, we design a

head band which can be easily worn as shown in Fig. A.5b.

A.2.2 Experiments and Results

The developed EEG recording system has been tested on one human subject. To

evaluate the signal quality of the designed system, the system was first used to

measure ECG signals by adjusting the adjustable resistor P1 to make the gain of

band pass filter equal to 100. We connected three electrodes to V4, V5 and right leg

of the subject, and asked the subject to remain static in order to avoid movement

artifacts. From Fig. A.6a, we can see that the designed system can successfully
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(a) (b)

Figure A.5: (a) Data acquisition unit, telosb mote and their combination from
top to bottom; (b) The wireless EEG head band.

capture P wave, QRS complex and T wave of the subject’s ECG signal. The mea-

sured ECG signal seems to have high quality with little noise.

Further, the designed system was used to measure EEG signals by six elec-

trodes placed on the frontal lobe of the head. Four electrodes were placed on FP1,

FP2, F7 and F8 (10-20 System of Electrode Placement), and the reference and

DRL electrodes were placed on midline position of the frontal head. The subject

was lying in bed at night, being mentally prepared for sleep. The measurement

lasted for about 40 minutes, and an observation should be noticed that the subject

showed light symptoms of waking up temporarily around the 10-minute time point.

The EEG signals recorded from the designed 4-channel EEG system were shown

in Fig. A.6b. The subject experienced from awake and relaxed state to asleep, as

supported by the observations that Delta wave, normally seen in adults in slow-

wave sleep, was the highest in amplitude and Alpha wave, emerging with closing

of the eyes and with relaxation, was relatively higher in amplitude.
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(a)

(b)

Figure A.6: (a) ECG reading from the designed EEG recording system; (b)
EEG readings from the 4-channel EEG recording system.

After performing fast Fourier transform (FFT) of the EEG signal from Channel

1, we illustrated its frequency properties in Fig. A.7a, where the energies between

1 and 4 Hz (the Delta band) and that between 8 and 12 Hz (the Alpha band) are

obviously stronger than that in other frequency bands. Also, from Fig. A.7a, we

can see that there is no obvious unwanted interference in the EEG signals.
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(a)

(b)

Figure A.7: (a) FFT results of the Channel-1 EEG signal; (b) The temporal
energy changes of Delta and Alpha waves;

To have an insight into the measured EEG signals, we used the EEG signal

from Channel 3 for further analysis. The EEG signal was uniformly divided into

19 equal segments, with each segment including two-minute EEG signal. For each

segment, the average energy between 1 and 4 Hz and that between 8 and 12 Hz
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were calculated, and thus we could plot the energies of the Delta and Alpha bands

as a function of time. As shown in Fig. A.7b, the energy in Delta band was gen-

erally increasing and had a trend to further increase with the subject falling asleep

deeper and deeper, while the energy in Alpha band seemed keep stable after 20

minutes, which means that the subject had relaxed totally after 20 minutes, but not

entered the deepest sleep state yet. We also noted another interesting observation:

around the 10-minute time point, both the energies in Delta and Alpha bands tended

to increase first and then decreased, which coincided with what we observed about

the subject at that time during the experiment.

Figure A.8: Alpha waves detected on posterior regions of head.

At last, to demonstrate that the EEG signals were with high quality, we placed

two electrodes on Cz and Pz positions to test Alpha waves when the subject closed

eyes and relaxed. The testing results were illustrated in Fig. A.8, which presented

clear mu rhythm and alpha waves.
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A.3 A Wireless Portable sEMG Recognition System

A.3.1 System Design

The basic architecture of our developed 4-channel wireless portable sEMG record-

ing system is the same as that of the EEG system. However, there are some im-

portant differences between them. First, each channel has a reference electrode in

the sEMG system while all channels in the EEG system share one common ref-

erence electrode; second, the bandwidth of the band pass filter in sEMG system

is from 20 Hz to 250 Hz since the most useful information reside in the selected

band and then the sampling frequency should be changed; third, the overall gain of

the sEMG circuit is set to be about 1000 while the gain in EEG system was about

10000 since the amplitude of sEMG measured from human forearms is generally

10 times higher that that of EEG from human scalp; fourth, the feedback (DRL) of

sEMG system could be the direct circuit ground while it was not the case for EEG.

Besides, a real-time recognition module has been added into the sEMG recording

system which would be shown in the next section.

A.3.2 An Application for Chinese Number Guesture Recognition

Electrode Placement

Based on the movement tasks and the muscle anatomy of human upper limb, sev-

eral forearm muscles can contribute to the designed multi-finger movements, with

details of which can be found in [44]. Through a large number of preliminary

experiments and our previous study [46], we identify four forearm muscles as suit-

able candidates for the designed recognition problem of Chinese number gestures.

The four selected muscles are Extensor Pollicis Brevis, Extensor Digitorum, Flexor

Digitorum Profundus for little finger and Flexor Digitorum Superficialis. The cor-

responding four sEMG electrode pairs are placed over these muscles as shown in

Fig. A.9.
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Figure A.9: Illustration of the sEMG electrode pair placement: CH1: over
Extensor Pollicis Brevis muscle; CH2: over Extensor Digitorum mus-
cle; CH3: over Flexor Digitorum Profundus muscle; and CH4: over
Flexor Digitorum Superficialis muscle.

Experimental Protocol

Six healthy subjects (three females and three males, aged from 23 to 28, all right-

handed) volunteered for this study. We used the 4-channel wireless sEMG system

to collect sEMG signals from each subject by disposable AgCl electrodes (Junkang

Medical Equipment, Inc., Shanghai) placed on the locations as indicated in Fig.

A.9. The electrodes have the size 3 cm× 2 cm with pre-placed electric conduction

gel in the middle circle part (1 cm diameter). The sampling frequency was set to be

500 Hz since the most useful energy in sEMG signals is in the range of 0-250 Hz

[45]. The experimental procedure consists of two phases: the first one is for off-line

analysis and the second one for online analysis. At the beginning of each session

in the experiments, we needed to re-place the electrodes. To find corresponding

muscles correctly, we asked the subjects to perform certain hand actions suggested

by an anatomist. For example, to locate Extensor Pollicis Brevis, the subjects were

required to extend their thumbs. Also, before the electrode placement, we used

alcohol prep pads to clean the corresponding locations for reducing the electrode-

skin impedance.

In the off-line experiment, each subject sat in a comfortable chair and naturally

performed the ten Chinese number gesture movements. Each movement lasted for
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about 0.5 second and the time interval between two adjacent movements was about

1 to 2 seconds. For each of the ten number gestures in the set, we collected 50 trials

from each subject to provide enough data samples for training and classification.

All sEMG data from one subject were collected within one session. The popular

leave-one-out cross validation method is employed on trial bases to calculate the

classification accuracy during off-line analysis.

In the online experiment, we collected sEMG data from each subject in nine

separate sessions, with 20 trails for each number gesture during each session. Each

subject completed the nine separate sessions within ten days. The time interval

between two adjacent sessions was more than 8 hours and at the beginning of each

session the new electrodes were re-placed as in Fig. A.9. When a subject did the i-

th session recording, sEMG data from the 1-st to the (i−1)-th sessions were treated

as the training set. Therefore, subjects can adjust his/her movements appropriately

according to the feedback results of the real-time recognition system.

Recognition Procedure

In this part, we first describe how to detect active segments in multichannel sEMG

signals which represent the multi-finger movements. We then describe several pop-

ular feature extraction methods and classification algorithms, and further propose

a MKL-SVM approach by combining all the features. Finally, we evaluate their

classification performances for Chinese number gesture recognition. The basic di-

agram of the recognition procedure is shown in Fig. A.10.

Figure A.10: The basic diagram of the recognition procedure.

sEMG motion detection The simple moving average method is employed here to

process the transient energy of sEMG signals for motion detection, which generally
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consists of three steps.

First, the summation of sEMG signals sc(t)’s is computed and the average s(t)

is calculated as

s(t) =
1
C

C

∑
c=1

sc(t), (A.1)

where C means the total number of sEMG channels and c means the sEMG channel

index. Then, the square of s(t) is calculated to get the transient energy E(t) as

E(t) = s2(t). (A.2)

Second, the width of the moving window is set to be W = 32 points (about

64 ms when the sampling frequency is 500 Hz). Using the moving window to

calculate the average of the transient energy E(t), we have EMA(t) as

EMA(t) =
1

W

t

∑
i=t−W+1

E(i). (A.3)

Third, a suitable threshold value T H is chosen and the start point and end

Figure A.11: An example of 4-channel sEMG signals and the corresponding
motion detection results of Chinese number gestures.
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point of each motion segment can be detected. The start point is defined as the

point where the value of EMA(t) is larger than T H and the subsequent W values of

EMA(t) are also larger than T H. The end point is defined as the point where the

value of EMA(t) is smaller than T H and the subsequent W values of EMA(t) are

also smaller than T H. If the time interval between a pair of the start point and the

end point is too short, e.g. less than 50 points, we suggest that the corresponding

segment is due to noise and should be discarded. Due to our good-quality sEMG

signals, we set T H to be 1% of the maximum value of EMA(t)’s.

An example of the 4-channel sEMG signals and the motion detection results of

the ten Chinese number gestures are illustrated in Fig. A.11.

Feature extraction After the motion detection operation, suitable features should

be extracted from each active sEMG segment to compose a feature vector for fur-

ther classification. Because feature extraction has been shown to have a greater

effect on classification accuracy than the type of classifier selected [47], it has

been studied thoroughly in previous sEMG-based recognition and classification

research. The most popular features are the following six types: TD [48], auto-

correlation and cross-correlation coefficients (ACCC) [49], spectral power mag-

nitudes (SPM) [50, 51], short-time Fourier transform (STFT) [47], wavelet trans-

form (WT) [52] and high order statistics (HOS) [53]. However, we feel that STFT,

WT and HOS are unsuitable for our case due to several reasons: to use STFT,

the original active segments are required to have the same length to acquire trans-

formed feature vectors with the same dimension, however the lengths of active

segments for the transient hand gestures are highly unlikely to be the same; Since

the time duration of a transient motion is generally about 300 ms, if STFT is used,

the frequency resolution would be so low that there will be no meaningful informa-

tion existing even if it produces high dimensional feature vectors; WT has a more

strict requirement that the length of active segments must be a power of two, i.e.

2n; HOS usually performs well for stationary or weak-sense stationary signals such

as sEMG signals with continuous muscle contraction, which is different from our

case. Therefore, only TD, ACCC and SPM will be investigated in details in this

chapter.

Hudgins’ time-domain features: Hudgins’ time-domain feature set was intro-
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duced in 1993 [48] and has been widely used in the myoelectric control field.

It was originally comprised of five different features, including mean absolute

value (MAV), mean absolute value slope (MAVS), zero crossings (ZC), slope sign

changes (SSC) and waveform length (WL). However, it was reported that the inclu-

sion of SSC in the feature set contributed either a negative effect or no significant

effect on classification performances [54]. The MAVS was another feature usu-

ally excluded from the TD feature set [55, 56] perhaps due to the similar reason

although no clear justification was stated in the literature. Based on our prelim-

inary study, to improve the classification accuracy, we add a new feature called

the mean absolute value ratio (MAVR) into the Hudgins’ time-domain feature set.

MAVR can eliminate the influence of inequable strengthes when the subject per-

forms the same hand gesture at different times. Therefore, we adopt the following

four features: MAV, MAVR, ZC and WL.

Autocorrelation and cross-correlation coefficients: Using ACCC as features

for myoelectric control was first proposed by Leowinata et al. in 1998 [49], who

suggested that useful information might reside in the crosstalk between channels.

Therefore, the autocorrelation for each channel and the cross-correlation between

channels are adopted as features.

Spectral power magnitudes: A feature set comprised of SPM has been pro-

posed in several studies [50, 51] and was reported to provide good performances.

SPM are calculated by taking the average of power spectrum within disjoint band-

widths after performing FFT for the data in active segments. In our case, for each

channel we calculate SPM for four equal bandwidths between 75 Hz and 250 Hz.

Classification algorithms The classification algorithm is a key element of the

recognition procedure. Its reliability, computational complexity and recognition

efficiency have a great effect on the overall performance of the whole system.

In recent years, many algorithms for sEMG recognition have been developed to

specifically serve certain scenarios [57]. Among them, classical algorithms such

as k-nearest neighbor (k-NN), LDA, quadratic discriminant analysis (QDA) and

SVM have been most widely employed and reported to perform robustly in many

studies [19, 58, 59, 61, 64]. In this chapter, associated with the three sets of fea-

tures described above, we first evaluate these four popular classical classification
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approaches and study their effects on the recognition accuracy of Chinese number

gestures.

k-nearest neighbor: The k-NN classification algorithm predicts the test sam-

ple’s class according to its k nearest training samples by classifying the test sample

to a class using majority vote among the k neighbors. The Euclidean distance in the

feature space is used to determine which k training samples are the nearest neigh-

bors [66]. In this chapter, since there are fifty samples for each hand gesture for

each subject, we choose k = 10 as a proper setting.

Linear discriminant analysis: The LDA classifier is carried out by calculating

linear discriminant functions and selecting the maximum one as the classification

rule. LDA assumes that the feature vector x is multivariate normally distributed in

each class group and the K classes have a common covariance matrix Σk = Σ, ∀k.

Quadratic discriminant analysis: QDA is closely related to, but different from

LDA, due to different assumption of the covariance matrix. In QDA, the matrices

Σk’s of the K classes are not assumed to be identical as in LDA. The covariance

matrix needs to be estimated separately for each class. In general, QDA and LDA

are interchangeable, and which to use depends on the personal preference and the

availability of the training data to support the QDA analysis. Both LDA and QDA

perform well on a large and diverse set of classification tasks [66].

Support vector machine: SVM aims to find the optimal separating hyperplane

between classes by focusing on the training samples that lie at the edge of the class

distributions, named the support vectors, and with other training samples being ef-

fectively discarded. The basic idea of the SVM classifier is that only the training

samples lying on the class boundaries are necessary for discrimination. Detailed

discussions of SVM can be found in [66]. SVM was originally designed for binary

classification as described above, but can be extended to multiclass classification.

Several approaches have been suggested for multiclass classification by SVM [63],

and here we adopt the one-against-all approach. In this approach, a set of binary

classifiers, each of which is trained to separate one class from the rest, are under-

taken and each test sample is allocated to the class for which the largest decision

value is determined. For the kernel type, we select radial basis function (RBF)

kernel.

We are interested in whether the performance of recognizing the 10 Chinese
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number gestures can be further improved. Based on our preliminary results shown

in Fig. A.13, we can see that all three types of features contain useful, but proba-

bly compensating information and could yield good recognition performances, we

therefore propose combining the three feature sets together. From Fig. A.13, we

also note that SVM provides good performances consistently when using different

features. In SVM, a kernel function k implicitly maps samples x to a feature space

Φ given by a feature map k(xi,x j) =
〈
Φ(xi),Φ(x j)

〉
. Since there are different ker-

nel types such as RBF kernel, Polynomial kernel, Hyperbolic tangent kernel etc.,

it is often unclear what the most suitable kernel for the task at hand is, and hence

the user may wish to combine several possible kernels. One problem with simply

adding kernels is that using uniform weights is possibly not optimal. For instance,

if one kernel is not correlated with the labels at all, then giving it positive weight

will just add noise and degrade the performance [41]. It is thus desirable to use an

optimized kernel function that could fit the data structure very well. Therefore, to

efficiently combine multiple features and to optimally combine multiple kernels in

SVM, we propose employing the following multiple kernel learning approach for

Chinese number gesture recognition.

Multiple kernel learning: MKL is an efficient way of optimizing kernel weights

and can design a kernel which is optimal for a given data set. In the MKL approach,

now let us consider convex combinations of M kernels

k(xi,x j) =
M

∑
m=1

wmkm(xi,x j) (A.4)

where wm ≥ 0, ∑
M
m=1 wm = 1, and M is the total number of kernels used. In

the multiple kernel learning problem, for binary classification, suppose we have

a training set of N samples {xi,yi}, i = 1, ...,N,yi ∈ {1,−1}, where xi is trans-

lated via M mappings Φm(xi) 7−→RDm , m = 1, ...,M, from the input into M feature

spaces (Φ1(xi), ...,ΦM(xi)), where Dm denotes the dimensionality of the m-th fea-

ture space. We need to solve the following MKL primal problem [65], which is
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equivalent to the linear SVM for M = 1:

min
1
2

(
M

∑
m=1

wm ‖β m‖2

)2

+C
N

∑
i=1

ξi

w.r.t. β m ∈ RDm ,ξ ∈ RN ,β0 ∈ R

s.t. ξi ≥ 0 and yi

(
M

∑
m=1

wm 〈β m,Φm(xi)〉+β0

)
≥ 1−ξi,∀i = 1, ...,N

(A.5)

where β m is the normal vector to the hyperplane for the feature space Φm. The

authors in [65] derived the MKL dual for the problem (A.5) as below:

min γ

w.r.t. γ ∈ R,α ∈ RN

s.t. 0≤ α ≤ 1C,
N

∑
i=1

αiyi = 0

1
2

N

∑
i, j=1

αiα jyiy jkm(xi,x j)−
N

∑
i=1

αi ≤ γ,∀m = 1, ...,M.

(A.6)

where α = (α1,α2, ...,αN), αi is a Lagrange multiplier and β m = ∑
N
i=1 αiyiΦm(xi).

In [68], the authors tackled the MKL problem through a weighted 2-norm reg-

ularization formulation with an additional constraint on the weights that encour-

ages sparse kernel combinations. This algorithm, called SimpleMKL, can converge

rapidly with comparable efficiency. In this chapter, we will adopt SimpleMKL as

our MKL algorithm.

Results and Discussion

Off-line recognition results and discussion Three general feature types described

in Section A.3.2 and four popular classification algorithms described in Section

A.3.2, representing a total of twelve combinations, are first applied to our recogni-

tion problem of Chinese number gestures. Then based on their performances, we

suggest to combine the three feature (3F) together and apply MKL-SVM method.
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To make a fair comparison between single kernel and multiple kernels, we also

employ the single kernel SVM combined with 3F for classification. In total, 14

approaches were investigated in this study, as shown in Fig. A.13.

There were six subjects in total and each subject performed 50 sEMG experi-

mental trials for each of the 10 designed Chinese number gestures. Therefore, there

were totally 300 trials for each movement in the defined number gesture move-

ment set. For each subject, the leave-one-out method, a commonly used method

of cross-validation, was used to calculate the classification accuracy and form a

subject-level confusion matrix. Adding the six subject-level confusion matrices

together produces an overall confusion matrix for a given approach. The result-

ing classification results from different approaches are summarized by the overall

confusion matrices, some of which are presented in Fig. A.12 and the overall clas-

sification accuracies are reported in Fig. A.13.

From the confusion matrices, we can see that in general the recognition accu-

racies for individual number gestures and the overall average accuracies are quite

satisfying. By studying the existing literature, we also note that the classification

results in our multi-finger number gesture case is comparable to, or even outper-

form, the ones in gross hand, wrist and arm movement cases when employing

similar recognition approaches. For instance, in [19], the difference absolute mean

value was used to construct a feature map and the k-NN, LDA and QDA algorithms

were used to classify five wrist-motion direction movements, including up, down,

right, left, and the rest state. The reported recognition accuracy rates were 84.9%

for k-NN, 82.4% for QDA, and 81.1% for LDA, while our resulting accuracy rates

were 96.17% for k-NN, 95.90% for LDA, and 95.67% for QDA. Although only

two forearm sEMG channels were used in [19] while we used four, it is worth not-

ing that our problem is to recognize twice the number of movements and that our

defined subtle number gestures belong to the category of subtle multi-finger move-

ments, which is much more difficult to be classified than the category of gross

hand, wrist and arm movements. Using eight sEMG channels, the authors in [61]

applied discrete wavelet transform and SVM to classify six gross hand movements

such as wrist flexion, wrist extension, hand supination, hand pronation, hand open-

ing and hand closure, and their misclassification rate for six subjects was 4.7% ±
3.7% while ours was 3.37% ± 1.19% by using TD and SVM.
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(a) (b)

(c) (d)

Figure A.12: Some confusion matrices of different combinations. Here the
notation “ACCC+k-NN” is used to represent the recognition ap-
proach that uses the ACCC features and the k-NN classifier, and other
notations are similarly defined. (a) ACCC+k-NN. (b) TD+LDA.
(c) SPM+SVM (SK), here SK means single kernel. (d) 3F+SVM
(MKL).

However, we also note some limitations in the recognition results reported in

Fig. A.12. Several pairs of number gestures are relatively more difficult to be dis-

tinguished, such as the gestures representing the numbers 3 and 4, and the gestures

representing the numbers 0 and 9. This is probably due to the high movement sim-

ilarity in such pairs, as seen in Fig. A.1. From Fig. A.12 and Fig. A.13, we note

that the recognition approach using ACCC features and the k-NN classifier, which

is notated as “ACCC + k-NN”, performs very different from the other recognition

approaches and yields the worst recognition results, as presented in Fig. A.12a. It

seems that each number gesture can be misclassified into other classes, even if the

two gestures (e.g. the numbers 0 and 3) do not seem similar and not been misclas-

sified by any of the rest recognition approaches. We think this observation might

reflect k-NN’s possible disadvantages associated with the Euclidean distance mea-
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Figure A.13: Comparisons of the overall recognition accuracies when em-
ploying different feature sets and different classifiers.

sure. When two class groups are very close to each other, the classifier based on

the Euclidean distance could misclassify the points residing around the boundary.

It is worse if the two class groups overlap. When one class group has several other

class groups surrounded with, the points lying around the boundary in the class

can be randomly classified into the surrounding classes by k-NN and only the ones

in the center can be classified accurately. This can explain our results observed in

Fig. A.12a.

From Fig. A.13, we also note that the ACCC + LDA approach yields the

second worst accuracy 88.40%, which suggests that ACCC might not be a good

feature set for the LDA classifier. We note that the combinations of ACCC and

QDA or SVM provide quite high accuracies, both above 95%. In general, it seems

that k-NN and LDA may not be as robust as QDA and SVM, probably due to the

explanations above for k-NN and the common covariance assumption for LDA.

Compared with the ACCC feature set, SPM and TD can provide more stable per-

formances no matter which classifier is employed, and it is noted that all combina-

tions involving them achieve the accuracy rates above 91%. SPM generally yields

a slightly worse recognition performance than TD does. Therefore, the TD features

is slightly preferred than other features. Regarding the studied popular classifiers,
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Table A.1: Some combinations of different kernels and corresponding results.

Index Kernel Type Kernel Number Kernel Parameter* Accuracy

1 RBF 10 [0.5 1 2 5 8 10 12 15 17 20] 97.47%

2 RBF 4 [0.5 1 2 5] 97.73%

3 RBF 5 [0.5 1 2 5 8] 97.77%

4 RBF, Poly 7 [0.5 1 2 5 8], [1 2] 97.80%

5 RBF, Poly 8 [0.5 1 2 5 8], [1 2 3] 97.83%

6 RBF, Poly 6 [1 2 5 8], [1 2] 97.87%

7 RBF, Poly 7 [1 2 5 8], [1 2 3] 97.93%
* Here Kernel Parameters include the Gaussian width of RBF kernel and the freedom degree of

Polynomial kernel, e.g. “[1 2 5 8], [1 2]” indicates that four RBF kernels with Gaussian width 1,
2, 5, 8 and two Poly kernels with freedom degree 1, 2 are used.

QDA and SVM are both reliable and well-performed. The approaches combining

QDA (and SVM) with TD achieved 95.67% and 96.63% average accuracies with

small standard errors respectively.

Since all the three types of feature sets contain useful information based on

their performance, we further investigate to combine the three features together.

We first use single kernel SVM with 3F and achieve the accuracy 97.03% which is

higher than that of the above 12 combinations. To fit the combined feature set bet-

ter and further improve the recognition performance, we apply MKL-SVM method

described in Section A.3.2. Regarding the kernel type selection, RBF is generally

suggested [62] and we also examine the polynomial kernel function. Regarding

the parameter selection, a parameter range is first set for each kernel function:

RBF (min:0.5;max:20) and polynomial (min:1;max:5); then the number of ker-

nels and the corresponding parameters (all are integers except 0.5 for RBF) are

automatically selected uniformly according to a uniform distribution by MATLAB

which is repeated 100 times; finally, the combinations with the best performances

are selected. We provide some kernel parameters and report their performances in

Table A.1 for reference. From Table A.1, we can see that using polynomial ker-

nel function can help improve the performance and a highest rate 97.93% can be

achieved by combination-7. In addition, the results also indicate that though SVM
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with single kernel provides excellent performance, it does not perform as well as

MKL-SVM does. In particular, the combination TD + LDA was reported multiple

times to provide the most stable performance for myoelectric control [59, 60]. To

validate the significance of the results achieved by 3F + MKL-SVM upon that by

TD + LDA, we perform a paired samples t-test to compare the recognition rates by

the two combinations. The test indicates that there is a significant difference in the

accuracy (t = 5.303, p < 0.01) and the proposed combination outperforms TD +

LDA for classification rate. However, the efficiency of MKL-SVM is much lower

than that of LDA since the former involves a slow optimization procedure. Over-

all, MKL-SVM is a promising method for sEMG-based number gesture pattern

recognition.

On-line recognition results and discussion Based on high classification accura-

cies observed in the offline sEMG recognition analysis in Section A.3.2, we imple-

ment a real-time classification system for Chinese number gestures. The purpose

of this section is to examine the possibility of practical applications in a controlled

Figure A.14: Pictures of the hardware and software implementation of the
proposed real-time sEMG recognition system.
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laboratory setting, that is, to check if the accuracy can be improved to a satisfy-

ing level when subjects become familiar with the system and if the re-placement

of electrodes at the same locations at different time can affect the classification

accuracy. From the results in Section A.3.2 and considering the tradeoff between

accuracy and algorithm complexity, we select QDA combined with TD as the algo-

rithm for the real-time recognition system of Chinese number gestures. Fig. A.14

presents a demo of the implemented real-time system, in which the recognition al-

gorithm part and graphical user interface are realized by the programming language

Java.

Figure A.15: The average recognition accuracy rates of the six subjects over
the eight training sessions. The spread of data points are also provided.
Note that some points are overlapped.

The corresponding real-time experiment was described in the Section A.3.2.

The classification results for each subject were shown in Fig. A.15 and the results

for each of the designed number gesture movements were shown in Fig. A.16.

From Fig. A.15, we note that the average accuracy rates for the six subjects gen-

erally increase gradually as the number of training sessions increases. After four

training sessions, the accuracy rate for each subject remains nearly steady. All six

subjects could achieve above 90% accuracy in average and three of them could

achieve above 95% accuracy for the ten number gestures. From Fig. A.16, similar

observations can be noted for each number gesture movement. The average recog-
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Figure A.16: The average recognition accuracy rates for the ten number ges-
ture movements over the eight training sessions. The spread of data
points are also provided. Note that some points are overlapped.

nition accuracy rates for each number gesture movement were above 90% after

four training sessions and above 95% accuracy can be achieved for seven of the ten

movements.

The reason for our excellent recognition performance should be the follow-

ing factors: reasonable electrode placement, effective feature extraction methods

and advanced classification algorithms. Reasonable electrode placement ensures

that meaningful sEMG signals from corresponding muscles are acquired; effective

extraction methods ensure that useful information contained in the signals are ex-

tracted appropriately; advanced classification algorithms guarantee that different

patterns can be distinguished from each other. In this , through a large number

of preliminary experiments and our previous study [46], we can design the supe-

rior electrode placement for our proposed number gestures using only four sEMG

channels, while in most previous studies (e.g. [22]) a large number of channels

were employed and arranged orderly in which case only a part of them were ac-

tually useful. Also, we extensively investigate the most popular feature extraction

and recognition methods so that we can clearly tell the most proper approaches

for number gestures and select the most effective features and classification al-

gorithms. We believe that our super recognition performance of recognizing ten
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multi-finger gestures is jointly contributed by the above factors. With that excellent

performance, we believe the number gestures are therefore promising for practical

applications such as HCI.
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Appendix B

Algorithm Derivation

B.1 The Derivation for The PLS+CCA Method
In this appendix, we show how to mathematically derive the solution of the pro-

posed PLS+CCA method.

B.1.1 The First Step: PLS

The cost function of PLS is as follows (the same as Equation (2.1) in Section 2.3.2):

max
w1,w2

(
w1

T XTY w2
)2

s.t. wi
T wi = 1, i = 1,2

(B.1)

where wi’s (i = 1,2) are the weight vectors.

By employing the method of Lagrange multipliers, we rewrite the initial cost

function as:

L(wi,λi) =
(
w1

T XTY w2
)2−

2

∑
i=1

λi(wi
T wi−1), (B.2)

where λi’s are Lagrange multipliers.

Now we only present the detailed derivations regarding w1, since w2 can be

similarly derived. Taking the derivatives of L(wi,λi) with respect to w1 and λ1 and
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setting them to be zero, we have:

∇Lw1 = 2
∣∣w1

T XTY w2
∣∣XTY w2−2λ1w1 = 0, (B.3)

∇Lλ1 = w1
T w1−1 = 0. (B.4)

Left multiplying both sides of Eq. (B.3) by w1
T , we have:

2
(
w1

T XTY w2
)2−2λ1w1

T w1 = 0. (B.5)

According to Eq. (B.4), λ1 can be calculated as

λ1 =
(
w1

T XTY w2
)2
. (B.6)

Through the similar procedure, ∇Lw2 and λ2 can be easily derived as

∇Lw2 = 2
∣∣w1

T XTY w2
∣∣Y T Xw1−2λ2w2 = 0, (B.7)

λ2 =
(
w1

T XTY w2
)2
. (B.8)

Substituting Eq. (B.8) into Eq. (B.3) and Eq. (B.7) respectively, we have the

following two expressions: √
λ2XTY w2 = λ1w1, (B.9)

1√
λ2

Y T Xw1 = w2. (B.10)

By substituting Eq. (B.10) into Eq. (B.9), we can formulate an eigenvalue-eigenvector

decomposition problem:

(
XTYY T X

)
w1 = λ1w1. (B.11)

Similarly, we can have the formulation for w2 as:

(
Y T XXTY

)
w2 = λ2w2. (B.12)
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The above solutions are straightforward. A practical issue is to determine the

number of LVs. In our study, we determine the number R by setting a threshold

that corresponds to the ratio of explained variance (e.g. 95%). Therefore, the

corresponding LVs in X and Y can be calculated by

TX = XW1, TY = YW2, (B.13)

where W1 is composed of the first R eigenvectors associated with Eq. (B.11) and

the columns of TX represent the R components extracted from X . W2 and TY are

similarly defined.

However, the collinearity problem may exist in the LVs calculated through the

above procedure, since each data set is used repetitively for each LV’s calculation.

The extracted LVs are not necessarily uncorrelated to each other. To effectively im-

plement the second step and avoid the ill-conditioned problem, we need to address

this uncorrelatedness concern and thus we design a deflation procedure: Before

extracting the second common LV in each data space, X and Y are deflated by their

corresponding first LVs as follows:

X = X− tX(tX T tX)−1tX T X , Y = Y − tY (tY T tY )−1tY TY . (B.14)

Then the above procedure will be repeated for the further extraction of common

LVs. In this way, the following new LVs are uncorrelated to the previous ones.

The purpose of this step is to extract LVs which can most explain the individual

data sets and meanwhile are well correlated to the LVs in another data set. With this

step, trivial and irrelevant information across data sets could be removed. However,

a higher covariance may merely result from the larger variance of LVs, which may

not necessarily imply strong correlations. To address this concern, the 2nd step

will help further refine the results.
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B.1.2 The Second Step: CCA

Based on the extracted LVs in the first step, the objective function of CCA can be

constructed as follows:

max
v1,v2

(
v1

T TX
T TY v2

)2

s.t. v1
T TX

T TX v1 = 1, v2
T TY

T TY v2 = 1
(B.15)

where vi’s (i = 1,2) are the weight vectors.

By employing the method of Lagrange multipliers, we rewrite the initial objec-

tive function as:

L(vi,ηi) =
(
v1

T TX
T TY v2

)2−η1(v1
T TX

T TX v1−1)−η2(v2
T TY

T TY v2−1), (B.16)

where ηi’s are Lagrange multipliers. Similar to the derivation in the first step, we

can obtain the following eigenvalue-eigenvector decomposition problem:

[
(TX

T TX)
−1TX

T TY (TY
T TY )

−1TY
T TX

]
v1 = η1v1. (B.17)

Similarly, for v2, we have:

[
(TY

T TY )
−1TY

T TX(TX
T TX)

−1TX
T TY
]

v2 = η2v2. (B.18)

The solutions to this problem are the R largest eigenvectors of the corresponding

matrices. The recovered LVs UX and UY can be calculated directly from the ma-

trices TX and TY by

UX = TXV1, UY = TYV2, (B.19)

where V1 is composed of the R eigenvectors associated with Eq. (B.17) and the

columns of UX represent the R components extracted from TX . V2 and UY are

similarly defined.

After these two steps, it is ensured that the extracted components UX and UY

are maximally correlated across data sets and meanwhile can well explain the in-

formation within each individual data set.
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B.2 The Derivation for The IC-PLS Model
In this appendix, we show how to mathematically derive the optimization solution

of the proposed IC-PLS model.

By employing the method of Lagrange multipliers, we can rewrite the initial

cost function as follows:

F(w1,w2,λ1,λ2) = α
(
E((w1

T x)(w2
T y))

)2

+β
(
E(G(w1

T x))−E(G(u1))
)2

+θ
(
E(G(w2

T y))−E(G(u2))
)2

+λ1(w1
T w1−1)+λ2(w2

T w2−1)

(B.20)

where λ1 and λ2 are Lagrange multipliers.

Here, we only present the detailed derivations regarding w1. As to those of

w2, it is straightforward from the results obtained on w1. Taking the derivatives of

F(w1,w2,λ1,λ2) with respect to w1 and λ1 and setting them to be zero, we have:

∇Fw1 =
∂F

∂w1
= 2αE((w1

T x)(w2
T y))E(x(w2

T y))

+2β (E(G(w1
T x))−E(G(u1)))E(xg(w1

T x))

+2λ1w1 = 0,

(B.21)

∇Fλ1 = w1
T w1−1 = 0, (B.22)

where g(·) represents the corresponding first-order derivative of G(·).
Left multiplying both sides of Eq. (B.3) by w1

T , we have:

2αw1
T E((w1

T x)(w2
T y))E(x(w2

T y))

+2β (E(G(w1
T x))−E(G(u1)))w1

T E(xg(w1
T x))

+2λ1w1
T w1 = 0.

(B.23)

According to Eq. (B.4), λ1 can be calculated as

λ1 =−αw1
T E((w1

T x)(w2
T y))E(x(w2

T y))

−β (E(G(w1
T x))−E(G(u1)))w1

T E(xg(w1
T x)).

(B.24)
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Based on Kuhn-Tucker conditions [99], the optima of the multi-objective func-

tion shown in Eq. (3.5) will be at the points shown in Eq. (B.21) under the con-

straint (B.22). In this work, to improve the convergence speed, Newton’s method

is employed to solve this problem.

Suppose Φ1 = ∇Fw1 and then its Jacobian matrix can be derived as

JΦ1 = 2αE(x(w2
T y))E(xT (w2

T y))

+2β (E(G(w1
T x))−E(G(u1)))E(xxT g

′
(w1

T x))

+2βE(xg(w1
T x))E(xT g(w1

T x))+2λ1I,

(B.25)

where g
′
(.) means the second-order derivative of G(.).

Substituting Eq. (B.24) into Eq. (B.25), we have the following expression for

JΦ1:
JΦ1 = 2αE(x(w2

T y))E(xT (w2
T y))

+2β (E(G(w1
T x))−E(G(u1)))E(xxT g

′
(w1

T x))

+2βE(xg(w1
T x))E(xT g(w1

T x))

− (2αw1
T E((w1

T x)(w2
T y))E(x(w2

T y))

+2β (E(G(w1
T x))−E(G(u1)))w1

T E(xg(w1
T x)))I.

(B.26)

Since the data have been initialized, to simplify the inverse of the Jacobian

matrix, the second term can be approximated as in the original FastICA algorithm

as [39]:

E(xxT g
′
(w1

T x))≈ E(xxT )E(g
′
(w1

T x)) = E(g
′
(w1

T x))I. (B.27)

Therefore, the Jacobian matrix can be approximately expressed in a simple

form:
JΦ1 = 2αE(x(w2

T y))E(xT (w2
T y))

+2βE(xg(w1
T x))E(xT g(w1

T x))− c1I,
(B.28)

where c1 is a constant defined as

c1 = 2αw1
T E((w1

T x)(w2
T y))E(x(w2

T y))

+2β (E(G(w1
T x))−E(G(u1)))w1

T E(xg(w1
T x))

−2β (E(G(w1
T x))−E(G(u1)))E(g

′
(w1

T x)).

(B.29)
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Substituting Eq. (B.24) into Eq. (B.3), we can express the derivatives of

F(w1,w2,λ1,λ2) with respect to w1 as:

∇Fw1 = 2αE((w1
T x)(w2

T y))E(x(w2
T y))

+2β (E(G(w1
T x))−E(G(u1)))E(xg(w1

T x))

−2(αw1
T E((w1

T x)(w2
T y))E(x(w2

T y))

+β (E(G(w1
T x))−E(G(u1)))w1

T E(xg(w1
T x)))w1,

(B.30)

Through the similar procedure, JΦ2 and ∇Fw2 can be easily derived as

JΦ2 = 2αE(y(w1
T x))E(yT (w1

T x))

+2θE(yg(w2
T y))E(yT g(w2

T y))− c2I,
(B.31)

where c2 is a constant defined as

c2 = 2αw2
T E((w1

T x)(w2
T y))E(y(w1

T x))

+2θ(E(G(w2
T y))−E(G(u2)))w2

T E(yg(w2
T y))

−2θ(E(G(w2
T y))−E(G(u2)))E(g

′
(w2

T y)).

(B.32)

and
∇Fw2 = 2αE((w1

T x)(w2
T y))E(y(w1

T x))

+2θ(E(G(w2
T y))−E(G(u2)))E(yg(w2

T y))

−2(αw2
T E((w1

T x)(w2
T y))E(y(w1

T x))

+θ(E(G(w2
T y))−E(G(u2)))w2

T E(yg(w2
T y)))w2.

(B.33)

The Newton iteration direction vectors di (i = 1,2) are derived by solving the

following equations:

JΦ(wi) ·di =−∇Fwi , i = 1,2. (B.34)

Therefore, finally, wi (i = 1,2) can be derived as follows

wi← wi +di,

i.e., wi← wi− (JΦ(wi))
−1

∇Fwi , i = 1,2.
(B.35)
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