
Design and Optimization of Control Primitives for
Simulated Characters

by

Shuo Shen

Dual B. S. in Computer Science, Zhejiang University and Simon Fraser

University, 2011

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Computer Science)

The University Of British Columbia

(Vancouver)

December 2013

c© Shuo Shen, 2013

Abstract

Physics-based character motion has the potential of achieving realistic motions

without laborious work from artists and without needing to use motion capture

data. It has potential applications in film, games and humanoid robotics. However,

designing a controller for physics motions is a difficult task. It requires expertise

in software engineering and understanding of control methods. Researchers typ-

ically develop their own dedicated software framework and invent their own sets

of control rules to control physics-based characters. This creates an impediment

to the non-expert who wants to create interesting motions and others who want to

share and revise motions. In this thesis, we demonstrate that a set of motion prim-

itives that have been developed in recent years constitute effective building blocks

for authoring physics-based character motions. These motion primitives are made

accessible using an expressive and flexible motion scripting language. The motion

language allows a motion designer to create controllers in a text file that can be

loaded at runtime. This is intended to simplify motion design, debugging, under-

standing and sharing. We use this framework to create several interesting 2D planar

motions. An optimization framework is integrated that allows the hand-designed

motion controller to be optimized for more interesting behaviors, such as a fast

prone-to-standing motion.

We also develop a state-action compatibility model for adaping controllers to

new situations. The state-action compatibility model maintains a hypervolume of

compatible states (“situations”) and actions (controllers). It allows queries for com-

patible actions given a state.

ii

Preface

The CMA-ES algorithm described in Chapter 5 was originally developed by N.

Hansen and A. Ostermeier [19], and further explained in [1, 3]. In Chapter 6, the

query algorithm is based on the diversity optimization algorithm developed by S.

Agrawal, S. Shen and M. van de Panne [7]. Several figures and part of texts from

this thesis are copyright and are reused in this thesis by permission. Figure 1.1 is

recreated from [6]. Figure 5.1 is adapted from Wikepedia [1]. Figures with the

phrase “used with permission” in the caption are used with permission from the

authors of the cited papers. The rest of the work is original and it was developed

by the author Shuo Shen who discussed with Dr. Michiel van de Panne.

iii

Table of Contents

Abstract . ii

Preface . iii

Table of Contents . iv

List of Tables . vi

List of Figures . vii

Acknowledgments . x

1 Introduction . 1
1.1 Goals . 3

1.2 Contributions . 4

1.3 Overview . 4

2 Related Work . 6
2.1 Inverse Dynamics Based Methods 6

2.2 Finite State Machine (FSM) Based Controllers 8

3 Motion Primitives . 10
3.1 PD Control on Joints . 11

3.2 Virtual Force . 13

3.3 Gravity Compensation . 15

3.4 Quiescent Stance Balance Feedback 16

iv

3.5 Inverse Kinematics . 16

3.6 Phase Transition Models . 18

4 Simple Controller Language (SCL) Framework 19
4.1 Character Definition . 20

4.2 Specification of Phases and Phase Transitions 22

4.3 Motion Primitive Specifications 25

4.4 Motion Design Workflow . 28

4.5 Results . 29

4.5.1 Kip-up Motion . 30

4.5.2 Sit to Stand Motion . 35

4.5.3 Walk Motion . 35

4.5.4 Prone to Stand . 38

5 Optimization . 42
5.1 Problem Definition . 42

5.2 CMA-ES Optimization . 44

5.3 Results . 45

5.3.1 Kip-up Motion . 46

5.3.2 Prone-to-Stand Motion 48

6 State-Action Compatibility Model 52
6.1 Sampling . 54

6.2 Learning . 57

6.3 Querying . 57

6.4 Results . 58

7 Conclusion . 64
7.1 Discussion . 65

7.2 Future Work . 65

Bibliography . 67

v

List of Tables

Table 4.1 Body parts specifications taken from Wooten et al. [40] 21

Table 4.2 Body joints specifications . 21

Table 4.3 Transition types . 25

Table 4.4 Motion primitive types . 26

vi

List of Figures

Figure 1.1 Big Dog robot developed by Boston Dynamics 2

Figure 1.2 Walking gait from SIMBICON [41]. Used with permission

from van de Panne. 3

Figure 1.3 The overall architecture of the system (Chapters 3-5) 5

Figure 2.1 A side kick motion produced using inverse dynamics approach

[27]. Used with permission from Macchietto. 7

Figure 2.2 A walk motion produced by trajectory optimization [29]. Used

with permission from Wang. 7

Figure 2.3 Biped walker stepping over a sequence of obstacles [12]. Used

with permission from van de Panne. 9

Figure 3.1 Phase diagram . 11

Figure 3.2 Motion primitives and high level controller structure 11

Figure 3.3 PD control tracking a child’s angle in world coordinate frame.

The desired angle of the child θdchild in world coordinate frame

is converted to the desired local joint angle θd in local coordi-

nate frame. 12

Figure 3.4 Virtual force of on a three-link arm 14

Figure 3.5 Gravity compensation on physics-based character 15

Figure 3.6 Sagittal view of inverse kinematics of two-link arm. Given the

target position of c as input, IK finds the angle θ1 in world

frame, θ2 for joint a and b. 17

vii

Figure 4.1 Character Anatomy. Left-right symmetric structures have only

one-half of the body annotated. The plural name of the sym-

metrical structures are given in parentheses. 20

Figure 4.2 An illustration of the zero pose. In this figure, the head points

to the positive direction of the horizontal axis and limbs point

to the negative direction of the horizontal axis. The zero pose

defines the zero angle for each link in the world coordinate

frame as well as the zero angle for each joint in the local joint

coordinate frame. Note that the zero pose cannot be actually

achieved due to the joint limit of the ankles as defined in Ta-

ble 4.2. 22

Figure 4.3 The virtual force primitive. The left foot is the base link and

the right forearm is the link of application. 27

Figure 4.4 Kip-up Phases 1-3 . 31

Figure 4.5 Kip-up Phases 4-5 . 32

Figure 4.6 Sit to stand motion sequence 36

Figure 4.7 Walk motion sequence . 38

Figure 4.8 Prone-to-stand motion sequence 41

Figure 5.1 An illustration of CMA-ES running on a simple 2D problem.

The value of the function is depicted by the white contours

with brighter regions representing a better value. The black

dots are individual solutions in a generation and orange dashed

boundaries represent the Gaussian distribution N (µ,σ2Σ). Adapted

from Wikipedia [1]. 45

Figure 5.2 More athletic kip-up motion achieved after 1000 iterations of

optimization . 49

Figure 5.3 More efficient prone-to-stand motion achieved after 1000 iter-

ations of optimization . 51

Figure 6.1 Abstract view of state-action compatibility model 53

viii

Figure 6.2 Abstract view of sampling algorithm. There are three sam-

pling paths. The evolution of Gaussian distribution along one

sampling path is illustrated. 55

Figure 6.3 State-action parameterization of the sit-to-stand problem. The

state parameter is the height of the chair h, the action param-

eters are the target waist angle θwaist , and the target shoulder

angles θshoulders. 59

Figure 6.4 Input motion (s,a) = (0.45,30,20) 60

Figure 6.5 Three motions are queried from state-action model with the

same height as the initial chair height, h = 0.45. Motion 1 has

a highly flexed waist; motion 2 does not bend the waist; motion

3 uses hands to push the chair. 61

Figure 6.6 Three motions are queried from state-action model with the a

different chair height h = 0.16. Motion 1 has a small bend on

waist; motion 2 has a highly flexed waist and pushes the chair;

motion 3 also has a highly flexed waist but pushes the ground. 62

Figure 6.7 Three motions are queried from state-action with the height

h = 0.65. The human character’s feet are hanging in the air at

the beginning. Motions 2 and 3 look very similar and motion

1 failed. 63

ix

Acknowledgments

This thesis could not have been written without my supervisor Michiel van de

Panne, who encouraged and guided me through my entire academic program. I

would like to express my sincerest gratitude to Michiel, for his patience, inspiration

and resourcefulness. Thank you!

I would also like to thank the second reader of my thesis, Ian Mitchell, for

providing valuable feedback on the writing of this thesis.

Many thanks to my friends and colleagues, Brian Xu, Chuan Zhu, Matt Dirks,

C. Albert Thompson, Sarwar Alam, Lan Wei, Shu Yang, Yufeng Zhu, Lei Xiao and

Andrew Smith for helping out with my study and thesis writing. That means a lot

to me.

Lastly, a heartfelt thanks goes out to my parents and my girlfriend Lina Miao,

for all their love and support.

x

Chapter 1

Introduction

Traditional computer animation relies on keyframing. In this technique, animators

first draw characters in a number of key frames at relatively large time intervals

and fill in the rest of frames using “in-between” frames to get a full animation. The

work of finding appropriate key frames and filling in the rest of the frames is artistic

and laborious. The keyframing technique is extended for use in kinematics-based

character animation techniques by using splines to define the values of the degrees

of freedom as a function of time. These interpolate the keyframes and thus fully

specify the in-between frames. This process automates some of the artists’ work

but it is difficult for this technique to maintain plausible physics, such as motion

due to gravity and contact forces.

Physics-based character animation, on the other hand, models character mo-

tion from first principles by using internal forces and physics-based simulation.

Consequently the physical plausibility of the motions comes as a byproduct of the

simulation. With simulation, less input is potentially required from human ex-

perts to author a physically-plausible character motion. Compared to kinematics-

based animation, physics-based character animation can be extended more easily

by changing a character’s dimensions and weights or adjusting its environment. It

has seen use in film and video-game industry, although to date this has most of-

ten been used for “passive ragdoll” simulations. It remains challenging to design

the control solutions that are needed to emulate the muscle-based motor skills that

drive human and animal motions in reality.

1

Figure 1.1: Big Dog robot developed by Boston Dynamics

Robotics research has also seen considerable ongoing efforts towards mod-

eling motor skills for human and animal-like movements that can be instanti-

ated on robots. Locomotion skills have been developed for humanoid robots, and

quadrupeds such as the Big Dog robot [37] (Figure 1.1) and the Wildcat robot [9].

One general approach to developing motor skills is to develop fundamental

building blocks of motions, or motion primitives. Motion primitives are rules that

compute torques and can be composed in parallel or sequentially to build up control

strategies for interesting robotic movements. However, there exist a multitude of

challenges in developing motion primitives: what is a proper set of motion prim-

itives, and when should they be invoked? The problem space consists of high

dimensional states and actions and can contain discontinuities caused by contacts.

Also, human movement is usually underactuated. Due to these reasons, seemingly

simple problems are very difficult to solve and still remain open today. For exam-

ple, it is still unclear how to a develop a robust rising controller, i.e., a controller

that enables a humanoid character to stand up from various situations.

There have been a number of demonstrated successes in learning motor con-

trols in physics-based character animation. Muscle models have been developed

to simulate joint behaviors that have produced natural locomotions. These mod-

els range from simple proportional-derivative (PD) control to detailed simulations

with biological actuators. Motor learning helps robots and physics-based char-

acters improve on movements over time by trial-and-errors on the gathered feed-

backs. Locomotion controllers have been developed successfully for humanoid and

2

Figure 1.2: Walking gait from SIMBICON [41]. Used with permission from
van de Panne.

animal-like characters, e.g., walking (Figure 1.2), running, rolling, galloping, etc.

Among these, walking is one of the most heavily studied and the most successful

skills. Physics-based characters are able to walk on different slopes at various ve-

locities. They are robust to perturbations such as pushes and can adapt to different

ground models including sloped terrains and terrains with steps.

1.1 Goals
A primary motivation for our work arises from the current inefficiency of research

in controller development for physics-based character animation. Much ongoing

effort has been devoted to authoring motions for rigid-body humanoid or animal

characters. Researchers have developed a variety of ways of implementing motion

controls using conceptually similar control primitives. However, it is difficult for

them to share motions with each other. There is an inevitable demand for a unified

tool that allows researchers to design motions using a well-known set of motion

primitives, and to share and improve on other people’s work with a small amount of

effort. Well defined languages have significant impacts on other fields that greatly

benefit from end-user development and design, such as Renderman [38] for render-

ing shaders and OpenFab [34] for 3D printing. A principle goal of our work is to

develop a motion authoring framework that exposes a good set of primitives using

a simple controller language.

Another motivation of the work in this thesis arises from the need to produce

diverse and adaptive physics-based motions. Motions that work only in one fixed

style or in the same situation, e.g. jump in same height or walking on a fixed-

sloped terrain, are not that interesting. The potential of being able to generate a

particular motion task in different styles and in different situations is part of the

3

promises of physics-based motion synthesis techniques. We propose a method for

modelling the space of all possible feasible actions for a given situation, using a

novel state-action compatibility model.

1.2 Contributions
The main contributions of this thesis are as follows:

• We create a flexible, scriptable implementation of the motion primitives that

have recently been developed. This potentially allows non-expert users to

author a wide range of motions without needing to develop or edit source

code.

• We create several motions using a simple motion-scripting language, includ-

ing kip-up, sit-to-stand, walk and prone-to-stand.

• We develop an approach that allows motion scripts to be parameterized and

optimized. This is demonstrated for an optimization of a kip-up and a prone-

to-stand motion for agility.

• We develop a new method for modelling the subspace of motions that ac-

complish a given task, which we refer to as the state-action compatibility

model.

1.3 Overview
The remainder of this thesis is organized in the following structure. The compo-

nents developed from Chapter 3 to Chapter 5 are visualized in Figure 1.3.

• Chapter 2 reviews the related work in physics-based character animation.

• Chapter 3 introduces motion primitives and the related control strategies

that will be used by the scriptable framework.

• Chapter 4 describes the scripting language and the development of several

motions using this language.

4

Figure 1.3: The overall architecture of the system (Chapters 3-5)

• Chapter 5 describes the parameterization and optimization of scriptable mo-

tions.

• Chapter 6 introduces the state-action compatibility model and presents re-

lated results.

• Chapter 7 concludes and discusses directions of future work.

5

Chapter 2

Related Work

Physics-based character animations can be achieved by using “inverse dynamics”

methods or using controllers based on finite state machines along with forward dy-

namics simulation. Most research on physics-based character animation falls into

one of these two categories of methods. In this chapter, we will discuss the work

from these two categories that are similar in spirit to ours, with a focus on recently

developed methods. A complete survey on physics-based character animation is

outside the scope of this thesis. Such a survey can be found in [16].

2.1 Inverse Dynamics Based Methods
Inverse dynamics methods solve the equation of motion (EOM) for torques at ev-

ery time step in order to achieve desired kinematic properties, normally the desired

joint accelerations. This then produces a trajectory that is physically plausible. If

desired, the torques can also then be fed into physics simulation in order to re-

generate a trajectory. This is fully consistent with frictional effects, collisions, and

other limits that are not directly captured by desired accelerations. This method

can be viewed as planning the motion one time step at a time. Lee et al. [25] de-

sign controllers that regulate desired joint accelerations based on reference motion

and balance requirements, and use inverse dynamics to produce motions that con-

form to captured motion sequences. Macchietto et al. [27] optimizes the desired

joint accelerations in order to satisfy several balance feedback laws. They use in-

6

Figure 2.1: A side kick motion produced using inverse dynamics approach
[27]. Used with permission from Macchietto.

Figure 2.2: A walk motion produced by trajectory optimization [29]. Used
with permission from Wang.

verse dynamics to compute torques that help bipedal and single-legged characters

maintain balance while doing various in-place movements, such as the kick motion

illustrated in Figure 2.1.

Trajectory optimization techniques, also known as space-time constraints [39]

are similar to inverse dynamics methods, but they plan an optimal motion over a

larger time horizon. This approach finds an entire motion sequence and torque

sequence using optimization. The produced trajectory is physics plausible because

it is required to satisfy the EOM constraints. The trajectory optimization technique

allows a user to specify a set of additional constraints for the motion, e.g. a certain

pose must be achieved at a certain time. It further allows the specification of an

objective function, e.g. one that rewards the motion for being energy efficient. An

optimization then solves for a motion trajectory that satisfies the constraints while

minimizing the objective. Mordatch et al. [28, 29] use this method to generate

various human motions including walk. The walk motion is shown in Figure 2.2.

The trajectory optimization technique can be seen as a variation of the inverse

dynamics method, with the difference that it plans once for all the steps in the

entire motion. The optimization of an entire motion is typically an offline process.

Online trajectory optimization over a fixed finite horizon, also known as Model

7

Predictive Control (MPC), works in a similar fashion as trajectory optimization.

However, instead of planning the motion once, this method re-plans at each time

step, and only over a shorter time window, typically 0.5-1.5 seconds for motions in-

volving human dynamics. This method lies somewhere between inverse dynamics

methods and trajectory optimization methods. It is a tradeoff between the required

computations and the time span of the motion planning window. It can be used as

an online method but can produce motions slower than realtime. This method is

used by Tassa et al. [32] to synthesize rise-up motions at a rate 7x slower than re-

altime. Al Borno et al. [8] use an offline implementation of this method to develop

a wider range of human motions with simple task-specific objectives.

2.2 Finite State Machine (FSM) Based Controllers
FSM-based controllers compute torques based on control goals, and feed the torques

into a forward dynamics simulator. With the development of forward simulation

engines, FSM-based methods do not require the direct knowledge of equations of

motion [16] and allow interactive control of the motions [24, 42]. FSM based

controllers have been used to produce physics-based character animations over the

last two decades [31, 33]. Variations of FSM based controllers are applied in

robotics [15, 30].

Several components are used for FSM based controllers, such as PD controls

for pose tracking in joint angle space, inverse kinematics for controlling end effec-

tor position in Cartesian space, virtual forces applied via a Jacobian transpose and

foot placement for balance, etc. Coros et al. [12] use PD controls, inverse kinemat-

ics, virtual forces, gravity compensation and inverted pendulum models to create

generalized biped walking controllers for a variety of character morphologies in

various environments (Figure 2.3). These are the fundamental components of this

thesis work.

A considerable amount of work has focused on locomotion skills. Yin et

al. [41] develop robust locomotion skills including walking and running for biped

characters using an FSM-based controller with simple feedback mechanisms. Kwon

et al. [22] use an inverse pendulum model to regulate balance for running steps.

Coros et al. [13] create quadrupedal locomotions using a gait control graph and

8

Figure 2.3: Biped walker stepping over a sequence of obstacles [12]. Used
with permission from van de Panne.

various virtual model control primitives. Specific control goals are allowed for

walking controllers such as speed and direction control [11, 23]. Other work

have focused on different types of non-locomotions. Jain et al. [21] demon-

strate controllers for object dodging and balancing through the use of external sup-

port. Faloutsos et al. [14] develop controllers for various rising up motions such

as prone-to-stand, supine-to-stand, kip-up, etc. Ha et al. [18] develop falling and

landing controllers for a human character.

FSM-based controllers can be refined with offline optimization. Wang et al. [35]

extend the work of [41] and optimize the controller for various objectives includ-

ing energy and style. This creates a more natural walk controller. Geijtenbeek

et al. [17] use offline optimization to produce motions that track motion capture

data. Optimization can also be used to discover new motion styles that are hard to

develop manually. Agrawal et al. [7] used diverse optimization techniques to syn-

thesize a range of motions in the same family but with noticeably different styles.

Our work uses the FSM-based approach. It is closest in spirit to [7, 12, 41].

While most previous work on FSM-based methods focus on a family of closely

related motion controllers, our work produces a wide range of different motions,

including kip-up, walk, sit-to-stand, prone-to-stand.

9

Chapter 3

Motion Primitives

In this chapter we describe the control strategy used in this thesis. It belongs to the

class of finite state machine controls schemes used in [12, 41], i.e., we use phase-

based control scheme to author the motions of physics-based characters. Each

phase carries out a portion of the motion, e.g. the support phase of a walk cycle.

The phase-based control structure is illustrated in Figure 3.1. A phase remains

active until some interesting event has happened, and it then transitions to the next

phase. Scheduled timeouts or new contacts with the environment typically result

in a transition to a new phase.

Within each phase, several motion control primitives can be used in combi-

nation to achieve the desired goal. Our system integrates several motion control

primitives that were demonstrated to work well in [12, 17, 18]. Figure 3.2 gives

an overview of the control structure and motion primitives used within each phase.

The remainder of this chapter will cover all the motion primitives used in this the-

sis as well as the phase transition model. The primitives collectively produce a net

torque for each joint. The torque is given by

τ = τPD + τV F + τGC + τQB (3.1)

where VF represents the desired virtual force, GC represents the gravity compen-

sation force, QB represents the quiescent balance.

10

Figure 3.1: Phase diagram

Figure 3.2: Motion primitives and high level controller structure

3.1 PD Control on Joints
Proportional-derivative (PD) controls are a basic method to track desired joint an-

gle trajectories. At every simulation step, a PD controller computes the torque for

each joint based on the desired joint angle θd , the current joint angle θ and the

joint’s angular velocity θ̇ :

τPD = kp(θd−θ)− kd θ̇ (3.2)

11

Figure 3.3: PD control tracking a child’s angle in world coordinate frame.
The desired angle of the child θdchild in world coordinate frame is con-
verted to the desired local joint angle θd in local coordinate frame.

where kp and kd are proportional gain and derivative gain parameters that govern

the responsiveness and stiffness of the joint motions. We allow for different kp and

kd gains for each joint. Most joints use low-gain PD controllers in order to achieve

compliant motions that are less stiff and therefore more natural.

PD controls are used to track the desired angle of joints in either the local

joint coordinate frame or in the world coordinate frame. In the case of tracking

in the world coordinate frame, a desired angle of the joint’s child or parent can be

specified in the world coordinate frame. This is then converted to a desired angle of

that joint in local coordinate frame, and a joint-local PD control is used to drive the

joint to that angle. An example is shown in Figure 3.3 that tracks the child link’s

angle in world coordinate frame.

In practice, the joint angles do not exactly follow the desired joint angle tra-

jectories because the dynamics of the joint can be affected by the other parts of

the body system. PD controls by themselves also do not take external forces into

account such as gravity. Joints that support significant weight or that support large

contact forces are prone to large errors. In order to alleviate the errors, we need the

help of virtual force and gravity compensation. These “feed-forward” mechanisms

12

will be discussed in the next two sections.

3.2 Virtual Force
Virtual forces allow joints to be abstracted away and instead allow for motions to

be controlled in Cartesian space. They help counter external forces, and can help

in achieving desired end-effector trajectories. The virtual force technique works

by generating a set of joint torques along a chain of links that effectively results

in a desired force on one end of the chain. To apply a virtual force to a body

link, a desired force is specified on that link of application, and one of the links is

selected to serve as the root or “base” of the kinematic chain. Along the chain of

links between the link of application and the base link, torques are automatically

computed for all these joints. The virtual force technique can be used to accelerate

the body, to compensate for gravity, and to achieve given forces on an end effector.

At any given time, a force, F , applied on a given point on a kinematic chain

produces a power, P, given by

P = F> · v

where F> is the transpose of the force, and v is the velocity of the point of appli-

cation. To produce the same power by using internal torques, the internal torques

along the kinematic chain to the base link also has to satisfy

P = τ
> ·ω

where τ and ω are the joint torques and angular velocity along all the joints. The

variables v and ω are furthermore related by the Jacobian matrix:

v = J ·ω

Therefore we have

F> · v = τ
> ·ω

Substituting v with J ·ω we get :

F> · J = τ
>

13

Figure 3.4: Virtual force of on a three-link arm

and equivalently,

τ = J> ·F (3.3)

For the 2-D three link chain illustrated in Figure 3.4, the Jacobian is defined as

following:

J =

[
∂vx/∂ωa ∂vx/∂ωb ∂vx/∂ωc

∂vy/∂ωa ∂vy/∂ωb ∂vy/∂ωc

]
where vx and vy are the horizontal and vertical velocity of the point of interest

and ωa, ωb and ωc are the angular velocities of the three joints. For this specific

example, this can be reduced to

J =

[
ya− yA yb− yA yc− yA

xA− xa xA− xb xA− xc

]

This yields the torque as

τ = J> ·F =

(ya− yA) fvx +(xA− xa) fvy

(yb− yA) fvx +(xA− xb) fvy

(yc− yA) fvx +(xA− xc) fvy

The implementation of virtual forces in our framework allow for the application

14

Figure 3.5: Gravity compensation on physics-based character

of virtual forces on arbitrary chains of our planar character model.

3.3 Gravity Compensation
Gravity compensation (GC) is one application of virtual force. It works by produc-

ing joint torques to help body links cancel the impact of gravity. This allows simple

PD control to achieve more accurate joint angle tracking, and is therefore helpful

in a variety of situations. When using GC on a humanoid character, it is assumed

that one of the foot is firmly planted on ground and that the corresponding foot thus

serves as the base link. A virtual force Fi = −mig is applied to every body link,

bi, as shown in Figure 3.5. The resulting joint torques from these virtual forces are

aggregated for each joint. In the case where two feet are both well planted on the

ground, we choose to distribute the virtual forces arising from upper bodies evenly

to the two base links, i.e. both feet.

In practice, it is sometimes useful to use an approximation when computing

gravity compensation for the support limbs. We can apply a virtual force of −Mg

15

to the CoM of the torso, where M is the total mass of the entire body. This allows

for better PD control over the lower body, and also makes the task of balance easier.

3.4 Quiescent Stance Balance Feedback
This type of feedback helps the character remain statically balanced while standing

on the ground. The mechanism uses a feedback rule to compute a horizontal virtual

force that regulates the CoM position in order to maintain balance. The goal is to

keep the CoM right above the middle of the supporting foot span. The virtual force

is computed by a horizontal PD controller:

f = kp(xd− xcom)− kd ẋcom (3.4)

where xd is the middle point of foot span, xcom is the horizontal projection of the

full body CoM, ẋcom is full body CoM’s velocity and kp and kd are the adjustable

proportional and derivative parameters that have been seen in the PD controllers.

3.5 Inverse Kinematics
Inverse Kinematics (IK) is a method to determine joint angles required to achieve

a desired end effector position in Cartesian coordinates. Certain motions are more

easily controlled in Cartesian space, e.g., reaching a location with the hand. For our

planar humanoid character, IK is made available for the two-link limb structures,

i.e. arms and legs. A user can specify the reaching target of the end effector,

i.e. wrists and ankles, in Cartesian coordinates. The angle of the first joint along

the link will be computed in the world coordinate frame and that of the second

joint will be computed in the local coordinate frame. These two joints are then

tracked by the PD controllers to the computed desired angles in their corresponding

coordinate frames.

There are two solutions for two link planar IK. One of them represents the

case where middle joint bends forward and the other solution represents backward

bending. These are typically referred to as the “elbow up” and “elbow down”

solutions in robotics. Since the elbow joint for a human figure only bends one way,

its IK has a unique solution. The computation of IK for the arms is illustrated in

16

Figure 3.6: Sagittal view of inverse kinematics of two-link arm. Given the
target position of c as input, IK finds the angle θ1 in world frame, θ2 for
joint a and b.

Figure 3.6. The position of the wrist, c, is specified by the user. The position of the

shoulder, a, is obtained at run time from the simulation. The lengths of two links

lab and lbc are predefined in the character specification. Therefore, for the given

two link case, the analytical solution can be easily derived using the cosine law:

l2
bc = l2

ab + l2
bc−2lablaccosα (3.5)

⇒ cosα = (l2
ab + l2

ac− l2
bc)/2lablac (3.6)

The joint angle of the first joint θ1 in world frame is given by

θ1 = acos((cx−ax)/lac)−α (3.7)

Likewise, we can find angle cosβ using the cosine law, and therefore find the

angle β :

cosβ = (l2
ab + l2

ab− l2
ac)/2lablbc (3.8)

17

Lastly θ2 is given by

θ2 = π−β (3.9)

IK for the legs is computed in an analogous fashion.

3.6 Phase Transition Models
All the planar physics-based character motions are authored using a phase-based

finite state machine. Each phase is concerned with a specific task and uses a set

of motion primitives to accomplish that task. Each phase will transition to the

next phase unless it is the final phase of a non-cyclic motion. A phase transition

takes place upon the occurence of a predefined transition event. These events fall

into two categories: timeout events and contact change events. A timeout event

happens whenever a specified duration has elapsed since the start of the phase. A

contact change event happens whenever one of a specified set of links has a change

in contact, i.e. a body link has just established contact or has just lost contact with

its surrounding environment. With these simple transition models, many motions

can be easily divided into distinct phases. In the next chapter we further discuss

specific implementation details.

18

Chapter 4

Simple Controller Language
(SCL) Framework

In this work, we build a simple controller language (SCL) framework that is capa-

ble of loading a motion script at runtime and produce a physics-based motion that

is simulated in realtime. The scripts are written in a SCL, and they are interpreted

by a scripting engine. Once a motion script is interpreted, it is loaded into the

application runtime and is represented as a phase-based motion controller where

each phase consists of the motion primitives described in the previous chapter. The

controller is then applied on a 2D planar humanoid model for dynamics simulation.

The initial state of the simulation can be specified by the animator: a predefined

initial pose and a predefined static environment can be selected together to form

the initial state of the simulation. The physics simulation then produces a motion

in realtime.

The scripting framework allows users to use a text-based language for au-

thoring motions using an expressive and flexible syntax. The language provides

a built-in set of primitives that are mentioned in the previous chapter. With such a

language, our framework opens a window for non-programmers to create physics-

based motions and for animators to share motions with each other. It also poten-

tially shortens the test cycle of motion design by allowing modifying and re-loading

a motion at runtime in a semi-interactive manner.

In this chapter, we will describe the SCL in detail and show some motions

19

Figure 4.1: Character Anatomy. Left-right symmetric structures have only
one-half of the body annotated. The plural name of the symmetrical
structures are given in parentheses.

authored using the SCL including kip-up, sit-to-stand, walk and prone-to-stand.

4.1 Character Definition
The character has predefined link dimensions, masses, joint angle limits and joint

PD parameters that are held fixed across all simulations. A controller author needs

to know the names of the joints and links in order to apply motion primitives to

the intended joints and links using the SCL. The character anatomy is illustrated

in Figure 4.1. The character is a 2D model in the sagittal plane, consisting of 16

rigid links, 15 one-DOF joints, and a total mass of 89.49kg. Each body part is

modelled as a trapezoid with two semi-circular end caps. The simulation neglects

self collisions within the body. The specification of all body parts can be found

in Table 4.1. A joint angle is defined as a child link’s orientation relative to

the orientation of its parent. The head is the root link. For each joint, the parent

link is the one that is proximal to the head. The zero pose is defined as a stiff

straight pose with hands and feet pointing to the left, and head pointing to the

20

Body Part Length (cm) Tip Thickness (cm) Mass (kg)
head 35 26, 22 5.89
neck 2 12, 12 1.1
trunk 50 30, 20 29.27
pelvis 25 24, 27 16.61
arm 32 16, 8 2.79
forearm 32 8.4, 8.4 1.12
hand 17 5, 4 0.55
thigh 50 28, 10 8.35
shank 48 10, 7 4.16
foot 22.6 8, 5.2 1.34

Table 4.1: Body parts specifications taken from Wooten et al. [40]

Body Joint Angle Range (◦) kp (Nm
rad), kd (N·m·s

rad) Max Torque (Nm)
neckTop -30, 90 170, 5 60
neckBottom -30, 30 171, 18 122
waist -40, 90 674, 61 250
shoulder -90, 180 386, 33 180
elbow 0, 160 300, 20 180
wrist -90, 90 156, 11 120
hip -30, 100 500, 70 300
knee -160, 0 600, 70 300
ankle 30, 150 500, 60 300

Table 4.2: Body joints specifications

right. This is illustrated in Figure 4.2. When the character is in the zero pose, the

world orientation of each link as well as each local joint angle is defined to be zero.

The rotation of a link is defined as positive when it turns counter-clockwise. The

rotation of a joint is positive when the its child link rotates in the positive direction.

The kp parameter is set to be positively correlated with the strength of joints and

kd is set to be approximately 0.1kp. One exception is that kp is relatively low for

neckTop in order to avoid motion instabilities for the neck and head for our chosen

simulation time steps. The joint limits, torque limits, and kp kd parameters of each

joint are empirically tuned and they are given in Table 4.2.

21

Figure 4.2: An illustration of the zero pose. In this figure, the head points
to the positive direction of the horizontal axis and limbs point to the
negative direction of the horizontal axis. The zero pose defines the zero
angle for each link in the world coordinate frame as well as the zero
angle for each joint in the local joint coordinate frame. Note that the
zero pose cannot be actually achieved due to the joint limit of the ankles
as defined in Table 4.2.

4.2 Specification of Phases and Phase Transitions
The controller framework reads in controller description that are defined in the

SCL syntax that we will describe in the following two sections. In this section we

focus on the specification of phase and phase transitions.

The controllers have a phase-based structure. A motion and its corresponding

controller consist of several phases. In the introductory example shown in List-

ing 4.1, a two-phase motion is scripted. The first phase attempts to drive the left

shoulder to 180◦, which is followed 2 seconds later by a second phase that mimics

the same behaviour for the right shoulder. Note that the two shoulder joints are

named as “leftShoulder” and “rightShoulder” in the SCL. A full list of joint names

and link names can be found in Figure 4.1.

Listing 4.1: A Simple Motion Script

1 {

2 (left_shoulder_raise)

3 [leftShoulder 180]

4 }

5 after 2

22

6 {

7 (right_shoulder_raise)

8 [rightShoulder 180]

9 }

Each motion phase is specified within a pair of brackets “{ }” as seen in the

example. Within each phase specification, one can define an optional phase name

between “()”, as seen in line 2 and 7. A phase name can be used to describe its

purpose, and can also serve as a unique label that can be referred to later. The

remainder of each phase specification consists of one or more motion primitives.

In Listing 4.1, the two motion primitives are the PD controllers on the left and

right shoulder, which drive the shoulders to 180◦ relative to the torso. The details

for control primitive specifications including PD control will be further described

in the next section.

Every phase must be followed by a transition rule with the exception of the last

phase. The rule states the condition of the transition and is followed by the next

phase that it transitions into. In the above example, the transition rule between the

two phases is a simple time-based rule that deactivates the left shoulder run phase

and activates the right shoulder run phase after 2 seconds spent in the first phase.

In Listing 4.1, the second phase is not followed by another phase, and therefore it

is the last phase. The last phase remains active thereafter.

A transition rule following the last phase makes the motion cyclic. For exam-

ple, in Listing 4.2, the last phase (phase 4) is followed by a transition specified on

line 19 and line 20. This transition is prefixed with a “finally” keyword and fol-

lowed by a special “backto” syntax that refers to a previously defined phase name.

This instructs the motion to transition back to phase 1 after phase 4 is finished.

Therefore, the motion control phases repeat in a cyclic fashion.

In addition to being used to build a cyclic motion, a previously defined phase

name can also be used to define a symmetric phase. On line 17 of Listing 4.2,

phase 4 is designated as a symmetric duplicate of phase 3, using the “(phase

name):(existing phase)” syntax.

Phase transitions fall into two main categories as described in Chapter 3, i.e.

time based and contact based. In addition, the SCL also allows another type of

23

transition using the conjunction of these two main types. A complete list of transi-

tion types are shown in Table 4.3.

Listing 4.2: A Simple Script Illustrating the Transition Models

1 {

2 (phase_1)

3 [shoulders 120]

4 }

5 after 2

6 {

7 (phase_2)

8 [shoulders 0, elbows 0, wrists -40]

9 }

10 when contact hands

11 {

12 (phase_3)

13 [leftElbow 90]

14 }

15 after 2

16 {

17 (phase_4) : (phase_3)

18 }

19 finally after 3

20 backto phase_1

The two main types of transitions are both demonstrated in Listing 4.2. Time

based transitions are used on line 5, 15 and 19. Line 10 specifies a contact-based

transition. It states that phase 2 should transition into phase 3 when the hands

make contact with the environment. The third transition type will be presented

later in the chapter.

24

Transition Type Specification Syntax Comment
Time based after n Transition happens after n sec-

onds
Contact based when contact (changed | es-

tablished | lost)? (any | all)?
body link(s)

Transition happens when any (or
all) of the specified body link(s)
has just changed its contact state.

Contact and Time based and contact based transition
time based transition

Transition happens when both
conditions are satisfied

Table 4.3: Transition types

4.3 Motion Primitive Specifications
A phase can contain zero or more motion primitives. Each motion primitive is

specified in a pair of square brackets “[]”. A motion primitive normally starts with

a keyword that represents its type. There are 6 types of motion primitives. They

are briefly listed in Table 4.4.

PD Controller. Each PD controller primitive specification defines the PD con-

troller for one or more joints and it does not require a keyword. Its syntax is

demonstrated in Listing 4.3. On line 1, PD controllers are applied on three joints

with different target angles. The target angle of each joint moves from its current

angle to the specified target angle.

Listing 4.3: PD control primitive

1 [joint_1 90, joint_2 50, joint_3 40 time: 1.2]

2 [joint_1 90 child, joint_2 50 parent]

At each time step, the actual target angle is linearly interpolated between the two

angles over a duration of “time: 1.2”, i.e. 1.2 seconds. “time” keyword is optional:

when it’s not specified, PD control tracks to the specified target angle instantly.

On line 2, PD controllers are used to track the child and parent links of the two

specified joints respectively in world coordinate frame.

When not explicitly specified, a default PD controller is active on each joint.

The default PD controller tracks the joint to a desired angle that is inherited from

the previous phase or to its starting pose when there is no previous phase. There-

fore, when a phase contains no explicitly specified motion primitives, all the joint

25

Type Keyword Description
PD Controller Not needed Applies a PD control a set of joints
Virtual Force vf Applies a virtual force on a body part
Stance Balance Feedback sb Applies a balance feedback force to the torso
IK ik Computes joint target angles using IK and applies

PD controls on those joints
Relax Joints relax Reduces the torques produced by PD Controller to

make behave more passively
Symmetric primitive symm Duplicate the last motion primitive and apply it on

the symmetric structure

Table 4.4: Motion primitive types

torques are computed from these default PD controllers. The default PD controller

is overridden when the relative joint has a explicit PD controller, or the joint is con-

trolled by the inverse kinematics or the relax primitive as we will describe shortly.

Virtual Force. A virtual force primitive begins with the keyword “vf”. It

specifies a force, a link of application, and the joint that is connected to what is

considered to be the base link for the virtual force. In Listing 4.4, the demonstrated

virtual force primitive applies a force, F = (300N,300N) to body 1, with joint 1

being the first joint from the base link. Figure 4.3 shows the virtual force primitive

with the right forearm specified as body 1 and the left ankle specified as joint 1.

Thus the base link is the left foot.

Listing 4.4: Virtual force primitive

1 [vf (300, 300) on: body_1, by: joint_1]

Quiescent Stance Balance. A quiescent stance balance feedback primitive is

used within a virtual force primitive, and it is denoted by the keyword “sb”. Its

common usage is illustrated in Listing 4.5.

Listing 4.5: Virtual force with stance balance primitive

1 [vf sb(300, 30) on: trunk, by: leftAnkle]

The quiescent stance balance feedback primitive computes a desired virtual force

using Equation 3.4. The parameters kp and kd is chosen to be 300 and 30 respec-

26

Figure 4.3: The virtual force primitive. The left foot is the base link and the
right forearm is the link of application.

tively in Listing 4.5. The desired virtual force is applied to the trunk in order to

have a large impact on the full body CoM. When a foot is chosen as the base link,

the corresponding ankle will be used as the first joint from the base.

Inverse Kinematics. The inverse kinematics primitive begins with the “ik”

keyword. It needs to specify a sequence of target positions for the end effector

positions to reach. In Listing 4.6, the IK primitive instructs the right ankle to

sequentially reach two positions relative to the position in world coordinates that

the left ankle occupied at the beginning of the phase. In our framework, the IK

primitive are designed for two-link chains. Therefore, in Listing 4.6 the base of the

IK chain is the right hip. Similar to PD, the IK primitive tracks the end effector

target locations in a piecewise linear fashion. The intermediate target locations are

assumed to be equally spaced in time. The IK primitive overrides the target angle

of the relevant joints specified by the default PD controllers.

Listing 4.6: Virtual force with stance balance primitive

27

1 [ik (0.25, 0.30), (0.20, -0.05) on: rightAnkle rel:

leftAnkle time: 0.35]

Relax Primitive. The relax primitive sets the target joint angle of PD controller

to its current joint angle at each simulation time step, and scales down the joint

torques produced by the PD controller, using the strength parameter to denote the

scale factor between 0 and 1, as shown in Equation 4.1 and 4.2.

θd = θ (4.1)

τpd = cscale · (kp(θd−θ)− kd θ̇) =−cscale · kd θ̇ (4.2)

where θd is the desired joint angle and is set to the current joint angle θ . This

effectively eliminates the proportional term from the PD controller, leaving only

the scaled derivative term which serves as a damper (Equation 4.2). The syntax of

the relax primitive is shown in Listing 4.7.

Listing 4.7: Virtual force with stance balance primitive

1 [relax joint strength scale]

Symmetric Primitive. The symmetric primitive is used as “[symm]” and it

does not need extra parameters. It is required to follow another primitive, and this

clones the previous primitive to a symmetric counterpart of the body. For example,

using this primitive, a virtual force that affects a chain containing the left leg can

be duplicated to the symmetric chain containing the right leg.

4.4 Motion Design Workflow
In general, authoring a controller requires knowledge of the phases useful for struc-

turing a motion and a qualitative understanding of the physics of the motion. A

motion needs to be divided into a proper sequence of phases. For example, a sit-

to-stand motion can consist of two phases: the first phase shifts the CoM of body

forward, and the second raises the CoM. A well chosen phase structure often sim-

plifies the motion design. It is also important for the author to understand the goal

of each phase. This aids in the incremental design of a motion. A useful motion

28

design strategy is to test all the previous phases and ensure they end in an approxi-

mate state, before designing the next phase. In the previous example of sit-to-stand

motion, before an author designs the second phase, it is important to ensure that the

goal of shifting CoM of body out of the chair is achieved at the end of first phase.

The author can then proceed to the design of the second phase. Knowledge of the

qualitative physics is important as it helps the author to select the suitable motion

primitives to achieve the desired goal of a phase. For example, to gain angular

momentum, one might need to rapidly swing extended arms instead of keeping the

elbows flexed.

Motion design is a trial-and-error process. Guidelines for authoring a motion

can be summarized as follows:

1. define the motion phases, with a clear understanding of what each phase

should accomplish. A reference motion or motion tutorial for the real human

motion can be helpful in achieving this.

2. beginning with the first phase, select a set of primitives that would be useful

in accomplishing the desired goal. Test these primitives and use the simu-

lation results to refine the motion primitive parameters. Test with different

parameters until the desired end state is achieved.

3. select a transition condition for moving to the next phase.

4. Repeat steps 2-3 until the motion is successfully completed.

With practice, a motion can typically be authored in minutes or hours if a good

reference motion is available. In the remainder of the chapter, we will present

motions that are authored using the scripting framework and outline the intuition

behind choosing the respective motion primitives.

4.5 Results
We present a number of motions scripted using the SCL including statically-balanced

motions and highly dynamic and acrobatic motions. The robustness of motion

controllers can largely depend on the nature of the motion. As can be expected,

29

controllers that deal with static-balance tasks are more robust than those dealing

with more dynamic motions. For example, sit-to-stand is more robust than kip-up.

However, we note that the robustness of controllers is not the primary concern of

this framework. Instead, we focus on how to quickly create a successful motion

that looks physically plausible and could be easily reused and adapted by others.

We use JBox2D [4] as the physics simulation engine with a simulation time

step of 0.25ms. The position iterations and velocity iterations per physics steps

are 3 and 8 respectively. Ground contact is modelled in JBox2D using impulsive

forces and unilateral constraints.

4.5.1 Kip-up Motion

In this section we explore the authoring of a kip up motion. In a kip up motion, a

humanoid character makes an acrobatic move from a supine position to a standing

position by propelling the body away from the ground using leg swings and a push

of the hands. It is a highly-dynamic motion with swift momentum change and

contact relocation. It also requires careful balance maintenance during the landing

and rising up phases. The motion that we develop has five phases. The first two

phases prepare for the dynamic leg and arm motion. The third phase does thrust

and the fourth phase performs the landing. The last phase takes care of standing up

while maintaining balance. Figure 4.4 and Figure 4.5 show the motion with these

five phases.

Listing 4.8: Kip up motion script

1 {

2 (roll_back)

3 [shoulders 120, elbows 130, wrists 50 time: 0.3]

4 [hips 80, waist 80, knees -170 time: 0.5]

5 }

6 after 0.6 // The motion will transition to the next phase

after 0.6 seconds

7 {

8 (straighten)

9 [waist 90, hips 50, knees 0 time: 0]

10 [vf (0, 200) on: leftFoot, by: waist]

30

(a) Phase 1: Rollback

(b) Phase 2: Straighten Legs

(c) Phase 3: Propel

Figure 4.4: Kip-up Phases 1-3

11 [symm]

12 }

13 after 0.3

14 {

15 (propel)

16 // thrust with hips and waist

17 [hips 0, waist -20 time: 0]

18 [vf (300, 0) on: leftShank, by: waist]

19 [symm]

20

31

(a) Phase 4: Landing

(b) Phase 5: Standing up

Figure 4.5: Kip-up Phases 4-5

21 // knees and ankles are folded

22 [knees -180 time: 0.45]

23 [ankles 150 time: 0]

24

25 // hands push the ground, relax to turn down pd control

26 [relax shoulders, elbows strength 0.1]

27 [vf (0, -200) on: leftHand, by: leftShoulder]

28 [symm]

29 }

30 when contact all feet

31 {

32 (land)

33 // virtual force to strengthen the legs

34 [vf (-100, -500) on: leftFoot, by: leftKnee]

32

35 [symm]

36 [relax knees, ankles strength 0.4]

37 // rotate the upperbody forward

38 [hips 80, waist 40 time: 0.0]

39 [necks 10 time: 0.3]

40

41 // reduce moment of inertia by folding arms

42 [shoulders 20, elbows 160, wrists 0 time: 0.3]

43 }

44 after 0.6

45 {

46 (stand)

47 [vf sb(1000, 300) on: trunk, by: leftAnkle]

48 [symm]

49 [vf (0, 200) on: trunk, by: leftAnkle]

50 [symm]

51 [knees 0, hips 0, waist 0 time: 1.2]

52 [relax ankles, shoulders, elbows, wrists strength 0.1]

53 [necks 0]

54 }

The script for the entire motion is shown in Listing 4.8. The motion is loosely

based on a kip up tutorial [5]. The following section briefly describes the design

intuition of each phase.

• Rolling back. (line 1-5) The first phase starts from the initial supine po-

sition. At the end of this phase, it is desired that the legs are flexed back

towards the torso and hands curled towards the neck while the shoulders re-

main close to the ground. These are achieved by applying PD controls on

the relevant joints as on line 3 and 4, i.e. waists, hips, knees, shoulders, el-

bows and wrists. This phase is relatively easy to get correct. An important

point to note is that the knees need to bend at a sharp angle to prevent the

upper body from being pivoted upwards by the lower body movement. The

transition from the phase is time based (line 6), and the transition time was

chosen empirically. The intuition for the transition point is that this phase

should end when the back is not too high above the ground and there is some

33

upward momentum for the whole body.

• Straighten up legs. (line 7-12) The goal of the second phase is to gain

upwards momentum. This is done by applying a PD control to straighten up

the legs and point the feet upwards (line 9). An upward virtual force (line 10)

is applied on the foot in order to gain momentum more rapidly. The timeout

is chosen by intuition similar to the previous phase.

• Propelling the body (line 13-29). This phase aims to gain linear and angular

momentum for the whole body. It does so by thrusting the legs away from

the body and down to the ground (line 17-19) in coordination with hands

pushing off the ground using a virtual force (line 26-28). Notice that in order

for the hand push to work well, we “relaxed” the upper limbs (line 26) so that

torques generated by the virtual force dominate the upper limb joints. Knees

and ankles are flexed (line 22-23) in order to prevent unexpected contact with

the ground and to prepare for a better landing where the approaching angle

of the foot with respect to the ground is almost 0.

• Landing. The landing phase starts right after both feet are in contact with

the ground, and the goal is to bring CoM above the support of the feet span

and also to make sure the character ends in a statically balanced crouching

pose. A virtual force (line 34-35) that pushes the feet downwards is needed

to make the knees and ankles strong enough to absorb the landing impact.

The upper body’s moment of inertia is reduced by folding arms (line 42).

The angular momentum gained from the previous phase helps to rotate upper

body forward (line 38-39).

• Standing up. At the beginning of this phase, the CoM of the body has fallen

within the support of the foot span, and the goal is for the character to rise

with feet on the ground. The stance balance feedback primitive is turned

on (line 47-48) to keep the horizontal position of CoM within character’s

supporting polygon given by the span of its feet. Stand-up motion is achieved

by tracking the knees, hips to their zero configuration as on line 51. An

upward virtual force is applied on the torso to approximately compensate

for gravity as on line 49-50. The ankles are “relaxed” (line 52) and thus the

34

rotations of these two joints are dominated by the torques from the balance

virtual force and the constant upward virtual force.

4.5.2 Sit to Stand Motion

In this section, we demonstrate a sit-to-stand motion. The initial state of the motion

sees a character sitting in a chair. The motion scripts consists of two phases. In

the first phase, the character leans its body forward so that the CoM is eventually

above the support region of the feet. In the second phase, the character stands up

in the same way as in the last phase of kip motion. This motion is fairly easy to

author. It can take less than 10 minutes when the user has a basic understanding of

a stand up motion. The motion is illustrated in Figure 4.6.

Listing 4.9: Sit To Stand Script

1 {

2 (lean)

3 [waist 20, hips 120 time: 0.3]

4 }

5 after 0.4

6 {

7 (standup)

8 [vf sb(400, 300) on: trunk, by:leftAnkle]

9 [symm]

10

11 [vf (0, 400) on: trunk, by:leftAnkle]

12 [symm]

13 [knees 0, hips 0, waist 0, necks 0 time: 0.9]

14 [relax ankles, shoulders, elbows, wrists strength 0.1]

15 }

4.5.3 Walk Motion

The walk motion given in Listing 4.10 consists of two symmetric phases. With

our framework, it is possible to author just one phase and then to use symmetry

to define the other phase. Reuse of the phase definition makes it easier to test

35

Figure 4.6: Sit to stand motion sequence

the script because it reduces the chance of subtle human-made errors that comes

from inconsistent parameters of the two symmetric phases. Each phase makes the

transition using the conjunction of a time based and contact based rule. These two

conditions prevent a transition from occurring before the swing foot has left the

ground. Each of the phases is composed of four parts: pose of the upper body,

pose of the swing leg, pose of the stance leg, and virtual forces that assists the

movement. For the upper body poses, on line 5, it tracks the head and trunk’s angle

to 90 degrees, i.e. up-right in world space. Lines 6 and 7 takes care of arm swings

by tracking shoulders and relaxing elbows and wrists to make them more passive.

Line 10 and 11 controls the swing foot. The IK on line 10 instructs left wrist to

reach two sequential target positions relative to right ankle’s starting position at the

beginning of the phase. This affects the joint angles of swing knee and swing hip.

For the stance foot, line 14 uses left hip to track the world orientation of the pelvis,

and it also sets knee to flex. Line 15 “relaxes” the stance ankle from PD controller.

The torque for this ankle will be mainly determined by virtual forces. The virtual

force primitives (lines 18 to 20) contains both vertical and horizontal components,

and therefore help the character to propel itself forward and to compensate for

the gravity. Line 18 does gravity compensation for the swing leg. This helps

the IK mechanism to be more accurate. Although an accurate full-body gravity

compensation will result in a more accurate pose tracking, it is sufficient to apply an

approximate gravity compensation force to the trunk. Line 19 uses the stance knee

as the base joint to partially compensate the gravity for the entire body (600N) and

to propel the body forward (150N). The stance ankle’s torque is critical to control

36

the ground reaction force. Line 20 uses the stance ankle as the base joint to push

swing leg, and it effectively causes the stance foot to obtain a ground reaction force

that has a horizontal component that pushes the body forward, i.e., to the right.

A complete cycle of the walk motion is illustrated in Figure 4.7. The walking

motion is not yet very natural and is included here in order to illustrate how walking

can be authored in our framework. As with other walking simulations, we expect

that the motion could be refined with optimization. In the following chapter, we

describe how motions can be optimized.

Listing 4.10: Walk Motion

1 {

2 (right_swing)

3

4 // upperbody pose

5 [neckTop 90 parent, waist 90 parent]

6 [leftShoulder 30, rightShoulder -25 time: 0.4]

7 [relax elbows, wrists strength 0.05]

8

9 // swing foot

10 [ik (0.25, 0.30), (0.20, -0.05) on: rightAnkle rel:

leftAnkle time: 0.35]

11 [rightAnkle 180 child]

12

13 // stance foot

14 [leftHip 90 parent, leftKnee -30]

15 [relax leftAnkle strength 0.4]

16

17 // virtual forces and gravity compensations

18 [vf (0, 110) on: rightShank, by: rightHip]

19 [vf (150, 400) on: trunk, by: leftKnee]

20 [vf (60, 0) on: leftThigh, by: leftAnkle]

21 }

22 and when contact rightFoot after 0.3

23 {

24 (left_swing) : (right_swing)

25 }

37

(a) Phase 1: right leg swing

(b) Phase 2: left leg swing

Figure 4.7: Walk motion sequence

26 finally and when contact leftFoot after 0.3

27 backto right_swing

4.5.4 Prone to Stand

We also demonstrate a seven-phase prone-to-stand motion in which the character

rises from a prone position and ends in a stand position. The script is shown in

4.11. All the transition rules and motion primitives used in this script have been

reviewed in the previous results. Therefore, we will leave out the details on the

motion authoring. The resulting motion can be seen in Figure 4.8.

Listing 4.11: Prone to Stand

1 {

2 (place_hands)

3 [ik (0.05, 0.15), (0.20, -0.14)

38

4 on: wrists rel: leftHip time: 0.5]

5 [wrists 180 child time: 0.2]

6 }

7 and when contact any hands after 0.2

8 {

9 (shoulder_rise)

10 [waist -40, knees -30 time: 0.6]

11 [relax shoulders, elbows, wrists strength 0.3]

12 [vf (-50, 300) on: trunk, by: leftWrist]

13 [symm]

14 }

15 after 0.8

16 {

17 (hip_move_back)

18 [knees -110, hips 40, waist 80,

19 elbows 60, wrists 180 child time: 0.5]

20 [relax shoulders strength 0.4]

21 [vf (-100, 300) on: trunk, by: leftWrist]

22 [symm]

23 }

24 after 0.6

25 {

26 (push)

27 [waist 90 parent, hips 100 parent, knees -130 time: 0.4]

28 [relax shoulders, elbows strength 0.1]

29 [vf (200, -300) on: leftHand, by: waist]

30 [symm]

31 }

32 after 1.0

33 {

34 (right_foot_relo)

35 [ik (0.10, 0.3), (0.28, -0.15)

36 on: rightAnkle rel: leftAnkle time: 0.5]

37 [vf (0, 500) on: trunk, by: leftKnee]

38 [rightAnkle 180 child time: 0.4]

39 [leftHip 90 parent, waist 90 parent, necks 90 parent

time: 0.0]

39

40 [shoulders 0, necks 0 time: 0.0]

41 [relax shoulders, elbows, wrists strength 0.2]

42 }

43 and when contact rightFoot after 0.5

44 {

45 (left_foot_relo)

46 [vf sb(1000, 800) on: trunk, by: rightAnkle]

47 [vf (0, 800) on: trunk, by: rightAnkle]

48 [rightKnee 0, rightHip 0, waist 0, leftHip 0 time: 1.5]

49 [leftAnkle 180 child time: 0.5]

50 [ik (0.0, -0.08) on:leftAnkle rel: rightAnkle time: 0.5]

51 [relax rightAnkle strength 0.2]

52 [relax shoulders, elbows, wrists strength 0.2]

53 }

54 and when contact leftFoot after 1.0

55 {

56 (rise)

57 [vf sb(400, 400) on: trunk, by: leftAnkle]

58 [symm]

59 [vf (0, 500) on: trunk, by: leftAnkle]

60 [symm]

61 [relax ankles strength 0.2]

62 [relax shoulders, elbows, wrists strength 0.2]

63 [knees 0, hips 0, waist 0, necks 0 time: 1.5]

64 }

40

Figure 4.8: Prone-to-stand motion sequence

41

Chapter 5

Optimization

We have shown that many motions can be authored from the instantiation of sev-

eral simple primitives using the Simple Scripting Language (SCL). However, an

authored motion only exhibits one particular style. It is common that animators

want to create different styles of the same motion. For example, given a kip-up

motion, they may also wish to develop a faster kip-up. This can be achieved by a

parameterized motion controller. Variations of the same motion can be produced

by making appropriate choices for the parameter values. In order to produce a par-

ticular desired variation of a motion, one can define an objective function to model

how well a motion achieves a desired style, and optimize the control parameters

for the given objective function. In this chapter, we develop a parameterization and

optimization framework that allows animators to specify the parameterization of a

scripted motion that is then optimized for a custom defined objective function.

5.1 Problem Definition
We define πx as a motion control policy parameterized by a vector x ∈ RN . The

optimization problem can be defined as minimizing the objective function:

x∗ = argmin
x

J(πx)

The objective function J is defined by the user and its value is observed during

a simulation. The value returned by the objective function can range from a de-

42

sired kinematic property at a particular instance in time, e.g., maximum height of a

human body CoM, to an aggregation of a dynamic property over the course of the

entire simulation e.g., total energy used by the motion.

Given the state of physics world st at time t, the dynamics simulation produces

the world state at the next step t +δ t:

st+δ t = S(st ,δ t,πx)

where st ,st+δ t ∈ S are vectors in a high dimensional space of all plausible states of

the simulated world; δ t is the time of each simulation step. The entire motion of du-

ration T is then defined as the sequence {s0,s1, ...si, ...,sn}, where si = Si(s0,δ t,πx)

and n ·δ t = T . In order to obtain information for each simulation step, an evalua-

tion function is defined according to

f (s), f : S→ Rk

that maps a state to a vector of dimension k. The objective function can then be

rewritten as

J(πx) = aggn
i=0(f (Si(s0,δ t,πx))) (5.1)

where agg is an aggregation function that collects all the evaluated values for all the

simulation steps, aggregates them using a user-defined rule, typically a weighted

summation, and returns a scaler value.

In Equation 5.1, the free variables of optimization are x. The other variables

remain fixed during optimization; δ t = 0.25ms in all simulations; Si is a determin-

istic function representing the dynamic simulation. The remaining components

that need to be defined by a user are:

• s0, the initial state as designed by users using a pre-populated list of poses

and environments. For example, an initial state can be one with the character

standing on ground, lying on ground, sitting on a chair, etc.

• πx is the parameterization of motion that is defined by the user in the motion

script. A user can select the numerical fields in a script and prefix them with

a “@” annotation to make them free optimization variables.

43

• f (s) is a user-defined function that maps the state of the current simulation

step to a desired custom-sized vector. For example, a user can define f (s) to

return the CoM position of the current simulation step.

• agg is also a user-defined function. It aggregates the custom-sized vectors

returned by f (s) for all simulation steps, and returns a scalar value that will

be used by optimization as the objective.

• n is the number of simulation steps needed for a simulation episode, given

by n = T/δ t, where T is the desired duration of simulation. T is set by the

user empirically.

Once all these components are specified by a user, J(πx) can be treated as a

black-box function. An invocation on this function will result in a physics simula-

tion for T seconds. During the simulation certain conditions need to be satisfied in

order for the motion to be feasible, e.g., a kip-up motion needs to successfully end

in a standing position. Feasibility can only be evaluated after a motion is simulated.

It is the user’s responsibility to define f (s) and agg to implement feasibility as a

soft constraints, i.e., J(πx) should return a large penalty value when the motion is

infeasible.

5.2 CMA-ES Optimization
The objective function J(πx) does not have a well-defined gradient or Hessian be-

cause of its unrestricted nature. Therefore, we choose a derivative-free optimiza-

tion algorithm. Recent studies [8, 26, 36] have shown that Covariance Matrix

Adaptation Evolution Strategy (CMA-ES) [3, 20] is an optimization technique

that is well suited for solving non-convex and discontinuous problems. CMA-ES

is a stochastic and derivative-free algorithm. It falls into the family of evolutionary

optimization strategies. In each iteration, new generation of candidate solutions are

generated by variation of its ancestors, i.e. solutions from previous iteration, and

some solutions are selected according to fitnesses, i.e. objective function values,

from the new generation to inform creation of the next generation. This process

repeats until a good solution is found or the number of iterations exceeds a limit.

In CMA-ES, a Gaussian distribution with mean µ , covariance matrix Σ and step

44

Figure 5.1: An illustration of CMA-ES running on a simple 2D problem. The
value of the function is depicted by the white contours with brighter re-
gions representing a better value. The black dots are individual solutions
in a generation and orange dashed boundaries represent the Gaussian
distribution N (µ,σ2Σ). Adapted from Wikipedia [1].

size σ is used to sample every new generation, where the covariance matrix de-

cides the shape of the distribution and the step size decides its magnitude. Upon

the sampling of a new generation, the fitness of each candidate is used to update

the mean, the covariance matrix and the step size. An intuition is that when the fit-

ness increases along one particular direction, the step size becomes larger and the

shape of covariance matrix gets thinner in the direction orthogonal to the increasing

direction, thus accelerating the convergence speed.

5.3 Results
For the CMA-ES algorithm, we use the freely Java implementation [2]. The op-

timization is performed offline. The most expensive operation in the algorithm is

to evaluate the fitness of each sampled solution. Fortunately, performance can be

45

boosted if the evaluation of sampled solutions are done concurrently. After sam-

pling for each generation, the fitness evaluations for each individual candidate can

be made independently from each other. This makes it possible to modify the

CMA-ES algorithm to do parallel evaluation of fitness for all the sampled solu-

tions within one generation. As discussed later, we use a multithreaded multicore

implementation.

5.3.1 Kip-up Motion

We optimize the kip-up motion for a more athletic style, namely, a kip-up mo-

tion in which the character thrusts higher and stays longer in air but ends up in a

standing position more quickly. The motion script that we used is taken from the

kip-up motion from previous chapter, and we modified the script to add parameter-

ization by adding a “@” annotation before every numerical field to make them free

parameters for optimization. This makes for a vector of 50 free parameters.

The goal of the optimization is to minimize an objective J(πx) that is defined

as the weighted sum of five terms:

J(πx) = ∑
i

wiJi(πx) (5.2)

where i ∈ {time,height,airborne,energy,skid, f inal state} is the index of these

different terms. We will describe each term in further details.

The time objective captures the total time used to reach a stand position. Its

evaluation function ftime(s) is given by:

ftime(s) = δ t ·H(yhead−1.8)

where δ t is the simulation time step that can be accessed by the f (s) functions,

H(x) is a step function, yhead is the current height of character’s head, and 1.8

meters is the approximate height of the head when the character is standing up-

right. The aggtime function is a summation of the values { ftime(si)}. Thus Jtime(πx)

returns the total duration for which the character’s head is lower than 1.8 meters.

The height term describes the maximum height reached by the character’s

pelvis during the airborne phase. While we want to maximize the actual height

46

value, the optimization performs a minimization by default. Therefore, we negate

the height value in this objective term, as defined in fheight :

fheight =

−ypelvis if airborne

0 otherwise

where ypelvis is the height of the pelvis. The aggheight function is defined as the min

operation, indicating Jheight returns the height that has the largest absolute value.

The airborne term captures the duration of the airborne phase. Similarly to the

height term, we negate the actual time. Its evaluation function fairborne(s) is given

by:

fairborne =

−δ t if airborne

0 otherwise

The energy term is used to calculate the effort spent during the motion. The

effort is approximated as the sum of τ2
i . We want to minimize the effort defined by

fenergy(s) as the follows:

fenergy = δ t
joints

∑
i

τ
2
i

where τi is the torque of each joint.

The skid term is to penalize the foot sliding behaviour. fskid is defined as:

fskid =

δ t ∑
feet
i |θi−π|2 ·H(|θi−π|− 1

9 π) if foot in contact

0 otherwise

where H(x) is the step function, θi is the orientation of foot in radian, and π is

the foot orientation when it is well planted on ground. It penalizes foot sliding by

introducing a quadratic penalty on a foot that tilts for larger than 20 degrees (1
9 π

rad) when it is in contact with the ground. The aggi function for airborne, energy

and skid terms are all defined as sum operators.

Lastly, the final state term defines the constraint forcing the character to be in a

standing position at the end of motion. It simply returns a very large positive value

if the head position is lower than 1.8 meters at the last simulation step, meaning

47

the character should not fall onto the ground.

We set the weight for each term as the follows: wtime = 1, wheight = 10, wairborne =

10, wenergy =
1

50000 , wskid = 10 and w f inal state = 1. This scales each objective term

to approximately the same magnitude. The height term and the airborne term have

a bit larger weight in an attempt to produce motions with a more easily identified

airborne style. The simulation is set to run for 5 seconds before returning the ob-

jective value. The motion is simulated using JBox2D [4]. The initial state s0 is

chosen to have the character lying on the ground. δ t is set to 0.25ms. The CMA-ES

algorithm samples 19 candidates per generation and optimization runs on a clus-

ter with 20 cores. Each simulation (J(πx)) finishes in about 3 seconds, and one

generation of optimization takes about 4 seconds. It takes around an hour to gener-

ate 1000 iterations. After 1000 iterations the objective function decreased in value

from −0.336 to −13.921. The rise up time is reduced from 2.962s to 2.577s, the

maximum height increases from 0.586m to 1.253m, and the airborne time increases

from 0.170s to 0.846s, yielding a 17% decrease in kip-up time, 114% and 398% of

increase in maximum height and airborne time respectively. The energy term re-

mains the almost the same: 210142.719(Nm)2 v.s. 215812.203(Nm)2 before and

after optimization. However, it is clear that with the same energy, the optimized

motion shown in Figure 5.2 is noticeably more athletic than the original motion as

seen in Figure 4.4 and Figure 4.5.

5.3.2 Prone-to-Stand Motion

We also optimize the prone-to-stand motion for a quicker and more efficient mo-

tion. The objective function takes the same form as in Equation 5.2. We use a

slightly different selection of terms, where i∈{time,energy,contactless,skid, f inal state}.
time, energy and final state are same as in the previous section. We made a change

to the skid term and added a contactless term. For the skid term, we modified

fskid(s) as follows:

fskid =

δ t ∑
feet
i |θi−π|2 ·H(|θi−π|− 1

9 π) if foot in contact and yhead > 1.5m

0 otherwise

48

(a)

(b)

(c)

(d)

Figure 5.2: More athletic kip-up motion achieved after 1000 iterations of op-
timization

49

The only change made to the fskid term is that it now only evaluates the skid term

when the character’s head rises above 1.5m. This ensures that the feet orientations

in the early phases are not accounted into the objective. The contactless term pe-

nalizes the time for which the character has no contact with the ground. It is a

negation of fairborne:

fcontactless =

δ t if character has no contact with ground

0 otherwise

The weight of each term is set to: wtime = 1, wenergy = 1/50000, wcontactless =

10000, wskid = 100. Each simulation runs for 6 seconds in JBox2D. The character

has an initial prone pose on the ground. δ t is set to 0.25ms. The motion con-

troller has 45 free parameters. The CMA-ES algorithms samples 16 candidates per

generation. We use 17 cores to run the optimization. It takes around 40 minutes

to finish 1000 iterations of optimization. The objective function value of the op-

timized motion decreases from 498.5 to 6.1. Consequently, the optimized motion

looks more efficient and more natural than the input motion. Noticeably, the energy

term has decreased from 206414.4(Nm)2 to 83262.1(Nm)2, and the rising time has

decreased from 4.4s to 1.9s. The values of both terms have decreased by around

57%, resulting in a much faster and more efficient motion as seen in Figure 5.3.

50

(a)

(b)

Figure 5.3: More efficient prone-to-stand motion achieved after 1000 itera-
tions of optimization

51

Chapter 6

State-Action Compatibility Model

For many motions, there are often a multitude of actions that can be used to per-

form a given motion task, or a multitude of situations in which we wish to perform

the motion. In this chapter we introduce a framework for modeling the space of all

possible ways that a motion can be achieved within a predefined space of actions.

We call this a space-action compatibility model because it consists of learning an

enclosed hypervolume in the state-action space. This hypervolume will be mod-

elled using a Support Vector Machine (SVM). Any point inside the hypervolume

means that the state (the “situation”) and the action are compatible, i.e., that the

given action applied in the given situation will lead to the successful completion of

the task. The model thus attempts to capture all possible valid actions for a given

situation, and conversely all possible situations (or states) in which a given action

leads to successful motions. As an illustrative example, consider the task of rising

up from a chair. In this task, the state can be described as the dimensions of the

chair, and action can be described as the controller that attempts to perform the

rise-up motion. The state-action compatibility model then maintains a hypervol-

ume that contains compatible points, each point meaning the chair dimension is

compatible with controller, i.e., the controller can perform a successful sit-to-stand

motion from that chair.

Given a ds-dimensional state or situation instance s, s∈Rds , and a da-dimensional

action parameterization a, a ∈ Rda , a state-action point is denoted as: (s,a) and

52

Figure 6.1: Abstract view of state-action compatibility model

compatibility function is then defined as:

J((s,a)) =

1 if s and a are compatible

0 otherwise

which is evaluated through the process of physics simulation.

We propose to learn a corresponding state-action compatibility model:

J′((s,a))≈ J((s,a))

where J′((s,a)) is an approximate model of J((s,a)) but can be evaluated in sig-

nificantly less time.

The concept of state-action compatibility model is illustrated in Figure 6.1. The

process to acquire J′ is defined by two steps:

1. Sampling: given an initial point of compatible state-action (s0,a0), where

J((s0,a0)) = 1, we explore the compatibility and incompatibility regions

53

within the state-action space R(ds+da) by sampling points starting from (s0,a0)

and gradually moving towards more distant regions.

2. Learning: a classification model J′((s,a)) is learned from the sampled points

that can be used to predict compatibility.

Once the classification model J′((s,a)) is acquired, it can be used to perform

different operations. For example, it can be used directly, i.e., given (s,a), it deter-

mines if the they are compatible. Alternatively, it can be used indirectly as part of

a query engine to get compatible actions or states: given s, it returns {ai}, i.e., a set

of actions that are compatible with s; or given a, return {si}, i.e., a set of situations

compatible with a.

The query engine takes as input the desired state s or the desired action a, and

formulates a diverse optimization problem [7] that finds a diverse set of points that

are compatible with the input, i.e., a set of actions {ai} for state input s or a set of

states {si} for action input a.

In the remainder of this chapter, we will go through each step and demonstrate

the results of state-action compatibility for the sit-to-stand motion.

6.1 Sampling
In order to build the state-action compatibility model, we need to generate state-

action data and use this data to learn a classification model. Each of these data

points is a trial of a specific action for a specific state. It is performed by a physics-

based simulation and evaluated by the function J((s,a)) to indicate whether state-

action point is compatible. The sampled data points should ideally cover as much

of the compatible regions as possible. The sampling algorithm should also clearly

model the boundary between compatible and incompatible regions by sampling

points close to the actual boundary.

We develop an iterative algorithm for probabilistically sampling points along

different paths. An abstract view of this method is illustrated in Figure 6.2. Each

sampling path maintains a multivariate Gaussian distribution, N (µ,Σ), i.e. a co-

variance matrix, Σ, and a location point µ , from which all the samples are drawn.

The Gaussian distributions are updated at each iteration using the sampled points.

54

Figure 6.2: Abstract view of sampling algorithm. There are three sampling
paths. The evolution of Gaussian distribution along one sampling path
is illustrated.

The sampling path is loosely defined as the iterative evolution of location points,

{µ :}. Over repeated iterations, we update the Gaussian distribution so that the

location point µ along each sampling path remains in the compatible region, but it

is pushed further away from µ in the other sampling paths. This helps sampling

paths go to different directions and thus makes sure that the algorithm explores dif-

ferent regions that are distant from each other. The covariance matrix Σ is updated

to adjust its shape along the dimensions orthogonal to the direction of the sampling

path. Intuitively, these orthogonal dimensions in the covariance matrix are shaped

wide enough so that points at a certain distance from µ , i.e. incompatible points,

can be sampled with a non-trivial probability, but not so wide that points close to

µ , i.e. compatible points, have too little probability to be sampled.

We use a round-robin CMA algorithm for the purpose of maintaining Gaussian

distributions and sampling points. For a state-action problem with n− 1 dimen-

sions, we use n sampling paths. Each sampling path maintains a CMA algorithm.

55

The n sampling paths all start with the same initial state-action point. For each iter-

ation, CMA of each sampling path samples a new generation of points and updates

the internal Gaussian distribution using these points. This process is repeated until

it reaches a specified number of iterations. All the points sampled using CMA are

kept as training data.

Each path’s CMA optimization attempts to maximize an objective function

which we will define shortly. The objective function is designed with two purposes

in mind: depth, i.e., a path’s location point µ should reach to distant regions, and

breadth, i.e., the covariance matrix Σ should adapt to the orthogonal dimensions of

each path’s direction. Let p = (s,a) be a state-action point. Every sampled point

along the sampling path m is initially assigned an objective value of

di =
n

∑
j 6=m

∣∣pi− pbest j

∣∣+Kmin
j 6=m

∣∣pi− pbest j

∣∣−C · (1− J(pi)) (6.1)

where {pi} are the sampled points within the iteration, pbest j is the point with the

best objective in another sampling path j, and J(p) = J((s,a)) returns 1 if the state-

action point is compatible and 0 otherwise. The first two terms on the right hand

side of Equation 6.1 represents the sum of distances and the minimum distance

from the current sampled point to the best points in other paths. We set K = 5

to reward a large minimum distance. C is set to a very large positive number

to penalize an incompatible point. We can then find the best point pk from this

generation:

pbest = pk , k = argmax
i

di

This can be seen as finding the point with the best depth objective. The objec-

tive value of the non-best points are further updated with both depth and breadth

objectives. We approximate the direction of the current path using the line:

(plast , pbest)

where plast is the point in the last generation that had the best objective or simply

the initial point for the first generation. For every sampled point pi, its orthogo-

nal projection onto the line (plast , pbest) is denoted by ppro ji . The two quantities

56

∣∣pi− ppro ji

∣∣ and
∣∣ppro ji− pbesti

∣∣ are then related to the breadth and depth respec-

tively. We then use the updated objective value ji, written as:

ji =

di if i = k

max(0,di +K2(
∣∣pi− ppro ji

∣∣)− ∣∣ppro ji− pbesti

∣∣2) if i 6= k,J(pi)> 0

−|pi− pbesti | if J(pi) = 0
(6.2)

where K2 is the parameter to reward point in large breadth, and we choose 2 as

its value. The underlying CMA algorithms then iteratively updates its Gaussian

distribution by trying to maximize this objective value.

6.2 Learning
From the sampling stage, we get a set of training data of the form

D =
{
((s,a)i,yi) | (s,a)i ∈ Rds+da , yi ∈ {0,1}

}n

i=1

We use a support vector machine (SVM) with a Gaussian radial basis kernel

to train a classification model that predicts the compatibility of any point in the

state-action space. An SVM finds a set of support vectors among the input data set

that divides the entire space into two regions by maximizing the smallest distance

of a training point to its predicted boundary.

6.3 Querying
Once the classification model J′(s,a) is learned, we can use it to query for actions.

The query problem is defined as follows: given a state s0, and the number of points

n, we want to return {a}n, i.e., n different actions that are likely to be compatible

with the given state.

The algorithm starts by randomly selecting a support vector (sinit ,ainit) from

the learned SVM that is known to lie in a compatible region and sinit is close to s0:
|sinit − s0| < δ . We use sinit as the seed point and optimize (s,a) to minimize the

following objective:

|s− s0|+C((s,a))

57

where C(s,a) is a penalty function that evaluates to positive infinity for incompati-

ble points of state-actions.

The optimization problem returns a point (s0,a0). From this point, we for-

mulate a diversity optimization problemto find a set of n action parameters that

minimize the diversity objective similar to [7]:

D =−
n

∑
i=0

(C(s0,ai)−
n

∑
j=0

(
∣∣ai−a j

∣∣+Kdmin(ai)))

where {ai} denotes the set of n action parameters, C(s,a) is the same penalty func-

tion described earlier. The parameter K rewards a point ai that has a large distance

to the closest neighbour in set {ai}. We use K = 5. A round-robin CMA algorithm

is used to minimize D. One generation of CMA optimization is applied to each of

the n action parameters in turn, before moving on to the next generation of CMA

optimization for each of the action parameters.

6.4 Results
We experiment with the state-action model on a sit-to-stand motion for a planar

human character. The input motion is a modification of the sit-to-stand motion in

the previous motion, with arm movements added in phase 1. The motion script is

given in Listing 6.1:

Listing 6.1: Sit To Stand Script

1 {

2 (lean)

3 [waist @30, hips 120 time: 0.3]

4 [shoulders @20, elbows 40 time: 0.3]

5 }

6 after 0.4

7 {

8 (standup)

9 [vf sb(400, 300) on: trunk, by:leftAnkle]

10 [symm]

11

12 [vf (0, 400) on: trunk, by:leftAnkle]

58

Figure 6.3: State-action parameterization of the sit-to-stand problem. The
state parameter is the height of the chair h, the action parameters are the
target waist angle θwaist , and the target shoulder angles θshoulders.

13 [symm]

14 [knees 0, hips 0, waist 0, necks 0 time: 1.9]

15 [relax ankles, shoulders, elbows, wrists strength 0.1]

16 }

The action parameters are θwaist , i.e., the target waist angle in the “lean” phase,

and θshoulders, i.e., the target shoulder angles in the “lean” phase: x=(θwaist ,θshoulders).

They are parameterized in line 3 and 4 in Listing 6.1, and can be visualized in Fig-

ure 6.3. The state parameter is the height of chair s = (h). We thus have a 3-D

state-action space in which each point is in the form of p = (h,θwaist ,θshoulders).

We limit the sampling range on each dimension: 0.15 < h < 0.75, 0 < θwaist < 90,

and 0 < θshoulders < 180. Every point outside this range is deemed as infeasible.

Sampling starts with the compatible point (0.45,30,20), and keeps n = 4 paths

of CMA. For the purpose of distance measurement, we scaled the state-action

points with the vector (10,1/40,1/40) in order to compensate for the dimensions

that have smaller magnitudes. Each generation of a single CMA direction sam-

ples 7 points, each point requires a simulation of 2.5 physics seconds with 0.25ms

time step, and it takes around 2 seconds to finish simulation. The sampling is done

offline. In 6 hours, 359 iterations are sampled with a total 10052 points, among

59

Figure 6.4: Input motion (s,a) = (0.45,30,20)

which 1323 are incompatible points and 8729 are compatible points.

These 10052 points are used as the training data set for the SVM. We use

libsvm [10] to train the data sets. The slack parameter c is set to 64 and kernel pa-

rameter g is set to 4. We assign compatible points a weight of 1 and incompatible

points a weight of 4, because the numbers of compatible and incompatible points

are not balanced. The training process takes less than 1 s. The 5-fold cross valida-

tion rate is 96.5778%, and in the result model the SVM prediction model consists

of 176 support vectors. The SVM predict operation has complexity of O(N) where

N is the number of support vectors.

The query engine first runs CMA optimization to get the initial action point

ainit , and then run the diverse optimization for 50 iterations. The number of iter-

ation is picked empirically so that it is not too small such that resulting motions

look very similar but not too big that returned points are very close to the boundary

of state-action model. For each query, we set n = 3, i.e. querying for 3 different

actions. We test the query for three given states s = (0.45),s = (0.16),s = (0.65)

respectively.

The input motion uses a chair height of h = 0.45 and it is shown in Figure 6.4.

We use the state action model to query for three motions with the different heights

h = 0.45, h = 0.16 and h = 0.65. Running the three queries requires 831ms in

average for this problem. The result is shown in Figures 6.5, 6.6 and 6.7. The

character is capable of standing from a chair which is significantly lower than the

original chair as shown in Figure 6.6. It also shows the ability to jump out of a

higher chair and finally stands on ground shown in Figure 6.7. The state-action

60

(a) motion 1

(b) motion 2

(c) motion 3

Figure 6.5: Three motions are queried from state-action model with the same
height as the initial chair height, h = 0.45. Motion 1 has a highly flexed
waist; motion 2 does not bend the waist; motion 3 uses hands to push
the chair.

compatibility model does not guarantee all queires can perform actions success-

fully. This is shown in the motion 1 of Figure 6.7.

61

(a) motion 1

(b) motion 2

(c) motion 3

Figure 6.6: Three motions are queried from state-action model with the a dif-
ferent chair height h = 0.16. Motion 1 has a small bend on waist; mo-
tion 2 has a highly flexed waist and pushes the chair; motion 3 also has
a highly flexed waist but pushes the ground.

62

(a) motion 1

(b) motion 2

(c) motion 3

Figure 6.7: Three motions are queried from state-action with the height h =
0.65. The human character’s feet are hanging in the air at the beginning.
Motions 2 and 3 look very similar and motion 1 failed.

63

Chapter 7

Conclusion

We have presented a framework for creating physics-based character animations

using a flexible simple controller language (SCL) that has several useful built-in

motion primitives. The language has a simple syntax and does not require anima-

tor’s expertise in programming. It provides animators with a semi-interactive en-

vironment to debug the motion, thus potentially help designing and tuning physics

motions more efficiently. This also opens a window for sharing of motion con-

trollers and reproducible animation research. We demonstrate several motions pro-

duced using the SCL including kip-up, sit-to-stand, walk and prone-to-stand. An

optimization framework makes it easier to refine and stylize motions. We show

that the optimization tool has automatically produced a more energetic variation of

a kip motion that is produced by an hand-engineered motion script.

To synthesis a wide family of motions given varied environments, we explored

the state-action compatibility model, which is built offline and enables animators

to query online a number of different motions given a changed environment. This

adds to the toolset of physics animators the capability of designing one motion and

generalizing it to various scenarios. Using the state-action compatibility model,

we show various sit-to-stand motion variations that can perform on different chair

heights.

64

7.1 Discussion
When using FSM-based controllers to create physics motions, it is useful to have

a set of control primitives. The primitives that we use in this thesis include PD

control, virtual force, inverse kinematics and simple quiescent stance feedbacks.

In many cases, these primitives can be used qualitatively to create a rich set of

motions. However, it is yet unclear how we can directly arrive at a specific robust

controller for a given motion. For example, for a walk motion, how can we relate a

virtual force’s magnitude to the walk speed? Due to this reason, manual tuning, op-

timization or more complex feedback rules may need to be employed in designing

a motion.

While the existing set of control primitives constitute a powerful set of control

language, it can also be useful to think at a higher level of abstractions. For ex-

ample, virtual force in general can be applied to a character to potentially move

the CoM of the whole body in a desired direction, but it does not yet work well

with a situation where the two stance feet are not colocated. It would be helpful

to have a higher level of abstraction that regulates the exact position of CoM yet

automatically takes care of other constraints such as balance. Another potential

higher level primitive could be one that relocates a stance foot contact position

while maintaining the upper body pose.

7.2 Future Work
The motions produced for this thesis are all planar motions. An immediate future

work direction is to extend all the current motions to 3D characters. This will

require introducing more degrees of freedom for the joint angle space as well as

the Cartesian space. The SCL will likely remain almost the same except a most

noticeable change is that joints will likely need to be specified by quaternions. The

controls strategies will also need to consider lateral balance.

One limitation of this work is that it requires motion authors to tweak control

parameters in order to get a proper motion. This can require a significant amount of

work for complicated motions. A helpful improvement on the system would be to

use online optimization to achieve desired goals of a motion phase. For example,

at the end of kip-up motion’s phase 4, the character requires a large momentum to

65

propel itself off the ground. It is rather difficult and time consuming to manually

find the right parameters to achieve larger momentum. An online optimization tool

can help the author to refine the parameters of this phase, while freeing the author

to start designing the next phase. This makes a motion design easier and quicker.

A trade-off needs to be made between the conciseness of the SCL and its ver-

satility. The more built-in primitives the language provides, the more powerful it

is, but also the less readable it becomes. It currently provides a single feedback

primitive that helps maintain balance while in stance. It is clear that more feed-

back rules will make it easier to create a greater variety of motions. For example,

a built-in feedback rule for foot placement based on an inverse pendulum model

can help the user create walking and running locomotion more easily, but this rule

is very specific to the semantics of a walk, and does not make too much sense to

authors who want to develop rising controllers.

66

Bibliography

[1] CMA-ES. http://en.wikipedia.org/wiki/CMA-ES. → pages iii, viii, 45

[2] CMA-ES source code. https://www.lri.fr/∼hansen/cmaes inmatlab.html. →
pages 45

[3] The CMA evolution strategy. https://www.lri.fr/∼hansen/cmaesintro.html. →
pages iii, 44

[4] jbox2d. http://code.google.com/p/jbox2d/. → pages 30, 48

[5] Tutorial - kip up / kick up. http://www.youtube.com/watch?v=l2F1MtzFw2c.
→ pages 33

[6] Valley of the dogbots of war.
http://hplusmagazine.com/2010/01/15/valley-dogbots-war/. → pages iii

[7] Shailen Agrawal, Shuo Shen, and Michiel van de Panne. Diverse motion
variations for physics-based character animation. In Proceedings of the 12th
ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pages
37–44. ACM, 2013. → pages iii, 9, 54, 58

[8] Mazen Al Borno, Martin de Lasa, and Aaron Hertzmann. Trajectory
optimization for full-body movements with complex contacts. IEEE
Transactions on Visualization and Computer Graphics (TVCG), 2012. →
pages 8, 44

[9] BBC. ’wildcat’ robot put through its paces, 2013.
http://www.bbc.co.uk/news/technology-24429063. → pages 2

[10] Chih-chung Chang and Chih-Jen Lin. Libsvm – a library for support vector
machines. http://www.csie.ntu.edu.tw/∼cjlin/libsvm/. → pages 60

67

http://en.wikipedia.org/wiki/CMA-ES
https://www.lri.fr/~hansen/cmaes_inmatlab.html
https://www.lri.fr/~hansen/cmaesintro.html
http://code.google.com/p/jbox2d/
http://www.youtube.com/watch?v=l2F1MtzFw2c
http://hplusmagazine.com/2010/01/15/valley-dogbots-war/
http://www.bbc.co.uk/news/technology-24429063
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

[11] Stelian Coros, Philippe Beaudoin, and Michiel van de Panne. Robust
task-based control policies for physics-based characters. In ACM
Transactions on Graphics (TOG), volume 28, page 170. ACM, 2009. →
pages 9

[12] Stelian Coros, Philippe Beaudoin, and Michiel van de Panne. Generalized
biped walking control. ACM Transactions on Graphics (TOG), 29(4):130,
2010. → pages vii, 8, 9, 10

[13] Stelian Coros, Andrej Karpathy, Ben Jones, Lionel Reveret, and Michiel Van
De Panne. Locomotion skills for simulated quadrupeds. ACM Transactions
on Graphics (TOG), 30(4):59, 2011. → pages 8

[14] Petros Faloutsos, Michiel Van de Panne, and Demetri Terzopoulos.
Composable controllers for physics-based character animation. In
Proceedings of the 28th annual conference on Computer graphics and
interactive techniques, pages 251–260. ACM, 2001. → pages 9

[15] Christian Gehring, Stelian Coros, Marco Hutter, Michael Bloesch, Markus A
Hoepflinger, and Roland Siegwart. Control of dynamic gaits for a
quadrupedal robot. In IEEE International Conference on Robotics and
Automation (ICRA), 2013. → pages 8

[16] Thomas Geijtenbeek and Nicolas Pronost. Interactive character animation
using simulated physics: A state-of-the-art review. In Computer Graphics
Forum, volume 31, pages 2492–2515. Wiley Online Library, 2012. → pages
6, 8

[17] Thomas Geijtenbeek, Nicolas Pronost, and Frank van der Stappen. Simple
data-driven control for simulated bipeds. In Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, pages
211–219. Eurographics Association, 2012. → pages 9, 10

[18] Sehoon Ha, Yuting Ye, and C Karen Liu. Falling and landing motion control
for character animation. ACM Transactions on Graphics (TOG), 31(6):155,
2012. → pages 9, 10

[19] N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in
evolution strategies. Evolutionary Computation, 9(2):159–195, 2001. →
pages iii

[20] Nikolaus Hansen and Andreas Ostermeier. Completely derandomized
self-adaptation in evolution strategies. Evolutionary computation,
9(2):159–195, 2001. → pages 44

68

[21] Sumit Jain, Yuting Ye, and C Karen Liu. Optimization-based interactive
motion synthesis. ACM Transactions on Graphics (TOG), 28(1):10, 2009.
→ pages 9

[22] Taesoo Kwon and Jessica Hodgins. Control systems for human running
using an inverted pendulum model and a reference motion capture sequence.
In Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, pages 129–138. Eurographics Association, 2010. →
pages 8

[23] Joseph Laszlo, Michiel van de Panne, and Eugene Fiume. Limit cycle
control and its application to the animation of balancing and walking. In
Proceedings of the 23rd annual conference on Computer graphics and
interactive techniques, pages 155–162. ACM, 1996. → pages 9

[24] Joseph Laszlo, Michiel van de Panne, and Eugene Fiume. Interactive control
for physically-based animation. In Proceedings of the 27th annual
conference on Computer graphics and interactive techniques, pages
201–208. ACM Press/Addison-Wesley Publishing Co., 2000. → pages 8

[25] Yoonsang Lee, Sungeun Kim, and Jehee Lee. Data-driven biped control.
ACM Transactions on Graphics (TOG), 29(4):129, 2010. → pages 6

[26] Libin Liu, KangKang Yin, Michiel van de Panne, and Baining Guo. Terrain
runner: control, parameterization, composition, and planning for highly
dynamic motions. ACM Transactions on Graphics (TOG), 31(6):154, 2012.
→ pages 44

[27] Adriano Macchietto, Victor Zordan, and Christian R Shelton. Momentum
control for balance. In ACM Transactions on Graphics (TOG), volume 28,
page 80. ACM, 2009. → pages vii, 6, 7

[28] Igor Mordatch, Emanuel Todorov, and Zoran Popović. Discovery of
complex behaviors through contact-invariant optimization. ACM
Transactions on Graphics (TOG), 31(4):43, 2012. → pages 7

[29] Igor Mordatch, Jack M Wang, Emanuel Todorov, and Vladlen Koltun.
Animating human lower limbs using contact-invariant optimization. ACM
Transactions on Graphics (TOG), 32(6):203, 2013. → pages vii, 7

[30] Jerry Pratt, Chee-Meng Chew, Ann Torres, Peter Dilworth, and Gill Pratt.
Virtual model control: An intuitive approach for bipedal locomotion. The
International Journal of Robotics Research, 20(2):129–143, 2001. → pages
8

69

[31] Marc H Raibert and Jessica K Hodgins. Animation of dynamic legged
locomotion. In ACM SIGGRAPH Computer Graphics, volume 25, pages
349–358. ACM, 1991. → pages 8

[32] Yuval Tassa, Tom Erez, and Emanuel Todorov. Synthesis and stabilization of
complex behaviors through online trajectory optimization. In Intelligent
Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on,
pages 4906–4913. IEEE, 2012. → pages 8

[33] Michiel Van de Panne, Ryan Kim, and Eugene Fiume. Virtual wind-up toys
for animation. In Graphics Interface, pages 208–208. Citeseer, 1994. →
pages 8

[34] Kiril Vidimče, Szu-Po Wang, Jonathan Ragan-Kelley, and Wojciech
Matusik. Openfab: A programmable pipeline for multi-material fabrication.
ACM Transactions on Graphics, 32, July 2013. → pages 3

[35] Jack M Wang, David J Fleet, and Aaron Hertzmann. Optimizing walking
controllers. In ACM Transactions on Graphics (TOG), volume 28, page 168.
ACM, 2009. → pages 9

[36] Jack M Wang, Samuel R Hamner, Scott L Delp, and Vladlen Koltun.
Optimizing locomotion controllers using biologically-based actuators and
objectives. ACM Transactions on Graphics (TOG), 31(4):25, 2012. → pages
44

[37] Wikipedia. Bigdog, 2013. http://en.wikipedia.org/wiki/BigDog. → pages 2

[38] Wikipedia. Renderman, 2013. http://en.wikipedia.org/wiki/RenderMan. →
pages 3

[39] Andrew Witkin and Michael Kass. Spacetime constraints. In ACM Siggraph
Computer Graphics, volume 22, pages 159–168. ACM, 1988. → pages 7

[40] Wayne L Wooten and Jessica K Hodgins. Animation of human diving. In
Computer Graphics Forum, volume 15, pages 3–13. Wiley Online Library,
1996. → pages vi, 21

[41] KangKang Yin, Kevin Loken, and Michiel van de Panne. Simbicon: Simple
biped locomotion control. In ACM Transactions on Graphics (TOG),
volume 26, page 105. ACM, 2007. → pages vii, 3, 8, 9, 10

[42] Peng Zhao and Michiel van de Panne. User interfaces for interactive control
of physics-based 3d characters. In Proceedings of the 2005 symposium on
Interactive 3D graphics and games, pages 87–94. ACM, 2005. → pages 8

70

http://en.wikipedia.org/wiki/BigDog
http://en.wikipedia.org/wiki/RenderMan

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgments
	1 Introduction
	1.1 Goals
	1.2 Contributions
	1.3 Overview

	2 Related Work
	2.1 Inverse Dynamics Based Methods
	2.2 Finite State Machine (FSM) Based Controllers

	3 Motion Primitives
	3.1 PD Control on Joints
	3.2 Virtual Force
	3.3 Gravity Compensation
	3.4 Quiescent Stance Balance Feedback
	3.5 Inverse Kinematics
	3.6 Phase Transition Models

	4 Simple Controller Language (SCL) Framework
	4.1 Character Definition
	4.2 Specification of Phases and Phase Transitions
	4.3 Motion Primitive Specifications
	4.4 Motion Design Workflow
	4.5 Results
	4.5.1 Kip-up Motion
	4.5.2 Sit to Stand Motion
	4.5.3 Walk Motion
	4.5.4 Prone to Stand

	5 Optimization
	5.1 Problem Definition
	5.2 CMA-ES Optimization
	5.3 Results
	5.3.1 Kip-up Motion
	5.3.2 Prone-to-Stand Motion

	6 State-Action Compatibility Model
	6.1 Sampling
	6.2 Learning
	6.3 Querying
	6.4 Results

	7 Conclusion
	7.1 Discussion
	7.2 Future Work

	Bibliography

