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Abstract	  

This study explores graduate students’ mathematical sense making through non-routine problems. 

I consider visualization, gesture and affect as integral cognitive aspects in the solution processes 

of participants. To analyze them, I introduce a suitable model, a think-aloud protocol coupled 

with meta-cognitive prompts. The study gives details of the solving of given non-routine 

problems by participants. It allows focusing on the relationship between visualization and gesture 

in conjunction with affective states in the process of sense making when solving non-routine 

problems in the absence of pre-determined mathematical procedures or algorithms. Visual 

imagery, gesture and particularly affective issues played a role in the solving processes of 

graduate students. As such these resources are seen as major ingredients in mathematics teaching 

and learning. 
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Chapter	  1:	  Introduction	  

1.1.	  Introduction	  

Mathematics is essentially the science of patterns (Resnik, 1981). It therefore follows that 

solutions to mathematical problems often express patterns. The process of exploring, 

understanding and expressing patterns whether formal or informal can be difficult and 

challenging. It requires focus, patience, resilience, creativity, and intuition - in essence, cognitive 

effort by the participant. One component in the process of thinking mathematically is sense 

making. Sense making can be considered as the cognitive process by which learners develop 

understanding of a concept by connecting it with existing knowledge (NCTM, 2009, p. 4). But 

how exactly does one make sense of an abstract mathematical idea so as to successfully solve a 

given problem? The process of making sense of an abstract mathematical idea and understanding 

it deeply depends a lot on the mathematical ability of an individual. But what exactly is 

mathematical ability? What is the nature of mathematical thinking?  These questions are not easy 

to conceptualize and quantify. We may ask more fundamental questions such: What is the nature 

of mathematical ideas? What are they and how do humans think about them? I began 

contemplating about these questions and I found myself asking more focused questions such as: 

What cognitive factors are central to the process of sense making? How do learners make sense 

when solving a problem in the absence of predetermined and systematic algorithms or 

procedures? What does this growth of mathematical understanding and development look like? If 

insight into these questions can be obtained then researchers and educators can further explore, 

build and appreciate the richness of learners’ sense-making abilities; but where to begin? I choose 

to start with my own teaching experience. After all, it is from personal experience that the 

problematic of this research is rooted - my teaching experience and personal interest. 

1.2.	  Positionality	  of	  the	  Researcher	  

As an undergraduate student of mathematics I enjoyed and welcomed the challenge of solving 

math problems. In fact our lecturers emphasized the idea that the more math problems you 

solved, the more mathematically proficient you’d become. For me, I simply enjoyed the thrill of 

discovering, experiencing and making sense of patterns. This is what made me good at math. 
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More importantly, I had a deep desire to discover the reason and make sense for myself why a 

particular algorithm or proof worked. But I never quite understood this cognitive process - the 

process of coming to make sense of a given mathematical idea or pattern. This notion of sense 

making is what delivers those ‘Aha! Moments’ (Radford, 2009; Liljedahl, 2005) when one finally 

discovers the intricate details governing a mathematical idea or pattern. Through this process of 

sense making learners are able to create meaning for themselves and establish conceptual 

understanding (Liljedahl, 2005). But how does this process work? As one solves mathematical 

problems one often seldom, if ever, questions this cognitive process.  

It wasn’t till I took up a teaching position at the secondary level that I began to ponder more 

about what it meant to experience mathematics and create meaning for oneself by reasoning and 

making sense of the mathematics. After all, I was entrusted with the responsibility of ensuring 

that my students learn mathematics with understanding. As a teacher, I tried to emphasize and 

instill the desire to explore and probe a problem as deeply as possible. But this was never an easy 

task. As a teacher from Belize, I was constrained in this capacity. I had a syllabus and a 

workbook to complete. Most of the school year was dedicated to preparing students for the 

Caribbean Regional Exams (this exam is a measure of a schools’ mathematics competency) that 

was the end goal. Essentially, given the limited time, teachers were forced to teach to the test. 

Teachers became focused on training students to be good test takers by developing test-taking 

skills even if it meant that conceptual understanding would suffer.  

Yet my quest remains, to have students experience the enjoyment of exploring mathematical 

patterns using their own sense making abilities. There were few classroom instances where my 

students’ thinking did intrigue me. These few classroom moments stimulated by non-routine 

problems made me realize that mathematical thinking and the process of sense making is diverse. 

These types of problems allowed me to observe some unique problem solving solutions. Of 

particular interest to me was visual thinking (i.e. the ability to think in terms of pictures) and the 

various visual methods (drawings, sketches, visual depictions of patterns) used to gain insight and 

successfully attain a non-standard solution. This mode of thinking also expressed ingenious ways 

of expressing complex patterns in very creative, elegant and schematic forms. Of course this 

wasn’t always the case. But when used appropriately, these visual methods had the potential of 
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capturing the essence of a pattern. I was fascinated by this approach to solving - I simply wanted 

to know more about the role of visualization in pattern exploration and expression. 

After two years of teaching, I got the opportunity to pursue further studies. Graduate studies 

provided me the opportunity to study this topic more closely. Initially I considered exploring 

visualization in Geometry, as this is one area in mathematics where visualization is readily seen. 

However the more I read the more I realized that, as Giardina (2000) puts it, “to discuss the role 

of visualization in mathematics means to discuss [its] role in [relation] to other [cognitive] 

aspects that are central in mathematical activity” (p. 30). In other words, if I was going to explore 

the role of visualization in sense making I had to consider this cognitive process within the 

context of mathematical thinking, which brings into play other cognitive resources. In fact, as we 

shall see later on, the process of visualization does not exist as an isolated form of mathematical 

thinking ability but relies on other cognitive resources (speech, gesture, affect) central to the 

process of reasoning and sense making. Over time my research goal shifted from exploring 

visualization as an isolated thought process in problem solving to exploring the cognitive 

resources associated with sense making of which visualization is one central aspect. My focus 

gradually shifted to exploring participants’ sense making processes through non-routine 

problems. 

1.3.	  Statement	  of	  Problem:	  Issue	  

Teaching and learning mathematics for understanding are not easy activities. One reason is that 

mathematical notions are often treated as abstract objects subjected to rules of logic (Sfard, 

1991). “Being capable of somehow ‘seeing’ these invisible objects appears to be an essential 

component of mathematical ability; lack of this capacity may be one of the major reasons because 

of which mathematics appears practically impermeable to so many well-formed minds” (Sfard, 

1991, p. 3). Yet, characterizing mathematical understanding “in a way which highlights its 

growth, and identifying pedagogical acts which sponsor it, however, represent continuing 

problems” (Pirie & Kieren, 1994, p.165). The difficulty lies in the fact that mathematical thinking 

is a complex phenomenon involving many cognitive resources which themselves are not easy to 

conceptualize and operationalize.  
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Take for example making sense of a mathematical concept by thinking visually. Today most 

mathematicians value ‘visual’ thinking in their area of work and frequently emphasize its 

importance (Woolner, 2004). Most argue that students should work to develop this aspect within 

their own thinking. However, this belief has not gone unchallenged in mathematics education 

research. This perception is undermined by findings that point to a paradox between successful 

visualizing mathematicians and unsuccessful visualizing pupils. ‘Visualizers’, or visual thinkers, 

are not necessarily the most “successful performers in mathematics” (Woolner, 2004, p.450). 

Eisenberg and Dreyfus (1991), for example, claim that students rarely exploit visual approaches 

and are reluctant to visualize in making sense of mathematics. In addition, Presmeg’s (1997a) 

study shows that most mathematical difficulties encountered by ‘visualizers’ relate in one way or 

another to problems with generalization. Presmeg’s (1997a, 1992) findings show that some 

visualizers have difficulty using visual imagery to construct/generate more general mathematical 

ideas. For example learners who thought in vivid concrete detail (i.e. a static picture in the mind) 

often had difficulty using their imagery to generalize in contrast to those who used pattern 

imagery (pure relationships stripped of concrete details that could be moved or transformed) 

(Presmeg, 1992, p. 602). Pattern imagery was a strong source of generalization for the learner 

who used it in Presmeg’s study.  

Now why is this the case? I argue that studies on visual thinking haven’t factored into the 

equation other cognitive resources and affective states (e.g. present moment mindedness, letting 

go) that may enable or constrain the process of sense making. Visual thinking has, for the most 

part, been studied as an isolated cognitive ability where the focus has been on apprehending the 

processes of constructing and using imagery to solve problems. The role of visual thinking in 

sense making needs to be studied within a theoretical framework of mathematical thinking taking 

into account other cognitive resources (for example gesture and affect) essential to sense making. 

As Edwards (2009) argues “[...] mathematical thinking, is embodied at multiple levels: through 

imagery, bodily motion and gesture [...]” (p.128). Thus it is important to consider those aspects of 

thinking (visualization, gesture, affect) that may enable or constrain a learner’s solution 

processes. Any theoretical model describing these aspects in thinking would need to be supported 

by empirical data derived from analyses of participants’ thinking. 
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It is important to consider that sense making is very much a personal cognitive process often 

laden with affect (Goldin, 2000; Presmeg, 1997a). This is one aspect of sense making that is often 

overlooked in mathematics problem solving research. Studies need to account for the personal 

and individual affective states associated with making sense, which may enable or constrain the 

mathematical solution processes of an individual (Presmeg, 1997a; Wheatley, 1997). For 

example, consider a student who dislikes mathematics. A past negative event or a series of 

negative events has made an impact on him/her as a learner. He/she may feel afraid or anxious at 

the thought of having to endure a class in mathematics where the goal is to solve. This affective 

state coupled with the fact that many school practices continue to emphasize rote memory work 

of fixed algorithms and procedures to solve (Schoenfeld, 1992) may constrain or downplay the 

learner’s sense making abilities and the cognitive resources (visualization, gesture etc.) associated 

with it. On the other hand we can find another student who enjoys solving math problems and 

isn’t afraid to tackle challenging ones. This student enjoys math and is able to use his/her own 

sense making abilities with success. Such students are not difficult to locate in a classroom 

(Liljedahl, 2005). As a researcher, this scenario piqued my interest. I wanted to explore the 

process of sense making in the context of non-routine problems that cannot be solved by a known 

algorithm. What cognitive resources would participants evoke in the absence of pre-determined 

algorithms, procedures or mathematical technique(s) to make sense when solving a math 

problem? Would they visualize? Would they gesture? What affective states would they bring to 

bear? How would these resources impact the process of sense making? This led me to the 

following research questions that are central to this study. 

1.4.	  My	  Research	  Questions	  

(a) What role do visualization, gesture and affect play in supporting mathematical reasoning 

and sense making? 

(b) How do these resources enable or constrain the process of sense making in problem 

solving in the absence of pre-determined algorithms?  
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	  Chapter	  2:	  Literature	  Review	  	  	  	  	  

Mathematical thinking, or mathematics cognition, is “[...] a complex phenomenon, which 

involves many different cognitive resources” (Giardino, 2000, p. 29). 

In this chapter, I will discuss literature related to the process of sense making in mathematical 

thinking. The discussion will be devoted to developing an account of the nature of sense making 

and the cognitive resources (visualization, gesture and affect) learners may bring to bear during 

this process. This section will be selective and illustrative with discussions and examples 

centered on the process of sense making. 

The content is classified into three main parts. First, I’ll attempt to frame mathematical thinking 

and sense making theoretically. In this section I’ll review the theoretical model of mathematical 

thinking by Pirie & Kieren (1994). I made a reasoned choice in selecting this model - it treats the 

act “of generalizing and formalizing to be recursively connected to less sophisticated 

understandings, and not simply the product of acts of abstraction” (Martin, 2008, p. 64). It took 

into account my conjecture of sense making as a process connected to less formal/algorithmic 

forms of knowing where visualization is a central aspect. This model suited what I needed to 

frame the role of visualization in sense making.  

To discuss visualization in relation to sense making, I draw insight from Lakoff & Núñez (2000) 

and Johnson’s (1987) notion of image schemata. Since the focus of this study is on exploring the 

process of sense making and the cognitive resources associated with it, I devote the second part to 

a discussion of speech and gesture and aspects of affect (‘letting go’ and ‘present moment 

mindedness’) that learners evoked while making sense. In the final part, I situate my study within 

the field of mathematical thinking and problem solving. 

2.1.	  Mathematical	  Thinking	  and	  Sense	  Making	  

An important goal of mathematics education is to understand the thinking involved in doing and 

learning mathematics (Núñez, Edwards & Matos, 1999, p. 45). 

Mathematical thinking is an elusive, broad and complex phenomenon making it difficult to 

define. There is the Platonic view of mathematics as a science of abstract entities. Davis and 

Hersh (1981) muse “the typical working mathematician is a Platonist on weekdays and a 
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formalist on Sundays” (p. 321). This Platonic viewpoint holds that mathematics is objective, 

universal, and not a product of human sense experience situated in context. Platonists 

characterize mathematical thought strictly as a mental activity where mathematical objects, 

patterns and relations can only be discovered, new connections made and structured through logic 

and reason alone (Resnik, 1981). It’s assumed that mathematical “thinking is a pure mental 

activity - something immaterial, independent of the body, occurring in the head” (Radford, 2009, 

p. 111). On the other hand, there is the constructivist perspective that argues that mathematical 

activity is not only mental and mediated by the manipulation of formal written symbols, rather it 

is embodied, situated and mediated, “in a genuine sense, by actions, gestures and other types of 

signs” (Radford, 2009, p. 112). This alternative perspective states that rather “than positing a 

passive observer taking in a pre-determined reality, [this paradigm holds] that [mathematics] is 

constructed by the observer, based on non-arbitrary culturally determined forms of sense-making 

which are ultimately grounded in bodily experiences” (Núñez, Edwards & Matos, 1999, pg. 49).  

Mathematicians often view mathematics with Platonic and formalist lenses (Davis & Hersh, 

1981). But there is no way of knowing whether mathematical ‘truths’ do exist independent of the 

human mind-body system. It is more of a philosophical question to ask: Would mathematical 

objects or truths exist even if humans didn’t? Such a question would lie in the realm of the 

metaphysics. What we could ask for the purpose of mathematics education is: What are the key 

cognitive aspects of mathematical thought? From these viewpoints of mathematical thinking lie 

two important aspects – reasoning and sense making. 

2.1.1.	  What	  are	  Reasoning	  and	  Sense	  Making?	  

Reasoning in mathematics is the process of using axioms, definitions or stated assumptions to 

logically deduce conclusions (Resnik, 1981). Reasoning plays a fundamental role in mathematics 

and is understood to encompass formal and informal deduction. Sense making is defined as 

developing understanding of a new mathematical concept by connecting it with existing 

knowledge or previous experience (NCTM, 2009). Note, “practice, reasoning and sense making 

are intertwined across the continuum from informal observations to formal deductions, […], 

despite the common perception that identifies sense making with the informal end of the 

continuum and reasoning, especially proof, with the more formal end” (NCTM, 2009, p. 04). I 

adopt this perspective that reasoning and sense making are not mutually exclusive processes but 
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are closely interrelated. Sense making is an integral aspect of the overall process of mathematical 

reasoning. It is this aspect of thinking that allows learners to experience mathematics, 

establishing meaning and understanding for themselves by actively reasoning and making sense 

of what is happening within the mathematics. But what cognitive resources enable or constrain 

this process? 

In this literature review I’ll explore the cognitive mechanisms of visualization, gesture, and affect 

as cognitive resources in the process of making sense. I choose to focus on these three aspects in 

thinking as “[...] mathematical thinking, is embodied at multiple levels: through imagery, bodily 

motion and gesture [...]” (Edwards, 2009, p.128). I consider the act of sense making within the 

context of mathematical thinking. To do this, I’ll use Pirie and Kieren’s (1994) model of 

mathematical reasoning as a framework. 

2.1.2.	  A	  Model	  of	  Mathematical	  Thinking	  

There has been a wide variety of approaches attempting to capture the essence of the 

mathematical thinking (Pirie & Kieren, 1994). Consider the Concrete and Formal operational 

stages in Piaget’s (1977) theory of cognitive development. At the concrete stage, learners 

(between the ages of seven and eleven) think logically but are concrete in their thinking. Learners 

are able to perform operations on mathematical objects but not entirely without concrete 

references or informal understandings. As learners grow older they develop abstract thought and 

are able to think logically in their mind. In other words, by a certain age, learners develop the 

capacity to perform logical deduction with little to no reliance on concrete or informal references. 

Piaget’s (1977) model characterizes mathematical reasoning as a gradual linear process 

composed of stages or levels. Others have similarly characterized mathematical reasoning based 

on various polarized categories, for example: concrete and symbolic (Dreyfus, 1991), relational 

and instrumental (Skemp, 1976), and intuitive and formal (Fischbein, 1994).  

However I found these perspectives to be limiting in that they segregate mathematical thinking 

into two distinct domains and exclude the process of sense making that learners evoke while 

thinking, specifically that interplay between concrete and formal abstract thought (NCTM, 2009). 

I initially based this assertion on my own experience of practicing mathematics and observations 

of students’ thinking. I then discovered that Pirie & Kieren (1994) had theorized and modeled 
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this aspect of thinking which they termed ‘folding back’ (I’ll elaborate in the next section). I 

adopt the perspective that mathematical thinking involves individual cognitive abilities to create 

meaning when making sense of the mathematics.  

These perspectives provide limited account of the process of sense making in thinking. 

Mathematical thinking needs to be viewed as a complex interplay of cognitive resources and not 

characterized solely as a composition of mutually exclusive categories. I adopted a model that 

would capture mathematical thinking as a non-linear process taking into account the interplay 

between concrete and abstract thought as a recursive process in constructing understandings. This 

criterion brought my search to Pirie and Kieren’s (1994) model which describes the growth of 

mathematical thinking as a “whole, dynamic, leveled but non-linear, transcendently recursive 

process” (p.166). This model took into account my conjecture of sense making as an integral 

aspect of mathematical thinking.  

Pirie and Kieren’s (1994) theory and model of mathematical thinking is an “established and 

recognized theoretical perspective on the nature of mathematical understanding” (Martin, 2008, 

p. 64). Researchers (see for example, Davis & Simmt, 2003; Martin, 2008; Calvert, Zack & 

Mura, 2001) have used this model in their work. After reviewing other theoretical perspectives of 

mathematical thinking (e.g. Piaget, 1977; Dreyfus, 1991; Skemp, 1976) I made a reasoned choice 

in selecting this model. Despite its shortcomings, specifically the undeveloped notion of ‘folding 

back’, and limited understanding of how and why it occurred, this model emphasizes more 

localized ways of mathematical thinking (intuitive-ideas, concrete-representations) with 

visualization as a central aspect. The model treats the act “of generalizing and formalizing to be 

recursively connected to less sophisticated understandings, and not simply the product of acts of 

abstraction” (Martin, 2008, p. 64). This model mapped key aspects of sense making – it is a 

process that is connected to less formal/algorithmic forms of understandings. It is a process that 

involves use of imagery to develop understanding of patterns, ideas or concepts even when 

thinking formally. This model suited what I needed to frame the role of visualization in sense 

making. 

I will take a few moments to review some of the interesting features of this model. The figure 

below captures Pirie and Kieren’s (1994) model visually. I will be making reference to it in this 

section. 
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Figure 1: Pirie and Kieren's model of mathematical thinking (Pirie & Kieren, 1994) 

The above figure illustrates one theory of mathematical thinking through eight embedded rings. 

Each inner ring is considered a different level or activity of knowing which give rise to 

successive outer levels of advance understandings. A unique feature, and a clear advantage of this 

model, is that each preceding level becomes embedded within the succeeding ones. As such, 

these forms of knowing are not treated as mutually exclusive categories but rather components of 

a dynamic process. According to Pirie & Kieren (1994), mathematical thinking starts off at the 

innermost level called primitive knowing. This level does not represent low-level mathematics, 

but rather an individual’s initial understanding. It is what the teacher assumes the student can do 

and should be seen as the starting point of understanding (p.170). At this level “one cannot ever 

know what [the learner’s] primitive knowledge is in full” (Pirie & Kieren, 1994, p.170). It is used 

simply to denote a learner’s pre-knowledge, whatever the nature of this knowledge may be. It 

certainly would have been worthwhile for the authors to theorize about the nature of these 

primitive understandings. Do all learners possess equal constructs? Are these understandings 

unique and/or arbitrary? While this level describes the initial point of thinking, it limits insight 

into what learners come to rely on as a premise for reasoning and sense making. Later I will 

provide an account about the nature of this level of Primitive Knowing.  
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The second ring or level is what the authors refer to as image-making and represent an 

individual’s ability to construct mental representations of mathematical objects, concepts or 

relations. The authors explain that at this level, learners use primitive knowing to construct 

suitable images for use in the third level image-having. These images form the base of 

understanding that learners fall back on and even modify as they move up the other levels with 

understanding. At the third level, image-having, learners now poses a suitable mental image or 

model that they can now use to abstract. This level, as Pirie and Kieren (1994) explain, marks the 

threshold of a learner’s ability to abstract (p.170).  The learner now possesses a suitable mental 

construct of a given concept that frees him/her from the need to rely on physical references, such 

as manipulatives. The third level leads into the fourth called property noticing. At this level, a 

learner is now capable of mentally manipulating images or aspects of his/her image to construct 

relevant mathematical properties by forming new connections and relations. In other words, the 

learner uses his/her mental image as a base from which to connect and make new relations, i.e. 

make sense. This is quite an interesting take as it highlights the growth of thinking by visual 

means. However, if at a certain point in their mathematical development children no longer 

require the use of manipulatives to handle, say, the mechanics of arithmetic or fractions, it is 

important to understand how exactly learners come to ‘internalize’ these properties and develop 

mental constructs for use in abstracting. How do learners come to develop these suitable mental 

models of, say, fraction mechanics? What is the nature of these mental constructs? What are they 

and how exactly are they constructed during the process of image making? The authors make no 

theoretical claim as to the nature of these mental models that learners come to possess. It is 

important to address the nature of these images and their impact in enabling or constraining the 

process of sense making. 

I found myself wanting to know more about the process of image making and image having and 

how these lead up to the ability to notice and generate relevant mathematical properties and 

relations (i.e. make sense) without relying heavily on physical or concrete references. What 

cognitive resources do learners come to rely on here? In addition, what cognitive mechanism(s) 

allow learners to move back and forth between levels? The transition between these levels is not 

made explicit. How exactly do these levels evolve and iteratively change giving rise to the other 
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outer levels of understandings? Filling in these gaps certainly would make this model more 

robust.  

Now the strengths of this model are its built-in features that are worth mentioning: (1) ‘Don’t 

need boundaries’ and (2) ‘Folding-back’. The former represents thresholds at which a learner is 

able to abstract “without the need to mentally or physically reference specific images” (p.173). 

Take for example subsets. Once the learner possesses a deep intuitive feel for this concept, the 

extension of this idea becomes possible without having to heavily reference an image.  The more 

crucial feature is that of folding back – a ‘return-to’ activity whereby a learner is capable of 

falling back to a preceding inner level in order to reconstruct and extend an initial, insufficient 

understanding in the process of making sense. This allows for the “recursive reconstruction” of 

knowledge upon return to the outer levels, because the knowledge, upon folding back, would 

have been influenced and shaped by the outer levels (p.173). Hence the authors’ use of the term 

‘recursive process’. So if a learner is confused or uncertain of a given understanding he/she has 

the ability to fall back onto more concrete understandings to help reshape his/her thinking. This 

back and forth movement between the abstract and concrete is quite interesting as it shows that 

learners do make use of concrete knowledge even when abstracting. I like to think of these 

features as the recursive process of noticing and connecting new relations based on previous 

understanding which is the essence of sense making. But what cognitive mechanisms enable or 

constrain this process?  

The way Pirie and Kieren theorize and model the growth of mathematical understanding based on 

case study observations of students engaged in mathematical activity shows that mathematical 

thinking is a non-linear recursive process. However, the model doesn’t make explicitly clear the 

cognitive mechanism involved when learners transition from primitive knowing to formalizing. 

The transition between primitive knowing, image making, image having and property noticing are 

quite interesting in that it reveals the initial growth of understanding from a primitive intuitive 

sense of knowing to an abstract form when making sense via the use of images. Although this 

aspect of visualization is integrated into the Pirie-Kieren model, the process remains essentially 

undeveloped and unelaborated in their work. There was a lack of substantial examples and a 

limited understanding of when, how and why it occurred and its relationship to subsequent levels 

of knowing. Not much is said about the nature of these images, what they are, how learners 
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construct and used them, or how they enable or constrain learners’ understandings during sense 

making. Similarly when abstracting and formalizing mathematical ideas further along, Property 

Noticing and Formalizing, what cognitive mechanism or vehicle allows for that back and forth 

movement between these levels?  

To help fill some of the gaps in Pirie and Kieren’s (1994) model, I draw insight from Lakoff and 

Núñez’s (2000) theory of embodied cognition to help explain what I like to refer to as Primitive 

Knowing of spatial relations. I theorize that learners use these relations as background knowledge 

in reasoning and sense making. In addition, I explore the notion of conceptual metaphors as 

another cognitive mechanism by which humans are able to conceptualize abstract concepts in 

concrete terms. This will be the focus of the next section.  

2.1.3.	  Sense	  Making:	  A	  Perspective	  from	  the	  Theory	  of	  Embodied	  Cognition.	  

[...] It appears that cognitive structure of advance mathematics makes use of the kind of 
conceptual apparatus that is the stuff of ordinary everyday thought such as image 
schemas, […], conceptual blends, and conceptual metaphor. (Núñez, 2000, p. 6) 
 

According to Johnson (1987) and Lakoff & Núñez (2000) in their respective books: Philosophy 

in the Flesh and Where Mathematics Comes From, mathematical ideas are grounded in bodily 

experiences and shaped by the physical neural system of the human brain (Lakoff & Núñez, 

p.346). More specifically, “a great many cognitive mechanisms that are not specifically 

mathematical are used to characterize mathematical ideas” (Lakoff & Núñez, 2000, p.28). These 

everyday cognitive mechanisms are: image schema and conceptual metaphors. Image schemata, 

as used in this paper, are mental schematic structures that organize our physical experiences of 

spatial relations at a level that is more general and abstract (Johnson, 1987; Núñez et. al. 1999). 

For example the container schema, balance schema, center-periphery schema, part-whole 

schema are all “pre-conceptual structures, which arise, or are grounded in, human recurrent body 

movements through space, perceptual interactions and ways of manipulating objects” (p.01).  

In conjunction, conceptual metaphors allow “human beings to map experiential structure from 

the ‘imagistic’ realms of sensory-motor experience (concrete) to non-imagistic (abstract) ones” 

(Johnson, 1987 in Grady, 2005, p.2). Lakoff & Núñez (2000) refer to the process of metaphorical 

thought as a “cross-domain mapping mechanism” (p. 6) that allows for the conceptual extension 

of bodily experiences into formal abstract concepts.  
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These two unconscious cognitive mechanisms are what characterize everyday ordinary ideas and 

are what learners come to rely upon when making sense. This theory provides an alternative and 

more fundamental view about the nature of mathematical ideas, how one thinks and make sense 

in contrast to the view that mathematical reasoning is strictly the mental manipulation of symbols 

based on rules to deduce universal truths or conclusions. It highlights “that individual concept 

(understanding and) construction involves the formation of image schemata and metaphors” 

(Rinvold, 2007, p. 178). This is one of the main reasons I selected this theoretical viewpoint; it 

provides deeper insight into the nature of sense making by grounding the construction of 

concepts in shared universal physical experiences as opposed to strict mental math.  

 Taking this embodied perspective, I theorize that the intuitive understandings of spatial relations 

form part of the innermost level, Primitive Knowing, in Pirie and Kieren’s (1994) model. By 

drawing insight from Lakoff and Núñez’s (2000) theory of image schemata, I’ll explain how our 

shared biology and fundamental bodily experiences give rise to shared intuitive understandings of 

spatial relations – the premise from which other abstract relations are rooted. 

2.1.4.	  Image-Schemata.	  

To illustrate what image schemata mean for sense making, consider the following mathematical 

notation A ⊂ B which means set A is a subset of set B. But what exactly does this concept mean 

intuitively? A novice learner aiming to develop profound understanding may not be able to do so 

without some intuitive ‘feel’ of the notion when making sense of its meaning. This approach to 

learning is important because developing and having physical intuition of a concept is important 

for sense making and mathematical understanding. In fact, history shows that some of the great 

scientific breakthroughs were arrived at confidently by sheer intuitive ‘feel’. For example, 

Einstein’s intuitive insight of relativity came when he visualized himself riding on a beam of light 

or Archimedes in Syracuse discovering the laws of buoyancy while in his bathtub.  

Now the origins of the notion of sets according to Johnson (1987), as with many mathematical 

ideas, is rooted in a universal felt bodily experience, in this case the physiological experience of 

being contained or enclosed by physical barriers.  To further explain, imagine yourself sitting 

inside a room that is contained inside a larger one or picture an empty container contained inside 

another. Johnson refers to this internalized embodied physiological experience as the container 
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schema. Johnson (1987) and Lakoff & Núñez (2000) explain that this physiological experience, 

structured as an image schema, serves as an intuitive repertoire in sense making and in the 

conceptualization of other mathematical ideas.  

Since the notion of subsets depicts a spatial relation, the relation of ‘in’ and ‘out’. The human 

mind is able to structure this spatial relation as an image schema as illustrated below. 

 
 
 

 
 

 
 
 

Figure 2: A ⊂ B 

This schema is what Johnson (1987) calls the container schema and forms the basis from which 

new spatial relations such as: If A ⊂ B and B ⊂ C then A ⊂ C is made possible. Below is a 

schematic illustration of this new relation, which makes sense: 

 
 
 
 
 
 
 
 

Figure 3: A ⊂ B ⊂ C 

Taking another example, circles and points though considered abstract entities have been argued 

to be pictorial-mental schemata that humans construct by virtue of physical interaction within a 

spatial-physical world. This is made possible because the human visual system is intimately tied 

to the sensory motor system as one moves though space (Lakoff and Núñez, 2000) i.e. “image 

schemata are kinesthetic […]” (Lakoff and Núñez, 2000, p.34). However, the mechanism that 

leads to the conscious construction of image schemata by the individual is not made explicit by 

Lakoff & Núñez (2000) or Johnson (1987). If humans are able to internalize physical experiences 

and mentally structure them as schemata for use in mathematical reasoning and sense making, 

how are these schemas created, used and manifested in the process of sense making? This process 
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may very well be unique and vary from one individual to another and any theoretical model of 

this process would need to account for individual cognitive ability.  

I began to wonder about the cognitive ability at play here. Based on my observations of students’ 

thinking, I suspect that proficient students, who are able to construct rich understandings of 

mathematical concepts, combine and utilize both visual and analytic ways of thinking. I 

conjecture that visualization is a key component of sense making. It is one cognitive mechanism 

by which image-schemata are effectively used in mathematical reasoning. Through my empirical 

study I tested this conjecture. One of my aims was to explore the visual-spatial component of 

intuitive sense making for mathematical understanding. I’ll now attempt to examine the role of 

visualization and explain how this aspect of sense making helps shape understandings of spatial 

relations in primitive knowing, image making and image having in Pirie and Kieren’s model. 

2.1.5.	  Defining	  the	  Process	  of	  Visualization.	  

Review of the literature in this field indicates that there is no precise definition of the term 

Visualization. Neither researchers nor educators have an agreement about the terminology used in 

the field. For example, the terms: visual processing, visual imagery, imagery processing, spatial 

reasoning (including spatial skills and spatial abilities) and visual intuition are sometimes used 

interchangeably and other times take on different meanings. So for this review, it is necessary to 

clarify how the term visualization is used. First, consider Piaget and Inhelder’s (1971) definition: 

“when a person creates a spatial arrangement there is a visual image in the person’s mind, 

guiding this creation” (Presmeg 2006, p. 206). Pirie and Kieren refer to this stage as Image 

Having (Level 3 in their model). In the same vein, Presmeg (2006) establishes the following 

broader definition: “visualization is taken to include processes of constructing and transforming 

both visual mental imagery and all of the inscriptions of a spatial nature that may be implicated in 

doing mathematics” (p. 206). In other words, visualization is a mental process – the ability to 

reason or make sense of concepts in terms of images.  I adopt Presmeg’s (2006) definition as it 

suited my study on the basis of what I was able to observe from my participants. I also prefer to 

use the term visual intuition. More importantly, in this thesis, visualization will be treated as a 

cognitive process involving processes of constructing and transforming mental images that can be 

manifested through gestures, words (inscribed or spoken) or inscriptions (symbols, 
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drawings/sketches) when making sense of mathematical ideas. Let us take a closer look at 

visualization and image schemata and its role in sense making. 

2.1.6.	  Visualization	  and	  Image-Schemata.	  

Image schemata depict spatial relations in the form of mental imagery. As discussed before, 

Johnson (1987) explains that image schemata are schematic structures “that organize our mental 

representations (of spatial relations) at a level more general and abstract […]” (p.23, 24). 

Visualization is the more general cognitive process of constructing and transforming mental 

images that may be implicated in mathematical reasoning. Through the process of visualization 

an image schema can be combined with one or more to form new spatial relations (i.e. by 

forming new connections and relations from existing schemas). This ability is a powerful 

cognitive resource tool in the process of sense making as sense making involves creating new 

knowledge from existing ones. For example, Presmeg (1992) refers to pattern imagery (a 

cognitive process) as a type of imagery in which pure relationships are depicted in a spatial-

scheme (Presmeg, 1992, p. 602). That is, images that get constructed as geometric patterns, 

patterns that are stripped of unnecessary concrete vivid details. Now the nature of these image 

schemata and how someone’s mind pictures or sees them may vary from one individual to 

another and would certainly worthwhile to research. 

To summarize, image-schemata are abstract representations of shared bodily experiences of 

spatial perceptions. Through visual and analytic reasoning, we are able to connect and from new 

relations from these schemata. For example the logical statement: If A ⊂ B and B ⊂ C then A ⊂ C 

based on basic premise of the container schema. How does the act of embodiment support the 

geometric-schematic patterning power of visualization in such a way that it lays down 

appropriate intuitions for analytical reasoning? Schematic imagery is an important ability to 

develop, as mathematics is the science of patterns (Rensik, 1981). I define embodiment as a 

means of cultivating visual intuition through spatial-kinesthetic experiences to aid pattern 

imagery. Visualization is thus one cognitive mechanism that may be activated in the process of 

sense making. Another mechanism through which the human mind is able to connect new ideas 

from existing ones is metaphorical thought. 
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2.1.7.	  Sense	  Making:	  Conceptual	  Metaphors.	  

“By allowing us to project beyond our basic-level experience, conceptual metaphor 
makes possible science, philosophy, and all other forms of abstract theoretical reasoning 
[including mathematical ideas]” (Johnson 1987, p. 556). 
 

In linguistics, a metaphor is the link we naturally make between two objects – usually something 

concrete (source domain) with something abstract (target domain) (Johnson, 1987; Sweetser, 

1998; Turner & Fauconnier, 1995). In mathematics there are numerous metaphors. For example, 

we have the “numbers are points” metaphor that link numbers in arithmetic with points in 

geometry. This metaphor forms the basis of the number line and led to the birth of analytic 

geometry. These conceptual metaphors, as they are called, allow us to extend, better understand, 

think about and make sense of ideas by allowing us to map characteristics or properties of one 

domain onto another (Fauconnier & Turner, 2008). In the case of sense making, pointing out 

conceptual metaphors or blends of metaphors allows us to make better sense of abstract 

mathematical ideas from concrete ones. 

Take for example the idea of the empty set. The familiar yet not so intuitive formal definition ∅ 

⊂ A, which is taken to mean: Given any set A, there is a unique set containing no members called 

the empty set ∅ which is a subset of A. Now, why is the ‘empty’ set, which contains no elements 

or members a subset of all sets? Why is this mathematical statement true? And why is it unique? 

Within the culture of those who practice mathematics professionally, the answer to these 

questions often follows from axioms, definitions and rules of logic. Yet, this approach to 

reasoning does not necessarily constitute genuine understanding for most. The formal definition 

of an empty set often makes little sense to most people. What makes the creation of this not so 

intuitive idea possible and why does it make sense? According to Lakoff & Núñez (2000), 

Sweetser (1998) and Turner & Fauconnier (1995), to understand why requires an analysis of the 

conceptual metaphors and blends that logically lead up to it. It is a cognitive process that involves 

linking ideas through metaphors (Sweetser, 1998). This cognitive mechanism often operates at an 

unconscious level making it difficult to study. However, linguistic science does offer specific 

techniques – Mathematical Idea Analysis (Lakoff & Núñez 2000; Núñez, 2000) to study this 

process. But that is beyond this paper. The point to be made here is that abstract mathematical 

ideas are, for the most part, constructed through a cognitive process that involves mapping, 

connecting, and relating concepts and ideas in order to generate new ones by means of conceptual 
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metaphors (Fauconnier & Turner, 2008). Lakoff and Núñez (2000) in their theory of conceptual 

metaphors call this process metaphorical mapping. I conjecture that this mechanism is the 

missing gap in Pirie and Kieren’s (1994) model of abstract reasoning. 

Metaphorical mapping is a linguistic cognitive mechanism by which the human brain is able to 

extend primitive, intuitive mathematical ideas to advanced abstract concepts. Going back to our 

previous example of the container schema metaphor, the human mind is able to reference and use 

this spatial relation between objects (i.e. an object inside another object) as an intuitive basis 

when making sense about the notion of a set. Given this basic understanding (source domain), the 

idea of a set can then be further extended to construct new relations by logical reasoning, such as 

the empty set, using conceptual metaphors and/or blends. I find this idea to be a very interesting 

aspect in the process of sense making because it helps explain how metaphors “[...] ground our 

understandings of mathematics in terms of everyday (sense making) experience” (Lakoff & 

Núñez, 2000, p.10). For example when we use the container schema metaphor or treat number as 

points on the number line, we’re mapping an embodied concept from one domain onto another. 

In this regard, “conceptual metaphors and blends permit the use of sensorimotor inference for 

abstract conceptualization and reasoning. This is the mechanism by which abstract reason is 

embodied” (Johnson, 1987, p. 556). 

This cognitive process, I theorize, is the missing piece of the puzzle to help explain the 

mechanism by which one is able to extend intuitive notions into formal ideas in Pirie and 

Kieren’s (1994) model when abstracting and finding new relation based on concrete 

understandings. Again, referencing the concept A⊂ B derived from the container schema 

metaphor, this metaphor is the basic premise used to establish the formal definition of an empty 

set. This metaphor along with blends is the link between concrete ideas and general formal ones. 

To summarize, metaphorical thought is the mechanism that allows mathematical ideas to be 

extended, formalize and generalized from concrete ones. It is a “cross-domain mapping 

mechanism” (p. 6) that allows for the conceptual extension of bodily experiences into formal 

abstract concepts (Lakoff & Núñez, 2000, p.6). 

If so, then metaphors manifest through speech offer a window to understanding individual 

mathematical thinking and sense making. I wonder whether the ability to think metaphorically 
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combined with the ability to think visually aids the process of sense making. How do metaphors 

expressed through speech and the use of image-schemata in visualization help support the process 

of sense making? What role do these play and how are they manifest in the process of sense 

making and reasoning? These are certainly worthwhile questions to consider for further research. 

The argument has been made that mathematical reasoning, “is not only mediated by written 

symbols, but [...] also meditated, in a genuine sense, by actions, gesture (and speech) and other 

types of signs” (Radford, 2009, p.112). According to this viewpoint, mathematical thinking does 

not occur solely in the head but through a sophisticated coordination of body, mind, symbols and 

tools. In the case of metaphors, these are used in everyday language and expressed through 

speech and gesture and other means. Therefore to fully appreciate what it means to engage in 

sense making, one must look to those cognitive aspects that make such activity meaningful, 

fruitful and possible. Visualization is one of those cognitive aspects discussed already. I will now 

briefly look at speech, gesture and affect in the next two sections. 

2.2.	  Speech	  and	  Gesture	  

The promotion of research into the role of gesture and mathematical reasoning, especially in 

building an establishing meaning, is in particular associated with names such as Alibali (2009), 

Goldin-Meadow and Singer (1999, 2003), Sabena (2008), McNeill (1992, 2000), Radford (2009), 

Nemirovsky and Ferrera (2009), Arzarello, Paola, Robutti and Sabena (2009), and Edwards 

(2009).  

This section takes a look at the relation between gesture and talk in the constructing, manifesting 

and establishing mathematical understanding. For this thesis, I take and slightly add to Sabena’s 

(2008) working definition of gestures suitable to mathematical activity. Gesture includes all those 

movements of hands and arms [or other body parts] that subjects [...] perform during their 

mathematical activities [this includes sense making] and which are not a significant part of any 

other action (i.e. writing, using a tool, ...) (p. 21). Of course this act includes the use of talk. The 

act of gesturing according to McNeill (1992), e.g. hand/arm movements, first start off from a 

position of rest, move away from this position (hand/arms usually move away from the speaker) 

and then return to rest. During the movement, there is a central part called the stroke or peak 
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where meaning is generally expressed. The space, usually a frontal plane, where this movement 

takes place is called the gesture space.  

One important finding is that gestures are inherently linked to speech; they are complementary 

sides of the same coin (Sabena, 2008). Goldin-Meadow and Singer (2003) show that “when 

children explain their answers to a problem, they convey their thoughts not only in speech but 

also in the gestures that accompany that speech” (p. 509). The act of speech and gesture do not 

act independently during this process (McNeill, 1992). Speech and gesture are one system 

influencing each other in the process of sense making and meaning-making. Gesture not only 

reflects a child’s understanding but also can play a role in shaping that understanding (Goldin-

Meadow, 2003). 

However, the synthesis of meaning and sense making through the use of talk and gesture should 

not be seen as linear but rather as a complex interplay. These processes are intimately related, 

“they are semantically and pragmatically co-expressive; they are essentially synchronous in time 

and meaning [...]” (Sabena, 2008, p. 23). In other words, they cannot be separated from one 

another and as such should be studied as one co-expressive system in sense making. McNeill 

suggests that through gestures, “people unwittingly display their inner thoughts and ways of 

understandings” (McNeill, 1992, p. 12). According to this approach, gesture and speech can be 

seen as a kind of window to access people’s thinking – how they connect ideas and make sense 

(Alibali, 2005; Goldin-Meadow & Singer, 1999; 2003). Both acts serve as a medium through 

which to express ideas and thoughts as well as to make sense in the process of thinking. 

Therefore gesture and talk are essential cognitive aspects of the process of sense making in 

mathematical activity. The perspective that I’m advocating here is that talk and gesture are also 

linked to use of visual imagery and affective states of mind in the process of sense making.     

2.3.	  Affect	  and	  Sense	  Making	  

In addition to the previously discussed cognitive resources for mathematical thinking, affect has 

“generally been seen as ‘other’ than mathematical thinking, not just a part of it” (Zan, Brown, 

Evans & Hannula, 2006, p. 113). In addition to understanding certain cognitive aspects 

(visualization, speech and gesture) in the process of sense making, affect is one important area 

that requires exploration. This is important as certain affective issues (e.g. fearing failure) may 
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enable or constrain the sense making process of individuals. I’ll briefly discuss the status of affect 

in mathematics education research here. 

Emotion, attitudes, opinions, beliefs, interest, self-esteem, motivation, feelings, mood are only 

some of the words often used loosely and interchangeably to denote affect in mathematics 

education research (Leder & Forgasz, 2006; Liljedahl, 2005; Tobias, 1991; Mcleod, 1992). There 

is no set definition. What can be stated is that whatever above aspect is used and studied, as affect 

seems to encompass a wide range of concepts (Mcleod, 1992), none “can be observed directly; 

each needs to be inferred from behavior, speech or responses to specifically designed instruments 

(Leder & Forgasz, 2006, p. 404). 

Most measuring instruments used to study these variables frequently take the form of surveys, 

questionnaires and scales. Responses are gathered and then assigned numerical scores to measure 

students’ attitudes, beliefs and emotional responses on a continuum with positive responses being 

assigned higher scores (Leder & Forgasz, 2006, Mcleod, 1992). However this quantitative 

method limits reliability of results as assigning a numerical value to a subject’s affect has a 

tendency to standardize and dehumanize subjects’ ‘felt’ experience. Numbers are limited in their 

capacity to fully capture emotion as a phenomenon. Therefore qualitative methods (interviews 

and observations) are more appropriate in this aspect. Especially if the focus is on studying 

affectivity in sense making from the perspective of subjects, one aspect that is often overlooked 

in mathematics problem solving. Therefore for this study I aim to closely examine affective 

issue(s) or aspects that may enable or constrain the sense making process of individuals through 

analysis of participants’ behaviors and responses/discussions as they solve none-standard 

problems. 

In reading Leder and Forgasz (2006) and Zan et. al. (2006) comprehensive review entitled Affect 

and Mathematics Education, and Affect in Mathematics Education respectively, I found it 

interesting that the subject continues to elude researchers. The challenge it seems stems from the 

fact that the term affect isn’t clearly defined or operationalized; perhaps this is because of its 

complexity and multidimensional nature. I argue that researchers need to be able to draw insight 

from fields such as social cognition, neuropsychology, performance science, psychology, etc. 

when studying specific aspects of human affect and its role in sense making. Not having a 

generalized definition or a working model of affect and its role in sense making could explain 
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why the relationship between affect and the teaching and learning of mathematics continues to 

remain elusive even to this day. As Leder and Forgasz  (2006) point out, it is difficult to find 

consistent findings across studies on affect and sense making (p. 416). Nonetheless, taking a 

qualitative approach to examining specific aspects of affect in problem solving can be 

informative with added insight from fields in cognitive science. 

In the previous sections of this paper I attempted to offer a framework on the nature of sense 

making as a complex phenomenon that brings into play different cognitive resources – use of 

image-schemata, metaphors in speech, use of gesture in thinking and individual affective states. 

If the process of sense making through problem solving is to be explored, then studies need to, at 

the very minimum, take these points into consideration. 

2.4.	  On	  the	  Status	  of	  Problem	  Solving	  and	  Sense	  Making	  

Today much of school mathematics, from elementary to graduate level, consists of giving 

definite, polished procedures to solve problems leaving little room for self-discovery, questioning 

or extension of ideas by reasoning and making sense of what is happening within the 

mathematics (Schoenfeld, 1992; Verschaffel, Greer, & de Corte, 2000). Teaching practice on 

problem solving has focused primarily on word problems of the type often emphasized in 

textbooks, tests, exams and other contemporary forms of knowledge assessment (Lyn D, Richard 

& Thomas, 2008; Borasi, 1986; Verschaffel, et. al., 2000). These types of problems frequently 

characterize mathematical activity as the act of applying knowledge of predetermined algorithms 

or procedures where the end goal is supplying the ‘right’ answer (Verschaffel et. al., 2000). From 

my own experience of college level math, lecturers present a concept, show one or two examples 

of how to apply a particular mathematical technique, then give a list of problems to solve while 

hoping students develop profound understanding. Not much attention is given to the ‘process’ of 

sense making from the participant’s mathematical point of view; rather the emphasis is on the end 

product i.e. supplying the right answer. 

Along this same vein, Schoenfeld’s (1992) points out:  

The impression given by this set of [mathematical] exercises, and the thousands like 

it that students work in school, is that there is one right way to solve the given set of 

problems - the method provided by the text or instructor. [...] students learn that 
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answers and methods to problems will be provided to them, the students are not 

expected to figure out the methods themselves (p. 343). 

This is often the perspective students adopt, the perspective that there is a fixed method or rule to 

follow in solving a given problem. Consequently most students come to regard mathematics as 

the act (i.e. puzzle-like task) of applying rules and formulas to solve (Verschaffel et. al., 2000). 

This of course does not constitute understanding (Skemp, 1976). Students need to experience 

mathematics and make meaning for themselves by reasoning and making sense of what is 

happening within the mathematics (NCTM, 2009). Perhaps it is time to revisit the notion of what 

it means to be engaged in mathematics and what it means to make sense by paying close attention 

to participants’ sense making abilities. 

 Most studies relate sense making to the process of creating new knowledge from existing ones 

by forming relations and connections. Yet very few studies have taken into account the role of 

visualization, speech and gesture (a co-expressive system) and affective states in the process of 

sense making. Most focus on categorizing and describing heuristics rather than well defined 

processes. As such these heuristics or strategies possess descriptive rather than prescriptive power 

making attempts to teach students, for example Polya-style heuristics, generally unsuccessful 

(Schoenfeld, 1992). Studies on the role of visualization, gesture and affect as resources that may 

enable or constrain the process of sense making from the viewpoint of participants as they 

actively engage in solving non-routine problems in the absence of fixed algorithms are limited. 

Using Google Scholar, I was able to locate one study by Presmeg and Balderas - Cañas (2001) 

that looked specifically at the role of visualization, gesture and affect in mathematical thinking. 

However, this study focused primarily on analyzing participants’ solution processes to standard 

problems rather than an exploratory approach to solving non-routine problems and examining the 

role of image schema, talk and gesture therein. How do these resources support the process of 

sense making in the absence of pre-determined mathematical algorithms or procedures? What 

role do these play and how are they manifested? It is this gap that this research aims to fill. I 

therefore ask: 

(a) What role do visualization, gesture & speech, and affect play in supporting mathematical 

reasoning and sense making?  
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(b) How do these resources aid the process of sense making in problem solving in the absence 

of pre-determined algorithms? 

A piece of research aimed at exploring participants’ sense making as they attempt to solve non-

routine problems in the absence of fixed formulas or algorithms could bring new insight about the 

role of visualization, speech and gesture, and affective states in sense making. In order to do this I 

draw on Pirie and Kieren’s (1994) model of mathematical understanding as a framework in 

which to situate these cognitive resources for sense making. In addition I utilized a think-aloud 

protocol (Ericsson & Simon, 1993) coupled with meta-cognitive prompts (Anderson, Nashon & 

Thomas, 2009) in order to get participants to verbalize and discuss their thinking while solving. 

The next chapter will focus on the design of this study. 
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Chapter	  3:	  Methodology	  

This chapter is divided into four main parts. First I explain why the choice of a qualitative 

approach. In second part, I describe the context of the research. Third, I discuss the research 

design followed by the procedure and methods used. In the final section I explain how the 

research data was analyzed. 

3.1.	  A	  Qualitative	  Research	  Approach	  

The purpose of this research was to investigate the following overarching questions: (a) what role 

do visualization, gesture and affect play in supporting mathematical reasoning and sense making? 

(b) How do these resources enable or constrain the process of sense making in problem solving in 

the absence of pre-determined algorithms? 

The goal of this research was to investigate the presence, role, and constraints of visualization, 

gesture and affective states in the sense making processes of participants as they solved non-

routine problems. The study sought to examine closely how aspects of visualization, speech and 

gestures in conjunction with affective mental states may enable or constrain participants’ sense 

making. One of my initial challenges was figuring how to investigate this aspect of mathematical 

thinking. What approach, procedure and methods would allow me to gain access to learners’ 

thinking? Specifically, how do you investigate the process of sense making and the cognitive 

resources at play in problem solving? Clearly this is not an easy feat. 

3.1.1.	  Choice	  of	  Depth	  over	  Breadth.	  

It’s been stated already that mathematical thinking is “[...] a complex phenomenon, which 

involves many different cognitive resources” (Giardino, 2010, p.29). Mathematical activity is not 

superficial, it is elusive, complex and a challenge to make explicit. Moreover, mathematical 

thinking is a personal activity laden with meta-cognitive aspects, including affect, “that may 

enable or constrain the mathematical solution processes of an individual” (Presmeg & Balderas-

Cañas, 2001, p. 290). Thus, to investigate learners’ meta-cognitive and affective resources, it was 

necessary to develop deep inquiry into their process of mathematical thinking. I would need to 

investigate closely how learners think while solving. I needed an approach that would allow me 

to capture those moment of insights and cognitive aspects including what the learner felt while 

thinking. This, with the exploratory tone of the study, dictated the choice of depth over breadth.  
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3.1.2.	  Why	  Qualitative	  Methods.	  

The challenge still remained, what method would accompany this approach? Should a researcher 

interview participants and ask them about how the process (visualization, gesture, affective 

states)? Would one or more quantitative tests suffice? Or should the research encompass video 

recordings and analysis of external representations of participants’ thinking? Would these 

measuring instruments and observations paint an accurate picture of the process of sense making 

or do we assume they do? Gray (1999) points out: 

The study of [thinking] in any context is fraught with difficulty. We make an 

assumption that report, description and external representation in the form of words, 

drawings and actions provide an indication of the nature of [mathematical thinking] 

(p.241). 

Presmeg (2006) further adds: “There is no guarantee that the researcher’s construction of the 

nature of [mathematical thinking] is accurate, nor that the thoughts of the individual were 

uninfluenced by the research process” (p.221). 

The above statements led me further think about the measuring instruments and research methods 

used to study mathematical thinking. Woolner, (2004) and Kozhevnikov, Hegarty & Mayer 

(2002) used a quantitative method to investigate students’ thinking. Their main research 

techniques include measuring participants’ reasoning using one or more measuring instruments 

(e.g. MCT scores, Woolner, 2004). However, I found this method limited in its capacity to 

account for the personal affective aspects of thinking. You can’t fully capture speech acts, gesture 

or affective states associated with thinking if participants sit in silence solving problems or 

performing tasks and then quantifying the results. These quantitative measurements only paint a 

partial picture making this method limited in its openness to let the unexpected emerge. In fact 

their research, as with many using this approach, served mainly to measure and categorize 

participants’ mathematical ability. On the other hand, researchers such as Aspinwall, Shaw & 

Presmeg (1997), relied on qualitative methods (interviews, observations and document analysis) 

to comprehensively investigate how students think while solving problems. These latter studies 

helped informed my method of data collection. 
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Since speech and gesture can be video recorded and analyzed, I found it best to rely on capturing 

and studying the external manifestations of learners’ thinking (gesture, speech, drawings etc.) to 

investigate the cognitive resources central to the process of sense making as participants explored 

non-standard problems. My aim was to develop depth of inquiry using the following research 

techniques: (1) present non-routine problems to be solved. The non-routine problems would 

allow for an exploratory approach and diverse ways of thinking rather than silent mental math. 

(2) Video record a think-aloud protocol coupled with meta-cognitive prompts. The video 

recordings would allow me to analyze in seconds the various gestures and speech acts including 

use of imagery in playback. The meta-cognitive prompts was also necessary as without probing, 

participants often fail to report the full extent of their use of imagery even when it represents an 

integral aspect of their thinking (Presmeg & Balderas-Cañas, 2001). Thus, the questioning was 

necessary. (3) Make field notes and observations and (4) follow up with post-interviews to clarify 

interesting points for the data analysis. I discovered that performing qualitative research on the 

nature of mathematical thinking could be insightful and informative. 

3.2.	  Context	  of	  the	  Research	  	  	  	  	  

3.2.1.	  Participants.	  

The participants for this study included a total of 8 graduate level students who volunteered. 

Participants were recruited via a letter describing the research study in detail from the Faculty of 

Education and others from a graduate residential college at a large university in Canada. Two 

were initially recruited for the pilot study and the remaining six for the larger portion of the 

study. The pilot served as a means to test the think-aloud protocol and problem set before 

carrying out the larger part of the data collection.  

There are several reasons why I made the deliberate choice to work with graduate students who 

are not math majors and had been away from mathematics for some time. There has been little 

research on the role of visualization in sense making by adult learners who are not research 

mathematicians (Presmeg & Balderas - Canas, 2001). There is also the claim in the literature that 

college level students are reluctant to visualize when they do mathematics (Eisenberg & Dreyfus, 

1991). I wanted to collect further data to cast light not only on whether graduate students used 
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visualization but also the role of gesture and affective states in sense making in exploring non-

routine problems.  

Since I wanted to explore the process of sense making other than formal math (i.e. pencil-and-

paper), I worked with participants who had been away from math for some time and were open to 

explore problem solving through less formal algorithmic means and talk about the process. There 

were certain aspects about these graduate students’ intellectual maturity that lend itself to this 

process: (1) They were introspective and thoughtful people. (2) They had confidence in their 

general abilities and were willing to explore problem solving informally and make sense without 

fear of having to remember algorithms or procedures. They didn’t feel added pressure to produce 

a right answer as might have been in a regular classroom setting. (3) They were more open and 

less resistant to revisit the experience of problem solving which they had been away from for 

some time. There was a practical side to it as well. Being at the university these were the people 

who were readily available for my study. Researchers (for example, Presmeg & Balderas - Cañas, 

2001) have similarly used the convenience of a university’s population from which to recruit 

subjects. 

The choice of limiting this study to a group of six participants followed the determination to look 

for depth rather than breadth while studying the process of mathematical thinking. I wanted to 

closely track how learners think. My aim was to collect data that could cast light on the process 

of sense making in problem solving, the cognitive resources and components of meta-affect at 

play. Therefore in regards to depth over breadth, this was a reasonable sample to observe and 

study.   

3.2.2.	  Sampling	  Technique.	  

Research participants consisted of Masters and doctoral students recruited from the Faculty of 

Education and from a graduate residential college at a large university in Canada using a 

convenience-sampling model. The investigator enlisted the help of a third party (someone not 

connected to the study) to send out an initial email to graduate students with an attached letter of 

contact and consent form describing the research study in detail and participants’ involvement 

(see Appendix C, D). This measure was taken to maintain an arm’s-length relationship with 

potential participants during the recruitment process in order to minimize the possibility of 
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students feeling pressured to join the study. Those interested were asked to contact the researcher 

directly via email or telephone for clarifications and further instructions. Those who volunteered 

were then asked to sign the consent forms, which the investigator collected and also made 

available on the first day of the problem solving sessions. I worked with the first 8 participants 

who volunteered regardless of their educational background. 

3.2.3.	  Location.	  

The research took place on location at a university in Canada. Each problem solving session was 

held in the math lab in the Education building at the university at a time convenient to the 

participants. Several days later, post-interview were held in either the math lab in the Faculty of 

Education or at a location and time convenient to the participants. Names of participants were 

kept confidential. Pseudonyms were assigned to each participant in the research for identifying 

data sources and reporting of results. 

3.3.	  Research	  Design	  

3.3.1.	  Researching	  and	  Selecting	  the	  Problem	  Set.	  

In researching the types of problems to present, I was guided by two main criteria. First, each 

problem had to be non-routine. Since the goal was to explore and probe learner’s sense making 

through problem solving, I needed problems that were not too familiar to the participants. I also 

wanted to minimize the use of polished algorithms and route memory work. I wanted to invite 

participants to explore each problem by the approach that came most natural to them. The nature 

of non-routine problems would provide participants the opportunity to take on an exploratory 

approach to solving. Second, each problem had to be open-ended yet inviting and stimulating 

enough so as to allow for multiple approaches. In other words, each problem could be solved 

using different methods or strategies. In addition, the openness of these problems would allow for 

further extension or generalization of mathematical ideas and patterns. The mathematical 

problems that were considered for inclusion in the study are ones that required a general 

knowledge of high school mathematics. These criteria guided my search and selection of the 

problem set.  

In searching for these non-routine problems, I appropriated several books that centered on the 

topic of problem solving. Sources for these non-routine problems included Mason, Burton and 



31 

 

Stacey (1985), Brown and Walter (2005), Brown and Walter (1993), Sawyer (1964), Polya 

(1957) as well as several research articles, for example see Campbell, Collis and Watson (1995), 

Presmeg and Balderas-Cañas (2001). These books and articles provided insight into the process 

of mathematical thinking and problem solving. 

For each problem that was a potential candidate, I took time to work out the solutions myself. I 

took notes of my process. This exercise proved useful as it allowed me to take on the role of 

researcher, facilitator and participant. This activity allowed me to anticipate participants’ thinking 

and to identify potential instances in their solution process where I could evoke their thinking 

further using specific meta-cognitive prompts. In solving each problem I made attempts to 

anticipate what strategies may be used, potential difficulties and what materials could aid the 

problem-solving process. Solving the problem myself also enabled me to categorize and gauge 

the level of difficulty of each problem. As I solved, I was inspired to think about how these 

problems would allow me to explore the process of mathematical thinking. To what extent would 

these problems influence my participants’ thinking (the type, their structure, the order they’re 

presented in, the general knowledge required to solve them, the participant’s ability, etc.)?  

It is important to mention that the extent to which these problems may have influenced the 

participant’s thinking is not known (the nature of each problem, the type, and the order they were 

presented in). Aside from trying to avoid problems that had a fixed algorithm, there is no 

taxonomy of these types of problems. I had to start from scratch in selecting these. It was a trial 

and error process to find open-ended problems that would deliver, somewhat, the experience 

mathematicians undergo when solving a non-trivial problem for which there isn’t a fixed 

algorithm, procedure or mathematical technique. There is potential for more work in this area. 

The more I thought about the process of meta-cognition and sense-making in problem solving, 

the more I realized that this activity wasn’t something I could control entirely. The dynamics of 

this meta-cognitive activity would have to emerge from the participant’s own engagement with 

each problem. The most I could do as a researcher was offer guidelines and look for entry points 

where I could probe their thinking. 

For the problem set, I eventually settled upon two warm-up and three non-routine problems 

supplemented with additional questions just in case participants had already seen some of these 

(see Appendix A for the problem set). By solving each problem and taking notes, I was able to 



32 

 

use this exercise as a stepping stone in designing the problem solving and post-interview 

protocols. What follows next is a discussion of these designs. 

3.3.2.	  Designing	  the	  Interview	  Protocols.	  

One of the first challenges I faced early on in the design phase of my research was figuring out 

how to get participants to externalize and express their thoughts verbally, gesturally, 

diagrammatically in ways other than silent, pencil and paper mathematics. I wanted them to 

explore the problem freely and as deeply as possible and to discuss the process. I needed them to 

feel comfortable enough to express their thinking while they solved. How does one break this 

silent barrier that’s been instilled over years of traditional school practice? I took into 

consideration the use of a think-aloud protocol (Ericsson & Simon, 1993). 

3.3.3.	  The	  Think-Aloud	  Protocol.	  

Think-aloud protocols are a research method used to understand subject’s cognitive processes via 

their verbal reports of their thoughts. For this study, the purpose of the protocol was to obtain 

information about participants’ thinking by encouraging them to speak aloud while they solve. 

However, I came to realize that this alone would not be enough. According to Presmeg and 

Banderas-Cañas (2001), learners often fail to report the full extent of their thinking even when it 

forms an integral part of their solving process (p. 293). So as a researcher, I would need to be 

proactive when encouraging participants to express their thinking. To achieve this, I decided to 

supplement the think-aloud protocol with meta-cognitive prompts (Anderson, Nashon & Thomas 

2009) (see Appendix B). In addition, during the problem solving sessions I would invite 

participants to freely use the materials provided (paper, colored pens, manipulatives, etc.) and to 

explore the space around them. I designed this protocol taking into consideration three aspects to 

the problem solving process - a before, during and after segment. What follows is a general 

outline of this protocol (see appendix B for a full description)     

At the start of the problem solving session, participants were first briefed on the objective of the 

research study, their role and the protocol. To help participants understand the process of the 

protocol, two simple warm-up problems were presented. Participants were asked to solve these 

warm-up problems by the method that came most naturally, expressing their thinking verbally, 

gesturally or diagrammatically. Following this, participants then proceeded to solve the three 
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non-routine problems (possibly using manipulatives and materials as well). The problems were 

presented typed on a sheet of paper. During this process, I looked for entry points in the 

participants’ thinking and probed further using the meta-cognitive prompts. After the problem 

solving session was over, participants’ questions, comments or thoughts were entertained.  

3.3.4.	  Post-interview	  Protocol.	  

It became apparent that to improve the outcome of my data collection, I would need to follow-up 

on interesting points after conducting a pre-analysis of the video recordings. As such I designed a 

post-interview protocol to accompany my data collection (see Appendix B). After several days, I 

invited participants to a one-on-one interview to further clarify, discuss and explore points of 

interest revealed in their mathematical thinking. This added method of inquiry made it possible 

for me to closely investigate points that I had overlooked or could not otherwise follow up on 

during the problem solving sessions. 

The design of this protocols followed a simple format: Brief the participants on the procedure, 

use snippets of the video recordings as a stimulus in the discussions, use some or all of meta-

cognitive prompts to develop further inquiry. The questions that I asked came about after viewing 

each video recording repeatedly. These questions were designed to get participants to clarify, 

elaborate, and further discuss points in their mathematical thinking that I found interesting. These 

sessions were also video-recorded. 

3.3.5.	  Designing	  the	  Meta-cognitive	  Prompts.	  

Finally, since I was going to investigate my participants’ thinking through video-recorded think-

aloud sessions, I also had the added task of designing the meta-cognitive prompts that would 

enable me as a researcher to gain entry into how, when and why participants used certain 

cognitive mechanisms to solve. This form of questioning was a necessary measure during these 

sessions as Presmeg and Balderas-Cañas (2001) points out: 

Unless the interviewer asks [subjects] about [their thinking], it may not be reported, 

even when it is present and constitutes an integral part of the problem-solving 

process. [...] The active involvement of the interviewer, [...], is required if 

[mathematical thinking] is the focus of the study. (p. 293) 
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I would therefore not only need to rely on meta-cognitive prompts to explore my participant’s 

thinking, but more importantly, I would need to know what questions to ask and how to integrate 

them in the problem solving interviews. Generating effective meta-cognitive questions requires a 

certain level of domain knowledge and meta-cognitive skills as a researcher.  

Through my introspection and notes in solving these problems I developed questions that could 

generate meaningful discussions. For example: 

(a) Explain what your diagram, is trying to convey. What made you think of this particular 

diagram? 

(b) Describe the strategy you are using. Walk me through it step-by-step. 

(c) Explain what you mean by [...]? Can you elaborate a bit more? 

(d) Tell me more about the association X you used here to make meaning/sense in your 

thinking. Can you talk about why you chose to use it? 

(e) Were you asking yourself questions? Tell me about them. 

I then categorized each question into a before, during or after segment that would form part of the 

problem solving session (see Appendix B). I kept in mind that these questions, based on 

emergent-grounded theory, would change and shift as I learnt more about my participants’ 

mathematical thinking. As much as possible, the participants’ responses guided my questioning. 

In coming up with the meta-cognitive prompts to ask during the interviews, I took into 

consideration the following criteria: (1) each question needed to be open-ended.  The open-ended 

nature of these prompts would give participants the opportunity to answer from their own frame 

of reference, i.e. responses needed to emerge from the participants. This is one reason why I 

choose not to administer structured, prearranged questions in the form of questionnaires or 

surveys, as these would limit flexibility and access to additional information, or details, 

achievable through probing. (2) They had to be semi-structure. The semi-structured questions 

allowed for flexibility in the questioning process. This format allowed me control over the 

interviewing situation and to stimulate discussion and obtain more information by not being too 

rigid. 

One disadvantage with this questioning technique is that, as a researcher, I do not know to what 

extent asking my participants about their thinking influenced their thinking. For example, if I 
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would ask “Can you draw a picture for me?” Would the participant have drawn one otherwise? I 

had to ask them if they would consider it. However, this form of probing was necessary if I was 

to elicit and encourage further information from the participants as they reported about their 

thinking. Therefore this form of questioning was necessary to probe the otherwise inaccessible 

thought processes associated with problem solving. 

3.4.	  Materials	  and	  Data	  Collection	  

There were three main data sources: video recordings, participants' written work and the 

researcher’s observations and field notes. The data collection comprised of two main aspects: the 

video-recorded think-aloud problem solving sessions and the post-interview sessions. The 

materials that were used for this study mainly included the problem set, and all the additional 

resources in the math lab: desk, white board, smart board, manipulatives, paper, colored markers, 

etc. 

3.4.1.	  Procedures.	  

For the problem solving session, participants worked in pairs on the non-routine problems 

through a think-aloud protocol coupled with meta-cognitive prompts in videotaped sessions. The 

problems were administered one at a time. To get participants comfortable with the protocol, I 

first presented them two warm-up problems. Before starting, each participant was asked if they 

were familiar with the problem, if so, an alternate problem was presented. During each problem, 

participants were encouraged to verbalize their mathematical thinking, make use of the 

manipulatives provided, draw, sketch and/or gesture as they solved. During and after each 

problem, participants’ thinking was probed using meta-cognitive prompts designed to gain 

insight into their thinking. Following the warm-up problems, participants then proceeded with the 

three non-routine problems under similar conditions. 

Following the completion of the problem solving sessions and preliminary analysis of the 

recordings, the participants were then invited to a semi-structured post-interview session several 

days later. These sessions served to help clarify interesting points that arose during the 

preliminary analysis of recordings. Participants were interviewed using a series of questions in 

relation to instances captured during their problem solving session that I wanted to follow-up on. 

To help stimulate further discussion during these sessions, I showed participants snippets of their 
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video recordings. At the end of each post-interview, participants were then encouraged to make 

any final comments, thoughts or questions. Some of these individual semi-structured interviews 

were video-recorded in the Faculty of Education building at the university while others at a 

location and time convenient to the participant. The sessions did not exceed one hour and every 

effort was made to ensure that participants felt comfortable to leave at anytime. 

Before carrying out the larger portion of my data collection, I first conducted a pilot study in 

order to field test the problem-set, the interview protocol and to gain a feel for the dynamics of 

the interview sessions. This pilot proved useful as I took notes and made further adjustments to 

my problem set and interview protocol. From this experience, I added, subtracted and 

reorganized the problem set. I also modified slightly the problem session protocol based on 

feedback from my advisor. For this pilot study, I recruited two additional participants via the 

same recruitment protocol as stated earlier. 

3.4.2.	  The	  Pilot.	  

The pilot did prove to be an exciting learning experience. The logistics component of this part of 

the research provided me with valuable insights into how to effectively coordinate with my 

participants. I kept entry logs in my field journal to help me keep organized and also to document 

my experience of the process of planning and carrying out this aspect of the data collection. 

Keeping a field note journal to record my thoughts and ideas as I moved forward with my study 

proved useful. I came to value the power of documenting my thoughts and taking notes 

consistently. This act alone helped me tremendously to stay focused, organized and on track with 

my work. By journaling my thoughts and ideas I was able to find answers to some of the 

obstacles and challenges I encountered.  

One of the things I realized after the pilot session was that it is not easy to get individuals to 

express and externalize their thinking verbally, gesturally or diagrammatically. My participants 

did feel a bit reluctant. I recall walking out of the pilot session feeling a bit disappointed with the 

outcome. I felt I wasn’t able to fully capture the external manifestations of my participants’ 

thinking. I wrote down the following sentiment in my journal after the pilot session: 

Why were my participants so silent? How can I get them to verbalize, gesture, draw 

or sketch on paper what they are thinking? My study depends on studying how these 



37 

 

cognitive resources are activated. How will I be able to provide an account of how 

these are manifested if I can’t get my participants to project them? 

Seeking advice, I decided to allow the participants to stand next to each about three to four feet 

apart facing the white-board or smartboard. This change in physical orientation gave participants 

the opportunity to discuss and explore the space around them more freely while collaborating. 

This shift in space was quite interesting given the usual custom of having to sit in silence solving 

with pencil and paper. In addition, I realized the importance of being confident while engaging 

my participants in further discussion. It became important for me to think of the interviews as a 

friendly human discussion rather than a rigid controlled scientific experiment.  

 In working with human subjects, as an aspiring educational researcher, I realized that this 

qualitative study is different from a controlled scientific experiment. It is not possible to control 

all the variables. Since I was working with human subjects, I viewed these sessions as a learning 

experience where I, the researcher, was learning and acquiring the skills needed to probe the 

process of sense making. As Lincoln (1985) expresses “It is […] the case that human instruments 

can be developed and continuously refined. [It’s assumed that] humans [are one] major form of 

data collection device and that anyone committing him – or herself to this form of inquiry will 

have acquired, and will continue to hone, the skills needed in order to operate as an effective 

instrument” (p. 250). 

The pilot did get me thinking about my role as a measuring instrument. Given that my goal was 

to explore the process of sense making through problem solving, I realized that my results and 

findings would, to a certain extent, be based primarily on my observations and the direction I 

would take after analyzing the data and writing up my findings. The types of questions I asked 

during the interviews are based on what I as a researcher deemed important or what I wanted to 

know more about (Lincoln, 1985).  

3.4.4.	  Improving	  from	  the	  Pilot.	  	  	  

This pilot allowed me to refine my problem set and interview protocols based on my observations 

and field notes. The experience allowed me to better prepare for the second phase of my data 

collection. I redesigned the instructions of the think-aloud protocol in order to get participants to 

collaborate and explore the problem rather than sit in silence with pencil-and-paper. I modified 
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some of the meta-cognitive prompts so as to yield interesting responses. I also gained a better 

sense of where to position the cameras. Below is a general outline of how I conducted the data 

collection. 

I used two cameras for each session. One was placed on a tripod stand for a wide-shot and my 

assistant manned the second camera to get close-ups of the participants’ activities, including their 

solutions. I encouraged my assistant to move freely around during the session and to not worry 

about appearing in the wide shot. I emphasized the need to videotape the finished work for each 

problem and to keep the camera rolling even after the session was over should any interesting 

thoughts or comments emerge. 

For each of the three sessions, participants showed up in pairs to work on the problem set, except 

for one session where only one participant was able to attend. For each pair of participants I 

carried out the introductions and then we all sat together facing each other as I explained the goal 

of my research. I distributed to each participant a copy of the problem set and instructions and 

consent forms (see Appendix A). After briefing them about the think-aloud protocol and having 

addressed their questions and concerns, we got underway with the two warm-up problems. I 

repeated this preparation and introductory routine for all the other sessions.  

As we began to record, I temporarily position myself near the wide-shot camera at the beginning 

of the session. I introduced each problem by asking one of the participants to read the problem 

out loud and then silently to themselves. As both carried forward working together on each 

problem I used my experience as a teacher to comfortably navigate the dynamics of each session. 

I moved around actively observing, eliciting and probing their thinking. I had in hand the list of 

meta-cognitive prompts as a guide (see Appendix B).  

3.4.5.	  The	  Post-interviews.	  

I waited several days after the problem solving session before conducting the post-interviews. 

During the time leading up to these, I spent hours reviewing the recordings, analyzing and 

making copious notes. From here I selected specific points that I wanted to follow up on. These 

interviews took place either in the math lab in the Faculty of Education or at a location and time 

convenient to the participants. These sessions had a different dynamic feel. It was more of a 
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relaxed, open discussion where participants freely elaborated and expand on the points I was 

interested in. I emphasized that they were free to ask questions at any point.  

I used one camera during these discussions. Since these were one-on-one sessions, one camera 

with a medium-shot was sufficient. I sat next to the participant as we talked. Along with these 

questions I showed them video clips I hand selected of their mathematical activity on a laptop in 

order to stimulate further discussion. For each participant I interviewed, I tried to stay close to the 

topic being discussed and the questions I asked. Sometimes they would go off on a tangent and I 

humbly had to re-direct their attention to the specific questions I want to explore.  

3.5.	  Analysis	  of	  Data	  

At the end of the fieldwork I had gathered a lot of data from different sources: problem solving 

video files (a total of three sessions, forty - sixty minutes long for each session), post-interview 

recordings (six sessions approximately thirty minutes each), researcher’s observations and field 

notes, participants’ written work (hard and soft copies), descriptive text and transcripts. 

Triangulation of the data sources was used to ascertain a comprehensive understanding of 

participants’ cognition and sense making regarding their problem solving processes. 

3.5.1.	  Coding	  and	  Analysis.	  

To ensure anonymity in reporting, each participant was assigned a pseudonym: Eve, Olga, Kara, 

Jon, Tom, and Paul. Each video recording, ranging from thirty to sixty minutes in length, was 

viewed using the computer software iMovie then analyzed. Video recordings were not 

transcribed in their entirety but were rather streamed in full and precise relevant snapshots of 

participants’ mathematical thinking were observed, coded, and analyzed.  

In analyzing each video recording, I looked for instances that revealed the use of visualization, 

gesture and speech, and affective states in the solution processes of each participant for each 

problem. I highlighted snapshots that were representative of particular ways of making sense and 

understanding. To keep track of these instances, I used the following letters: V, G, M, A to 

indicate the process of visualization (V), gesture (G), metaphorical thought (M) or when a 

particular segment indicated something in regards to the participant’s affect (A). I also found it 

helpful to use symbols: note to self (NB), interesting points (!), theme (*), affective issue (i), 



40 

 

among others, to flag interesting points in my notes as I viewed each file. Table 1 exemplifies the 

process of coding. 

Table 1 
Coding Example 

Session 01/Time Olga Jon 

00:11 - 01:10 V (sketches a static image), 
G (uses hands to explain), 

A (is reluctant to think informally), 
V (uses dynamic images) 

02:00 - 03:00   

 NB (Transcribe this segment) G (uses deictic gestures) 

 A (Aha! Moment) NB (describe this in your report) 

45:00 - 47:00 ! (Interesting approach) NB (follow up on this theme)* 

50:00 - 52:00 ? (What happened here?) NB (quote this statement) 
Table 1: Coding Example 

This coding system served as a blueprint to help me keep track of when the participant visualize, 

gestured or gave hits or clues to their thinking. In this way I could revisit and focus on what was 

said or done at a given interval in the video for each problem and across the whole problem 

battery. I used these records to readily reference specific points in the recordings as I analyzed the 

data over time. The gray colors indicate the time intervals when participants were working on a 

non-routine problem. 

 This method of studying the video recordings allowed for thematic analysis of 

participants’ mathematical thinking for each problem. From these schematic snapshots I was then 

able to pinpoint, extract and index relevant video clips that allowed me to further: (1) analyze 

each participant’s use of visualization (evidenced by drawings and verbal report such as “I saw in 

my head”), gestures, and affective states for each problem, (2) compare similarities and 

differences in participants’ solution processes and thinking, (3) examine responses to particular 

meta-cognitive prompts, (4) extract and index digital stills that depicted any form of visual, 

gestural, or diagrammatic output, and (5) look for any emerging patterns or themes. For the 

purpose of depth of reporting, I focus on interesting cognitive and affective aspects, 

issues/themes that I observed regarding my participant’s mathematical thinking. I then used these 

to follow up on in my post-interviews. 
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3.5.2.	  Analysis	  of	  the	  Post-interviews.	  	  

The post-interview recordings allowed me to follow up on affective states and other interesting 

points that participants exhibited in their thinking that was either insightful or needed further 

clarification. During the problem solving sessions, I wasn’t able to pin point and follow up on 

these directly. The one-on-one post-interviews offered responses to specific designed questions in 

relation to the participant’s sense making. I viewed these recordings using the software iMovie in 

playback. I then reviewed, extracted and transcribed relevant segments for use as complimentary 

data in my reporting of thematic findings. 

3.5.3.	  Putting	  the	  Pieces	  Together.	  

Some clips provided rich quotes and a descriptive account of the mathematics done by the 

participants. I used each video clip and its associated description watching for confirmations or 

contradiction and to become familiar with what the participants did and said. I then put these 

snapshots into perspective along with my field notes and observations, participants’ written work 

(which I collected and digitized or extracted from the recordings), including the data from the 

post-interviews. This resulted in the emergence of cognitive and affective aspects, issues and 

themes in the solution processes of participants that eventually became the focus of my results 

and findings.  

The goal of this study was to present depth, rather than a broad, descriptive account of the 

cognitive resources used by the participants in order to gain insight and make sense while solving 

non-routine problems. In ascertaining an understanding of this process of problem solving, I 

adopted the epistemological paradigm that knowledge and understanding is a construct of human 

activity within a situated context (Glaser & Strauss, 1967 in Mills, Bonner & Francis, 2006). This 

perspective guided my method of inquiry by helping me understand that, in relation to the 

process of sense making, each participant’s thinking emerged from the context they worked in. 

They constructed understandings and meaning by drawing on their own sense making and 

cognitive abilities (visualization, gesture and affect) when encouraged to take an exploratory 

approach to solving these non-standard problems. I carried out a thematic analysis of the data to 

ascertain an understanding of the role of visualization, gesture and affect in participants’ problem 

solving processes. The themes and issues that emerged from the data became the focus of my 

findings and results.  
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3.5.4.	  Strengths	  and	  Limitations.	  	  

This research study was limited to a small group of participants: two were recruited for the pilot 

and six took part in the larger portion of the data collection. In addition, sampling was based on a 

convenience model thus limiting generalizability of results. However, given the exploratory 

nature of this study, it was acknowledged from the start that analysis of data examples was 

appropriate in yielding thick, rich description of the process of participants’ mathematical 

thinking. In fact the goal was to zero in and look more closely at individuals’ sense making 

processes and the role of visualization, gesture and affect therein.  
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Chapter	  4:	  Results	  and	  Findings	  

In the previous chapters, a theoretical framework of mathematical reasoning and sense making, 

cognitive aspects central to the process of sense making, and the methodology of the study were 

presented and discussed. In this chapter, I provide a descriptive account of participants’ sense 

making in relation to their solution processes to specific problems. For depth of reporting I 

focused my findings on observations of those problems that were more revealing and insightful. 

In selecting the problems to discuss in this chapter, I closely reviewed each video file over 

several days. I looked for instances where participants visualized, gestured and revealed affective 

issues in their thinking. I then selected the video clips that were more revealing and telling to help 

answer my research questions. 

This chapter follows a thematic analysis of participants’ solution processes in regards to 

visualization, gesture and affect. I explore the role of these resources by providing a descriptive 

account of participants’ thinking as data examples. I put these examples of data into perspective 

using my field notes and observations, participants’ written work and transcripts from both the 

problem solving sessions and post-interviews. For each of these sections, I provide further 

discussion, analysis and my interpretations of these findings and results. 

4.1.	  Participants’	  Background	  

Here is a brief background of the participants whom I’ll be reporting on in this section: 

Olga is a second year student in the Faculty of Education finishing up her Masters degree in 

mathematics education. She had taught high school mathematics for a number of years in her 

native country of Turkey.  

Jon is in his mid-twenties, is from Toronto, Canada and was about to graduate with a Masters 

degree in public health. He had expressed interest in the study via email and was glad to 

participate.  

Kara is from Russia and a second year PhD student in Sociology at the university. From our 

introductory talk I gathered that she enjoys playing chess in her free time. She expressed that she 

hadn’t been doing math for quite some time so she was a bit unsure if she’d be able to 

successfully solve each problem. I explained that the goal was not the answer but rather that I 
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wanted to explore the way participants think and about the process of sense making through non-

routine problems. 

Paul is a PhD student from Austria studying international relations at the university’s Faculty of 

Law. He similarly explained that he has been away from mathematics for quite some time. 

Despite moments of uncertainty at certain instances in his solution processes, he did display 

confidence and enthusiasm throughout the session. 

Eve is in her early twenties and was studying music theory at the university for nearly two years. 

She was keen on starting her PhD in the United States in the fall semester. After the briefing she 

expressed eagerness to see what these non-routine problems looked like. 

Tom is a third year PhD student in the Faculty of Education with research focus on the use of 

technology in education. He had taught at the secondary level for a number of years before 

seeking further studies.  

4.2.	  Do	  Learners	  Visualize?	  	  

To facilitate a deeper understanding of the issues of when, how and with what effect participants’ 

visualized when making sense of non-standard problems, my interpretation of participants’ 

solving processes of given problems is described in this section. 

Session One; Olga & Jon; Warm-up Problem A 

Problem A: If you add together odd numbers from one upwards you will always get a perfect 

square. 1+3 = 4; 1+3+5 = 9; 1+3+5+7 = 16 ... Can you think of a way to prove that this must 

always be the case? (From Puzzlegrams, 1989, p.113)   

Early in this session it became apparent that both participants felt a bit reluctant to talk through 

their solution processes. I encouraged them to explore the problem using the process that came 

most naturally to them. This is where my active questioning as the interviewer became necessary. 

Over the course of the session both gradually became comfortable exploring the problems 

through open discussions and collaboration. The following extract illustrates the methodological 

approach each used to solve Problem A. 

After reading Problem A, both Olga (O) and Jon (J) go silent for about one minute.  
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R: Can you justify why this pattern works?  

O:  Maybe it’s about uhmm … (pauses for a moment to think) interesting.  

She then looks at Jon (J).  

O:  Do you want to go with geometry? Cause these are squares right? Two-by-Two.   

Jon acknowledges that they are dealing with squares. Both then walk over to the white board. 

Olga grabs the marker and comments: 

O:  Aw! (Olga has an Aha! moment.) Yeah, I have something ... I’m not sure, but let’s see. 

She starts drawing a sketch of a single square and then subdivides it into four quadrants. Olga 

uses the square to explain: 

O:  This is a two by two, (she points to one of the squares using the marker and then spirals 

out clockwise) one plus three makes four!   

Jon catches on right away and confirms.  

J:  Yeah! (Jon smiles) And if you add another square to it its five square being all around it 

right? 

Olga proceeds to draw unit squares all around the original two by two square. Both then start 

counting together.  

O & J:  One, two, three, four, five.  

They both appear to be very excited at this stage in the solution process.  

O:  Yeah, no, it’s five... yeah it goes like that.  

Olga then outlines another set of unit squares around this newly formed one. They then both 

decided to redraw the sketch to make it more clearly using different color markers. Jon assists 

with the sketch, see figure 4 below. 
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Figure 4: Olga's and Jon's Solution 

I was curious to see if both were thinking along the same lines. It became obvious at the very 

start that Olga had provided the original insight. So I asked Jon if he initially saw this image. 

R:  How exactly did you (Jon) started out with this problem? Did you see this solution readily 

in your head, like an image just popped up? Or did you have to think through for a bit? 

J:  I looked at the equations that we were given, …  just the difference between each 

equation. 

R:  So you kind of saw one, then you saw probably three, then five and kept adding those? 

J:  No, I saw the solutions. So I saw four, nine and sixteen. And then saw that the difference 

between them was five and seven. 

J:  Yeah, but I didn’t see anything visual at first. ... I kind of (chuckles) followed what she 

(Olga) was doing. I didn’t come up with the solution straight away. 

I asked Jon if he wouldn’t mind elaborating on the approach he would have taken with this 

problem. He proceeded with writing down the numbers four, nine and sixteen in sequence on the 

whiteboard. He then took the difference between adjacent numbers and wrote down the results 

above and between the adjacent squares using arrows to depict these ‘gaps’ or ‘jumps’ (see 

Figure 5 below). 
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Figure 5: Jon’s Imagery 

His attempt to prove why this statement is true incorporated a visual and numeric component. I 

gathered that Jon’s approach was to deconstruct and explore the pattern using a numerical 

sequence by first taking the difference between neighboring square numbers and then doing the 

same with the new results. He repeated this pattern to see where it would lead him. He 

commented, “I don’t know, … I’m just working.” He didn’t seem entirely sure where all this 

subtraction would lead. In the end he was convinced that his approach did not seem to cast light 

or new insight to sufficiently prove the statement. He explains, “But in terms of proving why this 

is always the case, then maybe (points to line 4 in his work, see figure 5 from top to bottom) this 

is the solution.” From my observations, he seemed to have taken on a numerical-analytic 

approach to explore this pattern given the premise of subtracting adjacent square numbers. I do 

believe he noticed that he was onto something. If he had extended his results and looked more 

closely at the repeating pattern depicted in lines two, three and four (see figure 5 above from top 

to bottom) he might have come up with perhaps a different image or approach to accompany the 

pattern he obtained through subtraction to make things more clear. It was not possible to 

investigate his reasoning beyond his imagery and written numerical sequence to justify why this 

pattern holds true. 

These data examples shows two slightly different visual approach at exploring Problem A. Olga 

was convinced of her visual solution while Jon attempted to use a more formal numeric/visual 

analytic approach to try to obtain a proof but fell short in finding a general justification. These 

data examples highlight the importance of knowing what to look for visually and analytically. 

Olga’s solution neatly captures the pattern visually through the use of squares in contrast to Jon’s 
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approach, though still visual. The data examples suggest to me that experience in knowing what 

to look for in a schematic diagram and how to use such visual image with non-visual analysis are 

defining factors in enabling or constraining the solution process of an individual.  

It is well known that some people have difficulty constructing and using imagery in reasoning 

(Lowrie, 2000). There are several reasons for this. One reason is that visual thinking is made up 

of independent cognitive components and that individuals perform differently on these 

components (Presmeg, 2006). Take one main component of visual thinking that is problem 

representation. The ability to represent a problem visually depends on one’s ability to process 

information, an important stage of the problem-solving process (Schoenfeld, 1992). Olga 

represented all the necessary information to Problem A in her imagery in contrast to Jon’s. 

Another reason is that most students have “inadequate experience of [a given] concept to provide 

appropriate intuitions” (Tall, 1991, p.106). In the case of Olga, the appropriate intuition that led 

her to construct a square served useful. This was also the case for Paul as he solved this problem.  

Sometimes an image paints a thousand words, or in this case, captures a given pattern elegantly. 

Other times an image form only a prerequisite to finding a solution. It is important to be able to 

recognize the strengths and limitations when using an image, what to look for and how to use it. 

By the slightly different approaches to Problem A taken by Jon, we see the importance in 

knowing how to represent information visually, what to look for in a diagram, how to use it, and 

its limitations. 

The next problem again shows the distinction in mathematical thinking between Olga and Jon. 

Problem B: A man has 2 sons. The sons are twins; they are the same height. If we add the man’s 

height to the height of 1 son, we get 10 feet. The total height of the man and the 2 sons is 14 feet. 

What are the heights of the man and his sons? (Sawyer, 1964, p. 40)  

Below is an account of participants’ solution processes. 

R:  Can one of you kindly read the problem out loud?  

As Olga begins to do so she goes for the blocks as manipulatives and begins to explain, 
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O:  Let’s get two sons (places the block side by side). The sons are twins so let’s change this 

(swaps one block for an equally sized one).  

After Olga finishes reading the entire problem she exclaims,  

O:  This is an easy one.  

She continues to manipulate the blocks as she reasons and re-reads relevant segments of the 

problem. Jon at this point confirms without a doubt that the two sons are 4 feet and the father is 6 

feet. I wanted to know whether they manipulated these blocks mentally to get to the answer or 

whether the arithmetic they used had a visual component to it. So I asked,  

R: When you both started, did you have an image in your mind? If so, can you draw a 

picture?  

Jon goes to the board and does so. Pretty soon Olga assists by using vertical lines to represent the 

height of each stick figure Jon drew. Jon continued with his work and assigned numerical 

symbols to denote these respective heights. He follows through by writing down the equation a + 

b = 10 and 2a + b = 14. From here he explains that the difference between these two formulas is 

a = 4, the height of one son. So logically the height of the man has to be b = 6. I challenged them 

to not focus on the algebra and to consider an alternative approach this problem. Olga quickly 

proceeded to draw vertical line segments explaining her reasoning as she does so.  

O: Since it’s height I’m going up to down (gestures the movement with her right hand) and 

not horizontally.  

(One line she labels as man + son and then exclaimed)  

O: But in the other case it is going to be longer (draws and labels a longer line). Here you 

have man and two sons.  

She then reasons that if you compare these lines side by side, the difference gives you the height 

of one son (see Figure 6 below).  

O: If this is 10 and this is fourteen then the difference should be 4. 

(Immediately as Olga finishes Jon exclaimed)  
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J:  That’s kind of what I did but I did it in my head. 

I went ahead and asked Jon to elaborate on what he did mentally. 

R: When you said you did it in your head, what exactly did you do? Did you use variables or 

did you use some sort of diagram as what’s on the board?”  

(Jon paused for a bit and then stated) 

J:  I just saw the numbers.  

R:  Numbers? What did they look like? Could you talk more about it?  

J:  It’s hard (goes to the board and begins to explain as he writes).  

He writes down a simplified version of his previous equation and explains that it was not a visual 

diagram that he saw but that he only logically subtracted the two equations to get the answer. It is 

not know for certain what type of image, if any, was guiding his solution process. Below is a 

comparison of their written work. 

 
Figure 6: Olga’s Imagery 

 
Figure 7: Jon’s Analytical Reasoning 

Interestingly enough, these two warm-up problems were not the only ones that depicted the use 

of visual imagery, more specifically schematic imagery (Presmeg, 1987/1992), as an integral 

component in the solution process of individuals. Eve, Kara, and Paul used similar imagery as 

Olga (Figure 6).  Apart from the two warm-up problems, non-routine Problem 2 solved by the 

following participants also depicts the use of schematic images to gain insight and make sense.  

These schematic images also guided the various hand gestures they used when explained their 

reasoning. I will now discuss Kara and Paul’s reasoning in the following section. 
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Problem 2 A 10 by 10 square depicts a field with just enough grass in it to feed 100 cows. Is it 

possible to have square field with just enough grass in it for 200 cows? Can you prove this? 

(in Melrose study, p. 3) 

Kara.   

I came across this problem in a discussion about non-trivial solutions to math problems in one of 

my graduate courses. Captivated by one child’s solution in our discussion, I was curious to see 

how others would solve this problem. So I decided to present it in my study. With Problem 2, 

Kara started off by drawing two 10 by 10 squares side by side (see Figure 8 below).  

 
Figure 8: Kara's Explanation – Part 1 

K: This newly formed rectangle fits 200 cows. (Kara outlines its dimensions with her hand.)  

She uses this image to further reason that in order to find the length of a square that would fit the 

200 cows, one simply takes the square root of its area - 200. She explained,  

K: The length of a perfect square that would fit 200 cows would need to be the root of 200 

(she does so and obtains ten times root two).  

 
Figure 9: Kara's Explanation – Part 2 

K: If the sides of the new square are of length ten root two then it can fit two hundred cows. 

When asked to consider an alternative approach she thought for a while and then came up with 

following. 



52 

 

K: So we can also for example take a rope (chuckles) and just go around this field (refers to 

the rectangle in her diagram) and then try to adjust it in away that would become a square (see 

figure 10 below).  

 
Figure 10: Kara's Explanation – Part 3 

Kara’s use of visualization occurred mainly in the preparation phase, to make sense of the 

relation between the two squares. She then used this image to reason through to a solution. She 

returned to the diagram in explaining her alternative approach using an imaginary rope, but her 

main confidence lay in her algebraic solution. For her, taking a rope would give the perimeter but 

not necessarily the area needed to accurately calculate the side of the square that would fit 200 

cows. I infer that without the initial phase of constructing a schematic image to guide her sense 

making, getting to a known solution may not have been so trivial. What is quite interesting is that 

in explaining her alternative approach, her image and use of deictic gestures – i.e. the hand 

gesture of pointing to existing or virtual objects (McNeill, 1992) seem to work hand in hand in 

manifesting her spatial and perceptual understanding.   

Paul.   

In solving Problem 2 – fields of cows, Paul started similarly by drawing a 10 by 10 square. 

However his use of imagery was more dynamic (Presmeg, 1992). This data example explores 

how Paul was able to build meaning through the use of speech, gesture and diagrams. 

P: I’m trying to visualize the initial 10 by 10 square. Maybe that will help me to figure out the 

next step. 

He drew a 10 by 10 square and added two unit squares to represent two cows. He uses this 

diagram to visualize moving cows from one square field (has this image in his head) onto the 

other and arranging them to form a new square. 
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P: Can I basically add these cows here and here? (Refers to the upper and left side of his original 

square (see Figure 11 below). 

 
Figure 11: Paul's Explanation – Part 1 

He explains his reasoning, 

P: I want to take those 100 cows and add them to another field. So I will try to add some 

here and here (refers to upper and left side of initial square). So if that is going to be a square then 

… well I mean obviously the answer is like the root of 200 (that) would be the length of each 

(side). 

R:  Why the root of 200? 

P: Because I am try to figure out how far I would need to go adding these cows here and 

here. 

In re-explaining how he got his answer he said he visualized moving one square of 100 cows and 

neatly arranging these around the upper and left hand side of his initial square (see Figure 12, and 

13 below). He gestured out this movement using his right hand (Figure 13). He then reasoned that 

the length of this new square field would be the root of 200. However, he realized that the square 

root of 200 would yield a length that is an irrational number (Figure 14). At a certain point in his 

solution process, Paul questioned whether the extra length needed to fit the 200 cows was 

practical. He was not convinced that in the real world, the extra length needed to fitting 200 cows 

in a square field could be measured.  
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Figure 12: Paul's Explanation – Part 2 

 
Figure 13: Paul's Explanation – Part 3 

 
Figure 14: Paul's Explanation – Part 4 

 

Paul’s use of this type of dynamic imagery and accompanying gesture, i.e. the way he visualized 

transforming and superimposed one square onto the other was more dynamic in nature in 

comparison to Kara’s static image. Paul visualized one square being malleable and fluid allowing 

him to manipulate its dimensions to combine both unit areas forming a new square of 200 cows 

with dimension ten-root-two. The use of dynamic imagery as in this case is very powerful in 

yielding insight as it structures information at a level that is more general and abstract (Presmeg, 

1992, 1997). Thinking in this manner is very useful especially in areas of advanced mathematics 

such as analytic geometry, set theory and topology. 

Discussion 

The drawings and the gestures that accompanied them in these data examples highlight the role of 

imagery in sense making. From these schematic images, I observed that when visualizing, it is 

more helpful and more useful to process, represent and structure information in the most 

economic way possible. It is much useful to not think in terms of vivid details but rather in terms 

of geometric schematic patterns: lines, points, letters (see participants’ sketches above) (Presmeg, 

1992, 1997). The type of imagery most evoked in the thinking of Olga, Kara and Paul was 

schematic imagery (Presmeg, 1992). Some were static and one was dynamic (Paul’s). These 

types of imagery are useful and sometimes desired as they are effective in providing insight 

during making sense (i.e. making connections and relations in an economic way through the use 

of imagery). We see this with Jon’s imagery (Figure 11 to 13) to Problem A that could be further 

explored and generalized given the economic visual representation of the information. 

However being able to visualize a schematic solution is not always the best method. For example, 

when faced with problems that require manipulating and keeping track of multiple arrangements 

of objects and keeping a mental record is not easy. I came to observe this aspect in the visual 
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thinking of each participant during their initial approach to Problem 3 - The milk-crate problem. 

This will be the focus next.  

Problem 3: A certain square milk crate can hold 36 bottles of milk. Can you arrange 14 bottles in 

the crate so that each row and column has an even number of bottles? (Mason, Burton & Stacey, 

1985, p. 181) 

Each participant who worked on this problem started out sketching a two dimensional schematic 

image of an empty crate either on paper on the board. Some drew in marks to represent the 

bottles; others tried to arrange the bottles mentally. However, each participant after some time 

found it quite challenging to ‘see’ a possible arrangement. Everyone abandoned their initial 

approach of mentally manipulating the bottles to find a solution. Instead they switched to using 

the blocks as manipulatives along with their sketch of an empty crate. Through several trial and 

error attempts they eventually were able to obtain a solution. However their approach wasn’t by 

brute force, each attempt had a visual/logical component to it. Below are two accounts. 

After coming to realize that a pencil-paper approach wouldn’t work, Kara decided to use the 

manipulatives. She arranged twelve blocks first on her six-by-six grid paper then sighed, 

K:  So I’m left with two (blocks), which I won’t be able to place anywhere else. 

K:  I’m trying to arrange the blocks but I can’t really see a solution. 

After four attempts, Kara assumed she got a solution. From my observation, she started by 

placing four blocks in the first row and then another four in the second row, offset by one square 

to the right. She repeated this with the third row and then she placed the remaining two blocks at 

the center of the fourth row (Figure 15 below). From here her final step was to move the first-

row-first-column block to the first-row-sixth-column space in order to satisfy the conditions of 

the problem (Figure 16 below). 
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Figure 15: Kara’s Pattern 
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Figure 16: Kara’s Solution 

 

 X X X  X 
 X X X X  
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K: Aha! I got a solution but I’m not sure if it is all solutions. 

Kara was able to attain what she thought was a solution after trial and errors multiple times. As 

seen in figure 15 above, there was a visual/logic component to her thinking. Given the pattern in 

figure 15, Kara reasoned that another solution would be to move the third-row-sixth-column 

block to the third-row-first-column space. She also visually reasoned that if you rotate the paper 

clockwise ninety degrees you would get another solution, their reflections would also be 

solutions. It was quite interesting to note how she was able to construct this pattern (Figure 15) 

from which to derive what she thought were other possible solutions. 

Likewise, Tom & Eve after a several trial and error attempts fixated on a particular pattern (see 

figure 17 below) before obtain their solutions (figures 18, 19). 

           X X X 

Figure 17: The Pattern Olga & Jon 
focused on 

 X X X   
X X     
X  X    
X   X   
X    X  
      

 

Figure 18: Olga & Jon’s First Solution 

X X X X   
X X     
X  X    
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    X X 
    X X 

 

Figure 19: Olga & Jon’s Second Solution 

X X X X   
X X     
X  X    
X   X X X 
      
    X X 

 

It was also interesting to note the similarity in patterns participants made during their attempts. 

Below are three samples. 
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   X X 

Figure 20: Sample 1 

X     X 
 X   X  
  X X   
  X X   
 X   X  
X     X 

   X X 

Figure 21: Sample 2 

X X X    
X X X    
X X X    
X X X    
      
      

   X X 

Figure 22: Sample 3 

      
X X   X X 
  X X   
  X X   
X X   X X 
      

 

It was interesting to note how everyone resorted to using the manipulative instead of a pencil-

and-paper approach. Eve confirmed by saying, 

E:  The problem isn’t easy; you need an external visual mechanism.  

E:  The blocks (manipulatives) make it easier to manipulate and keep track of a solution. 

R:  Do you think you would be able to find a solution without the manipulatives? 

P:  That would be harder. I’m kind of a visual learner and I think this makes it easier for me 

to see where I need to go. 

These data examples show that pattern imagery can be a powerful cognitive resource but there 

are certain limitations to thinking visually. Being able to recognize this is important. The solver 

has to know how when to represent a problem visually and how to process information efficiently 

in order to be successful (Presmeg, 1992). In the case of Problem 3, using an external visual 

medium (i.e. the manipulatives) supported the process of visualization. Without this mediating 

medium, it would have been difficult to find a solution. 

4.3.	  Do	  Participants	  Gesture?	  

The goal of this section is not to provide an explicit detailed account of mathematical sense 

making and the role of gesture therein. Instead the goal is will be to present an alternative sketch 

to the traditional pencil – and – paper view of math. By traditional math I’m referring to the 

application of memorized algorithms or procedure/techniques to solve problems often in silence. 

In this section I will illustrate how gesture and talk is not an isolated cognitive aspect of thinking 

(Arzarello, Paola, Robutti & Sabena, 2008). In isolation this aspect has limited scope, but against 

the backdrop of problem solving, gesture and words can support thinking processes of individual 



58 

 

sense making and reasoning (Arzarello et. al., 2008; McNeill, 1992; Radford, 2009; Alibali, 

2005; Edwards, 2009). I shall show how gesture and talk contribute to the process of sense 

making and further elaborate how imagery (drawing, sketches) provides an essential mediating 

role between the two.  

Paul - Problem A: 

One problem that shed light on the relation and role of gesture and visualization for mathematical 

thinking came in the last session and from warm-up Problem A. For Problem A, Paul started by 

reading it aloud. He then got up and went over to the whiteboard. He reread the problem and 

started to explain,  

P: So first I would probably try to find a goal so I would need to get to some kind of square 

(draws a square) and now if I add odds ... So I’m just trying to see how this would work out.  

He begins to label each side using the letter A, B respectively (see Figure 23 below).  

 

 

Figure 23: Paul’s Initial Attempt 

P: I’m just trying to visualize two examples so maybe that’s not going to work.  

Paul’s first attempted to solve this problem was to keep an outline of a square diagram and then 

populate its outer dimensions using smaller line segments to represent the odd numbers 1, 3, 5. 

He soon realized this was not the best way and was encouraged to solve the task again. I pointed 

out that he was free to use any of the materials provided. He stood there for a while thinking in 

silence.  

P: Yeah, so uhmm a square (speaks under his voice) the four is a square, the nine is a square 

and the sixteen is a square. “OH! OK (has an Aha! Moment).  
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He looked around (full of confidence) and decided to go for the manipulatives.  

P: So now I’m thinking of adding squares. So it’s like one (puts down one block) and then I 

have three … and then I add around it, three and so on (see figure 24 below).  

He opts for similar colored blocks as manipulatives and places these around the unit block.  

1 2 3 

1 2 4 

1 3 5 
Figure 24: Paul’s Insight 

P: And now if I, Oh! OK, yeah, yeah, ok now it makes sense! So basically there’s the one, 

then I add three around it (gestures with his figure in a clockwise motion) then the next around 

this side would be five, and then this should be seven. Yeah so it is always the length, yeah OK 

(refers to the outer blocks as the lengths).  

 

During the session I asked,  

R:  What made you see the solution? At one point the solution seemed to suddenly appear to 

you.  

P: I think all of a sudden I realized that … well I was thinking more of, really in terms of 

squares. So a square [...] and then perfect! Four. And then in my image, in my mind, all of a 

sudden the image appeared of four blocks (uses his fingers to gesture the appearance of his 

image, see figure 24 above). 

R: Ah! Nice. 

P: And, and the one plus three! I realized that it’s actually like one and then three around it 

and then the next line.  

He uses his left index figure to represent the unit block and then use the other in a single right and 

downward motion over this unit block (see Fig. 25, 26, 27, 28 below). He repeats this motion 

over the newly formed square and so on.  
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P:  So it was visual somehow in my head.    

 
Figure 25: Paul’s Gesture 1 

 
Figure 26: Paul’s Gesture 2 

 
Figure 27: Paul’s Gesture 3 

 
Figure 28: Paul’s Gesture 4 

 It was interesting to note Paul’s explanation of how the solution came to him in the form 

an image. First he saw a two-by-two square (Fig. 25) then all of a sudden something clicked in 

his mind and everything became clear. He realized that there were three other squares 

surrounding this bottom left square (see Fig. 24 above). He gestured using his right index finger 

in a clockwise motion to depict how he saw that the pattern repeating as the square becomes 

bigger. In comparison, Olga did the same in the form of a drawing except she went down and the 

across. I can only speculate that the orientation in space of these square figures and the gestures 

that accompanied them, i.e. Paul positioned the first block at the bottom left hand corner (see Fig. 

24 above) while Olga positioned her first block in the upper left corner in her sketch (Fig. 4), can 

be attributed to how we perceive, internalize and structure spatial orientation and relations as 

images in our heads (Johnson, 1987). This evidence suggests that mathematical thinking does 

make use of embodied repertoire of images i.e. properties/characteristics of concrete objects that 

we internalize and store as image schemata. And the way we sketch or manifest these mental 

images shows that there are variations in the way we perceive these or how our mind’s eyes see 

them. In this case, we see that Paul did make use of a mental two-by-two square (original insight) 

to make sense of the general pattern. He was able to further confirm this pattern using the blocks 

as manipulatives. This data example sheds light on how visualization is a resource tool in the 

process of making sense, analyzing and attaining further understanding of mathematical patterns 

that may not otherwise be so obvious. 

The role of gesture in this example served mainly as a medium through which Paul was able to 

explain, justify and reinforce his reasoning. It was only when I asked Paul to explain how he got 

the solution that he began to gesture the image he saw. Initial he drew a schematic diagram on the 

board and then attempt to figure out why the pattern worked without gesturing. But it was until 



61 

 

he had obtained his insight that he enthusiastically gestured while explaining the image he saw. 

What the analysis shows is the role of gesture in explaining and thinking. It suffices to say that 

explaining does involve thinking and so it can be argued that Paul gained further understanding 

of his reasoning by justifying why this pattern works through gesturing. The evidence indicates 

that Paul’s image guided his finger gesture. The image and subsequent pattern he saw emanated 

though the movement of his fingers. In essence he was thinking through his actions and words 

given his image. There were instances during this gesturing process where the tone of his voice 

intensified. He became louder marking a change in variation signifying that ‘aha! Moment,’ 

followed by a more swift and subtle movement in his fingers. For example when he uttered “and 

the one plus three!” From Paul’s activity we see the intricate relationship between visual 

memory, gesture and words working together to reinforce deeper understanding.  

In the previous two sections I dealt with the role of visualization and gesture in establishing 

meaning. These example data show that visualization and gesture can be important resources in 

making sense of the mathematics. One can argue that these problems could have been explained 

or further understanding established without the need to gesture as evident by Jon and Kara’s 

algebraic solution to Problem B and Problem 2 respectively. I agree. However, the accounts 

discussed here shows that graduate students do visualize and gesture when reasoning. They do 

make use of the concrete. For these participants, use of visualization and gesture became 

resources in the process of sense making and reasoning. Interestingly enough, even research 

mathematicians with years of experience do visualize and gesture. Sinclair & Tobaghi (2010) 

have showed that mathematicians do use gesture when conveying dynamic diagrams (for 

example the notion of time, location and motion). 

The last three sections of this chapter will now focus on affective states of mind that enabled or 

constrained the sense making process of individuals. I organize the discussion around themes that 

emerged from the problem solving sessions and post-interviews. 

4.4.	  A	  case	  of	  Being	  Reluctant	  to	  Think	  Informally	  

Session 02; Kara: 

This session was different from the others in that only one of my two participants was able to 

show up for that day. The other was unfortunately not able to make it. So for that day I went 
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ahead and worked with this one participant. After briefing Kara on the think-aloud protocol we 

moved forward with the warm-up problems to get her comfortable expressing and externalizing 

her thinking. I asked Kara if she would kindly read the first Problem A aloud. She agreed and 

then she went silent for a couple of minutes reading the problem quietly while trying to 

understand what the problem was asking. Below is a description of her attempt to solve this 

problem. 

K: (After about 2 minutes she sighed) “No, I don’t really understand it. … So what, do you 

… do you need a proof of this? Uhmm.  

Early in the interview it became apparent that she was puzzled about the question. So without 

trying to give away too much I explained.  

R: It’s just saying that there is a pattern here. Actually what do you think? … Have you seen 

this problem before?  

K:  No, no, it seems unusual.  

R: Do you understand what the task is asking? (After a moment of silence she responded)  

K: Yes, its asking, like say uhmm ... adding up the odd numbers ... uhmm gives a square, 

square.  So …   

I encouraged her to feel free to use the whiteboard if it would help. Without speaking further, she 

moved over to the board and began writing down the following: 2n - 1, n ϵ (1, 2, 3, ...). I noticed 

that Kara did have a solid math background from my observation of her formal- proof-style 

approach at starting this problem. This made things a bit more interesting in that I had to gently 

coax her to pause, step back, and explore the problem without relying heavily on formal 

mathematical procedures. I observed this tendency throughout the session. I asked if she would 

start off with a simple example instead. She agreed. After copying the pattern on the board she 

stared at it for quite some time without advancing.  

K: (She then exclaim) There is a pattern. I don’t actually know how to prove this.  

I gently offered the use of the manipulative as an alternative to help her get started.  
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R:  Here are some manipulatives if it helps. 

K: Seriously? (She laughs a bit sarcastically) We are … we are actually going to start to form 

a formal proof using manipulative? I don’t … I don’t really understand exactly what I have to do. 

But... 

R:  Maybe if you could use these objects here it might help you to … 

K:  Prrooove? (She responds doubtfully). 

She kept looking at the board for several minutes. Her activity did not move beyond a futile 

attempt to understand the conditions of the problem. She eventually resorted to using formal 

mathematical techniques but then stopped. She eventually exclaimed, “Damn (nodding her head), 

I’m stuck. I don’t know.” I gained the impression that Kara was very much attached to the 

formalistic approach to solving and was reluctant to explore the problem by considering the use 

of drawings, manipulatives etc. despite my encouragement. It seemed that meta-affect (feelings 

about her attachment) caused her to feel uncomfortable and constrained her ability to explore this 

problem in the absence of a formal language. It was not possible to investigate her exploratory 

approach to sense making in any phase beyond that of preparing and trying to figure out how to 

proceed with solving the problem.  

Kara’s reluctance to make sense of this problem using informal thinking may be associated with 

her understanding of what mathematics involves - her opinions and views of what mathematics 

is. It appeared that Kara considered the use of manipulatives or drawings as not a constituting a 

formal proof. Her reluctance to use them perhaps was a limiting factor in her ability to gain a 

more full understanding of the situation the problem presented.  

This reluctance to use informal thinking does not mean that Kara does not know how to go about 

reasoning informally when attempting to make sense of these sorts of problems in the absence of 

a fixed algorithm. On the contrary, for Problem B and Problem 2, she did resort to a visual 

method but only when told to consider another approach other than algorithms. Although she 

realized that such approaches could be quite useful, she prefers or is unwilling to use informal 

thinking on her own accord. This was confirmed in the post-interview. Below are excerpts of her 

views and comments, 
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Kara:  I did prove the first one using math induction. It was easy, but I needed the silence of my 

room and the formal math language that I understand. I tried to figure out the last one that day, 

but I’m not sure how it should be formalized for my brain to process. [...] I think for me the 

difficulty is that we usually are given instructions what to solve and what method to use in math 

so when I have to find the method I have to use without being told what it is - I get confused. I 

don’t usually spend time thinking what does that relate to real world, what it is what we are trying 

to solve.  

She also commented on her attempt to rigorously solve problem 3 - The milk-crate problem.  

Kara: And I don’t think I [...] remember anything from permutations computation so I do not 

think that I have enough knowledge to have a rigorous solution of the last one. However, I did 

some musing on paper, I will give it to you later if you want.  

Below are her attempt at rigorously prove Problem A and Problem 3. 

 
Figure 29: Kara’s rigorous solution to Problem A 

 
Figure 30: Kara’s attempt at Solving Problem 3 

In the first image (figure 29), Kara formalize and generalized the solution to Problem A using 

binomials and the technique of math induction. In the second image, she made attempts at using 

matrices and the sum of matrices (i.e. formal notations) to establish a rigorous proof to justify all 

possible solutions to Problem 3 – the milk-crate. She did not completely prove Problem 3 but it 

was interesting to see her attempt at generalizing all possible solutions using the formal language 

of mathematics. Kara was one of the only participants to take this approach.   

The reluctance to explore a problem without the use of a formal procedure has roots in the 

traditional view of what is mathematics. As discussed in the literature review, this cultural view is 
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dogmatic. What I found interesting though was that this view has the potential of narrowing one’s 

approach to solving. In the case of Kara, problem solving was one-sided, she held on to the view 

that she needed to think abstractly in order to solve rather than taking on an exploratory approach 

in order to make sense. For her, drawings and the use of manipulatives does not constitute 

mathematical thinking. Yet in contrast, as evident from others’ exploratory approaches, informal 

thinking can provide insight - a pattern, which could then be extended and generalized in the 

process of making sense. Take for example Olga’s diagram or Jon’s written pattern to Problem A. 

Both of these writings can be coupled with numerical analysis to deduce a more formal proof.  

This observation made me question the nature of mathematical thinking and the origins of 

mathematical ideas. Which comes first, formal thinking or informal/exploratory thinking? What 

are the consequences to teaching students the former? How do professionals practice 

mathematics? Is their thinking really all formal or is there an exploratory/informal component to 

their sense making? Sinclair & Tabaghi (2010) have found that “contrary to the formal, written 

mathematical discourse, mathematicians [do] use both language, [imagery] and gesture to convey 

a sense of motion and time in their thinking” (p.238). Certainly further empirical data on this 

topic could help inform teaching practices. 

4.4.1.	  Views	  About	  the	  Nature	  of	  Formal	  Thinking	  and	  Sense	  Making.	  

One interesting and related theme that emerged from the research data were participants’ 

perspective of formal vs. informal thinking in the process of sense making and how these may 

enable or constrain an individual’s solution processes.  I thank my camera assistant for capturing 

some of these moments by keeping the cameras rolling long after the participants had finished 

solving. A recurring pattern that I noticed was that after each session, some participants started 

commenting on how they enjoyed the idea of getting to explore a problem and not having to 

reference some memorized formula. Seeing this as an interesting mathematical point of view, I 

followed up on it through discussions in the post-interviews. Below is an excerpt of one 

participants’ perspective.   

Eve expressed the following sentiment: 

E:  I believe it is something almost pedagogical; teachers don’t often emphasize teaching by 

taking a problem and having the student come up with the solution on their own. They just give 
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you a bunch of formulas and tell you to apply them. Take for example the answer to the man and 

his two sons (Problem A), I never would have thought about solving this problem without using 

algebra, yet it is possible to do it! (Participant laughs) It wasn’t until you told me not to use a 

formula that I began to visualize what was going on inside my head. The answer came to me 

quite easy and when I explain how I go it, the solution was so simple and it made complete sense 

to me! 

R: Why do you think that is the case? 

B: Well it might have to do with the fact that we aren’t given enough time to think about a 

math problem long enough and being told not to use a formula. 

Another participant in another session expressed a similar sentiment. Below are some of Tom’s 

thoughts on the topic. 

T: Hundreds of years ago, mathematics was done using simple tools, drawings in the sand. 

That was mathematics [...] today we think of algebra or trigonometry … as ‘math’ (uses fingers 

to quote the word ‘math’). And playing in the sandbox is for kids or something (looks away a bit 

sad, folds arms). That’s a different uhmm … culture. 

R: It is a different cultural perspective. I agree.   

T:  And uhm... cause I use to get, be hard on kids who use to say ‘I’m no good at math.’ Well 

what is math to you? You seem to be pretty good on playing the piano, you seem to be pretty 

good at painting, perhaps if you see these statistics (referring to people's view and fear of math). 

It is a little misleading maybe (chuckles). ... How do you define mathematics?  

R:  You raise a good point and question actually. After reading, and even from my own 

experience as an educator, I now realize that kids have become accustomed to the idea of 

formulas, algorithms or procedures.  

T:  It’s kind of being given an equation. …  

R:  An equation, that’s math for them. And it made me think about why they would view 

math through those lens? … And now a large part of it is that our first contact with math is 

through schools.  
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T: Yeah and the curriculum. It’s in a book that has a plus sign and a minus sign. 

R: And so a lot of times we assume math is not ‘playing in the sandbox’ like what you said.   

T: Yeah. But I think if you would’ve ... Archimedes. Archimedes for example who is able to 

estimate Pi pretty closely given what he had. Everything he did was in the sand, with pebbles. 

E: I believe students who are good at math are those that figured out how to make use of 

their intuitive senses. And that is why they understand the algorithms better than most. 

There is something about working in a ‘sandbox’ space that lets you play around and explore. It 

is a space where you can be playful and experimental. A critique on mathematics education is 

that there is so many structure and rigidness. Sometimes teaching to the test limits opportunities 

to be in that ‘sandbox’ space as Tom commented. This notion of a ‘sandbox space’ in computer 

science serves as a place to explore and try something without risk. It allows you to be in a space 

where you are working through your ideas. In a sense it is about teaching yourself. In some ways 

when you are in that space you are experimenting and exploring without being so attached to the 

end result (i.e. providing the right answer).   

Most participants carried the sentiment that if they had been encouraged to explore math and to 

discover the methods on their own by reasoning and making sense, then they probably would 

have enjoy the process a lot more. This is so interesting, as a large percentage of the population 

don’t like and even fear math (Tobias, 1991).   

4.5.	  Affect:	  Present	  Moment	  Mindedness	  and	  Letting	  Go	  

One of the most fascinating themes that I came to observe from my research data on problem 

solving with regards to affective states was this notion of present-moment mindedness. I came to 

realize that my participants, in solving Problem 3 (the milk-crate problem), were able to enjoy the 

process of solving without feeling anxious or fearing failure. 

While solving this problem none wanted to give up finding a solution. They were persistent, 

focused, and when they finally found a solution – ecstatic. I wonder what conditions made this all 

possible? What made this affective state of present-moment mindedness possible? I certainly 

didn’t know what to make of it. So I started to search for supplementary literature to support 
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these observations. Over the next weeks, I certainly did locate some that stood outside the realm 

of mathematics education. The books I came across such as: My Stroke of Insight: A Brain 

Scientist’s Personal Journey (Taylor, 2006), The Power of Habit (Duhigg, 2012), and The 

Practising Mind (Sterner, 2005) all shared common cognitive aspects: letting go, being in the 

present moment, being process-oriented and not goal-oriented. To get an idea of what these 

notions mean in the process of solving, consider any act of practice, for example the act of 

playing the videogame - Tetris. While playing, your entire focus and energy is devoted to the sole 

act of playing (Sterner, 2005), i.e. filling in the available spaces with the most appropriate block. 

In this moment, your mind is no longer wondering about any thoughts about the past or future, 

thoughts about what might happen or not happen you are in a space that allows you to try 

something without risk or failing to meet expectations. You even ignore the scores on the screen 

and your inner brain chatter (Taylor, 2006; Sterner, 2005). You’re simply entrenched in the 

process. Most of your focus and energy is directed on the act itself, not the end result.      

I soon found myself asking: What makes this possible? Is it just the nature of the problem itself? 

Can this mindset be consciously entered into when solving? In my quest to answer these 

questions I came across Sterner’s (2005) perspective on the nature of this meta-cognitive 

affective state of mind. According to Sterner, a medium that allows you to let go of expectations 

helps to achieving this mindset. He associates four components to this medium. He calls these the 

four “S” words: Simple, Small, Short, and Slow. He explains these components as follows: 

Simple: For any complex task, keep it simple; break it down into very small 

systematic parts.  

Small: Make each sub-part small. The brain becomes more focused this way. 

Short: Ensure that the time taken to execute this small task or act is short.  

Slow: When engaged in the act itself, deliberately do it slow, don’t rush. (p. 124 - 

128) 

I took these and compared it against the act of doing problem 3 and I realize that there is a certain 

degree of playfulness to this problem that helps achieve these conditions. There are certain 

elements that make this problem enjoyable. It has a visual, tactile and affect component to it. 
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Visually you are testing a possible solution by visually checking to make sure that the 

manipulatives are in the right spaces. It’s tactile - you are physically moving and feeling 

(kinesthetically and visually) the manipulatives with each attempt at finding a solution. This 

process, I came to realize, is equivalent to moving pieces on a chessboard. Tom commented on 

this process saying, “I’m seeing and using horizontal and vertical lines to test to make sure that 

each row and column has an even number of objects.” Chess players call this using ‘lines of 

forces’ (Presmeg, 1992). Finding a solution was not carried out by brute force, it was logical and 

the medium participants used as a space to move and test a possible solution carried with it a 

concrete-visual-tactile feel. I conjecture that this is one reason problems such as this are 

enjoyable.   

Eve expressed the following sentiment, “I like this one because it is not necessarily numeric. It 

has a nice mixture of logic to it. This one has a visual and probably has something to do with 

factors. It makes you think logically and mathematically about finding out.” The visual/tactile 

component of this problem provided participants a playful space where they could explore and 

try something logical without risk and not be so attached to having a fixed method to solve. 

Letting go. 

By letting go of the expectation of having the ‘right’ algorithm or procedures to attain ‘the 

correct’ answer, participants became more engaged in the process of solving Problem 3. In so 

doing they were able to gain a deeper appreciation and respect for their own mathematical 

thinking. Participants at certain instances experienced what Liljedahl (2005) refers to as an Aha! 

Moment. These moments are not only reserved for the upper echelons of practicing 

mathematicians (Liljedahl, 2005, p. 220). It is a very experiential and crucial part of 

mathematical thinking. The data example involving Olga, Jon and Kara’s solution process to 

Problem 3 reflects closely the experiential process mathematicians undergo when they discover 

patterns or ideas by their own accord. I conjecture that one prerequisite to this affective state of 

present moment mindedness is being in medium that allows you to freely explore and let go of 

the expectation of having ‘the right’ algorithm or being accountable for ‘the right’ answer. 

Problem 3 certainly presented that medium.  
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Of course one can argue that this act of manipulating objects does not involve solving a math 

problem. I argue that it can be once you start to analyze the various configurations of patterns that 

are possible and coming up with a mathematical explanation. Kara certainly tried this. But again 

what is important is the exploratory process and conditions that stimulate encouragement to then 

further explore and think abstract. What I observed from participants solving Problem 3 was 

calmness, excitement, enjoyment and ecstasy when the finally found a solution. It appeared as if 

though getting the ‘right’ answer no longer mattered, what mattered was the act of thinking itself. 

Perhaps any mental activity of this type does. This type of problem is equivalent to moving 

pieces on a chessboard or playing a game of Sudoku, it requires logic and visual reasoning.  
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Chapter	  5:	  Discussion	  and	  Conclusion	  

In this final chapter I discuss the research questions in light of the results presented in the 

previous chapter, making further ties with the literature discussed. I also make some 

recommendations based on the evidence obtained for the teaching and learning of mathematics 

with understanding. I will end with recommendations for further research in the area of sense 

making and problem solving, highlighting possible avenues for further study. 

5.1.	  Reflecting	  on	  My	  Research	  Questions	  

At the start of this research, I was guided by the desire to understand the process of sense making 

through the process of solving non-routine problems. I had a desire to answer the questions: a) 

What role do visualization, gesture, and affect play in supporting mathematical reasoning and 

sense-making? b) How do these resources aid the process of sense making in problem solving in 

the absence of pre-determined algorithms? 

I therefore designed a study that would enable me as a researcher to explore learners’ sense 

making when faced with non-routine problems that made little use of predetermined algorithms. 

The main objective was to identify the role of visualization and gesture and affective states that 

enable or constrain the process of sense making. To do this I explored the process of sense 

making through a think-aloud protocol (Ericsson & Simon, 1993) coupled with meta-cognitive 

prompts (Anderson, Nashon & Thomas 2009).  

5.2.	  Answers	  to	  My	  Research	  Questions	  

Recent research in mathematical thinking and sense making has highlighted the significance of 

the body in the process of mathematics teaching. However, not much is offered about the 

cognitive components: visualization, gesture and affect in sense making. The goal of this study 

was to examine the role that these cognitive processes played. From the analysis of the data I 

gathered, I discovered the following: 

Visualization: Pattern Imagery grounds how we perceive physical spatial relations in the real 

world as image schemata for use as a resource in the process of making sense of more abstract 

mathematical patterns. From the evidence provided in these data examples, we can see that 

participants do make use of certain images that have their origins in human bodily experiences 
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(Lakoff & Nunez, 2000; Johnson, 1987; Nunez, 2000). These images are referred to as image-

schemata that organize our understandings of spatial relations at a level more general and 

abstract.  For example, figures 4.1 and 5.0 as used by Olga and Paul respectively in solving 

Problem A depict the spatial relation of squares in the form of a pattern imagery which provided 

the initial insight to make better sense of the formal mathematical pattern. These images helped 

to ground their understanding of the pattern at a level that is more general and abstract.  

I came to observe pattern and schematic imagery, images stripped of details, (Presmeg, 1986; 

1992; Giardino, 2010; Presmeg & Balderas-Canas, 2001) throughout most of the sketches the 

participants made (see figures in chapter 4). In this regard, image-schemata played a large role in 

sense making by serving as a suitable visual mediator from which images could be drawn to gain 

insight about the general mathematical pattern of these non-routine problems. Without this 

pattern imagery insight into Problem A, for example, a solution may not have been attained. 

Therefore pattern imagery is a powerful cognitive resource in the process of sense making of 

abstract patterns by organizing spatial relations at a level that is more general and abstract.  

Gesture: I was able to observe that speech and gesture do play a role in sense making. Gesture, as 

I observed it at certain instances in these examples from my data, aided the clarification and 

conceptual explanations of ideas. Kara and Paul’s solution to Problem 2 depicted the use of what 

McNeill (1992), and Nemirovsky and Ferrera (2009) refer to as deictic gestures (pointing to 

existing or virtual objects). Both made reference to a virtual object and location in their solution 

process to help clarify and make sense of their solution in hindsight. This type of gesturing 

allowed for an alternative medium to further explore, encode and organize spatial and perceptual 

information. By gesturing in this manner, both participants were able to further flesh out and 

confirm with certainty their solution to Problem 2 given their images.  

For example, Paul was able to further clarify his understanding of the pattern he saw to Problem 

A and his solution to Problem 2 by gesturing and explaining. In this regard, visual imagery 

coupled with gesture and talk help to clarify and reinforce his understanding of the imagery that 

guided him to a solution. By gesturing and explaining he was able to convince himself why these 

solutions make sense. Use of gesture and speech acts in this regard offer a medium through which 

thought can be shaped, reinforced and meaning established (Nemirovsky & Ferrera, 2009; 
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Radford, 2009; Arzarello et. al., 2009; Alibali, 2005; Edwards, 2009). This is further evidence 

that gesturing does play an important role in sense making.    

It is clear from the research data that in solving a problem in the absence of formulas, participants 

do resort to visual imagery specifically pattern imagery and use of gestures to break the gridlock 

when they encountered cognitive obstacles in their attempts to solve. In so doing the participants 

came to make more sense of the mathematics and in some instances, as in Problem 3, enjoyed 

and experienced the joy of accomplishment when they finally got a solution by their own means. 

Affect: In terms of affective states that enable or constrain the process of sense making, 

participants’ comments, from the discussion in chapter 4, highlights the role that formal abstract 

teaching may play in whether a student chooses to make meaning for themselves by making 

sense of what’s happening within the mathematics. “I believe it is something almost pedagogical; 

teachers don’t often emphasis teaching by taking a problem and having the student come up with 

the solution on their own. They just give you a bunch of formulas and tell you to apply them.”  

Eve said. This is a common perspective that students adopt. “[...] students learn that answers and 

methods to problems will be provided to them, the students are not expected to figure out the 

methods themselves (Schoenfeld’s 1992, p. 343). The overemphasis on use of pre-determined 

algorithms and procedures at all levels of schooling may be the reason why students are reluctant 

to explore problems for themselves and rely on their own sense making abilities – visualizing and 

gesturing. In the case of Kara, this debilitating meta-affect perspective was so strong that she 

could go no further in solving problem A.  

In addition, I came to observe the affective state of present moment mindedness and the notion of 

‘letting go’. There is something liberating about having the freedom to explore by not being 

bounded to a fix formula, having the pressure of presenting a rigorous solution or the ‘right’ 

approach. By not focusing so much on a pre-determined formula or procedure, participants 

evoked their own sense making abilities which in turn help boost their confidence in solving even 

when doubt arose (e.g. Paul’s solution of Problem A). Without the strong belief that an algebraic 

solution was required, participants were more open to explore a problem using their own sense 

making ability. This affective state of not feeling pressured in having to memorize and apply the 

‘right’ formula to solve, helped participants build confidence when making sense of a problem by 

their own means. 
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In addition the visual/logical/tactile component to the milk-crate evoked that affective state of 

present moment mindedness that enable participants to keep at the problem until they had found a 

solution. The presence of this affective state in finding a solution to Problem 3 was a central 

aspect of participants’ sense making processes. This meta-affect was most noticeable in 

participants’ persistence to not giving up and being enthusiastic about finding a solution. They all 

had an AHA! experience which had a transformative effect on participants affective domain, it 

instilled the positive beliefs about their abilities to do mathematics. 

5.3.	  Recommendation	  and	  Implications	  for	  School	  Practice	  

One goal of this research was to inform my own practice of teaching and learning mathematics 

for understanding. The results obtained point to central cognitive resources important for success 

in problem solving: visualization, gesture and affect. Based on the observations I made, I would 

recommend the following, 

1. Nurture students’ ability to visualize 

When it comes to mathematical reasoning and logic, it has been suggested that visualization, to 

some extent, plays a significant role (Presmeg, 1997). This is not surprising considering 

mathematics is a field containing graphs, schematic figures/diagrams, symbolic inscriptions, etc. 

Brown and Wheatley (1997) emphasize, the ability to visualize patterns and mathematical 

relationships are sometimes necessary for successful problem solving. Educators need to be 

aware that students do visualize and gesture when thinking mathematically. Visualization, gesture 

and affective states are cognitive components that enable or constrain the process of sense 

making. 

As evident by some of the participants’ solution processes, most made use of schematic imagery 

to yield insight. So when required to solve non-routine problems, students may be at a 

disadvantage if they are unable to construct and make use of appropriate visual intuition in the 

absence of predetermined mathematical procedures or algorithms. This study shows that there is 

value in being able to explore and think in terms of schematic and pattern imagery. It is important 

for students to be exposed to problems that help nurture and cultivate this aspect in their thinking 

and to develop understandings of how and when to reason with them. Teachers need to recognize 

the value and limitations of such images in order to assist students establish links between 
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analytic and visual reasoning. In the case of Jon’s approach to Problem A, knowledge of knowing 

what to look for in a schematic pattern and knowing how to couple this with analytic reasoning 

shows that experience with both imagery and analytical reasoning is a determining factor that 

may enable or constrain the solution process of an individual.  

2. Use non-standard problems when possible. 

Developing an exploratory approach to problems solving through a ‘sandbox’ space allows you 

to freely utilize your own sense making abilities without fear. Those participants who were able 

to find a solution, for example to problem 3 - the milk crate problem, didn’t feel pressure of 

having to memorize a formula, algorithm or mathematical technique when searching for a 

solution. Fixed algorithms or procedures with little context have very little meaning to students. 

In fact, most of the times students have very little understanding of the inner workings of a given 

algorithm perhaps because they aren’t the discoverer. Encouraging learners to discover 

mathematical patterns by providing students non-routine problems that carry with it a 

visual/logic/kinesthetic component helps evoke their own individual sense making abilities. In so 

doing they can get to appreciate the process of self-discovery and the AHA! experience 

associated with it. These non-routine problems should also be coupled with meta-cognitive 

prompts (Can you draw a picture? Explain what your thinking? Why does this approach work? 

Can you figure out another approach?). 

It was interesting to note the excitement and joy my participants experienced while exploring 

these problems by not having to rely on a predetermined formula. Formal abstract thinking and 

writing can come after once learners are able to establish deep understanding by reasoning and 

making sense of what’s happening within the mathematics. I’d like to conclude this section by 

stating that teacher, whenever possible, should take time to get to know how their students think, 

one problem, one moment at a time.  After all, the more informed educators are about individual 

sense making the more they’ll be able to help their students. Educators should make every effort 

to do so. 

5.4.	  Thoughts	  for	  Future	  Research	  

This research offers a contribution to the field of mathematical thinking and problem solving by 

providing evidence through data examples that participants do visualize, gesture and experience 
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certain affective states (present moment mindedness) while solving. It also highlights the role of 

these aspects in thinking in enabling or constrain the solution processes of individuals when 

making sense and synthesizing meaning. The findings show the close relationship between these 

cognitive resources in thinking. Especially the affective state of present moment mindedness 

associated with thinking, something that I consider to be relatively new to research on affect in 

mathematics education. 

The findings in this study need to be corroborated and in some cases further developed and 

substantiated by more empirical data. For example, the notion of present-moment mindedness 

that was observed in Problem 3 reflected the mindset of these participants. And though 

observations are limited to these problems, I am confident that analysis of different non-routine 

problems and a larger sample would yield similar themes. The data in general was collected 

under the conditions of a think-aloud protocol, a specific problem set and post-interview 

protocols thus limiting generalizability of findings. Nonetheless these allowed for in-depth 

analysis of participants’ solution process in the form of data examples. I’m confident that should 

this model (think-aloud protocol, similar types of non-standard problems) be replicated with 

larger and more diverse sample, the findings would be close to the results obtained in this study – 

use of schematic imagery, use of gestures, the relationship between visualization and gesture, and 

the affective state of present moment mindedness. Developing taxonomy of non-standard 

problems (see Appendix A) that evokes an individual’s visual/logical thinking and this affective 

state of mind is something to consider for further research. 

Finally, in the case of some participants’ reluctance to visualize and think informally, I pointed to 

possible reasons why this is sometimes the case. From this, future research can further explore 

more generally meta-cognition and meta-affect as to why this is the case. In so doing data could 

reveal more about the nature of meta-cognitive and meta-affect components central to the 

mathematical reasoning. 

5.5.	  Final	  Thoughts	  

Within the educational perspective, I advocate the need to take into account the various 

individual cognitive resources learners come to rely on in the process of making sense. These 

cognitive components include visualization, gesturing and certain affective states. The interplay 
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between these resources unfolded against the backdrop of an exploratory approach to solving 

rather than strict pencil-paper algorithm based math. The analysis presented in this study 

illustrates how individuals come to visualize, gesture and think while solving a given non-routine 

problem. Despite the small sample this research shows the prevalence of visualization, use of 

gesturing and the value of present moment mindedness and letting go.  

More importantly, research in mathematics problems solving needs further empirical 

investigations on the role of visualization, gesture, speech and affect as cognitive dimensions of 

mathematical thinking through theory and analyses of participants’ mathematical activities. If 

these resources are interrelated and flow back and forth into one another then understanding this 

process more generally can certainly help inform the nature of mathematical thinking. 

I came to observe the notion of present-moment mindedness, a meta-affect component of 

thinking, responsible for minimizing fear of failure and spurring excitement and focus while 

solving. It would therefore be very exciting to study the nature of this mindset while solving 

similar types of problem as Problem 3 and the conditions therein. Research in this area of meta-

affect would certainly be a worthwhile endeavor especially considering the ample literature in 

cognitive psychology that supports this as a component of meta-cognition. This is one aspect of 

cognition that may enable or constrain success in mathematics. As such, research in mathematics 

problem solving should draw insight from fields like cognitive psychology, neuroscience, brain 

chemistry etc. when exploring this aspect of cognition. It was indeed quite interesting to observe 

how this aspect of cognition works to make problem solving a successful, enjoyable and 

rewarding experience. Further empirical data about this aspect of meta-cognition through 

analyses of students’ problem solving process can inform our teaching practice. 
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Appendix	  A	  

Problem Set 

Warm-up Problems 

A) “Perfect Squares”  

If you add together odd numbers from one upwards you will always get a perfect square.  

1+3 = 4; 1+3+5 = 9; 1+3+5+7 = 16 … Can you think of a way to prove that this must always be 

the case? (From Puzzlegrams, 1989, p.113) 

B) “Father and sons”  

A man has 2 sons. The sons are twins; they are the same height. If we add the man’s height to the 

height of 1 son, we get 10 feet. The total height of the man and the 2 sons is 14 feet. What are the 

heights of the man and his sons? (From Sawyer, 1964, p. 40)  

Additional Warm-Up Question 

1) “Hundred squares” 

How few straight lines are required on a page in order to have drawn exactly 100 squares? (From 

Mason, Burton and Stacey, 1985, p. 175) 

Non-routine Problems 

1) “Summation”  

What is the sum of the following series? 1 + 2 + 3 + … + 98 + 99 + 100. (Art of problem posing) 

2) “Field of cows”  

A 10 by 10 square depicts a field with just enough grass in it to feed 100 cows. Is it possible to 

have square field with just enough grass in it for 200 cows? Prove it. (in Melrose study, p. 3) 
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3) “Milk Crate” 

A certain square milk crate can hold 36 bottles of milk. Can you arrange 14 bottles in the crate so 

that each row and column has an even number of bottles? (Mason, Burton & Stacey, 1985, p. 

181) 

Additional Question 

1) “Desert crossing” 

It takes nine days to cross a desert. A man must deliver a message to the other side, where no 

food is available, and then return. One man can carry enough food to last for 12 days. Food may 

be buried and collected on the way back. There are two men ready to set out. How quickly can 

the message be delivered without neither man going short of food? (Mason, Burton & Stacey, 

1985, p. 165) 
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Appendix	  B	  

Interview Protocols 

The Problem Solving Protocol 

The goal of this protocol is to get participants to verbalize, gesture and diagrammatically express 

their thinking while solving a given problem. It is hoped that participants’ thinking can be further 

probed using meta-cognitive questions.  

It is anticipated that there will be three aspects to this interview process - a before, during and 

after segment. Before the think-aloud interview protocol, participants will be briefed as follows: 

The focus of this study is to document the process of sense making and your cognitive resources 

at play while you solve each non-routine problem. This does not mean that you need to be a 

“good” problem solver per se. The goal is to take an exploratory approach to solving rather than 

relying on fixed algebraic formulas. Exploring the problem may require the use of strategies and 

methods to generate insight and create meaning, and this process is what I hope to document and 

explore. If you find yourself being inclined to use a fixed formula, I want you to step back for a 

while and see if you can think outside of the “normal” algorithmic routine of solving. Please feel 

free to use the materials provided here. You can also sketch, gesture, move around, role-play etc. 

Any questions? To begin, let’s have both of you stand about two arms length apart in front of the 

smartboard. We will start with two warm-up questions just to have you get comfortable with the 

expressing your thinking aloud. The goal is talk aloud through your thinking. Feel free to 

collaborate and remember, getting the right answer is not the end goal here but rather the process. 

So do not be discouraged. 

Guiding Questions: As much as possible, participant’s responses will guide the researcher’s 

questioning. 

Before: 

1) Have you seen this type of problem before? If so, let’s try another. 

2) Do you already have a formula or a quick way to solve this? If yes, let try another problem.  
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3) Describe how you would begin approaching the problem. What are your initial thoughts? 

During: During this segment, the researcher will encourage participants to use the method that 

comes most naturally to them. The researcher will serve as a facilitator during the problem 

solving process. 

1) I invite you to describe aloud how you are solving the problem. Please describe the process. 

2) Describe the strategy you are using. Walk me through it step-by-step. 

3) Explain what you mean by [...]? Can you elaborate a bit more? 

4) Tell me more about the association X you used here to make meaning/sense in your thinking. 

Why did you choose to use it? 

After: Reflecting on the process 

1) Have you answered the question? Is your answer reasonable? 

2) Can you think of another way to solve it? 

3) Can the result be generalized? Can extend the idea in any way? Explain how you would go 

about doing it. 

4) Describe what you were thinking of at this step.  

5) Describe how you managed to categorize and organize the information here? Is it something 

you saw readily? Describe what was going through your head. What were you ‘thinking’? 

6) Did you feel limited in your ability to gesture or draw what you were ‘seeing’ or thinking 

while solving this problem? Why? 

7) What’s the process like for you, going from ‘seeing’ the picture in your mind to sketching or 

gesturing it? Could you describe this process?  

8) Do you feel that you could have solved the problem without the use diagrams, gesturing or the 

manipulatives? 
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9) If you were to explain how to solve this problem to someone else, explain how you would do 

it? 

10) Is there anything else that I forgot to ask you or that you would like to add? If you need a 

minute to think about it, that’s perfectly fine. It could be a comment or a question. 

Post-Interview Protocol 

After pre-analysis of the video recordings, the researcher will follow up on interesting points, 

emerging themes or issues requiring further investigation or clarification. Where needed, snippets 

of the video recordings will be shown to refresh participant’s memory and to stimulate further 

discussion. All or some of the following questions may be asked.  

Guiding Questions: 

1) For problem N, you did something which I found quite interesting. Here, let’s take a moment 

to see what you did. Here’s what I would want to ask you [...].  

a) Explain what your diagram, is trying to convey. What made you think of this particular 

diagram or why did you use that gesture? 

b) Did this step come to you rather quickly like a bright idea, or did you have to think about it for 

a while? 

c) Explain how the diagram you drew helped to clarify your thinking. 

d) What’s the process like for you, going from ‘seeing’ the picture in your mind to sketching or 

gesturing it? Could you describe this process?  

2) I observed that at this point you [...]. Could you describe what you felt? What were you 

thinking of exactly? What was going through your head? 

3) I recall that at one point you said something along the lines of [...]. Could you kindly elaborate 

a bit more on this? 

4) In your thinking at this point, I noticed that [...]. 

5) How comfortable were you while solving this problem? 
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6) Was solving this problem challenging? What about it made it challenging?  

7) I noticed that at this point were immersed in the process of solving that it seemed you had shut 

off all the tensions of the day and all the thoughts of what had to get done tomorrow? If so, can 

you describe what that moment felt like to you?  

8) How did you feel about exploring the problem rather than having to recall a fixed formula or 

method? How did this process make you feel? Did this approach make you feel more 

comfortable? 

9) Is there anything else that I forgot to ask you or that you would like to add? If you need a 

minute to think about it, that’s perfectly fine. It could be a comment or a question. 
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Appendix	  C	  

The University of British Columbia 

Department of Curriculum and Pedagogy 

Faculty of Education  

2125 Main Mall 

Vancouver, B.C. Canada V6T 1Z4 

 

September 17, 2012 

Dear Participants: 

 I’m currently a graduate student in the Department of Curriculum and Pedagogy at the 

University planning to carry out a research project entitled: Exploring students’ mathematical 

sense making through non-routine problems for my thesis paper under the supervision of Dr. 

Susan Gerofsky. This letter serves as an invitation to participate in this research project. Through 

this study, I hope to gain a better understanding of graduate students sense-making/meaning-

making and the cognitive resources therein in coming to solve non-routine problems. I believe 

that you may benefit directly from reflection on your own problem solving processes. 

If you are interested in participating, I ask that you kindly read the enclosed Consent Form and 

take time to carefully consider the details provided. After doing so, I ask that you return a 

complete consent form with your signature to me no later than one week after receipt. Only those 

who provide written consent will be included in the study. 

Thank you in advance for your time and willingness to consider this invitation. 

Sincerely, 

Myron Medina, M.A. student 

Department of Curriculum and Pedagogy. 
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Appendix	  D	  

Consent Form  

Title: Exploring students’ mathematical sense-making through non-routine problems.  

Principal Investigator: Dr. Susan Gerofsky, Assistant Professor, Department of Curriculum & 

Pedagogy. 

Co-Investigator: Myron Medina, M.A. Student, Department of Curriculum & Pedagogy. 

Purpose: Since mathematical thinking is of a personal nature and this personal aspect is what 

enables or constraints the mathematical solution processes of an individual, through this study, I 

hope to gain a better understanding of how graduate students’ make sense in coming to solve 

non-routine problems.  

Study Procedures: Participants will engage, in pairs, in a think-aloud problem solving session in 

the Faculty of Education building at the University. Participants will attempt to solve a set of 

non-routine problems and will be interviewed while they do so. All written work will be collected 

for use as data for the study. The research also involves one post-interview session of about 40 to 

60 minutes. The interview session will take place several days after preliminary analysis of data 

at a designated location and time convenient to the participant. With your permission, each 

session will be video recorded with a copy of the interview transcript provided to you upon 

request. I anticipate that you would need to commit 40 to 60 minutes per session for a total of two 

sessions.  

Potential Risks and Benefits: There are no known risks associated with this study. I will be 

sensitive to your needs during the interview sessions and you are able to leave at any time. I 

believe that through your participation, you may benefit directly from the additional reflection on 

your meta-cognitive ability in solving non-routine problems. 

Confidentiality: Names of participants will be kept confidential. Pseudonyms will be assigned to 

each participant in the research for identifying data sources and reporting of results. The results 

will only be used for academic publication(s). The data acquired will be stored in a password 
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protected computer or a locked cabinet accessible only to the investigators for a period of five 

years after which all data will be destroyed.  

Contact information: If you have any questions or desire further information about the study, 

feel free to contact Myron Medina (co-investigator) or Dr. Susan Gerofsky. If you have any 

concerns about your treatment or rights as a research participant, please telephone the Office of 

Research Services at the University.  

Consent: Participation is completely voluntary. Participants can opt out at any point during the 

research, upon which time all data pertaining to the participant will be destroyed. Please indicate 

whether you agree to participate in this research project by signing the attached Consent Form 

and kindly returning it to the investigator. Kindly retain the attached copy for your records.  
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Consent Form 

RESEARCH PROJECT: Investigating graduate students’ sense making through non-routine 

problems.  

I have read and retained a copy of the Consent Form and have had my concerns and questions 

answered to my satisfaction. Under the conditions outlined in the Consent Form, I agree to 

participate in this research project. I consent to the video recording during the think-aloud session 

and during the post-interview. I consent to have my written work and recordings related to the 

problem set to be used as research data. I understand that in any papers, publications or 

presentations from this study, my name will not be revealed. 

 

____________________________________________________ 

Subject Signature     Date 

 

____________________________________________________ 

Printed Name of Subject signing above  

Phone: _______________________________ 

Address: ______________________________ 

Email: ________________________________ 

 

 

KEEP THIS COPY FOR YOUR RECORDS 
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Consent Form 

RESEARCH PROJECT: Investigating graduate students’ sense making through non-routine 

problems.  

I have read and retained a copy of the Consent Form and have had my concerns and questions 

answered to my satisfaction. Under the conditions outlined in the Consent Form, I agree to 

participate in this research project. I consent to the video recording during the think-aloud session 

and during the post-interview. I consent to have my written work and recordings related to the 

problem set to be used as research data. I understand that in any papers, publications or 

presentations from this study, my name will not be revealed. 

 

____________________________________________________ 

Subject Signature     Date 

 

____________________________________________________ 

Printed Name of Subject signing above  

Phone: _______________________________ 

Address: ______________________________ 

Email: ________________________________ 

 

RETURN THIS COPY TO INVESTIGATOR 

 

	  

 


