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Abstract

Chapter 2 of this thesis studies the testable content of models of expectations-based
reference-dependence. The main results of this chapter characterize a model based on
Kőszegi and Rabin’s (2006) preferred personal equilibrium. This model is shown to be
behaviourally equivalent to a version of the shortlisting model of Manzini and Mari-
otti (2007) in environments without risk. Environments with risk motivate novel ax-
ioms that are conceptually consistent with expectations-based reference-dependence.
These axioms are shown to behaviourally characterize a restricted version of the pre-
ferred personal equilibrium model of decision-making. Additional results characterize
the choice behaviour of Kőszegi and Rabin’s (2006, 2007) personal equilibrium and
choice-acclimating personal equilibrium concepts.

In the presence of background risk and under the Reduction of Compound Lotter-
ies axiom, non-expected utility preferences cannot capture descriptively reasonable
risk aversion over small stakes without producing implausible risk aversion over large
stakes (Safra and Segal 2008). Motivated by experimental evidence, Chapter 3 as-
sumes that compound lotteries are evaluated recursively. The main results of this
chapter show that non-expected utility theories generate ’as-if’ narrow bracketing
over small-stakes gambles despite defining utility over final wealth, and can be con-
sistent with empirically reasonable risk aversion over both small and large stakes.

Chapter 4 uses list elicitation with varying probabilities to experimentally study
choices between lotteries for a population of online workers. We document that list
elicitation significantly diminishes risk aversion compared to binary choice elicita-
tion. We show that this observation is consistent with a decision maker who has
non-expected utility preferences, but when list elicitation is employed, reduces the
compound lottery induced by her choices and the external randomization device used
to determine payment. As a result, list elicitation distorts the inferences that can be
drawn about non-expected utility preferences.
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All chapters of this thesis are original and unpublished work. I am the sole author of
Chapters 2 and 3 of this thesis.

Chapter 4 is coauthored with Yoram Halevy and Terri Kneeland, and is a part of a
larger collaborative project. The experiment was jointly designed by all three authors,
and the interpretation of our results and editing the paper were also collaborative
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Chapter 1

Introduction

Many important economic decisions involve elements of risk. Examples include insur-
ance, portfolio, and occupational choices. Thought experiments and laboratory ex-
periments in economics and psychology have identified robust evidence of behaviour
that is not consistent with economists’ workhorse model - expected utility. Three
particularly robust findings are that people make decisions that: (i) depend on ref-
erence points (Kahneman and Tversky, 1979), (ii) violate the Independence Axiom
(Allais, 1953), and (iii) exhibit risk aversion over small stakes (Rabin, 2000). Yet the
challenge of incorporating this evidence into economic models has raised issues that
remain unsolved.

Reference-dependence

Experiments have identified that choice behaviour can depend on how alternatives
can compare to a reference point both in risky and riskless choice tasks (Kahneman
and Tversky, 1979; Kahneman, Knetsch, and Thaler, 1990; Tversky and Kahneman,
1991). Kahneman and Tversky’s (1979) prospect theory, its extension to riskless
environments (Tversky and Kahneman, 1991), and subsequent work (Masatlioglu
and Ok, 2005; Kőszegi and Rabin, 2006; Sagi, 2006) show that reference-dependence
can be incorporated in economic models of decision-making. These models drop
the standard assumption that a decision-maker has a single complete and transitive
preference relation and instead allow the decision-maker’s preferences to depend on
her reference point. However, reference points are not a directly observable economic
variable. In lab experiments, the researcher is able to control the framing of decisions
in a way that would induce subjects’ reference points. However, researchers cannot do
this in natural economic environments. This poses a challenge to the testing and use
of these models in real economic environments, or in lab settings where the reference
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Chapter 1. Introduction

point is not explicitly primed.
The traditional assumption in applying reference-dependent models is that a

decision-maker’s status quo determines her reference point, as in prospect-theoretic
models that were designed to explain behaviour in lab experiments. But Kahneman
and Tversky (1979, p. 286) acknowledge the limitations of this approach in real
economic settings:

“So far in this paper, gains and losses were defined by the amounts of
money that are obtained or paid when a prospect is played, and the ref-
erence point was taken to be the status quo, or one’s current assets. Al-
though this is probably true for most choice problems, there are situations
in which gains and losses are coded relative to an expectation or aspira-
tion level that differs from the status quo. For example, an unexpected
tax withdrawal from a monthly pay check is experienced as a loss, not as
a reduced gain.”

Recently, Kőszegi and Rabin (2006) proposed a model of expectations-based reference-
dependent decision-making, consistent with Kahneman and Tversky’s suggestion that
expectations may determine reference points in environments where a decision-maker
expects her status-quo to change. However, expectations are not observed in standard
economic data, and so the critique remains: models of reference-dependence in gen-
eral, and expectations-based reference-dependence in particular, allow the decision-
maker’s utility function to depend on unobserved reference points. Do these models
have testable implications, or can they explain almost anything?

The Independence Axiom

The normatively-appealing Independence Axiom is the substantive axiom that gives
complete, transitive, and continuous preferences an expected utility representation.
But a set of thought experiments by Allais (1953) suggests that many people would fail
to satisfy the Independence Axiom. The central feature of Allais’ thought experiments
is a distinction between choice between a pair of risks, and choice when a certain
reward is available.

2



Chapter 1. Introduction

The decision theory literature in economics responded to the “Allais paradox” by
relaxing the Independence Axiom to accommodate the choice patterns suggested by
Allais. Such non-expected utility models include rank-dependent utility (Quiggin,
1982; Yaari, 1987), weighted utility (Chew, 1983), and disappointment aversion (Gul,
1991).1

In models that do not satisfy the Independence Axiom, there are multiple ways
to model how a decision-maker treats multiple sources of risk. When applying non-
expected utility models, it is natural to view multiple risks as forming a multi-stage
compound lottery in the sense of Segal (1990). Suppose we take a non-expected utility
preference over single-stage lotteries as a starting point. Segal suggests two ways
to extend single-stage lottery preferences to the domain of compound lotteries, the
Reduction of Compound Lotteries and Compound Independence axioms. Under the
Reduction of Compound Lotteries axiom, a decision-maker behaves as-if she reduces
a compound lottery to its probabilistically-equivalent single-stage lottery, and then
applies her lottery preferences to evaluate the resulting single-stage lottery. Under
the Compound Independence Axiom, a decision-maker behaves as-if she evaluates
a compound lottery recursively, that is, she first applies her lottery preferences to
evaluate the certainty equivalent of each second-stage lottery, and then applies her
lottery preferences again to the resulting single-stage lottery.

There is evidence for and against both axioms. The Reduction of Compound
Lotteries axiom is used in Karni and Safra’s (1987) explanation of preference rever-
sals in the Becker, DeGroot, and Marschak (1964) mechanism for eliciting certainty
equivalents, and a failure of Compound Independence is central to their argument.
Segal (1990) shows that the Compound Independence is consistent with Kahneman
and Tversky’s isolation effect. Halevy (2007) finds additional evidence against the
Reduction of Compound Lotteries axiom. Segal (1990) shows that preferences on
single-stage lotteries satisfy both assumptions simultaneously if and only if they are
expected utility. This discussion suggests that in some environments, the Compound
Independence axiom is the more descriptively appropriate assumption, while in other

1I use the term “non-expected utility” to refer to these axiomatic models, as distinct from
psychologically-derived models like Kahneman and Tversky’s (1979) prospect theory which make
the more radical departure of defining utility over gains and losses, rather than over final outcomes.

3



Chapter 1. Introduction

environments the Reduction of Compound Lotteries axiom may be more appropriate.

Small-stakes risk aversion and the Rabin critique

Thought experiments (Samuelson, 1963; Rabin, 2000), lab experiments, and insurance
choices suggests that people demonstrate quantitatively significant risk aversion over
stakes of tens and hundreds of dollars. For example, most people would turn down
a gamble with a 50% chance of winning $11, and a 50% chance of losing $10. This
choice pattern seems reasonable, and on its own does not contradict any axioms of
expected utility.

However, suppose that a decision-maker would make the same choice even if she
were much richer or much poorer. If she would turn down this gamble at any possi-
ble wealth level, Rabin shows that if she has expected utility preferences she would
also turn down any gamble with a 50% chance of losing $100, even if it involved a
50% chance of winning an infinite amount of money. This level of risk aversion is
descriptively implausible.

In expected utility, risk aversion is captured in a concave utility-for-wealth func-
tion. Rabin suggests that either reference-dependent models or non-expected utility
models could address his critique of expected utility. In reference-dependent mod-
els that incorporate loss aversion and narrow bracketing, the decision-maker weighs
losses more than equal-sized gains in evaluating a gamble, and ignores all other risks
in her economic environment. Loss aversion can generate substantial small-stakes risk
aversion over gambles that involve both gain and loss outcomes; probability weight-
ing (as in prospect theory) can generate small-stakes risk aversion over gambles that
involve only gains. Popular non-expected utility models, including rank-dependent
utility and disappointment aversion, can also display small-stakes risk aversion with-
out being susceptible to Rabin’s argument, since in these models risk aversion over
small-stakes comes primarily from non-linear probability weighting.

Because most people face substantial pre-existing risks, and the decision to take or
turn down an offered small-stakes gamble involves multiple sources of risk. As previ-
ously discussed, reference points are not directly observable, and reference-dependent
models require assumptions about choice bracketing. Non-expected utility models
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Chapter 1. Introduction

avoid the former issue, and allow for two disciplined approaches to the latter issue.
Multiple sources of risk are naturally modelled as a compound lottery, and either
the Reduction of Compound Lotteries axiom or the Compound Independence axiom
can tractably extend the domain of non-expected utility models to compound lotter-
ies. As reviewed previously, it is not a-priori obvious which assumption is the more
natural descriptive assumption in real economic decisions.

Safra and Segal (2008) show that Rabin’s argument extends to smooth versions
of non-expected utility; but most commonly applied non-expected utility models,
including rank-dependent utility and disappointment aversion, do not satisfy their
smoothness assumption. However, Safra and Segal offer an additional result that
shows that that in the presence of background risk, a major class of non-expected
utility preferences are subject to a Rabin critique. While their result applies to rank-
dependent utility and disappointment aversion, their argument implicitly relies on
the assumption that a decision-maker satisfies the Reduction of Compound Lotteries
axiom when evaluating the compound lottery formed by a gamble and her pre-existing
risks.

Thesis outline

Chapter 2 of this thesis provides behavioural foundations for models of expectations-
based reference-dependence (à la Kőszegi and Rabin (2006)). When restricted to ax-
ioms and model restrictions apply equally in environments with and without risk, each
commonly-used model of preferred personal equilibrium decision-making of Kőszegi
and Rabin (2006) cannot be distinguished from a versions of the shortlisting model of
Manzini and Mariotti (2007). The analysis shows that environments with risk provide
the natural testing ground for models of expectations-based reference-dependence.
The chapter offers three new axioms in environments with risk that are conceptually
motivated by expectations-based reference-dependence. Theorem 2.1 uses these ax-
ioms to provide a tight characterization of the preferred personal equilibrium model
of expectations-based reference-dependence with functional form restrictions that are
natural to environments with risk. Related results characterize alternative models of
expectations-based reference-dependence in environments with and without risk. An
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Chapter 1. Introduction

additional contribution of the analysis is a choice-based definition of expectations-
dependence based on a type of violation of the Independence Axiom.

Chapter 3 of this thesis revisits the problem of risk-taking in the presence of back-
ground risk under non-expected utility preferences over single-stage lotteries. The
analysis assumes that a decision-maker recursively evaluates the compound lottery
formed by a gamble offered on top of pre-existing risks. The results of this chapter
show that this assumption allows non-expected utility models like rank-dependent
utility and disappointment aversion to simultaneously produce descriptively reason-
able levels of risk aversion over small and large stakes for a decision-maker who faces
background risk. Indeed, a decision-maker with recursive non-expected utility prefer-
ences over compound lotteries behaves as-if she brackets narrowly over small-stakes,
a result that is made precise in Theorems 3.1 and 3.2. These positive results stand
in stark contrast to Safra and Segal’s (2008) negative results assuming reduction of
compound lotteries.

List elicitation has become a popular experimental design for eliciting precise
information about risk preferences. In list elicitation, a subject makes a list of binary
choices between lotteries, and one of those binary choices is randomly selected and
the choice played for real to determine the subject’s payment from the list. This
experimental design makes payment the result of a compound lottery. If subjects
evaluate this compound lottery recursively, then they answer each question in the list
the same way they would answer if they made a single binary choice that determined
their payment for sure. However, if subjects have non-expected utility preferences
and do not evaluate compound lotteries recursively, perhaps because they reduce
compound lotteries, then the design of list elicitation will lead subjects to make
different binary choices than if they faced a single choice. Chapter 4 visits this
problem of experimental design for eliciting risk preferences. The main result of this
chapter is that list elicitation sigificantly affects subjects’ choices. This result suggests
that it is difficult to draw unambiguous inferences about risk preferences from data
elicited using list elicitation.

6



Chapter 2

Revealed Preference Foundations of
Expectations-Based
Reference-Dependence

2.1 Introduction

Seminal work by Kahneman and Tversky introduced psychologically and experimen-
tally motivated models of reference-dependence to economics. A limitation preventing
the adoption of reference-dependent models is that reference points are not a directly
observable economic variable. Kahneman and Tversky (1979) acknowledge that while
it may be natural to assume that a decision-maker’s status quo determines her ref-
erence point in their experiments, it is not appropriate in many interesting economic
environments. The lack of a generally applicable model of reference point forma-
tion in economic environments has hindered applications of reference-dependence to
economic settings.

Kőszegi and Rabin (2006) propose a model in which a decision-maker’s recently-
held expectations determine her reference point. Their solution concept for endoge-
nously determined reference points has made their model convenient in numerous
economic applications, including risk-taking and insurance decisions, consumption
planning and informational preferences, firm pricing, short-run labour supply, labour
market search, contracting under both moral hazard and adverse selection, and do-
mestic violence.2 In many of these applications, observed behaviour that appears im-

2Kőszegi and Rabin (2007); Sydnor (2010); Kőszegi and Rabin (2009); Heidhues and Kőszegi
(2008, Forthcoming); Karle and Peitz (2012); Crawford and Meng (2011); Abeler, Falk, Götte,
and Huffman (2011); Pope and Schweitzer (2011); Eliaz and Spiegler (2013); Herweg, Muller, and
Weinschenk (2010); Carbajal and Ely (2012); Card and Dahl (2011).
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2.1. Introduction

possible to explain using standard models naturally fits the intuition of expectations-
based reference-dependence.

Little is known about the testable implications of expectations-based reference-
dependence in more general settings in spite of the large number of applications.
It has been suggested that models of expectations-based reference-dependence may
have no meaningful revealed preference implications, and that their success comes
from adding in an unobservable variable, the reference point, used at the modeller’s
discretion (Gul and Pesendorfer, 2008). The results here confront this claim: mod-
els of expectations-based reference-dependence do have economically meaningful and
testable implications for standard economic data. The revealed preference axioms of
this paper completely summarize the implications of a widely-applied version of the
model.

The main contribution of this paper is to provide a set of revealed preference
axioms that constitute necessary and sufficient conditions for a model of expectations-
based reference-dependence. Commonly-used cases of Kőszegi and Rabin’s model are
special cases of the model studied here. The revealed preference axioms clarify how the
model can be tested against both the standard rational model and against alternative
behavioural theories.

As in existing models of reference-dependence, behaviour is consistent with max-
imizing preferences conditional on the decision-maker’s reference point. The main
challenge of the analysis is that expectations are not observed in standard economic
data. Under expectations-based reference-dependence, the interaction between opti-
mality given a reference point and the determination of the reference point as rational
expectations can generate behaviour that appears unusual since expectations are not
observed. Axioms justified by the logic of expectation-dependent decisions are shown
to summarize the testable content of this unusual behaviour.

2.1.1 Background: expectations-based reference-dependence

The logic of reference-dependence suggests that rather than using a single utility
function, a reference-dependent decision-maker has a set of reference-dependent utility
functions. The utility function v(·|r) defines the decision-maker’s utility function

8



2.1. Introduction

given reference lottery r. When the reference lottery r is observable, as in the case
where a decision-maker’s status quo is her referent, standard techniques can be applied
to study v(·|r). But when the reference lottery is determined endogenously and is
unobserved, as in the case where the reference lottery is determined by the decision-
maker’s recent expectations, an additional modelling assumption is needed. To that
end, Kőszegi and Rabin (2006) introduce two solution concepts - personal equilibrium
and preferred personal equilibrium - that capture the endogenous determination of
the reference lottery for models with expectations as the reference lottery.

In an environment in which a decision-maker faces a fully-anticipated choice set D,
rational expectations require that the decision-maker’s reference lottery corresponds
with her actual choice from D. In such an environment, the set of personal equilibria
of D provides a natural set of predictions of a decision-maker’s choice from a set D:

PEv(D) = {p ∈ D : v(p|p) ≥ v(q|p) ∀q ∈ D} (2.1)

The personal equilibrium concept has the following interpretation. When choosing
from choice set D, a decision-maker uses her reference-dependent preferences v(·|r)
given her reference lottery (r) and chooses argmax

p∈D
v(p|r). When forming expecta-

tions, the decision-maker recognizes that her expected choice p will determine the
reference lottery that applies when she chooses from D. Thus, she would only expect
a p ∈ D if it would be chosen by the reference-dependent utility function v(·|p), that
is, if p ∈ argmax

q∈D
v(q|p). The set of personal equilibria of D in (2.1) is the set of all

such p.
There may be a multiplicity of personal equilibria for a given choice set. Indeed,

if reference-dependence tends to bias a decision-maker towards her reference lottery,
multiplicity is natural. At the time of forming her expectations, a decision-maker eval-
uates the lottery p according to v(p|p), which reflects that she will evaluate outcomes
of lottery as gains and losses relative to outcomes of p itself. The preferred personal
equilibrium concept is a natural refinement of the set of personal equilibria based on a
decision-maker picking her best personal equilibrium expectation according to v(p|p):

PPEv(D) = argmax
p∈PE(D)

v(p|p) (2.2)

9



2.1. Introduction

Kőszegi and Rabin (2006) adopt a particular functional form for v. They assume
that given probabilistic expectations summarized by the lottery r, a decision-maker
ranks a lottery p according to:

vKR(p|r) =
�

k

�

i

pim
k(xk

i ) +
�

k

�

i

�

j

pirjµ
�
mk(xk

i )−mk(xk
j )
�

(2.3)

In (2.3), mk is a consumption utility function in “hedonic dimension” k; different
hedonic dimensions are akin to different goods in a consumption bundle, but specified
based on “psychological principles”. The function µ is a gain-loss utility function which
captures reference-dependent outcome evaluations.

The Kőszegi-Rabin model with the preferred personal equilibrium concept has
been particularly amenable to applications, since the model’s predictions are pinned
down by (2.3) and (2.2). However, little is known about how the Kőszegi-Rabin model
behaves except in very specific applications.

This paper focuses on expectations-based reference-dependent preferences with the
preferred personal equilibrium concept as in (2.2). Theorem 2.1 provides a complete
revealed preference characterization of the choice correspondence c that equals the
set of all preferred personal equilibria of a choice set, c(D) = PPEv(D). The model
of decision-making equivalent to the axioms does not restrict v to the form in (2.3)
but does require that v be jointly continuous in its arguments, v(·|r) satisfy expected
utility, and v satisfy a property related to disliking mixtures of lotteries.

The tight characterization of the PPE model of expectations-based reference-
dependence in Theorem 2.1 may come as a surprise relative to previous work (e.g.
Gul and Pesendorfer 2008; Kőszegi 2010).3 The analysis here also provides additional
surprising connections. First, the PPE representation is related to the shortlisting rep-
resentation of Manzini and Mariotti (2007), a connection clarified in Proposition 2.2.

3Gul and Pesendorfer (2008) show that with the personal equilibrium concept and without using
any lottery structure, the reference-dependent preferences of Kőszegi and Rabin (2006) have no
testable implications beyond an equivalence with a choice correspondence generated by a binary
relation. Kőszegi (2010) initially proposed the personal equilibrium concept studied here but provides
only a limited set of testable implications, and suggested that a complete revealed preference may
not be possible: “I do not offer a revealed-preference foundation for the enriched preferences—it is
not clear to what extent the decisionmaker’s utility function can be extracted from her behavior.”
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Second, there is a tight connection between expectations-based reference-dependence
and failures of the Mixture Independence Axiom; violations of Independence of Irrel-
evant Alternatives (IIA) are sufficient but not necessary for expectations-dependent
behaviour in the model (Proposition 2.3).

2.1.2 Outline

Section 2.2 provides two examples that motivate expectations-based reference-dependence,
and a result that illustrates the limits to the model’s testable implications in envi-
ronments without risk. Section 2.3 provides axioms and a representation theorem
for PPE decision-making, and suggests a way of defining expectations-dependence in
terms of observable behaviour. Section 2.4 explores special cases of the model, includ-
ing Kőszegi-Rabin and a new axiomatic model of expectations-based reference lottery
bias. Section 2.5 shows how the analysis can be adapted to study PE decision-making
and also to decision-making under Kőszegi and Rabin’s (2007) choice-acclimating per-
sonal equilibrium (CPE).

2.2 Two examples and a motivating result

2.2.1 Formal setup

Let ∆ denote the set of all lotteries with support on a given finite set X, with typical
elements p, q, r ∈ ∆. Let D denote the set of all finite subsets of ∆, a typical D ∈ D
is called a choice set. The starting point for analysis is a choice correspondence,
c : D → D, which is taken as the set of elements we might observe a decision-maker
choose from a set D. Assume ∅ �= c(D) ⊆ D, that is, a decision-maker always chooses
something from her choice set.

Define the mixture operation (1− λ)D+ λD� := {(1− λ)p+ λq : p ∈ D, q ∈ D�}.

11



2.2. Two examples and a motivating result

2.2.2 Mugs, pens, and expectations-based

reference-dependence

The classic experimental motivation for loss-aversion in riskless choice comes from the
endowment effect. An example of an endowment effect comes from the experimental
finding that randomly-selected subjects given a mug have a median willingness-to-
accept for a mug that is double the median willingness-to-pay of subjects who were
not given a mug (Kahneman, Knetsch, and Thaler, 1990). This classic experiment
provides no separation between status-quo-based and expectations-based theories of
reference-dependence since subjects given a mug could expect to be able to keep it
at the end of the experiment.

To separate expectations-based theories of reference-dependence from status-quo
based theories, Ericson and Fuster (2011) design an experiment in which all subjects
are endowed with a mug, and subjects are told that there is a fixed probability
(either 10% or 90%) they will receive their choice between a retaining the mug or
instead obtaining a pen, and with the remaining probability they will retain the mug;
the conditional choice must be made before uncertainty is resolved.4 Subjects in
a treatment with a 10% chance of receiving their choice must expect to receive a
mug with at least a 90% chance, and consistent with expectations-based reference-
dependence, 77% of these subjects’ conditionally choose the mug. In contrast, only
43% of subjects conditionally choose the mug in the treatment in which subjects
received their chosen item with a 90% chance.

The Mixture Independence axiom below adapts of von-Neuman and Morgenstern’s
axiom to a choice correspondence.

Mixture Independence. (1− α)c(D) + αc(D�) = c((1− α)D + αD�) ∀α ∈ (0, 1)

The median choice pattern in Ericson and Fuster’s experiment has {�mug, 1�} =

c(.9{�mug, 1�}+ .1{�mug, 1� , �pen, 1�}) but {�mug, .1; pen, .9�} = c(.1{�mug, 1�}+
4This paper interprets the subjects’ choice as being between two lotteries, each of which involves

the prize of the mug with a fixed probability (10% or 90%) and the prize chosen by the subject with
the remaining probability. An alternative interpretation of the experimental setup is that subjects
face a lottery over choice sets, one of which is a singleton, and must choose from the non-singleton
choice set before the lottery is resolved. For a result on the formal relationship between these choice
spaces, see Ortoleva (2013).
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Table 2.1: Example of reference-dependent preferences

v(p|·) v(q|·) v(r|·)

v(·|p) 1000 900 1050

v(·|q) -1350 0 -75

v(·|r) -1575 -450 -262.50

.9{�mug, 1� , �pen, 1�}). This choice pattern suggests an intuitive and empirically
supported violation of Mixture Independence that is consistent with expectation-bias.

2.2.3 IIA violations under Kőszegi-Rabin under PPE

Consider a decision-maker with a Kőszegi-Rabin v as in (2.3), with linear utility and
linear loss aversion:56

m(x) = x, µ(x) =





x if x ≥ 0

3x if x < 0

When faced with a set of lotteries, suppose that our decision-maker chooses his
preferred personal equilibrium lottery as in (2.2).

Consider the three lotteries p = �$1000, 1�, q = �$0, .5; $2900, .5�, and r =

�$0, .5; $2000, .25; $4100, .25�. As broken down in Table 2.1, the decision-maker’s
choice correspondence, c, is given by {p} = c({p, q}), {q} = c({q, r}), {r} =

c({p, r}), and {q} = c({p, q, r}).
Choice from binary sets reveals an intransitive cycle. Because of this, there is no

possible choice from {p, q, r} is consistent with preference-maximization! Consider
the Independence of Irrelevant Alternatives (IIA) axiom below, which Arrow (1959)
shows is equivalent to maximization of a complete and transitive preference relation.

IIA. D� ⊂ D and c(D) ∩D� �= ∅ =⇒ c(D�) = c(D) ∩D�.
5I would like to specially thank Matthew Rabin for suggesting this example.
6Linear loss aversion is used in most applications of Kőszegi-Rabin, and the chosen parameteri-

zation is broadly within the range implied by experimental studies.
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In the Kőszegi-Rabin PPE example, adding the lottery r to the set {p, q} generates a
violation of IIA, since r is not chosen yet affects choice from the larger set. Given fixed
expectations r, our decision-maker’s behaviour would be consistent with the standard
model: she would maximize v(·|r). The decision-maker exhibits novel behaviour be-
cause her expectations, and hence preferences, are determined endogenously in a
choice set. However, rational expectations combined with preferred personal equi-
librium put quite a bit of structure on the decision-maker’s novel behaviour. The
axiomatic analysis that follows will clarify the nature of such structure.

2.2.4 The testable implications of Kőszegi-Rabin under PE:

a negative result

The preceding example demonstrates that the Kőszegi-Rabin model with PPE gen-
erates choice behaviour that cannot be rationalized by a complete and transitive
preference relation. Gul and Pesendorfer (2008) suggest that compared to the stan-
dard rational model, this may be the only revealed preference implication of the
Kőszegi-Rabin model when paired with the personal equilibrium solution criteria in
(2.1). Gul and Pesendorfer take as a starting point a finite set X of riskless elements,
a reference-dependent utility v : X ×X → �, and offer the following result:

Proposition 2.1. (Gul and Pesendorfer 2008). The following are equivalent: (i)
c is induced by a complete binary relation, (ii) there is a v such that c(D) = PEv(D)

for any choice set D, (iii) there is a v that satisfies (2.3) such that c(D) = PEv(D)

for any choice set D.

Proof. (partial sketch)
If c(D) = {x ∈ D : xRy ∀y ∈ D} then define v by: v(x|x) ≥ v(y|x) if xRy, and

v(y|x) > v(x|x) otherwise. Then, {xRy ∀y ∈ D} ⇐⇒ {v(x|x) ≥ v(y|x) ∀y ∈ D}.
By reversing the process, we could construct R from v. Thus (i) holds if and only if
(ii) holds.

Gul and Pesendorfer cite Kőszegi and Rabin’s (2006) argument that the set of
hedonic dimensions in a given problem should be specified based on “psychological
principles”. Since X has no assumed structure, Gul and Pesendorfer infer hedonic
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2.3. Revealed preference analysis of PPE

dimensions from c and the structure imposed by (2.3). Their construction shows any
v has a representation in terms of the functional form in (2.3).

The analysis that follows uses two assumptions that allow for a rich set of testable
implications of expectations-based reference-dependence. First, c is defined on a sub-
sets of lotteries over a finite set. The structure of lotteries in choice sets places
additional observable restrictions on expectations in a choice set and additional in-
formation on behaviour relative to expectations. New axioms make particular use
of this lottery structure to trace the observable implications of expectations-based
reference-dependence.

Second, the main analysis looks for the revealed preference implications of pre-
ferred personal equilibrium. The sharper predictions of preferred personal equilibrium
lead to different testable implications of the PPE based model expectations-based
reference-dependence in the absence of risk.

This choice space does not allow the analysis to say anything insightful about the
set of hedonic dimensions of the problem. In light of Gul and Pesendorfer’s result,
the representation here does not seek any particular structure on the v that repre-
sents reference-dependent preferences. The analysis considers the particular structure
imposed by the functional form (2.3) as a secondary issue for future work.

2.3 Revealed preference analysis of PPE

2.3.1 Technical prelude

Define distance on lotteries using the Euclidean distance metric, dE(p, q) :=
��

i
(pi − qi)2,

and the distance between choice sets using the Hausdorff metric,

dH(D,D�) := max

�
max
p∈D

�
min
q∈D�

dE(p, q)

�
, max

q∈D�

�
min
p∈D

dE(p, q)

��
.

It will be useful to offer a few definitions in advance of the analysis. For any
set T with typical element t, let {t�} denote a convergent net indexed by a set (0, �̄]

and with limit point t; t� will be used to denote the � term in the net.7 Define
7A net in a set T is a function t : S → T for some directed set S (Aliprantis and Border, 1999).
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2.3. Revealed preference analysis of PPE

cU(D) as the upper hemicontinuous extension of c; that is, cU(D) := {p ∈ D :

∃{p�, D�} such that p� ∈ c(D�), p� → p, D� → D}. For p ∈ ∆ and � > 0, let
N �

p := {p� ∈ ∆ : dE(p, p�) < �} denote a �-neighbourhood of p. For any binary
relation R, let clR denote its closure, defined by: p(clR)q if ∃{p�} → p, {q�} → q

such that for each � > 0, p�Rq�. For any finite set D and binary relation R, define
m(D, R) := {p ∈ D : �q ∈ D such that qRp but not pRq} as the set of undominated
elements in D according to binary relation R.

2.3.2 Revealed preference analysis without risk

Ignoring restrictions specific to risks, the classic IIA axiom provides the point of
departure from standard models. The two axioms below allow for failures of IIA
that can arise from the endogenous determination of expectations and preferences in
each choice set. For this section, restrict attention to axioms and restrictions on the
representation in (2.2) that do not make use of the particular economic structure of
lotteries, except for the continuity of ∆.

The following Expansion axiom is due to Sen (1971).

Expansion. p ∈ c(D) ∩ c(D�) =⇒ p ∈ c(D ∪D�)

Expansion says that if a lottery p is chosen in both D and D� then it is chosen
in D ∪ D�. This seems weak as both a normative and a descriptive property, and
is an implication of variations on the Weak Axiom of Revealed Preference (see Sen
(1971)). Expansion rules out the attraction and compromise effects, in which an agent
chooses p over both q and r in pairwise choices, but chooses q from {p, q, r}.8 In the
attraction effect, r is similar to, but dominated by q and attracts the decision-maker
to p in {p, q, r}; in the compromise effect, q is a compromise between more extreme
options p and r in the choice set {p, q, r}.

The Weak RARP (RARP for Richter’s (1966) Axiom of Revealed Preference9)
is in the spirit of the classic axioms of revealed preference (like WARP, SARP, and

8See Simonson (1989) for evidence on attraction and compromise effects. Ok, Ortoleva, and
Riella (2012) provide a model of the attraction effect that captures this phenomenon.

9Richter refers to his axiom as “Congruence”. I use RARP to emphasize the close connection
with WARP, SARP, GARP, etc. For more on the connection between these axioms, see Sen (1971).
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2.3. Revealed preference analysis of PPE

GARP) albeit with an embedded continuity requirement. In particular, the axiom
weakens (a suitably continuous version of) RARP.

Define p ˜̄Rq if p ∈ c(D) and q ∈ cU(D̄) for some D, D̄ with {p, q} ⊆ D ⊆ D̄.
The relation ˜̄R is defined whenever sometimes p is chosen when q is available, and
sometimes q is choosable (in the sense that q ∈ cU(D̄)) when p is available. The
statement p ˜̄Rq holds when p is weakly chosen over q in a smaller set, but q is weakly
choosable over p in a set that is larger in the sense of set inclusion. Define p ˜̄Wq if
there exist p0 = p, p1, ..., pn−1, pn = q such that (pi−1, pi) ∈ cl ˜̄R for i = 1, ..., n. That
is, ˜̄W is the continuous and transitive extension of ˜̄R.

Weak RARP. p ∈ c(D), q ∈ cU(D̄), q ∈ D ⊆ D̄, and q ˜̄Wp =⇒ q ∈ c(D)

The crucial implication of Weak RARP is captured by its main economic implication,
Weak WARP : if p = c({p, q}) and p ∈ c(D) then q /∈ c(D�) whenever p ∈ D� ⊆
D.10 Manzini and Mariotti (2007) offer an interpretation in terms of constraining
reasons : an agent might choose p over q in a smaller set, like {p, q}, yet might have
a constraining reason against choosing p in a larger set D. However, if we observe p

chosen from a large set D, then any D� that is a subset of D contains no constraining
reason against choosing p. Thus, her choice in D� should be minimally consistent
with her choice in {p, q} and she should not choose q.

Weak RARP strengthens the logic of Weak WARP in two ways. Weak WARP
allows only WARP violations consistent with the existence of constraining reasons,
and takes choices from smaller sets - which can fewer constraining reasons - as the
determinant of choice in the absence of constraining reasons. The main way Weak
RARP strengthens Weak WARP is by imposing that choice among unconstrained
options is determined by a transitive procedure.11

Weak RARP as stated also strengthens a transitive version of Weak WARP by
imposing continuity in two ways. Taking the topological closure of ˜̄R and then taking
the transitive closure imposes that choice among unconstrained options is determined

10The following proof that Weak RARP implies Weak WARP may help clarify the connection.
Suppose p ∈ c(D), p ∈ D� ⊂ D, and q ∈ c(D�). Then q ˜̄Wp, and so if p ∈ c({p, q}), Weak RARP
implies that q ∈ c({p, q}) as well. Thus Weak RARP implies that if p = c({p, q}) and p ∈ c(D) hold,
q ∈ c(D�) could not hold.

11In this regard, Weak RARP is closely related to the “No Binary Cycle Chains” axiom of
Cherepanov, Feddersen, and Sandroni (Forthcoming).
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by a rationale that is both transitive and continuous. This imposes a restriction that
is economically natural relative to the topological structure of lotteries. The second
continuity aspect of Weak RARP is that if p ∈ cU(D), p is seen as chooseable from
D. That is, if it is revealed that there is no reason to reject p� from D� when p� and
D� are ’arbitrarily close’ to p and D respectively, then Weak RARP assumes that
there is no reason revaled to reject p from D (even if p is not chosen at D). These
two strengthenings in Weak RARP are natural given the topological structure of the
space of lotteries (and many other choice spaces).

Formally, say that a PPE representation in (2.2) is continuous if v is jointly
continuous. Proposition 2.2 (i) ⇐⇒ (ii), clarifies the link between the Expansion and
Weak RARP axioms on one hand, and the PPE decision-making on the other hand.

Manzini and Mariotti (2007) characterize a shortlisting representation, c(D) =

m(m(D,P1), P2) for two asymmetric binary relations P1, P2, in terms of two axioms,
Expansion and Weak WARP.12 If P2 is transitive and both P1 and P2 are continuous,
say that P1, P2 is a continuous and transitive shortlisting representation.13 Proposition
2.2 (ii) ⇐⇒ (iii), provides a link between a version of the shortlisting model of Manzini
and Mariotti and the PPE representation in (2.2).

Proposition 2.2. (i)-(iii) are equivalent: (i) c satisfies Expansion and Weak RARP,
(ii) c has a continuous PPE representation, (iii) c has a continuous and transitive
shortlisting representation.

Proof. (ii) ⇐⇒ (iii)
Consider the following mapping between a continuous PPE representation v and

a continuous and transitive shortlisting representation:
v(q|p) > v(p|p) ⇐⇒ qP1p

v(p|p) > v(q|q) ⇐⇒ pP2q

For v and P1, P2 that satisfy this mapping, m(D, P1) = PEv(D), and m(m(D, P1), P2) =

PPEv(D).
12Manzini and Mariotti (2007) and follow-up papers assume that c is a single-valued choice func-

tion, which simplifies their analysis.
13This terminology is different from Au and Kawai (2011) and Horan (2012) who discuss short-

listing representations in which both P1 and P2 are transitive.
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It remains to verify that joint continuity in v is equivalent to continuity of P1 and
P2 - the full argument is in the appendix.

The v in a PPE representation characterized by Proposition 2.2 is highly non-
unique: any v̂ that satisfies v̂(q|p) > v̂(p|p) ⇐⇒ v(q|p) > v(p|p) and has v̂(p|p) =
u(p) for some u that represents P2 in the shortlisting representation also represents the
same c. Put another way, v includes information about how a decision-maker would
choose between any two lotteries p and q given any reference lottery r. However, if the
decision-maker’s rational expectations determine her reference lottery, as in a PPE
representation, choices give us no direct information about a decision-maker would
choose between p and q given any reference lottery r /∈ {p, q}.

2.3.3 Revealed preference analysis with risk

The result in Proposition 2.2 did not consider the possibility of adopting stronger ax-
ioms or restrictions on v that are suitable when working with choice among lotteries
but may not be economically sensible in other domains. But the evidence supporting
expectations-based reference-dependence in Ericson and Fuster (2011) suggests that
environments with risk provide a natural environment for studying expectations-based
reference-dependence. This section explores the possibility of a stronger characteri-
zation in environments with risk.

Environments with risk enable a partial separation between expectations and
choice. Suppose we view the mixture (1 − α)q + αD as arising from a lottery over
choice sets that gives the singleton choice set {q} with probability 1 − α and gives
choice set D with probability α. Under this interpretation, fraction 1 − α of expec-
tations are fixed at expecting q and we also observe the decision-maker’s conditional
choice from D. The three axioms below make use of variations on this interpretation.

The Induced Reference Lottery Bias Axiom uses this partial separation between
expectations and choice. The axiom requires that if p is chosen in a choice set D,
then p would also be conditionally chosen from D when some of the expectations are
fixed at p, as in any mixture of the form (1 − α)p + αD. This is a natural axiom
to adopt under expectations-based reference-dependence: fixing expectations at p at
least partially fixes the reference-lottery weakly towards p; if the decision-maker is
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biased towards her reference-lottery, this should bias her towards choosing p.

Induced Reference Lottery Bias. p ∈ c(D) implies p ∈ c((1 − α)p + αD) ∀α ∈
(0, 1).

Notice that Induced Reference Lottery Bias allows for the violation of Mixture In-
dependence observed by Ericson and Fuster (2011), but rules out a violation in the
opposite direction.

IIA Independence weakens the Mixture Independence Axiom to a variation that
only implies a restriction on behaviour in the presence of IIA violations, with an
embedded continuity requirement.

IIA Independence. If p ∈ c(D) and ∃α ∈ (0, 1] such that p /∈ c(D∪((1−α)p+αq)) �
r and p ˜̄Wr, then ∃� > 0 such that ∀α� ∈ (0, 1], ∀p̂ ∈ N �

p, ∀q̂ ∈ N �
q , and

∀D� � (1− α�)p̂+ α�q̂, p̂ /∈ c(D�).

The spirit of Weak RARP is the requirement that in the absence of constraining rea-
sons, c is consistent with maximizing ˜̄W , derived from choice from smaller choice sets.
The choice pattern p ∈ c(D), p /∈ c(D∪q) � r, and p ˜̄Wr then reveals that q blocks p.14

This revealed blocking behaviour only appears when the model violates IIA. The IIA
Independence axiom requires that in this case, any mixture between q and p also pre-
vents p from being chosen from any choice set. The logic of expectations-dependence
then requires that the agent would not choose p when it involves a conditional choice
of p over q.

Remark 2.1. A simple test of IIA Independence that could detect behaviour inconsis-
tent with expectations-dependence would be to find p, q,α, D with p ∈ c(D), {p, q}∩
c(D∪q) = ∅ but p ∈ c(D∪((1−α)p+αq)). Table 2.2 shows two possible choice corre-
spondences that describe a decision-maker who finds candy too tempting to turn down
for an apple whenever she had been expecting to eat but who can avoid temptation
by planning in advance to abstain from snacking. Choice correspondence c captures
a decision-maker who can exert limited self-control against the expectations-induced
temptation to go for candy, and is inconsistent with the IIA Independence axiom.
Choice correspondence ĉ cannot exert this limited self-control, and is consistent with
the axiom.

14In the appendix, it is shown that this choice pattern is ruled out by Weak RARP and Expansion.
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Table 2.2: Testing IIA Independence
D c(D) ĉ(D)

{�apple, 1� , �don’t eat, 1�} {�apple, 1�} {�apple, 1�}
{�candy, 1� , �apple, 1� , �don’t eat, 1�} {�don’t eat, 1�} {�don’t eat, 1�}
{�apple, .9; candy, .1� , �apple, 1�} {�apple, 1�} {�apple, .9; candy, .1�}

The continuity requirement embedded in IIA Independence slightly strengthens
restriction on c when adding q to the choice set prevents p from being conditionally
chosen. The IIA Independence axiom requires that in this case, lotteries close to p

prevent lotteries close to q from being conditionally chosen as well.
Say that q is a weak conditional choice over r given p, qR̄pr, if there exists a net

{p�, q�, r�} → p, q, r such that (1 − �)p� + �q� ∈ c((1 − �)p� + �{q�, r�}) for each �. A
conditional choice involves a choice between q and r for when expectations are close
to p.

Transitive Limit. qR̄pr and rR̄ps =⇒ qR̄ps.

If IIA violations are only driven by the behavioural influence of expectations and their
endogenous determination, then the agent’s behaviour should be consistent with the
standard model when her expectations are fixed. The Transitive Limit axiom says that
conditional choice behaviour should look like the standard model when expectations
are almost fixed, although the axiom only imposes this restriction on weak conditional
choices.

Remark 2.2. As with continuity axioms, the Transitive Limit axiom is not exactly
testable. However, the axiom is approximately testable. The choice sets in Table
2.3 provide an approximate test of Transitive Limit; ĉ is consistent with what we
would expect if the choice correspondence satisfies Transitive Limit. However, the
choice pattern displayed by c is approximately inconsistent with Transitive Limit,
and suggests that c would violate this axiom.

Formally, say that a PPE representation is an EU-PPE representation if v(·|p)
takes an expected utility form for any p ∈ ∆. Say that v dislikes mixtures if v(p|p) ≥
v(q|p) and v(q|q) ≤ max [v(p|p), v(p|q)] imply that ∀α ∈ (0, 1), v((1− α)p+ αq|(1−
α)p+ αq) ≤ max [v(p|p), v(p|(1− α)p+ αq)].
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Table 2.3: Testing Transitive Limit
D = .9{�mug, 1�}+ .1 c(D) ĉ(D)

{�pen, 1� , �mug, 1�} {�mug, 1�} {�mug, 1�}
{�candy, 1� , �mug, 1�} .9{�mug, 1�}+ .1{�candy, 1�} {�mug, 1�}
{�candy, 1� , �pen, 1�} .9{�mug, 1�}+ .1{�pen, 1�} .9{�mug, 1�}+ .1{�pen, 1�}

Theorem 2.1. c satisfies Weak RARP, Expansion, IIA Independence, Induced Ref-
erence Lottery Bias, and Transitive Limit if and only if it has a continuous EU-PPE
representation in which v dislikes mixtures.

The full proof is in the appendix, and is discussed in the next subsection.

Corollary 2.1. Given a continuous EU-PPE representation v for c, any other con-
tinuous EU-PPE representation v̂ for c satisfies v̂(q|p) ≥ v̂(r|p) ⇐⇒ v(q|p) ≥ v(r|p)
and v̂(p|p) ≥ v̂(q|q) whenever p ˜̄Wq.

Corollary 2.1 clarifies that a continuous EU-PPE is unique in the sense that
any v, v̂ that represent the same c must represent the same reference-dependent
preferences.15 This definition of uniqueness captures that the underlying reference-
dependent preferences are uniquely identified, but says nothing about the cardinal
properties of reference-dependent utility functions. In an EBRD, v plays roles in both
determining the set of of personal equilibria, and selecting from personal equilibria.
The second part of Corollary 2.1 clarifies that this second role places a restriction
that any v representing c must represent the same ranking of personal equilibria, at
least when that ranking is revealed from choices.

Remark 2.3. In the representation in Theorem 2.1, any p chosen in D is (i) an element
of D, and (ii) is in argmax

q∈D
v(·|p). A more general model might allow a decision-maker

to randomize among elements of her choice set. An alternative representation might
have the decision-maker’s reference lottery involve a randomization among elements
in D, or perhaps only elements in c(D). However, Theorem 2.1 proves that if c

satisfies the five axioms it has a representation in which it is as-if the decision-maker
never views herself as randomizing among elements of D.

15A stronger uniqueness result is possible, since (i) each v(·|p) satisfies expected utility and thus
has an affinely unique representation, (ii) joint continuity of v in the representation restricts the
allowable class of transformations of v.
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2.3. Revealed preference analysis of PPE

2.3.4 Sketch of proof and an intermediate result

The first part of the proof takes R̄p and characterizes a v such that v(·|p) represents
R̄p. By Transitive Limit and because R̄p is continuous by construction, such a v(·|p)
exists. A sequence of lemmas show that the definition of R̄p and Transitive Limit
axiom imply the existence of a jointly continuous v such that v(·|p) represents R̄p and
satisfies expected utility.

Crucial to proof is providing a link between behaviour captured by v and behaviour
in arbitrary choice sets. Consider an alternative axiom, Limit Consistency, which was
not assumed in Theorem 2.1 but which would have been a reasonable axiom to adopt.
First, define Rp as the asymmetric part of R̄p.

Limit Consistency. qRpp implies p /∈ c(D) whenever q ∈ D.

The statement qRpp says that q is always conditionally chosen over p when expec-
tations are almost fixed at p. Limit Consistency requires that a decision-maker who
always conditionally chooses q over p when her expectations are almost fixed at p

would also never choose p when q is available. This is consistent with the logic of
expectations-dependence. If instead qRpp but p were chosen over q in some set D,
then the decision-maker would choose p over q when her expectations are p even
though she always conditionally chooses q over p when her expectations are almost
fixed at p; such behaviour would be inconsistent with expectations-dependence and
is ruled out.

The lemma below establishes that the axioms in Theorem 2.1 imply Limit Con-
sistency.

Lemma. Expansion, Weak RARP, and Induced Reference Lottery Bias imply Limit
Consistency.

The sufficiency part of the proof of Theorem 2.1 proceeds by using Expansion,
Weak RARP, Limit Consistency, and v constructed from R̄p to show that c(D) =

PPEv(D). This gives the following intemediate result, a characterization of an EU-
PPE representation in terms of Weak RARP, Expansion, IIA Independence, Limit
Consistency, and Transitive Limit.
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2.3. Revealed preference analysis of PPE

Table 2.4: Two choice correspondences
c ĉ

.9{�pen, 1�}+ .1{�pen, 1� , �mug, 1�} {�pen, 1�} {�pen, 1�}
.9{�mug, 1�}+ .1{�pen, 1� , �mug, 1�} {�mug, 1�} {�mug, .9; pen, .1�}

Theorem 2.2. c satisfies Weak RARP, Expansion, IIA Independence, Limit Consis-
tency, and Transitive Limit if and only if it has a continuous EU-PPE representation.

Notice than in any EU-PPE representation, expected utility of v(·|p) and joint
continuity of v will imply that v(q|p) > v(r|p) =⇒ qRpr. With this observation in
hand, the necessity of Limit Consistency follows obviously from the representation.
The remainder of the proof of the above Theorem follows from the proof of Theorem
2.1.

2.3.5 A definition of expectations-dependence and its

implications

Say that c exhibits expectations-dependence at D,α, p, q, r for α ∈ (0, 1) and p, q, r ∈
∆ if (1 − α)p + αr ∈ c((1 − α)p + αD) but (1 − α)q + αr /∈ c((1 − α)q + αD).
Interpret (1 − α)p + αr ∈ c((1 − α)p + αD) as involving a conditional choice of r
from D, conditional on fraction 1 − α of expectations being fixed by p. Say that
c exhibits strict expectations-dependence at D,α, p, q, r for D ∈ D, α ∈ (0, 1), and
p, q, r ∈ ∆ if there is a �̄ > 0 such that for all r�, D� pairs such that r� ∈ D� and
max

�
dE(r�, r), dH(D�, D)

�
< �, (1 − α)p + αr� ∈ c((1 − α)p + αD�) for all � < �̄

but (1 − α)q + αr� /∈ c((1 − α)q + αD�) for all � < �̄. This behavioural definition
of expectations-dependence provides a tool for identifying and eliciting expectations-
dependence, as illustrated by the example below.

Example (mugs and pens). Fix α = .1, let p = �pen, 1�; q = �mug, 1�, r = p,
and D = {p, q}.

Table 2.4 shows the values that two choice correspondences, c and ĉ, take on
the menus (1 − α)p + αD = {�mug, 1� , �mug, .9 ; pen, .1�} and (1 − α)q + αD =
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2.3. Revealed preference analysis of PPE

{�mug, .1; pen, .9� , �pen, 1�}. Of these two choice correspondences, c exhibits expectations-
dependence given D,α, p, q, r, while ĉ does not.

�
The definition of exhibiting expectations-dependence bears striking relation to

the Mixture Independence axiom. Indeed, expectations-dependence as defined is a
type of violation of Mixture Independence. Proposition 2.3 below clarifies the link
between a exhibiting expectations-dependence, properties of a continuous EU-PPE
representation, and violations of the IIA axiom.

Proposition 2.3. c with a continuous EU-PPE representation strictly exhibits expectations-
dependence if and only if v(·|p) is not ordinally equivalent to v(·|q) for some p, q ∈ ∆.
In addition, c with a continuous EU-PPE representation that violates IIA exhibits
strict expectations-dependence.

The first part of Proposition 2.3 highlights how expectations-dependence in c

is captured in a PPE representation. There is a tight tie between expectations-
dependence and failures of Mixture Independence in a PPE representation, and the
second part of Proposition 2.3 shows that a failure of IIA implies, but is not necessary
for, expectations-dependence.

The mugs and pens example shows how one might study expectations-dependence
based on the definition. Ericson and Fuster’s (2011) data violate Mixture Indepen-
dence in a way consistent with expectations-based reference-dependence, and Propo-
sition 2.3 shows that any PPE representation representing their median subject’s
behaviour must exhibit expectations-dependence.

2.3.6 Limited cycle property of a PPE representation

The characterization in Theorem 2.1 is tight. However, it is possible that some struc-
ture already imposed on the problem implies additional structure on v. Proposition
2.4 shows that this is indeed the case.

Say that a PPE representation satisfies the limited cycle inequalities if for any
p0, p1, ..., pn ∈ ∆, v(pi|pi−1) > v(pi−1|pi−1) for i = 1, ..., n, then v(pn|pn) ≥ v(p0|pn).
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2.4. Special cases of PPE representations

Proposition 2.4. Any PPE representation satisfies the limited cycle inequalities.
Moreover, if v is jointly continuous, satisfies the limited-cycle inequalities, dislikes
mixtures, and v(·|p) is EU for each p ∈ ∆, then v defines an EU-PPE representation
by (2.2).

Proof. Take any p0, p1, ..., pn ∈ ∆, with v(pi|pi−1) > v(pi−1|pi−1). The ith term in this
sequence implies by the representation that pi−1 /∈ c({p0, ..., pn}); since c({p0, ..., pn}) �=
∅ by assumption it follows that pn = c({p0, ..., pn}). This implies, by the represen-
tation, that v(pn|pn) ≥ v(pi|pn) for all i = 0, 1, ..., n − 1, which implies the desired
result.

Conversely, for any v that satisfies the three given restrictions, the limited cycle
inequalities imply that PE(D) is non-empty for any D ∈ D. Thus by Theorem 2.2,
v defines a EU-PPE representation.

Munro and Sugden (2003) mention the limited cycle inequalities (their Axiom
C7), and defend the limited cycle inequalities based on a money-pump argument. In
contrast, the limited cycle inequalities emerge here as a consequence of the assumption
that c(D) is always non-empty combined with the reference-dependent preference
representation. If one considers a class of choice problems in which the agent always
makes a choice, the limited cycle inequalities are a basic consequence of this and the
agent’s endogenous determination of her reference lottery, regardless of the normative
interpretation of the inequalities.

2.4 Special cases of PPE representations

2.4.1 Kőszegi-Rabin reference-dependent preferences

It may not be apparent at first glance whether Kőszegi-Rabin preferences in (2.3)
satisfy the limited-cycle inequalities that a PPE representation must satisfy to gener-
ate a non-empty choice correspondence. Kőszegi and Rabin (2006) cite a result due
to Kőszegi (2010, Theorem 1) that a personal equilibrium exists whenever D is con-
vex, or equivalently, an agent is free to randomize among elements of any non-convex
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2.4. Special cases of PPE representations

choice set. It is unclear whether or when this restriction is necessary to guarantee the
existence of a non-empty choice correspondence.

Kőszegi and Rabin suggest restrictions on (2.3). In particular, applications of
Kőszegi-Rabin have typically assumed linear loss aversion, which holds when there
are η and λ such that:

µ(x) =





ηx if x ≥ 0

ηλx if x < 0
(2.4)

where λ > 1 captures loss aversion and η ≥ 0 determines the relative weight
on gain/loss utility. Proposition 2.5 shows that under linear loss aversion, Kőszegi-
Rabin preferences with the PPE solution concept are a special case of the more general
continuous EU-PPE representation.

Proposition 2.5. Kőszegi-Rabin preferences that satisfy linear loss aversion satisfy
the limited cycle inequalities and dislike mixtures.

Proposition 2.5 is alternative result to Kőszegi and Rabin’s (2006) Proposition
1.3, and to my knowledge provides the first general proof that a personal equilibrium
that does not involve randomization always exists in finite sets for this subclass of
Kőszegi-Rabin preferences.

While commonly used versions of Kőszegi-Rabin preferences can provide the v in
a PPE representation, there are (pathological?) cases of Kőszegi-Rabin preferences
that cannot.

Proposition 2.6. Not all Kőszegi-Rabin preferences consistent with (2.3) satisfy the
limited cycle inequalities.

2.4.2 Reference lottery bias and dynamically consistent

non-expected utility

Expectations-based reference-dependence is the central motivation to considering the
PPE representation. Now equipped with some understanding of the revealed prefer-
ence implications of a PPE representation, we might take the preference relations �L
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2.4. Special cases of PPE representations

and {�p}p∈∆ as primitives, where �p is the preference relation corresponding to v(·|p),
and p �L q corresponds to the ranking v(p|p) ≥ v(q|q). With these primitives, we
can study axioms that capture reference lottery bias. This is similar to the standard
exercise in the axiomatic literature on reference-dependent behaviour (e.g. Tversky
and Kahneman (1991; 1992); Masatlioglu and Ok (2005; 2012); Sagi (2006)). In that
vein, consider the Reference Lottery Bias axiom below, which is closely related to the
“Weak Axiom of Status Quo Bias” in Masatlioglu and Ok (2012).

Reference Lottery Bias. p �L q =⇒ p �p q

I offer three interpretations of Reference Lottery Bias. The first interprets �L as
representing the preferences that take into account that expecting to choose and then
choosing lottery p leads to p being evaluated against itself as the reference lottery.
Under this interpretation, if an agent would want to choose p over q, knowing that this
choice would also determine the reference-lottery against which they would evaluate
outcomes, then the agent would also choose p over q when p is the reference lottery.
The second interpretation (along the lines of Masatlioglu and Ok (2012)) is that
�L captures reference-independent preferences; in this second interpretation, if p is
preferred to q in a reference-independent comparison, then when p is the reference
lottery, p is also preferred to q. According to either interpretation, Reference Lottery
Bias imposes that �p biases an agent towards p relative to �L. This seems like
a natural generalization of the endowment effect for expectations-based reference-
dependence.

A third interpretation emphasizes �L as the ranking of lotteries induced by the
agent’s ex-ante ranking of choice sets when restricted to singleton choice sets. Under
this interpretation, an agent who wants to choose a lottery from a choice set according
to her ex-ante ranking would also want to choose it from that choice set if she then
expected that lottery, and it subsequently acted as her reference point.

What implications does the Reference Lottery Bias axiom have? Kőszegi-Rabin
preferences do not satisfy Reference Lottery Bias; recall the example in Section 2.2.2
in which v(p|p) > v(r|r) but v(r|p) > v(p|p). This suggests a conflict between the
psychology of reference-dependent loss aversion captured by the Kőszegi-Rabin model
and the notion of Reference Lottery Bias defined in the axiom. No experimental
evidence to my knowledge sheds light on this matter.
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Proposition 2.7. A PPE representation satisfies Reference Lottery Bias if and only
if c(D) = m(D,�L).

Proposition 2.7 implies (recalling Proposition 2.3) that under Reference Lottery
Bias, reference-dependent behaviour in a PPE representation is tightly connected to
non-expected utility behaviour in �L.

The non-expected utility literature has provided numerous models of decision-
making under risk based on complete and transitive preferences that, motivated by
the Allais paradox, satisfy a relaxed version of the Mixture Independence axiom (e.g.
Quiggin (1982); Chew (1983); Dekel (1986); Gul (1991)). The model of expectations-
based reference-dependence based on the Reference Lottery Bias axiom is based on
a dynamically consistent implementation of non-expected utility preferences (as in
Machina (1989)). I offer two examples of PPE representations that satisfy Reference-
Lottery Bias and capture expectations-based reference-dependence.

Example (Disappointment Aversion). Suppose �L satisfies Gul’s (1991) disap-
pointment aversion; that is (letting u(x) denote u(�x, 1�)),
u(p) = 1

1+β

�
i pi (u(xi) + βmin[u(xi), u(p)]) represents �L for some β ≥ 0. Then

Reference Lottery Bias implies:

vDA(p|r) = 1

1 + β

�

i

pi (u(xi) + βmin[u(xi), u(r)]) (2.5)

In cases of lotteries over multidimensional choice objects, it is not hard to see how
to extend (2.5) via additive separability across dimensions. The resulting functional
form captures loss aversion relative to past expectations (as in Kőszegi-Rabin) but
does not generate IIA violations.

�

Example (Mixture Symmetry). Suppose �L satisfies Chew, Epstein, and Segal’s
(1991) mixture symmetric utility; that is, there is a symmetric function φ such that
u(p) =

�
i

�
j
φ(xi, xj) represents �L. Then Reference Lottery Bias implies:

vMS(p|r) =
�

i

�

j

pirjφ(xi, xj) (2.6)
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While the functional form for vMS in 2.6 does capture the Kőszegi-Rabin functional
form in (2.3), but the φ function corresponding to vKR is generally not symmetric.

�

2.5 Alternative models of expectations-based
reference-dependence: analysis of PE and CPE
representations

2.5.1 Characterization of PE

In addition to the PPE representation in (2.2) which is used in most applications
of expectations-based reference-dependence, Kőszegi and Rabin (2006) also discuss
the PE as a solution concept as in (2.1). The analysis below shows that the PE
representation can be axiomatized similar to the PPE representation, by replacing
Weak RARP with Sen’s α, changing the continuity assumptions, and modifying IIA
Independence.

Sen’s α. p ∈ D� ⊂ D and p ∈ c(D) implies p ∈ c(D�)

Sen’s α requires that if an item p is choosable in a larger set D, then it is also deemed
choosable in any subset D� of D where p is available. Sen’s α is strictly weaker than
IIA.16

The Upper Hemicontinuity axiom is the continuity property satisfied by contin-
uous versions of the standard model, in which choice is determined by a continuous
binary relation.

UHC. c(D) = cU(D)

Proposition 2.8 (i) ⇐⇒ (ii) provides an axiomatic characterizating of PE decision-
making that does not make use of the structure of environments with risk; (ii) ⇐⇒
(iii) is a continuous version of Gul and Pesendorfer’s (2008) result (Proposition 2.1 in
this paper).17

16Sen’s α and Sen’s β are jointly equivalent to IIA; see Sen (1971) and Arrow (1959).
17The result (i) ⇐⇒ (iii) is a continuous version of Theorem 9 in Sen (1971).
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Proposition 2.8. (i)-(iii) are equivalent: (i) c satisfies Expansion, Sen’s α, and
UHC, (ii) c has a continuous PE representation, (iii) c is induced by a continuous
binary relation.

IIA Independence 2 modifies the antecedent in the IIA Independence axiom to PE.
Under PE, a lottery q is revealed to block p if there is a D such that p ∈ c(D) but
p /∈ c(D ∪ q). IIA Independence 2 has a different antecedent from IIA Independence
that reflects the differences in how constraining lottery pairs are revealed in the two
models. IIA Independence 2 also embeds a continuity requirement.

IIA Independence 2. If p ∈ c(D) and ∃α ∈ (0, 1] such that p /∈ c(D∪(1−α)p+αq)),
then ∃� > 0 such that ∀α� ∈ (0, 1], ∀p̂ ∈ N �

p, ∀q̂ ∈ N �
q , and ∀D� � (1−α�)p̂+α�q̂,

p̂ /∈ c(D�).

Theorem 2.3 provides a characterization of a continuous EU-PE representation.

Theorem 2.3. c satisfies Expansion, Sen’s α, UHC, IIA Independence 2, and Tran-
sitive Limit if and only if c has a continuous EU-PE representation. These axioms
jointly imply that Induced Reference Lottery Bias holds as well.

2.5.2 Characterization of CPE

Kőszegi and Rabin (2007) also introduce the choice-acclimating personal equilibrium
(CPE) concept:

CPEv(D) = argmax
p∈D

v(p|p) (2.7)

While most applications of expectations-based reference-dependence use the PPE
solution concept, many use CPE. Theorem 2.4 clarifies the revealed preference foun-
dations of CPE decision-making.

Theorem 2.4. (i)-(iii) are equivalent. (i) c satisfies IIA and UHC, (ii) c has a
continuous EU-CPE representation in which v is continuous, (iii) there is a complete,
transitive, and continuous binary relation � such that c(D) = m(D, �) ∀D.
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Theorem 2.4 appears to be a negative result - it suggests that expectations-based
reference-dependence combined with CPE has no testable implications beyond the
standard model of preference maximization! However, CPE decision-making can
fail the Mixture Independence Axiom in ways that are consistent with expectations-
based reference-dependent behaviour. This raises the question of what restrictions
the Induced Reference Lottery Bias impose on the representation. Say that a binary
relation � is quasiconvex if p � q =⇒ p � (1− α)p+ αq ∀α ∈ (0, 1).

Proposition 2.9. Suppose ∃ �, v such that c(D) = m(D, �) = CPEv(D). (i)-(iii)
are equivalent: (i) c satisfies Induced Reference Lottery Bias, (ii) � is quasiconvex,
(iii) v(p|p) ≥ v(q|q) =⇒ v(p|p) ≥ v((1− α)p+ αq|(1− α)p+ αq) ∀α ∈ (0, 1).

Remark 2.4. Proposition 2.7 and Theorem 2.4 establish that if c has a PPE represen-
tation that satisfies the Reference Lottery Bias axiom, then PPEv(D) = CPEv(D).

Example (Kőszegi-Rabin and Mixture Symmetry). Under CPE concept, the
requirement that φ in 2.6 be symmetric is without loss of generality. Thus the Kőszegi-
Rabin functional form in 2.3 corresponds to a special case of the mixture symmetric
utility functional form in 2.6 under CPE.

�
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Chapter 3

Calibration without Reduction for
Non-Expected Utility

Recent calibration critiques of Rabin (2000) and Safra and Segal (2008) show that
whenever expected utility (EU) and non-expected utility (non-EU) define utility over
final wealth states, they cannot simultaneously exhibit nonnegligible risk aversion
over small stakes and can only exhibit moderate risk aversion over large stakes. In-
trospection and empirical evidence suggest that even if the stakes are small, most
people would rather not take a small risk with a positive expected value if it could
involve a loss of money. Yet most people still take substantial risks over large stakes,
for instance, by investing in stocks. As a result, these calibration critiques have
been widely understood as suggesting the demise of descriptive theories that define
utility over final wealth except as a normative benchmark—further suggesting that
descriptive models must define utility over gains and losses. But defining utility over
final wealth gives non-EU theories a tractability and modelling discipline that more
psychologically based theories such as prospect theory lack.

This paper shows that non-expected utility can generate both nonnegligible small-
stakes risk aversion as well as the moderate large-stakes risk aversion. The crucial
assumption made here is that a decision maker (DM) who faces preexisting risks
treats a gamble that is offered as the first stage of a two-stage compound lottery,
which is then not treated as equivalent to the one-stage lottery that gives the same
probability distribution over final wealth but is evaluated recursively (Segal, 1990).
This contrasts sharply with existing proposals for solving the Rabin critique, which
have all relied on abandoning consequentialism—the assumption that utility is defined
over final wealth levels—assuming instead that utility is also evaluated over gains and
losses or lab income.
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The intuition for the rank-dependent utility (RDU) (Quiggin, 1982) case of the
main results of the paper is as follows: without background risk, RDU can pro-
duce descriptively reasonable risk aversion at a range of stakes through probabil-
ity weighting even if utility is defined over wealth levels. Now suppose DM faces
background risk w̃, and the utility-for-wealth function u is linear. Under recur-
sive RDU, a compound lottery is evaluated by a folding back procedure, and DM
evaluates the offered gamble (−L, .5;+G, .5) by folding back the compound lottery
[w̃−L, .5; w̃+G, .5] to [c(w̃−L), .5; c(w̃+G), .5] where c is DM’s certainty-equivalent
function. When u is linear, c(w̃+x) = c(w̃)+x; this compound lottery is evaluated as
[c(w̃)−L, .5; c(w̃)+G, .5], and probability weighting produces small-stakes risk aver-
sion over the offered gamble the way it would without background risk. With a linear
u, DM turns down (−L, .5;+G, .5) if and only if DM turns down (−tL, .5;+tG, .5)

for all t > 0; therefore, small-stakes risk aversion due to probability weighting is
compatible with reasonable large stakes risk aversion.

Relation to previous literature Since EU maximizers are approximately risk
neutral over small stakes, they would only be willing to pay a trivial amount to avoid
small risks. Popular alternatives to EU that define utility over final wealth levels are
either (i) ’smooth’ as in (Machina, 1982), locally risk neutral, and subject to the same
criticism as EU (Safra and Segal, 2008), or (ii) obtain nonnegligible risk aversion over
small stakes because they weigh probabilities nonlinearly (as suggested by the Allais
paradox) and are hence immune from Rabin’s critique.

However, most people face substantial lifetime wealth risk (e.g., employment-
income risk and ownership of risky assets). The combination of a gamble offered in
the lab in the presence of preexisting wealth risk is naturally viewed as a two-stage
compound lottery in which the offered gamble resolves first. When DM reduces com-
pound lotteries to single-stage lotteries by multiplying out probabilities, any small-
stakes gamble offered adds only minimally to lifetime wealth risk; therefore, prob-
ability weighting is mostly determined by preexisting lifetime wealth risk and does
not produce substantial risk aversion over offered small-stakes gambles (Safra and Se-
gal, 2008; Barberis, Huang, and Thaler, 2006). This argument relies crucially on the
assumption that DM satisfies reduction of compound lotteries—an assumption that
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is not consistent with experimental evidence. Instead, this paper assumes recursive
preferences over compound lotteries.

Recursive non-EU (RNEU) preferences over compound lotteries are used in this
paper as a descriptive model of decision making, following Segal (1990). The theo-
retical distinction between compound versus single-stage lotteries was first suggested
by Samuelson (1952). RNEU preferences have been applied by Segal (1987b) to ex-
plain ambiguity aversion (see also Dillenberger and Segal (2012)) and by Dillenberger
(2010) to explain preferences for one-shot resolution of uncertainty. Dillenberger also
remarks that an RNEU DM behaves as if they bracket narrowly; section 1.4 of this
paper makes a precise connection between RNEU and narrow bracketing.

The theoretical tradition of RNEU preferences following Segal (1990) is related
to but distinct from the use of recursive utility due to preferences over the timing of
resolution of uncertainty (Kreps and Porteus, 1978; Epstein and Zin, 1989). When
recursive preferences are used only because of preferences over the resolution of un-
certainty then DM applies reduction of compound lotteries to an offered delayed risk
combined with income risk that resolves at the same time, and will not demonstrate
small-stakes risk aversion over such gambles (Barberis, Huang, and Thaler, 2006).

Existing theoretical approaches that avoid a calibration critique (Kahneman and
Tversky (1979); Cox and Sadiraj (2006); Barberis, Huang, and Thaler (2006)) directly
incorporate narrow bracketing by assuming that the value function is defined over
the outcomes of a gamble as well as (possibly) over final wealth states. RNEU is
formally very different from these nonconsequentialist models in that in RNEU the
utility function is only defined over final wealth states and not directly over the
outcomes of a gamble. While RNEU does not assume narrow bracketing and is
fully consequentialist, Theorems 3.1 and 3.2 precisely establish a connection between
RNEU and models of narrow bracketing: an RNEU DM behaves as-if she engages in
a form of narrow bracketing, at least over small-stakes or if her lottery preferences
satisfy constant absolute risk aversion.

The RDU special case of the RNEU preferences studied in this paper are still
subject to calibration arguments by Neilson (2001) and by Safra and Segal (2008,
Theorem 1)18; however, the assumed risk-averse choice patterns behind these critiques

18See also a related critique of RDU by Sadiraj (2012)

35



3.1. Theory: RNEU risk preferences with background wealth risk

have limited experimental evidence and lack field evidence. For a literature review of
calibration critiques, see Section 8.6 of Wakker (2010).

Experimental evidence on compound lotteries Halevy (2007) finds that 80
percent of subjects violate reduction of compound lotteries, while 59 percent of sub-
jects’ choices are best explained by RNEU. Previous experimental work also found
substantial violations of reduction of compound lotteries that suggest the use of RNEU
preferences; for example, Carlin (1992); Camerer and Ho (1994). Recursive prefer-
ences over compound lotteries are also consistent with experimental findings that
randomly picking one of the subject’s many decisions to determine payment is an
incentive compatible mechanism for eliciting preferences (Cubitt and Sugden (1998)).

3.1 Theory: RNEU risk preferences with
background wealth risk

3.1.1 Non-expected utility over lotteries

Notation Let W = �+ denote the set of feasible final wealth levels, and consider a
preference over one-stage lotteries, V : ∆(W ) → � with utility-for-wealth function u :

W → � and associated with certainty equivalent function c. A one-stage lottery over
W can be written as q = [w1, q1; ...;wm, qm] ∈ ∆(W ) whenever q has finite support,
where qi denotes the probability of receiving prize wi. Assume V is increasing in the
sense of first-order stochastic dominance. Adopt the convention that w1 ≤ ... ≤ wm.
Say that V is risk averse if it is averse to mean-preserving spreads.

Popular models The two most commonly used non-EU theories are RDU (Quiggin
(1982), Yaari (1987), Segal (1990)), and disappointment aversion (DA) (Gul, 1991).
Table 3.1 reviews these and EU; it notes conditions under which RDU and DA demon-
strate the Allais paradox and small-stakes risk aversion not present under EU. DA
preferences are a special case of the larger class of betweenness-satisfying preferences
(Dekel (1986), Chew (1989)).
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Table 3.1: Non-expected utility theories

Theory V ([w1, q1; ...;wm, qm]) Allais? Small-stakes risk averse?

EU
m�
i=1

qiu(wi) No Not if u� exists

RDU
m�
i=1

[g(
i�

j=1
qj)− g(

i−1�
j=1

qj)]u(wi) g concave g concave

DA
m�
i=1

1+βIu(wi)<V (q)

1+β
n�

i=1
qjIu(wj)<V (q)

qiu(wi) β > 0 β > 0

Sources: Gul (1991); Segal and Spivak (1990); Segal (1987a)

3.1.2 Recursive non-expected utility

RNEU extends non-EU preferences over single-stage lotteries to the domain of com-
pound lotteries.

Define a compound lottery as a finite lottery over lotteries over final wealth levels;
a compound lottery can be written as Q = [q1, p1; ...; qn, pn] where qi ∈ ∆(W ) and pi

is the probability of receiving lottery qi; let ∆(∆(W )) denote the set of compound
lotteries. The utility function U is defined over compound lotteries over final wealth
levels. Without loss of generality, adopt the convention that for a compound lottery
Q as above, V ([q1, 1]) ≤ ... ≤ V ([qn, 1]).19

A RNEU maximizer evaluates a compound lottery Q via a simple two step pro-
cedure:

1. Compute the certainty equivalent of each lottery qi that is a possible prize of
Q:

c(qi) = u−1 ◦ V (qi)

2. Recursively compute the value of the compound lottery as the non-expected
19Readers familiar with Segal (1990) will note that I assume time neutrality here. This is not

essential for the conclusions.
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3.1. Theory: RNEU risk preferences with background wealth risk

utility of the one-step lottery [c(q1), p1; ...; c(qn), pn]:

U(Q) = c([c(q1), p1; ...; c(q
n), pn]) (3.1)

An alternative to the recursivity assumption is that a DM immediately reduces the
compound lottery to a single-stage lottery, which is then evaluated according to V .
Such a reduction of compound lotteries assumption is not consistent with evidence
that subjects fail to reduce compound lotteries to one-stage lotteries presented earlier.
If a non-EU DM reduces compound lotteries, compound lottery Q is evaluated as
equivalent to the one-stage lottery QR = [w1,

n�
i=1

piqi1; ...;wK ,
n�

i=1
piqiK ]. For purposes of

comparison, a non-expected utility with reduction DM evaluates a compound lottery
p by:

UROCL(Q) = c(QR) (3.2)

3.1.3 Wealth risk as a compound lottery

A one-time choice is never the only thing going on in a DM’s life. Empirical work
shows that people face substantial risks in their lives (Guiso, Jappelli, and Pistaferri,
2002). If we want to retain the modeling discipline of defining utility over final wealth
levels, then we have to make a choice about how to model a DM’s attitude to risk from
a one-time gamble and from everything else in life. The combination of a one-time
gamble offered (like those offered in lab experiments) and background wealth risk
constitutes a compound lottery composed of two distinct and independent sources of
risk in which the one-time gamble resolves first, and the rest of life’s uncertainties
resolve in due course.

Consider a DM who faces background wealth risk described by the random variable
w̃ = [w1, q1; ...;wm, qm], which is not the subject of choice, and who is offered the
gamble over prizes p̂ = (y1, p1; ...; yn, pn) where yi ∈ Y ⊂ � is a monetary prize added
to or taken away from the DM’s final wealth after lottery p̂ resolves. Let p̂⊕ w̃ denote
the compound lottery formed by simple gamble over prizes p̂, which resolves first, and
independent background risk w̃, which resolves second. The compound lottery p̂⊕ w̃
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is given by:

p̂⊕ w̃ = [w̃ + y1, p1; ...; w̃ + yn, pn] (3.3)

where w̃+ yi = [w1+ yi, q1; ...;wm+ yi, qm] denotes the lottery over final wealth states
that the DM faces if prize yi is won in the gamble p̂. The compound lottery p̂⊕ w̃ is
well defined whenever w + yi ∈ W for each w in the support of w̃ and each yi in the
support of p̂.20

Say that a DM with utility function U defined on ∆(∆(W )) treats an offered
gamble p̂ in the presence of background risk w̃ as a compound lottery in which p̂

resolves first if for any offered gambles p̂ ∈ ∆(Y ), DM evaluates the utility of p̂

according to U(p̂⊕ w̃).

3.1.4 Nonreduction and narrow bracketing

Segal (1990) first suggested replacing the reduction of compound lotteries axiom with
recursivity as a consequentialist alternative to prospect theory that captures Kahne-
man and Tversky’s (1979) “isolation effect” (a particular example of a failure of the
reduction of compound lotteries axiom). Rabin (2000) noted that prospect theory is
immune to his calibration critique. Existing theoretical approaches that avoid a cal-
ibration critique (Kahneman and Tversky (1979); Cox and Sadiraj (2006); Barberis,
Huang, and Thaler (2006)) directly incorporate narrow bracketing by assuming that
the value function is defined over the outcomes of a gamble as well as (possibly) over
final wealth states. RNEU is formally very different from these nonconsequentialist
models in that the value function is only defined over final wealth states and not
directly over the outcomes of a gamble.

While RNEU does not assume that a gamble is framed narrowly, Theorem 3.1
demonstrates that when c satisfies constant absolute risk aversion, an RNEU DM
behaves as if she brackets narrowly: that is, her choices among offered gambles are
independent of the background risk she faces. Formally, c satisfies constant absolute

20An alternative but less intuitive assumption is that DM distinguishes between one-stage and
compound risks but treats the gamble p̂ as resolving in the second stage. The main results of the
paper are not sensitive to this assumption.
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risk aversion if for any w̃ ∈ ∆(W ) and y ∈ � such that w̃ + y ∈ ∆(W ), c(w̃ + y) =

c(w̃) + y.

Theorem 3.1. Suppose a recursive non-EU decision maker treats an offered gamble
in the presence of background risk as a compound lottery as in (3.3), and has lottery
preferences that satisfy constant absolute risk aversion. Then c has a unique extension
to ∆(�), ĉ, such that, U(p̂ ⊕ w̃) = ĉ(p̂) + c(w̃) represents preferences whenenver
p̂⊕ w̃ ∈ ∆(∆(W )).

Proof. Extend c to the set of the set ∆(�) of lotteries on ∆(�) with support bounded
from below by the identification that for any q ∈ ∆(�) define w = − inf{supportq},
and extend c to ∆(�) by ĉ(q) = c(q+w)−w. Since c satisfies constant absolute risk
aversion, this extension is unique. Under RNEU,

U(p̂⊕ w̃) = c([c(w̃ + y1), p1; ...; c(w̃ + yn), pn])

Applying constant absolute risk aversion at the second stage, and then at the first
stage making use of ĉ,

= c([c(w̃) + y1, p1; ...; c(w̃) + yn, pn])

= ĉ(p̂) + c(w̃)

3.1.5 Non-reduction and small-stakes risk aversion

Theorem 3.1 suggests that demonstrating small-stakes risk aversion under RNEU
does not lead to calibration implications for risk aversion over larger stakes gambles.

Say that c satisfies constant relative risk aversion if for any w̃ ∈ ∆(W ) and t ∈ �+,
c([tw1, q1; ...; twm, qm]) = tc(w̃). Preferences that satisfy both constant absolute risk
aversion and constant relative risk aversion have been termed constant risk averse by
Safra and Segal (1998). Special cases of constant risk averse preferences include linear
u cases of RDU and DA. Corollary 3.1 shows that for the class of non-EU preferences
satisfying constant risk aversion, fairly tight calibration implications can be drawn
from turning a gamble p̂, but these implications seem reasonable.

Corollary 3.1. Suppose c satisfies constant risk aversion. For p̂t = (ty1, p1; ...; tyn, pn),
U(p̂t⊕ w̃) = tĉ(p̂)+ c(w̃) represents preferences whenenver p̂t⊕ w̃ ∈ ∆(∆(W )), where
ĉ is the extension of c from Theorem 3.1.
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An implication of the corollary is that whenever we know that lottery preferences
satisfy constant risk aversion, then DM turns down p̂ at w̃ at which U(p̂⊕ w̃) is well
defined if and only if she turns down p̂t for all w̃ and for all t > 0.

Typical applications of non-EU preferences do not assume constant risk aversion,
but rather allow diminishing marginal utility of wealth. However, one might ex-
pect that over small stakes, non-expected utility preferences behave like constant risk
averse preferences since u is almost linear locally. I define a notion of dual differentia-
bility, as a way of approximating preferences by a derivative taken with respect to a
dual mixture of lotteries in the sense of Yaari (1987), but that is only defined around
mixtures in which one of the lotteries is degenerate. In the Appendix (Proposition
B.1), I show that RDU, semi-weighted utility preferences including DA (Chew, 1989),
and Fréchet differentiable preferences are all weakly dually differentiable in the sense
described below. Theorem 3.2 shows that for weakly dually differentiable preferences,
behavior over small-stakes gambles given a fixed distribution of background wealth
risk is well approximated by a constant risk averse certainty equivalent function.

Formally, say that c is dually differentiable at wealth w if for each p̂ ∈ ∆(Y ) and
w ∈ W if there is a linear-in-money ĉ(·) such that c(p̂t + w) = w + tĉ(p̂) + o(t). Say
that c is weakly dually differentiable given wealth risk w̃ if there are c̄y+(w̃), c̄y−(w̃)

such that c(w̃ + ty) = c(w̃) + tyc̄
ysign(y)

(w̃) + o(t). Additionally, say that a certainty
equivalent function c is first-order risk averse at wealth w if for any p̂t with an
expected value of zero, dc(w+p̂t)

dt |t=0+ < 0 (Segal and Spivak, 1990).

Theorem 3.2. If c is weakly dually differentiable at w̃ with c̄y+(w̃) ≤ c̄y−(w̃), and is
also dually differentiable at w = c(w̃), then for any a ∈ �, U(p̂t ⊕ w̃) = tĉ(p̂ + a) −
ta+ c(w̃) + o(t). Moreover, if c is first-order risk averse then so is ĉ.

3.1.6 The Rabin critique?

An immediate corollary of Theorem 3.1 in the spirit of Rabin’s Theorem is that if
c is constant absolute risk averse, U(p̂ ⊕ w̃), DM turns down gamble p̂ when her
background wealth distribution is w̃ if and only if she turns down p̂ for any w̃. This
gives no sense of DM’s attitude towards larger stakes gambles, leading to the following
remark:
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Remark 3.1. Suppose a recursive non-EU decision maker treats an offered gamble in
the presence of background risk as a compound lottery as in (3.3), and always turns
down an actuarially favorable gamble p̂ for any distribution of background risk w̃.
Knowing only that V is globally risk averse, the strongest conclusion that can be
drawn is that DM will always turn down any mean-preserving spread of p̂.

Remark 3.1 shows that weak assumptions lead to weak conclusions, but what if
we made stronger assumptions about c? Theorem 3.2 and Corollary 3.1 give strong
intuition for what attitudes towards a small-stakes gamble p̂ will imply about attitudes
towards gambles at larger stakes for preferences for classes of preferences that include
a constant risk averse subclass. Theorem 3.3 offers an counterpart to Rabin’s (2000)
calibration theorem, assuming instead that DM has risk averse RDU/DA RNEU
preferences and faces background risk.

Theorem 3.3. Suppose a recursive non-EU decision maker treats an offered gamble
in the presence of background risk as a compound lottery as in (3.3), and always
turns down a gamble p̂ = (y1, p1; ...; yn, pn) for any distribution of background risk
w̃. Knowing only that c is risk averse and is RDU, then the strongest restriction on
large-stakes gambles that can be drawn without further assumptions is that DM will
turn down any gamble p̂t = (ty1, p1; ...; tyn, pn) for all t > 1 and for all w̃. The same
result applies if “RDU” is replaced with “DA”.

Proof. DM turns down p̂t if U(p̂t⊕w̃)−c(w̃) < 0. Turning down p̂ implies U(p̂⊕w̃)−
c(w̃) < 0. If u is linear, then under DA and RDU this implies that DM turns down p̂t

for all t but cannot rule out accepting more favorable gambles. If u is concave, then
it can be shown that under risk aversion and either DA or RDU that (u ◦U)(p̂t ⊕ w̃)

is concave in t; therefore, DM will still turn down p̂t for any t > 1. However, EU
remains a special case of DA and RDU, and if DM had EU preferences, p̂t would be
accepted for a sufficiently small t whenever 0 /∈ support(w̃).

Under DA and RDU, if V is globally risk averse u must be weakly concave, so the
strongest calibration result possible comes from the case where u is linear for t > 1.
That is, DM will turn down p̂t for all t > 1.

Since recursive DA is a special case of the more general class of betweenness pref-
erences (Dekel, 1986; Chew, 1989), if recursive DA is immune to calibration critiques,
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then the class of recursive betweenness preferences is immune to Rabin-style calibra-
tion critiques, as are more general classes of preferences. Thus, recursive versions of
a wide range of non-EU theories are not susceptible to calibration critiques, and are
potentially suitable for modeling risk preferences over both small and large stakes.

3.2 Calibration

What constitutes descriptively reasonable risk aversion is a quantitative question.
This section calibrates a version of recursive RDU and shows that this calibration
can produce descriptively reasonable risk aversion, while EU and RDU with reduction
cannot.

Convenient functional forms for g and u should have as few parameters as possible
to calibrate and should be easily comparable to commonly used models. I adopt the
standard power utility-for-wealth function:

u(w) = w1−γ

1−γ

and the probability weighting function:
g(p) = pν

axiomatized by Grant and Kajii (1998) and used in Safra and Segal (2008) since
it is only one parameter richer than EU, is consistent with small-stakes risk aversion
and Allais-type choices when 0 < ν < 1, and captures expected utility as a special
case when ν = 1.

Chetty (2006) points out that the curvature of the utility-for-wealth function
also governs how an individual makes trade-offs between labour and leisure. I use
γ = .71, suggested by Chetty based on previous studies of labor supply responses
to wage changes.21 I then calibrate ν to match modal choices in Holt and Laury’s
(2002) experimental data on small-stakes risk aversion to the extent possible. While
EU cannot avoid mispredicting the modal choice in their data when most subjects
demonstrate risk aversion, if ν ∈ [.5, .64], the calibrated recursive RDU model fits the
data reasonably but not perfectly.

21While Chetty assumes expected utility in his calculations, the approach he takes fully carries
through to RDU in the case where utility is separable in consumption and leisure; I use Chetty’s
estimates from this case.
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Table 3.2: Calibration results - small and large stakes risk aversion
Loss ν = .5 ν = .64 ν = .5, reduction ν = 1 (EU)
10 24.14 17.91 10.10 10.00
100 241.60 179.21 103.36 100.03
200 483.59 358.62 209.61 200.13
500 1211.84 898.12 538.77 500.83
1000 2433 1801 1112 1003
2000 4904 3623 2328 2013
5000 12555 9219 6403 5084
10000 26133 18992 14364 10343
25000 73931 52052 46738 27270
50000 185392 123239 137678 60105

Gain required for DM to take (-Loss, .5;Gain, .5)

While the risk in w̃ only has a second-order effect on decisions among offered
gambles in recursive RDU, the risk in w̃ reduces risk aversion RDU with reduction.
To allow for comparison, take w̃ = U [$100000, $500000] to capture background wealth
risk.22

Table 3.2 summarizes how different calibrated models discussed above would pre-
dict that a DM would make choices in (−L, .5; G, .5) gambles. In each row of the
table, L is fixed at the level in the left-hand column, while the entry in the table lists
the G at which a DM would be indifferent to either taking or turning down the listed
gamble.

Table 3.2 (Columns 1 and 2) indicates that for ν = .5, .64 recursive RDU can
produce descriptively reasonable risk aversion over both small and large stakes. RDU
with reduction produces barely any risk aversion over small stakes (Column 3). Even
for stakes into the thousands of dollars, EU induces preferences over gambles that
are extremely close to expected value maximization (Column 4). Even with a higher
value for γ, EU would induce preferences over gambles that are extremely close to
expected value maximization over stakes of hundreds of dollars. These quantitative

22I derive quantitative results using a discrete approximation of the uniform distribution. I assume
that lifetime wealth has an expected present value of $300,000, since this figure is emphasized in
Rabin (2000), but the quantitative results are not particularly sensitive to this assumption.
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results are not sensitive to the choice of a distribution for background wealth risk.

3.3 Conclusion

This paper has shown that RNEU can produce non-negligible small-stakes risk aver-
sion without implying ridiculous large-stakes risk aversion, and generate a form of ’as-
if’ narrow bracketing over small-stakes gambles. A calibration exercise demonstrated
that recursive RDU can be calibrated to provide descriptively reasonable levels of risk
aversion in the small and in the large. The non-expected utility theories studied in
this paper are attractive. Non-expected utility theories, rank-dependent utility and
disappointment aversion in particular, have clear axiomatic foundations, have been
well studied, and have proven tractable in applications. The RNEU approach to ap-
plying non-expected utility preserves this tractability for a decision-maker who faces
multiple risks. Furthermore, the two departures this model does make from expected
utility theory are each well supported by experimental evidence on the Allais paradox
and nonreduction of compound lotteries.
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Chapter 4

List Elicitation of Risk Preferences

An ideal experimental study of individual decision-making would elicit precise data
while providing subjects with monetary incentives that allow for unambiguous infer-
ences about individual preferences. List elicitation with the random incentive scheme
(RIS) is a standard technique to achieve this goal and has become the workhorse
method for experimental economists. In list elicitation, subjects respond to a series
of binary choices lined up as a list. List elicitation is typically combined with the
RIS, in which one of these choices is randomly selected to determine the subject’s
payment. The unambiguous interpretation of choice behavior in terms of individual
preferences relies on the assumption that the list elicitation combined with the RIS
does not impact subjects’ choices.

A common hypothesis is that subjects behave as-if they make each choice in
isolation from all other choices and independent of the details of the incentive scheme
they face. Experimental data obtained from list elicitation with the RIS is frequently
interpreted under the assumption that the isolation hypothesis holds. But when is
the isolation hypothesis appropriate?

The theoretical literature provides conflicting guidance as to whether we should
expect list elicitation combined with the RIS to impact subjects’ choices. Formally,
isolation holds if and only if the subjects’ preferences over compound lotteries induced
by her choices and the external randomization device satisfy Segal’s (1990) compound
independence axiom.23 In particular, isolation does not hold if subjects have non-
expected utility preferences and obey the reduction of compound lotteries axiom
(Karni and Safra, 1987). An earlier literature showed that the Becker, DeGroot,
and Marschak (1964) (BDM) elicitation mechanism can lead to preference reversals
Grether and Plott (1979) in the direction predicted by Karni and Safra (1987). This

23Cox and Epstein (1990) elaborate on this point.
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Table 4.1: Binary choice versus list elicitation
Binary choice List p-value

($y, 1) 23% 50% <.001
($y, p) 30% 45% .02

Percent choosing the riskier option.
p-values are for a Fisher’s exact test of association.

suggests that the possibility of a failure of isolation due to a failure of the independence
axiom is more than a theoretical curiousity.

The experimental literature provides only partial guidance on whether the theo-
retical possibility suggested by Karni and Safra is empirically relevant in the context
of list elicitation. Experimentalists often invoke the evidence for isolation from binary
choice experiments (Starmer and Sugden, 1991; Cubitt and Sugden, 1998) as support
for isolation in the context of list elicitation. However, no previous study examined
whether this interpretation is appropriate. If list presentation invokes reduction and
subjects have non-expected utility preferences, then we should not expect subjects to
isolate each choice in a list of binary choices.

Whether isolation holds under list elicitation is ultimately an empirical question.
We answer this question by using a between-subjects design to compare behaviour
under list elicitation to behaviour in binary choice tasks. In one group of treatments,
subjects respond to a list (or two) of binary choices. In a second group of treat-
ments, subjects make a single (or two) binary choice(s); the binary choice questions
correspond exactly to the questions faced in line 11 of the lists.

Table 4.1 demonstrates our main finding. Since the binary choice tasks correspond
to unique lines in each list, we can compare the frequency of risky choices (with
the higher payment of $x) under the alternative treatments. We find that the list
increases the probability of choosing the risky lottery from 23% to 50% when the
safer alternative is certain, and from 30% to 45% when the safer alternative is risky.
This suggests that subjects do not isolate their choices under list elicitation.

An additional contribution of this paper is to evaluate the behaviour of a rela-
tively new subject pool, that of online workers on Amazon’s Mechanical Turk, whose
behavior has barely been studied using real monetary incentives in standard decision-
making tasks often studied by experimental economists. Our paper provides a new
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interface for managing subjects that allows us to use Mechanical Turk as a virtual re-
cruitment tool for running fully incentivized individual decision-making experiments.
We also replicate our findings using a standard subject pool of university students.

4.1 Experiment

Subjects were recruited from Amazon’s Mechanical Turk online labour market. In
Appendix A (to be written), we outline our procedures and relevant aspects of Me-
chanical Turk in detail. To recruit subjects, we released an ad for a task (“HIT” for
Human Intelligence Task) that could be seen by online workers on Amazon’s Mechan-
ical Turk site (“turkers”). Any turker with a US based account and who had at least
95% of their past HITs approved was eligible to view a brief description of our study
that mentioned the fixed payment of one dollar (which worked like the show-up fee in
lab experiments) and the possibility of a bonus (which corresponded to the incentive
scheme). From the description, interested turkers could accept a HIT and proceed to
our website with a unique identifying code from the HIT. Each HIT would disappear
once accepted by a turker.

On our website, turkers input their Mechanical Turk ID as well as the HIT ID, then
completed a standard consent form, followed by a description of how the experiment
would work and how payment would be determined, which was accompanied by a
multiple choice comprehension quiz which subjects had to answer correctly before
proceeding.

The main experiment consisted of sixteen different treatments, based on varying
the payment mechanism and the order of the two questions (Q1 and Q2). Table 4.2
shows the questions and subquestions when using list elicitation, and Table 4.3 shows
the sixteen different treatments. In treatments B1 and B2, subjects only answered one
question (a binary choice) and were paid based on that question while in B12 and B21
subjects answered two binary choice questions, one of which was randomly selected to
determine payment; the questions corresponded to line 11 of the lists in Table 4.2. In
treatments beginning with L, each question consisted of a list of subquestions, each
subquestion involved a binary choice, where the probability of winning the prize in
the right hand side option decreased each line as subjects proceeded down the list. In
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treatments L1 and L2, subjects answered only one list question while in treatments
LO12, LO21, LA12, and LA21, subjects answered two list questions. In treatments
LO12 and LO21, the instructions made it clear that one of the two list questions
would be randomly selected to determine payment. In treatments LA12 and LA21,
the instructions made it clear that both of the two list questions would determine
payment. Subjects were informed that whenever a list was used to determine payment
(the sole list in L1 and L2, both lists in LA12 and LA21, and a randomly chosen list
in LO12 and LO21), one line from the list would be randomly selected to be played
out to determine the subject’s bonus payment. Treatments LO21 and LA21 reversed
the order of the list questions of treatments LO12 and LA12 respectively. In the L
treatments, we allowed subjects to switch from Option A to Option B at any number
of points on the list, but used a javascript pop-up to warn subjects who switched
from Option B to Option A and then from Option A to Option B. The S (separate
screens) treatments mirror the L treatments, except that before completing each list
subjects responded to a sequence of (non-incentivized) binary choices that appeared
on separate screens. In the S treatments, the binary choices tasks are chosen so as
to spiral towards finding the switching point for a monotone subject. Subjects then
responded to an incentivized list that was already filled in using their responses to
the binary choice tasks but was otherwise identical to that in the corresponding L
treatment (crucially, subjects were free to change their answers in the list).

Subjects completed the HIT by submitting a completion code generated by our
website to the Mechanical Turk interface. A random number generator was used
to determine the outcomes of all risk automatically, and subjects were informed of
how much of a bonus would be paid after completing the study. Subject payments
were credited to subjects’ Mechanical Turk accounts within 30 minutes of completing
the HIT. Our $1 base payment is somewhat high compared to other experiments
using Mechanical Turk given that our experiment should take at most 15 minutes
(e.g. Horton, Rand, and Zeckhauser (2011)). Bonus payments of $3 or $4 provided
relatively high stakes for this subject pool.
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Table 4.2: Questions
Q1 Q2

Line Option A Option B Option A Option B
1 (3, 1) (4, 1) (3, .5) (4, .50)
2 (3, 1) (4, .98) (3, .5) (4, .49)
3 (3, 1) (4, .96) (3, .5) (4, .48)
4 (3, 1) (4, .94) (3, .5) (4, .47)
5 (3, 1) (4, .92) (3, .5) (4, .46)
6 (3, 1) (4, .90) (3, .5) (4, .45)
7 (3, 1) (4, 88) (3, .5) (4, .44)
8 (3, 1) (4, .86) (3, .5) (4, .43)
9 (3, 1) (4, .84) (3, .5) (4, .42)
10 (3, 1) (4, .82) (3, .5) (4, .41)
11 (3, 1) (4, .80) (3, .5) (4, .40)
12 (3, 1) (4, .78) (3, .5) (4, .39)
13 (3, 1) (4, .76) (3, .5) (4, .38)
14 (3, 1) (4, .74) (3, .5) (4, .37)
15 (3, 1) (4, .72) (3, .5) (4, .36)
16 (3, 1) (4, .70) (3, .5) (4, .35)
17 (3, 1) (4, .68) (3, .5) (4, .34)
18 (3, 1) (4, .66) (3, .5) (4, .33)
19 (3, 1) (4, .64) (3, .5) (4, .32)
20 (3, 1) (4, .62) (3, .5) (4, .31)
21 (3, 1) (4, .60) (3, .5) (4, .30)
22 (3, 1) (4, .58) (3, .5) (4, .29)
23 (3, 1) (4, .56) (3, .5) (4, .28)
24 (3, 1) (4, .54) (3, .5) (4, .27)
25 (3, 1) (4, .52) (3, .5) (4, .26)
26 (3, 1) (4, .50) (3, .5) (4, .25)

Table 4.3: Treatments
Order Binary choice One list Pay one list Pay both lists

Q1 only B1 L1, S1
Q2 only B2 L2, S2

Q1 then Q2 B12 LO12, SO12 LA12, SA12
Q2 then Q1 B21 LO21, SO21 LA21, SA21
S, L, and B respectively denote separate screen, standard list, and binary choice treatments
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Table 4.4: Subjects by treatment
B1 B2 B12 B21 L1 L2 LO12 LO21

n 39 41 20 22 47 45 36 35
n monotone 43 41 27 29
n regular 32 27 18 21

LA12 LA21 S1 S2 SO12 SO21 SA12 SA21
n 36 33 48 49 37 32 26 25

n monotone 31 26 46 48 36 28 25 25
n regular 18 17 34 47 27 24 17 20

Table 4.5: Answers to line 11
Binary choice List elicitation

One choice Two choices One list Two lists
Q1 23% 24% 47% 51%
Q2 27% 33% 46% 44%
n 39/41 42 66/74 162

Treatments B1,B2 B12, B21 L1,L2,S1,S2 All O and A

Fraction choosing the riskier option

4.2 Results

All analysis of results focuses solely on monotone subjects: those who exhibit single-
switching in each list and who do not choose a dominated option in the first line of a
list. Except where specified otherwise, our results focus on regular subjects: subjects
who never exhibit extreme risk seeking by sticking with B throughout the list, nor
exhibit extreme risk aversion by switching immediately to A on the second line.

4.2.1 List elicitation versus binary choice

Table 4.5 shows the distribution of answers in binary choice for line 11 of the list,
grouped by the incentives provided.

There are no significant differences between asking one question or asking two
questions shown on separate screens when binary choice is used (p = .92 for Q1 and
p = .53 for Q2), a finding consistent with the literature supporting the incentive
compatibility of the RIS.
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Table 4.6: Fanning in vs out
SCR EU RCR

L,S 34% 20% 46%
B 19% 71% 10%

Fisher’s test: p < .001

The most obvious difference in Table 4.5 is that in Q1 23% of subjects choose
the risky option in binary choice, but 50% choose the risky option in list elicitation,
a significant difference (p < .001, exact test). In Q2, 30% of subjects choose the
risky option in binary choice, but 45% choose the risky option in list elicitation, a
significant difference (p = .02). Comparable results would hold up if we included all
monotone subjects or only focused on subsets of list treatments.

4.2.2 The independence axiom

Under both list elicitation and binary choice, responses are close to expected utility,
though exhibiting a slight reverse common ratio effect when using list elicitation and
a slight common ratio effect with binary choice elicitation. In binary choice, the
violation of expected utility is not significant (p = .80 for an exact test for B1 vs B2,
.47 for an exact aggregate test for B12 and B21). However, since these two questions
only look in a very particular region of the Marschak-Machina triangle, we do not
view this as providing strong evidence in favour of the independence axiom.

Pooling all the list treatments, the median choice pattern is ($4, .82) � ($3, 1) �
($4, .80) and ($4, .41) � ($3, .5) � ($4, .40), consistent with EU. A rank-sum test for
equality of distributions of Q1 and Q2 has p = .06, suggesting an aggregate level
deviation from EU that is borderline statistically significant (and is in the opposite
direction of the standard common-ratio effect). A within-subject test suggests that
violations of the independence axiom are significant (p = .01, signed-rank test).

Aggregate analysis of behaviour masks substantial heterogeneity of individual de-
cisions that list elicitation picks up: under list elicitation, we detect violations of the
independence axiom for 79% of subjects split between standard common ratio and
reverse common ratio violations with the latter type of violation being slightly more
frequent (Table 4.6). Binary choice data only detects violations of the independence
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Table 4.7: Tests for payment mechanism and order effects
Q1 Q2

Order effect (12=21) .97 .32
Payment mechanism effect (O=A) .06 .58

Separate screens effect (L=S) .47 .38
p-values reported for a rank-sum test of equality of distribution

axiom (AB and BA choice patterns) for 29% of subjects, and using only data from
line 11 would detect a similar fraction of EU violations for the L and S treatments.

4.2.3 Treatment effects

By using list elicitation, the possibility of within-list contamination is equally present
in all L and S treatments. Our treatments allow us to test whether any cross-list con-
tamination occurs. The 2x2x2 design embedded in the treatments ({L,S}×{O,A}×{12,21})
allows us to separately test for the presence of separate screen effects, payment mech-
anism effects, and order effects in each question.

Applying non-parametric analysis, we do find a mildly significant payment mech-
anism effect in Q1 (Table 4.7), however this effect would not be significant if we
corrected for multiple hypothesis tests using a Bonferroni correction.24

So far, our results have focused on regular subjects. However, the most striking
treatment effect is that the proportion of regular subjects is much higher in the S
treatments than in the L treatments (78% vs. 57%, p < .001, see Table 4.4). As we
might expect, there are relatively more (79% vs. 62%, p = .01) regular subjects in the
treatments in which subjects faced only one list (as opposed to two). Neither order nor
payment mechanism significantly affect the proportion of regular subjects (p = .31, .52

respectively, exact tests). We suspected that a combination of isolation in binary
choice, a lack of influence of hypothetical versus real incentives, and a status-quo
bias when the actual list was displayed filled in, might bridge the difference between
standard list elicitation and binary choice. Table 4.7 shows that the incentivized
choice data do not tend to support this view.

24The payment mechanism effect is driven entirely by the O12 treatments. With enough speci-
fication searching this may appear significant in some tests, but would not be after correcting for
multiple hypothesis tests.

53



4.3. Theory: binary choice versus list elicitation

Table 4.8: mTurk vs. student subjects
Binary choice List elicitation

One choice Students mTurk Students
Q1 23% 33% 50% 52%
n 81 27 228 21

Treatments All B All L,S,O,A

Fraction choosing the riskier option

4.2.4 Comparison to a student subject pool

A limited pair of treatments confirms that student subjects exhibit behaviour that is
similar to turkers. Students were recruited through the UBC Economics Lab subject
pool using ORSEE (Greiner, 2004), and offered the opportunity to do an experiment
online for payment by Interac money transfer. Since student subjects tend to be paid
much higher amounts per hour than turkers typically earn, we changed the higher
payoffs to $13, $10, and $0 from $4, $3, and $0.25 Table 4.8 shows the results of the
two student treatments, one corresponds to Q1 under binary choice (B1), and one
corresponds to Q1 under list elicitation (L1).

The student data demonstrates exactly the same pattern as the data from turkers
- students are more likely to choose the safer lottery in a binary choice task than when
the choice is embedded in a list. Students’ responses to Q1 in binary choice were not
significantly different from turkers’ answers to Q1 under binary choice (p = .32, exact
test), nor were students’ responses to Q1 in the list significantly different from turkers’
responses to Q1 under list elicitation (p = .82, exact test).

4.3 Theory: binary choice versus list elicitation

How is it that subjects’ preferences demonstrate more risk aversion when we ask
subjects one question at a time? How is it that subject preferences appear close
to consistent with EU when we use list elicitation, in spite of its precise data being
ideally-suited to test the Independence Axiom?

25All major Canadian banks have a $10 minimum transfer, there was no show-up fee, which was
made clear to subjects in advance.
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A subject who chooses option B for the last time at line i of the list version of Q1
receives the two-stage compound lottery:

�
($4, 1) ,

1

26
; ...; ($4, 1.02− .02i) ,

1

26
; ($3, 1) ,

26− i

26

�
(4.1)

One possible explanation for our results is that there is some cross-question con-
tamination within the elicitation list, which biased the answers of non-EU subjects
under list elicitation. A subject satisfies Segal’s (1990) Compound Independence ax-
iom and evaluates the compound lottery in (4.1) by folding back, if and only if the
binary choice at each ’branch’ of the compound lottery is unaffected by the other
branches (see Segal (1988); Starmer and Sugden (1991)). Karni and Safra (1987)
show that if instead subjects reduces the compound lottery formed by her choices
in the list and has non-EU preferences, then list elicitation will distort her choices.
Segal (1988) shows that if subjects takes an alternative view of the compound lottery
formed by her choices in the list, then list elicitation will distort her choices even if
she satisfies Compound Independence. We sketch these two approaches below in the
context of our experiment.

4.3.1 Karni and Safra (1987): Reduction of Compound

Lotteries

If the subject satisfies the Reduction of Compound Lotteries axiom, then she evaluates
(4.1) as equivalent to the single-stage lottery:

�
$4,

1.01i− .01i2

26
; $3,

26− i

26

�
(4.2)

While a binary choice between ($3, 1) and ($4, .8) involves a choice between a
certain and a risky option, the choice of a switching line in a list involves choice
among multiple risky alternatives and a dominated certain one (for i = 0) when the
subject views the list according to (4.2). The logic of the certainty effect suggests
that a subject may rank ($3, 1) � ($4, .8) and choose accordingly in a binary choice
task, yet choose ($4, .8) over ($3, 1) on line 11 of a list since this conditional choice
involves a choice between a riskier and a less risky (but not certain) alternatives. This
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exact logic could be extended, but does not directly apply to the reversal observed in
Q2, although the reversal in Q2 is empirically weaker.

Some non-EU theories predict, or can accommodate this type of behaviour. For
example, the Negative Certainty Independence (NCI) axiom of Cerreia-Vioglio, Dil-
lenberger, and Ortoleva (2013) allows exactly the type of reversal observed in Q1,
while disallowing the opposite pattern of behaviour. NCI does not make a direct
prediction that relates to Q2. Some (but not all) functional forms for rank-dependent
utility can also capture the observed reversals. For example, the power weighting
function:

f(p) = pβ, β > 1

and the neo-additive weighting function (Chateauneuf, Eichberger, and Grant,
2007; Webb and Zank, 2011):

f(p) =






1 if p = 1

ap+ b if p ∈ (0, 1)

0 if p = 0

f(p) = ap+ b

are both able to accommodate observed reversal behaviour for reasonable param-
eter values.26 In the Appendix, we sketch how these weighting functions can be used
to rationalize the data.

4.3.2 Segal (1988): non-standard view of the compound

lottery formed by the list

Segal (1988) assumes that a subject satisfies Compound Independence, but views a
BDM certainty equivalent elicitation scheme as the two-stage lottery with two prizes
after the first stage (i) lottery at all “lines” where it is chosen, (ii) the uniform lottery
over all $ amounts for “lines” where the dollar amount is chosen.

The version of list elicitation used in this paper corresponds to BDM with varying
probabilities rather than the traditional BDM. To adapt Segal’s (1988) approach to
this setting, suppose a subject views the list elicitation with the RIS for Q1 according

26Some other weighting functions are less successful at accommodating the observed behaviour.
For example, the Prelec (1998) weighting function does not predict the reversal observed in Q1 for
standard parameter values.
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to the three-stage compound lottery:
��

($4, 1) ,
1

i
; ...; ($4, 1.02− .02i) ,

1

i

�
,

i

26
; [$3, 1] ,

26− i

26

�
(4.3)

A subject who evaluates her choices in the list by applying the Compound Inde-
pendence axiom to (4.3) will tend to violate isolation unless her preferences are EU.
As in the Karni and Safra (1987) explanation for the preference reversal, some (but
not all) versions of rank-dependent utility, including some parameter values for the
power weighting function, are able to account for the preference reversal observed in
our data. The Appendix shows how RDU with the power weighting function can be
used to rationalize our main results.

4.4 Discussion

4.4.1 Related literature on elicitation mechanisms and

incentive-compatibility

Incentivized list elicitation was pioneered by Becker, DeGroot, and Marschak (1964),
who introduced it as a way of eliciting certainty equivalents. Unfortunately, use of
BDM induced preference reversals in which subjects’ reported certainty equivalents
of two lotteries were inconsistent with their choices in a binary choice task (Grether
and Plott, 1979). Holt (1986), Karni and Safra (1987), and Segal (1988) showed that
unless subjects evaluate their choices by applying the compound independence axiom
to evaluate the compound lottery generated by the external randomizing device and
their choices, BDM will not elicit subjects’ true certainty equivalents if subjects violate
the independence axiom. Safra, Segal, and Spivak (1990) show that assumptions
that generate the common-ratio effect will tend to generate the observed preference
reversals.

Starmer and Sugden (1991) and Cubitt and Sugden (1998) are widely interpreted
as providing evidence in favour of the use of the RIS in experiments. They have
some subjects answer multiple questions, with one randomly selected for payment,
and compare their responses to those of subjects who answer only one incentivized
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question. They find only weak evidence for any “contamination effect” of RIS. In
recent work, Cox, Sadiraj, and Schmidt (2011) and Harrison and Swarthout (2012)
use comparable designs but consider a larger number of ways of paying subjects who
answer multiple questions. None of these four papers, however, uses list elicitation.
Harrison and Swarthout (2012) suggest that asking 30 questions and paying one does
lead to different structural utility function estimates as compared to asking and paying
one question.

While recent variants on list elicitation have been seen as avoiding some of the
early problems with BDM, we show that the analysis of Karni and Safra (1987) can
be extended to another variant on list elicitation, with an approach that would also
apply to other variations on list elicitation. Recent experiments using list elicitation
widely cite Starmer and Sugden (1991) and Cubitt and Sugden (1998) in support of
combining list elicitation with the RIS; our results suggests that this inference is not
warranted. List elicitation experiments typically have 10 to 100 questions per list on
a single screen or sheet of paper at a time, and then subjects respond to multiple
lists; this contrasts with experiments by Starmer and Sugden (1991) and Cubitt and
Sugden (1998) in which each subject completes at most a small number of binary
choice tasks, which are not given together as a list.

4.4.2 Discussion of our results

Variations on list elicitation have been extremely popular in recent years (e.g. Holt
and Laury (2002), Andersen, Harrison, Lau, and Rutström (2008), Bruhin, Fehr-
Duda, and Epper (2010), see also Andersen, Harrison, Lau, and Rutström (2006)).
Probability list elicitation was first used (without incentives) by Davidson, Suppes,
and Siegel (1957), revisited by McCord and De Neufville (1986), and was revisited
(with the RIS) by Andreoni and Sprenger (2013) and ?.

List elicitation supposedly provides an efficient method for collecting precise data
on individual preferences. But its attractiveness relies on the assumption that the
isolation hypothesis holds. Without the assumption that isolation holds, one must
take into account the structure of the list and the RIS in order to interpret subjects’
choices in terms of their preferences, which complicates the inferences that can be
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drawn from choice data collected using list elicitation.
Our results are clear evidence against the isolation hypothesis. Our results are in

the direction consistent with non-expected utility theory combined with assumptions
about how subjects view and evaluate the their choices and the external random-
izing device as a compound lottery. This theoretical approach is attractive, since
it already provides a unified understanding of preference reversals in BDM and of
the Allais paradox. However, our experimental design cannot rule out other possible
explanations for our findings.

We have suggested two different ways in which non-expected utility preferences
would lead to the biases we observe in our experiment. Each of these explanations
has different implications for how we might recover preferences from list elicitation.
Given that there are other possible explanations for our findings, we do not see any
way to draw unambiguous inferences about preferences from list elicitation. Future
work might distinguish between different possible explanations, as Keller, Segal, and
Wang (1993) do for explanations of preference reversals in BDM.

The experimental economics literature has developed many other ways of eliciting
information about preferences. Alternatives to list elicitation include binary choice
(Hey and Orme, 1994) and convex budget sets (Choi, Fisman, Gale, and Kariv,
2007). A typical implementation of each of these designs still uses RIS to select one
of multiple questions to determine payment. However, in these designs choice tasks
are always displayed on separate screens, with no RIS applying within a screen, which
might induce subjects to isolate their choices.

4.4.3 Experiments on Mechanical Turk

As a large online labour market, Mechanical Turk provides a convenient way to recruit
and pay subjects over the internet. Mechanical Turk allows researchers to economize
on costs and experiment on a different population from undergraduates. Mechanical
Turk has been advocated as a platform for recruiting subjects by psychologists study-
ing judgement and decision-making (Mason and Suri (2011), Paolacci, Chandler, and
Ipeirotis (2010), Buhrmester, Kwang, and Gosling (2011)), political scientists (Berin-
sky, Huber, Lenz, et al., 2012), and economists (Horton, Rand, and Zeckhauser,
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2011). A potential downside of running on experiments on Mechanical Turk is that
subjects complete the experiment from their home computer, and not in a controlled
lab environment, making it difficult to know for sure who the subjects really are and
how much attention they’re paying to the tasks. Paolacci, Chandler, and Ipeirotis
(2010) find that the population of US-based turkers who participate in experiments
is heterogeneous and is more representative of the US population than typical under-
graduate samples, and that turkers pay as much attention to experimental tasks as
undergraduates in a lab. Paolacci, Chandler, and Ipeirotis (2010) and Horton, Rand,
and Zeckhauser (2011) show that some standard experimental results in the judge-
ment and decision-making literature can be qualitatively and quantitatively replicated
using turkers. Our paper also replicates our result with a set of student subjects.

60



Bibliography

Abeler, J., A. Falk, L. Götte, and D. Huffman (2011): “Reference points and
effort provision,” American Economic Review, 101(2), 470–492.

Aliprantis, C. D., and K. C. Border (1999): Infinite dimensional analysis: a
hitchhiker’s guide. Springer.

Allais, M. (1953): “Le comportement de l’homme rationnel devant le risque: Cri-
tique des postulats et axiomes de l’école Américaine,” Econometrica, 21(4), 503–
546.

Andersen, S., G. Harrison, M. Lau, and E. Rutström (2006): “Elicitation
using multiple price list formats,” Experimental Economics, 9(4), 383–405.

(2008): “Eliciting risk and time preferences,” Econometrica, 76(3), 583–618.

Andreoni, J., and C. Sprenger (2013): “Uncertainty Equivalents: Linear Tests
of the Independence Axiom,” Working Paper, University of California, San Diego.

Arrow, K. (1959): “Rational choice functions and orderings,” Economica, 26(102),
121–127.

Au, P., and K. Kawai (2011): “Sequentially rationalizable choice with transitive
rationales,” Games and Economic Behavior, 73(2), 608–614.

Barberis, N., M. Huang, and R. Thaler (2006): “Individual preferences, mon-
etary gambles, and stock market participation: A case for narrow framing,” Amer-
ican Economic Review, 96(4), 1069–1090.

Becker, G., M. DeGroot, and J. Marschak (1964): “Measuring utility by a
single-response sequential method,” Behavioral Science, 9(3), 226–232.

61



Bibliography

Berinsky, A., G. Huber, G. Lenz, et al. (2012): “Evaluating Online Labor
Markets for Experimental Research: Amazon.com’s Mechanical Turk,” Political
Analysis, 20(3), 351–368.

Bruhin, A., H. Fehr-Duda, and T. Epper (2010): “Risk and rationality: Uncov-
ering heterogeneity in probability distortion,” Econometrica, 78(4), 1375–1412.

Buhrmester, M., T. Kwang, and S. Gosling (2011): “Amazon’s Mechanical
Turk: A New Source of Inexpensive, Yet High-Quality, Data?,” Perspectives on
Psychological Science, 6(1), 3–5.

Camerer, C. F., and T. H. Ho (1994): “Violations of the betweenness axiom and
nonlinearity in probability,” Journal of Risk and Uncertainty, 8(2), 167–196.

Carbajal, J., and J. Ely (2012): “Optimal Contracts for Loss Averse Consumers,”
Working Paper, University of Queensland.

Card, D., and G. Dahl (2011): “Family Violence and Football: The Effect of Un-
expected Emotional Cues on Violent Behavior,” Quarterly Journal of Economics,
126(1), 103–143.

Carlin, P. S. (1992): “Violations of the reduction and independence axioms in
Allais-type and common-ratio effect experiments,” Journal of Economic Behavior
& Organization, 19(2), 213–235.

Cerreia-Vioglio, S., D. Dillenberger, and P. Ortoleva (2013): “Cautious
Expected Utility and the Certainty Effect,” Working Paper, University of Pennsyl-
vania.

Chateauneuf, A., J. Eichberger, and S. Grant (2007): “Choice under un-
certainty with the best and worst in mind: Neo-additive capacities,” Journal of
Economic Theory, 137(1), 538–567.

Cherepanov, V., T. Feddersen, and A. Sandroni (Forthcoming): “Rational-
ization,” Theoretical Economics.

62



Bibliography

Chetty, R. (2006): “A new method of estimating risk aversion,” American Economic
Review, 96(5), 1821–1834.

Chew, Soo Hong, E. K., and Z. Safra (1987): “Risk aversion in the theory of
expected utility with rank dependent probabilities,” Journal of Economic Theory,
42(2), 370–381.

Chew, S. (1983): “A generalization of the quasilinear mean with applications to
the measurement of income inequality and decision theory resolving the Allais
paradox,” Econometrica, pp. 1065–1092.

Chew, S. H. (1989): “Axiomatic utility theories with the betweenness property,”
Annals of Operations Research, 19(1), 273–298.

Chew, S. H., L. G. Epstein, and U. Segal (1991): “Mixture symmetry and
quadratic utility,” Econometrica, 59(1), 139–163.

Choi, S., R. Fisman, D. Gale, and S. Kariv (2007): “Consistency and het-
erogeneity of individual behavior under uncertainty,” American Economic Review,
97(5), 1921–1938.

Cox, J., V. Sadiraj, and U. Schmidt (2011): “Paradoxes and mechanisms for
choice under risk,” Working Paper, Georgia State University.

Cox, J. C., and V. Sadiraj (2006): “Small-and large-stakes risk aversion: Implica-
tions of concavity calibration for decision theory,” Games and Economic Behavior,
56(1), 45–60.

Crawford, V., and J. Meng (2011): “New York City Cab Drivers’ Labor Supply
Revisited: Reference-Dependent Preferences with Rational Expectations Targets
for Hours and Income,” American Economic Review, 101(5), 1912–1932.

Cubitt, Robin P., C. S., and R. Sugden (1998): “On the validity of the random
lottery incentive system,” Experimental Economics, 1(2), 115–131.

Davidson, D., P. Suppes, and S. Siegel (1957): Decision making: an experimen-
tal approach. Stanford University Press.

63



Bibliography

Dekel, E. (1986): “An axiomatic characterization of preferences under uncertainty:
weakening the independence axiom,” Journal of Economic Theory, 40(2), 304–318.

Dillenberger, D. (2010): “Preferences for one-shot resolution of uncertainty,”
Econometrica, 78(6), 1973–2004.

Dillenberger, D., and U. Segal (2012): “Recursive Ambiguity and Machina’s
Puzzles,” Working Paper, University of Pennsylvania.

Eliaz, K., and R. Spiegler (2013): “Reference Dependence and Labor-Market
Fluctuations,” Working Paper, University College of London.

Epstein, L., and S. Zin (1989): “Substitution, risk aversion, and the temporal be-
havior of consumption and asset returns: A theoretical framework,” Econometrica,
pp. 937–969.

Ericson, K., and A. Fuster (2011): “Expectations as endowments: Evidence on
reference-dependent preferences from exchange and valuation experiments,” Quar-
terly Journal of Economics, 126(4), 1879–1907.

Fishburn, P. C. (1970): Utility theory for decision making. Wiley.

Grant, S., and A. Kajii (1998): “AUSI expected utility: an anticipated utility
theory of relative disappointment aversion,” Journal of Economic Behavior & Or-
ganization, 37(3), 277–290.

Greiner, B. (2004): “The Online Recruitment System ORSEE 2.0 - A Guide for the
Organization of Experiments in Economics,” Working Paper, University of Cologne.

Grether, D., and C. Plott (1979): “Economic theory of choice and the preference
reversal phenomenon,” American Economic Review, 69(4), 623–638.

Guiso, L., T. Jappelli, and L. Pistaferri (2002): “An empirical analysis of
earnings and employment risk,” Journal of Business and Economic Statistics, 20(2),
241–253.

Gul, F. (1991): “A theory of disappointment aversion,” Econometrica, 59(3), 667–
686.

64



Bibliography

Gul, F., and W. Pesendorfer (2008): “The case for mindless economics,” in The
Foundations of Positive and Normative Economics: A Handbook, ed. by A. Caplin,
and A. Schotter. Oxford University Press New York.

Halevy, Y. (2007): “Ellsberg revisited: An experimental study,” Econometrica,
75(2), 503–536.

Harrison, G., and J. Swarthout (2012): “The independence axiom and the
bipolar behaviorist,” Working Paper, Georgia State University.

Heidhues, P., and B. Kőszegi (2008): “Competition and price variation when
consumers are loss averse,” American Economic Review, pp. 1245–1268.

(Forthcoming): “Regular prices and sales,” Theoretical Economics.

Herweg, F., D. Muller, and P. Weinschenk (2010): “Binary payment schemes:
Moral hazard and loss aversion,” American Economic Review, 100(5), 2451–2477.

Hey, J., and C. Orme (1994): “Investigating generalizations of expected utility
theory using experimental data,” Econometrica, pp. 1291–1326.

Holt, C. (1986): “Preference reversals and the independence axiom,” American Eco-
nomic Review, 76(3), 508–515.

Holt, C. A., and S. K. Laury (2002): “Risk aversion and incentive effects,” Amer-
ican Economic Review, 92(5), 1644–1655.

Horan, S. (2012): “A Simple Model of Two-Stage Maximization,” Working Paper,
Université du Québec à Montréal.

Horton, J., D. Rand, and R. Zeckhauser (2011): “The online laboratory: con-
ducting experiments in a real labor market,” Experimental Economics, 14(3), 399–
425.

Kahneman, D., J. Knetsch, and R. Thaler (1990): “Experimental tests of
the endowment effect and the Coase theorem,” Journal of Political Economy, pp.
1325–1348.

65



Bibliography

Kahneman, D., and A. Tversky (1979): “Prospect theory: an analysis of decision
under risk,” Econometrica, 47(2), 263–291.

Karle, H., and M. Peitz (2012): “Pricing and Information Disclosure in Markets
with Loss-Averse Consumers,” Working Paper, University of Mannheim.

Karni, E., and Z. Safra (1987): “"Preference reversal" and the observability of
preferences by experimental methods,” Econometrica, 55(3), 675–685.

Keller, L., U. Segal, and T. Wang (1993): “The Becker-DeGroot-Marschak
mechanism and generalized utility theories: Theoretical predictions and empirical
observations,” Theory and Decision, 34(2), 83–97.

Kőszegi, B. (2010): “Utility from anticipation and personal equilibrium,” Economic
Theory, 44(3), 415–444.

Kőszegi, B., and M. Rabin (2006): “A model of reference-dependent preferences,”
Quarterly Journal of Economics, 121(4), 1133–1165.

(2007): “Reference-dependent risk attitudes,” American Economic Review,
97(4), 1047–1073.

(2009): “Reference-dependent consumption plans,” American Economic Re-
view, 99(3), 909–936.

Kreps, D., and E. Porteus (1978): “Temporal resolution of uncertainty and dy-
namic choice theory,” Econometrica, 46(1), 185–200.

Machina, M. (1982): “"Expected Utility" Analysis without the Independence Ax-
iom,” Econometrica, 50(2), 277–323.

(1989): “Dynamic consistency and non-expected utility models of choice
under uncertainty,” Journal of Economic Literature, 27(4), 1622–1668.

Manzini, P., and M. Mariotti (2007): “Sequentially rationalizable choice,” Amer-
ican Economic Review, 97(5), 1824–1839.

66



Bibliography

Masatlioglu, Y., and E. Ok (2005): “Rational choice with status quo bias,”
Journal of Economic Theory, 121(1), 1–29.

(2012): “A Canonical Model of Choice with Initial Endowments,” Working
Paper, University of Michigan.

Mason, W., and S. Suri (2011): “Conducting behavioral research on Amazon’s
Mechanical Turk,” Behavior Research Methods, 44(1), 1–23.

McCord, M., and R. De Neufville (1986): “"Lottery Equivalents": Reduction of
the Certainty Effect Problem in Utility Assessment,” Management Science, 32(1),
56–60.

Munro, A., and R. Sugden (2003): “On the theory of reference-dependent prefer-
ences,” Journal of Economic Behavior & Organization, 50(4), 407–428.

Neilson, W. S. (2001): “Calibration results for rank-dependent expected utility,”
Economics Bulletin, 4(10), 1–5.

Ok, E. (2012): “Elements of Order Theory,” Book Draft, New York University.

Ok, E., P. Ortoleva, and G. Riella (2012): “Revealed (p)reference theory,”
Working Paper, California Institute of Technology.

Ortoleva, P. (2013): “The Price of Flexibility: Towards a Theory of Thinking
Aversion,” Journal of Economic Theory, 148(3), 903–934.

Paolacci, G., J. Chandler, and P. Ipeirotis (2010): “Running experiments on
Amazon Mechanical Turk,” Judgment and Decision Making, 5(5), 411–419.

Pope, D., and M. Schweitzer (2011): “Is Tiger Woods loss averse? Persistent
bias in the face of experience, competition, and high stakes,” American Economic
Review, 101(1), 129–157.

Prelec, D. (1998): “The probability weighting function,” Econometrica, 66(3), 497–
527.

67



Bibliography

Quiggin, J. (1982): “A theory of anticipated utility,” Journal of Economic Behavior
& Organization, 3(4), 323–343.

Rabin, M. (2000): “Risk Aversion and Expected-utility Theory: A Calibration The-
orem,” Econometrica, 68(5), 1281–1292.

Richter, M. (1966): “Revealed preference theory,” Econometrica, 34(3), 635–645.

Sadiraj, V. (2012): “Probabilistic Risk Attitudes and Local Risk Aversion: a Para-
dox,” Working Paper, Georgia State University.

Safra, Z., and U. Segal (1998): “Constant risk aversion,” Journal of Economic
Theory, 83(1), 19–42.

Safra, Z., and U. Segal (2002): “On the Economic Meaning of Machina’s Frechet
Differentiability Assumption,” Journal of Economic Theory, 104(2), 450–461.

Safra, Z., and U. Segal (2008): “Calibration Results for Non-Expected Utility
Theories,” Econometrica, 76(5), 1143–1166.

Safra, Z., U. Segal, and A. Spivak (1990): “Preference reversal and nonexpected
utility behavior,” The American Economic Review, 80(4), 922–930.

Sagi, J. (2006): “Anchored preference relations,” Journal of Economic Theory,
130(1), 283–295.

Samuelson, P. A. (1952): “Probability, utility, and the independence axiom,”
Econometrica, 20(4), 670–678.

Samuelson, P. A. (1963): “Risk and uncertainty: A fallacy of large numbers,”
Scientia, 98(4-5), 108–113.

Segal, U. (1987a): “Some remarks on Quiggin’s anticipated utility,” Journal of
Economic Behavior & Organization, 8(1), 145–154.

(1987b): “The Ellsberg paradox and risk aversion: An anticipated utility
approach,” International Economic Review, 28(1), 175–202.

68



(1988): “Does the preference reversal phenomenon necessarily contradict the
independence axiom?,” American Economic Review, 78(1), 233–236.

Segal, U. (1990): “Two-stage lotteries without the reduction axiom,” Econometrica,
58(2), 349–377.

Segal, U., and A. Spivak (1990): “First order versus second order risk aversion,”
Journal of Economic Theory, 51(1), 111–125.

Sen, A. (1971): “Choice functions and revealed preference,” Review of Economic
Studies, 38(3), 307–317.

Starmer, C., and R. Sugden (1991): “Does the random-lottery incentive sys-
tem elicit true preferences? An experimental investigation,” American Economic
Review, 81(4), 971–978.

Sydnor, J. (2010): “(Over) insuring modest risks,” American Economic Journal:
Applied Economics, 2(4), 177–199.

Tversky, A., and D. Kahneman (1991): “Loss aversion in riskless choice: a
reference-dependent model,” Quarterly Journal of Economics, 106(4), 1039–1061.

(1992): “Advances in prospect theory: cumulative representation of uncer-
tainty,” Journal of Risk and Uncertainty, 5(4), 297–323.

Wakker, P. P. (2010): Prospect Theory: For Risk and Ambiguity. Cambridge Uni-
versity Press, Cambridge, UK.

Wang, T. (1993): “Lp-Fréchet Differentiable Preference and "Local Utility" Analy-
sis,” Journal of Economic Theory, 61(1), 139–159.

Webb, C. S., and H. Zank (2011): “Accounting for optimism and pessimism in
expected utility,” Journal of Mathematical Economics, 47(6), 706–717.

Yaari, M. (1987): “The dual theory of choice under risk,” Econometrica, 55(1),
95–115.

69



Appendix A

Proofs for Chapter 2

Lemma A.1. For any two sets D,D� and any asymmetric binary relation P , m(D, P )∪
m(D�, P ) ⊇ m(D ∪D�, P ).

Proof. Suppose p ∈ m(D ∪D�, P ) ∩D.
=⇒ �q ∈ D ∪D� s.t. qPp.
=⇒ �q ∈ D s.t. qPp

=⇒ p ∈ m(D,P ).
If p ∈ m(D ∪D�, P ) ∩D�, an analogous result would follow.
Thus p ∈ m(D ∪D�, P ) implies p ∈ m(D,P ) ∪m(D�, P ).
=⇒ m(D, P ) ∪m(D�, P ) ⊇ m(D ∪D�, P )

Results on IIA Independence and IIA Independence 2.

Lemma A.2. Suppose Expansion and Weak RARP hold. If p ∈ c(D), p /∈ c(D∪q) �
r, and p ˜̄Wr, then �Dpq such that p ∈ c(Dpq).

Proof. If ∃Dpq such that p ∈ c(Dpq) then by Expansion, p ∈ c(D ∪ Dpq). Since
D ∪ q ⊆ D ∪ Dpq and r ∈ c(D ∪ q) with p ˜̄Wr, it follows by Weak RARP that
p ∈ c(D ∪ q), a contradiction. Thus no such Dpq can exist.

Lemma A.3. Suppose Expansion and Sen’s α hold. If p ∈ c(D), p /∈ c(D ∪ q) , then
�Dpq such that p ∈ c(Dpq).

Proof. If p ∈ c(D) ∩ Dpq then by Expansion, p ∈ c(D ∪ Dpq). Then by Sen’s α,
p ∈ c(D ∪ q). This proves the claim.
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Proof of Proposition 2.2.

(i) ⇐⇒ (iii)

Let P1, P2 denote the asymmetric part of relations P̄1, P̄2 that form a transitive short-
listing representation. By definition, m(D, Pi) = m(D, P̄i) for i = 1, 2 and for any
D.

Necessity of Expansion. p ∈ c(D) and p ∈ c(D�) implies:
(i) p ∈ m(D,P1) and p ∈ m(D�, P1)

=⇒ �q ∈ D s.t. qP1p and �q ∈ D� s.t. qP1p

=⇒ �q ∈ D ∪D� s.t. qP1p

=⇒ p ∈ m(D ∪D�, P1)

(ii) p ∈ m(m(D,P1), P2) and p ∈ m(m(D�, P1), P2)

=⇒ �q ∈ m(D,P1) s.t. qP2p and �q ∈ m(D�, P1) s.t. qP2p

=⇒ �q ∈ m(D,P1) ∪m(D�, P1) s.t. qP2p

by Lemma A.1,
=⇒ �q ∈ m(D ∪D�, P1) s.t. qP2p

By (i),
=⇒ p ∈ m(m(D ∪D�, P1), P2) = c(D ∪D�)

This implies that Expansion holds.

Necessity of Weak RARP. Suppose q ˜̄Wp, and there are D,D� such that: {p, q} ⊆
D ⊆ D̄ and p ∈ c(D), q ∈ cU(D̄).

By definition of q ˜̄Wp, there is a chain q = r0, r1, ..., rn−1, rn = p such that for
each i ∈ {1, ..., n}, there are Di, D̄i such that {ri−1, ri} ⊆ Di ⊆ D̄i, ri ∈ cU(D̄i) and
ri−1 ∈ c(Di), or (if not) there is a net {D̄i,�, Di,�} → D̄i, Di for which ri ∈ cU(D̄i,,�)

and ri−1 ∈ c(Di,�) ∀� > 0.
For each i, from the representation, it follows that:
=⇒ ri ∈ m(Di, P1)

=⇒ not riP2ri−1.
Since the transitive completion of P2 is transitive, it follows that not qP2p.
Since q ∈ cU(D̄), by continuity of P1, q ∈ m(D̄, P1).
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Since q ∈ D ⊆ D̄ as well, q ∈ m(D, P1).
Since p ∈ m(m(D,P1), P2), not pP2q, and P2 has a transitive completion, it follows

that not rP2q ∀r ∈ m(D, P1).
Thus, q ∈ m(m(D, P1), P2) = c(D).

Sufficiency. Part of the idea of the proof follows Manzini and Mariotti (2007). The
two rationales constructed here are not unique.

Define P1 by:

qP1p if �Dpq s.t. p ∈ cU(Dpq)

Define P̄2 by:

P̄2 =
˜̄W

Define P2 as the asymmetric part of P2.
First, show that P1 and P2 are appropriately continuous.
If pP1q, � a net {Dp�q�}� → Dpq with p� ∈ c(Dp�q�) and max [d(p�, p), d(q�, q)] < �

for each � > 0, since then we would have p ∈ cU(Dpq) for some Dpq. Thus, ∃�̄ > 0

such that ∀p� ∈ N �̄
p, ∀q� ∈ N �̄

q , p�P1q�. This implies that P1 has open better and worse
than sets.

P2 is continuous by construction.
Second, show c(D) ⊆ m(m(D,P1), P2).
By definition of P1, p ∈ c(D) implies p ∈ m(D,P1).
Take any q ∈ m(D,P1). By the definition of P1, ∀r ∈ D, ∃Dqr such that q ∈

c(Dqr). Successively applying Expansion implies that q ∈ c( ∪
r∈D

Dqr). Since D ⊆

∪
r∈D

Dqr and p ∈ c(D), it follows that p ˜̄Wq, thus pP̄2q. Since this implies not qP2p for
any arbitrary q ∈ m(D,P1), it further follows that p ∈ m(m(D,P1), P2).

Third, show m(m(D,P1), P2) ⊆ c(D)

Suppose p ∈ m(m(D,P1), P2).
Then, ∀r ∈ D, ∃Dpr : p ∈ c(Dpr). By Expansion, p ∈ c( ∪

r∈D
Dpr).

Since p ∈ m(m(D,P1), P2), it p ˜̄Wq ∀q ∈ c(D) by the definition of ˜̄W .
Thus by Weak RARP, p ∈ c(D).
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(ii) ⇐⇒ (iii) Consider a continuous PPE representation v that represents c, and
a continuous and transitive shortlisting representation P1, P2.

Map between v and P1 by:

qP1p ⇐⇒ v(q|p) > v(p|p)

Map between v and P2 by:

qP2p ⇐⇒ v(q|q) > v(p|p)

Joint continuity of v will map to continuity of P1 and P2.
Notice that the mapping from P1 to v only specifies v(·|p) partially; the mapping

from P2 to v imposes an continuous additive normalization on v.
Consider the following construction of v from P1, P2:
Let u : ∆ → � be a continuous utility function that represents P2. Define v(p|p) =

u(p) ∀p ∈ ∆. Let I(p) = {q ∈ ∆ : (q, p) ∈ cl{(q̂, p̂) : q̂P1p̂}\{(q̂, p̂) : q̂P1p̂}}.
The following definition of v is consistent with the mapping proposed above:

v(q|p) =





u(p) + dH({q}, I(p)) if qP1p

u(p)− dH({q}, I(p)) otherwise
It can be verified that continuity of P1 and u imply that v so constructed satisfies

joint continuity.
�

Proof of Theorem 2.1.

Notation.

Let for p, q ∈ ∆, let Dpq ∈ D denote an arbitrary choice set that contains p and q.

Sufficiency: Lemmas.

In the lemmas in this section, assume that c satisfies Expansion, Weak RARP, IIA
Independence, Induced Reference Lottery Bias, and Transitive Limit.

Lemma A.4. R̄p is complete, transitive, and if there exists a net {p�, q�, r�} → p, q, r

with q�R̄p�r� for each term in the net, then qR̄pr.
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Proof. Transitivity of R̄p follows by Transitive Limit.
For any net {p�, q�, r�} → p, q, r, non-emptiness of c implies that the net either has

a convergent subnet pδ, qδ, rδ in which (1−δ)pδ+δqδ ∈ c({(1−δ)pδ+δqδ, (1−δ)pδ+δrδ}
or in which (1− δ)pδ + δrδ ∈ c({(1− δ)pδ + δqδ, (1− δ)pδ + δrδ} for each term in the
subnet. Thus R̄p is complete.

Take a net {p�, q�, r�} → p, q, r, for which q�R̄p�r� for each term in the net. By
the definition of R̄p� , for each � there is a net {p�,δ, q�,δ, r�,δ}δ → p�, q�, r� such that
(1− δ)p�,δ + δq�,δ ∈ c((1− δ)p�,δ + δ{q�,δ, r�,δ}) for each term in the net. Let δ̄� denote
the largest element in the index set for {p�,δ, q�,δ, r�,δ}δ and �̄ the largest element in
the index set for {p�, q�, r�} . Take δ̄ := δ̄�̄. For each δ < δ̄, define �δ as a decreasing
net such that for each δ < δ̄�δ . Then define {p̂δ, q̂δ, r̂δ} := {p�δ ,δ, q�δ ,δ, r�δ ,δ}δ. By
construction, {p̂δ, q̂δ, r̂δ} establishes that qR̄pr.

Let Rp denote the strict part of R̄p. Lemma A.5 shows that Rp satisfies the
Independence Axiom.

For a binary relation R, say that R satisfies the Independence axiom if qRr ⇐⇒
(1− α)s+ αqR(1− α)s+ αr ∀α ∈ (0, 1). ∀s ∈ ∆.

Lemma A.5. Rp satisfies the Independence Axiom if p ∈ int∆.

Proof. Part I: suppose qRpr, and take a α ∈ (0, 1) and s ∈ ∆.
Then,∃δ̄, �̄ > 0 such that ∀� ∈ (0, �̄), p̂, q̂, r̂ ∈ N δ̄

p × N δ̄
q × N δ̄

r , {(1 − �)p̂ + �q̂} =

c((1− �)p̂+ �{q̂, r̂}).
Define δ̄α = min

�
αδ̄, (1− α)δ̄

�
.

Let p̂, ŝ ∈ N δ̄α
p ×N δ̄α

s . Since dE(p, q) ≤ 1, it follows that dE((1−β)p̂+βŝ, p) ≤ (1−
β)δ̄α+β by the triangle inequality. Thus if β ≤ β̄α := δ̄−δ̄α

1−δ̄α
, then (1−β)p̂+βŝ ∈ N δ̄

p .
Then for any q̂, r̂ ∈ N δ̄

q ×N δ̄
r , � ∈ (0, �̄), and β ∈ (0, β̄), {(1− �) ((1− β)p̂+ βŝ) +

�q̂} = c((1− �) ((1− β)p̂+ βŝ) + �{q̂, r̂}). Define �̂ := �
α and β�,α := �

α
1−α
1−� . Then ∀�̂

such that α�̂ ∈ (0, �̄) and �̂ 1−α
1−α�̂ ∈ (0, β̄), it follows that {(1− �̂)p̂+ �̂ ((1− α)ŝ+ αq̂)} =

c((1 − �̂)p̂ + �̂ ((1− α)ŝ+ α{q̂, r̂})). Since N δ̄α
(1−α)s+αq ⊂ (1 − α)N δ̄

s + αN δ̄
q and

N δ̄α
(1−α)s+αq ⊂ (1− α)N δ̄

s + αN δ̄
q

It follows that (1− α)s+ αqRp(1− α)s+ αr.
Part II: suppose (1− α)s+ αqRp(1− α)s+ αr.
Recall that N δ̄

(1−α)s+αq ⊆ (1− α)N δ̄
s + αN δ̄

q .
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Then,∃δ̄, �̄ > 0 such that N δ̄
p ⊂ int∆ and ∀� ∈ (0, �̄), p̂, q̂, r̂, ŝ ∈ N δ̄

p×N δ̄
q ×N δ̄

r ×N δ̄
s ,

{(1− �)p̂+ �((1− α)ŝ+ αq̂)} = c((1− �)p̂+ �((1− α)ŝ+ α{q̂, r̂})).
Fix κ ∈ (0, 1). Fix p̂, q̂, r̂, ŝ ∈ Nκδ̄

p ×Nκδ̄
q ×Nκδ̄

r ×Nκδ̄
s .

Given � ∈ (0, �̄), take γ�,α := �1−α
1−� . If γ < (1−κ)δ̄, then p̂+γ�,α(p̂− ŝ) ∈ N δ̄

p ⊆ ∆.
Then,

(1 − �) (p̂+ γ�,α(p̂− ŝ)) + �((1 − α)ŝ + αq̂) = c((1 − �) (p̂+ γ�,α(p̂− ŝ)) + �((1 −
α)ŝ+ α{q̂, r̂}))

⇐⇒ (1− α�)p̂+ α�{q̂} = c((1− α�)p̂+ α�{q̂, r̂})
Since the above holds ∀p̂, q̂, r̂, ŝ, � ∈ Nκδ̄

p ×Nκδ̄
q ×Nκδ̄

r ×Nκδ̄
s × (0, �̄) it follows that

qRpr.

Lemma A.6. R̄p satisfies the Independence Axiom if p ∈ int∆.

Proof. I already have a proof that Rp satisfies the Independence Axiom.
Suppose that qR̄pr and take (1− α)s+ αq and (1− α)s+ αr.
If it is not the case that (1− α)s+ αqR̄p(1− α)s+ αr, then (1− α)s+ αrRp(1−

α)s+ αq.
Then it follows by Lemma A.5 that rRpq, which contradicts that qR̄pr.

Define q ¯̄Rpr if either:
(i) p ∈ int∆ and qR̄pr

(ii) p /∈ int∆, and ∃α, s ∈ (0, 1)×∆ such that (1− α)s+ αqR̄p(1− α)s+ αr

(iii) ∃α, s, q̂, r̂ such that q = (1− α)s+ αq̂, r = (1− α)s+ αr̂, and q̂R̄pr̂

The relation ¯̄Rp is the minimal extension of R̄p that respects with the Independence
Axiom for all p ∈ ∆.

By construction, ¯̄Rp satisfies the joint continuity properties in Lemma A.4 as well.

Lemma A.7. For each p ∈ ∆, there exists a vector ûp ∈ �N such that q ¯̄Rpr ⇐⇒
q · ûp ≥ r · ûp.

Proof. Lemma A.4. shows R̄p is complete, and transitive. By construction, ¯̄Rp satis-
fies the Independence axiom. The joint continuity property on R̄p in Lemma A.4 then
implies the notion of mixture continuity required (condition 3) to apply Fishburn’s
(1970) Theorem 8.2.

75



Appendix A. Proofs for Chapter 2

Say that a vector up is flat if max
i

up
i = min

i
up
i . Let F := {p ∈ ∆ : up is flat}.

Lemma A.8. Suppose up is not flat. Then, there is an � neighbourhood N �
p of p such

that ∀p̂ ∈ N �
p, up̂ is not flat.

Proof. Suppose there is a net p̂� such that p̂� ∈ N �
p and up̂� is flat. Since up̂� must

represent R̄p̂� , it follows that qR̄p̂�r ∀q, r ∈ ∆ and for each p̂�. By Lemma A.4, it
follows that qR̄pr. It follows that up must be flat as well, a contradiction.

Let ûp denote a vector that provides an EU representarion for ¯̄Rp (i.e. q ·ûp ≥ r ·ûp

⇐⇒ q ¯̄Rpr ∀q, r ∈ ∆). For all p such that p is non-flat, define:

up :=
dH({p}, F )

max
i

�
ûp
i −

�
ûp
j

j

�
�
ûp −

�

j

ûp
j

�
(A.1)

If ûp is flat, define up as the zero vector.
By Lemma A.8 and the EU theorem, up provides an EU representation for ¯̄Rp.

Lemma A.9. If p� → p, then up� → up

Proof. If up is flat, then dH({p�}, F ) → 0 as � → 0, thus up� → up.
Now suppose that up is non-flat. Suppose p� → p but for convergent subnet {p��}

of {p�}, up�
�
→ ūp �= up. Since up�

�
represents R̄p�� , by the joint continuity property

in Lemma A.4., it follows that ūp ranks q ∼ r if and only if up ranks q ∼ r. Since up

and ūp must satisfy the same normalizations, they must coincide by the uniqueness
result of the EU theorem.

Define v : ∆×∆ → � by v(q|p) := q · up

Lemma A.10. v is jointly continuous.

Proof. v(q|p) = q · up =
�

i qiu
p
i and up is continuous as a function of p, and joint

continuity of the sum
�

i qiu
p
i in q and up is a standard exercise.

Lemma A.11 shows that Limit Consistency is implied by the axioms assumed in
Theorem 2.1.
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Lemma A.11. The axioms in Theorem 2.1 imply Limit Consistency.

Proof. Part 1. Suppose {q} = m(D,Rp) �= {p} ⊆ c(D).
That is, qRpr ∀r ∈ D.
Then ∀r ∈ D ∃ᾱr > 0 such that ∀α ∈ (0, ᾱr), (1−α)p+αq = c((1−α)+α{q, r}).
Since D is finite, min

r∈D
ᾱr > 0.

By Expansion, ∀α ∈ (0,min
r∈D

ᾱr), (1− α)p+ αq ∈ c((1− α) + αD).
By Induced Reference Lottery Bias, ∀α ∈ (0,min

r∈D
ᾱr) p ∈ c((1− α) + αD). Thus

p ˜̄W (1 − α)p + αq. Weak RARP then implies that p ∈ c((1 − α)p + α{p, q}) ∀α ∈
(0,min

r∈D
ᾱr). This implies that pR̄pq, a contradiction.

Part 2. Suppose there are elements q1, ..., ql ∈ D such that qiRpp for each i =

1, ..., l.
Suppose qi ∈ m(D,Rp), and let D̂ := D\m(D,Rp).
Then by the previous result ∀i = 1, ..., l, ∃ᾱi > 0 such that ∀α ∈ (0, ᾱi), (1 −

α)p+ αqi ∈ c((1− α)p+ α
�
D̂ ∪ qi

�
).

Since {q1, ..., ql} is finite and each ᾱi > 0, min
i
ᾱi > 0.

For each α ∈ (0, 1), c((1− α)p+ α{q1, ..., ql}) is non-empty.
For q̂ such that (1−α)p+αq̂ ∈ c((1−α)p+α{q1, ..., ql}), Expansion implies that
(1− α)p+ αq̂ ∈ c(

�
(1− α)p+ α{q1, ..., ql}

�
∪
�
(1− α)p+ α

�
D̂ ∪ q̂

��
)

= c((1− α)p+ αD).
Thus ∀α ∈ (0,min

i
ᾱi), ((1− α)p+ α{q1, ..., ql}) ∩ c((1− α)p+ αD) �= ∅.

It follows that for at least one q̂ ∈ {q1, ..., ql}, ∀ᾱ ∈ (0,min
i

ᾱi), ∃α < (0, ᾱ) such
that ((1− α)p+ αq̂ ∈ c((1− α)p+ αD).

Since p ∈ c((1 − α)p + αD) ∀α ∈ (0, 1) by Induced Reference Lottery Bias, it
follows that p ˜̄W (1− α)p+ αq̂ whenever (1− α)p+ αq̂ ∈ c((1− α)p+ αD). For such
α, it further follows by Weak RARP that p ∈ c((1−α)p+α{p, q̂}). This contradicts
that q̂Rpp.

Define P̂E(D) = {p ∈ D : pR̄pq ∀q ∈ D}.
Define ˆPPE(D) = {p ∈ P̂E(D) : �q ∈ P̂E(D) s.t. q ˜̄Wp}.
Lemma A.9 establishes that p ∈ c({p, q}) implies p ∈ ˆPPE({p, q}).
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Lemma A.12. If qR̄qp and p ∈ c({p, q}), then p ˜̄Wq.

Proof. If ∃Dpq such that q ∈ cU(Dpq) then the result follows automatically. Similarly
if there exists a chain p = r0, r1, ..., rn = q such that ri−1 ˜̄Wri for i = 1, ..., n.

If ∃p�, q� that establish qR̄qp, then if for some such sequence, p� ∈ c({p�, q�}) for
a convergent subsequence of p�, q�, then p� ˜̄Wq� for such pairs. Then, continuity of ˜̄W

implies that p ˜̄Wq.
So suppose instead that for each sequence p�, q� that establishes that qR̄qp, q� =

c({p�, q�}) except on a non-convergent subsequence of p�, q�. This implies that q ∈
cU({p, q}). Then by the definition of ˜̄W , p ˜̄Wq.

Lemma A.10 establishes that p ∈ ˆPPE({p, q}) implies p ∈ c({p, q}).

Lemma A.13. If pR̄pq and p ˜̄Wq, then p ∈ c({p, q}).

Proof. Since {p} = c({p}), if {q} = c({p, q}) and p ˜̄Wq it would follow by IIA Inde-
pendence and the definition of Rp that qRpp. This would contradict the assumption
that pR̄pq. Since c({p, q}) �= ∅, it then follows that p ∈ c({p, q}).

Lemmas A.11-A.12 establish that ˆPPE({p, q, r}) = c({p, q, r}) ∀p, q, r ∈ D.

Lemma A.14. If p ∈ c({p, q, r}) and qR̄qp then p ˜̄Wq or rR̄qq.

Proof. Suppose p ∈ c({p, q, r}) and qR̄qp.
If p ∈ c({p, q}), then p ˜̄Wq holds.
So suppose instead that q = c({p, q}).
Then, if q ∈ c({q, r}) it would follow by Expansion that q ∈ c({p, q, r}). Since

p ∈ c({p, q, r}) as well, it follows that p ˜̄Wq; by Weak RARP, it follows that p ∈
c({p, q}), a contradiction. Thus r = c({q, r}).

By Lemma A.5, it follows that either rRqq or r ˜̄Wq; in the former case we’re done,
so suppose r ˜̄Wq and that it is not the case that rRqq.

If p ∈ c({p, r}), then it follows that either pRrr or p ˜̄Wr. In the latter case,
transitivity of ˜̄W implies p ˜̄Wq and we’re done, so suppose we have that pRrr. Then
by Limit Consistency, p = c({p, r}).
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To summarize, we now have that q = c({p, q}), p = c({p, r}) = c({p, q, r}), and
r = c({q, r}). Then, by IIA Independence, it follows that ∃� > 0 : ∀α ∈ (0, 1), ∀q̂ ∈
N �

q , ∀r̂ ∈ N �
r , ∀D̂ ⊇ {q̂, (1−α)q̂+αr̂}, q̂ /∈ c(D̂). It follows that rRqq, a contradiction.

It follows that either rRqq or p ˜̄Wq.

Lemma A.15. If p ∈ ˆPPE({p, q, r}) then p ∈ c({p, q, r}).

Proof. Suppose p ∈ ˆPPE({p, q, r}).
We know that c({p, q, r}) �= ∅. So it is sufficient to prove that q ∈ c({p, q, r}) =⇒

p ∈ c({p, q, r}) and similarly if r ∈ c({p, q, r}).
Suppose q ∈ c({p, q, r}); the argument starting from r ∈ c({p, q, r}) is symmet-

ric.
Then, qR̄qp and qR̄qr by Limit Consistency. Since p ∈ ˆPPE({p, q, r}) and q ∈

P̂E({p, q, r}), it follows that p ˜̄Wq. Then by Lemma A.10, since pR̄pq as well, p ∈
c({p, q}).

If r ∈ c({p, q, r}) then a similar argument implies p ∈ c({p, r}). Then by Expan-
sion, p ∈ c({p, q, r}).

If instead r /∈ c({p, q, r}), we have (recalling Lemma A.6) that either p ∈ c({p, r})
or r = c({p, r}). In the former case, Expansion implies p ∈ c({p, q, r}). In the latter
case, r = c({p, r}). Recall that p ∈ c({p, q}). If p /∈ c({p, q, r}) then q = c({p, q, r});
by IIA Independence and the definition of Rp, it follows that rRpp, a contradiction
of the assumption that p ∈ ˆPPE({p, q, r}).

It follows that p ∈ ˆPPE({p, q, r}) =⇒ p ∈ c({p, q, r}).

Remark. ˆPPE(D) = ˆPPE(P̂E(D))

Lemma A.16. Suppose we have established that ˆPPE(D) = c(D) whenever |D| < n.
If P̂E(D) = D and |D| ≤ n, then c(D) = ˆPPE(D).

Proof. First, suppose P̂E(D) = D.
Take p ∈ ˆPPE(D). Then p ∈ ˆPPE(D\r) ∀ ∈ D\p. Take any distinct r, r� ∈ D\p,

and then since |D\r| = |D\r�| = n− 1 < n, p ∈ c(D\r) ∩ c(D\r�). By Expansion, it
follows that p ∈ c(D).
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In the reverse, suppose p ∈ c(D). Then if q ˜̄Wr ∀r ∈ D, since P̂E(D) = D, it
follows that q ∈ c({q, r}) ∀r ∈ D. By Expansion, it follows that q ∈ c(D). Then
since p ∈ c(D) and q ∈ c(D), p ˜̄Wq by definition. Thus p ∈ ˆPPE(D).

Lemma A.14 establishes by induction that c(D) = ˆPPE(D) for any D ∈ D.

Lemma A.17. Suppose c(D) = ˆPPE(D) whenever |D| < n. Then, c(D) = ˆPPE(D)

whenever |D| ≤ n as well.

Proof. Consider D with |D| = n and P̂E(D) �= D. Partition D into P̂E(D) and
D\P̂E(D). The case where P̂E(D) = D was proven in Lemma A.9.

Since |P̂E(D)| ≤ n− 1 < n, c(P̂E(D)) = ˆPPE(P̂E(D)) = ˆPPE(D).
Say that q0, q1, ..., qm form a chain if qiRqi−1qi−1 for i = 1, ...,m. Notice that

if q0, ..., qm form a chain, Limit Consistency implies that qm = c({q0, ..., qm}) =

P̂E(D) = ˆPPE(D). So if the longest chain in D contains all elements of D, then
c(D) = ˆPPE(D).

Now suppose p ∈ ˆPPE(D).
First, further suppose the longest chain in D has length n − 1; denote the chain

q0, q1, ..., qn−1. Then, qn−1 = c({q0, q1, ..., qn−1}) and since q0, q1, ..., qn−1 is the longest
chain in D and p ∈ P̂E(D), {p, qn−1} = P̂E(D). Since p ∈ ˆPPE(D), it follows that
p ˜̄Wqn−1; Lemmas A.8 and A.10, p ∈ c({p, qn−1}). Suppose p ∈ c({p, qk, ..., qn−1}) for
some k ≤ n−1. Then, since if p /∈ c({p, qk−1, ..., qn−1}) it follows by IIA Independence
and the definition of Rp that qk−1Rpp, which contradicts that p ∈ P̂E(D). Thus it
follows by induction that p ∈ c(D).

Take an arbitrary chain q0, ..., qm that cannot be extended further as a chain using
elements of D. Since q0, ..., qm cannot be extended, qm ∈ P̂E(D). Since p ∈ ˆPPE(D),
p ˜̄Wqm and by Lemma A.8, p ∈ c({p, qm}). Suppose p ∈ c({p, qk, ..., qm}) for some
k ≤ m. Then if p /∈ c({p, qk−1, ..., qm}) it follows by IIA Independence and the
definition of Rp that qk−1Rpp; this would which contradicts that p ∈ P̂E(D). Thus
it follows by induction that p ∈ c({p, q0, ..., qm}).

Notice that any element of D\P̂E(D) is in a chain in D. Let D̂ is the choice set
formed by taking the union of {p} and of the all of the choice sets formed by chains
in D. Since for any chain q0, ..., qm in D, p ∈ c({p, q0, ..., qm}), p ∈ c(D̂) follows by
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Expansion. Since p ∈ c(P̂E(D)) as well follows (because |P̂E(D)| < n or Lemma
A.13 applies), it follows by Expansion that p ∈ c(D). Thus ˆPPE(D) ⊆ c(D).

In the reverse direction, now suppose p ∈ c(D). By Limit Consistency, p ∈
P̂E(D). Since c(D) ⊇ ˆPPE(D) = ˆPPE(P̂E(D)) = c(P̂E(D)) �= ∅, ∃q ∈ c(D) ∩
ˆPPE(D). Since p, q ∈ c(D), p ˜̄Wq. Thus p ∈ ˆPPE(D).

Lemma A.15 relates the dislike of mixtures property to the Induced Reference
Lottery Bias axiom.

Lemma A.18. Induced Reference Lottery Bias implies that v dislikes mixtures.

Proof. By the representation thus far, c(D) = ˆPPE(D).
If p ∈ ˆPPE({p, q}) then v(p|p) ≥ v(q|p) and either v(p|p) ≥ v(q|q) or v(p|q) >

v(q|q). Thus v(p|p) ≥ v(q|p) and v(q|q) ≤ max [v(p|p), v(q|p)]. Then the Induced
Reference Lottery Bias axiom implies that then p ∈ c((1 − α)p + αD) = ˆPPE((1 −
α)p + αD), thus v(p|p) ≥ v((1 − α)p + αq|p) and v((1 − α)p + αq|(1 − α)p + αq) ≤
max [v(p|p), v((1− α)p+ αq|p)].

Remark. ˆPPE(D) = PPEv(D)

Necessity.

Proposition 2.2 implies that Expansion and Weak RARP are necessary conditions
for any PPE representation.

Lemma A.19. Suppose v represents c by a PPE representation. Then p ˜̄Wr implies
that v(p|p) ≥ v(r|r).

Proof. Suppose p ˜̄Wr. If ∃D, D̄ with {p, r} ⊆ D ⊆ D̄ and p ∈ c(D) and r ∈ c(D̄)

then it follows that v(p|p) ≥ v(r|r) since r ∈ PE(D̄) ∩ D ⊆ PE(D) follows by the
representation.

If instead there is a chain such that pi−1 ˜̄Wpi for i = 1, ..., n and p0 = p, pn = r,
then it follows that v(pi−1|pi−1) ≥ v(pi|pi) for each i. Chaining these inequalities
together, it follows that v(p|p) ≥ v(r|r).

81



Appendix A. Proofs for Chapter 2

Necessity of IIA Independence. Suppose p ˜̄Wr. Then by Lemma A.12, v(p|p) ≥
v(r|r). If p ∈ PPE(D) and p /∈ PPE(D∪q) � r, then it follows that v(q|p) > v(p|p).
Since v is jointly continuous, ∃� > 0 such that ∀p̂ ∈ N �

p, ∀q̂ ∈ N �
q , v(q̂|p̂) > v(q̂|p̂).

Since v is expected utility, it follows that for all such p̂, q̂ pairs and ∀α ∈ [0, 1),
v((1 − α)p̂ + αq̂|p̂) > v(p̂|p̂). It follows that for all such p̂, q̂ pairs and for any such
α ∈ [0, 1), whenever (1 − α)p̂ + αq̂ ∈ D̂ it follows that p̂ /∈ PPE(D̂) = c(D̂). Thus
IIA Independence holds.

Necessity of Transitive Limit. First, I show that the antecedent of Transitive
Limit has bite in the presence of, and only in the presence of, a strict preference. To
be precise, suppose (1− �)pδ + �qδ = c({(1− �)pδ + �qδ, (1− �)pδ + �rδ}) for all small
�, and pδ, qδ, rδ sufficiently close to p, q, r. By the representation, this holds only if for
all pδ close to p, qδ close to q, rδ close to r, and � close to zero, v(qδ|(1− �)pδ + �qδ) ≥
v(rδ|(1− �)pδ + �qδ), thus v(qδ|pδ) ≥ v(rδ|pδ) for all pδ, qδ, rδ. If v(q|p) = v(r|p), then
for every qδ near q, v(qδ|p) ≥ v(q|p) and for every rδ near r, v(r|p) ≥ v(rδ|p); this
contradicts local strictness of v(·|p) in the representation. Thus when the antecedent
of Transitive Limit holds, v(q|p) > v(r|p) must hold.

Now take a continuous EU-PE representation and suppose v(q|p) > v(r|p). Then,
joint continuity implies that v((1 − λ)s + λqδ|pδ) > v((1 − λ)s + λrδ|pδ) for any
s ∈ ∆, λ > 0, and δ close to zero. It follows that v((1− �)pδ + �qδ|(1− �)pδ + �rδ) >

v((1 − �)pδ + �rδ|(1 − �)pδ + �rδ) for all δ, � sufficiently small. Thus for sufficiently
small δ, �, (1− �)pδ + �qδ = c({(1− �)pδ + �qδ, (1− �)pδ + �rδ}). Thus the antecedent
of Transitive Limit holds when v(q|p) > v(r|p).

Since v(q|p) > v(r|p) and v(r|p) > v(s|p) imply v(q|p) > v(s|p), the analysis above
implies that qRpr and rRps implies qRps, so Transitive Limit must hold.

Necessity of Induced Reference Lottery Bias. In the representation, v(p|p) ≥
v(q|p) and v(q|q) ≤ max [v(p|p), v(p|q)] imply that ∀α ∈ (0, 1), v((1− α)p+ αq|(1−
α)p+ αq) ≤ max [v(p|p), v(p|(1− α)p+ αq)].

Suppose p ∈ c(D). Then, v(p|p) ≥ v(q|p) ∀q ∈ D, and v(p|p) ≥ v(q|q) ∀q ∈
PE(D). It follows that v(p|p) ≥ v(q|p) and v(q|q) ≤ max [v(p|p), v(p|q)]. Since
v(·|p) satisfies expected utility, p ∈ PE((1 − α)p + αD) ∀α ∈ (0, 1). Since v((1 −
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α)p + αq|(1 − α)p + αq) ≤ max [v(p|p), v(p|(1− α)p+ αq)] ∀q ∈ D, it follows that
v(p|p) ≥ v((1−α)p+αq|(1−α)p+αq) ∀q : (1−α)p+αq ∈ PE((1−α)p+αD). Thus
p ∈ PPE((1 − α)p + αD) = c((1 − α)p + αD) ∀α ∈ (0, 1). Thus Induced Reference
Lottery Bias holds.

�

Proof of Proposition 2.3.

Suppose that v(·|p) and v(·|q) are not ordinally equivalent. Then ∃r̄, s̄ ∈ ∆ such
that v(r̄|p) > v(s̄|p) but v(r̄|q) ≤ v(s̄|q). By local strictness, ∃r, s ∈ ∆ that are
close to r̄, s̄ such that v(r|p) > v(s|p) but v(r|q) < v(s|q). By EU of v(·|p) and
continuity of v, this implies that ∃δ̄, �̄ > 0 such that ∀� ∈ (0, �̄), ∀rδ ∈ N δ

r , ∀sδ ∈ N δ
s ,

v((1 − �)p + �rδ|(1 − �)p + �sδ) > v((1 − �)p + �sδ|(1 − �)p + �sδ) but v((1 − �)q +

�sδ|(1−�)q+�rδ) > v((1−�)q+�rδ|(1−�)q+�rδ). By the representation, this implies
that for such �, rδ, sδ, (a) (1− �)p + �rδ = c({(1− �)p + �rδ, (1− �)p + �sδ}) and (b)
(1 − �)q + �sδ = c({(1 − �)q + �rδ, (1 − �)q + �sδ}). Thus if v(·|p) and v(·|q) are not
ordinally equivalent, c strictly exhibits expectations-dependence.

Now suppose that c exhibits expectations-dependence at D,α, p, q, r. That is,
∃�̄ > 0 such that ∀r� ∈ N �

r , ∀D� � r� such that dH(D�, D) < �, (1 − α)p + αr� ∈
c((1 − α)p + αD�) but (1 − α)q + αr� /∈ c((1 − α)q + αD�). Since (1 − α)q + αr� /∈
c((1 − α)q + αD�), it follows that for each D�, ∃s̄� ∈ D�, v(s̄�|(1 − α)p + αs̄�) ≥
v(r�|(1−α)p+αs̄�). Local strictness then implies that for each such s̄�, r� pair, there
is an arbitrarily close pair ŝ�, r̂� such that v(ŝ�|(1−α)p+αs̄�) > v(r̂�|(1−α)p+αs̄�).
By the representation, (1 − α)p + αr� ∈ c((1 − α)p + αD�) implies that for each r�,
∀s� ∈ D�, v(r�|(1 − α)p + αr�) ≥ v(s�|(1 − α)p + αr�); thus v(r̂�|(1 − α)p + αr̂�) ≥
v(ŝ�|(1−α)p+αr̂�). Thus v exhibits strict expectations-dependence. This proves the
first part of the proposition.

Now suppose c violates IIA. Then there are D,D� such that D� ⊂ D and c(D) ∩
D� �= ∅ but c(D�) �= c(D) ∩D�. This implies that either (a) or (b) holds:

(a) ∃p ∈ c(D�) such that p /∈ c(D). Then by the representation, this implies
that v(p|p) = v(q|q) for q ∈ c(D�), so for some r ∈ D, v(r|p) > v(p|p) ≥ v(q|p) but
v(q|q) ≥ v(r|q)
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(b) ∃p ∈ c(D) ∩ D� with p /∈ c(D�). Since PE(D) ∩ D� ⊂ PE(D�), this implies
that there is a q ∈ c(D�) with v(q|q) > v(p|p). Thus q /∈ c(D) =⇒ q /∈ PE(D),
which implies that ∃r ∈ D\D� such that v(r|q) > v(q|q) ≥ v(p|q) but v(p|p) ≥ v(r|p).

In either case (a) or (b), by the first part of the proposition, c exhibits strict
expectations-dependence.

�

Proof of Proposition 2.5

First prove that Kőszegi-Rabin preferences with linear loss aversion satisfy the limited-
cycle inequalities.

Start with a finite set X with |X| = n + 1 and assume (for now) that there is a
single hedonic dimension. Without loss of generality, assume m(x1) > m(x2) > ... >

m(xn+1)

Define the matrix V according to:

[V ]ij = m(xi) + η[m(xi)−m(xj)] + η[λ− 1]min[0, m(xi)−m(xj)] (A.2)

Observe that v(p|r) = pTV r. Let δ, � ∈ �n+1 denote vectors with
�n+1

i=1 δi =
�n+1

i=1 �i = 0. By matrix multiplication,

δTV � = η[λ− 1]×

[(m(x1)−m(x2))δ1�1 + (m(x2)−m(x3))(δ1 + δ2)(�1 + �2)+ (A.3)

...+ (m(xn)−m(xn+1))(
n�

i=1

δi)(
n�

i=1

�i)]

Take a cycle pi+1 = pi + �i with v(pi+1|pi) > v(pi|pi) for i = 0, ...,m. Then:
v(pm|pm)− v(p0|pm) = (p+

�m
l=1 �

l)TV (p+
�m

l=1 �
l)− pTV (p+

�m
l=1 �

l)

= (
�m

l=1 �
l)TV (

�m
l=1 �

l) + (
�m

l=1 �
l)TV p

Rearranging the second term,
= (

�m
l=1 �

l)TV (
�m

l=1 �
l)+(

�m−1
l=1 �l)TV p+(�m)TV (p+

�m−1
l=1 �l)−(�m)TV (

�m−1
l=1 �l)
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= (
�m

l=1 �
l)TV (

�m
l=1 �

l)+(
�m−2

l=1 �l)TV p+(�m−1)TV (p+
�m−2

l=1 �l)−(�m−1)TV (
�m−2

l=1 �l)+

(�m)TV (p+
�m−1

l=1 �l)− (�m)TV (
�m−1

l=1 �l)

= ... = (
�m

l=1 �
l)TV (

�m
l=1 �

l) +
�

i(�
i)TV (p+

�i−1
l=1 �

l)−
�m

i=2 �
iV (

�i−1
l=1 �

l)

By the definition of the cycle, (�i)TV (p+
�i−1

l=1 �
l) > 0 for each i, thus:

> (
�m

l=1 �
l)TV (

�m
l=1 �

l)−
�m

i=2 �
iV (

�i−1
l=1 �

l)

By symmetry with respect to δ and � in (A.3), it can be shown that
�m

i=2

�i−1
l=1(�

i)TV �l =
�m−1

j=1

�m
l=j+1(�

j)TV �l. Returning to the previous expression, more algebra estab-
lishes:

=
�m

l=1(�
l)TV �l +

�m
i=2

�i−1
l=1(�

i)TV �l

= 1
2

�m
l=1(�

l)TV �l + 1
2(
�m

l=1 �
l)TV (

�m
l=1 �

l)

> 0

This completes the proof for the case with the case of one hedonic dimension.
To extend the argument to K > 1, break up a lottery p into marginals p

k
in each

dimenion k, and define the matrix V
k

as the utility matrix corresponding to V in
dimension k. we can write vKR(p|r) =

�
k p
k

TV
k
r
k
. Notice that all of the previously-

proven properties of V apply to V
k
; following through the previous steps yields the

desired result.
Second prove that Kőszegi-Rabin preferences with linear loss aversion dislike mix-

tures.
Suppose v(p|p) ≥ v(q|p) and v(q|q) ≤ max [v(p|p), v(p|q)].
Then,
v((1− α)p+ αq|(1− α)p+ αq)

= (1− α)2v(p|p) + α(1− α)v(p|q) + α(1− α)v(q|p) + α2v(q|q) (A.4)

by bilinearity of v under (2.3) and linear loss aversion.
If v(p|p) ≤ v(p|q), then two substitutions to (A.4) yield
≤ (1− α)2v(p|p) + α(1− α)v(p|q) + α(1− α)v(p|p) + α2v(p|q)
= v(p|(1− α)p+ αq) by bilinearity of v
= max [v(p|(1− α)p+ αq), v(p|p)]
If instead v(p|q) ≤ v(p|p), then two different substitutions to (A.4) yield
≤ (1− α)2v(p|p) + α(1− α)v(p|p) + α(1− α)v(p|p) + α2v(p|p)
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= v(p|p)
= max [v(p|(1− α)p+ αq), v(p|p)]
This proves that v dislikes mixtures.
�

Proof of Proposition 2.6

Gul and Pesendorfer (2008) prove that on a finite set X there is an assignment of
hedonic dimensions such that any reference-dependent utility function v̂(x|y) can be
written as a Kőszegi-Rabin preference as in (2.3). Extend v̂(x|y) to lotteries by setting
v(p|q) =

�
i

�
j piqj v̂(x|y). The resulting representation over ∆ is thus consistent

with (2.3).
Kőszegi (2010, Example 3 and footnote 6) provides an example of v : ∆×∆ → �

in which the only personal equilibrium involves randomization among elements of a
choice set. Mapping the v from Kőszegi’s example to a Kőszegi-Rabin preference as
described provides an example of a Kőszegi-Rabin preference that does not satisfy
the limited-cycle inequalities.

�

Proof of Proposition 2.7

Take a continuous PPE representation corresponding to �L, {�p}p∈∆. Take p ∈ D.
Reference Lottery Bias implies that if p �L q ∀q ∈ D then p �p q ∀q ∈ D; thus,
p ∈ m(D,�L) =⇒ p ∈ PE(D), which jointly imply p ∈ PPE(D) = c(D). Since �L

is continuous and D is finite, it has a maximizer in D, thus there is a p ∈ m(D,�L);
by the previous argument, for any other q ∈ c(D) it follows from the representation
that q �L p thus q ∈ m(D,�L) as well. It follows that if �L, {�p}p∈∆ satisfies
Reference Lottery Bias, that c(D) = m(D,�L).

�
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Proof of Proposition 2.8.

(i) ⇐⇒ (iii)

Let suppose c is induced by the continuous binary relation P .

Necessity of Expansion. p ∈ c(D) ⇐⇒ �q ∈ D such that qPp.
Thus, p ∈ c(D) and p ∈ c(D�)

⇐⇒ both �q ∈ D such that qPp and �r ∈ D� such that rPp.
⇐⇒ �q ∈ D ∪D� such that qPp

⇐⇒ p ∈ m(D ∪D�, P )

⇐⇒ p ∈ c(D ∪D�)

Necessity of Sen’s α. p ∈ c(D) = m(D,P ) ⇐⇒ �q ∈ D such that qPp

=⇒ if D� ⊂ D, then �q ∈ D� such that qPp

⇐⇒ p ∈ m(D�, P ) = c(D�)

Necessity of UHC. By contradiction.
Suppose p� ∈ c(D�) = m(D�, P ) for a sequence D� → D such that dH(D�, D) < �.
If p /∈ c(D), then ∃q ∈ D such that qPp.
Then, since q has open better than and worse than sets, ∃� such that ∀p� ∈

N �
p, ∀q� ∈ N �

q , q�Pp�.
Since dH(D�, D) < �, it follows that ∀D� in the sequence, ∃q� ∈ D� such that

dE(q�, q) < �. Thus, ∃�̄ > 0 such that ∀� < �̄, q�Pp�. This contradicts that p� ∈
m(D�, P ) ∀D�. ♦

Sufficiency. Construct P̄ by:

pP̄ q if ∃Dpq such that p ∈ c(Dpq)

Define P as the asymmetric part of P̄ .
(I) show c(D) ⊆ m(D,P )

If p ∈ c(D), then p ∈ m(D,P ) by the definition of P .
(II) show m(D,P ) ⊆ c(D)
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Suppose p ∈ m(D,P ). Then, ∀r ∈ D, ∃Dpr : p ∈ c(Dpr).
By Expansion, p ∈ c( ∪

r∈D
Dpr).

Since D ⊆ ∪
r∈D

Dpr, by Sen’s α, p ∈ c(D) as well.
(III) show P is continuous.
If p�P̄ q� for a sequence p�, q� → p, q then by steps (I) and (II), p� ∈ c({p�, q�}). By

UHC, this implies p ∈ c({p, q}) thus pP̄ q. Thus, P̄ has closed better and worse than
sets. Thus P has strictly open better and worse than sets.

�

Proof of Theorem 2.3.

Necessity. Necessity of Expansion, Sen’s α, and UHC follows from Proposition 2.8.
Necessity of IIA Independence 2 and Transitive Limit are similar to Theorem 2.1.
To prove the necessity of Induced Reference Lottery Bias,
p ∈ c(D) = PE(D)

⇐⇒ v(p|p) ≥ v(q|p) ∀q ∈ D

⇐⇒ v(p|p) ≥ v((1− α)p+ αq|p) ∀q ∈ D since v(·|p) satisfies EU
⇐⇒ p ∈ PE((1− α)p+ αD) = c((1− α)p+ αD)

Thus the representation implies Induced Reference Lottery Bias.

Sufficiency.

Lemma A.20. IIA Independence 2 implies Limit Consistency.

Proof. Suppose qRpp. Then ∃ᾱ > 0 such that ∀α ∈ (0, ᾱ), {(1 − α) + αq} = c((1 −
α)p+α{p, q}). By IIA Independence 2, it follows that ∀α ∈ (0, 1], ∀Dp, (1−α)p+αq that
p /∈ c(Dp, (1−α)p+αq). Thus Limit Consistency holds.

Take v from Lemma A.7 (from the proof of Theorem 2.1).
Define PE(D) := {p ∈ D : v(p|p) ≥ v(q|p) ∀q ∈ D}.
By Lemma A.13, the axioms for Theorem 2.3 imply Limit Consistency. Since

v(·|p) represents R̄p, Limit Consistency implies that c(D) ⊆ PE(D).
Suppose p /∈ c(D) - I will show that p /∈ PE(D).
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If ∀q ∈ D, ∃Dpq such that p ∈ c(Dpq), then by Expansion, p ∈ c( ∪
q∈D

Dpq); by Sen’s

α, it follows that p ∈ c(D), a contradiction.
Thus ∃q ∈ D such that p /∈ c(Dpq) for any Dpq ⊇ {p, q}. It follows by IIA

Independence 2 that ∃� > 0 such that ∀α ∈ (0, 1), Dp, (1−α)p+αq, and ∀(p̂, q̂) ∈ N �
p×N �

q ,
p /∈ c(Dp̂, (1−α)p̂+αq̂). This implies qRpp. Thus p /∈ PE(D). It follows that D\c(D) ⊆
D\PE(D), thus PE(D) ⊆ D.

This establishes that PE(D) = c(D).
�

Remark. The proof of Theorem 2.3 makes no use of Induced Reference Lottery Bias.
It follows that Induced Reference Lottery Bias is not independent of the remaining
axioms.

Proof of Theorem 2.4.

Ok (2012, Chapters 5 and 9) proves that IIA and UHC hold if and only if c is induced
by a continuous preference relation, if and only if c has a utility representation (since
∆ is a separable metric space).27

For any continuous u : ∆ → �, we can take any v that satisfies v(p|p) = u(p);
conversely, for any v we can define u by u(p) := v(p|p). Under this mapping
CPE(D) = max

p∈D
v(p|p) = max

p∈D
u(p).

�

Proof of Proposition 2.9.

(i) ⇐⇒ (ii)
Assuming IRLB:
p ∈ c({p, q})
⇐⇒ p � q

=⇒ p ∈ c((1− α)p+ α{p, q}) by IRLB
⇐⇒ p � (1− α)p+ αq

which proves that IRLB implies quasiconvexity of �
27Arrow (1959) shows that IIA holds if and only if there exists a complete and transitive binary

relation R such that c is induced by R.
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Now assume quasiconvexity of �:
p ∈ c(D)

⇐⇒ p � q ∀q ∈ D

=⇒ p � (1− α)p+ αq ∀q ∈ D by quasiconvexity
⇐⇒ p ∈ c((1− α)p+ αD).
(ii) ⇐⇒ (iii)
comparing the CPE and preference maximization representations, we see that:
p � q ⇐⇒ v(p|p) ≥ v(q|q).
Thus the statement “p � q =⇒ p � (1 − α)p + αq” holds if and only if the

statement “v(p|p) ≥ v(q|q) =⇒ v(p|p) ≥ v((1− α)p+ αq|(1− α)p+ αq)” holds.
�
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Proofs for Chapter 3

Proposition B.1. The following are sufficient conditions for c to satisfy dual dif-
ferentiability at w and weak dual differentiability at w̃: (i) c is RDU with u twice
differentiable at w, (ii) c is semi-weighted utility with twice differentiable upper and
lower weighting functions and u, (iii) c is Frechet differentiable.

Proof. Case (i): c(w + p̂t) = u−1

�
n�

i=1
[g(

i�
j=1

pj)− g(
i−1�
j=1

pj)]u(w + tyi)

�
; define ĉ(p̂) =

n�
i=1

[g(
i�

j=1
pj)− g(

i−1�
j=1

pj)]yi; if u is twice differentiable then u(w + tyi) = tyiu�(w) + o(t)

follows by Taylor’s theorem. Similarly, c(w̃ + ty) =
�

1
u�(c(w̃))

´
u�(w)dg(Fw̃(w))

�
ty +

c(w̃) + o(t).
Case (ii): Suppose V has a semi-weighted utility functional form with upper and

lower weighting functions ω, ω̄ and which need not coincide. For small t,
V (w + p̂t) =

�
i:yi≤0 piω(w+tyi)u(w+tyi)+

�
i:yi>0 piω̄(w+tyi)u(w+tyi)�

i:yi≤0 piω(w+tyi)+
�

i:yi>0 piω̄(w+tyi)

If ω̄,ω, u are all twice differentiable around w, then so is V (w + p̂t) as a function
of t. This implies c(w + p̂t) − w = 1

u�(w)
dV (w+p̂t)

dt |t=0+ + o(t). Taking the derivative

and reorganizing, dV (w+p̂t)
dt |t=0+ =

�
i:yi≤0 piω(w)yi+

�
i:yi>0 piω̄(w)yi�

i:yi≤0 piω(w)+
�

i:yi>0 piω̄(w) u�(w) and define ĉ(p̂) =
�

i:yi≤0 piω(w)yi+
�

i:yi>0 piω̄(w)yi�
i:yi≤0 piω(w)+

�
i:yi>0 piω̄(w) .

Similarly,
V (w̃ + ty)

=
�´

ωsign(w−c(w̃))(w + ty)dFw̃(w)
�−1 �´

ωsign(w−c(w̃))(w + ty)u(w + ty)dFw̃(w)
�
.

Define c̄
ysign(y)

≡ limt→0+
1
ty [V (w̃ + ty)− V (w̃)]. Algebra yields:

c
ysign(y)

=
�´

ωsign(w−c(w̃))(w)dFw̃(w)
�−1 �´

ωsign(w−c(w̃))(w)u
�(w)dFw̃(w)

�

Note that if w̃ has positive mass at its certainty equivalent, then w̃ + ty may or
may not have positive mass on its certainty equivalent. However, we only need to take
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a one-sided derivative and can choose whether to assign the upper or lower weight
function at w = c(w̃) in the limit as appropriate, and it follows that c(w̃ + ty) =

c(w̃) + tyc
ysign(y)

(w̃) + o(t). When w̃ has mass on its c(w̃), c
ysign(y)

may indeed
depend on sign(y) but otherwise will not.

(iii) To illustrate the link between dual differentiability and variations on Fréchet-
differentiability considered in Wang (1993), suppose that V is differentiable with re-
spect to the Lρ norm for some ρ ≥ 1. Notice that � [w, 1]−[w+p̂t] �ρ= (

�
i p

ρ
i |tyi|)

1
ρ =

t
1
ρ (

�
i p

ρ
i |yi|)

1
ρ = o(t

1
ρ ) while similarly � w̃ − [w̃ + ty] �ρ= t

1
ρ . Applying Wang’s local

utility approximation obtained by taking the derivative using the Lρ norm yields a
o(t

1
ρ ) approximation of preference, which proves the desired result. Safra and Segal

(2002) additionally prove that L1 differentiability implies expected value maximiza-
tion.

Remark B.1. The non-expected utility literature frequently makes use of a notion of
Gateaux-differentiability relative to mixtures of lotteries in probability space which
allow for local expected utility approximations of preferences; for example, see Chew
and Safra (1987). The notion of dual differentiability used in this paper is a special
case of a notion of Gateaux-differentiability relative to (comonotonic) mixtures of
lotteries in outcome space in the sense of Yaari (1987).

Proof of Theorem 3.2.

Suppose c is weakly dually differentiable at w̃. Then c(w̃+ty) = c(w̃)+tyc̄
ysign(y)

(w̃)+

o(t).
Then:
U(p̂t ⊕ w̃)

= c([c(w̃ + ty1), p1; ...; c(w̃ + tyn), pn])

= c([c(w̃) + c̄
ysign(y1)

(w̃)ty1 + o(t), p1; ...; c(w̃) + c̄
ysign(yn)

(w̃)tyn + o(t), pn])

= c(c(w̃) + (c̄
ysign(y)

(w̃)ty1 + o(t), p1; ...; c̄
ysign(y)

(w̃)tyn + o(t), pn))

Since c is dually differentiable at c(w̃), there is a č such that c(c(w̃) + p̂t + tx)) =

c(w̃) + tč(p̂) + tx+ o(t).
Define ĉ(p̂) = č((c̄

ysign(y1)
(w̃)y1, p1; ...; c̄

ysign(yn)
(w̃)yn, pn)). Since č is a linear in

money, so is ĉ. By linearity in money, we can take the sup and inf of the o(t)
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terms in ĉ(ty1 + o(t), p1; ...; tyn + o(t), pn), and bound from above and below by
ĉ(ty1, p1; ...; tyn, pn)± o(t). Thus U(p̂t ⊕ w̃) = c(w̃) + ĉ(p̂t) + o(t) = c(w̃) + tĉ(p̂− a) +

at+ o(t) for any a ∈ �.
First-order risk-aversion in c directly implies first-order risk aversion in č. Take

j so that yj < 0 for j < i and yj ≥ 0 for j ≥ i. Form a new gamble from p̂t, call
it p̌t, that has the same outcomes and probabilities of each as p̂t except that all gain
outcomes are multiplied by c̄y+ (w̃)

c̄y− (w̃) . Notice that ĉ(p̂t) = č(p̌tc̄y(w̃)). Since c̄y+ (w̃)

c̄y− (w̃) ≤ 1,
č(p̌tc̄y(w̃)) ≤ č(p̂tc̄y(w̃)). Thus ĉ(p̂t) − tx ≤ č(p̂t) − tx = t [č(p̂)− x]. Thus first-order
risk aversion in č implies first-order risk aversion in ĉ.

�

Proof of Theorem 3.3.

Completing the proof of Theorem 3.3 requires showing that if DM is risk averse and
V is RDU/DA, then V (w̃ + x) is concave in x and Û(p̂t ⊕ w̃) ≡ (u ◦ U)(p̂t ⊕ w̃) is
concave in t.

Under RDU, V (w̃ + x) =
´
u(w + x)dg(Fw̃(w)) where Fw̃ is the CDF associated

with w̃. Since u is concave, V (w̃ + x) is concave in x.
Now under RDU, Û(p̂t⊕w̃) =

´
V (w̃+ty)dg(Fp̂(y)). Since V (w̃+x) is concave in x,

Û(p̂t⊕w̃) is concave in t. This implies that 1
t (Û(p̂t⊕w̃)−V (w̃)) ≤ Û(p̂⊕w̃)−V (w̃) < 0

for t > 1, so DM will also turn down p̂t.
Under DA, the same argument applies, except that it is messier to prove that

V (w̃ + x) is concave in x and U(p̂t ⊕ w̃) is concave in t - this is proven below.

Proof that V (w̃ + x) is concave in x under DA A DA DM is globally risk
averse in the sense of weakly not preferring mean-preserving spreads if and only if u
is concave and β ≥ 0.

I will show that (1 + β)[V (w̃ + x)− V (w̃)] ≤ (1 + β)[V (w̃)− V (w̃ − x)] to prove
concavity.

We can write out the left- and right- hand sides of the above equation as:
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(1 + β)[V (w̃ + x)− V (w̃)]

=

ˆ
{u(w + x)− u(w) + βmin[u(w + x), V (w̃ + x)]− βmin[u(w), V (w̃)]}dFw̃(w)

(B.1)

(1 + β)[V (w̃)− V (w̃ − x)]

=

ˆ
{u(w)− u(w − x) + βmin[u(w), V (w̃)]− βmin[u(w − x), V (w̃ − x)]}dFw̃(w)

(B.2)

To compare (B.1) and (B.2), compare the term inside the integral for each w.
First note u(w+ x)− u(w) ≤ u(w)− u(w− x). Second, compare the remaining parts
of the integrals by working with four different regions/cases that depend on w and V .

Case A min[V (w̃+x), u(w+x)]−min[V (w̃), u(w)] = u(w+x)−u(w) and min[V (w̃), u(w)]−
min[V (w̃− x), u(w− x)] = u(w)− u(w− x). By concavity of u for these w, the (B.1)
term is smaller than the (B.2) term.

Case B min[V (w̃ + x), u(w + x)] − min[V (w̃), u(w)] = V (w̃ + x) − V (w̃) and
min[V (w̃), u(w)] − min[V (w̃ − x), u(w − x)] = V (w̃) − V (w̃ − x). We can cancel
these terms from (1 + β)[V (w̃ + x)− V (w̃)] and (1 + β)[V (w̃)− V (w̃ − x)].

Case C Suppose neither of the above two cases applies and u(w) ≤ V (w̃). Then,
applying concavity of u,

min[u(w + x), V (w̃ + x)]−min[u(w), V (w̃)]} = min[u(w + x), V (w̃ + x)]− u(w)

≤ u(w + x)− u(w)

≤ u(w)− u(w − x)

≤ u(w)−min[u(w− x), V (w̃− x)] = min[u(w), V (w̃)]−min[u(w− x), V (w̃− x)]}
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so in this case, this term of the (B.1) is smaller than the corresponding term in (B.2).

Case D Suppose neither of the above three cases applies, so u(w) > V (w̃). Then,

min[u(w + x), V (w̃ + x)]−min[u(w), V (w̃)]} = min[u(w + x), V (w̃ + x)]− V (w̃)

≤ V (w̃ + x)− V (w̃)

and

min[u(w), V (w̃)]−min[u(w − x), V (w̃ − x)]} = V (w̃)−min[u(w − x), V (w̃ − x)]}

≥ V (w̃)− V (w̃ − x)

Plugging in these terms and cancelling out as case B establishes the desired in-
equality.

Proof that Û(p̂t⊕ w̃) is concave in t under DA Define IV (y) = 1 if V (w̃+ ty)−
V (w̃) < Û(p̂t ⊕ w̃)− V (w̃)] and zero otherwise, and IU(y) = 1 if V (w̃+ ty)− V (w̃) ≥
Û(p̂t ⊕ w̃)− V (w̃)] and zero otherwise. For t > 1,

1+β
t {Û(p̂t ⊕ w̃)− V (w̃)}

= 1
t

´
{Û(w̃ + ty)− V (w̃) + βmin[V (w̃ + ty)− V (w̃), Û(p̂t ⊕ w̃)− V (w̃)]}dFp̂(y)

≤ 1
t

´
{V (w̃ + ty) − V (w̃) + βIV (y)[V (w̃ + ty) − V (w̃)] + βIU(y)[Û(p̂t ⊕ w̃) −

V (w̃)]}dFp̂(y)

Let p̄ = 1 −
´
IU(y)dFp̂(y). Then, rearranging the above expression yields the

inequality:
1+βp̄

t {Û(p̂t⊕w̃)−V (w̃)} ≤ 1
t

´
{V (w̃+ty)−V (w̃)+βIV (y)[V (w̃+ty)−V (w̃)]}dFp̂(y)

≤
´
{V (w̃ + y)− V (w̃) + βIV (y)[V (w̃ + y)− V (w̃)]}dFp̂(y)

= 1+βp̄
t {Û(p̂⊕ w̃)− V (w̃)}

�
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Examples that rationalize our results

C.0.4 Rationalizing our data using ROCL

In the analysis below, we show by way of a simple example that if a subject views a
list as a compound lottery, and satisfies reduction of compound lotteries, then even
if she would exhibit a certainty effect when given binary choices, she will behave as
if she satisfies expected utility when her preferences over lotteries are elicited using a
probability list under the (mistaken) assumption of compound independence.28 This
example shows the potential of the Karni and Safra (1987) approach to rationalize
our main findings.

For simplicity, approximate the ’discrete’ price list with a smooth one. Suppose
that we have smooth lists for Q1 and Q2 that ask for an indifference points q ∈ [12 , 1]

and r ∈ [14 ,
1
2 ], and a number is drawn from U [12 , 1] for Q1 and from U [14 ,

1
2 ] for Q2 to

determine which “line” is paid out.
Suppose the subject views Q1 and Q2 as compound lotteries in which the external

randomizing device picks a line for payment at the first stage, and she gets her chosen
lottery from that line at the second stage, and suppose further that the subject’s
preferences have a rank-dependent utility representation (Quiggin, 1982; Yaari, 1987).
If the subject applies Compound Independence to evaluate this compound lottery, she
would choose switch points q in Q1 and r in Q2 to satisfy:

u(3) = f(q)u(4) (Q1)

f(.5)u(3) = f(r)u(4) (Q2)
28The results below do not require the full force of reduction: if subjects’ evaluation of a compound

lottery was a weighted average of its value when reduced and when evaluated recursively, similar
results would apply.
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Suppose instead, following Karni and Safra (1987), the subject satisfies the Re-
duction of Compound Lotteries axiom. Then, she views her choice of q in Q1 as giving
her the reduced lottery (0, (1− q)2; 3, 2q− 1; 4, 1− q2). Similarly, she evaluates her
choice of r in Q2 based on the reduced lottery (0, 1− 2r+2r2; 3, 2r− 1

2 ; 4,
1
2 − 2r2).

In the smooth approximation to the list, a subject would choose her switch points
to solve:

max
q∈[ 12 ,1]

f(1− q2) [u(4)− u(3)] + f(2q − q2)u(3) (Q1)

max
r∈[ 14 ,

1
2 ]
f(12 − 2r2) [u(4)− u(3)] + f(2r − 2r2)u(3) (Q2)

First, we can see that under EU (f(p) = p) that subjects will switch at the same
line (q = 2r) in Q1 and Q2. If f is non-linear, then the above analysis suggests that
subjects may switch at different points, depending on the shape of their probability
weighting function. The neo-additive probability weighting function (Chateauneuf,
Eichberger, and Grant, 2007; Webb and Zank, 2011) is closest to the spirit of the
certainty and possibility effects motivating probability weighting, and accomodates
them by a piece-wise linear f .

For a ∈ (0, 1), and a + b < 1 this probability weighting function demonstrates
a certainty effect, and when b > 0 generates a possibility effect. Thus, for normal
parameter values for a and b, f will generate a standard common ratio effect. This
form for f can alternatively be motivated as a piece-wise linear approximation to
more popular, smooth, probability weighting functions.

With a neoadditive f , when responding to the list elicitation, the FOCs for Q1
and Q2 reduce to:

q [u(4)− u(3)] = [1− q] u(3) (Q1)

2r [u(4)− u(3)] = [1− 2r] u(3) (Q2)

so q = 2r, and subjects behave as if they were expected utility maximizers. This
is because some risks in both lists are going to be too attractive for subjects to pass
up under reasonable parameter values. Thus, subjects will always face some risk in
both lists. A certainty effect would bias subjects towards the certain option if any of
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the lines of Q1 were presented independently as a single binary choice question. But,
when facing the list subjects will always choose some risk, so the certainty effect will
not bias subjects towards A in Q1.

When f is a power function, then when responding to the list elicitation, the
FOCs for Q1 and Q2 reduce to:

q(1− q2)β−1 [u(4)− u(3)] = [1− q] (2q − q2)β−1u(3) (Q1)

2r(12 − 2r2)β−1 [u(4)− u(3)] = [1− 2r] (2r − 2r2)β−1u(3) (Q2)

which implies that q = 2r, that is, the subject’s behaviour in the list elicitation
experiment is indistinguishable from expected utility maximization. Numerical sim-
ulations or algebra can be used to verify that for reasonable parameters with β > 1,
a subject who switches at q would rank ($3, 1) � ($4, q) in a binary choice task.

Now suppose that instead of satisfying RDU, U falls in the class of NCI-satisfying
preferences studied by Cerreia-Vioglio, Dillenberger, and Ortoleva (2013). Then,
their NCI axiom directly requires that if ($3, 1) ≺ ($4, .8) that the subject will
rank($3, 1) ≺ ($4, .8) in line 11 of the list. This follows from the fact that a subject
who decides between switching on either line 11 of line 12 faces the compound lottery
in (4.1). Applying reduction as in (4.2), we this choice can be express as a choice
between 25

26

�
$4, 9.1

25 ; $3,
15
25

�
+ 1

26 [$3, 1] and 25
26

�
$4, 9.1

25 ; $3,
15
25

�
+ 1

26 [$4, .8], and the
subject must prefer the latter lottery. Thus NCI predicts more risk aversion under
list elicitation. However, NCI does not have any direct implications for Q2.

One limitation of the above analysis is that even when considering reduction of
compound lotteries within a list, we assume that (consistent with our results) com-
pound independence holds at the previous stage of the compound lottery at which
Q1 or Q2 is selected to determine payment. One possible explanation is that subjects
violate both compound independence and reduction, but the violation of compound
independence is much less severe, and the violation of reduction much more severe,
when different lotteries that form branches of a compound lottery are never displayed
on the same visual screen in a way that would facilitate reduction.29 Another limi-
tation of the above explanation is that rank-dependent utility with the neo-additive

29If instead subjects reduced the compound lottery formed by the entire experiment, then if they
correctly anticipated the second experimental question subject responses in the two-list treatments
(L and S) would be consistent with EU regardless of their weighting function.
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weighting function can only explain the observed reversal between choices in binary
choice and list elicitation treatments in Q1, not the comparable (but statistically
weaker) finding in Q2.

C.0.5 Non-standard application of Compound Independence

In the analysis below, we show by way of a simple example using RDU with the
power weighting function that if a subject views a list according to a non-standard
compound lottery as in 4.3, and and evaluates this compound lottery recursively, then
the subject’s behaviour under list elicitation. This example shows the potential of
the Segal (1988) approach to rationalize our main findings.

Applying RDU with the power weighting function to (4.3) yields the conditions:

max
i∈{1, 2,..., 26}

�
�

i
26

�β
�

i�
j=1

��
j
i

�β −
�
j−1
i

�β�
(1.02− .02j)β

�
u(4) +

�
1−

�
i
26

�β�
u(3)

�

(Q1)

max
i∈{1, 2,..., 26}

�
�

i
26

�β
�

i�
j=1

��
j
i

�β −
�
j−1
i

�β�
(.51− .01j)β

�
u(4) +

�
1−

�
i
26

�β�
(.5)β u(3)

�

(Q2)

With some algebra, we can see that the maximand in (Q2) is just .5β times the
maximand in (Q1). It follows that the subject would switch on the same line in both
questions. That is, her behaviour would be indistinguishable from expected utility
maximization in spite of her non-expected utility preferences.

Using a smooth approximation to the compound lottery formed by list along, it is
possible to solve out continuous analogues of (Q1) and (Q2). With the power weight-

ing function, the subject would switch at a q� that satisfies q� = 1−
�
1− u(3)

u(4)

� 1
β
< u(3)

u(4)

for β > 1; in contrast, the same subject would require q̂ =
�

u(3)
u(4)

� 1
β
> u(3)

u(4) to be in-
different between ($3, 1) and ($4, q). That is, the subject would display more risk
aversion in the binary choice task than under list elicitation.
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