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Abstract

Spinal cord atrophy is a valuable biomarker in multiple sclerosis (MS) for
its significant correlation with physical disability. Measurement of spinal
cord atrophy on MRI may be possibly confounded by fluctuations in water
content, and the high measurement variance in previous longitudinal studies
can be possibly reduced by registration-based methods. In this thesis, we
investigated the effect of change in water content due to hydration status on
cord cross-sectional area (CSA) measurement, and the applicability of three
registration-based methods for longitudinal cord atrophy measurement.

Our first hypothesis is that dehydration can decrease the cord CSA mea-
surement on MRI. We found a mean decrease of 0.65% in CSA on scans
collected from ten controls following a dehydration protocol using two in-
dependent cross-sectional CSA measurement methods. Our result demon-
strates that change in water content of the cord is associated with measurable
change in cord CSA.

The second main hypothesis is that registration-based methods can de-
crease the variance in longitudinal cord atrophy measurement by using the
signal from multiple scans to improve robustness to image noise and artifacts
and by regularization of the registration to constrain the degrees of freedom.
We implemented three algorithms: boundary shift integral based on rigid
registration, Jacobian integration based on deformable registration and scale
factor computation based on constrained registration (composed of rigid and
scale transformation). We evaluated the three registration-based methods by
comparing them to two cross-sectional methods, as applied to three longitu-
dinal data sets: 1) images with simulated cord atrophy; 2) images acquired
in the dehydration study described above; and 3) images of 15 MS patients
over a two-year interval. Our main result was that while registration-based
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Abstract

methods achieved more accurate results on simulation data sets and overall
smaller measurement variance, they were not as sensitive, reporting no de-
hydration effect and smaller magnitude of patient cord atrophy. We argue
that the limited spatial resolution of 1 mm of MR scans in our experiment
is possibly the main reason and future studies of cord atrophy measurement
using registration-based methods should be conducted on MR scans with a
high spatial resolution such as 0.5 mm.
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Chapter 1

Introduction

1.1 Background

1.1.1 Multiple Sclerosis

Pathological basis and clinical course of multiple sclerosis

Multiple Sclerosis (MS) is a chronic disorder in the central nervous system,
which involves inflammatory demyelination and neuroaxonal degeneration.
It causes focal lesions in the white and grey matter and diffuse unevenly
distributed changes in the normal appearing white matter (NAWM) and grey
matter (NAGM) in the brain and spinal cord [36]. With the inflammatory
demyelination disseminated in the central nervous system, the lesions develop
in association with the breakdown of the blood-brain barrier, leading to
acute breakdown of myelin with a degree of axonal destruction [76]. These
acute inflammatory lesions lead to acute relapses of neurological deficit as
a result of conduction block due to the loss of myelin. With time going
on, the axonal loss evolves to be the main pathological substrate and the
neuroaxonal degeneration leads to progressive disabilities over time.

MS takes several clinical forms, with new symptoms occurring either in
discrete attacks (relapsing forms) or accumulating over time (progressive
forms). About 85% of cases begin with relapsing-remitting (RRMS) course,
suffering from relapses (attacks of symptom flare-ups) before a slow remission
(period of recovery). There is usually good recovery from such relapses as a
result of resolution of inflammation, remyelination and cortical adaptation
[76]. In 15% of the patients, the onset of MS is one of progressively increasing
and irreversible disability, primary progressive MS (PPMS). Within next 6
to 10 years, about 65% of RRMS patients enter the secondary progressive
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1.1. Background

(SPMS) phase and are subjected to gradual progression of physical disability
and cognitive impairment [107]. There is also a relatively rare type of MS
called progressive-relapsing (PRMS) in which patients experience steadily
worsening symptoms and attacks during the period of remission [79, 107].

MS is the most common cause of neurological disability in young adults,
with a prevalence that ranges between 2 and 150 per 100,000 and varying
widely in different regions [76]. Canada has one of the highest rates of MS in
the world, and an estimated 100,000 Canadians have MS [1]. MS is typically
diagnosed based on the presenting symptoms in combination with supporting
MRIs. There is no cure of MS, and treatments attempt to return function
after an attack, prevent new attacks and prevent disability. There are ten
disease-modifying therapies approved by Health Canada to date [2].

Imaging biomarkers in MS

MRI has an important role for the assessment of patients with MS, because
of its sensitivity to MS-related abnormalities and correlation to pathological
changes [36]. Lesion based measures, typically the number and extent of
T2-hyperintense lesions and T1-enhancing lesions after Gadolinium enhanc-
ing administration in the brain are very useful to diagnosis the disease and
predict further evolution in the early phase of MS [34, 76].

Beside lesions, quantitative MRI discloses the presence of abnormalities
in the NAWM and NAGM before the development of lesions. Reduction of
the magnetization transfer ratio value [90], increase in the mean diffusivity
on diffusion tensor MRI [82, 88] and decrease of the concentration of N-
acetyl-aspartate on MR spectroscopy [80] in these regions have been used in
MS research studies and they are associated with the cognitive impairment.

Measuring irreversible tissue loss in the brain and spinal cord on MRI,
which represents the overall destructive pathological changes in the central
nervous system has become an area with increasing interest. Atrophy of the
white or grey matter in MS reflects the overall axonal and neuronal loss and
is well associated with clinical disability and cognitive deterioration [36]. At-
rophy based measures, like global whole brain atrophy, regional grey matter
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atrophy and spinal cord atrophy, are among the most widely used measures
in disease monitoring and treatment trials. Both brain atrophy and spinal
cord atrophy have been closely associated with disability in established MS
[34]. In patients with different MS subphenotypes, brain volume quantified
from T1-weighted MR images decreases on average by about 0.7%-1.0% per
year [77]. Spinal cord atrophy quantified from T2 and T1 spine images cor-
relates well with measures of disability [36]. In a review study by Barkhof et
al.[9] which compared many of the MRI biomarkers that have been used to
track neuroprotection and repair after treatment in MS clinical trials, they
found that atrophy of whole brain volume and spinal cord on serial MRI
are able to demonstrate established and probable response to treatment,
respectively, over the course of one year [9].

1.1.2 Involvement of Spinal Cord Atrophy in MS

Spinal cord atrophy, especially the cervical cord atrophy, is thought to have
strong effect on the locomotor disability in MS. The cervical cord is found
to be significantly smaller in patients with progressive MS, and a strong
association of spinal cord area and clinical disabilities measured by Expanded
Disability Status Scale (EDSS) score [60] has been demonstrated [46, 59,
61, 65, 66]. Cohen et al. [25] found that the cross sectional area (CSA) of
cervical cord most strongly correlates with EDSS (r = -0.52, p = 0.02) in MS,
when comparing with other MR measures like cord lesion volume, cerebral
grey matter volume, cerebral white matter volume, whole brain volume and
whole brain lesion volume. A study of 117 patients with SPMS [44] found
that only cervical cord CSA correlates with EDSS score. A recent study
on 440 patients of a mixed cohort of different MS subtypes [73] reported
that cervical cord CSA was the most significant MR imaging parameter for
explaining physical disability, as measured with the EDSS score.

The relative clinical importance of cervical cord atrophy in MS may re-
flect both anatomical and pathological considerations. The cervical cord con-
tains all the descending corticospinal fibers which are destined from motor
targets in the trunk, arms and legs [25]. It is a cross-road for all cerebrospinal
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descending and spinocerebellar ascending pathways. Pathological changes to
the small cervical cord disproportionally affects a myriad of central nervous
system functions. A histopathological study by De Luca et al. [28] found
that there were significant reductions in cord area, axon density and fibre
diameter in the corticospinal and sensory tracts and these pathological ab-
normalities relate closely to functional disabilities. Pathological studies of
spinal cord atrophy suggested that it is the overall axonal degeneration that
is responsible for spinal cord atrophy in MS rather than the tissue loss inside
the individual lesions [33].

Accelerated atrophy occurs in the spinal cord in MS at all stages of the
disease, from presentation with clinically isolated symptoms to advanced
progressive forms [19, 77]. Previous cross-sectional studies have found that
upper cervical cord CSA is significantly smaller in patients with SPMS and
PPMS compared with healthy controls, and correlates with EDSS [35, 46,
61, 65, 66]. The estimated annual atrophy rate of CSA is reported to be
around 1.6% from longitudinal cord atrophy studies in patients with SPMS
[43, 46] and around 5% in patients with PPMS [4]. While the spinal cord
atrophy in progressive MS is evident, the detection of cord atrophy in RRMS
has been more elusive. Multiple cross-sectional studies have found that cord
CSA is not reduced in RRMS patients compared to controls [14, 15, 59, 75?
] and that could be used to separate progressive MS and RRMS patients
[15], while longitudinal studies were able to detect the cervical cord atrophy
in RRMS patients over three years [87] and over two years [72].

Longitudinal studies provide valuable information with higher statisti-
cal power than cross-sectional studies, because they measure within subject
difference and can overcome the population variance in cord size. However,
longitudinal studies on cord atrophy are limited with only a handful studies
conducted [4, 43, 46, 65, 87, 97]. Rashid et al. found a decrease in CSA
over 3 years in early RRMS [87], while most cross-sectional studies in this
subgroup [15, 75, 86] have shown no significant difference in CSA between
RRMS patients and control groups. Longitudinal studies using a mixed co-
hort of PPMS, SPMS and RRMS [4, 67, 89, 97] observed significant cord
atrophy over the study duration, but correlation between decrease in CSA
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and EDSS progression was only presented in one study [67]. Furthermore,
high scan-rescan variability observed greatly lowered the statistical power of
the results in previous longitudinal studies.

Quantification of spinal cord atrophy is a useful biomarker for monitoring
disease progression and therapeutic drug effects in MS. Lin et al. reported
that the change in CSA was significantly related to changes in clinical dis-
ability in a cohort of the interferon β-1a(Rebif) treatment trial over four
years [67]. Kalkers et al. found that neuroprotective agents riluzole appear
to be more effective in reducing the rate of cervical cord atrophy in the short
term [53]. Lucas et al. examined the intrathecal injection of triamcinolone
acetonide therapy outcome in progressive MS using upper cervical cord at-
rophy and showed a negative correlation between the degree of cord atrophy
and treatment benefit [71]. Spinal cord atrophy is thought to be more im-
portant than lesion measures in clinical trials when the therapy aim is to
prevent disability, especially in progressive MS [77].

1.1.3 Spinal Cord Atrophy Measurement Methods

Measurement of cord atrophy is usually performed on T1-weighted MR scans
with a 3D acquisition sequence. The measurement is conducted at the C2
to C5 level, since significant decreases of cord volume are mainly observed
in the upper cervical region rather than in the lower thoracic and lumbar
areas [59]. Because of the simplicity of the cylinder cord shape, the process
of monitoring cord atrophy can be reduced to performing 2D cross sectional
area measurement. The average CSA of a normal cervical cord is about
80 mm2 [66].

There has been a range of techniques proposed to measure cord CSA on
MRI. Manual outlining on axially acquired gradient echo images were ini-
tially produced to estimate cord CSA [57]. A sequential two-year longitudi-
nal study of 60 MS patients established a scan-rescan coefficient of variation
(COV) of 6%, rendering this method unsuitable for serial monitoring [69].

Losseff et al. proposed a semi-automated intensity-based contouring algo-
rithm to delineate the cord to measure the CSA [70]. The method is applied
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to a short length of cord of five slices with the most caudal slice located
at the C2/C3 intervertebral disc. On each axial image, the operator man-
ually defines a region of interest (ROI) which locates the cord to estimate
the mean cord intensity, and then defines another ROI which locates the
CSF to estimate the mean CSF intensity. Voxels affected by partial volume
averaging at cord–CSF interface would have intensity midway between the
mean cord and CSF intensities on average. Thus, the boundary is detected
by thresholding and region growing with the provided seed point at the in-
terface [99]. The scan-rescan COV for an experienced operator is around
0.79% [70]. The accuracy of this method is limited by a systematic overes-
timation of 4.5%-10% [99] because they do not measure the partial volume
issue on the cord boundary. This method has been employed in a number
of cross-sectional and longitudinal studies [5, 43, 97] and is able to detect
significant reductions in CSA in SPMS patients over 12 months [4, 43, 97].

Coulon et al. developed an automatic surface-based segmentation algo-
rithm to obtain the segmentation of the cord and then estimate the cord
volume and CSA [26]. The algorithm optimizes a B-spline surface model
fitting to the cord such that intensity gradient is maximized globally while
maintaining a smooth tube-like shape constraint to the detected cord edge
[99]. With the surface model obtained, it is possible to automatically correct
for alignment of the cord cross-section relative to the acquisition plane, and
for curvature of the cord. However, this method provides less repeatable
results with scan-rescan COV of 1.3%. Furthermore, there is an overall un-
derestimation since the procedure tended to ignore voxels affected by partial
volume. Hickman et al. employed this method in their study and found that
the computed CSA measure at C2/C3 intervertebral disc had significant de-
crease over one year in a mixed cohort of PPMS, SPMS and RRMS patients
[48].

Tench et al. used edge detection to identify the cord–CSF boundary
[100], and for the first time addressed the computation of partial volume.
For each axial slice image between C1 and C2 level, a Sobel edge detector
is applied with non-maximal suppression to locate all the edges. On axial
slice images where the cord has been successfully isolated by the detected
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edges, the operator places a seed point and the cord region is segmented
by region growing. All the voxels strictly within the cord are assigned an
area value equal to the pixel size; while for voxels on the boundary, they are
partial volumed by the cord and surrounding CSF and each contributes a
fraction f of the pixel size to the total CSA, which is computed by the local
intensities. The total CSA for each slice is then corrected for cord inclination
by the cosine of the angle between the cord axis and vertical axis. The scan-
rescan COV of Tench’s method is reported to be 0.55%. There have been
two clinical studies using this method [86, 100].

Horsfield et al. proposed to parametrize the cord cylinder-like surface by
its center line and the radii. They realized the segmentation of the cord over
an extended length with rather few user inputs. For each axial slice image,
the cord is considered as a polygonal shape and the radii are considered as a
periodically varying function of θ, which is the angle of the radii subtended to
the positive x axis. The segmentation process then uses the intensity gradient
to update the radii, and refines the center-line to be the centre of the area on
each slice. The optimal surface model is obtained by optimizing the function
using a multi-scale approach. Measurement of the average CSA is then
derived as the volume divided by the length, where the length and volume can
both computed by integrals of the parametric model. They integrated their
algorithm in Jim software package (Version 5.0, Xinapse System, Northants,
United Kingdom; http://www.xinapse.com/home.php), and a number of
recent cord atrophy studies were conducted using Jim [25, 59, 89, 103].

Chen et al. presented a fully automated spinal cord segmentation al-
gorithm which combines deformable registration with topology preserving
intensity classification. Their method firstly align an intensity atlas to the
target image to be segmented by deformable registration, and apply the
deformation on a topology atlas and statistical atlas associated with the in-
tensity atlas, which provides the initialization for the segmentation. The
cord segmentation is achieved by iteratively evolving the topology atlas to
convergence [22]. The result of cord atrophy measurement using this method
is consistent with the results reported by Horsfield et al [50]. This method
has been applied by Oh et al. in two spinal cord atrophy studies [81, 82].
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1.2. Thesis Motivation

Recently De Leener et al. developed a robust, accurate and automatic
spinal cord segmentation algorithm based on the propagation of a deformable
model [27]. The algorithm firstly detects the spinal cord position and orien-
tation using a circular Hough transform on multiple axial slices and builds
an initial elliptical tubular mesh. Then a low-resolution deformable model
is propagated along the spinal cord with a local contrast-to-noise adaptation
at each iteration. Finally, a refinement process and a global deformation
are applied on the propagated mesh to provide an accurate segmentation of
the spinal cord. This method can manage MR images with poor contrast
between the spinal cord and CSF by adjusting constraints in the deformable
model. Results suggested that the achieved accuracy by this method was
higher than the manual segmentation, and was slightly higher to the accu-
racy obtained by Horsfield’s method [50].

With the computed spinal cord segmentation, spinal cord atrophy is ei-
ther defined as a measure of change in CSA relative to an age-matched nor-
mal control population in cross-sectional studies, or a measure of change in
CSA over a period of time in longitudinal studies. In cross-sectional studies,
total intracranial volume [47, 75], thecal sac absolute volume [47], the largest
skull cross-sectional area [102], and the length of the cord [47, 59, 81] have
been used to normalize the cord volume to remove inter-subject variations
in cord size in cross-sectional studies. Normalization by the length of the
cord has been demonstrated to improve the ability to detect group difference
and strength the clinical-radiological correlations [47, 59, 81]. In longitudinal
studies, the cord CSA or volume measurement is usually carried out at all
time points and then the measurement at each time pint is subtracted to
estimate the amount of atrophy over the scanning interval.

1.2 Thesis Motivation

There are many challenges in evaluating cervical cord atrophy measurement
on MRI, like the small size of the cord, limited resolution of the spine MR
images, involuntary patient motion introduced image artifacts and physiolog-
ical fluctuations like water content change. Spinal cord is a small structure
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with a diameter around 8 mm, and on current MR images using a spatial
resolution of 1mm, the cord is bounded to a region size of less than 100
voxels and about 30% of cord area is partial volumed with the surrounding
CSF [75]. Furthermore, the magnitude of the cord annual atrophy rate in
MS is small with around -1.6% per year reported in SPMS patients. These
require the measurement method with high sensitivity and precision, because
small absolute errors in the measurement methods can translate into large
relative errors in the results and thus make the small cord changes difficult
to detect. For example, the inconsistent findings of reduced CSA in RRMS
patients compared to control subjects may be attributed to the variations
in water content of the cord, which mask out the changes in CSA due to
cord tissue loss. Moreover, in the few longitudinal cord atrophy studies con-
ducted, the limited scan-rescan reproducibility (with large COV) and high
measurement variance of the segmentation-based methods hindered the sta-
tistical value of their results. We want to address these problems from two
aspects: to investigate the variations due to water content in cord CSA mea-
surement and to develop registration-based methods for longitudinal cord
atrophy measurement.

1.2.1 The Effect of Change in Water Content on Spinal
Cord CSA Measurement on MRI

Change in tissue water content can have significant effects on the spinal
cord volume, which has a high composition of water. In MS, edema as-
sociated with acute lesions and anti-inflammatory therapy can change the
water content of the cord, and therefore change the cord volume. In normal
conditions, the body hydration level makes the total body weight fluctuate
by approximately 3% [106], which can potentially change the water content
of the spinal cord. This is particular relevant to the cord volume or CSA
measurement on MRI, because the MRI signal is primary derived from the
hydrogen atoms in water [45]. Change in water content of the cord will be
represented as change over the cord region on spine MR images, which can
eventually affect the CSA measurement on the spine MR images.
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However, it is unknown how does the change in water content affect cord
CSA measurement and whether the effect would cause substantial variation
in the spinal cord atrophy studies. No previous studies has been conducted to
investigate the effect of change in water content on cord CSA measurement.
Considering the small magnitude of cord atrophy rate in MS, the question of
how does the change in water content affect the CSA measurement requires
examination. In this thesis, we aim to investigate the dehydration effect on
cord CSA measurement. Dehydration caused by restricted fluid intake has
been reported to decrease the whole brain volume as measured on MRI by up
to 0.55% [31, 94]. Based on the decrease in brain volume following dehydra-
tion from previous studies [31, 55, 56, 98], we hypothesize that dehydration
would lead to a decrease in cord CSA measurement as well.

1.2.2 Registration-based Atrophy Measurement Methods
for Longitudinal Cord Atrophy Studies

Scans from multiple time points can be used to directly measure the change
in spinal cord volume or area without an accurate estimate of the absolute
size at each time point. Changes can be directly assessed between serial
scans using registration-based change analysis methods. This strategy has
been proven successfully for reducing measurement variance in longitudinal
brain atrophy measures compared to segmentation-based methods.

Boundary shift integral (BSI) [38, 64], and SIENA [96] employ the rigid
registration and approximate the brain volume change by measuring the in-
tensity difference (BSI) or intensity profile distance (SIENA) between each
corresponding pair of edge voxels of the rigidly registered baseline and re-
peat images. These two techniques can significantly reduce the variance
from segmentation errors by assessing the changes directly using intensity
information. Voxel morphometry-based method Jacobian integration (JI)
employs deformable registration and quantifies the change at each voxel by
its Jacobian determinant of the deformation field obtained from deformable
registration between the rigidly registered baseline and repeat images. In-
tegration of the Jacobian determinant at each voxel over the object region
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is used to estimate volume change. These registration-based methods have
been shown to be more robust and accurate than segmentation-based meth-
ods by being less sensitive to image quality and imaging system changes and
achieving a higher precision with smaller variance in brain atrophy studies
[6, 32]. By increasing measurement precision and statistical power, samples
sizes can be reduced, which in turn reduces the length and cost of clinical
trials.

Although registration-based methods have been widely used with great
success to measure longitudinal brain volume atrophy, none of the longi-
tudinal spinal cord methods uses a registration-based longitudinal change
analysis strategy. Current cord atrophy measurement methods as reviewed
in Section 1.1.3 all require a segmentation of the spinal cord for each subject
in the study. As most of the segmentation-based methods are prone to seg-
mentation errors that can be of the order of the amount of cord atrophy seen
in MS (with detectable percentage change of 1.16% for Horsfield’s method
and of 0.27% for Tench’s method), we could not help to think whether simi-
lar registration-based atrophy measurement methods would be applicable to
spinal cord atrophy measurement in longitudinal studies.

In this thesis, we applied three registration-based measurement methods
to measure longitudinal cord atrophy. Our hypothesis is that the registration-
based measurement methods can reduce the variability in the longitudinal
cord atrophy measurement. The cord CSA is inherently small with 30% of its
area is partial volumed with the surrounding CSF on MR scans with a spatial
resolution of 1 mm. The variability in the measurement using segmentation-
based cross-sectional methods are mostly derived from the image noise and
the partial volume region. With regularization using different types of trans-
formation, registration-based measurement methods may counteract the ex-
tend of partial volume as well as enhance the signal to noise by directly
looking at the difference.
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1.3 Thesis Contributions

1.3.1 Dehydration Effect on Cord CSA Measurement

We designed the scanning protocol with the radiologists and collected T1-
weighted MR scans from 10 volunteer subjects at four time points with a
dehydration and rehydration protocol. We implemented the CSA measure-
ment method based on Tench’s method and test two modifications for partial
volume computation. We measured the CSA on all the MR scans at four
time points using Tench’s method with three different partial volume compu-
tation approaches. We also used the Horsfield method which is integrated in
Jim software to segment the cord and measure the CSA on all the scans. We
calculated the percentage change in CSA from baseline to each subsequent
time point for all the measurements obtained by Tench method and Hors-
field method. Then we used statistical analyses (one-tailed Wilcoxon rank
test) to assess the significance of the changes to determine the dehydration
effect. We found that dehydration does have significant effect on the cord
CSA measurement. A significant decrease in CSA after dehydration was ob-
served in the CSA measurement obtained using Tench method (one-tailed
Wilcoxon rank test p = 0.018) and there was a similar magnitude of decrease
in CSA measure obtained using Horsfield method which was close to signifi-
cance (one-tailed Wilcoxon rank test p = 0.052). A mean decrease of 0.65%
in CSA was observed after dehydration in the results of both methods, which
was consistent with the results from previous studies of dehydration effect
on brain volume measurement.

1.3.2 Registration-based Cord Atrophy Measurement
Methods

The idea of the registration-based cord atrophy measurement method is to
estimate the change in cord size by the intensity differences between corre-
sponding voxels assessed from registration. We explored ways to improve
the sensitivity of the longitudinal atrophy measurement methods using reg-
istration with different levels of regularization in forms of three types of

12



1.3. Thesis Contributions

transformation: rigid registration, deformable registration and constrained
registration.

First, we used rigid registration to align the input images and calculated
the boundary shift integral to estimate the cord atrophy. The boundary shift
integral algorithm assumes that a change in cord volume is associated with
an exact shift in the cord–CSF boundary. Measurement of the cord atrophy
can be estimated by the cord boundary shift, which can be computed by the
integral of intensity differences within specified intensity window between
corresponding voxels over the cord boundary.

Second, we used deformable registration seeking to improve the sensitiv-
ity and calculated the integration of Jacobian determinants of voxels over
the cord region in the deformation field to estimate the cord atrophy. The
deformation field obtained from deformable registration can be used to visu-
alize the structural change between the baseline and follow-up images, and
is therefore used to quantify the local change by the Jacobian determinant
of each voxel. Integration of the Jacobian determinants of the voxels over
the cord region is calculated to estimate the cord atrophy.

Third, we used constrained registration with three parameters (two trans-
lations and one scaling factor) seeking to improve the robustness of the mea-
surement by adding constraints in the registration. The uniform scale factor
in the x and y axes obtained from constrained registration is used to estimate
the change in cord size.

We evaluated these three registration-based methods on the following test
data sets, 1) two sets of scan pairs with simulated atrophy created by scaling
to quantify the measurement precision, 2) the scan–rescan pairs to quantify
the measurement reproducibility, 3) the dehydration scan pairs with demon-
strated dehydration effect and an MS patient data set with reported cord
atrophy over a two-year interval to quantify the measurement sensitivity. We
compared the results obtained by three registration-based methods on the
test data sets to the results obtained by two segmentation-based methods
[50, 100], which are currently utilized as standard approaches in spinal cord
atrophy studies in MS.

The three registration-based methods obtained accurate results on the
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data set with simulated atrophy. On the data set with rigid transformation
and simulated atrophy, the errors in change rates computed by the three
registration-based methods are with significant smaller variance than that
of the two segmentation-based methods. The scan-rescan reproducibility
computed by the three registration-based methods were comparable to that
of the two segmentation-based methods. However, registration-based meth-
ods were not able to detect the dehydration effect (0.65% decrease in cord
volume) on the dehydration scan pairs. On the MS patient data set, al-
though these registration-based methods detected significant cord atrophy
over a two-year interval with smaller measurement variance, they were not
as sensitive as the two segmentation-based methods, reporting much smaller
magnitudes of cord atrophy rate.

To the best of our knowledge, it is the first time that the applicability
of registration-based methods to measure longitudinal spinal cord atrophy
is investigated. Although registration-based methods achieved smaller mea-
surement variance than the segmentation-based methods on the test data
sets, they are not as sensitive. We argue that the limited spatial resolution
of 1 mm and the inherently small size of the cord are probably the main
reasons for the limited sensitivity of registration-based methods. MR scans
with a spatial resolution of less than 1 mm, and which are able to differen-
tiate the grey matter and white matter over the cord region, are required
for future studies on longitudinal spinal cord atrophy measurement using
registration-based methods.

1.4 Thesis Outline

An outline of this thesis is listed as follows:

Chapter2 We assessed the dehydration effect to the cord CSA measure-
ment on MR scans acquired with a dehydration protocol using two cord CSA
measurement methods. Significance analysis of the results and discussion
about the dehydration effect are presented in this chapter.
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Chapter3 We presented three registration-based atrophy measurement
techniques and their results on the test data sets. Discussion of each method
and its results are also provided.

Chapter4 We summarized this thesis and highlighted the main conclu-
sions that can be drawn from our experiments.
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Chapter 2

Dehydration Decreases the
Cord Cross-Sectional Area
Measurement on MRI

2.1 Introduction

MRI is commonly used to measure spinal cord atrophy in studies of neu-
rodegenerative diseases such as MS [66, 70, 105]. Atrophy of the spinal
cord, in particular the cervical cord [59], has been shown to contribute to
physical disability in MS [33, 66]. Most previous MS cord studies have
used the correlation between the CSA of the cord and the EDSS score,
a measure of locomotor disability in MS patients, as an indicator of the
strength of the relationship between atrophy and disability [66, 105]. Signif-
icant correlations between CSA and EDSS have been found in PPMS and
SPMS patients in previous cross-sectional studies and longitudinal studies
[4, 47, 52, 67, 91, 102]. In mixed cohorts of progressive MS and RRMS
patients, cord CSA has been found to be significantly smaller compared to
healthy control subjects [47, 66, 70, 102]. However, there have been contra-
dictory findings in patients with early MS. A number of studies have found
that cord CSA is not reduced in RRMS patients [15, 59, 75] compared with
controls and could be used to separate progressive and RRMS patients [15],
while others have shown that cord atrophy is detectable in RRMS patients
[87, 97].

The inconsistent findings of cord involvement in early MS may be due to
many reasons. The average CSA of a normal adult cervical cord is around
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80 mm2. Most current MRI studies of the cord use a spatial resolution of
1 mm2 in each plane, which is around 1% of the cord CSA. Since atrophy is
a slow process, with an annual atrophy rate of around −1.6% observed in
SPMS patients [43], a high methodological sensitivity is essential to accu-
rately estimate the true rate of change on current MRI data.

Variation in water content may probably confound the CSA measurement
on MRI, because MRI signals are primarily derived from the hydrogen atoms
in water [45]. Change in water content due to hydration status can affect
brain morphology as observed on MRI [29, 55, 56]. Duning et al. reported
that a cohort of 20 healthy volunteers showed a significant decrease in brain
volume of 0.55% (SD = 0.69) after dehydration by restricted fluid intake
for 16 hours and an increase of 0.72% (SD = 0.21) after rapid rehydration
[31]. Kempton et al. observed a significant increase in ventricular volume
following dehydration via a thermal exercise protocol in two studies of seven
[56] and ten [55] healthy subjects. Dehydration can potentially affect the size
of the spinal cord, which, similar to the brain, also has high water content.

Considering the small magnitude of cord atrophy in diseases such as MS,
the question of whether cord CSA measurement on MRI is susceptible to
dehydration requires examination. The goal of this study is to estimate how
much variation in CSA can be expected due to dehydration to the degree
that would not be considered unusual in daily functioning.

2.2 Materials and Methods

2.2.1 Subjects and MRI Procedure

The subjects recruited for this study are 10 volunteers, aged 21 to 32, with
no symptoms of neurological disorders or spine problems. The subjects gave
informed consent in accordance with institutional regulations. Images were
acquired using a Philips Achieva 3T MRI scanner (Philips Medical Systems,
Best, The Netherlands) with a dedicated cervical spine receiver coil. The
sequence is a sagittal 3D T1-weighted turbo field echo sequence with param-
eters: TR = 8.206 to 8.290 ms, TE = 3.790 to 3.834 ms, flip angle = 8◦, pixel
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spacing = 0.976× 0.976 mm, slice thickness = 1.000 mm, and dimensions =
256 × 256 × 60 pixels. Due to the inclusion of other cord sequences in the
same session, there was insufficient time to acquire brain scans, which would
have necessitated a coil change.

2.2.2 Dehydration Protocol

We employed a similar dehydration and rehydration protocol to that used
by Duning et al. to study the effect on whole brain volume [31]. For each
subject, MR scans were obtained at four time points over two days: 1)

baseline, 2) rescan after one hour, 3) the next morning after fasting for at
least 14 hours, 4) after drinking 1.5L of water over the course of one hour.
The subjects were asked not to exercise strenuously during the two days of
their participation in the study.

2.2.3 MR Image Analysis

The cord CSA in each scan was measured using two established semi-automatic
methods. One is an in-house method that is a modified version of the tech-
nique by Tench et al. [100]. The other is an independent method by Horsfield
et al. [50] which we used for cross-validation.

Modified Tench method

Similar to the Tench approach, the user interacts with our in-house software
by marking the region of the cord to be measured in a sagittal view, then
segmenting a number of consecutive axial slices while guided by an edge map
that in most cases includes a well-defined contour of the cord, as shown in
Figure 2.1(b). The operator places a seed point inside the cord on each slice
and initiates a region growing process that is bounded by the contour, as
shown in Figure 2.1(c). In the present study, we used a single sagittal land-
mark on the most inferior and posterior point of the C2/C3 intervertebral
disc, and the eight slices superior to the landmark were used to compute an
average CSA.
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Figure 2.1: a) An axial image of the cervical cord surrounded by CSF. b)
Edge map which includes a well-defined contour of the cord. The user-placed
seed point is shown. c) Segmented cord region bounded by the edge contour.

We have made a number of improvements over the basic implementation
of Tench method to allow the user to have greater control over the edge map
and to improve the robustness of the partial volume computation. We use
a Canny edge detector [21] which incorporates noise reduction, suppression
of gradients that are not local maximum, and hysteresis thresholding with
two thresholds. Hysteresis thresholding works by first applying a higher,
more restrictive threshold to extract the strongest edges in the image, which
typically includes a good part of the cord boundary, then applying a sec-
ond, lower threshold that is used exclusively to link the strong edges already
found. Our software interface allows the operator to interactively adjust
the higher threshold, and the lower threshold is internally set to half of the
upper threshold, and the resulting edge image is immediately displayed to
the user as an overlay. This simple procedure effectively removes spurious
edges within and around the cord that can interfere with region-growing and
partial volume computation.
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Partial volume computation

For each segmented axial slice, all of the pixels strictly inside the cord are
assigned an area value equal to the pixel size (1 × 0.976 mm = 0.976 mm2)
while each boundary pixel is assigned a value that is a fraction of the pixel
size, modeled as partial volume (PV) between the cord and surrounding cere-
brospinal fluid(CSF). The PV fraction f is calculated using Equation (2.1)

f = (Iedge − ICSF)/(Icord − ICSF) (2.1)

where Iedge is the intensity of the boundary pixel, ICSF and Icord are the
intensities of the CSF and cord. The fraction f is then multiplied by the
pixel size to obtain the contribution of the boundary pixel to the slice area.

We tried three approaches to estimate the intensity of CSF ICSF and the
intensity of the cord Icord in Equation (2.1). The first approach, denoted by
PV1, is to interpolate the image and estimate ICSF and Icord at a distance of
one voxel width from the edge voxel along their gradient directions on both
sides. The second approach, denoted by PV2, is to interpolate the image
and estimate ICSF and Icord by four sample points neighboring the edge voxel
along their gradient directions on both sides, as shown in Figure 2.2. The first
point is located at a distance of one voxel width from the edge voxel along its
gradient direction, and three more sample locations are computed from the
first point, with one further along the line of the strongest gradient, and the
other two perpendicular to it. If a sample location falls on an edge pixel as
determined by the Canny detector, it is unlikely to be a “pure” sample and is
therefore discarded. The third approach, denoted by PV3, uses the median
intensity value of the cord region on each slice to approximate ICSF and the
median intensity value of the CSF region on each slice to approximate ICSF;
the cord region is determined by the one pixel eroded region of the cord
segmentation and the CSF region is determined by the one pixel dilated
region of the cord segmentation minus itself.

The CSA for each slice is calculated by summing the contributions from
the interior and boundary pixels. A correction factor is then applied to
the CSA value to compensate for the fact that the cord is rarely perfectly
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Figure 2.2: Four CSA sample points (yellow) in a T-shaped neighborhood of
the boundary pixel (red). The mean intensity of the CSF sample points is
used with the mean intensity of four cord sample points, computed similarly
with a neighborhood inside the cord, to compute a partial volume estimate
for the border pixel.

perpendicular to the axial image plane, resulting in an overestimation of
the area. Using the same procedure preformed by Tench et al. [100], the
correction factor is the cosine of the angle between the medial axis of the cord,
as estimated by fitting a straight line through the centers of the segmented
slices, and the perpendicular to the axial plane.

Horsfield method

In the method by Horsfield et al.[50], the operator first performs angle cor-
rection by rotating the volume so that its edges are parallel to the cord in
the region of interest (C1-C2 in the current study). Then the operator places
landmarks at C1-C2 region, and on every 10th slice in-between. The soft-
ware then uses these landmarks to automatically initialize a 3D surface and
segments the spinal cord by fitting the surface to the image. There are three
key parameters in the algorithm related to cord size and shape, including
nominal cord diameter, number of shape coefficients, and order of longitudi-
nal variation, which can be used to customize the fitting process. We used
the default values in our analysis because the study is of healthy subjects
and the segmentation appeared to be visually accurate.

The total cervical cord volume was calculated by the software as an
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integral on the final fitted surface model. The average cervical cord CSA
was then derived as the total volume divided by the length of the segmented
region.

Statistical analysis

The percentage changes in CSA from baseline to the other three time points
were calculated for each patient, and the mean changes between from the
baseline to the other three time points were used to determine the scan-rescan
reproducibility, the dehydration effect and rehydration effect. The statistical
significances of the changes were assessed using one-tailed Wilcoxon rank
test, with p < 0.05 as the threshold.

2.3 Results

The cervical cord CSA of the 10 subjects at four time points were assessed by
the modified Tench method using three different PV computation approaches
(PV1, PV2 and PV3 described in Section 1.1.3). The change rates from the
baseline to the other three time points calculated by PV1, PV2 and PV3
are explained in Table 2.1. The scan-rescan coefficient of variation (COV) of
the results using PV2 and PV1 were 0.634% and 0.616%, respectively. The
scan-rescan COV of the results using PV3 was 0.736%, higher than that of
PV1 and PV2. The results of PV1 and PV2 both demonstrated significant
decrease in cord CSA after dehydration with one-tailed Wilcoxon rank test
p = 0.010 and p = 0.018, respectively. Results of PV3 did not demonstrate
any significant change in cord CSA after dehydration (one-tailed Wilcoxon
rank test p = 0.080). Since the results of PV2 had slightly smaller scan-
rescan COV than the results of PV1, we chose PV2 as the partial volume
computation approach used in our in-house software.

In the results of our in-house software (Tench method using PV2), the
cervical cord CSA of the 10 subjects at baseline were within the range of
69.13 − 92.12 mm2. The scan-rescan coefficient of variations was 0.616%.
After dehydration, we observed a mean decrease of -0.654% (SD = 0.778, p
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Table 2.1: Statistical results of the percentage changes in CSA computed by
Tench method using three different PV computation approaches (PV1, PV2
and PV3). A significant reduction in cord CSA is observed after dehydration,
with a return to the baseline-equivalent after rehydration.

Methods Mean change
% (SD)

One-tailed
Wilcoxon
test (>0)

One-tailed
Wilcoxon
test (<0)

∆scan-rescan PV1 -0.256(0.821) p = 0.052 p = 0.958
PV2 -0.217(0.794) p = 0.080 p = 0.934
PV3 -0.084(0.989) p = 0.652 p = 0.385

∆baseline PV1 -0.695(0.801) p = 0.010 p = 0.958
to dehydrated PV2 -0.654(0.778) p = 0.018 p = 0.986

PV3 -0.465(0.891) p = 0.080 p = 0.935
∆baseline PV1 0.073(1.354) p = 0.722 p = 0.312
to rehydrated PV2 0.121(1.318) p = 0.721 p = 0.313

PV3 0.251(1.213) p = 0.813 p = 0.216

Table 2.2: Statistical results of the percentage changes in CSA computed by
our in-house method (Tench method using PV2) and Jim software (Hors-
field method). For both measurement methods, a decrease in cord CSA is
observed after dehydration, with a return to the baseline-equivalent after
rehydration.

Method Mean change
% (SD)

One-tailed
Wilcoxon
test (>0)

One-tailed
Wilcoxon
test (<0)

∆scan-rescan in-house -0.207(0.794) p = 0.080 p = 0.934
Jim -0.452(1.197) p = 0.161 p = 0.862

∆baseline in-house -0.654(0.778) p = 0.018 p = 0.986
to dehydrated Jim -0.650(1.071) p = 0.052 p = 0.958
∆baseline in-house 0.121(1.318) p = 0.721 p = 0.313
to rehydrated Jim 0.057(1.129) p = 0.539 p = 0.500
∆dehydrated in-house 0.782(1.208) p = 0.967 p = 0.042
to rehydrated Jim 0.715(0.939) p = 0.990 p = 0.014
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= 0.018 for one-tailed Wilcoxon rank test) in cord CSA as shown in Figure 2.3
and Table 2.2. After the rehydration procedure, the mean cord CSA was not
significantly different from baseline (mean change = 0.121%, SD = 1.318).
However, the mean change in CSA between the dehydrated and rehydrated
states was significant (mean change = 0.782%, SD = 1.208, p = 0.042 for
one-tailed Wilcoxon rank test).

Measured using the Jim software (Horsfield method), the cervical cord
CSAs at baseline were within the range of 72.48 − 91.28 mm2. The scan-
rescan COV of the results of Horsfield method was 0.899%. We observed
a mean change in CSA of -0.650% (SD = 1.071, p = 0.052 for one-tailed
Wilcoxon rank test) after dehydration compared with baseline, as shown in
Figure 2.4 and Table 2.2. After rehydration, the mean CSA measurement
increased by 0.715% (SD = 0.939, p = 0.014 for one-tailed Wilcoxon rank
test) compared to the dehydrated state, but was not significantly different
from baseline.

2.4 Discussion

We investigated the effect of mild to moderate dehydration and rehydration
on CSA measurement of the cervical spinal cord in healthy subjects. We
have observed a decrease in cervical cord CSA after fasting for an overnight
period that would not be considered unusual in daily functioning.

We used two independent CSA measurement methods in our analysis to
account for any bias introduced by either method. The two methods agreed
well on the mean change in cervical cord CSA observed after dehydration (-
0.654% for the Tench method and -0.650% for the Horsfield method), which is
similar to the change of -0.550% observed by Duning et al. [31] in their study
on dehydration effect to whole brain volume. In addition, the two methods
agreed well on the mean change between the dehydrated and rehydrated
states (0.782% for the Tench method and 0.715% for the Horsfield method),
which is similar to the 0.720% increase in whole brain volume that they
found.

We tried two partial volume computation approaches other than the one
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Percentage change in cervical cord CSA computed by Tench method

Figure 2.3: The percentage change in cervical cord CSA from baseline to the
other three time points computed by our in-house software (Tench method).
Each circle represent an individual subject, and the star and error bar rep-
resent the means and the standard deviations. Dehydration and rehydration
appear to affect CSA measurements.
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Figure 2.4: The percentage change in cervical cord CSA from baseline to the
other three time points using software Jim (Horsfield method). Each circle
represent an individual subject, and the star and error bar represent the
means and the standard deviations. Dehydration and rehydration appear to
affect CSA measurements.
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explained in Tench et al.’s paper to estimate the CSF intensity ICSF and
the cord intensity Icord in Equation(2.1), seeking to improve the accuracy
of the calculated PV values. Our experiments on the PV computation em-
phasize that the accuracy of PV values which contribute to around 30% of
the cord CSA is essential to the precision and sensitivity of the cord CSA
measurement. The results of PV computation approach using median in-
tensity of voxels over the CSF and cord region to estimate ICSF and Icord

on each slice did not detect any dehydration effect. The results of the other
two PV computation approaches which locally estimate the cord intensity
and CSF intensity demonstrated significant dehydration effect. The CSF
intensity and cord intensity in Equation(2.1) should be estimated locally for
each edge voxel to compute the partial volume fraction.

The brain and spinal cord are directly connected and have similar mech-
anisms for their regulation of water balance [13, 93], so it is reasonable to
speculate that the current results reflect the cord exhibiting an incomplete
compensation to fluid deficiency, similar to what has been observed in the
brain. Overall, our results lend further evidence that hydration status can
affect volumetric measures of the central nervous system on MRI.

However, there are a number of limitations in our study, including the
small size of the cord, the reproducibility of the measurement methods, and
the small sample size. To understand these limitations, it is helpful to ex-
amine the precision when using each measurement method. Horsfield et al.
estimated the minimum area change detectable by their method using the
following equation: minimum detectable change = group mean × intra-scan
COV × 1.96 = 0.87mm2 for their study. Alternatively, the detectable per-
centage change can be estimated by multiplying the intra-scan COV by 1.96
to obtain the change that can be detected with 95% confidence, which yields
1.16% and 0.27% for the Horsfield and Tench methods, respectively, using
values from their published studies. As the intra-scan COV is image- and
operator-dependent, we also estimated the precision of the two methods with
our current data, which resulted in detectable percentage changes of 1.08%
and 0.09% for the Horsfield and Tench methods, respectively. Our estimated
change due to dehydration was 0.65% for both methods, which meets the 95%
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confidence threshold of the Tench method, but is below that of the Horsfield
method, which favors the former method but does not preclude the possibil-
ity of the latter method detecting a systematic change. Given that the two
methods agree well on both the effects of dehydration and rehydration, and
that at least one is confirmed to have the neccessary sensitivity on this data,
we conclude that the change observed was likely real. It should be noted
that because the Tench method was our own implementation, the operator
was very familiar with the software, which may explain the better repro-
ducibility, but otherwise, these results do not indicate that either method is
superior.

Another limitation is that no brain scans (due to limited scanning time)
were collected and a firm conclusion cannot be made about whether simi-
lar magnitudes of change can be expected in both structures. In addition,
while the Duning study [31] found that mean brain volume increased beyond
baseline after rehydration, the mean cord volume in our study was signifi-
cantly increased only when compared to the dehydrated state, and not to
baseline. A related confounding factor is the effect of brain volume changes
on cord position. The cord could in theory be shifted rostrally due to the
shrinkage of the brain after dehydration and because the cord does not have
fixed landmarks (one could conceivably use the peripheral nerves, but they
are very small and quite far apart), it would be very difficult to ensure that
exactly the same level of cord is being measured. However, given that the
dehydration effect on brain volume is likely to be less than 1%, the cord shift
is likely to be correspondingly small, and in the absence of local injury, the
cord diameter varies smoothly over its length, so we expect the effect of cord
shift to be minor.

While there is increasing evidence that hydration status is a confounding
factor in the volumetric analysis of MRIs, there is little information on how
to correct for such fluctuations and whether this is even possible. Traditional
methods for monitoring hydration status, such as urinalysis, are unlikely to
be reliable due to the complex nature of the body mechanisms for water bal-
ance, which involves multiple systems whose health can change over time,
even in normal aging. Nonetheless, studies of the hydration effect on brain
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and cord measures are valuable for improving the understanding of study
results that may be affected by changes in water content. The results of our
current study have particular implications for studies of spinal cord disorders
that involve an inflammatory response. For example, previous cross-sectional
studies have shown that cord volume in MS patients can be increased (with
varying levels of statistical significance) when compared to healthy controls,
especially in early MS [59, 75]. These findings are somewhat unintuitive
for a neurodegenerative disease, but are hypothesized to reflect the presence
of inflammation and associated edema, which can induce a temporary in-
crease in cord volume. Our current results help to bolster that hypothesis
by demonstrating that measurable volume changes are associated with fluc-
tuations in water content. In a longitudinal study of MS patients who had
a spinal cord-related relapse [24], the patients showed a decline in cervical
spinal cord area of approximately 0.7% monthly during the follow-up period
of six months, even though they were improving clinically, which may be
attributable to a resolution of inflammation and edema. Our current results
show that changes of that magnitude can occur in a short period of time, and
that frequent cord scanning after an acute episode can be a potentially useful
method for monitoring edema. This is especially true given that certain MS
therapies, such as natalizumzab, have been shown in human subjects to have
a pseudoatrophy effect on the brain [78, 92, 106] and in preclinical studies
to have a strong anti-inflammatory effect on the cord.

In conclusion, we have demonstrated that hydration status affects spinal
cord CSA measurements on MRI and should be considered a source of vari-
ability in clinical studies of spinal cord atrophy. Our results also support
the use of frequent MRI scanning to monitor conditions that may involve
changes in water content, such as the inflammation and edema associated
with acute spinal cord pathology.
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Chapter 3

Registration-based Cord
Atrophy Measurement
Methods

3.1 Methods

Registration-based atrophy measurement methods, which directly quantify
the change in volume between registered image pairs by registration, have
been proven to be more precise and sensitive than segmentation-based meth-
ods in longitudinal whole brain atrophy measurement. However, none of the
methods for accessing longitudinal cord atrophy uses a registration-based
change analysis strategy. Current methods used to assess spinal cord at-
rophy in patients with MS, as reviewed in Chapter 1 Section 1.1.3 , are all
cross-sectional methods based on the cord segmentation. In this chapter,
we described the details of the pre-processing and three registration-based
atrophy measurement methods that we implemented for longitudinal spinal
cord atrophy measurement with the aim of improving the sensitivity and
precision of the measurement: boundary shift integral, Jacobian integration
and scale factor based on constrained registration (composed of rigid and
scale transformation).

3.1.1 Preprocessing

Rigid Registration

The baseline scan and follow-up scan need to be positionally registered for
registration-based measurement methods to yield meaningful results, be-
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cause the intensity change on MR scans derived from real cord tissue loss
can be small compared with the differences caused by patient movement and
cord mismatch. For example, there is rigid transformation and 2% simulated
atrophy created by scaling between Figures 3.1 (a) and 3.1 (b). Because of
the spatial mismatch, the intensity changes due to the scaling atrophy are
masked out by the intensity changes brought by rigid transformation, as
shown on their difference image Figure 3.1 (c). After rigid registration, these
two images are resampled as shown in Figures 3.1 (d) and 3.1 (e). The differ-
ence image of these two registered images is shown in Figure 3.1 (f), which
exclusively shows the intensity changes due to scaling atrophy and makes it
possible for the change analysis to accurately assess the simulated atrophy.

The steps to register the baseline scan and follow-up scan in our experi-
ments are described as follows.

Firstly, the baseline and follow-up scans were segmented using our in-
house software described in Chapter 2 Section 1.1.3 to obtain the cord seg-
mentation which contains 11 slices above and 5 slices below the C2/C3 inter-
vertebra disc, with partial volume values on the cord boundary. The binary
baseline segmentation S(1) and follow-up segmentation S(2) of the size of
25× 25× 17 voxels were created by cropping and using the threshold of 0.6
on the partial volume region. The baseline and follow-up scans were also
cropped to be 25×25×17 axial subvolumes I(1) and I(2), respectively, using
the cord segmentations S(1) and S(2).

We assumed that rigid transformation is able to align the cord region we
examined (around a length of 16 mm) although the cord moves articulately
with the vertebra. The baseline segmentation S(1) was dilated by one voxel
slice by slice as labeled by the yellow line in Figure 3.3 (a). The dilated
cord region in the baseline image was used to provide a mask for computing
the mean square intensity difference cost function in the rigid registration to
align the baseline image I(1) and follow-up image I(2). The resulting rigid
transformation T was split into forward transformation Tfwd and backward
transformation Tbwd. The baseline image I(1) and baseline segmentation S(1)

were resampled using the backward transformation Tbwd to obtain the reg-
istered baseline image I(1)r and registered baseline segmentation S

(1)
r . The
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follow-up image I(2) and follow-up segmentation S(2) were resampled using
the forward transformation Tfwd to obtain the registered follow-up image
I
(2)
r and registered follow-up segmentation S(2)

r . This resampling procedure
transforms the baseline and follow-up images to a position that is halfway
between them to ensure that the two images being compared undergo equiv-
alent processing steps.

(a) An axial slice of the
baseline image

(b) An axial slice of the
follow-up image

(c) The difference image of
the baseline and follow-up
images

(d) An axial slice of the
registered baseline image

(e) An axial slice of the
registered follow-up image

(f) The difference image of
the registered baseline and
follow-up images

Figure 3.1: Illustration of the difference image of the baseline and follow-
up images before and after rigid registration. The baseline image (a) and
follow-up image (b) are created from one control MR scan by scaling and rigid
transformation. After rigid registration, the difference image (f) exclusively
shows the intensity difference introduced by scaling atrophy.
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Intensity Normalization

In order to maximize the accuracy of registration-based change analysis, the
intensity of the same tissue on the baseline scan and the follow-up scan need
to be as similar as possible. We performed the intensity mapping using the
mean intensities of the CSF and cord on the registered baseline and follow-up
images to correct for intensity and contrast differences. Firstly the registered
baseline segmentation S(1)

r and follow-up segmentation S(2)
r were converted

to binary images S(1)
r b and S(2)

r b using a threshold of 255*20%. The CSF mask
region was defined as the binary segmentation dilated by one voxel minus
itself ((S

(i)
r b ⊕ B) \ S(i)

r b , where i ∈ {1, 2}). We utilized the morphological
operator B, consisting of the origin and its nearest four neighbors in two
dimensions. We calculated the mean and standard deviation of the intensities
over the CSF region on the registered baseline and follow-up images, which
are (µ

(1)
CSF, σ

(1)
CSF) for I(1)r and (µ

(2)
CSF, σ

(2)
CSF) for I(2)r . Secondly the cord mask

region is defined as the binary segmentation eroded by one voxel (S
(i)
r b 	 B,

where i ∈ {1, 2}). We calculated the mean and standard deviation of the
intensities over the cord mask region on the registered baseline and follow-up
images, which are (µ

(1)
cord, σ

(1)
cord) for I(1)r and (µ

(2)
cord, σ

(2)
cord) for I(2)r .

We performed a line fitting from the intensities of the follow-up im-
age to the intensities of the baseline image using their two corresponding
mean intensities (µ

(2)
cord, µ

(1)
cord) and (µ

(2)
CSF, µ

(1)
CSF). The mapping equation was

defined by y = ax + b, where a = (µ
(1)
cord − µ

(1)
CSF)/(µ

(2)
cord − µ

(2)
CSF), b =

(µ
(1)
CSFµ

(2)
cord − µ

(2)
CSFµ

(1)
cord)/(µ

(2)
cord − µ

(2)
CSF). The intensities of the registered

follow-up image I(2)r were then normalized using the mapping equation to
create the normalized registered follow-up image I(2)r n .

The registered and normalized baseline and follow-up images I(1)r and
I
(2)
r n were passed into the change analysis stage. Three different registration-
based methods were implemented to estimate the change in cord volume
with input images of I(1)r and I(2)r n , as explained individually in the following
three sections.

33



3.1. Methods

3.1.2 Boundary Shift Integral

The boundary shift integral (BSI) is a widely recognized technique firstly
proposed by Fox et al. [38] to measure atrophy directly from the difference
image of the registered serial MR images. It has been successfully used to
measure the volume change in the whole brain [38, 64], the hippocampus
[10, 12, 74], the caudate [49] and the ventricles [85]. Results from these ap-
plications have shown that the BSI algorithm is able to detect the difference
in the atrophy rate in these tissues to distinguish the patient and healthy
groups in a range of neurological disorders including Alzheimer’s disease
(AD) [11, 12, 18] and MS [6]. The rate of cerebral atrophy in patients with
MS was 3 times that of aged matched controls over a 1-year period in a pre-
vious study using BSI [39]. Furthermore, the whole brain atrophy assessed
by BSI has been used as an outcome measure in therapeutic intervention
studies for AD [37].

The boundary shift integral algorithm assumes that a change in volume
of a soft tissue object must be associated with an exact shift in the bound-
ary of that object. The shift of the tissue boundary results in an exactly
equivalent shift of the signal which is constructed from the MR samples [41].
Hence, if the baseline scan and follow-up scan are registered, in the area
around the boundary of the registered scans Ibase and Ireg, the intensities of
Ibase(x, y, z) and Ireg(x, y, z) should shift by an amount corresponding to the
position shift; this permits the precise measurements of boundary shifts by
determining intensity shifts in the boundary region. The change in volume
can thus be estimated by computing the integral of all of the boundary shifts.

If ibase(x) is the MR signal along the cord boundary at the location x of
the baseline scan and ireg(x) is the MR signal at location x of a registered
follow-up scan on which there has been a boundary shift of ∆w from the
baseline, then these two MR signals can be related by ireg(x) = ibase(x+∆w)

in the region of the cord boundary [41]. Moreover, if the intensity changes
monotonically across the cord boundary, then ibase(x) and ireg(x) will take
the form shown in Figure 3.2. We can therefore define inverse functions
xbase(i) and xreg(i), related by xreg(i) = xbase(i)−∆w.
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Figure 3.2: Example of an idealized one dimensional cord boundary shift
between the intensity ibase(x) along x axis on baseline scan, and the intensity
ireg(x) along x axis on registered follow-up scan. An estimate of the shift
along x axis, ∆w, may be obtained as the shaded area divided by the intensity
range (I1 − I2) . This strategy can be extended to three dimensions to
estimate the cord volume loss ∆v.

A simple estimate of ∆w can be obtained using ∆w = xbase(i)− xreg(i),
where i may be any value within the intensity range of the cord boundary
region [IR, IS]. In 3D T1 weighted spine MR images, the cord is brighter
while the CSF is darker, thus IR is the intensity on the CSF side of the
boundary and IS is the intensity on the cord side of the boundary. A more
robust estimated can be obtained by averaging the estimates of ∆w over an
intensity range [I2, I1], as shown in Equation (3.1).

∆w =
1

I1 − I2

∫ I1

I2

(xbase(i)− xreg(i))di (3.1)

where IR ≤ I2 < I1 ≤ IS.
Equation (3.1) can alternatively be expressed as an integral with respect

to x over the boundary, as written in Equation (3.2). Equation (3.1) and
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Equation (3.2) are equivalent by considering that both integrals evaluate the
area of the shaded region in Figure 3.2.

∆w =
1

I1 − I2

∫
boundary

(Clip(ibase(x), I1, I2)− Clip(ireg(x), I1, I2))dx (3.2)

where IR ≤ I2 < I1 ≤ IS, and Clip(a, I1, I2) =


I2 a < I2

a I2 ≤ a ≤ I1
I1 a > I1

If we extend this strategy to three-dimensions and determine the integral
numerically by evaluating the integrand at small sampling intervals, the
volume change can be calculated as shown in Equation (3.3)

∆v =
K

I1 − I2
×

∑
x,y,z∈E

(Clip(Ibase(x, y, z), I1, I2)− Clip(Ireg(x, y, z), I1, I2))

(3.3)
where K is the unit voxel volume, E is the set of voxels in the border region
of the cord, Ibase(x, y, z) and Ireg(x, y, z) are the voxel intensities on the
registered baseline and follow-up scans at (x, y, z), and the intensity range
of the integral [I2, I1] is referred to as the intensity window.

In our application to the cord, I(1)r and I
(2)
r n are the registered baseline

and follow-up images, and S(1)
r and S(2)

r are the corresponding segmentation
images. The resampled segmentation images S(1)

r and S
(2)
r were converted

to binary images S(1)
r b and S

(2)
r b using a threshold of 255*50%. We defined

the border region E as the set of voxels that are members of the union
of S(1)

r b and S
(2)
r b dilated by an operator B slice by slice but not members

of the intersection of S(1)
r b and S(2)

r b eroded by an operator B slice by slice,
as explained in Equation (3.4). We utilized the morphological operator B,
consisting of the origin and its nearest four neighbors in two dimensions.
The region between the yellow line and blue line on Figure 3.3(b) shows the
border region E created by Equation (3.4) overlaid on the registered baseline
image I(1)r , where the outer boundary of the border region is labeled by the
yellow line and the inner boundary of the border region is labeled by the
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blue line.
E = ((S

(1)
r b ∪ S

(2)
r b )⊕B) \ ((S

(1)
r b ∩ S

(2)
r b )	B) (3.4)

(a) The boundary of the dilated cord
segmentation of a baseline cropped
cord image I(1) is labeled by the yel-
low line. The dilated baseline cord
segmentation is used as a mask for
the rigid registration between the
baseline image I(1) and repeat image
I(2).

(b) The border region is overlaid on
the registered baseline cord image
I
(1)
r . The outer boundary of the bor-
der region is labeled by the yellow
line. The inner boundary of the bor-
der region is labeled by the blue line.
Boundary shift integral is computed
over the border region.

Figure 3.3: Illustration of the dilated cord segmentation labeled on the base-
line cord image I(1), and the border region labeled on the registered baseline
cord image I(1)r .

Intensity Window Selection

The evaluation of BSI requires the appropriate selection of an intensity win-
dow. The intensity window [I2, I1] should be selected such that it falls en-
tirely within the intensity transitions associated with the boundaries of a
structure. Fox et al. [38] selected the intensity window for applying the BSI
to whole brain atrophy measurement by comparing simulated and measured
volumes of brain loss over a range of intensity window parameter values.
Boyes et al. [17] improved the accuracy of BSI results by determining the
intensity window parameters based on comparing the BSI to segmented vol-
ume differences for a range of windowing parameters. Hobbs et al. [49] used
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the mean and standard deviation of different tissues involved to automati-
cally calculate the intensity window. They took the median of all the specific
optima of the subjects in their data set to be the optimal intensity window
in their application using BSI to estimate caudate atrophy in a cohort study.
Leung et al. [64] proposed determining the intensity window by the mean
and standard deviation of CSF and GM which are estimated by the k-means
clustering in the border region of the brain in their application to measure
whole brain atrophy.

For our application to compute the cord BSI, we adopted the strategy
Hobbs et al. proposed for automatic intensity window selection. In or-
der to capture most of the tissue-type change between the cord and CSF,
it was desirable to ignore changes within the same tissue type and max-
imize the changes between different tissue types. Therefore, the inten-
sity window for the cord boundary shift computation was chosen to be
[µ

(1)
CSF + σ

(1)
CSF, µ

(1)
cord − σ

(1)
cord], where µ(1)CSF and σ(1)CSF are the mean and stan-

dard deviation of intensities of the voxels in the CSF region on the registered
baseline image I(1)r , and µ(1)cord and σ(1)cord are the mean and standard deviation
of intensities of the voxels in the cord region on I(1)r .

With the selected intensity window, BSI was computed using Equation
(3.3) over the border region between I(1)r and I(2)r n on eight slices above the
C2/C3 intervertebra disc landmark. Percentage change rate in cord volume
was calculated by dividing the computed BSI by the cord volume of the
baseline scan over eight slices.

3.1.3 Jacobian Integration

The deformation field obtained from deformable registration makes it possi-
ble to visualize structural changes that occur over time by deforming a sub-
ject’s baseline scan onto their subsequent scans, and to statistically quantify
local changes [62]. Based on the analysis of the Jacobian determinant of
the deformation field obtained, temporal changes due to growth or atrophy
can be identified [51]. This technique has been widely applied to assess the
atrophy of whole brain as well as regional areas of the brain using different
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forms of deformable registration [11, 42, 101] .
The quantification of the amount of warping applied at each voxel by

the deformation field T (x, y, z) can be locally derived from the Jacobian ma-
trix ∇T (x, y, z) of the deformation in terms of determinant det(∇T (x, y, z))

[23] . A Jacobian matrix ∇T (x, y, z) is obtained for each voxel by taking
the secondary derivative of the deformation field T (x, y, z), as defined in
Equation (3.5) .

∇T (x, y, z) =


∂Tx(x,y,z)

∂x
∂Tx(x,y,z)

∂y
∂Tx(x,y,z)

∂z
∂Ty(x,y,z)

∂x
∂Ty(x,y,z)

∂y
∂Ty(x,y,z)

∂z
∂Tz(x,y,z)

∂x
∂Tz(x,y,z)

∂y
∂Tz(x,y,z)

∂z

 (3.5)

The determinant det(∇T (x, y, z)), denoted by det(J), represents an expan-
sion if det(J) > 1 or a contraction if det(J) < 1 at each voxel. The change in
voxel size after deformation calculated by (det(J)−1) can then be integrated
over a specified region to obtain an approximation to the total volume change
in this region. The estimated total volume change divided by the number of
voxels in this region yields an average measure of volume change rate over
this region.

Figures 3.4 (a) and 3.4 (b) show two images created from a spine MRI of
a control subject, with simulated atrophy between them created by scaling.
The baseline image Figure 3.4 (a) is created by applying a scale factor of
1.0075 on both the x and y axes of a spine MRI from a control subject to
obtain 1.5% explansion in volume, and the follow-up image Figure 3.4 (b)
is created by applying a scale factor of 0.9925 on both the x and y axes
to the same MR scan to obtain 1.5% shrunk in volume. In this way, 3%
simulated scaling atrophy is created between the baseline image and follow-
up image. Figure 3.4 (c) shows the deformation field, which is obtained from
deformable registration between the two images shown in Figures 3.4 (a) and
3.4 (b), overlaid on the baseline image over the cord region. There is obvious
shrinkage of the cord region, illustrated by the deformation vectors pointing
into the cord region on Figure 3.4 (c).

The deformable registration aims to find the displacement s(p) at each
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(a) An axial slice of the
baseline image

(b) An axial slice of the
follow-up image

(c) The deformation vec-
tors of the deformation
field over the cord region
overlaid on the baseline im-
age.

Figure 3.4: Illustration of the deformation field generated by images with
3% simulated atrophy. The baseline image (a) and the follow-up image
(b) are created from one control MR scan by scaling to create 3% atrophy
between them. After deformable registration, the deformation field over the
cord region in (c) demonstrates the expected shrinkage of the cord, with the
majority of the deformation vectors pointing into the cord.

voxel p in order to capture the shape change (similarity) as well as constrain
the smoothness of the deformation field (regularization) from the moving
image to the fixed image. The optimization of the deformable mapping can
be summarized briefly as:

1. Compute the update field u by minimizing the similarity function

2. Update the deformation field s with u

3. Regularize the deformation field s

The non-rigid registration algorithm employed in our experiment is the
symmetric log-domain diffeomorphic demons proposed by Vercauteren et al.
[104]. The energy function to be minimized is defined in Equation (3.6),

E(F,M, s) =
1

σ2i
Sim(F,M, s) +

1

σ2T
Reg(s) (3.6)

where F is the fixed image, M is the moving image, s is the deformation
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field, Sim(F,M, s) = 1
2‖F −M ◦ s‖

2, Reg(s) = ‖∇s‖2, σi measures the local
intensity noise, and σT controls the amount of regularization we need.

In order to register F and M , we need to optimize Equation (3.6) over a
given space. The diffeomorphic demons algorithm performs the optimization
in a space of diffeomorphisms to enforce invertibility by defining an expo-
nential mapping from the vector space to diffeomorphisms [104]. At each
iteration, the algorithm computes an update step u by minimizing the corre-
spondence energy Ecorr

s (u) = ‖F −M ◦ (s ◦ exp(u))‖2 + ‖u‖2 with respect to
u using a Newton method and then maps it to the space of diffeomorphisms
through the exponential exp(u). Updating the deformation field s with the
update step u is thus in the form of s← s ◦ exp(u) [104].

In order to easily compute the inverse of the spatial transformation, the
complete spatial transformation s is encoded through the exponential of a
smooth stationary velocity field v where s = exp(v) [7, 104], thus the inverse
of the spatial transformation s−1 can be obtained by exp(−v) in the log
domain. The update step s ← s ◦ exp(u) is cast into the form of v ←
log(exp(v) ◦ exp(u)) [104]. The updated transformation log(exp(v) ◦ exp(u))

can then be approximated by the first two terms of the Baker-Campbell-
Hausdorff formula v ← v+u+ 1

2 [v, u], where [v, u] is the Lie bracket: [v, u] =

Jac(v)× u− Jac(u)× v [16].
To make the registration framework symmetric, the global energy is

symmetrized by sopt = arg min
s

(E(I0, I1, s) + E(I1, I0, s
−1)), where s−1 =

exp(−v) in the log domain, and E is defined by Equation (3.6), I0 and I1

are the two input images of the registration. The symmetric update is the
mean of the forward and backward update steps in each iteration [30]. The
registration is optimized using a multi-resolution scheme.

To sum up, the multi-resolution symmetric log-domain diffeomorphic
demons registration is performed using the following steps :

• Choose a starting deformation field v

• For each resolution level, resample the deformation field v obtained
from the previous resolution level be the same size as the fixed image
at the current resolution level and use the resampled deformation field

41



3.1. Methods

to initialize the registration

• Iterate until convergence

1. Compute the forward demons force update field uforward where I0
plays the role of the fixed image F and I1 plays the role of the
moving image M

2. Compute the backward demons force update field ubackward where
I1 plays the role of fixed image F and I0 plays the role of the
moving image M

3. Compute the symmetric update step u = 1
2(uforward − ubackward)

4. Update the current deformation field v with the symmetric update
step u and apply the diffusion-like regularization v ← Kdiff ∗ (v+

u+ 1
2 [v, u]), where Kdiff is a Gaussian convolution kernel with the

parameter σ set to 1.0

5. Compute the mean square error (MSE) after applying the updated
deformation field v and compare the current MSE value with the
two MSE values obtained from the previous two iterations. If the
current MSE value is not smaller than the previous two values,
convergence is obtained; otherwise continue to iterate

In our application to compute the cord change rate using Jacobian in-
tegration (JI), we used this deformable registration algorithm to obtain the
deformation field between the registered baseline image I(1)r and follow-up
image I(2)r n in our experiments. Firstly the resampled baseline segmentation
S
(1)
r was converted to a binary image S(1)

r b using a threshold of 255*50% and
S
(1)
r b was dilated by two voxels slice by slice to create the dilated cord mask

region. Then the registered baseline image I(1)r and registered follow-up im-
age I(2)r n were masked by the dilated cord segmentation to create two images
I
(1)
rm and I

(2)
r nm with voxels outside the dilated cord region being zero. The

masked images I(1)rm and I
(2)
r nm were used as the fixed and moving images,

respectively, in the deformable registration, and the numbers of iterations
chosen to be 5 and 10 for the two resolution levels (full-image resolution and
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half-image resolution), respectively. With the obtained deformation field,
the volume change rate was calculated by the mean value of (det(J) − 1)

over the core region S(1)
r b .

3.1.4 Scale Factor from 3-DoF Registration

As cord atrophy is a slow process, it is reasonable to assume that the cervical
cord will not significantly change its cylindrical shape dramatically within
the time frame of most clinical studies. Therefore, in contrast to measuring
local changes and summing them up as described in the boundary shift
integral and Jacobian integration, a more strongly regularized approach to
measuring global changes in volume can be attempted by using a constrained
rigid registration with scaling. The potential advantage of this approach is
increased robustness with respect to local artifacts.

We defined a 3-DoF transformation T containing three parameters: tx,
ty and scalexy, where scalexy is the scale factor in the x and y axes, and
tx and ty are the translations in the x and the y axes respectively. The
transformation uses one scale factor scalexy in the x and y axes to model
a cord that changes size uniformly. We added the translations tx and ty to
adjust for small translations that have not yet been corrected by the rigid
registration. The change rate of the cord size can be approximated by the
scale factor scalexy obtained from the 3-DoF constrained registration.

The 3-DoF constrained registration is realized in the ITK registration
framework using the mean square intensity difference as the similarity metric
shown in Equation (3.7). A regular step gradient descent optimizer is used
to compute the update step u for each parameter using the gradient of the
energy function with respective to each parameter.

E = ‖F −M ◦ T‖2 (3.7)

The 3-DoF constrained registration is performed using the following
steps:

• Choose an initial transformation for T
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• Iterate until convergence

1. Compute the gradient ∇E of the energy function

2. Compute the update step u by multiplying the gradient ∇E with
the step length L that was usually set to be the maximum step
length, u = L×∇E.

3. Compare the direction of∇E of current iteration and the direction
of the gradient of the previous iteration. If the directions are
opposite, reduce the update step u by a relaxing factor r which
is set to be 0.2, u = r × L×∇E

4. If the length of the update step u is larger than the minimum step
length, update the transformation to the new transformation T ←
T +u and continue to iterate, otherwise stop and the convergence
is obtained

In our application to measure cord change rate, the 3-DoF constrained
registration was performed on the registered baseline and follow-up images,
with I(1)r used as the fixed image and I(2)r n used as the moving image. The
resampled baseline cord segmentation S(1)

r was used as the mask with only
voxels inside the mask region included when computing the mean square
intensity difference cost function. With the scale factor (SF) obtained after
the constrained registration, the change rate of cord volume between baseline
and follow-up scans can be computed by (scalexy2 − 1).

3.1.5 Experiments Performed

In order to assess the sensitivity and precision of these three registration-
based methods which are abbreviated by BSI, JI and SF, different tests were
performed on the scan pairs which are outlined below.

Scaled scan pairs

We created a simulation data set with different levels of simulated cord at-
rophy created by scaling between the scan pairs, assuming that the cord

44



3.1. Methods

changes uniformly as it undergoes atrophy, which is not strictly true but
is a useful approximation. We applied two scale factors (one leading to an
increase in volume and the other one leading to a decrease in volume) on
each baseline scan in the hydration data set (described in Section 2.2.2) to
create two simulated images to eliminate the problem of different degrees of
blurring between the two simulated cord images introduced by interpolation.
The steps to create one simulated scan pair with 2% scaling atrophy from
a control scan are explained as follows. Firstly, the control scan is enlarged
by increasing the voxel size by a scale factor of 1.005 in the x and y axes
to create a simulated cord image with 1% increase in volume with respect
to the control scan. Secondly, the control scan is shrunk by decreasing the
voxel size by a scale factor of 0.995 in both x and y axes to create the sim-
ulated cord image with 1% decrease in volume with respect to the control
scan. Thus, a simplistic simulation of 2% cord atrophy, an amount typical
of a SPMS patient over the course of one year [43] is generated between the
scaled scan pair.

From each baseline scan, we created three scaled scan pairs with three
different levels of change in volume (-1%, -2% and -3%) using the scale factors
listed in Table 3.1. Measures of change were computed using BSI, JI and SF
on the scaled scan pairs of each baseline scan in the hydration data set. The
difference between the computed change rate and the ground truth value
represents the error of the result computed by the method. We calculated
the mean and standard deviation of the errors obtained by BSI, JI and SF
to assess the performance of these three registration-based methods on this
simulation data set.

Scaled scan pairs with rigid transformation

To additionally simulate changes in patient position between scans, we cre-
ated a data set with both simulated atrophy and rigid transformation to
simulate the cord tissue loss and spinal cord repositioning.

From the baseline scan of each subject in the hydration data set, we
created four simulated scan pairs with four different levels of scaling change
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Table 3.1: Scale factors applied to create scaled scan pairs with three
different levels of change in cord volume between the simulated baseline
image and follow-up image.

Simulated simulated baseline simulated follow-up
change rate image (scale factor) image (scale factor)
-3% 1.5% (1.0075) -1.5% (0.9925)
-2% 1.0% (1.005) -1.0% (0.995)
-1% 0.5% (1.0025) -0.5% (0.9975)

(0%, -1%, -2% and -3%) generated by the scale factors listed in Table 3.1 ,
and with rigid transformation randomly generated by rotation parameters
in the range of -4 degrees and 4 degrees and translation parameters in the
range of -2mm and 2mm.

Measures of change rate in cord volume were computed using BSI, JI and
SF on the four scaled scan pairs with rigid transformation for each subject.
We also measured the change rate in cord volume on this simulation data
set using the Tench [100] and Horsfield [50] methods for comparison. The
difference between the computed change rate and the ground truth value
represents the error of the result computed by the method. We calculated
the mean and standard deviation of these errors to assess the performance
of the three registration-based methods and the two cross-sectional methods
on this simulation data set.

Hydration data set

The hydration data set described in Chapter 2 Section 2.2.2 is composed of
serial MR scans of 10 healthy subjects at four time points (named baseline,
rescan, dehydrated and rehydrated). Cord volume change was measured
using BSI, JI and SF on the scan pairs from the baseline to the other three
time points as described below.

• Scan-rescan scan pairs
The cord size is assumed to be constant between these two scans which
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were taken one hour apart, so the calculated cord volume change rate
should be zero and any departure from zeros is assumed to be scan-
rescan variance. Means and SDs of the results computed by BSI, JI and
SF methods on the scan-rescan scan pairs were compared with results
of the Tench and Horsfield methods to see whether registration-based
methods are able to improve the scan-rescan reproducibility.

• Dehydration scan pairs
We computed the measures of change using BSI, JI and SF from the
baseline to the dehydrated scans. A one-tailed Wilcoxon rank test was
performed on the BSI, JI and SF measures on the dehydration scan
pairs to see whether they are able to detect any dehydration effect,
which was reported in the results of Tench and Horsfield methods (ex-
plained in Chapter 2) and whether they can improve the measurement
sensitivity.

• Rehydration scan pairs
There is a return in the cord CSA after rehydration and no significant
change is observed from the baseline to the rehydrated scans in the
results of Tench and Horsfield methods. We computed the measures
of change using BSI, JI and SF on the rehydration scan pairs to see
whether registration-based methods are able to yield similar results
as the two cross-sectional methods and whether they can improve the
measurement precision.

MS patient data set

The MS patient data set used in our experiment is composed of MR scans
of 15 SPMS patients selected from a negative MS clinical trail. For each
patient in the MS patient data set, there are two 3D T1 weighted MR images
collected at two time points with a two-year interval.

There should be significant cord atrophy between the scan pairs with a
two-year interval in this MS patient data, because SPMS patients are typi-
cally characterized by gradual progression of their disabilities and cognitive
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impairment and steady annual cord atrophy rate has been reported in this
subtype [43]. Two-year change rate in cord volume was measured using BSI,
JI and SF as well as the Tench and Horsfield methods. A one-tailed Wilcoxon
rank test was performed on the change rate computed on the scan pairs in
the MS patient data set to see whether significant cord atrophy can be de-
tected by these methods and whether registration-based methods are able to
improve the sensitivity and precision compared with the segmentation-based
methods in the MS patient data set.

3.2 Results

No failed rigid registration was detected in the preprocessing of all the scan
pairs in our experiments. The rigid registration was evaluated by computing
the Dice coefficient [58] of the resampled segmentation images S(1)

r b and S(2)
r b .

The computed Dice coefficients are in the range of 0.90 to 0.99, indicating
that the resampled baseline and repeat scan pairs I(1)r and I

(2)
r are fairly

rigid registered in our experiments.

3.2.1 Scaled Scan Pairs

Table 3.2 lists mean and SD of the differences of the percentage change
rates computed by BSI, JI and SF to the ground truth values in the simu-
lation scan pairs with three different degrees of scaling atrophy. The three
registration-based methods all obtained accurate results (small mean errors)
on this simulation data set with SF achieving the lowest magnitude of abso-
lute errors.

3.2.2 Scaled Scan Pairs with Rigid Transformation

The percentage change rates computed by BSI, JI and SF as well as Tench
and Horsfield methods for simulated scan pairs with random rigid transfor-
mation and four different levels of scaling atrophy (0%, -1%, -2% and -3%)
are shown in four Figures 3.5 , 3.6 , 3.7 and 3.8 , respectively.
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Percentage change in cervical cord volume computed on simulated images
with 0% scaling atrophy and rigid transformation

Figure 3.5: Percentage change rates computed by the three registration-
based methods (BSI, JI and SF) along with the two segmentation-based
methods (Tench and Horsfield) on simulated scan pairs with rigid transfor-
mation and no scaling change (0%). Each circle represents a single subject
in the simulated scan pairs, and the stars and error bars represent the means
and standard deviations of the measurements. The blue line represents the
ground truth change rate between the two scans in the simulated scan pairs.
Registration-based methods outperformed the segmentation-based methods
with smaller mean errors to the ground truth and smaller measurement vari-
ance on this simulated scan pairs .
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Figure 3.6: Percentage change rates computed by the three registration-
based methods (BSI, JI and SF) along with the two segmentation-based
methods (Tench and Horsfield) on simulated scan pairs with rigid transfor-
mation and 1% scaling change. Each circle represents a single subject in
the simulated scan pairs, and the stars and error bars represent the means
and standard deviations of the measurements. The blue line represents the
ground truth change rate between the two scans in the simulated scan pairs.
The results obtained by BSI and JI have smaller mean errors and smaller
variance than the two segmentation-based methods. Although the mean of
the Tench results is closer to the ground truth value -1% compared with
the mean of the SF results, the standard deviation of SF results is much
smaller. Registration-based methods are able to significantly improve the
measurement variance on this simulation scan pairs.
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Figure 3.7: Percentage change rates computed by the three registration-
based methods (BSI, JI and SF) along with the two segmentation-based
methods (Tench and Horsfield) on simulated scan pairs with rigid transfor-
mation and 2% scaling change. Each circle represents a single subject in
the simulated scan pairs, and the stars and error bars represent the means
and standard deviations of the measurements. The blue line represents the
ground truth change rate between the two scans in the simulated scan pairs.
The JI and SF results are better than the results of the two segmentation-
based methods with smaller mean error and smaller variance. Although the
mean error of BSI results is larger than the two segmentation-based methods,
the standard deviation of the BSI result is much smaller. Registration-based
methods improve the measurement variance on this simulation scan pairs.
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Figure 3.8: Percentage change rates computed by the three registration-
based methods (BSI, JI and SF) along with the two segmentation-based
methods (Tench and Horsfield) on simulated scan pairs with rigid transfor-
mation and 3% scaling change. Each circle represents a single subject in
the simulated scan pairs, and the stars and error bars represent the means
and standard deviations of the measurements. The blue line represents the
ground truth change rate between the two scans in the simulated scan pairs.
The measurement variance using BSI, JI and SF is significantly improved
with much smaller SDs compared to the measurements using Tench and
Horsfield methods.
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Table 3.2: Mean and SD of the errors which are the differences between the
percentage change rates computed by BSI, JI and SF on scaled scan pairs
and their respective ground truth change rates.

Mean (SD) of the errors (%)
Methods BSI JI SF
-3% -0.13 (0.37) 0.01 (0.17) 0.01 (0.02)
-2% -0.08 (0.26) 0.01 (0.06) 0.01 (0.05)
-1% -0.07 (0.13) -0.01 (0.07) 0.05 (0.05)

Table 3.3: Mean (SD) of the errors, which are the differences of the com-
puted change rates to the ground truth values, on the simulation data set
with rigid transformation and simulated atrophy. The measurement SDs us-
ing the three registration-based methods are smaller than the measurement
SDs using the two segmentation-based methods.

Mean (SD) of the errors (%)
Tench Horsfield BSI JI SF

-3% 0.13 (1.02) -0.09 (1.37) 0.38 (0.25) 0.12 (0.33) 0.06 (0.25)
-2% 0.09 (0.75) -0.17 (0.92) 0.27 (0.22) 0.08 (0.42) -0.01 (0.26)
-1% -0.09 (0.69) -0.39 (1.24) 0.07 (0.14) -0.06 (0.21) 0.13 (0.23)
0% 0.10 (1.02) -0.33 (0.96) -0.02 (0.07) -0.02 (0.36) 0.02 (0.12)

The means and standard deviations of the errors of the results obtained
by BSI, JI and SF as well as Tench and Horsfield methods on the four sets of
simulated scan pairs are provided in Table 3.3 . The registration-based meth-
ods improved the measurement variance, achieving much smaller standard
deviations than the two segmentation-based methods on this simulation data
set. Their results support our hypothesis that the registration-based atro-
phy measurement methods are robust to the variability in cord segmentation
and can eventually improve the precision of cord atrophy measurement by
directly assessing the change.
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3.2.3 Hydration Data Set

Table 3.4: Means and SDs of the percentage change rates computed by
BSI, JI and SF along with the results of Tench and Horsfield methods on
the scan-rescan pairs (labeled 1 in the table), dehydration scan pairs (la-
beled 2 in the table) and rehydration scan pairs (labeled 3 in the table).
The three registration-based methods have comparable reproducibility on
the scan-rescan scan pairs, compared to the results of the two segmentation-
based methods. However, they did not detect any significant decrease in
cord volume on the dehydration scan pairs which was detected by the two
segmentation-based methods.

Mean (SD) of the change rate(%)
Tench Horsfield BSI JI SF

1 -0.22 (0.79) -0.40 (1.26) -0.24 (0.77) -0.26 (0.61) -0.09 (0.73)
2 -0.65 (0.78)* -0.65 (1.04)† 0.09 (0.68) -0.34 (0.97) -0.34 (0.71)
3 0.12 (1.32) 0.06 (1.13) 0.05 (0.70) 0.00 (0.73) -0.01 (1.18)
*p≤0.05, † p≤0.1

The means and standard deviations of the percentage changes computed
by each technique on the three sets of scan pairs in the hydration data set
are presented in Table 3.4 .

On the scan-rescan scan pairs, the coefficients of variance (SD divided by
the mean) of the three registration-based methods were comparable to that
of two segmentation-based methods, indicating no obvious improvement by
the registration-based methods in scan-rescan reproducibility.

On the dehydration scan pairs, there was no significant change in cord
volume detected by BSI, JI and SF. Registration-based methods are not
sensitive enough to detect the dehydration effect.

On the rehydration scan pairs, results of BSI, JI and SF showed no change
from zero, which is similar to the results of Tench and Horsfield methods.

The results of each technique on the three sets of scan pairs in the hy-
dration data set are shown in Figures 3.9, 3.10 and 3.11.
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3.2.4 MS Patient Data Set

The mean (SD) percentage change rates quantified using each technique
on the scan pairs with a two-year interval in the MS patient data set are
presented in Table 3.5 and Figure 3.12.

Table 3.5: Mean and standard deviation (SD) of the percentage change
rates in cord volume computed by BSI, JI and SF along with the results of
Tench and Horsfield methods on the MS patient data set. All these methods
detected significant cord atrophy on the scan pairs with a two-year interval.
However, the magnitudes of cord atrophy detected by the registration-based
methods were smaller compared with the cord atrophy detected by the two
segmentation-based methods.

Mean (SD)(%)
Tench Horsfield BSI JI SF
-2.53 (3.81)** -2.13 (3.59)* -0.74 (1.68)* -1.00 (1.78)* -1.45 (2.63)*
**p≤0.01, *p≤0.05

These methods all detected significant cord atrophy over two years with
the percentage change rates computed by the three registration-based meth-
ods and two segmentation-based methods all significantly below zero (p ≤
0.05) in the one-tailed Wilcoxon rank test. The registration-based methods
improved the measurement variance by obtaining smaller standard devia-
tions. However, they do not seem to be as sensitive, reporting smaller mag-
nitudes of atrophy compared with the atrophy detected by the segmentation-
based methods. The cord atrophy previously reported in the literature is
around -1.6% in SPMS patients per year and the magnitude of cord atro-
phy computed by the two segmentation-based methods over two years agrees
reasonably well to the reported figure. In terms of correlation, the measure-
ments using SF agreed well with the measurements using Tench method.
The measurements using SF significantly correlated with the measurements
using Tench (Spearman’s correlation coefficient r = 0.63, p = 0.01).
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Figure 3.9: The percentage change in cord volume from baseline to the rescan
time point computed by the three registration-based methods (BSI, JI and
SF) and the two segmentation-based methods (Tench and Horsfield). Each
circle represents a single subject in the hydration data set, and the stars and
error bars represent the means and standard deviations. The scan-rescan
variation computed by the three registration-based methods was comparable
to that computed by Tench method with similar means and SDs.
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Figure 3.10: The percentage change in cord volume from baseline to the
dehydration time point computed by the three registration-based methods
(BSI, JI and SF) and the two segmentation-based methods (Tench and Hors-
field). Each circle represents a single subject in the hydration data set, and
the stars and error bars represent the means and standard deviations. The
results of registration-based methods did not demonstrate any statistically
significant decrease in cord volume following dehydration.
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Figure 3.11: The percentage change in cord volume from baseline to the rehy-
dration time point computed by the three registration-based methods (BSI,
JI and SF) and the two segmentation-based methods (Tench and Horsfield).
Each circle represents a single subject in the hydration data set, and the stars
and error bars represent the means and standard deviations. No significant
change in cord volume was detected by the registration-based methods from
the baseline scan to the rehydrated scan, which is similar to the results of
the two segmentation-based methods.
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Figure 3.12: The percentage change in cord volume on the scan pairs with
two years interval computed by the three registration-based methods (BSI,
JI and SF) and the two segmentation-based methods (Tench and Horsfield).
Each circle represents a single subject in the MS patient data set, and the
stars and error bars represent the means and standard deviations. The
means of the change rates computed by all the methods are below zero.
The measurement variance is slightly improved in the results of registration-
based methods. However, the magnitudes of atrophy rates computed by the
registration-based methods are smaller than the magnitudes of atrophy rates
computed by the segmentation-based methods.
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3.3 Discussion

In this study, we implemented three registration-based atrophy measure-
ment techniques to measure longitudinal spinal cord atrophy from locally
registered serial MR images. We evaluated these three registration-based
methods on the following test data sets, 1) two sets of scan pairs with simu-
lated change to quantify the measurement precision, 2) the scan-rescan scan
pairs to quantify the measurement reproducibility, 3) the dehydration scan
pairs with demonstrated dehydration effect and SPMS patient scan pairs
with reported cord atrophy to quantify the measurement sensitivity. We
compared the results obtained by the registration-based methods on these
test data sets to the results obtained by two segmentation-based methods
that are currently utilized as standard approaches in spinal cord atrophy
studies in MS.

Our experiments showed that the registration-based methods reduced
measurement variance (overall smaller standard deviations) compared with
the segmentation-based methods on all the test data sets and improved
the measurement precision, achieving less errors on the two simulated data
sets. However, the registration-based methods were not as sensitive as the
segmentation-based methods, detecting no dehydration effect on the dehy-
dration scan pairs and reporting reduced magnitude cord atrophy on the
MS patient data set. We argue in the following sections that the limitation
in sensitivity of registration-based methods on hydration data set and MS
patient data set is probably due to the limited spatial resolution of the MR
scans in our experiments and the inherently small size of the cord.

3.3.1 Boundary Shift Integral

The technique BSI directly estimates the cord volume change between two
registered images by calculating the intensity changes within specified in-
tensity window at the cord–CSF boundary. The accuracy of BSI method
depends on the chosen intensity window. Any intensity transitions that lie
outside the window do not contribute to the BSI, resulting in an underesti-
mation. Brain BSI was reported to underestimate around 0.71% of simulated

60



3.3. Discussion

scaling atrophy in Boyes et al.’s study [18], and Camara et al. showed that
brain BSI consistently underestimated atrophy by around 18% especially at
higher level of atrophy on a cohort of realistic simulated images with known
amounts of atrophy [20]. The caudate BSI also had a tendency to under-
report change relative to the manual measures [49]. In our experiments, BSI
underestimated the simulated scaling atrophy on the simulation data set and
also underestimated the real cord atrophy on the MS patient data set, which
can be probably explained by the limitation of the intensity window in BSI
method. While this underestimate is significant, it is understood to be linear
and does not affect the sensitivity of BSI results to differentiate AD subjects
and healthy controls [18]. As a comparison group of control subjects with
serial MR scans was not available in the MS patient data set, we do not
know whether the underestimate of cord BSI would affect its sensitivity to
differentiate the control and MS patient group.

The intensity mean and SD estimated on the limited samples of the cord
voxels and CSF voxels (around 85 cord voxels and 35 CSF voxels on the
axial slice of MR images with a spatial resolution of 1 mm), which are used
to decide the intensity window, are easily affected by the noise or artifacts,
resulting in miscalculation of cord BSI. While the effect of noise and artifacts
also exists in brain BSI, it is likely to be cancelled out and not significant,
because the whole brain region is bigger containing more voxels than the cord
and the means and SDs estimated on a larger sample are more reliable. Fur-
thermore, as the cord region we are examining is so small, any miscalculation
in cord BSI will disproportionally affect the final result. Despite the fact that
BSI has been successfully used to measure atrophy of small structures inside
the brain like caudate nucleus and hippocampus, the mean (SD) of annual
atrophy rate computed by BSI is 4.63(2.78)% for hippocampus volume of 147
patients with AD in Leung et al.’s study [63] and 2.90(1.60)% for caudate
nucleus volume of 16 patients with Huntington’s disease in Hobbs et al.’s
study [49], which are both larger than the magnitude of dehydration effect
(-0.65%) and two-year cord atrophy of SPMS patients (-2.13% to -2.53%)
in our experiments. Moreover, the change quantified by BSI brought by
common image non-idealities like image noise and contrast difference would
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possibly exceed the disease effect of MS. Preboske et al. [85] pointed that
the magnitudes of the error using BSI in measures of longitudinal brain at-
rophy that can result from commonly encountered image non-idealities can
significantly exceed the disease effect which range from 1% to 2.78% per year
for brain atrophy in AD.

To summarize, the precision and sensitivity of cord BSI on MR scans
with a spatial resolution of 1 mm are limited due to these conditions. MR
images with a spatial resolution less than 1 mm can probably overcome these
limitations because there would be more voxels over the cord region providing
more samples to estimate the mean and SD of the cord and CSF intensities.
The effect of image noise and other image non-idealities on the cord BSI
result would be lessened, which would improve the precision of cord BSI.
MR scans with higher resolution are suggested for further studies using BSI
in longitudinal cord atrophy measurement.

3.3.2 Jacobian Integration

The technique JI uses the Jacobian determinant values of deformation field
obtained from deformable registration over the cord region to give an average
estimate of cord change rate over time. The accuracy of JI depends on the
deformable registration algorithm applied.

The deformation field for the small cord region obtained from the non-
linear registration algorithm should be both plausible and smooth for the
Jacobian determinants to yield meaningful results. On one hand, we are
seeking to obtain a plausible registration to optimally align the images by
maximizing the similarity measure. On the other hand, we need to regu-
larize the registration results to provide robust and meaningful measures of
anatomical changes, because the statistical power of studies using JI to quan-
tify anatomical changes largely depends on the smoothness of the Jacobian
determinant maps associated with the deformation [40, 68].

We chose the symmetric log-domain diffeomorphic demons algorithm as
implemented in ITK for our cord deformable registration application because
of its demonstrated theoretical advantages [104] and practical efficiency. The
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symmetric log-domain diffeomorphic algorithm optimizes the displacement
field using an efficient second-order minimization framework and provides
diffeomorphic transformations that are smooth in terms of Jacobian deter-
minants. Thanks to the open-source implementation of this algorithm [30],
we can practically modify and debug its source code. In addition, the relative
ease for us to find the optimal parameters, compared to another symmetric
deformable registration algorithm SyN [8], is another practical advantage.
Choosing a right combination of parameters for deformable registration is
always an application-dependent problem. In the case of symmetric log-
domain diffeomorphic demons, the most important parameter to be tuned is
the sigma σ of the Gaussian kernel for regularization. We evaluated the JI
results on the simulation data set with scaling atrophy over a range of σ val-
ues (between no regularization at all and σ = 2.0 with an interval of 0.2) and
chose the one (σ = 1.0) which gave the lowest errors to be the parameter used
in our experiments. Meanwhile, we used the change in mean square error
merit values suggested by Peroni et al. [84] instead of the predefined itera-
tion numbers in the original implementation to be the stopping criterion and
the cord deformable registration in our experiments actually converged after
no more than 10 iterations in most cases. On the contrary, there are more
parameters to be tuned using SyN beside the smoothing sigma for the Gaus-
sian kernel, like the weights for the mean square error and cross-correlation
similarity metrics, the gradient step size, the time step for integration. It is
hard to find the optimal parameters using SyN for our cord application and
different parameter settings ended up with very different JI results.

The atrophy rates provided by JI were more accurate and less variable
than those from the two segmentation-based methods on both simulation
data sets with scaling. However, on the hydration data set and MS patient
data set, JI results did not demonstrate to be superior in terms of sensitivity
and precision, which is probably due to the inherent limitation of spine
MRI images used in our experiments. The spinal cord is composed of white
matter and grey matter. On MR images used in our experiments, which were
T1-weighted images with a spatial resolution of 1 mm, these two internal
structures are not differentiable, making it impossible for the deformable
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registration algorithm to find structural meaningful correspondence inside
the cord boundary. JI performed well on the simulation data sets because
there are good intensity correspondences between the baseline and repeat
images which were created from the same control scan. The reduced intensity
correspondence over the cord region on the MR images in the hydration data
set and MS patient data set resulted in the limited sensitivity to detect real
cord atrophy using JI. Another reason that may underlie the underestimation
of the cord atrophy on the MS patient data set could be the inclusion of the
partial volume voxels in the region of interest to be integrated.

The fact that JI results critically rely on deformable registration empha-
sizes that we can not directly compare atrophy rates computed using different
deformable registration methods. As shown in Camara et al.’s paper [20], JI
using two different deformable registration algorithms (free-form deformable
registration vs. fluid registration) to quantify realistic simulated atrophy
in multiple regions of brain yielded significantly different results. In our
attempt using SyN [8] as the deformation registration algorithm in our ex-
periments, JI results detected significantly larger magnitude cord atrophy on
the MS patient data set with mean (SD) of atrophy rate to be -3.03(3.72)%
(one-tailed Wilcoxon test p = 0.006), and the measurements significantly
correlated with the measurements using Tench method (Spearman’s corre-
lation coefficient r = 0.61, p = 0.02). However, the JI results using SyN
did not show any improvement in measurement variance and also they did
not show any improvement in measurement accuracy on the simulation data
sets.

To summarize, the standard resolution of the MR images used in our
experiments accounts for the limited sensitivity of the JI technique to quan-
tify cord atrophy. Future cord atrophy studies using JI are suggested to
be performed on MR images with higher resolution that are able to dif-
ferentiate the GM and WM inside the cord. Additional validation of the
non-linear registration algorithm should be performed, and parameters for
the chosen deformable registration algorithm should be carefully selected to
obtain meaningful JI results. Moreover, although we used a 0.5 probability
threshold on the resampled baseline cord segmentation to create the binary
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baseline cord mask as the region of interest within which Jacobian determi-
nants are integrated, other probability thresholds should be investigated, as
misclassified partial volume voxels will increase measurement errors.

3.3.3 Scale Factor from 3-DoF Registration

The technique SF uses the scale factor obtained from the 3-DoF constrained
registration (2 translation tx and ty, and 1 scaling factor scalexy), where we
constrain uniform scale factor scalexy on x and y axes, to measure the global
change in cord size. The accuracy of the cord atrophy measurement using
SF depends on the scale factor obtained from optimization of the 3-DoF
constrained registration.

In our experiments, SF achieved very accurate results on the simula-
tion data set with scaling atrophy because the simulated atrophy generated
was global scaling change and 3-DoF constrained registration measures the
global change in cord size. On the simulation data set with rigid trans-
formation and scaling atrophy, SF achieved more accurate results than the
two segmentation-based methods, with smaller mean errors and smaller vari-
ance. On the dehydration scan pairs, SF was able to detect a mean decrease
of 0.34% in cord volume with one-tailed Wilcoxon rank test p value of 0.12.
On the MS patient data set, SF detected significant cord atrophy over two
years with a mean atrophy rate of 1.45%, and the measurements of SF were
significantly correlated with the measurements of Tench method with a sys-
tematic underestimation.

The underestimation in SF results can be explained by the uniform scale
factor scalexy on the x and y axes in the 3-DoF transformation. SF assumes
that the cord changes uniformly on the x and y axes, which might not be
true in real scenarios. Imposing a constraint of an equal scale change in the
x and y dimensions regularized the optimization process, thereby reducing
measurement variance; however, it also reduced sensitivity of this method,
thus resulting in the underestimation. In addition, the interpolation done
to resample the input images at each iteration also introduced artifacts in
the merit function either by generating many local optima or by shifting
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the global optimum [3]. These artifacts consequently increase the chance of
registration converging to a wrong minimum, thereby producing inaccurate
registration results.

The limited resolution of MR images used in our experiments also caused
the limited sensitivity of SF. On T1 weighted MR images with a spatial res-
olution of 1 mm, the intensities inside the cord boundary are fuzzy because
of the non-differentiable intensities of grey matter and white matter. The
mean square error merit function which is computed over the small cord
region (less than 100 voxels on each slice) is easily to be affected by image
noise and artifacts, and interpolation artifacts. Thus, the optimization of
the 3-DoF constrained registration is likely to converge to an undesirable
minimum, degrading the sensitivity. However, on MR images with higher
spatial resolution, there are more voxels over the partial volume region ex-
plicitly capturing the tissue loss and also the cord region inside the cord
boundary would have good soft tissue contrast of the grey matter and white
matter, providing better intensity correspondence for the registration. The
merit function computed from a larger number of voxels would be robust to
image noise and artifacts, and the negative effect of interpolation artifacts
would be lessened. The optimization of the 3-DoF constrained registration
would yield more accuracy estimation of scale change.

In summary, SF generated small measurement variance in longitudinal
cord atrophy measurement but at the cost of lower sensitivity. Although
SF tends to underestimate atrophy, we do not know whether this underesti-
mation will affect its sensitivity in separating MS patient group and control
group, since a comparison control group is not available in the MS patient
data set. Experiments on MS patients with a comparison control group and
larger sample sizes are suggested for future study to investigate longitudinal
cord atrophy measurement using SF. Future studies using SF are recom-
mended to be performed on high resolution MR images with resolution less
than 1 mm in order to improve the sensitivity.
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Chapter 4

Conclusion

4.1 Summary

We investigated the spinal cord atrophy measurement on MRI from two as-
pects. Firstly, change in water content due to hydration status affects the
cord CSA measurement on MRI, whose signals are mainly derived from wa-
ter. We conducted the experiment to assess the dehydration effect on cord
CSA measurement. We designed the dehydration and rehydration protocol
and collected the MR scans from ten healthy subjects at four time points.
Two established cord CSA measurement methods were employed to measure
the cord CSA on all the MR scans. Statistical analyses of the percentage
change in CSA from baseline time point to each subsequent time point were
performed to assess the significance of these changes to determine the de-
hydration effect. Results from the two methods agree well and we have
observed a decrease in the cervical cord CSA by 0.65% after solid and liquid
fasting for an overnight period that would not be considered unusual in rou-
tine research or clinical settings involving MRI. Our findings lend evidence
that change in water content due to hydration status affects the spinal cord
CSA measurement and should be considered a source of variability in clinical
studies of spinal cord atrophy.

Secondly, registration-based methods were adapted for longitudinal cord
atrophy measurement for the first time. Three registration-based methods
(boundary shift integral, Jacobian integration and scale factor obtained from
3-DoF constrained registration), were implemented to measure the change
in spinal cord volume on rigid registered serial MR images. These three
methods were evaluated on two data sets with simulated atrophy, on the
hydration data set with dehydration effect, and on an MS patient data set
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with cord atrophy over a two-year interval. Their results were compared to
the results obtained by two segmentation-based methods, which are currently
utilized as standard approaches in spinal cord atrophy studies in MS.

Our experiments showed that registration-based methods reduce the mea-
surement variance with smaller standard deviations of their measurements
on all the data sets over the two segmentation-based methods. However,
they were not sensitive enough to detect the dehydration effect on the dehy-
drated scan pairs and also detected a reduced magnitude of cord atrophy on
the MS patient data set. We argue that their results with limited sensitivity
are possibly due to the limited spatial resolution of 1 mm of MR scans in
our experiment and the inherently small size of the cord. Registration-based
methods estimate the change in cord size by assessing the intensity differ-
ences between corresponding voxels using registration with different levels
of regularization. In all three methods examined, regardless of whether the
registration is rigid registration (used in BSI), deformable registration (used
in JI) and 3-DoF constrained registration (used in SF), the intensity differ-
ences of corresponding voxels over the cord region between the baseline and
follow-up images were the fundamental information used in all three meth-
ods explored. However, on MR images used in our experiments, which were
T1-weighted images with a spatial resolution of 1 mm, the cord is bounded
to a region size of less than 100 voxels on each axial slice and lacks internal
contrast between grey matter and white matter. The intensity window in
BSI, which is determined by the intensity mean and standard deviation of
the cord and surrounding CSF, is easily affected by image noise and artifacts,
resulting in underestimation of cord BSI. The mean square error merit func-
tion in the deformable registration (used in JI) and constrained registration
(used in SF) evaluated over the cord region with poor intensity correspon-
dence and a limited number of voxels, is very sensitive to artifacts introduced
by image noise and interpolation done to resample the input images at each
iteration. These artifacts consequently generate many local optima or change
the global optimum, increasing the chance of registration converging to an
undesirable minimum and thereby resulting in the limited sensitivity.

Registration-based methods reduced the measurement variance by im-
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posing different levels of regularization in registration but at the cost of less
sensitivity. As the cord atrophy in MS is a slow process with an annual
atrophy of around 1.6% in SPMS patients reported in previous literature,
the registration-based methods applied on MR images with a spatial resolu-
tion of 1 mm are not able to meet the precision and sensitivity requirements
for longitudinal spinal cord atrophy measurement. High resolution MR scans
with a spatial resolution less than 1 mm are required to conduct further stud-
ies on spinal cord atrophy measurement using the three registration-based
methods proposed.

4.2 Future work

The results presented in the dehydration study provide support for our hy-
pothesis that change in water content does have a significant effect on the
CSA measurement on MRI. However, there are limitations in our experiment
and further investigation will improve our understanding of the effect of wa-
ter content to the cord measurement on MRI. In future work, brain scans can
be collected along with the spine scans to verify whether similar magnitude
of change can be expected in both structures after dehydration and provide
further information on the relationship between the dehydration effect on the
MRI measurements of brain volume and cord volume. Our current studies
use conventional T1 weighted MR images with a resolution of 1 mm. MR
scans acquired using phase-sensitive inversion recovery (PSIR) imaging can
provide good grey matter and white matter contrast over the cord region
and have been used to investigate the spinal cord grey matter atrophy in MS
[83, 95]. It would be interesting to investigate the dehydration effect on the
volume of spinal cord white matter and spinal cord grey matter using PSIR
scans.

In future studies investigating registration-based methods for longitudi-
nal cord atrophy measurement, MR images with a spatial resolution below
1 mm, and which are able to differentiate the white matter and grey matter
over the cord region, such as PSIR scans [54], are suggested to be collected
and used to evaluate the precision and sensitivity of registration-based meth-
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ods. A larger sample size of MS patients and a comparison control group are
recommended to examine the sensitivity of the registration-based methods
in separating the patient and healthy groups. In addition, automatic and
accurate segmentation of the cord should be a direction to explore in the
future. Deformable segmentation algorithms based on cord atlas can be a
possible way to provide an accurate and automatic cord segmentation for
cord atrophy analysis [27].
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