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Abstract

The optically pumped semiconductor laser (OPSL) offers several advantages as a laser source for

precision spectroscopy. The semiconductor gain bandwidth allows an OPSL to run continuous wave

(CW) between 920 - 1154 nm and with a free running linewidth 500 kHz. High powers have been

observed in OPSL, as high as 70 W. Paired with doubling crystals the wavelength range can be

extended down to the ultraviolet (UV) with high power. This research presents an OPSL operating

at 972 nm at 1.7 W sequentially doubled down twice to a wavelength of 243 nm at 150 mW. The

linewidth is reduced by locking one OPSL to a Fabry-Poret stabilization cavity and then the relative

linewidth was measured between two OPSL’s locked together. The linewidth is determined to be

87 kHz, dominated mostly by technical noise. This laser is set to be used for cryogenic hydrogen

spectroscopy and precision measurements of the Lamor precessional frequency of 129Xe when it is

used as a comagnetometer for measuring the electrical dipole moment (EDM) of the neutron.
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Chapter 2 is based on the work of Dr. Yushi Kaneda at the University of Arizona. He is responsible

for the construction of the OPSL source and the original design of the second harmonic generation
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Chapter 1

Introduction

This chapter presents the introduction and motivation of the development of a continuous wave (CW)

high powered, narrow linewidth (< 1 MHz) optically pumped semiconductor laser (OPSL) for

second harmonic generation (SHG). The goal is to generate high power ultraviolet (UV) light for

the use in precision spectroscopy. Sections 1.1.1 and 1.1.2 discuss the current experimental projects

that motivate the work presented. This laser source has the potential to impact both the hydrogen

spectroscopy and Ultra Cold Neutron (UCN) experiments, which both require a two photon transition

in the UV. The continual development of this type of laser at new wavelengths will also pose an

impact the greater scope of atomic and laser research. Section 1.2 will then present the OPSL source

as the means for generating high powered infrared (IR) light, compared to other available sources.

The OPSL is then paired with two enhancement cavities to produce SHG to achieve a high efficiency

harmonics down to the UV as compared to the single-pass method.

1.1 Motivation
The general motivation to this project is to perform precision spectroscopy. Spectroscopy is the

study of the atomic spectra produced when matter interacts with or emits electromagnetic radiation.

In other words, the process by which an atom changes energy levels by absorption or emission of

a photon. Energy transitions in atoms can be probed by electromagnetic radiation, or laser light.

There are two spectroscopy experiments that motivate the research presented in this thesis. The

first, is precision spectroscopy of the fundamental hydrogen atom. Hydrogen was first discovered in

1766 by Henry Cavendish, who described it as “inflammable air from metals” [4]. Since then it has

been a major focus for study. This atom is not only the most fundamental atom, composed of one

electron and one proton, but also has a simple energy transition. This transition consists of neither

hyperfine splitting or spin states and is known as the 1s to 2s transition, as shown in Fig. 1.1. The

required photon wavelength (or energy) is either a single 121 nm photon or two photons at 243 nm.

248 years after the atomic discovery, the energy required for this transition is still being measured in

the effort to determine even more fundamental physics, the radius of the proton [21] . Section 1.1.1

will discuss the current efforts to refining the 1s to 2s measurement.
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Scientific efforts towards reducing the uncertainties on fundamental constants stretch from the

radius of the proton [21] to the electrical dipole moment (EDM) of the neutron [16]. Measurements

of the EDM of the neutron have been studied since the 1950’s [32]. The current experimental meth-

ods for determining the neutron EDM uses 199Hg, whereas the new approach will use both 199Hg

and and 129Xe. These isotopes are used to reduce systematic uncertainties from long term drifts and

inhomogeneities in the applied magnetic field from the measurement of the neutron EDM. In terms

of the spectroscopy performed, the 129Xe is excited from the ground state up to the 6p state requiring

an energy of two photons at 252 nm. Unlike the hydrogen spectroscopy experiment, the goal is not

to determine the exact transitional energy, but rather to simply determine how many 129Xe atoms

are in a one of the two ground states. The energy levels of 129Xe have hyperfine splitting and two

ground states, with opposite spins. A schematic of the energy levels of interest is shown in Fig. 1.3b.

Further discussion of the UCN experiment and spectroscopy are described in Section 1.1.2

1.1.1 Hydrogen Spectroscopy

Currently, the 1s to 2s transition in hydrogen, shown in the Fig. 1.1.1, is known to within an uncer-

tainty of 10−15 Hz as published by Hänsch’s group in 2013 [21]. This is the most precise measure-

ment to date. The efforts to improve this measurement and minimize the uncertainty are ongoing.

There are several ways to do so, including improving the hydrogen source and the laser used to

probe the transition. Effects from Doppler broadening are minimized for a colder hydrogen source,

thus increasing the accuracy of the energy measurement. Another way to improve this measurement

is with the laser source. By decreasing the linewidth of the laser source and increasing the intensity

will improve measurement statistics. The energy transition can be achieved with two photons at 243

nm. An increase is laser intensity will proportionally increase the transition rate. The intensity can

be increased by increasing the power of the laser or decreasing the beam size. The linewidth of the

laser, which can also be thought of the certainty of wavelength, will also contribute to the uncertainty

in the transition measurement. The more narrow the linewidth, the more certain the wavelength is

to be the expected value and thus minimizing the uncertainty in the energy transition measurements.

More about the linewidth can be found in Chapter 5, where the linewidth of the OPSL is defined and

measured. This OPSL system combined with the cold hydrogen efforts by Dr. Lenz Cesar at the

Federal University of Rio de Janeiro, has the potential to contribute to the precision measurements

of the 1s to 2s transition of hydrogen [26].

1.1.2 Ultra Cold Neutron

The primary goal of the UCN collaboration currently under construction at TRIUMF, the Canadian

national laboratory for particle and nuclear physics, is to measure the EDM of the neutron. In order

for an elementary particle, like a neutron, to possess an EDM there must be a violation of both parity

(P) and time inversion (T) [24]. Although several theories suggest the neutron has a non-zero EDM,

the predictions vary significantly over orders of magnitude [11]. Since the 1950’s measurements of

the neutron EDM have reduced the upper limit on the value by six orders of magnitude, reaching a

2



243 nm

243 nm

1s

2s

Figure 1.1: Schematic of the 1s to 2s transition of Hydrogen. This transition requires two 243
nm photons to excite.

level of 10−26 in 2006 [3]. One of the biggest sources of uncertainty still comes from systematic

effects. To reduce these uncertainties from effects like a non-uniform field and slow drifts in the

field over time, a source with a well measured EDM is used. The previous experiments by Baker et

al. performed the experiment with Mercury, specifically 199Hg [3], which has an EDM with upper

bound of |d(199Hg)| < 3.1 x 10−29e cm [14]. The use of the additional atomic source is given the

name, co-magnetometer. The use of a co-magnetometer allows the magnetic field in the system to

be calibrated very accurately for a better determination of the neutron EDM by a significant reduction

of the uncertainty in the magnetic field. A complete description of this experiment using 199Hg can

be found in the 2013 publication by Baker et al. [3].

The new project proposed by the UCN collaboration will use 129Xe and 199Hg as an atomic

dual co-magnetometer. 129Xe offers a higher vapour pressure than 199Hg and a lower capture cross

section, meaning more 129Xe can be present in the trap while still avoiding collisions with the

neutrons. Using both atomic species as a dual co-magnetometer allows a cross check of geometric

phase effect (GPE), due to the opposite sign of the magnetic moments. This reduces some significant

systematic errors in the EDM measurements. Conveniently, both the 199Hg and 129Xe require a UV

laser source within 1.3 nm of each other. The same laser source can be used with wavelength

adjustments that are within the tuning range of the OPSL laser.

This first experiment to be done is to precisely measure the EDM of 129Xe using 199Hg as a mag-

netometer. Then the next experiment will be to measure the EDM of the neutron using both 129Xe

and 199Hg as a dual co-magnetometer. In either case, the general process is the same and detailed

by Baker et al. [3], with a short description here. The 129Xe and 199Hg are spin polarized by spin

exchange optical pumping, while the neutrons are polarized by passing them through a magnetized

polarizing foil. The atoms and neutrons are then sent into the detection chamber, where a uniform

magnetic and electric field are applied, B0 and E0, such that the spins are aligned antiparallel to B0.

Since the goal of the experiment is to measure the EDM, the strength of the electric field is very

3



high compared to the magnetic field, where B0 is on the order of 1 µT. A resonant oscillating field,

B1 is applied perpendicular to B0. The frequency of B1 is such that it is at the resonant frequency

of either 129Xe, 199Hg or the neutrons. B1 is applied with a strength and time-duration such that

the spin of the atoms or neutrons will undergo a π/2 phase shift and become perpendicular to B0.

The measurements of the atomic sources and neutrons does not occur simultaneously. Rather the

experiment alternates between the neutrons and atomic sources and continues for up to 26 hours [3].

The process of the π/2 phase shift that the atoms and neutrons undergo is similar. Fig. 1.2

shows how the spin of either the atoms or neutrons change from a spin-up state, |+ z >, to shifting

by π/2, to a superposition of the up and down states, |+ z > and | − z >. Fig. 1.2a is the Bloch

sphere, where the quantization axis here is the z-axis. When B1 pulse is applied to the atomic, or

neutron, source along the x− y plane, the atomic spin will rotate and spiral down by θ = π/2. The

full θ = π/2 occurs when the B1 pulse is at the precession resonance of the atomic source. From

here the spin will continue to precess around angle φ , in a superposition between states |± x > and

|± y >. The atoms are left here to continue to precess, while the neutrons will undergo another B1

pulse to add an additional π/2 shift. The resulting spin state of the neutrons is measured directly

by passing them through another foil. The remaining discussion here will only focus on the atomic

sources and leave the neutron discussion to be read in Baker et al. [3].

It is worth writing out the wave function for the spin state after the π/2 shift following Saku-

rai [27]. To start, the initial spin state in the z-basis is given as,

|ψ >=
1√
2
(|+ z >+|− z >). (1.1)

The atoms experience a magnetic field in the z direction, giving a Hamiltonian

H =−
( e

mec

)
S·B, (1.2)

where the magnetic moment is eh̄/2mec and S is the spin. The energy eigenvalues can then be

written as,

E± =∓ eh̄B
2mec

. (1.3)

Writing the time dependent form of the wave function, Eq. 1.1 with energy eigenvalues, Eq. 1.3,

|ψ(t)>=
1√
2
(eiE+t |+ z >+eiE−t |− z >). (1.4)

It is simple to factor out one of the energy components, providing an overall shift to the entire

function and leaving a term with the difference in energies. This term is defined as the precession

frequency [3], ωp, where ωp = |e|B/mec [27]. Now, Eq. 1.4 becomes,

|ψ(t)>=
eiE+t
√

2
(|+ z >+eiωpt |− z >). (1.5)
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Figure 1.2: Bloch sphere and π/2 rotation of the atomic spin state. (a) Shows a schematic of
the Bloch sphere which is a representation of the axis and angles of possible quantum
spin states, | ± z >, | ± x > and | ± y >, and every superposition in between. (b) The
representation of the rotation of the spin state, from spin up in (i) to a π/2 rotation in (ii)
to (iii) using a pulsed magnetic field at the precession frequency of the particle.

After the atoms have gone through a π/2 shift, they are rotating in the x− y plane. Thus, Eq. 1.5

can be written in the x-basis, where |± z >= (|+ x >±|− x >)/
√

2. Eq. 1.5 becomes,

|ψ(t)>=
1
2

[
(1+ eiωpt)|+ x >+(1− eiωpt)|− x >

]
(1.6)

and simples further to,

|ψ(t)>= cos
(

ωp

2
t
)
|+ x >−isin

(
ωp

2
t
)
|− x > . (1.7)

At this point, a UV laser is used to probe the atoms along the x-axis to measure their precession

frequency. Both 129Xe and 199Hg have two ground states, as shown in Fig. 1.3. As the atoms are

spinning, they will interact with the laser light as when they appear to be in the -1/2 spin state

and will get excited to a higher energy state. At a rotation of π later the atoms will appear in the

+1/2 spin state relative to the photons, and therefore the photons are invisible. This is the same as

applying a projection operator, P̂ = |− x ><−x|, to Eq. 1.7 and taking the expectation value,

|< ψ(t)|P̂|ψ(t)> |2 = sin2
(

ωp

2
t
)
. (1.8)

Only the sine term remains, oscillating at the precession frequency, ωp between 0 and 1. The |+x >

state is known as the dark state because there is no available transition for the atoms to be excited

into by the available photons. In both Fig. 1.3a and 1.3b the atoms from -1/2 state will absorb the

photons, and in the 1/2 state, or when the atoms have precessed by φ = π rotation, they are in a

5



-3/2 -1/2

-1/2 1/2

3/2

-1/2 1/2

F = 1/2

F =3/2

F = 1/2

X

Dark State

253.7 nm

6s2 (1S0)

6s6p (3P1)

hyperfine structure

1/2

(a)

-3/2

-3/2-5/2 -1/2

-1/2 1/2 3/2

3/2 5/2

-1/2 1/2

F = 3/2

F = 5/2

F = 1/2

5p5(2P3/2)6s

X

Dark State

252.4 nm x2

823.4 nm

895.5 nm

146.9 nm

5p6(1S0)

5p5(2P3/2)6p

hyperfine structure

two-photon selection  

ΔMF=+2 

(circularly polarized)

1/2

(b)

Figure 1.3: (a) 199Hg transition scheme and (b) 129Xe transition scheme used as the co-
magnetometer in the UCN experiment.

dark state and absorb nothing. From this absorption, the precession frequency is measured. For the

case of the 129Xe, the excited atoms decay down in two steps, where in the first step they emit an

IR photon, which is then easily detected to determine the precession frequency. Any changes in the

magnetic field will also cause changes in the precession frequency. By monitoring the precession

frequency of the atoms, 129Xe and 199Hg, these small field changes can be detected. The measured

fluctuations and drifts in the field are then applied to the neutron measurements to remove the

systematic errors. Thus reducing the uncertainty from previous measurements of the neutron EDM.

Similar to the hydrogen experiment, the energy transition for 129Xe is a two photon transition.

The higher power in the UV, gives a higher intensity which leads to a higher interaction rate. Dif-

ferent from the hydrogen experiment, the linewidth is not as crucial. The linewidth just needs to be

narrow enough to ensure the correct transition is made. The next closest transition for the 129Xe is

2 GHz away, so as long as the linewidth is less than 2 GHz, the laser is sufficient.

1.2 Ultraviolet Laser
Described by both Sections 1.1.1 and 1.1.2 a high powered, meaning > 100 mW, CW UV laser with

a narrow linewidth, <1 MHz is required. There are no commercially available UV laser sources,

so the light must be generated in some way by laser sources at a different wavelength. One option

would be to use nonlinear optics and start with a visible, 486 nm or 505 nm laser, and double the

wavelength down (the frequency up) to the UV. However, this is also not commercially available.

IR lasers are commercially available and can be frequency doubled twice down to the UV part of the

spectrum. Toptica c© has developed such a laser that includes the two SHG stages, converting IR to

UV light. The ratings for this laser system, however, are specified at a UV power of < 100mW and
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Figure 1.4: Block diagram to show the IR laser and two enhancement cavities that produce
SHG at each stage. The laser source is 972 nm and frequency doubled to 486 nm at the
first enhancement cavity. Then the light is frequency doubled again to 243 nm using a
second enhancement cavity.

only a guaranteed linewidth of < 1 MHz.

There is a new type of IR laser available, called an optically pumped semiconductor laser (OPSL).

This laser has only been available since the turn of the century. A more complete description of the

laser is detailed in Section 2.1. This laser can produce high CW powers in the IR, up to 3 W, and has

the potential to produce a narrow linewidth, < 1 kHz, beam. To convert the IR into UV light, there

needs to be two stages of SHG.

In this experiment it is important to get the highest efficiency for the SHG. If the efficiency of

the single pass is only ∼ 10−4 W−1 [8], then two stages would produce an overall efficiency of

∼ 0.01% efficiency. The single pass efficiency varies widely depending on the crystal and the input

power, as the conversion efficiency has a nonlinear relationship to the optical intensity inside the

doubling element. It is clear, that single pass will not provide the desired power for these precision

spectroscopy experiments. The future for this OPSL system is to provide > 100 mW of UV light.

For single-pass, that would require an IR laser of 1,000 W. By placing the nonlinear crystals in an

enhancement cavity the light can build up and provide higher input power into the crystal. Since the

power through the crystal is 50-60 times greater than the original laser power, and efficiency of the

crystals increases quadratically with increased input power, the overall efficiency is much higher.

A block diagram in Fig. 1.4 shows the laser and two stages of SHG in two enhancement cavity.

The total efficiency achieved in this experiment from IR to UV was ∼ 11%. These experimental

results are shown in Section 4.2, where 1.4 W of 972 nm is converted to 150 mW of 243 nm. Thus,

the UV required for the precision spectroscopy experiments of hydrogen and xenon is able to reach

sufficient power.

This OPSL combined with two stages of nonlinear optics inside enhancement cavities to produce

SHG has proved to produce > 100 mW in the UV. Chapter 2 will outline the experimental setup

involving the OPSL and SHG enhancement cavities to produce 150 mW of 243 nm light.

7



Chapter 2

Experimental Method

This chapter will examine the entire experimental setup used to generate UV light from the IR OPSL.

A schematic of the setup can be seen in Fig. 2.1. Each section of this chapter will focus on one part

of the experimental setup. Starting with the laser source in Section 2.1, where a brief description

of the OPSL technology is described that makes this laser different from all other laser sources. An

overview of the enhancement cavities where the SHG takes place is outlined in Section 2.2. Finally,

the optical components and the locking system used to lock each cavity to the laser frequency are

presented in Section 2.3.

OPSL 

972 nm CW 

1.7Watts

LBO ring cavity

!

243 nm , 145 mW

486 nm , 590 mW

972 nm , 1.7 W

Pump

Feedback beam 

Feedback beam

Beam out

LBO

BBO

PZT

PZT

Cavity 

Locking 

System

Cavity 

Locking 

SystemChip
PZT

9 MHz 14 MHz

1.4 W

Figure 2.1: Schematic of experimental setup, including the OPSL, two doubling enhancement
cavities and locking systems.
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Figure 2.2: Plot to show all of the currently developed OPSLs at their various wavelengths and
powers. Reproduced with permission from Dr. Yushi Kaneda [18].

2.1 The Optically Pumped Semiconductor Laser
The first and most important part of the experimental setup is the laser itself. This type of laser is

commercially available from Coherent c©, where a large range of wavelengths and powers, from 920

nm to 1154 nm in the IR range are offered. There are even doubled or tripled frequencies through

second and third harmonic generation in a range 355 nm to 639 nm. These ranges are not continuous

and there is not an available OPSL at 972 nm and thus, neither at 486 nm. The OPSL used in this

experiment was designed and built by Dr. Yushi Kaneda from the University of Arizona [18] and

operates at 972 nm with a power of 1.7 W. This OPSL combined with the first stage of SHG is able

to produce up to 600mW of 486 nm light with a linewidth of ∼ 123 kHz. The results of the power

shown in Section 3.2.2 and the linewidth in Section 5.3.5.

The technology for the OPSL is new and still being developed to provide more available wave-

lengths and powers. This type of laser was not even a commercially available product from Coherent c©
until 2001. Similar to a diode laser, an OPSL uses a semiconductor as the gain medium. However,

instead of using current to invert the medium, as OPSL employs an optical pump. The semicon-

ductor chip is made up of layers of semiconductor materials, Gallium Arsenide (GaAs) and Indium

Gallium Arsenide (InGaAs), as shown in Fig. 2.4b [34]. When this stack is optically pumped with

a diode laser, 808 nm, the photons released are in the range of 972 nm. The wavelength of an OPSL

is determined by the quantum wells of the semiconductor materials of the chip. As more semicon-

ductor materials are developed, the range of wavelengths will also increase. A table of the OPSL’s

that have been produced in the lab are shown in Fig. 2.2, where each point represents an OPSL with

its given power. The OPSL in this experiment is not yet added to this plot, but would add a few new

points, in particular one at 243 nm with 150 mW.

The power the chip is able to produce is controlled by the pumping power [34]. A higher
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Figure 2.3: Plot of the optical pumping power to the output power of the 972 nm OPSL at four
operating temperatures of the semiconductor chip. Reproduced with author’s permis-
sion [18].

pumping power will increase the power in the laser, until the pumping power reaches a threshold.

This is when the pump is too high, which heats up the chip, the power quickly drops off. The chip

can also be cooled with water and thermoelectric cooling (TEC), or also known as a Peltier. Fig. 2.3

shows how decreasing the temperature of the chip, increases the laser power for an also increasing

pump power. Once again, the point where the laser stops lasing can be seen in Fig. 2.3, when the

power drops off for high pumping powers above 20 W. It is also impossible to continuously cool the

chip further down, because the risk of condensation and ice arises.

Each time a new OPSL chip is grown, the chip will emit a range of wavelengths with a power

dependent on the wavelength. An example of this can be seen by Wang et al. [34]. Here the authors

also varying the OPSL chip temperatures to show how the range of wavelengths emitted shifts with

temperature. The central wavelength will have the most power available. If the desired wavelength

is off from the centre wavelength, it is possible to operate the OPSL here, knowing that the possible

power will be compromised. To choose the wavelength of the OPSL from within the range emitted

by the chip at a given chip temperature, there are two filters placed inside the laser cavity. The first

is the birefringent filter placed at Brewster’s angle and the second is the etalon. These filters are

used in tandem to select a single longitudinal mode. A laser without filters will lase over a range

of longitudinal modes, which depends on the net gain bandwidth of the laser. These modes are all

separated by the free spectral range (FSR) of the laser cavity, where FSR is the speed of light divided

by the length of the laser cavity. For a typical semiconductor/diode laser, the two cavity mirrors

are directly attached to either end of the semiconductor chip. This gives a typical cavity length of

100 µm, yielding a FSR of 420 GHz [30]. Usually, as is the case with this experiment, a single

mode laser is desired. The etalon is the most narrow filter and selects one longitudinal mode per

transmission peak of the etalon. However, there are many transmission peaks of the etalon, which

10
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Figure 2.4: Schematic of the OPSL head and close up of the semiconductor chip. (a) Schematic
of the OPSL head. The pump is a diode laser, that optically pumps the semiconductor
chip, or the gain medium. The birefringent filter at Brewster’s angle and the etalon are
filters to select the wavelength of the output and the longitudinal mode. The curved
mirror is the output coupler with an attached PZT to control the length of the cavity. This
OPSL provides 1.7W of CW light at 972 nm. (b) Schematic of the OPSL chip. It is pumped
with the diode laser and emits photons in the IR. The quantum wells are the layers of
Gallium Arsenide (GaAs) and Indium Gallium Arsenide (InGaAs) and the high reflector
material is labeled as DBR and acts as a cavity mirror. This schematic was provided by
Dr. Kaneda [18].

can still result in the laser running multi mode. The addition of the birefringent filter, which has a

broader transition peak compared to the etalon and more narrow than the laser cavity, allows only

one longitudinal mode to emit. By inserting the birefringent filter and etalon inside the laser cavity,

and tuning the transmission peaks such that they are all aligned, it is possible to select just one

longitudinal mode and run the laser single mode [30]. Both the etalon and birefringent filter are

temperature controlled to fine tune the longitudinal mode or wavelength of the laser, by shifting the

alignment of the transmission peaks. A close up schematic of the OPSL can be seen in Fig. 2.4a with

all of the above mentioned components in their relative positions. It can also been seen that the OPSL

cavity is a simple two mirror standing wave cavity. The obvious mirror is the curved output coupler,

where the second mirror is a highly reflective material, called distributed Bragg reflector (DBR),

under the stacked semiconductor materials of the gain medium. The overall structure of the laser is

simple and similar to some other lasers, like the Ti:Sapphire laser, but the technology of the OPSL

chip is the unique component that gives the OPSL a big future in changing laser technology.

The OPSL used in this experiment produces 1.7 W of power at 972 nm. The limit of this power is

due to the semiconductor chip. The desired wavelength of 972 nm is not at the peak of the spectrum

produced by the chip, so the maximum power possible is reduced. From Fig. 2.1 the light from the

laser is sent into an optical enhancement cavity where the light undergoes SHG. The experimental
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setup of these is described in the next section.

2.2 Frequency Doubling Enhancement Cavities
The motivation to develop this laser system is to provide UV light for precision spectroscopy. The

OPSL is an IR laser at 972 nm. Through the use of nonlinear optics the laser light is converted down

to the desired UV light at 243 nm. The process of transforming a fundamental beam into a beam

with half the wavelength, or double the frequency, is called second harmonic generation, SHG.

The first observation of SHG was made by Franken, Hill, Peters, and Weinreich (FHPW) and

published in 1961 [12], where they used a pulsed ruby laser with a crystalline quartz sample. Only

one year later in 1962, phase-matching was discovered [13] and [20], which increased the interaction

length in the crystal allowing for higher conversion efficiencies. The physics of phase-matching is

described in Section 4.1. The introduction of the gas laser in 1963 was the first presentation of

CW SHG [1]. Here 5 x 10−12 W of second harmonic for a 0.7 mW input power, for a maximum

efficiency of 7 x 10−9. Ashkin et al. were able to show that the use of CW laser allowed for easier

optimization of phase-matching the crystal and well as an overall higher efficiency [1]. Only a few

years later in 1966, Ashkin et al. presented results to highlight the stability of SHG in a resonance

cavity external to the laser cavity [2]. That is, to place a nonlinear crystal in an enhancement cavity

that is separate from the laser cavity.

This approach of enhancement cavities around a nonlinear crystal is the approach used in this

experiment to double the frequency of the laser twice, from the IR to the UV. The experimental

setup in Fig. 2.1 shows a schematic of both of the SHG laser cavities. The first enhancement cavity

uses a litium barium octate (LBO) nonlinear crystal for conversation from 972 nm to 486 nm and

the second cavity uses a bicarbonate barium octate (BBO) nonlinear crystal for conversion from 486

nm to 243 nm. The LBO and BBO are part of the borate crystal family, which was not developed

until 1979 [8]. Previous nonlinear crystals did not extend transparency down to the deep UV (below

200 nm) or with high enough nonlinear coefficient, de f f , for SHG. The significance of de f f can be

seen in Section 4.2, where γSH ∝ d2
e f f and γSH is the nonlinear conversion factor. Thus, a higher de f f

gives a higher SHG conversion factor.

In the hunt for funding crystals that could generate light down in the deep-UV, Chen et al. de-

veloped the borate compounds [8]. This compound allows for hundreds of different crystal options.

The BBO was first developed, exhibiting a transparency range down to 185 nm, followed closely by

the development of the LBO, with a transparency range reaching even deeper into the UV. Today,

the LBO and BBO are a very commonly used pair of crystals to convert IR to the UV. The reasons

for choosing the LBO for the first stage of SHG from the IR to visible is due to the phase-matching,

damage threshold and SHG efficiency. The same is true for the BBO and why it is chosen to convert

visible light to the UV [8]. It is from Ashkin et al. work from 1966 and Kozlovsky et al. [19] that

the theory used to evaluate the SHG in the doubling cavities presented is derived in Chapter 4.
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2.3 Optical and Electronic Components
The final components in the experimental setup are the optical mirrors and lenses. These compo-

nents are used in between the laser and enhancement cavities. They are not simply there for aligning

the beam into the cavities, but are special components for ensuring maximum efficiency in the SHG.

Essentially, the beam entering into the optical cavities needs to have the same spatial TEM00 mode

required by the cavities. To do this, lenses are placed along the beam path to focus the beam and

create the desired beam size to match the desired beam size of the cavity. This process is called

mode-matching. A more complete discussion of mode-matching is given in Section 3.2.2.

The experimental setup in Fig. 2.1 also shows the cavity locking systems. There is one for each

of the two SHG cavities. The locking systems use the Pound Drever Hall (PDH) locking scheme [5]

as described fully in Section 3.3. This locking system requires the fundamental laser frequency to

be phase modulated. The modulation is applied through a phase modulator, run at two frequen-

cies, which are combined through a step-up transformer. The modulator, step-up transformer and

modulation frequencies are shown in the Fig. 2.1 at the bottom of the schematic and denoted by, φ .

The next chapters will describe the components and the theory for generating UV light from

IR light through enhancement cavities and SHG. Finally Chapter 5 will separately describe the

experimental setup and results for measuring the linewidth of the OPSL.
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Chapter 3

Enhancement Cavities for Second
Harmonic Generation

This chapter presents the theory and experimental methods for enhancement cavity resonators used

for second harmonic generation, SHG. Two ring cavities, or bow tie cavities, are used in this experi-

ment, each to enhance the power of the input beam entering the crystal and to double the frequency

through SHG by means of the crystal’s nonlinear susceptibility. A full discussion of the SHG from

these enhancement cavities is the focus of Chapter 4. This chapter starts with the basics of enhance-

ment cavities in Section 3.1. This includes an introduction to enhancement cavities and the concepts

of FSR, finesse, and linewidth in Section 3.1.1. Following closely in Section 3.1.2, is the theory of

impedance matching in order to optimize the enhancement of the light inside the cavity. Section 3.2

discusses the experimental method and results for matching the spatial mode of the input beam to

the two enhancement cavities used in this experiment. Finally, the chapter concludes with a dis-

cussion of the locking scheme used to lock the enhancement cavities on resonance with the laser in

Section 3.3. The locking scheme used is known as Pound-Drever-Hall, (PDH).

3.1 Enhancement Cavity Basics
An optical cavity consists of mirrors placed in a specific geometry to reflect the light between the

mirrors. If the position of the mirrors are angled just right and the light is aligned to hit the mirrors at

the correct position, the light will reflect around the cavity, over and over on itself. The electric field

component of the the light after each round trip will add together continuously inside the cavity,

enhancing the overall power of the light. These enhancement cavities are a crucial component to

this experiment. The basic properties of these cavities are described throughout this section.

3.1.1 Cavity Characteristics

There are two main types of optical cavities, a Fabry-Perot and ring cavity. A schematic of both

types can be compared in Fig. 3.1, where both types of cavities are used to enhance the light that
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Figure 3.1: Resonator cavity geometries. (a) Is a two mirror, Fabry-Perot cavity, where the
light gets reflected back and forth between the two mirrors. (b) Is a ring cavity, where
the lights gets propagated around the cavity in one direction. In both (a) and (b), r1 and
t1 are the reflection and transmission field coefficients of the input coupler. rn’s, where n
= 2, 3, etc. are the field reflection coefficients from the other mirrors in the cavity and t
is the field transmission coefficient through the optical component, i.e. nonlinear crystal.

enters into the cavity. To discuss how the light enhances inside the cavity, it is best to consider the

intensity of the light. The input light enters the cavity through one of the mirrors, known as the

input coupler, where some light is transmitted and some is reflected. For the cavity in Fig. 3.1a with

only two mirrors, the field inside the cavity reflects back and forth between the mirrors, causing the

waves to overlap. This means that the field inside the cavity is a superposition of two transverse

waves that results in a standing wave. For the ring cavity in Fig. 3.1b the field inside the cavity

only travels in one direction around the ring. This means that the field simply adds together in the

direction of propagation.

The intensity of light, I is determined by the square of the electric field, E given by,

Ir,c

I0
=

∣∣∣∣Er,c

E0

∣∣∣∣2 (3.1)

where r and c are related to the reflected and circulating intensity, respectively. Both I0 and E0 are

the intensity and field of the input beam. The reflection intensity discussion will be saved for Sec-

tion 3.3, while the circulating intensity is important to define the characteristics of the enhancement

cavities. The circulating intensity can also be written in terms of the optical properties of the cavity

components as well as the phase of the field inside the cavity. The reflectivity’s of the mirrors are

given by r1 for the input coupler and rm for the remaining components in the cavity, where rm = rtott

and rtot is the product of the reflectivity’s of the remaining mirrors. The term t2 = 1− losses, where

the losses are from the other optical component(s) in the cavity, like a nonlinear crystal. The liter-

ature deals with the transmission and reflectivity of mirrors in different ways, but here, r2 + t2 = 1,

where r and t and the electric field reflection and transmission coefficients. After one round trip
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Figure 3.2: Normalized intensity profile of the circulating light inside the cavity for a varying
round trip phase. The full width at half maximum, FWHM, are shown as the width of the
intensity peaks and the spacing between the peaks are labeled as the free spectral range,
FSR. The intensity in the cavity remains low until the round trip phase of the field is zero
and the circulating intensity peaks.

the field with exhibit a phase with respect the the incoming light and denoted as, δ . The total one

directional circulating intensity over the intensity of the input light is given by,

Ic

I0
=

t2
1

(1− r1rm)2 +4r1rmsin2(δ/2)
. (3.2)

The input coupler mirror is defined separately from the rest of the cavity for several reasons. Mainly,

the reflectivity of the input coupler will be lower than the other mirrors in the cavity. This is so light

can enter into the cavity, as well as to satisfy the condition known as impedance matching. This

concept of impedance matching will be further discussed in Section 3.1.2.

A visual representation of the circulating intensity of the light from 3.2 over the round trip phase

is shown in Fig. 3.2. The most obvious observation is the peaks of intensity at specific values of the

phase. This occurs when the cavity is on resonance, or when the phase shift is some integer number

of 2π after one round trip of the light inside the cavity. When the phase is an integer multiple of

2π , there is constructive interference of the electric field components, resulting in a peak of the

circulating intensity. Experimentally, the phase of the field is varied by changing the length of the

cavity, using a PZT attached to one of the cavity mirrors. To experimentally see the peak in power,

it is impossible to measure the power in the cavity, without disturbing the system. Rather, a little

light leaks out of the cavity mirrors, as they at not 100% reflective. This light is monitored on a

photodetector. The leakage will peak in power when the circulating power peaks.

The intensity profiles of the circulating light can provide valuable information about the cavity.

Two cavity characteristics can be determined straight from the transmission signal. In terms of the

length of the cavity, the peaks occur when a whole number of wavelengths fit inside the cavity, so the
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Finesse Free Spectral Range Linewidth
LBO 297 1.29 GHz 4.4 MHz
BBO 265 0.85 GHz 3.2 MHz

Table 3.1: Characterizing values of the two enhancement cavities for SHG.

periodicity is every λ for the ring cavity and every λ/2 for the Fabry-Perot cavity. When the signal

from the photodetector is measured the peaks occur on a time scale, rather than phase or cavity

length. The amount of time it takes the PZT to scan from one resonance to another, or the axial

spacing between cavity modes, is called the free spectral range, FSR. Mathematically, FSR = c
L ,

where c is the speed of light and L is the length of the cavity after one round trip. In practice, FSR

is reported as a frequency. The FSR of a cavity can simply to be changed by changing the length of

the cavity and nothing else. In addition to the FSR, the width of the peaks also contains important

information about the cavity. The FWHM of the peak is used as a metric for the linewidth of the

cavity. These two cavity parameters can be seen in Fig. 3.2, for an arbitrary linewidth.

The FWHM can also be computed mathematically, by using the optical parameters of the cavity,

r1 and rm in this case. The full relationship is given as

FWHM = ∆v1/2 =
2(1− r1rm)√

r1rm
[22]. (3.3)

The definition of FWHM is when the amplitude of the intensity falls to half the intensity. When

computing the FWHM Eq. 3.3 is used, but in practice the FWHM is quoted as a frequency. As

either the reflectivity from the input coupler or other mirrors in the cavity decreases, the FWHM will

become larger, meaning the width of the peaks in Fig. 3.2 will broaden.

When the ratio of the FSR and FWHM is taken, the result is also a physically significant value.

This dimensionless ratio is called the finesse, F. Finesse is widely used to describe an optical cavity,

where high finesse is on the order of 103−104 and low finesse cavities go down as low as 1−10. In

practice, to make a high finesse cavity, the mirrors would have very high reflectivity’s of > 99.99%

with a negligible amount of additional cavity losses. A low finesse cavity usually has lower mirror

reflectivity’s, especially the input coupler, and also would include additional components in the

cavity that add loss, like a nonlinear crystal. From Fig. 3.2, a high finesse cavity would have narrow

peaks that are far apart and a low finesse cavity would have wide peaks that are close together.

Similar to FWHM, finesse can also be defined mathematically by the optical parameters in the

cavity,

F =
FSR
∆v1/2

=
π
√

r1rm

1− r1rm
. (3.4)

A complete set of value for the finesse, FSR, and FWHM determined for the two cavities used in this

experiment are given in Table 3.1. The reflectivity’s of r1 and rtot where measured in the lab and the

excess loss through the nonlinear crystals are taken to be 0.5% for the LBO and 0.3% for the BBO.
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Finally, the last important quantity in an optical cavity is the enhancement, simply given as

the finesse/π for the impedance matched case. This means that for a higher finesse cavity, the

enhancement will be greater. It seems more desirable to have a higher finesse cavity in this case.

However, because the enhancement cavities in this experiment are also creating SHG light from the

fundamental, there are limits to the finesse and enhancement in order to optimize on the SHG. This

will be examined further in Chapter 4.

3.1.2 Impedance Matching

In this section the concept of impedance matching will be discussed in detail. Essentially, impedance

matching means that the loss through the input coupler is equal to the loss from the remaining mirror

and optical component(s) in the cavity, or mathematically speaking, r1 = rm. When a cavity is

perfectly impedance matched the reflection dips from the input coupler will reach zero on resonance

as the phase, δ , between the electric fields in and out of the cavity is zero. The circulating power,

or enhancement, inside the cavity will also be at a maximum. The representation of the circulating

intensity was given in Eq. 3.2, which simplifies to,

Ic

I0
=

t2
1

(1− r1rm)2 , (3.5)

when the δ = 0, 2π, 4π, etc. on resonance.

For a fixed loss in the cavity, rm, and varying reflectivity of the input coupler, r1, Eq. 3.5 produces

Fig. 3.3a. Both optical cavities used in this experiment, containing the LBO and BBO crystals, have

been evaluated separately. The point of highest normalized circulating to input intensity corresponds

to the condition when the cavity is impedance matched. The distinct shape of the curve depends on

rm as can be seen between the LBO and BBO. The rm value is smaller for the BBO, meaning there

is more loss within this cavity. On both curves when r1 < rm the cavity intensity gradually rises,

called under-matching, and fall off very quickly for r1 > rm, over-matching. The vertical dashed

lines represent the input coupler values used for each cavity. In this case, the cavities are considered

to both be under-matched. Experimentally there are reasons for under-matching. When mirrors are

coated to reflect certain wavelengths, there is some uncertainty in their reflectivity, up to ±0.5%.

Additionally, here the loss from the SHG conversion has not been taken into account, which will

shift these plots to be closer to the impedance matched case. If the mirror results in having a higher

reflectivity, leading to an over-matched cavity, the circulating intensity falls off very quickly, and

the cavity may no longer produce the desired enhancement.

Another approach to consider is what happens to the circulating intensity for a fixed r1 and

varying rm. This relationship can be seen in Fig. 3.3b. Once again both the LBO and BBO have been

considered separately, as their input couplers have different reflection coefficients. Here it is clear

that regardless of the input coupler, less loss through the rest of cavity will always result is a higher

intensity, since the cavity will leak less light through the mirrors. Comparing these two methods

for changing optical properties of the cavity, Fig. 3.3a gives the more descriptive representation
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Figure 3.3: Circulating cavity intensity for impedance matching. (a) For a varying input cou-
pler reflectivity and constant cavity loss, where the rm is the reflectivity’s of the other
cavity mirrors as well as scattering loss through the nonlinear crystals, 0.3% through the
LBO and 0.5% through the BBO. The losses due to SHG are not accounted for here. (b)
A varying cavity loss, rm, and constant input coupler, for an r1 = 98.51% for the LBO

cavity and r1 = 98.63% for the BBO cavity.

of where a cavity lies with respect to the impedance matched case and how much a cavity can be

expected to enhance the light.

3.2 Spatial Mode of Enhancement Cavities: Mode Matching
The basic properties of an enhancement cavity have been discussed in the previous section, includ-

ing topics of FSR, linewidth and impedance matching. The next topic to discuss is spatial mode

matching. This is the process of matching the spatial mode of the input light to the spatial mode of

the optical cavity. When a laser is mode matched into a cavity most of the input light is coupled

into the fundamental spatial mode, TEM00, resulting in a higher intensity in that mode. When the

mode matching, or coupling, is poor the intensity will be distributed across many spatial modes. The

maximum possible intensity is determined from impedance matching, as discussed in Section 3.1.2

and shown in Fig. 3.3a. To maximize on the available intensity in the TEM00 mode, the cavity needs

to be spatially mode matched.

There are several pieces to the mode matching puzzle, including the stability of the cavity, the

beam profile throughout the cavity, the beam profile of the laser and then the process of matching the

spatial mode of the laser to the spatial mode of the cavity. First, the cavities used in this experiment

are symmetric bow tie cavities consisting of four mirrors. A schematic of this configuration can be

seen in Fig. 3.4. The bow tie cavity is commonly used for generating one directional SHG using

nonlinear optics and does not create standing waves in the crystal, like the two mirror Fabry-Perot

cavity. In the case of this experiment it is desired to have one beam of second harmonic light with
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Figure 3.4: Schematic of a ring, or bow tie, cavity configuration. Two of the mirrors are curved
and two are flat. The beam travels in one direction around the cavity. The distance
between the mirrors are labeled as d1, d2 and d3.

maximum power, rather than two beams. Therefore, the ring cavity is used and not the Fabry-Perot

cavity geometry.

3.2.1 Establishing the Mode of the Enhancement Cavity

An optical cavity requires that the spatial mode is stable in order for the light to resonate within the

cavity. An unstable cavity means the spatial mode inside the cavity is unable to be replicated after

one round trip. Thus the light would eventually leave the cavity and prevent intensity build-up and

enhancement of the light in the cavity. Details of stability and how to mathematically determine

stability can be found in various textbooks including those by Nagourney and Saleh, [22] and [28]

respectively. Stability can also be confirmed using the computer program WinLase c© which allows

the user to build the optical cavity in the desired geometry. One parameter is varied, for example

the distance between two of the mirrors, to show where the cavity is stable as a function of that

parameter. WinLase c© then plots the beam radius throughout the cavity for the TEM00 mode. This

information is very important for matching the spatial mode of the laser to the spatial mode of the

cavity, as described in more detail in Section 3.2.2. It is also simple to calculate the spatial mode

profile of the cavity using the ABCD matrix for one round trip through the cavity for the desired
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TEM00 cavity mode. This is given by,(
A B

C D

)
=

(
1 0
−2
R 1

)(
1 d1 +2d2

0 1

)(
1 0
−2
R 1

)(
1 d3

0 1

)
, (3.6)

where R is the radius of curvature of the mirrors, and d1, d2 and d3 are the distances between cavity

mirrors, as shown in Fig. 3.4. The bow tie cavity has two foci, one between the two flat mirrors

and one between the two curved mirrors, where the latter is a tighter focus to optimize the SHG.

A complete definition and derivation of the ABCD matrix can be found in any introductory optics

textbook [28].

3.2.2 Coupling the Input Beam into the Cavities

In order to match the input light into a cavity, it is crucial to know the spatial beam profile of the

fundamental beam itself. The OPSL is a standing wave cavity with one flat mirror and one concave

mirror. The flat mirror is at the back of the cavity and the curved mirror is the output coupler. The

focus of the beam in the OPSL is at the flat mirror and diverges out to the output coupler. The

beam continues to diverge as a spherically symmetric Gaussian beam. The basic Gaussian beam

properties can be easily found in an introductory optics textbook [28], however, it is still important

to define a few of the key Gaussian beam properties. First, is the beam radius, w, as a function of

distance, z, given by,

w(z) = w0

[
1+

λ z
nπw2

0

]1/2

, (3.7)

where w0 is the beam radius at the waist when z = 0, λ is the wavelength of the propagating beam

and n is the index of refraction. Next is the q parameter, or complex beam parameter, which is used

to describe a beam at any point in space. At the beam waist q is given by,

q0 = i
nπw2

0
λ

(3.8)

The q parameter can also be written for the beam as it propagates for some distance, z, simply by

adding a real term to q0 to get,

q(z) = q0 + z. (3.9)

Using the ABCD matrix the q parameter can be easily transformed as the beam propagates along

some distance or through a lens. This simple transformation equation from q1 to q2 is given by,

q2 =
Aq1 +B
Cq1 +D

. (3.10)

It is important to note that when the light is propagated through a lens, the thin lens approximation

is used. This approximation treats the refraction of light through the glass as it enters and exits the

material as just the light bending once due to the curvature of the lens. Therefore it is said the light
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Figure 3.5: Schematic of the spatial mode of the input light coupled to the loose focus and
divergence of the enhancement cavity spatial mode. The focus of the input beam matches
the focus inside the cavity, and the divergence is the same as the beams meet at the input
coupler and propagate to the next mirror.

bends at the centre axis of the lens.

The beam profile for the OPSL can be calculated using theory, but this comes with some assump-

tions. Namely, the assumption that the beam is Gaussian. To test if the beam is in fact Gaussian and

follows as the theory predicts, it is simple to measure the profile of the beam with a CCD camera.

The light is focused down through a lens, followed by measurements of the beam radius around the

focus. This data is then fit to Eq. 3.7 with one modification,

w(z) = w0

[
1+

M2λ z
nπw2

0

]1/2

. (3.11)

An added factor has been included, known as the M2 parameter. This parameter is used to determine

how Gaussian the beam is. For a perfectly Gaussian beam, M2 = 1 and for a non Gaussian, M2 > 1.

The OPSL was found to have an M2 = 1.14, which shows that the beam is indeed not perfectly

Gaussian, but this is still very good. For comparison, a collimated TEM00 diode-laser usually has a

M2 ≈ 1.1−1.7 [28]. It is easy to accommodate for an M2 close to one, by simply multiplying the

wavelength by M2 in the formulas for Gaussian beam propagation as in Eq. 3.11.

As mentioned, the goal of matching the primary beam to the spatial mode of the LBO and BBO

cavities is to couple the light to the TEM00 mode and maximize the intensity in that mode. The

basics of mode matching include using free space and lenses to change the beam shape and size.

There are two foci in the ring cavity, one through the nonlinear crystal between the two curved

mirrors and one between the two flat mirrors. The one that goes through the crystal is a tight focus

with a Rayleigh range that is approximately the length of the crystal to maximize SHG. As a result,
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Figure 3.6: Beam radius of the 972 nm laser mode matched into the LBO cavity, where the
lenses used to mode match the beam are given as diamonds with their focal lengths
labeled. The orange and red lines represent the sagittal and tangential spatial mode of the
cavity, from the loose focus to the first curved mirror.

the focus between the two flat mirrors is a looser focus. The beam then diverges from the loose

focus and reflects off the input coupler until it reaches the first curved mirror, which causes it to

then tightly focus. For mode matching, the input beam is matched to the loose focus and divergence

of the beam at the input coupler. If the incoming beam has a similar radius right before it enters

into the cavity and diverges at the same angle as the cavity profile, the light should couple well. A

schematic of this can be seen in Fig. 3.5, where only the beam around the input coupler is shown in

and out of the cavity.

When mode matching the beam into the two enhancement cavities, ABCD matrices are used

to propagate the beam from the laser head through the optics until it reaches the first enhancement

cavity. In the following sections the beam radius is plotted before each cavity to illustrate how the

beam is shaped to get good coupling into each of the cavities.

Mode Matching to the LBO Cavity

Once the beam from the OPSL was determined with the corresponding M2 = 1.14, the beam is

propagated through several optics using ABCD matrices, including lenses to focus the beam into

the first enhancement cavity, containing the LBO nonlinear crystal. Fig. 3.6 shows the beam radius

from the OPSL to the LBO cavity.

The gap in the beam radius is simply where the optical isolator (OI) is located. The red curves

are the tangential and sagittal beam radius1 of the loose focus inside the LBO cavity between the two

1The tangential plane is the plane where the optical plane makes an angle with respect to the beam axis. The sagittal
plane is perpendicular to the tangential plane. In the case for both the LBO and BBO enhancement cavities, the tangential
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Figure 3.7: Picture of the 486 nm light as it propagates far from the LBO SHG cavity. It can
be seen that the beam is in the TEM00 mode. The beam diverges at a larger angle in the
vertical direction than the horizontal, producing the ovular beam shape.

flat mirrors. As mentioned, this is what the input beam mode is matched too. Since the tangential

and sagittal beam was not considered separately for the input light and the difference is minimal

inside the cavity, it was decided to match the beam in-between the two curves. The mode matching

into the LBO cavity resulted in 74.0% coupling. This result is further discussed in Chapter 4.

Mode Matching to the BBO Cavity

The mode matching to the second enhancement cavity is similar to the LBO with a few additional

considerations. The light emitted from the LBO cavity is the second harmonic light, so 486 nm from

the fundamental 972 nm. The light is generated in the LBO crystal and propagates out from the

crystal through the curved mirror, not following the spatial mode of the cavity. The first thing to

notice is that the beam is not spherically symmetric. Fig. 3.7 is a picture of the beam far from the

cavity. By focusing this beam through a lens and measuring the beam profile for the horizontal and

vertical directions separately and fitting each to Eq. 3.11, the beam is found to be nearly Gaussian

in both directions, where M2
horizontal = 1.02 and also M2

vertical = 1.02.

The 486 nm light is nearly Gaussian, but is still not spherically symmetric and is astigmatic, so

each component needs to be mode matched separately. Fig. 3.8 shows the two components, where

green is the vertical beam radius and blue is the horizontal. The methods are the same as with the

first enhancement cavity, by using ABCD matrices through lenses to match to the spatial cavity

mode. Except this time cylindrical lenses are used to isolate the beam shaping in the vertical and

horizontal directions. This also allows for matching to the tangential and sagittal conditions of the

cavity separately for better mode coupling.

Similarly to the LBO, the results of the mode matching to the BBO cavity were found to have

a coupling of 83.6%, which is later discussed in Chapter 4 through experimental and theoretical

methods.

plane is parallel to the table.
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Figure 3.8: Beam radius of the 486 nm laser mode matched into the BBO cavity. The lenses
used to mode match the beam are given as diamonds with their focal lengths labeled. The
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the loose focus to the first curved mirror. The green and blue represent the horizontal and
vertical spatial modes matching individually using cylindrical lenses.

3.3 Locking the Enhancement Cavities using Pound-Drever-Hall
Scheme

The Pound-Drever-Hall locking schemes description starts with a discussion of the reflection signal

off the input coupler of the enhancement cavity. Similar to the discussion in Section. 3.1 regarding

the circulating intensity inside the cavity, the reflection off the input coupler is now considered. The

fractional intensity is given by,

Ir

I0
=

(r1− rm)
2 +4r1rmsin2(δ/2)

(1− r1rm)2 +4r1rmsin2(δ/2)
, (3.12)

where r1 is the field reflection coefficient from the input coupler, rm is the remaining reflectivity’s

of the cavity mirrors and also includes extra losses due to scattering in the cavity [22]. The round

trip phase is given by, δ . Eq. 3.12 plotted as a function of the round trip phase gives Fig. 3.9.

The intensity in the reflected signal is high except for specific values of the round trip phase.

Just like in Fig. 3.2 where their were peaks in intensity, the intensity in the reflection dips. This is

when the phase difference between the input field and the field inside the cavity after one round trip

is a minimum. The electric field components of the reflected signal destructively interferes with the

small amount of leakage of the circulating light through in input coupler, causing the intensity to

dip [5]. In an ideal case, the reflection dips would go to zero on resonance2.

The reflection signal can be used to force the laser cavity to stay on resonance, this is called

2A zero electric field only results when the laser is perfectly mode and impedance matched. Experimentally the goal
is to get the dips as close to zero as possible.

25



0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
a
l 
R

e
fl
e
c
ti
o
n
, 
I r/I

0

Round Trip Field Phase, δ

FWHM

FSR

→←

← →

Figure 3.9: Intensity profile of the reflection off the resonator cavity. The full width at half
maximum, FWHM, is shown as the width of the absorption lines and the spacing between
the peaks are labeled as the free spectral range, FSR. The reflection shows maximum
intensity until the cavity is on resonance and then the intensity dips due to the destructive
interference of the electric field at the input coupler.

locking. This means that cavity length is locked such that the circulating power is a maximum and

the reflected power a minimum for an extend amount of time. This is very important to the SHG

to maximize the power in the conversion. The locking scheme used in this experiment is known

as the Pound-Drever-Hall, PDH, approach. This method for locking was first developed by Pound

in 1946 [23] for microwaves. It was not until 1983 when Drever et al. adapted the method for the

optical domain [10] to provide laser stability. It is also important to mention that there are two ways

to perform this PDH locking scheme. The classical way is for the laser to be locked to a Fabry-Perot

cavity with a fixed length. This method stabilizes the laser frequency to match the cavity length and

is used in Chapter 5 for measuring the linewidth of the laser. The other method, which is used for

the enhancement cavities, is locking the cavity to the laser. In this case there is a PZT inside the

enhancement cavities that is locks the length of the cavity to the laser frequency. For any drift in the

laser, the PZT changes the length of the cavity to compensate. Before diving into the full explanation

of the PDH scheme, it must be established why the PDH approach was chosen over other approaches.

A schematic of the optical and electrical signals used to achieve the PDH locking scheme are

shown in Fig. 3.10. The alternating current (AC) signal from the photodiode, where the reflection

intensity is measured, enters the mixer as the RF signal. The modulation frequency is split into

two signals. One signal goes into the phase modulator to modulate the carrier frequency of the

fundamental beam and the other signal is sent through a phase shifter and into the local oscillator

(LO) input of the mixer. The phase shifter allows for tuning of the phase between the RF and LO

signals to ensure a zero phase shift. The importance of the phase shifter is explained a little later.

This is important to the error signal and to the linearity around the zero-zero crossing, as will be

also be described more later. The mixer generates the error signal seen in Fig. 3.12. This signal is
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Figure 3.10: A schematic of the electronics for the Pound-Drever-Hall locking scheme. The
laser beam is modulated by the phase modulator at a frequency, Ωm. The reflection
beam off the cavity input coupler is propagated onto a photodiode. This signal is then
sent into the mixer as an RF signal. A second branch of the modulation frequency is
sent through a phase shifter, ∆φ , and into the local oscillator side of the mixer. The
output gives the error signal. This is then sent into the controller, or loop filter and used
to control the PZT in the cavity.

then sent into a servo, where the control system uses the zero-zero crossing to lock the cavity to the

laser frequency. The output signal from the servo, or loop filter as labeled in Fig. 3.10, is fed back

to the enhancement cavity PZT where the cavity length is adjusted to push the phase difference back

to zero on the error signal.

In the case of this experiment, the reflected light off the cavity is detected on a photodiode.

When the intensity of the light changes, the photodiode converts this into a change in voltage. This

signal is sent from the photodetector to a control system that uses feedback to control the length of

the cavity. The servo can then simply change the voltage on the PZT to maintain the minimum power

on the photodetector. A change in reflected power could have a number of causes, one because the

cavity is off resonance and therefore there is some overall intensity change, or simply because the

power in the laser changed. Assuming it is the first reason, the intensity would change the same

amount on either side of the resonance, above or below. The photodetector sends this higher voltage

signal to the servo, which then determines that the cavity is off resonance. Since the signal appears

the same above and below resonance the electronics are unable to determine in which direction the

cavity length is off. The electronics might push the cavity length in the correct direction, or push it

even farther off resonance. In order for the electronics to accurately determine if the cavity is above
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or below resonance, it would have to distinguish the phase from the intensity. Currently there are no

electronics that can do this [5]. Another possible locking scheme involves locking to the side of a

resonance peak, however since the lock is not at the peak of the resonance, it is not possible to lock

to the highest possible power in the cavity.

The ability to use changes in phase is what makes the PDH scheme so stable and a desirable

approach to locking. To determine the phase of the reflected signal, the phase of the carrier, or laser,

frequency is modulated. This is known as the modulation frequency, Ωm, and is usually larger than

the linewidth of the enhancement cavity that is being locked to the laser. For this experiment the

modulation frequencies are Ωm = 14 MHz for the LBO cavity and Ωm = 10 MHz for the BBO cavity.

This modulation is applied by passing the laser light through a phase modulator. Typically, a laser

is only modulated at one frequency, however, for this experiment each enhancement cavity requires

its own modulation frequency. To do this, an adding step up transformer is used to combine the two

frequencies that puts the corresponding phase modulations on the carrier frequency, as can be seen

in the original schematic in Fig. 2.1.

Next, it is useful to jump ahead to Fig. 3.12 to conceptually understand the benefit and the stabil-

ity of the the PDH scheme. This figure shows the PDH error signal at high modulation frequencies,

in the range of MHz. The zero-zero crossing of the signal is the position where the cavity is on

resonance with the laser. The slope of the line crossing through zero is both very steep and with

high amplitude. When the cavity is slightly detuned from resonance, the signal on the photodiode

will contain some component of the modulation frequency and therefore a change in the phase. This

will cause a corresponding change along the error signal, either in the positive or negative direction.

This change in voltage will then cause the servo to apply a feedback voltage back on the cavity PZT

to drive the phase shift back to zero.

To mathematically describe how to arrive at the high modulation frequency PDH error signal,

start with the unmodulated electric field of the input beam,

E(t) = E0e−iφ(t) = E0e−iωct , (3.13)

where E0 is the amplitude of the field, φ(t) is the time-dependent phase, and ωc is the carrier

frequency. A time-dependent phase modulation, given by ∆φ(t), is then applied to the carrier fre-

quency. ∆φ(t) can be written as β sinΩmt, where Ωm is the modulation frequency and the mod-

ulation depth is given as β and determines the amplitude of the modulation. For the sake of this

derivation, only one phase modulation will be applied to the carrier frequency. This derivation can

simply be expanded to account for the two modulations that are actually applied in the experiment,

one for each enhancement cavity. The modulated field then becomes,

E(t) = E0e−i(φ(t)+∆φ(t)) = E0e−i(ωct+β sinΩmt). (3.14)
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Figure 3.11: Representation of the phase and amplitude under phase modulation. (a) Is the
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This can then be expanded using Bessel functions to the first order, with small β ,

E(t)≈ E0[J0(β )e−iωct + J1(β )e−i(ωc+Ωm)t − J1(β )e−i(ωc−Ωm)t ], (3.15)

where J0(β ) and J1(β ) are the Bessel function coefficients [15]. From Eq. 3.15 it is clear to see that

there are in fact three terms to the electric field contributed by the phase modulation. These J1(β )

terms are knows as the sidebands as shown in Fig. 3.11b. Once again, β is the modulation depth.

For β < 1 almost all of the power is in the carrier frequency and the first order sidebands [5]. Due

to the phase modulation, one sideband is 180o out of phase with the other one. This is actually a

key component to how PDH lock works, being able to discriminate which direction the resonance is

off by the sign due to the sideband.

Taking a closer look, Fig. 3.11 can give more conceptual understanding before evaluating the

mathematics any further. Fig. 3.11b shows the amplitude plot of the carrier frequency and sidebands.

This is not the absolute amplitude so that it can clearly be seen that the two sidebands are 180o out

of phase with each other. The two sidebands are rotating in opposite directions, so the sum of the

amplitudes remains constant. Fig. 3.11a shows the phasor representation of the carrier frequency

and two sidebands. Here the carrier frequency remains constant, rotating at ωc, while the modulation

frequencies rotate creating a new vector, called the phase modulated carrier frequency. This vector

has a phase shift of ∆φ from the carrier frequency. This phase shift changes as the modulation

frequencies rotate.

Continuing with the mathematical derivation of the error signal, the reflected light can be written

in terms of the electric field of the incident light and the reflection coefficient, F(ω). The reflection
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coefficient is simply the ratio of the reflected electric field to the incident electric field at a given

frequency, ω ,

F(ω) =
Ere f l

E0
=

r
(

eiω/∆νFSR−1
)

1− r2eiω/∆νFSR
. (3.16)

The amplitude reflection coefficient is r and ∆νFSR is the FSR [5]. Eq. 3.15 can then be written as,

Ere f l = E0[F(ωc)J0(β )e−iωct +F(ωc +Ωm)J1(β )e−i(ωc+Ωm)t

−F(ωc−Ωm)J1(β )e−i(ωc−Ωm)t ].
(3.17)

The next stage is to transform the reflected electric field into a power, as that is what the photodetec-

tor measures. The relationship between power, P and electric field, E, is simply P= |E|2. Therefore,

Eq. 3.17 can be written as,

Pre f l = Pc|F(ωc)|2 +Ps|F(ωc +Ωm)|2 +Ps|F(ωc−Ωm)|2

+2
√

PcPs{Re[F(ωc)F∗(ωc +Ωm)−F∗(ωc)F(ωc−Ωm)]cosΩmt

+Im[F(ωc)F∗(ωc +Ωm)−F∗(ωc)F(ωc−Ωm)]sinΩmt}

+ higher order terms,

(3.18)

where Pc is the carrier power and Ps is the sideband power [5]. This equation simplifies depending

on the modulation frequency. For the case of this experiment, the modulation frequency is high,

meaning Ωm� ∆ν f sr/F, where ∆ν f sr/F is the linewidth of the cavity. Only the sine term remains,

while the cosine term vanishes [5].

This RF signal is fed into the mixer where it is mixed with the original modulation frequency. In

the mixer, the inputs are multiplied together. Thus, the product of two sine waves will give a cosine

of the sum and difference term of the phase shift between the input waves. Similarly, if one input is

a sine and the other a cosine, the product is the sine of the sum and difference of the phase shift [5].

When the phase between the RF and LO signal is the same, the result is a direct current (DC) plus AC

term for the two sine waves and only an AC term for the sine and cosine inputs. This AC term is the

error signal. The phase of the modulation frequency can simply be adjusted to make this scenario

true by running the signal through a phase shifter before the mixer.

For high modulation frequency, as used in this experiment, the error signal is given by,

ε =−2
√

PcPsIm[F(ωc)F∗(ωc +Ωm)−F∗(ωc)F(ωc−Ωm)], (3.19)

and produces the signal shown in Fig. 3.12. For the point where the cavity is on resonance with the

laser carrier frequency, the error signal crosses zero and is nearly linear. Further simplification can

be done to reduce the analysis around this point.

When the carrier frequency is at or near resonance, the sidebands are far enough away that their

power is completely reflected, or r ≈ 1. This results in the sideband reflection coefficients from
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Figure 3.12: The PDH error signal after the reflection signal from the cavity is converted to
an RF signal and mixed with the original phase modulation signal. When the phase
between the two mixed signals is the same, the above error signal is produced. Plot
produced by Black [5].

Eq. 3.16, F(ωc±Ωm)≈−1. Thus, reducing Eq. 3.18 to,

Pre f l ≈ 2Ps−4
√

PcPsIm{F(ωc)}sinΩmt + higher order terms. (3.20)

The error signal also simplifies to,

ε = 4
√

PcPsIm[F(ωc)]. (3.21)

The reflection coefficient from Eq. 3.16 can be approximated for the carrier frequency, so that it does

not go to zero. Exactly on resonance ω

∆νFSR
= 2πN, where N is an integer number and ei2πN = 1, so

F(ωc) = 0. Thus, ω

∆νFSR
is instead replaced by,

ω

∆νFSR
= 2πN +

δω

∆νFSR
, (3.22)

where δω

∆νFSR
is some small offset from resonance. The finesse of the cavity can also be approximated

as F≈ π/1−r2, when r≈ 1, and the linewidth is δν =∆νFSR/F. For an offset frequency, δω , much

less than the linewidth, δν , and after some substitution and simplification, the reflection coefficient

of the carrier frequency is approximated to,

F(ωc)≈
i
π

δω

δν
. (3.23)
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The error signal becomes,

ε ≈− 4
π

√
PcPs

δω

δν
. (3.24)

Now, it is clear to see that the error signal is linear around resonance for small deviations in the

phase, or frequency. This is beneficial to the stability of the lock because a small change in phase,

translates directly to a small change in the error signal and then the servo can linearly respond to the

PZT. If the error signal was not linearly proportional around zero-zero, then the feedback loop may

over compensate or add additional noise to the lock, resulting in a less stable lock.
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Chapter 4

Nonlinear Optics and Second Harmonic
Generation

The focus of this chapter is specifically on the second harmonic generation, SHG, process using

nonlinear optics through the two optical enhancement cavities. The last chapter detailed the basics

of the optical cavity and how to experimentally match the fundamental spatial mode to the cavity

mode. This chapter will explain the theory and experimental results of using nonlinear optics inside

the enhancement cavities, starting with the basics in Section 4.1. This section will cover the different

crystal types used in this experiment and their geometrical symmetries. Then Section 4.1.1 presents

the theory for the nonlinear conversion factor, γSH , and the Boyd-Kleinman parameter. Finally the

theory and experimental results for the conversion from the input light into the enhancement cavity

to the second harmonic generated light are presented in Section 4.2. The comparison of the theory

to experimental data gives a measure for how well the cavities where impedance and mode matched

from Chapter 3.

4.1 Nonlinear Crystal Symmetry Basics
The uses of nonlinear crystals varies widely across the field of optics, from second and third har-

monic generation to frequency mixing. Nonlinear crystals have three main symmetries, uniaxial,

biaxial and isotropic. In this experiment only uniaxial and biaxial are used, so the discussion will

be focused on these two types. Uniaxial and biaxial refers to the number of optical axis that are in

the crystal as well as the indices of refraction along the x, y and z axes. The optical axis, or c-axis,

is defined as the axis along which a beam would experience no birefringence or double refraction.

Table 4.1 shows the relative indices of refraction, n, for the uniaxial and biaxial crystal, for both

positive and negative types. The uniaxial defines the x, y and z in terms of just two values, the

ordinary and extraordinary, denoted as o and e respectively. This is simply because two of the axes

have the same index of refraction. The relative values of n for the biaxial crystal remain such that

nz > ny > nx for both the positive and negative types. The positive and negative biaxial types come

from how the two optical axes are oriented in the x− z plane. Fig. 4.1 illustrates the positive and
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Uniaxial Biaxial
Positive nz = ne > nx = ny = no nz > ny > nx

Negative nx = ny = no < nz = ne nz > ny > nx

Table 4.1: The relationship of the indices of refraction of the uniaxial and biaxial crystals along
the x, y and z axes, for the positive and negative orientations. The uniaxial is also described
by ordinary, o, and extraordinary, e, axes. The relationship of n for the biaxial crystals is
the same for both positive and negative symmetries.

z

x

y

c-axisc-axis

!

(a) Positive Biaxial

z

x

y

c-axisc-axis

!

(b) Negative Biaxial

Figure 4.1: Schematic of biaxial positive and negative symmetries. (a) Is the positive biaxial
crystal, where the two optical, c-axes are folded around the x-axis and (b) a negative
biaxial crystal where the two optical, c-axes are folded around the z-axis.

negative orientations of the optical axes for the biaxial crystal. The angle between the two optical

axes, θ , is determined by the indices of refraction and is given by,

θ = cos−1

√
1/n2

y−1/n2
z

1/n2
x−1/n2

z
. (4.1)

When θ is large, the optical axes are closer to the x-axis and referred to as positive biaxial. When

θ is small, this is negative biaxial and the optical axes are closer to the z axis. Table 4.1 shows the

relationship of the indices of refraction for the uniaxial and biaxial, positive and negative crystal

symmetries.

The discussion about the indices of refraction in both crystal symmetries is extensive and most

of the information is easily available in various nonlinear optics text books, including Boyd [7] and

Nagourney [22]. A brief overview will be given here to preface the next section of second harmonic

generation. In 1871 Wilhelm Sellmeier first proposed alternate methods to Cauchy’s theory on the

index of refraction through a material and how it depends on wavelength. Sellmeier found the
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Figure 4.2: Index of refraction curves for changing wavelength, λ , for both LBO and BBO

crystals. (a) The LBO crystal, where the indices for each axis are shown as well as the
wavelength for both the fundamental and second harmonic. (b) BBO crystal indices of
refraction are shown, for the ordinary and extraordinary axes, as well as the fundamental
and second harmonic λ . The coefficients used are the Sellmeier coefficients given in
Nagourney [22].

following relationship,

n2 = A+
Bλ 2

λ 2−C
+

Dλ 2

λ 2−E
, (4.2)

where A, B, C, D, and E are Sellmeier coefficients and λ is the wavelength. These coefficients are

unique for each material and have been listed in Table 13.1 in Nagourney for both the LBO and

BBO crystals [22]. Fig. 4.2 shows Eq. 4.2 for the LBO and BBO cavities, with both the fundamental

wavelength and second harmonic wavelength identified. The relationships between the indices of

refraction and wavelength conversion are important for the concept of phase-matching for SHG.

This experiment uses two nonlinear crystals for SHG inside an enhancement cavity. The first

crystal used is the LBO, which is a negative biaxial crystal, and the second is a BBO, which is a

negative uniaxial crystal. The beam propagation through the crystal can be defined in terms of two

angles, θp and φ . These are known as the phase-matching angles. The phase-matching angle θp is

the angle k makes with the z-axis and φ is the angle from the x− z plane. In order to achieve SHG

in a nonlinear crystal, the crystal must be phase-matched. This means that the indices of refraction

are the same for the fundamental and second harmonic wavelengths. This can only be achieved

for one wavelength if the light is simply propagated long a specific axes, say the z-axis. This is not

convenient for all lasers, as the wavelengths desired varies across experiments and there are a limited

number of available nonlinear crystals. To remedy this, the fundamental beam can be propagated

at some angle relative to the axes, given as either θp or φ . The angle θp is the angle between the

optical axis and the direction of beam propagation, k, and lies in the x− z plane. The angle φ is

the azimuthal angle from the x− z plane to the direction of propagation. A basic schematic of the
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Figure 4.3: Crystal axes with the phase-matching angles, θp and φ , for a given direction of
beam propagation, k.

axes, beam propagation direction, k, and phase-matching angles are illustrated in Fig. 4.3. For the

specific types of crystal used, the uniaxial and biaxial, a schematic of the axes and phase-matching

angles can be seen in Fig. 4.4. Each type of crystal has a different critical phase-matching angle.

For the uniaxial crystal in Fig. 4.4a, θp, is the critical angle and φ is arbitrary because the indices

of refraction along the x and y axis are the same as defined in Table 4.1. For the biaxial crystal, θp

is fixed at 90o so that φ becomes the critical phase-matching angle. However, both are important

angles to specify when growing the crystals.

The methods for selecting the phase-matching angle are easily described for the uniaxial crystal,

but can be applied to the biaxial case in a similar manner. For the negative uniaxial crystal, the fun-

damental light is the ordinary wave, polarized perpendicular to the c-axis, and the second harmonic

would be the extraordinary wave, polarized long the c-axis. When a crystal is phase-matched the in-

dex of refraction of the the ordinary wave, no, equals the index of the second harmonic extraordinary

wave, ne. From Fig. 4.2 it can be seen that for both the LBO and BBO cases, nν
o 6= n2ν

e . The notation

ν is used to describe the fundamental and 2ν for the second harmonic of the optical frequency. This

discrepancy in indices can be more clearly seen for the BBO crystal, where the no at the fundamental,

λ = 486 nm, does not give the same value in ne at the second harmonic, λ = 243 nm. If the beam is

propagated at some angle, θp, relative to the optical axis, then the index of refraction that the beam

sees is different. The relationship to describe how the index depends on θp can be written as,

1
(n2ν

e (θp))2 =
cos2(θp)

(n2ν
o )2 +

sin2(θp)

(n2ν
e )2 , (4.3)

There exits some angle for which the phase-matching condition holds, no = n2ν
e, . By rewriting
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Figure 4.4: Schematic of uniaxial and biaxial crystal symmetries. (a) The negative uniaxial
crystal, as seen from the side view. The direction of propagation, k, of the fundamental
frequency, ν lies at an angle θp from the z-axis. phase-matching angle, φ = 0 as the
indices of refraction along the x and y axis are the same, and called the ordinary axis, no.
The z-axis is the extraordinary axis, ne, also known as the c-axis. The walk-off angle, ρ

is the angle the second harmonic, 2ν , from the fundamental beam, ν . (b) The negative
biaxial crystal, as seen from the top view. In this crystal the angle θp = 90o, making φ

the critical phase-matching angle along which k propagates.

Eq. 4.3,

sin2(θp) =
(nν

o )
−2− (n2ν

o )−2

(n2ν
e )−2− (n2ν

o )−2 (4.4)

a value for θp can be found for the desired fundamental wavelength. This same relationships can

be used in the biaxial crystal cases, where each of the axes exhibit a different index of refraction to

find both the value for θp and φ .

There is another phenomenon that takes place inside the crystal, called double refraction or

birefringence. When the second harmonic photons are produced they will propagate at some angle

away from the fundamental direction of propagation. This is known as the walk-off angle and

denoted by ρ . The expression to find this angle is given by,

tan(ρ) =
(nν

o )
2

2

[
1

(n2ν
e )2 −

1
(n2ν

o )2

]
sin(2θp), (4.5)

where it can be seen that ρ depends on θp and on the the indices of refraction seen by the funda-

mental and second harmonic [17]. A schematic of the walk-off angle and how the second harmonic

separates from the fundamental is shown in Fig. 4.4a for the uniaxial crystal.

The BBO, negative uniaxial crystal if found to have a phase-matching angle of θp = 54.8o, with

φ = 0 because the index of refraction along the x and y axes are the same, making φ a non-critical

phase-matching angle. From θp, the walk-off angle is found to be ρ = 4.9o. The LBO crystal is
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a negative biaxial crystal, with θp = 90o and φ = 17.5o. In this case, θp is the non-critical phase-

matching angle. The walk-off angle is proportional to sin(2θp), so when θp = 90o, ρ = 0, so there

is no walk-off angle for this crystal.

Finally, the effective nonlinear coefficient, denoted by de f f , is another coefficient used in the

description of second harmonic generation. This coefficient is dependent on θp, φ , ρ and λ . The

various crystal symmetries have a basic formula to describe de f f in terms of other tensor coefficients,

di j and θp and φ [22]. For the BBO,

de f f = d15sinθ −d22cosθsin3φ . (4.6)

The tensor coefficients, like d15 and d22, are dependant on crystal symmetry, ρ and λ . The best

computation of de f f for both the LBO and BBO crystal used at their respective wavelengths is a

program called SNLO c© [31]. This program considers all of the relevant parameters and corrections

to determine the most accurate value for de f f . For the LBO, de f f = 0.82 pm/V and for the BBO,

de f f = 1.58 pm/V.

Understanding the basics of the crystal symmetry is important for continuing the discussion

of second harmonic generation and optimizing conversion efficiency from the fundamental to the

second harmonic inside the enhancement cavity.

4.1.1 Boyd-Kleinman Nonlinear Conversion Factor

This section will present the theory for the second harmonic conversion factor from the funda-

mental to the second harmonic through a nonlinear crystal using the previously developed crystal

geometries. The derivation of the conversion factor begins with the wave equation for the second

harmonic,

δE(2(2πν))

δ z
=− i(2πν)

n2νc
de f f E(2πν)E(2πν)ei(k(2(2πν))−2k(2πν))z [17], (4.7)

where n2ν is the index of refraction seen by the second harmonic and de f f is the effective nonlinear

coefficient as discussed in the previous section. For the phase-matched condition, the wave numbers,

(k(2(2πν))− 2k(2πν)) = 0 and the index of refraction is the same for both the fundamental and

second harmonic, n2ν = nν = n. Simplifying and differentiating Eq. 4.7 for z = l,

E(2(2πν),z = l) =− i(2πν)

nc
de f f E2(2πν). (4.8)

In terms of the optical intensity,

I(2(2πν), l) =−
2(2πν)2d2

e f f

n3c3ε0
L2I2(2πν), (4.9)

where ε0 is the permittivity of free space and L is the interaction length, or length of the crystal [17].

From Eq. 4.9 the coefficients in front of the l2I2(2πν) can be lumped together as a general form for
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the second harmonic conversion factor.

Since this experiment deals with a focused Gaussian beam through the nonlinear crystal, the

second harmonic conversion factor requires an additional component that depends on the beam

shape and size through the crystal. This term has been derived from the well-known Boyd and

Kleinman work from 1968 for a focused Gaussian beam [6]. Additionally, it is more convenient to

work in terms of power rather than intensity. Then the second harmonic conversion factors from

Eq. 4.9 can be written as a single term, γSH , and given as,

γSH =

(
2(2πν)2d2

e f f k(2πν)

πn3ε0c3

)
Lh(B,ξ ). (4.10)

The length of the crystal is given by L, n is the refractive index, de f f is the effective nonlinear

coefficient, ν is the fundamental laser frequency, k(2πν) is the fundamental wave number, c is the

speed of light, and ε0 is the permittivity of free space. The parameter, h(B,ξ ) is known as the

Boyd and Kleinman focusing factor. It is within this factor that the specifics of the beam interacting

within the crystal are important. For a complete derivation of this parameter, see Boyd and Kleinman

paper [6]. Throughout the literature there are other approximations for finding h(B,ξ ). Two of these

methods will be used in this analysis.

It must first be established that h(B,ξ ) depends on two parameters, B and ξ . B is the double

refraction and ξ is the focusing parameter.

B = ρ

(
πL
2λ

)1/2
(4.11)

where λ is the wavelength inside the crystal and L is the length of the crystal [6]. It can be seen that

this parameter depends on the walk-off angle. In the case of the LBO crystal, ρ = 0, because the

non-critical phase-matching angle is 90o. Thus, B = 0 for conversion from 972 nm to 486 nm. For

the second conversion stage from 486 nm to 243 nm, using the BBO crystal, ρ 6= 0, rather ρ = 4.9o

and thus B = 19.16 for a crystal length of 10 mm.

The focusing parameter, ξ , is defined as ξ = L
b . Again, L is the length of the crystal and b is

the confocal parameter, which is simply two times the Rayleigh length. The Rayleigh length is a

characteristic parameter used to describe a Gaussian beam around a focus, and given as

zR =
nπw2

0
λ

. (4.12)

In words, the Rayleigh length is the distance it takes the beam to grow by the
√

2, from the waist,

w0. For the fundamental beam focusing through the LBO, ξ = 0.93, and for the BBO, ξ = 0.28.

To determine h(B,ξ ), there are two methods. The first is to simply use Fig. 4.5 from the Boyd

and Kleinman paper, where they plot several curves of h(B,ξ ) as a function of ξ , for a few values of

B. For the LBO, h(B,ξ )≈ 0.8, with de f f = 0.82 pm/V, leading to a γSH = 1.19x10−4. Since Fig. 4.5

does not give a curve for B = 19 it is best to use an approximation provided by Nagourney [22].
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Figure 4.5: Boyd-Kleinman factor as a function of the focusing parameter, ξ , for various val-
ues of B, the double refraction parameter. This plot was taken from Boyd and Kleinman
(1968), Fig. 2 [6] and is used to approximate a value of h(B,ξ ) for a given ξ and B.

This approximation holds when ξ < 0.4 and B >
√

6/ξ , and is given by,

h(B,ξ )≈
√

πξ 1/2

2B
. (4.13)

From this, h(B,ξ ) = 0.024, and for de f f = 1.58 pm/V, γSH = 8.2x10−5. The next step now is

applying the second harmonic coefficient into the intensity calculations of the enhancement cavity

to determine how much intensity is generated in the second harmonic.

4.2 Second Harmonic Generation in an Enhancement Cavity
The single pass efficiency for a CW laser through a nonlinear crystal in the borate family is around

10−4 W−1 or 0.1% [8]. For this experiment and many others, a higher efficiency is desired. Adding

an enhancement cavity around the crystal leads to an efficiency of 30-45%. The theory for the non-

linear optics and conversion from the fundamental beam to the frequency doubled light uses the

same optical component parameters as those defined in Chapter 3. The basic theory for understand-

ing and calculating the nonlinear process while the crystal is in an enhancement cavity follows from

the work of Kozlovsky, Nabors and Byer (KNB) [19] who nicely compiled the more extensive work

of Ashkin, Boyd and Dziedzic (ABD) [2].

As previously defined, the transmission and reflection through the input coupler remain the

same, t1 and r1 respectively. The definition of rm is now defined

rm = t2tSHr2, (4.14)
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where r2
2 is again the field reflection coefficient from the cavity mirrors, excluding the input coupler,

and t2 = 1− losses. The new tSH term accounts for a depletion of the fundamental light as it is

converted to the second harmonic. As long as the loss from the conversion is small,

t2
SH = (1− γSHPc), (4.15)

where Pc is the circulating power and γSH is the second harmonic coefficient. Previously, in Chap-

ter 3 intensity was used as the metric for measuring the light in and out of the cavity. Intensity is

simply the power per unit area. In this section power will be the metric used.

Recall Eq. 3.5 that related the circulating intensity to the input intensity. Writing this equation

in terms of power and substituting Eq. 4.15 into Eq. 4.14 gives the new relation,

Pc

P0
=

t2
1

(1− r1t2r2(1− γSHPc))2 . (4.16)

From the circulating power there is a simple relationship to find the power produced in the second

harmonic and is given by,

PSH = γSHP2
c . (4.17)

This relationship is only true for the ring cavity configuration, since the second harmonic is only

produced in one direction. The second harmonic coefficient, γSH , has previously been derived in

Section 4.1.1. The next step is to compare the theoretical SHG for given fundamental powers for

each the LBO and BBO cavities to experimental results.

LBO

The experimental measurements were taken by measuring the power of the input light right before

the cavity and power in the second harmonic as it left the cavity, while the cavity was locked. As

can be seen in Fig. 4.6a the theory is larger than the experimental results. This is expected, as there

are many factors that contribute to achieve the theoretical SHG. To find how far off the experimental

results are from the theory is simply determined by applying a coefficient to the theory, called the

mode overlap. To find the best value for the mode overlap, the mean squared error between the fit

and data is minimized. As discussed in Chapter 3 the cavity is not perfectly impedance matched,

nor is it perfectly spatially mode matched. The losses in the cavity have also not been accurately

measured, as this is a non trivial measurement to isolate scattering loss from the SHG loss. All of

the extra losses and mode-overlap have been lumped together into the 74.0%, so the actual mode-

overlap is better than this. In practice, the best coupling constant expected would be ∼ 90%. For

the LBO the mode overlap is found to be 74.0% with a cavity loss of ∼ 0.5%. The theory with the

applied mode overlap compared with the data is in Fig. 4.6b.

The low mode overlap here could be due to the mentioned factors. Based on more recent cal-

culations, the spatial mode is probably contributing significantly to this mis-match and has been

improved with better placements of the mode matching lenses and coupling into the cavity.
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Figure 4.6: Experimental results of the nonlinear power conversion from 972 nm to 486 nm
through the LBO crystal compared with the KNB theory. (a) Direct theory to exper-
imental and (b) applying a mode overlap factor of 74.0% to the theory to match the
experimental data.

BBO

Similar to the LBO cavity, Fig. 4.7 shows the theoretical results to the experimental data before and

after the mode overlap is applied. Here the loss in taken to be 0.3% and the mode overlap is found

to be 83.6%. This result is as expected and so it can be concluded the spatial mode matching and

impedance matching are sufficient.

From the plots for both the LBO and BBO it is clear to see the conversion to the SHG are good.
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Figure 4.7: Experimental results of the nonlinear power conversion from 486 nm to 243 nm
through the BBO crystal compared with KNB theory. (a) Direct theory to experimental
and (b) applying a mode overlap factor of 83.6% to the theory to match the experimental
data.
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At the maximum input power of 1.4 W of 972 nm, the first stage produces 0.6 W of 486 nm, for an

efficiency of 43%, and then second stage produces 150 mW of 243 nm light, for a 25% efficiency.

This gives an overall efficiency of 11% from the IR to UV. For comparison, if a single pass method

was used at both stages the overall efficiency would ∼ 0.01%. From these results it can be seen that

enhancement cavities around the nonlinear crystals is the more effective method for producing UV

light as relatively high powers.
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Chapter 5

Measurement of the OPSL Linewidth

Accurately measuring the linewidth of a CW laser is non-trivial and narrowing the linewidth is even

more of a challenge. Section 5.1 will present the purpose of measuring the linewidth and why it is

experimentally important to narrow it. In Section 5.2 the new experimental setup will be discussed

to highlight the various components that are required to make the measurement, like the Fabry-Perot

stabilization cavity. Finally, Section 5.3 is where the theory and experimental results are presented

for the linewidth measurement. Specifically, 5.3.1 will discuss the process of using a heterodyne beat

signal to measure the frequency noise of a laser and 5.3.3 will develop the mathematical methods

used to determine the linewidth from the frequency noise. Section 5.3.4 will conclude the results of

the linewidth measurement, as well as look at methods to narrow the linewidth even farther. Finally,

Section 5.3.5 will approximate how the linewidth from the 972 nm laser can be propagated through

the SHG process to determine the linewidth at 243 nm.

5.1 Introduction and Motivation
An ideal monochromatic laser source would emit photons at a single frequency. This would look

like a delta function on a frequency vs. amplitude plot, like the one in Fig. 5.1a. In reality the

laser will have a minimum linewidth due to quantum noise fluctuations from spontaneous emission

from the atoms in the laser cavity. This minimum limit in the linewidth, ∆νlaser, is given by the

Schawlow-Townes formula,

∆νlaser =
4πhν∆ν2

Pout
, (5.1)

where ∆ν is the resonator linewidth, hν is the photon energy, and Posc is the power of the laser [29].

Additionally, there are contributions to the laser linewidth that are due to mechanical vibrations,

which usually out weigh the quantum noise. These linewidth contributions create a broader, Gaus-

sian line shape centred at the laser frequency, shown in Fig. 5.1b. The width, FWHM, of this peak

is known as the linewdith. Another way to think about linewidth, is how much time the laser is

spending at a particular frequency, or wavelength. The more narrow the linewidth, the more time

the laser is spending at the central frequency. Whereas with a larger linewidth the laser frequency
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Figure 5.1: Schematic of laser linewidth at 308.64 THz, for an ideal delta function and a real
Gaussian with some width, FWHM. (a) An ideal monochromatic laser with linewidth
of zero, appearing as a delta function, and (b) a real laser with a Gaussian line shape
and linewidth given by the FWHM [Note: scale is not representative of a real linewidth
measurement]

is changing over a larger range and spends less time at the central frequency. Laser linewidths vary

over a large range, from 1Hz to > 10 GHz. There are many factors the contribute the the large

and small linewidths. A free running laser will have a larger linewidth in the GHz range, where a

stabilized diode laser can have a linewidth down in the Hz range. A HeNe laser can have a linewidth

of about 10 kHz [15].

The natural, or free funning, linewidth of a diode laser is ∼1MHz, but can be narrowed down to

∼1Hz [21]. Similarly, with the OPSL used in this experiment, the linewidth can be narrowed from the

MHz range to <1KHz. Narrowing the linewidth of a laser is as simple as locking it to a stabilization

or Fabry-Perot cavity. Typically, to measure the linewidth, two lasers are locked to independent

references and compared to one another. In this experiment the two lasers are locked together, in

order to use the heterodyne beat to measure the relative linewidth. Both of these topics are further

discussed in Sections 5.2.1 and 5.3.1, respectively, and the actual linewidth measurements of the

OPSL are explained in detail in Section 5.3.

The above statements clearly state that it is possible to narrow the linewidth of a laser, but

why is it important? Mentioned in the initial motivation for the development of the laser system in

Section 1.1, this laser source is scheduled to be used in precision spectroscopy experiments. There

are two reasons to have a narrow linewidth laser source for precision spectroscopy. Either simply

to excite the atoms to a higher energy or to determine the exact energy required to make an energy

transition. As described in Section 1.1.2, the use of the UV laser is to excite the 129Xe atoms from

the ground state with spin -1/2 and hyperfine level F = 1/2, to the 6p, spin 3/2 and F = 3/2. The

linewidth simply needs to be less than 2 GHz, so as to not excite another energy transition. The first

option for a laser source for the 129Xe atoms has a linewidth larger than 2 GHz, so cannot be used
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unless the linewidth is narrowed. Luckily, the OPSL has a free running linewidth in the MHz range,

so satisfies this condition without any narrowing. This is not the case for all lasers, and so narrowing

would need to be done.

Precision spectroscopy of Hydrogen is actually similar to the Xenon energy transition in that

the atoms are excited from one state to another, however the goal is very different. In this case the

goal is to determine the exact energy required for the atom to make this transition. Currently, this

1s to 2s is known to within an uncertainty of 10−15 as published by the Hänsch group in 2013 [21].

One method for decreasing the uncertainty even further is to decrease the linewidth of the laser that

is probing the transition. Since the transition is a two photon transition a narrower linewidth will

greatly reduce the uncertainty on the measurement. For this reason, narrowing the linewidth of the

OPSL is desired as this measurement is a future application of this laser. More about the Hydrogen

measurements can be found in Section 1.1.1.

Now that the motivation has been established for measuring the linewidth of the laser and pos-

sibly narrowing it down if needed for future applications. It is not possible to simply propagate

the light onto a photodetector and view the output on a spectrum analyzer and take the determine

the linewidth. This is because the frequency of the light is on the order of hundreds of THz and

fast electronics and a good spectrum analyzer only measure up to 30 GHz. Instead, what is done

is called using a heterodyne beat, where two lasers with nearly the same frequency are overlapped

onto a photodetector. The fields add such that the frequency measured is the difference between the

two lasers. This difference can be tuned down to <1GHz so the relative linewidth can be evaluated.

A more complete description and mathematical formulation of the heterodyne beat can be found

in Section 5.3.1. The frequency noise is measured on a SRS network signal analyzer and then the

relative linewidth between the two laser is deduced from this plot. The methods for determining the

relative linewidth are detailed in Section 5.3.

Measuring the linewidth is the most important step, but the linewidth also needs to be narrowed

for experiments like the Hydrogen spectroscopy. Typically lasers linewidths are narrowed by lock-

ing the laser to a stabilization cavity. This cavity is also known as a reference cavity, or Fabry-Perot

cavity. Essentially, the stabilization cavity is fixed and the laser wavelength is locked to the length

of the cavity. A more complete description of the Fabry-Perot cavity is detailed in Section 5.2.1. By

locking the laser to this cavity, the frequency cannot drift freely with air circulation and temperature

fluctuations, without the PZT in the laser changing oppositely to keep the frequency constant. The

next section will outline the experimental setup for the linewidth measurement, followed by the

various components used to narrow the linewidth and perform measurements.

5.2 Experimental Setup
This section will outline the new experimental setup that was used to measure the linewidth of the

infrared OPSL. Fig. 5.2 shows a schematic of the setup. The main components present are the two

OPSL lasers, labeled as the master and slave laser, the stabilization cavity and the mixing of the

46



!/4
stabilization cavity

Master OPSL

Slave OPSL

Cavity Locking 

System

Pump

Chip
PZT

Pump

Chip
PZT

Phase noise

Cavity Locking 

System Frequency

A
m
p
lit
u
d
e

Figure 5.2: Schematic of the experimental set-up to measure the linewidth of the OPSL. There
are two OPSL, one is the master laser that is locked to the Fabry-Perot stabilization cavity
using a PDH locking scheme. The second is the slave laser that is locked to the beat
between the two laser. This phase noise is derived from the lock at used to determine the
linewidth of the slave laser.

lasers for the heterodyne beat used to measure the linewidth. There are also two locking systems

indicated. The first is to lock the master laser to the stabilization cavity, and the second to lock the

slave laser to the master laser.

There are several reasons for using two OPSL lasers. The first one was briefly mentioned in

Section 5.1 to create a heterodyne beat, so the signal has a frequency that is detectable within the

bandwidth of the electronics. It is required that both the lasers are of the same wavelength, as to

get a small difference frequency in the beat signal. It would also be possible to split the beam

from one laser and recombine it with an added frequency shift, however the two beams need to be

uncorrelated, or decoupled from each other. This means that two lasers are required so that their

noise is independent from one another. If the two lasers were correlated then the sum of the two

fields would add and give a delta function.

It is also possible to do a self-heterodyne beat. To do this, the laser would first have to be split.

One of the beam paths would require a delay, on a time scale longer than the coherence length,

relative to the other beam. This will allow the beams to be uncorrelated and thus when the beams

are mixed, the linewidths are added independently to make a larger linewidth. In both the dual

laser and self-heterodyne beat cases, the measured linewidth is a relative linewidth between two
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uncorrelated beams, and therefore larger than the linewidth of one laser. This larger linewidth is

later accounted for in the linewidth calculation in Section 5.3.3. In Fig. 5.2 the heterodyne beat is

shown at the bottom. This beat signal is also used to lock the slave laser to the master laser. This

process is described in more detail in Section 5.3.1.

The next feature is the presence of the stabilization cavity. As mentioned in Section 5.1, the

stabilization cavity is used to stabilize the master laser so that the servo that locks the slave to the

master laser locks more effectively. If a laser is not controlled by any voltage on the PZT, the laser

will naturally drift around and have a larger linewidth, or free running linewidth. Locking the slave

laser to the master laser would force the servo to work much harder to maintain the lock, which

could make the final linewidth measurement inaccurate. By locking the master laser to the Fabry-

Perot cavity, the final relative linewidth measurement between the two lasers will be a more accurate

measurement.

5.2.1 Fabry-Perot Stabilization Cavity

The stabilization cavity is a simple two mirror cavity, consisting of two curved mirrors with the same

radius of curvature, radius of curvature (ROC). This geometry is also known as a Fabry-Perot cavity

and was developed in the last two years of the 19th century by Charles Fabry and Alfred Perot [33].

The purpose of this cavity is very different compared to the two ring cavities used for the SHG.

This cavity is purely used to stabilize the laser. The two SHG cavities have PZT’s attached to one of

the flat mirrors. Those cavities were then locked to the laser. As the laser freely drifts, the cavity

PZT’s adjust to change length to remain on resonance with the laser frequency. Here the opposite is

true. The Fabry-Perot cavity is set to a fixed length by glueing the mirrors to a tube that minimizes

changes in cavity length due to temperature fluctuations. The OPSL has a PZT attached to the output

coupler mirror, which can be used to finely tune the wavelength of the laser to match the length of

the cavity. Similar to the locking methods used for the SHG cavities, a PDH locking scheme is used

here. The cavity is aligned and spatially mode matched so that the resonant transverse mode is the

TEM00. Once again the reflection signal off the input coupler is used to lock the laser frequency to

the resonant peak.

Another difference between the SHG cavities and Fabry-Perot cavity is the resonant peaks of

Fabry-Perot cavity are very narrow relative to the FSR, implying the cavity has a high finesse. It is

ideal to have a very high finesse cavity for the stabilization cavity, because that means the linewidth

is narrow. Recall the discussion of linewidth from Section 3.1.1, where the FWHM is the metric used

as the linewidth of the signal. The linewidth is also directly comparable to the stability the cavity

can provide for the laser. If the linewidth is narrow, the PDH lock will keep the laser to within a

narrow range as large at the linewidth. The laser will not be able to drift around beyond the lock to

the Fabry-Perot resonance. In the end, this reduces extra noise on the laser linewidth measurement

that comes purely from drifting, rather than the actual linewidth of the laser.

To determine the finesse of the Fabry-Perot cavity a different method is used than the one from
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Section 3.1.1. Here, finesse is determined by the reflectivity’s of the mirrors by,

F =
π
√

r1r2

1− r1r2
, (5.2)

where r1 is the field reflectivity of the input coupler and r2 is the reflectivity of the second mir-

ror [22]. By definition, r2
1 + t2

1 = 1. The measured values for the reflectivity’s are found to be,

r1 = 0.99936 and r2 = 0.99975. Using the reflectivity’s of the mirrors in Eq. 5.2, the finesse is

found to be F = 7058. This is considered a high finesse cavity and will provide significant stability

to the master laser.

Once the master laser is locked to the Fabry-Perot stabilization cavity, the two lasers are beat

together and the slave laser is locked to the master laser. The frequency noise from the slave laser is

then measured to determine the linewidth.

5.3 Measuring the Linewidth
The linewidth of the laser is determined by measuring the frequency noise from the Fourier trans-

form of the RF beat signal. This measurement involves the discussion of several kinds of frequen-

cies. First is the frequency of the laser itself, or known as the optical frequency and denoted as ν .

There will be two optical frequencies, once for each laser source and denoted as ν0 and ν1. When

these two frequencies are beat together, as further described in the next section, the difference be-

tween their frequencies is given as, ν1− ν0 = fc, where fc is the in RF region. It is also useful

to write the carrier beat frequency, fc as an angular frequency, ωc, where ωc = 2π fc. Finally, any

additional frequency modulations on the carrier beat frequency will be denoted as Ωm. The modu-

lation frequencies will have some size corresponding to small deviations away from the carrier beat

frequency, called frequency excursion and will be denoted by ∆Ω.

The next sections will discuss the heterodyne beat frequency, f0, between the two laser sources.

Then, this beat frequency is locked to a specific f0 value. Then this signal is Fourier transformed to

measurable modulation frequencies, Ωm, with some frequency noise amplitude. From this frequency

noise the relative linewidth between the two lasers can be determined and thus the linewidth of the

laser.

5.3.1 Heterodyne Beat

It is first important to mathematically show how the heterodyne beat gives the difference between

the two frequencies of the lasers interacting. The derivation of the intensity due to electric field

of a wave is reproduced from Saleh and Teich [28]. First, it is important to start with one simple

monochromatic wave, with an electric field given by,

E(t) = E0e−i(2πν0)t−iφ0 , (5.3)

49



where E0 is the amplitude, φ0 is the phase, and ν0 is the optical frequency. For simplification, the

phase can be set to zero, φ0 = 0, giving

E(t) = E0e−i(2πν0)t . (5.4)

The frequency used in this experiment is 3.08× 1013 Hz (or 972 nm). There are not electronics

that have a bandwidth large enough to detect frequencies this high. If two waves with different

frequencies, ν0 and ν1 are added together and written in terms of intensity, I, where

I = |E|2 = |E0 +E1|2, (5.5)

then,

I = E2
0 +E2

1 +2E0E1 cos[2π(ν1−ν0)t]. (5.6)

The term (ν1− ν0) is called the heterodyne beat frequency, and denoted as ∆ν or f . If the two

frequencies are close together and less than the bandwidth of the electronics, meaning < 1 GHz,

then a signal can be detected. This is exactly what is done in the lab. The two lasers are overlapped

and focused onto a photodiode detector. The intensity in the beams are adjusted so I1 = I2, thus

reducing Eq. 5.6 to,

I = 2I0
[
1+ cos[2π(ν1−ν0)t]

]
. (5.7)

5.3.2 Locking the Slave Laser to the Master Laser

The frequency noise comes directly from this heterodyne beat. Before diving into the full evaluation

of the frequency noise and linewidth measure, the methods for narrowing the linewidth must be

established. The master laser is locked to the stabilization cavity using the PDH method as outlined

in Section 3.3. This time the laser is locked to the cavity in order to take out the long term drift of the

master laser. Since the optical frequency of this laser can be measured the slave laser is beat with the

master laser to make and RF frequency. The slave laser is still free running, so the heterodyne beat is

a combination of the stable master laser and the free running slave laser. A linewidth measurement

of this beat, would result in a broad linewidth, mostly composed of the drifting of the slave laser. To

minimize this, the slave laser can be locked to the master laser.

The heterodyne beat frequency can be manually adjusted by simply tuning the wavelength of

the slave laser. If the frequency of an external synthesizer is set close to the frequency of the beat,

then the slave laser can be locked such that the beat frequency remains the same as the external, or

reference frequency. The PZT attached to the output coupler in the laser cavity controls the length

of the laser cavity in order to maintain the beat frequency. The frequency of the master laser is only

varying within the linewidth of the stabilization cavity. Thus, by locking the slave laser to the beat

frequency the linewidth of the slave laser linewidth is reduced. From here, the relative linewidth of

the beat frequency can be determined. Assuming the two lasers are uncorrelated the linewidth of

one laser can be approximated as linewidth of the beat divided by
√

2.
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5.3.3 Frequency Noise and the β -line

Once the linewidth of the slave laser has been reduced, the RF signal from the heterodyne beat can

be converted into frequency noise. It was established that the heterodyne beat produces a wave with

a frequency given by the difference between the two optical frequencies, ν1−ν0. This difference is

decreased until it lies within the RF region and detectable by common electronics, this new frequency

will is denoted as fc and the angular frequency ωc, where ωc = 2π fc.

The derivation of frequency noise starts with frequency modulation theory described by John

Hall and Miao Shu [15]. A simple monochromatic beam with phase-modulation, φ(t), is written as

an electric field by,

E(t) = E0e−iωct−iφ(t). (5.8)

Since the field exhibits a phase modulation in real life, this can be represented by

φ(t) = β sinΩmt, (5.9)

where Ωm is the modulation frequency and β is the modulation index. The argument of phase

modulation on the centre frequency can also be written in terms of frequency modulation. The re-

lationship between frequency and phase is, ω = dφ(t)/dt. If the instantaneous frequency is defined

as ω(t), then,

ω(t) = ωc +
d
dt

φ(t) (5.10)

ω(t) = ωc +βΩm cosΩmt. (5.11)

This relationship shows the significance of β , either in the case of phase or frequency modulation.

Another way to define β is as the frequency excursion divided by the frequency modulation rate,

β = ∆ f/ fm. The excursion frequency is a measure of how far away the frequency is from the carrier

frequency and denoted as ∆ f , where ∆ f = f − fc and ω = 2π f and ωc = 2π fc. The modulation

frequency of the excursion frequency is denoted as fm, where Ωm = 2π fm.

The RF signal from the heterodyne beat is sent into an SRS network signal analyzer, where the

signal is Fourier transformed into the various modulation frequency components. To describe how

this signal appears on the SRS network signal analyzer, as shown in Fig. 5.5, it is important to have

an understanding of frequency modulation theory and the conceptual idea of β . For a small ∆ f ,

meaning a small frequency distance from the carrier frequency, and a fast modulation rate, fm, than

β � 1. The contribution from this type of noise to the linewidth will be very small. Then for large

∆ f and slow fm, β > 1, meaning the modulation index is high and this noise contributes significantly

to the linewidth.

The frequency variation per unit bandwidth at a frequency ∆ f from the carrier frequency of

the heterodyne beat signal gives the frequency noise spectral density, denoted by, Sδ f ( fm), over the

51



modulation frequencies. The spectral density is given by,

Sδ f ( fm) =
∆ frms( fm)

2

b

[
Hz2

Hz

]
, (5.12)

where b is the bandwidth, or bin size of the modulation frequency, ∆ frms( fm) is frequency excursion

from the beat carrier frequency, fc, and fm is the Fourier modulation frequency [15].

There are several methods presented throughout the literature for evaluating the frequency noise

to determine the linewidth of a laser. John Hall and Miao Zhu [15] give a comprehensive expla-

nation of phase and frequency noise for optical sources. As well as one method for determining

the linewidth of the source, based on the spectral density of the phase and frequency noise. A more

refined evaluation of the spectral density and how the frequency noise contributes to the linewidth of

the optical source is described by Domenico, Schilt and Thomann (DST) [9]. This second method

is the one chosen to determine the linewidth of the OPSL in this experiment. The DST approach

considers how the frequency excursions depend on the range of modulation frequencies and thus

contribute to the linewidth.

An outline of the DST work will be described here to highlight the key components that are used

to determine the linewidth of the laser. A complete and mathematical description of their study and

results can be found in the DST paper, [9]. As mentioned, various frequency components contribute

differently to the linewidth of the source, for example a low modulation frequency with a large

excursion from the carrier beat frequency will increase the linewidth of the source. Whereas, fast

modulations at low excursion frequencies do not contribute to the linewidth, but do contribute to the

line shape. DST establishes a function that separates the significant linewidth contributions from

the insignificant ones, by means of the point when the line shape changes. This function is known

as the β -separation line.

To establish the β -separation line, a conceptual description of the transition in the line shape

is illustrated in Fig. 5.3a. The line shape is broken down into different regions, from a to d. In

regions a and b the line shape is Gaussian and remains Gaussian, but with an expanding linewidth.

Beginning in region c and more clearly in region d, the line shape is Lorentzian and the linewidth is

no longer changing. This transition from a Gaussian line shape to a Lorentzian line shape is the point

which corresponds to the ratio between the modulation frequency, fm, and the frequency noise level,

called ho [Hz2/Hz] for now. DST use a simple model to describe this point where the line shape

changes. They start with a constant frequency noise, ho, that depends on fm as a step function. So

at a given frequency, called the cut-off frequency, fcut , the frequency noise level changes from ho to

zero. For a fixed value of ho and as the cut-off frequency increases from zero, there is a fcut which

corresponds to the point when line shape changes from a Gaussian to a Lorentzian. Mathematically

this can be modelled as a autocorrelation function, as described in the work of DST [9].

To maintain the focus on the conceptual understanding, it is safe to jump ahead to the FWHM

representation of the spectral noise density. DST describes the mathematical approach to finding a
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(a) (b)

Figure 5.3: Evolution of Gaussian line shape to a Lorentzian line shape. (a) Shows the evolu-
tion from a Gaussian line shape to a Lorentzian line shape from regions a to d, where the
x-axis is the linewidth and the y-axis is relative amplitude [9]. (b) Shows the evolution
of the linewidth for an increasing frequency to noise level ratio, fcut/ho. The indicated
point where the linewidth stops growing corresponds to the transition from the Gaussian
to the Lorentzian line shape [9].

clean result of the FWHM for a changing fcut . This is given by,

FWHM = ho

√
8ln(2) fcut/ho[

1+
(

8ln(2) fcut
π2ho

)2
]1/4 . (5.13)

The visual representation is even more useful and shown in Fig. 5.3b. This plot shows how the

FWHM evolves for a growing fcut relative to the noise level, ho. At a cutoff frequency to noise ratio,

the linewidth increases linearly, until a point and then the linewidth remains constant. This point

occurs at, fcut/ho = π2/8ln(2). This transition is directly related to the transition from a Gaussian

line shape to the Lorentzian line shape.

The ideas presented about how the relationship between the noise level, h0, and the cut-off

frequency contribute to the linewidth can be directly applied to the frequency noise from a laser.

High index frequency modulations contribute directly to the Gaussian line shape and therefore to

the linewidth. Whereas, fast modulations with low index modulations do not effect the linewidth

and only contribute to the Lorentzian line shape. This metric is the β -separation line. Fig. 5.4

shows a schematic of the β -separation line and the various modulation index levels [9]. When

Sδ f ( fm)> 8ln(2) fm/π2 the modulations have a high index and therefore contribute to the Gaussian

lineshape and thus the linewidth. Whereas, when Sδ f ( fm)< 8ln(2) fm/π2, the modulation index is

lower therefore only contributes to the wings of the line shape and not the linewidth.

Now, that the conceptual understanding of the β -separation line has been established. The

mathematical determination of the linewidth can now be implemented. The linewidth of the laser
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Figure 5.4: Illustration the β -separation line for an arbitrary frequency noise spectrum. In-
dicated are the regions where the high modulation at low frequencies contribute to the
linewidth and low modulations at high frequencies lie below the β -separation line as they
do not contribute to the linewidth.

source can be described as the FWHM, where

FWHM =

√
8ln(2)A√

2
. (5.14)

The variable A is the integration under the frequency noise curve above the β -separation line as

shown shaded in grey in Fig. 5.4. The
√

2 is used to account for the two lasers being uncorrelated

with each other. Since the signal used to measure the linewidth is the beat between the master and

slave laser, the linewidth is a combination of the two separate linewidths. This produces a slightly

larger linewidth and therefore needs to be reduced by the factor of
√

2 to approximate the linewidth

from just the slave laser. The integration variable, A, can be expressed as follows,

A =
∫

∞

1/To

H(Sδ f ( fm)−8ln(2) fm/π
2)Sδ f ( fm)d f , (5.15)

where H(x) is the Heaviside function, and the integration is over the frequency from 1/To to ∞. To

is the measurement period limit. This means that frequencies lower than 1/To cannot be measured.

The To in this linewidth measurement is To = 1 s, or 1/To = 1 Hz. When x ≤ 0, meaning the

frequency noise is below the β -line, then H(x) = 0, and when x > 0 and the frequency noise is

greater than the β -line, H(x) = 1. When H(x) = 1, then Eq. 5.15 simplifies to a simple integral,

A =
∫

∞

1/To

Sδ f ( fm)d f , (5.16)

for specific fm values.
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Figure 5.5: Measuring the linewidth from frequency noise plot. The frequency noise between
two lasers beat together, while one laser is stabilized to a Fabry-Perot cavity, is shown
in blue. This data has been reduced by subtracting off the data in black, which is the
background noise from the electronics. The frequencies with a high enough amplitude in
frequency space, denoted as frequency noise, above the labeled β -line gives the linewidth
of the laser, at 87 kHz.

On a frequency noise plots, integrating over the frequencies with frequency noise above the β -

line will give the linewidth of the laser. The results of the linewidth measurement from the OPSL

laser are presented in the next section.

5.3.4 Results and Discussion

The results of the frequency noise from the OPSL, when the slave laser is locked to the master laser

and the master laser is locked to the stabilization cavity are presented in Fig. 5.5. It is important to

note that there is a noise floor present in the plot. This was measured by blocking the optical signal

on the photodiode and simply measuring the static noise from the electronics. When the phase

noise was analyzed, the noise floor was subtracted off to minimize false additions to the linewidth

measurement.

The β -separation line is also displayed in Fig. 5.5. Above the line, the signal is outlined in pink

to show the part of the frequency noise that contributes to the linewidth. Solving Eq. 5.14, the result

gives a linewidth of 87 KHz.

The OPSL has the potential to have a narrow linewidth < 1 kHz. From the results of these initial
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Figure 5.6: Close-up view of the frequencies mainly contributing to the laser linewidth. The
hump on the left is known as the servo bump and then highest peak on the right hump,
around 1.7 kHz comes from a mechanical resonance in the laser. The official source
remains unknown. If both of those humps can be minimized, the linewidth of the laser
will narrow.

measurements, the linewidth is 87 kHz. This is not as low as expected but, there many components

that contribute to the narrowing of this linewidth and all need to be optimized for the best linewidth

measurement. The lock of the master laser to the stabilization cavity may be a weak lock, so the

linewidth is not narrowed as far as it could be. The lock of the slave laser to the master laser could

also be a tighter lock, decreasing the added fluctuations to the linewidth. To help with some of these

variables, a box was placed around the stabilization cavity and the master laser to reduce vibrations

from noise. The lasers were placed on separate bread boards to help maintain uncorrelated vibrations

and also decrease vibrations that occur on the main optical table. It was with these adjustments that

the linewidth was narrowed down to the 87 KHz, from the first measurements of a few hundred KHz.

More improvements could be made to continue optimizing the locks and minimizing environmental

vibrations.

There are also several features to mention on the frequency noise plot in Fig. 5.5 that have

large contributions to the linewidth. The first is the servo bump, which is the bump at the higher

frequencies in Fig. 5.6. This bump represents the frequency noise from the electronic components

used to lock the lasers and measure the noise. It is possibly to minimize this bump, but there will

always be a servo bump present. Changing the impedence values on some of the locking components

was able to decrease the servo bump to what is shown in Fig. 5.6.
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The other feature to note is the peak around 1.7 kHz in Fig. 5.6. This peak is not from either the

electrical noise or from the linewidth, but rather is a peak associated with a mechanical resonance

or technical noise. This peak has been observed in other OPSL lasers, so can be concluded that it is

not an environmental resonance. It is possible this resonance is amplitude noise of the OPSL pump,

but this is yet to be confirmed. However, it can be concluded this 1.7 KHz is not truly part of the

laser linewidth and once the source of the noise is located and suppressed, the linewidth of the laser

will reduce.

Overall, the measurement of 87 kHz is a good first measurement. But, if the 1.7 kHz bump can

be minimized or eliminated than the linewidth can be narrowed even farther, pushing < 1 kHz at

972 nm.

5.3.5 Approximation of the Linewidth at 243 nm

The linewidth of the 972 nm was measured, but an approximation can be made for how this linewidth

would translate through the SHG and to the 243 nm light. Through the analysis of the linewidth, the

β -separation line limits the line shape to be a Gaussian given by,

L(ν) = Ae
− (ν−ν0)

2

2σ2
ν , (5.17)

where ν is the variable frequency, ν0 is the central frequency, and σν is the FWHM, or linewidth

of the line shape. The SHG process means the frequency of the fundamental doubles, ν2 = 2ν and

ν02 = 2ν0, but how is σν related to σν2?

Since the process is a two photon process, each photon has the probability of laying anywhere

within the linewidth distribution. Therefore the linedwiths of the two photons are multiplied to-

gether, to account for any combination of energies that give the correct total energy required,

L1(ν)L2(ν) = Ae
− (ν−ν0)

2

2σ2
ν ∗ Ae

− (ν−ν0)
2

2σ2
ν = A2e

− 2(ν−ν0)
2

2σ2
ν . (5.18)

The distribution for the second harmonic can be expressed as a Gaussian as well and equated to the

two photon Gaussian,

L(ν2) = Be
− (ν2−ν02)

2

2σ2
ν2 = A2e

− 2(ν−ν0)
2

2σ2
ν , (5.19)

Where B = A2. The exponents can be equated to find the relationship between the linewidths,

− (ν2−ν02)
2

2σ2
ν2

=−2(ν−ν0)
2

2σ2
ν

. (5.20)

Substituting in the relationship between the two frequencies, i.e. ν2 = 2ν and ν02 = 2ν0, and can-
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celling the two’s on the right side of Eq. 5.20 gives,

(2ν−2ν0)
2

2σ2
ν2

=
(ν−ν0)

2

σ2
ν

. (5.21)

Simplifying,
4

2σ2
ν2

=
1

σ2
ν

, (5.22)

and

2σ
2
ν = σ

2
ν2
, (5.23)

thus, √
2σν = σν2 . (5.24)

This approximation shows that the linewidth through second harmonic generation increases by
√

2

from the fundamental linewidth. The same approximation can be used for the second stage of second

harmonic generation. Therefore,

σν4 = 2σν , (5.25)

and the linewidth at 243 nm is ∼174 kHz for 87 kHz linewidth at 972 nm.

Another quantity to consider is the quality factor, Q, and spectral resolution. The quality factor

is defined as,

Q =
ν

σν

. (5.26)

Comparing the fundamental to the 4th harmonic,

ν4

σ4ν

→ 4ν

2σν

, (5.27)

therefore,

Q4ν = 2Qν . (5.28)

The inverse of the quality factor is the spectral resolution which is an important ratio for precision

spectroscopy. In this case the spectral resolution of the 4th harmonic is half the resolution of the

fundamental. A higher spectral resolution will decrease the uncertainty in the overall spectroscopy

measurements. However, even though the laser frequency is quadrupled the spectral resolution only

drops by half.
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Chapter 6

Conclusion and Future Work

An IR OPSL was successfully used to generate UV light for the use in precision spectroscopy ex-

periments. The IR light was frequency doubled twice to generate 150 mW of 243 nm light. The

linewidth of the OPSL was also measured to be ∼ 87 kHz.

The process to generate UV light started with 1.7 W of CW light from the OPSL at 972 nm. Two

stages of enhancement cavities with nonlinear crystals were used in series with the laser to frequency

double the light twice down to 243 nm. The enhancement cavities have a bow-tie geometry to allow

the light to propagate in one direction through the cavity and also through the nonlinear crystal,

generating a uni- directional beam of second harmonic light. The enhancement cavity allows for

a more efficient SHG process, because the buildup of light inside the enhancement cavity is 60-

90 times the intensity of the input light. If the single pass process was used, the combination

of the two frequency doubling stages would result in an efficiency of ∼ 0.01%. By placing the

nonlinear crystals inside enhancement cavities, an efficiency of 11% was achieved, with a total at

150 mW of 243 nm light. The first enhancement cavity used an LBO crystal and a BBO in the second

enhancement cavity.

The second part of the experiment was to measure the linewidth of the OPSL. This was done by

using two uncorrelated OPSLs. The first laser was stabilized to a Fabry-Perot cavity. The two lasers

were beat together, to generate a measurable heterodyne beat. This signal was first used to lock the

second laser to the first laser. Then the frequency noise of the beat signal was used to determine

the relative linewidth between the two lasers. A careful analysis and separation of the frequency

noise associated with the true relative linewidth, yielded a linewidth of one OPSL to be 87 kHz.

The linewidth was successfully narrowed from the free running linewidth on the order of several

hundred MHz. However, the linewidth is still dominated by frequency noise due to mechanical or

technical vibrations and has the potential to be narrowed even further.

The narrow linewidth and high UV power of the OPSL and frequency doubling cavities have

serious implications in the field of precision spectroscopy. This laser system is currently being

replicated at the wavelength to drive a transition in 129Xe from the ground state. The future of this

laser system is part of the UCN collaboration to measure the EDM of the neutron. The first measure-
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ment will establish the 129Xe two photon transition labeled in Fig. 1.3b. Then, the EDM of 129Xe

needs to be measured with a higher precision than current measurements, which is |d(129Xe)|< 4.1

x 10−27e cm [25]. This will be performed using the same methods as described in Section 1.1.2.

Finally, 129Xe will be combined with 199Hg as a dual co-magnetometer for the measurement of

neutron EDM.
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