
Composite Recommendation:
Semantics and Efficiency

by

Min Xie

B.Eng., Renmin University of China, 2005
M.Eng., Renmin University of China, 2008

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

The Faculty of Graduate and Postdoctoral Studies

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

March 2015

c© Min Xie 2015



Abstract

Classical recommender systems provide users with a list of recommendations
where each recommendation consists of a single item, e.g., a book or DVD.
However, many applications can benefit from a system which is capable of
recommending packages of items. Sample applications include travel plan-
ning, e-commerce, and course recommendation. In these contexts, there is
a need for a system that can recommend the most relevant packages for the
user to choose from.

In this thesis we highlight our research achievements for the composite
recommendation problem. We first consider the problem of composite rec-
ommendation under hard constraint, e.g., budget. It is clear that this is
a very common paradigm for the composite recommendation problem. In
Chapter 3, we first discuss how given a fixed package schema, we can ef-
ficiently find the top-k most relevant packages with hard constraints. The
proposed algorithm is shown to be instance optimal, which means that no
algorithm in a reasonable class can perform more than a constant times bet-
ter, for some fixed constant. And we also propose relaxed solutions based
on probabilistic reasoning. In Chapter 4, we lift the constraint on the pack-
age schema, and discuss how efficient algorithms can be derived to solve
the more general problem with a flexible package schema. For this prob-
lem, again we propose both instance optimal algorithm and heuristics-based
solution which have been verified to be effective and efficient through our
extensive empirical study. Then in Chapter 5, motivated by the fact that
hard constraints sometimes might lead to unfavorable results, and following
the recent paradigm on “softening” the constraints, we study the problem
of how to handle top-k query processing with soft constraints. Finally, in
Chapter 6, we discuss a general performance tuning solution based on cached
views which can be leveraged to further optimize the various algorithms pro-
posed in this thesis.
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Chapter 1

Introduction

Recommender systems (RecSys) have become very popular of late and have
become an essential driver of many applications. However, classical RecSys
provide recommendations consisting of single items, e.g., books or DVDs.
Several applications can benefit from a system capable of doing composite
recommendation, or recommending packages of items, in the form of sets.
For example, in trip planning, a user is interested in suggestions for places
to visit, or points of interest (POI). There may be a cost associated with
each visiting place (time, price, etc.). Optionally, there may be a notion of
compatibility among items in a set, modeled in the form of constraints: e.g.,
“no more than 3 museums in a package”, “not more than two parks”, “the
total distance covered in visiting all POIs in a package should be ≤ 10 km”.
The user may have a limited budget and may be interested in suggestions
of compatible sets of POIs such that each set has a cost that is under a
budget and has a value (as judged from ratings) that is as high as possible.
In these applications, there is a natural need for the top-k recommendation
packages for the user to choose from. Some so-called “third generation”
travel planning web sites, such as NileGuide1 and YourTour2, are starting
to provide certain of these features, although in a limited form.

Another application arises in social networks, like twitter, where one of
the important challenges is helping users with recommendations for tweeters
to follow, based on their topics of interest3. Tweeters are ranked based on
how influential they are [119] and currently any new user is presented with
a list of influential tweeters on each topic from which they manually choose
tweeters they would like to follow3. To automate tweeter recommendation,
a tweeter’s influence score can be treated as their value and the frequency
with which they tweet as their cost. Compatibility may correspond to the
constraint that a given set of topics should be covered. Given a user’s topics
of interest as well as a budget representing the number of tweets the user can
deal with in a day, it would be useful to select compatible sets of tweeters to

1
http://www.nileguide.com (visited on 03/16/2015)

2
http://www.yourtour.com (visited on 03/16/2015)

3
https://blog.twitter.com/2010/power-suggestions (visited on 03/16/2015)

1



1.1. Challenges

follow such that their total influence score is maximized and the total cost is
within budget. Once again, it would be beneficial to give the user choice by
presenting them with the top-k sets of recommended tweeters to follow. We
note that some newly founded startups like Followformation4 are beginning
to provide services on recommending to users the top-k influential tweeters
in a specific domain.

As a third application, consider that a university student who wishes to
choose courses that are both highly rated by past students and satisfy certain
degree requirements. Assume each course is assigned a level, a category, and
a number of credits. In order to obtain an MSc degree, students must take 8
modules, subject to the following further constraints: (i) at least 75 credits
must come from courses in the “database” category, (ii) the minimum level
of any course taken is 6, and (iii) the maximum number of credits taken
at level 6 is 30. The requirements above can be expressed as a conjunction
of aggregation constraints. And based on popularity and other information
available, different sets of courses which satisfy all aggregation constraints
can be ranked to find the top most interseting ones to the student.

From these examples, we can easily infer that a standard recommenda-
tion engine which generates lists of items can be quite overwhelming for the
user since the user needs to manually figure out the package of items, and
the potential number of underlying items is huge. Thus we need a novel
system which is capable of capturing users’ preferences and recommending
high quality packages of items.

1.1 Challenges

1.1.1 Semantics

One of the core issues in the composite recommendation problem is how we
can determine the utility of a specific package for a user. To answer this
question, we note that there are usually two most important criteria for
determining the value of a package for a user: 1. the quality of the package,
e.g., the sum of the ratings of items within the package; 2. the constraints
specified by the user, e.g., no more than $500 for the cost.

For user-specified constraints, there are again two popular paradigms
of handling them. First, we can treat these users’ preferences as hard con-
straints, e.g., if a user specifies a cost budget of $500, only packages of which
the cost is within the budget will be considered. This paradigm is very useful

4
http://followformation.com (visited on 03/16/2015)

2



1.1. Challenges

for the cases where users know their preferences exactly.
On the other hand, we can also treat these users’ preferences as soft

constraints. For example, suppose we have a budget constraint on cost.
Then we can assign a score to each package based on its cost budget: the
higher the cost budget, the lower the score. Then this means we do not
necessarily rule out those packages which do not satisfy the constraint. And
this will be particularly useful for cases where users are not 100% sure of
their preferences. For example, though a user set a cost budget of $500 on
a trip to New York, he might be well interested in a package which cost
slightly higher than $500, but includes many high quality places of interest
and good restaurants.

Given a specific paradigm of handling user-specified constraints, there
are still multiple ways of determining the utility of a specific package to a
user. E.g., considering hard constraints based approach, given individual
item’s utility to the user, how to determine the utility of a set of items to
the user? Or for the soft constraints based approach, given the score based
on individual item’s utility, and also a score based on the constraints, how
to estimate the overall utility of a package for the user? As shown by many
previous works, we can leverage an additive utility function f which can be
used to rank packages [27, 34]. However, the challenge of this approach lies in
the fact that we need to determine the parameters associated with function
f . For example, in the database community [63], usually it is assumed that
f is given by the user. This assumption might be too strong considering the
fact that users many often not know their preference exactly. Thus a more
promising way for determining the utility function is through interaction
with the users using preference elicitation, as demonstrated in [27, 34].

1.1.2 Efficiency

Given different semantics of the composite recommendation problem as dis-
cussed in the previous section, another core issue is the efficiency of the
algorithm for finding the most relevant packages.

Consider the user-specified constraints, usually hard constraints will lead
to NP-hard optimization problems such as Knapsack [120], and Orienteering
[123], which render the underlying problem computationally difficult to scale
to a large dataset. And on the other hand, for soft constraints, even if we can
sort and find the top-k packages by an efficient algorithm, determining the
utility function which will be used for ranking might itself be a challenging
problem. E.g., as demonstrated in [27, 34], under a reasonable uncertainty
setting, the candidate utility function can range over an unlimited set of

3



1.2. Key Contributions

possibilities.

1.2 Key Contributions

As we shall see from later chapters of this thesis, different composite recom-
mendations problems might have significantly different types of properties,
thus instead of proposing a universal one-size-fits-all solution, we believe the
more optimal way is to exploit underlying different properties of different
problem settings. So in this thesis, depending on structure of the underly-
ing composite recommendation problem, we propose a portfolio of solutions
(Chapter 3,4,and 5) which can be selected from and tailored to satisfy dif-
ferent needs of the underlying application, and we also provide toolkits such
as cached views (Chapter 6) which can be leveraged to optimize various
proposed composite recommendation algorithms.

1.2.1 Composite Recommendation under Hard Constraints

In [123], we consider the problem of performing composite recommenda-
tion under hard constraints and having a fixed package schema (E.g., each
package has exactly one hotel, and one restaurant). We consider a simple
additive utility function, and connect this problem to existing solutions on
rank join [86] by extending these algorithms with aggregation constraints.
By analyzing their properties, we developed deterministic and probabilistic
algorithms for their efficient processing. In addition to showing that the
deterministic algorithm retains the minimum number of accessed tuples in
memory at each iteration, we empirically showed both our deterministic and
probabilistic algorithms significantly outperform the obvious alternative of
rank join followed by post-filtering in many cases and that the probabilistic
algorithm produces results of high quality.

In [120] and [121], we consider the more general case of composite rec-
ommendation by lifting the constraint on package schema. We proposed
the problem of generating top-k package recommendations that are compat-
ible and are under a cost budget, where a cost is incurred by visiting each
recommended item and the budget and compatibility constraints are user
specified. We identify the problem of finding the top package as being in-
tractable since it is a variant of the Knapsack problem, with the restriction
that items need to be accessed in value-sorted order. So we developed two
2-approximation algorithms that are designed to minimize the number of
items accessed based on simple statistics (e.g., minimum value) about item
costs. The first of these, InsOpt-CR-Topk, is instance optimal in a strong

4



1.2. Key Contributions

sense: every 2-approximation algorithm for the problem must access at least
as many items as this algorithm. The second of these, Greedy-CR-Topk, is
not guaranteed to be instance optimal, but is much faster. We experimen-
tally evaluated the performance of the algorithms and showed that in terms
of the quality of the top-k packages returned both algorithms are close to
each other and deliver high quality packages; in terms of the number of
items accessed Greedy-CR-Topk is very close to InsOpt-CR-Topk, but in
terms of running time, Greedy-CR-Topk is much faster. We also showed
that using histogram-based information about item costs, rather than sim-
ply knowledge of the minimum item cost, further reduces the number of
items accessed by the algorithms and improves their running time.

1.2.2 Composite Recommendation under Soft Constraints

We also study how composite recommendation is possible using soft con-
straints [125, 126]. Following [27, 34], we assume the system does not have
the complete information about user’s utility function, and we leverage the
existing preference elicitation frameworks for eliciting preferences from users.
However the challenge here is how can we perform the elicitation efficiently,
especially considering the fact that we are reasoning about utilities of combi-
nations of items. We propose several sampling-based methods which, given
user feedback, can capture the updated knowledge of the underlying util-
ity function. Finally, we also study various package ranking semantics for
finding top-k packages, using the learned utility function.

1.2.3 Efficiency Optimization

A key component in the composite recommendation problem is the searching
of the top-k packages under a given semantics. In classical database query
optimization, use of materialized views is a popular technique for speeding
up query processing. Recently, it was extended to top-k queries [45]. In
[124] we consider a general optimization procedure based on cached views
which can be leveraged to further reduce the computational cost of pro-
cessing top-k queries. We show that the performance of the state-of-the-art
top-k query answering using view algorithm LPTA [45] suffers because of it-
erative calls to a linear programming sub-procedure, which can be especially
problematic when the number of views is large or if the dimensionality of
the dataset is high. By observing an interesting characteristic of the LPTA
framework, we proposed LPTA+, an improved algorithm for using cached
top-k views for efficient query processing, which has greatly outperformed
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LPTA. Furthermore, LPTA is not directly applicable in our setting of top-
k query processing with cached views, where views are not complete tuple
rankings and base views are not available. Thereto, we adapted both algo-
rithms so that they can overcome such limiting assumptions. Finally, we
proposed an index structure, called IV-Index, which stores the contents of
all cached views in a central data structure in memory, and we can leverage
IV-Index to answer a new top-k query much more efficiently compared with
LPTA and LPTA+. Using comprehensive experiments, we showed LPTA+

substantially improves the performance of LPTA while the algorithms based
on IV-Index outperform both these algorithms by a significant margin. We
discuss in this thesis how the proposed optimization framework can be inte-
grated into various composite recommendation algorithms proposed in this
thesis.

1.3 Thesis Outline

The rest of this dissertation is organized as follows. In Chapter 2, we provide
a brief background and review related work. In Chapter 3, we consider the
first problem in composite recommendation which deals with fixed package
schema and hard constraints. In Chapter 4, we lift the constraint on the
schema of the package, and consider the problem of composite recommen-
dation with flexible package schema and hard constraint. In Chapter 5, we
consider how soft constraints can be considered in the composite recom-
mendation framework. We also discuss how to elicit user’s preference using
implicit feedback. Finally, in Chapter 6, we discuss a general tuning frame-
work based on cached views which can be leveraged to improve performance
of various proposed top-k package searching algorithms. In Chapter 7, we
summarize this dissertation and list directions for future research in com-
posite recommendation.
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Chapter 2

Related Work

2.1 Composite Recommendation

2.1.1 Application in Trip Planning

Our composite recommendation problem is most related to recent studies on
travel package recommendation. In [19], the authors are interested in find-
ing the top-k tuples of travel entities. Examples of entities include cities,
hotels and airlines, while packages are tuples of entities. Instead of query-
ing recommender systems, they query documents using keywords in order
to determine entity scores. Similar to our work [123], a package in their
framework is of fixed schema, e.g., one city, one hotel, and one airline, with
fixed associations among the entities essentially indicating all possible valid
packages.

Obviously in many real world scenarios, we would like to have flexible
packages schema, thus frameworks which allow flexible package schema con-
figuration were proposed by several researchers. A representative work in
this category is [47], in which the authors propose a novel framework to auto-
matically generate travel itineraries from online user-generated data like pic-
ture uploads and formulate the problem of recommending travel itineraries
of high quality where the travel time is under a given time budget. However,
the value of each POI in [47] is determined by the number of times it is men-
tioned by users, whereas in our work [120, 121], item value is a personalized
score which comes from an underlying recommender system, and we con-
sider the very practical setting where accessing these items is constrained
to be in value-sorted order. Similar settings of [47] are also explored in [92].
In [39], the authors extend the previous works by considering how multi-
day trips can be planned. As discussed in [47] and [121], when travel time
between POIs is taken into consideration, the underlying problem is closely
related to the classical Orienteering problem [38], which seeks a maximum
value walk on a graph subject to a budget constraint on the cost. However,
unlike [120, 121], the orienteering problem does not take POI access cost
into consideration which can be less desirable since the number of POIs in
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the database might be huge.
In the database community, researchers have considered the travel pack-

age recommendation problem from the query processing perspective. E.g.,
in [111], the authors considered the optimal sequenced route (OSR) query
which returns a sequence of POIs which satisfy the following two properties:
1. the sequence of POIs follow exactly a given “POI type template” which
specifies order and type of each POI; 2. the total travel distance of the re-
turned POIs is minimized. In [40], the authors extend OSR by considering
partial sequence-based POI type template. In [88], the authors propose trip
planning queries (TPQ), with which the user specifies a subset (not a se-
quence) of location types and asks for the optimal route from a given starting
location to a specified destination which passes through at least one POI of
each type specified. In [69, 83], the authors consider a similar query type
as OSR with which POI type templates are specified using keyword-based
query. Clearly, the query oriented travel package search problem requires
users to know exactly or at least roughly what they want in a travel pack-
age, which may not be practical in real world travel applications. In this
thesis, we are more interested in generating travel packages by leveraging
users’ previous travel behavior and minimizing the amount of information
that needs to be provided by the user, which is similar as the state-or-the-art
recommender systems [16].

2.1.2 Application in Course Planning

In [74, 99, 102], the authors study various composite recommendation prob-
lem related to course planning. The resulting product of these works, Cours-
eRank [102], is a project motivated by a Stanford course planning application
for students, where constraints are of the form “take ki from Si,” where ki is
a non-negative integer and Si is a set of courses. Similar to our work [120],
each course in this system is associated with a score which is calculated us-
ing an underlying recommendation engine. Given a number of constraints of
the form above (and others), the system finds a minimal set of courses that
satisfies the requirements and has the highest score. In [99, 101], the authors
extend CourseRank with prerequisite constraints, and proposes various al-
gorithms that return high-quality course recommendations which satisfy all
the prerequisites. Similar to [120], such recommendations need not be of
fixed size. However, [99, 101, 102] do not consider the cost of items (cf.
courses) which can be important for many composite recommendation ap-
plications.
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2.1.3 Application in E-commerce

Finally, E-commerce represents another promising application in which com-
posite recommendation engines can be very useful. In [106], the authors
study the problem of recommending “satellite items” related to a given
“central item” subject to a cost budget. Every package found by the pro-
posed algorithm is composed of one specific central item and several satellite
items. Clearly, the target of this work is a dedicated engine tailored for a
specific type of recommendation, which is different from our works such as
[120, 121, 123] which targets the more general composite recommendation
problem without a specific shape in mind for the recommendation package.
However, we note that we could easily extend our algorithm to make such
recommendations by post-filtering as discussed in [120]. In [37], the authors
propose a framework which can help users search items of fixed pair-wise re-
lationships. The problem studied in [37] is similar to [19], thus the proposed
framework is not intended to search packages with flexible schema.

In [56], the authors design a shopping tool which can help users find
existing deals about bundles of items from various E-commerce sources.
Compared with our work [120, 121, 123, 124], the shopbot proposed in [56]
cannot create new packages which are tailored to users’ interest, but instead
focus on finding pricing and other information of existing packages which are
provided from different sources. The general framework of pricing strategies
of item bundles in marketing science has been discussed in [23].

The composite recommendation is also related to Combinatorial Auction
in E-commerce [48], since the underlying objects in combinatorial auction are
also packages of items. However, combinatorial auction focuses on determin-
ing item or package allocation under a multi-participant scenario, whereas
in the composite recommendation problem studied in this thesis, we focus
on making personalized recommendation where there exists no competition
for packages among users, which is in alignment with the state-or-the-art
recommender systems [16].

2.1.4 Other Applications

In addition to travel planning, course planning, and E-commerce, there also
exist other applications where composite recommendation can be extremely
beneficial. E.g., in [32], the authors proposed a framework CARD which pro-
vides the top-k recommendations of composite products or services. Fine-
grained control over specifying user requirements, as well as how atomic
costs are combined, is provided by an SQL-like language extended with
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features for decision support. Each composite recommendation is of fixed
schema, making the problem simpler; and CARD returns only exact, not
approximate, solutions.

As another example, the problem of team formation studied in [78] can
also be considered as a composite recommendation problem. Here each per-
son has a set of skills and pairs of people have a collaboration cost associated
with them (lower cost indicates better collaboration). Given a task requir-
ing a set of skills, the problem is to find a set of people whose skills cover
those required and who have a low aggregated collaboration cost. The no-
tion of compatibility in [120] can model their collaboration cost. Similar to
CourseRank, in [78], the people (items) themselves are not rated. A fur-
ther difference with [120] is that in [120] we wish to maximize the aggregate
item (people) ratings subject to item and compatibility costs, rather than
minimize compatibility cost.

We note that although we do not include in our system complex con-
straints such as those in [78, 99, 101, 102, 116], for applications where com-
plex constraints exist, we can leverage existing work to post-process each
composite recommendation generated by our algorithms to ensure that the
constraints are satisfied.

2.2 Preference Handling and Elicitation

There has been much investigation into the handling of preferences over
items, e.g., general preference frameworks [72] [41], skyline queries [25, 95,
96], and top-k queries [63]. While different approaches for reasoning about
preferences might be suitable for different applications, as discussed in [70], a
more popular and practical approach is to leverage a general utility function
which succinctly characterizes users’ trade-offs among different properties
of the items under consideration. Among various forms of utility function
which have been studied, the most popular one is the simple linear utility
function or additive utility function [63, 70].

While item preference reasoning has been popular for a long time, only
recently have researchers started considering preference handling for pack-
ages, or sets of items. This calls for exploring a much larger candidate
space, and usually has an aggregation-based feature space (e.g., total cost
budget or average rating), which further complicates the underlying prob-
lem. Existing set preference works by researchers in artificial intelligence
usually focus on the formal aspects of this problem, e.g., expressiveness of
the preference language. These works include [31] which considers generaliz-
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ing item preferences to set preferences through order lifting and incremental
improvements, and [29, 30] which considers extensions of CP-nets proposed
in [28] to sets of items. But the proposed models in these works are often
not practical for applications with large amount of items. As commented in
[29], the reason is because a language for specifying preferences between sets
of items of arbitrary size, to be understood ceteris paribus, there is a inher-
ent high complexity. E.g., comparing two sets of items under the preference
language proposed in [29] is PSPACE-complete, and algorithms proposed
in [30] has a worst-case exponential time complexity. In [51] and [104], the
authors study preferences over sets with an emphasize on diversity of the
underlying sets.

In [129] and [87], the authors study skyline packages of fixed cardinality,
which finding packages of fixed cardinality and are better than or equal
to other packages on all attributes under consideration. However, a severe
drawback of this approach is that the number of skyline packages is usually
prohibitive. For example, in [129], the number of skyline packages can be in
the hundreds or even thousands for a reasonably-sized dataset.

In this dissertation, following the popular paradigm of reasoning pref-
erence about individual items [63, 70], we take a quantitative and utility
function-based approach for reasoning about preference under the compos-
ite recommendation framework. Specifically, we consider the utility of a
package to be a linear weighted combination of various properties of the
package (e.g., quality and cost), and the package property can be further
described by aggregations over attribute values of items within the package.

However, though linear utility function can be leveraged to model trade-
offs among different package properties, still weights of the utility function
need to be determined. A simple approach for reasoning about preference
is to assume weights of the utility function are given by the user, e.g., as we
have discussed in [120, 121, 123]. However, this may not be practical since
users usually cannot know the weights for sure. For example, users would
not be able to tell the system that they are 0.8 interested in the overall cost,
and 0.2 interested in the overall quality of a package. Thus in Chapter 5,
we propose to extend our works in Chapter 3 and Chapter 4, and study
how weights of the utility function can be learned through implicit feedback
using preference elicitation techniques [27, 34].

For eliciting preferences, most existing works have been focusing on items
instead of packages. In [130], the authors propose an interactive way to elicit
preferred items. The paper does not consider preferences for packages, and
more importantly, they assume that the weight parameters of the underly-
ing utility function follow a uniform distribution, and do not discuss how
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user feedback can be leveraged to update the utility function. In [95] and
[67], the authors have a similar setting of inferring preferences given some
partial comparisons of items. However, these two papers focus on inferring
a most desirable order directly using these given partial comparisons; in our
work, we took a different Bayesian-based approach by modeling the param-
eters of the utility function using a distribution. The most desirable order
of packages depends directly on the uncertain utility function following dif-
ferent ranking semantics. Feedback received only affects the posterior of the
parameter distribution.

In [107], the authors consider an interactive way of ranking travel pack-
ages. However, the user feedback model in [107] is defined in such a way
that for each iteration, the user is asked to rank a set of items instead of a
set of packages. Thus every decision the user makes is “local” in the sense
that the user is not able to personalize her/his preference over packages as
a whole; it is possible that items favored in one iteration might become less
desirable after seeing some additional items. Also unlike our framework in
which the elicitation of preferences is implicit, [107] requires several itera-
tions of explicit preference elicitation before the system would show the user
any recommended package.

Compared with existing work on interactive preference elicitation for
items [95, 96], our search space of candidate packages is much larger, and we
consider features which are based on aggregations of item attribute values,
thus the problem becomes more challenging.

2.3 Top-k Query Processing

Given a linear utility function, for both hard constraints based composite
recommendation (as in Chapter 3 and Chapter 4), and soft constraints based
composite recommendation (as in Chapter 5), the core of the composite
recommendation algorithms is in finding the most promising packages given
the linear utility function [120, 121, 123, 125]. As we will demonstrate in this
dissertation, this problem can be cast as a variation of the classical problem
of top-k query processing [53].

For general top-k query processing, the most popular approach is the
family of algorithms embodied by Threshold Algorithm (TA) / No Random
Access Algorithm (NRA) as proposed by Fagin et al. in [53]. While TA and
NRA differ in whether random access to the database is allowed, this family
of algorithms usually share a similar query processing framework which is
outlined in Algorithm 1. In this algorithm framework, given a database R
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of items, a query vector w for the linear utility function, and the number of
items required k, we first sort items into a set of lists w.r.t. each attribute
under consideration. Then these lists are accessed following a certain order
(usually round robin). For each item t accessed, we can put t into the result
queue if it is better than the kth item in the queue. Because items are
sorted in each list w.r.t. w or the desirable order, we could determine an
upperbound value τ on the possible value which can be achieved by any
unseen items. If the current kth item in R has value larger than or equal to
τ , we know we have already found the top-k items w.r.t. w.

Algorithm 1: TA(R, w, k)

1 L ← Lists of items in R which are sorted w.r.t. every attribute;
2 O ← Priority queue for the top-k results;
3 τ ← ∞;
4 while |O| < k ∨ value(O.kthResult) ≤ τ do
5 Li ← Next attribute following round robin;
6 t ← Li.next();
7 if |O| < k ∨ value(O.kthResult) < value(t) then
8 O.insert(t);

9 τ ← Upperbound value given current access positions in each list;

10 return O

Recently, various improvements to the original algorithms such as the
Best Position Algorithm [18] have been proposed, while variations of top-k
queries such as Rank Join [62] and Continuous Top-k Queries [128] have been
studied. Finally, Li et al. study how top-k algorithms might be implemented
in a relational database [86]. An excellent survey on top-k query processing
can be found in [63].

2.3.1 Domination-based Pruning and Variable Elimination

As discussed in the main TA algorithm framework, the key in top-k query
processing is to maintain in the memory a set of promising top-k result
candidates, and iteratively check whether there exist a set of k candidates
which can “beat” any of the remaining items w.r.t. the query, thus becoming
the optimal top-k results. As we shall see in later chapters of this thesis, the
performances of many variations of the top-k algorithms depends on how
many candidate items we need to maintain in the memory, thus a common
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way to facilitate top-k query processing is to prune away items which are
not able to make into the top-k results as early as possible.

A popular approach for this purpose is the domination-based pruning, of
which the idea can be described as follows. Consider a linear utility function
whose parameters are described by w. For an item t, we say it dominates
another item t′, t � t′, if t is better than or equal to t′ on every criterion
w.r.t. w, and is better than t′ on at least one criterion. Then obviously w.r.t.
w, there is no hope for t′ to make into the top-1 result given the existence
of t, thus t′ can be eliminated from consideration. This domination-based
pruning can be easily extended to the top-k case.

We discuss in [123] the properties of aggregation constraints in the com-
posite recommendation framework and develop an efficient algorithm for
processing rank joins with aggregation constraints, based on two strategies
for domination-based pruning. We note that similar approaches were also
explored in [129] and [87] in the context of skyline sets.

The domination-based pruning is also related to variable elimination
(VE) in solving constraint satisfaction problem (CSP) [76]. The key idea
here is to transform the original CSP into a new reduced CSP which is
equivalent to the original CSP. To enable such transformation, we consider
variables one by one. For each variable X under consideration, we first take
all constraints which involve X and generate intermediate partial solutions
which satisfy each constraint under investigation. A join operation is per-
formed to merge all intermediate partial solutions, and then variable X can
be removed from consideration by generating new constraints which do not
involve X. E.g., as discussed in [76], consider a CSP that contains the vari-
ables A, B, and C. Suppose the only constraints under consideration are
A < B and B < C, then we could remove B by joining partial solutions of
the CSP which satisfy each of the above two constraints, and consider a new
constraint A < C for the join result. Clearly, for each join result satisfying
A < C, there must exist an assignment to variable B which extends it to a
solution of the original problem.

Clearly, both domination-based pruning and variable elimination corre-
spond to approaches which aim at removing variables/items which do not
contribute to the optimal solution of the underlying problem. However, un-
like VE which aims at removing variables by “marginalizing” their effects on
the underlying problem, domination-based pruning aims at removing vari-
ables/items which are not promising under a given query. Also most existing
works on VE does not consider aggregation effects over variables, which is
a key in the composite recommendation problem, as constraints are usually
specified as aggregations over item attribute values.
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2.4 Constraint Optimization

In constraint optimization the task is to find a solution that optimizes some
cost function and satisfies the specified constraints [49, 76]. The constraint
optimization problem finds applications in various domains such as planning,
scheduling, and auction.

As discussed in [49], the general constraint optimization problems are
usually solved by branch-and-bound search algorithms or dynamic program-
ming. For the search-based algorithm, the efficiency of the algorithm de-
pends on its ability to cut the branches which do not lead to the optimal so-
lution during the search process. This dead branch detection is done usually
with a heuristic function which computes a lower bound of the current sub-
problem at the branch under consideration. E.g., we can use either weighted
CSP local consistency [79] or mini-bucket elimination [50]. Dynamic pro-
gramming was proposed as an alternative to the branch-and-bound search
[49], and the algorithm was introduced in the context of sequential decision
making.

When the underlying constraints and cost functions in a constraint op-
timization problem are all linear, the constraint optimization problem can
also be solved through general integer programing or linear programming
solvers such as CPLEX 5.

In the composite recommendation problem studied in this thesis, each
underlying constraint optimization problem usually takes a specific restricted
form. Thus instead of leveraging a general purpose solver, we can exploit
the property of the underlying problem and consider solvers of simpler prob-
lems such as Knapsack [71] for the composite recommendation problem with
hard constraint and flexible schema (Chapter 4), and RankJoin [62] for the
composite recommendation problem with hard constraint and fixed schema
(Chapter 3).

5http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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Chapter 3

Composite Recommendation
with Hard Constraints:
Fixed Package Schema

3.1 Introduction

In this chapter, we first discuss how composite recommendation problem
with hard constraint and fixed package schema can be efficiently solved.

In the last several years, there has been tremendous interest in rank join
queries and their efficient processing [54, 62, 110]. In a rank join query, you
are given a number of relations, each containing one or more value attributes,
a monotone score aggregation function that combines the individual values,
and a number k. The objective is to find the top-k join results, i.e., the join
results with the k highest overall scores. Clearly, composite recommendation
with fixed package schema can be directly casted to a rank join problem.
E.g., additive utility function can be considered as a specific instance of the
montone score aggregation function, and the only thing missing in rank join
is how to handle the user specified constraints, which will be addressed in
this chapter.

Rank join can be seen as a generalization of classic top-k queries where
one searches for the top-k objects w.r.t. a number of criteria or features [53].
For classic top-k queries, assuming that objects are stored in score-sorted
inverted lists for each feature, the top-k objects w.r.t. a monotone score
aggregation function can be computed efficiently using algorithms such as
TA, NRA and their variants [53]. These algorithms satisfy a property called
instance optimality, which intuitively says that no algorithm in a reasonable
class can perform more than a constant times better, for some fixed constant.

Ilyas et al. [62] were the first to develop an instance-optimal algorithm
for rank join queries involving the join of two relations. Their algorithm
employs the so-called corner-bounding scheme. Polyzotis et al. [110] showed
that whenever more than two relations are joined or relations are allowed to
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contain multiple value-attributes, the corner bounding scheme is no longer
instance optimal. They proposed a tight bounding scheme based on main-
taining a “cover set” for each relation, and using this bounding scheme
results in instance optimal algorithms [54, 110].

For the composite recommendation problem, as we have discussed before,
constraints can add considerable value [85, 97, 103, 105] in two ways. First,
they allow the relevant application semantics to be abstracted and allow
users to impose their application-specific preferences on the query (or mining
task) at hand. Second, constraints can often be leveraged in optimizing the
query or mining task at hand. In this chapter, we argue that aggregation
constraints can enrich the framework of rank join queries by including such
application semantics.

We should highlight the fact that, in our constraints, aggregation is
applied to values appearing in each tuple resulting from a join, rather than
in the traditional sense where aggregation is over sets of tuples. In this
sense, aggregation constraints exhibit some similarity to selections applied
to a join.

A natural question is how to process rank joins with aggregation con-
straints efficiently. A naive approach is to perform the rank join, then apply
post-filtering, dropping all results that violate the constraints, and finally
report the top-k among the remaining results. We show that rank joins with
aggregate constraints can be processed much faster than this post-filtering
approach. First, we develop techniques for pushing constraint processing
within the rank join framework, allowing irrelevant and “unpromising” tu-
ples to be pruned as early as possible. As a result, we show that tuples that
will not contribute to the top-k answers can be detected and avoided. Sec-
ond, based on the observation that such an optimized algorithm still needs
to access many tuples, we propose a probabilistic algorithm which accesses
far fewer tuples while guaranteeing the quality of the results returned.

Specifically, we make the following contributions in this work:

• we introduce the problem of efficient processing of rank join queries
with aggregation constraints (Sec. 6.2), showing the limitations of the
post-filtering approach (Sec. 3.3);

• we analyze the properties of aggregation constraints and develop an
efficient algorithm for processing rank joins with aggregation con-
straints, based on two strategies for pruning tuples (Sec. 3.4);

• we also develop a probabilistic algorithm that terminates processing
in a more aggressive manner than the deterministic approach while
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guaranteeing high quality answers (Sec. 5.2);

• we report on a detailed set of experiments which show that the execu-
tion times of our algorithms can be orders of magnitude better than
those of the post-filtering approach (Sec. 3.6).

3.2 Problem Definition

Consider a set R of n relations {R1, R2, . . . , Rn}, with Ri having the schema
schema(Ri), 1 ≤ i ≤ n. For each tuple t ∈ Ri, the set of attributes over
which ti is defined is schema(t) = schema(Ri). We assume each relation
has a single value attribute V , and (for simplicity) a single join attribute J .6

Given a tuple t ∈ Ri and an attribute A ∈ schema(t), t.A denotes t’s value
on A. We typically consider join conditions jc corresponding to equi-joins,
i.e., J = J .

Let R′ = {Rj1 , Rj2 , . . . , Rjm} ⊆ R. Given a join condition jc, we define
s = {t1, . . . , tm} to be a joinable set (JS) if ti ∈ Rji , i = 1, . . . ,m, and ./jc
m
i=1{ti} 6= ∅. If m = n, we call s a full joinable set (FJS), while if m < n we
call s a partial joinable set (PJS). We denote by JS the set of all possible
(partial) joinable sets. Furthermore, for a JS s which comes from R′, we
define Rel(s) = R′.

3.2.1 Language for Aggregation Constraints

Aggregation Constraints can be defined over joinable sets. Let AGG ∈
{MIN,MAX,SUM,COUNT,AV G} be an aggregation function, and let
the binary operator θ be ≤, ≥ or =.7 Let p ::= A θ λ be an attribute value
predicate, where A is an attribute of some relation, θ is as above, and λ is a
constant. We say tuple t satisfies p, t |= p, if A ∈ schema(t) and t.A θ λ is
true. An attribute value predicate p can be the constant true in which case
every tuple satisfies it. A set of tuples s satisfies p, s |= p, if ∀t ∈ s, t |= p.

We now consider aggregation constraints which are applied to tuples
resulting from a join. A primitive aggregation constraint (PAC) is of the
form pc ::= AGG(A, p) θ λ, where AGG is an aggregation function, A is an
attribute (called the aggregated attribute), p is an attribute value predicate
(called the selection predicate) as defined above, and θ and λ are defined as

6Our results and algorithms easily extend to more general cases of multiple value-
attributes and/or multiple join attributes, following previous work such as [54].

7Operators < and > can be treated similarly to ≤ and ≥.
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above. Given a joinable set s, we define

Evalpc(s) = AGG([t.A | t ∈ s ∧ t |= p])

where we use [. . .] to denote a multiset. Then we say s satisfies the primitive
aggregation constraint pc, s |= pc, if Evalpc(s) θ λ holds.

The language for (full) aggregation constraints can now be defined as
follows:

Predicates: p ::= true |A θ λ | p ∧ p
Aggregation Constraints: ac ::= pc | pc ∧ ac

pc ::= AGG(A, p) θ λ

The meaning of a full aggregation constraint ac is defined in the obvious
way, as are the notions of joinable sets satisfying ac and the satisfying subset
Rac of a relation R resulting from a join.

Let R be a relation resulting from a (multi-way) join R1 onjc · · · onjc Rm.
Each tuple t ∈ R can also be viewed as a joinable set st of tuples from
the relations Ri. Given an aggregation constraint ac, we define Rac as
{t | t ∈ R ∧ st |= ac}.

Note that by adding a special attribute C to each relation and setting
the value of each tuple on C to be 1, COUNT can be simulated by SUM .
Similarly, when the number of relations under consideration is fixed, AV G
can also simulated by SUM . So to simplify the presentation, we will not
discuss COUNT and AV G further.

3.2.2 Problem Studied

We assume the domain of each attribute is normalized to [0, 1]. Let R
denote the set of reals and S : Rn → R be the score function, defined over
the value attributes of the joined relations. Following common practice, we
assume S is monotone, which means S(x1, ..., xn) ≤ S(y1, ..., yn) whenever
∀i, xi ≤ yi. To simplify the presentation, we will mostly focus on S being
SUM, so given a joinable set s, the overall value of s, denoted as v(s), can
be calculated as v(s) =

∑
t∈s t.V . Furthermore, in this chapter we assume

that the join condition jc is equi-join, which means that given two tuples
t1 and t2 from two relations, {t1} ./jc {t2} 6= ∅ iff t1.J = t2.J . For brevity
we will omit the join condition jc from the join operator when there is no
ambiguity.

Let ac be a user-specified aggregation constraint (which may be a con-
junction of PACs) and jc be the join condition. We study the problem of
Rank Join with Aggregation Constraints (RJAC):
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Definition 1 Rank Join with Aggregation Constraints: Given a set
of relations R = {R1, . . . , Rn} and a join condition jc, let RS denote ./
n
i=1Ri. Now given a score function S and an aggregation constraint ac,
find the top-k join results RSack ⊆ RSac, that is, ∀s ∈ RSack and ∀s′ ∈
RSac −RSack , we have v(s) ≥ v(s′).

We denote an instance of the RJAC problem by a 5-tuple I = (R, S, jc, ac, k).
Because we are usually only interested in exactly k join results, we will dis-
card potential join results which have the same value as the kth join result
in RSack ; however, the proposed technique can be easily modified to return
these as well if needed. Our goal is to devise algorithms for finding the
top-k answers to RJAC as efficiently as possible.

3.3 Related Work

3.3.1 Rank Join and Post-Filtering

The standard rank join algorithm with no aggregation constraints works as
follows [62, 110]. Given a set of relations R = {R1, . . . , Rn}, assume the
tuples of each relation are sorted in the non-increasing order of their value.
The algorithm iteratively picks some relation Ri ∈ R and retrieves the next
tuple t from Ri. Each seen tuple t ∈ Ri is stored in a corresponding buffer
HRi, and t is joined with tuples seen from HRj , j 6= i. The join result is
placed in an output buffer O which is organized as a priority queue. To
allow the algorithm to stop early, the value of t is used to update a stopping
threshold τ , which is an upperbound on the value that can be achieved using
any unseen tuple. It can be shown that if there are at least k join results
in the output buffer O which have value no less than τ , the algorithm can
stop, and the first k join results in O are guaranteed to be the top-k results.

To characterize the efficiency of a rank join algorithm, previous work has
used the notion of instance optimalilty, proposed by Fagin et al. [53]. The
basic idea is that, given a cost function cost (which is a monotone function of
the total number of tuples retrieved), with respect to a class A of algorithms
and a class D of data instances, a top-k algorithm A is instance optimal if,
for some constants c0 and c1, for all algorithms B ∈ A and data instances
D ∈ D, we have cost(A,D) ≤ c0 × cost(B,D) + c1.

Instance optimality of a rank join algorithm is closely related to the
bounding scheme of the algorithm, which derives the stopping threshold
at each iteration. It has been shown in [110] that an algorithm using the
corner-bounding scheme [62] is instance optimal if and only if the underlying
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join is a binary join and each relation contains one value attribute. To en-
sure instance optimality in the case of multiple value attributes per relation
and multi-way rank join, Schnaitter et al. [110] proposed the feasible region
(FR) bounding scheme. This FR bound was later improved by Finger and
Polyzotis [54] using the fast feasible region (FR*) bounding scheme.

Suppose each relation has m value attributes, then the basic idea of
FR/FR* bounding scheme is to maintain a cover set CRi for each relation
Ri. CRi stores a set of points that represents the m-dimensional boundary
of the values of all unseen tuples in Ri. Given an n-way rank join over
R = {R1, . . . , Rn}, to derive the stopping threshold τ , we first enumerate
all possible subsets of R. Then for each subset R′, we derive the maximum
possible join result value by joining the HRs of relations in R′ with the CRs
of relations in R−R′. The threshold τ is the maximum of all such values.
We note that although FR/FR* bounding scheme is tight, its complexity
grows exponentially with the number of relations involved [110]. Indeed,
following Finger and Polyzotis [54], we mainly consider rank joins with a
small number of relations.

In addition to the bounding scheme, the accessing strategy (which deter-
mines which relation to explore next) may also affect the performance of the
rank join algorithm. For example, a simple accessing strategy such as round-
robin often results in accessing more tuples than necessary. More efficient
accessing strategies include the corner-bound-adaptive strategy [62] for bi-
nary, single value-attribute rank join and the potential adaptive strategy [54]
for multi-way, multiple value-attribute rank join.

As shown in the introduction, there are many situations where it is
very natural to have aggregation constraints along with rank join. While
previous work on rank join algorithms has devoted much effort to optimizing
the bounding scheme and accessing strategy, little work has been done on
opportunities for improving runtime efficiency by using constraints that may
be present in a query.

One way to handle aggregation constraints in the standard rank join al-
gorithm is by post-filtering each join result using the aggregation constraints.
It can be shown that an algorithm based on post-filtering remains instance
optimal. However, as we will demonstrate in the next section, this näıve
algorithm misses many optimization opportunities by not taking full advan-
tage of the properties of the aggregation constraints, and, as we will show
in Sec. 3.6, can have poor empirical performance as a result. This observa-
tion coincides with recent findings that instance optimal algorithms are not
always computationally the most efficient [54].
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3.3.2 Other Related Work

As described in the introduction, rank join can be seen as a generalization of
classic top-k querying where one searches for the top-k objects w.r.t. a num-
ber of criteria or features [53]. Ilyas et al. [64] discussed how to incorporate
binary rank join operator into relational query engines. The query optimiza-
tion framework used in [64] follows System R’s dynamic programming-based
approach, and in order to estimate the cost of the rank join operator, a novel
probabilistic model is proposed. In [86], Li et al. extended [64] by provid-
ing a systematic algebraic support for relational ranking queries. Tsaparas
et al. proposed in [117] a novel indexing structure for answering rank join
queries. In this work, various tuple pruning techniques are studied to reduce
the size of the index structure. In [94], Martinenghi et al. proposed a novel
proximity rank join operator in which the join condition can be based on a
nontrivial proximity score between different tuples. A more detailed survey
of top-k query processing and rank join can be found in [63], We note that
no previous work on rank join has considered aggregation constraints.

Our work is also closely related to recent efforts on package recommen-
dation [19, 47, 100, 106, 120]. Though some of these works [47, 120] discuss
finding high-quality packages under certain aggregation constraints such as
budgetary constraints, none of them provide a systematic study of aggrega-
tion constraints. In [19], the authors propose a rank join-based algorithm for
finding travel packages of a fixed schema, however, in this work, the authors
do not consider aggregation constraints which can be very useful in practice.

3.4 Deterministic Algorithm

We begin by illustrating rank joins with aggregation constraints.

Example 1 [Rank Join with Aggregation Constraints] Consider two rela-
tions, Museum and Restaurant, each with three attributes, Location, Cost
and Rating, where Rating is the value attribute and Location is the join
attribute (see Fig. 3.1). Assume we are looking for the top-2 results sub-
ject to the aggregation constraint SUM(Cost, true) ≤ 20. Under the corner
bounding scheme and round-robin accessing strategy, the algorithm will stop
after accessing 5 tuples in Museum and 4 tuples in Restaurant. Note that
even though the joinable set {t3, t7} has a high value, it is not a top-2 result
because it does not satisfy the constraint.

Our motivation in this section is to develop efficient pruning techniques
for computing rank joins with aggregation constraints fast. Thereto, we
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Figure 3.1: Post-filtering rank join with aggregation constraints.

first present a number of properties of aggregation constraints and show
how these properties can be leveraged to prune seen tuples from the in-
memory buffers. We then propose an efficient rank join algorithm supporting
aggregation constraints that minimizes the number of tuples that are kept
in the in-memory buffers, which in turn helps cut down on useless joins.

3.4.1 Properties of Aggregation Constraints

Let pc ::= AGG(A, p) θ λ be a primitive aggregation constraint (PAC). In
order to use pc to prune seen tuples, we first study properties of the various
forms of pc, i.e., for AGG ∈ {MIN,MAX,SUM} and θ ∈ {≤,≥,=}.

First consider the cases when AGG is MIN and θ is ≥, or AGG is
MAX and θ is ≤. These cases are the simplest because pc need only be
evaluated on each seen tuple individually rather than on a full joinable set.
When accessing a new tuple t, if A ∈ schema(t) and t satisfies p, we can
simply check whether t.A θ λ holds. If not, we can prune t from future
consideration as pc will not be satisfied by any join result including t. After
this filtering process, all join results obtained by the algorithm must satisfy
the constraint pc. We name this property the direct-pruning property.

When AGG ∈ {MAX,SUM} and θ is ≥, or AGG is MIN and θ is ≤,
the corresponding aggregation constraint pc is monotone.

Definition 2 (Monotone Aggregation Constraint) A PAC pc is mono-
tone if ∀t ∈ R, ∀s ∈ JS, where R /∈ Rel(s): if {t} |= pc and {t} ./ s 6= ∅,
then {t} ./ s |= pc.

For the case when AGG is SUM and θ is ≤, the PAC is anti-monotone.
This means that if a tuple t does not satisfy pc, no join result of t with any
partial joinable set will satisfy PAC either.8

8The cases where AGG is MAX and θ is ≤ and AGG is MIN and θ is ≥ are also
anti-monotone, but they can be handled using direct pruning, discussed above.
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Definition 3 (Anti-Monotone Aggregation Constraint) A PAC pc is
anti-monotone if ∀t ∈ R, ∀s ∈ JS, where R 6∈ Rel(s): if {t} 6|= pc, then
either {t} ./ s = ∅ or {t} ./ s 6|= pc.

As a special case, when AGG ∈ {MIN,MAX} and θ is =, we can
efficiently check whether all the joinable sets considered satisfy AGG(A, p) ≥
λ and AGG(A, p) ≤ λ, using a combination of direct pruning and anti-
monotonicity pruning.

Finally, for the case when AGG is SUM and θ is =, it is easy to see that
pc is neither monotone nor anti-monotone. However as discussed in [97], pc
can be treated as a special constraint in which the evaluation value of a
tuple t on pc, Evalpc({t}), determines whether or not the anti-monotonic
property holds. For example, let pc ::= SUM(A, p) = λ and t be a tuple.
If t |= p and {t} 6|= pc, then either Evalpc({t}) > λ or Evalpc({t}) < λ.
In the first case, the anti-monotonic property still holds. We call this con-
ditional anti-monotonic property c-anti-monotone. Table 3.1 summarizes
these properties.

AGG\θ ≤ ≥ =

MIN monotone direct-pruning monotone after pruning

MAX direct-pruning monotone monotone after pruning

SUM anti-monotone monotone c-anti-monotone

Table 3.1: Properties of primitive aggregation constraints.

Properties like direct-pruning, anti-monotonicity and c-anti-monotonicity
can be used to filter out tuples that do not need to be maintained in buffers.
However, this pruning considers each tuple individually. In the next subsec-
tion, we develop techniques for determining when tuples are “dominated”
by other tuples. This helps in pruning even more tuples.

3.4.2 Subsumption-based Pruning

Consider Example 1 again. After accessing four tuples from Museum and
three tuples from Restaurant (see Figure 3.2), the algorithm cannot stop
as it has found only one join result. Furthermore we cannot prune any
seen Museum tuple since each satisfies the constraint. However, it turns out
that we can safely prune t4 (from Museum) because, for any unseen tuple t′

from Restaurant, if t′ could join with t4 to become a top-2 result, t′ could
also join with t1 and t2 without violating the constraint and giving a larger
score.
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Figure 3.2: Tuple pruning using aggregation constraints.

The above example shows that, in addition to the pruning that is directly
induced by the properties of the aggregation constraints, we can also prune
a tuple by comparing it to other seen tuples from the same relation. As we
discuss in the next section, this pruning can help to reduce the number of in-
memory join operations. The key intuition behind pruning a tuple t ∈ R in
this way is the following. Call a join result feasible if it satisfies all applicable
aggregation constraints. To prune a seen tuple t ∈ R, we should establish
that whenever t joins with tuples (joinable set) s from other relations to
produce a feasible join result ρ, then there is another seen tuple t′ ∈ R that
joins with s and produces a feasible result whose overall value is more than
that of ρ. Whenever this condition holds for a seen tuple t ∈ R, we say t′

beats t. If there are k distinct seen tuples t′1, ..., t
′
k ∈ R such that each of them

beats t, then we call t beaten. Clearly, a seen tuple that is beaten is useless
and can be safely pruned. In the rest of this section, we establish necessary
and sufficient conditions for detecting (and pruning) beaten tuples among
those seen. Thereto, we need the following notion of tuple domination.

Definition 4 (pc-Dominance Relationship) Given two tuples t1, t2 ∈ R
, t1 pc-dominates t2, denoted t1 �pc t2, if for all s ∈ JS, s.t. R 6∈ Rel(s),
{t2} ./ s 6= ∅ and {t2} ./ s |= pc, we have {t1} ./ s 6= ∅ and {t1} ./ s |= pc.

Intuitively, a tuple t1 pc-dominates another tuple t2 from the same rela-
tion (for some given PAC pc) if for any possible partial joinable set s which
can join with t2 and satisfy pc, s can also join with t1 without violating pc.

Note that the pc-dominance relationship defines a quasi-order over tu-
ples from the same relation since it is reflexive and transitive but not anti-
symmetric: there may exist two tuples t1 and t2, such that t1 �pc t2,
t2 �pc t1, but t1 6= t2.

For the various PACs studied in this chapter, we can characterize pre-
cisely when the pc-dominance relationship holds between tuples. The con-
ditions depend on the type of the PAC.

First of all, consider a monotone PAC pc. Because pc is monotone, given
a tuple t, if t |= pc, then the join result of t with any other joinable set
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will also satisfy pc, as long as t is joinable with s. So we have the following
lemma in the case where pc ::= SUM(A, p) ≥ λ.

Lemma 1 Let pc ::= SUM (A, p) ≥ λ be a primitive aggregation constraint
and t1, t2 be tuples in R. Then t1 �pc t2 iff t1.J = t2.J and either t1 |= pc
or t1.A ≥ t2.A.

We can prove a similar lemma for the other monotonic aggregation con-
straints, where AGG is MIN and θ ∈ {≤,=}, or AGG is MAX and
θ ∈ {≥,=}.

Lemma 2 Let pc be a primitive aggregation constraint in which AGG is
MIN and θ ∈ {≤,=}, or AGG is MAX and θ ∈ {≥,=}. Given two tuples
t1 and t2, t1 �pc t2 iff t1.J = t2.J and either t1 |= pc or t2 6|= pc.

For the anti-monotone constraint pc ::= SUM(A, p) ≤ λ, we can directly
prune any tuple t such that t 6|= pc; however, for tuples that do satisfy pc,
we have the following lemma.

Lemma 3 Let pc ::= SUM (A, p) ≤ λ be a primitive aggregation constraint
and t1, t2 be two tuples such that t1 |= pc and t2 |= pc. Then t1 �pc t2 iff
t1.J = t2.J and t1.A ≤ t2.A.

Similarly, for the c-anti-monotone constraint SUM(A, p) = λ, we have
the following lemma.

Lemma 4 Let pc ::= SUM (A, p) = λ be a primitive aggregation con-
straint and t1, t2 be two tuples such that t1 |= SUM(A, p) ≤ λ and
t2 |= SUM(A, p) ≤ λ. Then t1 �pc t2 iff t1.J = t2.J and t1.A = t2.A.

Given the pc-dominance relationship for each individual aggregation con-
straint, we can now define an overall subsumption relationship between two
tuples.

Definition 5 (Tuple Subsumption)Let t1, t2 be seen tuples in R and
ac ::= pc1 ∧ · · · ∧ pcm be an aggregation constraint. We say that t1 sub-
sumes t2, denoted t1 � t2, if t1.J = t2.J , t1.V ≥ t2.V and, for all pc ∈
{pc1, . . . , pcm}, t1 �pc t29.

9Let rk be the kth join result in RSac
k . To handle the case where all join results which

have the same score as rk need to be returned, we can change the condition t1.V ≥ t2.V
in Definition 5 to t1.V > t2.V and report all such results.

26



3.4. Deterministic Algorithm

Recall, the main goal of this section is to recognize and prune beaten
tuples. The next theorem says how this can be done.

Theorem 1 Given an RJAC problem instance I = {R, S, jc, ac, k}, let T
be the set of seen tuples from relation Ri. Tuple t ∈ T is beaten iff t is
subsumed by at least k other tuples in T .

3.4.3 Efficient Algorithm for Top-k RJAC

Given an instance of RJAC, I = (R, S, jc, ac, k), our algorithm kRJAC (see
Algorithm 2) follows the standard rank join template [62, 110] as described
in Section 3.3.1. However, it utilizes the pruning techniques developed in
Sec. 3.4.1 and 3.4.2 to leverage the power of aggregation constraints.

Algorithm 2: kRJAC(R, S, jc, ac, k)

1 τ ← ∞;
2 O ← Join result buffer;
3 while |O| < k ∨ v(O.kthResult) < τ do
4 i ← ChooseInput();
5 ti ← Ri.next();
6 if Promising(ti, ac) /* (c-)Anti-monotone pruning */

7 if ¬(Prune(ti,HRi,ac,k)) /* Subsumption pruning */

8 ConstrainedJoin(ti, HR, ac, O);

9 τ ← UpdateBound(ti, HR, ac);

Below, we first explore the pruning opportunities in the kRJAC algo-
rithm using aggregation constraints (lines 6–8), and then discuss how the
presence of aggregation constraints can affect the accessing strategy (line 4)
and the stopping criterion (line 9).

Optimizing In-Memory Join Processing

First of all, to leverage the (c-)anti-monotonicity property of the aggregation
constraints, in line 6 of Algorithm 2, whenever a new tuple ti is retrieved
from relation Ri, we invoke the procedure Promising (see Algorithm 3) which
prunes tuples that do not satisfy the corresponding aggregation constraint.

Let HR = {HR1, . . . ,HRn} be the in-memory buffers for all seen tuples
from each relation. Similar to previous work [62], in line 8 of Algorithm 2,
when a new tuple ti is seen from Ri, we perform an in-memory hash join of
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ti with seen tuples from all HRj , j 6= i. The idea of this hash join process
is that we break each HRi into hash buckets based on the join attribute
value. Note that for an RJAC problem instance in which no join condition
is present or jc = true, all seen tuples from the same relation will be put
into the same hash bucket.

Algorithm 4 shows the pseudo-code for the aggregate-constrained hash
join process. We first locate all relevant hash buckets from each relation
(lines 1–2), then join these buckets together and finally check, for each join
result found, whether it satisfies the aggregation constraints or not (lines 3–
5).

Algorithm 3: Promising(ti, ac)

1 foreach pc in ac do
2 if pc ::= MIN(A, p) ≥ (=)λ return Evalpc({ti}) ≥ λ ;
3 else if pc ::= MAX(A, p) ≤ (=)λ return Evalpc({ti}) ≤ λ ;
4 else if (pc ::= SUM(A, p) ≤ λ) ∨ (pc ::= SUM(A, p) = λ)
5 return Evalpc({ti}) > λ;

6 return true

Algorithm 4: ConstrainedJoin(ti, HR, ac, O)

1 for j = 1, . . . , i− 1, i+ 1, . . . , n do
2 Bj = LocateHashBuckets(ti.J , HR);

3 foreach s ∈ B1 ./ · · · ./ Bi−1 ./ {ti} ./ Bi+1 ./ · · ·Bn do
4 if s |= ac and v(s) > v(O.kthResult)
5 Replace O.kthResult with s.

One important observation about this hash join process is that the worst
case complexity for each iteration is O(|HR1| × · · · × |HRi−1| × |HRi+1| ×
· · · × |HRn|), which can result in a huge performance penalty if we leave
all seen tuples in the corresponding buffers. As a result, it is crucial to
minimize the number of tuples retained in the HR’s. Next we will show how
our subsumption-based pruning, as discussed in Section 3.4.2, can be used
to remove tuples safely from HR.

Consider a hash bucket B in HRi and a newly seen tuple ti. We assume
every tuple in a bucket B has the same join attribute value, so according to
Theorem 1, if we find that there are at least k tuples in B which subsume
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ti, we no longer need to place ti in HRi. This is because we already have
at least k tuples in B that are at least as good as ti. We call this pruning
subsumption-based pruning (SP). Furthermore, ti does not need to be joined
with HRj , j 6= i, as shown in line 7 of Algorithm 2. We will show in
Sec.3.6 that this subsumption-based pruning can significantly improve the
performance of the kRJAC algorithm.

Algorithms 5 and 6 give the pseudo-code for the subsumption-based
pruning process. We maintain for each tuple t a count t.scount of the
number of seen tuples that subsume t. Note that, although in the pseudo-
code we invoke the Subsume procedure twice for each tuple t in the current
hash bucket B, the two invocations can in fact be merged into one in the
implementation.

Algorithm 5: Prune(ti, HRi, ac, k)

1 B ← LocateBucket(ti, HRi);
2 foreach t ∈ B do
3 if Subsume(t, ti, ac) ti.scount← ti.scount+ 1;
4 if Subsume(ti, t, ac)
5 t.scount← t.scount+ 1;
6 if t.scount ≥ k Remove t from B;

7 return ti.scount ≥ k;

So given the basic subsumption-based pruning algorithm as presented in
Algorithm 5, a natural question to ask is whether can we prune more tuples
from the buffer? The answer is “yes”. Assume we are looking for the top-k
join results. As we consume more tuples from the underlying relations, the
value of the stopping threshold τ may continue to decrease, which means
some join results in the output buffer O may have a value larger than τ .
These join results are guaranteed to be among the top-k and can be output.

Now suppose that the top k′ results, for some k′ < k, have been found
so far. Then it is clear that we need only look for the next top k − k′

results among the remaining tuples. So when applying our subsumption-
based pruning, we could revise k to k − k′, i.e., in a hash bucket B of a
buffer HRi, if a new tuple ti is subsumed by k − k′ other tuples in HRi,
we can safely prune ti from that buffer. We call this optimization adaptive
subsumption-based pruning (ASP).

Consider the example of Figure 3.3. After retrieving four tuples in the
Museum relation and three tuples in the Restaurant relation, we find one
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Algorithm 6: Subsume(t1, t2, ac)

1 if t1.V < t2.V return false;
2Dominate ← true;
3 foreach pc in ac do
4 switch pc do
5 case MIN(A, p) ≤ (=)λ and MAX(A, p) ≥ (=)λ
6 Dominate = Dominate ∧ (t1 |= pc or t2 6|= pc);

7 case SUM(A, p) ≥ λ
8 Dominate = Dominate ∧ (t1 |= pc or t1.A ≥ t2.A);

9 case SUM(A, p) ≤ λ
10 Dominate = Dominate ∧ (t1.A ≥ t2.A);

11 case SUM(A, p) = λ /* {t1}, {t2} |= SUM(A, p) ≤ λ */

12 Dominate = Dominate ∧ (t1.A = t2.A);

13 return Dominate;

joinable set {t3, t8} which is guaranteed to be the top-1 result, and we have
pruned t4. Using adaptive subsumption-based pruning, we can now also
prune t2 as it is subsumed by t1.
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Figure 3.3: Adaptive subsumption-based pruning.

If adaptive subsumption-based pruning is utilized, from the correctness
and completeness proof of Theorem 1, we can derive the following corollary.

Corollary 1 At the end of each iteration of the kRJAC algorithm, the
number of accessed tuples retained in memory for each relation is minimal.

In the worst case, the overhead of the rank join algorithm using subsumption-
based pruning compared to one which does not perform any pruning (both
algorithms will stop at the same depth d) will be O(d2 · cdom), where cdom
is the time for one subsumption test. This worst case situation will happen
when no tuples seen from a relation subsume any other tuples. However, as
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we show in Section 3.6, this seldom happens, and often d is very small after
our pruning process.

Bounding Scheme and Accessing Strategy

When rank join involves more than two relations, the corner-bounding strat-
egy should be replaced by a bounding strategy based on cover sets [54, 110].
As described in Section 3.3, for the optimal bounding scheme, to derive the
stopping threshold τ , we need to consider each subset R′ of R, and join
the HRs of relations in R′ with the CRs of relations in R −R′. Because
the cover set CRi of each relation Ri considers only the value of an unseen
item, data points in CRi can be joined with any other tuple from a tuple
buffer HRj , where i 6= j. So the presence of aggregation constraints does
not affect the operations in the bounding scheme that are related to the
cover set, which means when joining CRs of R−R′, and when joining the
join results of CRs of R−R′ and join results of HRs of R′, we don’t need
to consider aggregation constraints. However, when joining HRs of R′, in
order for the derived bound to be tight, we need to make sure that each
partial join result satisfies the aggregation constraints.

Similarly, for the accessing strategy that decides which relation to access
a tuple from next, because the potential value of each relation is determined
by the bounding scheme as discussed in [54, 62, 110], the existing accessing
strategy can be directly used by taking the modified bounding scheme as
described above into account.

3.5 Probabilistic Algorithm

Our kRJAC algorithm in Section 3.4 returns the exact top-k results. How-
ever, similar to the standard NRA [53] algorithm, this deterministic ap-
proach may be conservative in terms of its stopping criterion, which means
that it still needs to access many tuples even though many of them will
be eventually pruned. Theobald et al. [113] first investigated this prob-
lem and proposed a probabilistic NRA algorithm; however, their algorithm
and analysis cannot be directly used to handle rank join (with aggregation
constraints). In the rest of this section, we will describe a probabilistic al-
gorithm, based on the framework of [113], which accesses far fewer tuples
while guaranteeing the quality of the results returned.

Let I = (R, S, jc, ac, k) be a RJAC problem instance, where R = {R1, . . . , Rn}.
The main problem we need to solve is, at any stage of the algorithm, to es-
timate the probability that an unseen tuple can achieve a value better than

31



3.5. Probabilistic Algorithm

the value of the kth tuple in the top-k buffer. This probability will clearly
depend on the selectivity of the join condition jc and on the aggregation
constraint ac. We assume the join selectivity of jc over R can be estimated
using some existing techniques such as adaptive sampling [90]. We denote
the resulting join selectivity by δjc(R), which is defined as the estimated
number of join results divided by the size of the cartesian product of all
relations in R. Given a set s = {t1, . . . , tn} of n tuples, where ti ∈ Ri, by
making the uniform distribution assumption, we set the probability Pjc of
s satisfying jc as δjc(R). Similarly, considering each primitive aggregation
constraint pc in ac, we can also estimate the probability Ppc of s satisfy-
ing pc as the selectivity of pc over R, denoted as δpc(R). We discuss in
Sec. 3.5.1 how δpc(R) can be estimated under common data distribution
assumptions. The probability Pac of s satisfying ac can then be estimated
as Pac =

∏
pc∈ac Ppc.

Given a set of tuples s = {t1, . . . , tn}, ti ∈ Ri, assuming the join condi-
tion and the aggregation constraints are independent, we can estimate the
probability of s satisfying the join condition jc and the aggregation con-
straints ac as Pjc∧ac = Pjc × Pac.

After some fixed number of iterations of the kRJAC algorithm, let the
value of the kth best join result in the output buffer O be mink. We can
estimate the probability P>mink

(Ri) that an unseen tuple ti from Ri can
achieve a better result than mink. Suppose the current maximum value for
an unseen item in Ri is vi. To estimate P>mink

(Ri), similarly to [113], we
assume a histogram HV

j for the value attribute V of each relation Rj ∈ R is
available. Then using the histograms we can estimate the number Ni of tuple
sets {t1, . . . , ti−1, ti+1, . . . , tn}, tj ∈ Rj s.t. vi +

∑
j∈{1...n}−{i} v(tj) > mink.

We omit the obvious detail. Then the probability that ti can join with any
of these Ni tuple sets to become one of the top-k results can be estimated
as P>mink

(Ri) = 1− (1− Pjc∧ac)Ni .
Given a user specified threshold ε, we can stop our kRJAC algorithm

when ∀i ∈ {1, . . . , n}, P>mink
(Ri) ≤ ε.

3.5.1 Estimating Constraint Selectivity

Given a PAC pc ::= AGG(A, p) θ λ, and n relations R1, . . . , Rn, to simplify
the analysis, we assume p = true and that attribute values of different
relations are independent.

Consider an example of the binary RJAC problem: given a set s =
{t1, t2}, with t1 ∈ R1, t2 ∈ R2. For the aggregation constraint pc ::=
SUM(A, true) ≤ λ, it is clear from Figure 3.4(a) that s can satisfy pc only
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when t1.A and t2.A fall into the gray region. We call this gray region the
valid region for pc, denoted V Rpc. Similarly Figure 3.4(b) illustrates the
valid region for the constraint pc ::= MIN(A, true) ≤ λ.

t1.A

t2.A

0 1

1

λ

λ

t1.A

t2.A

0 1

1

λ

λ

(a) SUM(A,true)≤ λ (b) MIN(A,true)≤ λ 

Figure 3.4: Selectivity of aggregation constraints.

Based on the valid region V Rpc for pc, we can estimate the selectivity of
pc by calculating the probability of a tuple set s falling inside V Rpc.

Given a set s = {t1, . . . , tn} of n tuples, ti ∈ Ri, and given a PAC
pc ::= AGG(A, true) θ λ, if we assume t1.A, . . . , tn.A are n independent ran-
dom variables following a uniform distribution, we can calculate the closed
formula for the probability P (V Rpc) of t1.A, . . . , tn.A falling inside V Rpc as
follows:

• If pc ::= SUM(A, true) ≤ λ: P (V Rpc) = λn

n! .

• If pc ::= MIN(A, true) ≤ λ: P (V Rpc) = 1− (1− λ)n.

These facts are easily verified. Because of symmetry, for pc ::= SUM(A, true) ≥
λ and pc ::= MAX(A, true) ≥ λ, the corresponding probabilities are very
similar to pc ::= SUM(A, true) ≤ λ and pc ::= MIN(A, true) ≤ λ respec-
tively: we only need to replace λ by 1 − λ in the corresponding formulas.
And for a PAC pc where θ is =, note that the probability is 0 under contin-
uous distributions, so in practice, we will set these probabilities to a small
constant which is estimated by sampling the database.

Similarly, if we assume that each ti.A follows other distributions such as
exponential distribution, similar formulas can be derived.

3.6 Experiments

In this section, we study the performance of our proposed algorithms based
on two synthetic datasets. The goals of our experiments are to study: (i)
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the performance of various pruning techniques, (ii) the performance of the
probabilistic method, and (iii) the result quality of probabilistic method.
All experiments were done on a Intel Core 2 Duo machine with 4GB RAM
and 250GB SCSI hard disk. All code is in C++ and compiled using GCC
4.2.

We call the synthetic datasets we generated the uniform dataset and
the exponential dataset. For both datasets, the join selectivity between
two relations is fixed at 0.01 by randomly selecting the join attribute value
from a set of 100 predefined values. The value and other attributes are set
as follows. For the uniform dataset, the value of each attribute follows a
uniform distribution within the range [0,1]; for the exponential dataset, the
value of each attribute follows an exponential distribution with mean 0.5.
Note that in order to ensure values from the exponential distribution fall
inside the range [0,1], we first uniformly pick 1000000 values from [0,1], and
then resample these values following the exponential distribution. Values of
each attribute are independently selected.

We implemented four algorithms: (a) the post-filtering based rank join
algorithm (Post Filtering); (b) the deterministic algorithm with subsump-
tion based pruning (SubS-Pruning); (c) the deterministic algorithm with
adaptive subsumption based pruning (Adaptive SubS-Pruning); (d) the prob-
abilistic algorithm with subsumption based pruning.

3.6.1 Efficiency Study

We first compare the algorithms in a binary RJAC setting. As can be seen
from Figure 3.5, subsumption based pruning works very well for monotonic
constraints. One interesting observation from Figure 3.5(d) is that, adaptive
subsumption based pruning does not prune significantly more tuples than
non-adaptive subsumption based pruning. By inspecting the dataset, we
found out this is because there are k tuples which subsume every other
tuple, so the adaptive pruning strategy has no effect in this case.

Figure 3.6 shows another example of one aggregation constraint, SUM(A, true) ≤
λ, under the selectivity of 10−5. As discussed in previous sections, such
a constraint can result in both anti-monotonicity based pruning and sub-
sumption based pruning. However, as can be seen from Figure 3.6, the
anti-monotonicity based pruning can be very powerful which, in turn, ren-
ders the subsumption based pruning less effective.

We also tested our algorithms in settings where we have binary RJAC
and multiple aggregation constraints (see Figure 3.7). For the case of SUM(A, true) ≥
λ and SUM(B, true) ≤ λ and overall selectivity is 10−5 ((a) and (b)), be-
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Figure 3.5: Uniform dataset: (a), (b) SUM(A, true) ≥ λ, selectivity 10−5 ;
(c), (d) MIN(A, true) ≤ λ, selectivity 10−5.

cause of the presence of an anti-monotone constraint, many tuples can be
pruned so the subsumption based algorithm outperforms the post-filtering
algorithm. However, as can be seen from Figure 3.7(c) and (d), when the
selectivity of aggregation constraints is very high and no anti-monotonic or
direct-pruning aggregation constraint is present, the overhead of subsump-
tion testing causes the execution time of the subsumption based algorithms
almost to match that of the post-filtering based algorithm. As future work,
we would like to study cost-based optimization techniques which can be used
to help decide which strategy should be used.

3.6.2 Probabilistic Algorithm

Similar to previous work on a probabilistic NRA algorithm, Figures 3.5,
3.6 and 3.7 show that our probabilistic algorithm will stop earlier than
the deterministic and post-filtering based algorithms. In most experiments,
the probabilistic algorithm accesses far fewer tuples from the underlying
database than the other algorithms. We note that this property can be very
important for scenarios where tuples are retrieved using web services [53],
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Figure 3.6: Uniform dataset, SUM(A, true) ≤ λ, selectivity 10−5.

for example, as a monetary cost might be associated with each access and
the latency of retrieving the next tuple might be very high.

In terms of the quality of results returned, as Figure 3.8 shows for binary
RJAC with several different aggregation constraints, the value of the join
results returned by the probabilistic algorithm at each position k is very close
to the exact solution. The percentage of value difference at each position k

is calculated as
v(sk)−v(s′k)

v(sk)
, where sk is the exact kth result and s′k is the kth

result returned by the probabilistic algorithm.
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Figure 3.7: Uniform dataset: (a), (b) SUM(A, true) ≥ λ, SUM(B, true) ≤
λ, overall selectivity 10−5 ; (c), (d) SUM(A, true) ≥ λ, SUM(B, true) ≥ λ,
overall selectivity 10−5.
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Chapter 4

Composite Recommendation
with Hard Constraints:
Flexible Package Schema

4.1 Introduction

The limitation of the solution proposed in the previous chapter is that it
can only handle fixed package schema. In this chapter we consider the
more general problem of composite recommendations with flexible package
schema, where each recommendation comprises a set of items which can have
different size/schema. And though we are dealing with budget constraints
in the main part of this work, we note that other constraints can be also
handled efficiently using the prunings proposed in [122], and post-filtering
techniques as discussed in Section 4.5.

Consider each item is associated with both a value (rating or score)
and a cost, and the user specifies a maximum total cost (budget) for any
recommended set of items. Our composite recommender system consists
of one or more recommender systems focusing on different domains. These
component RecSys serve (i.e., recommend) top items in non-increasing order
of their value (explicit or predicted ratings). In addition, our composite
system has access to information sources (which could be databases or web
services) which provide the cost associated with each item.

In our setting, the problem of deciding whether there is a recommen-
dation (package) whose value exceeds a given threshold is NP-complete as
it models the Knapsack problem [71]. Because of this, and the fact that
we expect the component recommender systems to provide ratings for large
numbers of items and access to these ratings can be relatively expensive10,
we devise approximation algorithms for generating the top-k packages as
recommendations.

Other researchers have considered complex or composite recommenda-

10Especially when the ratings need to be predicted.
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tions. CARD [32] and FlexRecs [74] are comprehensive frameworks in which
users can specify their recommendation preferences using relational query
languages extended with additional features or operators. In contrast, we
are concerned with developing efficient algorithms for combining recommen-
dations from RecSys that provide only ratings for items. Closer to our work
is [19] which is concerned with finding packages of entities, such as holi-
day packages, where the entities are associated in some way. However, their
packages are of fixed size, whereas we allow packages of variable size/schema.
CourseRank [99, 101, 102] is a system for providing course recommendations
to students, based on the ratings given to courses by past students and sub-
ject to the constraints of degree requirements. While we do not capture
all CourseRank constraints, in our framework we have item costs and user
budgets—essential features of the application areas we consider for deploy-
ment of our system—which are not captured by CourseRank. Similarly, item
costs and user budgets are not considered for the problem of team formation
in [78].

In this chapter, we restrict attention to the problem of recommending
packages when there is just one component RecSys and no compatibility
constraint is imposed. The problem remains intractable and still warrants
approximation algorithms. We discuss in Section 4.5 how to extend our
algorithms when multiple component RecSys and compatibility constraints
are present.

Following are the contributions of this chapter:

• We propose a novel architecture for doing composite recommendation
(Section 4.2).

• We propose a 2-approximation algorithm that is instance optimal [53]
with an optimality ratio of one. This means that any other 2-approximation
algorithm, that can only access items in non-increasing order of their
value, must access at least as many items as our algorithm (Sec-
tion 4.3.4.3.1).

• We further develop a greedy algorithm for returning top-k composite
recommendations, which is much more efficient, guaranteed to return
a 2-approximation, but is no longer guaranteed to be instance optimal
(Section 4.3.4.3.2).

• We study how histograms can be leveraged to improve the performance
of the algorithms (Section 4.3.4.3.3).
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• We subject our algorithms to thorough empirical analysis using two
real datasets. Our findings confirm that our algorithms always pro-
duce recommendations that are 2-approximations, with many of them
being close to optimal. And the greedy algorithm is always signif-
icantly faster than the other two algorithms, while the greedy and
instance optimal algorithms usually access substantially fewer items
than the optimal algorithm. Finally, we show how histograms can
further improve the empirical performance of the proposed algorithms
(Section 4.4).

4.2 Architecture and Problem

4.2.1 System Architecture

In a traditional RecSys, users rate items based on their personal experience,
and these ratings are used by the system to predict ratings for items not
rated by an active user. The predicted ratings can be used to give the user
a ranked recommendation (item) list.

As shown in Figure 4.1, our composite recommendation system is com-
posed of one or more component RecSys and has access to external sources
that provide the cost of a given item. An external source can be a local
database or a web service. For example, Amazon.com can be consulted
for book prices. In terms of computation, we abstract each RecSys as a
system which serves items in non-increasing order of their value (rating or
score) upon request. In addition, the system includes a compatibility checker
module, which checks whether a package satisfies compatibility constraints,
if any. We assume the compatibility checker consults necessary information
sources in order to verify compatibility.

The user interacts with the system by specifying a cost budget, an integer
k, and optionally compatibility constraints on packages. The system finds
the top-k packages of items with the highest total value such that each
package has a total cost under budget and is compatible.

4.2.2 Problem Statement

Given a set N of items and U of users, an active user u ∈ U , and item t ∈ N ,
we denote by vu(t) the value of item t for user u. We denote the value as
v(t) when the active user is understood. A RecSys predicts v(t) when it is
not available, by using the active user’s past behavior and possibly that of
other similar users. For t ∈ N , we denote by c(t) the cost of item t. Given
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Figure 4.1: System Architecture

a set of items R ⊂ N , we define c(R) = Σt∈R c(t) and v(R) = Σt∈R v(t).
Given a cost budget B, a set of items P ⊂ N is called feasible if c(P ) ≤ B.

Definition 6 (Top-k Composite Recommendations) Given an instance
I of a composite recommendation system consisting of one component Rec-
Sys and an external information source, a cost budget B and an integer k,
find the top-k packages P1, ..., Pk such that each Pi is feasible and among all
feasible packages P1, ..., Pk have the k highest total values, i.e., v(P ) ≤ v(Pi)
for all feasible packages P 6∈ {P1, ..., Pk}.

When k = 1, the top-k composite recommendation problem (CompRec)
can be viewed as a variation of the classical 0/1 knapsack problem [71].
Thus, even for the special case of top-1 composite recommendation, the
decision problem “Is there a feasible package R which has value larger than
a threshold β?” is NP-complete; and the complexity of the function problem
of finding the maximum feasible package R is FPNP-complete [98]. However,
unlike the classical knapsack setting, our top-k composite recommendation
problem has the restriction that items can be accessed only in non-increasing
order of their value. Without loss of generality, we assume all items have
cost smaller than the cost budget B.

Note that ratings of items from the component RecSys are retrieved
using sorted access, while the cost of a given item is obtained via random
access. Let cs and cr be the costs associated with these accesses. Then the
total access cost of processing n items is n × (cs + cr). Notice that cs and
cr can be large compared to the cost of in-memory operations: for both
accesses information needs to be transmitted over the Internet, and for the
sorted access, v(t) may need to be computed. So, well-known algorithms
for knapsack which need to access all items [71] may not be realistic. Thus,
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an efficient algorithm for top-k CompRec should minimize the total access
cost, i.e., it should minimize the number of items accessed and yet ensure
the top-k packages are obtained.

It can be shown that if we have no background knowledge about the
cost distribution of items, in the worst case, we must access all items to find
top-k packages. In order to facilitate the pruning of item accesses, we thus
assume that some background information about item costs is precomputed
and maintained at the composite RecSys. The background cost information,
which we denote generically by BG, can be something as simple as a min-
imum item cost cmin (Section 4.3.4.3.1, 4.3.4.3.2) or a histogram collected
from the external cost source (Section 4.3.4.3.3). This information can be
materialized in our system and be refreshed regularly by re-querying the
cost source.

Our composite recommendation problem can be considered as a special
case of a resource-limited knapsack problem where, in addition to quality
guarantee, the number of items to be accessed should also be minimized.
So standard algorithms for knapsack, e.g., exact algorithms [71] and ap-
proximation algorithms [61, 118] may not be efficient as they always need to
access the entire dataset. The only known variation of knapsack which deals
with resource limitation is the Online Knapsack Problem [93]. However, for
this problem, no access constraints are considered, only competitiveness in
terms of quality is studied. And furthermore, no information about items
can be inferred, which makes the problem significantly harder and difficult
to approximate.

4.3 Composite Recommendations

In this section, we develop several approximation algorithms for top-1 Com-
pRec, after which we extend them to handle top-k CompRec.

4.3.1 Instance Optimal Algorithms

As identified in Section 5.2, top-1 CompRec is a variation of the 0/1 knapsack
problem where the underlying items can be accessed only in non-increasing
order of their value (rating). Because of the huge potential size of the sets
of items and the high cost of retrieving item information from the source,
it is crucial for an algorithm to find high-quality solutions while minimizing
the number of items accessed. Furthermore, as the 0/1 knapsack problem is
NP-complete [71], we need to develop efficient approximation algorithms.
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Top-1 Composite Recommendation

Given an instance I of top-1 CompRec, let BG denote the known background
cost information and S = {t1, ..., tn} be the set of items which have been
accessed or seen so far.

Let v̄ be the value of the first accessed item. Because items are accessed
in non-increasing order of their value, n · v̄ is a trivial upperbound on the
value that can be achieved by any knapsack solution for S.

For each i ∈ {1, ..., n} and v ∈ {1, ..., n · v̄}, let SSi,v denote a subset of
{t1, ..., ti} whose total value is exactly v and whose total cost is minimized.
Let C(i, v) be the cost of SSi,v (where C(i, v) =∞ if the corresponding SSi,v
does not exist). Then it is well known from previous work [71, 118] that a
pseudo-polynomial algorithm can be utilized to find the optimal knapsack
solution for S by first calculating all C(i, v) using the following recursive
function, and then choosing the maximum value achievable by any subset
SSn,v of which the total cost is bounded by budget B, i.e., max{v | C(n, v) ≤
B}.

C(i+ 1, v) = (4.1){
min{C(i, v), c(ti+1) + C(i, v − v(ti+1))} if v(ti+1) ≤ v
C(i, v) otherwise

Let the background cost information BG be given by cmin, the minimum
cost of all items, let vmin = mint∈S v(t) be the minimum value of all accessed
items, and let OPT be the true optimal solution to the underlying top-1
CompRec instance I. We can find an upperbound V ∗ on the value v(OPT )
of the optimal solution using Algorithm 7: MaxValBound.

Algorithm 7: MaxValBound(S, C, B, BG)

1 V ∗ = b B
cmin
c × vmin

2 for v ∈ {1, ..., n · v̄} do
3 if C(n, v) < B

4 V ∗=max{V ∗, v + bB−C(n,v)
cmin

c ∗ vmin}

5 return V ∗

Lemma 5 Given S, C, B, BG, we have: (1) the value V ∗ returned by
MaxValBound is an upperbound on v(OPT ); (2) Value V ∗ is tight, in that
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there exists a possible unseen item configuration for which V ∗ is achievable
by using a subset of accessed items and feasible unseen items11.

Proof Consider all valid possible top-1 CompRec instances, and let OPT =
Sopt denote the optimal solution with maximum value. We will prove both
claims in the lemma at once. Consider an unseen item t∗ with cost cmin
and value vmin. Clearly, t∗ is feasible. We can assume an unlimited supply
of unseen items whose cost and value match those of t∗. We claim Sopt has
no unseen item with cost or value not matching that of t∗. If it does, that
item can be replaced with t∗ while incurring no more cost and having no
less total value. Let S′ = Sopt ∩ S, i.e., the subset of seen items in Sopt.
Let v = v(S′). Clearly, 1 ≤ v ≤ n × v̄ and c(S′) ≥ C(n,v). Sopt − S

can contain at most bB−c(S′)cmin
c unseen items with cost and value matching

those of t∗. Algorithm 1 does examine such a solution among the various
candidates it considers. Hence the bound V ∗ computed by Algorithm 1 has

the property that V ∗ ≥ v(S′)+bB−c(S′)cmin
c×vmin, proving (1). To see (2), since

v(OPT ) = v(Sopt) corresponds to the highest possible value of the optimal
package over all possible configurations, we have V ∗ ≤ OPT , so V ∗ = OPT ,

and V ∗ is achievable by an instance which is composed of S′ and bB−c(S′)cmin
c

unseen items with cost and value matching those of t∗.

Given the upper bound V ∗ on the optimal solution, we next propose
a 2-approximation algorithm for top-1 CompRec which is guaranteed to
be instance optimal (see below). The algorithm, InsOpt-CR, is shown as
Algorithm 8. One item is retrieved from the source at each iteration of
the algorithm (lines 3–4). After accessing this new item, we can use the
pseudo-polynomial algorithm to find an optimal solution Ro over the ac-
cessed itemset S (line 5). We calculate the upper bound value V ∗ of the
optimal solution using MaxValBound. If v(Ro) ≥ 1

2 × V ∗, the algorithm
terminates; if not, it continues to access the next item (lines 7–8). The
following example shows how InsOpt-CR works.

Example 2 Let I = {t1, t2, . . . , tn}, n ≥ 102, be a top-1 CompRec instance,
where v(t1) = v(t2) = 101, c(t1) = c(t2) = 100, for i = 3, . . . , 101, v(ti) =
c(ti) = 1, and for i = 102, . . . , n, v(ti) = 1 and c(ti) = 0.5. Let B =
199. Clearly, BG = cmin = 0.5. After accessing the first 101 items, S =
{t1, . . . , t101}, Ro = {t1} ∪ {t3, . . . , t101}, v(Ro) = 200. Because cmin = 0.5
and vmin = 1, we can calculate V ∗ = 398 and InsOpt-CR will stop since
v(Ro) ≥ 1

2 × V ∗.
11An unseen item t is feasible iff v(t) ≤ vmin and c(t) ≥ cmin
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Algorithm 8: InsOpt-CR(N , B, BG)

1 S ← An empty buffer
2 while TRUE do
3 t ← N .getNext()
4 S.Insert(t)
5 (Ro,C) ← OptimalKP(S, B)
6 V ∗ = MaxValBound(S,C,B,BG)
7 if v(Ro) ≥ 1

2 × V ∗
8 return Ro

Given a top-1 CompRec instance I with optimal solution OPT , because
V ∗ ≥ v(OPT ), if v(Ro) ≥ 1

2 × V ∗, then v(Ro) ≥ 1
2 × OPT , so InsOpt-CR

returns a correct 2-approximation of OPT.
To analyze the optimality of our proposed algorithm, we utilize the no-

tion of instance optimality proposed in [53].

Definition 7 Instance Optimality: Let A be a class of algorithms, and
let I be a class of problem instances. Given a non-negative cost measure
cost(A, I) of running algorithm A over I, an algorithm A ∈ A is in-
stance optimal over A and I if for every A′ ∈ A and every I ∈ I we
have cost(A, I) ≤ c · cost(A′, I) + c′, for constants c and c′. Constant c is
called the optimality ratio.

To prove the instance optimality of InsOpt-CR, we first show the follow-
ing.

Lemma 6 Given any top-1 CompRec instance I and any 2-approximation
algorithm A with background cost information BG and the same access con-
straints as InsOpt-CR, A must read at least as many items as InsOpt-CR.

Proof Assume to the contrary that there exists an instance I and a 2-
approximation algorithm A that stops earlier than InsOpt-CR on I. Let
S = {t1, . . . , tn} be the set of items accessed by A at the time it stops.
Assume that, after accessing the items in S, Algorithm 8 has (Ro, C) =
OptimalKP(S,B) and upper bound V ∗ as calculated in line 6.

Because A stops earlier than InsOpt-CR, the condition that v(Ro) ≥
1
2 × V ∗ must not hold as otherwise InsOpt-CR will also stop, contradicting
the assumption that A stops earlier than InsOpt-CR.
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Then it is easy to show that, at the time A stops, v(Ro) must be less than
1
2 × V ∗. For this case, given only S and BG, it is possible to form a top-1
CompRec instance I ′ which shares the same prefix S as I, but the optimal
solution for I ′ is V ∗. (For example, if Sopt corresponds to the optimal possi-
ble solution calculated by MaxValBound, V ∗ = v(Sopt), and S′ = Sopt∩S, we

can set the next bB−c(S′)cmin
c unseen items to have value vmin and cost cmin.)

Then even the optimal solution Ro for S is not a 2-approximation for in-
stance I ′, which contradicts the fact that A is a 2-approximation algorithm.

Theorem 2 Let I be the class of all top-1 CompRec instances, and A be the
class of all possible 2-approximation algorithms that are constrained to access
items in non-increasing order of their value. Given the same background
cost information BG, InsOpt-CR is instance optimal over A and I with an
optimality ratio of one.

Proof From Lemma 6, for any top-1 CompRec instance I and any 2-
approximation algorithm A with background cost information BG and the
same access constraints as InsOpt-CR, A must read at least as many items
as InsOpt-CR. According to the definition of instance optimality and the
proposed cost model, InsOpt-CR is instance optimal over A and I with an
optimality ratio of one.

Top-k Composite Recommendations

In addition to the best composite recommendation, it is often useful to
provide the user with the top-k composite recommendations, where k is
a small constant. In this section, we extend the algorithm proposed in
Section 4.3.4.3.1.4.3.1 to one that returns the top-k composite recommen-
dations. Similar to the top-1 case, due to the hardness of the underlying
problem, we seek an efficient approximation algorithm which can give us
high quality recommendations.

Given an instance I of top-k CompRec, assumeRI is the set of all feasible
composite recommendations, i.e., RI = {R | R ⊆ N ∧c(R) ≤ B}). Following
Fagin et al. [53] and Kimelfeld et al. [73], we define an α-approximation
of the top-k composite recommendations to be any set Rk of min(k, |RI |)
composite recommendations, such that, for all R ∈ Rk and R′ ∈ RI\Rk,
v(R) ≥ 1

α × v(R′).
To produce top-k composite recommendations, we will apply Lawler’s

procedure [80] to InsOpt-CR. Lawler’s procedure is a general technique for
enumerating the optimal top-k answers to an optimization problem, which
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relies on an efficient algorithm to find the optimal (top-1) solution to the
problem.

Algorithm 9: InsOpt-CR-Topk(N , B, BG, k)

1 S ← An empty buffer
2 Rk ← An empty result buffer
3 while TRUE do
4 t ← N .getNext()
5 S.Insert(t)
6 (Ro,C) ← OptimalKP(S, B)
7 V ∗ = MaxValBound(S,C,B,BG)
8 if v(Ro) ≥ 1

2 × V ∗
9 EnumerateTopk(S, Ro, V ∗, B, Rk, k)

10 if |Rk| == k
11 return |Rk|

InsOpt-CR-Topk in Algorithm 9 is the InsOpt-CR algorithm modified
using Lawler’s procedure. As can been seen from the procedure, all we
need to change is that instead of returning the 2-approximation solution
found in Algorithm 8 (line 8), we enumerate at this point all possible 2-
approximation solutions using Lawler’s procedure (line 9). If the number
of 2-approximation solutions is at least k, then we can report the top-k
packages found; otherwise, we continue accessing the next item (line 10–11).
Algorithm 10 is an overview of the enumeration algorithm EnumerateTopk.
Whenever a 2-approximation is found, we call this routine to enumerate
possible 2-approximation results which can be obtained from the accessed
items. In line 3 of Algorithm 10, EnumerateTopk will directly call the
enumeration procedure as proposed in [80].

Algorithm 10: EnumerateTopk(S,Ro,V ∗,B,Rk,k)

1 Rk.Add(Ro)
2 while |Rk| ≤ k do
3 Rn = LawlerOptimalNext(S, B)
4 if v(Rn) < 1

2 × V ∗
5 return Rk
6 Rk.Add(Rn)
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In InsOpt-CR-Topk, the enumeration of all possible 2-approximation
solutions is straightforward. Since we know the upper bound V ∗, we can
simply utilize Lawler’s procedure to enumerate candidate packages which
are under cost budget and have aggregated value of at least half of V ∗.

Lemma 7 Given any instance I of top-k CompRec and any 2-approximation
algorithm A with the same background cost information BG and access con-
straints as InsOpt-CR-Topk, A must read as many items as InsOpt-CR-
Topk.

Proof If algorithm A stops earlier than InsOpt-CR-Topk, then at the time
it stops, EnumerateTopk must return a result set whose size is less than
k, because otherwise InsOpt-CR-Topk would also stop. Then, similar to
Lemma 6, it is not possible to find a result set in S which is guaranteed to be
a 2-approximation to the optimal top-k composite recommendation, which
means by properly selecting unseen items, the result set returned by A can
be made not to be a 2-approximation, contradicting the assumption.

Theorem 3 Let I be the class of all top-k CompRec instances, and A be
the class of all possible 2-approximation algorithms that are constrained to
access items in the non-increasing order of their value. Given the same
background cost information BG, InsOpt-CR-Topk is instance optimal over
A and I with an optimality ratio of one.

Proof From Lemma 7, for any instance I of top-k CompRec and any 2-
approximation algorithm A with the same background cost information BG
and access constraints as InsOpt-CR-Topk, A must read as many items
as InsOpt-CR-Topk. So according to the definition of instance optimality,
InsOpt-CR-Topk is instance optimal over A and I with an optimality ratio
of one.

4.3.2 Greedy Algorithms

Although the instance optimal algorithms presented above guarantee to re-
turn top-k packages that are 2-approximations of the optimal packages, they
rely on an exact algorithm for finding an optimal package using the items
seen so far. Because this may lead to high computational cost, we propose
more efficient algorithms next. Instead of using an exact algorithm to get
the best package for the currently accessed set of items S, we use a simple
greedy heuristic to form a high quality package RG from S and then test
whether RG is globally a high quality package.
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Compared with InsOpt-CR, our greedy solution Greedy-CR for top-
1 CompRec needs to replace OptimalKP in InsOpt-CR with GreedyKP,
which uses greedy heuristics [71] to find a high quality itemset in polyno-
mial time 12, and to change Ro to the greedy solution RG. Furthermore,
instead of using the tight upperbound calculated by MaxValBound, we need
to use a heuristic upperbound which is calculated by Algorithm 11: Max-
HeuristicValBound.

Algorithm 11: MaxHeuristicValBound(S, B, BG)

1 τ ← vmin
cmin

2 Sort S = {t1, . . . , tn} by value/cost ratio

3 m = max{m | v(tm)
c(tm) ≥ τ ∧ c(Rm) ≤ B}

4 Rm = {t1, . . . , tm}
5 if m == n
6 V ∗ = v(Rm) + τ ∗ (B − c(Rm))
7 else
8 V ∗ = v(Rm)+max{τ, vm+1

cm+1
} ∗ (B − c(Rm))

9 return V ∗

It follows from known results about knapsack that, similar to InsOpt-CR,
Greedy-CR will always generate a correct 2-approximation to the optimal
solution.

However, unlike InsOpt-CR, Greedy-CR is not instance optimal among
all 2-approximation algorithms with the same constraints, as the following
example shows.

Example 3 Let I = {t1, t2, . . . , tn}, n ≥ 102, be a top-1 CompRec instance
(as considered in Example 2), where v(t1) = v(t2) = 101, c(t1) = c(t2) =
100, for i = 3, . . . , 101, v(ti) = c(ti) = 1, and for i = 102, . . . , n, v(ti) =
1 and c(ti) = 0.5. Let B = 199, BG = cmin = 0.5 and approximation
ratio α = 2. From Example 2, we know that after accessing the first 101
items, S = {t1, . . . , t101}, v(Ro) = 200, V ∗ = 398 and InsOpt-CR will stop.
However, at this moment RG = {t1}, and v(RG) = 101 < 1

2 × V ∗. So
Greedy-CR will continue accessing new items and it can be easily verified
that Greedy-CR needs to access another 98 items before it stops.

12Note that any approximation algorithm for knapsack [71] can be plugged in here
without affecting the correctness and instance optimality of the resulting algorithm.
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We note that, in practice, cases such as the above may occur rarely. In
fact, in our experimental results (Section 4.4) we observed that, on a range
of datasets, Greedy-CR exhibited a very low running time while achieving
similar access costs and overall result quality when compared to InsOpt-CR.

Similar to Section 4.3.4.3.1.4.3.1, we can easily extend Greedy-CR to
Greedy-CR-Topk by using Lawler’s procedure [80] to enumerate all possible
high quality packages after one such package is identified. However, unlike
InsOpt-CR-Topk which guarantees instance optimality, here we simply use
Lawler’s procedure to enumerate all candidate packages using the greedy
algorithm instead of the exact algorithm. Similar to [73], we show in the
following theorem that for top-k CompRec, if an α-approximation algorithm
is utilized in Lawler’s procedure instead of the exact algorithm which finds
the optimal solution, we get an α-approximation to the top-k composite
recommendations.

Theorem 4 Given an instance I of top-k CompRec, any α-approximation
algorithm A for top-1 CompRec can be utilized with Lawler’s procedure to
generate a set Rk of composite recommendations which is an α-approximation
to the optimal set of top-k composite recommendations.

Proof We prove the above theorem using induction on k. Given α-approximation
algorithm A and instance I, it is clear that the top-1 composite recommen-
dation set R1 generated by A is an α-approximation to the optimal top-1
composite recommendation. Assume that the top-k composite recommenda-
tion set Rk generated by Lawler’s procedure and A is an α-approximation
to the optimal top-k composite recommendation, which means ∀R ∈ Rk,
∀R′ ∈ RI\Rk, α ·V alue(R) ≥ V alue(R′). Then according to the property of
Lawler’s procedure, the k+1st composite recommendation Rk+1 generated is
an α-approximation to the optimal composite recommendation from RI\Rk,
so ∀R′ ∈ RI\Rk, α · V alue(Rk+1) ≥ V alue(R′). It is easy to verify that
∀R ∈ Rk ∪ {Rk+1}, ∀R′ ∈ RI\(Rk ∪ {Rk+1}), α · V alue(R) ≥ V alue(R′),
so the top-(k+ 1) composite recommendation set Rk+1 generated by A is an
α-approximation to the optimal top-(k + 1) composite recommendation.

So the quality of the packages generated by the resulting enumeration
process can be guaranteed. In this enumeration process, given a candidate
package, we use the greedy algorithm to get the next candidate package
for each sub-search space in Lawler’s procedure, and if all of them are not
guaranteed to be 2-approximations, the enumeration will stop.

However, similar to Greedy-CR, it is obvious that Greedy-CR-Topk is
not instance optimal. We note that, in practice, the difference between the
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results generated by InsOpt-CR-Topk and Greedy-CR-Topk (in terms of the
aggregate values of packages generated) may be very small.

4.3.3 Histogram-Based Optimization

For the algorithms proposed in previous sections, we have a very pessimistic
assumption regarding background cost information, namely BG = cmin, the
global minimum cost. However in practice, we often have access to much
better statistics about the costs of items, e.g., histograms. In this section,
we will demonstrate how histograms can be incorporated to improve the
proposed algorithms.

As can be observed from Algorithm 8, background cost information is
used to determine a tight upperbound V ∗ on the value v(OPT ) of the op-
timal solution. A pessimistic background cost information assumption will
result in a loose estimation of V ∗ and thus require more item accesses.

Let H be a histogram of the costs of items. H will divide the range of
costs into |H| non-overlapping buckets b1, . . . , b|H|. For each bucket bi, H
stores the number of items whose cost falls inside the corresponding cost
range. In classical histograms used in relational databases, it is often as-
sumed that items which fall in the same bucket are uniformly distributed
within the cost range. However, it can easily be shown that this assumption
may result in an under-estimation of the upperbound value V ∗, thus causing
the proposed approximation algorithms to be incorrect. In order to solve
this problem and guarantee that the estimated V ∗ is a correct upperbound
of v(OPT ), we can simply assume that the cost of each item within a bucket
bi is the minimum item cost within bi, denoted bi.cmin.

In Algorithm 12, we list the modified procedure for determining the
upperbound value V ∗ given the histogram H on the cost of unseen items.
The algorithm will utilize a sub-procedure MaxItems(H, c) which, given
the histogram H and a cost threshold c, returns the maximum number of
items whose total cost is less than to equal to c.

Algorithm 12: MaxValBound-H(S, C, B, H)

1 V ∗ = MaxItems(H, B) ∗ vmin
2 for v ∈ {1, . . . , n · v̄} do
3 if C(n, v) < B
4 V ∗=max{V ∗, v +MaxItems(H, B − C(n, v)) ∗ vmin}

5 return V ∗
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Lemma 8 Algorithm MaxValBound-H returns a correct upperbound of v(OPT ).

Proof Assume to the contrary that the V ∗ returned by MaxValBound-H is
not a correct upperbound. Hence there must exist a configuration of unseen
items such that there exists a package R for which v(R) > V ∗. Let the set
of seen items in R be Rseen, and the set of unseen items in R be Runseen.
Then during the execution of MaxValBound-H, according to the algorithm
which calculates C, we must have considered a C(n, v), such that C(n, v) ≤
c(Rseen) and v ≥ v(Rseen). And it is clear that for each unseen item t,
its value is less than or equal to vmin and its cost is larger than or equal
to the cost as indicated by the corresponding bucket in H. So for C(n, v),
the set of unseen items R′unseen considered by MaxValBound-H must have
the property that c(R′unseen) ≤ c(Runseen) and v(R′unseen) ≥ v(Runseen). So
v(R) ≤ V ∗ = v + v(R′unseen), which leads to a contradiction.

As we will show in Section 4.4, histogram-based optimization can signif-
icantly improve the efficiency of the proposed algorithms.

4.4 Experiments

In this section, we study the performance of our proposed algorithms based
on both real and synthetic datasets.

4.4.1 Experimental Setup and Datasets

1st Package 2nd Package 3rd Package 4th Package 5th Package
Sum Avg Sum Avg Sum Avg Sum Avg Sum Avg

Optimal 427 46.7 426 46.6 425 46.7 424 46.7 423 46.6
MovieLens InsOpt-CR-Topk 386 47.5 385 47.4 385 47.3 384 47.2 383 47.2

Greedy-CR-Topk 384 47 381 47 380 46.8 379 46.7 379 46.7

Optimal 300 50 300 50 300 50 300 50 300 50
TripAdvisor InsOpt-CR-Topk 185 50 175 50 165 50 160 50 155 50

Greedy-CR-Topk 220 50 210 50 210 50 205 50 205 50

Optimal 1092 36.4 1091 36.4 1090 36.3 1090 36.3 1089 36.5
Uncorrelated Data InsOpt-CR-Topk 929 43.6 926 43.6 925 43.6 925 43.6 924 43.5

Greedy-CR-Topk 945 42.9 939 42.8 938 42.8 936 42.7 931 42.8

Optimal 122 5.3 122 5.2 122 5.2 122 5.1 122 5.2
Correlated Data InsOpt-CR-Topk 110 6.7 110 6.7 110 6.7 110 6.6 110 6.5

Greedy-CR-Topk 110 6.6 110 6.6 109 7.6 109 6.5 109 7.15

Table 4.1: Quality Comparison for Different Composite Recommendation
Algorithms

The goals of our experiments were: (i) evaluate the relative quality of
Inst-Opt-CR and Greedy-CR compared to the optimal algorithm, in terms
of both the total and average values of the top-k packages returned, and
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Figure 4.2: NDCG Score for Top-k Packages

(ii) evaluate the relative efficiency of the algorithms with respect to the num-
ber of items accessed and the actual run time. All experiments were done on
a Xeon 2.5GHz Quad Core Windows Server 2003 machine with 16GB RAM
and a 128GB SCSI hard disk. All code is in Java using JDK/JRE 1.6.

We use four datasets in our experiments. The first dataset is from Movie-
Lens13. We use the 10 million rating MovieLens dataset which contains 1
million ratings for 3900 movies by 6040 users. In our experiments, we used
the running time of movies, obtained from IMDB14, as cost and we assume
users are interested in packages of movies where the total running time is
under a given budget.

TripAdvisor15 is a well-known website where users can share and explore
travel information. For our experiments, we crawled user rating information
from places of interest (POIs) in the 10 most popular cities in the US,
excluding POIs which had one or no reviews. The dataset contains 23658
ratings for 1393 POIs by 14562 users, so it is very sparse.16 We associate
with each POI in the dataset a cost which is based on log(number of reviews)
and scaled to the range of 1 to 50. The intuition behind choosing such a cost
function is that the more popular a POI is (in terms of number of reviews),
the more likely it is to be crowded or for the tickets to be expensive. In
practice, we may also use some existing work like [47] to mine from online
user-generated itineraries other cost measures, e.g., average time users spent
at each POI, average cost of visiting each POI, etc.

For the MovieLens and TripAdvisor datasets, we use a simple memory-
based collaborative filtering algorithm [16]17 to generate predicted ratings

13http://www.movielens.org (visited on 03/16/2015)
14http://www.imdb.com (visited on 03/16/2015)
15http://www.tripadvisor.com (visited on 03/16/2015)
16Pruning more aggressively rendered it too small.
17Our algorithms do not depend on a specific recommendation algorithm; in practice,
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for each user. The ratings are scaled and rounded to integers ranging from
1 to 50.

For the MovieLens dataset, we randomly selected 20 users from the 23594
user pool, and the budget for each user was fixed at 500 minutes18. For the
TripAdvisor dataset, because of the sparsity of the underlying user rating
matrix, we selected the 10 most active users as our sample for testing the
algorithms, and set the user cost budget to 50.

We also tested our algorithms on synthetic correlated and uncorrelated
datasets. For both datasets, item ratings are randomly chosen from 1 to 50.
For the uncorrelated dataset, item costs are also randomly chosen from 1
to 50, but for the correlated dataset, the cost of item t is randomly chosen
from min{1, v(t)−5} to v(t)+5. In both datasets, the total number of items
is 1000, and the cost budget is set to 50. For all datasets, we assume the
background cost information BG is simply the global minimum item cost.

4.4.2 Quality of Recommended Packages
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Figure 4.3: (a)–(d) Running Time for Different Datasets; (e)–(h) Access
Cost for Different Datasets

For each dataset, Table 4.1 shows the quality of the top-5 composite
recommendations returned by the optimal and approximation algorithms.

our framework assumes ratings come from existing recommender systems.
18For all datasets, we tested our algorithms under various cost budgets with very similar

results, so other budgets are omitted.
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We use as measures of quality the aggregated value of each package (SUM
column) and the average item value of each package (AVG column).

It can be verified from Table 4.1 that our approximation algorithms do
indeed return top-k composite packages whose value is guaranteed to be a
2-approximation of the optimal. Furthermore, from the average item
value column, it is clear that our proposed approximation algorithms often
recommend packages with high average value, whereas the optimal algorithm
often tries to fill the package with small cost and small value items. So by
sacrificing some of these lower quality items, the proposed approximation
algorithms may manage to find high quality packages much more efficiently.

To better study the overall quality of returned packages, we also adopt a
modified Normalized Discounted Cumulative Gain (NDCG) [66] to measure
the quality of the top-k composite packages returned by the approximation
algorithms against the optimal algorithm. Let Ro = {P o1 , . . . , P ok } be the
top-k packages returned by the optimal algorithm, and Ra = {P a1 , . . . , P ak }
be the top-k packages returned by the approximation algorithm. The mod-
ified NDCG score is a weighted sum of aggregated package value difference
at each position of the returned top-k list, and is defined as:

NDCG(Ro, Ra) =
k∑
i=1

log(1 +
v(P o

i )−v(Pa
i )

v(P o
i )

)

log(1 + i)

The ideal value for the modified NDCG score is 0, where the top-k packages
returned have exactly the same value as the optimal top-k packages. The
worst possible value for the modified NDCG score is

∑k
i=1

log 2
log(1+i) , where

each package returned has an aggregated value of 0. In Figure 4.2, we show
for the 4 datasets the NDCG score of the top-k packages (k ranging over 1
to 10) returned by the instance optimal algorithm and the greedy algorithm.
It is clear that, while having a substantial run time advantage, the greedy
algorithm can achieve a very similar overall top-k package quality compared
to the instance optimal algorithm. We also note that both approximation
algorithms have a very small NDCG score.

4.4.3 Efficiency Study

The running times of our algorithms on the 4 datasets are shown in Fig-
ure 4.3 (a)–(d), while access costs are shown in Figure 4.3 (e)–(h). For
MovieLens, TripAdvisor and the uncorrelated dataset, it can be seen that on
average the greedy algorithm Greedy-CR-Topk has excellent performance in
terms of both running time and access cost. The instance optimal algorithm
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InsOpt-CR-Topk also has low access cost, but its running time grows very
quickly with k since it needs to solve exactly many instances of knapsack,
restricted to the accessed items.

As can be seen in Figure 4.3 (h), the only dataset where both the greedy
and instance optimal algorithms have a high access cost is the correlated
dataset (but notice that the greedy algorithm still has good running time).
The reason for this is that, for the correlated dataset, the global minimum
cost corresponds only to items which also have the least value. Thus the
information it provides on the unseen items is very coarse. In practice, one
solution to this might be to use more precise background cost information,
such as provided by histograms, for example, as described in Section 4.3.3
and evaluated below.

In Figure 4.4, we compare the performance of the instance-optimal algo-
rithm where the background cost information is simply the minimum cost
with that where it is histogram-based. For the histogram-based approach,
each histogram has 50 buckets and each bucket is of equal width. As can
be seen from Figure 4.4 (e)–(h), the histogram-based approach consistently
accesses fewer or an equal number of tuples compared to the minimum cost-
based approach. This further results in savings in the overall running time of
the algorithm, as can be seen from Figure 4.4 (a)–(d). The only exception
is on the TripAdvisor dataset, where the histogram-based approach may
sometimes be slightly slower than the minimum cost-based approach. We
note that this is because, for this dataset, both approaches access only a few
tuples. Thus, as indicated by Algorithm 12, our histogram-based approach
may incur a small overhead in counting tuples which may not be necessary
for this case. Similar savings to those reported in Figure 4.4 can be observed
for the histogram-based greedy algorithm.

4.5 Discussion

As mentioned in Section 4.2, our framework includes the notion of a package
satisfying compatibility constraints. For example, in trip planning, a user
may require the returned package to contain no more than 3 museums.

To capture these constraints in our algorithms, we can define a Boolean
compatibility function C over the packages under consideration. Given a
package P , C(P ) is true if and only if all constraints on items in P are satis-
fied. We can add a call to C in InsOpt-CR-Topk and Greedy-CR-Topk after
each candidate package has been found. If the package fails the compatibility
check, we just discard it and search for the next candidate package. In terms
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Figure 4.4: (a)–(d) Running Time Comparison for Different Datasets; (e)–
(h) Access Cost Comparison for Different Datasets

of access cost, it can easily be verified that the modified InsOpt-CR-Topk
algorithm is still instance optimal.

It is worth noting that the Boolean compatibility function defined here
allows for greater generality than the constraints studied in previous work
such as [19, 102]. However, for application scenarios where only one specific
type of constraint is considered, e.g., having one item from each of 3 pre-
defined categories, more efficient algorithms like Rank Join [54, 123] can be
leveraged.

Furthermore, although in the previous algorithms we assume there is
only one component recommender system, it is straightforward to combine
recommendation lists from several component recommender systems by cre-
ating on-the-fly a “virtual recommendation list”, e.g., select at each iteration
the item which has the maximum value/rating across all recommender sys-
tems.

4.6 Application in Travel Planning

In travel planning, users may also have a budget on time that can be spend
on a trip, and if this is the case, the underlying problem become a Orien-
teering problem [38].

Given a set N of POIs, a set U of users, an active user u ∈ U , and a
POI t ∈ N , we denote by vu(t) the value of POI t for user u. We denote the
value as v(t) when the active user is understood. A RS predicts v(t) when it
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is not available, by using the active user’s past behaviour and possibly that
of other similar users. For t ∈ N , we denote by tc(t) the time cost and by
mc(t) the monetary cost, of POI t. Given a set of POIs R ⊆ N , we define
v(R) = Σt∈R v(t), tc(R) = Σt∈R tc(t) and mc(R) = Σt∈Rmc(t).

In addition to the cost associated with each POI, we may also need to
consider the cost spent on traveling to corresponding POIs. For each POI
pair (t1, t2), t1, t2 ∈ N , we denote by d(t1, t2) the shortest distance between
t1 and t2. And given a set of POIs R ⊆ N , we define w(R) as the minimum
distance walk which covers all POIs in R, and let tcw(R) and mcw(R) be
the corresponding time and monetary cost for taking w(R) by assuming an
average speed/cost per unit of distance.

Definition 8 Top-k Composite Sequence Recommendations: Given
an instance I of a composite recommendation system consisting of one com-
ponent RecSys and an external information source, a cost budget Bt on
time, a cost budget Bm on money and an integer k, find the top-k packages
P1, ..., Pk such that each Pi has mc(Pi)+mcw(Pi) ≤ Bm, tc(Pi)+ tcw(Pi) ≤
Bt, and among all feasible packages, P1, ..., Pk have the k highest total values,
i.e., v(P ) ≤ v(Pi), 1 ≤ i ≤ k for all feasible packages P 6∈ {P1, ..., Pk}.

Note that ratings of POIs from the component RecSys are retrieved using
sorted access, while the cost of a given POI is obtained via random access.
Let cs and cr be the costs associated with these accesses. Then the total
access cost of processing n POIs is n × (cs + cr). Notice that the number
of POIs in the system is often huge, and cs and cr can be large compared
to the cost of in-memory operations, as often for both accesses, information
may need to be transmitted through the Internet.

In our system, we also assume some background cost information about
each POI is available. The background cost information can be a histogram
H collected from the cost database or just the minimum POI monetary
(time) cost mcmin (tcmin). This information can be materialized in our
system and be refreshed regularly by rescanning the cost database. We
denote the background cost information as BG.

When k = 1, the top-k composite sequence recommendation problem
(CompRec-Seq) can be viewed as a variation of the orienteering problem [38]
with the restriction that POIs can be accessed only in non-increasing or-
der of their value. Similar to the composite recommendation problem for
sets as discussed in the previous sections, we assume we have some simple
background cost information such as the minimum shortest distance dmin
between POIs.
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4.6.1 Algorithm

Composite sequence recommendation is closely related to the orienteering
problem [38], which seeks a maximum value walk on a graph subject to a
budget constraint on the cost. To simplify the presentation, we will ignore
discussing cost on each POI (i.e., the so-called node cost) as this can be
handled by a reduction to the original orienteering problem [47].

Similar to the composite recommendation problem for sets of items, to
minimize the number of POIs retrieved while having the result quality guar-
anteed, we need to adapt the algorithm template as described in previous
sections and iteratively calculate the optimal solution for the accessed POI-
set S along with a tight upper bound on the possible true optimal solution
to the underlying composite sequence recommendation problem instance.

Given an (exponential-time) exact orienteering solver, we can calculate
the optimal solution for the subgraph G of the original POI graph, induced
by the accessed POI-set S. However, it is more challenging to get a tight
upper bound on the value of the true optimal solution for the composite
sequence recommendation problem.

Let dmin be the background cost information about the minimum dis-
tance between POIs, vmin = mint∈S v(t) and t∗ be an “imaginary” unseen
POI which has value vmin. A tight upper bound on the possible true opti-
mal solution can be computed by the procedure MaxOriValBound shown in
Algorithm 13.

It can be proven that, using procedure MaxOriValBound, we can give
a correct instance-optimal α-approximation algorithm CR-Seq-Top1 for the
composite sequence recommendation problem. Similar to composite set rec-
ommendation, to get better practical performance, we can utilize approxi-
mation algorithms for the orienteering problem such as [38] instead of exact
algorithms. However, the resulting algorithm will not be instance optimal.

Algorithm 13: MaxOriValBound(G,Bt,Bm,BG)

1 foreach Edge (v1, v2) ∈ G do

2 n∗ = b d(v1,v2)
dmin

c
3 Add to G a path P between v1 and v2 which is composed of n∗ “imaginary”

POIs, each a copy of t∗, and d(P ) = d(v1, v2)

4 S = OptimalOrienteer(G,Bt,Bm)
5 Augment S with “imaginary” POIs t∗ if possible
6 return v(S)

In addition to the best composite recommendation, it is often useful
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to provide the user with the top-k composite recommendations, where k
is a small constant. Similar to the top-1 case, due to the hardness of the
underlying problem, we seek an efficient approximation algorithm which can
give us high quality recommendations.

Given an instance I of the top-k composite recommendation problem,
assume RI is the set of all feasible composite recommendations, i.e., RI =
{R |R ⊆ N ∧mc(R) ≤ Bm, tc(R) ≤ Bt} for composite set recommendation
and RI = {R |R ⊆ N ∧mc(R) +mcw(R) ≤ Bm, tc(R) + tcw(R) ≤ Bt} for
composite sequence recommendation. Following Fagin et al. [53], we define
an α-approximation of the top-k composite recommendations to be any set
Rk of min(k, |RI |) composite recommendations, such that, for all R ∈ Rk
and R′ ∈ RI\Rk, v(R) ≥ 1

α × v(R′).
Lawler’s procedure [80] is a general technique for enumerating optimal

top-k answers to an optimization problem, which relies on an efficient al-
gorithm to find the optimal solution to the problem. We have proven in
Section 4.3.2 that for the top-k composite recommendation problem, if the
algorithm for the optimal solution in Lawler’s procedure is replaced by an
α-approximation algorithm, instead of optimal top-k answers, we get an α-
approximation to the optimal set of top-k composite recommendations. So
in our system we leverage Lawler’s procedure and CR-Seq-Top1 to produce
top-k approximate composite recommendations.
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Chapter 5

Composite Recommendation
with Soft Constraints

5.1 Introduction

Standard item recommender systems (IRS) recommend to users personalized
lists of single items based on previous transactions of the users in the system.
This model has become extremely popular because of its wide application
and success on websites such as Amazon, Last.fm, and Netflix. For instance,
even in 2006, 35% of purchases on Amazon originated from recommended
items [77]. The promise of IRS has also been recognized by the database
community, resulting in a series of recent research projects such as RecStore
[82], FlexRecs [74], aimed at pushing IRS inside the database engine.

However, as pointed out in an influential survey [16], IRS suffers from
limited flexibility. For instance, users may want recommendations of more
than one item, e.g., a shopping cart of cell phones, accessories, and data
plans on Amazon, lists of songs on Last.fm, or lists of movies on Netflix. For
realizing this kind of package recommendation system (PRS) using current
item recommendation interfaces, a user has to either manually assemble the
packages by exploring recommended items (e.g., Amazon), or browse and
search packages created by other people (e.g., Last.fm, Netflix). With an
exponential number of possible combinations of items, as well as a huge
number of user-created packages, both approaches for finding packages of
interest quickly become tedious. For a business, the drawback of not being
able to find packages for users means lost opportunities to sell packages,
or lowering user satisfaction by drowning users in oceans of user-created
content. Thus it is desirable to have a PRS which can learn users’ interests
and recommend to each user packages that are of potential interest.

Given a set of n items, if there is no bound on the size of a package, there
exist 2n− 1 possible packages of items (see Figure 5.1). Consider the utility
U(p) of a package p to a user u. Obviously U(p) depends on the items in the
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Figure 5.1: Examples of packages of items.

package p. As discussed in [16, 87, 129], the feature values of each package p
are usually aggregations of item feature values. E.g., let f1 in Figure 5.1(a)
be the cost of an item. For package p, sum1(p) defines the total cost of the
items in p, which is the cost of the package. Let f2 in Figure 5.1(a) be the
rating of an item. Then avg2(p) defines the average rating of the items in p,
i.e., the average quality of the package. In Figure 5.1(b), sum1(p4) = 1 and
avg2(p4) = 0.3. For instance, when purchasing a package of books or CDs
from Amazon, users may want the average rating of items in the package to
be as high as possible, and the total cost of items to be as small as possible.
So U(p) = g(sum1(p), avg2(p)), where function g is increasing in avg2(p), and
decreasing in sum1(p). Similar examples can also be found when reasoning
about the utility of packages on Last.fm and Netflix, where the cost of an
item can be the price of a song/movie, and the rating can take the form of
any combinations of the average ratings, the number of listens, the number
of likes, and the number of purchases of a song/movie.

Given this general framework of characterizing features and utilities of
packages, one intuitive way of recommending packages is to present to the
user all skyline packages [87, 129], i.e., packages which cannot be dominated
by another package on every feature. In the above example, a package p1 is
a skyline package if there does not exist another package whose total cost
is lower and average rating is higher. However, as shown empirically in
[87, 129], the number of skyline packages can be in the hundreds or even
thousands for a reasonably-sized dataset. So presenting all of these packages
to a user is impractical.

Another way to recommend packages is to define hard constraints on
some features, and optimize the remaining features in the form of a utility
function (e.g., see [120, 121]). For the above example, we could require the
total cost of a package to be at most $500, and then find packages which
satisfy this constraint and maximize the average ratings of items in the
package. However, this approach also has the following practical limitations.
Firstly, users often only have a rough idea of what they want in a desirable
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package. E.g., when summing costs of all items in a package, they may
only say “smaller is better”. Thus hard constraints on a feature may result
either in sub-optimal packages when the budget is set too low, or a huge
number of candidate packages when the budget is set too high. Secondly, the
importance of each feature specified by the user is usually unknown. E.g.,
for some users, the monetary budget may not be that important and they
can afford to pursue a high quality package while sacrificing a “reasonable”
amount of money; whereas other users may be very sensitive to the total
cost of the package, and may have limited flexibility in terms of monetary
budget. We note that a PRS may be informed about the relative importance
of the different criteria by the user; however, it is not realistic to expect a
user to know, e.g., that they are 0.8 interested in the overall cost, and 0.2
interested in the overall quality of a package!

Instead, following recent work on multi-dimensional ranking of items
[27, 34, 63], we take a quantitative approach to ranking packages based on
multiple criteria. Specifically, we consider that for each user u, there is an
intuitive “implicit” linear utility function U , which captures u’s preference
or trade-off among different features for choosing a desirable package. By
leveraging this utility function, we can easily rank all packages, and present
the best ones to the user. E.g., in the above example, for a user u who has
equal preference on the cost and average item rating of a package, we can
use U(p) = −0.5sum1(p) + 0.5avg2(p), where a negative weight is used to
indicate that smaller cost is better.

This approach captures all the criteria of the package ranking problem
in a single score function, thus it avoids the first issue regarding hard con-
straints. However, as mentioned in the second issue, it is unrealistic to
assume that the user will define the utility function exactly for the system.
Thus, similar to recent work such as [27, 34], we will assume the weights of
the utility function are hidden, and follow a preference elicitation framework
which explores and exploits a user’s preferences based on feedback received,
and learns the hidden weights of the utility function over time.

Preference elicitation (PE) has been studied extensively in the Artificial
Intelligence community [27, 34]. The general idea of PE is to capture users’
preferences using a utility function, and then learn the parameters of this
utility function through feedback w.r.t. certain elicitation queries. Most of
this work relies on a specific type of query, called a gambling query. Though
using gambling queries is well founded in terms of decision theory, to date
it has only been applied to applications with extremely small domains. Also
the form of the gambling query requires that the user be explicitly asked this
query by the system through protocols such as a user survey. This limitation
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makes it undesirable for deployment in a recommender system where user
feedback either needs to be very simple such as “like”s or ratings, or to be
taken implicitly, e.g., from item click-throughs on web sites.

In this chapter, we propose to use simple package comparison as the
elicitation query. Users are presented with a list of recommended packages
whenever they login to the system. These packages are composed of (i) top
packages, w.r.t. the current knowledge of the user’s utility function, selected
according to a chosen ranking semantics as discussed in Section 5.2.3, and
(ii) a set of random packages, which are used to explore uncertainty in users’
preferences. Users’ interaction with the recommended packages are logged
as implicit signals to the system, showing that they are more interested
in the clicked package than the other packages (noise in user feedback is
discussed in Section 5.6). A user can choose to adopt any of the presented
packages, and once they do so, their feedback is extracted implicitly, without
causing any disruption in their normal interaction with the RS. This means
the proposed framework can be cleanly integrated into existing services to
capture and update users’ preferences, without any abrupt interruption for
the user using the service. This is in contrast with standard PE methods
which require interactive elicitation and a dramatic change to the service
work flow.

Specifically, our proposed PRS assumes each user has an associated util-
ity function U which is parameterized by a weight vector w, and the un-
certainty of U is captured by a distribution Pw over the space of possible
weight vectors w. We assume that the prior of Pw is a mixture of Gaus-
sians following [34], as mixture of Gaussians can approximate any arbitrary
probability density function. Given Pw, our PRS can directly leverage it
to present the user with a small number of recommended packages, and
record the user’s interaction with the packages. However, a major challenge
is that the posterior of Pw given user feedback has no closed form solution,
as we shall see. To circumvent this, we propose a sampling-based framework
which obviates the need for a posterior. Instead, package preferences result-
ing from user feedback can be translated into constraints on the samples
from Pw. However, this raises the question of how we can obtain samples
satisfying the constraints as efficiently as possible. A related question is
whether previously obtained samples can be maintained against new user
feedback. We discuss our solution to these challenges in Section 5.3.

Finally, we note that following the Bayesian uncertainty-based frame-
work, the posterior distribution of Pw at any time captures the current op-
timal representation of a user’s preferences over packages w.r.t. all observed
feedback.
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Contributions of this chapter is listed as follows:

• We propose a PRS which captures user preferences using a linear util-
ity function, but avoids the limitations of skyline packages and hard
constraint-based systems;

• To solve the problem of determining parameters for the utility func-
tion, we leverage a non-intrusive Bayesian-based PE framework by
assuming a prior distribution Pw over parameter w;

• The posterior of Pw given user feedback has no closed form solution
in general, so we propose different constrained sampling strategies to
solve this problem. We show that an approach based on simple re-
jection sampling may waste many samples, resulting in poor overall
performance, whereas more sophisticated sampling strategies such as
importance sampling and MCMC-based sampling make better use of
the feedback, and are more efficient.

• Given the utility function U and the uncertainty which is captured
by Pw, we discuss how top-k packages can be generated w.r.t. our
current knowledge of the user’s preferences, following different ranking
semantics inspired by recent work from different communities.

• Finally, we address the problem of how to maintain the set of samples
generated when new feedback is received.

The rest of the chapter is organized as follows. We define our package
recommendation problem in Section 5.2, with the sampling-based solution
discussed in Section 5.3. Our algorithm for finding the best packages based
on a set of sample weight vectors is presented in Section 5.4. Experimental
results demonstrating the efficiency and effectiveness of various sampling
methods and ranking algorithms are reported in Section 6.5.

5.2 Problem Setting

5.2.1 Package Profiles

We assume that we are given a set T of n items, each item being described
by a set of m features {f1, . . . , fm}. Each item t ∈ T can be represented as
an m-dimensional vector ~t = (t1, . . . , tm), where ti denotes the value of item
t on feature fi. For simplicity, when no ambiguity arises, we use t to denote
both an item and its corresponding feature vector ~t. Also, without loss
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of generality, we assume all feature values are non-negative real numbers.
In practice, different items can be associated with different feature sets, so
some feature values for an item t might be null.

As mentioned in the introduction, users’ preferences over packages are
usually based on aggregations over feature values of items in a package. E.g.,
the sum of the costs of items defines the overall cost of a package, while the
average of the ratings of items defines the overall quality of a package. Thus
we define an aggregate feature profile (or simply profile) of a package as
follows.

Definition 9 An aggregate feature profile (or profile) is defined as V =
(A1, . . . ,Am), where each Ai corresponds to feature fi, 1 ≤ i ≤ m, and is
one of the aggregation functions min, max, sum, avg or null, where null

means that the corresponding feature fi should be ignored.

Note that we simplify the presentation by assuming one aggregation per
feature, but our proposed algorithms can be easily extended to handle more
than one aggregation per feature. Given a package p and a profile V , we
define the feature value vector ~p of p w.r.t. V as ~p = (A1(p), . . . ,Am(p)),
where each Ai(p) is the aggregate value of items in p w.r.t. feature fi. Fol-
lowing the usual semantics for evaluating aggregate functions, for min, max
and sum we have Ai(p) = Ai({ti | t ∈ p ∧ ti 6= null}), and for avg we have
avgi(p) = sumi({ti | t ∈ p ∧ ti 6= null})/|p|. Similar to the feature value
vector of an item, when there is no ambiguity, we simply use p to denote
both the package p and its corresponding feature value vector ~p. Further-
more, we denote each feature value Ai(p) of package p by pi when profile V
is clear from the context.

Note that given a fixed item set T , it is trivial to calculate the maximum
aggregate value for a feature that can be achieved by any package. E.g.,
for avg1(p), the maximum average value on f1 that can be achieved by any
package is simply the maximum f1 value of all the items. So we assume
in the following that each individual aggregate feature value is normalized
into [0, 1] using the maximum possible aggregate value of the corresponding
feature.

5.2.2 Package Utility and Preference Elicitation

Intuitively, the utility of a package p for a user depends on its feature vector
and we wish to learn this utility. The space of all mappings between possible
aggregate feature values and utility values is uncountable, making this task
challenging. Fortunately, most preferences exhibit an internal structure that
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can be used to express the utility concisely, e.g., an additive utility function is
commonly assumed in practice [70]. In this work, for a package p and a given
profile V , we assume the utility of p can be specified using an additive utility
function U , which uses a weighted linear combination of the corresponding
(aggregate) feature values in p.

U(p) = w1p1 + · · ·+ wmpm (5.1)

For simplicity, we use w to denote the weight vector (w1, . . . , wm). With-
out loss of generality, we assume each parameter wi falls in the range [−1, 1],
where a positive (negative) wi means a larger (resp., smaller) value is pre-
ferred for the corresponding feature. Note that we can transform all negative
wi’s into their absolute value by setting p′i = 1 − pi on the corresponding
feature for all packages.

A framework based on a utility function essentially defines a total order
over all packages, where similar to previous works such as [112], we assume
ties in utility score are resolved using a deterministic tie-breaker such as the
ID of a package. This differentiates the approach from that of [87, 129] which
aim to return all skyline packages, the number of which can be prohibitively
large, as previously noted.

Despite its intuitive appeal, there are two major challenges in adopting
the utility-based framework for PRS in practice. First, users are usually
not able to specify (or even know beforehand) the exact weights wi of the
utility function U . Thus, we must model the uncertainty in U , and elicit
user’s preferences by means of interactions. Second, unlike [87] and [129]
which consider packages of fixed size, we allow package size to be flexible
in our framework. We believe this is natural. E.g., given a system-defined
maximum package size φ of say 20, we consider all possible package sizes
ranging from 1 to 20. Efficient determination of packages of flexible size that
maximize a user’s utility under partial knowledge about the utility function
from elicited preferences is far more challenging than finding packages of a
given fixed size.

One popular way of characterizing uncertainty in U is through Bayesian
uncertainty [27, 34]19, in which for each user, we assume the exact value of
the weight vector w is not known, but w can be described by a probability
distribution Pw. We assume w follows a mixture of Gaussians: indeed, it
has been shown that a mixture of Gaussians can approximate any arbitrary
probability density function [22].

19The other possibility is strict uncertainty, which requires a set of possible utility
functions (down to the weights) to be known, which is more restrictive.
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While Pw can be initialized with a system-defined default distribution,
in the long run Pw can be learned by leveraging the feedback provided by
the user. In this work, we assume user feedback is in the form of selecting
one preferred package from a set of packages presented to them. This form
of feedback is popularly known as example critiquing in conjoint analysis
[115] and preference elicitation [89].

For a given user u, let the feedback from u preferring package p1 to
package p2 be denoted by p1 � p2. This feedback can be leveraged to
update the posterior of Pw through Bayes’ rule in Equation 5.2, where
P(p1 � p2 | w) defines the likelihood of p1 � p2 given w. Note that since each
specific w defines a total order over all packages, the value of P(p1 � p2 | w)
is either one or zero. We tentatively assume that every user feedback is
consistent, in that the provided preferences correspond to a partial order,
and discuss in Section 5.6 how this assumption can be relaxed.

Pw(w | p1 � p2) =
P(p1 � p2 | w)Pw(w)∫

w P(p1 � p2 | w)Pw(w)dw
(5.2)

However, Gaussian mixtures are not closed under this kind of update
[27], meaning we cannot obtain a closed-form solution for the posterior as
presented in the above equation. One popular way to deal with such a
situation is to force the posterior to again be a mixture of Gaussians, and
thus the posterior can be learned by refitting a Gaussian mixture through
algorithms such as expectation maximization (EM) [22]. However, the cost
of refitting through EM is extremely high, so we take a different approach
of representing the posterior by maintaining both the prior distribution and
the set of feedback preferences received. The details of our proposal are
described in Section 5.3.1.

5.2.3 Presenting Packages

While the preference elicitation frameworks discussed in the previous section
can be exploited to update the knowledge of Pw for any specific user, there
is still a remaining question of how to select and present packages to a user
in order to get feedback.

In general, given the uncertainty in the utility function, packages pre-
sented to the user serve as a way to explore and exploit users’ preferences
simultaneously. I.e., on the one hand, we want to exploit our current knowl-
edge about a user’s preferences and try to present to them the best packages
possible according to the current Pw. On the other hand, we want to ex-
plore the uncertainty in the user’s preferences, and present packages to them
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Figure 5.2: Examples of different ranking semantics.

which might not be considered by our current knowledge about the user’s
preferences. These packages serve the purpose of correcting bias introduced
from the initial distribution of Pw and combating mistakes and noise from
user feedback. In this work, we follow a simple but promising way of pre-
senting packages to the user by mixing current best packages along with
random packages, so that the current best packages can be used to exploit
our current knowledge about the user, and the random packages can be used
to explore the user’s preferences.

While it is straightforward to pick a random package, it is challenging
to pick the best packages, as there is no universally accepted semantics on
how packages should be ranked given the uncertainty in the utility function.
Instead of committing to a specific package ranking semantics, we consider
various alternative semantics, and discuss how the different semantics can
be neatly integrated into our PRS framework.

The first ranking semantics we consider is based on expectation (EXP),
which has been adopted as the most popular semantics for ranking items in
preference elicitation papers in the artificial intelligence community [27, 34].
In the following, by a package space P , we mean the set of all possible
packages formed using items from T and having size no larger than φ (the
maximum package size).

Definition 10 (EXP) Given a package space P and probability distribu-
tion Pw over weight vectors w, find the set of top-k packages Pk w.r.t. ex-
pected utility value, i.e. ∀p ∈ Pk, ∀p′ ∈ P\Pk, Ew(w · p) ≥ Ew(w · p′).

Example 4 Consider the example in Figure 5.1. Assuming the maximum
package size is 2, the package space P is given by {p1, . . . , p6}. If the
profile under consideration is (sum1, avg2), then the maximum value for
a size-2 package on feature 1 is 1, and the maximum value of a size-2
package on feature 2 is 0.4. We can normalize packages’ feature values
using these two maximum values. E.g., for package p1 in Figure 5.1(b),
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sum1(p1) = 0.6, avg2(p1) = 0.2, so the normalized feature value vector for
p1 is (0.6/1, 0.2/0.4) = (0.6, 0.5). To simplify the presentation, we assume
in Figure 5.2(a) that there are only three weight vectors, w1, w2 and w3,
under consideration, the probability for which is given in the third column.
Given the weight vector information, we can easily calculate the utility of
each package under each weight vector, as shown in Figure 5.2(c). E.g.,
the utility of package p1 under w1 is 0.6 × 0.5 + 0.5 × 0.1 = 0.35. The
expected utility value for each package can be calculated accordingly, using
the probability of each weight vector. E.g., the expected utility for p1 is
0.35 × 0.3 + 0.31 × 0.4 + 0.11 × 0.3 = 0.262. For this example, it is not
difficult to verify that p4 has the largest expected utility, followed by p5. �

The second ranking semantics we consider is based on the probability
of a package being in the top-σ position under different parameter settings
(TKP). This is inspired by recent work on learning to rank in the machine
learning community [33]. Let P�(p | w) = {p′ | p′ ∈ P,w · p′ > w · p}
denote the set of packages in P which have utility larger than package p,
given a fixed w. Let W� denote the set of weight vectors w under which a
package p is dominated by σ or fewer other packages, i.e., |P�(p | w)| ≤ σ.
Since the utility function is convex, we can readily show that ∀ w1, w2,
w1 6= w2, if w1 · p′ > w1 · p, and w2 · p′ > w2 · p, then for any α ∈ [0, 1],
(αw1 + (1 − α)w2) · p′ > (αw1 + (1 − α)w2) · p. Thus we can prove that
W¬� := {w | σ < |P�(p | w)|} forms a continuous and convex region, and
W� is also continuous. So we define the probability of p ∈ P being ranked
among the top-σ packages as P(p | Pw, σ) =

∫
w∈W� Pw(w)dw.

Definition 11 (TKP) Given a package space P and a probability distribu-
tion Pw over weight vectors w, find the top-k packages Pk w.r.t. the prob-
ability of being ranked in the top-σ positions, i.e., ∀p ∈ Pk, ∀p′ ∈ P\Pk,
P(p | Pw, σ) ≥ P(p′ | Pw, σ).

Example 5 In Figure 5.2(d), we show the top-2 package list for each weight
vector. We can calculate that the probability of p5 being in a top-2 package
list is 0.4 + 0.3 = 0.7. Package p5 has the largest probability of all candidate
packages, followed by p4 for which the probability is 0.6. �

The third and fourth ranking semantics we consider are the most prob-
able ordering (MPO) and the optimal rank aggregation (ORA), which have
been discussed in recent work on sensitivity analysis of querying top-k items
under uncertainty [112]. We note that unlike EXP and TKP which repre-
sent the desirability of each individual package independently, adapted to
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our setting, MPO and ORA represent the desirability of the top-k package
list Pk as a whole.

For MPO, given a fixed w, let I(Pk | w) be an indicator function which
denotes whether Pk is the top-k package under w, i.e., I(Pk | w) = 1 if
@p′ ∈ P\Pk, w · p′ > w · p, for all p ∈ Pk; and I(Pk | w) = 0 otherwise. Let
WPk

denote the set of weight vectors w under which I(Pk | w) = 1. Similar
to TKP, we can show WPk

forms a continuous region, so the probability of Pk
being the top-k package can be defined as Po(Pk | Pw) =

∫
w∈WPk

Pw(w)dw.

Definition 12 (MPO) Given a package space P and a probability distri-
bution Pw over weight vectors w, find the top-k packages Pk w.r.t. the most
probable ordering, i.e., ∀P ′k ⊆ P , |P ′k| ≤ k, P ′k 6= Pk, Po(Pk | Pw) ≥ Po(P

′
k |

Pw).

Example 6 In Figure 5.2(d), we can directly see the probability of each
top-2 package list by referring to the probability of the corresponding weight
vector. Clearly, the best top-2 package list under MPO is p5, p2. �

Lastly, we consider ORA. The original definition of ORA for item ranking
is based on possible rankings of all items in the database [112], which is
obviously undesirable in our case since the package space is exponential.
Thus we adapt ORA in line with recent work on comparing top-k lists [52].

Let D(Pk, P
′
k) be the Kendall tau distance with penalty parameter θ be-

tween two top-k lists Pk and P ′k (similar development can be done using
Spearman’s footrule) [52], which counts the number of pairwise disagree-
ments in the relative order of packages in the two top-k package lists. For
two distinct packages p1, p2 ∈ Pk ∪ P ′k, p1 6= p2, consider the following four
cases: (1) p1, p2 ∈ Pk and p1, p2 ∈ P ′k. If the utility value order between p1
and p2 is different in the two lists, we set Dp1,p2(Pk, P

′
k) = 1, otherwise we

set Dp1,p2(Pk, P
′
k) = 0; (2) Both packages appear in one list, and only one

package appears in the other list. W.l.o.g., assume p1, p2 ∈ Pk, p1 ∈ P ′k. We
set Dp1,p2(Pk, P

′
k) = 1 if p2 is ranked higher than p1 in Pk, otherwise we set

Dp1,p2(Pk, P
′
k) = 0; (3) If one package appears in Pk, while the other package

appears in P ′k, then we set Dp1,p2(Pk, P
′
k) = 1; (4) If both packages appear

in one list and neither appears in the other list, we set Dp1,p2(Pk, P
′
k) = θ.

D(Pk, P
′
k) can be defined as follows.

D(Pk, P
′
k) =

∑
p1 6=p2,p1,p2∈Pk∪P ′k

Dp1,p2(Pk, P
′
k) (5.3)

Given D(Pk, P
′
k), ORA tries to find the “centroid” top-k package list

which minimizes its distance to all possible top-k package lists givenD(Pk, P
′
k)
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and the probability Po(P
′
k | Pw) of P ′k being ranked as the actual top-k pack-

age, which is the same as in MPO.

Definition 13 (ORA) Given a package space P and a probability distribu-
tion Pw over weight vectors w, find the top-k packages Pk w.r.t. the Kendall
tau distance with penalty parameter θ, i.e., Pk = arg minPk

∑
P ′k
D(Pk, P

′
k) ·

Po(P
′
k | Pw).

Example 7 In the example in Figure 5.2, we enumerate all possible 2-
package lists, finding the distance between each of these and each top-2 pack-
age list. E.g., for (p4, p6) and (p4, p5), the distance is 1, since the two lists
do not agree on the order between p5 and p6. Then we calculate the overall
expected distance between each 2-package list and each top-2 package list ac-
cording to the definition of ORA. In our example, the best top-2 package list
under ORA is (p4, p5) Its distance to the three top-2 lists (p4, p6), (p5, p2),
and (p4, p5) is 1, 2, and 0 respectively, and its expected distance to these
three top-2 lists is 1× 0.3 + 2× 0.4 + 0× 0.3 = 1.1. �

In summary, while different ranking semantics might lead to the same
top-k packages (e.g., in our example, p4, p5 are the top-2 packages for both
EXP and ORA), or they might lead to very different top-2 packages (e.g., in
our example, the top-2 packages for MPO are p5, p2, while the top-2 packages
for TKP are p5, p4). We note that these different ranking semantics have
been successfully adopted in different communities, and as we shall see in
Section 5.3, our proposed PE framework can be easily adapted to leverage
any of these different ranking semantics.

5.3 A Sampling-based Framework

To accommodate the preference elicitation framework and various ranking
semantics for selecting packages for recommendation, we propose to use
a sampling-based framework for PRS. Unlike the geometric approach pro-
posed in previous papers such as [112], a sampling-based solution can be
easily adapted to handle cases with higher dimensionality, as we will show
empirically in Section 6.5. We first discuss simple rejection sampling in
Section 5.3.1. We then consider more sophisticated sampling techniques in
Section 5.3.2. In Section 6.4.2, we discuss how to optimize the constraint
violation checking process for sample generation. Finally in Section 5.3.4,
we discuss how previously generated samples can be reused given newly
received user feedback, i.e., we discuss sample maintenance.

72



5.3. A Sampling-based Framework

5.3.1 Rejection Sampling

Given the distribution Pw over w, an intuitive solution for finding the best
packages under Pw is first to sample the weight vectors w according to Pw,
and then for every w sampled, try to find the best package under w. The
best package results obtained from each sampled w can be aggregated for
estimating the final list of best packages. The required aggregation logic
depends on the ranking semantics and the details will be discussed in Sec-
tion 5.4. This approach is intuitive: w’s are sampled from Pw, and packages
which are ranked higher under these w’s that have a higher probability are
likely to be given a greater weight.

As discussed in Section 5.2.2, given current recommendations to the
user and the feedback received, we need to constantly refit the distribution
Pw so that it reflects the updated user preferences. However refitting the
Gaussian mixture Pw, say using the EM algorithm [27], after every received
feedback using Equation (5.2) can be extremely time consuming. So a näıve
way of performing refit-and-sample may be inefficient. Thus we consider an
alternative approach of maintaining both the prior distribution Pw and all
feedback without refitting the Gaussian mixture.

The key idea is that every feedback p1 � p2 rules out weight vectors w
under which p1 � p2 is not true. For those w’s which do satisfy p1 � p2, the
feedback alone does not change their relative order with respect to Pw, i.e.,
for w1, w2 which both satisfy p1 � p2, if Pw(w1) > Pw(w2), without any
further information, we have Pw(w1 | p1 � p2) > Pw(w2 | p1 � p2).

So this means that we can use rejection sampling to sample directly from
the posterior. I.e., we can sample a random w from the current Pw, and if
w violates any user feedback, we reject this sample. Otherwise, the sample
is accepted. Clearly the rejection sampling method will only keep samples
which conform to the feedback received from the user, and as shown above,
the relative order of probabilities of two weight vectors being sampled still
conforms to their original relative order following the distribution Pw.

5.3.2 Feedback-aware Sampling

The simple rejection sampling scheme proposed above may work well when
the amount of feedback is small. However, as the amount of feedback grows,
the cost of this approach increases, as samples become more likely to be
rejected. Thus a better sampling scheme should be “aware” of the feedback
received, and try to avoid generating invalid samples, i.e., those that violate
any provided feedback constraint.
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Recall that user feedback produces a set of pairwise preferences of the
form p1 � p2, where p1 and p2 are packages. Given a set Sρ of these
preferences, it can be shown that the set of valid weight vectors w, i.e.,
those that satisfy all feedback preferences, has the following useful property.

Lemma 9 The set of valid weight vectors which satisfy a set of preferences
Sρ forms a convex set.

Proof By definition, for any w1, w2 which satisfy Sρ, ∀ρ := p1 � p2 ∈ Sρ,
w1 · p1 ≥ w1 · p2 and w2 · p1 ≥ w2 · p2. Then ∀α ∈ [0, 1], αw1 · p1 ≥ αw1 · p2
and (1− α)w2 · p1 ≥ (1− α)w2 · p2. Combining these two inequalities shows
that any convex combination of w1 and w2 also forms a valid w.

So valid weight vectors form a continuous and convex region. By exploit-
ing this property, we can leverage different sampling methods which can bias
samples more towards those which are inside the valid region.

Importance Sampling

The general idea of importance sampling is that, instead of sampling from a
complex probability distribution (original distribution), which in our case is
Pw(w | Sρ), we sample from a different proposal distribution Qw, which is
more likely to satisfy the constraints given by the feedback set Sρ. However,
this process will introduce a set of samples which do not follow the original
distribution, so we need to correct this bias by associating each sample w
from Qw with an importance weight (or simply weight, when there is no
ambiguity) q(w). Next we will discuss how this framework can be employed
in solving our problem.

Since valid weight vectors w.r.t. Sρ form a continuous and convex region,
samples which lie close to the “center” of this region are more likely to
satisfy Sρ. However, finding the center of an arbitrary convex polytope is
extremely complex and time consuming [26], which negates the motivation
for using importance sampling, namely efficiency. Instead, we use a simple
geometric decomposition-based approach, which partitions the space into a
multi-dimensional grid, and approximates the center of the convex polytope
using the centers of the grid cells which overlap with it.

In Figure 5.3, we show a simple two dimensional example of the above
approach. Initially, the entire valid region is divided into a 3 × 3 grid as
depicted in Figure 5.3(a). Given feedback ρ := p1 � p2, we know any
invalid w satisfies the property that w · p1 < w · p2, or w · (p2 − p1) > 0, i.e.,
w is invalid if w is above the line p2 − p1 = 0. As shown in Figure 5.3(b),
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Figure 5.3: Approximate center of a convex polytope.

all w’s which are in the top-right grid cell are above the line corresponding
to ρ, so we can eliminate this cell from consideration, and the center of the
region of valid w’s can be approximated by the center of the remaining eight
cells. The latter can be calculated by simply taking the average of the eight
cell centers.

We note that whether there exists a w in a grid cell which satisfies
a constraint ρ can be checked in time linear in the dimensionality of the
feature space. Also, finding those cells which violate new feedback can be
facilitated by organizing the grid cells into a hierarchical structure such as
a Quad-tree [55].

Given the center w∗ of the valid region, an intuitive choice for the pro-
posal distribution would be a Gaussian Qw ∼ N (w∗,Σ) with mean w∗,
covariance Σ. To correct the bias introduced in samples from Qw, in impor-
tance sampling, we could associate each valid sample w with an importance
weight q(w) = Pw(w)/Qw(w). Intuitively, this importance weight compen-
sates for the difference between Pw and Qw.

The importance weight of each sample q(w) can be easily adapted to
different ranking semantics. For EXP, we multiply q(w) by the utility value
calculated for each package under consideration for this w. For TKP, MPO
and ORA, instead of adding one to the corresponding counter of each pack-
age w.r.t. the given w, we add q(w).

MCMC-based Sampling

Another popular approach for sampling from complex distributions is the
Markov Chain Monte Carlo or MCMC method. This approach generates
samples from the distribution by simulating a Markov chain. We construct
the Markov chain in a way such that it gives more importance to the regions
which are valid, i.e., the stationary distribution of the Markov chain is the
same as the posterior Pw(w | Sρ).

Since valid weight vectors form a single continuous and convex region, we
could simply find a first valid weight vector w, and then perform a random
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walk from w to a new weight vector w′. Note that in order to explore the
valid region w.r.t. the current set of preferences Sρ, it is clearly desirable
that each step of the random walk explores only a close region around the
current w, as otherwise, w′ generated from w may be more likely to be
outside the valid region. Thus we define a length threshold lmax, and set
the transition probability Q(w′ | w) from w to w′ as follows:

Q(w′ | w) =

{
1/lmax if ‖w′ − w‖ ≤ lmax
0 otherwise.

(5.4)

One of the most popular MCMC-based sampling algorithms is Metropolis-
Hastings (MH). Using MH we can generate samples following the Markov
chain defined by Q(w′ | w). Given a current weight parameter w, we ran-
domly pick a weight parameter w′ such that the distance ‖w′ − w‖ is less
than or equal to lmax. If w′ satisfies the preferences in the feedback set
Sρ, w

′ is accepted as the next sample with a probability α, as defined in
Equation 5.5. If w′ is rejected (i.e., with probability (1−α)), we use a copy
of the w as the next sample.

α = min{1, Pw(w′)Q(w | w′)
Pw(w)Q(w′ | w)

} (5.5)

Note that Q(w′ | w) is obviously symmetric in our case, so α can be

simply calculated as α = min{1, Pw(w′)
Pw(w) }.

Following recommendations in the MH sampling literature [22], we pick
one sample from every δ samples generated, where δ is called the step length,
rather than including all generated samples in the final sample pool. This
avoids generating highly correlated samples.

5.3.3 Optimizing Constraint Checking Process

Suppose σ packages p1, . . . , pσ are presented to the user. Note that according
to the preference elicitation protocol, in every interaction only one package is
picked by the user as the most preferred package. Without loss of generality,
let p1 be that package. This results in σ − 1 pairwise package preferences:
ρ1 := p1 � p2, . . . , ρσ−1 := p1 � pσ−1. Thus, as more feedback is received
from the user, the number of package preferences we need to deal with
increases quickly.

This raises the following two issues: (1) cycles in preferences, and (2) cost
of checking whether a sample w should be rejected. We note that cycles in
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preferences can be resolved by presenting packages in a cycle to the user, and
asking the user to choose the best out of them (which reverses the direction
of one edge in the cycle and breaks the cycle). Next we will discuss how a
set Sρ of pairwise package preferences can be organized in order to facilitate
efficient checking of whether a sampled weight vector w is valid.

One intuitive solution is to reduce redundant package preferences by
exploiting the transitivity of the preference relation. It is easy to see that the
preference relation � over packages is transitive for additive utility functions,
i.e., for any packages p1, p2, p3 and any weight vector w, w · p1 > w · p2 and
w · p2 > w · p3 imply w · p1 > w · p3. Thus, there is no need to verify
satisfaction of p1 � p3 for a sample w whenever w satisfies p1 � p2 and
p2 � p3. It follows that the number of preferences we need to check is at
most linear in the number of distinct packages (implicitly) appearing in the
feedback.

To eliminate redundant preferences received from the user, we can main-
tain preferences in a directed acyclic graph (DAG) Gρ: an edge (pi, pj) rep-
resents the preference pi � pj . Then any transitive reduction algorithm [17]
can be applied to eliminate redundant preferences.

5.3.4 Sample Maintenance

It is clear from the previous section that depending on the number of feed-
back preferences received from a given user, the sampling process may ac-
tually be quite time consuming. Thus, it is desirable to avoid generating
samples from scratch whenever new feedback is received. In other words, it
is desirable to maintain previously generated samples against new incoming
feedback.

Given a probability distribution Pw of w, a set Sρ of preferences, and a
sample pool S, instead of regenerating all samples, we can simply replace
samples which violate the new feedback, and retain samples which do not
violate any new feedback. This approach works since the probability of each
valid w always follows Pw, regardless of the newly received feedback.

A simple idea for replacing invalid samples in the pool is to scan through
all samples in the pool one by one, and check whether each satisfies the new
feedback. This simple approach will be effective if many samples might vio-
late the new feedback received. However, the performance will be very poor
if hardly any samples from S actually violate the newly received feedback.

Note that, as discussed in the previous section, for feedback ρ := p1 � p2,
w violates ρ if w · (p2 − p1) > 0. Thus finding those w ∈ S which violate
ρ is the same as finding all weight vectors which have a projected value on
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p2 − p1 larger than 0. This problem can be solved by leveraging the classic
threshold algorithm (TA) framework [63], by iteratively enumerating the
largest w from S w.r.t. the query vector p2−p1 until the maximum possible
score of any unseen w is less than or equal to 0. Obviously this TA-based
algorithm is very efficient when not many samples violate the new preference.
However, for cases where most samples violate the new feedback, the cost
of the TA-based algorithm may be much higher than the näıve algorithm of
checking every sample in the pool for possible preference violation.

Algorithm 14: RejectedSampleCheck(S, ρ = p1 � p2)
1 Q ← An empty set for rejected sample w’s;
2 Lw ← Lists of samples sorted based on feature values;
3 while true do
4 lw ← Access lists in Lw in round-robin fashion;
5 w ← getNext(lw);
6 τ ← boundary value vector from Lw;
7 if w · (p2 − p1) > 0 then Add w to Q;
8 if τ · (p2 − p1) ≤ 0 then Break;
9 if Cprocessed + Cremain ≥ (1 + γ)|S| then

10 Scan and check each remaining w in lw, Break;

11 return Q;

Motivated by this, we propose a hybrid approach shown in Algorithm 14.
We organize the samples into m lists Lw = lw1 , . . . , l

w
m, where each list lwi is

a total ordering of items based on the values of the corresponding feature
fi. Given new feedback ρ, we start with the TA-based algorithm, and if
the current number Cprocessed of items processed plus the number Cremain of
remaining items in the current list is larger than or equal to (1 + γ) of the
total number of items, we stop the TA process, and instead scan through
the remainder of the current list, checking the validity of each sample within
this list. Here, γ is a parameter which can be tuned based on the actual
performance, with smaller γ leading to performance closer to the simple
scanning algorithm, and larger γ leading to performance closer to the pure
TA-based algorithm.

5.4 Search for Best Packages

If we have a top-k package solver which can produce the top-k packages for
a given weight vector w, then given a set S of sample weight vectors, we can
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easily find the overall top-k packages under different ranking semantics as
follows:

For EXP, we need to estimate the expected utility of packages and return
the top-k packages w.r.t. the estimates. Given all the top-k package results
obtained from the samples w ∈ S, we maintain the sum of the utility values
for each package appearing in the results. Then the sample utility mean
of each package is simply the utility sum divided by the number of times
the package appears in a result. Note that we only need to consider those
packages which appear in the top-k package list w.r.t. at least one sample
w.

For TKP, we just need to maintain a counter for each package which
appears in the result set, and the k packages which appear most frequently
in this set will be the result under TKP.

For MPO, instead of maintaining statistics for each package that appears
in the result set, we maintain a counter for each top-k package list. The final
top-k package list under MPO is the one with the largest counter value.

For ORA, the final top-k package list should be the one which minimizes
the sum of its (Kendall tau) distance to any top-k package list in the result
set. So we can simply store all the top-k package lists and then find the final
top-k packages under ORA using any available algorithm [112].

Thus, given a sampling-based framework, a key step in finding the top-k
packages given a set S of sample weight vectors is to find the top-k packages
for any specific w, which we address next.

Given a set T of items and a fixed w for the utility function, the problem
of getting the k best items w.r.t. w can be done using any standard top-
k query processing technique [63]. However, because we are dealing with
subsets of items, the problem becomes challenging since a näıve solution
which first enumerates all possible packages, and then uses a top-k query
processing algorithm for finding the best k packages would be prohibitively
expensive. Below, we discuss how classical top-k query processing algorithms
can be adapted to finding the top-k packages, given a fixed w.

Following recent research on top-k item query processing [63], one intu-
ition is that for a top-k package p, the likelihood of having a high utility
item in p is often higher than the likelihood of having a low utility item in p.
Thus by accessing items in their descending utility order, we could poten-
tially locate the top-k packages by accessing only a small number of items.
To facilitate efficient processing over different weight vectors, we order items
based on their utility w.r.t. each individual feature. We denote the resulting
set of sorted lists by L.

Given a fixed w and utility function U , Algorithm 15 gives the pseudo-
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code of the overall algorithm framework TopPkg. As shown in the algorithm,
TopPkg first sorts the underlying items into different lists, where each list
is an ordering of the items in T w.r.t. the desirable order on one specific
feature according to the utility function (line 2). E.g., consider U(p) =
0.5avg1(p)+0.5(1−sum2(p)), where avg1(p) and sum2(p) are the normalized
aggregation values of the package w.r.t. the corresponding feature. The
algorithm sorts items into two lists, l1 and l2, where in l1, items are sorted in
non-increasing order of feature 1, and in l2, items are sorted non-decreasing
order of feature 2 20. As discussed before, the intuition is that by accessing
items with better utility values w.r.t. each individual feature in the utility
function, we can potentially quickly find the top-k packages of the items.

After constructing the set of lists L, TopPkg accesses items from lists in
L in a round-robin fashion (line 4–5). We assume items reside in memory, so
their feature values can be retrieved quickly. After accessing each new item
t, we can obtain the new boundary value vector τ in which each feature value
equals the corresponding feature value of the last accessed item in each list
(line 6). So essentially, the feature vector τ corresponds to the maximum
possible utility value for an unaccessed item.

Next, we can expand the existing packages in the queue Q by incorpo-
rating the new item t (line 7), a process described in Section 5.4.2. During
package expansion, a current lower bound utility threshold ηlo can be ob-
tained by looking at the kth best package so far in the queue Q, and an
upper bound utility threshold ηup of any possible package can be obtained
by referring to the maximum utility value an unaccessed item can have, a
calculation described in Section 5.4.1. Obviously, if ηup ≤ ηlo, we can safely
return the current top-k packages, as no future packages can have higher
utility than the current top-k packages (line 8–9).

5.4.1 Upper Bound Estimation for Best Package

Given the accessed item information, one important problem in TopPkg is
the estimation of the upper bound value a package can have. In this section,
we will discuss algorithms for estimating this upper bound value.

Given a fixed weight vector w, the utility value U(p) of a specific package
p can be calculated as p ·w, so it depends only on items within the package
p. Given the fact that items in each list of L are ordered in non-increasing
utility of the corresponding feature, the maximal marginal utility value of

20Since each sorted list can be accessed both forwards and backwards, there is no need
to maintain two separate lists when different desirable orders are required on the same
feature.
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Algorithm 15: TopPkg(U , T , w, k)

1 Q ← A priority queue of packages having one item ∅;
2 L ← Lists of items in T sorted according to util. func. U ;
3 while true do
4 l ← Access lists in L in round-robin fashion;
5 t ← getNext(l);
6 τ ← boundary value vector from L;

7 (ηlo, ηup) ← expandPackages(U , Q, t, τ));

8 if ηup ≤ ηlo then break ;

9 return top-k packages in Q;

an unseen item is obviously bounded by the imaginary item with feature
vector τ .

Given a utility function U , we say that U is set-monotone if for any
packages p, p′ of items, we have U(p∪p′) ≥ U(p). E.g., U(p) = 0.5sum1(s)+
0.5(1−min2(s)) is set-monotone. Clearly, if U is set-monotone, the maximum
utility of a package p can be achieved by packing as many items with feature
vector τ (were they to exist) as possible into p. On the other hand, if U is
not set-monotone, e.g., when some aggregate feature values in U are based
on avg, we can show that the upper bound value of p in this case is given
by packing as many items with feature vector τ into p as possible, as long
as the marginal utility gain of this addition is positive.

Lemma 10 Given a package p, a utility function U with fixed w, and a
sequence of items t1, . . . , tm such that every feature value of ti is no worse
than that of ti+1, then U(p ∪ {t1, . . . , ti}) − U(p ∪ {t1, . . . , ti−1}) ≥ U(p ∪
{t1, . . . , ti+1})− U(p ∪ {t1, . . . , ti}), 1 < i < m.

Proof The result follows from that fact that every feature value of ti is no
worse than that of ti+1 w.r.t. U .

An algorithm for estimating the upper bound value, upper-exp, is shown
as Algorithm 16, where φ is the maximum allowed package size.

5.4.2 Package Expansion

Consider the problem of expanding the set of packages in queue Q on ac-
cessing a new item t. A näıve way of expanding packages would be to try to
add t to every possible package in Q as long as the resulting package satis-
fies the package size budget, inserting the new packages into Q. Obviously
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Algorithm 16: upper-exp(p, U , τ , φ)

1 p′ ← p;
2 if U is set-monotone then
3 for i ∈ [1, φ− |p|] do p′ ← p′ ∪ {τ} ;
4 return U(p′)

5 else
6 for i ∈ [1, φ− |p|] do
7 if U(p′ ∪ {τ})− U(p′) > 0 then p′ ← p′ ∪ {τ} ;
8 else return U(p′);

9 return U(p′)

utilizing this strategy is equivalent to enumerating all possible combinations
of the accessed items. Thus, while it is guaranteed to be correct, it is highly
inefficient.

Given a package p, one intuitive optimization is that if incorporating any
unaccessed item cannot improve the value of p, we do not need to consider
p in the expansion phase. E.g., let U(p) = 0.5avg1(p) + 0.5min2(p), with
p = (0.5, 0.5) and τ = (0.4, 0.4). Clearly, any unaccessed item in L will have
a utility worse than or equal to that of τ , so there is no need to consider p
for expansion in the future.

To incorporate this optimization, we split the priority queueQ in TopPkg
into two sub-queues Q+ and Q−. Queue Q+ stores packages which can be
further expanded (while improving utility), while Q− stores packages which
cannot be further expanded (while improving utility) and so can be pruned
from the expansion phase. In Algorithm 17 for the expansion phase, we only
need to iterate through packages in Q+ (lines 2–12), and for each package
p ∈ Q+, we test whether p can be improved by incorporating the new item
t (line 3). If true, we generate a new package p′, and insert it into the
appropriate sub-queue based on whether it can be further improved by an
unaccessed item or not (lines 5–8). If false, we can check whether the current
p can be further improved by referring to the updated τ , and p will be moved
to Q− if it cannot be improved (lines 9–11).

5.5 Experimental Evaluation

In this section, we study the performance of various algorithms proposed
in this work based on one real dataset of NBA statistics and four synthetic
datasets. The goals of our experiments are to study: (i) the performance
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Algorithm 17: expandPackages(U , Q, t, τ)

1 (ηlo, ηup) ← lower/upper bound value;
2 foreach p ∈ Q+ do
3 if U(p ∪ {t}) > U(p) then
4 p′ ← p ∪ {t};
5 if U(p′ ∪ {τ}) > U(p′)) then
6 Q+ ← Q+ ∪ {p′};
7 ηup ← max(ηup, upper-exp(p′, U , τ , φ));

8 else Q− ← Q− ∪ {p′} ;

9 if U(p ∪ {τ}) > U(p) then
10 ηup ← max(ηup, upper-exp(p, U , τ , φ));

11 else Q+ ← Q+ − {p}, Q− ← Q− ∪ {p} ;

12 ηlo ← U(Q−[k]) or 0 if fewer than k packages in Q−;

13 return (ηlo, ηup)

of various sampling techniques w.r.t. our package recommendation problem;
(ii) the effectiveness of the proposed pruning process; (iii) the performance
of various maintenance algorithms as the system receives new feedback. We
implemented all the algorithms in Python, and all experiments were run
on a Linux machine with a 4 Core Intel Xeon CPU, OpenSuSE 12.1, and
Python 2.7.2.

The NBA dataset is collected from the Basketball Statistics website [6],
which contains the career statistics of NBA players until 2009. The com-
posite recommendation would be to recommend a set of NBA players which
have good aggregated statistics over different measures, e.g., high average
3 points per game, high rebounds per game. The dataset has 3705 NBA
players and we randomly selected 10 (out of 17) features (each feature cor-
responds to statistics of NBA players such as points per game) to be used
in our experiments. The synthetic datasets are generated by adapting the
benchmark generator proposed in [25]. The uniform (UNI) dataset and the
powerlaw (PWR) dataset are generated by considering each feature indepen-
dently. For UNI, feature values are sampled from a uniform distribution,
and for PWR, feature values are sampled from a power law distribution with
α = 2.5 and normalized into the range [0, 1]. In the correlated (COR) syn-
thetic dataset, values from different features are correlated with each other,
while in the anti-correlated (ANT) synthetic dataset, values from different
features are anti-correlated with each other. Each synthetic dataset has 10
features and has 100,000 tuples.
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5.5.1 Comparing Sampling Methods

In Figure 5.4, we show an example of how different sampling methods gen-
erate 100 valid 2-dimensional sample w parameters given 5000 packages and
2 randomly generated preferences. As discussed previously, each prefer-
ence ρ := p1 � p2 defines a linear hyperplane. A sample w satisfies ρ iff
w · (p1 − p2) ≥ 0, or w is above the corresponding hyperplane. In Fig-
ure 5.4 (a), given the set of valid sample w’s (black dots) and the set of
invalid sample w’s (red crosses), we can infer the two linear hyperplanes
which correspond to the two given preferences and bound valid sample w’s
to the bottom. It is clear from the figure that unless these two preferences
are way “above” the center of Pw, many sample w’s from Pw will be in-
valid. Thus using rejection sampling, many samples will be wasted and we
need to spend considerable time checking whether each sample w satisfies
all preference constraints received.
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Figure 5.4: Example of various sampling algorithms.

On the other hand, the two feedback-aware sampling strategies will gen-
erate far fewer invalid samples. E.g., in Figure 5.4 (b), the importance
sampling technique samples from a proposal distribution which is more to
the center of the valid region, so samples generated are more likely to satisfy
all constraints. Notice, each sample w is also associated with a weight, which
is captured by the size of the dot/circle in the figure. The higher the prob-
ability w has under the original distribution, and the lower the probability
w has under the proposal distribution, the larger the weight of w.

As can be seen from Figure 5.4 (c), MCMC-based sampling first needs to
find one random valid sample w. Note that during this process we leverage
the simple rejection sampling, thus these rejected samples (denoted as iso-
lated red crosses in the figure) will not be part of the random walk process
in MCMC. Then from this valid sample w, we initiate a random walk from
the neighborhood of w, which follows the original distribution of Pw using
a Metropolis-Hastings sampler as discussed Section 5.3.2.
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5.5.2 Constraint Checking

As discussed in Section 5.3.1, no matter which sampling method we use,
an important task is to efficiently check whether a sample satisfies all the
feedback constraints received from a user. In Figure 5.5, we show how
pruning strategies discussed in Section 6.4.2 benefit the overall checking
performance by varying the number of features, the number of samples, and
the number of Gaussians in the mixture distribution while keeping the other
variables fixed at a default value. We set the default value for the number of
randomly generated preferences to 10000, the number of packages to 5000,
the number of Gaussians to 1, the number of features to 5, and the number
of samples to 1000. As can be seen from this figure, when we vary one
parameter while fixing other parameters at their default values, the pruning
strategy can robustly generate at least a 10% improvement. Results under
other different default values are similar.
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Figure 5.5: Efficiency of the pruning strategy.

5.5.3 Overall Time Performance

In this section, we report the overall time performance for package recom-
mendation over different datasets. All time results reported are based on an
average of 5 runs.

In Figure 5.6, we compare overall time performance for generating top-
k package recommendations under Rejection Sampling (RS), Importance
Sampling (IS), and MCMC-based Sampling (MS). In these experiments, we
randomly select one ranking semantic and vary one of the following two
parameters while fixing the remaining parameters at their default values:
(1) Number of valid samples required; (2) Number of features. We also
tested varying the number of feedback preferences received, and the number
of Gaussians in the mixture distribution; the results are very similar to
varying the number of valid samples, and thus are omitted.
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Figure 5.6: Overall time performance under various sampling algorithms.

From Figure 5.6 (a)–(e), with a log-scale for processing time, we observe
that the sampling cost for generating valid sample w’s mostly outweighs or
at least is comparable to the cost for generating top-k packages, as usually
the top-k packages can be found by just checking the first few high utility
items. Also the rejection sampling cost is usually much higher than that of
the other two feedback-aware sampling approaches.

As can be seen from Figure 5.6 (f)–(j), importance sampling is excluded
from high dimensional experiments because finding the center of a high-
dimensional polytope is computationally intractable [46]. Even using the
simple grid-based approximation algorithm as discussed in Section 5.3.2,
the cost is exponential w.r.t. the dimensionality. Specifically, when the di-
mensionality is over 5, the time to find the center will quickly exceed the time
for rejection sampling. Indeed, when dimensionality is 6, the algorithm can-
not finish within 30 minutes whereas simple rejection sampling only needs
a couple of seconds. As can be seen from Figure 5.6 (f)–(j), MCMC-based
sampling scales well w.r.t. dimensionality.

5.5.4 Sample Quality

To measure the quality of different sampling methods, we compare the top-5
package list generated w.r.t. different ranking semantics and different sam-
pling methods. In our experiments, we set the number of samples to 5000
(we verified that increasing the number of samples beyond 5000 does not
change the top package rankings for different datasets), the number of feed-
back preferences received to 1000, the number of features to 4, and the
number of Gaussians in the mixture distribution to 2. Results under dif-
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ferent value settings are similar thus excluded. Each package is associated
with a unique and random package id.

In Table 5.1, we show the top-5 packages under different sampling meth-
ods and different ranking semantics on UNI; experimental results on other
datasets and other settings are similar and are thus omitted. As can be
seen, given enough samples, the top package results from different sampling
methods typically tend to become very similar. The reason is that although
different ranking semantics may potentially result in different top package
lists, they can be correlated with each other. E.g., as in our example, if
one list of top packages dominates the results given a set of samples, TKP,
MPO and ORA may tend to give very similar results. This is because pick-
ing the same list of top packages guarantees that packages in this list may
also appear most frequently among all top packages. ORA may also pick
this same list as it tends to minimize the distance between it and all other
top package lists. EXP may not be affected by this as it is determined by
the expected utility of the package, so a package appearing frequently may
not necessarily have high expected utility value.

Rej. Sampling Imp. Sampling MCMC Sampling
EXP 1,2,3,6,7 1,2,3,6,7 1,2,3,6,7
TKP 6,7,8,9,10 6,7,8,9,10 6,7,8,9,10
MPO 6,7,8,9,10 6,7,8,9,10 6,7,8,9,10
ORA 6,7,8,9,10 6,7,8,9,10 6,7,8,9,10

Table 5.1: Top-5 package id’s for different sampling methods and different
ranking methods on UNI.

5.5.5 Sample Maintenance

As discussed in Section 5.3.4, upon receiving new feedback, a näıve method
of scanning through previous samples to determine which samples need to
be replaced might be costly if the number of rejected samples is low, whereas
a top-k algorithm might help by quickly scanning through the pre-processed
sample lists, and determining whether all samples satisfy the constraints.
However, this algorithm suffers from a substantial overhead when the num-
ber of rejected samples is large. Thus we propose a hybrid method which
starts following the top-k based approach, then falls back to the default
näıve method if the top-k process cannot stop early.

To assess the actual performance of these three algorithms, we consider
in the following experiment a setting where the number of previously gener-
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ated samples is set to 10000 (results using other values are similar and thus
omitted), every other parameter is fixed at a default value similar to previ-
ous experiments. We randomly generate sets of 1000 feedback preferences,
and then according to the number of samples rejected w.r.t. the feedback,
we group the maintenance costs into 7 buckets, where each bucket is associ-
ated with a label indicating the maximum number of samples rejected (see
Figure 5.7 (a)). Results are placed in the bucket with the smallest qualifying
label. Maintenance cost results are averaged for all cases within the same
bucket.

According to Figure 5.7 (a), the top-k based algorithm is a clear winner
when the number of rejected samples is small. As the number of rejected
samples grows, the performance of top-k based algorithms will deteriorate,
especially the non-hybrid method. But the hybrid method introduces only a
small overhead over the näıve algorithm because of the fall-back mechanism,
and this overhead can be tuned through the parameter γ. In Figure 5.7 (b),
we show how the ratio of each of top-k cost and hybrid cost over the näıve
approach varies with γ. It shows that when γ is very small, the average
performance of the hybrid method is very similar to the näıve algorithm
as the algorithm is forced to check fewer samples. By slightly increasing γ
(e.g., to 0.025 as in Figure 5.7 (b)), the hybrid method can show over 15%
improvement compared to the näıve method. When γ increases further, the
performance deteriorates as it becomes similar to the non-hybrid method.
We note that this property means we could adaptively decrease γ in practice
until a reasonable performance gain can be observed.
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Figure 5.7: Experiments on sample maintenance.

5.6 Discussion

A user’s online interaction can be noisy. E.g., a user may accidentally click
on a package or may change their mind after clicking. A popular method for
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modeling this kind of noisy user feedback is to assume that every feedback
received has a probability ψ of being “correct” [27]. We can incorporate
this noise model into our framework by assuming that every feedback is
independent. Then instead of rejecting a sample whenever it violates some
feedback preference, we condition its rejection using the probability that at
least one violated feedback preference is correct, i.e., 1− (1− ψ)x, where x
is the number of feedbacks w violates. This can be easily incorporated into
importance sampling and MCMC-based sampling.

As discussed in [129], users may sometimes specify predicates on the
schema of a desired package, e.g., when buying a set of books, at least
two should be novels. We can handle such predicates in the top package
generation process discussed in Section 5.4. The idea is that when generating
a new candidate package, we evaluate the predicates and retain this package
only if it satisfy the specified predicates.

As future work, we plan to investigate how TopPkg presented in Sec-
tion 5.4 can be further optimized using domination-based pruning [87, 129].
The intuition is that by pruning away candidate packages which are not
promising, we can further reduce Q, which will be iteratively searched in
the expansion phase. However, we note that usually these pruning strategies
also come with a non-trivial computational cost, so a systematic cost-based
study of different pruning strategies under our proposed PRS model would
be interesting.
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Chapter 6

Further Optimization using
Materialized Views

6.1 Introduction

As discussed in the previous chapters, no matter under hard constraint or
soft constraint, the key algorithm in our composite recommendation sys-
tem can be regarded as a special case of the general top-k query processing
problem. While there exists various methods which can optimize the per-
formance of top-k query processing, here in this chapter we discuss how a
particular simple and easy to be implemented technique, query answering
using cached views, can be used to facilitate our top-k query processing prob-
lems. while most of this chapter focuses on discussing how this technique
can be leveraged to facilitate classical top-k query processing w.r.t. items.
At the end of this chapter, we show how this technique can be applied in
different top-k query processing algorithms in composite recommendation.

For the applications under consideration w.r.t. items, typically a simple
linear score function is used to aggregate the attribute values of a tuple into
a score, due to its intuitiveness [36, 44, 45, 60, 117, 128]. Figure 6.1 (a)
shows an example relation R which contains 6 tuples over attributes A, B
and C. Consider a query Q1 which asks for the top-3 tuples with the highest
values under the score function f1(t) = 0.1t[A]+0.9t[B]. The result is shown
as (a cached view) V1 in Figure 6.1 (b).

While various efficient algorithms have been proposed for processing top-
k queries [53, 63], one significant limitation is that they cannot take advan-
tage of the cached results of previous queries. E.g., consider the previous
example query Q1 whose result V1 is shown in Figure 6.1 (b). Suppose a
(possibly different) user subsequently asks the top-1 query Q′ with the score
function f ′(t) = 0.2t[A] + 0.8t[B]. Then, as we will see in later sections, we
can use the previous cached result V1 to determine, without accessing the
original database R, that t5 is the top-1 answer for Q′.

Leveraging cached query results to scale up query answering has recently
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V1
tid rank score
t5 1 0.74
t3 2 0.66
t1 3 0.57

V2
tid rank score
t5 1 0.74
t6 2 0.59
t2 3 0.53

R tid A B
t1 0.3 0.6
t2 0.4 0.5
t3 0.3 0.7

C
0.4
0.6
0.3

f1=0.1A+0.9B 
k1=3 

f2=0.1A+0.5B+0.4C 
k2=3 
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t4 0.5 0.3
t5 0.2 0.8
t6 0.6 0.5

0.5
0.8
0.7

Figure 6.1: (a) A relation R with three attributes A, B, C; (b), two cached
views V1, V2 which contain top-3 tuples according to the the two score func-
tions f1(t) = 0.1t[A] + 0.9t[B], f2(t) = 0.1[A] + 0.5[B] + 0.4[C] respectively.

become increasingly popular for most large scale websites. For example,
the popular Memcached [3] caching system has reportedly been adopted by
many large scale websites such as Wikipedia [10], Flickr [1], Twitter [8] and
Youtube [12]. The application of cached query results or materialized views
for speeding up query answering in relational databases, the so-called query
answering using views (QAV) problem, has been extensively studied (see [58]
for an excellent survey). This problem has been shown to have applications
in data integration [75], query optimization [84], and data warehouse de-
sign [114].

For top-k query processing, recently there have been some initial efforts
at using materialized query results for speeding up query answering. In
the PREFER system, Hristidis et al. [60] consider the problem of how to
select one best materialized view for answering a query. Their setting is
quite restrictive, as it cannot exploit multiple materialized views, and it
also makes a strong assumption that all attributes of the underlying base
table are always utilized for all top-k queries. Overcoming these limitations,
Das et al. [45] propose a novel algorithm, called LPTA, which is able to
utilize multiple materialized views for answering a top-k query. Ryeng et
al. [109] extend these techniques to answer top-k queries in a distributed
setting.

Though LPTA overcomes many of the limitations of PREFER, unfor-
tunately it still suffers from several significant limitations. Firstly, the core
techniques proposed in [45] rely on the assumption that either (1) each top-k
view is a complete ranking of all tuples in the database, or (2) that the base
views, which are complete rankings of all tuples in the database according
to the values of each attribute, are available. These assumptions may often
be unrealistic in practice.

Consider the example of finding top-k movies. There are several popular
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websites which provide top-k lists of movies based on different criteria. For
example, Metacritics [4] provides a ranked list of (up to 5639) movies based
on Metascore [5], which is aggregated from critics and publications like the
New York Times (NYT) and the San Francisco Chronicle; IMDB [2] provides
a top-250 list of movies based on votes from their users; and RottenTomatoes
(RT) [7] provides a top-100 list of movies based on the Tomatometer score,
which is calculated based on critics. Here, the top-k lists on Metacritics,
IMDB, and RT can be regarded as materialized views. Because of the huge
number of movies available, it is impractical to obtain the complete ranking
of all movies from each of the sources, and for the same reason, we cannot
assume base views corresponding to the complete ranking of all movies on
each of the individual scores, e.g, NYT score, are available. Consider the
query that asks for top-k movies according to an aggregation of NYT score,
IMDB score, and Tomatometer score. Since the only information we have
access to is the top-k movies from the Metacritics, IMDB, and RT, the
technique proposed in [45] cannot be used to answer this query. Similar
examples can also be found in other domains: finding the top-k universities
based on university ranking lists from U.S. News [9] and The Times [11]; or
finding the top-k cars based on automobile ranking lists from U.S. News [14]
and Auto123 [13].

The second issue with the LPTA algorithm proposed in [45] is that it
uses linear programming (LP) as a sub-procedure to calculate the upper
bound on the maximum value achievable by a candidate result tuple, and
the LPTA algorithm needs to call this sub-procedure iteratively. It has
been demonstrated in [45] that for low dimensionality scenarios (e.g., 2 or
3), the cost of this LP overhead is reasonable. However, we will show in our
experiments that for scenarios with higher dimensionality, which we note is
very common, this iterative invocation of the LP sub-procedure may incur
a high computational overhead.

Finally, for both PREFER [60] and LPTA [45], a potentially costly view
selection operation is necessary. For example, the view selection algorithm in
[45] requires the simulation of the top-k query process over the histograms of
each attribute, and the processing cost is linear with respect to the number of
views. This cost can be prohibitive given a large pool of cached query (view)
results. Furthermore, (histograms over) base views are often not available
in practice, restricting the applicability of this view selection procedure.

In this chapter, we propose two novel algorithms for the problem of top-
k query answering using cached views. Our first algorithm LPTA+ is an
extension of LPTA as proposed in [45]. In LPTA+, we make a novel ob-
servation on the characteristics of LPTA, and by taking advantage of the
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fact that our views are cached in memory, we can usually avoid the itera-
tive calling of the LP sub-procedure, thus greatly improving the efficiency
over the LPTA algorithm. LPTA+ can be useful for scenarios with a small
number of views and low dimensionality. For the case where the number of
cached views is large and the dimensionality is high, we further propose an
index structure called the inverted view index (IV-Index ), which stores the
contents of all cached views in a central data structure in memory, and can
be leveraged to answer a new top-k query efficiently without any need for
view selection.

Specifically, we make the following contributions:

• We consider the general problem of top-k query answering using views,
where base views are not available, and the cached views include only
the top-k tuples which need not cover the whole view (Section 6.2).

• For scenarios where we are not allowed to maintain additional data
structures, we extend LPTA and propose a new algorithm, LPTA+,
which can significantly improve performance over LPTA (Section 6.3).

• We further propose a novel index-based algorithm, IV-Search, which
leverages standard space-partitioning index structures, and can be
much faster than LPTA/LPTA+ in most situations. We consider two
different strategies for the IV-Search algorithm, and discuss additional
optimization techniques (Section 6.4).

• We present a detailed set of experiments showing that the performance
of our proposed algorithms can be orders of magnitude better than the
state-of-the-art algorithms (Section 6.5).

Related work is discussed in Section 6.6.

6.2 Problem Setting

Given a schema R with m numeric attributes A1, . . . , Am, we denote a
relation instance of R by R. In practice, R may have other non-numeric
attributes as well, but we are concerned only with the numeric attributes.
Every tuple t ∈ R is an m-dimensional vector t = (t[1], . . . , t[m]), where t[i]
denotes the value of t on attribute Ai, i = 1, . . . ,m. Similar to previous work
on top-k query processing, we assume that attribute values are normalized
in the range of [0, 1], and that each tuple t also has a unique tuple id.
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Similar to [45], we define a top-k query Q over R as a pair (f, k), where k
is the number of tuples required, and f : [0, 1]m → [0, 1] is a linear function
which maps the m attribute values of a tuple t to a preference score, i.e.,
f(t) = w1t[1] + · · · + wmt[m], where wi ∈ [0, 1], and

∑
iwi = 1. Note that

since every wi is non-negative, the function f is clearly monotone, i.e., for
two tuples t1 and t2, if t1[i] ≥ t2[i], i = 1, . . . ,m, then f(t1) ≥ f(t2).

Given a relation R and a query Q = (f, k), without loss of generality,
assume that k ≤ |R| and that larger f values are preferred. Then the
semantics of top-k query processing is to find k tuples in R which have the
largest values according to the query score function f . We can formally
define the answer to a top-k query as follows.

Definition 14 Top-k Query Answer: Let Q = (f, k) be a top-k query
over relational schema R. Given a relation R over R, the answer of Q on
R, Q(R), is a list of tuples from R such that |Q(R)| = k, and ∀t ∈ Q(R)
and ∀t′ ∈ R\Q(R), f(t) ≥ f(t′). Finally, tuples of higher rank in Q(R) have
a higher score according to the score function f .

A top-k cached view, or a top-k view for brevity, is defined similarly to
a top-k query, except the results of a top-k view are cached in memory.
For each tuple t in a cached view, we assume all attribute values t[i], i =
1, . . . ,m, will also be cached in memory, and thus can be efficiently accessed
at query time. We allow random access by id on the cached tuples. Given
a view Vi = (fi, ki), without any ambiguity, we reuse Vi also to denote the
list of (ki) tuples materialized along with their ranks and scores w.r.t. fi.

We use Vi[j] to denote the tuple t ∈ Vi, which has the jth highest score
w.r.t. fi, with ties broken using tuple id, i.e., a tuple with a smaller tuple
id will be ranked higher. Similarly for a given relation R, we denote the jth
tuple in R following the order defined by a score function f as Rf [j].

Let V = {V1, . . . , Vp} be a set of views, where Vi = (fi, ki) is a top-
ki view, and let Q = (f, k) be a top-k query. Inspired by the notion of
certain answers when answering a non-ranking query using views [15], we
say a relation R is score consistent with the set V of views, if for any view
Vi = (fi, ki) ∈ V, the jth tuple Rfi [j] in R w.r.t. fi has the same score as
the jth tuple Vi[j] in Vi, i.e., fi(Rfi [j]) = fi(Vi[j]), for j = 1, . . . , ki. Note
that we do not require Rfi [j] to have the same tuple id as Vi[j], since the
score of a tuple is determined solely by its attribute values and not by its
tuple id (Definition 14).

Given a set of views V = {V1, . . . , Vp}, a score consistent relation R is the
counterpart of a possible world under the closed world assumption (see [15]).
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Accordingly, we define a tuple t ∈ Vi, i = 1, . . . , p, to be a certain answer to
Q if, for any relation R which is score consistent with V, f(t) ≥ f(Rf [k]),
i.e., the score of tuple t is no worse than the score of the kth tuple in R
under the query score function f . Motivated by the previously mentioned
applications where we need to efficiently answer a query using merely top-k
views, we consider the following problem.

Definition 15 Top-k QAV (kQAV): Given a set V = {V1, . . . , Vp} of
top-ki views, i = 1, . . . , p and a top-k query Q = (f, k), find all certain
answers of Q, denoted Q(V), up to a maximum of k answers.

Notice that we have no access to the complete ranking of tuples in the
views nor access to the base views. Similar to query answering using views
in a non-ranking setting [15], given only the view set V, we need to find the
certain answers. The number of certain answers may be less than, equal to,
or more than k. Since Q = (f, k), we restrict the output to a maximum of
k certain answers, where any ties at rank k are broken arbitrarily.

As an example, consider the set of views V = {V1, V2} as shown in
Figure 6.1 (b) and assume the base relation R is no longer available. Assume
we are given the query Q = (f, 1), where f = 0.1A+0.8B+0.1C. Using the
techniques proposed in Section 6.3, we can determine that {t5} is the set of
certain answers to Q. Intuitively, this is because after accessing the second
tuple in V1 and V2, we can derive that for all unseen tuples, the maximum
possible value w.r.t. Q is 0.6425 which is smaller than the current best tuple
t5 for which f(t5) = 0.74. And if Q = (f, 4), we can only find 3 certain
answers to Q, which are t5, t3 and t1. This is because after accessing all
three tuples in V1 and V2, the maximum possible value w.r.t. Q is 0.56 for
all unseen tuples, and only t5, t3, t1 have projected values larger than or
equal to 0.56.

6.2.1 System Overview

Motivated by the applications discussed in the introduction, we consider the
following top-k query evaluation framework as illustrated in Figure 6.2. For
a top-k query Q = (f, k) submitted to the query processing system, the
query executor will consult the cached top-k views to find the maximum set
of certain answers to Q. In this work, we will focus on the kQAV problem
where the goal is to efficiently find certain answers using only the given top-k
views.In the following sections, we will first adapt and improve the LPTA al-
gorithm as originally proposed in [45] for addressing the kQAV problem as
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Figure 6.2: System overview.

defined above, where neither the complete ranking of tuples nor the base
views are available. We will then discuss how a standard space partition-
based index can be used to further optimize the performance of the algo-
rithm.

6.3 LPTA-based kQAV Processing

In this section, we first discuss LPTA, the state-of-the-art algorithm pro-
posed in [45] for answering a top-k query using a set of views.21 We shall
see in Section 6.3.1 that LPTA has several limitations. We first review LPTA
and discuss how it can be adapted to produce certain answers when cached
views are not complete rankings of tuples and no base views are available.
In Section 6.3.2, we propose a new algorithm LPTA+ which overcomes the
limitations of LPTA.

6.3.1 Algorithm LPTA

In [45], Das et al. first studied the problem of answering a top-k query
using multiple views. Similar to the TA algorithm [53], the authors of [45]
assume that the underlying database can be randomly accessed to retrieve
tuple attribute information using tuple ids, and that each view stores a list of
tuple ids along with the scores. They focus on the scenario where either each
view is a complete ranking of all tuples in R, or the base views, which are
complete rankings of all tuples in R according to the values of each attribute,
are available. Thus a top-k query can always be answered exactly and
completely. We next briefly review the LPTA algorithm presented in [45].

Consider the score function f of each query/view also as a vector ~f
from the origin O, representing the direction of increasing value. Given
the assumption on the score function, the vector defined by any possible

21Recall that they assume that views are complete rankings of tuples or that base views
are available.
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score function considered will reside in the first quadrant. For now, we will
assume that for every cached view Vi = (fi, ki), it is the case that ki = |R|
and the tuples in Vi are sorted based on fi, or their projected values on ~fi. In
Figure 6.3 (a), we show an example of the relation R from Example 6.1 when
projected on the first two dimensions A and B. Given a query Q = (f, k),
we can rank the tuples by projecting them onto ~f , as shown in the figure.

Q: (f,k)

V1: (f1,k1)

V2: (f2,k2)

A

B
T(1,1)

O(0,0)

(b)

Q: (f,k)

A

B
T(1,1)

O(0,0)

(a)

t1
t2

t3

t4

t5

t6

Figure 6.3: Example of LPTA.

Recall that we have a set V of p views, and assume that a set U ⊆ V
of r views has been selected in order to answer the query (we discuss the
view selection problem below). In order to answer a top-k query Q = (f, k),
the LPTA algorithm accesses tuples sequentially from the r views. For each
tuple t accessed, the algorithm performs a random access to the database in
order to retrieve the attribute value information of t. The current candidate
top-k results can be easily maintained from the accessed tuples. However,
it is more challenging to find the maximum value τ that can be achieved by
any unseen tuple, which is critical for the stopping criterion of the LPTA
algorithm. Let the last tuple accessed in each view Vi = (fi, ki) ∈ U be
denoted by t̄i, i = 1, . . . , r. As observed in [45], τ can be calculated by
solving the following linear programming (LP) problem:

max
t

τ = f(t)

subject to: fi(t) ≤ fi(t̄i), i = 1, . . . , r

0 ≤ t[i] ≤ 1, i = 1, . . . ,m (6.1)

The “LP solver” is clearly more complex and time consuming than other
components in the LPTA algorithm, so instead of invoking this solver every
time a new tuple is accessed from a view Vi, LPTA accesses tuples from the
r views in a lock-step fashion, i.e., the LP solver will be called once for every
r tuples accessed.
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The pseudocode for LPTA is given in Algorithm 18. We initialize a
priority queueX based on the score function f ofQ (line 1) and the threshold
value τ (line 2). The algorithm then iteratively accesses tuples from the r
views in a lock-step fashion (lines 4–5). For each set of r tuples accessed,
the algorithm finds the value of τ by solving the LP problem (Formula 6.1)
(line 8). If the kth tuple X[k] in the priority queue has value no less than
τ , the algorithm can stop.

Algorithm 18: LPTA(U = {V1, . . . , Vr}, Q = (f, k))

1 X ← an empty priority queue;
2 τ ← ∞;
3 repeat
4 {t̄1, . . . , t̄r} ← getNextTuple(U);
5 retrieveTupleInfo({t̄1, . . . , t̄r});
6 X.insert({t̄1, . . . , t̄r});
7 X.keepTop(k);
8 Find τ by solving the LP problem in Formula (6.1);

9 until noNewTuple(U) or (|X| = k and f(X[k]) ≥ τ);

As we will demonstrate in Section 6.3.2, while the cost of iteratively
calling the LP solver is reasonable when the dimensionality for the given
input relation R is low, the cost increases significantly as the dimensionality
grows. We will discuss in Section 6.3.2 how this increased cost can be avoided
by leveraging innate characteristics of the kQAV problem.

Another problem that remains to be addressed in using LPTA is how
to choose the r views from a potentially large pool of cached views, so that
query processing cost can be minimized. As shown in [45], we need no
more than m views for processing a query on an m-dimensional relation R
(so r ≤ m), and this view selection process is critical for the performance
of the LPTA algorithm. In [45], the authors first observe that for the 2-
dimensional case, we can prune views by considering the angle between view
score function vectors and the query score function vector. Given a query
score function f and two view score functions f1, f2, if ~f1 and ~f2 are to the
same side of ~f , then we only need to select the view which has the smaller
angle to ~f for answering the query, while the other view can be pruned. For
example, consider the two cached views V1 and V2 along with query Q in
Figure 6.3 (b). Because ~f1 has the smaller angle to ~f , Q can be answered
using V1, while V2 can be pruned.

However, this pruning technique may not be very useful for high dimen-
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sional scenarios. As has been shown in recent work [109], the pruning of
views in the general case may involve solving an LP problem whose number
of constraints is proportional to the total number of views. This is clearly
not practical when the number of views is large, but this is precisely the sit-
uation that arises when we want to answer a query using previously cached
results. Thus, in [45], the authors adopt a greedy strategy for selecting
views.

The view selection algorithm ViewSelect in [45] can be described as fol-
lows. Let U be the current set of views selected. ViewSelect will select the
next view to be added to U by using function EstimateCost to simulate the
actual top-k query Q on the histograms [65] of the views in U and those of
the remaining views. If there is no view which can improve the cost of the
current set of views, the algorithm stops and returns the current set of views
selected.

Since each call of the EstimateCost sub-procedure again involves solv-
ing LP problems against the histograms of the corresponding cached views,
the computational cost for view selection turns out to be very high. In
Section 6.3.2 we will first improve LPTA by removing many of the calls to
the LP solver. Then in Section 6.3.3, we will show how we could use an
LPTA-based algorithm for handling the general kQAV problem with top-k
views.

6.3.2 Algorithm LPTA+

The original LPTA algorithm relies heavily on repeatedly invoking the LP
solver for both view selection and query processing, since the number of
times the LP solver will be invoked is proportional to the number of calls
to the LPTA algorithm (on both views and histograms) multiplied by the
number of tuples accessed from the views/histograms. This is especially
problematic when the dimensionality is high, since the cost of LP solver
increases significantly as dimensionality grows.

To test this intuition, we conducted a preliminary experiment to measure
the relative contribution of the LP solver and other operations to the overall
cost. For a randomly generated dataset, where each attribute value of a
tuple is chosen randomly from a uniform distribution, Figure 6.4 shows
how query processing cost increases as dimensionality increases. The results
were obtained by selecting from a pool of 100 randomly generated views,
and by averaging the time of processing 100 randomly generated top-10
queries, with all views cached in memory. As can be seen from the figure,
the processing cost of the LP solver dominates the cost of other operations
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in the LPTA algorithm. As the dimensionality grows, the cost of the LP
solver increases quickly while the cost of other operations remains essentially
constant.
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Figure 6.4: Query processing cost of LPTA as the dimensionality increases.

An important question is whether all these invocations of the LP solver
are actually necessary. We will soon see that, by taking advantage of the fact
that the views are cached in memory and so can be accessed sequentially
with very small overhead, it will be sufficient to solve the LP problem just
a few times for most executions of the LPTA algorithm.

To see this, we need to first to discuss how an LP solver works. We
assume in this chapter that the LP solver is based on the SIMPLEX algo-
rithm [43], which is the most widely used LP algorithm. The general SIM-
PLEX algorithm usually works in two phases. The goal of the first phase
is to find one feasible solution22 to the original problem, while the goal of
the second phase is to find the optimal solution to the original problem.
Because the formulation of our problem as represented by Formula (6.1) is
in standard maximization form [43] (i.e., there are no constraints of the form
w1t[1] + · · ·+wmt[m] ≥ θ except the non-negative variable constraints), the
first phase of finding a feasible solution is essentially trivial. Thus we need
to concentrate on the second phase of the SIMPLEX algorithm.

We call each non-zero variable in a feasible solution a basic solution vari-
able or BSV. In order to obtain the optimal solution in the second phase, we
use the pivoting technique, which essentially replaces one BSV by a variable
which is not currently a BSV, in the hope that the target value τ can be
increased.

Now recall from the LPTA algorithm in Section 6.3.1 that for every r tu-
ples read, we need to solve a new LP problem. An interesting characteristic
of this process is that, for every LP problem formulated, the only change is

22A feasible solution to an LP problem is a solution which satisfies all the constraints.
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in the Right Hand Side (RHS) of Formula 6.1, specifically fi(ti); other parts
of the constraints remain the same.

This characteristic motivates us to consider the following improvement
to the LPTA algorithm. As before, we start by solving the LP problem
once for the first set of r tuples accessed, deriving the BSVs for the optimal
solution in the process. Then, when new tuples are accessed, we can reuse
the previously derived BSVs, and check whether they lead to the optimal
solution. If they do, then we have obtained the optimal solution for the
new LP problem without exploring different possible BSVs using pivoting,
which can be very costly [43]. The check above can be done more efficiently
than pivoting. We note that this technique is different from previous work
on Incremental Linear Programming [20], where the focus is on the more
general problem of adding/removing/updating constraints.

The intuition behind the above optimization can also be illustrated using
geometric properties. Consider the 2-dimensional example in Figure 6.5. Let
t1 and t2 be the last two tuples accessed from V1 and V2 respectively. The
optimal solution for the LP problem in Formula (6.1) can be obtained at
vertex c of the convex polytope Oacb in Figure 6.5 (a). Since the values of
c on dimensions A and B are both positive, we know that A and B are the
BSVs of the optimal solution. After we have accessed two new tuples t3, t4
from V1, V2, we need to shift the two edges ac and bc of the convex polytope
down and left to a′c′ and b′c′, as shown in Figure 6.5 (b). Given the fact that
the score functions of the cached views are all monotone, it is very likely
that, for the new convex polytope Oa′c′b′, the optimal solution will be at the
vertex c′, which again has positive A and B values, and thus corresponds
to the same BSVs. This shows that the optimal solution corresponding to
the new tuples can be obtained by choosing the same set of BSVs in the
LP problem, i.e., we do not need to repeat the pivoting steps to find the
optimal BSVs.
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Figure 6.5: Example of LPTA+.
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The pseudocode of the new LPTA+ algorithm is shown in Algorithm 19.
Compared with LPTA, the difference lies in how the τ value is calculated
(lines 8–15). For the first set of tuples accessed, we run the LP solver and
derive the corresponding optimal BSVs B and τ (lines 8–9). After that, in
each iteration we check whether re-pivoting is needed by using the function
isValidOptimal to verify whether the existing BSVs lead to a new optimal
solution (lines 11–12); if they do, we derive τ directly, otherwise we solve the
LP problem again and derive the new B and τ . Function isValidOptimal
basically pushes variables in B directly into the BSVs of the SIMPLEX
algorithm, and checks whether it forms a valid solution considering the new
RHS vector. The overhead of this operation is small and can clearly avoid
many unnecessary pivoting steps in the SIMPLEX algorithm.

Algorithm 19: LPTA+(U = {V1, . . . , Vr}, Q = (f, k))

1 X ← an empty priority queue;
2 τ ← ∞, B ← nil;
3 repeat
4 {t̄1, ..., t̄r} ← getNextTuple(U);
5 retrieveTupleInfo({t̄1, . . . , t̄r});
6 X.insert({t̄1, . . . , t̄r});
7 X.keepTop(k);
8 if B is nil then
9 Compute the optimal BSVs B and τ using an LP solver;

10 else
11 derive new RHS vector b using {t̄1, . . . , t̄r};
12 if isValidOptimal(U , B, b) then
13 derive the new τ directly;

14 else
15 Compute the optimal BSVs B and τ using an LP solver;

16 until noNewTuple(U) or (|X| = k and f(X[k]) ≥ τ);

Since LPTA+ improves only the efficiency of calculating τ , we know that
both LPTA and LPTA+ will examine the same number of tuples from U . As
we will demonstrate in the experiments, the reuse of BSVs in LPTA+ usually
has a very small cost, and thus by avoiding many unnecessary pivoting steps,
LPTA+ can be much more efficient than LPTA in practice.

102



6.3. LPTA-based kQAV Processing

6.3.3 Handling the General kQAV Problem

Although LPTA+ can improve the efficiency of LPTA, we still need to extend
it to handle the general kQAV problem, where we have only top-k views
rather than complete rankings of tuples, and no base views.

Our first observation is that, given a fixed set of views U = {V1, . . . , Vr},
we can find all the certain tuples from U by using the LPTA+ algorithm
with the following simple modifications: (1) if the algorithm stops before
all tuples in U are exhausted, we have already found a set of top-k certain
answers for the query, since every possible unseen tuple will have a value no
better than the current top-k results; (2) if we have exhausted all tuples in
U , let τ be the threshold value derived from the last tuple of each view; if we
remove from the candidate top-k queue all tuples which have value smaller
than τ , then the remaining tuples in the queue are guaranteed to be certain
answers. Similar to the first case, the pruning of the tuples in the candidate
top-k queue here is sound because τ indicates the maximum value that can
be achieved by an unseen tuple, say t. Every tuple t′ which is pruned has
a value less than τ , so there exists a possible relation instance R which is
score consistent with U , and at the same time contains an unlimited supply
of tuples that have the same attribute values as t. Thus t′ cannot become a
top-k result for this R since it will be dominated by t.

Now one question is whether, given a set of cached views, we can find
a minimal subset of views which can give us the maximum set of certain
answers to the query Q = (f, k) (up to a total of k). Unfortunately as
discussed in [45], an obvious algorithm to determine the best subset of views
has a high complexity since we need to enumerate all possible combinations
of r views. Instead, following the heuristics proposed in [45], we propose
the modification to the LPTA/LPTA+ algorithm described below. This
modification guarantees that we will find the maximum set of certain answers
to Q and that its complexity is linear in the number of views, but it does
not guarantee that the number of views used is minimal.

Consider the second case above (we do not need any changes to the
first case since that already finds a set of top-k certain answers). Instead
of pruning tuples which have a value less than τ , we keep these candidate
tuples and iteratively consider each of the remaining views. For each view
V ′ ∈ V − U , we investigate all tuples in V ′ one by one, replacing existing
candidate tuples with them whenever they have higher value with respect to
Q; meanwhile, we try to refine the threshold value τ by considering the last
tuple accessed in V ′. During this process, if we have k candidate answers
which have value larger than or equal to τ , we know we have found the top-k
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6.4. IV-Index based Top-k QAV

certain answers; otherwise, if all views have been exhausted, we can get the
maximum set of certain answers by pruning from the candidate queue those
which have value less than τ .

It is straightforward to see that the above heuristic, when used in con-
junction with LPTA instead, gives us a procedure for finding all certain
answers to Q (up to a maximum of k). Thus, LPTA can be used to find
certain answers even when base views or complete tuple rankings are not
available.

6.4 IV-Index based Top-k QAV

Though the LPTA+ algorithm proposed in Section 6.3 improves the effi-
ciency of the original LPTA algorithm by avoiding unnecessary pivoting
operations, the algorithm still needs to invoke the LP solver multiple times,
during both view selection and query processing. When the underlying rela-
tion has high dimensionality, the cost of LP solver calls can be considerable.
This motivates the quest for an even more efficient algorithm for finding the
certain answers.

To this end, we propose a simple index structure, called the Inverted
View Index (IV-Index). Using this index greatly reduces the number of
invocations of the LP solver, allowing all certain answers in Q(V) to be
returned quickly.

6.4.1 Inverted View Index

Given the set V of cached views, we first collect all tuples in these views into
an Inverted View Index (IV-Index) I = (T ,HV ,Ht). The components of the
index are as follows: Ht is a lookup table which returns the attribute value
information for a tuple given its id; HV is a lookup table which returns the
definition of a view, and T is a high-dimensional data structure. In this
work, we utilize a kd-tree as the underlying high-dimensional data structure
as it has been shown to have the most balanced performance compared with
other high-dimensional indexing structures [24]. However, we note that the
techniques we propose can be easily adapted to utilize quad-trees or other
indexing structures.

Each node g in the kd-tree T represents an m-dimensional region, with
the root node groot of T representing the entire region from (0, . . . , 0) to
(1, . . . , 1). The kd-tree is built as follows. Starting from the root node, we
recursively partition the region associated with the current node g into two
parts based on a selected dimension and a splitting hyperplane. These two
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6.4. IV-Index based Top-k QAV

sub-regions are represented by two nodes which will become the children
of g in T . Once this recursive process has completed, the disjoint regions
represented by the leaf nodes of T form a partitioning of the whole m-
dimensional space. An example of a kd-tree along with the partitioning is
shown in Figure 6.6.
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A1
1

1

g1

V1

V1[k1] g3

g2g4

g9

g10g12

g11

g14

g13

g7g8

g15

g16

g6 g5

g1 g2 g3 g4 g13 g14 g15 g16

……

(a) kd-tree (b) space partition

A

B

Figure 6.6: Example of (a) a kd-tree, and (b) the corresponding partition
of 2-dimensional space.

For a node g, without ambiguity, we also use g to denote the region
associated with the node. To facilitate query processing, we associate each
leaf node g of T with a set Tg of tuple ids (tids), corresponding to tuples in
the cached views that belong to g. Given a node (region) g, let the value
range of g on each of the m dimensions be [g1l , g

1
u], . . ., [gml , g

m
u ], and let

t`g = (g1l , . . . , g
m
l ) and tag = (g1u, . . . , g

m
u ). Then for any monotone function

f , it is clear that the maximum (minimum) value that can be achieved by
any tuple in g is f(tag ), (resp., f(t`g )).

Since the set of top-k views cached in the memory may not cover the
complete set of tuples in the database, it is clear that we may only have
“partial” knowledge about regions associated with some leaf nodes in T .
Let R be any relation that is score consistent with V. Given a region g,
let Rg denote the set of tuples in R whose values fall inside g. Then we
say that a region g is complete, or κ(g) = true, if Tg = Rg for every score-
consistent relation R; otherwise we say that g is partial, or κ(g) = false.
This is a semantic property and it is expensive to check it directly. A
sufficient condition for checking the completeness of a region g is given in
the following lemma.

Lemma 11 A region g is complete if there exists a top-k cached view Vi =
(fi, ki) in V for which fi(Vi[ki]) < fi(t

`
g ).

Proof If fi(Vi[ki]) < fi(t
`
g ), then clearly for any score-consistent relation
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R, ∀t ∈ Rg, fi(Vi[ki]) < fi(t). So according to the definition of top-k cached
view, all tuples in Rg must belong to V ; hence Rg = Tg.

A 2-dimensional example of Lemma 11 is shown in Figure 6.6 (b). This
example shows a vector ~f1 corresponding to a view V1 = (f1, k1) along with
the k1’th tuple V1[k1] from the view. If we draw a line AB through V1[k1]
which is perpendicular to ~f1, we can observe that t`g1 and t`g3 are above AB;

thus f1(V1[k1]) < f1(t
`
g1), f1(V1[k1]) < f1(t

`
g3), and g1, g3 are complete. On

the other hand, f1(V1[k1]) > f1(t
`
g2), so if the only top-k cached view we

have is V1, we are not able to determine whether g2 is complete or not. This
is because we do not have enough information about the part of g2 which
is below AB. If R contains no tuple which falls inside this region, g2 is
complete; however, if R does contain tuples which fall inside this region, g2
is partial.

We note that it is not possible to derive a necessary and sufficient con-
dition for checking the completeness of a region given only the top-k cached
views. This is because we will have to consult the original database R to
check whether the regions which cannot be decided using Lemma 11, e.g., g2
in above example, are complete or not. Obviously this process can be expen-
sive, and more importantly, it is against the purpose of our kQAV framework
which is to answer queries using only top-k cached views. So we will simply
label regions whose completeness cannot be decided by Lemma 11 as partial.
Alternative weaker sufficient conditions for completeness checking are left as
future work.

Consider a partial leaf node g in T for a top-k cached view V1 = (f1, k1).
If f1(t

`
g ) ≤ f1(V1[k1]) ≤ f1(t

a
g ) (i.e., the hyperplane which crosses V1[k1]

and is perpendicular to ~f1 intersects with g), we will store a pair p =
(V1, V1[k1].id) in a cross view set Pg associated with g. In p, the first entry
is a pointer to the definition of V1, while the second entry is the tuple id of
V1[k1]. If no such views exist, i.e., the view is complete, Pg = ∅. Consider
the example of Figure 6.6 (b), and suppose that V1 is the only top-k cached
view. Then (V1, V1[k].id) is in Pg2 as well as in Pg4 ,Pg5 ,Pg6 ,Pg7 and Pg9 .

6.4.2 IV-Search Algorithm

Given an IV-Index I, a top-k query Q = (f, k) can be answered by traversing
the corresponding kd-tree of I using a strategy such as best-first search [108].

The pseudocode of our first algorithm, called IVS-Eager, is given in
Algorithm 20. The algorithm traverses the kd-tree T by visiting first those
nodes which have larger maximum value with respect to Q (lines 3–17), as
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6.4. IV-Index based Top-k QAV

indicated by f(tag ), since these nodes may have good potential to contain
tuples which have high value with respect to Q. If the current node g is a
leaf node, then we extract all tuples within g and check whether they can
become new candidate top-k results (lines 9–11). In addition, if a leaf node
g is partial, we need to collect information from Pg, which defines the region
of the unseen tuples which cannot be covered by the top-k cached views, and
solve a linear programming problem to find the maximum value that can
be achieved by any unseen tuples in g (lines 12–13). Finally, if the current
node g has its maximum value f(tag ) less than or equal to f(Xr[k]), which
is the value of the kth candidate tuple in Xr, the algorithm can stop, since
according to the best-first search strategy, any unseen nodes cannot contain
a tuple which is better than Xr[k] (line 14).

Algorithm 20: IVS-Eager(I=(T ,HV ,Ht),Q = (f, k))

1 Xn ← an empty priority queue for kd-tree nodes;
2 Xr ← an empty priority queue for candidate results;

3 Xn.enqueue(groot, f(tagroot));

4 τ ←∞;
5 while ¬Xn.isEmpty() do
6 g ← Xn.dequeue();

7 τ ← min(τ , f(tag ));

8 if isLeaf(g) then
9 foreach t ∈ g do

10 Xr.enqueue(t, f(t));

11 Xr.keepTop(k);
12 if ¬κ(g) then
13 τ ← min(τ , LPSolve(Pg, Q));

14 if |Xr| = k ∧ f(Xr[k]) ≥ f(tag ) then break ;

15 else
16 foreach gc ∈ children(g) do
17 Xn.enqueue(gc, f(tagc));

18 return {t | t ∈ Xr ∧ f(t) ≥ τ};

The correctness of IVS-Eager follows from the best-first search strategy,
since every unseen tuple will have value smaller than Xr[k] with respect to
Q. In addition, the updating of the threshold value τ ensures that every
tuple returned is a certain answer.
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One inefficiency in IVS-Eager is that, for every partial leaf node encoun-
tered, we need to invoke an LP solver to update the threshold value τ . This
can be expensive for the following two reasons: first, as shown in the example
of Figure 6.6 (b), each top-k cached view might be stored in the cross view
set of many nodes, so there might be duplicated computation if we solve the
LP problem for every node individually; second, when the dimensionality is
high, the number of such partial nodes will be large. In the following, we
propose another algorithm, called IVS-Lazy, which needs to solve only one
(potentially larger) LP problem.

Algorithm 21 lists the pseudocode of IVS-Lazy. The difference with IVS-
Eager is that whenever a partial leaf node g is encountered in IVS-Lazy, we
store the cross view set of g in a cache Cn (line 13) rather than immediately
solve the LP problem and update the threshold τ as is done in IVS-Eager.
After we have exhausted all nodes in the kd-tree, we collect all the view
information in Cn and solve a single LP problem (lines 18–19).

Further Optimization via View Pruning

As can be observed from Algorithms IVS-Eager and IVS-Lazy, a critical
operation in both algorithms is to collect constraints from the cross view
set(s), and solve the LP problem given the query and constraints. Since the
complexity of an LP problem may increase considerably with respect to the
number of constraints, pruning constraints which are not useful can be very
important for the overall query performance.

Let Q = (f, k) be the query to be processed, and assume that we have
accessed more than k tuples, i.e., |Xr| ≥ k, using each of the two IV-Index
based search algorithms. Now consider the point at which we solve the LP
problem, i.e., line 13 in IVS-Eager and line 19 in IVS-Lazy. Let tmin = Xr[k]
be the current kth tuple in Xr, and let V = (f ′, k′) be a view from the
corresponding cross view set. According to the definition, for any tuple
t /∈ V , we have f ′(t) ≤ f ′(V [k′]), so the maximum value that can be achieved
by any such tuple can be calculated using the following LP problem:

max
t

φ = f(t)

subject to: f ′(t) ≤ f ′(V [k′])

0 ≤ t[i] ≤ 1, i = 1, . . . ,m (6.2)

Let f(t) = w1t[1] + · · ·+ wmt[m], and f ′(t) = w′1t[1] + · · ·+ w′mt[m]. A
careful inspection of the above LP formulation will reveal that it is exactly
the Fractional Knapsack Problem (or Continuous Knapsack Problem) [71].

108



6.4. IV-Index based Top-k QAV

Algorithm 21: IVS-Lazy(I = (T ,HV ,Ht), Q = (f, k))

1 Xn ← an empty priority queue for kd-tree nodes;
2 Xr ← an empty priority queue for candidate results;
3 Cn ← an empty cache for partial leaf nodes;

4 Xn.enqueue(groot, f(tagroot));

5 τ ←∞;
6 while ¬Xn.isEmpty() do
7 g ← Xn.dequeue();

8 τ ← min(τ , f(tag ));

9 if isLeaf(g) then
10 foreach t ∈ g do
11 Xr.enqueue(t, f(t));

12 Xr.keepTop(k);
13 if ¬κ(g) then Cn.add(Pg) ;

14 if |Xr| = k ∧ f(Xr[k]) ≥ f(tag ) then break ;

15 else
16 foreach gc ∈ children(g) do
17 Xn.enqueue(gc, f(tagc));

18 P ← consolidateCrossViewSets(Cn);
19 τ ← min(τ , LPSolve(P, Q));
20 return {t | t ∈ Xr ∧ f(t) ≥ τ};
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In this problem, we are given a set of items o1, . . . , om, where each item oi,
1 ≤ i ≤ m, has weight w′i and value wi, and we are asked to pack them
into a knapsack with maximum weight f ′(V [k′]) such that the total value is
maximized, while allowing fractions of an item to be put into the knapsack.

It is well known that a greedy algorithm which accesses items ordered by
utility (value divided by weight) finds the optimal solution for the fractional
knapsack problem, in linear time. Thus we utilize the following Algorithm
FKP to find the maximum value φ which can be achieved by an unseen
tuple with respect to a view V and a query Q. If this value φ is less than
f(tmin) (the value of the current kth tuple in Xr), we can safely prune V
from consideration in both IVS-Eager and IVS-Lazy when checking cross
view sets.

Algorithm 22: FKP(Q = (f, k), V = (f ′, k′))

1 l ← {(i, ui ← wi
w′i

) | 1 ≤ i ≤ m};
2 Sort tuples in l based on utility;
3 φ ← 0, B ← f ′(V [k′]);
4 for (i, ui) ∈ l do
5 if w′i ≥ B then
6 φ ← φ+ uiB;
7 break;

8 else φ ← φ+ wi, B ← B − w′i ;

9 return φ;

6.4.3 Discussion

Since we usually prefer the cached views to reflect the most recent and
popular queries, and the memory consumption of the index structure needs
to be bounded, a mechanism for cache replacement is necessary. There is
much previous work on good strategies for cache/buffer replacement [42, 68],
so in this work we will assume that a cache replacement strategy has been
specified. Instead, we will only discuss how the basic operations of inserting
and deleting a view might be implemented using the IV-Index.

To handle view insertion and deletion, we could associate with each tuple
t cached in the memory a count c(t), indicating how many views contain t.
In addition, we could associate with each node g a count c(g), specifying how
many views cover g, or make g a complete node, according to Lemma 11.

110



6.5. Empirical Results

First consider inserting a new top-k cached view V = (f, k). For each tuple
t ∈ V , we set c(t) = c(t) + 1 and insert t into the kd-tree if necessary. To
change the completeness status of nodes affected by V in the kd-tree, we
could use a best-first strategy to find each node g for which f(tag ) > f(V [k]),
and set c(g) = c(g) + 1. Similarly, when deleting a top-k cached view
V = (f, k), we could use a best-first strategy to find each node g for which
f(tag ) > f(V [k]), and set c(g) = c(g) − 1. In addition, we find each cached
tuple t ∈ V for which f(t) > f(V [k]), set c(t) = c(t)− 1 and remove it from
cache when c(t) = 0.

6.5 Empirical Results

In this section, we study the performance of various algorithms for the kQAV
problem based on one real dataset of NBA statistics and four synthetic
datasets. The goals of our experiments are to study: (i) the performance of
the LPTA-based algorithms, and by how much LPTA+ improves the state-
of-the-art LPTA algorithm; (ii) the relative performance of the lazy and
eager versions of the IV-Index-based algorithm, and to what extent they
outperform LPTA+; (iii) the effectiveness of the pruning process proposed
in Section 6.4.2. We implemented all the algorithms in Python, and the
linear programming solver is based on a variation of LinPro 23, and all
experiments were run on a Linux machine with a 4 Core Intel Xeon CPU,
OpenSuSE 12.1, and Python 2.7.2.

The NBA dataset is collected from the Basketball Statistics website [6],
which contains the career statistics information of NBA players until 2009;
each attribute of the dataset corresponds to one major statistics for NBA
paperly, e.g., points per game. The NBA dataset has 3705 tuples and we
selected 10 attributes to be used in our experiments. The synthetic datasets
are generated by adapting the benchmark generator proposed in [25]. The
uniform (UNI) dataset and the powerlaw (PWR) dataset are generated by
considering each attribute independently. For UNI, attribute values are
sampled from a uniform distribution, and for PWR, attribute values are
sampled from a power law distribution with α = 2.5 and normalized into the
range [0, 1]. In the correlated (COR) synthetic dataset, values from different
attributes are correlated with each other, while in the anti-correlated (ANT)
synthetic dataset, values from different attributes are anti-correlated with
each other. Each synthetic dataset is over 10 attributes and has 100000
tuples.

23http://www.cdrom.com/pub/MacSciTech/programming/ (visited on 03/18/2013)
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Figure 6.7: LPTA vs. LPTA+: (a–e) results on 5 datasets with each view
containing 1000 tuples; (f–j) results on 5 datasets with each view containing
100 tuples.

Weights for the score functions in all views are generated randomly,
and all views are cached in memory. Similar to previous work on LPTA-
based algorithms [45], the size of the histograms used for estimation is set
to be roughly 1% of the size of the corresponding dataset. For the IV-
Index-based approach, we set the number of tuples in the leaf nodes of the
kd-tree to be less than or equal to 50. Alternative configurations for the
kd-tree were also tested with similar results and so are omitted here for lack
of space. Finally, the query score functions are also generated randomly,
and all results reported here are based on an average of the results from
processing 100 queries.

6.5.1 LPTA-based Algorithms

In Figure 6.7, we compare the performance of LPTA and LPTA+ for queries
which ask for the top-100 tuples using a set of 100 views. Figure 6.7 (a–e)
considers the setting in which each view contains 1000 tuples. We can see
that, for all five datasets, LPTA+ is much faster than LPTA in most cases.
Similar results are obtained for the setting in which each view contains 100
tuples (Figure 6.7 (f–j)). However, we note that for this setting, query
processing time is longer because now the views contain fewer tuples, so we
need to check more additional views in order to guarantee that we will find
all the certain answers in Q(V) w.r.t. the query Q.

In Figure 6.8 (a), we compare the performance of LPTA and LPTA+

when varying the number of views in the cache pool. Here we fix the number
of dimensions at 5, and consider queries where k is randomly selected from 10
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to 100. As can be seen from this figure, the performance of both algorithms
degenerates as the number of views increases. However, LPTA+ is still twice
as fast as LPTA in most settings. This result was obtained using the RND
dataset. Very similar results were obtained for the other datasets and for
different dimensionality settings, and are thus omitted.
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Figure 6.8: When varying the number of views on the RND dataset, the
performance comparison between: (a) LPTA and LPTA+; (b) IVS-Eager
and IVS-Lazy.

In Figure 6.9 (a), we compare the performance of LPTA and LPTA+

when varying the value k in each query from 10 to 100, given 100 views
and by fixing the the dimensionality at 5. Similar to the previous results,
the performance of both algorithms degenerates as k increases, but LPTA+

is still faster than LPTA for all settings. The results obtained for datasets
other than RND are very similar. We discuss Figures 6.8(b) and 6.9(b)
below.
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Figure 6.9: When varying the value k of a query on the RND dataset, the
performance comparison between: (a) LPTA and LPTA+; (b) IVS-Eager
and IVS-Lazy.

Although LPTA+ can greatly outperform LPTA, it can be observed that
the query processing cost for LPTA+ is still high.
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Figure 6.10: IVS-Eager vs. IVS-Lazy: (a–e) results on 5 datasets with each
view containing 1000 tuples; (f–j) results on 5 datasets with each view con-
taining 100 tuples.

6.5.2 IV-Index-based Algorithms

Figure 6.10 shows the experimental results of the IVS-Eager and IVS-Lazy
algorithms under the same settings as in Figure 6.7. Compared with the
results of LPTA-based algorithms in Figure 6.7, we can readily see that the
IV-Index-based approaches are orders of magnitude faster than the LPTA-
based approaches under all circumstances. From Figure 6.10 (a–j), we can
also observe that, in most cases, IVS-Lazy is much faster than IVS-Eager,
since it saves many calls to the LP solver. The only exception is for low-
dimensional cases where both algorithms have a very small query processing
cost. The advantage of IVS-Lazy especially applies for the high-dimensional
cases where more nodes in the kd-tree are partial. Similar to the results of
the LPTA-based algorithms, both IVS-Eager and IVS-Lazy are much faster
on views which contain more tuples, simply because they need to check fewer
partial nodes in the kd-tree.

When we vary the number of views and when we vary the number k in
each query, as can be observed from Figure 6.8 (b) and Figure 6.9 (b), the
performance of IV-Index-based algorithms are orders of magnitude faster
than the LPTA-based algorithms. The running time of both IVS-Eager and
IVS-Lazy increases as the number of views increases, or as k increases, as
with all algorithms. However, IVS-Lazy has consistently better performance
than IVS-Eager.
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Figure 6.11: Pruning effectiveness test of IV-Search algorithms based on the
five datasets.

6.5.3 Effectiveness of Pruning

Finally, in Figure 6.11, we show the effectiveness of the pruning techniques
proposed in Section 6.4.2. In this experiment, we fix the number of tuples in
each view to be 100, and for each query Q = (f, k), k is a random number
within [10, 100]; for other settings of these parameters, the results obtained
are very similar. As can be seen from the figure, the pruning technique can
improve the performance of both IV-Search algorithms. Notice that for var-
ious dimensionality settings, the overall performance of IVS-Lazy/Pruning
is consistently the best on all five datasets.

6.6 Related Work

For general top-k query processing, the most popular approach is the Thresh-
old Algorithm (TA) / No Random Access Algorithm (NRA) as proposed by
Fagin et al. in [53]. While TA and NRA differ in whether random access
to the database is allowed, this family of algorithms usually share a simi-
lar query processing framework which accesses tuples from the database in
a certain order, while maintaining an upperbound on the maximum value
that can be achieved by the tuples that have not yet been accessed. If the
current top-k result has a value no less than the best value achievable by
any unseen tuple, the algorithm can stop. Recently, various improvements
to the original algorithms such as the Best Position Algorithm [18] have
been proposed, while variations of top-k queries such as Rank Join [62] and
Continuous Top-k Queries [128] have been studied. Finally, Li et al. study
how top-k algorithms might be implemented in a relational database [86].
An excellent survey on top-k query processing can be found in [63].

Hristidis et al. [60] first considered the problem of using views to speed
up top-k query processing. They focused on finding one best view which
can be used for answering a query. As mentioned in [45], their setting is
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quite restrictive as it cannot exploit multiple views, and it also assumes
that all attributes of the underlying base table are always utilized for all
top-k queries. Das et al. [45] propose a novel algorithm, called LPTA, which
overcomes the limitations of [60] by utilizing multiple views for answering a
top-k query.

It can be verified that the kQAV problem defined here is a generalization
of the kQAV problem as considered in [45]. This is because the core tech-
niques proposed in [45] rely on the assumption that either each top-k view
Vi = (fi, ki) ∈ V is a complete ranking of all tuples in R, i.e., ki = |R|; or the
base views, which are complete rankings of all tuples in R according to the
values of each attribute, are available. We make no such assumptions in our
setting. That said, we can easily adapt our algorithms to work in settings
where we do have base views available or all views are complete rankings of
all tuples.

In [21], the authors consider the problem of whether a top-k query can
be answered exactly using a set of top-k views, which resembles the classical
query containment problem in databases [35]. However, this work does not
address the general kQAV problem, i.e., return a maximum set of certain
answers, in case V cannot answer a query Q exactly. Ryeng et al. [109]
extend the techniques proposed in [45] and [21] to answer top-k queries in
a distributed setting. They assume that access to the original database is
available through the network interface, thus exact top-k answers can always
been found by forming a “remainder” query which can be utilized to fetch
tuples not available in the views. We note that the focus of our work is
on efficient algorithms for finding answers to the kQAV problem, where the
original database is not accessible. Should it be accessible, we can adapt the
techniques proposed in [109] to find the additional answers in the case where
our algorithms cannot find enough certain tuples from the cached views.

In addition to leveraging views, an alternative way of optimizing top-
k query processing is through a Layered Index [36, 59, 81, 127]. These
approaches try to organize tuples in the database into an layered index
structure. We can quickly obtain the answers to a top-k query by accessing
just the first few layers of the index. First, we note that our proposed IV-
Index is significantly different from the layered index, since it is based on
a standard space partitioning index such as kd-tree. Furthermore, these
layered indexes all assume access to the original database is available, so are
difficult to adapt to scenarios where we have no access to the database.
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6.7 Application in Composite Recommendation

For composite recommendation with soft constraint as discussed in Chap-
ter 5, we query top-k packages using algorithm TopPkg (Algorithm 15) for
every weight sample w. Since there is no hard constraint, TopPkg only
considers the value of every package w.r.t. w using its aggregate feature val-
ues. Thus given a static item dataset, we could treat each cached package
as an atomic item, and directly apply the kQAV algorithms developed in
this chapter to leverage cached top package results. Considering the fact
that in the preference elicitation framework, we need to iteratively sample
new weight vectors in order to accommodate new implicit feedbacks, the
kQAV-based optimization can be extremely useful.

For composite recommendation with hard constraint as discussed in
Chapter 3 and Chapter 4, because of the additional constraint, even though
some previously cached top-k package results of query Q are still the top-k
packages under the utility function of a new query Q′, these top-k packages
may not satisfy the constraint associated with Q′. In this section, we propose
extensions to our proposed kQAV algorithms which can handle associated
constraints with each query.

Consider composite recommendation with hard constraint and flexible
schema discussed in Chapter 4, where we focus on the budget constraint
(time budget and monetary budget). For IVS-based algorithms in Sec-
tion 6.4, let every item here be a package which was cached due to a previous
query, then we could easily associate each package p in the grid with its ac-
tual cost, thus when visiting p during query processing, we could simply
check whether p satisfies the new query constraint. If it does, then we can
continue as is with items. If it does not, as illustrated in Algorithm 23 line
13–14, we mark this current cell as partial, and add p to the set Sg which
contains all packges in g which do not satisfy the constraint in Q. After all
items in the current cell g have been processed, in line 17 of Algorithm 23, if
the current cell is determined to be partial, we ignore those packages which
do not satisfy the constraint of Q, and solve a LP problem to find an up-
perbound value on the possible utility value which can be achieved by any
packages satisfying constraint of Q in this cell.

For composite recommendation with hard constraint and fixed schema
as discussed in Chapter 3, we could create a separate IV-Index for every
possible schema which will be used in the corresponding application, then
since every query and package in an IV-Index has the same join condition,
we could simply handle all remaining aggregation constraints in a similar
way as in IVS-Eager-C.
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Algorithm 23: IVS-Eager-C(I=(T ,HV ,Ht),Q = (f, k,B))

1 Xn ← an empty priority queue for kd-tree nodes;
2 Xr ← an empty priority queue for candidate results;

3 Xn.enqueue(groot, f(tagroot));

4 τ ←∞;
5 while ¬Xn.isEmpty() do
6 g ← Xn.dequeue();

7 τ ← min(τ , f(tag ));

8 if isLeaf(g) then
9 Sg ← ∅;

10 foreach t ∈ g do
11 Xr.enqueue(t, f(t));
12 if t does not satisfy constraint B then
13 κ(g) ← false;
14 Sg.add(t);

15 Xr.keepTop(k);
16 if ¬κ(g) then
17 τ ← min(τ , LPSolve(Pg\Sg, Q));

18 if |Xr| = k ∧ f(Xr[k]) ≥ f(tag ) then break ;

19 else
20 foreach gc ∈ children(g) do
21 Xn.enqueue(gc, f(tagc));

22 return {t | t ∈ Xr ∧ f(t) ≥ τ};
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Chapter 7

Summary and Future
Research

7.1 Summary

Motivated by several applications such as trip planning, E-commerce, and
course planning, we study the problem of composite recommendation in
this thesis, in which instead of focusing on finding items which might sat-
isfy users’ needs, we consider how packages of items can be automatically
recommended to the user. Based on different requirements from different
applications, we explore in this thesis several possible variations of the com-
posite recommendation problem.

In Chapter 3, we consider applications where schemas of the underly-
ing packages are pre-defined, and formulate the composite recommendation
problem as an extension to rank join with aggregation constraints. By ana-
lyzing their properties, we develop deterministic and probabilistic algorithms
for their efficient processing. In addition to showing that the deterministic
algorithm retains the minimum number of accessed tuples in memory at
each iteration, we empirically showed both our deterministic and probabilis-
tic algorithms significantly outperform the obvious alternative of rank join
followed by post-filtering in many cases and that the probabilistic algorithm
produces results of high quality while being at least twice as fast as the
deterministic algorithm.

In Chapter 4, we consider applications where schemas of the underlying
packages can be flexible, and focus on an important class of aggregation
constraints based on budgets. We establish that the problem of finding the
top package is intractable since it is a variant of the Knapsack problem,
with the restriction that items need to be accessed in value-sorted order.
We developed two approximation algorithms InsOpt-CR-Topk and Greedy-
CR-Topk that are designed to minimize the number of items accessed. For
InsOpt-CR-Topk, we show that every 2-approximation algorithm for the
problem must access at least as many items as this algorithm. And for
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Greedy-CR-Topk, though it is not guaranteed to be instance optimal, but is
much faster. We experimentally evaluated the performance of the algorithms
and showed that in terms of the quality of the top-k packages returned both
algorithms are close to each other and deliver high quality packages; in
terms of the number of items accessed Greedy-CR-Topk is very close to
InsOpt-CR-Topk, but in terms of running time, Greedy-CR-Topk is much
faster. We also showed that using histogram-based information about item
costs can further reduces the number of items accessed by the algorithms
and improves their running time. The proposed algorithm can be extended
to handle cases where the budget may depend on the order of items being
consumed by considering the underlying problem as an orienteering problem.

In Chapter 5, we study how composite recommendation is possible using
soft constraints. Following [27, 34], we assume the system does not have the
complete information about user’s utility function. We cab leverage the ex-
isting preference elicitation frameworks for eliciting preferences from users,
however, the challenge here is how we can perform the elicitation efficiently,
especially considering the fact that we are reasoning about utilities of combi-
nations of items. We propose several sampling-based methods which, given
user feedback, can capture the updated knowledge of the underlying util-
ity function. Finally, we also study various package ranking semantics for
finding top-k packages, using the learned utility function.

Finally, we discuss in Chapter 6 a general optimization procedure based
on cached views which can benefit various proposed composite recommenda-
tion algorithms. We show that the state-of-the-art algorithm for answering
top-k queries using cached views, LPTA [45], suffers because of iterative calls
to a linear programming sub-procedure. This can be especially problematic
when the number of views is large or if the dimensionality of the dataset
is high. By observing an interesting characteristic of the LPTA framework,
we proposed LPTA+ which has greatly improved efficiency over LPTA. We
adapted both algorithms so they work in our kQAV setting, where views are
not complete tuple rankings and base views are not available. Furthermore,
we proposed an index structure, called IV-Index, which stores the contents
of all cached views in a central data structure in memory, and can be lever-
aged to answer a new top-k query much more efficiently compared with
LPTA and LPTA+. Using comprehensive experiments, we showed LPTA+

substantially improves the performance of LPTA while the algorithms based
on IV-Index outperform both these algorithms by a significant margin.
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7.2 Future Research

This dissertation has made substantial progress in the study of composite
recommendation, but several challenges still remain.

First of all, the focus of this dissertation is on locating interesting pack-
ages given user specified preferences/constraints, either explicit or implicit.
However, most of the proposed algorithms do not leverage existing transac-
tions in the system which can be used to further understand users’ preference
over packages of items. E.g., for trip planning, a user might have already
planned some trips before, thus given his/her existing trips, we might be
able to infer what types of POIs he/she might be interested in. Some ini-
tial works have attempted to solve this problem through supervised learning
[57, 91]. However, the proposed models were only verified on an extremely
small and non-public dataset.

Second, another problem of finding top-k recommended packages is that
many items found in the top-k packages might be duplicates, rendering these
top-k packages being very similar to each other. Thus another desirable
property of the generated top-k package set is diversity [106]. However,
there is still a lack of principled ways of trading-off between diversity and
quality of the packages. The preference elicitation framework studied in
Chapter 5 might be a potential fit for solving this problem. For example,
we could elicit user’s preference on diversity by presenting both diversified
packages and non-diversified packages.

Third, the usual recommendation interface is good for presenting a list of
items, but given a set of k packages, there is a need for a good and intuitive
interface for presenting these packages. In [106], the authors propose to
consider the visualization problem of packages, however, the focus in on
diversification. We note that in order to maximize the utility of the presented
top-k packages, a good interface should not only present information related
to these packages, but also consider highlighting properties which can be
used to differentiate different packages along with explanation.

Finally, evaluation of the presented top-k packages is also extremely chal-
lenging. Existing evaluation measures such as precision and recall might not
be suitable for composite recommendation, given the nature of the objects
under consideration. For example, although user might find package p the
most interesting whereas p′ is presented as the top-1 package, there might
be significant overlap between p and p′. Thus proper measures which take
the nature of the composite recommendation problem into consideration
should be designed and which can then be leveraged to understand users’
preferences over packages of items.
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