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Abstract 

We present the implementation of a Sampling Stochastic Dynamic Programming (SSDP) 

algorithm to maximize water value, while meeting consumer demand for the BC Hydro 

hydroelectric system in British Columbia, Canada. The implementation includes power 

generation facilities on the Columbia and Peace River systems. 

Variability of natural streamflow into a reservoir is a major source of uncertainty when 

developing reservoir operation policies and determining the value of water within a system.  

This study investigates SSDP model performance with various hydrologic inputs.  Sixty 

years of historical data are used to generate hydrologic scenarios comprised of inflow and 

forecast sequences as input to the SSDP model.  Scenario types studied include historical 

record data, inflows and forecasts generated from an autoregressive lag-1 model, and BC 

Hydro ensemble streamflow prediction forecasts. 

We present results of our implementation of the SSDP algorithm including a discussion on 

improved reservoir operation policy and the future value of water with various hydrologic 

inputs.  We also present our investigation of the marginal value of water with the evolution 

of forecasts.  Results indicate that forecasts are most valuable in determining the value of 

water during the early freshet, and the value added from updating future forecasts diminishes 

as the time in which the forecast is made progresses through the melting period.  
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1 Introduction 

British Columbia, Canada generates over ninety five percent of its energy from hydroelectric 

facilities located throughout the province.  The system includes 31 generation stations and over 

75,000 kilometers of transmission lines that are linked with the province of Alberta and the 

western United States allowing the exchange of energy over a large market as seen in Figure 1 

(“BC Bulk Transmission System” 2007).  BC Hydro is the crown corporation responsible for 

generating, purchasing, distributing, and selling electricity to its customers both within and 

outside the province.  Hydroelectric generation gives the system flexibility to store energy and 

purchase electricity from the market when prices are low and then generate energy to sell to the 

market when prices are high. 

 

Figure 1.  BC Hydro transmission system (BC Hydro) 
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The operations policy determining when to store and release water throughout a hydroelectric 

power system is typically based on the results of an optimization problem where the objective is 

to maximize benefits to the system throughout the planning horizon.  A technique called 

dynamic programming (DP) has been extensively used in solving the reservoir operations 

problem.  In dynamic programming, a multistage planning problem is broken into a series of 

smaller single stage problems that are solved successively.  The problem is described in each 

stage by the state of the system, which is often reservoir storage.  The algorithm optimizes the 

decision to release water to maximize the sum of current benefits to the system and future 

benefits achieved when making that decision (Bellman 1957).  The recursive equation is solved 

at every stage, starting at the last stage and moving backwards in time, and for every state of the 

problem.  While dynamic programming is a powerful optimization tool, the algorithm assumes 

that inputs are known.   

In reservoir operations planning, many uncertainties exist that affect operations decisions 

including pricing, load demand, and reservoir inflows.  The optimization problem becomes more 

complicated when model inputs are uncertain and is one of the main challenges in modelling.  

Yet when uncertainty is considered, models are better able to provide estimates of the value of 

system resources and provide better projections of expected values of revenues, energy 

generation, and market transactions given potential future conditions (Abdalla et al. 2013). 

Knowing the value of system resources and more specifically the marginal value of system 

resources (water in storage) is extremely useful in reservoir operations planning as it is the 

driving force in policy decisions.   

Reservoir operations decisions consider the tradeoff between releasing water to gain immediate 

benefits and storing water to realize benefits in the future.  The marginal value of water is the 

incremental benefit associated with the change of the amount of water in reservoir storage 

(Tilmant et al. 2008).  An optimal decision is made when the value of releasing an additional 

volume of water is equal to the value of storing water for future use, i.e. the marginal values are 

equal.  This is the point where the total value of system resources, the sum of the immediate and 

future benefits, is maximized.   
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BC Hydro’s Water Value Project aims to incorporate uncertainties in reservoir inflows into a 

long term planning model to estimate the value of system resources.  Many stochastic 

optimization algorithms that are being investigated including Stochastic Dynamic Programming 

(SDP), Stochastic Dual Dynamic Programming (SDDP), Sampling Stochastic Dynamic 

Programming (SSDP), and Reinforcement Learning. 

The SDP algorithm is solved using the same methodology as dynamic programming but is able 

to consider uncertain reservoir inflows.  The algorithm, first described by Little (1955), 

maximizes the expected benefits to the system using probabilities of possible inflow realizations.  

It may be assumed that inflow probabilities are independent from one time period to the next; 

however, sequential flows are often related, and probabilities may be more accurately described 

when they are conditioned on some event, which is incorporated into the model by a hydrologic 

state variable. The hydrologic state variable provides additional information about the current 

condition of the system and improves the representation of future inflows by helping to maintain 

realistic spatial and temporal relationships from hydrologic processes.  The use of hydrologic 

state variables in reservoir operations modelling has been shown to improve reservoir operations 

policies (Faber and Stedinger 2001; Stedinger et al. 1984; Tejada-Guibert et al. 1995).   

The choice of a hydrological state variable depends on the characteristics of the system and the 

information available.  Previous month’s inflow and current period’s inflow have been 

commonly used.  For example, Little (1955) represented inflows by a first-order Markov chain, 

where the conditional probabilities of inflows in the current stage were dependent on flows 

realized in the previous stage.  Stedinger et al. (1984) used forecasts of future flows.  In areas 

where hydrology is dominated by the seasonal events of snowmelt accumulation and subsequent 

melting, the snowmelt runoff forecast has shown to be a useful indicator of future flows (Tejada-

Guibert et al. 1995; Kelman et al. 1990; Faber and Stedinger 2001).   

In another effort to enhance the representation of streamflow in stochastic modelling, the SSDP 

optimization algorithm was developed.  SSDP is an extension of SDP that captures the 

uncertainty of inflows by considering a set of intact hydrologic scenarios simultaneously to 

calculate expected future benefits and to determine an optimal operating policy, where 
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hydrologic scenarios are comprised of sets of inflow sequences and time based forecasts.  In 

considering scenarios, the temporal and spatial correlation of flows due to seasonal hydrology is 

better represented than by independent inflow outcomes because the model implicitly captures 

the relationships that exist during an annual cycle and between watersheds without requiring a 

complex description of inflows (Kelman et al. 1990).  Hydrologic scenarios used with SSDP may 

be from the historical record or synthetically generated.  Kelman et al. implemented SSDP in 

their model of the Feather River in California using historical data (1990).  Ensemble streamflow 

prediction (ESP) sequences have been used with the algorithm in Faber et al. (2001) and Kim et 

al. (2007).   

The SSDP algorithm is especially appealing for use with the BC Hydro system because of the 

structure of requirements mandated by the Columbia River Treaty (CRT).  Since the SSDP 

algorithm works with sequences, CRT complexities based on hydrologic conditions including 

treaty accounts and operational requirements are not difficult to model. 

SSDP models have been historically used to make immediate policy decisions, yet it is often 

required that future decisions are made before the event takes place. Forecasts used in making 

current decisions contain information that extends into the future planning horizon, and they may 

be used to make decisions for future time periods.  A future event’s decision making process 

changes as the forecast evolves.  The degree of improvement in expected future operations 

resulting from the additional information gained from an updated forecast is investigated.  

This thesis describes the application of the SSDP algorithm to the BC Hydro system and 

explores the relationships between forecasts, inflows, and the value of water.  It has been 

prepared to present the complete scope of the author’s research by incorporating several chapters 

that were originally composed as stand-alone works.  Chapter 2 develops the optimization model 

using an SSDP algorithm and applies it to the BC Hydro system.  The algorithm is adapted for 

use with various types of inflows and forecasts.  Differences in each models’ calculation of value 

functions and policies are evaluated for several months.  In Chapter 3, the analysis from the 

previous chapter is extended to examine the marginal value of water.  Marginal values are 

calculated at every month for each model by simulating SSDP policies from three hydrological 
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years of historical forecast and inflow data.  Chapter 4 investigates how valuation of BC Hydro 

system resources evolves as forecasts are updated.  A methodology is developed to calculate 

future policies and the expected future value of water given forecasts made in previous months.  

Model variants are extended to include two reservoirs.  Finally, a summary is provided and 

conclusions relating to the complete scope of the author’s research are drawn in Chapter 5. 
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2 Performance of an SSDP Algorithm Using Various Inflow 

Generation Methods 

 

2.1 Introduction 

BC Hydro is a provincial Crown corporation serving British Columbia, Canada that is mandated 

to generate, purchase, distribute, and sell electricity.  Over ninety five percent of energy 

generation in British Columbia is from renewable sources including hydropower with minor 

thermal generation.  Efficient reservoir operations management and planning is vital in ensuring 

BC Hydro is able to meet its goals. 

A hydroelectric power system’s operation policy is typically based on the results of solving an 

optimization problem to find optimal policies that maximize the benefit to the system.  The 

dynamic programming (DP) technique breaks the problem into states and stages.  It then finds 

the optimal solution in each stage and state that maximizes current benefits plus expected future 

benefits achievable with the optimal policies.  This problem becomes more complicated when 

model inputs are uncertain. 

Handling the uncertainty of reservoir inflows is one of the main challenges in modelling.  The 

current decision making process for planning does not capture uncertainty in reservoir inflows, 

and BC Hydro is investigating the development of an improved long and medium term 

operations planning model that is better able to account for uncertainties in reservoir operation.  

Several models have been considered including a Sampling Stochastic Dynamic Programming 

(SSDP) method. 

The SSDP optimization method is an extension of dynamic programming that captures the 

stochastic nature of reservoir inflows.  It employs a number of sample streamflow sequences, or 

scenarios, and considers them all simultaneously to calculate expected future benefits and to 

determine an optimal operating policy (Kelman et al. 1990). 

The use of streamflow sequences in SSDP is advantageous as it avoids the discretization of 

inflows needed in many other modelling methods, and it captures spatial and temporal 
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correlation of annual flows from the historical record (Kelman et al. 1990).  However, the 

selection of the type of streamflow scenario data for use with SSDP is not required to be from the 

historical record, and ESP traces have been used with the algorithm in Faber et al., (2001) and 

Kim et al., (2007).  These studies show increased model performance when employing ensemble 

streamflow prediction (ESP) forecast scenarios for short term planning. 

A hydrologic state variable may be used to describe the current condition of a watershed and 

account for the persistence in streamflow.  Remaining seasonal runoff (Kelman et al. 1990; Faber 

2001) and a combination of snow water equivalent and soil moisture (Côté et al. 2011) have been 

used as hydrologic state variables with SSDP. 

2.2 Model Description 

2.2.1 SSDP Algorithm 

The SSDP formulation extends the DP algorithm.  Optimal decisions that maximize expected 

benefits over the planning horizon are found.  However, SSDP captures the uncertainty in 

inflows by considering the probability of transitioning between inflow scenarios in one stage to 

the next.  The SSDP model uses a two-step algorithm; the first step (Step 1) finds an optimal 

decision that maximizes the value function under uncertainty, then the value function is updated 

by carrying out that decision on a single scenario.  Step 2 is used for operations planning where 

current hydrological information is considered in a one stage forward re-optimization model 

using the value functions derived in Step 1 (Faber and Stedinger 2001; Tejada-Guibert et al. 

1993). 

The model is as follows:  

Step 1: For each scenario i, and all discretized 𝑆𝑡, at each time t in the planning horizon: 

𝑓(𝑆𝑡, 𝑖) = max
𝑅𝑡

 {𝐵𝑡(𝑆𝑡, 𝑄𝑡(𝑖), 𝑅𝑡) +  𝛼 
𝐸
𝑗|𝑖

[𝑓𝑡+1(𝑆𝑡+1, 𝑄𝑡(𝑗))]} 
( 1 ) 

𝑓(𝑆𝑡, 𝑖) =  𝐵𝑡(𝑆𝑡, 𝑄𝑡(𝑖), 𝑅𝑡) +  𝛼 [𝑓𝑡+1(𝑆𝑡+1, 𝑄𝑡(𝑖))] ( 2 ) 
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𝐵𝑡  benefit function at stage t  

𝑆𝑡  reservoir storage at stage t 

𝑄𝑡(𝑖)  inflow to reservoir at stage t for scenario i 

𝑅𝑡  power release for a given scenario i from reservoir at stage t 

i  scenario i, representing flows of a particular inflow sequence 

j  scenario j, representing flows of a particular inflow sequence 

𝛼 discount factor 

𝐸
𝑗|𝑖

  expectation assessed using transition probabilities of the remainder of scenario j 

starting in period t+1 given scenario i in period t  

 

Step 2: For Hydrologic State, H, and all discretized 𝑆𝑡 at each time, t :  

𝑓(𝑆𝑡, 𝐻) = max𝑅𝑡
 

𝐸
𝑗|𝐻

{𝐵𝑡(𝑆𝑡, 𝑄𝑡(𝑗), 𝑅𝑡) +  𝛼 [𝑓𝑡+1(𝑆𝑡+1, 𝑗)]}    
( 3 ) 

 

H  hydrologic state 

𝐸
𝑗|𝐻

  expectation assessed using transition probabilities of flow from scenario j 

occurring given hydrologic state H 

A new optimization model using a Sampling Stochastic Dynamic programming algorithm was 

developed to find the value of water in storage and release policy to maximize water value for 

the BC Hydro system.  A value iteration approach is used until a steady state solution is found. 

The value of water is a function of immediate benefits including internal and external energy 

trading and potential future benefits from energy production.  An outline of the optimization 

model is presented in the following sections.  

2.2.2 Objective Function 

The objective of the optimization model is to maximize the present value of water at each time 

step and throughout the discretized state space by maximizing revenues.  Revenues are generated 
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by selling energy to meet internal demand and exporting and importing energy to and from 

external markets. 

2.2.3 Time Horizon 

Monthly time steps are used with planning horizon of one water year.   

 Decision Variables 2.2.3.1

The decision variables of the SSDP model are the following: reservoir outflows for power 

generation, power generation, energy sales to external markets, energy bought from external 

markets, energy sold to local market to meet demand, and spills from the reservoir. 

 Constraints 2.2.3.2

The model is constrained by a number of physical and procedural bounds.  BC Hydro must 

conduct operations to meet internal customer demand, while also complying with environmental 

and political constraints.  Demand may be met by power generation through hydro, wind, or 

fossil fuels, or purchasing energy from outside of the province.  Once internal demand is met 

through generation or imports, excess energy may be exported at market prices, which vary 

throughout the year.   

 Mass Balance 2.2.3.3

This constraint requires that the reservoir storage at any time step is the sum of the storage at the 

previous time step, current period inflows, and releases through turbines and spillways. 

 Storage Constraints 2.2.3.4

Reservoir storage must be operated within the storage limits, which are equivalent to the 

minimum and maximum physical storage requirements for the reservoir. 

 Power Generation 2.2.3.5

Power generation in a reservoir is a function of the reservoir’s elevation.  This model calculates a 

coefficient describing the average power generated per unit release at each starting storage state. 
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 Generation Limit 2.2.3.6

Generation for each reservoir in each time step must be within the maximum and minimum 

generation limits. 

 Load-Resource Balance 2.2.3.7

The system load must be equal to the sum of energy generated or traded to outside markets.  

Energy can be bought or sold during each time step at current market prices. 

 Transmission Limit 2.2.3.8

Energy bought and sold to and from external energy markets is limited to the capacity of the tie 

lines transporting the power outside the province. 

2.3 Hydrology in British Columbia 

British Columbia has two key river basins important to hydropower generation – the Peace and 

Columbia River watersheds.  Over seventy percent of the energy generated in the province is by 

hydro plant facilities on these two river systems. 

Each basin has its own characteristics and behavior; however they are similar in that the 

hydrology is dominated by seasonal winter snow accumulation and melting.  The Peace River 

drains its catchment in British Columbia into Alberta in the northeast while the Columbia River 

basin is located in the southeastern part of the province, and it drains its catchment into US 

territories.  Snow accumulates in basin mountain ranges from late November until early April 

when temperatures rise and the snowpack begins to melt.  The melting period, or freshet, 

continues through August with high flows exhibited in May or June (Eaton and Moore 2010).  

The timing of the freshet is dependent upon the size of snowpack and climate conditions.  Flows 

in fall between September and November originate primarily from precipitation events.  Low 

flows occur in winter when precipitation accumulates on the ground as snow.  

Size of remaining snowpack is an indicator for the remaining flow volume to occur during the 

freshet.  Therefore, snowpack size, along with weather information, is used to forecast the total 

volume of remaining flow.  The forecasted volume of remaining flow contains information about 
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previous months’ flows and captures some serial correlation within a sequence, so that high 

inflow from snowmelt in early months is followed by low inflow from snowmelt in later months, 

and vice versa. 

2.4 Inflow Generation and Transition Probabilities 

Sampling Stochastic Dynamic Programming uses a number of intact inflow scenarios to capture 

the uncertainty of inflows while also recognizing temporal and spatial relationships that exist 

during an annual cycle and between watersheds.  When used with a hydrologic state variable, 

such as volume forecast, it is possible to determine the probability of switching from the current 

scenario to another scenario in the next stage.  The following sections describe inflow scenario 

generation and transition probability calculations for three inflow scenario types. 

2.4.1 Inflow Generation 

Inflow sequences used with SSDP may be from observed data or synthetically generated 

realizations of annual streamflow.  In this study, inflow scenarios generated by three different 

methods, using 60 years of historical data, are employed with SSDP algorithm and model 

performance is evaluated. 

 Historical 2.4.1.1

Actual streamflow sequences from eleven years in the historical record, 2003-2013, were used in 

the Historical SSDP model.  The corresponding actual seasonal volume forecast is used as the 

hydrologic state variable.  An advantage to using observed data from the historical record is that 

each instance actually occurred; therefore spatial and temporal relationships within and between 

scenarios are perfectly correlated.  However, the number of inflow sequences is limited to the 

data available. 

 Inflow Model - AR-1 with Principal Component Approach 2.4.1.2

Inflow scenarios used in the Inflow Model (IM) SSDP model were generated using a separate 

autoregressive model with lag-1 correlation together with the principal component approach.  

This model generates thousands of representative annual inflows to each reservoir along the 

Peace and Columbia Rivers where flows are correlated with seasonal volume forecast, previous 
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inflows, and physical (Guan et al. 2013).  The Inflow Model considers volume forecasts 

generated for the months January through April to develop annual inflow scenarios with 

deterministic inflows in the months December through March.  For this study 10,000 scenarios 

were generated, and thirty-six scenarios were sampled for use with the IM SSDP model. 

 Ensemble Streamflow Prediction 2.4.1.3

Ensemble streamflow prediction (ESP) forecasts generated by BC Hydro are used with the ESP 

SSDP model in the last test case.  BC Hydro generates twelve-month ESP forecasts at the 

beginning of months December through August.  The ESP SSDP model is run using the most 

recent ESP forecast scenarios in each time step to determine optimal decisions for the current 

time period. 

2.4.2 Transition Probability Calculation 

In SSDP, each of the algorithm’s two steps requires the calculation of transition probabilities.  

To perform the calculation of value functions for each streamflow scenario (Step 1), the model 

uses the probability of flow from scenario j occurring given a forecast is made equal to the 

forecast for scenario i.  To make an optimal decision from the functions derived in step one for a 

given hydrologic state (Step 2), the model considers the probability of flow from scenario j 

occurring given the current hydrologic state which in this study is seasonal volume forecast.  The 

transition probabilities are calculated for each model given the information in the inflow data.   

 Historical 2.4.2.1

For both steps, linear least square fitting is used with Bayes theorem to calculate the probability 

of a future flow given the current condition (Faber 2001; Kelman et al. 1990).  For months when 

a forecast is not available (September – December), the transition probability is equally likely for 

all scenarios (1/n, where n is the number of years of inflow sequences).  

 Inflow Model - AR-1 with Principal Component Approach 2.4.2.2

Multiple linear least square fitting was used to find the conditional probability of a scenario 

occurring given a forecast and realized inflow for months April to August.  For September 

through November, the probability of flow from another scenario occurring is equally likely for 



13 

 

all scenarios.  In December through March, inflow is deterministic.  Step 2 transition 

probabilities are derived similarly. 

 Ensemble Streamflow Prediction 2.4.2.3

Transitions between ESP scenarios were not modelled in this study.  Faber and Stedinger (2001) 

found that performance did not improve when transition probabilities were calculated among 

ESP traces.  Therefore, the probability of flow from scenario i occurring given a forecast from 

scenario j has occurred is equal to one when j = i, and the probability is equal to 0 when j ≠ i.  

Because the ESP sequences are all generated from the same current hydrologic conditions, the 

probability of occurrence given the current state in Step 2 is equally likely. 

2.5 Results and Discussion 

Four models using inflow data from different methods of inflow scenario generation were 

tested—three as described in Section 2.4 and one deterministic case to help illustrate a fair 

comparison of model performance.  Table 1 summarizes the four different models tested and 

their methods used to calculate Step 1 and Step 2 transition probabilities where “1/n” indicates 

all scenarios are equally likely to occur, “FC” indicates transition probabilities were developed 

from forecast information, and “I” indicates no transitions occur. 
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Table 1.  SSDP Transition Probability Calculation Methods 

 

The Deterministic SSDP model uses one observed historical monthly inflow scenario and 

corresponding monthly hydrologic states.  The preliminary results shown in this study represent 

model outputs where the hydrologic state is equal to the hydrologic state in the Deterministic 

model.  In this way, it is possible to compare release decisions for a single hydrologic state 

vector. 

In order to understand model behavior, it is necessary to discuss inflow characteristics associated 

with each inflow generation method case.  Figure 2 shows the average and standard deviation 

(error bars extend one standard deviation above and below average) of monthly inflows to the 

Williston Reservoir on the Peace River.  During fall and winter months (October through 

March), the averages of each case are similar.  Flows from the ESP scenarios are the most 

similar to the observed flow.  This similarity is expected since ESP scenarios contain current 

hydrologic information. It can be noted that the observed flows of the deterministic case are 

below the Hist, IM, and ESP monthly averages for most months, including May where flows are 

significantly below average. Low May flows are followed by higher than average flows in June.  

The standard deviation of the monthly inflows varies throughout the year.  Both the Inflow 

Model and the ESP scenarios do not contain variable inflows in the winter months (December – 

Step 1 Step 2 Step 1 Step 2 Step 1 Step 2 Step 1 Step 2

October I I 1/n 1/n 1/n 1/n I 1/n

November I I 1/n 1/n 1/n 1/n I 1/n

December I I 1/n 1/n I I I 1/n

January I I FC FC I I I 1/n

February I I FC FC I I I 1/n

March I I FC FC I I I 1/n

April I I FC FC FC FC I 1/n

May I I FC FC FC FC I 1/n

June I I FC FC FC FC I 1/n

July I I FC FC FC FC I 1/n

August I I FC FC FC FC I 1/n

September I I 1/n 1/n 1/n 1/n I 1/n

Historical ESPInflow ModelDeterministic
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March), and their standard deviation is zero.  Standard deviation in the historical scenarios and 

ESP traces in winter months are near zero as well.  The historical scenarios show the highest 

standard deviation over all months except in May when flows generated by the Inflow Model 

have the highest standard deviation. 

 

Figure 2.  Average and standard deviation of monthly inflows to Williston reservoir for each inflow 

generation method case 

. 

It is possible to compare the performance of models with different inflow scenario generation 

methods by examining the real-time release policies given the observed hydrologic state for the 

deterministic case.   

In general, one would expect that release policies resulting from the Historical model with the 

highest inflow variance and the Deterministic model with no inflow variance to be the most 

different, while release policies from the IM model and ESP model to fall somewhere in 

between.  Results in Figure 3 show release policies from the historical model are the highest and 

policies from the Deterministic model are the lowest in July. 
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Figure 3.  Comparison of release decisions and future value functions by inflow generation method for 

selected months. 

 

In January, release policies from the IM case and the Deterministic model are similar while the 

ESP and Historical models are similar.  This occurrence may be a result of calculated expected 

flow.  In the month of January, flows from the Deterministic model and IM case only contain 

one value.  Therefore, they are independent of the current hydrologic state.  However, the 

Historical and the ESP models are likely affected by the current hydrologic state.  A high volume 

forecast produced in January (83 %-tile) is not highly correlated with high flows in January (R-

squared of regression equals 0.4).  As a result, scenarios where January flow is relatively low are 

given a high probability of occurrence and the model makes low release decisions.  Flows from 
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ESP scenarios generated for January are much lower than the deterministic flows from the base 

case and the Inflow Model, leading to lower release policies similar to the historical case. 

High releases in May are typically unexpected as a reservoir has drafted to its lowest position 

and starts to refill.  However, in this water year, high forecasted seasonal volume was coupled 

with lower than average May flows.  Models that incorporated hydrologic state information were 

prepared for future high flows and therefore, made releases to contain these high future flows 

and minimize spill penalties, while the deterministic model with no knowledge of the current 

hydrologic state did not behave as such.  Stronger relationships between the forecasted flow 

volume and inflow scenario volume resulted in a more aggressive release policy.  The standard 

error of forecasted volume regressed on actual volume was the lowest for the historical inflow 

scenarios, and the model made the largest releases when the historical data sets were employed.  

Release policies derived by the SSDP algorithm reflect the point where the tradeoff between 

releasing stored water to achieve current benefits and storing water to achieve future benefits is 

equal; therefore, the slope of the value of water function, or the marginal value of water, is of 

particular interest.  For the months discussed, slopes of the future value functions are similar for 

equivalent storage.  Small differences occur at low storage levels in January, and middle storage 

levels in May and July, which is when deviations in release policy are observed.  In all cases, as 

the marginal value of water decreases, releases are made at lower storage levels.  While the 

slopes are similar, the magnitudes of future value functions differ with each case and we plan to 

investigate this in the future. 

2.6 Conclusions 

The Sampling Stochastic Dynamic Programming algorithm, using several different inflow 

generation methods, can be successfully employed to solve the operations planning problem for 

the BC Hydro system.  Inflow characteristics including the relationships between forecasts and 

realized flow and standard deviation of monthly flows affect how the model is formulated and in 

turn, how the model behaves.  The model tended to behave with more caution as variance of 

flows increased.  Information about the current hydrologic state of the basin (whether as a state 

variable or implicit in the scenarios) allowed the model to adapt to the expected flow and enabled 
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improved decision making.  The magnitudes of value functions are different for each model, 

although the marginal values of water were similar.  Future work will include the analysis of a 

multi-reservoir system and statistical comparison of model performance among inflow 

generation methods. 

  



19 

 

3 Water Value in Reservoir Planning using Various Forecast and 

Inflow Generation Methods 

This Chapter continues the evaluation of various inflow generation methods with the SSDP 

algorithm.  It describes the investigation of how differences in forecasts and inflow generation 

methods affect the calculation of the marginal value of water.   

3.1 Marginal Value of Water 

When operating a hydroelectric generation system to maximize the value of resources, the 

fundamental problem is deciding how much water should be released from reservoir storage in 

each planning period.  That decision depends on the tradeoff between benefits gained from the 

immediate release of water and the expected future benefits gained from storing water to release 

in the future.  The benefits can be measured by the contribution of an additional unit of water to 

the objective function, which is called the marginal value of water (Tilmant et al. 2008).  An 

optimal decision is made when the value of releasing that additional volume of water is equal to 

the value of storing the water for future use, i.e. the marginal values are equal.  This is the point 

where the total value of system resources, the sum of the immediate and future benefits, is 

maximized.   

When the optimization problem’s state variables are reservoir storage levels, the marginal value 

of water in storage represents the change in water value with respect to a change of water in 

storage.  In mathematical terms, the marginal value of water in storage corresponds to the 

LaGrange multipliers, or shadow prices, associated with the water storage constraints (Tilmant et 

al. 2008). 

Knowing the marginal value of water and this point of equilibrium is valuable to reservoir 

operators as it is a driving force in policy decisions.  The flexibility inherent to hydroelectric 

operations allows generating energy for export until the marginal value of water stored in 

reservoirs is equal to the price of trading it in the market.  In contrast, operations policies dictate 

storing water for future trading if the current market prices are lower than the marginal value.  

Therefore, the investigation of marginal values with the SSDP algorithm and BC Hydro’s 

generation system is of particular interest. 
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3.2 Model Description and Simulation Procedure 

The SSDP models’ calculation of the marginal value of water is examined at every time period.  

Model performance was evaluated by simulating reservoir operations using three historical data 

sets representing different hydrological conditions—average, dry, and wet.  Marginal values of 

water were calculated and compared for each case. 

The objective of each SSDP model is to make optimal decisions that maximize revenues using 

inflow and forecast data.  The model formulation is explained in Chapter 2.2.  Inflows and 

forecasts for each model are described in Chapter 2.4.1.  Figure 4 provides additional detail in 

the description of forecasts used by illustrating forecasts available to each model at each month.  

Months shaded in yellow indicate no forecasts are considered, and months in green indicate no 

forecasts are used.  No ESP forecasts are made during the months of September through 

November, and the model uses the most current forecasts available, which are produced in 

August. 
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Figure 4.  Monthly forecasts used with SSDP algorithm.  Months shaded in yellow indicate no forecasts are 

considered, and months in green indicate no forecasts are used.  The ESP model uses forecasts made in 

August for the value function calculations in September through November. 

Various SSDP models can be compared by simulating the performance of each as hydrologic 

data is varied.  The four models described in Table 1 were considered along with two additional 

model variations that used Historical and Synthetic inflows, but no forecasts.  The procedure 

involved solving Eqs. ( 1 ) and ( 2 ) in Step 1 to find value functions as described in Chapter 

2.2.1 for each SSDP model.  Then the Eq. ( 3 )  is solved to find the expected value of water at 

every storage level for each month given the forecast available, Ht.  The resulting future value 

functions are used to calculate the marginal value of water (MVW) at each month using Eq. ( 4 ), 

where HK is the water to power conversion coefficient.   

MVWt = 
δ 𝑓(𝑆𝑡,𝐻𝑡)

δ  𝑆𝑡∗𝐻𝐾
 

( 4 ) 

 

Historic Synthetic ESP

October Aug ESP

November Aug ESP

December ESP

January Seasonal FC Seasonal FC ESP

February Seasonal FC Seasonal FC ESP

March Seasonal FC Seasonal FC ESP

April Seasonal FC Seasonal FC ESP

May Seasonal FC
April Seasonal FC & 

Realized Flow
ESP

June Seasonal FC
April Seasonal FC & 

Realized Flow
ESP

July Seasonal FC
April Seasonal FC & 

Realized Flow
ESP

August Seasonal FC
April Seasonal FC & 

Realized Flow
ESP

September Aug ESP

Hydrologic Forecasts Considered

Hydrologic Forecasts NOT Considered
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The marginal values of water are evaluated for each model.  This procedure is repeated using 

several years of annual inflow and forecast data. 

3.3 Results and Discussion 

Marginal values were calculated for each of the five stochastic models described as well as the 

deterministic model.  The latter model assumes perfect foresight and is used as a base for 

comparison.  Table 2 lists average absolute deltas by month for each model studied.  Deltas 

approach zero as the calculation of marginal value improves.   

Table 2. Marginal Value of Water -- Average Delta from Perfect 

 
Hist Syn ESP Hist no FC Syn no FC 

October 0.020 0.028 0.049 0.020 0.028 

November 0.010 0.024 0.034 0.010 0.024 

December 0.021 0.013 0.036 0.021 0.013 

January 0.029 0.017 0.040 0.028 0.018 

February 0.027 0.015 0.034 0.026 0.016 

March 0.047 0.038 0.072 0.049 0.046 

April 0.106 0.149 0.200 0.215 0.218 

May 0.224 0.475 0.533 0.711 0.607 

June 0.283 0.560 0.325 0.879 0.772 

July 0.024 0.052 0.019 0.050 0.053 

August 0.020 0.039 0.013 0.024 0.036 

September 0.022 0.036 0.033 0.022 0.036 

During fall and early winter months when inflows are low and primarily results of precipitation 

events, the marginal value of water did not vary drastically among model variants.  The average 

delta from perfect remained below five percent for all models.  Since no forecasts were available 

in the months of September through December, there was no difference in the results of the Hist 

and Hist no FC models.  The same is true for the Syn and Syn no FC models.  The ESP model 

uses the latest forecast available for its calculation, and performs worse on average than the other 

models.   
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Forecasts made during the months of January through March did not greatly improve model 

performance over using no forecasts at all.  The Syn model output the best results during the 

winter months of December through March.  This result is primarily due to the overestimation of 

the marginal value of water by other models during the simulation of wet hydrology, while 

models using synthetic inflows were not affected (uncertainty is not considered by Syn models in 

these months (see Section 2.4.1.2)).  It is difficult to conclude that it is good practice to ignore 

uncertainty during winter months, but it is clear that forecasts do not provide great additional 

value in calculating immediate water value in January and February.  This is because there is 

little variation in operations during these months as high demand almost always requires turbines 

to be run at peak capacity.  

However during the freshet, models that did consider forecasts consistently perform better than 

models that did not.  The largest deltas in the calculation of the immediate marginal value 

occurred in April, May, and June.  In each of these months, the historical model produced the 

best approximation of the marginal value of water.  The ESP model produced the best results for 

the late freshet period in July and August when much of the seasonal flows have been realized 

and forecasters have high confidence.   

Figure 5 shows the percentage difference from the deterministic marginal value calculation for 

the three hydrologic water years simulated (from top to bottom—average, dry, and wet).  Deltas 

for each model and simulated year are displayed by month and approach zero as the calculation 

of marginal value improves. When the hydrologic simulations are considered separately, the 

largest deltas in the calculation of marginal value occurred in April, May, and June which is 

consistent with the average results discussed previously. 

It is interesting that during these months, the simulation of wet hydrology resulted in the 

overestimation of the marginal value of water, while in the dry simulation, marginal value was 

underestimated; however, this result is attributed to the calculation of transition probabilities of 

this particular data set and should not be considered a rule.  Because the transition probability 

calculation method is based on forecasts, scenario-to-scenario transition probabilities may be 

high when scenario inflows and water values are quite different.  In this simulation, the dry and 
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wet simulated years were extremes in hydrologic conditions (8th and 83rd percentile), yet the 

calculated expectation of flow was less extreme.  The fact that this occurred for both the dry and 

wet simulations is coincidence.  

 

Figure 5.  Comparison of marginal value of water (percent delta from perfect) by SSDP model variants for 

three hydrological water years—average (top), dry (middle) and wet (bottom). 

3.4 Conclusions 

At any time period, the value of water in a system may be approximated by an optimization 

model using the SSDP algorithm.  A description of the change in water value with change in the 

amount of water in storage is valuable for reservoir operations planning and influences release 

policy decisions.  This Chapter focused on finding the marginal value of water for the current 

time period given a most recent forecast.  Results indicated that the value of forecasts in 

approximating the immediate marginal value of water in fall and winter months was relatively 
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small due to lack of forecast information (fall) and firm winter operations strategies, but 

increased into the freshet as forecasts improved and operations became more flexible.  In April 

through June, the model using historical inflow and forecast scenarios resulted in MVW 

approximations closest to perfect, while ESP forecasts performed best in July and August. 

This study limits the approximation of the marginal value of water to the current time period, 

immediately following the forecast.  However, understanding how forecasts affect the 

approximation of the value of water into future months is beneficial to reservoir operators when 

policy decisions may occur more than one month in advance.  For example, forecasts made in 

winter that indicate low summer marginal values may result in operations decisions to increase 

releases during the spring.  The following chapter investigates how future marginal values and 

reservoir operations are influenced by the evolution of forecasts leading into the spring freshet.   
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4 The Evolution of Forecasts and Water Value in Reservoir 

Planning Using an SSDP Algorithm 

 

4.1 Introduction 

A hydroelectric power system’s operation policy is typically based on the results of solving an 

optimization problem where the objective is to maximize system benefits by making decisions to 

store and release water over the planning horizon.  The problem becomes more complicated 

when model inputs, such as future streamflows are uncertain. 

Handling the uncertainty of streamflows that contribute to reservoir inflows is one of the main 

challenges in modelling.  Yet when uncertainty is considered, models are better able to provide 

estimates of the value of system resources and provide better projections of expected values of 

revenues, energy generation, and market transactions given potential future conditions (Abdalla 

et al. 2013).  The sampling stochastic dynamic programming (SSDP) optimization method is an 

extension of dynamic programming that uses a number of intact inflow scenarios to capture the 

uncertainty of inflows.   In considering inflow sequences, the model is also able to recognize 

temporal and spatial relationships that exist during an annual cycle and between watersheds 

(Kelman et al. 1990). 

Stochastic model performance may be improved when hydrologic information about the current 

state of a system is provided to the model in the form of forecasts.   Hydrologic forecasting 

improves the model’s understanding of future inflow uncertainties, and its use in reservoir 

operations modelling has been widely shown to improve reservoir operations policies (Faber and 

Stedinger 2001; Stedinger et al. 1984; Tejada-Guibert et al. 1995).   

Forecasts have been used with dynamic programming models to make immediate policy 

decisions; however, information about the future contained in forecasts extends farther into the 

planning horizon than just the immediate time period and may be used to make not only 

immediate decisions, but also decisions in future time periods.  Often in reservoir planning, 

decisions about future events must be made in advance of the actual event occurring due to 
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planning expectations or policy requirements.  For this reason, it is useful in decision making to 

understand the degree of improvement in expected future operations resulting from additional 

information gained in the form of an updated forecast.  This paper investigates how valuation of 

BC Hydro system resources evolves as forecasts are updated using the SSDP algorithm.  

4.1.1 Reservoir Inflow Generation Methods 

Reservoir inflows play a large part in determining operations policies, so in modelling a 

hydroelectric system, particular attention must be given to the streamflow data supplied to the 

model.  Inflows within a system are typically spatially and temporally correlated, and the timing 

and volume of reservoir inflows are an important, yet these characteristics usually are not known 

in advance.  A major challenge is providing quality data to the model that captures spatial and 

temporal relationships while also describing uncertainties in hydrologic conditions.   

Reservoir inflows are a stochastic process that may be approximated by a distribution.  However, 

many decision models cannot be solved using continuous representations of inflow distributions.  

Therefore, it is often necessary to represent inflows as discrete random outcomes of the process.  

Computational capability limits the number of discretized random outcomes that may be 

employed, and inflows may be represented by sets of random outcomes in the form of scenario 

trees (Kaut and Wallace 2003) or sequences.   

Numerous modelling methods capture uncertainty using sets of random outcomes including 

stochastic dynamic programming (SDP) (Little 1955), stochastic dual dynamic programming 

(SDDP) (Pereira and Pinto 1991), and sampling stochastic dynamic programming (SSDP) 

(Kelman et al. 1990).  In SSDP a set of intact inflow sequences are considered simultaneously.  

Inflow sequences (or scenarios) used with SSDP are realizations of annual inflows, observed or 

otherwise synthetically generated (Kelman et al. 1990).  

Generally, inflow scenarios used by multi stage stochastic models are generated using the same 

basic procedure (Di Domenica et al. 2007).  Historical data is evaluated to choose an appropriate 

model and calibrate model parameters.  The model generates spatially and temporally correlated 

streamflow scenarios (often in the form of a scenario tree or sequences), and then those scenarios 

are sampled to build the data set for the decision model.  There are many methods that have been 
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used to generate streamflow scenarios.  The type of methodology chosen depends on the natural 

hydrologic behavior of the system.   

When there is no processing of the historical data set by a scenario generation model, the 

outcome is the set of intact historical inflow scenarios.  The quantity of scenarios is limited by 

the data in the historical record, yet an advantage of using this data set for the decision model is 

that potential error introduced as a result of statistical manipulation is eliminated—inflows 

within scenarios are perfectly correlated since they actually occurred. 

A scenario generation model may incorporate current hydrological conditions to produce 

forecasts of future inflow sequences that are conditioned on current state of the catchment, as 

called ensemble streamflow prediction (ESP) traces.  The use of forecasts is discussed in Section 

4.1.2. 

4.1.2 Forecasts as Hydrologic State Variables 

Information about the current state of a system can be used by models to improve reservoir 

operations policies (Faber and Stedinger 2001; Tejada-Guibert et al. 1995; Stedinger et al. 1984; 

Côté et al. 2011).  As inflows are a product of the hydrological process and thus serially and 

spatially correlated, information about the current condition of the hydrologic process can be 

used in describing future flows into reservoirs through the calculation of conditional probabilities 

of inflows occurring in the future.   

The choice of a hydrological state variable depends on the characteristics of the system and the 

information available.  Previous month’s inflow and current period’s inflow are common 

choices.  Stedinger et al. (1984) showed that the best forecast of the current period’s inflow 

showed improvements in reservoir operation policies over using previous month’s inflow.  In 

areas where hydrology is dominated by the seasonal events of snowmelt accumulation and 

subsequent melting, the snowmelt runoff forecast has shown to be a useful indicator of future 

flows (Tejada-Guibert et al. 1995; Kelman et al. 1990; Faber and Stedinger 2001).   

Many snowmelt runoff models have been developed.  In most models, snowmelt runoff is 

forecasted by simulating the snow accumulation and melting process then routing the runoff to 
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streams and reservoirs (World Meteorological Organization 1986).  Often the outputs of 

snowmelt runoff models are deterministic outcomes; however, because of the inherent 

uncertainties in forecasting, each forecasted outcome must be made with an associated level of 

certainty.  When this level of certainty is quantified, the user becomes aware that a forecast is 

evolving over time as the level of certainty increases or decreases even though the deterministic 

forecast may not change.  A probability distribution is required to fully express certainty for 

continuous variables such as snowmelt runoff (Krzysztofowicz 2001).  For example, a forecast 

may provide values for mean and standard deviation assuming a normal distribution, where the 

standard deviation represents the level of certainty of the forecast.  When forecasting snowmelt 

runoff and reservoir inflows, one would expect the confidence in forecasts to increase as the 

snowmelt season progresses since knowledge of past months’ runoff can be considered.  This is 

especially true in the Pacific Northwest, where during the middle and end of the snowmelt 

season, there is little precipitation and most of a reservoir’s inflow originates in mountain 

snowpack (Eaton and Moore 2010). 

One method of handling hydrologic forecasting uncertainty is by generating an ensemble of 

hydrographs representing possible realizations of future flow.  These forecasts consist of a set of 

possible future inflow sequences that are developed using current conditions and historical 

meteorological conditions (Day 1985).  ESP forecasts are particularly attractive for use with 

SSDP since the algorithm uses intact sequences in its calculations.  ESP forecasts have been used 

with the SSDP algorithm in Faber and Stedinger (2001) and Kim et al., (2007).  These studies 

show improved performance when employing ESP streamflow forecast scenarios for short term 

planning with an SSDP algorithm.  In this work, we investigate the evolution of ESP streamflow 

forecasts leading up to the freshet in reservoir operations planning. 

4.1.3 Marginal Value of Water 

When operating a hydroelectric generation system to maximize the value of resources, the 

fundamental problem is deciding how much water should be released from reservoir storage in 

each planning period.  The decision driver is the marginal value of water, which is the 

incremental benefit associated with the change of the amount of water in reservoir storage 

(Tilmant et al. 2008).  An optimal decision is made when the value of releasing an additional 
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volume of water is equal to the value of storing water for future use, i.e. the marginal values are 

equal.  This is the point where the total value of system resources—the sum of the immediate and 

future benefits is maximized.   

Knowing the marginal value of water is valuable to reservoir operators as it is a driving force in 

policy decisions.  When deciding whether to release or store water, the marginal value is 

compared to current market prices.  For example, water may be released when its marginal value 

is low or stored to be released in the future when its marginal value is above current market 

value.  Therefore, this study examines the marginal value of water with various implementations 

of the SSDP algorithm. 

The paper is organized as follows:  Sections 4.2 details the SSDP algorithm.  Section 4.3 

contains the results of a case study of the BC Hydro system including a description of the system 

and application of the SSDP model. Conclusions are drawn in Section 4.4. 

4.2 Methods in Dynamic Programming 

4.2.1 Stochastic Dynamic Programming 

The reservoir operations planning problem is often solved using the dynamic programming 

technique.  In dynamic programming, a multistage planning problem is broken into a series of 

smaller one stage problems that are solved successively.  The problem is described in each stage 

by the state of the system which is represented by reservoir storage, St, and a hydrologic state, Ht.  

The algorithm optimizes a decision, release of water, Rt, that maximizes the sum of current 

benefits to the system and expected future benefits achieved when making that decision, Rt 

(Bellman 1957).  The recursive equation is solved at every stage and state of the problem starting 

at the last stage and moving backwards in time.  When flows, Qt, are unknown, the conditional 

expectation of current and future benefits is calculated using a stochastic dynamic programming 

methodology as in Eq. ( 5 ). Future benefits depend on the state of the system in the next stage, 

St+1 and depends on the decision made, Rt, inflows to the reservoir, Qt, the starting storage state, 

St, and evaporation from the surface of the reservoir, e(St, St+1) shown in Eq. ( 6 ).   
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𝑓𝑡(𝑆𝑡, 𝐻𝑡) = max
𝑅𝑡

 
𝐸

𝑄𝑡|𝐻𝑡
 {𝐵𝑡(𝑆𝑡, 𝑄𝑡, 𝑅𝑡) +  𝛼 [𝑓𝑡+1(𝑆𝑡+1, 𝑄𝑡)]} 

( 5 ) 

𝑆𝑡+1 = 𝑆𝑡 + 𝑄𝑡 −  𝑅𝑡 −  e(𝑆t , 𝑆t+1) ( 6 ) 

If current benefits do not depend on current flows, then the expectation is dropped from the first 

term and Eq. ( 5 ) becomes Eq. ( 7 ).  This is a reasonable assumption in a monthly model since 

operation decisions are modified throughout the month as information about realized inflow 

becomes available (Stedinger et al. 1984) and short term forecasts are updated. 

𝑓𝑡(𝑆𝑡, 𝐻𝑡) = max
𝑅𝑡

  {𝐵𝑡(𝑆𝑡, 𝑄𝑡, 𝑅𝑡) +  𝛼 
𝐸

𝑄𝑡|𝐻𝑡
 [𝑓𝑡+1(𝑆𝑡+1, 𝑄𝑡)]} 

( 7 ) 

4.2.2 Sampling Stochastic Dynamic Programming 

The SSDP formulation extends the SDP algorithm.  Like SDP, an optimal decision is selected for 

each stage and state combination that maximizes the expected future benefits of making that 

decision.  The hydrologic state variable used in SSDP is an individual streamflow scenario, i.  

However, after a decision, Rt, is optimized in each sub-problem, SSDP undertakes an additional 

step to update the future value function that reflects the value of making a release decision, Rt, on 

the scenario i.  The model developed by Faber and Stedinger (2001) is shown in Eq. ( 8 ) and Eq. 

( 9 ). 

For each scenario i and all discretized 𝑆𝑡 at each time t in the planning horizon: 

max
𝑅𝑡

 {𝐵𝑡(𝑆𝑡, 𝑄𝑡(𝑖), 𝑅𝑡) +  𝛼
𝐸
𝑗|𝑖

 [𝑓𝑡+1(𝑆𝑡+1, 𝑄𝑡(𝑗))]} 
( 8 ) 

𝑓(𝑆𝑡, 𝑖) =  𝐵𝑡(𝑆𝑡, 𝑄𝑡(𝑖), 𝑅𝑡) +  𝛼 [𝑓𝑡+1(𝑆𝑡+1, 𝑄𝑡(𝑖))] ( 9 ) 

 

𝐵𝑡  benefit function at stage t  

𝑆𝑡  reservoir storage at stage t 

𝑄𝑡(𝑖)  inflow to reservoir at stage t for scenario i 

𝑅𝑡  power release for a given scenario i from reservoir at stage t 
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i  scenario i, representing flows of a particular inflow sequence 

j  scenario j, representing flows of a particular inflow sequence 

𝛼 discount factor 

𝐸
𝑗|𝑖

  expectation assessed using transition probabilities of the remainder of scenario j 

starting in period t+1 given scenario i in period t 

Calculation of the expected future benefits in Eq. ( 8 ) requires the conditional probability, 

Pt(j|i),  describing the likelihood of the remainder of scenario j occurring in period t +1 

following scenario i in period t.  If no transitions occur, Pt(j|i) is expressed by Eq. ( 10 ).  In this 

case, future flows are assumed known, and the problem reduces to a deterministic dynamic 

program. 

𝑃𝑡(𝑗|𝑖) = {
1, 𝑗 = 𝑖
0, 𝑗 ≠ 𝑖

 
( 10 ) 

When uncertainty exists, but information about the future is not used to in the calculation of the 

conditional probability, all scenarios are equally likely to occur and Pt(j|i) is expressed in Eq.      

( 11 ), were N is the number of scenarios considered. 

𝑃𝑡(𝑗|𝑖) =  
1

𝑁
 

( 11 ) 

For cases where a hydrologic state variable is useful indicator of future flows, Kelman et al. 

(1990) developed a methodology to calculate the conditional state to state transition probabilities 

using Bayes Theorem:   

𝑃𝑡(𝑦𝑡+1(𝑗)|𝐻𝑡) =  
𝑃𝑡(𝐻|𝑦𝑡(𝑖))𝑝(𝑖)

∑ 𝑃𝑡(𝐻|𝑦𝑡(𝑗))𝑝(𝑗)𝑁
𝑛=1

 
( 12 ) 

Where y is defined as sum of actual flows, Q, between the current time, t, and the end of the 

snowmelt season for the inflow scenario j, and Ht is the forecasted snowmelt runoff between the 

current time and end of snowmelt season.  The probability Pt(H|yt(i)) is found by regressing 
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forecasted seasonal flow on actual seasonal flow.  It is assumed that the probability distribution 

is normal around the calculated expected actual flow.  The standard deviation is equal to the 

standard error of the regression.  When it is assumed that the probability of scenario j following 

scenario i is equivalent to the probability of scenario j following the forecast Ht(i) from scenario 

i, Eq. ( 13 ) is substituted into Eq. ( 12 ), and this Bayesian approach may be used to find the 

conditional scenario to scenario transition probabilities, Pt(j|i). 

𝑃𝑡(𝑗|𝑖) =  𝑃𝑡(𝑦𝑡+1(𝑗)|𝐻𝑡(𝑖)) ( 13 ) 

A simple extension is made in the application to a multi-reservoir model as suggested by Faber 

(2001) where a scenario is considered the array of inflows and forecasts for the set of reservoirs.  

The transition from i to j is calculated where y(j) is the sum of flows into all reservoirs, k = 1..K, 

and H(i) is the sum of forecasted seasonal flows from all reservoirs, k = 1..K.  This application is 

valid for the BC Hydro system since for each scenario, flows at both reservoirs are based on 

coincident historical weather and retain spatial correlation.    

In the calculation of one-reservoir model value functions, Faber and Stedinger (2001) found no 

significant difference in model performance between using the more sophisticated transition 

probability calculation method and not modelling transitions at all.  They judged this was 

because streamflow persistence was effectively captured with the single trace, and uncertainty 

was captured in the re-optimization procedure for real time decision making (Section 4.2.4).   

4.2.3 Value Function Approximation 

The future value of the system is required to solve Eqs. ( 8 ) and ( 9 ).  Because the function 

describing the future value is typically not known, the problem is solved at discretized values of 

the continuous variables St and i throughout the state space.  The solution to the problem may not 

fall on a pre-defined grid point in the discretized state space, so the future value must be 

approximated.  Many methods of value function approximation have been used with SDP 

including multidimensional linear, polynomial, and spline interpolation as described in Johnson 

et al. (1993).  A multi-linear interpolation method using a convex hull algorithm was used in this 

multi-reservoir model and is discussed with the case study in Section 4.3.1.1. 
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4.2.4 Re-optimizing to Calculate Future Marginal Value of Water 

The outcome of Eq. ( 8 ) yields the optimal decision and the optimized value of the system at 

specific grid points in the state space.   The actual state of the system seldom falls on one of 

these discrete points, and the operator must find an optimal decision given current conditions.  

This may be accomplished by interpolating between solutions, 𝑓(𝑆𝑡, 𝑖), or using the set of 

solutions in a re-optimization procedure.  Tejada-Guibert et al. (1993) showed higher estimated 

average annual benefits are achieved when decisions are made through a re-optimization 

procedure compared to benefits from interpolated decisions.  

Faber and Stedinger (2001) applied this methodology with SSDP to implement real-time policies 

by solving for optimized release decision, Rt, using Eq. ( 14 ) with the expectation using the 

probability, Pt[scenario j|Ht]. 

For the current hydrologic state, H, and current 𝑆𝑡 at time, t :  

𝑓(𝑆𝑡, 𝐻) =  max
𝑅𝑡

 
𝐸

𝑗|𝐻
{𝐵𝑡(𝑆𝑡, 𝑄𝑡(𝑗), 𝑅𝑡) +  𝛼 [𝑓𝑡+1(𝑆𝑡+1, 𝑗)]} 

( 14 ) 

H  hydrologic state 

𝐸
𝑗|𝐻

  expectation assessed using transition probabilities of flow from scenario j 

occurring given hydrologic state H 

The methodology can be extended to solve for an optimal release for future time periods, f where 

f = t + x, in Eq. ( 15 ).  In this case, the expectation is assessed using the probability of an inflow 

scenario, j, occurring in a future time period, f, given the current hydrologic condition, Ht which 

is represented as Pf(scenario j|Hf
t). 

𝑓(𝑆𝑓 , 𝐻𝑓
𝑡) = max

𝑅𝑡

 
𝐸

𝑗|𝐻𝑓
𝑡  {𝐵𝑓(𝑆𝑓, 𝑄𝑓(𝑗), 𝑅𝑓) +  𝛼 [𝑓𝑓+1(𝑆𝑓+1, 𝑗)]} 

( 15 ) 

The probability Pf(scenario j|Hf
t) can be found using methodology similar to that used for the 

calculation of the scenario to scenario transition probabilities required in the calculation of the 

value function (Eq. ( 16 )).  In this case, yf(j), is defined as sum of actual flows from scenario j 
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between time, f and the end of the freshet in August.  Hf
t is the sum of forecasted flows occurring 

between time, f, and the end of the freshet from a forecast made in time, t. 

𝑃𝑓(𝑗|𝐻𝑓
𝑡) =  𝑃𝑡(𝑦𝑓(𝑗)|𝐻𝑓

𝑡)) ( 16 ) 

After the optimal decision is found using Eq. ( 15 ), the value of optimized solution, f(Sf, Hf
t), 

represents the expected future value of water in the system at time f. 

This model is different than Faber and Stedinger (2001) and Tejada-Guilbert et al. (1993) in that 

we expand the re-optimization procedure to determine not only immediate optimal release 

policies, but also release policies in future stages and subsequently the future value of water.  

This formulation will allow us to investigate and assess the dynamics of water in time as 

forecasts are updated. 

4.3 Case Study 

4.3.1 Description of BC Hydro System and Model 

BC Hydro is a provincial Crown corporation serving British Columbia, Canada that is mandated 

to generate power to meet the domestic load and to purchase, distribute, and sell electricity.  

Over ninety percent of energy generated in British Columbia is from renewable sources 

including hydropower.   

BC Hydro’s transmission network is linked with the province of Alberta and the western United 

States.  This allows for the exchange of energy over a large market.  BC Hydro is able to take 

advantage of the flexibility offered with a primarily hydroelectric generation system where it is 

able to store energy and purchase electricity from the market when prices are low and then 

generate energy to sell to the market when prices are high. 

British Columbia has two key river basins important to hydropower generation – the Peace and 

Columbia River watersheds.  Over seventy percent of the energy generated in the province is by 

hydro plant facilities on these two river systems, and virtually all of that potential energy is 

stored and generated at the Williston Reservoir on the Peace River and the Kinbasket Reservoir 
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on the Columbia River System.  Table 3. Reservior Characteristics provides a description of the 

reservoirs modeled. 

Table 3. Reservior Characteristics 

  Williston Kinbasket 

Generation Station Gordon M. Shrum (GMS)  Mica (MCA) 

Reservoir capacity (km
3
) 74  24 

Dam height (m) 186 240 

Generation capacity (MW) 2,876 1,805 

While the reservoirs are located in separate basins, they are similar in that the hydrology is 

dominated by seasonal winter snow accumulation and melting.  The Peace River drains its 

catchment in British Columbia into Alberta in the northeast while the Columbia River basin is 

located in the southeastern part of the province, and it drains its catchment into US territories.  

Snow accumulates in basin mountain ranges from late November until early April when 

temperatures rise and the snowpack begins to melt.  The melting period, or freshet, continues 

through August with high flows exhibited in May or June (Eaton and Moore 2010).  The timing 

of the freshet is dependent upon the size of snowpack and climate conditions.  Flows in fall 

between September and November originate primarily from precipitation events.  Low flows 

occur in winter when precipitation accumulates on the ground as snow.  

Size of remaining snowpack is an indicator for the remaining flow volume to occur during the 

freshet.  Therefore, snowpack size, along with weather information, is used to forecast the total 

volume of remaining flow over the snowmelt season.  Forecasted seasonal runoff volume 

contains information about previous months’ flows and captures some serial correlation within a 

sequence, so that high inflow from snowmelt in early months is followed by low inflow from 

snowmelt in later months, and vice versa making it an attractive choice for use as a hydrologic 

state variable in the BC Hydro operations model. 
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BC Hydro’s operating goals include maximizing the value of system resources while meeting 

customer demand.  The marginal value of water in storage drives reservoir operations decisions, 

and therefore, having an accurate estimate of this value is helpful to BC Hydro in its evaluation 

of trade-offs between releasing water to achieve immediate benefits and storing water to gain 

benefits in the future.  

An important activity of BC Hydro reservoir operations is the timing of drawing down the 

reservoirs in the winter and spring to prepare for filling during the freshet.  The drawdown 

schedule is typically made between the months of February and April and depends heavily on 

estimates of marginal water values in February through June. 

A new optimization model using a Sampling Stochastic Dynamic programming algorithm was 

developed to find the value of water in storage and release policies to maximize water value for 

the BC Hydro system.  The SSDP model consists of Eqs. ( 8 ), ( 9 ), and ( 15 ), with an objective 

to maximize the present value of water at each monthly time step in the planning horizon and 

throughout the discretized state space.  The stage problem was solved by a linear programming 

model which allowed the algorithm to search for the optimal decision, Rt, over a continuous 

interval, rather using a than using traditional DP search loop requiring the discretization of 

release decisions.  Once the problem was solved at every stage in the planning horizon, a value 

iteration approach was used to reach a steady state solution.  The model was formulated in 

AMPL and sub problems were solved by the Cplex solver. 

In this model, the value of water is a function of immediate benefits including internal and 

external energy trading and potential future benefits from energy production. Revenues are 

generated by selling energy to meet internal demand and exporting and importing energy to and 

from external markets (Eq. ( 17 )).   

𝐵𝑡(𝑆𝑡, 𝑄𝑡(𝑗), 𝑅𝑡) =  𝑎𝑡 ∗ 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝐿𝑜𝑎𝑑)𝑡 ± 𝑏𝑡 ∗ 𝑇𝑟𝑎𝑑𝑒𝑡 ( 17 ) 

Where Generation(Load)t is energy generated from release, Rt, used to meet demand at stage t, 

Tradet are the imports and exports exchanged at stage t, at are the benefits of meeting the 

domestic load, and bt are prices at which energy is exchanged at stage t. 
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Model decisions are constrained by a number of physical and procedural bounds.  BC Hydro 

must conduct operations to meet internal customer demand while also complying with 

environmental and other non-power constraints.  The decision variables of the SSDP model are 

the following: reservoir outflows for power generation, power generation, energy sales to 

external markets, energy bought from external markets, energy sold to local market to meet 

demand, and spills from the reservoir. 

Conservation of mass requires that the storage in each reservoir at any time step is the sum of the 

storage at the previous time step, current period inflows, and releases similar to as shown in Eq.   

( 6 ); however, this model separates releases through turbines and releases to spillways.  It is 

assumed that storage losses from evaporation are zero since in Canada rainfall on the reservoir 

generally replaces any evaporative losses.   

𝑆𝑡+1 = 𝑆𝑡 + 𝑄𝑡 −  𝑅𝑡 −  𝑆𝑝𝑖𝑙𝑙𝑡 −  e(𝑆t , 𝑆t+1) ( 18 ) 

Where Rt is power release at stage t, and Spillt is non-power release at stage t.  Each reservoir 

must be operated within its storage limits which are equivalent to the minimum and maximum 

physical storage requirements for the reservoir. 

𝑆𝑚𝑖𝑛 <  𝑆𝑡 < 𝑆𝑚𝑎𝑥 ( 19 ) 

Demand may be met by power generation through hydro, wind, fossil fuels, or purchasing 

energy from outside of the province.  Once internal demand is met through generation or 

imports, excess energy may be exported at market prices which vary throughout the year.  The 

system load must be equal to the sum of energy generated and traded to outside markets.  Energy 

may be bought or sold during each time step at current market prices.  Prices and demand 

fluctuate throughout the year with seasonal weather patterns and are shown in Figure 6. 
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Figure 6.  Economic inputs to model.  Prices of trading are seasonal and shown on the left axis.  Demand load 

is represented by the shaded region and valued on the right axis. 

𝐿𝑜𝑎𝑑𝑡 = 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑡  ±  𝑇𝑟𝑎𝑑𝑒𝑡 ( 20 ) 

Loadt is the net system energy demand at stage t, and Generationt is energy generated from 

turbine releases, Rt, at stage t. 

Energy generation in a reservoir is a function of the reservoir’s elevation.  A coefficient is 

calculated describing the average power generated per unit release at each starting storage state. 

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑡(𝑅𝑡, 𝑆𝑡) = 𝐻𝐾(𝑆)𝑅𝑡 ( 21 ) 

Where HK(S) is a generation coefficient for starting state, S.  Generation for each reservoir in 

each time step must be within the maximum and minimum limits. 

𝑅𝑚𝑖𝑛 <  𝑅𝑡 < 𝑅𝑚𝑎𝑥 ( 22 ) 

Energy bought and sold to and from external energy markets is limited to the capacity of the 

transmission system. 
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0 <  𝑇𝑟𝑎𝑑𝑒𝑡 < 𝑇𝑟𝑎𝑛𝑠𝑚𝑎𝑥 ( 23 ) 

Transmax is the maximum energy that may be transmitted in time t. 

 Value Function Approximation with Convex Hull Algorithm 4.3.1.1

As discussed in Section 4.2.3, the function, f(St, i) is solved for a set of defined points.  

Therefore when solving Eqs. ( 8 ) and ( 9 ), the future value function, ft+1(St, i), must be 

approximated.  If we assume that the value function is convex, then the use of the mathematical 

concept of a convex hull may be used to approximate the value function.   

A convex hull for a set of points is defined as the smallest convex polygon that contains all 

points in the set (Cormen 2001).  There are many algorithms that may be used to find the convex 

hull for a set of points.  The QuickHull algorithm is used in this study (Barber et al. 1996).   

Qhull software implements the QuickHull algorithm and outputs the set of hyperplanes (or 

facets) that comprise the convex hull.  Convex hull approximation methodologies have been 

applied to hydropower planning models by Dias et al. (2010) where the cost to go function of 

two reservoirs in a cascade system were modeled using the convex hull algorithm, and a four 

dimensional model of hydropower generation function has been developed using the convex hull 

algorithm (Diniz and Maceira 2008). 

The facets comprising a convex hull may be used to approximate the future value function.  For 

this maximization problem, the upper limits of the value function are constrained by the facets of 

convex hull.  For example, in a two-reservoir problem, the constraint corresponding to a 

particular facet is shown in Eq. ( 24 ):  

𝑉 ≤  a 𝑆1  +  b 𝑆2 + c ( 24 ) 

Where V is the value of water in storage, S1 and S2 are reservoir storage levels, and a, b, and c 

correspond to the plane equation of the facet. 

This methodology makes it possible to solve the problem using linear programming at each 

stage. Figure 7 shows an example of how facets generated by the convex hull are used as linear 
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constraints.  As the dynamic programming problem is solved recursively, the value function 

approximation using the convex hull is updated.  In each stage, the optimization problem is 

solved for every point in the discretized state space.  The set of points consisting of the reservoir 

storage levels of each reservoir and the calculated present value are used with the convex hull 

algorithm to generate the convex hull whose facets are used to approximate the future value 

function in the previous time period.  The facets of the convex hull completely surround the set 

of points; however, in order to solve the maximization problem, only the facets that make up the 

upper portion of the hull are used in the approximation.  

 

Figure 7.  Two dimensional representation of facets of a convex hull used to approximate the value function.  

The values at the discretized grid points are represented by square points and the piecewise linear 

approximation is shown by the dotted line.  

4.3.2 Model Variations and Cases Studied 

Several models were created making use of different forecasting methods to gain a more 

comprehensive understanding of the benefits in updating.  The following sections describe the 

cases evaluated and details of each model including forecast method, inflow data, and transition 

probability calculation. 

Three model variations were studied: SSDP with no forecasts, SSDP with Historical Seasonal 

Runoff Volume forecasts, and SSDP with ESP forecasts.  The SSDP model with no forecasts and 

the SSDP model with Historical Seasonal forecasts used actual streamflow sequences from 

eleven years in the historical record, 2003-2013.  For the remainder of the paper, we refer to 
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these models as Hist noFC and Hist FC models, respectively.  The SSDP with ESP forecasts 

uses inflows contained in the scenarios from ensemble streamflow prediction (ESP) forecasts 

generated by BC Hydro and is referred to as the ESP model.  These twelve-month inflow 

sequences are renewed at the beginning of months December through August.   

Transition probabilities are required in the calculation of the value function (Eq. ( 8 )) and also in 

re-optimization (Eq. ( 15 )) to find optimal current and future releases and values. To perform the 

calculation of value functions for each streamflow scenario, the model uses the probability that 

flow from scenario j occurs following flow from scenario i.  This probability may be calculated 

in one of three ways described in Eqs. ( 10 ), ( 11 ), and ( 12 ) for each time step depending on 

the uncertainty and the availability of forecasts.  In this study, scenario to scenario transition 

probabilities used in the value function calculation are represented by Eq. ( 10 ) for all cases and 

at all time periods.  This relationship captures the persistence of flows in a scenario, and 

simplifies the problem by eliminating the probability of switching to another scenario in a future 

time period, effectively assuming that future flows are known.  Models making this 

simplification capture uncertainty in re-optimization for making future releases.   

To make optimal current and future decisions by re-optimizing using the derived value functions, 

the model considers the probability of flow from scenario j occurring at a future time, given the 

current hydrologic state, Ht.  The probability of a future flow given the current condition for the 

historical inflow scenarios were calculated using linear least square fitting and Bayes theorem as 

described in Eq. ( 12 ).   

Assigning equally likely occurrence probabilities to ensemble streamflow prediction members is 

a common choice and has been used to represent ESP transition probabilities with SSDP (Faber 

and Stedinger 2001).  More recent studies have developed new methodologies to assign weights 

to forecasted scenarios to improve descriptions of scenario probabilities using information 

known about current hydrologic or climactic patterns.  These new methods are described and 

reviewed in Stedinger and Kim (2010).   Weighting methods were not used in this study, and we 

assume that each member of an ESP forecast is equally likely to occur, and it follows that the 

transition probability for the ESP model, P[H|j], equals 1/n.   
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When no forecast is available as in the Hist no FC model, no new information can be provided to 

the model and it is assumed that all scenarios have equal probability of occurring in the future 

yielding, P[H|j] = 1/n. 

A summary of the models investigated and details about is presented Table 4. 

Table 4.  Variations of Models Investigated 

Inflow/ Transition Probabilities Months of 

Forecast P[j|i] P[j|H] Forecast Updating 

Hist no FC I 1/n none 

Hist FC I B Feb/Mar/Apr 

ESP I 1/n Feb/Mar/Apr 

4.3.3 Marginal Water Value Simulation Procedure 

We examined the SSDP models’ calculation of the marginal value of water with different 

forecast methods over time.  Model performance was evaluated by simulating reservoir 

operations using historical data sets.  Future marginal values of water were calculated and 

compared. 

The simulation procedure involves solving Eqs. ( 8 ) and ( 9 ) for different variations of the 

SSDP model in Table 4 to develop future value functions.  Then Eq. ( 15 ) is solved to find the 

expected value of water at every storage level in the system for several future months of the 

freshet using the hydrological information available at various months preceding the freshet.  

Expected future value functions for the months of April through June are calculated from 

forecasts updated in February, March, and April.  The future value functions are used to calculate 

the marginal value of water (MVW) for each of the future months, f, and for each forecast month 

using Eq. ( 25 ).  The evolution of the marginal values of water with evolving forecasts are 

evaluated and compared with the marginal value of water calculated by a dynamic programming 

model having perfect foresight. 
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MVWf = 
δ 𝑓(𝑆𝑓,𝐻𝑡)

δ  𝑆𝑓∗ 𝐻𝐾( 𝑆𝑓)
 

( 25 ) 

Since input values do not change with time, value functions found from Eqs. ( 8 ) and ( 9 ) need 

only to be solved once for the Hist no FC and Hist FC models. However the ESP model is rerun 

using the most recent ESP forecasts in each stage. 

4.3.4 Results - Marginal Water Value 

The performance of the models are measured using the delta between the model’s output of 

marginal value of water and the marginal value of water calculated from the perfect foresight 

model.  We assume that the model having perfect foresight is able to hypothetically produce the 

best possible policies and the best case estimates of water value by employing the most efficient 

use of water.  It follows that the marginal values of water are thus ideal, and we measure the 

delta between the SSDP model outputs and these ideal outputs in evaluating the quality of model 

performance.   

The results shown in Figure 8 indicate that the use of forecasts improves estimates of the 

marginal value of water by the SSDP model.  Forecasts are used by the model to gain knowledge 

of future flows which allows the model to use water more efficiently.  As certainty associated 

with a forecast increases, the model is able to narrow its focus toward specific potential inflow 

realizations.  When the forecast is accurate, the estimate of the marginal value of water improves. 

The magnitude of improvement depends heavily on the month being estimated and the timing of 

the forecast.  Overall, the improvements in the marginal value calculation increases as forecasts 

are updated using both the ESP and Historical snowmelt runoff forecasts.  The greatest 

improvements were seen when using the latest available forecasts (made in April) and are as 

high as 581 percent (at MCA using the Hist April forecast to estimate values in June).  A five-

fold change is partly due to the comparison with low marginal values from the model having 

perfect foresight in May and June causing even modest changes in improvement to comprise a 

large percentage. 
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Figure 8.  Marginal value of water (percent difference from model having perfect foresight ) at GMS and 

MCA during the freshet as forecasts are updated.  Models using historical seasonal runoff forecast are in 

shades of red, and models using ESP forecasts are in shades of blue with the timing and type of the forecast 

indicated on the legend. 

When focusing on the models using historical forecasts (Hist – FC), the estimates of future 

marginal values further improve with time.  The February forecast improved the MVW 

calculation by an average of 120 percent, with additional improvements of 94 and 33 percent in 

March and April.  This result is an effect of increasing forecast certainty that is captured in the 

calculation of transition probabilities.  The R-squared of the regression between forecasted and 

realized flows may be used as an indicator to describe the degree of forecast certitude and is 

shown in Table 5.  As forecasts evolve from February to April, the R-squared value increases for 

every month of future flow.  
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Table 5. R-Squared of Regression between Evolving Historical Forecasts and Realized Inflow 

    Month of Future Flow 

Forecast 

Month   April May June 

     February 

 

0.731 0.708 0.682 

March 

 

0.778 0.778 0.742 

April 

 

0.828 0.827 0.815 

However, ESP forecasts do not exhibit increased certainty with time.  The coefficient of variance 

for ESP scenarios increases as the forecast is updated in March and April (for the future flow 

months of May and June) indicated in bold on Table 6.  This lack of confidence explains the 

degradation of the marginal value of water estimate at Kinbasket Reservoir in May with the 

April forecast (seen in Figure 8). 

Table 6.  Monthly Coefficient of Variance with Evolving ESP Forecast 

   

  Williston       Kinbasket   

   

Month of Future Flow 

  

Forecast 

Month   April May June   April May June 

 

February 

 

0.242 0.184 0.141 

 

0.211 0.199 0.120 

 

March 

 

0.227 0.198 0.137 

 

0.199 0.210 0.118 

 

April 

 

0.178 0.203 0.123 

 

0.163 0.225 0.125 

4.3.5 Policy and Total Benefit Simulation Procedure 

To determine how marginal values influence the benefits that may be achieved, the procedure 

above was modified to demonstrate reservoir operations from policies derived from each of the 

studied cases.  Similar to the procedure above, steady state future value functions resulting from 

Eqs. ( 8 ) and ( 9 ) are developed, then Eq. ( 15 ) is solved to find the optimized real time releases 

using the hydrological data available and current storage level, rather than at all storage levels, at 

each step.  The simulation moves forward from the beginning to the end of the planning horizon 

(February-July).  We choose starting storage levels at 60 percent full at Williston and 62 percent 
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full at Kinbasket which is a realistic realization of reservoir levels at this time of year.  Once a 

policy decision is chosen, the reservoir storage level is updated based on the optimized policy, 

the actual flow that occurred, and expected spilling.  The resulting storage value is used in the 

next time period and the procedure is repeated to the end of the planning horizon. 

The value of different forecasts can be assessed by comparing the benefits gained in each case.  

Revenues from each time period are summed to determine value of sales; however we must also 

consider the value of water in storage at the end of the planning horizon.  Since we allow 

reservoir storage to progress freely resulting from enacting optimal policy decisions, each 

simulation may arrive at different June ending storage values.  For consistency among cases, this 

value is calculated using the marginal value of water derived from the deterministic model for all 

cases ( Eq. ( 26 )).  The sum of revenues generated over all time periods and the ending storage 

value for each simulation are termed Total Benefits and compared. 

For a system of K reservoirs: 

Value of Water in Storage =  ∑ ∫ 𝑀𝑉𝑊 ∗ 𝑑𝑆𝑘
𝑆𝑘(𝑚𝑎𝑥)

𝑆𝑘(𝑚𝑖𝑛)

𝐾
𝑘=1  ( 26 ) 

4.3.6 Results – Policy and Total Benefit 

The simulations with forecast updating resulted in policy changes which varied with forecast 

timing and by reservoir, shown in Figure 9.  Policies at Williston reservoir varied little during the 

month of February.  March forecast updates resulted in changes in policy to the Historical model, 

but the ESP model policy remained consistent through the end of the planning horizon with no 

changes as a result of the updated April forecast.  Differences in policy decisions were most 

evident at the Kinbasket reservoir.  Release decisions are updated as forecasts evolve in February 

and March for both the Hist FC and ESP models, yet similar to the Williston reservoir, no policy 

changes occurred as a result of the April forecast update. 
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Figure 9.  Projected storage at Williston and Kinbasket reservoirs.  Optimized storage using no forecast is 

represented in black.  Models using seasonal runoff forecast are in shades of red and models using ESP 

forecasts are in shades of blue with the timing of the forecast indicated on the legend. 

Increases in total benefits (Figure 10) gained from operating the system were realized when 

forecasts were considered, and the timing of forecast was important.  By the March forecast 

update, increased benefits of over 14 percent were realized for both the Hist FC and ESP models.  

However, the increases in total benefit occurring from the April forecast update are modest (less 

than 0.2 percent).  Based on the lack of policy changes in April described above, this is not 

surprising.  No gain or little gain in benefits made between February and April forecasts (ESP 
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model) and March and April forecasts (Hist FC model) suggest that forecasts made in early 

spring may be sufficient to make future policy decisions.   

 

Figure 10.  Total benefits (as a percentage of perfect) for evolving forecasts.  Type and time of forecast are 

indicated on horizontal axis. 

This result is interesting in that improvements are seen in the estimates of marginal values, yet 

they are not apparent in actual benefits.  This is exemplified by clear and consistent improvement 

in marginal value of water estimates with the April forecast update in the Hist FC model (seen in 

Figure 8), and little improvement in the calculation of simulated total benefits in April.  Little 

improvement in total benefits indicates that the differences in marginal values do not greatly 

affect results of the simulation.  The marginal values shown are averages of the marginal value 

over the entire storage range.  Therefore, overall improvements do not signify changes have 

occurred at every storage state.  While the averaged marginal values improved during this 

simulation, the marginal values calculated at the storage states visited did not result in policy 

changes, and therefore no additional contribution to benefits was achieved. 

4.4 Conclusions 

In this paper we have demonstrated the use of two types of current forecasts with the SSDP 

algorithm to determine future policy decisions and the future value of water.  We show that 
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forecasts evolve in magnitude and level of certainty and both of these factors impact the model’s 

estimates of the marginal value of water, which shapes future policies and benefits achieved.  

However, while marginal values are affected, it does not follow that operations will.  The results 

indicate that the value of forecast updating is limited as additional benefits may diminish with 

time.  The expected additional value associated with an updated forecast is valuable information 

for a decision maker.  By comparing the value of increased future benefits to the value of making 

an early decision, a policy may be set when the most benefit is achieved.   

Future work will include implementation of this model at BC Hydro as part of the Water Value 

Project.  The model will be extended to incorporate Columbia River Treaty operational 

requirements that are modelled easily with the scenario based approach of the SSDP formulation.  
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5 Summary and Conclusions 

This thesis developed a reservoir optimization model with the ability to consider the stochastic 

nature of inflows in maximizing the value of system resources.  It investigated the use of various 

hydrological data inputs with a Sampling Stochastic Dynamic Programming (SSDP) model of 

the BC Hydro energy generation system.  Several BC Hydro developed data sets consisting of 

inflow sequences and forecasts were used with the SSDP algorithm on complex single and multi-

reservoir models.  

SSDP is an attractive method for solving the BC Hydro system reservoir operations problem 

since it uses scenarios in its solution algorithm.  Operational constraints mandated in the 

Columbia River Treaty (CRT) are structured to work well with scenario based modelling 

approaches. 

The SSDP algorithm and various hydrological data were first applied to a single-reservoir model 

of the Williston Reservoir on the Peace River.  The hydrologic data and study period was refined 

and applied to an expanded model representing operations of the BC Hydro system by a multi-

reservoir system including both the Williston and Kinbasket reservoirs on the Peace and 

Columbia River basins.  Both system representations produced consistent results. 

A summary of research conducted is listed below: 

 The SSDP algorithm was adapted for use with various types of inflows and forecasts 

including historical streamflows and forecasts, synthetically generated inflows and 

forecasts using a lag-1 autoregressive model and the principle component approach, and 

ESP forecasts.  Differences in model outputs including policies and value functions from 

one year of simulated operations were compared. 

 Marginal values were calculated at every month using various types of hydrologic data 

by simulating SSDP policies with three hydrological years of historical forecast and 

inflow data.  The simulated marginal values of water were compared with the marginal 

value of water calculated by a deterministic model. 
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 The future values of BC Hydro system resources change as new forecasts become 

available and operations decisions are updated.  The additional benefits gained with 

updated historical and ESP forecasts are compared on a two-reservoir model.   

The overall conclusions reached by this study are summarized: 

 Inflow characteristics including the relationships between forecasts and realized flow and 

standard deviation of monthly flows affect model behavior.  Hydrologic state variables 

allow the model to understand expected flows and enabled improved decision making.   

 The value of forecasts in approximating the marginal value of water in fall and winter 

months is relatively small, but increases into the freshet.  During this time, historical and 

ESP hydrologic data sets result in better marginal value of water approximations than 

forecasts and inflows generated from an autoregressive model. 

 The magnitude and level of certainty of forecasts impact estimates of the marginal value 

of water; however, it does not follow that these factors impact operations.  The value of 

forecast updating is limited as additional benefits gained from refining forecasts may 

diminish with time.   

 Finally, SSDP can be successfully applied to the BC Hydro system.  Operational 

constraints are captured with the scenario-based optimization method, and this structure 

will allow the future planned work of incorporating CRT constraints to the SSDP model. 
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