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Abstract 

This thesis probes the joint role of respiration in speech motor control and postural control by examining 

the effect of increasing the loudness of speech production, or vocal effort, on within-speaker coordination.  

Specifically, this work tested the dual hypothesis that the functional demands of speech production at 

increasingly higher levels of vocal effort would result in increasingly rigid coordination across multiple 

bodily subsystems, and that this entrainment would ultimately affect postural control, resulting in a loss of 

balance 

 An interactive spontaneous speech task was used to elicit speech at multiple levels of vocal effort 

by increasing the intended communication distance.  Data from acoustic and kinematic measurement 

domains, including speech, rigid body motion of the head, 2d motion of the body extracted from video, 

and postural forces and torques measured at the feet, were collected simultaneously.  These data were 

analyzed using a unique collection of techniques for the analysis of non-stationary time-series, which 

included methods for assessing cross-domain correspondence, system dimensionality, and fluctuation 

characteristics.  The results of these analyses show convergent evidence for both hypotheses.  

Coordination among kinematic and acoustic measurement domains both strengthens and simplifies at 

high levels of vocal effort, and evidence of postural instability was found at the highest levels of vocal 

effort.  Subsystem fluctuation characteristics show a direct relationship to the observed effects on 

coordination, both in terms of their intrinsic properties and in terms of changes due to increased vocal 

effort. 

 Although this study did not include a direct measure of respiration, these results highlight the 

necessity of expanding our understanding of respiration’s role in speech motor control, especially insofar 

as the inevitable crossover between speech and other task domains, such as postural control, is concerned.  

The methodology used in this study can be straightforwardly expanded towards these ends, and provides a 

potentially useful in-roads to research in this direction.  Even in the absence of a respiratory measure, 
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these results will be of potential interest to clinicians working on the treatment of patients with speech 

disorders associated with neurological dysfunction, as occur, for example, in Parkinson’s disease. 
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Chapter 1: Introduction 
 

The act of speaking requires the complex orchestration of myriad neuromuscular components whose 

mutual action unfolds in space, and just as importantly, through time. At the physical level, the spectrum 

of speech behavior emerges from the coordinated movement of respiratory, laryngeal, and articulatory 

musculature.  Each moment in the speech stream is an assemblage of the various postures of these 

interrelated subsystems, each of which operates at different characteristic timescales.  For instance, the 

faster-cycling open/close action of the jaw and the slower inspiration/expiration operation of the lungs 

must be coordinated simply to sustain the projection of sound.  In turn, these quasi-oscillatory rhythms 

must accommodate the more punctate movements of the articulators to create the fluctuating, patterned 

waveforms we perceive as speech. 

 In this way, speech provides a perfect example of the necessity of carefully interlocked timing of 

events across interrelated subsystems in coordinated biological movement (Turvey 2007).  With respect to 

the contributions of the articulatory and laryngeal subsystems, this notion has received a considerable 

amount of attention, both theoretically (e.g. Saltzman & Munhall 1989; Browman & Goldstein 1992), and 

empirically, (e.g. Kelso, Tuller, Vatikiotis-Bateson, & Fowler 1984; Gracco & Abbs 1986; Stone & 

Vatikiotis-Bateson 1995).  However, in spite of the fact that the utterance of even a single CV syllable 

requires the coordinated movement of the musculature of the entire respiratory air-way system (Abbs & 

Connor 1989), which includes the laryngeal and articulatory systems, respiration has received relatively 

little attention in efforts to understand the motor coordination of speech. One important outcome of this 

thesis, which investigates several interrelated effects of varying vocal effort, is to underscore the necessity 

of and set the stage for incorporating respiration into the investigation of speech motor control. 

 

1.1 Vocal effort 

Vocal effort can roughly be understood as the level of physiological effort used to produce speech, and as 

such, has an intrinsic relationship to the acoustic loudness of speech production (Ladefoged and 
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McKinney 1963).  However, it is important to emphasize that vocal effort is not strictly equivalent to 

acoustic loudness.  Instead, research has shown that the perception of vocal effort depends crucially on 

other acoustic factors in addition to loudness, all of which scale directly with intended communication 

distance (Traunmüller and Eriksson 2000).  At the physical level, this involves the functional modulation 

of the behavior of the neuromuscular subsystems involved in speech production for the purpose of 

communication under varying conditions of distance and environmental noise (e.g., Lombard speech – 

Lombard 1911, Pike 1967).  Physiologically, it is known to induce robust articulatory (Schulman 1989; 

Traunmüller 1989; Vatikiotis-Bateson & Ostry 1995), laryngeal (Holmberg et al. 1988; Dromey, 

Stathopoulos, & Sapienza 1992; Sulter & Wit 1996; Sundberg, Fahlstedt, & Morell 2005; Seshadri & 

Yegnanarayana 2009), and respiratory effects (Sharp, Goldberg, Druz, & Danon 1975; Iwarsson & 

Sundberg 1999).  In other words, changes of vocal effort with communication distance introduce 

functionally unique sets of task demands on all of the subsystems that enter into speech production, with 

corresponding adaptations in the structure and time-course of their coordinated activity; that is, vocal 

effort induces task-specific changes in the character of the various functional synergies (Bernstein 1967; 

Gelfand, Gurfinkel, Tsetlin, & Shik 1971) mobilized in speech production. 

 Increased vocal effort is known to induce changes in respiratory patterns on par with those of 

forced expiration.  As the loudness of speech is increased, the speed of inspiratory and expiratory 

processes is increased (Sharp et al. 1975), a higher percentage of lung vital capacity is expired per breath 

group (Iwarsson & Sundberg, 1999), and the musculature of the rib cage takes on a primary role in 

driving the cycle of respiration (Sharp et al. 1975).  This includes the action of the intercostal muscles, 

which are implicated both in respiration and in postural control (Rimmer, 1995).  Because these 

functional changes in respiration have physiological effects that are nearly identical to those observed in 

forced expiration of air from the lungs (Sharp et al. 1975), we will collectively refer to the inducement of 

these effects by increasing vocal effort as vocal forcing.   Taken in combination with the notion that 

spontaneous speech must be organized with respect to the respiratory cycle (Lenneberg 1967; Chapple 

1970; Warner 1979), the presence of these biomechanical linkages suggests that the changes in vocal 
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forcing should induce functional changes in posture in addition to changes in the speech system proper 

(Jeong 1991; Vatikiotis-Bateson et al. 2009; Lagier et al. 2010).  In turn, these changes must be 

coordinated in some fashion with the action of the conventional subsystems of speech, as was originally 

observed by Gould (1971). 

 Consideration of vocal effort and its modulation of speech breathing patterns also suggests a 

wider view of the physiological subsystems implicated in speech, beyond the classic tripartite division of 

respiratory, laryngeal, and articulatory.  This idea finds support from the fact that rigid body motion of the 

head is linked to speech production via a functional coupling with the fundamental frequency of the voice 

(Yehia, Kuratate, & Vatikiotis-Bateson 2002), and similarly, that the head contributes to speech 

perception (Munhall, Jones, Callan, Kuratate, & Vatikiotis-Bateson 2004).  What’s more, the head is also 

involved in postural control (Dault, Yardley, & Frank 2003).  Also, manual gesture is known to be highly 

coordinated with speech (e.g. Cummins & Port 1996; Leonard & Cummins 2010; Rusiewicz 2010).  As 

with the intercostal muscles of the thorax, the presence of these biomechanical and behavioral couplings 

suggests that modulation of vocal effort should induce functional changes not only in the coordination of 

the respiratory, laryngeal, and articulatory subsystems of speech, but also in more remote physiological 

subsystems coupled to speech production.  However, even if vocal effort can be predicted to induce 

functional changes in coordination across these various subsystems, this raises the question: what form 

would this coordination take? 

 

1.2 Synchronization in biological systems 

Coordinated biological movement emerges as the marshaling of multitudes of neuromuscular components 

into coherent structures defined by relatively few mechanical degrees of freedom (Bernstein 1967), or 

parameters that specify the actions that a system may take. Bernstein’s perspective is complicated by the 

fact that the actions of living organisms are exhibitions of the intertwined operation of complex 

physiological rhythms (Glass 1999) which variously converge, diverge, and fluctuate (Winfree 1980).   
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  Von Holst (1939/1973) cast the concept of rhythmic convergence, or entrainment, in terms of a 

general, scale-independent principle termed the magnet effect, which takes as its starting point the notion 

that the actions of biological systems operate at preferred, intrinsic frequencies, or their maintenance 

tendency, as Walsh (1972) later determined to be true of human body segments.  Building from this idea 

of intrinsic or natural frequencies, von Holst went on to show that when multiple neurobiological systems 

interact, there is a tendency for their intrinsic rhythms to attract one another to their respective preferred 

frequencies of operation based upon their relative strength (i.e. amplitude).  Where one oscillator comes 

to completely adopt the frequency of operation of another with a specific phase offset, absolute 

coordination is said to take place.  This has a direct mathematical analogue in the mode-locking 

(Pikovsky et al. 2003) that occurs between two out of phase oscillating pendulums connected by a beam, 

which, over time, will completely synchronize with one another, as Christiaan Huygens first demonstrated 

in 1649.  

However, von Holst recognized that coordinated movement in living systems diverges 

significantly from this idealized mathematical perspective.  What results from the tension between the 

maintenance tendencies of the individual rhythms and the influence of the magnet effect is a process of 

relative coordination characterized by persistent temporal fluctuations of relative phase.  In this state, 

although the population of oscillators tends toward specific phase and frequency relationships, this 

tendency is by no means singular.  Mode-locking still occurs, but such events are temporary, and the 

system of coupled oscillators instead explores a range of dynamically stable phase and frequency 

relationships throughout the time course of behavior.   

Even in biological systems, experimental results have shown that the probability of mode-locking 

increases in the presence of a high amplitude driving force (Schmidt, Shaw & Turvey 1993).  With 

respect to speech, increased strength of vocal forcing should result in an increase of spectral power 

associated with the respiratory rhythm, the lowest-frequency oscillator of the speech system.  This low 

frequency energy would then be transferred throughout the body, driving the movements of the head and 

torso at a low resonant frequency.  Importantly, movements produced at the same frequency as a resonant 
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driving force require fewer active degrees of freedom, and therefore the motion can be described more 

simply at lower dimensionality (Goodman, Riley, Mitra, & Turvey 2000).  With respect to vocal effort, 

this leads to the hypothesis that increased strength of vocal forcing mutually entrains multiple subsystems 

implicated in speech production; inducing a system-wide state of dynamically stable relative coordination 

characterized by simplification of the collective behavior due to forced oscillation.  Specifically, this 

hypothesis predicts that head motion, torso motion, and speech acoustics should exhibit tighter spatio-

temporal coordination as vocal effort increases.  This thesis presents evidence that supports this view of 

vocal effort.   

 

1.3 Postural instability 

Prior research has found a link between increased vocal effort and postural instability (Giovanni, Akl, & 

Ouaknine 2008), or increases in measures of postural sway.  While this effect was attributed to postural 

stiffening associated with vocal effort (Gould 1971), these researchers did not explicitly address the issue 

of the conflicting task demands imposed by the needs of postural control and vocalization upon the 

muscles of the rib cage and the head, which are each implicated in both task domains.  Furthermore, with 

the exception of Vatikiotis-Bateson et al. (2009), no studies have couched the discussion of cross-system 

correspondence in vocal effort in terms of time-varying coordination, being in the best case dependent 

upon static analyses using globally calculated correlation coefficients (cf. Lagier et al. 2010).  Where the 

task demands in one domain, speech production, increasingly necessitate use of joint resources shared 

with another domain, postural control, it stands to reason that the latter will be functionally impaired to 

some degree, and that this impairment may in fact be related to coordinative processes in the former 

domain.  A major aim of this thesis is to test for this corollary effect, where postural instability is 

hypothesized to be related to high levels of intra-speaker coordination at high levels of vocal effort.   

Postural stability can be construed as a direct physical connection a person has to the 

environment, insofar as the maintenance of balance is a time-varying process whose goal is the 

maintenance of a dynamic equilibrium between the physical body and an encompassing physical 
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environment.  In other words, maintaining balance is a process that strives to sustain a degree of structural 

continuity between the body and the environment at the physical level.  In the language of coupled 

oscillatory rhythms, this suggests that postural instability induced by a high level of intra-organism 

synchronization comes at the cost of this direct environmental connection.  Entrainment to a specific 

rhythm limits the intrinsic structural and rhythmic variability (or flexibility) an organism has at its 

disposal to adapt to, coordinate with, and navigate its environment. 

 

1.4 Non-stationary time series and fluctuations in the analysis of coordination in biological systems 

A major challenge in understanding the temporally conditioned behavior of biological systems is the 

necessity of analyzing non-stationary time-series (Eke et al. 2000).  Living biological systems of all kinds 

undergo continual change, which implies that their behavior is fundamentally at odds with the 

assumptions of stationarity that inform many time series analysis methods.  Consider the principal 

requirements of stationarity (Kantz & Schreiber 2004).  First, all parameters relevant to a system’s 

dynamics must be held fixed and constant during the measurement period.  This applies both to aspects of 

the experimental setup and the environment in which the experiment occurs.  More formally, the joint 

probabilities of finding the system in a given state at one time and another state at another time must be 

independent of one another during the measurement period.  The probability distribution of the 

measurement cannot change as a function of time.  And in a less formally stringent sense, the mean and 

variance of the time series must be constant throughout the measurement period. 

Clearly, these assumptions are fundamentally at odds with the action of anything that could be 

described as being ‘alive’.  The condition of constant flux in biological systems is true of both the system-

internal processes that sustain life and, just as importantly, the environmental conditions that a living 

organism must adapt to and engage with in order to behave.  Effectively, then, any and all ecologically 

valid behaviors, such as spontaneous speech, will be characterized by non-stationary measurements that 

by definition change over time. The study of biological coordination must take this into account, and 

make use of methods capable of addressing these issues.   
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 A related, yet distinct issue to the appearance of non-stationarity in biological time series is the 

presence and analysis of fluctuations.  First, consider a further indicator of non-stationarity discussed by 

Kantz & Schreiber (2004).  If the power spectrum of a signal contains too much power at low frequencies, 

the time-series must be considered non-stationary, with a particularly interesting case being where power 

across frequency bands is distributed according to f-α, that is, according to a power-law.  In the case where 

alpha = 1, the distribution is reflective of 1/f pink noise (Bak, Tang, & Wiesenfeld 1987), which appears 

widely in nature and constitutes an important property of the dynamics of many systems (e.g. Musha & 

Yamamoto 1997; Ward & Greenwood 2007; Sagues, Sancho, & Garcia-Ojalvo 2007).  For example, in 

the human heart (Peng, Havlin, Stanley, & Goldberger 1995) and respiratory system (Suki 2002; Suki et 

al. 2003), 1/f fluctuations are an important source of variability associated with healthy function.  This is 

all to say that 1/f fluctuations are not simply random, erratic variation.  In time series, this and other types 

of fluctuation display important structural characteristics in terms of their correlation properties. 

Living systems exhibit fluctuations in all manner of their states and behaviors.  As such, 

assessment of coordination within the context of a living system crucially relies on the notion of 

fluctuation.  Quantitatively, fluctuations are related to the variance of a given observable (Bialas & Koch 

1999).  Similarly, correlations are determined according to the co-variance between multiple quantities, 

and provide information about the relative co-dependence or independence of the measurements under 

consideration; in other words, information about the degrees of freedom that characterize the system 

(Koch 2006).  The central problem underlying coordination is the degrees of freedom problem, or how 

innumerable lower-level, often neuromuscular, components are functionally assembled into a coherent 

lower-dimensional system (Bernstein 1967).  Therefore, in order to understand the underlying dynamics 

of coordination, it is necessary to characterize both the fluctuations of individual components of a system 

and, more importantly, the mutual patterning of these fluctuations with respect to one another, all while 

accounting for the presence of non-stationarity.   

In order to address these concerns, the work presented in this thesis makes use of a unique 

combination of time-series analysis methods in the analysis of the data, including detrended fluctuation 
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analysis (Peng et al. 1995), correlation map analysis (Barbosa, Déchaine, Vatikiotis-Bateson, & Yehia 

2012) singular value decomposition analysis, and principal component analysis (Jolliffe 1986; Yehia et 

al. 2002).  This collection of methods is uniquely suited to the task of analyzing coordination in that, in 

combination, they provide a dynamic view of the interrelationship between subsystem fluctuations, the 

integration of fluctuations across diverse subsystems in coordination, and the way this mutual patterning 

is ultimately realized in terms of system dimensionality, which lies at the heart of Bernstein’s original 

(1967) formulation of coordination as the problem of regulating the system’s internal degrees of freedom.  

 

1.5 Summary 

This thesis reports the results of an empirical study that tests the dual hypothesis that speaking at high 

levels of vocal effort results in the entrainment of bodily motions associated with speech, and that this 

entrainment likewise results in postural instability.  Data collected from multiple kinematic and acoustic 

measurement domains were analyzed with a unique combination of methods for the analysis of non-

stationary time series.  The converging results of these analyses found evidence that increasing vocal 

effort results in stronger, simplified coordination across a range of subsystems implicated in speech 

production.  Furthermore, evidence of postural instability was found at the highest level of elicited vocal 

effort.  Even though direct measures of respiration (e.g., via RESPITRACE) were unavailable in the 

present study, this research offers empirical support and a potentially useful methodology for expanding 

our understanding of the role of respiration in speech production.  In addition, studying vocal effort’s role 

in modulating the form of coordination across interlinked bodily subsystems provides a means for 

examining the complex interrelations between bodily movement and speech acoustics in functional 

contexts common to everyday use, thus bringing us a little closer to an understanding of speech 

production ‘in the wild’ without abandoning the wealth of knowledge to be gained by studying speech ‘in 

the laboratory’. 
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Chapter 2: Methods 
 

In order to evaluate the hypotheses outlined in the previous section, data from an empirical speech 

production study were collected and analyzed.  Spontaneous speech at multiple levels of vocal effort was 

elicited in the context of a conversational interaction.  Measurements of the motion of the head, torso, and 

the center of pressure (COP) of the net ground reaction forces due to the position of the body’s center of 

mass were collected in addition to speech acoustics.  These time-series data were then analyzed using 

multiple techniques, including correlation map analysis (CMA), detrended fluctuation analysis (DFA), 

and principal component analysis (PCA).  In the remainder of this chapter, details of the experimental 

methodology, including procedures for data collection and processing, are presented.  An in-depth 

discussion of the analysis techniques appears in Chapter 3. 

 

2.1 Participants 

Seven native English speakers, three males and four females, took part in the study.  All were students at 

the University of British Columbia, aged 20-35.  None of the participants were formally trained as actors.  

All participants were informed of the operation of two of the measurement devices, namely, the 

OPTOTRAK motion capture system that was used to measure head motion, and the force plates, which 

were used to measure postural forces and torques at the feet.  But despite being informed as to what these 

two devices measure, participants were otherwise naïve to the purpose of the experiment.  Data from 

participants #1-6 were analyzed, with exception of the ‘yell’ trial for participant #6, who was unable to 

complete the task.  Data from participant #7 were excluded from analysis, due to a persistent error in 

force plate data collection during the recording session.   

 

2.2 Speaking task and procedures 

  

All participants produced spontaneous speech in the context of an interactive conversation with an 

investigator.  Communicative distance was varied in order to naturally elicit speech at different levels of 
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vocal effort: a ‘normal’, comfortable level of speaking at a distance of 1.5m, a ‘loud’ level at 4m, a 

‘louder’ level at 7.5m, and both the ‘shout’ and ‘yell’ levels at 30m.  Vocal effort varies along a 

continuum corresponding to communication distance (Traunmüller and Eriksson 2000).  In this way, 

varying communication distance allows us to perturb the speech system and the body by inducing 

changes in vocal effort.  Coordination is then evaluated by observing and measuring the response to these 

perturbations. 

Data were collected in continuous blocks based on effort condition, with breaks in between 

changes in vocal effort level.  At the beginning of each block, the interlocutor prompted the participant to 

begin speaking, typically with a question.  No instruction as to a specific level of vocal effort was given at 

the initiation of a block, as the distance between the talker and the interlocutor naturally induced speech at 

a given effort level.  The talkers were simply instructed to speak loud enough so that they could be heard 

by the interlocutor.  An unstructured, spontaneous conversation then ensued between the talker and the 

interlocutor.  Talkers were instructed to drive the interaction, with the investigator prompting with brief 

questions or interjections as necessary to keep the interaction going.  It should also be noted that if the 

interlocutor had trouble hearing the talker during a trial, they prompted them to ‘speak up’, as would 

naturally take place in dyadic speech at a distance.  For each of the three lower effort levels, the 

interaction was first initiated, and four two minute trials were then collected, followed by a break before 

beginning the next block at a higher level of vocal effort.  For the ‘shout’ level, two two-minute trials 

were collected, due to the limitations posed by speaker fatigue at this higher level of vocal effort.   

In addition to varying communication distance, a ‘yell’ condition was included, in which 

participants were instructed to yell angrily at the interlocutor in a fictional scenario, at the same distance 

as for the ‘shout’ condition.  This task was included in order to examine the effects of a change in 

discourse style, where limited dyadic response was provided on the part of the interlocutor, and to 

evaluate whether this change in interaction style would have demonstrable effects on coordination and 

vocal effort.  This task was included in order to corroborate the results of the original pilot analysis, which 

suggested that postural instability and rigid within speaker coordination occurred in this case.  Prior to the 
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beginning of the session, each participant was fully informed that this type of task would be a component 

of the experiment.  Then, each participant was consulted as to a fictional scenario that they would both be 

comfortable yelling ‘in’, as well as comfortable performing in the context of a video-recorded experiment, 

for example, yelling at a referee.  While not necessarily ideal from the standpoint of communicative 

realism, a procedure of this sort was necessary in order to experimentally investigate this type of 

spontaneous-speech behavior, due to inherent constraints imposed by the laboratory setting.  Similar to 

the ‘shout’ level, data collection in this condition was limited by the constraint of speaker fatigue. In this 

case, a single two minute trial was collected for each subject.  

In sum, this resulted in a total of 15 trials per subject (4x ‘normal’ + 4x ‘loud’ + 4x ‘louder’ + 2x 

‘shout’ + 1x ‘yell’). 

 

2.3 Data collection, processing, and reduction 

2.3.1 Experimental setup 

Each participant completed the speaking task in all effort conditions while standing on a pair of Bertec 

force plates, one for each foot.  A video camera and OPTOTRAK motion capture system were located 2m 

in front of the participant.  Details regarding the collection, processing, and reduction of all collected 

signals will be discussed subsequently. 

 

2.3.2 Data collection 

For all trials, multiple kinematic measurements were collected in addition to speech.  This consisted of 

rigid-body motion of the head, force plate measurements, and 2d motion of the torso extracted from 

video.  Details for each measurement type will be discussed independently. 

 

2.3.2.1 Speech 

Speech was recorded using a head mounted Tram-50 interview microphone, located approximately 7.5 

inches from the participant’s mouth.  The microphone was attached to a protrusion of the head-mounted 
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crown used for collection of rigid body head motion.  For each level of vocal effort, the microphone gain 

was lowered in order to accommodate the louder speaking levels.  These signals were later rescaled to a 

common factor that was determined using a pure sine tone generated at 1 kHz, .23V peak to peak 

amplitude. 

During collection, the speech signal was first fed into a Mackie mixer, split, then taken both 

directly to video at 48 kHz and simultaneously to a hardware filter, where the speech signal was band-

pass filtered at 60-7000 Hz.  After A-D conversion, the band-pass filtered speech was recorded to disk 

using the OPTOTRAK Data Acquisition Unit (ODAU) and NDI first principles software, which 

facilitated synchronized collection of the filtered speech, head motion, and force plate data.   

 

2.3.2.2 Head motion 

Rigid body motion of the head was tracked using the marker-based OPTOTRAK system. Six positional 

markers were attached to a head-mounted crown worn by the participant.  NDI software was used to 

derive a rigid body representation of the head from the positions of these six individual markers.  6d 

motion of this rigid body (x, y, z position coordinates in Euclidean space, plus rotations about each 

coordinate axis) was then recorded to disk at a sampling rate of 60 Hz using NDI first principles software.   

 

 
 

Figure 2.1. OPTOTRAK headgear. 
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 2.3.2.3 Torso Motion 

Motion of the upper body (Torso) was measured using optical flow analysis (OFA – Horn & Schunk 

1981, Barbosa et al. 2008) a noninvasive technique for extracting 2d motion from video.  First, HD video 

was recorded at 59.94 frames/sec using a commercial grade camera with intra-frame compression, and 

recorded to disk with one continuous take for each level of vocal effort. OFA was then applied to a 

defined region of interest (ROI) within the video frame, for each video file.  For torso motion, this region 

was defined as a rectangle with the top edge at shoulder height, the bottom edge just below the 

participant’s waist, and the outer edges at the most extreme extent of each arm.  An example ROI is 

provided in Figure 2.2 Details regarding subsequent processing are discussed in the next section.   

 

 
 

Figure 2.2. Example optical flow region of interest. The green box defines the region used to measure 2d 

motion of the body.   
 

2.3.2.4 Force plates 

Two Bertec force plates, one for each foot, were used to measure ground reaction forces and their 

associated torques.  Each force plate provides a six component signal, consisting of voltage measurements 

indexing forces in three translation dimensions (x, y, and z in 3d Euclidean space), and the associated 

moment (torque) about each of these three axes.  These force and torque components will subsequently be 

referred to as Fx, Fy, Fz, (forces in each direction) and Mx, My, Mz (moments about each axis).  The 

force plate data were also collected using the ODAU at a sampling rate of 7000 Hz.  Refer to Figure 2.3 

for the orientation of the coordinate system relative to the experimental setup.  The force plates were 
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zeroed with the participant already standing on them, necessitating the addition of a correction term 

during data processing in order to yield the true values for the force measured in the vertical (Fz) 

direction.   

 

 

 
 

Figure 2.3 Bertec Force plates with orientation axes.  Force measured along the z axis is positive in the 

downward direction.  Force measured in the y direction corresponds to the anteroposterior axis, force in the x 

direction corresponds to the mediolateral axis.   Only the moment about the z-axis is pictured. 

 

2.3.3 Data processing  

All data processing, reduction, and analysis was performed with MATLAB.  All signals were resampled 

to 60 Hz prior to analysis.  As mentioned previously, the speech, head motion, and force plate data were 

collected simultaneously using NDI first principles software and the ODAU, so no further steps were 

required to align these signals. 

In the case of the video based data, an additional processing step was required in order to ensure 

proper alignment with the ODAU data.  This was achieved by aligning the audio that was recorded 

directly to video with the hardware filtered audio collected by the ODAU using a correlation function.  

This provided the video frame numbers associated with the stop and start of each trial.  These frame 

numbers were then used to extract the portion of the optical flow signal corresponding to each trial from 

the entire optical flow signal (see section 2.3.2.3) computed for each video.  This 59.94 Hz signal was 

then converted to 60 Hz to complete the alignment process. 
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 The raw voltage measurements of the force plates were first down-sampled to 60 Hz, and then 

converted to force and torque values through multiplication by appropriate scale factors (Bertec Force 

plate Manual, 2009).  A correction term was then added to the measured values for the force in the z 

direction.  This correction term was computed according to Equation 2.1, 

𝐹𝑧𝑐 = 𝑚𝑎,      (2.1)  

where Fzc is the correction term, m the estimated mass of the participant in kg, and a the acceleration due 

to gravity, 9.81 m/s2. 

 

2.3.4 Data Reduction 

2.3.4.1 Speech—F0, acoustic RMS  

F0 contours were extracted from the 7 kHz hardware filtered audio using YAAPT (Zoharian & Hu 2008).  

YAAPT’s parameters were set with an F0 search range of 60-550 Hz in order to capture the extended 

range of F0 values known to accompany increases in vocal effort (Traunmüller and Eriksson 2000, 

Lienard and di Benedetto 1999).  Following extraction, these pitch contours were then downsampled to 

60 Hz for subsequent analysis. 

 Acoustic root-mean-square (aRMS) was also computed directly from the hardware filtered audio 

in order to provide a time-varying measure of acoustic amplitude.  This was done using a frame-based 

technique (Barbosa, Yehia, & Vatikiotis-Bateson 2007) which directly aligns the speech audio to the 

target sampling rate (one audio frame per target motion rate sample), in this case, 60 Hz. 

 

2.3.4.2 Rigid body head motion 

The 6d rigid body motion of the head was reduced to a scalar time-series using a Euclidean distance 

metric on the x, y, and z coordinates for each time sample, providing a uni-dimensional representation of 

the displacement of the head (in mm) through time. 
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2.3.4.3 Torso motion 

The optical flow algorithm provides vector values and magnitudes in both the x and y directions for each 

video frame.  In addition, a combined sum in both directions is computed, which provides a measure of 

the total magnitude of motion within the region of interest for a given frame of video.  In the analysis, the 

combined sum, and therefore a scalar measure of the total amount of motion in the region of interest for 

each video frame, was used.   

 

2.3.4.4 Force plates —center of pressure (COP) 

The center of pressure is a measure of the centroid position of the ground reaction force due to all 

downward forces acting on the force plate.  These forces are due to the various neuromuscular systems 

responsible for postural control and balance (Winter 1995).   

The center of pressure for each individual plate was first calculated using the respective force and 

torque measurements (Bertec Force plate Manual 2009).  A single, global center of pressure, representing 

a combination of the individual centers of pressure for plates one and two, was then calculated using a 

change of coordinate system.  For analysis, these 2d time-series were then converted to a uni-dimensional 

scalar representation using a Euclidean distance metric, analogous to the method used for the reduction of 

the head motion data.  This yielded displacement time-series for the individual plate COPs, and the global 

COP (in m).   

 

Table 2.1.  List of 60 Hz time series obtained after post processing and data reduction 

F0 

aRMS 

Optical Flow: total magnitude of motion 

Head: displacement 

COP - global: displacement 

COP - plate 1: displacement 

COP - plate 2: displacement 
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Chapter 3: Analysis & Results 

Several interrelated techniques for the analysis of non-stationary time series were employed in the 

analysis of the data.  Correlation map analysis (CMA) was used to quantify the dynamic structure of 

correlations between the time series listed in Table 2.1, that is, to investigate their time-varying 

correspondence.  The relative complexity of the temporal structure of correlations was then evaluated 

with a widely used dimensionality reduction technique, singular value decomposition (SVD).  These 

methods were combined with detrended fluctuation analysis (DFA) of the individual signals, which 

quantifies the nature of signal fluctuations in terms of their degree of statistical self-affinity and spectral 

characteristics.  Finally, principal component analysis (PCA) was used to evaluate the degree of 

redundancy present in each of the original 6d force plate signals, providing a measure of the co-

dependence between their component forces and torques across different levels of vocal effort. A 

description of each of these techniques immediately follows.  These descriptions are then followed by the 

results of the analysis. 

 

3.1Analysis Techniques 

3.1.1 Correlation Map Analysis (CMA) 

Biological behaviors are the sum-total output of the mutual interaction of myriad biological rhythms 

operating across multiple spatial and temporal scales, and speech is no exception.   CMA (Barbosa et al. 

2012) provides a means of quantifying these patterns of time-varying coordination between pairs of 

signals by calculating the instantaneous cross-correlation between them as a function of both time and 

temporal offset, according to Equation 3.1, 

𝜌(𝑘) =
𝑆𝑥𝑦(𝑘)

√𝑆𝑥𝑥(𝑘)𝑆𝑦𝑦(𝑘)
 ,      (3.1) 

 

where ρ(k) is the instantaneous correlation coefficient, Sxy is the instantaneous covariance between signals 

x(k) and y(k) centered at any point k = k0, and Sxx and Syy are the instantaneous autocovariance of signals 

x(k) and y(k), respectively.  This process yields a two-dimensional correlation map which provides a 
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quantitative representation and visualization of the instantaneous correlation between the two input 

signals across time and a desired range of temporal offsets.  See Figure 3.1 for an example.  The 2D 

method enables the quantification of fluctuating changes in the phase relationships of correlations with 

the passage of time, as often occur in speech (Gracco & Abbs 1986) and other biological behaviors where 

strictly time-locked synchronization rarely takes place (see von Holst 1939/1973). 

 
Figure 3.1 Example correlation map.  Head motion and acoustic RMS.  Instantaneous cross-correlation 

between the two signals is calculated as a function of time (ordinate) and temporal offset (abscissa).  The color scale 

on the right indexes the instantaneous correlation values 𝜌(𝑘). Perfect positive correlations 𝜌 = 1 (in-phase) are red, 

while perfect negative correlations 𝜌 =  −1 (anti-phase) are blue.  The cursor at approximately 82 seconds 

illustrates an offset relation between the two signals.  The positive correlation at this 1(s) offset position is the result 

of the computation of the instantaneous cross-correlation centered at the positions indicated by the vertical bars in 

the signal panes, where the head motion signal is leading aRMS by one second, and both signals are clearly trending 

upward.  Note that this strong positive correlation is in addition to the one clearly visible at approximately  0(s) 

offset. 

 

In the present experiment, CMA was used to quantify the time-varying patterns of correlation 

among the kinematic and acoustic measures listed in Table 2.1.  In total, eleven pairs of signals were 

analyzed for each participant.  This consisted of an exhaustive pairwise matching of five signals: F0, 

aRMS, head motion, torso motion, and global COP displacement, yielding ten pairs, plus an additional 

pairing of the COP time-series calculated for the individual force plates.  
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For analysis, separate cross-correlograms for positive and negative correlations were constructed 

using the following procedures.  First, for each signal pair in a given trial, the number of significant 

instances of correlation (either rho > .5 or rho < -.5) are totaled individually for each temporal offset.  

This produces a histogram consisting of the number of instances of significant correlation, or ‘hits’ at 

each offset.  These histograms are then normalized to the length of that trial.  This normalization 

effectively converts the total hits measure for a given offset into the percentage-total instances of 

significant correlation for each offset (%COR).  In practice, the normalized cross-correlograms enable the 

determination of the predominant in-phase and anti-phase offsets between the signals of interest.  Also, 

variability in the range of offsets and the strength of correlation at these various offsets are represented.  

In order to compactly summarize the strength of cross-correlation for the purposes of comparison across 

effort conditions, the mean of the percent-total correlation (m%COR) across all offsets for each of the 

positive (m%COR-pos) and negative (m%COR-neg) cross-correlograms was selected as the principal 

measure of interest for subsequent analysis. 

 

 
 

 

Figure 3.2 Correlation map and cross-correlograms. F0 and acoustic RMS.  The positive cross-correlogram 

(upper right) shows a strong peak at approximately zero offset, corresponding to the band of positive correlation 

along zero-offset in the correlation map. 
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3.1.2 Singular value decomposition (SVD) 

If increased vocal effort results in postural entrainment, a systematic simplification of the 

dynamics of coordination between the subsystems under investigation will take place.  In particular, the 

intermittent rhythms of the head and torso will become increasingly coactive with the continuous rhythms 

of speech at higher levels of vocal effort, resulting in reduced variation of the phase relations between 

these quasi-periodic oscillatory systems.  In the correlation map, such a reduction in time-varying 

complexity would be evidenced by greater saturation of correlations at particular offsets, as defined by the 

periodicities associated with the combined dynamics of the involved subsystems, and driven by the 

periodic forcing of the respiratory cycle.  Re-cast in the terminology of the degrees of freedom problem 

presented by Bernstein (1967), this can be construed as dimensionality reduction in the temporal domain.   

Movements at resonance with a coupled periodic forcing function are known to exhibit dimensionality 

reduction as compared to those at frequencies other than resonance (Goodman et al. 2000).  If the forcing 

of the respiratory cycle at high levels of vocal effort is sufficient to drive the system into resonance, 

dimensionality reduction in correlation structure should take place across multiple measurement domains, 

including kinematic-kinematic and acoustic-kinematic pairings, in addition to pairing of the kinematics 

and acoustics with the postural dynamics measured by the force plates. 

In order to assess whether or not this effect occurs, singular value decomposition was performed 

on the correlation maps. SVD is a matrix factorization technique that can be used to identify lower-

dimensional underlying structure in high dimensional data.  The factorization leads to a representation of 

the original dataset X in terms of two orthogonal basis matrices U and V, and a diagonal matrix Σ 

consisting of the singular values , according to Equation 3.2, 

𝑋 = 𝑈Σ𝑉𝑇,       (3.2) 

where the superscript T  denotes the matrix transpose.  From this representation, the original data can be 

approximated in terms of the components of the basis matrices U and V that contribute most to the 

underlying structure of the data, as indexed by their associated singular values. 
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In an intuitive sense, the singular values correspond to the relative ‘strength’ of each of these 

components in representing the variance of the original data.  Note that this is similar to the ranking of 

component contribution to variance provided by PCA discussed in section 3.1.4 below (see Shlens 2014 

for further discussion of the relationship between PCA and SVD).  Highly redundant data, in which a 

strong underlying pattern exists, will require fewer components to approximate the original than 

unstructured data, which will require many more components for its approximation.  For a general 

discussion of SVD’s application to dimensionality reduction, see Rajaraman & Ullman (2012). 

 In the correlation maps, this notion of underlying structure is reflected in the correspondence of 

correlations across offsets and through time.  Maps whose structure is due to a simple underlying pattern 

will display greater consistency of correlation structure across offsets, and thus, reduced dimensionality as 

compared to those whose structure is more complex, or even random.  This underlying pattern is 

determined by at least two factors: (1) temporal patterning of the signals with respect to one another, and 

(2) the simplicity, or smoothness, of the signals themselves.   Figure 3.3 provides several examples using 

idealized signals, including sine waves (3a), (3b), (3c), brown noise (3d), pink noise (3e), and white noise 

(3f).  

In Figure 3.3, the maps generated by signals with simpler underlying dynamics (e.g. sine waves) 

exhibit highly regular correlation patterns.  Saturated bands of high correlation, both positive and 

negative, persist across all lags and through time.  In the random walks, these bands are intermittent and 

display less structural consistency.  In the noise map, they are nonexistent.  This qualitative difference 

between signal types can be quantified by the SVD analysis in terms of number of singular values 

necessary to represent the variance of the original data at a desired level of accuracy.  Figure 3.4 provides 

an example.  The cumulative variance explained is plotted as a function of the number of singular values 

for each example map. Maps with coherent structure require fewer singular values to reconstruct the 

original data with 99.8% of the variance explained.  The maximum number of singular values possible is 

equivalent to the number of offsets in the correlation map, in this case, 301. 

 



22 
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(c)             (f) 
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Figure 3.3 Correlation maps for idealized signals.  Sample correlation maps for (a) sinusoids with identical frequencies (2 Hz), (b) sinusoids with 

different frequencies (1 Hz, 2 Hz), (c) equal frequency sine waves, one with added noise, (d) brown noise (i.e. two random walks), (e) pink noise, and (f) white 

noise.  All signals sampled at 60 Hz for n=1000 samples ≈ 16.67 seconds.  Visible window is the range from 2 seconds to 14 seconds.  Offset range is +/- 2.5 

seconds, which equates to 301 possible offsets.  
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Figure 3.4. SVD of idealized correlation maps.  Cumulative variance plot for SVD of the correlation maps in 

Figure 3.3. Compared to the number of components (singular values) necessary to represent the Gaussian white 

noise map with 99.8% accuracy (144 SVs), fewer components are needed for the equal frequency sine wave map 

(7), equal sine waves, one with added white noise (19), mismatched frequency sine waves (22), brown noise  (41), 

and pink noise (103).  Note the influence of the spectral properties of the signals on the structure of the correlation 

map.  Maps generated with signals whose spectra are characterized by increased relative concentration of power in 

fewer frequency bands require fewer singular values for their reconstruction.   

 

3.1.3 Detrended Fluctuation Analysis (DFA) 

An issue related to dimensionality reduction in the context of movements at resonance is the change in the 

distribution of spectral power due to the influence of the driving force.  In this case, it is hypothesized that 

the increased strength of the low-frequency driving force of the respiratory cycle will result in a 

concomitant increase in low-frequency spectral energy, and increased ‘smoothness’/simplicity, in the 

signals of interest.   

The smoothness of a signal is related to the type and amount of variation, or fluctuation in its 

spatial and temporal characteristics.  For example, a sine wave follows a strictly deterministic path, and 

therefore does not exhibit fluctuations.  White noise, on the other hand, consists entirely of fluctuations 
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about some mean value, while pink noise exhibits a structured subset of the fluctuations seen in white 

noise.  In terms of spectral characteristics, the spectrum of a simple sine wave will have all power 

concentrated at a single frequency, power will be distributed equally across all frequencies in white noise, 

and in pink noise power across frequency bands is distributed according to 1/f, that is, with higher relative 

concentration of spectral power in lower frequency bands.   

DFA provides a means of quantifying this idea in terms of a single quantity, the scaling exponent 

α, which is an adaptation of the generalized Hurst exponent for non-stationary signals (Peng et al. 1995).  

For a given time-series, α indexes the presence or absence of long-timescale temporal correlations.  

Correlation timescales relate directly to the structure of the power spectrum.  In a rough sense, long-

timescale correlations are due to low frequency spectral components present in the signal, and shorter 

timescale correlations relate to higher frequency spectral components present in the signal.  Furthermore, 

information regarding the relative distribution of correlation timescales evident in a signal’s fluctuations 

is contained in the value of α, providing a means of assessing the presence of statistical self-similarity in 

the structure of the signal’s fluctuations.  As such, the scaling exponent has a straightforward 

interpretation in terms of its relationship to the structure of the power spectrum associated with the color 

of noise corresponding to its value (Buldyrev et al. 1995). 

 Calculation of alpha is as follows.  First, the time-series x(t) is integrated according to Equation 

3.3,   

𝑦(𝑛) =  ∑ 𝑥(𝑡)𝑛
𝑡=1 .                                                                           (3.3) 

Then, the integrated time-series y(n) is subdivided into windows of length L.  For each window, a local 

least-squares trend is fit to the data, according to Equation 3.4,   

𝑎𝑟𝑔𝑚𝑖𝑛 𝑎,𝑏 {𝐸2 = ∑ (𝑦(𝑛) − 𝑎𝑛 − 𝑏)2}𝐿
𝑛=1  .                                              (3.4) 

The slope and intercept parameters of the linear fit, a and b, are minimized with respect to the squared 

error, E2.  Then, the RMS deviation from these fitted trends, or fluctuation F(L), is calculated for all 

window lengths L, as in Equation 3.5,   
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𝐹(𝐿) = [
1

𝐿
∑ (𝑦(𝑛) − 𝑎𝑛 − 𝑏)2]𝐿

𝑛=1

1/2
.                                                   (3.5) 

This process is repeated for multiple window lengths (timescales).  In the implementation by Little, 

McSharry, Moroz, & Roberts (2006), the number of timescales is determined according to n = log2(M), 

where M is the length of the time-series.  Each timescale is then determined as the number of subdivisions 

according to powers of two (eg. 20 = 1 subdivision, 21 = 2 subdivisions …2n-1 = n subdivisions), up to the 

total number of timescales.  The scaling exponent α is then found as the slope of a linear fit on the graph 

of F(L) against L on a log-log scale.   

 Interpretation of the scaling exponent is as follows.  Values of α ≈ 0.5 correspond to white noise.  

In white noise, fluctuations from one moment to the next are completely independent of one another, or in 

other words, uncorrelated. For values 0.5 < α ≤ 1, long term correlations are present in the fluctuations.  

In this range, the distribution of correlation time-scales follows a power-law form, with α ≈ 1 being the 

special case of 1/f pink noise.  In this case, correlations exist across all timescales, with the relative 

frequency of correlations decreasing with increasing timescale length.  Importantly, a signal whose 

fluctuations exhibit a power law distribution of correlation timescales is said to have no single 

characteristic timescale that dominates the dynamics of the process.  This contrasts with the behavior of 

fluctuations whose scaling exponent lies in the range 1 < α < 1.5, with α ≈ 1.5 indicating brown noise.  In 

this range, the fluctuations exhibit long-term correlations, but the distribution of time-scales does not 

follow a power law.  Instead, the signal has a characteristic long-period timescale, with the relative 

dominance of low-frequency fluctuations resulting in a smoother signal profile. 

This gradation from α = 0.5-1.5 can also be interpreted as a cline that represents the smoothness 

of the signal, as shown in Figure 3.5.  Larger values of the scaling parameter indicate a smoother signal 

whose spectrum contains increased concentration of spectral power at lower frequencies. On the other 

hand, values closer to 0.5 correspond to the ‘roughness’ of white noise (Peng et al. 1995), with power 

distributed equally across all frequency bands.   
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Figure 3.5 DFA of example noise signals.  The white, pink, and brown noise signals used to generate the 

correlation maps in Figure 3.3 are displayed with the value of the scaling exponent computed by DFA.  The brown 

noise signals are smoother than the pink and white noise signals, owing to the increased magnitude of long time-

scale fluctuations relative to short time-scale (i.e. low vs. high frequency) fluctuations.  

 

 The power-law range of .5 < α < 1 is a special case that merits further explanation.  Power law 

distributions occur in a wide variety of biological systems, including the structure of airways in the 

human lung (Suki et al. 2003), and in the distribution of fluctuations in inter-breath interval lengths in 

respiration (Frey, Silverman, Barabasi, & Suki 1998).  These distributions have several important 

properties, but the crucial distinction between them and other probability distributions occurs with respect 

to the concept of scale.  For many distributions, the mean value of a measurement reflects the ‘typical’ 

size or scale of the quantity of interest, as for example, in the distribution of human heights in a large 

population (Newman 2006).  But power law distributions tend to vary across an extremely wide range of 

values, exhibiting the so-called “long tail”.  They lack a typical value, and instead, the values of the 
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distribution for any given value of the measured variable are proportional to one another.  In the simplest 

case, this is expressed in general form as a scaling relation, given by Equation 3.6, 

𝐷(𝑥) =  𝐶𝑥−𝛽,       (3.6) 

where D(x) is the value of the distribution function (e.g. the probability mass function) at some value x, C 

is a constant, and  β is the scaling parameter. For instance, in the case where C = 1 and β = 1 (pink noise), 

values of x = 1 would occur twice as often as values of x = 2, and three times as often as values of x = 3 

(i.e. D(1) = 1 vs. D(2) = 1/2, vs. D(3) = 1/3).  Taking the logarithm of both sides of Equation 3.7 yields 

log 𝐷(𝑥) =  −𝛽 log 𝑥 + log 𝐶,     (3.7) 

which shows that values of the distribution function D(x) are linearly related to values of the independent 

variable x on a log-log scale, with the slope of the linear relation given by the scaling parameter β.  The 

presence of this kind of power law scaling within a distribution implies that there is no typical value that 

characterizes the distribution. Instead, the value of D(x) shows a strong dependency on the value of x, and 

importantly, these measures are directly proportional to one another across a range of scales.   
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Figure 3.6. DFA of signal with power law fluctuations.  The 60 Hz signal (top) exhibits power-law 

fluctuations indicated by the scaling exponent α = .939, as determined by the slope of the linear fit of  

F(L) ~ L on a log-log scale.  Fluctuations calculated for short temporal intervals are proportional to fluctuations 

calculated over long temporal intervals. 

 

This notion of proportionality across scales extends directly to the idea of mathematical self-

similarity.  This idea is most commonly expressed in geometric terms.  Geometrically self-similar objects 

are known as fractals (Mandlebrot 1977).  The pieces of a self-similar fractal object are constructed of 

smaller copies of the whole object.  This part-whole similarity is revealed by viewing the pieces of the 

object under successive levels of magnification, and is defined in terms of proportional scaling.  In fact, 

power-law scaling is a special case of mathematical self-similarity, and 1/f power spectra are 

characteristic of self-similarity (Bassingthwaighte, Liebovitch, & West 1994).  Mathematical self-

similarity can also apply to objects or processes whose pieces resemble the whole in terms of their 
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statistical properties.  Unsurprisingly, this is referred to as statistical self-similarity.  In statistically self-

similar objects or processes, the scaling relationship between pieces of different size is construed in terms 

of the relationship between a measured property and the scale, or resolution, at which the property is 

measured, according to Equation 3.8, 

𝑀(𝑎𝑠) = 𝑘𝑀(𝑠),      (3.8) 

where M(s) is the property measured at a scale s, k is a constant of proportionality, and a < 1 is a 

parameter that reduces the measured scale.  For a power law, this equation can be rewritten as in Equation 

3.9, 

𝑀(𝑎𝑠) = 𝑀(𝑠)𝑎𝛼,        (3.9) 

where alpha is the power law scaling exponent.  Equation 3.9 states that for some measure M(s) at a scale 

s, a measure of the same object at a smaller scale M(as) is related to the measure of M(s) by the decrease 

of measurement scale a raised to a scaling exponent α.  The measured property of smaller pieces of the 

whole object are similar to the measured property calculated for the whole object.  This sense of measure 

is generic, and can apply to a wide variety of properties.  For instance, the magnitude of fluctuation F(L), 

measured by DFA, as shown in the example provided by Figure 3.6.   

 With respect to time series, statistical self-similarity refers to similarity in the statistical properties 

of shorter intervals of the series with respect to larger intervals, or even the entire time series.  The 

relation between properties calculated at different temporal scales can be expressed as a functional scaling 

law similar to Equation 3.9.  If we let a = 1/λ, where λ defines the number of subintervals of the time 

series, then Equation 3.9 becomes, 

𝑀 (
𝑠

𝜆
) = 𝑀(𝑠)𝜆−𝛼.              (3.10) 

Defining M(s) as the probability mass function of the time series x(t) defined over the interval t = 1,…,N, 

we obtain, 

𝐷(𝑥(𝑡)1, … , 𝑥(𝑡)𝑁

𝜆

) =  𝜆−𝛼𝐷(𝑥(𝑡)1, … , 𝑥(𝑡)𝑁),        (3.11) 
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where D(x(t)1,…,x(t)N) is the probability mass function of the time series x(t) measured over the entire 

interval, and D(x(t)1, … , x(t)N/λ) is the probability mass function over subintervals of the time series of 

length N/λ.  This equation states that the distribution of the time series over subintervals whose length is 

N/ λ is given by the distribution of the entire series multiplied by a factor.  In this way, the statistical 

properties of shorter intervals are proportional to the properties of the entire time series.  This effect can 

be visualized in the self-similarity of histograms calculated over different time intervals, as shown in 

Figure 3.7.   

 

Figure 3.7. Statistical self-similarity of time series with power law fluctuations.  The idealized time 

series from Figure 3.6 with scaling exponent α = .939 viewed at successively higher levels of temporal resolution 

(left).  Note the qualitative similarity of the signal under each level of magnification.  The statistical self-similarity 

of the signal’s structure is reflected in the similarity of the histograms of squared values for the signal x(t)2 

calculated for successively smaller temporal intervals (right). Each interval length is equal to N/λ, where N is the 

length of the signal in samples.   The number of hits in the histograms (y-axis) scales as λ-α. 

 

Power-law scaling and self-similarity in the statistical characteristics of a signal has important 

consequences for the behavior of the system in question.  For example, 1/f power-law fluctuations are 

indicative of healthy variability in physiological systems such as the human heart (Musha & Yamamoto 

1997; Peng et al. 1995) and respiratory system (e.g. Suki 2002).  In the present study, a particularly 

important property of self-similar processes is their greater adaptability to internal changes and to changes 
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in the environment (West 1990).  This study investigates coordination among several interlinked 

heterogeneous subsystems in the context of speech production.  The change induced by increasing 

respiratory forcing with increased vocal effort is thought to have important consequences for this 

coordination.  In this sense, the response characteristics of these heterogeneous systems should exhibit 

some common changes in their fluctuations due to the respiratory perturbation.  However, the fluctuation 

properties of these individual components will also likely display intrinsic differences; movements of the 

torso could tend to show power law fluctuations while the movement of the head could instead occupy a 

smoother range on the gradient indexed by the DFA scaling exponent, i.e. 1 < α. In this case, the 

differences in fluctuation structure could ultimately influence coordination, as they would index 

differences in the ability of the individual subsystems to adapt to the respiratory perturbation.   

DFA was performed on the signals listed in Table 2.1 and the individual force and torque 

components (Fx, Fy, Fz, Mx, My, Mz) of both force plates, using the implementation in Little et al. 

(2006).  For each condition, signals of a given type were concatenated across trials and analyzed as one 

contiguous signal, resulting in a single scaling exponent measurement per signal type for each participant 

in each condition.   

 

3.1.4 Principal Component Analysis (PCA) 

It is hypothesized that the stability of correspondence among the component variables of the individual 

force plate measurements (x, y, z, forces and torques) will diminish at the highest levels of vocal effort.  

This was assessed using principal component analysis, which in recent years has found increasing 

application in studies of motor control and coordination (Daffertshofer, Lamoth, Meijer, & Beek 2004).   

Like SVD, PCA is a technique for finding a low-dimensional representation of high dimensional data in 

terms of its underlying internal structure.  In fact, the two techniques share a close mathematical 

relationship, in that PCA can be derived directly from the SVD (see, for example, Shlens 2014, Yehia, 

Rubin & Vatikiotis-Bateson 1998; Yehia, Kuratate, & Vatikiotis-Bateson 1999).  Briefly, given a data 

matrix X, a matrix Y is created according to Equation 3.12, 
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𝑌 =  
1

√𝑛
𝑋𝑇,      (3.12) 

where n is the number of observations of the variables in X.  Then, the SVD of Y yields the two change-

of-basis matrices and the diagonal matrix consisting of the singular values.  The columns of the change-

of-basis matrix V are the principal components of X, 

𝑌 = 𝑈𝛴𝑉𝑇.      (3.13) 

In an intuitive sense, PCA begins with the assumption that the variances in a multivariate dataset 

are representative of important patterns in the data.  In the case of time-varying data, this corresponds to 

important system dynamics.  Building from this notion, the variables of the original dataset are 

transformed in such a way that the variance of the original data can be accurately represented by a linear 

combination of uncorrelated variables, the principal components.  This process enables structural 

redundancies in the original data, which manifest as high co-variances, to be compactly represented by 

fewer variables in the principal component representation.   

 The PCA decomposition is achieved by first transforming the data using a change of coordinate 

system.  The new coordinate axes are determined iteratively.  The first principal component (i.e. 

coordinate axis) is selected as the direction maximally associated with the variance, or ‘spread’, of the 

data.  The data are then projected onto this new coordinate axis, and then subtracted from the original.  

This ‘removes’ the variance associated with this principal component.  After this subtraction, the next 

principal component is determined according to the same principles, but with each successive component 

being subject to the constraint that it be orthogonal to the previous component. 

Two examples, the first trivial and the second less so, will be helpful in motivating this 

description of PCA.  First, consider the example in Figure 3.8.  The three original variables are identical 2 

Hz sinusoids.  Both the time-series representation of the individual variables and their plot in three 

dimensional space are shown.  In 3d space, note that the data are spread along a single straight line.  This 

has two important implications: i) the data are perfectly correlated, or in other words, redundant, and  ii) 



33 

 

the important dynamics of the system can be described in terms of one dimension (i.e. one variable) rather 

than three.  

 

 

Figure 3.8 PCA example one: Three 2 Hz sinusoids.  Plot of the original variables in 3d space, plus time-

series plots of both the original variables and the principal components. 

 

The first principal component lies along the direction of the spread of the data.  Because all data points lie 

exactly along this dimension, the process of re-projection and subtraction removes 100% of the variance, 

and no further principal components are necessary to represent the data.  In other words, the first principal 

component ‘explains’ 100% of the variance, as indicated in Table 3.1.  That the data can be reduced to a 

single 2 Hz sinusoid is reflected in the principal component time-series.  In addition, the contributions of 

the original variables to the variance accounted for by the first principal component can be determined.  In 

this case, all variables contribute equally to the first principal component. 
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Table 3.1 PCA example one. Percent variance explained by each principal component and variance contributed 

by each variable to the first principal component in the 2 Hz sinusoid example shown in Figure 3.8.   

 

Variable 

# 

PC 1: % Variance 

contributed 

1 33.3 

2 33.3 

3 33.3 

  

PC# 
% Variance 

explained 

1 100 

2 0 

3 0 

 

Next, consider a slightly more complicated example consisting of three 2 Hz sinusoids, one with 

added white noise and one with added pink noise.  The fact that noise obfuscates the common sinusoidal 

pattern in the dataset is reflected in the 3d scatter plot in Figure 3.9(a).  Although there is a dominant 

spread to the data that reflects the correlation among variables due to the underlying sinusoidal process, 

the data are also spread along other dimensions due to the added noise.    

The length of the arrows reflects the strength of each principal component in explaining the 

variance of the data.  In technical terms, the vector for each component is scaled according to the 

eigenvalue associated with each principal component, which are computed as eigenvectors of the 

covariance matrix of the data (Shlens 2014).  Analysis of the relative strength of the individual principle 

components in explaining the variance of the data is alternatively referred to as analysis of the eigenvalue 

spectrum. In the present example, not only does the first principal component lie along the direction of 

greatest variance, but a large majority of the variance of the data is associated with this principal direction 

relative to that explained by the other principal components, as Table 3.2 shows. The orthogonality of 

principal components two and three is evident in the expanded side view in (b).   
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       (a)             (b) 

 
 

Figure 3.9 PCA Example two: Three 2 Hz sinusoids, two with added noise.  Original data plotted in 

three-dimensional space with principal component axes.   

 

Similar to the previous example, the common underlying sinusoidal pattern is captured by the 

first principal component, as shown in Figure 3.10.  However by looking at the original variables, we see 

that the noise present in variables two and three can be thought of as constituting a secondary source of 

redundancy.  Hence, the first principal component resembles a 2 Hz sinusoid with an element of added 

noise.  This is evident in the contributions of the individual variables, or their loadings, to the first 

principal component listed in Table 3.2.  Both sinusoids with added noise contribute more variance to its 

construction, although the contribution from the sinusoid with added white noise is considerably stronger.  

Principal components two and three each explain the remainder of the variance due to the added noise.  

The strength of each is reflected in the variance of the time-series pictured in Figure 3.10, with principal 

component two having a higher variance, σ2 = 0.218, than principal component three, σ2 = 0.0714. 
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Figure 3.10 PCA example two: Original variables and principal components.   

 

Table 3.2 PCA example two.  Percent variance explained by each principal component and percent 

variance contributed by each original variable to the first principal component for the noise-contaminated 

sinusoids example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Contrasting these two examples, we see that more redundancy in the data—i.e., better 

correspondence between the component variables—requires fewer principal components to fully 

represent the data.  In the first example, the perfect correspondence between the original variables results 

in a reduction to a single principal component that explains 100% of the variance of the data.  In the 

second example, representing 100% of the variance necessitates all three principal components.   

However, the first two principal components are sufficient to accurately represent the structure of both the 

PC# % Variance explained 

1 84.5 

2 11.7 

3   3.8 

Variable 
PC 1: % variance 

contributed 

sine 2 Hz 28.5 

+ w-noise 40.1 

+ p-noise 31.4 
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sinusoidal process and the added noise1, with over 96% of the variance explained between them.  In this 

way, the important dynamics of the three-dimensional system are said to be reducible to a two-

dimensional representation. 

With respect to the present experiment, changes of vocal effort are expected to affect the 

correspondence among the component forces (Fx, Fy, Fz) and torques (Mx, My, Mz) of the 6d force plate 

signals.  High vocal effort is expected to result in decreased correspondence between these component 

variables, which will necessitate the inclusion of more principal components for the representation of the 

data at the desired level of accuracy. 

 

3.1.5 Statistical Analysis 

Following Levene’s test of homogeneity of variance, one-way within subjects ANOVA (SS = Type III) 

was performed on the results of the CMA, DFA, and PCA.  This was done in order to examine the effect 

of effort condition while controlling for variability across-subjects and to account for the limitations of 

the unbalanced experimental design, due to different numbers of trials being recorded for different levels 

of vocal effort.    Because a within-subjects analysis was performed, effect size was calculated as partial 

omega squared, 𝜔𝑝
2, which offers the additional benefit of reducing bias due to small sample size (Lakens 

2013).  Post-hoc tests were performed with Tukey’s HSD, which provides a conservative estimate of 

between condition differences.  In order to simplify the in-text presentation, post-hoc test statistics are 

contained in the appendices. 

 

3.2 Effects of vocal effort on acoustic signal magnitudes 

In order to verify that increasing communication distance properly indexes increased vocal effort, analysis 

of the magnitude of the acoustic RMS (aRMS) and F0 signals was performed.  As expected, the average 

                                                      
1 Here it is worth re-emphasizing that oftentimes noise is not simply disordered ‘randomness’, but instead 

consists of fluctuations that contribute to the appearance of spatio-temporal order in a wide variety of 

systems (see Sagues et al. 2007 for a review). 
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(RMS) amplitude of aRMS was higher in each successive vocal effort condition for all participants, with 

the exception of participant five, whose peak was in the ‘shout’ condition, despite having performed the 

task correctly. Figure 3.11 provides a summary of this information.  In the figure, error bars have been 

omitted in order to aid visual clarity, as the variability across trials within a given condition (i.e. at a given 

distance) was low for each participant.  Note that scales vary across participants due to the use of different 

recording levels for each session, while the scale within participants was determined with respect to a 

common scale factor.  This scale factor was recovered by playing a pure sine tone at 1 kHz, .23v peak-to-

peak amplitude at the beginning of the first trial of each condition block. Amplitudes across effort 

conditions were then scaled relative to the recovered amplitude of this sine tone in the ‘normal’ effort 

condition for each participant. 

 

   

Figure 3.11. Average magnitude of acoustic RMS for individual participants. Calculated as 

RMS(aRMS).  Mean amplitudes by condition.  Scale across participants varies due to the use of different recording 

levels for each participant.  Scales within participants are adjusted to a common factor determined by a pure sine 

tone @ 1 kHz .23V peak to peak amplitude.  

 

Comparing the effects of vocal effort condition on aRMS amplitude across participants, one sees 

that although the increase of aRMS is systematic across successive levels of vocal effort, the precise 
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degree of this increase varies across participants.  Generally, a 50%-100% increase in aRMS takes place 

in the change from ‘normal’ to ‘loud’,   50%-100% again from ‘loud’ to ‘louder’, a four-fold increase in 

the transition from ‘louder’ to ‘shout’, and anywhere from 50% to 300% in the final switch to ‘yell’, 

excluding participants five and six.  By and large, these findings are in agreement with analogous results 

reported for SPL changes as a function of increased communication distance (Traunmüller & Eriksson 

2000; Lienard & di Benedetto 1999). 

 F0 has also been reported to increase with increased vocal effort (eg. Tranumuller & Eriksson 

2000; Lienard & di Benedetto 1999).  This effect was also observed in the present study, as summarized 

in Figure 3.12.  Average (RMS) magnitude of F0 was computed for each trial, taking only voiced speech 

segments into account.  Again, the expected systematic tendency of increasing F0 with increased vocal 

effort is observed for all participants, excluding participant 5 in the ‘yell’ condition.  On the other hand, 

participant 4’s F0 increase in ‘yell’ was marginal. 

 

 
Figure 3.12. Average Magnitude of F0 (Hz), individual participants. Effort condition means, voiced 

speech segments only. 
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3.3 Vocal effort and breath group period length 

An estimation of the length of the breath cycle period was determined in order to define a window of 

analysis for the CMA.  Past studies have reported a wide range of potential breath group lengths in 

spontaneous speech. For example, Winkworth, Davis, Adams, & Ellis (1995) reported a mean length of 

3.84 seconds across six subjects, with a range of 0.3-12.6 seconds for speech at a typical conversational 

level.  How these values scale in a spontaneous speech task with explicit changes in vocal effort has to 

our knowledge only been investigated in the related context of the Lombard effect (Winkworth & Davis 

1997), but the researchers did not find significant changes in breath group length or inspiratory lung 

volume as a function of speech intensity as has been reported in other studies (Hixon, Goldman, & Mead 

1973).  However, the functional communicative demands, and therefore the physiological resources 

mustered for the production of speech-in-noise, could differ from those of projection of speech at a 

distance.  It’s possible that both inspiratory lung volume and breath group length may have changed 

significantly had even higher levels of vocal effort/speech intensity been required of the speakers in the 

Winkworth & Davis (1997) study.   

 Given the lack of a clear understanding of the relationship between vocal effort and breath cycle 

length (or inversely, respiratory rate), and our lack of a direct measure of respiration, an estimation of 

average breath-cycle period length in each effort condition was determined from the video recordings for 

one participant in order to determine the proper offset range for use in the correlation map analysis.  

Using ELAN software, inspirations were coded for each trial.  The number of inspirations for a trial was 

then divided by the length of the trial in seconds, yielding an average respiratory rate in Hz.  The average 

breath cycle period T was then determined according to T = 1/f.  Averaging across trials within each 

condition then gives the average breath-cycle period for each effort condition.  The nearest whole-second 

integer to the longest of these average periods was then selected as the offset range for the CMA, in order 

to ensure that changes in coordination due to modulation of the breath cycle were captured by the 

analysis. 
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Results of this analysis are summarized in Figure 3.13.  Average breath cycle period decreased 

with increased vocal effort.  This decrease was most pronounced between the ‘shout’ and ‘yell’ 

conditions, with ‘yell’ showing an average period length of approximately 3 seconds.  Eight seconds, the 

nearest integer to the mean of the ‘normal’ condition, was selected as the window of analysis for the 

CMA.   

 
Figure 3.13. Average breath cycle period, participant one.  Means by vocal effort condition. Error bars are 

standard deviation.   The total number of inspirations for each trial was divided by trial length (seconds) in order to 

obtain a measurement of average respiratory rate (Hz).  Average period was then calculated according to T = 1/f. 

 

Although results are presented for only one talker, the figure is suggestive in that shortening of 

the breath cycle takes place at increased levels of vocal effort, as originally hypothesized by Winkworth 

& Davis (1997).  It is likely that this is true of all talkers, given the physiological effects of increased 

vocal effort (Sharp et al. 1975).   This is especially evident in the yell condition. Because unscripted 

spontaneous speech was used, the relatively small standard deviations for the ‘normal’-‘shout’ conditions 

were somewhat unexpected.  At least two possibilities could account for this: 1) organization of the breath 

cycle over relatively long instances of conversational speech settles into a relatively stable average mode 

of behavior, despite inevitable fluctuations in inter-breath interval length (Suki 2002; Suki et al. 2003). 2) 

Because the measurement technique was limited to audio-visual inspection, only those breaths that were 

large enough to be either audible or visually detectable were counted.  The breath cycle may have been 
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undersampled in the sense that smaller, shorter inspirations were undercounted.  For the present analysis, 

this is not an issue, since undercounting would result in a longer average breath cycle period than that 

which a more accurate measurement would provide.  Therefore, the selected window length of 8 seconds 

for CMA is conservative, and ensures that the period of the breath cycle is fully represented in all effort 

conditions. 

 

3.4 Collective behavior of the Head, Torso, and Speech Acoustics 

The results of the analyses outlined in Section 3.1 are presented in the following sections.  In Sections 

3.4.1 and 3.4.2, the results of the DFA, CMA, and SVD of the correlation map are discussed with respect 

to the collective action of the head, torso, and speech acoustics, with an aim toward evaluating whether or 

not mutual entrainment occurs as a result of increasing vocal effort.  Section 3.4.3 shows the fluctuation 

analysis results for the three center-of-pressure measurements, and presents the results of the CMA and 

SVD assessing the interaction of the acoustic and kinematic measurements with the global center of 

pressure.  Section 3.5 is devoted to the assessment of postural instability, as indexed by the coordination 

between the individual feet.  In addition to the CMA and SVD for the interaction between the center-of-

pressure measurements for each plate, this section includes the results of the PCA for the 6d force plate 

signals, and DFA results for the individual force and torque signals for each plate. 

 

3.4.1 Fluctuation Analysis of Speech and Affiliated Motion Signals 

In physiological systems, understanding of a system’s fluctuations provides important insight into the 

processes that generate the measured behavior.  Importantly, fluctuations and their characteristic 

exponents are sensitive to physiological changes.  As discussed previously, vocal effort is known to 

induce several interrelated physiological changes, both postural (Giovanni et al. 2008), and respiratory 

(Sharp et al. 1975).  It stands to reason, then, that changes in the fluctuations of head motion, torso 

motion, and speech acoustics will systematically vary with different levels of vocal effort. 
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3.4.1.1 General characteristics of the scaling exponent in each measurement domain 

Figure 3.14 shows the DFA results for the acoustic measures, head motion, and torso motion.  

Interestingly, the fluctuations of both F0 and aRMS exhibit long range correlations, with a scaling 

exponent in the power-law range, with 0.5 < α < 1 in all effort conditions.  The presence of power-law 

distributed fluctuations is indicative of self-similar structure, and is consistent with the findings of Voss 

and Clark (1975), who reported that fluctuations in amplitude for spontaneous speech follow a 1/f 

distribution.  Interestingly, torso motion fluctuations in all effort conditions evidenced a mean scaling 

exponent very close to α ≈ 1, or 1/f pink noise.  This has two important implications.  First, spectral 

power of torso motion is distributed across a wide range of frequency bandiwdths, and second, the 

statistical properties of this distribution of spectral power are similar across a wide range of scales, as 

shown in Figure 3.15.  1/f systems lack characteristic, or dominant timescales, which improves their 

adaptability to perturbations (West & Schlesinger 1990).  Thus, the presence of statistical self-similarity 

in the movement characteristics of the torso suggests greater adaptability to the influence of perturbations 

associated with speech at high levels of vocal effort.   

This contrasts with the scaling exponents calculated for the head, which were in the range 1 < α < 

1.5.  This indicates that head motion in all effort conditions is dominated by a characteristic long-period 

(low-frequency) timescale, with high-frequency fluctuations generally playing a less important role in its 

dynamics in the context of spontaneous speech production.  This is consistent with findings reported by 

Pozzo, Berthoz, & Lefort (1990), who found that power spectra of head motion were dominated by low 

frequencies in the range from 0.4-3.5 Hz.  
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Figure 3.14. DFA results, head, torso, and speech acoustics. Results by speaking condition.  Individual 

participant results (1-6), and the mean across all participants (black line) for each effort condition. 

 

3.4.1.2 Trends and differences across effort conditions 

Further inspection of Figure 3.14 shows that across these measurement domains, there is a general trend 

for the mean value of the scaling exponent to increase at high levels of vocal effort, indicating an increase 

in signal smoothness and increased concentration of spectral power at low-frequencies.  This increase was 

marginal for aRMS, and within-subjects ANOVA found no effect of effort condition.  A main effect of 

effort condition was found for F0, F(4,19) = 10.2, p < 0.0005, 𝜔𝑝
2 = 0.56, with post-hoc HSD finding 

‘shout’ and ‘yell’ to both differ from the lowest three effort conditions.  An effect of effort condition was 

also found for head motion, F(4,19) = 4.4, p < 0.05, 𝜔𝑝
2 = 0.32, as well as torso motion, F(4,19) = 3.1, p < 

0.05, 𝜔𝑝
2 = 0.22.   
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Figure 3.15. Power law structure and self-similarity of a torso motion signal.  Left: fluctuations in the 

magnitude of torso motion at multiple time-scales exhibit similar structural properties, as shown by successive 

magnifications of the signal.  Right: linear fit of F(L) ~ L determines a scaling exponent α = .9487, indicating power 

law structure of fluctuations.  Bottom: the self-similarity of the signal is evident in the similarity of the histograms 

calculated for different temporal scales, with the parameter λ denoting the number of subintervals, and the frequency 

counts of the histograms scaling as λ-α 

 

The trend for values of the scaling exponent to increase at the two highest levels of vocal effort 

across both acoustic and kinematic measurement domains has several implications.  First, signal 

fluctuations become smoother at high levels of vocal effort due to the increased influence of long-

timescale fluctuations relative to short-timescale fluctuations.  Moreover, the commonality of the pattern 

across these different domains suggests a mutual influence; namely, increased strength of the low-

frequency driving force of the respiratory system associated with the modulation of vocal effort.  

However, the presence of this trend does not in and of itself guarantee that fluctuations across these 

systems cohere in such a way as to result in more coordinated behavior with increased vocal effort. 
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3.4.2 Mutual Organization of Fluctuations: CMA 

In many physiological systems, the organization of fluctuations in the action of coupled components has 

important consequences for behavior.  For example, in the function of the brain, fluctuations in the period 

of time between successive firings2 of individual neurons are known to be due to fluctuations in both 

membrane potential rise, and fluctuations in the threshold level that the membrane potential must achieve 

for neural discharge to take place (Musha & Yamamoto 1997).  Moreover, in pairs of neurons in visual 

cortex, membrane potential fluctuations are known to be strongly correlated, and the strength of these 

correlations increases in the presence of visual stimulus (Lampl et al. 1999).  Although speech production 

is qualitatively quite different from vision, both neuro-physiological processes share a commonality in 

that each requires the mutually coordinated action of the behaviors of many interconnected components, 

with general principles of spatio-temporal organization underlying the action of both systems. 

 In this sense, characterization of the fluctuations of the individual components of a system, and 

more importantly, of the mutual patterning of these fluctuations with respect to one another, provides a 

general means of understanding the underlying dynamics of coordination across a wide variety of living 

systems.  In the present study, correlation map analysis (CMA) was used to determine whether or not the 

fluctuations of the head, torso, and speech acoustics exhibit changes in their mutual organization as a 

function of vocal effort. 

 As can be seen in Figure 3.16, CMA shows that the common ‘smoothing’ trend in the fluctuations 

of the individual signals is also associated with tighter spatio-temporal coordination across measurement 

domains.  The figure contains individual plots for the m%COR-pos and m%COR-neg measurements, as 

well as a separate plot for the results of the SVD.  All plots display effort condition means.  Error bars 

have been omitted in order to aid visual clarity.  Because the pictured means in Figure 3.16 are calculated 

across speakers, there is an inevitable degree of variability within each effort condition3.  However, 

                                                      
2 Like speech, inter-spike interval fluctuations follow a 1/f power-law distribution (Musha 1997).  The appearance of 

1/f distributions is often associated with sufficiently complex structures or processes involving many interlinked 

components operating at many different characteristic spatio-temporal scales. (West & Shlesinger 1990) 
3 Recall that within-subjects ANOVA was conducted to address this source of variation  
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although within-condition variability is important from the standpoint of entrainment in the sense that we 

might expect to see decreased variation in these measures for individual speakers in the higher effort 

conditions, this is a secondary concern to the present analysis.  Instead, the visualization highlights an 

aspect of the data more important to the present analysis of coordination, this being the changes across 

these pairwise mappings relative to one another with increased vocal effort.  We predicted that the 

correspondence would strengthen and simplify across many of these pairwise mappings as a result of 

entrainment, so it is important to highlight this change-in-concert visually as it is the primary emphasis of 

the analysis. 

If increases in vocal effort result in stronger coordination across the timescale defined by the 

breath cycle (in other words, the offset range of the CMA), the m%COR measurements are expected to 

increase, yielding a predicted upward trend with increasing levels of vocal effort.  Likewise, 

simplification of the pattern of coordination will be reflected in a downward trend in the SVD, as fewer 

singular values will be needed to represent the variance of the correlation map.   

In line with our predictions, there is a general tendency across signal pairs for both m%COR-pos 

and m%COR-neg to increase at the two highest levels of vocal effort.  Likewise, the SVD analysis shows 

a general tendency for systematic simplification in the structure of correlations with successive increases 

in vocal effort up to the ‘shout’ level.  Interestingly, in the ‘yell’ condition, only the acoustic-torso 

pairings showed a continuation of this trend. Signal pairs involving the head (RMS-Head, F0-Head, 

Torso-Head) or that have a known functional coupling to the head (F0-RMS) notably exhibit more 

complex coordination relative to ‘shout’, although this coordination is still simpler than that found in the 

lowest three effort conditions.  An overview of statistical results for the individual signal pairs follows.  

For a complete summary, the reader is referred to the tables in Appendix A. 
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Figure 3.16. Acoustic-Kinematic CMA and SVD results.  Positive correlations, negative correlations, and 

SVD as a function of effort condition.  Markers indicate means across all participants.  The strength of positive and 

negative correlations is indexed by the m%COR measurement, as described in section 3.1.  The total number of 

possible singular values is 961, which is the number of offsets in the correlation map, and corresponds to the 

analysis window length: +/- 8 seconds.   
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3.4.2.1 F0-RMS 

For the two acoustic measures, no significant difference in the strength of positive correlation, m%COR-

pos, was found across effort conditions.  However, within-subjects ANOVA showed an effect of vocal 

effort condition on the strength of negative correlations, F(4,79) = 8.9, p < 0.0001, ωp
2 = 0.26.  Post-hoc 

HSD determined m%COR-pos in ‘yell’ to be significantly greater than ‘normal’, ‘loud’, and ‘shout’.  For 

the SVD of the correlation map, a significant effect of effort condition was found, F(4,79) = 6.1, p < 

0.0005, ωp
2 = 0.19.  In this case, Tukey’s HSD showed that the number of singular values in ‘shout’ was 

significantly less than in ‘normal’ and ‘loud’. 

 

3.4.2.2 Speech Acoustics-Head 

For F0-Head, effort condition was significant for the strength of both positive correlation, F(4,79) = 

22.15, p < 0.0001, 𝜔𝑝
2 = 0.49, and negative correlation, F(4,79) = 23, p < 0.0001, 𝜔𝑝

2 = 0.5.  In both cases, 

post-hoc tests showed ‘shout’ to differ from all other effort conditions.  Similarly, the simplification of 

correlation structure evident in in the SVD results of Figure 3.13 was significant, F(4,79) = 21, p < 

0.0001,𝜔𝑝
2 = 0.47.  Post hoc HSD showed ‘shout’ to require fewer singular values relative to all other 

effort conditions.  In addition, ‘loud’ and ‘louder’ were also found to differ from one another. 

 The RMS-Head correlations did not show the same pattern of results as F0-Head.  Neither 

m%COR-pos, nor m%COR-neg differed significantly across effort conditions.  However, the SVD results 

were similar to those for F0-Head, F(4,79) = 9.1, p < 0.0001, 𝜔𝑝
2 = 0.27.  Post hoc HSD found similar 

results to those for F0-Head, with ‘shout’ requiring significantly fewer singular values than the lowest 

three effort conditions (normal, loud, louder).  A significant difference was also found between ‘loud’ and 

‘louder’, with ‘louder’ requiring fewer singular values. 

 

3.4.2.3 Speech Acoustics-Torso 

F0-Torso showed a significant effect of effort condition for the strength of positive correlation, F(4,79) = 

11.63, p < 0.0001, 𝜔𝑝
2 = 0.32.  Post-hoc HSD found m%COR-pos in both ‘shout’ and ‘yell’ to be 
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significantly higher than the lowest three effort conditions.  Similarly, the strength of negative correlation 

was significantly different across effort conditions, F(4,79) = 14, p < 0.0001, 𝜔𝑝
2 = 0.37.  In this case, 

m%COR-neg in ‘Yell’ was significantly higher than all other effort conditions, while ‘shout’ differed 

from ‘normal’ and ‘loud’.  For the SVD, there was a significant effect of effort condition, F(4,79) = 7.1, p 

< 0.0001, 𝜔𝑝
2 = 0.21, with significantly fewer singular values necessary in ‘yell’ relative to ‘normal’ and 

‘louder’, while ‘shout’ required significantly fewer than  ‘normal’. 

 RMS-Torso showed similar effects.  The strength of positive correlation was significantly 

different, F(4,79) = 7, p < 0.0001, 𝜔𝑝
2 = 0.21, with ‘yell’ differing from all other conditions.  There was 

also an effect of effort condition for negative correlation, F(4,79) = 5.3, p < 0.001, 𝜔𝑝
2 = 0.16.  As with 

F0-Torso, m%COR-pos was significantly higher in ‘yell’ relative to all other effort conditions.  For the 

SVD, the effect of effort condition was significant, F(4,79) = 6.6, p < 0.0005, 𝜔𝑝
2 = 0.2, with the loudest 

three effort conditions requiring fewer singular values than ‘normal’. 

 Of all signal pairings, the gross difference across effort conditions in the number of singular 

values necessary to reconstruct the data with 99.8% accuracy was greatest in the acoustic-torso pairs.  

Visually observable body motion is intermittent in its coordination with speech at the ‘normal’ level of 

vocal effort.  But these results suggest that this intermittent action becomes increasingly coactive and 

coordinated with the acoustic measures at high levels of vocal effort. 

 

3.4.2.4 Torso-Head 

Positive correlation increased significantly at higher levels of vocal effort, F(4,79) = 6.6, p < 0.001, 𝜔𝑝
2 = 

0.2, with ‘shout’ and ‘yell’ showing significantly higher values of m%COR-pos than the lowest three 

effort conditions.  A nearly identical effect was found for negative correlation, F(4,79) = 6.7, p < 0.0005, 

𝜔𝑝
2 = 0.2, again with ‘shout’ and ‘yell’ differing from the lowest three effort conditions.  SVD showed a 

trend toward simplification up to ‘shout’, with a significant effect of effort condition F(4,79) = 6.8, p < 
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0.0001, 𝜔𝑝
2 = 0.21.  Post-hoc HSD found ‘shout’ to differ from both ‘normal’ and ‘loud’, while ‘normal’ 

differed from ‘louder’. 

 

3.4.2.5 General Remarks 

The combined results of the CMA and DFA support the hypothesis that increased vocal effort results in 

tighter spatiotemporal coordination between head motion, torso motion, and speech acoustics.  However, 

the analysis uncovered several interesting points of departure from this general picture.  Combining the 

observations outlined above, it is clear that the system-wide correlation structure shows a trend toward 

simplification up to the ‘shout’ level, as this tendency was evident across all of the discussed signal pairs.  

But interestingly, this tendency for simplification continued all the way through ‘yell’ only for the 

acoustic-torso pairs.   

This raises two points of particular interest: 1): the nature of acoustic-motion coupling appears to 

undergo an unexpected shift in the transition from ‘shout’ to ‘yell’, becoming less correlated with the 

motion of the head while becoming more correlated with the motion of the torso. And 2): In ‘yell’, the 

F0-RMS pairing showed a significant increase in the strength of negative correlation.  This effect was 

paralleled in the acoustic-Torso pairs.  Notably, the strength of negative correlation only increased in 

‘yell’ for RMS-Torso.  However, this effect was noticeably absent in the acoustic-Head pairs, despite 

being present in Torso-Head.  This suggests that the evident simplification in the coordination between 

the torso and speech acoustics in ‘yell’ is the effect of an underlying symmetric periodicity driving their 

mutual action, which is likely due to the influence of the respiratory perturbation due to vocal forcing.   

Interestingly, this same effect is not reflected in the behavior of the head with respect to the organization 

of the speech signal.   

 

3.5Coordination with global COP 

The results of the DFA for the center-of-pressure time-series are shown in Figure 3.17.  The value of 

alpha for each of the individual plate COPs and the global COP trended higher in ‘shout’ relative to all 
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other effort conditions, including a marginal increase relative to ‘normal’ for COP one, but within-

subjects ANOVA found no effect of effort condition for any of the three signal types. 

 

 

Figure 3.17. DFA Results, COP time series.  Values of the scaling parameter α by effort condition.  Results 

for participants 1-6, plus the mean across all participants (black line). 

 

In spite of this finding, the global COP measurement evidenced significant correlation with 

motion of the head and torso in the CMA.  These results are shown in Figure 3.18.   

For all effort conditions, COP-Head showed the highest overall level of correlation among all 

signal pairs.  This is indicative of the importance of the head for postural control.  This was true for both 

positive correlation and negative correlation.  Both positive and negative correlation display a trend 

similar to that found for the acoustic-head pairs discussed in the previous section, with the strength of 

correlation increasing up through the ‘shout’ level, and then decreasing for ‘yell’.  The differences in 
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effort condition means were significant for both positive correlation, F(4,79) = 4.37, p < 0.01, 𝜔𝑝
2 = 0.13, 

and negative correlation, F(4,79) = 3, p < 0.05, 𝜔𝑝
2= 0.083.  These effects were mirrored by the SVD, 

which showed significant reduction in the number of singular value components up through ‘shout’, 

followed by a subsequent rise in the number of components in ‘yell’, F(4,79) = 11, p <0.0001, 𝜔𝑝
2= 0.3. 

COP-Torso showed trends similar to the acoustic-torso pairs for the strength of positive and 

negative correlation, with an increase in the two highest effort conditions.  Within-subjects ANOVA 

determined these effects to be significant for positive correlation, F(4,79) = 6.67, p < 0.001, 𝜔𝑝
2= 0.2, and 

for negative correlation, F(4,79) = 7, p < 0.0001, 𝜔𝑝
2= 0.21.  For both types of correlation, post-hoc HSD 

differentiated ‘shout’ and ‘yell’ from the lowest three effort conditions.  While SVD showed 

simplification up through ‘shout’ with a significant effect of effort condition F(4,79) = 4.8, p < 0.005, 

𝜔𝑝
2= 0.14, this simplification did not continue through the ‘yell’ condition.   

On the surface, this observation of stronger correlation paired with increased complexity might 

appear contradictory.  However, a similar effect was observed for the Torso-Head pair in the previous 

section.  Furthermore, the strength of correlation between head motion and the COP is two to three times 

stronger than that between torso motion and the COP.  Despite the increased strength of correlation 

between the torso and the COP at high levels of vocal effort, the head continues to exert a stronger 

influence on the COP time series.  Indeed, in this study, the complexity of correlation structure is 

generally lower in signal pairs involving the head, as compared to the other signal pairings.  This 

underscores the importance of the head in both vocalization and postural control, and its important role as 

a pivot-point in mediating the crossover of behavior between these task domains. 

Regarding coordination of the COP with the acoustic measures, F0-COP showed a pattern on par 

with F0-Head, with the strength of positive and negative correlation increasing up through ‘shout’.  

Significant effects of effort condition were found for both positive and negative correlation, F(4,79) = 8.9, 

p < 0.0001, 𝜔𝑝
2= 0.26, and F(4,79) = 7.6, p < 0.0001, 𝜔𝑝

2= 0.23, respectively.  Post hoc HSD showed the 

m%COR measures to be significantly higher in ‘shout’ relative to the lowest three effort conditions.  For 
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the SVD, the trend from lower to higher vocal effort shows a simplification of correlation structure, 

followed by a large increase in complexity for ‘yell’.  Once again, this effect was significant, F(4,79) = 

13, p < 0.0001, 𝜔𝑝
2= 0.36.  Post hoc HSD showed that the correlation structure for ‘yell’ was significantly 

more complex than for ‘loud’, ‘louder’, and ‘shout’, while ‘shout’ was significantly simpler than ‘normal’ 

and ‘loud’. 

 Conversely, for RMS-COP, the strength of correlation decreased as vocal effort increased.  Also, 

the effect of effort condition was relatively weak for positive correlation, F(4,79) = 2.8, p < 0.05, 𝜔𝑝
2= 

0.075, and negative correlation: F(4,79) = 2.7, p < 0.05, 𝜔𝑝
2= 0.072.  The relatively weak correspondence 

between RMS-COP parallels the relatively weak correspondence between RMS-Head, and could reflect 

the dual involvement of the head in vocalization and in postural control.  That is, the head is likely a 

mediating link in the coordination observed between speech acoustics and global COP across different 

vocal effort levels. 
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Figure 3.18. Center of pressure CMA and SVD results.  Positive correlation, negative correlation, and SVD 

as a function of effort condition.  Markers indicate means for each condition across all participants.  
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3.6 Postural instability 

The corollary hypothesis predicted that raising vocal effort past a critical threshold would induce high 

levels of within-speaker coordination, and that this coordination would ultimately impose a restriction on 

the ability of the body to maintain balance.  This effect would be evidenced by diminished coordination in 

the bodily subsystems responsible for coordination at the point of environmental contact, that is, between 

the individual feet.  This cross-domain correspondence would likely be accompanied by diminished 

within-domain correspondence in each of the individual feet as well.   

Figure 3.17 showed that the patterning of fluctuations for the individual force plates changed little 

with increased vocal effort.  Although no main effect of effort condition was found for the individual 

plate COP fluctuations, the nature of the coordination between the feet did in fact change.  Figure 3.19 

shows that the strength of positive and negative correlation between the center of pressure measurements 

for the individual feet tended to increase with increased vocal effort up to ‘shout’, but substantially 

decreased in ‘yell’.  These effects were significant: positive correlation: F(4,79) = 6.41, p < 0.001, 𝜔𝑝
2= 

0.2, negative correlation: F(4,79) = 5, p < 0.005, 𝜔𝑝
2= 0.15.  Post-hoc tests showed that positive 

correlation was significantly stronger in ‘louder’ and ‘shout’ than in the other three effort conditions.  For 

negative correlation, ‘louder’ and ‘shout’ were different from ‘normal’ and ‘yell’.  The SVD results show 

a parallel effect, with simplification of the correlation map up through ‘shout’, and a subsequent increase 

in complexity in ‘yell’, F(4,79) = 7.1, p < 0.0001, 𝜔𝑝
2= 0.22.   
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Figure 3.19. CMA and SVD results, COP1-COP2.  Left: m%COR-pos and m%COR-neg results, error bars 

are standard deviation.  The strength of correlation significantly decreases for both measures in ‘yell’.  Right: 

cumulative variance plot for SVD of COP1-COP2.  More singular values are required to reconstruct the data in 

‘yell’ with 99.8% accuracy relative to all effort conditions except ‘normal’.  However, note that at even higher levels 

of accuracy (eg. 99.95%), this also becomes true relative to ‘normal’. 

 

3.6.1 Principal component analysis of 6d force plate measures 

Given the apparent conflict between the results of the fluctuation analysis for the individual plate COP 

measurements and the results of the CMA, PCA was performed on the original 6d force plate signals in 

order to gain a better understanding of the reduction of coordination between COP1 and COP2 in the 

‘yell’ condition.  The force plate measurements amount to transductions of the collective action of 

numerous neuromuscular components involved in postural control.  This suggests that a degree of 

structural similarity should be present among the components of the 6d signals, that is, among the 

individual forces (Fx, Fy, Fz) and torques (Mx, My, Mz).  This means that each 6d signal can in principle 

be represented in terms of a lower dimensional combination of variables that correspond to the underlying 

processes responsible for this redundancy. 

 Table 3.3 contains the mean number of principal components necessary to explain 96% of the 

variance in each of the 6d force plate signals.  For both plates, more principal components are necessary 

on average to represent 96% of the variance in the original data in ‘yell’ than in the other effort 

conditions.  This effect is more pronounced for FPL-two, but within-subjects ANOVA showed significant 

effects of effort condition for each foot.  For plate one, F(4,79) = 3.4, p < 0.05, 𝜔𝑝
2  = 0.1, and for plate 
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two, F(4,79) = 5.3, p < 0.001, 𝜔𝑝
2 = 0.16. This is suggestive of diminished system-internal correspondence 

among the individual channels of the 6d force plate signals for both force plates.   

Analysis of the eigenvalue spectrum showed that the summary view of this effect presented in 

Table 3.3 also applies at the level of the individual components.  Figure 3.17 contains cumulative 

variance plots for each force plate.  For FPL-one, less cumulative variance is explained by the addition of 

each principal component in ‘yell’, with the exception of reconstructions consisting of five components. 

For reconstructions consisting of two, three, and four components, ‘yell’ differed significantly from other 

effort conditions4, though exactly which conditions showed significant differences from ‘yell’ was 

dependent upon the number of principal components.  This effect was strongest in the four component 

reconstruction, F(4,79) = 6.1, p < 0.0005, 𝜔𝑝
2= 0.19, which corresponds approximately to the 96% 

variance threshold in all effort conditions.  In this case, post-hoc HSD showed that ‘yell’ differed from 

‘loud’, ‘louder’, and ‘shout. 

 

Table 3.3 Force plate PCA results.  Mean number of principal components necessary to explain 96% of the 

variance in the 6d forceplate signals for each effort condition.  More principal components are necessary to capture 

96% of the variance of the 6d force plate signals in ‘yell’ relative to the other effort conditions. 
 

 Condition Mean # PCs 

FPL-One 

Normal 4.4 

Loud 4.1 

Louder 4 

Shout 4.2 

Yell 4.6 

FPL-Two 

Normal 4.4 

Loud 4.2 

Louder 4 

Shout 4.3 

Yell 5 

  

                                                      
4 Full results appear in appendix C, including cumulative variance plots for individual participants. 
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 For FPL-two, this tendency was true of reconstructions consisting of two or more components.  

Furthermore, ‘yell’ differed significantly from all other effort conditions in each of these cases.  Again, 

this effect was strongest for the four component reconstruction, F(4,79) = 11, p < 0.0001, 𝜔𝑝
2= 0.3. 

As a final step, analysis of the eigenvectors of the principal components was performed in order 

to identify the variables in the original force plate signal that contributed most to the reduced 

representation of the data produced by PCA.  Figure 3.20 shows these results.  For each of the force and 

torque measurements in the original 6d signals, the mean of the squared loading was computed for each 

effort condition.  Recall that the squared loading indexes the strength of the individual variable’s 

contribution to a given principal component.  With respect to the figures, the values shown are averaged 

across all principal components used in the reduced representation of the data accounting for 96% of the 

variance.  That is, the number of principal components necessary to explain 96% of the variance for a 

given trial is first determined.  Then, the loadings for each of the principal components are squared.  

These values are then averaged, yielding the average squared loading for each variable for the trial.  

Finally, the results of the individual trials are then grouped by effort condition, and averaged. 

 

 
 

Figure 3.20. PCA Cumulative variance, force plates one and two.   Mean variance explained by each 

principal component.  Less variance is explained by each principal component in ‘Yell’ relative to the other effort 

conditions. 
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 Inspection of Figure 3.21 shows that for both force plates, the three component force signals (Fx, 

Fy, and Fz) tend to contribute most to the principal components in the three lowest effort conditions.  In 

the higher vocal effort conditions, the contribution of Fz is supplanted by Mx in ‘shout’, and Mz in ‘yell’.  

Furthermore, in ‘yell’, the contribution of Mx is greater than or equal to the contribution of Fz in force 

plate one and force plate two, respectively.  This points to a functional reorganization of the postural 

control system, which adapts to the task demands of speech at high levels of vocal effort, and is 

suggestive of a reconfiguration of neuromuscular recruitment needed for postural control: a change in 

synergistic response indexed by change in ground reaction forces and moments. 

 

 
 

Figure 3.21. Average squared loadings of force plate variables.  Means by effort condition, force plate 

forces (Fx,Fy,Fz) and torques (Mx, My, Mz) for each force plate. 

  

3.6.2 DFA results, Individual Forces and Torques 

Reduced correspondence between the channels of the 6d force plate signals points to a shift in their 

fluctuation patterns.  DFA of these individual force and torque signals corroborates this notion.  These 

results are displayed in Figure 3.22.  With the exception of the forces in the y direction for plates one (Fy-

one) and two (Fy-two), all force plate signals exhibited a scaling exponent greater than 1 in all effort 

conditions.  For Fy-one, alpha was greater than 1 in ‘shout’ and approximately equal to 1 in all other 

conditions.  For Fy-two, alpha was also greater than 1 in ‘shout’, and less than 1 in all other conditions.  

All measures showed a significant effect of effort condition, with the exception of My and Mz for force 

plate one, and Mx for force plate two.  In most variables, post-hoc tests determined ‘shout’ to differ 
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significantly from ‘yell’, though many other differences exist for several variables. The reader is referred 

to the table contained in Appendix B for a full listing of ANOVA results.   

 

 

 
FPL one FPL two 

Normal 1.14 (0.090) 1.11 (0.082) 

Loud 1.14 (0.083) 1.12 (0.073) 

Louder 1.11 (0.061) 1.11 (0.069) 

Shout 1.21 (0.057) 1.19 (0.058) 

Yell 1.11 (0.080) 1.1 (0.071) 

 

Figure 3.22 DFA results, force plate component forces and torques.  Each plot contains effort condition 

means.  The table represents the mean value of the scaling exponent (SD) averaged across all signals. 

 

There is a general tendency for ‘shout’ to exhibit the highest value of alpha for all signals, with 

the exception of Mz-two.  In conjunction, the majority of signals display a subsequent drop off in ‘yell’, 

indicating rougher signals with a distribution of power across a wider spectrum of frequencies. 

Interpreted in conjunction with the results of the CMA and the PCA, these results show that the 

reduced coordination between COP1 and COP2 in ‘yell’ is symptomatic of changes in the characteristics 

of the fluctuations of the individual components.  Much like the mutual smoothing of fluctuations among 

torso motion, head motion, and speech acoustics led to improved coordination, mutual smoothing among 

the components of the 6d force plate signals is associated with improved coordination between the feet in 

the ‘shout’ condition.  But the improved coordination in ‘louder’ relative to other effort conditions evident 

in the CMA demands a slightly different explanation.  The PCA results suggest that ‘louder’ displays 

better correspondence among the individual variables than the other effort conditions.  But the DFA 

results show no effect of mutual smoothing.  However, inspection of the mean and standard deviation of 
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the scaling exponent across all variables in Figure 3.22 shows that both ‘louder’ and ‘shout’ exhibit the 

smallest spread of the scaling exponent (SD).  This suggests that at least two characteristics of 

fluctuations are associated with improved coordination across an ensemble: i) a mutual increase in the 

scaling exponent, or in other words mutual smoothing across the collection of signals, and ii) attraction of 

the scaling exponents to a common value or behavioral regime. 

Conversely, in the ‘yell’ condition, the marked decrease in the value of the scaling exponent 

across these signals is mirrored by the results of the PCA and CMA/SVD.  Furthermore, it is interesting 

to note that in the case of FPL-two, the increased value of alpha for Mz in ‘yell’ contrasts sharply with the 

trends evident in the other variables.  For FPL-two, recall that more principal components were necessary 

to explain 96% of the variance of the original data, and that less variance was explained by each 

additional component relative to FPL-one (see Table 3.3 and Figure 3.20), pointing to less structural 

coherence among the individual variables.  The fact that the PCA eigenvector analysis shows Mz to 

contribute more to the underlying dynamics in this condition in FPL-two suggests that tension between 

the fluctuation patterns of the individual components could be an additional cause of this effect.
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Chapter 4: Discussion 
 

As hypothesized, the present work shows that increasing vocal effort during speech production entrains 

multiple bodily subsystems.  Specifically, at high levels of vocal effort, kinematic measures of body and 

head motion become more tightly coordinated with each other and with acoustic measures of the voice.  

Increased vocal effort resulted in increased  coordination in the correlation map analysis, as indexed by 

the m%COR measurement for both in-phase and anti-phase coordination, and reduced the number of 

factors accounting for the increased correlation, as shown by singular value decomposition.  This 

indicates that the time-varying correspondence between these measurement domains both strengthened 

and simplified with increased vocal effort.  Observed changes in the coherence between measurement 

domains were accompanied by related changes in the fluctuations within the individual measurement 

domains, as shown by the results of the detrended fluctuation analysis (DFA).  Increasing vocal effort 

resulted in increased values of the scaling parameter alpha, indicating smoother signal profiles due to the 

increased influence of long-timescale fluctuations relative to short-timescale fluctuations.  The fact that 

this effect was both general across the several subsystems and paired with improved correspondence 

between the subsystems suggests a mutual perturbing influence due to increased vocal effort. 

 The results of the analysis also supported the corollary hypothesis that within-speaker 

coordination would ultimately conflict with environmental coordination at the highest levels of vocal 

effort, resulting in postural instability.  In the ‘yell’ condition, this instability was evident in the decreased 

strength of coordination between the center of pressure measurements for the individual feet, and 

increased complexity of correlation structure.  Furthermore, PCA decomposition of the variance for the 

6d force plate signals for each foot in this condition showed evidence of poorer correspondence between 

the forces and torques.  More principal components were required to represent 96% of the variance of the 

6d signals in ‘yell’ relative to the other effort conditions, and comparatively less variance was explained 

by each principal component.  Analysis of the PCA eigenvectors uncovered a notable difference in the 

contribution of the six force and torque components to the PCA representation in the two highest effort 
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conditions.  In ‘shout’, Mx, which indexes the postural rotation around the horizontal axis, or anterior-

posterior sway, contributes more variance to the PCA representation. In ‘yell’, the z-torque Mz, or the 

rotation of the ankles around the vertical axis, contributes more variance.   

Interestingly, DFA of the individual channels of the 6d force plate signals showed decreased 

values of alpha in ‘yell’ relative to ‘shout’ for all channels in both force plate signals except for the z-

torque of plate two.  The decrease of scaling exponents as vocal effort increased indicates an increase in 

the roughness of the signals in these individual channels, with spectral power distributed across a wider 

range of frequencies.  The divergence of the z-torque for plate two from this general pattern, combined 

with its increased contribution to the variance in this effort condition, is likely at the heart of the weaker 

PCA results for force plate two as compared to plate one. This contrasts with the effects seen in the body-

head-acoustic comparisons, where similar changes in fluctuation patterns were associated with stronger 

cross-domain correspondence.  In other words, similarity in the observed changes of fluctuation patterns 

of the subcomponents of the system facilitated system-wide coordination.  But in this case, diverging 

changes in the value of the scaling exponent among subcomponents of the foot-foot postural subsystem 

are instead associated with poorer time-varying correspondence.  

In sum, the dual hypothesis that increased vocal effort would result in mutual entrainment among 

head motion, torso motion, and speech acoustics, and ultimately a concomitant loss of postural stability, 

was well supported by the results of these analyses. However, the initial hypothesis that each successive 

increase in vocal effort level would be accompanied by increased correspondence between measurement 

domains turned out to be overly simplistic.  Several points in this regard merit further discussion.  First, 

there is the question of the large increase in strength of coordination in ‘shout’ relative to the smaller 

increases seen in the changes between the lower three effort conditions.  Second, there is the question of 

the difference between ‘shout’ and ‘yell’, where coordination between some subsystems continues to 

strengthen and simplify, while in others, this is not the case.  Finally, the issue of postural instability 

merits discussion in terms of systems-level processes that explicitly address the apparent conflict between 

high levels of intra-speaker coordination and coordination of the talker with the environment. 
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4.1 Increased coordination in ‘shout’ relative to the lowest three effort conditions 

Although the results showed a trend toward stronger coordination characterized by lower dimensional 

relations and corresponding changes in fluctuation patterns between measurement domains at 

successively increasing levels of vocal effort, this effect was especially pronounced in the ‘shout’ 

condition.  This raises the question of whether the observed changes in coordination are linked to vocal 

effort via some kind of gradient, and to what extent such a gradient may or not scale linearly as vocal 

effort increases. 

 As a first step toward addressing this issue, it is important to reiterate that the elicitation of vocal 

effort in this study involved varying the intended communicative distance associated with speech 

production (Traunmüller & Eriksson 2000).  In the present experiment, distances of 1.5m, 4m, 7.5m, and 

30m were used.  Where the lowest three effort levels involved approximately 2 to 2.5-fold increases, the 

increase from ‘louder’ to ‘shout’ involved a 4-fold increase in distance.  This large magnitude increase in 

distance was paired with a similarly large increase in the average acoustic RMS values shown in Figure 

3.11.  The mapping between acoustic RMS values and communication distance appears consistent, and 

supports, or at least does not contradict, the possibility that vocal effort indexes a speech parameter that 

varies along a continuous gradient, as opposed to a system of categorically discriminated settings.  

However, it should also be noted that increases in vocal effort may scale non-linearly (e.g. possibly 

according to a power law) with increasing communication distance, and that this scaling is also evident in 

the changes in coordination observed in the present study.  This interpretation would be consistent with 

the fact that the intensity of sound diminishes with respect to distance from its source according to the 

inverse square law, a power law with scaling exponent 2, given by Equation 4.1, 

 

𝐼 ∝  
1

𝑟2,       (4.1) 

 

where I is the intensity of sound at a point that is a distance r from the source. This would account for the 

pronounced difference between shout and the lowest three effort conditions, while still affording a 

gradient interpretation of the phenomenon.   
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 It is also possible that increasing vocal effort arouses activity in the CNS, or modulates what 

Lashley (1951) originally referred to as the dynamic level, of neuronal activation.  For Lashley, who was 

one of the first to propose that the nervous system functions as a constantly active, integrated network, 

modulation of the dynamic level of neural activation was crucial to modifying what he called patterns of 

facilitation, or the patterns of neuronal activity that enable complex temporally integrated behaviors.  

Lashley identified rhythmic activity as a fundamental instance of this process, where temporally spaced 

waves of facilitative excitation spread throughout the entire nervous system.  As he put it: 

 

Consideration of rhythmic activity and of spatial orientation forces the conclusion, I 

believe, that there exist in the nervous organization, elaborate systems of interrelated 

neurons capable of imposing certain types of integration upon a large number of widely 

spaced effector elements; in the one case transmitting temporally spaced waves of 

facilitative excitation to all effector elements; in the other imparting a directional 

polarization to both receptor and effector elements.  These systems are in constant action.  

They form a sort of substratum upon which other activity is built.  They contribute to 

every perception and to every integrated movement. (p. 127-128) 

 

In other words, a rhythmic discharge of sufficient strength could integrate the action of many subsystems 

into coordinated action at the level of behavior.  A perturbation exceeding a critical threshold could easily 

trigger a wave of excitation that would then subsequently travel throughout the CNS (Bassingwaithe et al. 

1994).  Although the relation of vocal effort to changes of communicative distance and acoustic loudness 

may in and of itself be gradient, there could be critical points on the gradient where the level of CNS 

activation reaches a point that facilitates widespread integration of behaviors across the entire body.  On 

the surface, findings that report increased vocal effort to have a positive effect on speech and postural 

symptoms associated with Parkinson’s disease (Ramig et al. 2001) would seem to support this idea.  In 

any case, clarifying whether or not vocal effort exhibits gradient effects on coordination and whether or 
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not such critical points in CNS activation due to changes in vocal effort exist is beyond the scope of the 

present research, but future work could be devoted to clarifying these issues. 

 

4.2 Difference between ‘shout’ and ‘yell’: Respiratory perturbation and Fluctuation Characteristics 

of the Head and Torso 

 

Interestingly, this trend toward stronger, simpler system-wide coordination up through the ‘shout’ 

condition did not simply continue through ‘yell’.  Here, a clear difference was observed between the 

behavior of the head and torso.  In ‘yell’, the strength of coordination between the head and all other 

measurement domains except the torso decreased, whereas coordination between the torso and the other 

measurement domains continued to both strengthen and simplify. 

 The relation between these kinematic measures and speech acoustics is of particular interest.  

Prior work has demonstrated the existence of a functional coupling between rigid body motion of the head 

and F0 (Yehia et al. 2002).  The current investigation corroborates this finding, and furthermore, 

demonstrates that the strength of this coupling increases with increased vocal effort.  But when vocal 

effort increases past a threshold level, the scaling of this functional coupling between the head and speech 

acoustics ceases, and correlation between the two domains subsequently diminishes.  Physiologically, this 

might be attributed to the stiffening of the muscles of the neck that takes place with increased vocal effort, 

(Pettersen, Bjørkøy, Torp & Westgaard, 2005).   

 A parallel consideration is the nature of the fluctuations of the head uncovered by the DFA.  In all 

effort conditions, the scaling parameter of head motion was 1 < α < 1.5, and the value of the scaling 

exponent increased with vocal effort level, suggesting an increased concentration of power at low-

frequency bandwidths in the head motion signal.  The motion of the head approaches a brown noise 

spectrum, meaning that fluctuations in the long time scale processes of head motion are highly correlated.  

However, this also means that the system is less adaptive to the influence of perturbations relative to those 

in which power is distributed proportionally across all timescales (i.e. 1/f pink noise) (Bassingthwaighte 

et al.,1994; West & Shlesinger, 1990).  A perturbation delivered near the system’s natural frequency, or 
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characteristic time scale, will propagate throughout the system, influencing the global integrity of its 

organization.  The low-frequency perturbation due to respiratory forcing at high vocal effort, then, can be 

interpreted as a destabilizing force with respect to the head when the strength of this perturbation passes a 

critical threshold.  This affects the functional coupling of the head with speech, given that the ability of 

the head to adapt its behavior in the face of such perturbations is limited. Instead, the response of the head 

involves a stiffening of the muscles of the neck due to the demands of postural control (Giovanni 2008), 

which would account for an inhibition of the functional coupling between the head and speech acoustics. 

 This contrasts with the expected behavior of the torso given the results of the DFA.  In general, 

fluctuations in torso motion were found to exhibit 1/f power-law structure, with a mean scaling parameter 

α ≈ 1.  This reflects similar results reported by Torre, Delignieres, and Lemoine (2007), who found a 

similar effect for the motion of the hands in bimanual coordination.  In the present case, the effect should 

follow straightforwardly from the physiological composition of the limbs and torso, which consist of 

proportional body segments of varying length.  In such a system, movements of the smaller elements 

would contribute small-scale fluctuations, with the scale of fluctuations increasing with increasing 

segment size and length.5  The presence of this statistical self-similarity in the structure and movement 

characteristics of the torso suggests greater adaptability to the influence of perturbations due to respiratory 

forcing at high levels of vocal effort.  This adaptability manifests in the simplification of coordination 

between torso motion and the other measurement domains, even in the ‘yell’ condition. 

 The effects of the head’s response to the vocal perturbation in ‘yell’ were also evident in its 

coordination with the global COP measure.  In this condition, the coordination of the head with global 

COP diminished both in terms of the strength of coordination (m%COR), and in terms of the simplicity of 

the correlation map.  Similar to the acoustic measurements, coordination of the torso with global COP 

                                                      
5 The study of the proportional distribution of human body segment lengths can be traced back to Da Vinci’s 1490 Vitruvian 

Man.  An apt metaphor for the distribution of the scale of fluctuations in the movements in a proportionally distributed system 

like the torso is the adaptive response of a tree to a strong gust of wind.  In response to the wind, the leaves vibrate quickly at 

very small magnitudes.  The smaller branches sway back and forth at a lower frequency and greater magnitude than the leaves.  

As the branch size increases, the magnitude of sway increases and the frequency decreases, ultimately giving rise to a 1/f 

distribution of fluctuations.  Recent work in physics has even suggested that the self-similar geometrical structure of trees (saying 

nothing of their fluctuations), also studied by da Vinci,  is related to their need to adapt to wind related perturbations (Eloy 2011)   
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strengthened in ‘yell’.  But interestingly, this effect was not paired with simplification of the correlation 

map.  This is likely due to the fact that the head exerts a stronger influence over the global COP than the 

torso does, as shown by the values of m%COR and the overall number of singular values used in the SVD 

representation of the correlation maps for COP-Head.  Values of m%COR are much higher for the head 

than for the torso, and roughly half the number of singular values is needed to capture 99.8% of the 

variance.  In spite of this, like its relation with both F0 and RMS, torso motion scales with global COP up 

through the ‘yell’ condition. In contrast, the head does so only to a limited extent. Again, this may be due 

to the torso’s adaptability to a low-frequency perturbation delivered by vocal forcing, as quantified by its 

fluctuation characteristics.  The head, on the other hand, does not adapt as readily.  When the strength of 

the perturbation passes a critical threshold, the inability of the head to readily adapt its behavior 

contributes to postural instability.  

Although the results reported in this study did not include a direct measure of respiration, the 

combined results of the DFA and CMA suggest that a common influence is causing signal smoothing 

across a wide variety of physical subsystems and stronger, simpler coordination between these 

subsystems with increased vocal effort.  Increasing vocal effort imposes a unique set of functional 

demands on the respiratory system during speech production by increasing the speed of inspiration and 

expiration (Hixon 1973), which physiologically equates to the forced expiration of air from the lungs 

(Sharp 1975).  It is likely that the common influence is a low-frequency perturbation affiliated with this 

respiratory forcing induced by changes in vocal effort.  The increase in the values of the scaling 

exponents uncovered by DFA suggests that energy from such a low-frequency perturbation is a mutual 

influence on the speech signal and movement of the head and torso.  When the perturbation becomes 

strong enough, the differences in the fluctuation characteristics of the head and torso emerge as 

differences in coordination.  Although the dependence of these effects on increased vocal effort are 

robust, obviously a respiratory measure should be included in future versions of this work to confirm that 

changes in respiration are indeed the common influence driving the observed changes in coordination. 

 



70 

 

4.3 Steps toward a systems view of postural instability induced by increased vocal effort 

 

Ultimately, the appearance of postural instability at the highest levels of vocal effort is due to a reduction 

in the requisite variety, or range of system-internal variation, that an organism must have at its disposal in 

order to coordinate its behavior with the environment (Ashby 1958).  With increasing strength of the 

perturbation due to respiratory forcing, the action of multiple bodily subsystems becomes more tightly 

coordinated, especially the torso and head (cf. Figure 3.16).  This entrainment severely limits the degrees 

of freedom available to the postural control system, thus restricting the ability of the body to maintain 

balance, that is, to adapt and coordinate its behavior with the environment.  This loss of variety is evident 

at the system boundary, where coordination between the individual feet, a pre-requisite to the 

maintenance of balance, diminishes.   

 This process of entrainment constitutes a form of system-wide integration at the level of the 

physical body.  Incredibly, coordination at this lower physical level is intimately related to the needs of 

information projection, that is, to the task demands of communication, at a higher, dyadic level of 

interaction.  In this way, coordination at the physical level could be constrained by the magnitude of 

information transfer (Kolasa & Pickett 1989), that is, by the energetic requirements of projecting 

linguistic information as speech across a given distance.  With vocal effort, we have direct evidence that 

the requirements of communication at the social (i.e. inter-agent) level induce different patterns of 

coordination at the level of individual physical behavior.  Moreover, when the magnitude of information 

transfer increases past a critical threshold, with increasing communicative distance and with a change of 

discourse style (as in the difference between ‘shout’ and ‘yell’), the physical body begins to separate from 

its environment. As system-internal physical coordination increases, the system becomes increasingly 

integrated, and thus, structurally distinct (Kolasa & Pickett 1989) from the environment.  This ultimately 

affects the stability of the organism with respect to its physical surroundings, for the benefit of the 

creation of communication pathways at the level of social interaction. 
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5. CONCLUSION 
 

This study sought to test the dual hypothesis that increasing vocal effort in speech production would 

result in increasingly rigid coordination of body motions associated with speech, and that this rigid 

coordination would be accompanied by a loss of postural stability at very high levels of vocal effort.  

Coordination was assessed with a unique combination of methods for non-stationary time series analysis.  

This included methods for assessing correspondence across measurement domains (correlation map 

analysis), dimensionality reduction (singular value decomposition analysis, principal component 

analysis), and a method for assessing fluctuations within measurement domains (detrended fluctuation 

analysis).   

 The results of these analyses provided empirical support for both of the hypotheses.  Increasing 

vocal effort resulted in more rigid coordination, as shown by the combination of increased strength of 

time-varying correspondence and the evidence of dimensionality reduction.  Postural instability was 

evident in diminished coordination between the individual feet, as well as in diminished correspondence 

between the component forces and torques of the 6d force plate signals.  Coordination showed an 

important parallelism with the fluctuation properties of the individual subsystems.  This was apparent 

both in terms of the appearance of a system-wide smoothing effect with increased vocal effort, and in 

terms of the response characteristics of different subsystems.  The difference in the adaptive response 

characteristics of torso and head motion indexed by their fluctuations ultimately had important 

consequences for coordination when the respiratory perturbation due to increased vocal effort was strong 

enough. 

Although fluctuations have been studied in the coordination literature, (e.g. Schmidt, Carello, & 

Turvey 1990; Carson, Goodman, Kelso & Elliott 1995), they are often considered simply in terms of 

fluctuations about some central tendency with respect to a task-related goal in a confined, highly stylized 

experimental context (see Diniz et al. 2010 for a general review).  For example, fluctuations in phase 
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relations between two limbs when deliberately trying to coordinate their movements in an in-phase or out 

of phase manner, as in Carson et al. (1995).   

This study took a different approach, in that we examined fluctuations in the movement 

characteristics of several heterogeneous subsystems in a relatively unconstrained experimental context, 

and how these fluctuations changed with respect to one another in response to the task demand of 

producing speech at increasingly higher levels of vocal effort.  Studying fluctuations across many 

interrelated, yet heterogeneous, subsystems in this way affords a more nuanced view of the interplay 

between subsystem fluctuations and coordination in spontaneous human behavior.  For example, this 

study found that fluctuations in torso motion have 1/f structure.  This characteristic enabled scaling of the 

coordination between torso motion and speech, which also has 1/f structure, at the highest level of vocal 

effort.  There is an unquestionable connection between coordination and fluctuations at the physical level, 

especially in systems composed of more or less identical subunits6.  But as this study demonstrates, 

complex human behaviors such as speech involve the coordination of many interlinked heterogeneous 

subsystems.  As such, the analytic methodology outlined in this thesis represents a step forward in the 

way these concepts can be jointly applied at the level of behavior. 

 

5.1 Future Directions 

Confirmation of the two hypotheses investigated in this thesis highlights the necessity of explicitly 

incorporating respiration into the investigation of speech motor control.  The addition of a direct measure 

of respiration would enable us to directly test the hypothesis that the effects on within-speaker 

coordination observed in this study are related primarily to changes in respiratory behavior associated 

with increasing vocal effort.   

In many ways, clarifying the role of the breath cycle in these observed effects is of critical 

importance.  The changes in the organization of the respiratory cycle, including increased speed of 

                                                      
6 The power spectra of collections of neurons in the human brain in subjects at rest has been found to have 1/f 

structure (e.g. Novikov 1997), and synchronized neural activity facilitates communication among groups of neurons 

in diverse cortical regions (Varela 2001; Fries 2005). 
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inspiration and expiration combined with increased respiratory forcing, are thought to be the root cause of 

the within-speaker entrainment effect, and ultimately, the appearance of postural instability.  Once again, 

the consideration of fluctuations appears to be crucial.  Fluctuations in inter-breath interval lengths in 

healthy human respiration follow 1/f power law structure (Frey et al. 1998).  But the periodic breathing 

exhibited by heart-failure patients, known as Cheyne-Stokes respiration, is associated with a loss of the 

healthy variability provided by 1/f fluctuations (West, 2013).  Cheyne-Stokes breathing does not just 

involve a loss of variability.  Importantly, this loss of variability is due to the development of large 

oscillations in the action of the lungs.  This loss then propagates to related subsystems, as it is also 

evident in the inter-beat-interval fluctuations of the heart beat (e.g. Peng et al. 1995).   

We think that an analogous loss of variability in the respiratory rhythm is responsible for the 

behavioral effects observed in this study.  Entrainment to a strong, highly periodic respiratory rhythm 

would account for the increasingly rigid coordination at higher levels of vocal effort, and the loss of 

variability associated with entrainment to a specific rhythm would result in postural instability.  Thus, the 

importance of including a direct respiratory measure in future versions of this study cannot be 

understated. Along these lines, it is also necessary to verify whether or not vocal effort’s effects on 

coordination are truly gradient, or whether critical levels of activation somehow facilitate the high levels 

of coordination we observed in the ‘shout’ condition.  One way of accomplishing this would be to elicit 

speech at more distances along the continuum, thereby eliminating the jump from 7.5m to 30m in the 

present study’s transition from ‘louder’ to ‘shout’.  This could be accomplished by using an acoustic 

reverb room in which the acoustic damping could be manipulated to elicit speech at more fine-grained 

levels of vocal effort. 

In this vein, another direction that could be explored is the cross-influence between these 

physiological considerations and stylistic differences in the aspects of linguistic performance at different 

levels of vocal effort.  For instance, Winkworth et al. (1995) conducted a study of linguistic organization 

with respect to the organization of respiration for speech produced at a single, comfortable volume, which 

would equate to the ‘normal’ level elicited in our study.  These researchers found that inspirations tended 
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to occur at clause boundaries, and that high inspiratory lung volumes resulted in both increased breath 

group length and longer strings of clausal structures.  It’s likely that the reorganization of the respiratory 

rhythm with increased vocal effort has important consequences for linguistic organization (and possibly 

vice versa).  Exploring how the co-organization of the physiological substrate with the symbolic/linguistic 

content evolves with respect to changes in vocal effort could be a fruitful extension of this work.  For 

instance, one might ask, is the range of linguistic variability in the sense of variety of grammatical 

constructions used by the speaker similarly constrained as vocal effort is increased, and is this constraint 

related to the organization of respiration?   

This thesis is obviously only scratching the surface of many interesting questions.  At their core, 

these questions take their cue from the idea that there is a deep and interconnected relationship between 

physical and symbolic systems. This thesis addressed this issue with respect to structural organization and 

coordination at the physical level in response to the energetic requirements of projecting linguistic 

information across a distance.  In order to explain biological behavior, the interplay between the physical 

and the symbolic must be taken into account (Pattee 1978), and the consequences of this interplay must be 

explored across a multitude of scales.  This is an essential problem in the study of complex biological 

systems generally, and it is the essential problem in the study of speech, whether the interplay occurs at 

the scale of coordination of vocal tract movements in order to produce words, phrases, and sentences, or 

at the level of the organization and coordination of physiological subsystems to project speech across a 

distance for the purpose of forming higher-order symbolic relations in social interaction.  To put it 

differently: 

 

Laws of nature do not need embodiments or structures to execute them; rules must have a 

real physical structure or constraint if they are to be executed…laws hold at all times and 

all places; rules only exist when and where there are physical structures to execute them. 

(Pattee 1978, p194). 
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Coordination involves adapting to the laws of physics in order to form the physical structures that 

serve as a substrate for the execution of functionally directed action.  In the end, this thesis contributes to 

this more domain-general understanding of coordination by demonstrating the applicability of these 

principles at a scale of analysis that has received limited attention in speech research.  Simply considering 

the role of respiration in speech motor control allowed this study to find an interesting connection 

between speech and posture.  And more abstractly, it allowed us to directly demonstrate the existence of a 

systems-level co-dependence between the energetic (i.e. physical) properties of information transmission 

and physical coordination; or in other words, the ability of the symbolic medium to do actual, physical 

‘work’ by increasing the organization, and thus decreasing the entropy, of the physical substrate 

supporting its transmission (Deacon 2012).  Curiously, this process bears a striking similarity to some 

recent thinking on communication in the human brain (Nicoleis & Lebedev 2009), where correlation of 

fluctuations along the physical, neuronal substrate is thought to facilitate the arguably higher order 

process of communication among groups of non-local neurons, forming the integrated cortical networks 

that are thought to be crucial to all complex human behaviors.  Obviously, at this point, this is nothing 

more than a striking similarity in need of further exploration.  But future work that explicitly addresses 

the importance of respiration for speech motor coordination will probably have much more to say about 

this and the other possibilities suggested by the small steps taken in this thesis. 
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APPENDICES 

A.  Complete statistical results: CMA and SVD 

A.1. CMA and SVD within-subjects ANOVA results. 

Table A1.1 Complete within-subjects ANOVA results: CMA and SVD. Means for all signal pairs in 

each condition (Normal (N), Loud (L), Louder (Lr), Shout (S), Yell (Y)).  ANOVA results for effect of 

effort condition are listed for m%COR-pos (POS) and m%COR-neg (NEG) measures, as well as for the 

singular value decomposition analysis (SVD). 

 

  Condition Means ANOVA Results 

  N L Lr S Y F(4,79) p < 𝜔𝑝
2 

F0-

RMS 

POS 0.051 0.049 0.05 0.053 0.051 0.94 n.s. - 

NEG 0.042 0.041 0.047 0.036 0.051 8.9 0.0001 0.26 

SVD 206 201 194 178 194 6.1 0.0005 0.19 

F0-

Head 

POS 0.066 0.067 0.071 0.095 0.075 22.15 0.0001 0.49 

NEG 0.066 0.067 0.071 0.096 0.077 23 .0001 0.5 

SVD 114 115 106 92.3 106 21 0.0001 0.47 

RMS-

Head 

POS 0.076 0.076 0.072 0.076 0.066 2.25 n.s. - 

NEG 0.076 0.076 0.072 0.077 0.068 2.2 n.s. - 

SVD 114 116 109 100 110 9.1 0.0001 0.27 

F0-

Torso 

POS 0.035 0.037 0.036 0.051 0.058 11.63 0.0001 0.32 

NEG 0.031 0.033 0.035 0.043 0.058 14 0.0001 0.37 

SVD 272 244 232 202 186 7.1 0.0001 0.21 

RMS-

Torso 

POS 0.044 0.047 0.046 0.052 0.069 7.00 0.0001 0.21 

NEG 0.032 0.034 0.034 0.033 0.05 5.3 0.001 0.16 

SVD 220 205 198 180 172 6.6 0.0005 0.2 

Torso-

Head 

POS 0.078 0.083 0.083 0.1 0.11 6.60 0.001 0.20 

NEG 0.078 0.083 0.084 0.1 0.12 6.7 0.0005 0.2 

SVD 113 108 101 91.6 99.2 6.8 0.0001 0.21 
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Table A.1.1 continued. 

 

  Condition Means ANOVA Results 

  N L Lr S Y F(4,79) p < 𝜔𝑝
2 

COP-

Head 

POS 0.18 0.17 0.19 0.2 0.18 4.37 0.01 0.13 

NEG 0.18 0.18 0.19 0.2 0.18 3 0.05 0.083 

SVD 85.1 85.3 77.2 72.8 80.8 11 0.0001 0.3 

COP-

Torso 

POS 0.073 0.078 0.076 0.097 0.11 6.67 0.001 0.20 

NEG 0.071 0.077 0.076 0.094 0.11 7 .0001 0.21 

SVD 152 134 124 117 138 4.8 0.005 0.14 

F0-

COP 

POS 0.067 0.067 0.071 0.084 0.072 8.90 0.0001 0.26 

NEG 0.066 0.066 0.071 0.082 0.071 7.6 .0001 0.23 

SVD 145 139 129 119 160 13 0.0001 0.36 

RMS-

COP 

POS 0.077 0.077 0.076 0.072 0.067 2.80 0.05 0.075 

NEG 0.075 0.075 0.075 0.069 0.067 2.7 0.05 0.072 

SVD 143 136 129 124 156 9.5 0.0001 0.28 

COP1

-

COP2 

POS 0.17 0.17 0.19 0.19 0.15 6.41 0.001 0.20 

NEG 0.16 0.17 0.18 0.18 0.15 5 0.005 0.15 

SVD 97 93.1 85.3 81.6 99.2 7.1 0.0001 0.22 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



85 

 

A.2. CMA and SVD HSD results 

 

Table A.2.1 m%COR-pos HSD Results. Pairwise Tukey’s HSD tests for all effort conditions.  P values 

are rounded to three significant digits. 

 

Measure Comparison p <   Measure Comparison  p <  

F0-RMS Normal Loud 0.834 

 

Torso-Head Normal Loud 0.887 

 

Normal Louder 0.957 

  

Normal Louder 0.88 

 

Normal Shout 0.877 

  

Normal Shout 0.00217 

 

Normal Yell 1 

  

Normal Yell 0.00261 

 

Loud Louder 0.997 

  

Loud Louder 1 

 

Loud Shout 0.38 

  

Loud Shout 0.0221 

 

Loud Yell 0.973 

  

Loud Yell 0.0141 

 

Louder Shout 0.555 

  

Louder Shout 0.0231 

 

Louder Yell 0.994 

  

Louder Yell 0.0145 

 

Shout Yell 0.97 

  

Shout Yell 0.872 

         F0-Head Normal Loud 0.988 

 

COP-Head Normal Loud 0.912 

 

Normal Louder 0.331 

  

Normal Louder 0.302 

 

Normal Shout 9.93E-09 

  

Normal Shout 0.0452 

 

Normal Yell 0.166 

  

Normal Yell 0.99 

 

Loud Louder 0.632 

  

Loud Louder 0.0489 

 

Loud Shout 9.94E-09 

  

Loud Shout 0.00612 

 

Loud Yell 0.286 

  

Loud Yell 1 

 

Louder Shout 1.34E-08 

  

Louder Shout 0.727 

 

Louder Yell 0.772 

  

Louder Yell 0.501 

 

Shout Yell 0.00391 

  

Shout Yell 0.155 

         RMS-Head Normal Loud 1 

 

COP-Torso Normal Loud 0.806 

 

Normal Louder 0.438 

  

Normal Louder 0.949 

 

Normal Shout 1 

  

Normal Shout 0.0014 

 

Normal Yell 0.15 

  

Normal Yell 0.00416 

 

Loud Louder 0.399 

  

Loud Louder 0.996 

 

Loud Shout 1 

  

Loud Shout 0.0231 

 

Loud Yell 0.138 

  

Loud Yell 0.0283 

 

Louder Shout 0.656 

  

Louder Shout 0.00955 

 

Louder Yell 0.677 

  

Louder Yell 0.0154 

 

Shout Yell 0.221 

  

Shout Yell 0.946 
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Table A.2.1 Continued. 

Measure Comparison p <   Measure Comparison  p <  

F0-Torso Normal Loud 0.901 

 

F0-COP Normal Loud 1 

 

Normal Louder 0.982 

  

Normal Louder 0.487 

 

Normal Shout 7.73E-05 

  

Normal Shout 5.56E-06 

 

Normal Yell 3.08E-05 

  

Normal Yell 0.876 

 

Loud Louder 0.997 

  

Loud Louder 0.501 

 

Loud Shout 0.00108 

  

Loud Shout 5.99E-06 

 

Loud Yell 0.000221 

  

Loud Yell 0.882 

 

Louder Shout 0.000404 

  

Louder Shout 0.00086 

 

Louder Yell 0.000105 

  

Louder Yell 1 

 

Shout Yell 0.581 

  

Shout Yell 0.0593 

         RMS-Torso  Normal Loud 0.817 

 

RMS-COP Normal Loud 1 

 

Normal Louder 0.954 

  

Normal Louder 0.985 

 

Normal Shout 0.173 

  

Normal Shout 0.311 

 

Normal Yell 3.25E-05 

  

Normal Yell 0.0598 

 

Loud Louder 0.996 

  

Loud Louder 0.986 

 

Loud Shout 0.649 

  

Loud Shout 0.313 

 

Loud Yell 0.00035 

  

Loud Yell 0.0601 

 

Louder Shout 0.458 

  

Louder Shout 0.562 

 

Louder Yell 0.000158 

  

Louder Yell 0.121 

 

Shout Yell 0.0198 

  

Shout Yell 0.729 

         COP1-COP2 Normal Loud 0.999 

     

 

Normal Louder 0.0129 

     

 

Normal Shout 0.0221 

     

 

Normal Yell 0.596 

     

 

Loud Louder 0.0252 

     

 

Loud Shout 0.0373 

     

 

Loud Yell 0.508 

     

 

Louder Shout 0.994 

     

 

Louder Yell 0.00993 

     

 

Shout Yell 0.00937 
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Table A.2.2  m%COR-neg HSD results.  P values are rounded to three significant digits. 

 

Measure Comparison p <   Measure Comparison  p <  

F0-RMS Normal Loud 0.899 

 

Torso-Head Normal Loud 0.923 

 

Normal Louder 0.0942 

  

Normal Louder 0.873 

 

Normal Shout 0.0609 

  

Normal Shout 0.00298 

 

Normal Yell 0.0295 

  

Normal Yell 0.00178 

 

Loud Louder 0.0085 

  

Loud Louder 1 

 

Loud Shout 0.283 

  

Loud Shout 0.023 

 

Loud Yell 0.00641 

  

Loud Yell 0.00838 

 

Louder Shout 7.69E-05 

  

Louder Shout 0.0312 

 

Louder Yell 0.557 

  

Louder Yell 0.0106 

 

Shout Yell 0.000176 

  

Shout Yell 0.791 

         F0-Head Normal Loud 0.985 

 

COP-Head Normal Loud 0.966 

 

Normal Louder 0.349 

  

Normal Louder 0.561 

 

Normal Shout 9.92E-09 

  

Normal Shout 0.114 

 

Normal Yell 0.104 

  

Normal Yell 0.989 

 

Loud Louder 0.67 

  

Loud Louder 0.206 

 

Loud Shout 9.93E-09 

  

Loud Shout 0.0307 

 

Loud Yell 0.198 

  

Loud Yell 1 

 

Louder Shout 1.11E-08 

  

Louder Shout 0.743 

 

Louder Yell 0.629 

  

Louder Yell 0.657 

 

Shout Yell 0.00465 

  

Shout Yell 0.249 

         RMS-Head Normal Loud 0.998 

 

COP-Torso Normal Loud 0.723 

 

Normal Louder 0.252 

  

Normal Louder 0.805 

 

Normal Shout 1 

  

Normal Shout 0.00145 

 

Normal Yell 0.252 

  

Normal Yell 0.00122 

 

Loud Louder 0.412 

  

Loud Louder 1 

 

Loud Shout 0.997 

  

Loud Shout 0.033 

 

Loud Yell 0.341 

  

Loud Yell 0.0127 

 

Louder Shout 0.4 

  

Louder Shout 0.0238 

 

Louder Yell 0.913 

  

Louder Yell 0.00981 

 

Shout Yell 0.297 

  

Shout Yell 0.812 
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Table A.2.2 Continued. 

Measure Comparison p <   Measure Comparison  p <  

F0-Torso Normal Loud 0.806 

 

F0-COP Normal Loud 1 

 

Normal Louder 0.339 

  

Normal Louder 0.364 

 

Normal Shout 0.000683 

  

Normal Shout 3.12E-05 

 

Normal Yell 3.35E-08 

  

Normal Yell 0.863 

 

Loud Louder 0.937 

  

Loud Louder 0.4 

 

Loud Shout 0.0128 

  

Loud Shout 3.82E-05 

 

Loud Yell 3.87E-07 

  

Loud Yell 0.879 

 

Louder Shout 0.0704 

  

Louder Shout 0.00633 

 

Louder Yell 2.52E-06 

  

Louder Yell 1 

 

Shout Yell 0.00767 

  

Shout Yell 0.124 

         RMS-Torso Normal Loud 0.919 

 

RMS-COP Normal Loud 1 

 

Normal Louder 0.935 

  

Normal Louder 1 

 

Normal Shout 0.976 

  

Normal Shout 0.162 

 

Normal Yell 0.000184 

  

Normal Yell 0.166 

 

Loud Louder 1 

  

Loud Louder 1 

 

Loud Shout 1 

  

Loud Shout 0.187 

 

Loud Yell 0.00106 

  

Loud Yell 0.184 

 

Louder Shout 1 

  

Louder Shout 0.204 

 

Louder Yell 0.000957 

  

Louder Yell 0.196 

 

Shout Yell 0.00248 

  

Shout Yell 0.976 

         COP1-COP2 Normal Loud 0.995 

     

 

Normal Louder 0.0322 

     

 

Normal Shout 0.0379 

     

 

Normal Yell 0.766 

     

 

Loud Louder 0.0853 

     

 

Loud Shout 0.0834 

     

 

Loud Yell 0.63 

     

 

Louder Shout 0.989 

     

 

Louder Yell 0.0374 

     

 

Shout Yell 0.0287 
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Table A.2.3 SVD HSD Results. P values are rounded to three significant digits. 

 

Measure Comparison p <   Measure Comparison  p <  

F0-RMS Normal Loud 0.879 

 

Torso-Head Normal Loud 0.751 

 

Normal Louder 0.109 

  

Normal Louder 0.0143 

 

Normal Shout 0.000138 

  

Normal Shout 0.000134 

 

Normal Yell 0.449 

  

Normal Yell 0.16 

 

Loud Louder 0.551 

  

Loud Louder 0.254 

 

Loud Shout 0.00212 

  

Loud Shout 0.00416 

 

Loud Yell 0.788 

  

Loud Yell 0.512 

 

Louder Shout 0.0777 

  

Louder Shout 0.285 

 

Louder Yell 0.999 

  

Louder Yell 0.995 

 

Shout Yell 0.564 

  

Shout Yell 0.876 

         F0-Head Normal Loud 0.979 

 

COP-Head Normal Loud 1 

 

Normal Louder 0.00787 

  

Normal Louder 0.00141 

 

Normal Shout 1.01E-08 

  

Normal Shout 0.000027 

 

Normal Yell 0.125 

  

Normal Yell 0.913 

 

Loud Louder 0.00122 

  

Loud Louder 0.00106 

 

Loud Shout 9.95E-09 

  

Loud Shout 2.07E-05 

 

Loud Yell 0.0575 

  

Loud Yell 0.895 

 

Louder Shout 0.000033 

  

Louder Shout 0.38 

 

Louder Yell 0.995 

  

Louder Yell 0.584 

 

Shout Yell 0.0332 

  

Shout Yell 0.0898 

         RMS-Head Normal Loud 0.94 

 

COP-Torso Normal Loud 0.144 

 

Normal Louder 0.171 

  

Normal Louder 0.00478 

 

Normal Shout 4.36E-05 

  

Normal Shout 0.00346 

 

Normal Yell 0.659 

  

Normal Yell 0.795 

 

Loud Louder 0.0276 

  

Loud Louder 0.711 

 

Loud Shout 3.63E-06 

  

Loud Shout 0.381 

 

Loud Yell 0.381 

  

Loud Yell 0.999 

 

Louder Shout 0.0227 

  

Louder Shout 0.94 

 

Louder Yell 1 

  

Louder Yell 0.86 

 

Shout Yell 0.272 

  

Shout Yell 0.619 
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Table A.2.3 Continued 

Measure Comparison p <   Measure Comparison  p <  

F0-Torso Normal Loud 0.265 

 

F0-COP Normal Loud 0.43 

 

Normal Louder 0.0338 

  

Normal Louder 0.000816 

 

Normal Shout 0.000556 

  

Normal Shout 2.81E-06 

 

Normal Yell 0.00133 

  

Normal Yell 0.209 

 

Loud Louder 0.889 

  

Loud Louder 0.121 

 

Loud Shout 0.0817 

  

Loud Shout 0.000623 

 

Loud Yell 0.0474 

  

Loud Yell 0.0188 

 

Louder Shout 0.358 

  

Louder Shout 0.177 

 

Louder Yell 0.164 

  

Louder Yell 0.00017 

 

Shout Yell 0.902 

  

Shout Yell 1.95E-06 

         RMS-Torso Normal Loud 0.283 

 

RMS-COP Normal Loud 0.398 

 

Normal Louder 0.0424 

  

Normal Louder 0.00225 

 

Normal Shout 0.000756 

  

Normal Shout 0.000543 

 

Normal Yell 0.00252 

  

Normal Yell 0.23 

 

Loud Louder 0.906 

  

Loud Louder 0.244 

 

Loud Shout 0.0928 

  

Loud Shout 0.0484 

 

Loud Yell 0.0719 

  

Loud Yell 0.0198 

 

Louder Shout 0.367 

  

Louder Shout 0.798 

 

Louder Yell 0.215 

  

Louder Yell 0.000388 

 

Shout Yell 0.939 

  

Shout Yell 0.000085 

         COP1-COP2 Normal Loud 0.734 

     

 

Normal Louder 0.00339 

     

 

Normal Shout 0.00134 

     

 

Normal Yell 0.905 

     

 

Loud Louder 0.104 

     

 

Loud Shout 0.0297 

     

 

Loud Yell 0.506 

     

 

Louder Shout 0.872 

     

 

Louder Yell 0.0255 

     

 

Shout Yell 0.00784 
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B. Complete statistical results: DFA 
 

B.1. DFA within-subjects ANOVA results 

 

Table B.1.1.  DFA within-subjects ANOVA results: acoustic and kinematic signals 

 

 Condition Means ANOVA Results 

 N L Lr S Y F(4,19) p < 𝜔𝑝
2 

COP 1.14 1.14 1.14 1.23 1.14 2.2 0.105 0.14 

COP1 1.23 1.19 1.16 1.21 1.13 2.4 0.0856 0.16 

COP2 1.15 1.16 1.16 1.18 1.16 0.23 n.s. - 

F0 0.747 0.765 0.742 0.859 0.849 10.2 0.0005 0.56 

Flow 0.986 0.987 0.979 1.02 1.04 3.1 0.05 0.22 

Head 1.17 1.17 1.19 1.28 1.28 4.4 0.05 0.32 

RMS 0.82 0.825 0.794 0.832 0.852 1.3 n.s. - 

 

Table B.1.2 DFA within-subjects ANOVA results: force plate signals. 

 

 Condition Means ANOVA Results 

 N L Lr S Y F(4,19) p < 𝜔𝑝
2 

Fx-one 1.12 1.15 1.08 1.19 1.09 6.38 0.005 0.43 

Fx-two 1.12 1.15 1.1 1.21 1.11 5.35 0.005 0.38 

Fy-one 1.01 1.02 1.02 1.11 0.98 6.09 0.005 0.41 

Fy-two 0.991 0.995 0.996 1.08 0.984 4.8 0.01 0.34 

Fz-one 1.07 1.07 1.08 1.22 1.06 4.41 0.05 0.32 

Fz-two 1.07 1.07 1.08 1.22 1.06 4.15 0.05 0.30 

Mx-one 1.2 1.21 1.15 1.25 1.17 3.9 0.05 0.29 

Mx-two 1.18 1.16 1.15 1.22 1.16 1.6 n.s. - 

My-one 1.26 1.24 1.19 1.27 1.18 2.3 n.s. - 

My-two 1.22 1.2 1.2 1.24 1.09 3.4 0.05 0.25 

Mz-one 1.15 1.14 1.14 1.23 1.17 2 n.s. - 

Mz-two 1.09 1.12 1.11 1.18 1.18 3 0.05 0.22 
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B.2. DFA HSD results 
 

Table B.2.1. DFA HSD Results. P values are rounded to three significant digits. 

 

Measure Comparison p <   Measure Comparison  p <  

F0 Normal Loud 0.954 

 

RMS Normal Loud 0.999 

 Normal Louder 0.999 

  

Normal Louder 0.757 

 Normal Shout 0.00196 

  

Normal Shout 0.98 

 Normal Yell 0.00684 

  

Normal Yell 0.872 

 Loud Louder 0.88 

  

Loud Louder 0.627 

 Loud Shout 0.00914 

  

Loud Shout 0.997 

 Loud Yell 0.0283 

  

Loud Yell 0.943 

 Louder Shout 0.00117 

  

Louder Shout 0.431 

 Louder Yell 0.00422 

  

Louder Yell 0.27 

 Shout Yell 0.998 

  

Shout Yell 0.992 

         Head Normal Loud 1 

 

Flow Normal Loud 1 

 

Normal Louder 0.984 

  

Normal Louder 0.996 

 

Normal Shout 0.0533 

  

Normal Shout 0.528 

 

Normal Yell 0.118 

  

Normal Yell 0.114 

 

Loud Louder 0.961 

  

Loud Louder 0.995 

 

Loud Shout 0.0395 

  

Loud Shout 0.55 

 

Loud Yell 0.0908 

  

Loud Yell 0.121 

 

Louder Shout 0.144 

  

Louder Shout 0.337 

 

Louder Yell 0.272 

  

Louder Yell 0.0603 

 

Shout Yell 0.999 

  

Shout Yell 0.807 
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Table B.2.1 Continued 

Measure Comparison p <   Measure Comparison  p <  

COP Normal Loud 1 
 

COP-one Normal Loud 0.922 

 

Normal Louder 1 

  

Normal Louder 0.53 

 

Normal Shout 0.191 

  

Normal Shout 0.998 

 

Normal Yell 0.991 

  

Normal Yell 0.0818 

 

Loud Louder 1 

  

Loud Louder 0.94 

 

Loud Shout 0.242 

  

Loud Shout 0.984 

 

Loud Yell 0.976 

  

Loud Yell 0.31 

 

Louder Shout 0.253 

  

Louder Shout 0.707 

 

Louder Yell 0.972 

  

Louder Yell 0.711 

 

Shout Yell 0.109 

  

Shout Yell 0.138 

         COP-two Normal Loud 0.996 

 

    

 

Normal Louder 0.989 

 
    

 

Normal Shout 0.93 

 

    

 

Normal Yell 1 

 

    

 

Loud Louder 1 

 

    

 

Loud Shout 0.992 

 

    

 

Loud Yell 0.995 

 

    

 

Louder Shout 0.997 

 

    

 

Louder Yell 0.988 

 

    

 

Shout Yell 0.93 
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Table B.2.1 Continued 

 

Measure Comparison p <  

 

Measure Comparison  p <  

Fx one Normal Loud 0.917 

 

Fx two Normal Loud 0.875 

 

Normal Louder 0.515 

  

Normal Louder 0.978 

 

Normal Shout 0.112 

  

Normal Shout 0.0329 

 

Normal Yell 0.419 

  

Normal Yell 0.878 

 

Loud Louder 0.149 

  

Loud Louder 0.564 

 

Loud Shout 0.425 

  

Loud Shout 0.199 

 

Loud Yell 0.12 

  

Loud Yell 0.386 

 

Louder Shout 0.004 

  

Louder Shout 0.00976 

 

Louder Yell 0.999 

  

Louder Yell 0.994 

 

Shout Yell 0.00382 

  

Shout Yell 0.00654 

         Fy one Normal Loud 0.998 

 

Fy two Normal Loud 1 

 

Normal Louder 1 

  

Normal Louder 1 

 

Normal Shout 0.069 

  

Normal Shout 0.0731 

 

Normal Yell 0.22 

  

Normal Yell 0.525 

 

Loud Louder 1 

  

Loud Louder 1 

 

Loud Shout 0.119 

  

Loud Shout 0.0899 

 

Loud Yell 0.139 

  

Loud Yell 0.466 

 

Louder Shout 0.0863 

  

Louder Shout 0.0971 

 

Louder Yell 0.184 

  

Louder Yell 0.445 

 

Shout Yell 0.00086 

  

Shout Yell 0.00361 

         Fz one Normal Loud 1 

 

Fz two Normal Loud 1 

 

Normal Louder 0.998 

  

Normal Louder 0.999 

 

Normal Shout 0.023 

  

Normal Shout 0.0272 

 

Normal Yell 1 

  

Normal Yell 1 

 

Loud Louder 1 

  

Loud Louder 1 

 

Loud Shout 0.0289 

  

Loud Shout 0.0355 

 

Loud Yell 0.998 

  

Loud Yell 0.999 

 

Louder Shout 0.0446 

  

Louder Shout 0.0479 

 

Louder Yell 0.987 

  

Louder Yell 0.996 

 

Shout Yell 0.0232 

  

Shout Yell 0.0319 
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Table B.2.1 Continued 

Measure Comparison p <   Measure Comparison  p <  

Mx one Normal Loud 1 

 

Mx two Normal Loud 0.986 

 

Normal Louder 0.455 

  

Normal Louder 0.904 

 

Normal Shout 0.525 

  

Normal Shout 0.785 

 

Normal Yell 0.403 

  

Normal Yell 0.806 

 

Loud Louder 0.429 

  

Loud Louder 0.996 

 

Loud Shout 0.553 

  

Loud Shout 0.49 

 

Loud Yell 0.379 

  

Loud Yell 0.97 

 

Louder Shout 0.0281 

  

Louder Shout 0.3 

 

Louder Yell 1 

  

Louder Yell 0.999 

 

Shout Yell 0.0279 

  

Shout Yell 0.233 

         My one Normal Loud 0.992 

 

My two Normal Loud 0.995 

 

Normal Louder 0.452 

  

Normal Louder 0.987 

 

Normal Shout 1 

  

Normal Shout 0.967 

 

Normal Yell 0.198 

  

Normal Yell 0.0652 

 

Loud Louder 0.709 

  

Loud Louder 1 

 

Loud Shout 0.969 

  

Loud Shout 0.842 

 

Loud Yell 0.371 

  

Loud Yell 0.13 

 

Louder Shout 0.351 

  

Louder Shout 0.788 

 

Louder Yell 0.963 

  

Louder Yell 0.156 

 

Shout Yell 0.145 

  

Shout Yell 0.0189 

         Mz one Normal Loud 0.998 

 

Mz two Normal Loud 0.848 

 

Normal Louder 0.998 

  

Normal Louder 0.909 

 

Normal Shout 0.284 

  

Normal Shout 0.0332 

 

Normal Yell 0.999 

  

Normal Yell 0.34 

 

Loud Louder 1 

  

Loud Louder 1 

 

Loud Shout 0.174 

  

Loud Shout 0.223 

 

Loud Yell 1 

  

Loud Yell 0.865 

 

Louder Shout 0.175 

  

Louder Shout 0.172 

 

Louder Yell 1 

  

Louder Yell 0.797 

 

Shout Yell 0.242 

  

Shout Yell 0.803 
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C. Complete statistical results: PCA 

 

C.1  PCA within-subjects ANOVA results.  

 

Table C.1.1 PCA eigenvalue spectrum ANOVA results.  The mean cumulative variance explained by 

principal component reconstructions of the data consisting of a given number of components (e.g. c1 = 

one component, c2 = two components) is shown as a function of effort condition (Normal (N), Loud (L), 

Louder (Lr), Shout (S), Yell (Y).  Corresponding ANOVA results for effect of effort condition are listed 

for each level of PCA reconstruction.  

 

 #PCs Condition Means ANOVA Results 

  N L Lr S Y F(4,79) p < 𝜔𝑝
2 

FPL-

One 

c1 0.54 0.55 0.57 0.58 0.47 1.9 n.s. 0.039 

c2 0.79 0.8 0.81 0.83 0.74 2.9 0.05 0.079 

c3 0.91 0.92 0.92 0.92 0.88 4.5 0.005 0.14 

c4 0.96 0.97 0.97 0.97 0.95 6.1 0.0005 0.19 

c5 0.99 0.99 .99 0.99 0.99 2.3 n.s. 0.056 

FPL-

Two 

c1 0.55 0.56 0.56 0.53 0.48 2.3 n.s. 0.054 

c2 0.8 0.8 0.8 0.77 0.71 5.3 0.001 0.16 

c3 0.91 0.91 0.92 0.9 0.84 9.8 0.0001 0.28 

c4 0.96 0.97 0.97 0.97 0.93 11 0.0001 0.3 

c5 0.99 0.99 .99 0.99 0.98 5.5 0.001 0.17 
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C.2 PCA Cumulative variance plots: Individual participants 
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C.3 PCA HSD results 

 

Table C.3.1. HSD results PCA eigenvalue spectrum: FPL one.  Tukey’s HSD tests for differences in 

effort condition means for PCA reconstructions consisting of a given number of principal components 

(e.g. c1 = one component, c2 = two components).  P values are rounded to three significant digits. 

 

Measure Comparison p <   Measure Comparison  p <  

c1 Normal Loud 0.996 

 

c4 Normal Loud 0.0158 

 

Normal Louder 0.791 

  

Normal Louder 0.0497 

 

Normal Shout 0.838 

  

Normal Shout 0.334 

 

Normal Yell 0.325 

  

Normal Yell 0.24 

 

Loud Louder 0.939 

  

Loud Louder 0.993 

 

Loud Shout 0.946 

  

Loud Shout 0.947 

 

Loud Yell 0.225 

  

Loud Yell 0.00152 

 

Louder Shout 1 

  

Louder Shout 0.995 

 

Louder Yell 0.0879 

  

Louder Yell 0.00344 

 

Shout Yell 0.115 

  

Shout Yell 0.0181 

         c2 Normal Loud 0.991 

 

c5 Normal Loud 0.319 

 

Normal Louder 0.683 

  

Normal Louder 0.492 

 

Normal Shout 0.448 

  

Normal Shout 0.987 

 

Normal Yell 0.198 

  

Normal Yell 0.627 

 

Loud Louder 0.912 

  

Loud Louder 0.998 

 

Loud Shout 0.685 

  

Loud Shout 0.827 

 

Loud Yell 0.113 

  

Loud Yell 0.0961 

 

Louder Shout 0.973 

  

Louder Shout 0.925 

 

Louder Yell 0.0331 

  

Louder Yell 0.141 

 

Shout Yell 0.0201 

  

Shout Yell 0.483 

         c3 Normal Loud 0.441 

     

 

Normal Louder 0.426 

     

 

Normal Shout 0.815 

     

 

Normal Yell 0.0434 

     

 

Loud Louder 1 

     

 

Loud Shout 0.998 

     

 

Loud Yell 0.00225 

     

 

Louder Shout 0.998 

     

 

Louder Yell 0.00214 

     

 

Shout Yell 0.0107 

     

 

   

  

   

 

 

 

 



100 

 

Table C.3.2. HSD results PCA eigenvalue spectrum: FPL two.  Tukey’s HSD tests for differences in 

effort condition means for PCA reconstructions consisting of a given number of principal components 

(e.g. c1 = one component, c2 = two components).  P values are rounded to three significant digits. 

 

Measure Comparison p <   Measure Comparison  p <  

c1 Normal Loud 0.769 

 

c4 Normal Loud 0.769 

 

Normal Louder 0.993 

  

Normal Louder 0.169 

 

Normal Shout 0.886 

  

Normal Shout 0.998 

 

Normal Yell 0.0965 

  

Normal Yell 0.000023 

 

Loud Louder 1 

  

Loud Louder 0.811 

 

Loud Shout 0.793 

  

Loud Shout 0.965 

 

Loud Yell 0.069 

  

Loud Yell 1.45E-06 

 

Louder Shout 0.708 

  

Louder Shout 0.537 

 

Louder Yell 0.0531 

  

Louder Yell 1.07E-07 

 

Shout Yell 0.43 

  

Shout Yell 0.000048 

         c2 Normal Loud 1 

 

c5 Normal Loud 0.978 

 

Normal Louder 1 

  

Normal Louder 1 

 

Normal Shout 0.581 

  

Normal Shout 0.999 

 

Normal Yell 0.000952 

  

Normal Yell 0.000224 

 

Loud Louder 1 

  

Loud Louder 0.979 

 

Loud Shout 0.487 

  

Loud Shout 1 

 

Loud Yell 0.000658 

  

Loud Yell 0.000761 

 

Louder Shout 0.506 

  

Louder Shout 0.999 

 

Louder Yell 0.000708 

  

Louder Yell 0.000228 

 

Shout Yell 0.0484 

  

Shout Yell 0.00144 

         c3 Normal Loud 0.939 

     

 

Normal Louder 0.917 

     

 

Normal Shout 0.852 

     

 

Normal Yell 5.8E-06 

     

 

Loud Louder 1 

     

 

Loud Shout 0.481 

     

 

Loud Yell 9.18E-07 

     

 

Louder Shout 0.444 

     

 

Louder Yell 7.7E-07 

     

 

Shout Yell 0.00037 
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Table C.3.3.  HSD results: Number of principal components necessary to represent 96% of force 

plate data variance.  P values are rounded to three significant digits. 

 

Measure Comparison p <   Measure Comparison  p <  

FPL-One Normal Loud 0.138 

 

FPL-Two Normal Loud 0.332 

 

Normal Louder 0.064 

  

Normal Louder 0.0972 

 

Normal Shout 0.646 

  

Normal Shout 0.986 

 

Normal Yell 0.802 

  

Normal Yell 0.0663 

 

Loud Louder 0.997 

  

Loud Louder 0.97 

 

Loud Shout 0.982 

  

Loud Shout 0.842 

 

Loud Yell 0.105 

  

Loud Yell 0.00272 

 

Louder Shout 0.922 

  

Louder Shout 0.539 

 

Louder Yell 0.066 

  

Louder Yell 0.000776 

 

Shout Yell 0.309 

  

Shout Yell 0.047 

 

 

 

 

 

 

 


