INTEGRATED APPROACH FOR ACCURATE QUANTIFICATION OF METHANE GENERATION AT MUNICIPAL SOLID WASTE LANDFILLS

by

Ali Reza Abedini

M.A.Sc. Civil and Environmental Engineering, Tehran University, 2003

B.Sc., Civil Engineering, Isfahan University of Technology, 1999

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES

(Civil Engineering)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

December 2014

© Ali Reza Abedini, 2014

Abstract

Municipal solid waste (MSW) landfills have been identified by regulators and policy-makers as primary sources of greenhouse gas (GHG) emissions. Landfill gas (LFG) generation is best described as a first order reaction which is the basis of many LFG generation models. These models are tools to predict a landfill's lifespan methane generation, in lieu of costly full scale quantification methods. Moreover, modeling results are required to properly design LFG recovery and utilization systems. These results are also used by the GHG emission regulatory authorities to establish and enforce regulations, and modify and fine-tune the existing policies, regulations, and inventory reports. However, with a large number of variables affecting the biological decomposition process within landfills, exact quantification of methane generation and/or emission from these sources is literally impossible.

Several investigations have raised serious doubts about the accuracy of many existing models, hence, the validity of model-based emission statistics utilized by the national and international organizations. A quick modeling exercise presented in Chapter 1, involving 5 popular LFG generation models showed up to 340% variation for a single site, arguably showing the need for an advanced model which offers more realistic, consistent, and comparable results that could be used by landfill owners, engineers, and regulatory agencies.

In this research, an integrated LFG generation model was developed based on the waste decomposition principles and operational and environmental conditions. Methodologies for effective full scale quantification of fugitive methane emissions were also developed. With the unique opportunity which was made available at the Vancouver landfill (VLF), a newly

ii

developed integrated gas generation model (iModel-110[©]) was calibrated and verified based on a comprehensive landfill methane mass balance investigation. The field investigations conducted at the VLF consisted of four major phases including: (i) development of an LFG recovery system database, (ii) monitoring the landfill's behavior in time and with respect to changes in ambient conditions, (iii) measurement of fugitive methane emissions through an innovative approach, and (iv) quantification of the biological methane oxidation in the landfill's cover soil using the stable isotope technique.

Preface

The overall supervision of this research was provided by Professor James W. Atwater.

Part of the work presented in this dissertation has been previously published in Journal of Waste Management and Research, is under review for publication, or has been presented at the national and international conferences. The following is a list of such manuscripts and or conference presentations:

Abedini, A. R., J. W. Atwater and G. Y. Fu (2012). "Effect of recycling activities on the heating value of solid waste: case study of the Greater Vancouver Regional District (Metro Vancouver)." Waste Management & Research 30(8): 839-848.

Abedini, A. R., J. W. Atwater and G. Y. Fu (2012) "Effects of Future Recycling Activities on Waste Disposal Options: Case Study of the Metro Vancouver, British Columbia." ISWA 2012 World Congress Proceedings, Florence, Italy.

Abedini, A. R., J. W. Atwater, J. P. Chanton (2014). "Quantifying Methane Oxidation at Municipal Landfills Cover Soil Using the Stable Isotope Technique and Flux Chamber". (currently under consideration for publication)

Abedini, A. R., J. W. Atwater, U. Mayer (2014). "Quantifying Fugitive Methane Emissions from MSW Landfills Based on Surface Methane Concentrations". (currently under consideration for publication)

Table of Contents

Abstract	ii
Preface	iv
Table of Contents	V
List of Tables	xii
List of Figures	xvi
List of Abbreviations	xxi
Acknowledgements	xxiii
Dedication	XXV
Chapter 1: Introduction	1
1.1 Background	1
1.2 Landfill Gas Concept	4
1.2.1 Biodegradation Phases	4
1.2.2 Anaerobic Digestion Principles	6
1.2.2.1 Stoichiometric Estimate of Gas Production	7
1.3 Landfill Gas Generation Modeling	
1.4 Popular LFG Generation Models Overview	
1.4.1 U.S. EPA LandGEM	
1.4.1.1 LFG Generation Modeling for VLF-Phase 1: LandGEM	
1.4.2 IPCC Model	
1.4.2.1 LFG Generation Modeling for VLF-Phase 1: IPCC Model	
1.4.3 Environment Canada	
	v

1.4	.3.1 LFG Generation Modeling for VLF-Phase 1: Environment Canada	. 24
1.4.4	Golder Model	. 25
1.4	.4.1 LFG Generation Modeling for VLF-Phase 1: Golder Method	. 26
1.4.5	BC MOE LFG Generation Assessment Tool	. 27
1.4	.5.1 LFG Generation Modeling for VLF-Phase 1: BC MOE Tool	. 29
1.4.6	Comparison of Different Modeling Results	. 30
1.5 \$	Statement of the Problem	. 32
1.6 (Objectives of the Study	. 33
Chapter 2	2: Materials and Methods	35
2.1 N	Metro Vancouver	. 35
2.2	Vancouver Landfill	. 38
2.2.1	Gas Collection System at the VLF	. 38
2.2.2	Development of GCS Database	. 40
2.2.3	Climatic Conditions	. 40
2.2.4	Historical Waste Tonnage at the VLF	. 41
2.2.5	Research Boundary at the VLF	. 43
2.3 I	Burnaby Waste-to-Energy Facility (WTEF)	. 43
2.4 N	Aunicipal Solid Waste Composition and Characteristics	. 43
2.4.1	Heating Value of MSW	. 44
2.4.2	Composition of Wastes Deposited at the VLF	. 48
2.4.3	Moisture Content of Municipal Solid Waste	. 50
2.5 N	METRO Equation	. 51
Chapter 3	3: Advanced Landfill Gas Generation Modeling	
		vi

3.1 Introduction	55
3.2 Methane Yield (L _o , m ³ tonne ⁻¹)	56
3.2.1 Degradability Factor (f _{dg})	59
3.2.2 Climate Factor (f _{cl})	64
3.2.3 Depth Factor (f_{dp})	66
3.2.4 Other Factors	67
3.2.5 Calculated Values for Methane Yield (L _o , m ³ tonne ⁻¹)	69
3.3 Decay Rate (k, year ⁻¹)	72
3.3.1 Temperature	75
3.3.1.1 Landfill Temperature Investigations	77
3.3.1.2 Results and Discussion	
3.3.1.3 Older Temperature Study at the Vancouver Landfill	
3.3.1.4 Conclusion	
3.3.2 Moisture Content	
3.3.2.1 The World Bank	
3.3.2.2 Environment Canada and Golder Associates	100
3.3.2.3 BC Ministry of Environment	100
3.3.2.4 IPCC Methodology	101
3.3.3 Suggested Values for Decay Rates (k, year ⁻¹)	102
3.4 Delay Time	104
3.5 The New Model	105
3.5.1 The New Model Results for the Vancouver Landfill	107
3.6 Discussion	110
	vii

Chapte	r 4: Fugitive Methane Emissions (E)	112
4.1	Introduction	
4.2	Fugitive Emission Measurement Techniques	
4.3	Surface Methane Concentration (SMC) Measurements at VLF	115
4.4	Flux Chamber	
4.4	.1 Dynamic and Static Flux Chambers	
4.4	.2 Field Work Procedure	121
4.4	.3 Modified Static Flux Chamber Measurements at VLF	
4.5	Effect of Barometric Pressure on Methane Emission Rates	
4.6	Results and Discussion	
4.7	Total Fugitive Methane Emission from the Vancouver Landfill	137
Chapte	r 5: Methane Oxidation in Cover Soil (O)	139
5.1	Introduction	139
5.2	Characteristics of Cover Soils at the Vancouver Landfill	
5.3	Stable Isotope Technique	
5.4	Oxidation Fractionation Factor (α_{ox})	
5.5	Transport Fractionation Factor (α _t)	150
5.6	Results and Discussion	151
5.6	.1 Residual Methane	152
5.6	.2 Anaerobic Methane	153
5.6	.3 Soil Incubation and Isotopic Fractionation Factor	
5.6	.4 Fraction of Methane Oxidized (f _{ox})	
5.7	Total Methane Oxidation at the Vancouver Landfill	
		viii

Chapter	6: LFG Recovery at the Vancouver Landfill (R)	165
6.1	VLF Gas Collection System Operational Data	. 165
6.2	The Vancouver Landfill LFG Database	. 166
6.3	Methane Recover Rate at the Vancouver Landfill (R)	. 171
Chapter	7: LFG Generation Modeling Calibration and Verification	175
7.1	Initial iModel-110 [©] Verification	. 175
7.2	Uncertainties in the New Modeling Predictions	. 177
7.3	iModel-110 [©] Calibration	. 179
7.3.2	LFG Generation Calibration Factor (CF _G)	. 179
7.3.2	2 Revised iModel-110 [©] Verification	. 181
7.3.3	3 LFG Generation Rates Calibration Factor (CF _k)	. 183
7.4	Methane Generation Estimates for the Entire Vancouver Landfill	. 186
Chapter	8: Landfill Gas Modeling Uncertainties and Sensitivity Analysis	189
8.1	Introduction	. 189
8.2	LFG Modeling Errors Due to Input Parameters Uncertainties (Gi-Err)	. 190
8.2.2	LFG Modeling Errors Due to DOC Uncertainty Range (Gi-Err) _{DOC}	. 194
8.2.2	2 LFG Modeling Errors Due to Decay Rates Uncertainty Range $(G_i$ -Err) _k	. 197
8.2.3	MSW Moisture Content and the Associated LFG Modeling Errors (G _i -Err) _w	. 200
8.3	Calibration Errors Resulted from the Field Study Deviations (CF _G -Err)	. 201
8.3.2	Errors Due to the Methane Emission Measurement Uncertainties $(CF_G-Err)_E$. 202
8.3.2	2 Errors Due to the Methane Oxidation Measurement Uncertainties $(CF_G-Err)_O$. 204
8.3.3	3 Errors Due to the Methane Recovery Data Deviations $(CF_G-Err)_R$. 207
8.4	Error Analyses Conclusion	. 208
		ix

Chapter	9: Summary and Conclusions	210
9.1	Common LFG Generation Modeling Methodologies and Shortfalls	
9.2	Vancouver Landfill, the Unique Opportunity	
9.3	Main Contributions to the LFG Industry	
9.3.1	The New Model	
9.3.2	2 Other Outcomes of the Study	
9.3.3	3 Specific Results	
9.4	Significance of the Results from Regulatory Perspective	
9.5	Applicability and Use of the New Model	
9.6	Recommendations	
Referenc	es	222
		224
Appendi	ces	234
Appendi	dix A Landfill Gas Generation Modeling Full Results	
Append Appen A.1	dix A Landfill Gas Generation Modeling Full Results LFG Generation Modeling for VLF-Phase 1: LandGEM Model	
Appendi Append A.1 A.2	dix A Landfill Gas Generation Modeling Full Results LFG Generation Modeling for VLF-Phase 1: LandGEM Model LFG Generation Modeling for VLF-Phase 1: IPCC Model	
Appendi Append A.1 A.2 A.3	dix A Landfill Gas Generation Modeling Full Results LFG Generation Modeling for VLF-Phase 1: LandGEM Model LFG Generation Modeling for VLF-Phase 1: IPCC Model LFG Generation Modeling for VLF-Phase 1: BC MOE Tool	
Appendi Append A.1 A.2 A.3 Append	dix A Landfill Gas Generation Modeling Full Results LFG Generation Modeling for VLF-Phase 1: LandGEM Model LFG Generation Modeling for VLF-Phase 1: IPCC Model LFG Generation Modeling for VLF-Phase 1: BC MOE Tool dix B iModel-110 [©] Modeling Results – Vancouver Landfill	
Appendi Append A.1 A.2 A.3 Append B.1	 dix A Landfill Gas Generation Modeling Full Results LFG Generation Modeling for VLF-Phase 1: LandGEM Model LFG Generation Modeling for VLF-Phase 1: IPCC Model LFG Generation Modeling for VLF-Phase 1: BC MOE Tool dix B iModel-110[©] Modeling Results – Vancouver Landfill iModel-110[©] Modeling Results – Area 2W 	
Appendi Append A.1 A.2 A.3 Append B.1 B.2	dix A Landfill Gas Generation Modeling Full Results LFG Generation Modeling for VLF-Phase 1: LandGEM Model LFG Generation Modeling for VLF-Phase 1: IPCC Model LFG Generation Modeling for VLF-Phase 1: BC MOE Tool dix B iModel-110 [©] Modeling Results – Vancouver Landfill iModel-110 [©] Modeling Results – Area 2W iModel-110 [©] Modeling Results – Area 2E	
Appendi Append A.1 A.2 A.3 Append B.1 B.2 B.3	 dix A Landfill Gas Generation Modeling Full Results LFG Generation Modeling for VLF-Phase 1: LandGEM Model LFG Generation Modeling for VLF-Phase 1: IPCC Model LFG Generation Modeling for VLF-Phase 1: BC MOE Tool dix B iModel-110[®] Modeling Results – Vancouver Landfill iModel-110[®] Modeling Results – Area 2W iModel-110[®] Modeling Results – Area 2E iModel-110[®] Modeling Results – Area 3 	
Appendi Append A.1 A.2 A.3 Append B.1 B.2 B.3 B.3 B.4	 dix A Landfill Gas Generation Modeling Full Results LFG Generation Modeling for VLF-Phase 1: LandGEM Model LFG Generation Modeling for VLF-Phase 1: IPCC Model LFG Generation Modeling for VLF-Phase 1: BC MOE Tool dix B iModel-110[©] Modeling Results – Vancouver Landfill iModel-110[©] Modeling Results – Area 2W iModel-110[©] Modeling Results – Area 2E iModel-110[©] Modeling Results – Area 3 iModel-110[©] Modeling Results – Area 1 	
Append Append A.1 A.2 A.3 Append B.1 B.2 B.3 B.4 B.5	dix A Landfill Gas Generation Modeling Full Results LFG Generation Modeling for VLF-Phase 1: LandGEM Model LFG Generation Modeling for VLF-Phase 1: IPCC Model LFG Generation Modeling for VLF-Phase 1: BC MOE Tool dix B iModel-110 [®] Modeling Results – Vancouver Landfill iModel-110 [®] Modeling Results – Area 2W iModel-110 [®] Modeling Results – Area 2E iModel-110 [®] Modeling Results – Area 3	

C.1 I	LFG Wells and Coordinates
C.2 I	LFG Wells Temperature Survey Results
Appendix	D LFG Emission Investigations
D.1 I	Flux Chamber Survey Data - Vancouver Landfill (June - July 2012)
D.2 I	Full Results of The Flux Chamber Survey and Measured Methane Emission Rates
(MER) a	at the Vancouver Landfill
D.3 (Graphical Presentation of the Recorded Barometric Pressure During Preliminary
Surface	Scan and Flux Measurement Test at the Vancouver Landfill
D.4 I	Estimated Methane and Landfill Gas Emission Rate at the Vancouver Landfill
Within t	the Study Boundary
Appendix	E Stable Isotope Tests Raw Data and Full Results
E.1 I	Flux Chamber Initial and Final Gas Samples
E.2 S	Soil Gas Samples Raw Data, GC-FID, and GCC-IRMS Results
Appendix	F Landfill Gas Collection System Wellfield Readings
F.1 (Collected LFG Flow Rates at Manifolds, Adjusted to 50% Methane Content 373

List of Tables

Table 1.1 Composition of waste deposited at the Vancouver Landfill in 2009
Table 1.2 Chemical elements and formula of waste deposited in the VLF in 2009
Table 1.3 LandGEM default modeling parameters
Table 1.4 IPCC default decay rates for different climatic regions 21
Table 1.5 IPCC default DOC content for different MSW components
Table 1.6 IPCC model methane correction factors 22
Table 1.7 Decay rates corresponding precipitation suggested by RTI 24
Table 1.8 BC MOE tool methane generation potential values 28
Table 1.9 BC MOE tool default methane generation rates 29
Table 1.10 Waste composition for VLF Phase 1 based on the MOE waste categories
Table 1.11 Comparison of modeling parameters and results for different methodologies_VLF
Phase 1
Table 2.1 Historical waste generation and disposal tonnages at Metro Vancouver
Table 2.2 Climate Normals 1971-2000 for the Vancouver international airport weather station 41
Table 2.3 Historical waste disposal rates at different phases of the Vancouver Landfill
Table 2.4 Historical and estimated MSW composition in Metro Vancouver (1991 - 2009) 44
Table 2.5 Selected formulae for calculating heating value of MSW 46
Table 2.6 Typical ultimate analysis data for combustible components of MSW 46
Table 2.7 Composition of the waste deposited at the Vancouver Landfill (w/w%) 49
Table 2.8 Moisture content of different components of MSW 51
Table 3.1 Dry base DOC content for different MSW components

Table 3.2 Optimum degradability extents for different materials reported by Eleazer et al. (1997)
Table 3.3 Degradability factor for different waste components 63
Table 3.4 Suggested climate factors for different precipitation levels 66
Table 3.5 Suggested depth factors for different climatic conditions 67
Table 3.6 Methane yield for different type of organic wastes deposited at the Vancouver Landfill
Table 3.7 Calculated variable L_o values for advanced LFG generation assessment at VLF 71
Table 3.8 Selected wells for the landfill's temperature investigation
Table 3.9 Landfill temperature field investigation results (red entries represent invalid recorded
data)
Table 3.10 Summary of landfill temperature investigations (Depths 8 to 10 m B.G.)
Table 3.11 Decay rates corresponding precipitation suggested by the World Bank 100
Table 3.12 Decay rates based on Environment Canada and Golder Associates methods
Table 3.13 Decay rates suggested by the BC MOE modeling guideline
Table 3.14 IPCC default decay rates when merged over all ranges of ambient temperature 102
Table 3.15 Suggested k values assigned to different precipitation levels for advanced LFG
generation assessment
Table 3.16 Suggested average delay time based on precipitation levels 105
Table 3.17 Summary of the initial methane generation modeling results (G _i) for the work site
areas
Table 3.18 Comparison between the iModel-110 [©] initial results with the popular LFG generation
models
xiii

Table 4.1 Methane emission level zones and assigned average concentrations at VLF	118
Table 4.2 Selected grids for flux chamber test at VLF 1	125
Table 4.3 Summary of MER resulted from the flux chamber survey at selected grids at VLF.	127
Table 4.4 Flux measurement duplicates for accuracy of the test 1	131
Table 4.5 Methane flux measurement results and SMC _a data for each emission zone	135
Table 4.6 Total fugitive methane emissions from each area of the VLF	138
Table 5.1 Cover soil samples for incubation	148
Table 5.2 Methane emission rates (MER) and residual methane δ^{13} C values	152
Table 5.3 Anaerobic methane δ^{13} C value at the Vancouver Landfill	153
Table 5.4 Oxidation isotopic fractionation factor (α_{ox}) for different cover soil types at VLF	159
Table 5.5 Effect of temperature on methane oxidation fractionation factor 1	160
Table 5.6 Effect of soil moisture content on methane oxidation fractionation factor	160
Table 5.7 Fraction of methane oxidized in the Vancouver Landfill cover soil	161
Table 5.8 Total methane oxidation at each area of VLF	164
Table 6.1 Wellfield manifolds (sub-headers) reading examples	172
Table 6.2 Summary of methane recovery data for different areas of the work site	174
Table 7.1 Summary of filed data for the study boundary Image: Comparison of filed data for the study boundary	175
Table 7.2 Initial methane generation modeling lack of fit and suggested generation calibrat	ion
factors	177
Table 7.3 Summary of the calibrated modeling results (using CF_G) and the correspond	ling
methane capture efficiency	180
Table 7.4 Calibrated decay rate values for different organic wastes at the VLF	183

Table 7.5 Summary of the calibrated modeling results (using CF_k) and the corresponding
methane capture efficiency
Table 7.6 Methane generation modeling results for the VLF using the iModel- 110° and the MOE
Tool
Table 8.1 Low and high DOC _{dry} values for different organic wastes deposited at VLF 191
Table 8.2 Low and high ranges of half-lives and decay rates for different organic wastes at VLF
Table 8.3 Methane generation and capture efficiency deviations in the VLF (within the study
boundaries) resulted from application of lower and higher ranges of DOC values
Table 8.4 Effect of DOC discount factors on methane generation estimates 196
Table 8.5 Methane generation uncertainties due to the decay rates uncertainty range 198
Table 8.6 Maximum deviations in generation estimates due to decay rates for different lifespan
periods
Table 8.7 Methane generation uncertainties due to organic material moisture content 200
Table 8.8 Deviation in methane oxidation rate due to fractionation factors uncertainties in Area
A
Table 8.9 Deviation in methane oxidation rate due to fractionation factors uncertainties in Area
A
Table 8.10 Generation calibration factor uncertainties due to the oxidation rate uncertainty range
Table 8.11 Deviation in CF_G due to uncertainty range in methane recovery data
Table 9.1 Summary of 2012 methane budget within the work site 218

List of Figures

Figure 1.1 Landfill gas production phases (ATSDR, 2001)
Figure 1.2 Methane generation rates at the VLF Phase 1– LandGEM v3.02
Figure 1.3 Methane generation rates at the VLF Phase 1– IPCC Model
Figure 1.4 Methane generation rates at the VLF Phase 1– Environment Canada
Figure 1.5 Methane generation rates at the VLF Phase 1– Golder Associates
Figure 1.6 Methane generation rates at the VLF Phase 1– BC MOE Tool
Figure 1.7 Different methodologies LFG generation modeling results_VLF Phase 1
Figure 2.1 Overall historical waste diversion rates at Metro Vancouver (GVRD, 2010)
Figure 2.2 Metro Vancouver and location of Vancouver Landfill and its operational phases 39
Figure 2.3 Normalized components of MSW in Metro Vancouver
Figure 2.4 Double ditch system at VLF site
Figure 3.1 Recorded ambient temperature at the VLF site
Figure 3.2 Daily min. and max. temperature recorded at the Vancouver Int'l Airport weather
station78
Figure 3.3 Location of selected LFG wells for landfill temperature investigations
Figure 3.4 Temperature data logger and chamber (left), and installation set-up at ~10m below
ground just above leachate level in an LFG well (right)
Figure 3.5 Temperature profile in LFG well "A2W-V007", December 13th, 2010 (ambient T ~8°
C, depth of waste ~10m and area closed with interim cover soil since 1993) 82
Figure 3.6 Temperature profile in LFG well "A2W-V012", December 13th, 2010 (ambient T ~8°
C, depth of waste ~11m and area closed with interim cover soil since 1993)

Figure 3.7 Temperature profile in Gas Well P01-V034, December 13th, 2010 (ambient T ~8° C,
depth of waste ~33m and area closed with geomembrane cover since 2009)
Figure 3.8 Temperature data for the LFG well "P01-V034" (5 m B.G.)
Figure 3.9 Comparison of monthly average temperature data (Ambient vs. P01-V034)
Figure 3.10 Hourly temperature fluctuations - ambient vs. landfill temperature (P01-V034) 86
Figure 3.11 Temperature data for the LFG well "P01-V041" (9.5 m B.G.)
Figure 3.12 Temperature data for the LFG well "A2W-V056" (8 m B.G.)
Figure 3.13 Recorded data at well "P01-V054"_example of wellfield adjustment affecting
recorded temperature
Figure 3.14 Example of faulty temperature readings at LFG well "P01-V031" Due to the LFG
collection system operational issues
Figure 3.15 System vacuum and LFG flow rate at P01-V031
Figure 3.16 System vacuum and LFG flow rate at P01-V030
Figure 3.17 LFG wellhead and LANDTEC GEM2000+ used to collect gas data at VLF
Figure 3.18 A Snapshot of other available temperature data recorded through a comprehensive
study by (Hanson et al. 2010) at several landfills including VLF (8 m B.G.) (Raw data were
provided by COV)
Figure 3.19 Average historical waste composition for different areas of VLF 108
Figure 3.20 Total waste deposition rate in the four areas within the study boundary at VLF 109
Figure 3.21 Methane generation rates from different waste components at VLF 109
Figure 3.22 Estimated landfill gas and methane generation rates at the work site 110
Figure 4.1 SMC measurement grids and IDs at the work site (VLF) 116
Figure 4.2 Landtec SEM-500 (FID) 116
xvii

Figure 4.3 VLF surface CH ₄ concentrations scan with FID (left), and Phase 1 measurement grids
and scanned patterns (right) 117
Figure 4.4 Work site divided into 5 different emission zones based on the SMC data 118
Figure 4.5 Flux Chamber and GEM [™] 2000+ set-up 123
Figure 4.6 Selected grids within the study boundary for flux chamber measurements at VLF . 125
Figure 4.7 Example of recorded methane concentration levels inside the flux chamber increasing
over time
Figure 4.8 Recorded barometric pressure and temperature at the Vancouver Landfill (July 16,
2012)
Figure 4.9 Barometric pressure at the Vancouver Landfill (June 26, 2012)
Figure 4.10 Barometric pressure at Vancouver Landfill (July 16, 2012)
Figure 4.11 Correlation between rate of change in BP and adjusting multiplier for MER 132
Figure 4.12 Averaged surface methane concentration (SMCa) and methane emission rate
(MERa) for 12 measurement grids at VLF
Figure 4.13 Correlation between SMC and MER values developed over 12 measurement grids at
the VLF
Figure 5.1 Sampling procedure for the stable isotope tests
Figure 5.2 Soil sample moisture/organic content and incubation tests
Figure 5.3 Standard curves developed during the GC-FID tests
Figure 5.4 A few FID test response snap shots
Figure 5.5 Methane concentrations during the soil incubation tests for soil sample collected from
Area A with 1.5% organic content, incubated at 25°C at two moisture content levels of 7.7% (1a)
and 10.7% (1b)
xviii

Figure 5.6 Methane concentrations during the soil incubation tests for soil sample collected from
Area B with 6.8% organic content, Incubated at 25°C at two moisture content levels of 7.1% (3a)
and 11.8% (3b)
Figure 5.7 Methane concentrations during the soil incubation tests for soil sample collected from
Area B with 6.8% organic content, incubated at 5°C at two moisture content levels of 7.1% (4a)
and 11.8% (4b)
Figure 5.8 Methane concentrations during the soil incubation tests for soil sample collected from
Area A with 2.2% organic content and 9.7% moisture content (2a), incubated at 25°C 156
Figure 5.9 E Methane concentrations during the soil incubation tests for soil sample collected
from Area B with 5.4% organic content, incubated at 25°C at two moisture content levels of
12.4% (5a) and 16.0% (5b)
Figure 5.10 Methane concentrations during the soil incubation tests for soil sample collected
from Area B with 3.0% organic content, incubated at 25°C at two moisture content levels of
4.2% (6a) and 14.0% (6b). Results from incubation of this sample was excluded from the final
analyses as the sample was not believed to represent the whole area
Figure 5.11 Soil gas samples methane isotopic signature
Figure 5.12 Relationship between methane emission rates (MER) and fraction of methane
oxidized (f _{ox})162
Figure 6.1 The Vancouver Landfill LFG database
Figure 6.2 Graphical menu of the Vancouver Landfill LFG database
Figure 6.3 Example graphical outputs of the LFG database
Figure 6.4 LFG database data entry form
Figure 6.5 LFG database, an example tabulated output
xix

Figure 6.6 Collected LFG flow rates from the four areas of VLF (adjusted for 50% CH ₄ content)
Figure 6.7 Captured LFG flow rates at VLF (flow rated are adjusted for 50% methane content)
Figure 7.1 Comparison of initial modeling results and field data (Gi vs METRO) 176
Figure 7.2 Upper limit and lower limit methane generation predictions for the study boundary 178
Figure 7.3 Methane generation modeling results with calibrated generation potential (CF_G) 180
Figure 7.4 Modeling results with calibrated k values in comparison to the results with lower and
higher CF _G
Figure 7.5 Methane generation and LFG flow rate estimates for the entire Vancouver Landfill
site (for the disposal activities until end of 2011)
Figure 7.6 Comparison of the new model predictions with other six popular LFG generation
models
Figure 8.1 Sensitivity analysis, ΔDOC vs. ΔCH_4 (methane generation estimate for 2012) 192
Figure 8.2 Sensitivity analysis, Δk vs. ΔCH_4 (methane generation estimate for 2012)
Figure 8.3 Graphical illustration of methane generation with lower and higher DOC ranges in
comparison with the initial (Gi) and the calibrated modeling results
Figure 8.4 Effect of DOC discount factors on methane generation estimates
Figure 8.5 Methane generation uncertainties due to the decay rates uncertainty range
Figure 8.6 Methane generation uncertainties due to organic material moisture content

List of Abbreviations

ASL	Above Sea Level
AR4	Fourth Assessment Report
AR5	Fifth Assessment Report
ATSDR	Agency for Toxic Substances and Disease Registry
BC	British Columbia
BC MOE	British Columbia Ministry of Environment
B.G.	Below Ground
BP	Barometric Pressure
CAA	Clean Air Act
CE	Collection Efficiency
COV	City of Vancouver
CRA	Conestoga-Rovers & Associates
DOC	Degradable organic carbon
ER	Emission Reduction
FID	Flame Ionization Detector
FOD	First Order Decay
FSU	Florida State University
GA	Golder Associates Ltd
GCC-IRMS	Gas Chromatograph Combustion Isotope Ratio Mass Spectrometer
GCS	Gas Collection System
GGRTA	Greenhouse Gas Reductions Target Act
GHG	Greenhouse Gas
GTE	Gas-to-Energy
GVRD	Greater Vancouver Regional District
HHV	Higher Heating Value
IPCC	Intergovernmental Panel on Climate Change
IR	Infra-red
LF	Landfill
LFG	Landfill Gas
LFGCS	Landfill gas collection system
LHV	Lower Heating Value
MAT	Mean Annual Temperature
MER	Methane Emission Rate
MOE	Ministry of Environment
MSW	Municipal Solid Waste
MV	Metro Vancouver

NHV	Net Heating Value
NMOC	Non-methane Organic Compounds
NSPS	New Source Performance Standards
OP-TDLAS	Open-path tunable diode laser absorption spectroscopy
ORS	Optical Remote Sensing
ROI	Radius of Influence
RPM	Radial Plume Mapping
SCFM	Standard Cubic Feet per Minute
SHA	Sperling Hansen Associates Inc.
SMC	Surface Methane Concentration
SWICS	Solid Waste Industry for Climate Solutions
SWMS	Solid Waste Management System
TNO	The Netherlands Organization Of Applied Scientific Research
TRI	Technology Resource Inc.
US-EPA	The United States Environmental Protection Agency
VLF	Vancouver Landfill
VOC	Volatile Organic Compounds
UV	Ultra Violet
UV-DOAS	Ultraviolet Differential Absorption Spectroscopy
WTE	Waste-to-Energy
WTEF	Waste-to-Energy Facility

Acknowledgements

ازاین دو در گذری کل من علبها فان

دوچنر حاصل عمر است نام نیک و ثواب

xxiii

It is my pleasure to convey my gratitude to a great number of people whose support and contribution in different ways helped me throughout my Ph.D. studies.

First and foremost, I would like to express my sincerest gratitude to Professor James W. Atwater (Jim) for his continuous support, supervision, advice, and guidance throughout the work. Thank you for your patience, motivation, enthusiasm, unflinching encouragement and your immense knowledge. Your advice on both my research and career has been priceless. I could not imagine having a better advisor and mentor for my Ph.D. studies.

I would also like to thank the rest of my research technical committee: Dr. George Fu, Dr. Eric Hall, Dr. Uli Mayer, and Colin Wong, for their encouragement, insightful comments, and brilliant suggestions. I also thank Dr. Jeff Chanton of Florida State University, for his technical guidance. My sincere thanks also goes to Dr. Don Mavinic for trusting me and giving me the opportunity to be part of the Pollution Control and Waste Management (PCWM) Group at UBC. I thank Paul Henderson (Manager of Solid Waste Services) and Chris Allan of Metro Vancouver for their generosity in sharing the regional district waste management data and for supporting my Ph.D. research. My special thanks also goes to the City of Vancouver (COV), for partial financial support and the unique opportunity provided through granting me full access to the Vancouver Landfill (VLF) site, including all the historical and ongoing data. In particular I thank Lynn Belanger (Manager of the VLF), Don Darrach, Nicole Steglich, and Eric Nielson.

I also offer my enduring gratitude to the faculty, staff and my fellow students at UBC-PCWM Group, who have inspired me to continue my work in the field of waste management. I thank my dear friends: Andrea Miskelly, Blair Fulton, Bonita Parsons, Colleen Chan, Daisy (Xi) Zhang, Eva Robertsson, Iqbal Bhuiyan, Isabel Londono, Kathy Bahadoorsingh, Mehrnoush Mohammadali, Parvez Fattah, Pattu Soubhagya, Saghi Kowsari, Sahar Kosari, Sepideh Jankhah, Zaki Abdullah, Wayn Lo, Wade

Archambault, and Winnie Chan. I also thank my colleagues at Sperling Hansen Associates, in particular Dr. Tony Sperling, for his understanding, support and patience.

I should also thank my incredible Kung-Fu folks in the morning training team, Sifu Daniel Pugh, Laurence Madera, Varun Saran, Lina Wang, and Mai Aoki. Healthy in mind and in body, and I owe you guys for this one. I owe particular thanks to Dr. Laurence Madera for proof reading my entire dissertation. Last but definitely not least, I would like to thank my family: my siblings, especially my older brother Dr. Mohammadreza Abedini, who showed me the way to success more than 25 years ago. Thank you for being such a wonderful and supporting big brother, for having faith in me and encouraging me in every decision I made in my life. My mom, my mom, my mom; Words fail me to express my appreciation to my mother whose dedication, love and prayers have led me to this place. Thank you mom for sacrifices you made and for believing and supporting me in my choices.

The best outcome from the past few years of my studies, despite all the difficulties, is the even much stronger bond I made with my best friend, my soul-mate and my love, Hamideh. There are no words to convey how much I love her. She has been a true and great supporter and has unconditionally loved me, supported me, and pushed me when necessary. I truly thank you for being such a wonderful friend for me and our kids, and for continuously being so strong and taking loads off my shoulder. I should also thank Hamideh's parents who let me take her hand in marriage and for their supports. My children, Daddy's two angels, Danial and Dina whom with I have spent less time than I have on my research. I owe you two so many hours and weekends that I should have spent with you in the past few years. Daddy loves you so much and he promises to make it up to you.

سای خداوند بی همتا را سنراست که مهه چنر از او و به سوی اوست.

Ali Reza Abedini December, 2014

Dedication

To the loving memory of my father who made the ultimate sacrifice for his country. To my mother, who had the arduous task of raising me and my siblings all by herself.

To my wife, who has supported me in all my endeavors.

And

To my son and daughter who make life fun and meaningful for daddy.

Danial and Dina's Birthday, January 2014

Chapter 1: Introduction

1.1 Background

Landfilling, as the most common solid wastes disposal option worldwide, has been practiced for more than 70 years (Vesilind P. Aarne et al., 2002). Compared to other disposal options, landfills are relatively cheap, easy to operate with minimal capital costs required. While there are many initiatives to minimize the landfilling of waste, especially organic waste, the author's expectation is that landfills will remain the predominant waste disposal strategy in many solid waste management systems (SWMS). However, despite the many benefits of waste land disposal, this strategy poses significant environmental risks, including the production of landfill gas. Landfill gas (LFG) is a by-product of natural decomposition of organic materials in landfills that can create unsafe air quality, health issues, unpleasant odours, and contribute to global climate change. LFG predominantly consists of methane (CH4) and carbon dioxide (CO₂), potent greenhouse gases (GHG). While CO₂ produced in the waste sector (e.g. municipal landfills, wastewater treatment plants, and burning of non-fossil fuel waste) is not counted as a GHG as it is of biogenic origin, the emission of CH4 is of significant concern (IPCC, 2006).

Methane is a naturally occurring GHG with a global warming potential (GWP) 28 to 34 times greater than carbon dioxide over a 100-year timeframe (IPCC, 2013). The atmospheric concentration of methane has increased since 1750 due to human activities, such that in 2011, the concentration of this gas was 1,803 ppb, exceeding the pre-industrial levels by 150% (IPCC, 2013). Landfills are considered a major contributor, responsible for 3-7% of global methane emissions (Bogner and Matthews, 2003). In Canada, about 3% of the 2010 national GHG emissions were reported to be from the waste sector. About 91% of these emissions were

attributed to be fugitive methane emissions from landfills (Environment Canada, 2012a). The Ministry of Environment (MOE) of the province of British Columbia (BC) also concluded that 6.6% of the 2010 GHG emissions in BC were sourced from the waste sector with the primary source being methane emissions from solid waste landfills (BC MOE, 2012). The provincial government of BC, like many other countries, has recently developed a new LFG regulation targeting more LFG recovery as a mitigation measure to achieve its provincial GHG reduction goals. The BC government, in support of the *Greenhouse Gas Reductions Target Act¹* (GGRTA), has committed to reduce its GHG emissions by at least 33% below 2007 emission levels by 2020 and achieve an 80% reduction by 2050.

There have been significant technological improvements in the LFG collection and utilization industry since the first full-scale project was implemented in Palos Verdes, California, USA. in 1975 (Spokas et al., 2006). However, an integrated approach to evaluate the production and the final fate of the generated methane is yet to be developed. The intergovernmental panel on climate change (IPCC), the world's foremost authority on climate change, issued 2007 and 2013 assessment reports (Fourth and Fifth Assessment Reports) concluding the climate is changing as a result of human activities and that it will worsen if no action is taken (Bogner et al., 2007; IPCC, 2013). With landfills being point sources of GHG emissions, it would be very easy to apply quantifiable mitigation measures (e.g. capturing LFG for energy recovery and/or the thermal or biological oxidation of methane) which can significantly change the concluded

¹ See: http://www.bclaws.ca/EPLibraries/bclaws_new/document/ID/freeside/00_07042_01

methane budget in the inventory reports. However, proper design and operation of such LFG recovery systems requires accurate information about the quantity, quality, and the mass balance of generated methane at the landfills. This information will also help regulatory entities enforce applicable regulations and fine-tune their GHG emission inventory reports.

There are several tools developed to predict gas generation in landfills which most commonly use first-order reaction kinetics and are based on the decay of the biodegradable materials. These models are generally developed for municipal solid waste (MSW) landfills and are heavily dependent on the availability of data on the type of landfill as well as the characteristics of the deposited waste. However, reliability and accuracy of these models have been questioned due to the discrepancy between the predicted values and actual data from the gas recovery systems (Vogt and Augenstein, 1997; Scharff and Jacobs, 2006). Vogt and Augenstein (1997) have suggested that these inaccuracies are mainly due to (i) the poor quality of data used for the development of these models, (ii) the limited time frames of available data used, (iii) the inappropriate application of available data, (iv) variable climatic conditions, and (v) variable landfill design and operation factors. Scharff and Jacobs (2006) conducted a comprehensive evaluation of six different gas generation models and showed that the minimum variation in the results in the best case scenario was between 20 - 125% while the estimation in the worst case scenario varied between 40 to 570%. These investigations raise serious doubts about the accuracy of these models as well as the precision, and even the validity, of model-based emission statistics utilized by the national and international organizations.

1.2 Landfill Gas Concept

Landfill gas (LFG) predominantly consists of methane and carbon dioxide and is a by-product of anaerobic decomposition of organic wastes deposited at the landfill. Depending on a number of factors, including waste composition and the age of the landfill, the percentage of each component of LFG varies. Typically municipal solid waste LFG consists of 45- 60% methane (CH₄), 40 - 60% carbon dioxide (CO₂), small amounts of nitrogen (N₂), oxygen (O₂), ammonia (NH₃), hydrogen sulfide (H₂S), hydrogen (H₂), reduced sulfur compounds (RS), carbon monoxide (CO), and non-methane organic compounds (NMOCs) such as trichloroethylene, benzene, and vinyl chloride (Tchobanoglous et al., 1993).

Principal substrates which are ultimately decomposed to methane are cellulose, hemicellulose, proteins, and lipids. Higler and Barlaz (2001) reported that about 90% of the biodegradable portion of the municipal solid waste (MSW) in the United States (US) is comprised of cellulose and hemicellulose. There are different types of anaerobic bacteria involved in this conversion, which occurs though a complex series of reactions explained below as four sequencing phases.

1.2.1 Biodegradation Phases

These phases are defined as aerobic, anoxic non-methanogenic, anaerobic unsteady methanogenic, and anaerobic steady methanogenic phases which are illustrated in Figure 1.1 (Farquhar and Rovers, 1973; ATSDR, 2001).

Aerobic phase (Phase I): Phase I starts with placement of waste in the landfill, resulting in the introduction of oxygen to the landfill body. In this phase, which lasts only a few days, oxygen is depleted via aerobic biodegradation and is gradually removed as CO₂.

Figure 1.1 Landfill gas production phases (ATSDR, 2001)

Anoxic, Nonmethanogenic phase (Phase II): In this phase, acid fermentation occurs, resulting in a significant rise in CO_2 and H_2 production. Full establishment of this phase takes about two weeks at the end of which, and in total absence of oxygen, methane-producing bacteria begin to establish themselves.

Anaerobic, unsteady Methanogenic phase (Phase III): Methanogenesis begins but, depending on the moisture content, it takes about 3-4 months to become established. LFG generation becomes significant in this phase and it takes a few years until this generation rate stabilizes (Edward A. McBean et al., 1995; ATSDR, 2001).

Anaerobic, steady Methanogenic phase (Phase IV): Constant composition of LFG, of which 40-70% by volume consists of methane (Edward A. McBean et al., 1995), can be observed during this phase. The duration of methane production depends on the percentage of slowly degradable organic matter (e.g., paper, wood, etc.) in the landfilled waste, but in general, the rate of gas production significantly decreases after about 30 years (Edward A. McBean et al., 1995).

Normally, the duration of each phase is variable and depends on factors such as the distribution of organic components in the landfill, availability of nutrients, moisture content of the waste, moisture routing through the waste materials, and the degree of the initial compaction (Tchobanoglous and Kreith, 2002).

1.2.2 Anaerobic Digestion Principles

In the presence of enough moisture and bacteria, the anaerobic decomposition of waste starts in the complete absence of oxygen. This anaerobic decomposition of organic materials leads to the generation of methane and can be described as a simple two stage process (EMCON Associates, 1980). In this process, complex organic materials such as cellulose, fats, carbohydrates, and proteins are hydrolyzed and fermented by acid forming bacteria into organic fatty acids such as propionic and acetic acids. Products of hydrolysis also include simple sugars, amino acids, and other low molecular weight organic compounds. In the second stage organic acids are consumed by methanogenic bacteria and converted to methane and carbon dioxide (EMCON Associates, 1980). The amount of methane generated directly depends on the level of bacterial activity in the landfill. Therefore, by providing favorable conditions for bacterial fermentation, the methane generation rate can be optimized. These conditions include sufficient moisture content, optimum temperatures (30-40° C for mesophilic and 50-55° C for thermophilic bacteria), sufficient nutrients (optimal C/N ratio of 16 (Farquhar and Rovers, 1973)), an absence of oxygen and toxic materials, pH of 6.7 - 7.2, alkalinity greater than 2000 mg/L as CaCO₃, and organic acid concentration of less than 3000 mg/LCH₃COOH (Schamucher, 1983). These landfill conditions provide the maximal production of methane gas.

1.2.2.1 Stoichiometric Estimate of Gas Production

The following equation describes the general transformation of organic matter in the presence of appropriate bacteria in an anaerobic environment (Tchobanoglous and Kreith, 2002).

Organic matter +
$$H_2O$$
 + nutrients \rightarrow new cells + resistant organic matter
+ $CO_2 + CH_4 + NH_3 + H_2S$ + heat
Equation 1.1

There are many references assuming a complete conversion of biodegradable matter where all the carbon content of the disposed waste is assumed to be converted to CO_2 and CH_4 . This assumption results in the following stoichiometric equation to calculate the total amount of gas produced in landfills.

$$\begin{split} C_{a}H_{b}O_{c}N_{d} + & \frac{\left(4a - b - 2c + 3d\right)}{4}H_{2}O \rightarrow \frac{\left(4a - b + 2c + 3d\right)}{8}CO_{2} \\ & + \frac{\left(4a + b - 2c - 3d\right)}{8}CH_{4} + dNH_{3} \end{split}$$
 Equation 1.2

7

This approach has resulted in variable gas yields² reported in a number of studies ranging from $170 - 453 \text{ m}^3$ per tonne of wet waste, from which approximately $85 - 244 \text{ m}^3$ is reported to be the quantity of methane (Schamucher, 1983).

As an example, the following calculations show the stoichiometric estimate for the gas production from waste at the Vancouver Landfill (VLF). For the purpose of these calculations, the results of the MSW composition study conducted in 2009 by Technology Resource Inc. (TRI) in the Surrey Transfer Station were used (TRI, 2010). These values were adjusted for the wastes from demolition and land Table 1.1 Composition of waste deposited at the Vancouver Landfill clearing (DLC), which were in 2009

Table 2.3 in Page 42).

Other information required to conduct this analysis included the moisture content of different waste components (See Table 2.8 in Page 51). Furthermore, dry percentages of the chemical elements (i.e. C, H, O, N, and S) contained in the

separately hauled to the VLF (See

Weste Components	Waste Composition in 2009				
waste Components	MSW	MSW	+ DLC		
Paper and Paperboard	21.2	17.9%	17.9%		
Glass	1.7	1.4%	1.4%		
Ferrous Metals	3.2	2.7%	2.7%		
Non-ferrous Metals	0.8	0.7%	0.7%		
Plastics	12.3	10.4%	10.4%		
Organic Waste	26.6	22.5%	22.5%		
Yard and Garden Waste	3.3	2.8%	2.8%		
Wood and Wood Products	12.4	10.4%	21.4%		
DLC	-	15.6%	-		
textiles	3.1	2.6%	2.6%		
Rubber	0.9	0.8%	0.8%		
Nappies	2.0	1.7%	1.7%		
Composite Products	4.0	3.4%	3.4%		
Hazardous Wastes	4.2	3.5%	3.5%		
Other	4.4	3.7%	8.4%		
Total	100.0	100.0%	100.0%		
MSW Deposited in 2009:	469,765	Tonnes			
DLC Deposited in 2009:	86,760	Tonnes			
Total Waste Deposited in 2009:	556,525	Tonnes			
Assumed Wood Content in DLC:	70%				

² Total amount of gases produced by unit weight of landfilled waste over the gas-generating lifespan of a landfill.

organic waste were calculated based on the typical ultimate analysis data presented in

Table 2.6 (See page 46). Accordingly, the initial assessments showed that 47.5% of the waste deposited at the VLF in 2009 was dry organics and the proportion of chemical elements were 22.75%, 2.93%, 19.27%, 0.54%, and 0.10% for C, H, O, N, and S, respectively. These results, along with the determined chemical formula of the waste, are presented in Table 1.2.

Organic Waste Components	Weight in 100 kg		Chemical Elements (dry weight in 100kg)					
	Wet	Dry	С	Н	0	Ν	S	Ash
Paper	17.9	14.3	6.21	0.86	6.28	0.04	0.03	0.86
Food Waste	22.5	11.2	5.39	0.72	4.22	0.29	0.04	0.56
Yard Waste	2.8	1.5	0.74	0.09	0.59	0.05	0.00	0.07
Wood Waste	21.4	17.5	8.67	1.05	7.48	0.04	0.02	0.26
Textile	2.6	2.2	1.23	0.15	0.70	0.10	0.00	0.06
Rubber	0.8	0.7	0.52	0.07	0.00	0.01	0.00	0.07
Total	67.8	47.5	22.75	2.93	19.27	0.54	0.10	1.87
Normalized (%)			47.94	6.18	40.60	1.13	0.21	3.95
Atomic Weight			12.00	1.00	16.00	14.00	32.10	NA
Mole Ratio			4.00	6.18	2.54	0.08	0.01	NA
Chemical Formula of Waste (N=1)			=1)	$C_{49}H_{76}O_{31}N$				

Table 1.2 Chemical elements and formula of waste deposited in the VLF in 2009

Therefore, the stoichiometric equation for this particular waste composition is as follows:

$$C_{49}H_{76}O_{31}N + 15.3 \cdot H_{2}O \longrightarrow 23.3 \cdot CO_2 + 26.0 \cdot CH_4 + 1 \cdot NH_3$$

When the atomic weights of the elements are used, the following equation is seen:

$$(1183) + (276) \longrightarrow (1026) + (416) + (17)$$

Therefore, methane generation potential for the wastes deposited at the VLF in 2009 is:

 $M_{o} = (416 / 1183) \cdot (47.5 / 100) = 0.1668 \text{ kg CH}_{4} / \text{ kg wet waste}$ Where:

 M_o is the methane yield (kg CH₄/ kg wet waste),

(416 / 1183) is the molecular weight ratio of CH₄ to the deposited organics, and

(47.5 / 100) represents the amount of dry organics (presents, or kg in 100 kg of wet waste)

Considering methane density in standard conditions (i.e. 15 °C and 1 atm) equals 0.678 kg/m³, then methane yield per tonne of waste equals:

$M_0 = 0.1668 / 0.678 \cdot 1000 = 246 \text{ m}^3 \text{ CH}_4 / \text{tonne of waste}$

This value represents the maximum methane yield under favorable environmental conditions for bacterial activity. Comparison of the data achieved from the stoichiometric estimates with actual landfill gas measurements has absolutely proved the over-estimation of this methodology (Schamucher, 1983).

Bookter and Ham (1982) investigated the level of MSW stability in several municipal landfills across the U.S. and compared the findings with laboratory samples developed within 9 years. They observed a reduction of cellulose content, as well as a significant reduction in cellulose-tolignin ratio over time, suggesting an overall trend of decomposition. They observed that the material decomposed more rapidly under optimum conditions; however, complete degradation was never achieved. They reported a low pH as a sign of slower degradation. Although the lab results did not show any correlation between moisture level and degradation, they concluded that landfills located in areas with more precipitation had higher level of biological degradation. This discrepancy may be due to the fact that in actual landfills the temperature in the deeper zones of the landfill is positively regulated by bacterial metabolism, which is enhanced under optimum moisture levels. In contrast, the temperature of the lab samples was in equilibrium with ambient temperature and subject to unfavorable thermal conditions. During the course of the present study, as will be fully explained in Chapter 3, the actual temperature in the different zones and depths of the VLF was continuously monitored over different seasons and compared with fluctuations of the ambient temperature.

Eleazer et al. (1997) in a comprehensive study compared the theoretical methane yields with the actual methane generated from biodegradation of these materials under optimum conditions in the lab. They showed that the extent of decomposition in different materials varies from 28 to 94% with an average value of 58% decomposition for a typical MSW. Besides the levels of some refractory components in the waste (e.g. lignin), there are other factors resulting in inaccuracies with stoichiometric gas generation estimates. These factors include (i) moisture limitation in some parts of the landfill due to the rate of compaction, landfill depth, presence of impermeable barriers, etc., (ii) existence of plastic bags resulting in inaccessibility of some organic fractions, and (iii) presence of chemical materials in the landfills which are toxic to the gas producing bacteria, thus slowing down the biodegradation process in some sections of the landfills.

In this thesis, the author attempted the use of these variables as reduction indexes (discount factors) for the total portion of the deposited carbon which ultimately forms methane in MSW landfills.
1.3 Landfill Gas Generation Modeling

Quantitative and qualitative information about the generated gas at landfills are one the basic data required to design proper LFG recovery and utilization systems. The GHG emission regulatory authorities also need accurate information about the levels of emissions from landfills to evaluate the performance of the existing systems, establish and enforce regulations, and modify and fine-tune the existing policies and regulations. Physical measurements of emission levels from all landfills can be very costly and ineffective. Therefore, LFG generation models are often used to estimate the emissions from landfills. Using a model is particularly advantageous when the goal is to estimate the past and future LFG generation and/or emission. However, with many factors affecting methane generation at municipal landfills, it is very difficult to conduct an accurate LFG generation assessment. While there are many tools which simulate the gas generation process, a definitive and industry-accepted methodology is yet to be developed. Normally, the amount of disposed degradable waste is used as a basis in all existing methodologies, and using an empirical formula for the biodegradation of waste is one of the common ways that many researchers estimate methane generation rates from landfills (Barlaz et al., 1990; Peer et al., 1992; Bogner and Spokas, 1993; Oonk, 1994).

Landfill gas models were first developed to predict gas flow rates in the 1970's when sanitary landfilling increased and LFG utilization, as an alternative source of energy, became more popular (Walsh, 1994). While the "rule of thumb" modeling was the main basis for estimations in the LFG industry, Farquhar and Rovers (1973) developed a quantitative approach to estimate the LFG generation followed by other quantitative approaches (Robert K. Ham et al., 1979; EMCON Associates, 1980) which were developed based on limited available empirical data (Walsh, 1994). Some of the most well-known initial models include; (i) the direct decay model, (ii) the zero order decay model, and (iii) the simplified first order decay model (EMCON Associates, 1980; Peer et al., 1992; IPCC, 1996).

With increasing concerns about GHG emissions in mid 1990's, second generation models were developed for GHG emission evaluation, regulation and control purposes. Most of the more recent LFG generation models commonly use first-order reaction kinetics, which best describe the anaerobic degradation of organic material (EMCON Associates, 1980; Hoeks, 1983; Oonk, 1994). This methodology is based on the decay of biodegradable materials and is generally developed for municipal solid waste (MSW) landfills. Unlike the direct decay and the zero-order models, the first-order methodology considered the impact of the age of waste on gas generation. Based on this model, the gas generation from each unit-mass of the deposited waste exponentially declines over time.

In the first order decay models, expression of gas generation is based on the following equation:

$$\frac{dC_t}{dt} = -kC_t$$
 Equation 1.3

Where: t = time (year)

 C_t = amount of decomposable carbon available at the landfill at time t k = decomposition rate (year⁻¹)

Integration of Equation 1.3 over time results:

$C_t = C_o e^{-kt}$	Equation 1.4
---------------------	--------------

13

Where C_o is the amount of decomposable carbon available at the landfill at time t = 0

Therefore, total (cumulative) carbon decomposed (C_{dec}) until time t is:

$$C_{dec} = C_o (1 - e^{-kt})$$
Equation 1.5

In this methodology, the total production of "carbon containing gas" (i.e. CO_2 and CH_4) is calculated based on the total carbon available for degradation at the landfill. This amount has its maximum value at the beginning, when the waste is placed in the landfill, and exponentially decreases over time. Assuming 50% (v/v) concentration of methane in the generated LFG, total methane generated due to the decomposition of the C_{dec} would be equal to:

$$M_t = C_o (1 - e^{-kt}) \cdot 0.5 \cdot 16/12$$

Equation 1.6

Where M_t is the cumulative methane generated until time t and 16/12 is the molecular weight ratio of methane to carbon.

LFG generation behavior predicted by the first order decay model has been successfully validated at landfills and through lab experiments. As such, this methodology is the basis for many current generation models used in Europe and North America, including the Netherlands Organization of Applied Scientific Research (TNO), the United States Environmental Protection Agency (US-EPA), the Intergovernmental Panel On Climate Change (IPCC), and the British Columbia Ministry of Environment (BC MOE) (Oonk and Boom, 1995; USEPA, 2005; IPCC, 2006; CRA, 2009).

There are two types of first order decay models commonly practiced: single-phase and multiphase methodologies. The single-phase models consider all organic waste degrading at a single decay rate. This type of LFG generation modeling is widely used and is the basis of the US-EPA LandGEM model and the Dutch TNO model. These models assume a delay period in gas production, during which no methane is initially produced. An important weak point about these models is unreliable gas production estimates due to long term variations in landfill conditions and the composition of waste deposited at landfills (Huitric and Soni, 1997).

The multi-phase first order decay models are based on the same principles but differ between different types of organic wastes. This yields a more sophisticated approach which results in more reliable generation predictions (Hoeks, 1983; Oonk, 1994). This methodology considers different decay rates for different types of organic materials based on their half-lives, which is the time in which half of the initial amounts of the decomposable organics are decayed. The multi-phase models are more flexible and provide more accurate estimates for the methane generation at MSW landfills. However, this methodology requires more information about the historical and future composition of the MSW stream. Oonk and Boom (1995) conducted a comprehensive gas generation modeling study involving full scale data collection from 12 different Dutch landfills over 3 years. They showed that the multi-phase first order and zero order methodologies.

The IPCC FOD model, the British GasSim model and the BC MOE Tool are based on the multiphase model principles. For example, the GasSim model considers three different waste types, each with different decomposition rates, which theoretically is a good assumption of the mechanism happening in a landfill. However, the practicality of this model is highly criticized due to a lack of detailed information at most of the landfills and difficulties to break down waste composition into minor categories with appropriate modeling parameters (Huitric and Soni, 1997).

Despite all the improvement in LFG generation modeling, better projections for future LFG generation are still required. As an example, the overall kinetic parameters must still be empirically adjusted so that the current modeling results match the actual gas flow rates (Spokas et al., 2006). Considering the recent considerations and changes in waste management and organic diversion strategies worldwide, the author believes that the multi-phase first order decay methodology will provide the best approximation for methane generation at MSW landfills. However, an integrated approach using site-specific modeling parameters must be defined and incorporated into the model.

In Section 1.4 an overview of five well known models is provided. For this purpose, and considering the location of the present research (i.e. the Vancouver Landfill), two of the most well-known North American models (known and used worldwide), the methodology adopted by the Environment Canada, as well as two of the recently developed models in BC, Canada were selected. These five models are:

- (i) The U.S. EPA LandGEM model (USEPA, 2005),
- (ii) The IPCC FOD model (IPCC, 2006)
- (iii) Environment Canada (Environment Canada, 2012a)

- (iv) The inventory of BC GHG generation from landfills developed by the Golder Associates Ltd. (GA) for the BC Ministry of Environment (MOE) (Golder Associates Ltd., 2008a), and
- (v) The LFG generation assessment tool "Tool" developed by Conestoga-Rovers & Associates (CRA) for the BC MOE (CRA, 2009).

1.4 Popular LFG Generation Models Overview

In this section, a comprehensive overview is conducted on four different gas generation methodologies which are most applicable to the research work site. To provide a more in-depth comparison between the selected models, LFG generation from the Phase 1 section of the VLF was estimated using these models. This phase was selected for this practice as very good knowledge about the deposited waste tonnage and composition was available for this phase, the phase has been recently completed and capped according to high engineering standards, and a well-engineered and aggressive LFG collection system was installed and operated at this phase. In fact, based on the closure system and the active LFG collection system in place at this phase of the VLF, it was expected that this area of the landfill would have a methane capture efficiency of 90% to 95%, as reported for similar landfills (Spokas et al., 2006; SCS Engineers, 2009). The suggested collection efficiency values by Spokas et al. (2006) and SCS Engineers (2009) are used as the default values for guidelines by the French Environment Agency (ADEME), and the U.S. Solid Waste Industry for Climate Solutions (SWICS), respectively. The information about the historical waste tonnages and composition deposited in this area of the landfill are provided in Table 2.3 and Table 2.7, respectively (See page 42 and page 49). The comparisons of the LFG

generation modeling results were conducted on the peak, current and total lifespan methane generation as well as the collection efficiency of the existing system in Phase 1 of the VLF. These results are summarized in Table 1.11 and illustrated in Figure 1.7.

1.4.1 U.S. EPA LandGEM

The U.S. EPA landfill gas emission model (LandGEM) determines the mass of methane generated based on the methane generation capacity (L_o) and mass of waste deposited. LandGEM was developed by the U.S. EPA in 1991 based on the first order decay methodology with pre-defined modeling parameters for different climatic conditions (i.e. k and L_o) developed based on empirical data from U.S. landfills (Debra R. Reinhart et al., 2005). The last version of LandGEM, v3.02, was released in 2005 (USEPA, 2005). The major improvement in this version is that the model calculates the gas generation from the waste deposited in 1/10th of a year (as opposed to the annual tonnage). Equation 1.7 below describes the U.S. EPA LandGEM model v3.02:

$$Q_{CH_4} = \sum_{i=1}^{n} \sum_{j=0.1}^{1} k L_o \left(\frac{M_i}{10}\right) e^{-kt_{ij}}$$
 Equation 1.7

Where:

 Q_{CH4} = annual methane generation in the year of the calculation ($m^3 year^{-1}$) k = methane generation rate ($year^{-1}$) L_o = potential methane generation capacity ($m^3 tonne^{-1}$) M_i = mass of waste accepted in the ith year (tonne) There are two sets of modeling parameters proposed in LandGEM. (i) CAA default parameters, used when the modeling is to screen MSW landfills under the Clean Air Act (CAA) based on the maximum emissions, and (ii) AP-42 inventory default parameters, which are used to estimate emissions for inventory reports under the U.S. EPA's *Compilation of Air Pollutant Emission Factors* (USEPA, 2005). In either set, both parameters are selected based on the annual precipitation with 635 mm as the separating line between arid and conventional area. The U.S. EPA LandGEM default modeling parameters are provided in Table 1.3 below.

Table 1.3 LandGEM default modeling parameters

	k (ye	ear ⁻¹)	$L_o (m^3 \text{ tonne}^{-1})$			
	CAA	Inventory	CAA	Inventory		
Conventional	0.05	0.04	170	100		
Arid Area	0.02	0.02	170	100		
Wet (Bioreactor)		0.70		96		

1.4.1.1 LFG Generation Modeling for VLF-Phase 1: LandGEM

Based on the data provided to the U.S. EPA LandGEM model using the CAA and inventory conventional modeling parameters, the current (i.e. 2012) methane generation rate from Phase 1 of the VLF is approximately 16,700 and 8,500 tonnes per year, respectively. The peak methane generation was in 2007, for both sets of modeling parameters, at approximately 20,400 and 9,900 tonnes per year. LandGEM also estimated that this area will generate at least 300,000 tonnes of methane during its lifespan. When the CAA default parameters were used, this amount was as high as 515,000 tonnes. Methane generation rates from the Phase 1 of the VLF estimated by the U.S. EPA LandGEM model are illustrated in Figure 1.2. Full results of this modeling practice are provided in the Appendix A.1.

Figure 1.2 Methane generation rates at the VLF Phase 1– LandGEM v3.02

1.4.2 IPCC Model

The intergovernmental panel on climate change (IPCC) has introduced the first order decay (FOD) model, developed by an international team of experts to estimate methane emissions from individual landfills and at the national level (IPCC, 2006). The IPCC FOD model is a multiphase first order decay model which calculates methane generation from decomposition of each waste component separately based on the respective decay rates and degradable carbon content. This model includes default decay rates for four different climatic conditions including (i) dry temperate, (ii) wet temperate, (iii) dry tropical, and (iv) moist and wet tropical. The thresholds to classify these regions are mean annual temperature (MAT) of 20°C and mean annual precipitation of 1,000 mm. The IPCC default decay rates are based on the half-lives of waste

components under different environmental conditions. These default values for different climatic regions are presented in Table 1.4 below.

	Decay Rates (k) (years ⁻¹)						
Waste Components/ Types	Dr	·y	Moist and Wet				
	MAT<20°C	MAT>20°C	MAT<20°C	MAT>20°C			
Food waste / Sewage sludge	0.05 - 0.08	0.07 - 0.10	0.10 - 0.20	0.17 - 0.70			
Garden and park waste (non-food)	0.04 - 0.06	0.05 - 0.08	0.06 - 0.10	0.15 - 0.20			
Paper and Textiles	0.03 - 0.05	0.04 - 0.06	0.05 - 0.07	0.06 - 0.085			
Wood and straw	0.01 - 0.03	0.02 - 0.04	0.02 - 0.04	0.03 - 0.05			
Bulk MSW or industrial waste	0.04 - 0.06	0.05 - 0.08	0.08 - 0.10	0.15 - 0.20			

 Table 1.4 IPCC default decay rates for different climatic regions

The IPCC model calculates methane yield based on the amount of degradable organic carbon (DOC) deposited into the landfill during its lifespan. DOC content, which is based on the composition of waste, can be calculated from the weighted average of the carbon content of various components of the waste stream. IPCC (2006) has suggested the default DOC values for the major types of waste presented in Table 1.5.

Table 1.5 IPCC default DOC	content for d	lifferent MSW	components
----------------------------	---------------	---------------	------------

	Weste Stream	DOC content in % of wet waste			
	waste Stream	Range	Default		
A.	Paper and Cardboard	36-45	40		
В.	Textiles [*] and Nappies	18 - 40	24		
C.	Food waste	8-20	15		
D.	Wood	39 - 46	43		
E.	Garden and park waste	18 - 22	20		
F.	Rubber and Leather**	39	39		
G.	Plastics, Metal, Glass and other inert materials	0	0		
	Bulk MSW Waste	12 - 28	15		

* 40 percent of textiles are assumed to be synthetic

** Natural rubbers would likely not degrade under anaerobic condition at landfills, hence only half is incorporated

The IPCC model also considers a correction factor for methane generation depending on the operational practices at the landfill. The methane correction factor (MCF) is defined for five different categories as presented in Table 1.6 below. In the following section the first year of operations in Phase 1 of the VLF was assumed to fall under the fourth category (i.e. MCF = 0.5) and advancing to the first category in the following years. This assumption was made based on the dimensions of this phase, disposal rate, and waste density.

Table 1.6 IPCC model methane correction factors

	Landfill Operation Category	MCF
1.	Managed Anaerobic	1.0
2.	Unmanaged Deep	0.8
3.	Uncategorized	0.6
4.	Managed Semi-Aerobic	0.5
5.	Unmanaged Shallow	0.4

1.4.2.1 LFG Generation Modeling for VLF-Phase 1: IPCC Model

Based on the assumptions made and the data provided to the IPCC model using the default modeling parameters for the Vancouver region, this model estimates that the 2012 methane generation rate from the Phase 1 of the VLF is in the order of 10,100 tonnes year⁻¹. The peak methane generation was in 2007 at 14,000 tonnes year⁻¹. The IPCC model also estimated that this area will generate about 315,000 tonnes of methane during its lifespan, which considering the total tonnage of waste in place, translates to a methane yield of about 104 m³ per tonne of waste. Methane generation rates from the Phase 1 of the VLF estimated by the IPCC model are illustrated in Figure 1.3 below. The related modeling input parameters, along with the full results are presented in the Appendix A.2.

Figure 1.3 Methane generation rates at the VLF Phase 1- IPCC Model

1.4.3 Environment Canada

Environment Canada, in its inventory report for the National GHG sources and sinks between 1990 and 2010, reported that methane emission from landfills makes up about 91% of the overall emissions from the Waste Sector, which was reported at about 22 million tonnes CO₂ equivalent (CO₂-e) in 2010 (Environment Canada, 2012a). Environment Canada's LFG generation estimates are based on the first order reaction methodology using province-specific modeling parameters. The decay rates (k) are assumed to have a direct relation with landfill moisture content, which is a direct function of annual precipitation levels. Environment Canada evaluated each province based on the annual precipitation data from 1941 to 2007 and determined k values using a relationship that was developed by the Research Triangle Institute (RTI) in 2004 (Environment Canada, 2012a). The RTI-suggested k values are shown in Table 1.7. These

values show a linear relationship between decay rate and precipitation. With these data, Environment Canada has calculated provincial k values for landfills in each province based on the provincial precipitation data. For the provinces of Alberta, British Columbia and Ontario, for example, decay rates of 0.012, 0.083 and 0.046 were selected, respectively.

Annua	1 Precipitation	Decay Rates (k)		
	(mm)	$(Year^{-1})$		
	0 - 500	0.02		
50	00 to 1000	0.038		
	>1000	0.057		
Provincial	Alberta	0.012		
Values (Examples)	British Columbia	0.083		
	Ontario	0.046		

Table 1.7 Decay rates corresponding precipitation suggested by RTI (Environment Canada, 2012a)

Environment Canada (2012a) defined methane generation potentials (L_o) for each province based on the waste composition reported for three distinct time periods (i.e. 1941-1975, 1976-1989, and 1990-2010). The values for L_o are then calculated based on the DOC content of each waste category, assuming a 50% methane concentration in the generated LFG and that 40% of the carbon content will ultimately be sequestered in the landfills. The suggested L_o values for landfills located in BC for the three time periods are respectively 161.8, 98.0, and 88 m³ methane per tonne of waste.

1.4.3.1 LFG Generation Modeling for VLF-Phase 1: Environment Canada

Since waste disposal in Phase 1 of the VLF was started post-1990, the modeling parameters applicable to this phase based on the Environment Canada method would be k = 0.083 year ⁻¹ (provincial value) and $L_0 = 88$ m³ per tonne of waste. Applying these modeling parameters to the

first order decay model resulted the 2012 methane generation rate of 10,900 tonnes per year from this phase. Also the peak methane generation rate was in 2007 at 15,700 tonnes per year. This model also estimated that this area will generate about 267,500 tonnes of methane during its lifespan. Methane generation rates from the Phase 1 of the VLF, estimated by the Environment Canada methodology, are illustrated in the Figure 1.4 below.

Figure 1.4 Methane generation rates at the VLF Phase 1- Environment Canada

1.4.4 Golder Model

Golder Associates Ltd. (2008b) presented an inventory of GHG emissions from landfills in BC. In this report, Golder used the LandGEM v3.02 first order decay model and found it suitable for GHG generation estimate from landfills in BC. However, Golder developed an empirical formula based on data collected from 12 landfills to better estimate the modeling parameters (i.e. k and L_0) for landfills in BC. Based on this methodology, the modeling parameters were correlated with the average annual precipitation (mm) with an assumption that all 12 landfills had 75% methane collection efficiency. The following equations show the Golder methodology in selecting modeling parameters (Golder Associates Ltd., 2008b):

 L_o (m³ methane per tonne of waste) = 0.031 x Precipitation (mm) + 100Equation 1.8k (year-1) = 0.00013 x Precipitation (mm) - 0.019Equation 1.9

1.4.4.1 LFG Generation Modeling for VLF-Phase 1: Golder Method

The average annual precipitation value for the VLF was 1,199 mm, as reported by the Vancouver International Airport weather station (see Table 2.2 in Page 41). This value resulted in the modeling parameters of $L_o = 137$ (m³ methane per tonne of waste) and k = 0.137 (year⁻¹) based on Equations 1.8 and 1.9, respectively. Applying these modeling parameters to LandGEM v3.02 resulted in methane generation rate of about 18,400 tonnes per year for 2012. Also, the peak methane generation rate was in 2007 at about 34,000 tonnes per year. This model also estimated that this area will generate about 416,000 tonnes of methane during its lifespan. Methane generation rates from the Phase 1 of the VLF estimated by Golder methodology are illustrated in Figure 1.5.

Figure 1.5 Methane generation rates at the VLF Phase 1– Golder Associates

1.4.5 BC MOE LFG Generation Assessment Tool

Conestoga-Rovers & Associates, CRA (2009) prepared the Landfill Gas Generation Assessment Procedure Guidance Report for the British Columbia Ministry of Environment (BC MOE), in accordance with the requirements of MOE's Landfill Gas Management Regulation that was approved and ordered on December 8, 2008. This was the latest regulatory requirement in BC which required landfills generating more than 1,000 tonnes of methane annually to install an active LFG collection system and a methane thermal destruction system; the MOE LFG Generation Assessment Tool (MOE Tool) was used to screen landfills in terms of their methane generation rates. CRA suggested that the first order decay model was adequate for estimating methane generation from landfills in BC and suggested that modeling parameters of L_o and k were correlated with waste composition and the climatic conditions, respectively. As outlined in the MOE guideline, landfilled wastes are grouped into three major decomposition categories of; (i) relatively inert, (ii) moderately decomposable, and (iii) decomposable waste. Where food waste and yard waste (including grass, leaves, plant chipping and trees) are defined as decomposable and the rest of biodegradable materials (e.g. paper, newsprint, cardboard, wood, textile) are classified as moderately decomposable wastes. Different default values for L_0 are assigned to each of these categories and the weighted average defines the overall methane generation potential for the landfill. The suggested L_0 values in the MOE Tool are presented in Table 1.8.

Table 1.8 BC MOE tool methane generation potential values (CRA, 2009)

Waste Category	Methane Generation Potential, L _o (m ³ methane per tonne of waste)
Relatively Inert	20
Moderately Decomposable	120
Decomposable	160

MOE guidelines also defined default values for decay rates for each waste category and for different regional areas based on the reported annual precipitation (mm). These methane generation rates for each waste category and precipitation ranges are presented in Table 1.9. The MOE Tool also considers a water addition factor, a value ranging between 0.9 - 1.1 which accounts for dryness of the landfill and whether or not storm water is directed to, or diverted from, the landfill.

Annual Presinitation	Methane Generation Rate (k) Values						
Annual Frecipitation	Relatively Inert	Decomposable					
<250 mm	0.01	0.01	0.03				
>250 to <500 mm	0.01	0.02	0.05				
>500 to <1,000 mm	0.02	0.04	0.09				
>1,000 to <2,000 mm	0.02	0.06	0.11				
>2,000 to <3,000 mm	0.03	0.07	0.12				
>3,000 mm	0.03	0.08	0.13				

Table 1.9 BC MOE tool default methane generation rates (CRA, 2009)

1.4.5.1 LFG Generation Modeling for VLF-Phase 1: BC MOE Tool

Based on the waste classifications, the deposited wastes at the Phase 1 of the VLF were divided into three waste categories as presented in Table 1.10. These values are the best estimates for the composition of the waste historically deposited at this phase and include DLC waste (see Table

2.7 in Page 49).

Year	Relatively Inert	Moderately Decomposable	Decomposable
1999	25.6%	55.1%	19.2%
2000	26.1%	56.9%	17.0%
2001	30.9%	46.6%	22.5%
2002	30.8%	49.7%	19.5%
2003	30.9%	47.7%	21.5%
2004	32.0%	48.1%	19.9%
2005	32.0%	47.8%	20.2%
2006	32.1%	47.3%	20.6%
2007			
2008	29.6%	48.3%	22.0%

Table 1.10 Waste composition for VLF Phase 1 based on the MOE waste categories

Based on the assumptions made and the data provided to the BC MOE Tool using the default modeling parameters described above, this model estimated that the 2012 methane generation rate from the Phase 1 of the VLF was 11,200 tonnes year⁻¹. The peak methane generation was in 2007 at about 15,800 tonnes year⁻¹. The BC MOE model also estimated that this area will ultimately generate a total amount of 300,000 tonnes of methane, which translates to methane yield of about 99 m³ methane per tonne of waste based on the total tonnage of waste deposited at this area. Methane generation rates from the Phase 1 of the VLF estimated by the BC MOE Tool are illustrated in Figure 1.6. The related modeling input parameters, along with the full results, are presented in the Appendix A.3.

Figure 1.6 Methane generation rates at the VLF Phase 1– BC MOE Tool

1.4.6 Comparison of Different Modeling Results

The LFG generation estimates obtained from the six different methodologies are illustrated in Figure 1.7. This comparison shows the significance and magnitude of the differences between the outcomes of these modeling exercises which vary with the age of the landfill and the time

that has elapsed since closure of the site. It should be noted that this exercise was conducted for the particular environmental conditions of the VLF, and that for a different site with different climatic conditions (i.e. a dryer site) the result may be completely different. Nevertheless, this comparison shows that depending on the methodology adopted to evaluate the LFG generation, collection and/or emission from a landfill (or in a different scale) different findings will result.

Figure 1.7 Different methodologies LFG generation modeling results_VLF Phase 1

For this particular example for the Phase 1 of the VLF, as shown in Table 1.11, the peak methane generation ranged between 10,000 to 34,000 tonnes per year. Maximum variation in the results of this evaluation occurred at the peak methane generation in 2007 and was approximately 340%, which is in agreement with pervious finding of a similar evaluation by Scharff and Jacobs (2006). Since LFG collection systems are always designed to accommodate the maximum LFG generation expected from landfills, these uncertainties on the peak generation may result in

systems significantly oversized or undersized. Furthermore on the above example, while the methane capture efficiency at Phase 1 of the VLF was expected to be between 90% and 95% (Spokas et al., 2006; SCS Engineers, 2009), the resulting values in this analysis ranged between 37% and 73%. This shows that, depending on the methodology adopted to assess the LFG generation from this phase, there would be a different understanding about the LFG collection system performance and efficiency. A summary of modeling parameters and assumptions, along with the findings for the six methodologies discussed above, are presented in Table 1.11. Full results of these analyses are provided in Appendix A.

			CH4 Gene	ration (ton	nes year-1)	Methane	Decay	2012
Methodologies			Current (2012)Peak (2007)Lifespan TotalYie (m³ t		Yield, L _o $(m^3 \text{ tonne}^{-1})$	Rate, k (year ⁻¹)	Collection Efficiency	
1.	LandCEM	CAA	16,669	20,411	515,386	170	0.05	37%
2.	Inventory		8,520	9,947	302,038	100	0.04	73%
3.	IPC	С	10,112	14,046	319,542	106	0.03-0.15	62%
4.	Environme	nt Canada	10,949	15,683	267,524	88	0.083	57%
5.	Golder As	sociates	18,400	33,966	416,067	137	0.137	34%
6.	BC M	IOE	11,198	15,783	300,360	99	0.02-0.11	56%
Assumptions:							Average	53%
Total waste tonnage: 4,470,903 tonnes						StDev.	±15%	
	M A							

Table 1.11 Comparison of modeling parameters and results for different methodologies_VLF Phase 1

1.5 Statement of the Problem

Despite all the progress that has been made in LFG generation modeling, there are still many uncertainties involved which could be reduced by more comprehensive studies conducted based on empirical data and field work results. Models are used as tools and protocols to generate GHG emission data to be disclosed to the general public and regulators. However, the results of

different modeling exercises are inconsistent. There is certainly a need for advanced, industryaccepted models offering more realistic and consistent results that could be used by the landfill owners, engineers, and national and international regulatory agencies. Whether the course of the evaluation takes place at smaller scales, such as evaluating the LFG collection efficiency in a landfill, or over larger scales, such as in national or international GHG emissions surveys, it is very important to have reliable and transparent data enabling us to make knowledgeable decisions. Such comprehensive studies shall not only look into improving modeling parameters provided based on the improved quality of data that are now available with regard to waste generation, composition, diversion, etc., but also should consider using advanced technologies to better understand and quantify methane pathways including lateral migrations, atmospheric emissions, and surface oxidations occurring at landfills.

1.6 Objectives of the Study

The main objective of this research was to develop an integrated approach to produce robust and defensible estimates for collection efficiency of existing LFG management systems and GHG emissions from municipal landfills.

The specific objective of this research was to improve the accuracy of the LFG generation estimation, incorporating fine-tuned modeling parameters which were developed based on a series of full scale field investigations. Furthermore, the approach involved verification and calibration of the results, supported with extensive field work and measurement conducted at the Vancouver Landfill (VLF). The field work consisted of four major sections including: (i) development of an LFG recovery system database as well as collection of operational data during the course of the research, (ii) monitoring landfills behavior in time and with respect to changes in ambient conditions, (iii) measurement of fugitive methane emissions through an innovative approach, and (iv) quantification of the biological methane oxidation in landfill's cover soil using the stable isotope technique.

Chapter 2: Materials and Methods

2.1 Metro Vancouver

Metro Vancouver (MV), previously called Greater Vancouver Regional District (GVRD), is the largest regional district by population in the province of British Columbia (BC), Canada, with approximately 2.4 million residents (BC Stats, 2011). MV consists of twenty-two members and municipal cities, including Vancouver, Richmond, North Vancouver, Surrey, and Burnaby among others, with an average annual population growth rate of about 1.5%.

GVRD (2010) reported the generation of approximately 3.1 million tonnes of waste in 2010, which translates to an average per capita generation rate of roughly 3.6 kg day⁻¹ or 1.3 tonnes year⁻¹. There are seven transfer stations in the region which receive wastes, either collected by municipalities and private haulers or directly from residents and businesses. Except for segregated materials (i.e. recyclables and yard trimmings) all wastes are sent to one of the three waste disposal facilities approved by the district. These disposal facilities are the Burnaby Incinerator, the Vancouver Landfill, and the Cache Creek Landfill (GVRD, 2010).

The records show that there have been extensive improvements in recycling in MV during the past 10 to 15 years. The rate of waste recycling was 44% in 1999, which increased to 55% by 2007. Maximizing the recycling rate is one of the major goals defined in MV's integrated waste management plan (GVRD, 2010). As shown in Table 2.1, the overall recycled waste per capita in this regional district is estimated to be 0.81 tonnes year⁻¹ and the disposed waste per capita is 0.66 tonnes year⁻¹. These values have been more or less constant since 2007 (GVRD, 2010).

Shown in Table 2.1 are the service population, per capita waste generated, recycled and disposed from 1998 through 2010, as well as estimated values for 2011. As shown in this table, and also illustrated in Figure 2.1, the overall recycling rate in MV has increased every year since 1998 to 2007 with an exception in 1999. This rate has remained more or less constant since 2007 and MV reported the same recycling rate of 55% for 2010 (GVRD, 2010). These overall recycling rates include the recycling of residential (both single-family and multi-family units), industrial, commercial and institutional (ICI), and demolition and land clearing (DLC) wastes, as well as materials recycled through "take-back" programs (industry-managed programs in which industries are fully responsible for management of goods throughout their life cycles).

Figure 2.1 Overall historical waste diversion rates at Metro Vancouver (GVRD, 2010).

		Annual	Waste Ge	eneration ^a	Recycled ^a					Disposed		
Year	Service population ^a	Growth Rate	tonnes	Per Capita	tonnes	%	Per Capita	tonnes	%	Per Capita	Waste to Energy⁵	Landfilled & other
		%		tonnes/year			tonnes/year			tonnes/year	tonnes	tonnes
1998	1,984,743		2,609,913	1.31	1,261,680	48%	0.64	1,348,233	52%	0.68	247,075	1,101,158
1999	2,013,201	1.43%	2,618,538	1.30	1,151,130	44%	0.57	1,467,408	56%	0.73	254,803	1,212,605
2000	2,041,399	1.40%	2,657,076	1.30	1,183,611	45%	0.58	1,473,465	55%	0.72	256,367	1,217,098
2001	2,073,662	1.58%	2,851,208	1.37	1,418,489	50%	0.68	1,432,719	50%	0.69	246,666	1,186,053
2002	2,102,244	1.38%	2,903,894	1.38	1,470,445	51%	0.70	1,443,449	50%	0.69	264,013	1,179,436
2003	2,128,965	1.27%	2,775,455	1.30	1,414,390	51%	0.66	1,361,065	49%	0.64	249,521	1,111,544
2004	2,153,998	1.18%	3,072,702	1.43	1,595,999	52%	0.74	1,476,703	48%	0.69	275,174	1,201,529
2005	2,188,573	1.61%	3,245,796	1.48	1,701,414	52%	0.78	1,544,382	48%	0.71	277,571	1,266,811
2006	2,218,026	1.35%	3,434,617	1.55	1,794,613	52%	0.81	1,640,004	48%	0.74	273,318	1,366,686
2007	2,251,887	1.53%	3,598,142	1.60	1,980,751	55%	0.88	1,617,391	45%	0.72	289,900	1,327,491
2008	2,273,095	0.94%	3,336,123	1.47	1,866,892	56%	0.82	1,499,231	45%	0.66	274,697	1,224,534
2009	2,314,163	1.49%	3,374,840	1.46	1,922,840	57%	0.83	1,452,001	43%	0.63	276,650	1,175,351
2010	2,351,496	1.61%	3,075,392	1.31	1,676,117	55%	0.71	1,399,275	45%	0.60	280,213	1,119,062
2011 ^c	2,386,063	1.47%	3,501,921	1.47	1,927,782	55%	0.81	1,575,865	45%	0.66	280,000	1,295,865

Table 2.1 Historical waste generation and disposal tonnages at Metro Vancouver

^a GVRD Annual Recycling and Solid Waste management Report, 2010

^b Burnaby WTE Plant's Data

^c Estimated Values

2.2 Vancouver Landfill

Vancouver Landfill (VLF) is located in the south-west corner of Burns Bog, 16 km south of Vancouver, serving nearly 1 million residents of the greater Vancouver area. VLF is located on a 635 ha property with a landfilling footprint of about 225 ha. This facility has been receiving waste since 1967 and currently receives about 600,000 tonnes year⁻¹ of MSW and DLC. Between 1967 and 2000, the VLF was developed to an elevation of 10 to 12 m above sea level (ASL). The entire landfill is divided into 7 operational areas/phases, each occupying approximately 20 to 40 hectare, measuring 800 m intervals north-south by about 200 to 500 m intervals east-west. These phases from west to east are; (i) Western 40, (ii) Phase 2, (iii) Phase 3, (iv) Area 2W, (v) Area 2E, (vi) Area 3, and (vii) Phase 1, each built separately to the originally designed level. A new plan was developed in 2000 to vertically expand the entire landfill to a maximum height of 39 m (Figure 2.2). Based on the new plan, the landfill is estimated to reach its full capacity in 2040 (SHA, 2000b). Figure 2.2 below shows the location of the Vancouver Landfill in Metro Vancouver as well as the operational phases with approximate footprint areas.

2.2.1 Gas Collection System at the VLF

The active landfill gas (LFG) management system in the VLF has been operating since 1991. The system includes horizontal and vertical collectors, lateral pipes, header and sub-headers, condensate management system, LFG extraction facility, and flare. The original system covered approximately 84 hectares of the site and included 190 vertical collection wells, however, the system has been continuously expanded and the numbers of vertical wells, blowers, and flares have increased overtime. Currently there are 330 vertical LFG wells and 30 horizontal collectors actively collecting more than 6,700 m³ hr⁻¹ LFG.

The initial goals for the City of Vancouver (COV) were the installation of the LFG management system to reduce landfill gas emissions and associated odor nuisance, as well as to conduct energy recovery from the LFG. However, the new BCMOE LFG regulation requires that the VLF actively collect and thermally oxidize at least 75% of the generated methane.

Figure 2.2 Metro Vancouver and location of Vancouver Landfill and its operational phases

2.2.2 Development of GCS Database

A large amount of historical LFG collection system data were generated by the COV over more than 20 years of operation of the LFG system. These data were collected using handheld gas analyzer devices or at the central control system at the location of the flare system. The data were stored in different formats for different reporting purposes mainly as separate Microsoft (MS) excel spreadsheets. Because there was no easy way to compile and utilize the historical data, a database in MS Access environment was developed as a part of this study, allowing a more comprehensive and meaningful mining of the existing data. Furthermore, a LANDTEC GEM2000+ LFG analyzer was used during the course of the field works to collect gas data from various locations in the collection system including LFG wellheads and manifold. These data were also added to the new LFG database. Outputs of the database provided the recovery data (R) for the METRO equation as fully presented in Chapter 6.

2.2.3 Climatic Conditions

The City of Vancouver experiences cool rainy winters and relatively warm dry summers. The monthly mean temperatures of the area between 1971 and 2000, as reported by the Vancouver International Airport weather station, ranged from a low of 3.3 °C in January to a high of 17.6 °C in August. The mean annual temperature for the same time period was 10.1 °C. Most precipitation in Vancouver Landfill falls in the form of rain. In general, the VLF has experienced at least one significant snowfall every year. The average annual precipitation in the area between 1971 and 2000 was reported to be 1,199 mm. Presented in Table 2.2 are the climate statistics for the Vancouver area between 1971 and 2000.

	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Year
TEMPERATURE (°C)													
Daily Average	3.3	4.8	6.6	9.2	12.5	15.2	17.5	17.6	14.6	10.1	6.0	3.5	10.1
Standard Deviation	1.9	1.5	1.1	1.0	1.0	0.9	0.9	1.0	1.0	0.8	1.7	1.7	0.7
Daily Maximum	6.1	8.0	10.1	13.1	16.5	19.2	21.7	21.9	18.7	13.5	9.0	6.2	13.7
Daily Minimum	0.5	1.5	3.1	5.3	8.4	11.2	13.2	13.4	10.5	6.6	3.1	0.8	6.5
PRECIPITATION													
Rainfall (mm)	139.1	113.8	111.8	83.5	67.9	54.8	39.6	39.1	53.5	112.5	178.5	160.6	1,154.7
Snowfall (cm)	16.6	9.6	2.6	0.4	0.0	0.0	0.0	0.0	0.0	0.1	2.5	16.3	48.2
Precipitation (mm)	153.6	123.1	114.3	84.0	67.9	54.8	39.6	39.1	53.5	112.6	181.0	175.7	1,199

 Table 2.2 Climate Normals 1971-2000 for the Vancouver international airport weather station

Also, a hydrogeological review by Sperling Hansen Associates Inc. (SHA) in 2008 showed that the evapotranspiration over the VLF footprint was about 416 mm, or 35% of the average precipitation in the landfill (SHA, 2008).

2.2.4 Historical Waste Tonnage at the VLF

Waste disposal at the VLF started in the Western 40 in 1967, at a rate of about 140,000 tonnes year⁻¹. Disposal progressed towards the eastern phases as the elevation of the active phase reached the original design level limit of 12 m. With the implementation of the new vertical expansion plan, waste filling in Phase 1 of the landfill continued until it reached the new permitted height of 39 m, after which waste filling continued in Phases 2 and 3 of the landfill. Table 2.3 below shows the tonnages of MSW and DLC historically deposited in each phase of the VLF.

				Waste Disposal History (MSW + DLC)							
Year	Wa	Waste Tonnage			Western 40	Phase 2	Phase 3	Area 2W	Area 2E	Area 3	Phase 1
	MSW	DLC	Total	011 0300	(Tonnes)	(Tonnes)	(Tonnes)	(Tonnes)	(Tonnes)	(Tonnes)	(Tonnes)
1967	136,365	0	136,365	А	136,365						
1968	169,210	0	169,210	А	169,210						
1969	199,284	0	199,284	А	199,284						
1970	196,577	0	196,577	А	196,577						
1971	206,830	0	206,830	А	206,830						
1972	193,733	0	193,733	А	193,733						
1973	217,968	0	217,968	А	217,968						
1974	223,083	0	223,083	Α	223,083						
1975	219,638	0	219,638	Α	219,638						
1976	215,728	0	215,728	Α	215,728						
1977	196,532	0	196,532	Α	196,532						
1978	187,941	0	187,941	Α	187,941						
1979	185,907	0	185,907	Α	185,907						
1980	213,792	0	213,792	Α	213,792						
1981	199,934	0	199,934	Α	199,934						
1982	259,006	0	259,006	А		259,006					
1983	328,796	0	328,796	Α		328,796					
1984	511,006	0	511,006	Α		511,006					
1985	588,400	0	588,400	Α		588,400					
1986	678,509	0	678,509	A			678,509				
1987	762,919	0	762,919	Α			762,919				
1988	591,773	0	591,773	Α			591,773				
1989	467,329	0	467,329	Α			467,329				
1990	468,883	0	468,883	A				468,883			
1991	464,881	0	464,881	Α				464,881			
1992	453,028	0	453,028	Α				453,028			
1993	461,700	162,000	623,700	В				623,700			
1994	436,800	0	436,800	В					436,800		
1995	429,700	79,700	509,400	В					509,400		
1996	401,810	102,300	504,110	В						504,110	
1997	361,600	48,450	410,050	В						410,050	
1998	350,569	101,559	452,128	В						452,128	
1999	371,005	112,567	483,572	В							483,572
2000	308,773	147,893	456,666	В							456,666
2001	383,784	70,597	454,381	С							454,381
2002	388,560	142,215	530,775	С							530,775
2003	446,034	107,918	553,951	С							553,951
2004	483,875	139,145	623,019	D							623,019
2005	545,696	146,151	691,847	D							691,847
2006	621,437	150,602	772,039	D		257,346					514,692
2007	515,043	124,709	639,752	E		639,752					105 575
2008	512,174	145,042	657,216	E		495,216					162,000
2009	469,765	86,760	556,526	E		445,221	111,305				
2010	571,952	84,090	656,042	E			656,042				
2011	577,362	84,090	661,452	E			661,452				
Total	17,174,690	2,035,786	19,210,476		2,962,522	3,524,742	3,929,329	2,010,492	946,200	1,366,288	4,470,903

Table 2.3 Historical waste disposal rates at different phases of the Vancouver Landfill

* Waste Composition Study conducted by GVRD in 1991, 1998, 2001, 2004, and 2007. Results are adjusted for DLC waste deposited at the Vancouver Landfill.

2.2.5 Research Boundary at the VLF

In order to conduct the field investigations planned for this study, four phases (areas) of the VLF were selected as the study boundary (work site). The waste filling activities were planned to be conducted at Phase 2 and Phase 3 of the VLF during the course of this research (2009 – 2014). Therefore, Area 2W, Area 2E, Area 3, and Phase 1 were selected as the study boundary. These areas were completed in 1993, 1995, 1998, and 2008, respectively. These areas have clear footprints, each with a distinct gas collection system with dedicated LFG manifolds and gas quality and quantity metering stations. Therefore, each of these four areas were treated as an individual site equipped with active LFG collection systems, as well as, with known waste in place tonnage, age, and composition (see Table 2-3).

2.3 Burnaby Waste-to-Energy Facility (WTEF)

The Burnaby Waste-to-Energy Facility (WTEF) is located in the commercial/ industrial zone of south Burnaby. The plant has been operating since 1988 and currently receives approximately 280,000 tonnes year⁻¹ of MSW from Burnaby, New Westminster, West Vancouver, the City of North Vancouver, and the District of North Vancouver. Since the service area covered by this plant represents the full range of housing types and social-economic neighborhoods, MV has chosen this location to conduct several waste composition analyses on a regular basis and the results are believed to accurately represent the waste generated in the MV regional district.

2.4 Municipal Solid Waste Composition and Characteristics

Metro Vancouver has conducted several waste composition studies since 1991. These physical analyses are performed in different locations but mainly at the Burnaby WTEF, where the

sampled wastes are representative of the MSW characteristics in the region and the wastes deposited at the VLF. Results of these MSW physical analyses are summarized in Table 2.4.

	Waste Composition (wet %) ^a								
Waste Components	Α	В	С	D	Е	F			
	1991	1998	2001	2004	2007	2009			
Paper and Paperboard	37.77	32.13	15.34	22.24	27.12	21.15			
Glass	1.95	3.09	2.46	1.75	1.97	1.66			
Ferrous Metals	3.49	2.57	6.51	1.82	3.23	3.20			
Non-ferrous Metals	0.91	0.77	0.51	1.33	0.53	0.83			
Plastics	9.19	13.98	10.46	11.76	14.83	12.32			
Organic Waste	6.05	18.69	15.62	20.62	23.75	25.72			
Yard and Garden Waste	14.12	5.49	10.12	4.10	3.62	3.33			
Wood and Wood Products	8.19	7.38	12.05	8.46	8.10	12.37			
textiles	6.42	7.61	8.15	8.25	4.10	3.08			
Rubber	0.09	0.98	4.61	1.06	0.80	0.91			
Nappies	1.57	2.51	2.12	1.83	2.09	2.03			
Animal Litter	0.29	0.91	0.93	0.88	0.90	0.88			
Composite Products	1.14	0.69	1.14	4.63	1.05	3.97			
Hazardous Wastes	0.49	2.13	0.41	1.89	1.20	4.18			
Other	8.33	1.07	9.57	9.38	6.71	4.37			
Total	100.00	100.00	100.00	100.00	100.00	100.00			

Table 2.4 Historical and estimated MSW composition in Metro Vancouver (1991 - 2009)

^a Data acquired directly from the Engineering & Construction Department of MV's head office.

2.4.1 Heating Value of MSW

One of the initial aims of this research was to utilize a modified version of a methodology used by Fellner et al. (2007) to separately determine the energy produced in a WTEF from incineration of the biogenic and fossil portions of MSW. Our goal was to apply this method and, using the historical plant's operational data, determine the biogenic portion of wastes historically incinerated at the Burnaby WTEF. However, due to some limitations, including lack of sufficient CO₂ readings at the plant's stacks, this method did not result in reasonable and defendable numbers. However, the investigation produced valuable knowledge regarding the effect of historical changes in the waste management strategies in MV on the net heating value (NHV) of MSW in this regional district. The calculations were conducted using five different, widely-used formulae where heating value of MSW is derived through ultimate analysis of waste. These methods are:

- (i) Boie formula used by Kathiravale (2003), and Mason and Gandhi (1983),
- (ii) Dulong formula (Mason and Gandhi, 1983; Tchobanoglous et al., 1993; Tian et al., 2001; Kathiravale et al., 2003),
- (iii) Mendeliev formula (Magrinho and Semiao, 2008),
- (iv) Scheurer Kestner formula (Tian et al., 2001; Kathiravale et al., 2003; Magrinho and Semiao, 2008), and
- (v) Steuer formula (Tian et al., 2001; Kathiravale et al., 2003).

Some of these formulae directly calculate the NHV (also called lower heating value (LHV)) of waste while others give the higher heating value (HHV) of waste. Different available formulae are also expressed in different units of heating values, such as MJ kg⁻¹, kcal kg⁻¹, or Btu lb⁻¹. In order to be able to compare values resulted from different formulae, the author used the suggested methodology by Finet (1987) where the heat of vaporization of water is deducted and HHV is translated to NHV (or LHV). This formula is presented below as Equation 2.1. For similar purposes, we also converted all values to the common unit of kJ kg⁻¹.

(Note: 1 cal = 4.1868 Joules and 1 Btu $lb^{-1} = 2.326014$ kJ kg⁻¹).

Where: W is the moisture content of MSW and H is the hydrogen content of MSW (% wet basis). Table 2.5 shows the five formulae used to calculate the heating value of waste in the 45

MV. In this table, W is the moisture content of solid waste and C, H, O, N, and S are, respectively, the weight percentages of carbon, hydrogen, oxygen, nitrogen, and sulphur on a dry or wet basis as indicated in the second last column of the table. These values were calculated through the ultimate analysis of waste components based on the typical amounts of these elements in each organic component of waste reported by Alter (1974), Tchobanoglous (1993), and Kaiser (1966).

Table 2.5 Selected formulae for calculating heating value of MSW

Name	Value	Unit	Formula	Note	Equation
Boie	HHV	Btu lb ⁻¹	151.2C + 499.77H + 45S - 47.7O + 27N	dry basis	2.2
Dulong	LHV	Btu lb ⁻¹	145C + 610(H-O/8) +40S + 10N	wet basis	2.3
Mendeliev	LHV	kcal kg ⁻¹	81C +300H - 26(O-S) - 6(9H+W)	wet basis	2.4
Scheurer - Kestner	HHV	kcal kg ⁻¹	81(C-3O/4) + 342.5H + 22.5S + 57 x 3O/4 - 6(9H+W)	dry basis	2.5
Steuer	HHV	kcal kg ⁻¹	81(C-3O/8) + 345(H-O/16) + 25S + 57 x 3O/8 - 6(9H+W)	dry basis	2.6

1 Btu lb-1 = 2.326014 kJ kg⁻¹

Combustibles	Percent by Weight (dry basis)								
Combustibles	С	Н	0	Ν	S	Ash			
Food wastes	48.0	6.4	37.6	2.6	0.4	5.0			
Paper	43.5	6.0	44.0	0.3	0.2	6.0			
Cardboard	44.0	5.9	44.6	0.3	0.2	5.0			
Plastics	60.0	7.2	22.8	-	-	10.0			
Textiles	55.0	6.6	31.2	4.6	0.2	2.5			
Rubber	78.0	10.0	-	2.0	-	10.0			
Yard wastes	47.8	6.0	38.0	3.4	0.3	4.5			
Wood	49.5	6.0	42.7	0.2	0.1	1.5			

Table 2.6 Typical ultimate analysis data for combustible components of MSW³

³ (Tchobanoglous et al., 1993) (Kaiser, 1966) (Tchobanoglous et al., 1993) (Kaiser, 1966)

Investigations on the historical waste composition data, previously presented in Table 2.4, showed a 4% reduction in NHV of waste within 10 years (1998 – 2007). A comparison between these theoretical results and the actual Burnaby WTEF operational data showed a very close agreement between the actual plant's data and the predictions that resulted from the Dulong methodology. Furthermore, these analyses showed that wet percentages of C, H, O, N, S, and ash in combustible MSW in 2010 were 30.92, 6.65, 43.59, 0.63, 0.11, and 3.74, respectively. The total amount of wet combustible waste excluding ash and inert (glass, metals, etc.) in 100 kg of MSW received at WTEF in 2010 was 81.90 kg. Accordingly, the chemical formula of wet combustible MSW in MV for 2010 was C_{748} H_{1.163}O₄₄₉ N₁₃ S.

Also, as shown in Figure 2.3, as a result of the historical waste diversion programs in the regional district, the mass of biogenic waste (mB) in the waste stream has fluctuated between 40% and 50%. Currently, this level is higher than 45%. The overall wet weight moisture content of the waste deposited at the MV's disposal facilities was found to be between 22-24% (w/w).

Figure 2.3 Normalized components of MSW in Metro Vancouver

2.4.2 Composition of Wastes Deposited at the VLF

Since 1993, approximately one-third of DLC wastes generated in the MV were separately hauled to the VLF (Table 2.3). Therefore, the MSW composition reported in Table 2.4 was adjusted for the DLC wastes received at the VLF each year assuming that 70% of the DLC received at this site is wood waste. Presented in Table 2.7 are the average wet weight percentages of major waste components deposited at the VLF.

itudy	Year	Organic waste	Garden waste	Paper &Rubber	Wood	Textile	Nappies	Plastics & other inert
S		%	%	%	%	%	%	%
	1967	19.6	5.5	32.1	7.4	8.6	2.5	24.3
	1968	19.6	5.5	32.1	7.4	8.6	2.5	24.3
	1969	19.6	5.5	32.1	7.4	8.6	2.5	24.3
	1970	19.6	5.5	32.1	7.4	8.6	2.5	24.3
	1971	19.6	5.5	32.1	7.4	8.6	2.5	24.3
	1972	19.6	5.5	32.1	7.4	8.6	2.5	24.3
	1973	19.6	5.5	32.1	7.4	8.6	2.5	24.3
	1974	19.6	5.5	32.1	7.4	8.6	2.5	24.3
	1975	19.6	5.5	32.1	7.4	8.6	2.5	24.3
	1976	19.6	5.5	32.1	7.4	8.6	2.5	24.3
*	1977	19.6	5.5	32.1	7.4	8.6	2.5	24.3
	1978	19.6	5.5	32.1	7.4	8.6	2.5	24.3
	1979	19.6	5.5	32.1	7.4	8.6	2.5	24.3
ion	1980	19.6	5.5	32.1	7.4	8.6	2.5	24.3
siti	1981	19.6	5.5	32.1	7.4	8.6	2.5	24.3
odı	1982	19.6	5.5	32.1	7.4	8.6	2.5	24.3
om	1983	19.6	5.5	32.1	7.4	8.6	2.5	24.3
C	1984	19.6	5.5	32.1	7.4	8.6	2.5	24.3
ste	1985	19.6	5.5	32.1	7.4	8.6	2.5	24.3
Na	1986	19.6	5.5	32.1	7.4	8.6	2.5	24.3
-	1987	19.6	5.5	32.1	7.4	8.6	2.5	24.3
	1988	19.6	5.5	32.1	7.4	8.6	2.5	24.3
	1989	19.6	5.5	32.1	7.4	8.6	2.5	24.3
	1990	19.6	5.5	32.1	7.4	8.6	2.5	24.3
	1991	19.6	5.5	32.1	7.4	8.6	2.5	24.3
	1992	19.6	5.5	32.1	7.4	8.6	2.5	24.3
	1993	14.5	4.1	23.8	23.6	6.4	1.9	25.8
	1994	19.6	5.5	32.1	7.4	8.6	2.5	24.3
	1995	16.5	4.6	27.1	17.2	7.2	2.1	25.2
	1996	15.6	4.4	25.6	20.1	6.8	2.0	25.5
	1997	17.3	4.8	28.3	14.8	7.6	2.2	25.0
	1998	15.2	4.3	24.9	21.4	6.7	1.9	25.6
В	1999	15.0	4.2	24.7	22.0	6.6	1.9	25.6
	2000	13.3	3.7	21.7	27.7	5.8	1.7	26.1
•	2001	14.0	8.5	13.0	21.1	10.8	1.8	30.9
0	2002	12.1	/.4	11.2	27.6	9.3	1.6	30.8
	2003	13.3	8.1	12.4	23.3	10.3	1./	30.9
	2004	16.7	3.2	17.3	22.2	7.2	1.4	32.0
Ω	2005	17.0	3.2	17.5	21.5	1.3	1.4	32.0
	2006	1/.5	5.5	17.9	20.5	1.5	1.5	32.1
E	2007	19.8	2.9	21.8	20.2	3.9	1./	29.6
	2008	19.2	2.8	21.1	21.8	3.8	1.6	29.6
-	2009	22.5	2.8	17.9	21.4	5.4	1.7	30.4
F	2010	23.2	2.9	18.4	19.8	3.5	1.8	30.5
	2011	23.2	2.9	18.5	19.7	3.5	1.8	30.5

Table 2.7 Composition of the waste deposited at the Vancouver Landfill (w/w%)

* Waste composition A through F as shown in Table 2.4 Highlighted rows indicate years in which a MSW characterization study was conducted. Other years' data are calculated based on the tonnages of MSW and DLC waste deposited at the VLF in each year.

2.4.3 Moisture Content of Municipal Solid Waste

Unfortunately, among the physical analyses conducted by MV from 1998 through 2007, the moisture content of waste was not measured. However, in 2009 Technology Resource Inc. (TRI) conducted a study in the region (Surrey Transfer Station) whereby the moisture content of each waste component was analyzed and reported (TRI, 2010). Results of these analyses (shown in Table 2.8), although not conducted at the location of interest, are believed to be fairly close to that at the Burnaby incinerator.

Furthermore, these results were compared with two other available datasets which are also shown in Table 2.8. These studies were completed by (i) Bird and Hale (1978), where similar analyses were conducted on different waste components after collection and transportation of waste, and (ii) Tchobanoglous (1993), who reported moisture contents of these components at the source, before mixed collection and transportation of waste was carried out. In general, consumption behavior, MSW collection and transportation systems, as well as climate condition are the major parameters affecting moisture content of waste. While the overall moisture content of the collected waste tends to remain more or less constant, water may move from waste components with higher moisture content to other materials with lower moisture, like papers and textiles. With the available information about the collection and transportation system in the region, along with the results of the fairly recently conducted study by TRI (2010), it was concluded that the data presented in the last column of Table 2.8 are good approximations for the moisture content of wastes deposited at the VLF. However, it should be acknowledged that in reality, more source separation and recycling of materials with lower initial moisture content and high water absorption capacity (e.g. paper and cardboard) results in less water loss of materials

with higher moisture content (e.g. food waste). For simplicity, it was assumed throughout this research that different waste components in different years would have constant moisture contents.

Wasta	Moisture Content (% wet basis)							
Components	at Source*	Bird & Hale 1978	TRI 2010	This Study				
Food waste	70	58.78	48	50				
Paper	7	15	23	20				
Cardboard	7	15	26	20				
Plastic	2	15.48	-	10				
Textile	4	13.41	14	14				
Rubber	4	13.41	14	14				
Yard Waste	50	45.12	50	45				
Wood	15	15.01	18	18				
DLC**	2	4	-	5				

Table 2.8 Moisture content of different components of MSW

* (Tchobanoglous et al., 1993)

** Separately hauled (not mixed with MSW during storage and transportation)

2.5 METRO Equation

Bogner and Spokas (1993) reported that the fate of a landfill's methane would include: (i) methane fugitive emission to the atmosphere through landfill cover soil, (ii) methane oxidation by methanotrophic bacteria naturally existing in landfill cover soil, and (iii) methane capture and combustion via active LFG collection and treatment systems.

In the present study, all possible pathways for the generated methane were considered in the context of an integrated methane mass balance investigation in order to conduct a comprehensive evaluation on the fate of the generated methane at the selected work site (i.e. the Vancouver

Landfill). The following "METRO equation" was introduced, representing this comprehensive landfill methane mass balance investigation.

$$G = M + E + T + R + O$$
 Equation 2.7

Where:

G = Generated Methane
M = Migrated Methane (i.e. lateral migration)
E = Emitted Methane (i.e. atmospheric emissions)
T = Trapped Methane
R = Recovered Methane
O = Oxidized Methane

The METRO equation considers all possible pathways for the methane generated within a landfill. However, in the particular case of the VLF, the amount of trapped methane (T) was considered insignificant and therefore was excluded from the equation. SHA (2000a), assessed

the potential offsite lateral migration of LFG from the Vancouver Landfill to nearby properties and concluded that LFG migration (M) at this site is effectively blocked by the site's perimeter double ditch system (leachate and run-off ditches). Figure 2.4 shows

Figure 2.4 Double ditch system at VLF site

the double ditch system at VLF which extends around the entire site.

Therefore a "simplified METRO" equation, as presented below, was used in this study to investigate the generated methane mass balance. This is also suggested by number of recent studies, including Bogner et al. (2007).

$$G = E + R + O$$
 Equation 2.8

Based on the simplified equation, the total carbon placed in the Vancouver Landfill, if not sequestered, is ultimately either collected or emitted to the atmosphere as methane and carbon dioxide. During the course of this study, different sets of field work, measurements, calculations, and analyses were conducted between 2009 and 2013 in order to improve the estimation and/or measurement of each of these mechanisms.

The estimation of generated methane (G) utilized the widely accepted first order decay reaction. However, selection of modeling parameters was based on a series of advanced analytical methods supported by practical full scale field investigations described in Chapter 3. Methodologies to calculate variable methane generation potentials were developed in that chapter, reflecting the historical changes in waste consumption, recycling, and disposal strategies. The new modeling results were then calibrated by completing the right side of the simplified METRO equation through a comprehensive and integrated series of field investigations as described in Chapters 4, 5, and 6. These surveys were conducted at four different phases of the VLF site. These phases/areas, which form the study boundary within the work site, are: Area 2W, Area 2E, Area 3, and Phase 1 of the Vancouver Landfill. These areas are separate filling phases/cells, which were previously shown in Figure 2.2.

Chapter 4 presents the results of the methane emission measurements (E) using a modified flux chamber technique paired with a full scale landfill surface methane concentration scan. Also, for the first time, methodologies were developed to translate qualitative methane emission data to quantitative methane flux. Chapter 5 presents the outcomes of the methane oxidation study (O) conducted using the stable isotope technique and a flux chamber. Furthermore, numerous field readings were taken from the existing LFG collection system over each area of the VLF. An LFG collection system database was also developed during the course of this study, which facilitated use of the old recovery information along with the newly collected data. A summary of the developed data base and the recovery data (R) are presented in Chapter 6.

Chapter 3: Advanced Landfill Gas Generation Modeling

3.1 Introduction

In this chapter methodologies to provide better LFG generation estimates are presented. The first order decay reaction, which is generally accepted to best describe the decomposition of the biodegradable materials in landfills, was used as the modeling basis in this study (EMCON Associates, 1980; Hoeks, 1983; Oonk, 1994; Oonk and Boom, 1995; USEPA, 2005; IPCC, 2006; CRA, 2009). However, the method of assigning values to the modeling parameters, which is in fact what differentiates various modeling methodologies, was based on a series of full-scale field investigations and the results from fundamental research studies and investigations carried out by others world-wide. Methodologies to define the values of methane generation potential (Methane Yield) and methane generation rate (Decay Rate) are discussed below. Variable methane yield, reflecting the historical changes in the waste stream, and fine-tuned decay rates, representing a landfill's actual environmental and operational conditions, allowed for a more accurate estimation of the LFG generation rates. A new integrated model (iModel-110[®]) was developed in the Microsoft excel environment in various (i) data input, (ii) analyses, and (iii) results output spread sheets with user friendly interfaces (See Appendix B).

This chapter includes methodologies to develop G, representing the left side of the simplified METRO equation (Equation 2.8). Generation estimates were then verified based on the field data, the parameter values on the right side of the equation (i.e. E, O, and R). The E, O, and R values were determined based on a comprehensive series of field studies conducted between 2009 to 2012 from four different filling areas of the Vancouver Landfill (VLF) as described in Chapters 4, 5, and 6, respectively. Furthermore, the new model was calibrated based on these

field data, using two different methodologies presented in Chapter 7; (i) by application of a generation calibration factor (CF_G) to fit the generation estimates for the year of study to the field data, and (ii) by fine-tuning the decay rates values within the suggested ranges and based on a sensitivity analysis presented in Chapter 8.

3.2 Methane Yield (L_0 , m³ tonne⁻¹)

In accurate modeling practices, the estimation of L_o is derived from the degradable organic carbon (DOC) deposited into the landfill. However, a portion of the deposited DOC will be sequestered indefinitely and only a portion will be accessible to biochemical degradation and ultimately dissimilated. The ultimate level of organic waste biodegradation and gas generation at landfills depends on various factors. Many researchers have concluded that the most important of these factors are pH, moisture, and temperature (Ham et al., 1993; Edward A. McBean et al., 1995; Eleazer et al., 1997; Ivanova et al., 2008). Methane generation is reported to be inhibited at pH levels as low as 5.5 and when alkalinity is lower than 1500 mg/l as CaCO₃ (Farquhar and Rovers, 1973). While methane generation occurs at MSW landfills with pH levels between 6.5 and 8 (EMCON Associates, 1980), the maximum methane production is reported to occur within the optimum pH range of 6.7 to 7.5 (Edward A. McBean et al., 1995).

Theoretical calculations presented in Section 1.2.2.1 showed that the maximum methane yield under favorable conditions for the typical MSW deposited at the VLF in 2009 was about 246 m³ per tonne of waste. Being located in a relatively wet environment, with a mean annual precipitation of about 1,200 mm/year, and historical pH levels of approximately 6.7 to 7.3 (SHA, 2008), it appears that the decomposition of waste at the VLF occurs under near optimal

conditions. Nevertheless, the L_o values suggested by different methodologies presented in Section 1.4 ranged from 88 to 170 m³ of methane per tonne of waste (See Table 1.11). These values are only about 35% to 70% of the maximum theoretical yield and are based on the percentage of the total DOC ultimately degraded within the landfill. Moreover, as discussed during the overview of different methodologies presented in Section 1.4, most of the models (with the exception of IPCC and BC MOE models) consider a fixed value for L_o throughout the landfill's lifespan, ignoring many variables that can affect the organic carbon balance within the waste stream, such as Metro Vancouver's aggressive waste diversion programs illustrated in Figure 2.1 in Page 36.

As part of this study, the author attempted to incorporate various index factors based on existing findings and data in the literature to calculate a more reliable methane yield based on these parameters. Among the existing models, the IPCC FOD model has the most detailed and accurate approach for defining the methane yield value. As described in Section 1.4.2, this methodology calculates methane yield based on the amount the DOC deposited in the landfill during its lifespan. The DOC value for each year is calculated based on the composition of waste and the weighted average of the carbon content of various components of the waste stream reported by Bingemer and Crutzen (1987) (See Table 1.5). Bingemer and Crutzen (1987), in order to estimate the worldwide generation of methane from municipal waste, selected the average DOC content values for each type of waste material based on the existing information reported by Mantell (1975), Bowerman et al. (1977), and Suess (1985). The IPCC model uses wet weight percentages of carbon content values for each component. While the moisture content of any particular waste component "at source" can be assumed to be somewhat constant in any

place in the world, this value can vary depending on waste composition, climatic conditions, storage, collection, and transportation methods, as well as the location where the waste physical analyses have taken place.

In the present study, a similar approach to IPCC methodology was used to calculate methane yield based on DOC. However, the dry weight percentages of the carbon content for each material was used along with the dry weight of each component deposited each year, which was calculated based on the moisture content previously presented in Table 2.8. Dry base DOC content for different waste components are presented in Table 3.1.

	Weste Componenta	DOC content in	% of dry waste
	waste Components	Range ⁴	Default
А.	Paper and Cardboard	40 - 50	44
В.	Textiles and Nappies	25 - 50	30 ⁵
C.	Food waste	20 - 50	38
D.	Wood	46 - 54	50
E.	Garden and park waste	45 - 55	49
F.	Rubber and Leather	47	47
G.	Plastics, Metal, Glass and other inert materials	0	0
	Bulk MSW Waste (deposited at VLF) ⁶	21 -	- 24

Table 3.1 Dry base DOC content for different MSW components

⁴ These ranges and defaults are based on the (IPCC, 2006) suggested based on the maximum and minimum values in consultation of (Jager and Blok, 1993; Gangdonggu Go"mi, 1997; Dehoust et al., 2002; Zeschmar-Lahl, 2002; Guendehou, 2004).

⁵ It is assumed that only 60% of the textile is degradable.

⁶ Calculated based on the waste composition from 1967 to 2011 presented in Table 2.7 and the waste moisture content presented in Table 2.8.

The total DOC content of the bulk MSW would depend on the composition of the waste deposited at the landfill and can be calculated for each year using the equation below:

 $DOC_{MSW} = 0.44(A) + 0.30(B) + 0.38(C) + 0.50(D) + 0.49(E) + 0.47(F)$ Equation 3.1 Where A, B, C, D, E, and F are the dry percentages of paper, textile, food waste, wood, yard waste and rubber in MSW, respectively.

Of the total DOC deposited in a landfill, a portion will be inaccessible. The remainder will be available DOC (DOC_a) which will be biodegraded to form LFG under optimum conditions. DOC_a is a function of DOC multiplied by correction factors selected based on the author's knowledge of landfill geometry and operations, as well as from the available studies, therefore:

$$DOC_a = DOC \times f_{dg} \times f_{cl} \times f_{dp} \times f_{st}$$
 Equation 3.2

Where DOC_a is the available DOC for methane generation through the landfill's lifespan and f_{dg} , f_{cl} , f_{dp} , f_{st} are the degradability, climate, depth and storage discount factors, respectively. These discount factors are equal to, or less than 1.0 and are explained in the following sections.

3.2.1 Degradability Factor (f_{dg})

Studies have shown various numbers for ultimate degradability of organic material under optimum conditions and the ultimate methane with respect to the DOC content of MSW (Ham et al., 1993; Akin et al., 1995; IPCC, 1996; Eleazer et al., 1997; Chugh et al., 1999; Ivanova et al., 2008; Wang et al., 2011). The IPCC (1996) in the GHG emission inventory guideline initially suggested 67% overall degradation and that 33% of the deposited carbon would be sequestered in the landfill, however, the revised guideline in 2006 acknowledged the overestimation resulting

from that assumption and suggested the revised value of 50% ultimate decomposition (IPCC, 2006). The IPCC FOD model applies the same default number to all waste categories regardless of the waste type and degradability, filling conditions, landfill design, etc. However, in order to improve the accuracy of methane generation estimates in the present study, different sequestration and/or degradability factors are applied to each type of waste.

The degradability of different waste components has been examined in a number of studies, showing its dependency on lignin content. These studies have shown that the average extent of degradability for main waste components can vary between 20 and 90% (Ham et al., 1993; Eleazer et al., 1997; Ivanova et al., 2008; Wang et al., 2011). Baldwin et al. (1998) was one of the first studies which reported the extent of decomposition of different waste components in MSW landfill at full scale, along with baseline data for samples. They also reported a correlation between lignin content and the rate of degradation for different types of materials. However, lignin content has not always been a good indication of the degree to which lignin inhibits the bioavailability of cellulose. A good example is a comparison between the degradability of grass and woody branches with approximately similar lignin content. The lignin in the grass does not inhibit the degradability as much as it does in branches (Akin et al., 1995; Eleazer et al., 1997).

Eleazer et al. (1997), in a comprehensive study, compared the theoretical methane yields based on the cellulose and hemicellulose contents of different waste components with the actual methane generated from biodegradation of these materials under optimum lab conditions. They showed that the extent of decomposition of different materials varied from 28% to 94%, with an average of 58%, for the overall MSW. This study was later used as the basis for several other studies. Table 3.2 below shows more detail about the results of the study by Eleazer et al. (1997).

	Waste	WasteMethaneOpponentsYield (L_0)		Hemi- Cellulose	Lignin	Decomposition Extent
	Components	(m ³ /tonne dry)	(%)	(%)	(%)	(%)
1	Grass	144.4 ± 15.5	26.5	10.2	28.4	94.3
2	Leaves	30.6 ± 8.6	15.3	10.5	43.8	28.3
3	Branch	62.6 ± 13.3	35.4	18.4	32.6	27.8
4	Food	300.7 ± 10.6	55.4	7.2	11.4	84.1
5	Coated Paper	84.4 ± 8.1	42.3	9.4	15.0	39.2
6	Old Newsprint	74.3 ± 6.8	48.5	9.0	23.9	31.1
7	Old Corrugated Containers	152.3 ± 6.7	57.3	9.9	20.8	54.4
8	Office Paper	217.3 ± 15.0	87.4	8.4	2.3	54.6
9	MSW	92.0 ± 4.1	28.8	9.0	23.1	58.4

 Table 3.2 Optimum degradability extents for different materials reported by Eleazer et al. (1997)

As shown in Table 3.2 above, Eleazer et al. (1997) reported methane yields of about 30 to 300 m^3 tonne ⁻¹ for different waste components with an overall methane generation potential of 92 m^3 per tonne of dry MSW. Chugh et al. (1999) conducted a similar study using shredded waste (with an average particle size of 10 cm) under enhanced biodegradation conditions in batch reactors and concluded 70 – 75% overall degradability for the MSW. Their findings showed approximately 20 to 30% higher overall degradability of MSW in comparison with Eleazer et al. (1997). Staley and Barlaz (2009) used the original findings by Eleazer et al. (1997) and corrected the decomposition extent (or sequestration percentages) excluding fossil-derived materials from the calculations. They reported the methane yield for different waste components from 11 separate statewide studies conducted in different states of the USA and reported an average methane yield of 78 m³ per tonne of dry waste, which translates to 64 m³ methane per

tonne of wet waste. Based on the composition of waste in different states of the USA, they concluded that about 42% of the methane generated in the US landfills was from paper and cardboard, followed by 19% from food waste, with the remainder originating from yard waste, wood waste, and other organics.

Wood waste contributes a major part of the DOC deposited at landfills (Wang et al., 2011). As previously shown, about 12% of the MSW generated in MV is wood waste and this amount increases to about 20% when the amount of DLC deposited at VLF is included (See Table 2.4 and Table 2.7, respectively). Ximenes et al. (2008) compared the actual decomposition rate of up to 46 year old wood waste mined from MSW landfills with data acquired from wood waste decomposition simulations in the laboratory. Wood waste samples, which were reported to have a moisture content between 42% to 68%, were evaluated for their carbon, cellulose, hemicellulose and lignin concentrations. They concluded that their ultimate decomposition rate of less than 20% for wood waste was significantly less than the 50% default value for wood degradability used in the IPCC model. Wang et al. (2011) also conducted a comprehensive laboratory scale study on the biodegradation of different types of wood and reported carbon conversion rates between 0% and 19.9%.

In the present study, degradability factors for different waste types are selected mainly based on the decomposition extents originally reported by Eleazer et al. (1997) and the improved values reported from more recent studies by Ximenes et al. (2008), Staley and Barlaz (2009), and Wang et al. (2011). Table 3.3 below presents the selected values of the degradability factors used in this study.

	Wasta Components	Degradability Factor (fdg)				
	waste Components	(%)				
1.	Food Waste ⁷	84%				
2.	Paper ⁸	46%				
3.	Wood ⁹	20%				
4.	Yard Waste ¹⁰	66%				
5.	Other Organics	50%				

Table 3.3 Degradability factor for different waste components

There are other studies showing an enhancement of biodegradation through the reduction of waste particle size. However, shredding of waste is more applicable to composting processes and not normally performed before land disposal. Therefore, a correction factor for particle size was not considered in the present study. Nevertheless, there are many other factors in the real-world environment that cause the actual DOC_a for methane generation at landfills be less than what is calculated by applying the DOC and f_{dg} values. Many researchers have concluded that the most important of these factors are pH, moisture, and temperature (Farquhar and Rovers, 1973; Ham et al., 1993; Eleazer et al., 1997; Ivanova et al., 2008). In the following section, some of these factors are further explained and correction factors are assigned wherever possible.

⁷ Derived based on (Eleazer et al., 1997; Chugh et al., 1999)

⁸ Weighted average based on relative contribution of office paper, Newsprint, corrugated cardboard and other mixed papers reported by Metro Vancouver from 1991 to 2009 (Abedini et al., 2012).

⁹ Derived in conclusion from (Kollmann and Cote, 1968; Ximenes et al., 2008; Staley and Barlaz, 2009; Wang et al., 2011).

¹⁰ Weighted average based on relative contribution of grass, leaves, and brush reported by Oshins and Block (2000) and relative carbon sequestration factors reported by Staley and Barlaz (2009).

3.2.2 Climate Factor (fcl)

Among many other factors affecting the bioavailability of DOC for methane production, a landfill's water content plays a major role (Farquhar and Rovers, 1973; Ham et al., 1993; Barlaz et al., 1997; Ivanova et al., 2008). Moisture affects the availability of nutrients and bacteria for biological degradation. Therefore, a lack of moisture in the landfill may completely inhibit the biodegradation process. Many studies reported that the minimum water content required for biological is between 15% and 50% dry basis (Barlaz et al., 1990; Baldwin et al., 1998; Pommier et al., 2007). However, Hartz and Ham (1983) studied MSW samples acquired from landfills under controlled moisture content and reported that methane production occurred at 10% moisture content (wet basis).

The large discrepancy between the findings of different studies on minimum moisture required for biodegradation may be due to the fact that different materials with different particle sizes and degradability were analyzed. There is also a wide range for the typical MSW moisture content. Depending on the composition of the MSW, the moisture content of waste "as generated" is historically reported to be between 25% and 65% (Pommier et al., 2007). Pommier et al. (2007) also concluded that the moisture content of a landfill not only affects the degradation rate but also greatly impacts the bioavailability of the degradable organics within the landfill, hence an effect on methane yield.

Among the models reviewed in Chapter 1, the LandGEM and Golder models consider different methane yields for different climatic zones. Golder Associates Ltd. (2008b) developed a relationship between methane yield and precipitation based on published data and their empirical experience from various projects in BC. While sufficient data do not exist in the literature to define a clear and robust relationship between bioavailability of DOC and landfill moisture content, annual precipitation of more than 1,000 mm appears to be a good threshold that is repeatedly used to distinguish wet environments from dryer zones (CRA, 2004; IPCC, 2006; Environment Canada, 2012b).

Food waste, yard waste, paper, and wood are the major contributors to methane generation in landfills. The water contents of food and yard wastes are near their water holding capacities (Pommier et al., 2007), Therefore, unless the landfill is located in a wet environment with high levels of precipitation, hydrolysis and decomposition of other deposited organics may be limited. As previously calculated and shown in Figure 2.3 in Page 48, the overall moisture content of the generated waste in MV is approximately 22 to 25%. Nevertheless, due to the high precipitation level in this area, the VLF would be considered to be a wet landfill and exempted from the application of a reduction factor for climate (i.e. f_{cl}). However, based on author's experience and limited findings in the literature, it is suggested as a best practice approach to include the following f_{cl} values appreciating the effect of landfills moisture content on bioavailability of organic material for decomposition to form LFG.

Based on the suggested values, the 1,000 mm threshold is considered as an optimum annual precipitation level. This precipitation level is reportedly considered to provide optimum condition for decomposition of the organics in landfills, hence discount factors are suggested for precipitation levels below this threshold.

Annual Precipitation (mm)	Climate Factor (f _{cl})			
0 - 500	0.5 - 0.7			
500 to 1,000	0.7 - 0.9			
>1,000	1			

Table 3.4 Suggested climate factors for different precipitation levels

3.2.3 Depth Factor (fdp)

The depth of a landfill plays a major role in providing suitable conditions for anaerobic degradation of DOC placed into the landfill. Shallow landfills have more extensive oxygen infiltration into the waste mass, resulting in aerobic degradation and reduced methane generation (Vogt and Augenstein, 1997). Also, in cold climates, unless the landfill is capped with an impermeable layer (e.g. geomembrane cap), shallower sections of landfills are subject to low temperatures, which may not be optimal for bacterial activity. In such landfills, the increased depth results in a relatively higher percentage of waste mass undergoing optimum conditions for anaerobic degradation and methane generation. On the other hand, when the depth of the landfill exceeds certain levels, increased pressure due to compaction results in limited mobility of nutrients and reduced bioavailability of DOC, and methane generation (Hoeks, 1983). Based on the author's experience and available literature, landfill depth within the range of 8 m to 30 m is considered optimum for methane generation (Hoeks, 1983; Vogt and Augenstein, 1997; Howard Robinson, 2010).

Therefore, for landfills located in temperate climates, with MAT < 20 °C (e.g. all landfills in BC), the following values for depth factor are suggested. Any shallow landfill (< 8 m depth) is suggested to be assigned an f_{dp} of 0.80. For landfills exceeding that depth an f_{dp} of 0.90 is 66

recommended to account for the top layers. Based on this terminology, there should be a smaller discount factor for much deeper landfills (> 30 m depth) as there will be much less waste mass affected by the ambient temperature relative to the unaffected zone. However, as reported by Hoeks (1983), in very deep zones of MSW landfills less methane fermentation occurs due to the increased compaction. Therefore, a constant f_{dp} of 0.9 (i.e. discount factor of 10%) for landfills located in cold climates would conveniently account for both, (i) the top portion affected by low ambient temperatures and (ii) the pressurized bottom portion of the landfill. Obviously, the discount factor for deep landfills would apply to landfills located in any climatic condition. Table 3.5 shows the suggested depth factors assigned to landfills located in different climatic zones.

Table 3.5 Suggested depth factors for different climatic conditions

Depth of Landfill	Depth Factor (f _{dp})				
(m)	MAT < 20°C	MAT > 20°C			
< 8	0.80	1			
8 to 30	0.90	1			
> 30	0.90	0.90			

3.2.4 Other Factors

There are many other parameters which could be incorporated in fine-tuning a more accurate methane yield for LFG generation estimates. However, this requires more information to interpret suitable correction factors. Compaction rate is one of these parameters. However, calculation of the actual compaction rate (or waste density at landfills) is difficult. Available information about airspace consumption and waste-to-cover ratio may allow for a theoretical calculation of the compaction ratio, however, factors like the landfill's settlement, which itself

depends on factors such as landfill depth, waste composition, and waste type, makes it a rather complex process to predict the actual value across an entire landfill.

Deposition of toxic materials at landfills is another important factor that affects gas generation. In general, especially in wet MSW landfills, it is good practice to ensure that the naturally existing optimum conditions for methane generation are not interrupted. While the pH of MSW landfills varies by age of the landfill, it normally stabilizes within the range of 6.6 to 7.5 (Tchobanoglous et al., 1993). Maximum methane production occurs within the optimum pH range of 6.7 to 7.5 (Edward A. McBean et al., 1995). Therefore, any drift from this range can be a good indicator that the optimum conditions are interrupted and methane generation assessment should be adjusted accordingly.

Another less important factor that has an effect on the sequestration of DOC at MSW landfills is the waste storage methods practiced at the generation stage (i.e. households). While food wastes are known to be readily degradable with a half-life of about 1 year (Robert K. Ham et al., 1979; Vesilind P. Aarne et al., 2002), it has always been uncertain what percentage of these materials are isolated within plastic bags used to store the material at the generation stage. Most of the food wastes sourced from commercial and industrial zones as well as from the multi-family residential zones are stored in plastic bags before waste collection occur. That includes approximately 50% to 75% of the food waste generated in a typical municipality such as Vancouver. Depending on type of collection system as well as the disposal and compaction of the waste during disposal, most of these wastes are mixed and 'exposed'. However, the authors visual observations from various MSW landfills have shown that about 20% of the generated food wastes remain isolated in plastic bags. This value may be much lower and closer to zero in developing countries and where scavenging activities occur at MSW landfills. Nevertheless, as shown in the next section, it is suggested that a storage factor of $f_{st} = 0.80$ be assigned to the calculation of DOC_a for the food waste component of the MSW, unless any sort of waste shredder is used at the disposal site.

3.2.5 Calculated Values for Methane Yield (L₀, m³ tonne⁻¹)

The DOC placed in a landfill will partly sequestrate and the rest will ultimately leave the landfill in the form of CH_4 and CO_2 and in leachate in early stages. (Note: the amount of carbon leaving the landfill in form of leachate is insignificant in comparison with the carbon released as LFG, hence ignored). For each landfill, the parameters discussed above define the ultimate amount of CH_4 generated as a result of deposition of each substance (i.e. methane yield). Table 3.6 summarizes these parameters for this study's work site (i.e. the Vancouver Landfill) as well as the methane yield calculated for each waste component based on Equation 3.3 below.

$$L_o (m^3 CH_4 / \text{tonne waste}) = \frac{1}{2} \times DOC_a \times \frac{16}{12} \div 0.000678$$
Equation 3.3
Where:

"1/2" applies the assumption of 50% CH₄ concentration in the generated LFG,
"DOC_a" is the available DOC for ultimate CH₄ generation during landfill's lifespan (tonnes), calculated based on waste tonnage, composition, moisture content and DOC_{dry}
"16/12" applies the ratio of molecular weights of CH₄ and DOC, and
"0.000678" is the density of CH₄ (tonne/m³) under standard conditions¹¹.

¹¹ Methane has the density of 0.677577 kg/m³ at temperature of 15°C and pressure of 1 atm (standard condition).

Waste Components	DOC _{dry} ¹²	Degradability Factor (f _{dg})	Climate Factor (f _{cl})	Depth Factor (f _{dp})	Storage Factor (f _{st})	Methane Yield (L ₀) m ³ /tonne
Food Waste	0.38	0.84	1.0	0.9	0.8	113
Paper Waste	0.44	0.46	1.0	0.9	1.0	143
Wood Waste	0.50	0.20	1.0	0.9	1.0	73
Yard Waste	0.49	0.66	1.0	0.9	1.0	157
Other Organics	0.30	0.50	1.0	0.9	1.0	114
2009 MSW (e.g.)	0.22^{13}					76.7

Table 3.6 Methane yield for different type of organic wastes deposited at the Vancouver Landfill

Based on the composition of the waste historically deposited at the Vancouver Landfill (presented in Table 2.7) and Equation 3.3 above, the following methane generation yields presented in Table 3.7 are assigned to each year's activity of this site. Variations in L_0 values reflect the changes in waste generation and recycling activities historically practiced in Metro Vancouver.

¹² See Table 3.1

¹³ Calculated based on Equation 3.1 and reported waste composition in Table 2.7 and waste moisture content in Table 2.8.

Year	Organic waste	Garden waste	Paper &Rubber	Wood	Textile	Nappies	DOC _{dry}	DOCa	L
	%	%	%	%	%	%	%	%	m ³ tonne ⁻¹
1967	19.6%	5.5%	32.1%	7.4%	8.6%	2.5%	22.4%	9.6%	94.9
1968	19.6%	5.5%	32.1%	7.4%	8.6%	2.5%	22.4%	9.6%	94.9
1969	19.6%	5.5%	32.1%	7.4%	8.6%	2.5%	22.4%	9.6%	94.9
1970	19.6%	5.5%	32.1%	7.4%	8.6%	2.5%	22.4%	9.6%	94.9
1971	19.6%	5.5%	32.1%	7.4%	8.6%	2.5%	22.4%	9.6%	94.9
1972	19.6%	5.5%	32.1%	7.4%	8.6%	2.5%	22.4%	9.6%	94.9
1973	19.6%	5.5%	32.1%	7.4%	8.6%	2.5%	22.4%	9.6%	94.9
1974	19.6%	5.5%	32.1%	7.4%	8.6%	2.5%	22.4%	9.6%	94.9
1975	19.6%	5.5%	32.1%	7.4%	8.6%	2.5%	22.4%	9.6%	94.9
1976	19.6%	5.5%	32.1%	7.4%	8.6%	2.5%	22.4%	9.6%	94.9
1977	19.6%	5.5%	32.1%	7.4%	8.6%	2.5%	22.4%	9.6%	94.9
1978	19.6%	5.5%	32.1%	7.4%	8.6%	2.5%	22.4%	9.6%	94.9
1979	19.6%	5.5%	32.1%	7.4%	8.6%	2.5%	22.4%	9.6%	94.9
1980	19.6%	5.5%	32.1%	7.4%	8.6%	2.5%	22.4%	9.6%	94.9
1981	19.6%	5.5%	32.1%	7.4%	8.6%	2.5%	22.4%	9.6%	94.9
1982	19.6%	5.5%	32.1%	7.4%	8.6%	2.5%	22.4%	9.6%	94.9
1983	19.6%	5.5%	32.1%	7.4%	8.6%	2.5%	22.4%	9.6%	94.9
1984	19.6%	5.5%	32.1%	7.4%	8.6%	2.5%	22.4%	9.6%	94.9
1985	19.6%	5.5%	32.1%	7.4%	8.6%	2.5%	22.4%	9.6%	94.9
1986	19.6%	5.5%	32.1%	7.4%	8.6%	2.5%	22.4%	9.6%	94.9
1987	19.6%	5.5%	32.1%	7.4%	8.6%	2.5%	22.4%	9.6%	94.9
1988	19.6%	5.5%	32.1%	7.4%	8.6%	2.5%	22.4%	9.6%	94.9
1989	19.6%	5.5%	32.1%	7.4%	8.6%	2.5%	22.4%	9.6%	94.9
1990	19.6%	5.5%	32.1%	7.4%	8.6%	2.5%	22.4%	9.6%	94.9
1991	19.6%	5.5%	32.1%	7.4%	8.6%	2.5%	22.4%	9.6%	94.9
1992	19.6%	5.5%	32.1%	7.4%	8.6%	2.5%	22.4%	9.6%	94.9
1993	14.5%	4.1%	23.8%	23.6%	6.4%	1.9%	24.0%	8.5%	83.4
1994	19.6%	5.5%	32.1%	7.4%	8.6%	2.5%	22.4%	9.6%	94.9
1995	16.5%	4.6%	27.1%	17.2%	7.2%	2.1%	23.4%	8.9%	88.0
1996	15.6%	4.4%	25.6%	20.1%	6.8%	2.0%	23.7%	8.7%	85.9
1997	17.3%	4.8%	28.3%	14.8%	7.6%	2.2%	23.1%	9.1%	89.6
1998	15.2%	4.3%	24.9%	21.4%	6.7%	1.9%	23.8%	8.6%	85.0
1999	15.0%	4.2%	24.7%	22.0%	6.6%	1.9%	23.9%	8.6%	84.6
2000	13.3%	3.7%	21.7%	27.7%	5.8%	1.7%	24.4%	8.2%	80.6
2001	14.0%	8.5%	13.0%	21.1%	10.8%	1.8%	21.4%	7.9%	77.4
2002	12.1%	7.4%	11.2%	27.6%	9.3%	1.6%	22.4%	7.5%	73.9
2003	13.3%	8.1%	12.4%	23.3%	10.3%	1.7%	21.7%	7.7%	76.2
2004	16.7%	3.2%	17.3%	22.2%	7.2%	1.4%	21.4%	7.6%	74.6
2005	17.0%	3.2%	17.5%	21.5%	7.3%	1.4%	21.3%	7.6%	75.0
2006	17.3%	3.3%	17.9%	20.5%	7.5%	1.5%	21.2%	7.7%	75.5
2007	19.8%	2.9%	21.8%	20.2%	3.9%	1.7%	22.0%	8.1%	79.4
2008	19.2%	2.8%	21.1%	21.8%	3.8%	1.6%	22.2%	8.0%	78.4
2009	22.5%	2.8%	17.9%	21.4%	3.4%	1.7%	21.4%	7.8%	76.7
2010	23.2%	2.9%	18.4%	19.8%	3.5%	1.8%	21.1%	7.9%	77.5
2011	23.2%	2.9%	18.5%	19.7%	3.5%	1.8%	21.1%	7.9%	77.6
								Avg.	88.9
								Min.	73.9
								Max	94.9

Table 3.7 Calculated variable $L_{\scriptscriptstyle 0}$ values for advanced LFG generation assessment at VLF

As shown in Table 3.7, the methane generation potential of waste that has been historically deposited at VLF since 1967 has varied within the range of 73.9 to 95.9 m3 methane per tonne of MSW deposited. An increase in organic waste diversion activities in MV has reduced this value to its current amount of 77.6 m³ tonne⁻¹.

3.3 Decay Rate (k, year ⁻¹)

The decay rate defines how fast the organic materials are broken down in the landfill and the rate of LFG generated. In the first order kinetic reaction, decay rate is defined as the biodegradation half-life of the organic material. Half-life ($t_{1/2}$) is the time it takes 50% of the original amount of organic material to be decomposed. Fine-tuning the value of the decay rate(s) would have a significant effect on a landfill's operation evaluation parameters, such as the LFG collection system efficiency and level of GHG emission rates from the landfill. Selecting more accurate decay rates also largely affects the LFG collection system design parameters, such as the design capacity of the extraction system (i.e. blower facility and piping network), sizing flares, and/or energy recover systems. However, the total methane generated during the landfill's lifespan is not related to the selected decay rates. For instance, as shown in Table 1.11, comparison of LFG modeling results for Phase 1 of the VLF based on different methodologies, the total lifespan methane generation resulted by LandGEM (when inventory modeling parameters were used), and BC MOE methodologies were both around 301,000 tonnes ($\pm 0.3\%$). However, the "current collection efficiencies" derived from these two methodologies were 73% and 56%, respectively.

The relationship between half-life and decay rate based on the fundamental first-order decay equation presented in Chapter 1 (see Equation 1.4), would be as follows:

k (year ⁻¹) =
$$\ln(2) / t_{1/2}$$

Equation 3.4

For example, a half-life of 3 years would result from a decay rate of k = 0.23 year⁻¹.

In general, there are two major approaches in selecting half-lives and decay rates for predicting LFG and/or methane generation rates. Some models, such as LandGEM and Golder models, use an average k value as the decay rate of the entire MSW mass (i.e. single phase methodology). Other models, such as BC MOE tool and IPCC FOD, assign different decay rates to different types of organic materials (i.e. multi-phase methodology). As was previously discussed in Chapter 1, a comparison of these two groups of models indicated that the multi-phase first-order decay methodologies yielded more reliable methane generation predictions (Hoeks, 1983; Oonk, 1994).

There are several factors affecting the degradation rate constant. Some relate to the chemical characteristics of the waste material (e.g. lignin content), and some are based on the physical properties and environmental conditions (e.g. particle size, moisture content, temperature and pH) (Rovers et al., 1977; EMCON Associates, 1980; Bookter and Ham, 1982; Hoeks, 1983; Bingemer and Crutzen, 1987; Ham et al., 1993; Oonk, 1994; Eleazer et al., 1997; Ivanova et al., 2008).

Rovers et al. (1977) conducted one of the first studies reporting different decomposition rates for various types of organic materials in MSW landfills. They suggested that food waste and yard

wastes are among the fastest decaying materials, decomposing within 1 to 5 years. Paper wastes were the second most readily decomposable component and were reported to decompose within approximately 5 to 10 years. Finally, wood waste (excluding approximately 30% of the lignin portion) was reported to decay in 20-100 years. More detailed studies were later conducted on the decay rates and half-lives for different organic wastes. Robert K. Ham et al. (1979) estimated that the half-life of food waste was 1 year and the half -lives of paper waste, wood waste, and yard waste were about 15 years. He also concluded that the food waste decay rate under optimum conditions in landfills can be as high as 0.7 year⁻¹, which yields a half-life of 1 year.

While there does not appear to be a large discrepancy between the suggested values for decay rates under optimum conditions at landfills, assignment of parameters value for a particular landfill seems to be slightly different according to different models. In all methodologies, k is related to the moisture content of the landfill, which is defined by the precipitation levels in the area. However, in the IPCC model, the decay rates are also dependent on the ambient temperature. IPCC (2006) used an ambient temperature of 20 °C as a threshold, reflecting the fact that the biodegradation rate of the organic material and methane generation under anaerobic conditions slows down significantly at temperatures below 20° C (Maly and Fadrus, 1971; Debra R. Reinhart et al., 2005). Maly and Fadrus (1971) concluded that anaerobic biodegradation is enhanced at temperature ranges for mesophilic and thermophilic bacterial activities within MSW landfills to be between 30° and 35°C and 45° and 65°C, respectively.

While there is enough evidence and data on the effect of temperature on the biodegradation process in landfills, there is a limited number of studies looking into the actual temperature of landfills and that how it fluctuates with the ambient temperature. Maurice and Lagerkvist (2003) studied the effects of seasonal variations on biodegradation activities and methane generation from landfills located in cold climates and concluded there were no significant variations caused by low ambient temperatures. Similarly, Bingemer and Crutzen (1987) and Thompson and Tanapat (2005) reported insignificant differences in methane generation rates between the winter and summer seasons.

In the present study, the half-lives previously developed in various studies were used as a basis for estimation of decay rate constants for the degradable components of MSW. The effects of the two major environmental affecting parameters, i.e. temperature and moisture, on the assigned k values were also considered where necessary. However, to recap the debate over the relationship between ambient temperature and internal landfill temperature, a comprehensive field investigation, presented in Section 3.3.1, was conducted to study the Vancouver Landfill temperature and its fluctuations in relation to the ambient temperature variations from the coldest to the warmest day of 2011.

3.3.1 Temperature

It is widely known that bacterial degradation is enhanced with increased temperatures within the optimum range (Maly and Fadrus, 1971; Barlaz et al., 1997; Baldwin et al., 1998). One of the most well-known equations in this regard is the van't Hoff-Arrhenius equation developed in 1884 defining the temperature dependency of the bacterial degradation process (Metcalf & Eddy,

1991). Likewise, waste mass temperature is repeatedly reported to be a major parameter affecting the rate of waste decomposition in MSW landfills. Optimum temperatures within the range of 30 to 65°C are reported for methanogenic activities, whereas, the thermophilic bacteria active in the upper end of this range are more effective in methane generation (Edward A. McBean et al., 1995).

The relationship between temperature and methane generation was also formulated by Hartz et al. (1982). They concluded that the methane generation rate was optimized at temperatures between 30° to 41°C. That study further showed that the decay rate decreased when temperature was decreased and that it tripled for each 10°C rise in the temperature (Hartz, 1983). Other studies also identified a similar range up to 45 °C as the optimum temperature range for gas production at landfills (DeWalle et al., 1978; Rees, 1980b; Mata-Alvarez and Martinez-Viturtia, 1986).

There have been only a few full-scale studies conducted on the actual temperature within landfills. Nevertheless, it is a well-known belief that landfill temperatures in central and deeper zones do not significantly fluctuate with ambient temperature (Bingemer and Crutzen, 1987; Edward A. McBean et al., 1995; Maurice and Lagerkvist, 2003; Thompson and Tanapat, 2005). Anaerobic degradation is an exothermic process, so bacterial activity continues to generate heat until optimum temperatures are reached (Maurice and Lagerkvist, 2003). Edward A. McBean et al. (1995) reported that the temperature in the top layers of a dry landfill may be more affected by ambient temperature, while deeper zones (deeper than 15 m) are unaffected by ambient air temperature. Maurice and Lagerkvist (2003), Thompson and Tanapat (2005) and Bingemer and

76

Crutzen (1987) all report no dependency of MSW landfill temperature on ambient air temperature. However, IPCC (2006) elected to choose different decay rates based on the ambient mean annual temperature (MAT) (See Table 1.4).

During the course of the present study, an investigation was conducted at the VLF to test the hypothesis that landfill temperatures in deeper zones are primarily driven by exothermic biodegradation reactions and not the ambient temperature. Provided that the optimum conditions were met (i.e. enough moisture content, availability of nutrients and the pH being at the optimum levels) it was believed that bacterial activity maintains the temperature at optimum levels. The landfill temperature investigations at the VLF are described in next section.

3.3.1.1 Landfill Temperature Investigations

Landfill temperature investigations were conducted at the four different phases of the VLF during a course of eight months from January to August 2011. Historical climate records show that Vancouver experiences the absolute maximum and minimum ambient temperatures within this time range. Ambient temperature was recorded with high resolution (i.e. every 10 minutes) using an S-TMB-M002, 12-Bit Temp Smart Sensors and a HOBO temperature data logger installed at the VLF site. As shown in Figure 3.1, the ambient temperature recorded during the course of the field work varied from a minimum of -8.9°C (occurred in Feb. 25th, 2011 at 7:10 AM) to a maximum of 32.5°C (occurred in Aug. 17th, 2011 at 4:50 PM). Figure 3.2 also illustrates the minimum and maximum daily temperature recorded at the Vancouver International Airport weather station, showing the ambient temperature varying from minimum of -8.1°C to maximum of 27.4°C during the course of the field work.

Figure 3.1 Recorded ambient temperature at the VLF site

Figure 3.2 Daily min. and max. temperature recorded at the Vancouver Int'l Airport weather station

After conducting an initial wellfield survey (October to December 2010) on the existing LFG wells, 27 LFG wells were selected for the purpose of monitoring temperature at different depths of the landfill. This inspection was to study the accessibility of wells, available depths, leachate water level, and any obstruction in the wells that may have occurred due to landfill settlement (full inspection results are provided in Appendix C.1). The inspection showed that despite the expected depth of approximately 25 m for the new LFG wells installed in Phase 1, all the wells were either obstructed or flooded (i.e. filled with water and/ or leachate) at depths of approximately 10 to 12 m below ground (B.G.). Figure 3.3 below shows the location of the selected wells for temperature investigations.

Figure 3.3 Location of selected LFG wells for landfill temperature investigations

As shown in Figure 3.3, out of a total of 27 wells, 11 wells were selected from Phase 1 of the VLF where the waste depth exceeded 30 m and was partially capped with a geomembrane cap in 2009 (extent of the geomembrane cap is shown with a dash line in the Figure). Another 16 wells

were located in the older areas of the landfill (Area 3, Area 2E and Area 2W previously shown in Figure 2.2). These areas contained older waste with a depth of 10 to 12 m and had been closed with interim cover soil in 1998, 1995, and 1993, respectively. Table 3.8 below shows a list of the selected wells, their coordinates, elevations, pipe diameters, and available depth at the time of the survey.

Phase 1 (11/42 Wells)			choose 11			
WellName	Northing	Easting	Ground Elevation (m)	Top Casing Elevation (m)	Pipe ID (in)	Water Depth below ground level (m)
1 F07	5438634.3	500804.2	24.10	25.67	2.070	11.73
2 F10	5438777.7	500810.0	24.69	26.15	2.070	13.35
3 F26	5438831.8	500845.1	30.76	33.04	2.070	11.23
4 P01-V030	5438480.6	500885.9	33.21	34.47	2.070	10.60
5 P01-V031	5438540.4	500940.1	19.97	21.63	2.070	11.50
6 P01-V034	5438576.2	500883.9	35.24	36.70	2.070	11.00
7 P01-V036	5438623.7	500881.2	35.76	37.41	2.070	9.75
8 P01-V041	5438793.4	500944.3	18.48	20.35	2.070	9.80
9 P01-V042	5438773.2	500883.8	34.18	35.73	2.070	8.55
10 P01-V054	5438386.0	500934.7	19.88	21.24	2.070	13.95
11 P01-V056	5438379.3	500881.7	18.71	20.14	2.070	11.00
Area 2W	(9/70 Wells)		choose 9			
12 A2W-V007	5438615.7	499977.2	11.59	12.7667	2.095	9.02
13 A2W-V012	5438668.8	499937.6	12.63	13.8852	2.095	9.20
14 A2W-V018	5438720.7	499907.9	12.64	13.7835	2.095	8.56
15 A2W-V029	5438779.3	499606.6	9.81	11.0670	2.095	8.43
16 A2W-V050	5438925.9	500031.9	10.85	12.1874	2.095	8.02
17 A2W-V055	5438926.6	499738.4	13.74	15.0517	2.095	10.45
18 A2W-V056	5438926.5	499678.1	13.50	14.8397	2.095	9.05
19 A2W-V060	5438971.7	500003.0	11.26	12.5123	2.095	8.65
20 A2W-V066	5438978.4	499648.3	12.28	13.6361	2.095	11.08
Area 2E (6/45 Wells)		choose 6			
21 A2E-V010	5438506.1	500282.4	12.24	13.6055	2.095	9.85
22 A2E-V013	5438558.7	500312.6	11.86	13.3392	2.095	9.90
23 A2E-V017	5438610.5	500282.8	11.92	13.2526	2.095	8.70
24 A2E-V022	5438662.3	500218.3	10.38	11.8330	2.095	6.20
25 A2E-V032	5438817.9	500342.0	10.78	12.0630	2.095	6.80
26 A2E-V033	5438818.0	500281.9	12.03	13.2470	2.095	8.20
Area 2E (1/45 Wells)		choose 1			
27 A03-V019					2.095	

 Table 3.8 Selected wells for the landfill's temperature investigation

ACR Data Loggers (Smart Buttons) were used to log temperatures every hour at various depths of the selected LFG wells. Chambers were custom made for the smart buttons using a ¹/₂" Brass Plug and a ¹/₂" Brass Cap, sealed with Teflon tape and hung in wells using brass aircraft cable. Figure 3.4 below shows the smart button's chamber as well as an installed position example inside one of the LFG wells at the depth of 10 m B.G..

Figure 3.4 Temperature data logger and chamber (left), and installation set-up at ~10m below ground just above leachate level in an LFG well (right)

During the initial field investigation, a quick temperature survey was conducted on a limited number of selected wells on December 13th, 2010. This investigation assessed, in real-time, the temperatures inside the LFG wells at various depths while the ambient temperature was about 8° C. During this survey, the temperature profile was recorded for the total available depth of the

wells. Figures 3.5, 3.6 and 3.7 below show the temperature profiles for the LFG wells "A2W-V007", "A2W-V012" and "P01-V034", respectively.

Figure 3.5 Temperature profile in LFG well "A2W-V007", December 13th, 2010 (ambient T ~8° C, depth of waste ~10m and area closed with interim cover soil since 1993)

Figure 3.6 Temperature profile in LFG well "A2W-V012", December 13th, 2010 (ambient T ~8° C, depth of waste ~11m and area closed with interim cover soil since 1993)

Figure 3.7 Temperature profile in Gas Well P01-V034, December 13th, 2010 (ambient T ~8° C, depth of waste ~33m and area closed with geomembrane cover since 2009)

It should be noted that while this initial survey provided useful information with regard to the temperature gradient and the temperature in deeper zones, these data would not be accurate, especially in shallower sections of the wells, as the wellhead cap had to be removed to access the well, resulting in cold air being drawn down to the well. Nevertheless, these initial investigations showed that in both cases (old phases and the recently closed Phase 1) the temperature inside the wells was higher than the ambient temperature. However, the old areas showed slight differences between ambient temperature and landfill temperature. In contrast, a significant temperature difference was observed in the new phase as shown in Figure 3.7. Since the design of the LFG vertical wells included solid PVC and/ or HDPE pipes for the first 5 meters of the well, the recorded temperature would be the temperature of the gas collected and conveyed from the depth of 5 m B.G. and below. Therefore, the reported landfill deep zone temperatures would be those recorded from the screened sections of the LFG well pipes (i.e. below 5 meter B.G.).
Based on this initial quick survey, it was decided that one temperature logger would be installed in each gas well selected in Area 3, Area 2E and Area 2W, and two data loggers would be installed in wells located in Phase 1 of the VLF. Temperatures were logged every hour at ~5 m and 10 m B.G. in Phase 1 and approximately 8 m B.G. in Areas 2W, 2E, and 3. It is worth mentioning that the total number of selected wells and temperature recording points was also limited due to limitations on available resources. Other limitations in these series of field work included limited storage capacity of the smart buttons as well as their frailty against moisture that could potentially leak into the data logger chambers. Due to these limitations, the smart buttons were replaced at least once every month during the 8 months course of these field studies. Even with frequent replacement, some of the data loggers burned out, resulting in a loss of data.

3.3.1.2 Results and Discussion

During the course of the landfill temperature field study, over 100,000 data points were collected from the selected 27 wells located in 4 different areas of VLF. Illustrations of all recorded data are provided in Appendix C.2, of which a few examples are presented below.

In general, results showed that the landfill temperature was not affected by ambient temperature fluctuations and appeared to be constant throughout the cold and warm seasons, similar to previous findings by Bingemer and Crutzen (1987), Maurice and Lagerkvist (2003) and Thompson and Tanapat (2005). However, different ranges of temperatures were observed for wastes of different ages. Areas with newer waste showed higher temperatures, representing more bacterial activity occurring in those areas. Recorded data also showed how the LFG system operational glitches can affect the landfill's temperature. Figure 3.8 below shows the recorded

data at 5 m B.G. in vertical LFG well #34 located in Phase 1 of VLF (i.e. Well "P01-V034"). An almost constant temperature of about 40 °C was recorded at this location throughout the course of the study. Also shown in the figure, three incidents of LFG collection system shut-downs occurred when cooled gas from the header pipe (buried near the ground surface) was pulled back to the fill and resulted in lower recorded temperatures (shown as operational errors, excluded from valid recorded data point).

Figure 3.8 Temperature data for the LFG well "P01-V034" (5 m B.G.)

Figure 3.9 and Figure 3.10 respectively illustrate the monthly averages and hourly temperatures in this well. These data are plotted against the ambient temperature, clearly showing independency of the landfill temperature from short term and seasonal temperature variations.

Figure 3.9 Comparison of monthly average temperature data (Ambient vs. P01-V034)

Figure 3.10 Hourly temperature fluctuations - ambient vs. landfill temperature (P01-V034)

Similarly, Figure 3.11 below is an example of the recorded temperatures in a deeper zone of the landfill at approximately 10 m below ground. When operational errors were excluded, the recorded temperature at this point showed a fluctuation of only 1 °C from mid-January to mid-June around the average temperature of 43.1 °C.

Figure 3.11 Temperature data for the LFG well "P01-V041" (9.5 m B.G.)

Figure 3.12 shows the recorded temperatures in well A2W-V056 located in the older zone of VLF. Temperatures recorded at this location were fairly constant, around 15.5 °C with a maximum fluctuation of 1 °C between mid-January to mid-June.

Figure 3.12 Temperature data for the LFG well "A2W-V056" (8 m B.G.)

The results of the 8 months landfill temperature investigations conducted at VLF are tabulated in Table 3.9. Well ID, depth of temperature probe, age of waste at the location, and landfill cover type are also shown, along with the average temperature, minimum and maximum values recorded, range of temperature fluctuations, standard deviation, and coefficient of variation. Out of 35 deep and shallow data recording points, four probes (3 shallow and 1 deep, data are shown in red) showed a large range of fluctuation in recorded temperatures (the red entries in Table 3.9). These variations are not correlated to the ambient temperature fluctuations and are believed to be a result of (i) faulty operation of, and/ or (ii) adjustments made to the LFG wellfield at VLF. (Note: wellfield adjustment is referred to the adjustments made to an LFG collection system to provide required amount of vacuum to each wellhead to actively collect the LFG in an

effective manner). Two examples of these "invalid" recorded data are further explained below, whereas these data are excluded from the final summary of findings and the conclusions resulting from this section of the study.

	Depth of	Average	Cover	No. of	Min.	Max.	Fluctuation	Average	Standard	Coef. of
LFG Well ID	Probe from	Waste	Tuno	Valid data	Temp.	Temp.	Range	Temp.	Dev.	Variation
Surface (m) Age (yr)		туре	Points	(°C)	(°C)	(°C)	(°C)	(°C)	(%)	
P01-\/007	5.0	7	Soil Cap	1,367	42.0	45.0	3.0	44.7	0.41	0.9%
101-1001	10.0	7	Soil Cap	1,367	46.0	47.0	1.0	46.5	0.05	0.1%
P01-V010	10.0	7	Soil Cap	1,823	42.0	47.5	5.5	45.4	1.29	2.8%
P01-1/030	5.0	7	Geomem.	1,523	42.5	44.0	1.5	43.1	0.48	1.1%
101-1020	10.0	7	Geomem.	865	46.0	51.0	5.0	46.6	1.03	2.2%
P01-\/031	5.0	7	Geomem.	3,051	20.5	46.0	25.5	32.4	6.94	21.4%
101-1031	10.0	7	Geomem.	1,460	29.5	37.0	7.5	33.7	1.57	4.7%
DO1 1/024	5.0	7	Geomem.	2,508	38.5	43.5	5.0	39.8	0.73	1.8%
101-1024	10.0	7	Geomem.	2,520	50.5	53.0	2.5	52.1	0.73	1.4%
P01-1/036	5.0	7	Geomem.	2,522	42.5	45.0	2.5	43.8	0.44	1.0%
101-1020	9.5	7	Geomem.	2,522	47.5	48.5	1.0	48.4	0.25	0.5%
P01-\/0/11	5.0	7	Geomem.	2,048	31.5	42.0	10.5	40.7	0.80	2.0%
101 1041	9.5	7	Geomem.	3,554	42.5	43.5	1.0	43.1	0.22	0.5%
P01-V042	3.5	7	Geomem.	2,673	38.5	42.0	3.5	39.6	0.30	0.8%
101-1042	8.5	7	Geomem.	1,535	48.5	52.5	4.0	50.1	0.79	1.6%
P01-V05/	5.0	7	Geomem.	3,188	35.0	45.0	10.0	41.7	2.71	6.5%
101 0004	10.0	7	Geomem.	1,523	43.5	46.0	2.5	45.9	0.24	0.5%
P01-V056	10.0	7	Geomem.	3,195	43.5	45.5	2.0	45.0	0.22	0.5%
A3V019	6.5	14	Soil Cap	1,034	20.5	21.5	1.0	21.0	0.12	0.6%
A2E-V010	8.0	16	Soil Cap	4,089	14.5	16.5	2.0	15.7	0.48	3.1%
A2E-V013	8.0	16	Soil Cap	4,090	14.0	15.0	1.0	14.6	0.35	2.4%
A2E-V017	8.0	16	Soil Cap	4,090	15.5	16.5	1.0	16.0	0.22	1.4%
A2E-V029	6.5	16	Soil Cap	4,090	14.0	16.0	2.0	15.1	0.37	2.5%
A2E-V032	6.5	16	Soil Cap	4,090	8.5	11.0	2.5	10.2	0.58	5.7%
A2E-V033	8.0	16	Soil Cap	4,090	16.5	17.5	1.0	16.9	0.23	1.4%
A2W-V007	8.0	18	Soil Cap	4,090	12.5	16.0	3.5	15.0	0.72	4.8%
A2W-V012	8.0	18	Soil Cap	4,090	16.5	18.0	1.5	17.1	0.41	2.4%
A2W-V018	8.0	18	Soil Cap	4,090	15.5	17.0	1.5	16.1	0.58	3.6%
A2W-V029	8.0	18	Soil Cap	4,088	12.5	13.5	1.0	13.3	0.25	1.9%
A2W-V050	8.0	18	Soil Cap	2,043	14.0	14.5	0.5	14.4	0.17	1.2%
A2W-V055	8.0	18	Soil Cap	4,088	12.5	16.0	3.5	14.4	0.88	6.1%
A2W-V056	8.0	18	Soil Cap	3,986	15.0	16.0	1.0	15.5	0.27	1.8%
A2W-V060	8.0	18	Soil Cap	4,090	15.5	16.5	1.0	15.8	0.31	1.9%
A2W-V066	7.5	18	Soil Cap	4,089	14.5	16.0	1.5	15.9	0.17	1.0%

 Table 3.9 Landfill temperature field investigation results (red entries represent invalid recorded data)

Figure 3.13 is an example of how wellfield adjustments affected the recorded temperature at LFG well P01-V054. As mentioned before, the shallower probes, mainly installed at approximately 5 m B.G., were located in the section of the well with solid well piping. Therefore, the recorded temperatures were expected to be a function of the gas temperature from deeper zones (landfill temperature) and perhaps the temperature of surrounding environment which would be slightly lower than the values recorded in deeper zones. This means that there would be less difference between the temperature values recorded at shallow and deep probes in wells from which higher LFG flow rates are collected.

Figure 3.13 Recorded data at well "P01-V054"_example of wellfield adjustment affecting recorded temperature

In this particular example, shown above for the well P01-V054, the wellhead was turned down (i.e. applied vacuum to the well was reduced) on April 27th, 2011 resulting in a temperature decrease in the shallower section of the well, however the temperature in the deeper zone of the landfill (i.e. 10 m B.G.) remained constant at 45.9 ± 0.2 °C.

Another cause of error in the temperature data was observed in P01-V031 where the recorded temperatures showed fluctuation patterns as if the gas temperatures in the sub-surface header pipe were recorded. Figure 3.14 below shows the recorded data at this location.

Figure 3.14 Example of faulty temperature readings at LFG well "P01-V031" Due to the LFG collection system operational issues

These temperature values recorded at P01-V031 indicated that no LFG might have been collected from this location. Zero flow situations, when the wellhead is not shut down, can stem

from two causes. The first is due to a total blockage of the well screens due to the high water table, resulting in the well screens being silted over time. This hypothesis was disproved by video inspection of the well conducted during the course of the field investigations. The second hypothesis was an application of excess vacuum in neighboring wells. The vacuum applied to LFG wells is normally defined by several parameters, including well spacing (i.e. expected radius of influence), waste compaction and/or porosity, cover system design and type, depth of well, and depth to the top of the screened section of the well pipe. Typically, 5 to 10 inches of water column is applied to LFG wells to effectively collect the generated gas at acceptable collection efficiencies. Applying too much vacuum to the LFG wells, which potentially causes air intrusion into the landfill, may result in adjacent wells overlapping each other's zone of influence to a greater extent. This is especially a concern in cold climate/ seasons and may have significant negative effects on methanogenic activity via the interruption of optimum temperatures maintained by the exothermic bacterial-mediated reactions. Nevertheless, further mining into the LFG flow rate data, which was collected from the selected wells during the course of these field investigations, supported this hypothesis. The gas flow rate data showed that although there was system vacuum provided at this gas collection point, no gas was collected from this location starting from May 2011. Figure 3.15 shows the applied vacuum and the LFG flow rate at well P01-V031. Figure 3.16 provides similar data for P01-V030, showing significantly higher gas flow rates at approximately similar system vacuum conditions as was provided to P01-V031.

Figure 3.15 System vacuum and LFG flow rate at P01-V031

Figure 3.16 System vacuum and LFG flow rate at P01-V030

Figure 3.17 below shows wellhead P01-V054 at VLF and a Landtec. GEM[™] 2000+ LFG analyzer which was used during the field investigations to monitor the collected LFG flow rate and composition from the selected wells.

Figure 3.17 LFG wellhead and LANDTEC GEM2000+ used to collect gas data at VLF

3.3.1.3 Older Temperature Study at the Vancouver Landfill

Yeşiller et al. (2005) conducted a comprehensive study on landfill temperatures at four different landfills in North America, including the VLF. That study, which was conducted at shallower areas of VLF (maximum waste depth of approximately 12 m), showed a maximum temperature of 43 °C at this site, confirming that the high temperatures recorded during the course of the present study at Phase 1 of VLF are not solely due to the greater depth of the fill in this phase. Under the study conducted by Yeşiller et al. (2005) at VLF, temperature sensors were located at various locations of the landfill, recording temperatures at various depths starting in 2004. That study continued for a number of years and the following illustration shows a snapshot of the raw recorded temperature data at representative locations from each area of the landfill at a depth of 8 m B.G. (Hanson et al., 2010).

Figure 3.18 A Snapshot of other available temperature data recorded through a comprehensive study by (Hanson et al. 2010) at several landfills including VLF (8 m B.G.) (Raw data were provided by COV)

3.3.1.4 Conclusion

Approximately 100,000 landfill temperature data points were collected in different phases of VLF over a period of 8 months, covering the coldest and warmest days of 2011. Results showed no dependency of landfill temperature on ambient temperature. This is in great disagreement with methodologies that base LFG generation modeling parameters on ambient temperature.

Landfill temperature fluctuations were observed to be within 0.5 to 5.5 °C, mainly due to adjustments made to the LFG extraction and collection systems. This is in contrast to the 41.4 °C fluctuation observed in ambient

Table 3.10 Sun	mary of landfill	temperature	investigations
(Depths 8 to 10	m B.G.)		

(Depins o to	10 m D101)			
Area	Average Waste Age (yr)	Cover Type	Average Temp. (°C)	Standard Dev. (°C)
			. ,	. ,
Phase 1	7	Soil Cap	45.9	0.91
Phase 1	7	Geomem.	47.3	0.59
Area 3	14	Soil Cap	21.0	0.12
Area 2E	16	Soil Cap	15.8	0.34
Area 2W	18	Soil Cap	15.3	0.48

temperature recording. Table 3.10 shows the average values for the valid recorded temperature data in deeper zones of the Vancouver Landfill's different phases.

Similar to what was reported more than three decades ago by Rovers et al. (1977), these field investigations showed that even in temperate climates like Canada, landfill temperatures remain at optimum ranges for methane production with no significant variations due to ambient temperature fluctuations. Average temperatures of Phase 1 in areas covered with a soil cap were 45.9 ± 0.9 °C, which is slightly lower than areas covered with geomembrane cap with average temperature of 47.3 ± 0.6 °C. This may be due to the different permeability of these two types of cap systems and the effect of cold rain percolating through the soil cap to the fill. Average temperatures of the landfill in Area 3, Area 2E and Area 2W were 21.0 ± 0.1 °C, 15.8 ± 0.3 °C, and 15.3 ± 0.5 °C, respectively.

Another very important finding of these investigations was the correlation between waste age and landfill temperature. Each phase, containing MSW with various average ages ranging between 7 to 18 years, showed a different temperature profile which remained constant throughout the study. Acknowledging the effect of temperature on biodegradation rates, these results suggest that use of a constant k value for the entire landfill's lifespan may not be an accurate choice. However, the decomposable portion of readily biodegradable organics, such as food waste and yard waste, will be almost entirely decomposed by the time the degradation process and the fill temperature decrease. Therefore, application of variable decay rates for slowly degradable waste components, such as wood waste, will likely offer little improvement to the accuracy of the long term LFG generation predictions. While the effect of temperature fluctuation on the biodegradation process is very well known, and fundamental equations such as van't Hoff-Arrhenius equation are very well developed, application of this knowledge to the complex anaerobic process occurring at MSW landfills appears difficult. There are different types of microorganisms involved in the overall methane generation process, each with a range of optimum temperatures. Some of these microorganisms themselves also regulate and maintain landfill temperatures within a certain range. Furthermore, it must be acknowledged that "landfill temperature" is a generalized term. In reality, not only depending on the distance to the landfill surface and sides as well as many other factors, such as height of the leachate mound, the temperature of different locations of the landfill might be different. There may also be several pockets within the landfill with drastically different profiles due to the heterogeneous nature of a landfill. Therefore, relating and fine-tuning the decay rate values based on temperature and formulae such as the Arrhenius equation is not suggested. Instead, the author suggests that the concept of this knowledge be applied to an average value representing the landfill temperature, and to assign decay rates based on factors that cause a drift from optimum conditions for decomposition reactions.

3.3.2 Moisture Content

Studies have repeatedly reported that moisture is the primary limiting factor in the rate of waste decomposition and methane generation in landfills (Rees, 1980b; Rees, 1980a; Hartz and Ham, 1983; Edward A. McBean et al., 1995; Reinhart and Al-Yousfi, 1996; Barlaz et al., 1997; Baldwin et al., 1998; Wreford et al., 2000). Sufficient moisture in landfills is required for optimal hydrolysis and decomposition of complex organic materials to occur. Furthermore, moisture is

an essential element for the biodegradation process in landfills as it serves as the means of transportation for nutrients and bacteria within the landfills (Edward A. McBean et al., 1995). Therefore, increased landfill moisture enhances the anaerobic degradation process within the landfill. Also, as described in the previous section, the exothermic anaerobic degradation process increases the temperature of the landfill, which further enhances the biodegradation process.

Rowe (1998), in a comprehensive study showed that the moisture content of landfills deeper than 6 m plays a major role in temperature rise within the fill. Rees (1980b) reported that optimum gas generation conditions at a landfill occurs when the base of the landfill is fully saturated and a waste density of 1 tonne per m³ is achieved. A different study by Hartz and Ham (1983) reported that even at moisture levels as low as 10% on a wet weight basis (% w/w) some methane production occurs. Therefore even at dry sites, and with no additional moisture added, some biodegradation is expected to occur. Similarly, Edward A. McBean et al. (1995) reported that LFG generation occurs even in very dry MSW landfills and, as the moisture content increases so do the degradation process and LFG generation. Farquhar and Rovers (1973) reported that waste decomposition and methane generation in MSW landfills slows down at field moisture levels above 80% w/w. According to Hartz and Ham (1983), this situation can only occur at landfills located in wet climates with no leachate collection system, as they concluded that free moisture conditions at landfills (i.e. field capacity threshold) occurs at approximately 40% w/w moisture content. Edward A. McBean et al. (1995) argued that even if the landfill's moisture content exceeds field capacity, the mobility of nutrients and bacteria provided by the moving liquid will further increase the gas production. Typically, the field capacity of MSW landfills has a direct relation with waste composition and compaction ratio at the time of landfilling and reported to be

within 20% to 40% w/w (Edward A. McBean et al., 1995; Yuen et al., 2001; De Velásquez et al., 2003).

MSW moisture content, as received at landfills, is reported to be somewhere between 15 to 40% w/w (Edward A. McBean et al., 1995). In Canada, the average MSW moisture content is approximately 24.4% (Levelton, 1991). As previously shown on Figure 2.3 on page 48, the moisture content of the generated MSW in Metro Vancouver in the past 20 years has been between approximately 22% to 24% w/w. Nevertheless, landfill moisture content is normally derived by the climatic conditions. Precipitation levels are typically used as an index to describe landfill moisture content and leachate generation rates. There are many LFG modeling methodologies which relate the decay rates of the organic materials deposited into the landfill to the precipitation levels in the area. The following shows a few examples where the decay rate(s) is related to the level of precipitation.

3.3.2.1 The World Bank

CRA (2004), in the LFG modeling handbook prepared for the World Bank, suggested different decay rates defined based on four different ranges of annual precipitation. These values, which were divided into three different decomposition categories, are provided in Table 3.11. These values are suggested for landfills located in Latin America and Caribbean regions.

	Range of k Values (year ⁻¹)						
Annual Precipitation	Relatively Inert	Moderately Decomposable	Highly Decomposable				
<250 mm	0.01	0.02	0.03				
>250 to <500 mm	0.01	0.03	0.05				
>500 to <1,000 mm	0.02	0.05	0.08				
>1,000 mm	0.02	0.06	0.09				

Table 3.11 Decay rates corresponding precipitation suggested by the World Bank (CRA, 2004)

3.3.2.2 Environment Canada and Golder Associates

Environment Canada (2012b) and Golder Associates Ltd. (2008b) both suggested a linear correlation between decay rate and precipitation levels. These methodologies both use single phase 1st order decay models, meaning that a single k is defined for the entire mass of MSW. Table 3.12 below shows the resulting k values for different annual precipitation levels based on these two methodologies.

Table 3.12 Decay rates based on Environment Canada and Golder Associates methods

Annual Precipitation	Decay Rates (k) (Year ⁻¹)						
(mm)	Environment Canada	Golder Associates					
0 - 500	0.020	0.023					
500 to 1,000 (avg. 750)	0.038	0.079					
1,000	0.057	0.111					

3.3.2.3 BC Ministry of Environment

BC MOE in its LFG Generation Assessment Procedure Guidance Report prepared by CRA (2009), defined default values for decay rates for each waste category and for different regional areas based on the reported annual precipitation. These values, which were divided into three different decomposition categories, are provided in Table 3.13. According to CRA (2009),

decomposable materials include food waste, leaves, grass, plant clipping, Christmas trees, slaughterhouse waste and yard waste. Also, all different types of paper, wood waste, textile, leather and DLC waste fall into the "moderately decomposable" and the rest of materials are considered "relatively inert".

	Range of k Values (year ⁻¹)						
Annual Precipitation	Relatively Inert	Moderately Decomposable	Decomposable				
<250 mm	0.01	0.01	0.03				
>250 to <500 mm	0.01	0.02	0.05				
>500 to <1,000 mm	0.02	0.04	0.09				
>1,000 to <2,000mm	0.02	0.06	0.11				
>2,000 to <3,000mm	0.03	0.07	0.12				
>3,000 mm	0.03	0.08	0.13				

Table 3.13 Decay rates suggested by the BC MOE modeling guideline (CRA, 2009)

Furthermore, the BC MOE guideline has defined a "Water Addition Factor" which is a number within the range of 0.9 to 1.1, and is to be selected based on the storm water and leachate management/recirculation practices applied to the landfill. While a value of 1.0 represents the normal conditions (i.e. partial infiltration or water addition to the waste mass), values of 0.9 and 1.1 are to be applied to the k values selected for dry tomb and bioreactor landfills, respectively.

3.3.2.4 IPCC Methodology

As discussed in Section 1.4.2 in page 20, the IPCC appreciated the ambient temperature values in the selection procedure for the decay rates to be applied in the FOD model. The recommended decay values assigned to the suggested thresholds for ambient temperature (i.e. 20 °C) and annual precipitation (i.e. 1,000 mm) were previously shown in Table 1.4.

Wasta Components	Decay Rates (k) (years ⁻¹)					
waste Components	Dry	Moist and Wet				
Food waste / Sewage sludge	0.05 - 0.10	0.10 - 0.70				
Garden and park waste (non-food)	0.04 - 0.08	0.06 - 0.20				
Paper and Textiles	0.03 - 0.06	0.05 - 0.085				
Wood and straw	0.01 - 0.04	0.02 - 0.05				
Bulk MSW or industrial waste	0.04 - 0.08	0.08 - 0.20				

Table 3.14 IPCC default decay rates when merged over all ranges of ambient temperature

3.3.3 Suggested Values for Decay Rates (k, year⁻¹)

Most of the methodologies suggest different k values for different precipitation levels with 1,000 mm annual precipitation being the maximum level after which constant values for decay rates are proposed. This is in agreement with findings by Yeşiller et al. (2005) where annual precipitation levels beyond approximately 840 mm were found not to further elevate the landfill temperature. This is perhaps due to the limited amount of water that can be held within the waste fill (i.e. field capacity) after which it will continue to percolate through the waste mass, and may even cause solubilized material and nutrients to be washed out in the form of leachate. Therefore, the author believes that while there should be higher decay rate values adopted for higher precipitation levels, there must also be a limit to that relationship with a threshold after which the decay rates to be considered constant.

Farquhar and Rovers (1973) reported that methane generation was inhibited at landfill moisture content levels higher than 80%. Therefore, having a leachate collection system installed at a landfill may be considered as an enhancement for the biodegradation process as it will avoid the moisture content reaching levels higher than the field capacity. However, by removing the 102

generated leachate through the landfill's leachate collection system, a portion of the nutrients potentially available for bacterial activity will be removed (Wreford et al., 2000). Therefore, the author believes that these two factors would cancel out each other and that having a leachate collection system, especially for wet environment, would not pose a significant positive effect on the biological degradation process in the landfill. Leachate recirculation, however, can be considered as an enhancement to the overall degradation and methane formation process as long as excessive water infiltration is avoided. Rees (1980b) reported that an excessive water infiltration at landfills may result in the cooling of the waste mass, slowing down or inhibiting the degradation process.

Table 3.15 presents suggested decay rate values for different waste components assigned to different precipitation levels. These values are selected based on the fact that depending on the landfill moisture, which is primary derived by the precipitation levels in the area, bacterial activity would provide an optimum condition and the degradation process will continue at the suggested rates. However, should the landfill's conditions for any reason drift from the optimum situation (i.e. pH drifts from optimum range of 6.7 to 7.5 (Edward A. McBean et al., 1995) and /or landfill temperature drops below 30 °C (Hartz, 1983; Edward A. McBean et al., 1995)) these suggested decay rate values shall be adjusted accordingly.

Waste Components	Decay Rates (k, year ⁻¹)					
Annual Precipitation (mm)	< 500	500 to 1,000	> 1,000			
Food Waste	0.07	0.15	0.35 ¹⁴			
Yard Waste	0.04	0.08	0.14 ¹⁵			
Paper and Textile	0.02	0.05	0.07^{16}			
Wood Waste	0.02	0.03	0.04			

Table 3.15 Suggested k values assigned to different precipitation levels for advanced LFG generation assessment

3.4 Delay Time

As previously shown in Figure 1.1, there is a lag time between the moments of waste placement in a landfill until steady anaerobic/ methanogenic conditions are reached. The length of this "delay time" depends on various factors including climatic condition and waste composition, and can vary between 3 months and one year (ATSDR, 2001; Gregory et al., 2003; Barlaz, 2004; USEPA, 2004). Lay et al. (1996) reported that the lag time between waste placement and methane production decreases at higher landfill moisture contents. IPCC (2006) recommended a delay time of between zero and six months. Most of the existing models, including the IPCC FOD and the US-EPA LandGEM, use the default value of six months for the delay time in all types of landfills. Considering the six month delay as an average residence time for the total

¹⁴ Average value based on half-life of 1-3 years under optimum condition adopted in consultation of (Rovers et al., 1977; Robert K. Ham et al., 1979; Jensen and Pipatti, 2002; IPCC, 2006).

¹⁵ Based on an average half-life of 5 years under optimum condition adopted in consultation with (Rovers et al., 1977; IPCC, 2006).

¹⁶ Based on average half-life of 10 years under optimum condition adopted in consultation with (Rovers et al., 1977; CRA, 2004; IPCC, 2006; CRA, 2009)

mass of MSW deposited throughout year A, these models consider the steady methane generation phase to start at the beginning of year A+1.

In the current advanced modeling exercise, it is suggested that instead of a flat assumption for all landfills, the delay time to be correlated to the level of precipitation in the area. Dependency of the decay reaction rates on landfill moisture was previously shown in Section 3.3.3 and is the main driving force for this suggestion. However, should the landfill conditions for any reason drift from the optimum situation (i.e. pH drifts from optimum range of 6.7 to 7.5 (Edward A. McBean et al., 1995) and /or landfill temperature drops below 30 °C (Hartz, 1983; Edward A. McBean et al., 1995)) these suggested delay times shall be investigated and adjusted accordingly. Table 3.16 shows the suggested delay time values for different cilatic conditions.

Table 3.16 Suggested average delay time based on precipitation levels

Annual Precipitation (mm)	Average Delay Time (T _d) (months)
>1,000	4
500 to 1,000	5
< 500	6

3.5 The New Model

Based on the multi-phase first order decay methodology, an integrated LFG generation model (iModel-110[©]), incorporating the modeling parameters and correction factors explained above, was developed in an excel workbook. The fundamental model equation is shown in Equation 3.5:

$$\mathbf{G} = \sum_{i=1}^{n} \sum_{j=1}^{5} (983.2842 \times k_j \times M_{ij} \times w_j \times DOC_{a_j} \times e^{-k_j \times t_i})$$
Equation 3.5

Where:

"G" is the methane generation rate (m³ year⁻¹)
"i" represents each year of the landfill lifespan
"j" represents five different type of the organic materials deposited to the landfill
"983.2842" is a conversion factor (See Equation 3.3)
"M_{ij}" is the mass of organic waste type j disposed in year i (tonnes, wet basis)
"w_j" is the moisture content of the organic waste type j (See Table 2.8)
"DOCa_j" is the actual amount of organic carbon in the organic waste type j which is ultimately converted to methane (See Equations 3.2 and Table 3.6)

The model was developed with a user-friendly interface consisted of five major interlinked spread sheets and several hidden sheets for calculations. The major interface spread sheets include Parameters, MSW Tonnage, Dry Tonnages, LFG Results, and Graphics.

In the "Parameters" sheet the site-specific information such as the landfill name, opening year, site design, operational and climate factors as well as waste components characteristics such as moisture content (w_j), DOC_{dry-j} and decay factors (k_j) are to be entered. Landfill activity data, including tonnages and composition of the MSW historically deposited at the landfill or expected to be landfilled in the future (M_j), are entered in the "MSW Tonnage" sheet. The total amount of

carbon annually deposited at the site is calculated based on the DOC and moisture content values in the "Dry Tonnage" sheet. The "LFG Results" sheet presents the calculated methane generation yield for each year based on the waste data, estimated annual methane generation from each waste component in tonnes per year, and the expected LFG flow rates in standard cubic feet per minute (scfm). These results, along with average waste tonnage and composition data, are graphically illustrated in "Graphics" sheet.

3.5.1 The New Model Results for the Vancouver Landfill

The iModel-110[©] was run separately for the VLF's four sub-areas within the boundaries of the study. One of the model's graphical outputs is the illustration of average waste composition that historically has been deposited into the landfill. These illustrations are very useful when the model is used as a tool for report preparation. Figure 3.19 a, b, c, and d shows these results for Area 2W, Area 2E, Area 3, and Phase 1 of VLF, respectively. Figure 3.20 shows annual tonnages, as well as the total tonnage of MSW historically deposited at VLF within the study boundary previously defined in Section 2.2.5. Also shown in Figure 3.21, are the initial methane generation estimates from each of the waste components historically deposited in these areas. Figure 3.22 illustrates the total methane generation rate and LFG flow rate estimated to be generated from the boundary of the study (G_i). Summary of the results are presented in Table 3.17. Full results and outputs of the models for Area 2W, Area 2E, Area 3, Phase 1, and the entire work site boundary at VLF are presented in Appendices B.1 through B.5, respectively.

Area/ Phase Footprint (m ²)		Waste in Place (tonnes)	Years of Activity	Average Methane Yield, L _o (m ³ tonne ⁻¹)	2012 CH ₄ Generation (Gi), (tonnes year ⁻¹)
Area 2W	259,700	2,010,492	1990 - 1993	91.3	1,585
Area 2E	189,010	946,200	1994 - 1995	91.1	922
Area 3	140,550	1,366,288	1996 - 1998	86.7	1,547
Phase 1	242,261	4,470,903	1999 - 2008	77.0	7,798
Total	831,521	8,793,883		83.2	11,851

Table 3.17 Summary of the initial methane generation modeling results (Gi) for the work site areas

a) Area 2W (1990 – 1993)

Figure 3.19 Average historical waste composition for different areas of VLF

Figure 3.20 Total waste deposition rate in the four areas within the study boundary at VLF

Figure 3.21 Methane generation rates from different waste components at VLF

Figure 3.22 Estimated landfill gas and methane generation rates at the work site

3.6 Discussion

In order to conduct an initial comparison between the results of the new model with the popular models previously discussed in Section 1.4, the initial methane generation estimates achieved from the first run of the iModel-110[®] were put against the results previously presented in Table 1.11. As shown in Table 3.18 below the initial results show higher methane capture efficiency for the Phase 1 of the VLF. The overestimation of the other models in comparison to the new model is obvious and mainly due the arbitrarily assigned modeling parameters, methane yields and reaction rates, in these models. However, the magnitude of the overestimation may vary from year to year (e.g. see BC MOE and iModel-110 for years 2012 and 2007).

It is worth noting that the presented results in this chapter are the initial (raw) results and before calibration of the iModel-110[®]. Therefore, further discussion is presented in Chapter 7, where the new model is calibrated based on the field data and the final results are presented.

Methodologies			CH4 Gene	eration (ton	nes year-1)	Methane	Decay	2012
			CurrentPeakLifespan(2012)(2007)Total		Lifespan Total	Yield, L _o $(m^3 \text{ tonne}^{-1})$	Rate, k (year ⁻¹)	Collection Efficiency
1.	LandCEM	CAA		20,411	515,386	170	0.05	37%
2.	. LandGEM	Inventory	8,520	9,947	302,038	100	0.04	73%
3.	3. IPCC		10,112	14,046	319,542	106	0.03-0.15	62%
4.	Environment Canada		10,949	15,683	267,524	88	0.083	57%
5.	Golder Associates		18,400	33,966	416,067	137	0.137	34%
6.	. BC MOE		11,198	15,783	300,360	99	0.02-0.11	56%
7.	'. iModel-110		7,798	15,228	198,642	77	0.04-0.35	80%

Table 3.18 Comparison between the iModel-110[®] initial results with the popular LFG generation models

Chapter 4: Fugitive Methane Emissions (E)

4.1 Introduction

Methane (CH₄) is an important GHG with a much shorter atmospheric lifetime (~10 years) in comparison with other greenhouse gases (Bogner and Matthews, 2003). Therefore, changes made to CH₄ emission sources can affect the atmospheric concentrations on relatively shorter timescales. In Canada, about 3% of the 2010 national GHG emissions were reported to be from the waste sector, of which about 91% was attributed to fugitive methane emissions from landfills (Environment Canada, 2012a). With landfills being point sources of CH₄ emissions, it would be easy to apply quantifiable mitigation measures. That includes capturing LFG for energy recovery and/or thermal or biological oxidation of methane which can significantly change the concluded methane budget of current inventory reports.

There have been significant technological improvements in the LFG collection and utilization industry since the first full-scale project was implemented in Palos Verdes, California, USA. in 1975 (Spokas et al., 2006). There are several regulatory requirements developed worldwide to monitor and reduce methane emissions from MSW landfills. Normally, landfills generating methane at levels higher than a defined threshold are required to capture the generated gas through active gas collection systems (GCS) and oxidize the collected methane via thermal combustion techniques. Such "regulated landfills" are also required to have a performance control and monitoring system in place to evaluate the effectiveness and efficiency of the active GCS. For example, landfill owners and/or operators in the US are required to conduct regular semi-quantitative assessments of the effectiveness of the GCS via monitoring of the landfill's surface methane concentrations (SMC). This regulatory requirement was developed by the US-

EPA under the Clean Air Act as New Source Performance Standards (NSPS) compliance to assess the performance of the GCS of the regulated landfills. Canadian officials in BC, however, require solid quantitative measurements of GCS collection efficiency. Such assessments require nearly 100% accurate LFG generation estimates or solid fugitive methane emission numbers, along with the captured gas quantity and quality.

The adopted approach for the present study also relied on reliable quantitative information about methane emission levels (E) at VLF. This information was required to integrate the right side of the simplified METRO[©] equation, allowing quantification of a necessary calibration factor to be applied to generation estimates (G) on the left side of the equation.

4.2 Fugitive Emission Measurement Techniques

There are qualitative and quantitative methodologies to evaluate the efficiency of an LFG collection system. Qualitative approaches include visual observation of vegetation and/ or vegetation stress on the landfill cover, or measurement of near-ground methane concentrations. These techniques can provide valuable information about the performance of the closure and the GCS at the landfill and can identify major LFG emission "hot-spots". However, quantification of emissions (i.e. methane flux) cannot be achieved through these methodologies.

There are also various quantitative methodologies to estimate the level of methane emission from landfills. These techniques identify hot-spots at the landfill surface and then quantify methane flux from those areas. Within these methodologies, the flux chamber technique is the most wellknown and widely accepted approach allowing for relatively reliable quantification of methane emissions at landfills. The flux chamber technique is the only "approved methodology" recognized internationally and suggested by various agencies including the US-EPA, the Australian EPA and the Wales Environment Agency.

Remote sensing techniques represent a more integrated approach for quantification of methane flux. These techniques have gained popularity in recent years. One of these techniques is the Radial Plume Mapping (RPM) methodology recognized by the US-EPA as "other test method 10 (OTM-10)" since July 2006¹⁷ (USEPA, 2006). This technique uses optical remote sensing (ORS) instrumentation to characterize gas emissions from non-point sources. Some of these ORS instruments include; (i) Open-Path Fourier Transform Infrared (OP-FTIR) spectroscopy, (ii) Ultraviolet Differential Absorption Spectroscopy (UV-DOAS), and (iii) Open-Path Tunable Diode Laser Absorption Spectroscopy (OP-TDLAS) (USEPA, 2007).

The RPM techniques carry many advantages over the "close range measurement" methodologies, such as the flux chamber technique. However, the relatively high cost of the RPM method, as well as the uncertainties associated with the possible effect of the methane plume buoyancy on the results, made the flux chamber methodology a more suitable option for the present research.

The required capital cost for the flux chamber technique is relatively low. However, the large footprint area of the work site (approximately 100 hectares for Areas 2w, 2E, 3 and Phase 1)

¹⁷ See <u>www.epa.gov/ttn/emc/tmethods.html</u>

would considerably increase the required time and labour cost for the application of this method in this research project. Nevertheless, considering the availability of surface methane concentration (SMC) data, which was generated with collaboration of a third party hired by the COV, a unique approach was developed under this research allowing for quantification of the fugitive methane from the entire area at much lower cost in comparison with the abovementioned conventional methods. This approach is fully explained in the following sections.

4.3 Surface Methane Concentration (SMC) Measurements at VLF

During the course of the present study (2010-2011), the COV hired a consultant to conduct a methane surface scan of the entire landfill site. This is a routine exercise for large landfills in the US, and is conducted based on the US-EPA's New Source Performance Standards (NSPS) for MSW landfills. In this technique, surface methane concentrations (SMC) are measured following the US-EPA's "Method 21" procedure, which is developed for measurement of volatile organic compounds (VOC) (USEPA, 1999). Under NSPS compliance, the LFG flux is not directly measured. However, the semi-quantitative information of the SMC is used to evaluate the effectiveness of the landfill's cover system and the LFG collection system in regulated landfills.

In order to conduct the present field survey, the site work (i.e. Areas 2W, 2E, 3 and Phase 1 of VLF) was divided into 101 measurement grids of about 1 hectare each as shown in Figure 4.1. Also shown in this figure, are the measurement grids and their IDs in different areas of the work site.

	Area	2W			A	rea 2	E	Are	a 3		Pha	se 1	
92 99	100	109	110	121	122	137	138	146	161	162	177	178	193
93 98	101	108	111	120	123	136	139	147	160	163	176	179	192
94 97	102	107	112	119	124	135	140	148	159	164	175	180	19-
95 96	103	106	113	118	125	134	141	149	158	165	174	181	190
-milia		105	114	117	126	133	142	150	157	166	173	182	189
1.2		104	115	116	127	132	143	151	156	167	172	183	188
	1	TA.	in its	X I	128	131	144	152	155	168	171	184	187
	-FF			3	129	130	145	153	154	169	170	185	186

Figure 4.1 SMC measurement grids and IDs at the work site (VLF)

The SMC were measured using a Landtec SEM-500, a portable flame ionization detector (FID) shown in Figure 4.2.

Figure 4.2 Landtec SEM-500 (FID)

The methane concentration levels were measured within 5 to 10 cm of the landfill surface along a pattern that traversed each grid at 10 meter intervals as shown in Figure 4.3.

Figure 4.3 VLF surface CH₄ concentrations scan with FID (left), and Phase 1 measurement grids and scanned patterns (right)

For each grid, approximately 500 to 1000 data points were recorded to assess methane concentration at parts per million volume (ppmv) levels. The average of these readings formed a surface methane concentration number for each grid (SMC_a) which was used to categorize the work site into 5 different methane emission level zones as presented in Table 4.1. As described in the following sections, an approach was developed to translate these qualitative (semi-quantitative) SMC_a data to quantitative methane emission rates (MER) (i.e. methane flux) at VLF. This approach involved measurement of MER through application of the flux chamber

technique in a selected number of grids from each emission zone (see Section 4.4) and finding a good correlation between the MER and the SMC data.

Codes	Emission Zones	Average Surface Methane Concentration Levels, SMC _a (ppmv)							
	Zone 1	$0 \text{ ppm} < \text{SMC}_a < 10 \text{ ppm}$							
	Zone 2	$10 \text{ ppm} < \text{SMC}_a < 20 \text{ ppm}$							
	Zone 3	$20 \text{ ppm} < \text{SMC}_a < 30 \text{ ppm}$							
	Zone 4	$30 \text{ ppm} < \text{SMC}_a < 40 \text{ ppm}$							
	Zone 5	50 ppm < SMC _a							

Table 4.1 Methane emission level zones and assigned average concentrations at VLF

The following illustration shows the work site boundary and the SMC survey grids which are colour coded based on the surface scan results.

0							1				-		<u>1</u>		
-	8.75	-0.50	1.07	30.55	9.60	1.68	6.70	12.98	16.43	32.24	6.47	64,87	14.73	9.53	0.61
	10.01	3.24	14.59 -0.18	6.30	13.02	8.48	7.25	0.08	7.19	79:24	4.98	565.03	3.44	9.79	1.53
	10.72	4.03		5.31	15.55	4.82	6.35	5.74	4.15	22.31	20.69	14,73	20.60	1.56	2.65
	10.59	11.30	51.60	3.76	6.33	2.71	6.15	3.39	6.84	30.68	21.18	8.23	17.94	1.60	3.58
		Tie		3.83	6.21	2.30 6.14	7.46	4.84	4.25	22.18	11.19	7.83	19.95	1.60	4.52
	11-2	a l		43.88	6.18	5.42	7.42	6.12	4.05	11.81	8.12	8.77	23.51	1.62	3.11
	5	-	1		1 (T)		6.86	5.68	3.45	9.37	22.79	9.75	14.47	1.53	3.37
ι,		HLE .	95 F				2.75	4.93	1.56	11.10	6.71	23.99	21.33	6.33	2.16

Figure 4.4 Work site divided into 5 different emission zones based on the SMC data Note: Numbers in the grids represent the average SMC data for that grid

4.4 Flux Chamber

The application of flux chambers in landfills is a well-established method to measure fugitive emissions from a soil surface through isolating and monitoring the emitting gas from soil. This technique has been used in several LFG emission monitoring studies for the measurement of methane emissions from a section of a landfill or to estimate total emissions from an MSW landfill (Eklund, 1992; Mosher et al., 1999; Börjesson et al., 2001; Abichou et al., 2006a; Scheutz et al., 2009; Chanton et al., 2011b). The flux chamber technique includes placing a closed chamber (box) on the landfill surface and monitoring the change of methane concentration in the box over time. The rate of change in methane concentration in the chamber with time ($\Delta C/\Delta t$), chamber volume (V), and area (A) results in the methane flux emitted from landfill's surface (Spokas et al., 2006).

Methane flux =
$$V/A \times (\Delta C/\Delta t)$$

Equation 4.1

4.4.1 Dynamic and Static Flux Chambers

There are two general groups of flux chambers known as dynamic and static chambers. A dynamic flux chamber utilizes a carrier gas (sweep air) that is directed through the chamber through an inlet and outlet pipe. Samples are then acquired from the outlet pipe, or directly from a sampling port, and the change in methane concentrations is used to calculate methane flux from the landfill surface to the chamber. It should be noted that the dynamic flux chamber method requires perfect sealing of the chamber edges. This time consuming step of the test is usually completed using a penetrated collar installed on the landfill surface (to which the chamber 119
connects) or the application of a bentonite seal around the chamber after placement at the point(s) of interest. Because of the complete isolation applied, the gas emissions from the landfill surface entering the chamber may cause pressure build-up within the chamber, which could result in a reduction in methane flux, and thus inaccurate readings. Therefore, this method uses a pressure gauge to monitor the pressure within the chamber and ensure it is equal to the ambient pressure levels by adjusting the sweep air flow rate. It is also usually recommended to use a fan inside the chamber in order to provide enough mixing of the gas before it is sampled. However, depending on the dimensions and design of the chamber, simply directing the air flow through the chamber may provide enough turbulence and mixing.

The second type of flux chamber is known as static flux chamber. The static flux chamber method does not involve the use of a carrier gas. Instead, a small hole in the chamber's body is used to ensure that the pressure inside the chamber is maintained at atmospheric pressure levels. While it is recommended that the chamber be slightly pushed/penetrated into the soil, this method does not require the use of sealant for complete isolation. A fan is recommended inside the chamber to provide the necessary mixing of the gases. A portable gas analyzer can be used on site to measure real-time concentration of the gas of interest. Alternatively, gas samples could be stored in glass vials, Tedlar® bags, or steel canisters to be later analyzed in the laboratory.

The static flux chamber method can be completed in a matter of minutes. Consequently, it offers a relatively low-cost and low-tech solution for measurement of methane emission rates (MER) at MSW landfills. This has increased the attractiveness and popularity of the flux chamber technique over other alternative fugitive emission measurement techniques. However, unlike air born techniques such as US-EPA's OTM-10, it is possible that the flux chamber method underestimates the level of emissions due to possible leaks from cracks, the LFG collection system piping, and other infrastructure flaws. Studies comparing these two methodologies are scarce, but available investigations have shown that the total fugitive CH₄ emission flux measured by the flux chamber technique at MSW landfills represents approximately 66% of the total actual emissions at the site (Chanton, 2011). Therefore, in order to avoid underestimating actual methane emission levels at the work site, an emission correction factor (CF_E) of CF_E = 1.52 was applied to the result of the flux chamber field work conducted at VLF.

4.4.2 Field Work Procedure

The accuracy and reliability of fugitive emission measurement studies using the flux chamber technique depend on the number of tests (flux chambers) conducted in the area of interest (Klenbusch, 1986). The guideline originally developed by the US-EPA for "measurement of gaseous emission rates from land surfaces using an emission isolation flux chamber" (EPA/600/8-86/008) is commonly used world-wide to define the required number of flux chamber tests based on the footprint area of the site of interest. This guideline suggests that, as a first step, the work site be divided into different zones based on the expected level of emissions. This initial "zoning" is suggested to maximize the between-zone variability while minimizing the within-zone variability in emission results (Klenbusch, 1986). Zoning can be done based on visual observations (e.g. poor vs. rich vegetation), physical properties (e.g. cover type), and design features (e.g. side slopes, crest, roads, etc.). Alternatively, if possible, results of a

preliminary site survey, similar to what was previously explained in Section 4.3, can be used to define different zones in the study site.

The next step is to determine the sample size (the required number of flux measurements) for each zone based on its size (area). The US-EPA guideline's methodology to select the sample size is based on achieving a 95% confidence that the estimated emission rates are within 20% of the true value (Klenbusch, 1986). This methodology suggests the following equation used to calculate the total number of flux measurements (n) based on each zone's footprint area:

$$n_i = 6 + 0.15 \times \sqrt{A_i}$$
 Equation 4.2

where: n_i = sample size (required number of flux measurements) in zone i to estimate methane emission rate from that zone with 95% confidence that the results are within 20% of the true value, and

$$A_i(m^2)$$
 = footprint area of the zone i

Furthermore, the guideline suggests that the zones with footprint area between 0.4 ha and 3.2 ha be divided into 160 units (sub-grids), and flux measurements be randomly distributed within these units.

4.4.3 Modified Static Flux Chamber Measurements at VLF

During the course of the present study, a static flux chamber was built and used to quantify methane emission rates (MER) from the different phases of VLF. The 100 mm tall chamber was

built using a 300 mm (12") Diameter plexiglass cylinder with sharpened edges, allowing for easy penetration into the soil, as well as a plexiglass top. The chamber was equipped with a temperature probe port which was also used as a pressure relief port at the time of chamber placement on landfill's surface. Two 1/4" NPT quick-connect ports were also used for air recirculation and gas sampling. A portable LFG analyzer, Landtec GEMTM 2000+ was paired with the flux chamber. Connecting the inlet and outlet tubes of the GEMTM 2000+ to the chamber allowed for continuous monitoring of methane concentration at \pm 0.1% resolution, while also allowing mixing of the gas inside the chamber at the same time. The temperature probe linked to the GEMTM 2000+ instrument to monitor internal gas temperature ensures that methane density is adjusted for the actual temperature at the time of sampling. Figure 4.5 shows the flux chamber test set-up built and used in this study.

Figure 4.5 Flux Chamber and GEM[™] 2000+ set-up

The sensitivity of the conventional flux chamber technique depends on the detection limit of the analytical method used in the test (Klenbusch, 1986). However, because the main purpose of the flux measurements in the present study was to find a correlation with the SMC data, it was preferred to deploy a portable and much quicker instrument (i.e. GEMTM 2000+) with relatively less sensitive measurements. With a maximum flux chamber test duration of 10 to 30 minutes, and the chamber volume of V = 0.007 m³, as well as the gas analyzer sensitivity of \pm 0.1% CH₄, the method overall detection limit was determined to be in the order of 3 to 10 g CH₄ m⁻² d⁻¹.

Approximately 23 to 30 hectares of each defined emission zone at VLF were selected for flux chamber testing. This included 3 grids from each zone (15 grids in total), plus 1 grid from the "western 40" area of the Vancouver Landfill (Grid #11, with no LFG collection system in place) and 1 grid in Phase 1 with "suspiciously" high SMC results. The total footprint area of the selected grids was approximately 16 hectares, about 19% of the total footprint within the boundary of the study. Even though the within-zone variability was minimized by the preliminary SMC field survey, the distribution of the selected grids within each zone was set so that different possible features (e.g. access road, toe ditch, sloped vs. flat surfaces, vegetated vs. non-vegetated area, etc.) were included in the selected areas for the flux chamber survey. The minimum required number of flux measurements for each zone was determined based on Equation 4.2. Furthermore, in order to increase the accuracy of the flux chamber measurement results, instead of randomly distributing the sampling point over the entire area of each zone, all visually observable features would be sampled. For instance, if 10 flux measurements were to be made in a grid with total area consisting of 10% road, 60% side slope and 30% crest, total number of tests conducted in these three features were 1, 6 and 3, respectively. In some cases, 124

the total number of tests was increased to ensure that the distribution of the sampling locations in the zone of the interest resulted in estimates best representing the actual emissions in that zone. Figure 4.6 and Table 4.2 below present information about the selected grids, areas and number of flux measurements conducted.

1	8.75	-0.50	1.07	30.55	9.60	1.68	6.70	12.98	16.43	at	32.24	6.47	-	14.73	9.53	0.61
	10.01	3.24	14.59 -0.18	6.30	13.02	8.48	7.25	0.08	7.19		79.24	4.98	565.03	3.44	9.79	1.53
	10.72	4.03	27.91	5.31	15.55	4.82	6.35	5.74	4.15		22.31	20.69	14.73	20.60	1.56	2.65
	10.59	11.30	51.60	3.76	6.33	2.71	6.15	3.39	6.84		30.68	21.18	8.23	17.94	1.60	3.58
	-	I.		3.83	6.21	2.30 6.14	7.46	4.84	4.25		22.18	11.19	7.83	19.95	1.60	4.52
	1.3	E I		43.88	6.18	5.42	7.42	6.12	4.05		11.81	8.12	8.77	23,51	1.62	3.11
			3	A	n its		6.86	5.68	3.45		9.37	22.79	9.75	14.47	1.53	3,37
		HLF.	1		15 200	X	2.75	4.93	1.56		11.10	6.71	23.99	21.33	6.33	2.16

Figure 4.6 Selected grids within the study boundary for flux chamber measurements at VLF Note: Selected grids are shown with black border lines. Numbers are avg. SMC data

	Emission	Selected Grid	Footprint Area	Number of Flux Measurements (n)		
	Zones	IDs	(m ²)	Required	Conducted	
	Zone 1	113, 135, 139	30,000	32	30	
	Zone 2	112, 151, 173	30,000	32	38	
	Zone 3	102, 158, 172	30,000	32	39	
	Zone 4	104, 146, 149	23,000	28	30	
	Zone 5	103, 147, 162	26,000	30	30	
	Others	11, 163	20,000	27	22	
Total			159,000	181	189	

Table 4.2 Selected grids for flux chamber test at VLF

A total of 189 flux chamber measurements were conducted in approximately six weeks, between June and July 2012. Depending on the rate of emissions at the sampling location, the duration of each chamber test was between 5 and 30 minutes. Where methane emissions were detected, methane concentration readings were plotted against time to calculate the rate of change in methane concentration over time ($\Delta C/\Delta t$). Figure 4.7 below illustrates an example of recorded methane concentration levels increasing over time. A graphical presentation of the entire flux chamber field readings are presented in Appendix D.1.

Figure 4.7 Example of recorded methane concentration levels inside the flux chamber increasing over time

The rate of change in methane concentration was then translated to methane emission rate (MER, $g CH_4 m^{-2} d^{-1}$) using the following equation:

MER (g CH₄ m⁻² d⁻¹) = V/A × (
$$\Delta$$
C/ Δ t) × ρ Equation 4.3

Where: MER = methane emission rate (methane flux)

V = chamber volume (~ 0.007 m^3 depending on chamber penetration depth)

A = landfill's surface covered by chamber (0.07 m^2)

 $(\Delta C/\Delta t)$ = rate of change in methane concentration within chamber

 ρ = methane density at the measured temperature within chamber (~ 680 - 710 g m⁻³)

Out of the 189 flux chamber measurements, only about 60 non-zero readings were acquired and the rest were classified as no emission or below detection limit (BDL). The measured non-zero MER ranged between 17 and 4,709 g CH_4 m⁻² d⁻¹ and are presented in the Appendix D.2. Table 4.3 presents a summary of results for each grid compared with SMC data.

#	Emission Zones	Location at VLF	Grid Number	SMC (ppmv)	$\frac{\text{MER}}{(\text{g m}^{-2} \text{ day}^{-1})}$	Note
1	Other	West 40	11	52.6	19.5	
2	Zone 3	Area 2W	102	14.0	6.6	
3	Zone 5	Area 2W	103	25.8	9.8	
4*	Zone 4	Area 2W	104	22.0	4.2	Very Steep Slope
5	Zone 2	Area 2W	112	7.8	3.5	
6	Zone 1	Area 2W	113	3.9	2.8	
7	Zone 1	Area 2E	135	3.6	0.7	
8	Zone 1	Area 2E	139	3.6	2.4	
9	Zone 4	Area 3	146	16.1	5.5	
10	Zone 5	Area 3	147	39.6	12.5	
11	Zone 4	Area 3	149	15.3	3.8	
12	Zone 2	Area 3	151	5.9	4.9	
13	Zone 3	Area 3	158	10.6	8.3	
14*	Zone 5	Phase 1	162	29.7	2.0	Toe Ditch was not accessible
15*	Other	Phase 1	163	258.8	46.2	open LFG well increased SMC results
16*	Zone 3	Phase 1	172	10.8	0.0	New layer of soil cover was placed
17*	Zone 2	Phase 1	173	9.1	0.0	before Flux Chamber Test started

Table 4.3 Summary of MER resulted from the flux chamber survey at selected grids at VLF

* these grids were excluded from data analysis due to unreliable flux chamber survey conditions as noted above

4.5 Effect of Barometric Pressure on Methane Emission Rates

Variations in the weather conditions, and in particular the barometric pressure (BP), has an impact on rate of methane fugitive emissions from landfill's surface (Prosser, 1985; Young, 1990; Poulsen et al., 2003; Scharff et al., 2003; Gebert and Groengroeft, 2006). Higher emission rates at landfills are reported to occur at lower ambient pressures (Scharff et al., 2003; Gebert and Groengroeft, 2006). In general, variations in atmospheric pressure happen due to several factors including; (i) auto oscillation of air (reported to have an insignificant effect), (ii) daily warming and cooling of air caused by solarization (causing diurnal variations), and (iii) passage of atmospheric pressure lows and highs (leading to long term variations). Therefore, short term (daily) and long term (seasonal) variations in atmospheric pressure should be taken into account when conducting methane fugitive emission measurements at a landfill site (Poulsen et al., 2003).

Young (1990), in a comprehensive study, showed that the rate of change in atmospheric pressure, and not the pressure itself, controls the gas flux intensity. That is perhaps due to the transient effect of gas storage in landfill void spaces, such that if the BP remains constant at a certain level the landfill pressure will reach an equilibrium state and the emission flux will reach a true value driven by the LFG generation rates.

In order to study and incorporate the effect of barometric pressure variations on methane emission rates at VLF, a HOBO® Smart Barometric Pressure data logger was installed at the site. The BP and ambient temperature (T) variations were recorded at high resolution (every 10 minutes) during the initial landfill surface scan, as well as at the time of the flux measurement field work. Figure 4.8 illustrates these records for one day as an example.

Figure 4.8 Recorded barometric pressure and temperature at the Vancouver Landfill (July 16, 2012)

As shown in the following Figure 4.9 and Figure 4.10, the recorded BP values were plotted against time, and the rate of change in atmospheric pressure ($\Delta P/t$) at the time of conducting the field work was calculated. Depending on variations in the weather conditions at the time of flux measurement, $\Delta P/t$ could have a positive or negative value recorded in millibars per hour (mbar/hr). Graphical presentations of the recorded BP and the rate of change during emission sampling ($\Delta P/t$) are presented in Appendix D.3.

Figure 4.9 Barometric pressure at the Vancouver Landfill (June 26, 2012)

Figure 4.10 Barometric pressure at Vancouver Landfill (July 16, 2012)

The accuracy of the measured MER would depend on the sign and the magnitude of $\Delta P/t$, with an underestimated MER(s) for positive $\Delta P/t$ and overestimated MER(s) for negative $\Delta P/t$. In order to evaluate the accuracy of the measured MER(s), as well as to study how the magnitude of the $\Delta P/t$ would affect the recorded MER(s), two sets of duplicate flux measurements were conducted during this part of the field work. The first set included replicates of the flux measurement at the same location and same time. Ideally, these duplicates should have resulted in the same MER for both runs of the measurements. Results showed a relative standard deviation (RDS) (also known as coefficient of variation (CV)) of between 0.2% and 7.8%, confirming the accuracy of the measurement technique. Table 4.4 below summarizes the results of the first set of flux measurement duplicates.

Table 4.4 Flux measurement duplicates for accuracy of the test

Chamber 1	ID	#71	#56	#35	#48
$\Delta P/t$ (mbar/	/hr)	- 0.488	+ 0.601	- 0.138	- 0.067
MER	Run#1	388.80	204.52	4709.27	796.75
$(g CH_4 m^2 d^{-1})$	Run#2	361.03	185.04	4698.58	890.00
Mean		374.9	194.8	4703.9	843.4
StDev		19.6	13.8	7.6	65.9
%CV		5.2%	7.1%	0.2%	7.8%

The second set of flux measurement duplicates included repeats of the test at the same locations but on a different day for each run. Therefore, for each of these locations (flux measurements) two MER values were developed, each subject to a different value of $\Delta P/t$. The difference between the two recorded $\Delta P/t$ (i.e. $|R_{\Delta P}| = |(\Delta P/t)_1 - (\Delta P/t)_2|$) values were plotted against the magnitude of the difference between the two MER values (i.e. $|\Delta_{MER}| = |MER_2 - MER_1|/MER_1|$), resulting in a very good correlation between the absolute values of $R_{\Delta P}$ and Δ_{MER} with a coefficient of determination of $R^2 = 0.92$. Figure 4.11 shows this correlation illustrating the extent of drift in measured MER from the true value based on the magnitude of the $\Delta P/t$ at the time of the field measurement.

Figure 4.11 Correlation between rate of change in BP and adjusting multiplier for MER

The true value of MER at the landfill could be measured when the atmospheric pressure remained constant, causing an equilibrium condition between landfill and the surrounding environment. Therefore, all measured MER values were adjusted to the true values (MER_a) based on the recorded $\Delta P/t$ at the time of sampling relative to the equalized condition (i.e. $\Delta P/t = 0$).

Therefore, when;

(i) $\Delta P/t > 0 \rightarrow R_{\Delta P} > 0$ and MER_a > MER

Based on the developed correlation, for $R_{\Delta P} > 0$:

 $(MER_a - MER) / MER = 1.9731 \times R_{\Delta P}$

Equation 4.4

hence;

$$MER_a = MER \times (1 + 1.9731 \times \Delta P/t) \qquad (for \Delta P/t > 0)$$
Equation 4.5

where; MER_a = adjusted methane emission rate (g CH₄ m² d⁻¹)

MER = measured methane emission rate via flux chamber (g $CH_4 m^2 d^{-1}$)

 $\Delta P/t$ = rate of change in barometric pressure at the time of flux measurement (mbar/hr)

When the atmospheric pressure at the time of sampling exhibited a declining trend (i.e. $\Delta P/t < 0$), the measured MER was overestimated. That meant;

(ii)
$$\Delta P/t < 0 \rightarrow R_{\Delta P} < 0$$
 and MER_a < MER

therefore;

$$(MER - MER_a) / MER = 1.9731 \times |R_{\Delta P}|$$
 Equation 4.6

hence;

$$MER_a = MER / (1 + 1.9731 \times |\Delta P/t|) \qquad (for \Delta P/t < 0)$$
 Equation 4.7

By combining Equations 4.5 and 4.7, the following equations were developed to calculate the adjusted MER (MER_a) based on the magnitude and sign of the rate of change in atmospheric pressure at the time of flux measurements.

$$MER_{a} = MER \times (1 + 1.9731 \times |\Delta P/t|)^{(\Delta P/t/|\Delta P/t|)}$$
Equation 4.8
where $(\Delta P/t/|\Delta P/t|)$ would be equal to (-1) or (+1), represent the sign of the $\Delta P/t$.

Accordingly, all the flux measurement results were adjusted for the variations of the atmospheric pressure. Similar adjustments were made to the average SMC values for each measurement grid.

4.6 **Results and Discussion**

Methane emission rates have been reported in several similar studies to span a wide range, depending on landfill type, waste age, cover soil type, climatic conditions etc. Bogner and Spokas (1993), reported emission rates of between 319 and 1,896 g CH₄ m⁻² d⁻¹. Chanton and Liptay (2000), reported emission rates of about 0 to 200 g CH₄ m⁻² d⁻¹ in topsoil and 0 to 9,000 g CH₄ m⁻² d⁻¹ in clay.

In the present study, flux chamber measurements showed methane emission rates varying between 0 and 4,709 g CH₄ m⁻² d⁻¹. Most of the emissions were observed on side slopes and areas closer to the toe of closure phases. Out of a total of 17 grids initially selected at VLF for methane flux measurements, 5 grids were excluded from the data compilation and analyses (due to reasons noted in Table 4.3). Therefore, only 12 grids were deemed to have developed representative results and qualified to be compared with the surface methane concentration survey.

The average MER_a for the five defined emission zones at VLF ranged from 1.96 ± 1.12 g CH₄ m² d⁻¹ to 11.14 ± 1.87 g CH₄ m² d⁻¹, relative to the SMC_a values, which ranged between 3.70 ± 0.21 ppmv and 32.70 ± 9.77 ppmv CH₄, respectively. Table 4.5 shows the average MER_a, as well as the adjusted SMC_a values for each emission zone.

Zones	SMC _a [CH ₄] (ppmv)	$\frac{\text{MER}_{\text{a}}}{(\text{g CH}_4 \text{ m}^{-2} \text{ day}^{-1})}$
Zone 1	3.70 ± 0.21	1.96 ± 1.12
Zone 2	6.84 ± 1.32	4.22 ± 0.98
Zone 3	12.27 ± 2.38	7.44 ± 1.16
Zone 4	15.73 ± 0.55	4.67 ± 1.22
Zone 5	32.70 ± 9.77	11.14 ± 1.87
Grid#11	52.59	19.48

Table 4.5 Methane flux measurement results and SMCa data for each emission zone

The average MER_a for these grids ranged from 0.7 to 19.5 g CH₄ m² d⁻¹, relative to the SMC_a values, which ranged between 3.57 and 52.59 ppmv CH₄, respectively. Figure 4.12 illustrates the methane flux and methane concentration for the 12 grids (approximately 11.4 ha) at VLF.

Figure 4.12 Averaged surface methane concentration (SMCa) and methane emission rate (MERa) for 12 measurement grids at VLF

As shown Figure 4.13, plotting the SMC_a data against the MER_a values showed a reasonable correlation between the measured methane fluxes and the qualitative methane concentrations. This correlation appears to be better at higher values.

Figure 4.13 Correlation between SMC and MER values developed over 12 measurement grids at the VLF

Data points shown in Figure 4.13 with Δ represent the invalid data which were excluded from the analysis for the reasons previously noted in Table 4.3. Furthermore, the error of this developed linear regression was examined and the standard errors of the slope and y-intercept of the regression line were calculated at 95% confidence limit. Results of the error analysis are reflected in Table 4.6.

Based on this correlation;

 $MER = SMC \times (0.32 \pm 0.034) + (1.39 \pm 0.755)$

Equation 4.9

where; MER = methane emission rate (g CH₄ m² d⁻¹)

SMC = surface methane concentration (ppmv CH₄)

The development of this correlation can be practically very important in the LFG management industry, saving time and money when full scale fugitive methane emission measurements are required. This correlation may be applicable in other landfills, however, it is recommended that it be re-developed or checked for landfills with different conditions. Depending on the size of each emission zone in a particular landfill, approximately 10 to 15 flux chamber tests per hectare will be required along with a full scale SMC scan. This correlation, once developed, would allow for a quick calculation of total landfill emission through a simple methane concentration scan at the surface of any MSW landfill.

4.7 Total Fugitive Methane Emission from the Vancouver Landfill

The Equation 4.10 presented below was developed to quantify the total methane emissions within the boundary of the study (E). This equation includes all of the above mentioned findings and assumptions, where the measured SMC data would be adjusted for the effect of the barometric pressure rate of change at the time of sampling and translated to the total methane flux based on the developed correlation, as well as the total area under the study. As discussed in Section 4.4.1, the emission correction factor was also applied to account for underestimations associated with flux measurements using flux chamber technique.

The sum of grid emissions from each area/phase at VLF are summarized in Table 4.6, reported as the total fugitive methane emissions from that area. Results showed that the total average methane emission from Area 2W, Area 2E, Area 3, and Phase 1 of the VLF in the year of the study were 466, 252, 367, and 396 tonnes methane year⁻¹, respectively. These results along with other field work results are utilized to calibrate the new model as presented in Chapter 7.

Fugitive methane emission results for all 102 grids of the VLF are provided in Appendix D.4.

Area/ Phase	Number of	Total Footprint	Total CH ₄ Emissions (tonnes year ⁻¹)			
	Onus	Area (m ²)	(E)	St. Dev. (ΔE)		
Area 2W	30	259,700	466	± 137		
Area 2E	24	189,010	252	± 90		
Area 3	16	140,550	367	± 86		
Phase 1	32	242,261	396	± 118		
Total	102	831,521	1,481	± 431		

Table 4.6 Total fugitive methane emissions from each area of the VLF

Chapter 5: Methane Oxidation in Cover Soil (O)

5.1 Introduction

Methane oxidation in landfill cover soil reduces GHG emissions from landfills, and in some cases even reduces the atmospheric methane concentration (Hilger and Barlaz, 2007). A number of studies have reported methane oxidation fractions through landfill cover soil at 22% to 55% (Whalen et al., 1990; Chanton et al., 2009; Chanton et al., 2011b). Scharff et al. (2003), in a comprehensive study on four Dutch landfills with similar climatic conditions to those of Vancouver, measured the methane oxidation fraction at about 20% to 40%. USEPA (2004), also reported an average methane oxidation fraction of 10 to 25% with lower values for clay cover soils and higher rates for topsoil. However, due to the challenges of accurately measuring methane oxidation and lack of standard quantifying methods, they recommended a default value of 10% (USEPA, 2004). Despite recent findings, the IPCC has not deviated from the default values of 0-10% proposed in 1995 (Mahieu et al., 2006; Chanton et al., 2009).

Results of recent studies using more advanced methodologies have proven the effectiveness of methanotrophic bacteria in mitigating fugitive methane emissions from landfills (Powelson et al., 2006; Huber-Humer et al., 2008; Bogner et al., 2010; Chanton et al., 2011a). These advanced methodologies allow more accurate measurements of the amount of methane oxidization in landfill cover soil, another essential element in the METRO equation required for iModel-110[©] calibration. One of the advanced methodologies for quantification of methane oxidation rate is the stable isotope technique. This technique is based upon the preference of methanotrophic bacteria to consume lighter isotope methane (¹²CH₄) over heavier isotope methane (¹³CH₄),

resulting in a shift in isotopic composition of the LFG methane as it passes through landfill cover soil and is partially oxidized (Silverman and Oyama, 1968).

The field investigations described in this chapter were conducted to quantify methane oxidation (O) naturally occurring at the work site. The stable isotope technique, paired with the flux chamber measurements described in the previous chapter, were conducted at each area of the Vancouver Landfill and methane oxidation rates (in g CH₄ m²⁻ d⁻¹) were quantified for the two different types of cover soils within the study boundaries. Other useful outputs of this portion of the study included: (i) measurement of the isotopic signature of anaerobic methane in different areas/phases of VLF, (ii) development of isotopic fractionation factor for methane oxidation for each soil type, (iii) and investigations on the effects of soil moisture content and temperature on oxidation isotopic fraction factor.

5.2 Characteristics of Cover Soils at the Vancouver Landfill

For this part of the study, the operational sub-areas/phases of VLF were grouped into two major areas of "Area A" and "Area B". Half of Area A, which included Phase 1 of VLF, was covered by geomembrane cap and the other half with till as an interim cover with no or very poor vegetation. This area had active gas collection with system vacuum of 25 to 35 inches of water column (w.c.). Area B, which consisted of Area 2W, Area 2E, and Area 3, contained older municipal waste and was covered by organically modified till and a vegetation layer. This area also had an active gas collection system applying approximately 5 to 15 inches w.c. of vacuum.

The moisture and organic content of the cover soil samples, collected from Areas A and B, were determined following the "ASTM D2974 – 07a" standard test methods. The organic content of the cover soil in Area A was in the range of 1.5 to 2.2%, with field moisture contents of 7.8 to 9.7% (samples collected in early August and tested on the same day). Soil samples from Area B had organic contents between 5.4% and 6.8% and field moisture contents between 7.1% and 11.8%. Sample no.6 from Area B had a lower organic content of 3% and moisture content of 4.1%. This sample was collected from an area which appeared to be a new layer of impermeable soil placed on top of the old soil cover, and it was not believed to represent the whole area, hence was excluded from the final analysis. Results of the soil characteristics tests are presented in Section 5.4, Table 5.1.

5.3 Stable Isotope Technique

The stable isotope technique is based upon the preference of methanotrophic bacteria to consume lighter isotope methane (¹²CH₄) over heavier isotope methane (¹³CH₄) resulting in a shift in isotopic composition of the LFG methane as it passes through landfill cover soil and is partially oxidized (Silverman and Oyama, 1968). Isotope quantification was accomplished using a GCC-IRMS (Finnegan Mat Delta V-gas chromatograph combustion isotope ratio mass spectrometer) as described by Popp et al. (1995).

Mahieu et al. (2006) and De Visscher et al. (2004), suggested that the stable isotope technique is a conservative approach to quantify methane oxidation rates. Underestimation of methane oxidation using the stable isotope technique is partly due to the fact that in some areas of MSW landfills no trace of the isotope and enrichment of methane in ¹³C isotope content can be

measured due to the complete oxidation of methane in those areas. Another reason for it being considered conservative would be the isotope fractionation effect due to mass transfer (transport fractionation) which is normally disregarded. The transport fractionation effect can be correctly ignored in landfills with no active gas collection system (De Visscher et al., 2004).

During the course of the flux chamber field work, gas samples from the chamber were taken from one third of the non-zero chamber measurements, previously discussed and shown in Appendices D.1 and D.2. Based on the test procedure suggested by Chanton et al. (2011b), initial and final isotope samples were obtained during the flux chamber tests. These data are presented in Appendix E.1. Furthermore, a total number of ten methane samples from anaerobic zones of the landfill were collected directly from the gas collection system manifolds of each area/phase. Gas samples from the flux chamber and manifolds were acquired using 60 mL disposable syringes and immediately injected into 30 mL pre-evacuated glass vials. Figure 5.1 below shows the isotope sample acquisition steps.

Figure 5.1 Sampling procedure for the stable isotope tests

The isotope quantification test is an advanced and costly analysis and there are only a few laboratories in North America which are equipped with GCC-IRMS. Therefore, the isotope samples were shipped to the Department of Earth, Ocean and Atmospheric Science of the Florida State University (FSU) in order to quantify the isotope ratio (R_{sample}) of the methane samples (i.e. ${}^{13}C/{}^{12}C$). The isotopic signatures of samples were then calculated using Equation 5.1 below (Coleman et al., 1981):

$$\delta^{13}C = \left(\frac{R_{sample}}{R_{standard}} - 1\right). 1000 \%_{00}$$
Equation 5.1

Where:

 δ^{13} C = isotopic signature reported in parts per thousand (ppt)

 $R_{sample} = isotope ratio (^{13}C/^{12}C) of sampled methane$

 $R_{standard} = {}^{13}C/{}^{12}C$ ratio of the reference standard (PeeDee belemnite (PDB) standard, 0.0112372)^{18}

In this methodology, δ^{13} C value of zero was assigned to the PDB standard which has a relatively high (¹³C enriched) isotopic signature resulting in negative δ^{13} C values for most other naturally existing samples. Typical δ^{13} C values for methane sampled from LFG collection systems (anaerobic methane) are reported to be in the order of -53 to -58‰ ± 1.5‰, with no significant

¹⁸ The common reference for δ^{13} C, the Chicago PDB Marine Carbonate Standard, was obtained from a Cretaceous marine fossil, Belemnitella americana, from the PeeDee formation in South Carolina. This material has a higher ¹³C/¹²C ratio than nearly all other natural carbon-based substances; for convenience it is assigned a δ^{13} C value of zero, giving almost all other naturally-occurring samples negative δ values.

seasonal variations (Chanton et al., 1999; Chanton and Liptay, 2000; Börjesson et al., 2001; Chanton et al., 2011b). Chanton et al. (2011b), in a study involving 20 landfills across the U.S., concluded that the isotopic signature of anaerobic methane varied by region with an average value of $-57.5 \pm 1.5\%$ for landfills in humid and cool climate regions.

A total of 38 flux chamber gas samples (residual methane), as well as 10 captured LFG samples (anaerobic methane) were analyzed. Residual methane samples were collected at the start (δ^{13}_i) and end (δ^{13}_f) of each chamber test, both with known methane concentrations, previously shown in Appendices D.1 and D.2. The ¹³C isotope content of residual methane for each chamber test was then calculated using Equation 5.2 below (Börjesson et al., 2001; Chanton et al., 2011b):

$$\delta_{R} = \frac{(\delta_{f} \times [CH_{4}]_{f}) - (\delta_{i} \times [CH_{4}]_{i})}{[CH_{4}]_{f} - [CH_{4}]_{i}}$$
Equation 5.2

Where:

 $\delta_R = {}^{13}C$ isotope content ($\delta^{13}C$ value) of residual methane [CH₄]_i = initial methane concentration in the flux chamber [CH₄]_f = final methane concentration in the flux chamber δ_i = initial sample's $\delta^{13}C$ of methane δ_f = final sample's $\delta^{13}C$ of methane

The oxidized fraction of methane at the location of each flux chamber test was then calculated using Equation 5.3 below (Blair et al., 1985; Liptay et al., 1998; Chanton and Liptay, 2000; Börjesson et al., 2001):

$$f_{ox} = \frac{\delta_{\rm R} - \delta_{\rm a}}{1000 \,(\alpha_{\rm ox} - \alpha_{\rm t})}$$
 Equation 5.3

Where:

 f_{ox} = fraction of methane oxidized

 $\delta_a = \delta^{13}$ C value for methane sampled from anaerobic zone of the landfill

 α_{ox} = isotope fractionation factor due to oxidation (see Chapter 5.4)

 α_t = isotope fractionation factor due to transport (see Chapter 5.5)

5.4 Oxidation Fractionation Factor (α_{ox})

The oxidation isotope fractionation factor (α_{ox}) defines the preference of methanotrophs in consuming lighter isotope (i.e. ¹²CH₄) over heavier isotopes (i.e. ¹³CH₄). In fact, α_{ox} is a key factor in quantifying methane oxidation using the stable isotope technique. This parameter has been found to be different in different types of landfill cover soils and varies with seasonal climate change (Chanton and Liptay, 2000; Hilger and Barlaz, 2007; Chanton et al., 2008).

Factors affecting methane oxidation within a landfill cover include soil moisture content, organic content, temperature, and pH (Chanton et al., 1999; Börjesson et al., 2001; Meraz et al., 2003) with temperature being the dominate factor (Czepiel et al., 1996; Chanton et al., 1999). Chanton et al. (1999) and Borjesson et al. (2001), reported the influence of variation in ambient temperature on methane oxidation rate in a landfill final cover. This is due to the effect of ambient temperature fluctuations on rates of enzymatic processes of methanotrophs.

Coleman et al. (1981), reported α_{ox} of 1.025 and 1.013 for 26°C and 11.5°C, respectively. King et al. (1989), observed similar patterns in the relationship between the temperature and isotope fractionation factor. Results of that study were α_{ox} of 1.027 and 1.014 for 14 and 4°C, respectively. Börjesson et al. (2001), determined α_{ox} for two temperatures of 4 and 25°C at two different landfills. The reported values were α_{ox} of 1.0270 ± 0.0039 and 1.0375 ± 0.0003 at 4°C and 1.0234 ± 0.0017 and 1.0281 ± 0.0009 at 25°C, both showing a decline in α_{ox} with a temperature increase. Chanton et al. (2008), also determined average α_{ox} values of 1.022 ± 0.0015 at 25°C that declined as the temperature increased. They showed that over the temperature range of 3°C to 35°C, α_{ox} decreases at a rate of about 0.04% for every 1°C increase in ambient temperature. Chanton and Liptay (2000), also showed that α inversely changed with temperature. While Tyler et al. (1994) showed increase in α_{ox} as a result of increased temperature at rates of 0.00043 to 0.00046/°C.

In the present study, five soil samples of the two different soil types present at VLF were taken and the isotope fractionation factor tests were conducted following the instructions provided by Chanton and Liptay (2000). Soil samples were collected from 10 cm to 15 cm below ground and incubated at two moisture levels of; (i) actual moisture content as collected (field moisture), and (ii) with added moisture. Exactly 100 g of each sample were placed in previously baked-out 1,000 mL Erlenmeyer flasks as shown in Figure 5.2. Flasks were sealed with septum/rubber corks and 50 mL of tank methane gas were injected into each flask, resulting in an initial methane concentration of approximately 4% to 5% (i.e. $[CH_4]_0$). Moisture and organic matter content of each soil sample were measured following ASTM D2974 – 07a standard test methods.

Figure 5.2 Soil sample moisture/organic content and incubation tests

Soil samples, collected from both Areas A and B, were incubated at the two moisture content levels of actual moisture content (field moisture) and increased moisture content. For the isotope fractionation factor test, the majority of the soil incubations were conducted at 25°C with two additional samples tested at 5°C. Soil sample characteristics, as well as the temperature at which each sample was incubated, are summarized in Table 5.1.

Major Areas	Sample #	ID.	Temperature (°C)	Moisture (%)	Organic content (%)	
	1	1a	25	7.7	1.5	
Area A	2	10 2a	25	9.7	2.2	
	3	3a 2h	25	7.1	6.8	
	4	4a	5	7.1	6.9	
Area B		4b	5	11.8	0.8	
		5a 5b	25 25	12.4 16.0	5.4	
	6	6a	25	4.2	2.0	
	6	6b	25	14.0	5.0	

Table 5.1 Cover soil samples for incubation

Soil incubation was completed within two consecutive days, with several "soil gas samples" collected every 1 to 3 hours, depending on the observed rate of change in concentration. Using a 50 μ L gas tight syringe, samples were injected and analyzed with a gas chromatograph-flame ionization detector (GC-FID) to measure methane concentrations. When appropriate, 15 mL of the soil gas samples were injected into 10 mL pre-evacuated glass vials for δ^{13} C measurements. As shown in Figure 5.3 (a) and (b), standard curves were developed during the test for methane concentrations of more than 1% and less than 1%, respectively. These standard curves were used to convert the FID responses to volumetric methane concentrations. Figure 5.4 shows example snap shots of the chromatograms, visual observation on the screen during the test which assisted collection of the isotope samples in appropriate times.

(b) Standard Curve for GC FID Results (for [CH₄]<1%)

Figure 5.3 Standard curves developed during the GC-FID tests

Figure 5.4 A few FID test response snap shots

A total number of 78 soil gas samples with known methane concentrations were prepared and immediately shipped to the FSU for δ^{13} C levels measurement. From the isotopic signature (δ^{13} C) and the methane concentrations ([CH₄]), α_{ox} was calculated using the Rayleigh approach as shown in Equation 5.4 below (De Visscher et al., 2004; Mahieu et al., 2006; Chanton et al., 2008):

$$\frac{\delta^{13}C_{t}+1000}{\delta^{13}C_{0}+1000} = \left(\frac{[CH_{4}]_{t}}{[CH_{4}]_{0}}\right)^{\frac{1-\alpha_{0X}}{\alpha_{0X}}}$$

Equation 5.4

Where:

 $\delta^{13}C_t = {}^{13}C$ isotope content of enriched methane in soil incubation test in time t $\delta^{13}C_0 = {}^{13}C$ isotope content of methane at the beginning of test (t=0) [CH₄]_t = methane concentration in incubation flask at time t [CH₄]₀ = initial methane concentration in incubation flask (t=0)

5.5 Transport Fractionation Factor (α_t)

The transport fractionation factor (α_t) defines magnitude of the isotopic fractionation due to methane transport mechanism in landfill cover, advection vs. diffusion. Several similar studies have adopted the value of 1 for the transport isotope fractionation factor, suggesting that gas transport across the cover soil was dominated by advection rather than diffusion (Liptay et al., 1998; Chanton and Liptay, 2000). Although this may result in underestimation of the methane oxidation rate occurring in the landfill cover (De Visscher et al., 2004; Chanton et al., 2008), many researchers found it to be a reasonable assumption for landfills with no active gas collection system (Liptay et al., 1998; Chanton and Liptay, 2000; Abichou et al., 2006b; Stern et al., 2007; Bogner et al., 2010). This suggests that when LFG is being actively collected, α_t would

150

be greater than 1 and closer to the value of fractionation factor due to diffusion ($\alpha_{diffusion}$). This theoretical value is 1.0197 suggested by Marrero and Mason (1972) based on the difference between binary diffusion coefficient of ¹²CH₄ and ¹³CH₄ in air (i.e. ¹²CH₄ diffuses 1.0197 times faster than ¹³CH₄). An experiment by De Visscher et al. (2004), in a landfill in France with an active LFG collection system, resulted α_t of 1.0178 ± 0.0009. Chanton et al. (2011a), in a four year study, used this value as a base and developed α_t for 20 landfills across the U.S. Based on 155 samples, this study showed a mean value of $\alpha_t = 1.0106 \pm 0.007$ for landfills in cool and humid climate, based on 155 samples.

In the present study, although the LFG collection system vacuum was larger in Area A comparing with Area B, the fugitive emissions were observed in locations far from the LFG collection wells. These locations were beyond the usual radius of influence of the LFG wells (normally about 25m to 30 m) and believed to be less impacted by the high applied vacuum. Therefore, a value of 1.0106 was used for α_t for both Areas A and B, in areas with active LFG collection system. For the grid# 11 in Western 40, as well as the areas where the collection system was shut down during the course of the field work, a value of $\alpha_t = 1$ was adopted.

5.6 **Results and Discussion**

As previously reported in Chapter 4, the flux chamber measurements showed methane emission rates varying from 0 to 4,709 g CH₄ m⁻² d⁻¹ within the study boundaries. Averaging the results for the two major areas defined in the present chapter, showed mean values of 744 g CH₄ m⁻² d⁻¹ and 489 g CH₄ m⁻² d⁻¹ for Area A and Area B, respectively. Median values for the two areas were 216 g CH₄ m⁻² d⁻¹ and 396 g CH₄ m⁻² d⁻¹, respectively.

5.6.1 Residual Methane

The δ^{13} C of the residual methane emitted into chambers ranged from -34.84‰ to -55.78‰. This value averaged -47.8±7.4‰ at area A with a median value of -48.8‰. At area B, the isotopic signature of the emitted methane averaged -49.7±2.4‰ with a median value of -50.1‰. The similarity of the mean and median is the result of a normal distribution for the isotope data as reported by Abichou et al. (2011). Methane emission rate (MER) and δ^{13} C value of residual methane (δ_R) calculated with Equation 5.2 for each chamber are tabulated in Table 5.2 below.

Area	Chamber ID.	MER (g CH ₄ m ⁻² d ⁻¹)	δ _R (‰)
	44	419	-53.07
	47	37	-44.02
	48	797	-46.88
	108	18	-37.52
A 1000 A	91A	256	-50.67
Агеа А	35	4709	-55.55
	38	135	-54.47
	300	760	-55.78
	402	130	-34.84
	406	175	-45.75
	200	402	-51.87
	205	1817	-52.60
	214	444	-46.38
	309	28	-47.48
Amon D	114	82	-46.35
Area D	91B	302	-50.46
	71	389	-50.79
	78	528	-52.36
	311	750	-49.83
	62	148	-48.59

Table 5.2 Methane emission rates (MER) and residual methane $\delta^{13}C$ values

5.6.2 Anaerobic Methane

Anaerobic methane samples collected from the LFG collection manifolds of each phase of VLF had δ^{13} C values within ranges previously reported in similar studies (Chanton et al., 1999; Chanton and Liptay, 2000; Börjesson et al., 2001; Chanton et al., 2011b). However, there was a significant difference between the two areas averaging -54.12 ± 0.06‰ for older areas (Area B) and -58.19 ± 0.05‰ for Area A, the newer one. Differences between Areas A and B included: average waste age (7 vs. 15 years), depth of waste (30 vs. 10 m), and cover system (Area A is partially capped with geomembrane while the rest of the landfill is covered with an interim cover soil and topsoil). Also, as reported in Chapter 3, Phase 1 of VLF was much warmer in comparison with other areas of the landfill with an approximate average temperature of 46°C vs. 15-21°C in the older areas. (See Table 3.10 on Page 95).

Table 5.3 below summarizes the anaerobic methane δ^{13} C value at VLF.

Land	fill Areas	Methane Concentration	Anaerobic Methane Isotopic Signature (δ _A), (ppt)				
		$[CH_4], (\%)$	Samples	StDev.	Average		
A		43.2	-58.17	0.003	59 10 + 0.05		
Area A	Phase 1	43.5	-58.21	0.067	-38.19 ± 0.03		
	Area 2W	46.3	-54.23	0.058	54.22 + 0.05		
		46.4	-54.43	0.030	-34.55 ± 0.05		
A noo D	Area 2E	45.7	-54.05	0.036	54.04 + 0.02		
Area D		45.9	-54.03	0.009	-34.04 ± 0.03		
	A mag 3	50.6	-54.07	0.013	52.07 + 0.10		
	Area 3	50.5	-53.88	0.137	-55.97 ± 0.10		

Table 5.3 Anaerobic methane δ^{13} C value at the Vancouver Landfill

5.6.3 Soil Incubation and Isotopic Fractionation Factor

Soil incubations were conducted at different moisture contents and temperatures. The incubation tests started at methane concentrations between 4% and 4.5%, and continued for about 1.5 days or until the concentrations dropped below 0.5%. The soil gas methane concentrations are illustrated in Figure 5.5 through Figure 5.10. These results are also presented in full in Appendix E.2.

Figure 5.5, shows the incubation results for the soil sample collected from Area A (with a lower level of organic content). This test was conducted at two different soil moisture contents of 7.7% and 10.7%, labeled (1a) and (1b), respectively. Results for this sample, showed a higher level of methanotrophic activity for the test with the lower moisture content (i.e. 1a).

Figure 5.5 Methane concentrations during the soil incubation tests for soil sample collected from Area A with 1.5% organic content, incubated at 25°C at two moisture content levels of 7.7% (1a) and 10.7% (1b)

Figure 5.6 below shows the results for the soil sample collected from Area B, which had a higher organic content of about 6.8%. This time an opposite behaviour was observed with a lower level of methanotrophic activity observed for the test with lower soil moisture content.

Figure 5.6 Methane concentrations during the soil incubation tests for soil sample collected from Area B with 6.8% organic content, Incubated at 25°C at two moisture content levels of 7.1% (3a) and 11.8% (3b)

The same soil sample acquired from Area B at the initial moisture content of 7.1% showed almost no methanotrophic activity at temperature equal to 5°C. However, at a moisture content of 11.8%, these activities proceeded at slightly higher rates in comparison with the same sample at the initial moisture content and at 25°C (see Figure 5.7 below). As the VLF is located in an area with daily average temperatures of 4 and 17 °C in winter and summer months respectively, as well as monthly precipitation of 151 and 45 mm during these two seasons, these results may suggest similar oxidation rates for wet winters as for dryer summers.

Figure 5.7 Methane concentrations during the soil incubation tests for soil sample collected from Area B with 6.8% organic content, incubated at 5°C at two moisture content levels of 7.1% (4a) and 11.8% (4b)

Figure 5.8 Methane concentrations during the soil incubation tests for soil sample collected from Area A with 2.2% organic content and 9.7% moisture content (2a), incubated at 25°C

Soil sample no.5 acquired from Area B, with a relatively high organic content of about 5.4% and field moisture content of about 12%, already had a high level of methanotrophic activity and adding more moisture to this soil sample did not significantly change the oxidation rate (See Figure 5.9 below).

Figure 5.9 E Methane concentrations during the soil incubation tests for soil sample collected from Area B with 5.4% organic content, incubated at 25°C at two moisture content levels of 12.4% (5a) and 16.0% (5b)

Soil sample no.6, with a relatively low organic and moisture content, did not show reasonable results (See Figure 5.10). This sample was taken from an area which appeared to be a new layer of impermeable soil recently placed on top of the old soil cover, and was not believed to represent the whole area, hence was excluded from the final analyses.

Figure 5.10 Methane concentrations during the soil incubation tests for soil sample collected from Area B with 3.0% organic content, incubated at 25°C at two moisture content levels of 4.2% (6a) and 14.0% (6b). Results from incubation of this sample was excluded from the final analyses as the sample was not believed to represent the whole area.

The isotopic signature values of the soil gas samples, developed during the soil incubation tests, were quantified at the FSU. Figure 5.11 shows two examples of these results. The increase in methane δ^{13} C over time indicates faster consumption of ¹²CH₄ in comparison with ¹³CH₄. This degree of preference of bacteria was translated to the oxidation isotopic fractionation factor (α_{ox}) using Equation 5.4.

As shown in Table 5.4, the α_{ox} value was calculated for every soil sample at different moisture levels and, for two samples, at two different temperatures. The averages of results for samples at field conditions (i.e. field moisture content and at 25°C) for Areas A and B were very close at values of 1.0265 ± 0.0010 and 1.0266 ± 0.0052 , respectively.

Figure 5.11 Soil gas samples methane isotopic signature

Area Sample ID		Temperature (°C)	Moisture Content (%)	Organic Content (%)	fractionation factor (α_{ox})
	1a	25	7.7	1.5	1.0266 ± 0.0012
Α	1b	25	10.7	1.5	1.0222 ± 0.0034
	2a	25	9.7	2.2	1.0264 ± 0.0008
	3a	25	7.1	6.8	1.0298 ± 0.0044
	3b	25	11.8	6.8	1.0231 ± 0.0023
	4a	5	7.1	6.8	1.0185 ± 0.0058
D	4b	5	11.8	6.8	1.0104 ± 0.0019
D	5a	25	12.4	5.4	1.0234 ± 0.0059
	5b	25	16.0	5.4	1.0194 ± 0.0006
	6a	25	4.8	3.0	Excluded from
	6b	25	14.0	3.0	calculations
	Aver	age results at a	ctual moisture and a	mbient temperatur	e
I	Area A	25	8.7 ± 1.4	1.9 ± 0.5	$\textbf{1.0265} \pm \textbf{0.0010}$
I	Area B	25	9.7 ± 3.7	6.1 ± 1.0	$\textbf{1.0266} \pm \textbf{0.0052}$

Table 5.4 Oxidation isotopic fractionation factor (aox) for different cover soil types at VLF

Similarly to the observations of Coleman et al. (1981), King et al. (1989) and Tyler et al. (1994), the present results showed an increase in α_{ox} as a result of increased temperature. As shown in Table 5.5 this increase was 0.00057/°C and 0.00064/°C for the soil samples with moisture contents of 7.1% and 11.8%, respectively.

Sample ID	Soil Moisture (%)	Moisture (%)Temperature (°C)fractionation factor (α_{ox})		Rate $(\Delta \alpha_{ox}/\Delta T)$	
3a	7.1	25	1.0298 ± 0.0044		
4a	7.1	5	1.0185 ± 0.0058	+0.000577 C	
3b	11.8	25	1.0231 ± 0.0023		
4b	11.8	5	1.0104 ± 0.0019	+ 0.00064 /°C	
	+ 0.0006 /°C				

Table 5.5 Effect of temperature on methane oxidation fractionation factor

An increase in the moisture content of the soil samples also resulted in decreased values for the isotopic fractionation factor in all cases. As shown in Table 6, for the tests conducted at a temperature of 25°C, this reduction was more significant in soil samples from Area A. However, the largest reduction rate in α_{ox} due to increased moisture content occurred at 5°C for the soil sample from Area B.

Source of Soil Sample	Sample ID	Temperature (°C)	Soil Moisture (%)	fractionation factor (α_{ox})	Rate $(\Delta \alpha_{\rm ox} / \Delta W)$	
A.r.o. A	1a	25	7.7	1.0266 ± 0.0012	0.0015	
Alea A	1b	25	10.7	1.0222 ± 0.0034	- 0.0015	
	5a	25	12.4	1.0234 ± 0.0059	0.0011	
	5b	25	16.0	1.0194 ± 0.0006	- 0.0011	
Area D	3a	25	7.1	1.0298 ± 0.0044	0.0014	
Alea D	3b	25	11.8	1.0231 ± 0.0023	- 0.0014	
	4a	5	7.1	1.0185 ± 0.0058	0.0017	
	4b	5	11.8	1.0104 ± 0.0019	- 0.0017	

Table 5.6 Effect of soil moisture content on methane oxidation fractionation factor

5.6.4 Fraction of Methane Oxidized (fox)

Finally, the methane oxidation was calculated with Equation 5.3, which quantified the total amount of methane oxidized (O). The methane oxidation is the oxidized fraction (f_{ox}) of methane 160

that migrated through the cover soil and entered the flux chambers. Obviously, this number could be calculated only when smaller than 100%, or no residual methane would be left in the chamber to be sampled. The values of f_{ox} ranged between 3.4% to 72.7%, with average values of 33.7±21.6% and 27.9±14.9% for cover soil types used in Areas A and B, respectively. These values translate to average methane oxidation rates of 219 g CH₄ m⁻² d⁻¹ and 141 g CH₄ m⁻² d⁻¹ for the cover soil applied at these areas. These results are presented in Table 5.7.

Areas	Chamber ID	δ _R (‰)	δ _a (‰)	α _{ox}	α _t **	f _{ox} (%)	f _{ox (avg.)} (%)	$R_{ox}(CH_4)$ g m ⁻² d ⁻¹
	44	-53.07	-53.97	1.0265	1.0000	3.4		
	47	-44.02	-53.97	1.0265	1.0000	37.6		
	48	-46.88	-53.97	1.0265	1.0000	26.8		
	108	-37.52	-53.97	1.0265	1.0000	62.1		
Aron A	91A	-50.67	-58.19	1.0265	1.0106	47.3	33 7	210
Alea A	35	-55.55	-58.19	1.0265	1.0106	17.5		217
	38	-54.47	-58.19	1.0265	1.0106	23.4		
	300	-55.78	-58.19	1.0265	1.0106	15.1		
	402^{*}	-34.84	-54.12	1.0265	1.0000	72.7		
	406^{*}	-45.75	-54.12	1.0265	1.0000	31.6		
	200	-51.87	-54.33	1.0266	1.0106	15.4		
	205	-52.60	-54.33	1.0266	1.0106	10.8		
	214	-46.38	-54.33	1.0266	1.0106	49.7		
	309	-47.48	-54.33	1.0266	1.0106	42.8		
A mag D	114	-46.35	-54.04	1.0266	1.0106	48.1	27.0	1.41
Area D	91B	-50.46	-54.04	1.0266	1.0106	22.4	21.9	141
	71	-50.79	-53.97	1.0266	1.0106	19.9	-	
	78	-52.36	-53.97	1.0266	1.0106	10.1		
	311	-49.83	-53.97	1.0266	1.0106	25.9		
	62	-48.59	-53.97	1.0266	1.0106	33.7		

Table 5.7 Fraction of methane oxidized in the Vancouver Landfill cover soil

no LFG collection system in this section, therefore, average value of δ_a from other similar phases of the landfill was used in calculation for this Flux Chamber

 ** α_t =1 was used for areas with no or shut-down active gas collation system

Methane emission rates (MER) measured by the flux chamber tests (see Table 5.2) were plotted against the methane oxidation percentages reported above. For ease of analysis, the rates of emissions were arbitrarily grouped to MER < 550 g CH₄ m⁻² d⁻¹, and MER > 750 g CH₄ m⁻² d⁻¹ (Figure 5.12(A) and Figure 5.12(B), respectively). For the lower emission rates, the oxidation rates increased with decreasing emission rates. This comparison showed that f_{ox} was an inverse function of MER as shown in Equation 5.5 below. This trend was similar to findings of studies done by Powelson et al. (2006), Huber-Humer et al. (2008), Chanton et al. (2011a), and Chanton et al. (2011b). For the locations with relatively higher emission rates, f_{ox} was found to be in the order of 10 to 25% with no obvious trend.

$$f_{ox}$$
 (%) = 51. 19 - 0.07 × MER(g CH₄ m⁻² d⁻¹) Equation 5.5

Figure 5.12 Relationship between methane emission rates (MER) and fraction of methane oxidized (fox)

5.7 Total Methane Oxidation at the Vancouver Landfill

The current analyses showed that 10% oxidation would be an appropriate minimum default value. However, the actual oxidation fraction in MSW landfills with active gas collection

systems in place could be much higher depending on methane emission rates (i.e. the methane loading rate applied to the landfill cover soil).

The results showed average methane oxidation rates of 219 g CH₄ m⁻² d⁻¹ and 141 g CH₄ m⁻² d⁻¹ for the cover soil applied at Areas A and B of VLF, respectively. This translates to methane oxidation percentages of 33.7% and 27.9% for these two areas. It is important to note that the methane oxidation rates should only be applied to the fugitive methane emissions from the landfill cover soil. Therefore, the possible methane leaks from cracks, the LFG collection system piping, and other infrastructure flaws, which were previously factored in by the emission correction factor (CF_E), were excluded from calculations of the total methane oxidation (O) at VLF.

It should also be noted that, without the methanotrophic activity and methane oxidations, the measured methane emissions from VLF cover soil would have been higher than the amount determined by the flux chamber tests (i.e. E/CF_E). The total amount of methane oxidized relative to the measured emissions would be:

$$\mathbf{0} = \frac{\mathbf{f}_{ox} \times (\frac{E}{CF_E})}{\mathbf{1} - \mathbf{f}_{ox}}$$
Equation 5.6

Where: O = total methane oxidized (tonnes/year)

 f_{ox} = methane oxidation rate (%) E = total methane emissions (tonnes/year) CF_E = emission correction factor (1.52) Using Equation 5.6, the total amounts of methane oxidized in different areas of VLF were calculated and summarized in Table 5.8. Results showed that the total average methane oxidized in Area 2W, Area 2E, Area 3, and Phase 1 of the VLF in the year of the study were 119, 64, 94, and 133 tonnes methane year⁻¹, respectively

Area/ Phase	Total Avg. Methane Emissions (E) (tonnes year ⁻¹)	Methane Emissions from Cover Soil (E/CF _E) (tonnes year ⁻¹)	Methane Oxidation Rate, (f _{ox}) (%)	Total Methane Oxidized $(O \pm \Delta O)$ (tonnes year ⁻¹)
Area 2W	466	307	27.9 ± 14.9	119 ± 54
Area 2E	252	167	27.9 ± 14.9	64 ± 29
Area 3	367	242	27.9 ± 14.9	94 ± 42
Phase 1	396	261	33.7 ± 21.6	133 ± 72
Total	1,481	978		410 ± 197

Table 5.8 Total methane oxidation at each area of VLF

In summary, the results of this portion of the study showed that the effectiveness of methanotrophic bacteria in mitigating fugitive methane emissions from landfills is significantly underestimated when the default value of 10% oxidation is used. The current analyses showed that while a 10% oxidation would be an appropriate minimum default value, the actual oxidation percentage in landfills with active gas collection systems could be much higher and dependent on methane emission rates. Using the correct and region-specific values will change the methane budget in GHG emission inventory reports.

In this chapter of the study, the O values for the four areas of the Vancouver Landfill were calculated. These values would be applied to the simplified METRO equation to calibrate the developed integrated LFG generation model.

Chapter 6: LFG Recovery at the Vancouver Landfill (R)

6.1 VLF Gas Collection System Operational Data

As previously mentioned, the VLF landfill gas management system has been operating since 1991. The system includes (i) an LFG collection system (vertical and horizontal wells and piping network), (ii) a condensate handling system, (iii) an LFG extraction plant (blowers), and (iv) an LFG flare system.

The collection system is the main component of an LFG management system. It includes vertical gas extraction wells and horizontal gas collectors (trenches), as well as wellheads, lateral pipes, sub-header pipes, and a main gas header pipe. Based on the system design, waste depth, well spacing, and the required radius of influence (ROI) of the LFG wells, a minimum amount of vacuum at collection points (wellheads) is required to maintain an acceptable level of LFG collection efficiency, hence, minimal GHG emissions. However, excessive levels of vacuum applied to the system may result in air intrusion into the landfill, which increases the risk of spontaneous combustion and landfill fire (Sperling, 2009). Furthermore, when beneficial use of the collected LFG is intended, it is important to ensure that the quality of the collected gas (i.e. methane, nitrogen and oxygen content) is maintained within an acceptable range, dictated by the gas treatment facility/technology.

Therefore, the operation of an active LFG management system involves an extensive amount of field monitoring, wellfield adjustments, and wellfield data collection. Some of the information recorded as the LFG operational and gas quality data include: gas composition (% CH₄, % CO₂, % O₂, balance gas, H₂S (ppm), CO (ppm), gas temperature), operational data (wellhead's % 165

opening, system pressure (vacuum), vacuum applied, gas flow rate), and system status (broken wells, leachate levels in the well, upcoming repairs, etc.).

For larger landfills, such as the Vancouver Landfill, with more than 250 data collection points just in the four areas within the study boundaries, the monthly readings would add up to more than 10,000 data points each year. These data were historically stored in various excel spread sheets as weekly and monthly readings. While the available historical LFG data provided an invaluable opportunity to study the VLF historical behavior and operational challenges, a better organization of these data was deemed necessary for data mining.

6.2 The Vancouver Landfill LFG Database

As one of the initial steps of the study, the large amount of existing historical LFG collection system data had to be organized. A site-specific LFG database in Microsoft (MS) Access environment was developed for the VLF. The new data base allowed for the comprehensive and meaningful mining of the existing data. New gas collection data from the work site, including data from new wells generated during the course of the study, were incorporated into the data base. Figure 6.1 through Figure 6.5 below show example snapshots of the developed LFG database. As shown in the following examples, the database was designed to develop graphical and/or tabulated reports for selected parameters and the selected sampling/monitoring point. Data entry can be done line-by-line for each monitoring location and date/time, or could be imported all at once from an MS word table or an excel spread sheet. The stored data could also be exported as excel worksheets, if required.

Figure 6.1 The Vancouver Landfill LFG database

	9 - (~ - -				Chart Menu - Va	incouver LFG Database
File	Home Create Ex	ternal Data Database Tools				
	Cut	Z Ascending Selection *	New Σ Totals	Go To ₹		・ ・ 日日 徳徳 と
View	Paste	Filter A Remove Sort Y Toggle Filter	Refresh All + X Delete + More -	Find Select - Size	to Switch ₪ ℤ <u>U</u>	A · ♥ · ▲ · ■ ≡ ≡ -
Views	Clipboard 🖓	Sort & Filter	Records	Find	Window	Text Formatting
n Pane	Vancoux Please choose the Individual Well/H Select the Nam (CH4, BG, R Gas C General LFG Data (Maxim (Total)	ver Landfill Gas Da e Chart you would like to see leader: cO2, and Temperature RBG, and Q Quality Chart (Q and CH4%) a: n Gas Flow Rate LFG Flow Rate and Quality	ta in Graphs	He Plass 2 Plass Bigging and the second seco	e 3 Verifical verifical verifical verifical	Area 2E 30 Veritori veilis 25 Veritical wels 35 Veritical 45 Veritical veilis
Navigatio			Click here to cl	ose this form		

Figure 6.2 Graphical menu of the Vancouver Landfill LFG database

Figure 6.3 Example graphical outputs of the LFG database

AI	ר) י (^µ י -
Fil	Home Create External Data Database Tools
Viev	↓ Accending ♥ Selection ~ ↓ Ascending ♥ Selection ~ ↓ Ascending ♥ Selection ~ ↓ Descending ♥ Advanced ~ ↓ Descending ♥ Advanced ~ ♥ Spelling ♥ Selection ~ ↓ Descending ♥ Advanced ~ ↓ Descending ♥ Advanced ~ ♥ Spelling № № ♥ Spelling № Selection ~ ↓ Descending ♥ Advanced ~ ↓ Descending ♥ Advanced ~ ♥ Spelling № № ♥ Spelling № Selection ~ ↓ Descending ♥ Advanced ~ ↓ Descending ♥ Selection ~ ♥ Spelling № Selection ~ ↓ Descending ♥ Advanced ~ ↓ Descending ♥ Selection ~ ♥ Spelling № Selection ~ ↓ Descending ♥ Advanced ~ ↓ Descending ♥ Selection ~ ♥ Spelling № Selection ~ ↓ Descending ♥ Selection ~ ↓ Descending ♥ Selection ~ ♥ Spelling № Selection ~ ↓ Descending ♥ Selection ~ ↓ Descending ♥ Selection ~ ♥ Selection ~ ↓ Descending ♥ Selection ~ ♥ Selection ~ ♥ Selection ~ ↓ Descending ♥ Selection ~ ♥ Selection ~ ♥ Selection ~ ↓ Descending ♥ Selection ~ ♥ Selection ~ ♥ Selection ~ ↓ Descending ♥ Selection ~ ♥ Selection ~ ♥ Selection ~ ↓ Descending ♥ Selection ~ ♥ Selection ~ ♥ Selection ~ ↓ Descending ♥ Selection ~ ♥ Selection ~ ♥ Selection ~ ↓ De
»	Gas Data Entry Form, one Well/ Header at the time Date (dd-mmm-yy): 11-Feb-04 Well or Header name: FLR-MNHR See list of wells here Date (for MAXIM): 11-Feb-04 MAXIM Q(scfm): 11-Feb-04 Date (for MAXIM): To be entered here only once for each DATE. You can also click here to do that MAXIM Q(scfm): 11-Feb-04
	Gas Data: Other Information:
	CH4 % (Volume): 52.6 Barometric pressure ("Hg): 30.34 Description: CO2 % (Volume): 36.3 Static Pressure ("H2O): -59.1 Description: O2 % (Volume): 0.7 Differential Pressure ("H2O): 0.230 Description: H2S (ppm): Water Levelh (m): Image: Construction of the state
Navigation Pane	To see all the calculated data in table format for this well or header, click here To see the calculated data (BG, RBG, Q) of the selected well click here To see the well behaviour graph (CH4, CO2, Temperature) click here To see the Gas Quality Chart (i.e. Q and CH4%) for the selected well click here. Click here to close this form

Figure 6.4 LFG database data entry form

	1 ≌) → (21 → :	-										_	-	(
File	Home	Create E	xternal Da	ta Dai	tabase To	ools								
	· 🖹 🕺	Cut		A Ascen	ding	꼊 Selecti	on *		📑 New	Σ Το	tals 🔮	🔒 🐫 Replac	e 🙎 🔤	
pinner		Сору		ZA↓ Descer	ہ nding	🛄 Advan	ced 🔻		🚽 Save	Sp	elling 📕	📕 🔿 Go To	·	Guiltet
view	Paste	Format Painter	Filter	A Z Remov	e Sort S	Toggle	Filter	All *	X Dele	te 🝷 🔡 M	ore *	na 🔓 Select	Fit For	Switch Windows *
View	s Clipbo	oard 🕞		Sor	t & Filte	r			Rec	ords		Find	V	Vindow
>>				_		_								
		Calcul	ated	Gas	Dat	a foi	r the	e Sel	ecte	ed We	ell / Da	ate 🛛		
	Note: Any	edit made to	the me	asured o	lata he	ere woul	d resul	t a per	manent	change	in the Dat	tabase.		
			CHA	cor	02	Tompo	roturo	מת	Para	Valaaitu	Flow Poto	PalanaaCas	PPC	
	Well Name	Date	(%)	(%)	(%)	(oF)	(oC)	("H2O)	Dalo ("Ho)	(ft/min)	(scfm)	(%)	(%)	
			(,,,)	(, .,	(,,,)	. (01)	(00)	(1120)	(116)	(101111)	(50111).	(70)	(,,,,)	
	P01-H004	4-May-07	55.7	40.7	0.0	113	45.0	0.260	30.00	2122.19	392.78	3.6	3.6	
	P01-H005	4-May-07	46.3	32.4	4.7	62	16.7	0.001	30.00	125.62	25.52	16.6	0.2	
	P01-H006	4-May-07	55.0	40.1	0.0	102	38.9	0.025	30.00	651.72	122.98	4.9	4.9	
	P01-H007	4-May-07	54.6	39.0	0.0	123	50.6	0.222	30.00	1978.03	359.82	6.4	6.4	
	P01-H008	4-May-07	55.8	40.4	0.0	107	41.7	0.252	30.00	2078.32	388.73	3.8	3.8	
	P01-H009	4-May-07	38.7	23.0	5.7	63	17.2	0.001	30.00	125.74	25.50	32.6	12.7	
	P01-H010	4-May-07	47.7	32.5	3.5	80	26.7	0.004	30.00	255.53	50.19	16.3	4.1	
	P01-MF02	4-May-07	55.5	41.0	0.1	61	16.1	0.060	30.00	972.11	733.10	3.4	3.1	
	P01-V001	4-May-07	57.9	38.6	0.0	57	13.9	0.010	30.00	395.34	9.27	3.5	3.5	
	P01-V002	4-May-07	57.7	40.4	0.0	84	28.9	0.040	30.00	811.06	18.07	1.9	1.9	
	P01-V003	4-May-07	58.3	37.2	0.0	62	16.7	0.001	30.00	125.62	2.92	4.5	4.5	
	P01-V004	4-May-07	56.3	41.3	0.2	65	18.3	0.001	30.00	125.98	2.91	2.2	1.5	
	P01-V005	4-May-07	56.8	40.9	0.0	59	15.0	0.004	30.00	250.52	5.85	2.3	2.3	
۵	P01-V006	4-May-07	56.1	41.7	0.0	55	12.8	0.001	30.00	124.77	2.94	2.2	2.2	
and	P01-V007	4-May-07	55.8	40.8	0.1	62	16.7	0.103	30.00	1274.90	29.59	3.3	3.0	
Ē	P01-V008	4-May-07	56.5	41.3	0.0	68	20.0	0.010	30.00	399.52	9.17	2.2	2.2	
atic	P01-V009	4-Iviay-07	55.0	44.2	0.0	59	15.0	0.001	30.00	125.26	2.92	0.8	0.8	
avig	P01-V010	4-Iviay-07	56.1	43.5	0.0	102	17.0	0.001	30.00	125.00	2.91	0.4	0.4	
Ž	P01-V011	4-Iviay-07	41.0	0.0	0.2	102	30.9	0.010	20.00	412.10	0.09	27	44.1 2.0	
	P01-V012	4-Iviay-07	50.4	3/ 9	3.5	68	20.0	0.754	30.00	2825.03	64.83	11.2	0.0	
	P01-V014	4-May-07	56.5	41.0	0.1	76	20.0	0.300	30.00	1610 14	36.40	2.4	2.1	
	P01-V015	4-May-07	54.8	42.7	0.0	110	43.3	0.050	2 20	3427.62	72.87	2.4	2.5	
	P01-V016	4-May-07	50.8	35.5	2.9	58	14.4	0.010	30.00	395.72	9.26	10.8	0.7	
	P01-V017	4-May-07	56.0	40.9	0.0	80	26.7	0,150	30.00	1564.82	35.11	3,1	3.1	
	P01-V018	4-May-07	55.7	41.2	0.0	108	42.2	0.140	30.00	1550.46	33.08	3.1	3.1	
	P01-V019	4-May-07	55.4	40.8	0.2	99	37.2	0.275	30.00	2155.73	46.73	3.6	2.9	
	P01-V020	4-May-07	55.7	41.7	0.0	64	17.8	0.040	30.00	796.01	18.41	2.6	2.6	
	P01-V021	4-May-07	55.8	41.1	0.1	114	45.6	2.730	30.00	6882.69	286.00	3.0	2.7	
	P01-V022	4-May-07	56.9	39.6	0.0	71	21.7	0.140	30.00	1499.11	67.34	3.5	3.5	
	.004.0002	4 Mar. 07	56 Z	10 5	0.0	100	444	0.450	30.00	0774 00	110.04	0.8	9.8	
	TO SEE a	all the calcula	aleo gas	data re	ated to	o the sel	ected	uate cli	ck nere	÷				
	To see a	all the calcula	ated gas	data foi	the se	elected	well in	table to	rmat c	lick here				
	To see t	he well beha	aviour gr	aph (CH	4, CO2	2, Temp	erature	e) click	here		<u> </u>			
	To see t	he calculate	d data (l	BG, RBC	G, Q) o	f the se	lected	well clie	ck here		LLL			
	To see t	he Gas Qua	lity Char	t (i.e. Q	and Cl	H4%) fo	rthe se	elected	well cli	ck here				
										Clic	k here to c	lose this forn	1 🔼	
									_					-

Figure 6.5 LFG database, an example tabulated output

6.3 Methane Recover Rate at the Vancouver Landfill (R)

In order to calibrate the iModel-110[©] methane generation results with the simplified METRO equation, the amount of recovered methane (R) during the course of the field study was required. The data for 2012 were used for this purpose. Weekly data were collected from the sub-header sampling/flow meter stations of each area using a GEM[™] 2000+. The recorded LFG flow rate, as well as the volumetric percentage of methane, was used to calculate the total tonnage of methane. Table 6.1 shows a few examples of the conducted wellfield readings where gas flow rate, methane, carbon dioxide, and oxygen content, along with other parameters such as CO and H₂S levels, temperature, system pressure, etc. are indicated. Due to the type of flow metering device used at the VLF gas collection system, reliable gas flow read out was not possible at all operational conditions. Therefore, out of 65 attempts for each of the four study areas, 40, 35, 40, 49 valid R readings were achieved for Area 2W, Area 2E, Area 3, and Phase 1, respectively. Invalid flow rate readings were considered to be the recorded data at significant fluctuation (surging) of the system, and flow rates recorded in extreme operational conditions (system freeze-up, etc.). The valid recorded data are illustrated in Figure 6.6 and Figure 6.7 (a) through (d), and also are presented in Appendix F.1.

Area	Date	CH4 (%v)	CO2 (%v)	O2 (%v)	Measured Flow Q (cfm)	Adjusted Q for 50% CH₄ (scfm)	Recovered Methane (R) (tonnes)
Area 2W	30/06/2011	51.0	32.9	1.1	192	196	987
Area 2E	30/06/2011	50.1	32.6	0.7	214	214	1081
Area 3	30/06/2011	40.9	27.5	4.4	211	173	870
Phase 1	29/06/2011	53.1	38.1	0.3	1,086	1153	5815
Area 2W	21/07/2011	51.7	32.9	0.7	134	139	699
Area 2E	21/07/2011	53.5	31.1	0.6			No Data
Area 3	21/07/2011	65.2	34.4	0.3	146	190	960
Phase 1	22/07/2011	54.0	37.9	0.4	1,139	1230	6202
Area 2W	28/07/2011	51.1	32.8	0.6			No Data
Area 2E	28/07/2011	53.0	32.1	0.6			No Data
Area 3	28/07/2011	65.2	34.4	0.3			960
Phase 1	29/07/2011	53.3	37.9	0.5	1,249	1331	6713
Area 2W	05/08/2011	47.1	32.4	0.7	115	108	546
Area 2E	05/08/2011	49.9	31.2	0.6	117	117	589
Area 3	05/08/2011	47.3	29.2	3.1	113	107	539
Phase 1	05/08/2011	50.6	37.4	0.4	1,415	1432	7220
Area 2W	02/09/2011	48.5	33.0	0.6	162	157	792
Area 2E	02/09/2011	44.3	32.3	1.0	150	133	670
Area 3	02/09/2011	52.0	29.0	3.9	74	77	388
Phase 1	02/09/2011	48.8	37.5	0.5	1,459	1424	7179

Table 6.1 Wellfield manifolds (sub-headers) reading examples

Figure 6.6 Collected LFG flow rates from the four areas of VLF (adjusted for 50% CH₄ content)

Figure 6.7 Captured LFG flow rates at VLF (flow rated are adjusted for 50% methane content)

As shown in the Appendix F.1. from the 65 attempts during the course of the field work to measure the collected LFG flow rates from the metering stations of each area/phase, only 35 to 49 valid flow readings were achieved, with only 27 events generating flow reading data for all four metering stations. The main reason for failing to read the gas flow rates in some of the events was the type of the flow meter that was installed on manifolds at VLF in the past. The COV is currently replacing all of these metering devices with a new type of flow meter. The fluctuation in the recorded flow rate values is due to the inaccuracy of the flow metering technique, operational field adjustments made to the manifolds, as well as a result of the

barometric pressure changes and its effect on the amount of methane being stored within the landfill's pore spaces. These effects are temporary and are cancelled out over a long period of time. Therefore, averaging the values over a long period would result in a good and representative flow rate data recorded for each area.

Based on the collected data, the total LFG recovery within the study boundaries in 2012 was approximately $1,758 \pm 151$ scfm, which is equivalent to nearly 9,000 tonnes of methane captured annually. Most of the captured methane was from Phase 1 with relatively newer waste, as well as greater amount of waste in place. Table 6.2 below presents the breakdown of the recovered methane for the four areas.

Area	Footprint (m ²)	Waste in Place (tonnes)	Closure Year	Average LFG Flow Rate (scfm)	Annual CH ₄ Recovery ($\mathbf{R} \pm \Delta \mathbf{R}$) (tonnes year ⁻¹)
Area 2W	259,700	2,010,492	1994	157 ± 43	792 ± 217
Area 2E	189,010	946,200	1996	142 ± 38	716 ± 207
Area 3	140,550	1,366,288	1999	193 ± 73	973 ± 378
Phase 1	242,261	4,470,903	2009	1264 ± 112	$6,\!373\pm565$
Total	831,521	8,793,883		1756 ± 151	8,853 ±761

Table 6.2 Summary of methane recovery data for different areas of the work site

Chapter 7: LFG Generation Modeling Calibration and Verification

7.1 Initial iModel-110[©] Verification

The advanced LFG generation modeling verification was completed by conducting a methane mass balance under the simplified METRO equation. This would also allow for model calibration, which is described in the next section. The results of the initial methane generation assessment (see Table 3.17), fugitive methane emissions (see Table 4.6), methane oxidation (see Table 5.8), and methane recovery data (see Table 6.2), were used in this analysis. A summary of the methane mass balance analyses, for the entire study boundary is presented in Table 7.1.

Table 7.1 Summary of filed data for the study boundary

		Field Data				
Sou	rce	(tonnes CH ₄ year $^{-1}$)				
		Average	Std. Dev.			
Emissions	Е	1,481	± 431			
Recovered	R	8,853	± 761			
Oxidized	0	410	± 197			
Total	METRO	10,744	± 1,390			

According to the field data and based on the uncertainties associated with the measurement techniques, the total methane budget at the VLF in the year of the study was between 9,355 tonnes year⁻¹ and 12,134 tonne year⁻¹ of methane. Comparison of the results of the new model for the year of the study with this filed data was conducted based on the Equation 7.1 below:

$$\mathbf{G}_i = \sum_{i=1}^n \sum_{j=1}^5 (\mathbf{983.2842} \times \mathbf{k}_j \times \mathbf{M}_{ij} \times \mathbf{w}_j \times \mathbf{DOC}_{a_j} \times \mathbf{e}^{-\mathbf{k}_j \times \mathbf{t}_i}) = \mathbf{E} + \mathbf{R} + \mathbf{O} \pm (\Delta \mathbf{ERO})$$
Equation 7.1

Where the Δ ERO is the sum of uncertainties associated with the three different field works described in Chapter 4, 5, and 6.

Figure 7.1 illustrates the initial methane generation modeling results for the entire work site lifespan, as well as the collected field data for the year of the study (2012). As shown in this figure, the initial methane generation estimate (G_i) is slightly higher than actual field data (ERO). However, the modeling results lies within the range of the field data taking into account the uncertainties associated with these field work experiments (i.e. ERO $\pm \Delta$ ERO).

Figure 7.1 Comparison of initial modeling results and field data (Gi vs METRO)

Furthermore, this comparison for the four individual sites within the study boundary showed that the initial modelled methane generation rates (G_i) had approximately between -10% and +15% lack of fit with the field data. The average results for the study boundary showed an overestimation of 10.3% \pm 11.8%. This suggested generation calibration factors (CF_G) of between 0.87 and 1.12 for these sites, with an average value of CF_G = 0.91 \pm 0.12. A summary of the methane mass balance analyses for the four individual sites, as well as the associated calibration factors, are presented in Table 7.2.

Area/	Methane Emissions	Methane Recovery	Oxidized Methane	initial Generation Assessment	Initial Assessment Overestimation	Correction Factors
Phase	E	R	0	Gi	(Gi-∑ERO)/∑ERO	CF_{G}
	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(%)	
Area 2W	466	792	119	1,585	15.2%	0.87
Area 2E	252	716	64	922	-10.7%	1.12
Area 3	367	973	94	1,547	7.9%	0.93
Phase 1	396	6,373	133	7,798	13.0%	0.89
				Average	10.3%	0.91
				StDev.	11.8%	0.12

Table 7.2 Initial methane generation modeling lack of fit and suggested generation calibration factors

7.2 Uncertainties in the New Modeling Predictions

A 10% lack of fit of the new model results with the average field data is relatively small and acceptable in the LFG industry. Nevertheless, it was tried to increase the accuracy of the predictions made by iModel-110 through calibration of the model based on the field data. Looking at Equation 3.5 and all the variables involved in development of the model's

predictions, the values for DOC_{dry} and k are the ones with a known range of uncertainties from which the default average values were selected and applied to the model. Based on the sensitivity analyses presented in the next Chapter, the extreme gas generation estimates (Upper Limit and Lower Limit) were identified. Sensitivity analyses showed that the maximum gas generation prediction in 2012 is achieved when the higher DOC_{dryH} values (See Table 8.3) are used along with the lower ranges of k_L values (See Table 8.5). Similarly, the lower gas generation prediction limit occurs when the lower DOC_{dryL} with higher k_H ranges are utilized.

Figure 7.2 illustrates these "extreme" Gi predictions for the work site, along with the initial gas generation estimates (Gi), as well as the field data (METRO) for 2012.

Figure 7.2 Upper limit and lower limit methane generation predictions for the study boundary

7.3 iModel-110[©] Calibration

There are two methods discussed here to calibrate the new model. Both of these methods involve fine tuning of the modeling parameters, more specifically, the DOC_{dry} and k values. The default values for these parameters are selected from a range for each organic waste type. Fine-tuning the value of these parameters based on the field data is believed to further increase the accuracy of the new model methane generation predictions.

7.3.1 LFG Generation Calibration Factor (CF_G)

As discussed before, the CF_G is a multiplier to the values of the DOC_{dry} which have a direct relation with the final value of methane generation potential (methane yield). Therefore, application of CF_G shifts the entire gas generation curve to fit the 2012 generation estimate to the 2012 field data. As shown in Section 7.1, the average resulting generation correction factor from the field work was $CF_G = 0.91 \pm 0.12$. This average correction factor, and the deviation range, was incorporated into the model to develop lower range and higher range methane generation estimates for the work site. The results of the calibrated model, using the average CF_G, showed that the methane yield for Areas 2W, 2E, 3, and Phase 1 was respectively, 83, 83, 79, and 70 m³ CH₄ per tonne of waste. Furthermore, the collection efficiencies of the active LFG collection systems in these areas were 55%, 86%, 69%, and 90%, respectively, with an overall collection efficiency of 82% within the study boundaries.

The calibrated methane generation estimates for each area, using the average calibration factor, as well as the lower range and the higher range of the methane generation estimates for the entire study boundaries, are illustrated in Figure 7.3. These results are also summarized in Table 7.3.

Figure 7.3 Methane generation modeling results with calibrated generation potential (CF_G)

Table 7.3 Summary of the calibrated modeling results (using CF_G) and the corresponding methane capture efficiency

Area/ Phase	Cover System	Waste in Cover SystemAverage PlaceMethane Yiel		2012 Methane Generation Estimate	Methane Capture Efficiency	
		(tonnes)	$(m^3 tonne^{-1})$	(tonnes year-1)	(%)	
Area 2W	Intermediate	2,010,492	83	1,437	55	5
Area 2E	Intermediate	946,200	83	836	86	+
Area 3	Intermediate	1,366,288	79	1,402	69	70
Phase 1	Final Cover	4,470,903	70	7,069	90	
Total		8,793,883	76	10,744	82	

Based on the calibrated model using the generation calibration factor (CF_G) the average methane collection efficiency for areas with an intermediate cover system (i.e. Areas 2W, 2E, and 3) was 180

 $70\% \pm 15\%$. The modeling results and the historical methane recovery data for Phase 1 showed that the methane capture efficiency in this phase, before installation of the geomembrane cap, was approximately 65% to 70%. However, this capture efficiency has increased to approximately 80% to 90% since 2009, due to the installation of the geomembrane cap and the modifications made to the LFG collection system. These capture efficiency values are in good agreement with what Spokas et al. (2006) and SCS Engineers (2009), reported for the capture efficiencies for active LFG collection systems. Results of the comprehensive study by Spokas et al. (2006), which are used as the default values for the guidelines by the French environment agency (ADEME), showed collection efficiencies of: 35% for an active (operating) phase, 65% for phases covered with a temporary cap, 85% for phases covered with an impermeable (clay) cover soil, and 90% for phases covered with a geomembrane final cover. SCS Engineers (2009), in a study conducted at the national level in the U.S. for the Solid Waste Industry for Climate Solutions (SWICS), concluded that the methane collection efficiency at regulated sites in the US landfills, where the best LFG management practices were applied, were between 75% and 95%. Accordingly, for landfills with an active LFG collection system, the SWICS has adopted its GHG reporting rule based on the methane capture efficiencies of: 95% for areas with final cover, 75% for areas with intermediate cover, and 60% for areas that have a daily cover system in place.

7.3.2 Revised iModel-110[©] Verification

In order to verify the results of the calibrated model, methane generation rates from the Phase 2 of the Vancouver Landfill were estimated using the iModel- 110^{\odot} over the defined range for the generation calibration factor. As shown in Table 2.3, this phase has received approximately 3.5

million tonnes of waste within the two operational periods of 1982-1985 and 2006-2009. Based on the available data, three different waste compositions were applicable to these periods. These data were applied to the model to estimate the methane yield value for this phase. Furthermore, the available SMC data for this phase were expressed in terms of the total amount of methane emission (E) from the area. A conservative oxidation efficiency of 28% was used to estimate the total methane oxidation. Also, the average collected LFG flow rate, adjusted for 50% methane content, was used to estimate the methane recovery (R).

The modeling results for the Phase 2 of the VLF showed a methane generation rate between 6,509 tonnes year⁻¹ and 8,419 tonnes year⁻¹, with an average value of 7,464 tonnes year⁻¹. These values show the lower range and higher range for the generation estimate, which results from using the CF_G range, which was previously developed over the areas within the study boundaries. Furthermore, the total methane emission, the total amount of recovered methane, and the total amount of oxidized methane for this phase was, 3,123 tonnes year⁻¹, 3,529 tonnes year⁻¹, and 798 tonnes year⁻¹, respectively. Therefore, the total mass of methane calculated from the simplified METRO was approximately 7,450 tonnes year⁻¹, which was very close to the field data and within $\pm 13\%$ of the higher range and the lower range of the model predictions. The results suggested that the methane capture efficiency for this phase of the VLF ranged between 42% and 54%. Phase 2 had an intermediate cover system and horizontal LFG collectors at the time of the analyses.

7.3.3 LFG Generation Rates Calibration Factor (CF_k)

In this method, the value of the decay rates for different organic waste types were calibrated based on the results of the field work as well as the sensitivity analyses presented in the next chapter. This approach is somewhat similar to what is achieved through conducting a LFG pump test. The LFG pump test is a standard approach developed by the US EPA (EPA – Method 2e) to define site specific LFG modeling parameters. In this method the methane generation potential is selected based on the best knowledge about the site, and a site specific k value is calculated based on the volume of methane extracted from a known volume of organic waste.

This approach was followed to calibrate the value of the decay rates for the work site based on the comprehensive field investigations data and considering that methane generation potential was estimated based on good quality data available for the VLF. The initial decay rate values were initially selected from literature and based on the average of the suggest half-lives range for each organic waste type (See Table 3.15). Calibration of the values was conducted based on the results of the sensitivity analysis illustrated in Figure 8.2. Table 7.4 presents the range, default, and calibrated decay rate values for different types of organic waste at the VLF.

Waste Components	Decay Rate Values (k, year ⁻¹)					
waste Components	Range		Default	Calibrated		
Food waste	0.23	0.69	0.35	0.455		
Garden	0.10	0.23	0.14	0.182		
Paper	0.05	0.14	0.07	0.063		
Wood and straw	0.03	0.05	0.04	0.032		
Textiles	0.05	0.14	0.07	0.063		
Disposable nappies	0.05	0.14	0.07	0.063		

Table 7.4 Calibrated decay rate values for different organic wastes at the VLF

The calibrated model, using the calibrated decay rates, showed a slightly higher methane generation results in comparison to the initial generation estimates (G_i). Comparing the results of the calibrated model with the results derived from application of the lower range and the higher range CF_G to Gi, showed that the calibrated predictions lies within the previous methane generation estimation range. The calibrated methane generation estimates for each area and the entire work site as well as the values based on the lower range and the higher range CF_G are illustrated in Figure 7.4Figure 7.3

Figure 7.4 Modeling results with calibrated k values in comparison to the results with lower and higher CFG

As expected, calibrating the decay rate had no effect on the methane generation potential values. Therefore, according to the calibrated model, the methane yield values for Areas 2W, 2E, 3, and Phase 1 of the VLF was respectively, 91, 91, 87, and 77 m³ CH₄ per tonne of waste. Furthermore, the collection efficiencies of the active LFG collection systems in these areas were 50%, 80%, 67%, and 93%, respectively, with an overall collection efficiency of 82% within the study boundaries. These results are also summarized in Table 7.5.

Table 7.5 Summary of the calibrated modeling results (using CF_k) and the corresponding methane capture efficiency

Area/ Phase	Cover System	Waste in Place (tonnes)	Average Methane Yield (m ³ tonne ⁻¹)	2012 Methane Generation Estimate (tonnes year ⁻¹)	Metha Captu Efficies	ine ire ncy
Area 2W	Intermediate	2,010,492	91	1,568	50	5
Area 2E	Intermediate	946,200	91	890	80	+
Area 3	Intermediate	1,366,288	87	1,455	67	66
Phase 1	Final Cover	4,470,903	77	6,886	93	
Total		8,793,883	83	10,798	82	

Based on the calibrated model using the decay rate calibration factor (CF_k) the average methane collection efficiency for areas with an intermediate cover system (i.e. Areas 2W, 2E, and 3) was $66\% \pm 15\%$. The calibrated model also showed that the methane capture efficiency in Phase 1 of the VLF was 93% in the year of the study. This value for the entire study boundary was 82% in 2012.

7.4 Methane Generation Estimates for the Entire Vancouver Landfill

The new model was run for the entire Vancouver Landfill site, including the MSW and DLC waste disposal activities between 1967 and 2011. Furthermore, the methane generation assessment was conducted using the BC MOE Tool, where the refined waste composition information was used for both models. The iModel-110[©] was run for three scenarios: Scenarios A1 and A2, respectively using the lower range and the higher range CF_G (i.e. $CF_{GL} = 0.7906$, and $CF_{G.H} = 1.0226$), and Scenario A3 based on the $CF_G = 1$ and utilization of the calibrated values of the decay rates. The BC MOE Tool was also run for two scenarios: Scenario B1, based on the entire amount of waste that was historically deposited at the site, and Scenario B2, based on the MOE recommendation, considering the waste mass that has deposited during only the past 30 years.

Based on the results achieved from the calibrated iModel-110[©], the average methane yield for the entire VLF ranged between 68 and 89 m³ CH₄ per tonne of waste, while the MOE Tool used a higher value of 102 m³ CH₄ per tonne of waste. This translates to 15% to 49% overestimation of the BC MOE Model in comparison to the methane generation prediction range achieved by the new model. Consequently, the resulting methane capture efficiency for the entire VLF in 2012, based on the new model lower range and the higher range estimates, was between 79% and 61%. Whereas, the MOE Tool concluded collection efficiencies of 53% and 55%, based on the Scenarios B1 and B2, respectively.

The modeling results for the entire VLF site based on the five scenarios are illustrated in Figure 7.5. Results are also summarized Table 7.6.

Figure 7.5 Methane generation and LFG flow rate estimates for the entire Vancouver Landfill site (for the disposal activities until end of 2011)

Scenarios	Average Methane	2012 Generation Estimates		2012 Capture	
	$\begin{array}{c} \text{Yield} \\ \text{L}_{\text{o}} \ (\text{m}^{3} \text{ tonne}^{-1}) \end{array}$	CH4 (tonnes year ⁻¹)	LFG (scfm)	Efficiency**	
Sc. A1 - iModel-110 (Lower Range CF _G)	68	23,546	4,670	79%	
Sc. A2 - iModel-110 (Higher Range CF _G)	89	30,456	6,041	61%	
Sc. A3 - iModel-110 (Calibrated k)	86	29,159	5,784	64%	
Sc. B1 - MOE Tool (Lifespan)	102	35,064	6,955	53%	
Sc. B2 - MOE Tool (30 year disposal)	102	34,107	6,765	55%	

Table 7.6 Methane generation modeling results for the VLF using the iModel-110[©] and the MOE Tool

* Calculated based on the lifespan methane generation and the tonnage of waste in place

** Based on ~3,700 scfm collected LFG flow rate during spring 2012, adjusted for 50% methane content

Furthermore, in order to compare the new model predictions to the popular models previously discussed in Chapter 1, the iModel- 110° was run for the VLF Phase 1. The modeling was conducted using the lower limit and higher limit CF_G, as well as using the calibrated decay rates. The methane generation estimates obtained from the six different methodologies previously discussed in Chapter 1, along with the new model predictions are illustrated in Figure 7.6.

Figure 7.6 Comparison of the new model predictions with other six popular LFG generation models

Chapter 8: Landfill Gas Modeling Uncertainties and Sensitivity Analysis

8.1 Introduction

Given the heterogeneity of landfills, field measurement inaccuracies, discrepancies between the "selected" values for some parameters vs. their "true" values, and the variety of design and operational conditions between landfills, uncertainty in a LFG generation assessment is unavoidable. These "modeling errors" are mainly associated with a lack of reliable historical records regarding disposal tonnages, measurement inaccuracies, as well as lack of an advanced procedure for selection of site-specific modeling parameters, methane yield (L_o, m³ CH₄ tonne⁻¹), and methane generation rate (k, year⁻¹). Many studies have compared limited site-specific field data with modeled results, concluding an overestimation of the theoretical assessments (Vogt and Augenstein, 1997; Spokas et al., 2006). Nevertheless, the magnitude of modeling errors has rarely been quantified in large scale for any of the existing models.

One of the main objectives of the present study was to use the results of many well-established research studies as fundamental grounds for the purpose of reducing modeling uncertainties through the selection of more meaningful and site-specific modeling parameters. Furthermore, several field investigations were carried out to conduct a full scale methane mass balance in four separate areas of the Vancouver landfill, based on the concept of the METRO equation, and the field data with regard to methane recovery and all other possible pathways. Therefore, the modeling error was further reduced by application of the developed calibration factors, CF_G and CF_k , to the site-specific L_o and k values, respectively. However, two main sources of uncertainty remain, which may create discrepancies between the model predictions and the field data.

These two uncertainty groups are: (i) modeling errors and (ii) calibration errors, which are discussed in this chapter.

8.2 LFG Modeling Errors Due to Input Parameters Uncertainties (Gi-Err)

The modeling errors are sourced from the input data and the modeling parameters. Reported waste disposal tonnages, composition, and as-received moisture content are the main sources of uncertainty in this category. These values are translated to the available DOC in the landfill and ultimately to methane yield (L_o) and uncertainty in these parameters will eventually result in modeling errors and uncertainties in the estimation of the total methane generation throughout the landfill's lifespan. Error in the decay rate, however, only affects the distribution of the generated methane throughout the landfill's lifespan.

In general, variables contributing to the uncertainty in methane yield or the total amount of methane generation include:

- (i) waste disposal rate,
- (ii) waste composition,
- (iii) waste moisture content,
- (iv) DOC content, and
- (v) degradability of DOC.

As discussed in Section 1.4, the suggested methane yield in different LFG generation models for VLF varied between 88 and 170 m³ methane per tonne of waste. The IPCC FOD, as the most sophisticated methodology amongst them, calculates the L_{o} value based on the DOC content of

wet components of the waste, as well as a constant decomposable fraction of 0.5 for all the waste components.

As described in Section 3.2, development of a variable value for L_{o} , suggested in iModel-110[®], minimized the modeling errors to some extent. The variable L_{o} values were developed based on the weighed data at VLF, moisture content of the waste component as received at the disposal facility, DOC_{dry} content associated with each organic material, and the actual waste composition physical analysis data, generated by Metro Vancouver since 1991 (See Table 2.4). Furthermore, instead of using the constant decomposable fraction of 0.5, suggested by IPCC (2006), various values for different types of organic material were introduced based on degradability and bioavailability of the materials in the landfill. Nevertheless, one of the major uncertainty sources for L_{o} relates to the uncertainty range given for values of DOC_{dry} for different waste components (see Table 3.1). These uncertainty ranges, suggested based on the maximum and minimum values developed by well-established and widely accepted research studies, result in an uncertainty in methane generation estimates ((G_i-Err)_{DOC}).

Organia Wastas	DOC _{dry} (%)			
Organic wastes	Lower Range	Higher Range		
Paper and Cardboard	40	50		
Textiles and Nappies	25	50		
Food waste	20	50		
Wood waste	46	54		
Yard waste	45	55		

Table 8.1 Low and high DOCdry values for different organic wastes deposited at VLF

As shown in Table 8.1, the values for most of the organics have a narrow range (mean±10%). Food waste and textiles have the highest variability with lower range and higher range within
$\pm 40\%$ of the default value. Nevertheless, to conduct a sensitivity analysis, effect of up to 50% variation in the default DOC_{dry} values on the model predictions was studied. As illustrated in Figure 8.1, variations in DOC_{dry} value of paper waste had the highest effect in model predictions for 2012. However, considering the range of this value (DOC_{dry} paper = $0.45 \pm 11\%$), the actual effect of variation of this value within the range was about 5% of the 2012 methane generation prediction. This effect was similar for textile and food waste respectively with maximum of 42% and 39% variation in the DOC value, resulting in approximately 5% variation in the 2012 methane generation.

Figure 8.1 Sensitivity analysis, $\triangle DOC$ vs. $\triangle CH_4$ (methane generation estimate for 2012)

The DOC bio-availability discount factors are also parameters related to possible uncertainty in methane generation estimates $(G_i$ -Err)_{Σd}. These parameters are considered to account for operational, climatic, and design conditions which cause the landfill environment to drift from

one that is optimal for anaerobic biodegradation. $(G_i\text{-}Err)_{DOC}$ and $(G_i\text{-}Err)_{\Sigma d}$ are further discussed in Section 8.2.1 below.

Furthermore, to increase the modeling accuracy, given the actual environmental conditions provided for the anaerobic bacterial activity within VLF, the use of different decay rates for six different types of organic materials were suggested. The field investigations, previously discussed in Section 3.3.1, showed that the temperate climatic condition of Vancouver does not affect the landfill temperature and the decomposition reaction rates. Therefore, the half-lives of organic materials suggested by well-established research studies were used to define more accurate values for decay rates. These values were the average values from the suggested ranges for the half-lives of different organic materials. Table 8.2 presents the ranges of half-lives and the associated decay rates selected for VLF, with an explanation that the lower k values correspond to the longer half-lives.

Waste Components	Half (ye	-life ar)	decay rates (k, year ⁻¹)		
r i i i i i i i i i i i i i i i i i i i	Low	High	Low	High	
Food Waste	1	3	0.23	0.69	
Yard Waste	3	7	0.10	0.23	
Paper and Textile	5	15	0.05	0.14	
Wood Waste	15	20	0.03	0.05	

Table 8.2 Low and high ranges of half-lives and decay rates for different organic wastes at VLF

With a similar approach explained above, a sensitivity analysis for the decay rates was conducted and the effect of up to 50% variation in the default k values on the model predictions was studied. As illustrated in Figure 8.2, variations in k value of food waste had the highest effect in model predictions for 2012. The analysis showed that if the k value assigned to food waste is smaller than the "true" value for this parameter, this can result in more than 10% overestimation of the model prediction. Result of this analysis was utilized as a basis to calibrate the decay rate values for the new model based on the field data collected over the four sites within the study boundary.

Figure 8.2 Sensitivity analysis, Δk vs. ΔCH_4 (methane generation estimate for 2012)

The uncertainty in methane generation estimates resulting from the uncertainty ranges $((G_i-Err)_k)$ are further discussed in Section 8.2.2.

8.2.1 LFG Modeling Errors Due to DOC Uncertainty Range (Gi-Err)DOC

A sensitivity analysis was performed on the effect of the uncertainty range for the DOC_{dry} values by re-running the model for the entire work site. The predicted methane generation results from application of the lower range DOC values (Scenario A), and the higher range values (Scenario B), were compared with the results with the initial and the calibrated methane generation estimates (G_i and G, respectively). This analysis showed that the average methane yield value in the study boundaries could vary between 62 and 93 m³ CH₄ per tonne of waste, resulting in current methane capture efficiency of 96% to 67% for Scenarios A and B, respectively. As shown in Table 8.3, the deviation in L_{\circ} value from the calibrated L_{\circ} was between -18% (18% underestimation) and 24% (overestimation).

Figure 8.3 shows that this deviation in methane generation rate, hence methane capture efficiency, varies depending on the year of assessment. For instance, the deviation in the assessed methane generation rate in 2006 was between -22% and 25%, while this value for 2012 was between 14% and 23%.

Scenarios	Methane GenerationEstimates (tonnes)Life timePeak2012		Methane Yield, L $(m^3 \text{ tonne}^{-1})$	Capture Efficiency (CE ₂₀₁₂)	Deviation from Field Measurements (Gi-Err) _{DOC}	
Initial Assessment (G _i)	496,354	21,706	11,851	83	75%	10.3%
Calibrated Model ($G = G_i \times CF_G$)	449,994	19,678	10,744	76	82%	0.0%
A. Lower Range (DOC _L)	367,820	15,349	9,193	62	96%	-18.3%
B. Higher Range (DOC _H)	556,079	24,614	13,236	93	67%	23.6%

Table 8.3 Methane generation and capture efficiency deviations in the VLF (within the study boundaries) resulted from application of lower and higher ranges of DOC values

While the developed methane generation calibration factor (CF_G) lies within the resulting uncertainty range in this analysis, the variations of the results for different assessment years may suggest that conducting the field work to develop this number in a different year would have resulted in a different CF_G value.

Figure 8.3 Graphical illustration of methane generation with lower and higher DOC ranges in comparison with the initial (Gi) and the calibrated modeling results

Other parameters affecting the final values of the available DOC and L_{\circ} include a series of discount factors discussed in Section 3.2. In order to evaluate the impact of these factors on the refined model results, a value of 1 was assigned to all discount factors except for the degradability factor. Methane generation results were compared with the initial and the calibrated results as presented in Table 8.4.

Table 8.4 Effect of DOC discount factors on methane generation estimates

Scenarios	Methane G	eneration (tonnes)	Estimates	Methane Yield, L	Capture Efficiency	Deviation from True Value
	Life time	Peak	2012	$(m^3 tonne^{-1})$	(CE ₂₀₁₂)	$(G_i\text{-}Err)_{\Sigma d}$
Initial Assessment	496,354	21,706	11,851	83	75%	10.3%
Calibrated Model	449,994	19,678	10,744	76	82%	0.0%
\sum discount factor = 1	581,869	26,041	13,546	98	65%	29.3%

In this scenario, the value of L_{\circ} for VLF between 1990 and 2008 ranged from 88 to 112 m³ methane per tonne of waste, with an average amount of 97.7 m³ tonne⁻¹. This analysis showed that the elimination of the DOC bio-availability discount factors, which were defined to increase the accuracy of the modeling results, will change the modeling results from the true value (calibrated results) as much as 29%.

Figure 8.4 Effect of DOC discount factors on methane generation estimates

8.2.2 LFG Modeling Errors Due to Decay Rates Uncertainty Range (Gi-Err)k

Similarly, a sensitivity analysis was performed on the effect of the uncertainty range for the decay values by re-running the model for the entire work site. The methane generation results from application of the lower range decay values (k_L), and the higher range values (k_H), were

compared with the results of the methane generation assessment. The uncertainties related to the decay rates only affect the distribution of the methane generation levels over the landfill's lifespan and would not change the total lifespan methane generation or the methane yield values. Therefore, in order to conduct a valid comparison, results of the initial methane generation assessment (G_i) were used as the basis, where the $CF_G = 1$ allowing similar L_{\circ} values for the three model re-runs.

As shown in Table 8.5, the maximum deviations in the current methane generation rates, in comparison with the initial methane generation assessment results, were 0.2% and -16.5% for the lower and the higher range k values, respectively.

Scenarios	Metha Estir	ane Genera nates (tonn	tion es)	Methane Yield, L	Capture Efficiency	Deviation from the Initial Assessment	
	Life time	Peak	2012	$(m^3 \text{ tonne}^{-1})$	(CE)	(G _i -Err) _k	
Initial Assessment	496,354	21,706	11,851	83	75%	n/a	
Lower Range (k _L)	495,685	18,571	11,877	83	75%	0.2%	
Higher Range (k _H)	496,537	25,790	9,890	83	90%	-16.5%	

Table 8.5 Methane generation uncertainties due to the decay rates uncertainty range

The resulting deviations due to the decay rates' uncertainty range seemed to be relatively small. However, depending on the year of assessment, this deviation can increase to more than 100% of the modeling results. As shown in Table 8.6, for the period of 1991 to 2038, when approximately 95% of the lifespan methane generation from the work site would occur, the decay rates uncertainty range resulted in 103% deviation from the estimated methane generation (i.e. (G_i-Err)_k = $\pm 103\%$). Similarly, for the period of 2001 to 2016, with approximately 50% of the total methane estimated to be generated within this timeframe, the $(G_i$ -Err)_k value was about 37%, as illustrated in Figure 8.5.

Selected Period	Methane Generation within Period	Percent of Total Generation	Deviation from Modeling Results (G _i -Err) _k		
2001 - 2016	211,521	~50%	37%		
1992 - 2032	378,168	~90%	88%		
1991 - 2038	393,338	~95%	103%		

Table 8.6 Maximum deviations in generation estimates due to decay rates for different lifespan periods

Figure 8.5 Methane generation uncertainties due to the decay rates uncertainty range

8.2.3 MSW Moisture Content and the Associated LFG Modeling Errors (Gi-Err)w

One of the steps to increase the accuracy of the methane generation estimates was the attempt to consider the moisture content of waste components as they are received at the disposal facility (as-received), instead of basing the DOC value calculations on reported waste moisture content at the sources of waste generation, such as households, schools, etc. (as-generated). Therefore, a sensitivity analysis was performed on the effect of application of the moisture content reported for MSW organic components by Tchobanoglous et al. (1993), in comparison with the moisture content that was initially used to assess the methane generation within the study boundaries. The methane generation results from the application of the as-generated moisture content was relatively close to the initial methane generation assessment, with methane yield of 83 and 82 m³ methane per tonne of waste, respectively. As shown in Table 8.7, the resulting deviation in the current methane generation estimate and the capture efficiency from the calibrated modeling results was 9%, very close to the generation correction factor (CF_G) which was developed based on the field study at VLF.

Scenarios	Methan Estima	e Generat ites (tonne	tion es)	Methane Yield (m ³ tonne ⁻¹)	2012 Capture Efficiency	Deviation from Field Measurements
	Life time	Peak	2012	L。	(CE)	(G _i -Err) _w
Initial Assessment	496,354	21,706	11,851	83	75%	10.2%
Calibrated Model	449,994	19,678	10,744	76	82%	0.0%
Moisture Content at Source	490,481	20,267	12,346	82	72%	9.0%

Table 8.7 Methane generation uncertainties due to organic material moisture content

Figure 8.6 Methane generation uncertainties due to organic material moisture content

Even though the effect of the organic material moisture content seems to be relatively insignificant, a proper waste composition analysis, including waste moisture content measurements, at VLF will provide useful information. This information will allow for an even more accurate estimation of L_{a} , methane generation rate, and methane capture efficiency.

8.3 Calibration Errors Resulted from the Field Study Deviations (CF_G-Err)

As part of the iModel-110[©], the methane generation calibration factor (CF_G) was developed based on the field investigations on methane emission, oxidation, and recovery, described in Chapters 4, 5, and 6, respectively. This information was required to integrate the right side of the simplified METRO equitation, allowing for the quantification of a necessary methane generation calibration factor (CF_G) to be applied to the initial generation estimates on the left side of the equation. However, field measurements themselves bear uncertainty associated with measurement techniques, instrumentation limitations, and sampling errors. These uncertainties created a range of error in the calibration factor (CF_G -Err), which results in a deviation in the final modeling results from the true value.

The CF_G-Err values corresponding to different field work were recognized through three different distinct values: (i) errors due to emission measurement uncertainties $((CF_G-Err)_E)$, (ii) errors due to the uncertainties in the methane oxidation quantification $((CF_G-Err)_O)$, and (iii) errors resulted by the uncertainties in the methane recovery data $((CF_G-Err)_R)$. A collective overlook of these uncertainties and errors resulted from these field investigations was previously discussed in Section 7.1. These errors are individually assessed and described in Sections 8.3.1, 8.3.2, and 8.3.3, respectively.

8.3.1 Errors Due to the Methane Emission Measurement Uncertainties (CF_G-Err)_E

As described in Chapter 4, the total methane emission (E) from the study boundaries within VLF was quantified using the surface methane concentration (SMC) data from the entire work site (approximately 83 hectares), and a correlation that was developed between these data and the methane emission rate (MER) data (see Equation 4.9). The MER values were measured through the flux chamber technique conducted for approximately 20% of the total footprint, and the total E was estimated using the regression equation with coefficient of determination of $R^2 = 0.90$. This value is a function of: (i) the deviation of the MER values from their mean (SSy) and (ii) the deviation of the MER values from their predicted values (SSE). In principle, the R^2 is a number between 0 and 1, where lower numbers mean that X values (SMC in this case) provide

no information about Y values (MER in this case) (SSy and SSE are almost identical). However, R^2 values closer to 1 suggests that X contributes lots of information about Y (SSE is very small).

The resulting number for R² for the developed regression equation between the SMC and the MER data confirmed that 90% of the variability observed in the MER values (measured in the selected areas of the work site) could be explained by the assessed SMC values in those areas. As presented in Figure 4.13, showing the suggested correlation between SMC and MER, there are bigger uncertainties at grids with lower levels of methane emission recorded. Therefore, in the worst case scenario, 10% of the MER values estimated by the developed regression equation, hence estimated total E, could be defined as the max error in methane emission measurements. Furthermore, the statistical analysis of the developed linear regression in Chapter 4 showed a standard deviation of approximately 28% with 95% confidence limit (see Table 4.6). Nevertheless, even 28% error in the quantified emission levels translates to approximately 400 tonnes of methane which is very insignificant in comparison with the total methane generation estimate of more than 10,000 tonnes year⁻¹.

It should be noted that the error discussed above does not include the possible errors and uncertainties associated with the sampling procedure and instrumentation used for the surface methane concentration scan and the flux chamber measurements. However, these instrument were calibrated based on the manufacturer's recommendations and believed to have an insignificant errors.

8.3.2 Errors Due to the Methane Oxidation Measurement Uncertainties (CF_G-Err)₀

The total amount of methane oxidation (O) at VLF was calculated based on the total methane emission through landfill cover soil, as well as the f_{ox} value, the fraction of methane oxidized. The f_{ox} value, as described in Chapter 5, was estimated for two different types of cover soil on site using the stable isotope technique. As shown in Equation 5.3, f_{ox} depends on four different parameters: (i) anaerobic methane δ^{13} C value (δ_a), (ii) residual methane δ^{13} C value (δ_R), (iii) oxidation fractionation factor (α_{ox}), and (iv) fractionation factor due to transport (α_t). In order to increase the accuracy of the f_{ox} results, grid-specific δ values were generated and used in the calculations. However, the mean values of α_{ox} and α_t , respectively from the soil incubation lab works and literature, were used to calculate the f_{ox} value for each grid, and ultimately for the entirety of Area A (average f_{ox} of 34%) and Area B (average f_{ox} of 28%), each covered with one of the two soil types.

As previously shown in Table 5.4 of Chapter 5, the average α_{ox} value for Areas A and B were 1.0265 ± 0.0010 and 1.0266 ± 0.0052 , respectively. The average α_t value of 1.0106 ± 0.007 was adopted from the literature (Chanton et al., 2011a). The average values of fractionation factors resulted in the mean oxidation rates of 33.7% and 27.9%, for Areas A and B, respectively. However, there could be eight other scenarios for each area based on the deviations in the α_{ox} and α_t , values. Therefore, a 9 × 9 matrix was created for each area to calculate the f_{ox} value for all possible combinations of low range, high range, and average value of α_{ox} and α_t . Table 8.8 and Table 8.9 show the resulting deviations in f_{ox} values for Areas A and B due to uncertainties in fractionation factor values. It should be noted that these uncertainties in f_{ox} values do not

include the possible errors and uncertainties associated with the field and lab work sampling procedures and instrumentation errors.

f	Area A	$\alpha_{ m t}$								
102	K AICA-A	low	high	average	Mean	StDev				
	low	31.8	45.1	35.3	37.4	6.9				
	high	29.4	39.1	32.3	33.6	5.0				
$\alpha_{\rm ox}$	average	30.6	41.8	33.7	35.4	5.8				
	Mean	30.6	42.0	33.8	35 5	+ 5 1				
	StDev	1.2	3.0	1.5	35.5	± 3.4				

Table 8.8 Deviation in methane oxidation rate due to fractionation factors uncertainties in Area A

Table 8.9 Deviation in methane oxidation rate due to fractionation factors uncertainties in Area A

f _{ox} Area-B		α							
		low	high	average	Mean	StDev			
	low	25.0	83.1	41.3	49.8	30.0			
	high	15.8	31.4	21.0	22.7	7.9			
$\alpha_{\rm ox}$	average	19.4	49.5	27.9	32.3	15.5			
	Mean	20.1	54.7	30.1	340.	- 21 0			
	StDev	4.7	26.2	10.3	54.9	± 41. 0			

In order to evaluate the effects of uncertainty levels of the methane oxidation rates on the methane generation modeling results, a sensitivity analysis of these deviations on the CF_G value was conducted. The METRO equation was re-run using the lower range and the higher range oxidation rates and the results were compared with the initial assessment where the average values have been used. Results showed that the applicable calibration factor would range from 1.09 to 1.18, in comparison with the initial calibration factor of 1.10. Furthermore, the analysis showed that the overall oxidation rate at VLF ranged between 26% to 63% for Scenarios 1 and 2, respectively. Summary of these results are presented in Table 8.10.

Scenarios	Fracti Met Oxic (f _{ox} ,	ion of hane lized , %)	on of ane zed %)		d Methane (O)		Methane Emissions (E)		nane ery (R)	Total Methane within Boundaries (∑ METRO)	Initial Modeling Results (G _i)	Methane Generation Correction Factors
	Area A	Area B	(tonnes)	$(\%)^*$	$(\%)^{**}$	(tonnes)	(%)	(tonnes)	(%) CE	(tonnes)	(tonnes)	CF _G
Initial Assessment (Mean Values)	33.7	27.9	268	4.1%	30%	1,481	14.7%	8,853	87.7%	10,744	11,852	1.103
Scenario 1. Lower Range Oxidation	30.1	13.9	228	2.3%	26%	972	9.7%	8,853	88.8%	10,053	11,852	1.179
Scenario 2. Higher Range Oxidation	40.9	56.0	1,093	10.4%	63%	972	9.2%	8,853	83.9%	10,919	11,852	1.085

Table 8.10 Generation calibration factor uncertainties due to the oxidation rate uncertainty range

* percent of total generated methane (G) ** percent of emitted methane through cover soil (E_s)

8.3.3 Errors Due to the Methane Recovery Data Deviations (CF_G-Err)_R

As previously reported in Chapter 6, the amount of recovered methane (R) was calculated based on the collected LFG flow rate and composition. A GEMTM 2000+ LFG analyzer was used to measure these parameters in 65 events during the course of the field study. A full list of the sampling events and recorded values is presented in Appendix F.1.

The recorded LFG flow rates showed an average result of $1,758 \pm 151$ standard cubic feet per minute (scfm), which translates to total recovered methane of $R = 8,863 \pm 761$ tonnes per year. A sensitivity analysis on the effect of this deviation in R value on the CF_G value ((CF_G-Err)_R), and eventually on the modeling results, was conducted by re-running the METRO equation for two scenarios of: (i) $R_1 = 8,092$ tonnes CH₄ year⁻¹ and (ii) $R_2 = 9,614$ tonnes CH₄ year⁻¹. The average values for the total amount of methane oxidation (O) and methane emission (E) were applied in both scenarios. The results of this analysis are presented in Table 8.11.

Scenarios	Methane Recovery	Methane Emissions	Methane Oxidation	Total Methane within Boundaries	Initial Methane Generation Estimate	Resulted Calibration Factor
	R	Е	0	∑ METRO	Gi	CF _G
	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	
Average Value	8,853	1,481	410	10,744	11,852	1.103
Scenario 1. Lower Range Methane Recovery	8,092	1,481	410	9,983	11,852	1.187
Scenario 2. Higher Range Methane Recovery	9,614	1,481	410	11,505	11,852	1.030

Table 8.11 Deviation in CF_G due to uncertainty range in methane recovery data

The calibration factors resulting from these two scenarios were 1.19 and 1.03, respectively corresponding to the lower and the higher range of the amount of captured methane. This resulting deviation in CF_G was higher than what was concluded for $(CF_G-Err)_O$, which is mainly due to the relatively larger R values in comparison with the O values. It is worth noting that the deviation reported for R values, hence the calculated $(CF_G-Err)_R$, result from wellfield operational adjustments, LFG flow surging in the manifolds, and the inaccuracies associated with the type of the gas flow meter used at VLF. The reported errors do not include uncertainties due to the LFG analyzer instrument.

8.4 Error Analyses Conclusion

The error analysis was conducted to evaluate the effects of uncertainties in various parameters on (i) methane generation modeling (G_i-Err), and (ii) modeling calibration factor (CF_G-Err).

As expected, uncertainty in k values did not have any effect on L_{\circ} or on the total methane generation. However, the effect of this value was the most substantial on the methane capture efficiency. This effect depends on the year of assessment with respect to the landfill closure year. When the assessment was conducted within approximately 10-15 years of the landfill/phase closure year, during which about 50% of the lifespan methane was generated, the effect of the k value became the second most substantial after the effects of the uncertainties in the DOC values. The analysis also showed the importance of the DOC discount factors, where the ignorance of these parameters could increase the overestimation of the initial methane generation assessment from 10% to 29%. Furthermore, a sensitivity analysis on the effect of uncertainties on methane oxidation and recovery was performed by re-running the entire analyses under the simplified METRO equation and developing a new calibration factor. The developed values for the minimum and maximum values of O and R within their deviation range showed that the effect of R deviations was more substantial, suggesting a methane generation overestimation within range of 3% to 18%.

Chapter 9: Summary and Conclusions

Landfill gas generation modeling results are in general relied upon as a basis for both design of LFG recovery and utilization systems, as well as for GHG legislative emission concerns. These data are also used by the authorities to modify and fine-tune the existing GHG emission policies, regulations, and inventory reports. However, given the number of variables affecting the degradation process within landfills, exact quantification of LFG generation and fugitive methane emissions is very difficult such that serious uncertainties and doubts are reported about the validity of the existing LFG generation models. Many researchers have reported model "errors". These errors are in most cases significant overestimation of the gas generation relative to field measurements, thus resulting in oversized LFG management systems. In larger scales, errors aggregate and create much larger overestimations of the waste management sector methane budget registered in national and international GHG emission inventory reports.

9.1 Common LFG Generation Modeling Methodologies and Shortfalls

The first order reaction is the basis of many of the existing LFG generation models. The main differences between these models lie in both the formulation of gas mass balances and the values assumed for the key influencing "modeling parameters". These modeling parameters define how much (L_o , m³ CH₄ per tonne of waste) and how fast (k, year⁻¹) the methane gas is produced in a landfill as a result of anaerobic decomposition of the organic material deposited in the landfill. Some models, such as the US EPA LandGEM model, make simplified assumptions in selection of the modeling parameters, disregarding many factors including the waste composition and the fact that composition can significantly change throughout the landfill's lifespan. Similarly, the degradability of the organic material deposited at landfills under given conditions is an important

parameter affecting the methane yield. Even though these data are very well researched and known, they are not properly reflected in the modeling parameters.

There are some models which do consider the waste composition to calculate the L_{\circ} value, however, some other factors such as the actual moisture and/or carbon content, as well as the ultimate degradability of waste components are selected based on flat assumptions. In some cases the k values also are almost arbitrarily selected. For example, the IPCC model suggests a flat 50% degradability rate for all the materials deposited in landfills. This model also assumes warm region landfills decompose more rapidly than cold region landfills with suggested k values for those affected by the low temperature. Nevertheless, there are many studies that suggest independency of landfill temperature from the ambient temperature due to the exothermic nature of anaerobic degradation process.

A quick modeling exercise presented in Chapter 1 of the present research, involving five popular LFG generation models, including the most popular models used in the North America and BC, showed up to a 340% variation in the results for a single site, arguably demonstrating the need for an enhanced model which offers more realistic and consistent results that could be used by landfill owners, engineers, and regulatory agencies.

With more LFG collection systems installed, superior quality data are being collected by many people. However, this information is not reflected back into the models. A unique opportunity was provided at the Vancouver Landfill (VLF) through the course of this research, making it possible to refine current LFG generation models aiming at reducing uncertainties. Historical

landfill operation and LFG collection data along with very well recorded data with regard to waste generation, composition, and diversion, was integrated into a refined LFG generation model. The latest technological advances in lab and field measurement techniques were also employed to enhance data quality. The iModel-110[©] was developed based on the widely accepted multiphase first order decay reaction, supported by METRO equation concept which was developed as a quality control basis for this research. Based on the METRO equation, a comprehensive methane mass balance was conducted considering all possible pathways for the generated methane from the four sites within the study boundary and to calibrate and verify the integrated model.

9.2 Vancouver Landfill, the Unique Opportunity

This research was conducted at the Vancouver Landfill (VLF), owned and operated by the City of Vancouver (COV). Working on this site provided a unique opportunity to incorporate results and findings of various research studies into practice, which in turn resulted in more accurate LFG generation estimations. This was achieved through fine tuning the new model for more accurate and educated projection of current and future methane generation, methane capture efficiency, and methane emissions within VLF.

The availability of historical data and information on design and operational phasing of VLF was amongst the key advantages of conducting research on this site. Historically, this site was divided into seven distinct operational phases filled from west to east between 1967 and 2008 (see Figure 2.2). Since 2009, the waste disposal activities were switched back to Phase 2 and Phase 3 with an anticipation that no waste filling would occur in the four eastern phases (areas) between 2009 and 2015. Therefore, these four phases (Area 2W, Area 2E, Area 3, and Phase 1) were selected as the study boundary. These areas were completed respectively in 1993, 1995, 1998, and 2008, with clear geometric boundaries, each equipped with a distinct active LFG collection system, dedicated LFG manifolds and gas quality and quantity metering stations. Therefore, each of these four areas could be treated as an individual site that has received a known tonnage of MSW and DLC (scaled at the entrance of the landfill) and matching known waste composition which was regularly studied by Metro Vancouver at transfer stations or the Burnaby WTEF.

9.3 Main Contributions to the LFG Industry

9.3.1 The New Model

The METRO[®] equation concept was developed as a basis for this research to calibrate and verify the integrated model. The iModel-110[®] was developed based on the widely accepted multiphase first order decay reaction. Variable methane generation potential (L_o) was developed based on the actual decomposable organic carbon (DOC_{dry}) historically deposited in each phase and reflecting the historical changes in waste consumption, recycling, and disposal strategies. Degradability extents as well as the moisture content of each waste component were also included in the calculation of the L_o values. Several other factors defining bioavailability of the total deposited DOC were also identified through literature and incorporated into development of the historical and future projection of L_o value for each year throughout the landfill's lifespan. Through application of the METRO[®] equation to the four individual sites and conducting a series of full scale investigations, all possible methane pathways were quantified. Accordingly, results of the new model were compared against actual field data for the modeling year and a range of correction factors for gas generation (CF_G) were obtained which were used to further refine the L_{\circ} values. This provided a narrow range for the LFG generation prediction developed by the new model, with the true value believed to sit within the lower and the higher prediction values.

The decay rate (k) for each organic component of the waste was defined based on the biodegradation half-life of that component. Major variables reported as primary factors defining the decay rate for each component are moisture content and temperature. However, this research showed that in optimum moisture content conditions (such as at the VLF) the rates of decay are independent from the ambient temperature fluctuations and/or annual mean temperature. While the decay rates would not affect the lifespan methane generation from a landfill, this finding specifically is of importance for evaluation of methane capture efficiency at some point in time depending on the year of the evaluation related to the site closure year.

Whether the course of the application is in smaller scales, such as evaluating LFG collection efficiency or designing LFG collection and treatment systems for a particular landfill, or in larger scales, such as national or international GHG emissions surveys, it is very important to use reliable data generated by an accurate model, allowing knowledgeable decisions. Even though a very exact quantification of LFG generation is impossible, the gas generation estimates generated by iModel-110[©] are much closer to the true value in comparison with estimations by other existing models. This model was developed based on nothing more than putting together the available data and knowledge and taking advantage of the unique opportunity at the VLF to test and calibrate the model.

In order to verify the results of the developed model, methane generation rates from the Phase 2 of the Vancouver Landfill, located outside of the research boundary, were estimated using the iModel-110 with the defined range for the generation calibration factor. Similar to the calibration process approach and use of the METRO equation, the actual field data were compared against the predicted values of LFG generation rates. Results indicated reasonably low deviation from actual data at the year of the study ranging from 1.5% to a maximum value of 19.3%.

9.3.2 Other Outcomes of the Study

A crucial component of model calibration process was quantification of fugitive methane emissions. As described in Chapter 4, through the technique developed in this research, total fugitive methane emission from the work site was quantified in a very efficient and cost effective manner. In this technique, surface methane concentrations were translated to methane emission rates from the landfill surface. Another equally important part of the study was quantification of the effectiveness of methanotrophic bacteria in mitigating fugitive methane emissions from landfills, using the stable isotope technique. These analyses, presented in Chapter 5, showed that while the default 10% oxidation rate would be an appropriate minimum value, this could be a significant underestimation for the actual methane oxidation rate in landfills with active gas collection systems. Therefore, using appropriate and region-specific oxidation rate values based on estimated methane emission rates may modify methane budget in GHG emission inventory reports.

9.3.3 Specific Results

Through the calibration and verification process of the new model over the four sites at the VLF, a number of conclusions were made which offer useful information for the LFG industry stakeholders. These results and findings are listed below.

- For landfills located in wet climates, the landfill temperature is governed by the selfwarming anaerobic decomposition reactions and is not influenced by ambient temperature fluctuations. Therefore, the decay rates of the organic materials deposited at these landfills are constant throughout the year and independent of ambient temperature (see Section 3.3.1).
- The rate of methane emission from a landfill surface is affected by the rate of change in barometric pressure. This relationship was quantified such that a measured emission rate at a given time can be translated to the actual values in stable weather conditions (see Equation 4.8)
- Total methane fugitive emissions from a landfill are directly related to the landfill surface methane concentration. This relationship was developed for the VLF and the total emissions were quantified (see Equation 4.10).
- Approximately 30% of the non-collected methane at the VLF is oxidized by the methanotrophic bacteria naturally existing in the landfill's cover soil. This oxidation rate is significantly higher than the default value historically used by the regulatory agencies.

9.4 Significance of the Results from Regulatory Perspective

According to the new BC MOE landfill gas regulation, the VLF is a regulated site and is required to capture and flare at least 75% of the generated methane. Many other jurisdictions require that the best LFG management practices be applied at the regulated sites and GHG emissions be monitored on a regular basis. While the author believes that quantification of fugitive emissions from landfills should be used by regulatory bodies to evaluate LFG management system performance, the use of more accurate and site specific or (at a minimum) region specific models could be another option for these agencies. The overestimation of the gas generation tools used by a regulatory agency can simply lead to spending millions of dollars for unnecessary expansion and improvement of a gas collection system to collect gas which does not exist.

Based on the results achieved in this research, the average methane generation potential for the VLF ranged between 68 and 89 m³ CH₄ per tonne of waste, while the BC MOE Tool used a higher value of 102 m³ CH₄ per tonne of waste. Consequently, the resulting methane capture efficiency for the entire VLF in 2012, based on the new model's lower range and the higher range estimates, ranged between 61% and 79%. This result based on the calibrated (site-specific) decay rates was 64%. The MOE Tool concluded collection efficiency of 55%. Furthermore, the average methane collection efficiency at the areas within the study boundaries with an intermediate cover system (i.e. Areas 2W, 2E, and 3) was 75% \pm 15%. The modeling results and the historical methane recovery data for Phase 1 showed that the methane capture efficiency in this phase, before installation of the geomembrane cap, was approximately 65% to 70%. However, this capture efficiency was increased to approximately 80% to 90% since 2009, due to the installation of the geomembrane cap and the modifications made to the LFG collection

system. These capture efficiency values are in good agreement with what (Spokas et al., 2006) and (SCS Engineers, 2009) reported for the capture efficiencies for active LFG collection systems with similar landfill cover types.

Taking into account the determined methane oxidation in the landfill cover soil, the total atmospheric methane emissions within the study boundaries in 2012 ranged from 6% to 34%. A summary of the field investigation results is presented in Table 9.1.

	Waste in	Closure	2012 Methane Budget within the Study Boundaries									
Area/	Place	year	Generation (G)		Recovere	ed (R)	O	Oxidized (O)			Emissions (E)**	
Phase	tonnes		(tonnes)	(scfm)*	(tonnes)	(%)	(tonnes)	(% of G)	(% of E _s)	(tonnes)	(%)	
Area 2W	2,010,492	1994	1,376	273	792	58%	119	8.6%	28%	466	34%	
Area 2E	946,200	1996	1,033	205	716	69%	64	6.2%	28%	252	24%	
Area 3	1,366,288	1999	1,434	284	973	68%	94	6.5%	28%	367	26%	
Phase 1	4,470,903	2009	6,901	1,369	6,373	92%	133	1.9%	34%	396	6%	
Total	8,793,883		10,744	2,131	8,853	82%	410	3.8%	30%	1,481	14%	

Table 9.1 Summary of 2012 methane budget within the work site

* LFG flow calculated based on 50% methane content

** Emission includes emissions from cover soil (E_s) and emission from pipe and leaks (E_l), $E = E_s + E_l$

9.5 Applicability and Use of the New Model

The iModel-110[©] is developed in an excel workbook with a user-friendly interface. The model consists of five major interlinked spread sheets, as well as six calculation sheets hidden in the workbook. The major interface spread sheets include Parameters, MSW Tonnage, Dry Tonnages, LFG Results, and Graphics. In the "Parameters" sheet the site-specific information such as the landfill's name, opening year, site's design, operational and climate factors, as well as waste components' parameters such as moisture content, DOC_{dry} and decay factors are to be entered

and or updated by the user. Also in this sheet, based on the precipitation levels, assigned halflives of different type of organic materials are translated to six different decay rates with much longer half-lives suggested for dryer sites. Landfill activity data, including tonnages and composition of the MSW historically deposited at the landfill or expected to be landfilled in the future, are entered in the "MSW Tonnage" sheet. The total amount of carbon annually deposited at the site is calculated based on the DOC and moisture content values in the "Dry Tonnage" sheet. The "LFG Results" sheet presents the calculated methane generation yield for each year based on the waste data, estimated annual methane generation from each waste component in tonnes per year, and the expected LFG flow rates in standard cubic feet per minute (scfm). These results, along with average waste tonnage and composition data, are graphically illustrated in the "Graphics" sheet.

Any landfill with records of tonnage and composition of deposited waste can benefit from the accuracy of this new enhanced model. The principal advantage of this model over other models is that this model incorporates waste composition and moisture data, when available, along with reasonably good k values which are selected from the literature and calibrated based on the field data. The accuracy of the new model was verified though comparison of the predictions with the filed data. The model predictions was within the narrow uncertainty range associated with the field data. Nevertheless, it was attempted to further calibrate the new model through two different methodologies; (i) calibrating the L_o by application of generation calibration factor (CF_G), and (ii) through fine-tuning the decay rates which was selected from a suggested range for each organic waste (CF_k). During the calibration phase of the study, the lower and upper range CF_G, as well as the calibrated decay rates were generated for landfills situated in wet climates

similar to that of the Vancouver landfill (i.e. annually receiving close to 1,000 mm or more precipitation). Therefore, owners and operators of such landfills will be able to utilize the new model simply by completing the data entry sheets (i.e. Parameters and MSW Tonnage). For drier sites, the CF_G multiplier and/or site specific decay rates have to be regenerated as recommended in the following section. To benefit from the new model, landfill owners and operators need to know what is being put into the landfill. Keeping good records of the waste composition, as well as moisture content of the materials as received at the landfill, is a key factor that enables users to accurately assess the LFG generation from the landfill. When site specific historical waste composition data are not available, it would be beneficial to use default values or the waste composition data from the region or cities and communities with similar socio economic properties.

9.6 Recommendations

<u>Appropriate Record Keeping at landfills is essential</u>: As noted above, keeping good records of the waste composition, as well as moisture content of the materials as received at the landfill, is a key factor that enables users to accurately assess the LFG generation from the landfill. Incorporation of these data into modeling practice, as well as utilizing very well researched fundamental facts about anaerobic decomposition of organic material in landfills, are the principal advantage of the new model over other models.

<u>Calibration Factors for other climatic conditions</u>: The integrated methane mass balance conducted at the four sites within the study boundaries showed the accuracy of the iModel- 110° with a range of generation calibration factors developed to further refine the model's predictions.

However, all of the sites, as well as the VLF Phase 2, on which the model was verified, are located in the same climatic conditions. Therefore, it is necessary that a range of CF_G and/ or calibrated site-specific decay rates be generated for other sites with different climatic and operational conditions. This has to be done through conducting a similar practice (i.e. application of METRO equation) to these sites, where good quality information from the LFG collection, as well as the historical waste composition exist. It should be mentioned that the initial generation estimate before application of any calibration factor was only 10% off from the field data. This was within the uncertainty range associated with the field data.

<u>Decay Rate Calibration (CF_k):</u> It is important to note that the calibration of the new model was conducted over a single point (year) of the Vancouver Landfill's lifespan gas generation curve. Personal observations of the author on the six years of field operational LFG data of the VLF Phase 1 confirms suitability of the calibrated decay rates for this site. However, it is recommended similar methane mass balance calculations be conducted over a long period of time (e.g. 10 years) in which case the decay rate calibration factor can be further validated and verified. Similar recommendations apply to generation of CF_k for dryer sites.

<u>Landfill Temperature in Dryer Regions</u>: While this research showed that landfill temperature in wet climate is not influenced by the ambient temperature fluctuations, the author believes that in a dry climate this may not be the case. Therefore, it is recommended that a similar landfill temperature investigation be conducted at landfills located in different climates with various precipitation levels.

References

- Abedini A. R., Atwater J. W. and Fu G. Y. (2012). "Effect of recycling activities on the heating value of solid waste: case study of the Greater Vancouver Regional District (Metro Vancouver)." Waste Management & Research **30**(8): 839-848.
- Abichou T., Chanton J., Powelson D., Fleiger J., Escoriaza S., Lei Y. and Stern J. (2006a). "Methane flux and oxidation at two types of intermediate landfill covers." <u>Waste</u> <u>Management</u> **26**(11): 1305-1312.
- Abichou T., Clark J. and Chanton J. (2011). "Reporting central tendencies of chamber measured surface emission and oxidation." <u>Waste Management</u> **31**(5): 1002-1008.
- Abichou T., Powelson D., Chanton J., Escoriaza S. and Stern J. (2006b). "Characterization of Methane Flux and Oxidation at a Solid Waste Landfill." <u>Journal of Environmental</u> <u>Engineering</u> 132(2): 220-228.
- Akin D. E., Rigsby L. L., Sethuraman A., Morrison W. H., Gamble G. R. and Eriksson K. E. (1995). "Alterations in structure, chemistry, and biodegradability of grass lignocellulose treated with the white rot fungi *Ceriporiopsis subvermispora* and *Cyathus stercoreus*." <u>Applied and Environmental Microbiology</u> 61(4): 1591-1598.
- Alter H., Ingle G. and Kaiser E. R. (1974). "Chemical analyses of the organic portions of household refuse; the effect of certain elements on incineration and resource recovery." <u>Solid Wastes management</u> 64(12): 387-391.
- ATSDR (2001). <u>Landfill Gas Primer An Overview for Environmental Health Professionals</u>, Department of Health and Human Services, Agency for Toxic Substances and Disease Registry (ATSDR), Division of Health Assessment and Consultation. November 2001. <u>http://www.atsdr.cdc.gov/hac/landfill/html/ch2.html</u>.
- Baldwin T., Stinson J. and Ham R. (1998). "Decomposition of Specific Materials Buried within Sanitary Landfills." Journal of Environmental Engineering **124**(12): 1193-1202.
- Barlaz M. A. (2004). "Critical Rewiew of Forest Products Decomposition in Municipal Solid Waste Landfills."
- Barlaz M. A., Eleazer W. E., Odle W. S. and Wang Y.-S. (1997). "Biodegradative analysis of municipal solid waste components in laboratory-scale landfills." <u>Environ. Sci. Technol.</u> 31: pp. 911-917.
- Barlaz M. A., Ham R. K., Schaefer D. M. and Isaacson R. (1990). "Methane production from municipal refuse: A review of enhancement techniques and microbial dynamics." <u>Critical Reviews in Environmental Control</u> 19(6): 557-584.

- BC MOE (2012). "British Columbia Ministry of Environment: BC Greenhouse Gas Inventory Report 2010, June 2012. <u>http://www.env.gov.bc.ca/cas/mitigation/ghg_inventory/pdf/pir-</u>2010-full-report.pdf."
- BC Stats. (2011). "Census Population of BC and Canada, 1871 to 2011." from <u>http://www.bcstats.gov.bc.ca/StatisticsBySubject/Census/2011Census/PopulationHousing</u> /BCCanada.aspx.
- Bingemer H. G. and Crutzen P. J. (1987). "The production of methane from solid wastes." Journal of Geophysical Research: Atmospheres **92**(D2): 2181-2187.
- Bird and Hale (1978). "Municipal refuse statistics for Canadian communities of over 100,000 (1976-1977)." Ottawa ((EPS File No. 4672-1)).
- Blair N., Leu A., Munoz E., Olsen J., Kwong E. and Marais D. D. (1985). "Carbon isotopic fractionation in heterotrophic microbial metabolism." <u>Applied Environmental</u> <u>Microbiology</u> 50(4): 996-1001.
- Bogner J., Ahmed M. A., Diaz C., Faaij A., Gao Q., Hashimoto S., Mareckova K., Pipatti R. and Zhang T. (2007). "Waste Management, In Climate Change 2007: Mitigation." <u>Contribution of working group III to the fourth assessment report of the</u> <u>intergovernmental panel on climate change [B. Metz, O.R. Davidson, P.R. Bosch, R.</u> <u>Dave, L.A. Meyer (eds)]</u> United Kingdom and New York, NY, USA.
- Bogner J. and Matthews E. (2003). "Global methane emissions from landfills: New methodology and annual estimates 1980 1996." <u>Global Biogeochemical Cycles</u> **17**(2): 1065.
- Bogner J. and Spokas K. (1993). "Landfill CH₄: Rates, fates, and role in global carbon cycle." <u>Chemosphere</u> **26**(1–4): 369-386.
- Bogner J. E., Chanton J. P., Blake D., Abichou T. and Powelson D. (2010). "Effectiveness of a Florida Landfill Biocover for Reduction of CH4 and NMHC Emissions." <u>Environmental</u> <u>Science & Technology</u> 44(4): 1197-1203.
- Bookter T. J. and Ham R. K. (1982). "Stabilization of Solid Waste in Landfills." Journal of Environmental Engineering Division **108**(6): 1089-1100.
- Börjesson G., Chanton J. and Svensson B. H. (2001). "Methane Oxidation in Two Swedish Landfill Covers Measured with Carbon-13 to Carbon-12 Isotope Ratios." <u>J. Environ.</u> <u>Qual.</u> 30(2): 369-376.
- Bowerman F. R., Rohatgi N. K., Chen K. Y. and Lockwood. R. A. (1977). "A Case Study of The Los Angeles County Palos Verdes Landfill Gas Development Project."
- Chanton J., Abichou T., Langford C., Hater G., Green R., Goldsmith D. and Swan N. (2011a). "Landfill Methane Oxidation Across Climate Types in the U.S." <u>Environmental Science</u> <u>& Technology</u> **45**(1): 313-319.

- Chanton J., Abichou T., Langford C., Spokas K., Hater G., Green R., Goldsmith D. and Barlaz M. A. (2011b). "Observations on the methane oxidation capacity of landfill soils." <u>Waste</u> <u>Management</u> **31**(5): 914-925.
- Chanton J. and Liptay K. (2000). "Seasonal variation in methane oxidation in a landfill cover soil as determined by an in situ stable isotope technique." <u>Global Biogeochem. Cycles</u> **14**(1): 51-60.
- Chanton J. P. (2011). Personal communication J.P. Chanton, Florida State University, USA.
- Chanton J. P., Powelson D. K., Abichou T., Fields D. and Green R. (2008). "Effect of Temperature and Oxidation Rate on Carbon-isotope Fractionation during Methane Oxidation by Landfill Cover Materials." <u>Environmental Science & Technology</u> 42(21): 7818-7823.
- Chanton J. P., Powelson D. K. and Green R. B. (2009). "Methane Oxidation in Landfill Cover Soils, is a 10% Default Value Reasonable? ." J. Environ. Qual. **38**(2): 654-663.
- Chanton J. P., Rutkowski C. M. and Mosher B. (1999). "Quantifying Methane Oxidation from Landfills Using Stable Isotope Analysis of Downwind Plumes." <u>Environmental Science</u> <u>& Technology</u> **33**(21): 3755-3760.
- Chugh S., Chynoweth D. P., Clarke W., Pullammanappallil P. and Rudolph V. (1999). "Degradation of unsorted municipal solid waste by a leach-bed process." <u>Bioresource</u> <u>Technology</u> **69**(2): 103-115.
- Coleman D. D., Risatti J. B. and Schoell M. (1981). "Fractionation of carbon and hydrogen isotopes by methane-oxidizing bacteria." <u>Geochimica et Cosmochimica Acta</u> **45**(7): 1033-1037.
- CRA (2004). "Handbook for the Preparation of Landfill Gas to Energy Projects in Latin America and the Caribbean." (019399 (6)): January 2004.
- CRA (2009). Conestoga-Rovers & Associates. Landfill Gas Generation Assessment Procedure Guidelines, BC, Ministry of Environment.
- Czepiel P. M., Mosher B., Crill P. M. and Harriss R. C. (1996). "Quantifying the effect of oxidation on landfill methane emissions." J. Geophys. Res. **101**(D11): 16721-16729.
- De Velásquez M. T. O., Cruz-Rivera R., Rojas-Valencia N., Monje-RamíRez I. and SáNchez-GóMez J. (2003). "Determination of field capacity of municipal solid waste with surcharge simulation." <u>Waste Management & Research</u> **21**(2): 137-144.
- De Visscher A., De Pourcq I. and Chanton J. (2004). "Isotope fractionation effects by diffusion and methane oxidation in landfill cover soils." J. Geophys. Res. **109**(D18): D18111.

- Debra R. Reinhart, Ayman A. Faour and Huaxin You (2005). First-Order Kinetic Gas Generation Model Parameters for Wet Landfills. EPA-600/R-05/072, U.S. Environmental Protection Agency, Office of Research and Development, Washington, DC 20460.
- Dehoust G., Gebhardt P. and Gärtner S. (2002). "Der Beitrag der thermischen Abfallbehandlung zu Klimaschutz, Luftreinhaltung und Ressourcenschonung." [The contribution of thermal waste treatment to climate change mitigation, air quality and resource management], For: Interessengemeinschaft der Betreiber Thermischer Abfallbehandlungsanlagen in Deutschland (ITAD). Öko-Institut, Darmstadt Provided as a Reference of (IPCC, 2006) in *GERMAN https://www.itad.de/information/studien/295_oekoinstitut2002_beitragthermabfallbeh.pdf*
- DeWalle F. B., Chian E. S. K. and Hammerberg E. (1978). "Gas production from solid waste in landfills." Journal of Environmental Engineering (ASCE) **104**(EE3): 415-432.
- Edward A. McBean, Frank A. Rovers and Grahame J. Farquhar (1995). <u>Solid Waste Landfill</u> <u>Engineering and Design</u>, Prentice-Hall Publishing Co., New Jersey.
- Eklund B. (1992). "Practical Guidance for Flux Chamber Measurements of Fugitive Volatile Organic Emission Rates." Journal of the Air & Waste Management Association 42(12): 1583-1591.
- Eleazer W. E., Odle W. S., Wang Y.-S. and Barlaz M. A. (1997). "Biodegradability of Municipal Solid Waste Components in Laboratory-Scale Landfills." <u>Environmental Science & Technology</u> **31**(3): 911-917.
- EMCON Associates (1980). <u>Methane generation and recovery from landfills</u>. Ann Arbor, MI, U.S.A, Ann Arbor Science Publishers, Inc.
- Environment Canada (2012a). "1990-2010 National Inventory Report: Greenhouse Gas Sources and Sinks in Canada." <u>The Canadian Government's Submission to the UN Framework</u> <u>Convention on Climate Change. 1910-7064</u>.
- Environment Canada (2012b). "1990-2010 National Inventory Report: Greenhouse Gas Sources and Sinks in Canada." <u>The Canadian Government's Submission to the UN Framework</u> <u>Convention on Climate Change <u>http://www.ec.gc.ca/ges-ghg/</u> (1910-7064).</u>
- Farquhar G. J. and Rovers F. A. (1973). "Gas production during refuse decomposition." <u>Water</u> <u>Air and Soil Pollution</u> Vol. 2: pp. 483-495.
- Fellner J., Cencic O. and Rechberger H. (2007). "A New Method to Determine the Ratio of Electricity Production from Fossil and Biogenic Sources in Waste-to-Energy Plants." <u>Environmental Science & Technology</u> 41(7): 2579-2586.
- Finet C. (1987). "Heating value of municipal solid waste." <u>Waste Management and Research</u> 5: 141-145.

- Gangdonggu Go"mi (1997). "Study on the situation of wastes discharged in Gangdong Gu." (Institute of Metropolitan) Seoul (University of Seoul).
- Gebert J. and Groengroeft A. (2006). "Passive landfill gas emission Influence of atmospheric pressure and implications for the operation of methane-oxidising biofilters." <u>Waste Management</u> **26**(3): 245-251.
- Golder Associates Ltd. (2008a). "Inventory of Greenhouse Gas Generation from Landfills in British Columbia." <u>http://www.env.gov.bc.ca/epd/codes/landfill_gas/pdf/inventory_ggg_landfills.pdf</u> (07-1411-0243): February 11, 2008.
- Golder Associates Ltd. (2008b). "Inventory of Greenhouse Gas Generation from Landfills in
British Columbia. Available at

http://www.env.gov.bc.ca/epd/codes/landfill gas/pdf/inventory ggg landfills.pdf."

http://www.env.gov.bc.ca/epd/codes/landfill gas/pdf/inventory ggg landfills.pdf(07-
1411-0243): February 11, 2008.
- Gregory R., Gillett A. and Bradley D. (2003). "Methane Emissions from Landfill Sites in the UK." Department of Environment, Food and Rural Affairs <u>http://ukair.defra.gov.uk/reports/cat07/LQM_methane_emissions.pdf</u> (LQM Report 443/1): January 2003.
- Guendehou G. H. S. (2004). "Open-Burning of Waste. Discussion Paper." <u>Fifth Authors/Experts</u> <u>Meeting : Waste, 2-4 November 2004, Ottawa, Canada, in the Preparation of the 2006</u> <u>IPCC National Greenhouse Gas Inventories Guidelines.</u>
- GVRD (2010). "Integrated solid waste and resource management "<u>A Solid Waste Management</u> <u>Plan for the Greater Vancouver Regional District and Member Municipalities</u> <u>http://www.metrovancouver.org/about/publications/Publications/ISWRMP.pdf</u> (Report 4374739): July 2010.
- Ham R., Norman M. and Fritschel P. (1993). "Chemical Characterization of Fresh Kills Landfill Refuse and Extracts." Journal of Environmental Engineering **119**(6): 1176-1195.
- Hanson J., Yeşiller N. and Oettle N. (2010). "Spatial and Temporal Temperature Distributions in Municipal Solid Waste Landfills." Journal of Environmental Engineering 136(8): 804-814.
- Hartz K. (1983). "Closure to "Temperature Effects: Methane Generation from Landfill Samples" by Kenneth E. Hartz, Robert E. Klink and Robert K. Ham (August, 1982)." Journal of <u>Environmental Engineering</u> 109(4): 982-983.
- Hartz K. E. and Ham R. K. (1983). "Moisture Level and Movement Effects On Methane Production Rates in Landfill Samples." <u>Waste Management & Research</u> 1(1): 139-145.

- Hartz K. E., Klink R. E. and Ham R. K. (1982). "Temperature Effects: Methane Generation from Landfill Samples." Journal of the Environmental Engineering Division **108**(4): pp. 629-638.
- Higler H. H. and Barlaz M. A. (2001). <u>Manual of Environmental Microbiology</u>, American Society of Microbiology, Washington D.C.
- Hilger H. H. and Barlaz M. A. (2007). Anaerobic decomposition of refuse in landfills and methane oxidation in landfill covers. <u>Manual of Environmental Microbiology</u>. Washington, ASM Press: 818-842.
- Hoeks J. (1983). "Significance of biogas production in waste tips." <u>Waste Management &</u> <u>Research</u> 1(4): 323-335.
- Howard Robinson (2010). Personal Communication.
- Huber-Humer M., Gebert J. and Hilger H. (2008). "Biotic systems to mitigate landfill methane emissions." <u>Waste Management & Research</u> **26**(1): 33-46.
- Huitric R. and Soni R. (1997). Making the most of the landfill gas projection models. <u>SWANA</u> 20th Annual Landfill Gas Symposium. Monterey, California.
- IPCC (1996). "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories." <u>The</u> reference Manual: Volume 3. http://www.ipcc-nggip.iges.or.jp/public/gl/invs6.html.
- IPCC (2006). "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 5: Waste. Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds)." <u>http://www.ipccnggip.iges.or.jp/public/2006gl/vol5.htm</u>.
- IPCC (2013). "Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change." Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
- Ivanova L. K., Richards D. J. and Smallman D. J. (2008) "Assessment of the anaerobic biodegradation potential of MSW." <u>Proceedings of the ICE - Waste and Resource</u> <u>Management</u> 161, 167-180.
- Jager D. d. and Blok K. (1993). "Koolstofbalans van het avfalsysteem in Nederland." [Carbon balance of the waste management system in the Netherlands]. For: Rijksinstituut vor Volksgezondheid en Mileuhygiene RIVM. Ecofys, Utrecht. Provided as a Reference of (IPCC, 2006) in Dutch.
- Jensen J. E. F. and Pipatti R. (2002). "CH₄ Emissions from soild waste disposal, Background Paper." <u>Good Practice Guidance and Uncertainty Management in National Greenhouse</u> <u>Gas Inventories</u> IGES, Hayama, Japan.
- Kaiser E. R. (1966). <u>Chemical analyses of refuse compounds</u>. National Incinerator Conference, New York, ASME.
- Kathiravale S., Muhd Yunus M. N., Sopian K., Samsuddin A. H. and Rahman R. A. (2003). "Modeling the heating value of Municipal Solid Waste." <u>Fuel</u> **82**(9): 1119-1125.
- King S. L., Quay P. D. and Lansdown J. M. (1989). "The 13C/12C Kinetic Isotope Effect for Sou Oxidation of Methane at Ambient Atmospheric Concentrations." J. Geophys. Res. 94(D15): 18273-18277.
- Klenbusch M. R. (1986). "USEPA Measurement of gaseous emission rates from land surfaces using an emission isolation flux chamber : user's guide." <u>http://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=930013RX.TXT</u> (EPA/600/8-86/008): February, 1986.
- Kollmann F. F. P. and Cote W. A. J. (1968). Principles of Wood Science and Technology. I. Solid Wood. Springer-Verlag, NewYork. : 592p.
- Lay J.-J., Li Y.-Y. and Noike T. (1996). "Effect Of Moisture Content And Chemical Nature On Methane Fermentation Characteristics Of Municipal Solid Wastes." <u>Doboku Gakkai</u> <u>Ronbunshu</u> VII-1(552): 101-108.
- Levelton B. H. A. (1991). " Inventory of Methane Emissions from Landfills in Canada." Environment Canada, Richmond, B.C (File 490- 974): June, 1991.
- Liptay K., Chanton J., Czepiel P. and Mosher B. (1998). "Use of stable isotopes to determine methane oxidation in landfill cover soils." J. Geophys. Res. **103**(D7): 8243-8250.
- Magrinho A. and Semiao V. (2008). "Estimation of residual MSW heating value as a function of waste component recycling." <u>Waste Management</u> **28**(12): 2675-2683.
- Mahieu K., Visscher A. D., Vanrolleghem P. A. and Cleemput O. V. (2006). "Carbon and hydrogen isotope fractionation by microbial methane oxidation: Improved determination." <u>Waste Management</u> 26(4): 389-398.
- Maly J. and Fadrus H. (1971). "Influence of Temperature on Anaerobic Digestion." <u>Journal</u> (Water Pollution Control Federation) **43**(4): 641-650.
- Mantell C. L. (1975). Soild Wastes, John Wiley & Sons Inc, 1975.
- Marrero T. R. and Mason E. A. (1972). "Gaseous Diffusion Coefficients." Journal of Physical and Chemical Reference Data **1**(1): 3-118.
- Mason D. M. and Gandhi K. N. (1983). "Formulas for calculating the calorific value of coal and coal chars: Development, tests, and uses." <u>Fuel Processing Technology</u> **7**(1): 11-22.

- Mata-Alvarez J. and Martinez-Viturtia A. (1986). "Laboratory simulation of municipal solid waste fermentation with leachate recycle." Journal of Chemical Technology & <u>Biotechnology</u> **36**(12): 547-556.
- Maurice C. and Lagerkvist A. (2003). "LFG emission measurements in cold climatic conditions: seasonal variations and methane emissions mitigation." <u>Cold Regions Science and Technology</u> **36**(1–3): 37-46.
- Meraz L., Dominguez A., Kornhauser I. and Rojas F. (2003). "A thermochemical concept-based equation to estimate waste combustion enthalpy from elemental composition." <u>Fuel</u> **82**(12): 1499-1507.
- Metcalf & Eddy (1991). <u>Wastewater engineering: Treatment, disposal, and reuse</u>, McGraw-Hill, Inc., New York.
- Mosher B. W., Czepiel P. M., Harriss R. C., Shorter J. H., Kolb C. E., McManus J. B., Allwine E. and Lamb B. K. (1999). "Methane Emissions at Nine Landfill Sites in the Northeastern United States." <u>Environmental Science & Technology</u> 33(12): 2088-2094.
- Oonk H. (1994). Landfill Gas Formation, Recovery and Emission in The Netherlands. <u>Non-CO2</u> <u>Greenhouse Gases: Why and How to Control?</u> J. Ham, L. J. H. M. Janssen and R. J. Swart, Springer Netherlands: 323-328.
- Oonk H. and Boom T. (1995). Validation of landfill gas formation models. <u>Studies in</u> <u>Environmental Science</u>. S. Zwerver, R. S. A. R. van Rompaey, M. T. J. Kok and M. M. Berk, Elsevier. **65:** 597-602.
- Oshins C. and Block D. (2000). "Feedstock composition at composting sites." <u>BioCycle</u> **41**(9): 31-34.
- Peer R. L., Epperson D. L., Campbell D. L. and Patricia von Brook (1992). "Development of Empirical Model of Methane Emissions from Landfills."
- Pommier S., Chenu D., Quintard M. and Lefebvre X. (2007). "A logistic model for the prediction of the influence of water on the solid waste methanization in landfills." <u>Biotechnology</u> and <u>Bioengineering</u> **97**(3): 473-482.
- Popp B. N., Sansone F. J., Rust T. M. and Merritt D. A. (1995). "Determination of Concentration and Carbon Isotopic Composition of Dissolved Methane in Sediments and Nearshore Waters." Analytical Chemistry 67(2): 405-411.
- Poulsen T. G., Christophersen M., Moldrup P. and Kjeldsen P. (2003). "Relating landfill gas emissions to atmospheric pressure using numerical modelling and state-space analysis." <u>Waste Management and Research</u> 21: 356 - 366.

- Powelson D. K., Chanton J. P. and Abichou T. (2006). "Methane Oxidation in Biofilters Measured by Mass-Balance and Stable Isotope Methods." <u>Environmental Science &</u> <u>Technology</u> 41(2): 620-625.
- Prosser R. W. (1985). The effect of atmospheric pressure on the availability of gas from landfill. Anaheim, CA 92807, GC Environmental, Inc.
- Rees J. F. (1980a). "The fate of carbon compounds in the landfill disposal of organic matter." Journal of Chemical Technology and Biotechnology **30**(1): 161-175.
- Rees J. F. (1980b). "Optimisation of methane production and refuse decomposition in landfills by temperature control." <u>Journal of Chemical Technology and Biotechnology</u> **30**(1): 458-465.
- Reinhart D. R. and Al-Yousfi B. A. (1996). "The Impact of Leachate Recirculation On Municipal Solid Waste Landfill Operating Characteristics." <u>Waste Management &</u> <u>Research</u> 14(4): 337-346.
- Robert K. Ham, Kenneth K. Hekimian, Stanley L. Katten, Wilbur J. Lockman, Ronald J. Lofy, Donald E. McFaddin and Edward J. Daley (1979). Recovery, Processing, and Utilization of Gas from Sanitary Landfills, EPA-600/2-79-001, 134 pp. U.S. Environmental Protection Agency, Cincinnati, OH, U.S.A. p. U. S. E. P. A. EPA-600/2-79-001, Cincinnati, OH, U.S.A.
- Rovers F. A., Mooij H. and Tremblay J. J. (1977). <u>Procedures For Landfill Gas Monitoring and</u> <u>Control - Proceedings of an International Seminar</u>. Volume 77, Issue 4 of Canada Eps Environmental Impact Control Directorate Waste Management Branch Report Canada Waste Management Branch Report EPS4-Ec. 77-04.
- Rowe R. K. (1998). <u>Geosynthetics and the minimization of contaminant migration through</u> <u>barrier systems beneath solid waste</u>. 6th International Conference on Geosynthetics, Atlanta.
- Schamucher M. M. (1983). <u>Landfill methane recovery</u>. Park Ridge, NJ, U.S.A., Noyes Data Corporation, .
- Scharff H., D.M.M.v.Rijn, Hensen A., Oonk J., A. de Visscher, Flechard C., Vroon R. and Boeckx P. (2003). "A comparison of measurement methods to determine landfill methane emissions." NV Afvalzorg, Haarlem, The Netherlands.
- Scharff H. and Jacobs J. (2006). "Applying guidance for methane emission estimation for landfills." <u>Waste Management</u> **26**(4): 417-429.
- Scheutz C., Kjeldsen P., Trolle C. and Scharff H. (2009). The Danish method for emission reporting to PRTR from waste disposal sites. <u>Sardinia 2009</u>. Cagliari, Italy, CISA -Environmental Sanitary Engineering Centre: Proceedings. CD-ROM: 617.

- SCS Engineers (2009). "Current MSW Industry Position and State-of-the-Practice on LFG Collection Efficiency, Methane Oxidation ,and Carbon Sequestration in Landfills." <u>Prepared for - Solid Waste Industry for Climate Solutions (SWICS)</u> Sacramento, California: January, 2009.
- SHA (2000a). "Sperling Hansen Associates Inc., Vancouver Landfill Gas Monitoring Plan " (SHA-PRJ99062): February, 2000.
- SHA (2000b). "Sperling Hansen Associates, City of Vancouver Landfill Design and Operations Plan." (SHA-PRJ99026): January, 2000.
- SHA (2008). "Sperling Hansen Associates Inc. (PRJ 07009) Vancouver Landfill Hydrogeological Review 2001-2007."
- Silverman M. P. and Oyama V. I. (1968). "Automatic Apparatus for Sampling and Preparing Gases for Mass Spectral Analysis in Studies of Carbon Isotope Fractionation During Methane Metabolism "<u>American Chemical Society</u> **40**(12): 1833-1837.
- Sperling T. (2009). Personal Communication, Landfill Fire at Municipal Landfills. Sperling Hansen Associates Inc.
- Spokas K., Bogner J., Chanton J. P., Morcet M., Aran C., Graff C., Golvan Y. M.-L. and Hebe I. (2006). "Methane mass balance at three landfill sites: What is the efficiency of capture by gas collection systems?" <u>Waste Management</u> 26(5): 516-525.
- Staley B. and Barlaz M. (2009). "Composition of Municipal Solid Waste in the United States and Implications for Carbon Sequestration and Methane Yield." <u>Journal of Environmental</u> <u>Engineering</u> 135(10): 901-909.
- Stern J. C., Chanton J., Abichou T., Powelson D., Yuan L., Escoriza S. and Bogner J. (2007).
 "Use of a biologically active cover to reduce landfill methane emissions and enhance methane oxidation." <u>Waste Management</u> 27(9): 1248-1258.
- Suess M. J. (1985). <u>Soild Waste Management</u>, World Health Organization, Regional Office for Europe, Copenhagen, 1985.
- Tchobanoglous G. and Kreith F. (2002). <u>Handbook of Solid Waste Management</u>. New York, McGraw-Hill.
- Tchobanoglous G., Theisen H. and Vigil S. (1993). <u>Integrated solid waste management</u>, engineering principles and management issues. New Tork, McGraw-Hill.
- Thompson S. and Tanapat S. (2005). "Modeling Waste Management Options for Greenhouse Gas Reductio." Journal of environmental informatics 6(1): pp. 16 24.

- Tian W. D., Wei X. L., Wu D. Y., Li J. and Sheng H. Z. (2001). "Analysis of ingredient and heating value of municipal solid waste." <u>Journal Of Environmental Sciences (China)</u> 13(1): 87-91.
- TRI (2010). "Metro Vancouver Solid Waste Composition Study 2009." <u>http://www.metrovancouver.org/about/publications/Publications/2009 Waste Composition (G02.217)</u>: July 16, 2010.
- Tyler S. C., Crill P. M. and Brailsford G. W. (1994). "13C/12C Fractionation of methane during oxidation in a temperate forested soil." <u>Geochimica et Cosmochimica Acta</u> 58(6): 1625-1633.
- USEPA (1999). "Municipal Solid Waste Landfills, Volume 1:." <u>Summary of the Requirements</u> for the New Source Performance Standards and Emission Guidelines for Municipal Solid <u>Waste Landfills</u> Office of Air Quality, Planning and Standards, Research Triangle Park, NC 27711 <u>http://www.epa.gov/ttn/atw/landfill/lf-vol1.pdf</u> (EPA-453R/96-004): February, 1999.
- USEPA (2004). Direct Emissions from Landfilling Municipal Solid Waste, U.S. Environmental Protection Agency, Washington, D.C.
- USEPA (2005). Landfill Gas Emissions Model (LandGEM) Version 3.02 User's Guide. <u>EPA-600/R-05/047</u>.
- USEPA (2006). Optical Remote Sensing for Emission Characterization from Non-point Sources, FINAL ORS Protocol, USEPA OTM-10.
- USEPA (2007). "Evaluation of Fugitive Emissions Using Ground-Based Optical Remote Sensing Technology." Cincinnati: February 2007.
- Vesilind P. Aarne, Worrell William A. and Reinhart Debara R. (2002). <u>Solid Waste Engineering</u>, Pacific Grove.
- Vogt W. G. and Augenstein D. (1997). "Comparison of models for predicting landfill methane recovery." Maryland (Final Report): March 1997.
- Walsh J. J. (1994). <u>Preliminary Feasibility Investigation for LFG Recovery. Identification and interpretation of Site Background Data</u>. SWANA 17th Annual Landfill Gas Symposium, Long Beach, CA.
- Wang X., Padgett J. M., De la Cruz F. B. and Barlaz M. A. (2011). "Wood Biodegradation in Laboratory-Scale Landfills." <u>Environmental Science & Technology</u> **45**(16): 6864-6871.
- Whalen S. C., Reeburgh W. S. and Sandbeck K. A. (1990). "Rapid Methane Oxidation in a Landfill Cover Soil." <u>Applied and Environmental Microbiology</u> **56**(11): 3405-3411.

- Wreford K. A., Atwater J. W. and Lavkulich L. M. (2000). "The effects of moisture inputs on landfill gas production and composition and leachate characteristics at the Vancouver Lanclfill Site at Burns Bog." <u>Waste Management & Research</u> 18(4): 386-392.
- Ximenes F. A., Gardner W. D. and Cowie A. L. (2008). "The decomposition of wood products in landfills in Sydney, Australia." <u>Waste Management</u> **28**(11): 2344-2354.
- Yeşiller N., Hanson J. and Liu W. (2005). "Heat Generation in Municipal Solid Waste Landfills." Journal of Geotechnical and Geoenvironmental Engineering **131**(11): 1330-1344.
- Young A. (1990). "Volumetric changes in landfill gas flux in response to variations in atmospheric pressure." <u>Waste Management & Research</u> **8**(5): 379-385.
- Yuen S. T. S., Wang Q. J., Styles J. R. and McMahon T. A. (2001). "Water balance comparison between a dry and a wet landfill — a full-scale experiment." <u>Journal of Hydrology</u> 251(1–2): 29-48.
- Zeschmar-Lahl B. (2002). "Die Klimarelevanz der Abfallwirtschaft im Freistaat Sachsen." [The relevance of climate change for waste management in the federal state of Saxonia]. For: Sächsisches Ministerium für Umwelt und Landwirtschaft. BZL, Oyten. Provided as a Reference of (IPCC, 2006) in GERMAN <u>https://www.itad.de/information/studien/295_oekoinstitut2002_beitragthermabfallbeh.pdf</u>

Appendices

Appendix A Landfill Gas Generation Modeling Full Results

A.1 LFG Generation Modeling for VLF-Phase 1: LandGEM Model

A.1.1 CAA Modeling Parameters

JSER INPUTS Landfill Name or Identifier: Vancouver Landfill_Phase 1	_		
1: PROVIDE LANDFILL CHARACTERISTICS	4: ENTER	WASTE ACCE	PTANCE RATES
Landfill Closure Year 2008 Have Model Calculate Closure Year? O Yes O No	Year	Input Units <i>(Mg/year)</i>	Calculated Units (short tons/year)
Waste Design Capacity megagrams 👻	1999	483,572	531,929
	2000	456,666	502,332
Restore Default Model	2001	454,381	499,819
2: DETERMINE MODEL PARAMETERS	2002	530,775	583,852
Methane Generation Rate, k (<i>year⁻¹</i>)	2003	553,951	609,346
CAA Conventional - 0.05	2004	623,019	685,321
Potential Methane Generation Capacity, $L_o (m^3/Mg)$	2005	691,847	761,032
CAA Conventional - 170	2006	514,692	566,162
NMOC Concentration (ppmv as hexane)	2007		0
CAA - 4,000	2008	162,000	178,200
Methane Content (% by volume)	2009		
CAA - 50% by volume	2010		
	2011		
3: SELECT GASES/POLLUTANTS	2012 2013		
Gas / Pollutant #1 Default pollutant parameters are currently being used by model.	2014		
Total landfill gas	2015		
Gas / Pollutant #2 New Pollutant	2016		
Methane Parameters	2017		
Gas / Pollutant #3	2018		
Carbon dioxide	2019		
Gas / Pollutant #4 Parameters	2020		
NMOC -	2021		
	2022		
	2023		
Description/Comments:	2024		
Waste Composition for the these three years was C, D, and E (as per GVRD waste composition	2025		
the reported tonnades	2026		
	2027		
	2028		
	2029		
	2030		

Closure Year (with 80-year limit) = 2008 of the emission rates below. Methane = 50 % by volume User-specified Unit: av ft^3/min										
Veer	Wast	te Accepted	Waste	e-In-Place		Total landfill gas Methane				
rear	(Mg/year)	(short tons/year)	(Mg)	(short tons)	(Mg/year)	(m³/year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)
1999	483,572	531,929	0	0	0	0	0	0	0	0
2000	456,666	502,332	483,572	531,929	1.004E+04	8.039E+06	5.401E+02	2.681E+03	4.019E+06	2.701E+02
2001	454,381	499,819	940,237	1,034,261	1.903E+04	1.524E+07	1.024E+03	5.083E+03	7.619E+06	5.119E+02
2002	530,775	583,852	1,394,618	1,534,080	2.753E+04	2.205E+07	1.481E+03	7.355E+03	1.102E+07	7.407E+02
2003	553,951	609,346	1,925,393	2,117,932	3.721E+04	2.980E+07	2.002E+03	9.939E+03	1.490E+07	1.001E+03
2004	623,019	761 022	2,479,344	2,121,218	4.690E+04	3.755E+07	2.523E+03	1.253E+04	1.8/8E+0/	1.262E+03
2005	514 692	566 162	3 704 211	3,412,000 A 173 632	6 910E±04	4.000E+07	3.718E±03	1.557E+04	2.304E+07	1.546E+03
2000	014,032	000,102	4 308 903	4 739 793	7 641E+04	6 119E+07	4 111E+03	2 041E+04	3.059E+07	2.056E+03
2008	162 000	178 200	4 308 903	4 739 793	7 269E+04	5.820E+07	3 911E+03	1 942E+04	2 910E+07	1.955E+03
2009	.02,000	0	4,470,903	4,917,993	7.250E+04	5.806E+07	3.901E+03	1.937E+04	2.903E+07	1.950E+03
2010	0	0	4,470,903	4,917,993	6.897E+04	5.523E+07	3.711E+03	1.842E+04	2.761E+07	1.855E+03
2011	0	0	4,470,903	4,917,993	6.560E+04	5.253E+07	3.530E+03	1.752E+04	2.627E+07	1.765E+03
2012	0	0	4,470,903	4,917,993	6.241E+04	4.997E+07	3.358E+03	1.667E+04	2.499E+07	1.679E+03
2013	0	0	4,470,903	4,917,993	5.936E+04	4.753E+07	3.194E+03	1.586E+04	2.377E+07	1.597E+03
2014	0	0	4,470,903	4,917,993	5.647E+04	4.522E+07	3.038E+03	1.508E+04	2.261E+07	1.519E+03
2015	0	0	4,470,903	4,917,993	5.371E+04	4.301E+07	2.890E+03	1.435E+04	2.151E+07	1.445E+03
2016	0	0	4,470,903	4,917,993	5.109E+04	4.091E+07	2.749E+03	1.365E+04	2.046E+07	1.374E+03
2017	0	0	4,470,903	4,917,993	4.860E+04	3.892E+07	2.615E+03	1.298E+04	1.946E+07	1.307E+03
2018	0	0	4,470,903	4,917,993	4.623E+04	3.702E+07	2.48/E+03	1.235E+04	1.851E+07	1.244E+03
2019	0	0	4,470,903	4,917,993	4.398E+04	3.521E+0/	2.366E+03	1.1/5E+04	1./61E+0/	1.183E+03
2020	0	0	4,470,903	4,917,993	4.183E+04	3.350E+07	2.251E+03	1.11/E+04	1.0/5E+U/	1.125E+03
2021	0	0	4,470,903	4,917,993	3.979E+04	3.186E+07	2.141E+03	1.063E+04	1.593E+07	1.070E+03
2022	0	0	4,470,903	4,917,993	3.703E+04	2.031E+07	2.030E+03	0.617E±03	1.313E+07	0.686E±02
2023	0	0	4,470,903	4,917,993	3.425E+04	2.003L+07	1.843E+03	9.017E+03	1.442L+07	9.000L+02
2025	0	0	4 470 903	4 917 993	3 258E+04	2.609E+07	1.753E+03	8 702E+03	1.304E+07	8 764F+02
2026	0	0	4,470,903	4,917,993	3.099E+04	2.482E+07	1.667E+03	8.278E+03	1.241E+07	8.337E+02
2027	0	0	4,470,903	4.917.993	2.948E+04	2.360E+07	1.586E+03	7.874E+03	1.180E+07	7.930E+02
2028	0	0	4,470,903	4,917,993	2.804E+04	2.245E+07	1.509E+03	7.490E+03	1.123E+07	7.543E+02
2029	0	0	4,470,903	4,917,993	2.667E+04	2.136E+07	1.435E+03	7.125E+03	1.068E+07	7.175E+02
2030	0	0	4,470,903	4,917,993	2.537E+04	2.032E+07	1.365E+03	6.777E+03	1.016E+07	6.825E+02
2031	0	0	4,470,903	4,917,993	2.413E+04	1.933E+07	1.299E+03	6.447E+03	9.663E+06	6.493E+02
2032	0	0	4,470,903	4,917,993	2.296E+04	1.838E+07	1.235E+03	6.132E+03	9.192E+06	6.176E+02
2033	0	0	4,470,903	4,917,993	2.184E+04	1.749E+07	1.175E+03	5.833E+03	8.743E+06	5.875E+02
2034	0	0	4,470,903	4,917,993	2.077E+04	1.663E+07	1.118E+03	5.549E+03	8.317E+06	5.588E+02
2035	0	0	4,470,903	4,917,993	1.976E+04	1.582E+07	1.063E+03	5.278E+03	7.911E+06	5.316E+02
2036	0	0	4,470,903	4,917,993	1.880E+04	1.505E+07	1.011E+03	5.021E+03	7.526E+06	5.056E+02
2037	0	0	4,470,903	4,917,993	1.788E+04	1.432E+07	9.620E+02	4.776E+03	7.159E+06	4.810E+02
2038	0	0	4,470,903	4,917,993	1.701E+04	1.362E+07	9.150E+02	4.543E+03	6.809E+06	4.575E+02
2039		0	4,470,903	4,917,993	1.010E+04	1.295E+07	0.704E+02	4.321E+03	0.477E+00	4.352E+02
2040	0	0	4,470,903	4,917,993	1.559E+04	1.232E+07	7.876E±02	4.111E+03	5.861E±06	4.140E+02 3.938E±02
2041	0	0	4 470 903	4 917 993	1 392E+04	1.112E+07	7.070E+02	3.719E+03	5.575E+06	3.746E+02
2043	0	0	4,470,903	4.917.993	1.325E+04	1.061E+07	7.126E+02	3.538E+03	5.303E+06	3.563E+02
2044	0	0	4,470.903	4.917.993	1.260E+04	1.009E+07	6.779E+02	3.365E+03	5.045E+06	3.389E+02
2045	0	0	4,470,903	4,917,993	1.198E+04	9.597E+06	6.448E+02	3.201E+03	4.798E+06	3.224E+02
2046	0	0	4,470,903	4,917,993	1.140E+04	9.129E+06	6.134E+02	3.045E+03	4.564E+06	3.067E+02
2047	0	0	4,470,903	4,917,993	1.084E+04	8.684E+06	5.835E+02	2.897E+03	4.342E+06	2.917E+02
2048	0	0	4,470,903	4,917,993	1.032E+04	8.260E+06	5.550E+02	2.755E+03	4.130E+06	2.775E+02
2049	0	0	4,470,903	4,917,993	9.812E+03	7.857E+06	5.279E+02	2.621E+03	3.929E+06	2.640E+02
2050	0	0	4,470,903	4,917,993	9.334E+03	7.474E+06	5.022E+02	2.493E+03	3.737E+06	2.511E+02
2051	0	0	4,470,903	4,917,993	8.879E+03	7.110E+06	4.777E+02	2.372E+03	3.555E+06	2.388E+02
2052	0	0	4,470,903	4,917,993	8.446E+03	6.763E+06	4.544E+02	2.256E+03	3.381E+06	2.272E+02
053	0	0	4,470,903	4,917,993	8.034E+03	6.433E+06	4.322E+02	2.146E+03	3.217E+06	2.161E+02
054	0	0	4,470,903	4,917,993	7.642E+03	6.119E+06	4.112E+02	2.041E+03	3.060E+06	2.056E+02
055	0	0	4,470,903	4,917,993	7.269E+03	5.821E+06	3.911E+02	1.942E+03	2.910E+06	1.956E+02
050	0	0	4,470,903	4,917,993	0.915E+03	5.53/E+06	3.720E+02	1.84/E+U3	2.768E+06	1.860E+02
050	0	0	4,470,903	4,917,993	0.5//E+03	5.267E+06	3.539E+02	1.757E+03	2.033E+06	1.769E+02
2020	0	0	4,470,903	4,917,993	0.201E+U3	5.010E+06	3.300E+UZ	1.0/12+03	2.303E+06	1.003E+02
2028	0	0	4,470,903	4,917,993	5.902E+03	4.700E+00	3.202E+02	1.550E+03	2.303E+00 2.267E±06	1.001E+02
2000	0	0	4,470,903	4,917,993	5 385F±03	4.332E+00	2 897F±02	1 438 - 103	2.207E+00 2.156E±06	1 4495+02
2001	0	0	4 470 003	4,517,593	5 123F±03	4 102F±06	2.001 L+02	1 368E±03	2.150L+00 2.051F±06	1 378E±02
2063	0	0	4,470,903	4 917 993	4.873F+03	3.902E+06	2.622F+02	1.302F+03	1.951E+06	1.311F+02
2064	0	0	4,470,903	4.917.993	4.635E+03	3.712E+06	2.494E+02	1.238E+03	1.856E+06	1.247E+02
2065	0	0	4,470.903	4.917.993	4.409E+03	3.531E+06	2.372E+02	1.178E+03	1.765E+06	1.186E+02
	L	0	., 0,000	.,,						

	Wast	e Accepted	Waste	e-In-Place		Total landfill gas		Methane		
Year	(Mg/year)	(short tons/year)	(Mg)	(short tons)	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m ³ /year)	(av ft^3/min)
2066	0	0	4,470,903	4,917,993	4.194E+03	3.358E+06	2.256E+02	1.120E+03	1.679E+06	1.128E+02
2067	0	0	4,470,903	4,917,993	3.989E+03	3.195E+06	2.146E+02	1.066E+03	1.597E+06	1.073E+02
2068	0	0	4,470,903	4,917,993	3.795E+03	3.039E+06	2.042E+02	1.014E+03	1.519E+06	1.021E+02
2069	0	0	4,470,903	4,917,993	3.610E+03	2.891E+06	1.942E+02	9.642E+02	1.445E+06	9.711E+01
2070	0	0	4,470,903	4,917,993	3.434E+03	2.750E+06	1.847E+02	9.172E+02	1.375E+06	9.237E+01
2071	0	0	4,470,903	4,917,993	3.266E+03	2.615E+06	1.757E+02	8.725E+02	1.308E+06	8.787E+01
2072	0	0	4,470,903	4,917,993	3.107E+03	2.488E+06	1.672E+02	8.299E+02	1.244E+06	8.358E+01
2073	0	0	4,470,903	4,917,993	2.955E+03	2.367E+06	1.590E+02	7.894E+02	1.183E+06	7.951E+01
2074	0	0	4,470,903	4,917,993	2.811E+03	2.251E+06	1.513E+02	7.509E+02	1.126E+06	7.563E+01
2075	0	0	4,470,903	4,917,993	2.674E+03	2.141E+06	1.439E+02	7.143E+02	1.071E+06	7.194E+01
2076	0	0	4,470,903	4,917,993	2.544E+03	2.037E+06	1.369E+02	6.795E+02	1.018E+06	6.843E+01
2077	0	0	4,470,903	4,917,993	2.420E+03	1.938E+06	1.302E+02	6.463E+02	9.688E+05	6.509E+01
2078	0	0	4,470,903	4,917,993	2.302E+03	1.843E+06	1.238E+02	6.148E+02	9.215E+05	6.192E+01
2079	0	0	4,470,903	4,917,993	2.189E+03	1.753E+06	1.178E+02	5.848E+02	8.766E+05	5.890E+01
2080	0	0	4,470,903	4,917,993	2.083E+03	1.668E+06	1.121E+02	5.563E+02	8.339E+05	5.603E+01
2081	0	0	4,470,903	4,917,993	1.981E+03	1.586E+06	1.066E+02	5.292E+02	7.932E+05	5.329E+01
2082	0	0	4,470,903	4,917,993	1.884E+03	1.509E+06	1.014E+02	5.034E+02	7.545E+05	5.069E+01
2083	0	0	4,470,903	4,917,993	1.793E+03	1.435E+06	9.644E+01	4.788E+02	7.177E+05	4.822E+01
2004	0	0	4,470,903	4,917,993	1.705±+03	1.303E+00	9.174±+01	4.000E+02	6.404E+05	4.307 E+01
2000	0	0	4,470,903	4,917,993	1 543E±03	1.235E±06	8 301F±01	4.332E+02 4 121F±02	6 177E±05	4.303E+01
2000	0	0	4 470 903	4 917 993	1 468F+03	1 175E+06	7 896F+01	3 920F+02	5.876E+05	3.948F+01
2088	0	0	4,470,903	4 917 993	1.396F+03	1.118F+06	7.511F+01	3.729F+02	5.589F+05	3.756F+01
2089	0	0	4,470,903	4,917,993	1.328E+03	1.063E+06	7.145E+01	3.547E+02	5.317E+05	3.572E+01
2090	0	0	4,470.903	4.917.993	1.263E+03	1.012E+06	6.796E+01	3.374E+02	5.058E+05	3.398E+01
2091	0	0	4,470,903	4,917,993	1.202E+03	9.622E+05	6.465E+01	3.210E+02	4.811E+05	3.232E+01
2092	0	0	4,470,903	4,917,993	1.143E+03	9.153E+05	6.150E+01	3.053E+02	4.576E+05	3.075E+01
2093	0	0	4,470,903	4,917,993	1.087E+03	8.706E+05	5.850E+01	2.904E+02	4.353E+05	2.925E+01
2094	0	0	4,470,903	4,917,993	1.034E+03	8.282E+05	5.564E+01	2.763E+02	4.141E+05	2.782E+01
2095	0	0	4,470,903	4,917,993	9.838E+02	7.878E+05	5.293E+01	2.628E+02	3.939E+05	2.647E+01
2096	0	0	4,470,903	4,917,993	9.358E+02	7.493E+05	5.035E+01	2.500E+02	3.747E+05	2.517E+01
2097	0	0	4,470,903	4,917,993	8.902E+02	7.128E+05	4.789E+01	2.378E+02	3.564E+05	2.395E+01
2098	0	0	4,470,903	4,917,993	8.468E+02	6.780E+05	4.556E+01	2.262E+02	3.390E+05	2.278E+01
2099	0	0	4,470,903	4,917,993	8.055E+02	6.450E+05	4.334E+01	2.151E+02	3.225E+05	2.167E+01
2100	0	0	4,470,903	4,917,993	7.662E+02	6.135E+05	4.122E+01	2.047E+02	3.068E+05	2.061E+01
2101	0	0	4,470,903	4,917,993	7.288E+02	5.830E+05	3.921E+01	1.947E+02	2.918E+05	1.961E+01
2102	0	0	4,470,903	4,917,993	6 50/E+02	5.001E+00	3.730E+01	1.052E+02	2.770E+05	1.005E+01
2103	0	0	4,470,903	4,917,993	6 273E+02	5.023E+05	3.346E+01	1.701E+02	2.040E+05	1.687E+01
2105	0	0	4 470 903	4 917 993	5.967E+02	4 778E+05	3 210E+01	1.594E+02	2.389E+05	1.605E+01
2106	0	0	4,470,903	4,917,993	5.676E+02	4.545E+05	3.054E+01	1.516E+02	2.273E+05	1.527E+01
2107	0	0	4,470,903	4,917,993	5.399E+02	4.323E+05	2.905E+01	1.442E+02	2.162E+05	1.452E+01
2108	0	0	4,470,903	4,917,993	5.136E+02	4.113E+05	2.763E+01	1.372E+02	2.056E+05	1.382E+01
2109	0	0	4,470,903	4,917,993	4.885E+02	3.912E+05	2.628E+01	1.305E+02	1.956E+05	1.314E+01
2110	0	0	4,470,903	4,917,993	4.647E+02	3.721E+05	2.500E+01	1.241E+02	1.861E+05	1.250E+01
2111	0	0	4,470,903	4,917,993	4.420E+02	3.540E+05	2.378E+01	1.181E+02	1.770E+05	1.189E+01
2112	0	0	4,470,903	4,917,993	4.205E+02	3.367E+05	2.262E+01	1.123E+02	1.684E+05	1.131E+01
2113	0	0	4,470,903	4,917,993	4.000E+02	3.203E+05	2.152E+01	1.068E+02	1.601E+05	1.076E+01
2114	0	0	4,470,903	4,917,993	3.805E+02	3.047E+05	2.047E+01	1.016E+02	1.523E+05	1.024E+01
2115	0	0	4,470,903	4,917,993	3.619E+02	2.898E+05	1.947E+01	9.667E+01	1.449E+05	9.736E+00
2110	0	0	4,470,903	4,917,993	3.443E+02	2.75/E+05	1.852E+01	9.190E+01	1.3/8E+05	9.201E+00
211/	0	0	4,470,903	4,917,993	3 115E-02	2.022E+03	1.702E+01	0.141E+UI 8 201E+01	1.311E+03	0.009E+00
∠110 2110	0	0	4,470,903	4,317,393	2 063E±02	2.494E+00 2.373E±05	1.50/0=+01	7 0155+01	1 1865±05	7 971E±00
2120	0	0	4,470,903	4 917 993	2.819F+02	2.257E+05	1.516F+01	7.529F+01	1.128F+05	7.582F+00
2121	0	0 0	4.470.903	4.917.993	2.681E+02	2.147E+05	1.443E+01	7.162E+01	1.073E+05	7.213E+00
2122	0	0	4,470.903	4,917.993	2.550E+02	2.042E+05	1.372E+01	6.812E+01	1.021E+05	6.861E+00
2123	0	0	4,470,903	4,917,993	2.426E+02	1.943E+05	1.305E+01	6.480E+01	9.713E+04	6.526E+00
2124	0	0	4,470,903	4,917,993	2.308E+02	1.848E+05	1.242E+01	6.164E+01	9.239E+04	6.208E+00
2125	0	0	4,470,903	4,917,993	2.195E+02	1.758E+05	1.181E+01	5.863E+01	8.789E+04	5.905E+00
2126	0	0	4,470,903	4,917,993	2.088E+02	1.672E+05	1.123E+01	5.577E+01	8.360E+04	5.617E+00
2127	0	0	4,470,903	4,917,993	1.986E+02	1.590E+05	1.069E+01	5.305E+01	7.952E+04	5.343E+00
2128	0	0	4,470,903	4,917,993	1.889E+02	1.513E+05	1.017E+01	5.047E+01	7.565E+04	5.083E+00
2129	0	0	4,470,903	4,917,993	1.797E+02	1.439E+05	9.669E+00	4.801E+01	7.196E+04	4.835E+00
2130	0	0	4,470,903	4,917,993	1./10E+02	1.369E+05	9.198E+00	4.566E+01	6.845E+04	4.599E+00
2131	0	0	4,470,903	4,917,993	1.626E+02	1.302E+05	8.749E+00	4.344E+01	6.511E+04	4.3/5E+00
2132	0	0	4,470,903	4,917,993	1.54/E+02	1.239E+05	8.323E+00	4.132E+01	6.193E+04	4.161E+00
2133	0	0	4,470,903	4,917,993	1.47 IE+02	1.1/0E+05	7.51/E+00	3.330E+01	5.091E+04	3.900E+00
2134	0	0	4,470,903	4,917,993	1 331F±02	1.121E+05	7.163E±00	3.739E+01	5.331F±04	3.700E+00
2136	0	0	4 470 903	4 917 993	1 266F+02	1 014F+05	6 814F+00	3 383F+01	5.071E+04	3 407F+00
2137	0	0 0	4,470,903	4 917 993	1.205E+02	9.647F+04	6.482F+00	3.218F+01	4.823F+04	3.241F+00
2138	0	0	4,470.903	4.917.993	1.146E+02	9.176E+04	6.166E+00	3.061E+01	4.588E+04	3.083E+00
2139	0	0	4,470,903	4,917,993	1.090E+02	8.729E+04	5.865E+00	2.912E+01	4.364E+04	2.932E+00

Landfill Name or Identifier: Vancouver Landfill_Phase 1

A.1.2 Inventory Modeling Parameters

USER INPUTS Landfill Na	me or Identifier:	Vancouver La	andfill_Ph	ase 1			
1: PROVIDE LANDFILL CHARAC	TERISTICS		Clear II	ALL Non-Parameter aputs/Selections	4: ENTER	WASTE ACCE	PTANCE RATE
Landfill Open Year	1999				Input Units:		1
Landfill Closure Year	2008					Input Units	Calculated Units
Have Model Calculate Closure Year?	🔿 Yes 💿 No	-			Year	(Mg/year)	(short tons/year)
Waste Design Capacity		megagrar	ms 🚽		1999	483,572	531,929
				1	 2000	456,666	502,332
		Restore De	efault Mo	del	2001	454,381	499,819
2: DETERMINE MODEL PARAME	ETERS	Parai	meters		2002	530,775	583,852
Methane Generation Rate, k (<i>year⁻¹</i>)					2003	553,951	609,346
Inventory Conventional - 0.04	-				2004	623,019	685,321
Potential Methane Generation Capaci	ity, L _o (m ³ /Mg)				2005	691,847	761,032
Inventory Conventional - 100	-				2006	514,692	566,162
NMOC Concentration (ppmv as hexane	e)				2007		0
CAA - 4,000	-				2008	162,000	178,200
Methane Content (% by volume)					2009		
CAA - 50% by volume	-				2010		
					2011		
					2012		
3: SELECT GASES/POLLUTANT	S				 2013		
Gas / Pollutant #1	Default pollutant	parameters ar	e current	ly being used by model.	2014		
Total landfill gas		T	E	dit Existing or Add	2015		
Gas / Pollutant #2				New Pollutant	2016		
Methane		-		Parameters	2017		
Gas / Pollutant #3					2018		
Carbon dioxide		-		Pollutant	2019		
Gas / Pollutant #4				Parameters	2020		
NMOC		T			2021		
					2022		
					2023		
Description/Comments:					2024		
Waste Composition for the these three ye	ears was C, D, and	d E (as per G	VRD was	te composition	2025		
the reported tonnages			VLF are	included in the	2026		
					2027		
					2028		
					2029		
					2030		

Cl	osure Year (w	vith 80-year limit) =	2008	c	of the emission ra	tes below.				
		Methane =	50	% by volume		User-specified Unit:	av ft^3/min	-		
	Wast	Acconted	Waste	Jn-Place		Total landfill gas		[Mothano	
Year	(Ma/yoar)	(short tons/war)	(Ma)	(short tons)	(Ma/yoar)	(m ³ /war)	(av ft^ 2/min)	(Ma/yoar)	(m ³ /voar)	(av fth 2/min)
1999	483.572	531.929	0	(3101110113)	0	0	0	0	0	0
2000	456,666	502,332	483,572	531,929	4.745E+03	3.800E+06	2.553E+02	1.268E+03	1.900E+06	1.277E+02
2001	454,381	499,819	940,237	1,034,261	9.040E+03	7.239E+06	4.864E+02	2.415E+03	3.620E+06	2.432E+02
2002	530,775	583,852	1,394,618	1,534,080	1.314E+04	1.053E+07	7.072E+02	3.511E+03	5.263E+06	3.536E+02
2003	553,951	609,346	1,925,393	2,117,932	1.784E+04	1.428E+07	9.597E+02	4.765E+03	7.142E+06	4.799E+02
2004	623,019	685,321	2,479,344	2,727,278	2.257E+04	1.808E+07	1.215E+03	6.030E+03	9.038E+06	6.073E+02
2005	691,847	761,032	3,102,363	3,412,600	2.780E+04	2.226E+07	1.496E+03	7.426E+03	1.113E+07	7.479E+02
2000	514,692	000, 102	3,794,211	4,173,032	3.330E+04	2.003E+07	1.002E+03	0.949E+03	1.341E+07	9.012E+02
2007	162 000	178 200	4,308,903	4,739,793	3.724E+04	2.902E+07	2.004E+03	9.947E+03	1.491E+07	9.625E±02
2009	0	0	4,470,903	4,917,993	3.597E+04	2.880E+07	1.935E+03	9.607E+03	1.440E+07	9.675E+02
2010	0	0	4,470,903	4,917,993	3.456E+04	2.767E+07	1.859E+03	9.230E+03	1.384E+07	9.296E+02
2011	0	0	4,470,903	4,917,993	3.320E+04	2.659E+07	1.786E+03	8.868E+03	1.329E+07	8.931E+02
2012	0	0	4,470,903	4,917,993	3.190E+04	2.554E+07	1.716E+03	8.520E+03	1.277E+07	8.581E+02
2013	0	0	4,470,903	4,917,993	3.065E+04	2.454E+07	1.649E+03	8.186E+03	1.227E+07	8.245E+02
2014	0	0	4,470,903	4,917,993	2.945E+04	2.358E+07	1.584E+03	7.865E+03	1.179E+07	7.921E+02
2015	0	0	4,470,903	4,917,993	2.829E+04	2.265E+07	1.522E+03	7.557E+03	1.133E+07	7.611E+02
2016	0	0	4,470,903	4,917,993	2.718E+04	2.177E+07	1.462E+03	7.201E+03	1.088E+07	7.312E+02
2017	0	0	4,470,903	4,917,993	2.012E+04	2.091E+07	1.405E+03	6 702E±03	1.040E+07	6 750E+02
2010	0	0	4 470 903	4 917 993	2.303E+04	1 930E+07	1 297E+03	6 440E+03	9.652E+06	6 485E+02
2020	0	0	4,470,903	4,917,993	2.316E+04	1.855E+07	1.246E+03	6.187E+03	9.274E+06	6.231E+02
2021	0	0	4,470,903	4,917,993	2.225E+04	1.782E+07	1.197E+03	5.945E+03	8.910E+06	5.987E+02
2022	0	0	4,470,903	4,917,993	2.138E+04	1.712E+07	1.150E+03	5.711E+03	8.561E+06	5.752E+02
2023	0	0	4,470,903	4,917,993	2.054E+04	1.645E+07	1.105E+03	5.487E+03	8.225E+06	5.527E+02
2024	0	0	4,470,903	4,917,993	1.974E+04	1.581E+07	1.062E+03	5.272E+03	7.903E+06	5.310E+02
2025	0	0	4,470,903	4,917,993	1.896E+04	1.519E+07	1.020E+03	5.066E+03	7.593E+06	5.102E+02
2026	0	0	4,470,903	4,917,993	1.822E+04	1.459E+07	9.803E+02	4.807E+03	7.295E+06	4.902E+02
2027	0	0	4,470,903	4,917,993	1.751E+04	1.402E+07	9.419E+02	4.070E+03	6 734E±06	4.709E+02
2020	0	0	4,470,903	4,917,993	1.616E+04	1.294E+07	8.695E+02	4.317E+03	6.470E+06	4.347E+02
2030	0	0	4,470,903	4,917,993	1.553E+04	1.243E+07	8.354E+02	4.147E+03	6.217E+06	4.177E+02
2031	0	0	4,470,903	4,917,993	1.492E+04	1.195E+07	8.026E+02	3.985E+03	5.973E+06	4.013E+02
2032	0	0	4,470,903	4,917,993	1.433E+04	1.148E+07	7.712E+02	3.828E+03	5.739E+06	3.856E+02
2033	0	0	4,470,903	4,917,993	1.377E+04	1.103E+07	7.409E+02	3.678E+03	5.514E+06	3.705E+02
2034	0	0	4,470,903	4,917,993	1.323E+04	1.059E+07	7.119E+02	3.534E+03	5.297E+06	3.559E+02
2035	0	0	4,470,903	4,917,993	1.2/1E+04	1.018E+07	6.839E+02	3.396E+03	5.090E+06	3.420E+02
2030	0	0	4,470,903	4,917,993	1.221E+04	9.700E+00	6.31/E+02	3.202E+03	4.090E+06	3.200E+02
2038	0	0	4,470,903	4,917,993	1.127E+04	9.028E+06	6.066E+02	3.012E+03	4.514E+06	3.033E+02
2039	0	0	4,470,903	4,917,993	1.083E+04	8.674E+06	5.828E+02	2.894E+03	4.337E+06	2.914E+02
2040	0	0	4,470,903	4,917,993	1.041E+04	8.334E+06	5.600E+02	2.780E+03	4.167E+06	2.800E+02
2041	0	0	4,470,903	4,917,993	1.000E+04	8.007E+06	5.380E+02	2.671E+03	4.004E+06	2.690E+02
2042	0	0	4,470,903	4,917,993	9.608E+03	7.693E+06	5.169E+02	2.566E+03	3.847E+06	2.585E+02
2043	0	0	4,470,903	4,917,993	9.231E+03	7.392E+06	4.966E+02	2.466E+03	3.696E+06	2.483E+02
2044	0	0	4,470,903	4,917,993	8.869E+03	7.102E+06	4.772E+02	2.369E+03	3.551E+06	2.386E+02
2045	0	0	4,470,903	4,917,993	8 187F±03	6.556E±06	4.000E+02	2.2/0E+03	3.412E+00	2.292E+02 2.202E±02
2047	0	0	4,470.903	4,917.993	7.866E+03	6.299E+06	4.232E+02	2.101E+03	3.149E+06	2.116E+02
2048	0	0	4,470,903	4,917,993	7.558E+03	6.052E+06	4.066E+02	2.019E+03	3.026E+06	2.033E+02
2049	0	0	4,470,903	4,917,993	7.261E+03	5.815E+06	3.907E+02	1.940E+03	2.907E+06	1.953E+02
2050	0	0	4,470,903	4,917,993	6.977E+03	5.587E+06	3.754E+02	1.864E+03	2.793E+06	1.877E+02
2051	0	0	4,470,903	4,917,993	6.703E+03	5.367E+06	3.606E+02	1.790E+03	2.684E+06	1.803E+02
2052	0	0	4,470,903	4,917,993	6.440E+03	5.157E+06	3.465E+02	1.720E+03	2.579E+06	1.733E+02
2053	0	0	4,470,903	4,917,993	5 045E+03	4.955E+06	3.329E+U2	1.053E+03	2.4//E+06	1.005E+U2
2054	0	0	4,470,903	4,917,993	5 712F±03	4.701E+00 4.574E±06	3.199E+02	1.500E+03	2.300E+00 2.287E±06	1.599E+02 1.537E±02
2056	0	0	4,470,903	4,917,993	5.488F+03	4.395F+06	2.953F+02	1.466F+03	2.197F+06	1.476F+02
2057	0	0	4,470,903	4,917,993	5.273E+03	4.222E+06	2.837E+02	1.408E+03	2.111E+06	1.418E+02
2058	0	0	4,470,903	4,917,993	5.066E+03	4.057E+06	2.726E+02	1.353E+03	2.028E+06	1.363E+02
2059	0	0	4,470,903	4,917,993	4.867E+03	3.898E+06	2.619E+02	1.300E+03	1.949E+06	1.309E+02
2060	0	0	4,470,903	4,917,993	4.677E+03	3.745E+06	2.516E+02	1.249E+03	1.872E+06	1.258E+02
2061	0	0	4,470,903	4,917,993	4.493E+03	3.598E+06	2.417E+02	1.200E+03	1.799E+06	1.209E+02
2062	0	0	4,470,903	4,917,993	4.317E+03	3.457E+06	2.323E+02	1.153E+03	1.728E+06	1.161E+02
2063	0	0	4,470,903	4,917,993	4.148E+03	3.321E+06	2.232E+02	1.108E+03	1.001E+00	1.110E+02
2004	0	0	4,470,903	4,917,993	3.800E+U3	3.191E+00	2.144E+UZ	1.004E+03	1.530E+00	1.072E+02
2000	U	0	-,	-,317,333	0.0202700	J.000LT00	2.0002702	1.0202700	1.000LT00	1.000LTUZ

¥	Waste	Accepted	Waste	e-In-Place		Total landfill gas		Methane		
rear	(Mg/year) ((short tons/year)	(Mg)	(short tons)	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)
2066	0	0	4,470,903	4,917,993	3.679E+03	2.946E+06	1.979E+02	9.826E+02	1.473E+06	9.896E+01
2067	0	0	4,470,903	4,917,993	3.534E+03	2.830E+06	1.902E+02	9.441E+02	1.415E+06	9.508E+01
2068	0	0	4,470,903	4,917,993	3.396E+03	2.719E+06	1.827E+02	9.071E+02	1.360E+06	9.135E+01
2069	0	0	4,470,903	4,917,993	3.263E+03	2.613E+06	1.755E+02	8.715E+02	1.306E+06	8.777E+01
2070	0	0	4,470,903	4,917,993	3.135E+03	2.510E+06	1.687E+02	8.373E+02	1.255E+06	8.433E+01
2071	0	0	4,470,903	4,917,993	3.012E+03	2.412E+06	1.620E+02	8.045E+02	1.206E+06	8.102E+01
2072	0	0	4,470,903	4,917,993	2.894E+03	2.317E+06	1.557E+02	7.730E+02	1.159E+06	7.785E+01
2073	0	0	4,470,903	4,917,993	2.780E+03	2.226E+06	1.496E+02	7.427E+02	1.113E+06	7.479E+01
2074	0	0	4,470,903	4,917,993	2.671E+03	2.139E+06	1.437E+02	7.135E+02	1.070E+06	7.186E+01
2075	0	0	4,470,903	4,917,993	2.567E+03	2.055E+06	1.381E+02	6.856E+02	1.028E+06	6.904E+01
2076	0	0	4,470,903	4,917,993	2.466E+03	1.975E+06	1.327E+02	6.587E+02	9.873E+05	6.634E+01
2077	0	0	4,470,903	4,917,993	2.369E+03	1.897E+06	1.275E+02	6.328E+02	9.486E+05	6.374E+01
2078	0	0	4,470,903	4,917,993	2.276E+03	1.823E+06	1.225E+02	6.080E+02	9.114E+05	6.124E+01
2079	0	0	4,470,903	4,917,993	2.187E+03	1.751E+06	1.177E+02	5.842E+02	8.757E+05	5.883E+01
2080	0	0	4,470,903	4,917,993	2.101E+03	1.683E+06	1.131E+02	5.613E+02	8.413E+05	5.653E+01
2081	0	0	4,470,903	4,917,993	2.019E+03	1.61/E+06	1.086E+02	5.393E+02	8.083E+05	5.431E+01
2082	0	0	4,470,903	4,917,993	1.940E+03	1.553E+06	1.044E+02	5.181E+02	7.766E+05	5.218E+01
2083	0	0	4,470,903	4,917,993	1.864E+03	1.492E+06	1.003E+02	4.978E+02	7.462E+05	5.014E+01
2004	0	0	4,470,903	4,917,993	1.791E+03	1.434E+00	9.034E+01	4.703E+02	7.109E+05	4.017E+01
2005		0	4,470,903	4,917,993	1.1200+03	1 32/E - 06	9.200E+U1	4.090E+02	0.000E+05	4.020E+U1
2000	0	0	4,470,903	4,917,993	1.003E+03	1.324E+00 1.272F±06	8.545F±01	4.413E+02 4.242E±02	6 350F±05	4.447 E+01 4 272F±01
2088	0	0	4 470 903	4 017 002	1 526E±03	1 222E±06	8 210F±01	4.076F±02	6 100F±05	4 105F±01
2000	0	0	4 470 903	4 917 993	1 466F+03	1 174F+06	7 888F+01	3.916F+02	5.870E+05	3 944F+01
2000	0	0	4 470 903	4 917 993	1 409E+03	1 128F+06	7 578F+01	3 762F+02	5.640E+05	3 789F+01
2091		0	4 470 903	4 917 993	1.353E+03	1.084F+06	7.281F+01	3.615F+02	5.418F+05	3.641F+01
2092	, j	0	4,470.903	4.917.993	1.300E+03	1.041E+06	6.996E+01	3.473E+02	5.206E+05	3.498E+01
2093	0	0	4,470.903	4.917.993	1.249E+03	1.000E+06	6.721E+01	3.337E+02	5.002E+05	3.361E+01
2094	0	0	4.470.903	4.917.993	1.200E+03	9.611E+05	6.458E+01	3.206E+02	4.806E+05	3.229E+01
2095	0	0	4,470,903	4,917,993	1.153E+03	9.234E+05	6.205E+01	3.080E+02	4.617E+05	3.102E+01
2096	0	0	4,470,903	4,917,993	1.108E+03	8.872E+05	5.961E+01	2.960E+02	4.436E+05	2.981E+01
2097	0	0	4,470,903	4,917,993	1.065E+03	8.525E+05	5.728E+01	2.844E+02	4.262E+05	2.864E+01
2098	0	0	4,470,903	4,917,993	1.023E+03	8.190E+05	5.503E+01	2.732E+02	4.095E+05	2.752E+01
2099	0	0	4,470,903	4,917,993	9.827E+02	7.869E+05	5.287E+01	2.625E+02	3.935E+05	2.644E+01
2100	0	0	4,470,903	4,917,993	9.442E+02	7.561E+05	5.080E+01	2.522E+02	3.780E+05	2.540E+01
2101	0	0	4,470,903	4,917,993	9.072E+02	7.264E+05	4.881E+01	2.423E+02	3.632E+05	2.440E+01
2102	0	0	4,470,903	4,917,993	8.716E+02	6.979E+05	4.689E+01	2.328E+02	3.490E+05	2.345E+01
2103	0	0	4,470,903	4,917,993	8.374E+02	6.706E+05	4.505E+01	2.237E+02	3.353E+05	2.253E+01
2104	0	0	4,470,903	4,917,993	8.046E+02	6.443E+05	4.329E+01	2.149E+02	3.221E+05	2.164E+01
2105	0	0	4,470,903	4,917,993	7.730E+02	6.190E+05	4.159E+01	2.065E+02	3.095E+05	2.080E+01
2106	0	0	4,470,903	4,917,993	7.427E+02	5.94/E+05	3.996E+01	1.984E+02	2.974E+05	1.998E+01
2107	0	0	4,470,903	4,917,993	6 856E±02	5.714E+05	3.639E+01	1.900E+02	2.057E+05	1.920E+01
2100	0	0	4,470,903	4,917,993	6 587E+02	5.430L+05	3.003L+01	1.051E+02	2.745L+05	1.044L+01
2100	0	0	4 470 903	4 917 993	6.329E+02	5.068E+05	3 405E+01	1.691E+02	2.534E+05	1 703E+01
2111	0	0	4,470,903	4,917,993	6.081E+02	4.869E+05	3.272E+01	1.624E+02	2.435E+05	1.636E+01
2112	0	0	4,470,903	4,917,993	5.842E+02	4.678E+05	3.143E+01	1.561E+02	2.339E+05	1.572E+01
2113	0	0	4.470.903	4.917.993	5.613E+02	4.495E+05	3.020E+01	1.499E+02	2.247E+05	1.510E+01
2114	0	0	4,470,903	4,917,993	5.393E+02	4.319E+05	2.902E+01	1.441E+02	2.159E+05	1.451E+01
2115	0	0	4,470,903	4,917,993	5.182E+02	4.149E+05	2.788E+01	1.384E+02	2.075E+05	1.394E+01
2116	0	0	4,470,903	4,917,993	4.979E+02	3.987E+05	2.679E+01	1.330E+02	1.993E+05	1.339E+01
2117	0	0	4,470,903	4,917,993	4.783E+02	3.830E+05	2.574E+01	1.278E+02	1.915E+05	1.287E+01
2118	0	0	4,470,903	4,917,993	4.596E+02	3.680E+05	2.473E+01	1.228E+02	1.840E+05	1.236E+01
2119	0	0	4,470,903	4,917,993	4.416E+02	3.536E+05	2.376E+01	1.179E+02	1.768E+05	1.188E+01
2120	0	0	4,470,903	4,917,993	4.242E+02	3.397E+05	2.283E+01	1.133E+02	1.699E+05	1.141E+01
2121	0	0	4,470,903	4,917,993	4.076E+02	3.264E+05	2.193E+01	1.089E+02	1.632E+05	1.097E+01
2122	0	0	4,470,903	4,917,993	3.916E+02	3.136E+05	2.107E+01	1.046E+02	1.568E+05	1.054E+01
2123	0	0	4,470,903	4,917,993	3.763E+02	3.013E+05	2.024E+01	1.005E+02	1.507E+05	1.012E+01
2124	0	0	4,470,903	4,917,993	3.615E+02	2.895E+05	1.945E+01	9.657E+01	1.447E+05	9.725E+00
2125	0	0	4,470,903	4,917,993	3.4/3E+02	2.781E+05	1.869E+01	9.2/8E+01	1.391E+05	9.344E+00
2126	0	0	4,470,903	4,917,993	3.337E+02	2.6/2E+05	1.796E+01	8.914E+01	1.336E+05	8.9/8E+00
2127	0	0	4,470,903	4,917,993	3.206E+02	2.568E+05	1.725E+01	8.565E+01	1.284E+05	8.626E+00
2128	0	0	4,470,903	4,917,993	3.081E+02	2.40/E+U5	1.05/E+01	8.229E+01	1.233E+05	8.287E+00
2129	0	0	4,470,903	4,917,993 A Q17 Q02	2.300E+02	2.370E+03	1.530E+01	7 506E+01	1 130E±05	7.502E+00
2130	0	0	4 470 903	4,517,993 1 017 002	2.044L+02 2.732F±02	2.211L+03	1 470F±01	7 2985±01	1 09/F±05	7 350E±00
2132		0	4 470 903	4,517,593	2.7.32L+02	2.100L+05	1 412	7 0125-01	1.054L+05	7.062E±00
2132	0	0	4,470,903	4 917 993	2.522F+02	2.020E+05	1.357F+01	6.737F+01	1.010F+05	6.785F+00
2134	0	0	4,470,903	4.917.993	2.423E+02	1.941E+05	1.304E+01	6.473E+01	9.703E+04	6.519E+00
2135	0	0	4,470.903	4.917.993	2.328E+02	1.864E+05	1.253E+01	6.219E+01	9.322E+04	6.263E+00
2136	0	0	4,470,903	4,917,993	2.237E+02	1.791E+05	1.204E+01	5.975E+01	8.957E+04	6.018E+00
2137	0	0	4,470,903	4,917,993	2.149E+02	1.721E+05	1.156E+01	5.741E+01	8.605E+04	5.782E+00
2138	0	0	4,470,903	4,917,993	2.065E+02	1.654E+05	1.111E+01	5.516E+01	8.268E+04	5.555E+00
2139	0	0	4,470,903	4,917,993	1.984E+02	1.589E+05	1.067E+01	5.300E+01	7.944E+04	5.337E+00

Landfill Name or Identifier: Vancouver Landfill_Phase 1

A.2 LFG Generation Modeling for VLF-Phase 1: IPCC Model

Parameters	Country	Canada_Vancouver Landfill Phase 1	
	Region	America: North	•

Please enter parameters in the yellow cells. If no national data are available, copy the IPCC default value. Help on parameter selection can be found in the 2006 IPCC guidelines

	IPCC defa	ult value	Countr	ntry-specific parameters		
			Value	Reference and remarks		
Starting year		1950	1999			
DOC (Degradable organic carbon)	Waste by co	mposition 💌				
(weight fraction, wet basis)	Range	Default				
Food waste	0.08-0.20	0.15	0.15			
Garden	0.18-0.22	0.2	0.2			
Paper	0.36-0.45	0.4	0.4			
Wood and straw	0.39-0.46	0.43	0.43			
Textiles	0.20-0.40	0.24	0.24			
Disposable nappies	0.18-0.32	0.24	0.24			
Sewage sludge	0.04-0.05	0.05	0.05			
Industrial waste	0-0.54	0.15	0.15			
DOCf (fraction of DOC dissimilated)		0.5	0.5			
Methane generation rate constant (k)	Wet tempera	ite 💌				
(years ⁻¹)	Range	Default				
Food waste	0.1–0.2	0.185	0.185			
Garden	0.06-0.1	0.1	0.1			
Paper	0.05-0.07	0.06	0.06			
Wood and straw	0.02-0.04	0.03	0.03			
Textiles	0.05-0.07	0.06	0.06			
Disposable nappies	0.06-0.1	0.1	0.1			
Sewage sludge	0.1–0.2	0.185	0.185			
Industrial waste	0.08–0.1	0.09	0.09			
Delay time (months)		6	6			
Fraction of methane (F) in developed gas		0.5	0.5			
Conversion factor, C to CH ₄		1.33	1.33			
Oxidation factor (OX)		0	0			
Parameters for carbon storage						
% paper in industrial waste		0%	0%			
% wood in industrial waste		0%	0%			

MSW activity data

Enter population, waste per capita and MSW waste composition into the yellow cells.

Help and default regional values are given in the 2006 IPCC Guidelines.

Industrial waste activity data must be entered separately starting in Column Q.

IPCC Regional defaults

		N/A		58%	34%	0%	23%	6%	4%	0%	33%	100%
			2	_	Comp	osition o	fwasteg	oing to s	olid wast	e disposa	l sites	
Year	Population	Waste per capita	Total MSW	% to SWDS	Food	Garden	Paper	Wood	Textile	Nappies	Plastics, other inert	Total
	millions	kg/cap/yr	Gg	%	%	%	%	%	%	%	%	(=100%)
1999	0	N/A	483.6	100%	15%	4%	25%	22%	6%	2%	26%	100%
2000	0	N/A	456.7	100%	13%	4%	22%	28%	5%	2%	26%	100%
2001	0	N/A	454.4	100%	14%	9%	17%	21%	7%	2%	31%	100%
2002	0	N/A	530.8	100%	12%	7%	15%	28%	6%	2%	31%	100%
2003	0	N/A	554.0	100%	13%	8%	16%	23%	7%	2%	31%	100%
2004	0	N/A	623.0	100%	17%	3%	18%	22%	6%	1%	32%	100%
2005	0	N/A	691.8	100%	17%	3%	18%	21%	7%	1%	32%	100%
2006	0	N/A	514.7	100%	17%	3%	19%	20%	7%	1%	32%	100%
2007	0	N/A	0.0	100%	20%	3%	22%	20%	3%	2%	30%	100%
2008	0	N/A	162.0	100%	19%	3%	22%	22%	3%	2%	30%	100%
2009	0	N/A	0	0%	34%	0%	23%	6%	4%	0%	33%	100%

Results

Country

Canada_Vancouver Landfill Phase 1

Enter starting year, industrial waste disposal data and methane recovery into the yellow cells. MSW activity data is entered on MSW sheet

Year	Food	Garden	Paper	Wood	Textile	Nappies	Sludge	MSW	Industrial	Total	Methane recovery	Methane emission	Methane emission
							g-					$M = (K-L)^{*}(1-$	$M = (K-L)^{*}(1)$
	А	В	С	D	Е	F	G	н	J	к	L	OX)	OX)
	Gg	Gg	Gg	Gg	Gg	Gg	Gg	Gg	Gg	Gg	Gg	Gg	Tonne
1999	0	0	0	0	0	0	0		0	0	0	0	0
2000	0	0	0	0	0	0	0		0	1	0	1	1,175
2001	1	0	1	1	0	0	0		0	3	0	3	3,191
2002	1	0	2	1	0	0	0		0	5	0	5	4,923
2003	2	1	2	2	0	0	0		0	7	0	7	6,744
2004	2	1	3	2	1	0	0		0	9	0	9	8,592
2005	2	1	4	3	1	0	0		0	11	0	11	10,626
2006	3	1	4	3	1	0	0		0	13	0	13	12,807
2007	3	1	5	4	1	0	0		0	14	0	14	14,046
2008	3	1	5	4	1	0	0		0	13	0	13	12,922
2009	3	1	5	4	1	0	0		0	13	0	13	12,685
2010	2	1	4	3	1	0	0		0	12	0	12	11,729
2011	2	1	4	3	1	0	0		0	11	0	11	10,876
2012	1	1	4	3	1	0	0		0	10	0	10	10,112
2013	1	1	4	3	1	0	0		0	9	0	9	9,426
2014	1	0	3	3	1	0	0		0	9	0	9	8,807
2015	1	0	3	3	1	0	0		0	8	0	8	8,247
2016	1	0	3	3	1	0	0		0	8	0	8	7,737

			1		Methane	generated	1	1		1			
Voar	Food	Gardon	Paper	Wood	Toxtilo	Nanniae	Sludge	MSW	Industrial	Total	Methane	Methane	Methane
Tear	1000	Garden	гарет	woou	Texule	Mapples	Sludge	MOW	indusulai	Total	recovery	M = (K-L)*(1-	M = (K-L)*(1
	А	В	С	D	E	F	G	н	J	к	L	OX)	OX)
	Gg	Gg	Gg	Gg	Gg	Gg	Gg	Gg	Gg	Gg	Gg	Gg	Tonne
2017	1	0	3	3	1	0	0		0	7	0	7	7,273
2018	0	0	3	3	1	0	0		0	1	0		6,848
2019	0	0	2	3	0	0	0		0	6			6,437
2020	0	0	2	2	0	0	0		0	6	0	6	5 766
2021	0	0	2	2	0	0	0		0	5	0	5	5,459
2023	0	0	2	2	0	0	0		0	5	0	5	5,174
2024	0	0	2	2	0	0	0		0	5	0	5	4,909
2025	0	0	2	2	0	0	0		0	5	0	5	4,662
2026	0	0	2	2	0	0	0		0	4	- 0	4	4,431
2027	0	0	2	2	0	0	0		0	4	0	4	4,215
2028	0	0	1	2	0	0	0		0	4	0	4	4,012
2029	0	0	1	2	0	0	0		0	4	0	2	3,022
2030	0	0	1	2	0	0	0		0	3	0		3 475
2032	0	0	1	2	0	0	0		0	3	0	3	3,316
2033	0	0	1	2	0	0	0		0	3	0	3	3,166
2034	0	0	1	2	0	0	0		0	3	0	3	3,025
2035	0	0	1	2	0	0	0		0	3	0	3	2,891
2036	0	0	1	2	0	0	0		0	3	0	3	2,764
2037	0	0	1	2	0	0	0		0	3	0		2,644
2038	0	0	1	1	0	0	0		0	3	0	3	2,530
2039	0	0	1	1	0	0	0		0	2	0		2,422
2040	0	0	1	1	0	0	0		0	2	0	2	2,320
2041	0	0	1	1	0	0	0		0	2	0	2	2,122
2043	0	0	1	1	0	0	0		0	2	0	2	2,041
2044	0	0	1	1	0	0	0		0	2	0	2	1,958
2045	0	0	1	1	0	0	0		0	2	2 0	2	1,878
2046	0	0	0	1	0	0	0		0	2	0	2	1,802
2047	0	0	0	1	0	0	0		0	2	0	2	1,729
2048	0	0	0	1	0	0	0		0	2	0	2	1,660
2049	0	0	0	1	0	0	0		0	2	0	2	1,594
2050	0	0	0	1	0	0	0		0	1	. 0		1,33
2052	0	0	0	1	0	0	0		0	1	0	1	1.414
2053	0	0	0	1	0	0	0		0	1	0	1	1,359
2054	0	0	0	1	0	0	0		0	1	0	1	1,307
2055	0	0	0	1	0	0	0		0	1	0	1	1,257
2056	0	0	0	1	0	0	0		0	1	0	1	1,209
2057	0	0	0	1	0	0	0		0	1	0		1,163
2058	0	0	0	1	0	0	0		0	1	0		1,119
2059	0	0	0	1	0	0	0		0	1	0	1	1,077
2000	0	0	0	1	0	0	0		0	1	0		999
2062	0	0	0	1	0	0	0		0	1	0	1	962
2063	0	0	0	1	0	0	0		0	1	0	1	926
2064	0	0	0	1	0	0	0		0	1	0	1	893
2065	0	0	0	1	0	0	0		0	1	0	1	860
2066	0	0	0	1	0	0	0		0	1	0	1	829
2067	0	0	0	1	0	0	0		0	1	0	1	799
2068	0	0	0	1	0	0	0		0	1	0		7/0
2009	0	0	0	1	0	0	0		0	1	0	1	743
2071	0	0	0	1	0	0	0		0	1	0	1	691
2072	0	0	0	1	0	0	0		0	1	0	1	667
2073	0	0	0	1	0	0	0		0	1	0	1	643
2074	0	0	0	1	0	0	0		0	1	0	1	621
2075	0	0	0	0	0	0	0		0	1	0	1	599
2076	0	0	0	0	0	0	0		0	1	0	1	578
2077	0	0	0	0	0	0	0		0	1	0	1	558
2078	0	0	0	0	0	0	0		0	1	0	1	521
2080	0	0	0	0	0	0	0		0	1	0	1	503
	•	, v							•	•			000

A.3 LFG Generation Modeling for VLF-Phase 1: BC MOE Tool

				Moderately					Moderately	
			Relatively Inert	Decomposable	Decomposable		Year	Relatively Inert	Decomposable	Decomposable
Gas Production p	ootential, Lo =		20	120	160	m ³ CH4/tonne	1999	25.6%	55.1%	19.2%
lag time before st	art of gas product	ion, lag =	1	vears			2000	26.1%	56.9%	17.0%
Historical Data L	Jsed (years)		13				2001	30.9%	46.6%	22.5%
1st Year of Histor	rical Data Used		1999				2002	30.8%	49.7%	19.5%
4 Years after Rep	orting Year		2140				2003	30.9%	47.7%	21.5%
methane (by volu	ıme)		50%				2004	32.0%	48.1%	19.9%
carbon dioxide (h	ov volume)		50%				2005	32.0%	47.8%	20.2%
methane (density	r) - 1atm, 25C		0.6770	kg/m ³	(15C,SP)		2006	32.1%	47.3%	20.6%
carbon dioxide (c	density)		1.7988	kg/m ³	(25C,SP)		2007			
							2008	29.6%	48.3%	22.0%
					Waste Tonnage		Meth	ane Generation R	ate, k	Annual
		Annual	Cumulative		Moderately			Moderately		Methane
Year	Year	Tonnage	Waste-in-place	Relatively Inert	Decomposable	Decomposable	Relatively Inert	Decomposable	Decomposable	Production
	Number	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(year ⁻¹)	(year ⁻¹)	(year ⁻¹)	(tonnes/yr)
1999	1	483,572	483,572	123,924	266,562	93,085	0.02	0.06	0.11	0.00
2000	2	456,666	940,237	119,400	259,795	77,471	0.02	0.06	0.11	2354.25
2001	3	454,381	1,394,618	140,382	211,643	102,355	0.02	0.06	0.11	4313.71
2002	4	530,775	1,925,393	163,351	263,795	103,629	0.02	0.06	0.11	6184.39
2003	5	553,951	2,479,344	170,913	264,081	118,957	0.02	0.06	0.11	8171.02
2004	6	623.019	3.102.363	199.293	299.854	123.872	0.02	0.06	0.11	10180.24
2005	7	691.847	3,794,211	221.524	330.625	139,698	0.02	0.06	0.11	12262.85
2006	8	514.692	4,308,903	165.014	243.620	106.059	0.02	0.06	0.11	14515.32
2007	9	0	4,308,903	0	0	• 0	0.02	0.06	0.11	15782.87
2008	10	162,000	4 470 903	47.994	78.316	35 690	0.02	0.06	0.11	14550.67
2009	10	0	4 470 903	0	P 0	• 0	0.02	0.06	0.11	14213 34
2010	12	0	4 470 903	7 0	F 0	• 0	0.02	0.06	0.11	13118 27
2010	13	0	4 470 903	0	F 0	• 0	0.02	0.06	0.11	12115.88
2012	10	0	4 470 903	0	0	0	0.02	0.06	0.11	11197 76
2012	15	0	4 470 903	7 0	F 0	• 0	0.02	0.06	0.11	10356.26
2013	16	0	4 470 903	• 0	F 0	• 0	0.02	0.06	0.11	9584 50
2015	17	0	4,470,903	• 0	• 0	7 0	0.02	0.06	0.11	8876.24
2015	18	0	4,470,903	• 0	P 0	• 0	0.02	0.06	0.11	8225.83
2017	10	0	4,470,903	P 0	F 0	7 0	0.02	0.06	0.11	7628.14
2018	20	0	4,470,903	• 0	F 0	7 0	0.02	0.06	0.11	7028.14
2010	20	0	4,470,903	0	0	0	0.02	0.06	0.11	6572.85
2019	21	0	4,470,903	0	0	0	0.02	0.06	0.11	6107.23
2020	22	0	4,470,903	0	0	0	0.02	0.06	0.11	5678 23
2021	23	0	4,470,903	0	0	0	0.02	0.06	0.11	5282.70
2022	24	0	4,470,903	0	0	0	0.02	0.06	0.11	4017 81
2023	25	0	4,470,903	0	0	0	0.02	0.06	0.11	4517.01
2024	20	0	4,470,903	0	0	0	0.02	0.06	0.11	4360.93
2025	27	0	4,470,903	0	0	0	0.02	0.00	0.11	4209.77
2028	20	0	4,470,903	0	0	0	0.02	0.06	0.11	2716.07
2027	29	0	4,470,903	0	0	0	0.02	0.06	0.11	2460.82
2028	30	0	4,470,903	0	0	0	0.02	0.06	0.11	3469.83
2029	31	0	4,470,903	0	0	0	0.02	0.06	0.11	3241.76
2030	32	0	4,470,903	0	0	0	0.02	0.06	0.11	3030.44
2031	33	0	4,470,903	0	0	0	0.02	0.06	0.11	2634.48
2032	34	0	4,470,903	0	0	0	0.02	0.06	0.11	2652.66
2033	35	0	4,470,903	0	0	0	0.02	0.06	0.11	2483.86
2034	36	0	4,470,903		P	• 0	0.02	0.06	0.11	2327.05
2035	37	0	4,470,903	•	P	7	0.02	0.06	0.11	2181.31
2036	38	0	4,470,903	• 0	•	• 0	0.02	0.06	0.11	2045.76
2037	39	0	4,470,903	0	0	0	0.02	0.06	0.11	1919.63
2038	40	0	4,470,903		•	0	0.02	0.06	0.11	1802.19
2039	41	0	4,470,903	0	0	0	0.02	0.06	0.11	1692.79
2040	42	0	4,470,903	• 0	•	0	0.02	0.06	0.11	1590.83
2041	43	0	4,470,903	0	0	0	0.02	0.06	0.11	1495.73
2042	44	0	4,470,903	0	0	0	0.02	0.06	0.11	1407.01
2043	45	0	4,470,903	0	0	0	0.02	0.06	0.11	1324.18
2044	46	0	4,470,903	0	0	0	0.02	0.06	0.11	1246.82
2045	47	0	4,470,903	0	0	0	0.02	0.06	0.11	1174.54

					Waste Tonnage		Meth	ane Generation R	late, k	Annual
		Annual	Cumulative		Moderately			Moderately		Methane
Year	Year	Tonnage	Waste-in-place	Relatively Inert	Decomposable	Decomposable	Relatively Inert	Decomposable	Decomposable	Production
	Number	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(vear ⁻¹)	(vear ⁻¹)	(vear ⁻¹)	(tonnes/vr)
2046	48	0	4 470 903	0	0	0	0.02	0.06	0.11	1106.95
2040	40	0	4,470,903	•	• 0	•	0.02	0.06	0.11	1043 74
2047	4) E0	0	4,470,002	•	•	7 0	0.02	0.00	0.11	084 50
2048	50	0	4,470,903	•	P	7	0.02	0.06	0.11	964.39
2049	51	0	4,470,903	0	0	7	0.02	0.06	0.11	929.21
2050	52	0	4,470,903	0	0	0	0.02	0.06	0.11	877.34
2051	53	0	4,470,903	0	0	0	0.02	0.06	0.11	828.74
2052	54	0	4,470,903	0	0	0	0.02	0.06	0.11	783.18
2053	55	0	4,470,903	0	0	0	0.02	0.06	0.11	740.45
2054	56	0	4,470,903	0	0	0	0.02	0.06	0.11	700.36
2055	57	0	4,470,903	0	0	0	0.02	0.06	0.11	662.73
2056	58	0	4.470.903	0	0	• 0	0.02	0.06	0.11	627.40
2057	59	0	4,470,903	0	• 0	7 0	0.02	0.06	0.11	594.21
2058	60	0	4 470 903	· 0	• 0	7 0	0.02	0.06	0.11	563.02
2050	61	0	4,470,903	•	P 0	7 0	0.02	0.06	0.11	533.70
2039	61	0	4,470,903	•	•	7 0	0.02	0.00	0.11	555.70
2060	62	0	4,470,903	0	•	7	0.02	0.06	0.11	506.13
2061	63	0	4,470,903	0	0	0 7	0.02	0.06	0.11	480.19
2062	64	0	4,470,903	0	0	0	0.02	0.06	0.11	455.78
2063	65	0	4,470,903	0	0	0	0.02	0.06	0.11	432.79
2064	66	0	4,470,903	0	0	0	0.02	0.06	0.11	411.15
2065	67	0	4,470,903	0	0	0	0.02	0.06	0.11	390.75
2066	68	0	4,470,903	0	0	0	0.02	0.06	0.11	371.53
2067	69	0	4,470,903	0	0	0	0.02	0.06	0.11	353.41
2068	70	0	4.470.903	0	0	0	0.02	0.06	0.11	336.32
2069	71	0	4 470 903	0	0	0	0.02	0.06	0.11	320.19
2009	71	0	4 470 903	0	0	0	0.02	0.06	0.11	204.98
2070	72	0	4,470,903	0	0	0	0.02	0.00	0.11	200.61
2071	73	0	4,470,903	0	0	0	0.02	0.06	0.11	290.61
2072	74	0	4,470,903	0	0	0	0.02	0.06	0.11	277.04
2073	75	0	4,470,903	0	0	0	0.02	0.06	0.11	264.22
2074	76	0	4,470,903	0	0	0	0.02	0.06	0.11	252.10
2075	77	0	4,470,903	0	0	0	0.02	0.06	0.11	240.65
2076	78	0	4,470,903	0	0	0	0.02	0.06	0.11	229.81
2077	79	0	4,470,903	0	0	0	0.02	0.06	0.11	219.56
2078	80	0	4,470,903	0	0	0	0.02	0.06	0.11	209.87
2079	81	0	4,470,903	0	0	0	0.02	0.06	0.11	200.68
2080	82	0	4,470,903	0	0	0	0.02	0.06	0.11	191.99
2080	83	0	4 470 903	0	0	0	0.02	0.06	0.11	183 75
2081	84	0	4,470,903	0	0	0	0.02	0.06	0.11	175.94
2082	04	0	4,470,903	0	0	0	0.02	0.00	0.11	1/0.54
2083	85	0	4,470,903	0	0	0	0.02	0.06	0.11	166.54
2084	86	0	4,470,903	0	0	0	0.02	0.06	0.11	161.53
2085	87	0	4,470,903	0	0	0	0.02	0.06	0.11	154.87
2086	88	0	4,470,903	0	0	0	0.02	0.06	0.11	148.55
2087	89	0	4,470,903	0	0	0	0.02	0.06	0.11	142.55
2088	90	0	4,470,903	0	0	0	0.02	0.06	0.11	136.85
2089	91	0	4,470,903	0	0	0	0.02	0.06	0.11	131.44
2090	92	0	4,470,903	0	0	0	0.02	0.06	0.11	126.30
2091	93	0	4,470,903	0	0	0	0.02	0.06	0.11	121.41
2092	94	0	4.470.903	0	0	0	0.02	0.06	0.11	116.76
2093	95	0	4 470 903	0	0	0	0.02	0.06	0.11	112 33
2093	96	0	4,470,903	0	0	0	0.02	0.06	0.11	108.12
2005	90	0	4,470,002	0	0	0	0.02	0.00	0.11	104.11
2095	97	0	4,470,903	0	0	0	0.02	0.06	0.11	104.11
2096	98	0	4,470,903	0	0	0	0.02	0.06	0.11	100.29
2097	99	0	4,470,903	0	0	0	0.02	0.06	0.11	96.65
2098	100	0	4,470,903	0	0	0	0.02	0.06	0.11	93.18
2099	101	0	4,470,903	0	0	0	0.02	0.06	0.11	89.87
2100	102	0	4,470,903	0	0	0	0.02	0.06	0.11	86.71
2101	103	0	4,470,903	0	0	0	0.02	0.06	0.11	83.70
2102	104	0	4,470,903	0	0	0	0.02	0.06	0.11	80.82
2103	105	0	4,470,903	0	0	0	0.02	0.06	0.11	78.07
2104	106	0	4,470,903	0	0	0	0.02	0.06	0.11	75.45
2105	107	0	4.470.903	0	0	0	0.02	0.06	0.11	72.94
2106	108	0	4,470.903	0	0	0	0.02	0.06	0.11	70.54
2107	100	0	4 470 903	0	0	0	0.02	0.06	0.11	68.24
2107	110	0	4 470 002	0	0	0	0.02	0.06	0.11	66.04
2100	110	0	4,470,000	0	0	0	0.02	0.00	0.11	00.04
2109	111	0	4,470,000	0	0	0	0.02	0.06	0.11	63.93
2110	112	U	4,470,903	0	0	0	0.02	0.06	0.11	61.92

Appendix B iModel-110[©] Modeling Results – Vancouver Landfill

B.1 iModel-110© Modeling Results – Area 2W

Landfill's Site-Specific Information

Enter Site's Name/ ID: Vancouver Landfill - Area 2W

Year Filling Started:

1990 Date OK!

Thesis References and Par	ameters	Food waste	Garden waste	Paper &Rubber	Wood	Textile	Nappies
		%	%	%	%	%	%
Table 3.1 of Thesis	DOC _{dry}	0.38	0.49	0.44	0.5	0.3	0.3
Table 2.8 of Thesis	Moisture	50%	45%	20%	18%	14%	14%
Degradability Factor	0.84	0.66	0.46	0.2	0.5	0.5	
Climate Factor	\mathbf{f}_{cl}	1	1	1	1	1	1
Depth Factor	$\mathbf{f}_{\mathbf{dp}}$	0.9	0.9	0.9	0.9	0.9	0.9
Storage Factor	\mathbf{f}_{st}	0.8	1	1	1	1	1
$\mathbf{f} = \mathbf{f}_{dg} \mathbf{x} \mathbf{f}_{cl} \mathbf{x} \mathbf{f}_{dp} \mathbf{x} \mathbf{f}_{st}$	∑Discount	0.60	0.59	0.41	0.18	0.45	0.45
Theoretical Methane Yield	L o	113	158	143	73	114	114

Dry Degradable Organic Carbon Content and Decay Rates for Different Waste Components

Wasta Components	DOC _{dry}	k
waste components	(kg in 1kg dry)	year ⁻¹
Food waste	0.38	0.35
Garden	0.49	0.14
Paper	0.44	0.07
Wood and straw	0.50	0.04
Textiles	0.30	0.07
Disposable nappies	0.30	0.07

Thesis References: Table 3.1 Table 3.15

Methane Characteristics, Generation Calibration Factor & Delay Time

Parameters	Values & Units
CH₄ Density:	0.6775 kg/m ³
CH₄ Fraction:	0.5 m ³ /m ³
CH₄/C (16/12):	1.333 kg/kg
Enter (CF _G) here:	1
Delay Time (T _d):	4 Months

Table 3.16

		Overall To	nnages Depo	sited at the	Vancouver L	andfill - Area	2W		
Year	Food	Garden	Paper	Wood	Textile	Nappies	Inerts	Total	In Place
	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
1990	91,901	25,742	150,652	34,604	40,277	11,769	113,939	468,883	468,883
1991	91,117	25,522	149,366	34,308	39,933	11,669	112,966	464,881	933,764
1992	88,793	24,871	145,558	33,433	38,915	11,371	110,086	453,028	1,386,792
1993	90,493	25,347	148,344	147,473	39,660	11,589	160,793	623,700	2,010,492
1994	-	-	-	-	-	-	-	-	2,010,492
1995	-	-	-	-	-	-	-	-	2,010,492
1996	-	-	-	-	-	-	-	-	2,010,492
1997	-	-	-	-	-	-	-	-	2,010,492
1998	-	-	-	-	-	-	-	-	2,010,492
1999	-	-	-	-	-	-	-	-	2,010,492
2000	-	-	-	-	-	-	-	-	2,010,492
2001	-	-	-	-	-	-	-	-	2,010,492
2002	-	-	-	-	-	-	-	-	2,010,492
2003	-	-	-	-	-	-	-	-	2,010,492
2004	-	-	-	-	-	-	-	-	2,010,492
2005	-	-	-	-	-	-	-	-	2,010,492
2006	-	-	-	-	-	-	-	-	2,010,492
2007	-	-	-	-	-	-	-	-	2,010,492
2008	-	-	-	-	-	-	-	-	2,010,492
2009	-	-	-	-	-	-	-	-	2,010,492
2010	-	-	-	-	-	-	-	-	2,010,492
2011	-	-	-	-	-	-	-	-	2,010,492
2012	-	-	-	-	-	-	-	-	2,010,492
2013	-	-	-	-	-	-	-	-	2,010,492
2014	-	-	-	-	-	-	-	-	2,010,492
2015	-	-	-	-	-	-	-	-	2,010,492
2016	-	-	-	-	-	-	-	-	2,010,492
2017	-	-	-	-	-	-	-	-	2,010,492
2018	-	-	-	-	-	-	-	-	2,010,492
2019	-	-	-	-	-	-	-	-	2,010,492
2020	-	-	-	-	-	-	-	-	2,010,492
2021	-	-	-	-	-	-	-	-	2,010,492
2022	-	-	-	-	-	-	-		2,010,492
2023		-	-		-	-	-		2,010,492
2024		-	-			-	-	-	2,010,492
2023		-	-				-		2,010,492
2020									2,010,492
2027									2,010,492
2020	-		-	-					2.010.492
2023	-		-	-					2.010 492
2030	-		-	-	-		-	-	2.010.492
2037	-		-	-	-		-	-	2.010 492
2032	-	_	-	-	-	-		-	2.010.492
2034	-		-	-	-	-		-	2.010 492
2035	-	-	-	-	-	_		-	2.010.492
2036	-	_	-	-	-	_	_	-	2.010.492
2037	-	-	-	-	-	_	_	-	2.010.492
2038	-	-	-	-	-	-		-	2.010.492
2039	-	_	-	-	-	-	_	-	2.010.492
2040	-	-	-	-	-	-	_	-	2.010.492
2041	-	-	-	-	-	-	-	-	2,010.492
2042	-	-	-	-	-	-	-	-	2,010.492
2043	-	-	-	_	-	-	_	-	2.010.492
2044	-	-	-	-	-	_	_	-	2.010.492
2045	-	-	-	-	-	_	_	-	2,010.492
2046	-	-	-	-	-	-	-	-	2.010.492

		Overall To	nnages Depo	osited at the	Vancouver L	andfill - Area.	2W		
Year	Food	Garden	Paper	Wood	Textile	Nappies	Inerts	Total	In Place
	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
2047	-	-	-	-	-	-	-	-	2,010,492
2048	-	-	-	-	-	-	-	-	2,010,492
2049	-	-	-	-	-	-	-	-	2,010,492
2050	-	-	-	-	-	-	-	-	2,010,492
2051	-	-	-	-	-	-	-	-	2,010,492
2052	-	-	-	-	-	-	-	-	2,010,492
2053	-	-	-	-	-	-	-	-	2,010,492
2054	-	-	-	-	-	-	-	-	2,010,492
2055	-	-	-	-	-	-	-	-	2,010,492
2056	-	-	-	-	-	-	-	-	2,010,492
2057	-	-	-	-	-	-	-	-	2,010,492
2058	-	-	-	-	-	-	-	-	2,010,492
2009	-	-	-	-	-	-	-		2,010,492
2000	-	-	-	-	-	-	-		2,010,492
2001	-	-	-	-	-	-			2,010,492
2002	-	-	-	-	-	-			2,010,492
2003									2,010,492
2004		-		_	-	-		-	2,010,492
2005		-		_	-	-		-	2,010,492
2000	-	-	_	-	-	-	-	-	2,010,492
2068	-	-	-	-	-	-	-	-	2.010.492
2069	_	-	_	_	-	_	_	-	2.010.492
2070	_	-	_	_	-	_	_	-	2.010.492
2071	-	-	-	-	-	-	-	-	2,010,492
2072	-	-	-	-	-	-	-	-	2,010,492
2073	-	-	-	-	-	-	-	-	2,010,492
2074	-	-	-	-	-	-	-	-	2,010,492
2075	-	-	-	-	-	-	-	-	2,010,492
2076	-	-	-	-	-	-	-	-	2,010,492
2077	-	-	_	-	-	-	-	-	2,010,492
2078	-	-	-	-	-	-	-	-	2,010,492
2079	-	-	-	-	-	-	-	-	2,010,492
2080	-	-	-	-	-	-	-	-	2,010,492
2081	-	-	-	-	-	-	-	-	2,010,492
2082	-	-	-	-	-	-	-	-	2,010,492
2083	-	-	-	-	-	-	-	-	2,010,492
2084	-	-	-	-	-	-	-	-	2,010,492
2085	-	-	-	-	-	-	-	-	2,010,492
2086	-	-	-	-	-	-	-	-	2,010,492
2007	-	-	-	-	-	-	-	-	2,010,492
2000	-	-	-	-	-	-	-		2,010,492
2009	-	-	-	-	-	-	-		2,010,492
2090	-	-	-	-	-	-	-		2,010,492
2091									2,010,492
2093	-	<u> </u>	_	_	_	_	-	-	2,010,492
2094	-	-	-	-	-	-	-		2.010.492
2095	-	-	-	-	-	-	-	-	2.010.492
2096	-	-	-	-	-	-	-	-	2,010,492
2097	-	-	-	-	-	-	-	-	2,010,492
2098	-	-	-	-	-	-	-	-	2,010,492
2099	-	-	-	-	-	-	-	-	2,010,492
2100	-	-	-	-	-	-	-	-	2,010,492
2101	-	-	-	-	-		-	-	2,010,492
2102	-	-	-	-	-	-	-	-	2,010,492
2103	-	-	-	-	-	-	-	-	2,010,492

		Overall To	nnages Depo	sited at the	Vancouver L	andfill - Area.	2W		
Year	Food	Garden	Paper	Wood	Textile	Nappies	Inerts	Total	In Place
	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
2104	-	-	-	-	-	-	-	-	2,010,492
2105	-	-	-	-	-	-	-	-	2,010,492
2106	-	-	-	-	-	-	-	-	2,010,492
2107	-	-	-	-	-	-	-	-	2,010,492
2108	-	-	-	-	-	-	-	-	2,010,492
2109	-	-	-	-	-	-	-	-	2,010,492
2110	-	-	-	-	-	-	-	-	2,010,492
2111	-	-	-	-	-	-	-	-	2,010,492
2112	-	-	-	-	-	-	-	-	2,010,492
2113	-	-	-	-	-	-	-	-	2,010,492
2114	-	-	-	-	-	-	-	-	2,010,492
2115	-	-	-	-	-	-	-	-	2,010,492
2116	-	-	-	-	-	-	-	-	2,010,492
2117	-	-	-	-	-	-	-	-	2,010,492
2118	-	-	-	-	-	-	-	-	2,010,492
2119	-	-	-	-	-	-	-	-	2,010,492
2120	-	-	-	-	-	-	-	-	2,010,492
2121	-	-	-	-	-	-	-	-	2,010,492
2122	-	-	-	-	-	-	-	-	2,010,492
2123	-	-	-	-	-	-	-	-	2,010,492
2124	-	-	-	-	-	-	-	-	2,010,492
2125	-	-	-	-	-	-	-	-	2,010,492
2126	-	-	-	-	-	-	-	-	2,010,492
2127	-	-	-	-	-	-	-	-	2,010,492
2128	-	-	-	-	-	-	-	-	2,010,492
2129	-	-	-	-	-	-	-	-	2,010,492
2130	-	-	-	-	-	-	-	-	2,010,492
2131	-	-	-	-	-	-	-	-	2,010,492
2132	-	-	-	-	-	-	-	-	2,010,492
2133	-	-	-	-	-	-	-	-	2.010.492
2134	-	-	-	-	-	-	-	-	2.010.492
2135	-	-	-	-	-	_	-	-	2.010.492
2136	-	-	-	-	-	_	-	-	2.010.492
2137	-	-	-	-	-	-	-	-	2.010.492
2138	-	-	-	-	-	-	-	-	2.010.492
2139	-	-	-	-	-	-	_	-	2.010.492
2140	-	-	-	-	-	-	-	-	2,010,492

Food Garden Paper Wood Textile Nappies Inert Deposited MSW Sold 55% 80% 82% 86% 86% 90% 77% Dry Amounts Historically Deposited at the Vancouver Landfill - Area 2W Inert Deposited MSW Nappies Inert Deposited MSW Year Food Garden Paper Wood Textile Nappies Inert Deposited MSW 1990 46 14 121 28 35 10 103 358 1991 46 14 119 28 34 10 123 358 1992 0			Dry Tonna	ages Depos	ited at the	Vancouver	Landfill - A	Area 2W	
Moletum 50% 45% 20% 18% 14% 14% 10% 23% Dry Amounts Historically Deposited at the Vancouver Landfill - Area ZW Vera Cg Gade Paper Wood Textle Nappies Inert Deposited MMSW 1990 46 14 121 28 35 10 103 356 1991 46 14 119 28 34 10 102 353 1992 44 14 116 27 33 10 99 344 1993 45 14 119 121 34 10 145 448 1994 0 <th></th> <th>Food</th> <th>Garden</th> <th>Paper</th> <th>Wood</th> <th>Textile</th> <th>Nappies</th> <th>Inert</th> <th>Deposited MSW</th>		Food	Garden	Paper	Wood	Textile	Nappies	Inert	Deposited MSW
Solid 50% 55% 80% 86% 86% 90% 77% Dry Amounts Historically Deposited at the Vancouver Landfill - Area 2W Year Food Garden Paper Wood Textile Nappies Inert Deposited MSW Gg Gg <td< th=""><th>Moisture</th><th>50%</th><th>45%</th><th>20%</th><th>18%</th><th>14%</th><th>14%</th><th>10%</th><th>23%</th></td<>	Moisture	50%	45%	20%	18%	14%	14%	10%	23%
Dry Amounts Historically Deposited at the Vancouver Landfill - Area 2W Year Food Garden Paper Wood Textile Nappies Inert Deposited MSW 99 Gg	Solid	50%	55%	80%	82%	86%	86%	90%	77%
YearFoodGardenPaperWoodTextileNapplesInertDeposited MSWGg <td< th=""><th></th><th>Dry Am</th><th>ounts Histor</th><th>ically Depos</th><th>sited at the</th><th>Vancouver l</th><th>Landfill - Are</th><th>ea 2W</th><th></th></td<>		Dry Am	ounts Histor	ically Depos	sited at the	Vancouver l	Landfill - Are	ea 2W	
Gg	Year	Food	Garden	Paper	Wood	Textile	Nappies	Inert	Deposited MSW
1990 46 14 121 28 35 10 103 356 1991 46 14 119 28 33 10 99 344 1993 45 14 119 121 34 10 145 448 1993 45 14 119 121 34 10 0		Gg	Gg	Gg	Gg	Gg	Gg	Gg	Gg
1991 46 14 119 28 34 10 102 353 1992 44 14 116 27 33 10 99 344 1993 45 14 119 121 34 10 145 488 1994 0	1990	46	14	121	28	35	10	103	356
1932 44 16 21 33 10 93 344 1993 45 14 119 121 34 10 145 488 1994 0	1991	46	14	119	28	34	10	102	353
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1992	44	14	110	121	33	10	145	488
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1994		0	0	0	0	0	0	
1996 0	1995	0	0	0	0	0	0	0	0
1997 0	1996	0	0	0	0	0	0	0	0
1998 0	1997	0	0	0	0	0	0	0	0
1999 0 0 0 0 0 0 0 2000 0 </td <td>1998</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	1998	0	0	0	0	0	0	0	0
2000 0	1999	0	0	0	0	0	0	0	0
2001 0	2000	0	0	0	0	0	0	0	0
2002 0	2001	0	0	0	0	0	0	0	0
2003 0	2002	0	0	0	0	0	0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2000	0	0	0	0	0	0	0	0
2006 0	2005	0	0	0	0	0	0	0	0
2007 0	2006	0	0	0	0	0	0	0	0
2008 0	2007	0	0	0	0	0	0	0	0
2009 0	2008	0	0	0	0	0	0	0	0
2010 0	2009	0	0	0	0	0	0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2010	0	0	0	0	0	0	0	0
2012 0 0 0 0 0 0 0 0 2013 0 </td <td>2011</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	2011	0	0	0	0	0	0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2012	0	0	0	0	0	0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2013	0	0	0	0	0	0	0	0
2016 0	2015	0	0	0	0	0	0	0	0
2017 0	2016	0	0	0	0	0	0	0	0
2018 0	2017	0	0	0	0	0	0	0	0
2019 0	2018	0	0	0	0	0	0	0	0
2020 0	2019	0	0	0	0	0	0	0	0
2021 0	2020	0	0	0	0	0	0	0	0
2022 0	2021	0	0	0	0	0	0	0	0
2023 0	2022	0	0	0	0	0	0	0	0
202-1 0 <td>2023</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	2023	0	0	0	0	0	0	0	0
2026 0	2024	0	0	0	0	0	0	0	0
2027 0 0 0 0 0 0 0 0 2028 0 0 0 0 0 0 0 0 0 2029 0 0 0 0 0 0 0 0 0 2030 0 0 0 0 0 0 0 0 0 2031 0 0 0 0 0 0 0 0 0 0 2032 0 0 0 0 0 0 0 0 0 0 0 0 2033 0	2026	0	0	0	0	0	0	0	0
2028 0 0 0 0 0 0 0 0 2029 0 0 0 0 0 0 0 0 0 2030 0 0 0 0 0 0 0 0 0 2031 0 0 0 0 0 0 0 0 2032 0 0 0 0 0 0 0 0 2033 0 0 0 0 0 0 0 0 2034 0 0 0 0 0 0 0 0	2027	0	0	0	0	0	0	0	0
2029 0 0 0 0 0 0 0 0 2030 0	2028	0	0	0	0	0	0	0	0
2030 0	2029	0	0	0	0	0	0	0	0
2031 0	2030	0	0	0	0	0	0	0	0
2032 0	2031	0	0	0	0	0	0	0	0
	2032	0	0	0	0	0	0	0	0
	2033	0	0	0	0	0	0	0	0
	2034	0	0	0	0	0	0	0	0

	Dry Amo	ounts Histor	rically Depos	sited at the	Vancouver	Landfill - Are	ea 2W	
Year	Food	Garden	Paper	Wood	Textile	Nappies	Inert	Deposited MSW
	Gg	Gg	Gg	Gg	Gg	Gg	Gg	Gg
2037	0	0	0	0	0	0	0	0
2038	0	0	0	0	0	0	0	0
2039	0	0	0	0	0	0	0	0
2040	0	0	0	0	0	0	0	0
2041	0	0	0	0	0	0	0	0
2042	0	0	0	0	0	0	0	0
2043	0	0	0	0	0	0	0	0
2044	0	0	0	0	0	0	0	0
2045	0	0	0	0	0	0	0	0
2046	0	0	0	0	0	0	0	0
2047	0	0	0	0	0	0	0	0
2048	0	0	0	0	0	0	0	0
2049	0	0	0	0	0	0	0	0
2050	0	0	0	0	0	0	0	0
2051	0	0	0	0	0	0	0	0
2052	0	0	0	0	0	0	0	0
2053	0	0	0	0	0	0	0	0
2054	0	0	0	0	0	0	0	0
2055	0	0	0	0	0	0	0	0
2050	0	0	0	0	0	0	0	0
2058	0	0	0	0	0	0	0	0
2059	0	0	0	0	0	0	0	0
2060	0	0	0	0	0	0	0	0
2061	0	0	0	0	0	0	0	0
2062	0	0	0	0	0	0	0	0
2063	0	0	0	0	0	0	0	0
2064	0	0	0	0	0	0	0	0
2065	0	0	0	0	0	0	0	0
2066	0	0	0	0	0	0	0	0
2067	0	0	0	0	0	0	0	0
2068	0	0	0	0	0	0	0	0
2069	0	0	0	0	0	0	0	0
2070	0	0	0	0	0	0	0	0
2071	0	0	0	0	0	0	0	0
2072	0	0	0	0	0	0	0	0
2073	0	0	0	0	0	0	0	0
2074	0	0	0	0	0	0	0	0
2075	0	0	0	0	0	0	0	0
2076	0	0	0	0	0	0	0	0
2077	0	0	0	0	0	0	0	0
2078	0	0	0	0	0	0	0	0
2079	0	0	0	0	0	0	0	0
2080	0	0	0	0	0	0	0	0
2001	0	0	0	0	0	0	0	0
2002	0	0	0	U U	0	0	0	

^	citizar cing ri	eus										
	L _o (m ^a /tonne)	113	157	143	72	114	114	91.3				
		Methane ge	eneration esti	mates for the	Vancouver	Landfili - Ar	ea 2W		Methane	Total LFG		
	Maria	Food	Garden	Paper	Wood	Textile	Napples	Total	Generation Potential	Flow Rate Estimated	Maria	LEG Generation Magnitude for the
	Year	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(L _e , m ³ /tonne)	(scfm)	Year	Vancouver Landfill - Area 2W
	1990	399	63	170	11	36	11	690	94.9	137	1990	B
	1991	2,357	413	1,146	78	244	71	4,310	94.9	855	1991	
	1993	4,632	968	2,040	237	611	178	9,492	83.5	1,423	1993	
	1994	4,919	1,133	3,480	464	741	217	10,953		2,172	1994	
	1995	3,466	985	3,245	445	691	202	9,034		1,792	1995	
	1990	2,442	744	2,025	428	601	100	6 474		1,504	1996	
	1998	1,213	647	2,630	395	560	164	5,609		1,113	1998	
	1999	855	563	2,452	380	522	153	4,924		977	1999	
	2000	602 424	489	2,286	365	487	142	4,372		867	2000	
	2002	299	370	1,988	337	423	124	3,540		702	2002	
	2003	211	321	1,853	323	395	115	3,219		638	2003	
	2004	149	279	1,728	311	368	108	2,942		584	2004	
	2006	74	211	1,502	287	320	93	2,488		493	2006	
	2007	52	184	1,401	276	298	87	2,297		456	2007	
	2008	37	160	1,306	265	278	81	2,127		422	2008	
	2009	18	139	1,135	234	209	71	1,831		363	2010	
	2011	13	105	1,059	235	225	66	1,703		338	2011	
	2012	9	91	987	226	210	61	1,585		314	2012	
	2013	4	69	858	217	190	53	1,476		293	2013	-
	2015	3	60	800	200	170	50	1,284		255	2015	
	2016	2	52	746	192	159	46	1,198		238	2016	
	2017	2	45	649	185	148	43	1,119		207	2017	
	2019	1	34	605	171	129	38	977		194	2019	
	2020	1	30	564	164	120	35	913		181	2020	
	2021	0	26	526 490	157	112	33	854		169	2021	
	2023	0	20	457	145	97	28	748		148	2023	
	2024	0	17	426	140	91	27	700		139	2024	
	2025	0	15	397	134	85	25	656		130	2025	
	2027	0	11	345	124	74	21	576		114	2027	i
	2028	0	10	322	119	69	20	539		107	2028	1. Contract of the second s
	2029	0	8	280	114	60	19	506		100	2029	
	2031	0	6	261	106	56	16	445		88	2031	i
	2032	0	6	243	101	52	15	417		83	2032	1
	2033	0		227	9/	48	14	392		73	2033	
	2035	ŏ	4	197	90	42	12	345		68	2035	i
	2036	0	3	184	86	39	11	324		64	2036	
	2037	0	3	1/2	83	37	11	305		60 57	2037	
	2039	ŏ	2	149	77	32	9	269		53	2039	Î.
	2040	0	2	139	74	30	9	253		50	2040	
	2041	0	2	130	/1 68	28	8	238		4/	2041	
	2043	Ö	1	113	65	24	7	210		42	2043	1
	2044	0	1	105	63	22	7	198		39	2044	
	2045	0	1	98	58	21	6	186		37	2045	
	2047	0	1	85	56	18	5	165		33	2047	
	2048	0	1	79	53	17	5	155		31	2048	
	2049	0	1	/4 69	51	15	5	146		29	2049	
	2051	0	0	64	47	14	4	130		26	2051	i
	2052	0	0	60	46	13	4	122		24	2052	
	2053	0	0	56	44	12	3	115		23	2053	
	2055	0	0	49	40	10	3	103		20	2055	1 Contraction of the second se
	2056	0	0	45	39	10	3	97		19	2056	
	2057	0	0	42	37	9	3	91		18	2057	
	2059	0	0	37	34	8	2	81		16	2059	
	2060	0	0	34	33	7	2	77		15	2060	
	2061	0	0	32	32	7	2	73		14	2061	
	2002	U U			31	•	4	09		14	2002	

Methane Generation Estimates from the Vancouver Landfill - Area 2W

I	Methane or	eneration esti	mates for the	Vancouver	andfill - Ar	aa 2W		Methane	Total LFG		
	Food	Carden	Dapar	Wood	Toytilo	Nannice	Total	Generation	Flow Rate		
Year	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	Potential (L_m ² toppe)	Ectimated (scim)	Year	LFG Generation Magnitude for the Vancouver Landfill - Area 2W
	(001100)	(001100)	(0011100)	(10111.00)	(011100)	(white)	(1011100)	(eg maane)	(ounit)		
2063	0	0	28	29	6	2	65		13	2063	
2065	Ő	0	24	27	5	2	58		11	2065	
2066	0	0	23	26	5	1	55		11	2066	
2067	0	0	21	25	4	1	52		10	2067	
2069	0	Ő	18	23	4	1	46		9	2069	
2070	0	0	17	22	4	1	44		9	2070	
2071	0	0	10	21	3	1	42		8	2071	
2073	0	0	14	20	3	1	37		7	2073	
2074	0	0	13	19	3	1	35		7	2074	
2075	0	0	11	10	2	1	32		6	2075	
2077	0	0	10	17	2	1	30		6	2077	
2078	0	0	10	16	2	1	29		6	2078	
2079	0	0	9	15	2	1	27		5	20/9	
2081	0	0	8	14	2	0	24		5	2081	
2082	0	0	7	14	2	0	23		5	2082	
2063	0	0	6	13	1	0	22		4	2083	
2085	0	0	6	12	1	Ő	20		4	2085	
2086	0	0	6	12	1	0	19		4	2086	
2087	0	0	5	11	1	0	18		4	2087	
2089	0	0	5	10	1	0	16		3	2089	
2090	0	0	4	10	1	0	15		3	2090	
2091	0	0	4	10	1	0	15		3	2091	
2092	0	ő	3	9	1	Ö	13		3	2093	
2094	0	0	3	8	1	0	13		2	2094	
2095	0	0	3	8	1	0	12		2	2095	
2090	0	0	3	8	1	Ö	11		2	2097	
2098	0	0	2	7	1	0	10		2	2098	
2099	0	0	2	7	0	0	10		2	2099	
2100	0	0	2	6		ŏ	9		2	2100	
2102	0	0	2	6	0	0	8		2	2102	
2103	0	0	2	6	0	0	8		2	2103	
2104	0	0	2	5	0	0	7		2	2104 2105	
2106	0	0	1	5	0	0	7		1	2106	
2107	0	0	1	5	0	0	7		1	2107	
2100	0	0	1	5		ö	6		1	2100	
2110	0	0	1	4	0	0	6		1	2110	
2111	0	0	1	4	0	0	6		1	2111	
2112	0	0	1	4	0	0	5		1	2112 2113	
2114	0	0	1	4	0	0	5		1	2114	
2115	0	0	1	4	0	0	5		1	2115	
2116	0	0	1	4	0	0	4		1	2116	
2118	0	0	1	3	0	0	4		1	2118	
2119	0	0	1	3	0	0	4		1	2119	
2120	0	0	1	3	0	0	4	—	1	2120	
2122	ŏ	ŏ	ŏ	3	ŏ	ŏ	3		1	2122	
2123	0	0	0	3	0	0	3		1	2123	
2124	0	0	0	3	0	0	3		1	2124	
2125	0	0	0	2	ŏ	ŏ	3		1	2125	
2127	0	0	0	2	0	0	3		1	2127	
2128	0	0	0	2	0	0	3		1	2128	
2129	0	0	0	2	6	8	2		0	2129	
2131	0	0	0	2	0	0	2		0	2131	
2132	0	0	0	2	0	0	2		0	2132	
2133	0	0	0	2	0	0	2		0	2133	
2135	0	0	0	2	0	0	2		0	2135	
2136	0	0	0	2	0	0	2		0	2136	
2137	0	0	0	2	0	0	2		0	2137	
2139	Ö	ŏ	ŏ	1	ŏ	Ö	2		Ö	2139	
2140	0	0	0	1	0	0	2		0	2140	

Vancouver Landfill - Area 2W

Landfill Gas Generation Analysis GRAPHICAL RESULTS

Average Deposited Waste Composition

Annual MSW Deposition Rates and Total In Place

B.2 iModel-110© Modeling Results – Area 2E

Landfill's Site-Specific Information

Enter Site's Name/ ID: Vancouver Landfill - Area 2E

Year Filling Started:

1994 Date OK!

Thesis References and Par	ameters	Food waste	Garden waste	Paper &Rubber	Wood	Textile	Nappies
		%	%	%	%	%	%
Table 3.1 of Thesis	DOC _{dry}	0.38	0.49	0.44	0.5	0.3	0.3
Table 2.8 of Thesis	Moisture	50%	45%	20%	18%	14%	14%
Degradability Factor	$\mathbf{f}_{\mathbf{dg}}$	0.84	0.66	0.46	0.2	0.5	0.5
Climate Factor	f _{cl}	1	1	1	1	1	1
Depth Factor	$\mathbf{f}_{\mathbf{dp}}$	0.9	0.9	0.9	0.9	0.9	0.9
Storage Factor	\mathbf{f}_{st}	0.8	1	1	1	1	1
$\mathbf{f} = \mathbf{f}_{dg} \mathbf{x} \mathbf{f}_{cl} \mathbf{x} \mathbf{f}_{dp} \mathbf{x} \mathbf{f}_{st}$	∑Discount	0.60	0.59	0.41	0.18	0.45	0.45
Theoretical Methane Yield	L o	113	158	143	73	114	114

Dry Degradable Organic Carbon Content and Decay Rates for Different Waste Components

Wasta Components	DOC _{dry}	k
waste components	(kg in 1kg dry)	year ⁻¹
Food waste	0.38	0.35
Garden	0.49	0.14
Paper	0.44	0.07
Wood and straw	0.50	0.04
Textiles	0.30	0.07
Disposable nappies	0.30	0.07

Thesis References: Table 3.1 Table 3.15

Methane Characteristics, Generation Calibration Factor & Delay Time

Parameters	Values & Units
CH₄ Density:	0.6775 kg/m ³
CH₄ Fraction:	0.5 m ³ /m ³
CH₄/C (16/12):	1.333 kg/kg
Enter (CF _G) here:	1
Delay Time (T _d):	4 Months

Table 3.16

	Overall Tonnages Deposited at the Vancouver Landfill - Area 2E									
Year	Food	Garden	Paper	Wood	Textile	Nappies	Inerts	Total	In Place	
	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	
1994	85,613	23,980	140,344	32,236	37,521	10,964	106,142	436,800	436,800	
1995	84,221	23,591	138,063	87,502	36,911	10,785	128,327	509,400	946,200	
1996	-	-	-	-	-	-	-	-	946,200	
1997	-	-	-	-	-	-	-	-	946,200	
1998	-	-	-	-	-	-	-	-	946,200	
1999	-	-	-	-	-	-	-	-	946,200	
2000	-	-	-	-	-	-	-	-	946,200	
2001	-	-	-	-	-	-	-	-	940,200	
2002	-	-	-	-	-	-	-		940,200	
2003	-	-	-	-	-	-	-		940,200	
2004									946 200	
2005									946 200	
2000	-	-	-	-	-	-	-	-	946,200	
2008	-	-	-	-	-	-	-	-	946.200	
2009	-	-	-	-	-	-	-	-	946.200	
2010	-	-	-	-	-	-	-	-	946.200	
2011	-	_	-	_	_	_	-	-	946.200	
2012	_	_	_	_	_	-	_	-	946.200	
2013	_	_	_	_	_	-	_	-	946.200	
2014	-	-	-	_	-	-	_	-	946.200	
2015	-	-	-	-	-	-	-	-	946,200	
2016	-	-	-	-	-	-	-	-	946,200	
2017	-	-	-	-	-	-	-	-	946,200	
2018	-	-	-	-	-	-	-	-	946,200	
2019	-	-	-	-	-	-	-	-	946,200	
2020	-	-	-	-	-	-	-	-	946,200	
2021	-	-	-	-	-	-	-	-	946,200	
2022	-	-	-	-	-	-	-	-	946,200	
2023	-	-	-	-	-	-	-	-	946,200	
2024	-	-	-	-	-	-	-	-	946,200	
2025	-	-	-	-	-	-	-	-	946,200	
2026	-	-	-	-	-	-	-	-	946,200	
2027	-	-	-	-	-	-	-	-	946,200	
2028	-	-	-	-	-	-	-	-	946,200	
2029	-	-	-	-	-	-	-	-	946,200	
2030	-	-	-	-	-	-	-	-	946,200	
2031	-	-	-	-	-	-	-	-	946,200	
2032	-	-	-	-	-	-	-	-	946,200	
2033	-	-	-	-	-	-	-	-	946,200	
2034	-	-	-	-	-	-	-	-	946,200	
2035	-	-	-	-	-	-	-	-	946,200	
2036	-	-	-	-	-	-	-	-	946,200	
2037	-	-	-	-	-	-	-	-	946,200	
2038	-	-	-	-	-	-	-	-	946,200	
2039	-	-	-	-	-	-	-	-	946,200	
2040	-	-	-	-	-	-	-		940,200	
2041	-	-	-	-	-	-	-		940,200	
2042	-	-	-	-	-	-	-		940,200	
2043	-	-	-	-	-	-	-		940,200	
2044	-	-	-	-		-	-		946 200	
2045							-		946 200	
2040	-		-				-		946 200	
2048	-	-	-	-		-		-	946,200	
2049	-	_	-	_	_	_	-	-	946.200	
2050	-	_	-	-	-	-	-	-	946,200	

	Overall Tonnages Deposited at the Vancouver Landfill - Area 2E										
Year	Food	Garden	Paper	Wood	Textile	Nappies	Inerts	Total	In Place		
	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)		
2051	-	-	-	-	-	-	-	-	946,200		
2052	-	-	-	-	-	-	-	-	946,200		
2053	-	-	-	-	-	-	-	-	946,200		
2054	-	-	-	-	-	-	-	-	946,200		
2055	-	-	-	-	-	-	-	-	946,200		
2056	-	-	-	-	-	-	-	-	946,200		
2057	-	-	-	-	-	-	-	-	946,200		
2058	-	-	-	-	-	-	-	-	946,200		
2059	-	-	-	-	-	-	-	-	946,200		
2000		-	-	-	-	-		-	940,200		
2001									946 200		
2002	-	-	-	-	-	-	-	-	946,200		
2064	_	-	_	_	-	_	_	-	946.200		
2065	-	-	-	-	-	-	-	-	946,200		
2066	-	-	-	-	-	-	-	-	946,200		
2067	-	-	-	-	-	-	-	-	946,200		
2068	-	-	-	-	-	-	-	-	946,200		
2069	-	-	-	-	-	-	-	-	946,200		
2070	-	-	-	-	-	-	-	-	946,200		
2071	-	-	-	-	-	-	-	-	946,200		
2072	-	-	-	-	-	-	-	-	946,200		
2073	-	-	-	-	-	-	-	-	946,200		
2074	-	-	-	-	-	-	-	-	946,200		
2075	-	-	-	-	-	-	-	-	946,200		
2076	-	-	-	-	-	-	-	-	946,200		
2077	-	-	-	-	-	-	-	-	946,200		
2078	-	-	-	-	-	-	-	-	946,200		
2079	-	-	-	-	-	-	-	-	946,200		
2080	-	-	-	-	-	-	-	-	946,200		
2081	-	-	-	-	-	-	-	-	946,200		
2002									946 200		
2003	-	_		-			-		946,200		
2085	-	-	-	-	-	-	-	-	946.200		
2086	_	-	_	_	-	-	_	-	946.200		
2087	-	-	-	-	-	-	-	-	946,200		
2088	-	-	-	-	-	-	-	-	946,200		
2089	-	-	-	-	-	-	-	-	946,200		
2090	-	-	-	-	-	-	-	-	946,200		
2091	-	-	-	-	-	-	-	-	946,200		
2092	-	-	-	-	-	-	-	-	946,200		
2093	-	-			-		-	-	946,200		
2094	-	-	-	-	-	-	-	-	946,200		
2095	-	-	-	-	-	-	-	-	946,200		
2096	-	-	-	-	-	-	-	-	946,200		
2097	-	-	-	-	-	-	-	-	946,200		
2098	-	-	-	-	-	-	-	-	946,200		
2099	-	-	-	-	-	-	-	-	946,200		
2100	-	-	-	-	-	-	-	-	946,200		
2101	-	-	-	-	-	-	-	-	940,200 046 200		
2102	-	-	-	-	-	-	-		946 200		
2103	-	-	-	-	-	-	-		946,200		
2105	-	-	-	-	-	-	-	-	946.200		
2106	-	-	-	-	-	-	-	-	946,200		
2107	-	-	-	-	-	-	-	-	946,200		

	Overall Tonnages Deposited at the Vancouver Landfill - Area 2E											
Year	Food	Garden	Paper	Wood	Textile	Nappies	Inerts	Total	In Place			
	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)			
2108	-	-	-	-	-	-	-	-	946,200			
2109	-	-	-	-	-	-	-	-	946,200			
2110	-	-	-	-	-	-	-	-	946,200			
2111	-	-	-	-	-	-	-	-	946,200			
2112	-	-	-	-	-	-	-	-	946,200			
2113	-	-	-	-	-	-	-	-	946,200			
2114	-	-	-	-	-	-	-	-	946,200			
2115	-	-	-	-	-	-	-	-	946,200			
2116	-	-	-	-	-	-	-	-	946,200			
2117	-	-	-	-	-	-	-	-	946,200			
2118	-	-	-	-	-	-	-	-	946,200			
2119	-	-	-	-	-	-	-	-	946,200			
2120	-	-	-	-	-	-	-	-	946,200			
2121	-	-	-	-	-	-	-	-	946,200			
2122	-	-	-	-	-	-	-	-	946,200			
2123	-	-	-	-	-	-	-	-	946,200			
2124	-	-	-	-	-	-	-	-	946,200			
2125	-	-	-	-	-	-	-	-	946,200			
2126	-	-	-	-	-	-	-	-	946,200			
2127	-	-	-	-	-	-	-	-	946,200			
2128	-	-	-	-	-	-	-	-	946,200			
2129	-	-	-	-	-	-	-	-	946,200			
2130	-	-	-	-	-	-	-	-	946,200			
2131	-	-	-	-	-	-	-	-	946,200			
2132	-	-	-	-	-	-	-	-	946,200			
2133	-	-	-	-	-	-	-	-	946,200			
2134	-	-	-	-	-	-	-	-	946,200			
2135	-	-	-	-	-	-	-	-	946,200			
2136	-	-	-	-	-	-	-	-	946,200			
2137	-	-	-	-	-	-	-	-	946,200			
2138	-	-	-	-	-	-	-	-	946,200			
2139	-	-	-	-	-	-	-	-	946,200			
2140	-	-	-	-	-	-	-	-	946,200			
2141	-	-	-	-	-	-	-	-	946,200			
2142	-	-	-	-	-	-	-	-	946,200			
2143	-	-	-	-	-	-	-	-	946,200			
2144	-	-	-	-	-	-	-	-	946,200			

Dry Tonnages	Deposited at the	Vancouver	Landfill -	Area 2E
--------------	------------------	-----------	------------	---------

ſ	Food	Garden	Paper	Wood	Textile	Nappies	Inert	Deposited MSW				
Moisture	50%	45%	20%	18%	14%	14%	10%	23%				
Solid												
f	Dry Am	ounts Histor	rically Depos	sited at the	Vancouver	Landfill - Are	ea 2E					
Year	Food	Garden	Paper	Wood	Textile	Nappies	Inert	Deposited MSW				
	Gg	Gg	Gg	Gg	Gg	Gg	Gg	Gg				
1994	43	13	112	26	32	9	96	332				
1995	42	13	110	72	32	9	115	394				
1996	0	0	0	0	0	0	0	0				
1997	0	0	0	0	0	0	0	0				
1998	0	0	0	0	0	0	0	0				
2000	0	0	0	0	0	0	0	0				
2000	0	0	0	0	0	0	0	0				
2001	0	0	0	0	0	0	0	0				
2003	0	0	0	0	0	0	0	0				
2004	0	0	0	0	0	0	0	0				
2005	0	0	0	0	0	0	0	0				
2006	0	0	0	0	0	0	0	0				
2007	0	0	0	0	0	0	0	0				
2008	0	0	0	0	0	0	0	0				
2009	0	0	0	0	0	0	0	0				
2010	0	0	0	0	0	0	0	0				
2011	0	0	0	0	0	0	0	0				
2012	0	0	0	0	0	0	0	0				
2013	0	0	0	0	0	0	0	0				
2015	0	0	0	0	0	0	0	0				
2016	0	0	0	0	0	0	0	0				
2017	0	0	0	0	0	0	0	0				
2018	0	0	0	0	0	0	0	0				
2019	0	0	0	0	0	0	0	0				
2020	0	0	0	0	0	0	0	0				
2021	0	0	0	0	0	0	0	0				
2022	0	0	0	0	0	0	0	0				
2023	0	0	0	0	0	0	0	0				
2024	0	0	0	0	0	0	0	0				
2025	0	0	0	0	0	0	0	0				
2027	0	0	0	0	0	0	0	0				
2028	0	0	0	0	0	0	0	0				
2029	0	0	0	0	0	0	0	0				
2030	0	0	0	0	0	0	0	0				
2031	0	0	0	0	0	0	0	0				
2032	0	0	0	0	0	0	0	0				
2033	0	0	0	0	0	0	0	0				
2034	0	0	0	0	0	0	0	0				
2035	0	0	0	0	0	0	0	0				
2030	0	0	0	0	0	0	0	0				
2037	0	0	0	0	0	0	0	0				
2039	0	0	0	0	0	0	0	0				
	Dry Amounts Historically Deposited at the Vancouver Landfill - Area 2E											
------	--	--------	-------	------	---------	---------	-------	------------------	--	--	--	--
Year	Food	Garden	Paper	Wood	Textile	Nappies	Inert	Deposited MSW				
	Gg	Gg	Gg	Gg	Gg	Gg	Gg	Gg				
2041	0	0	0	0	0	0	0	0				
2042	0	0	0	0	0	0	0	0				
2043	0	0	0	0	0	0	0	0				
2044	0	0	0	0	0	0	0	0				
2045	0	0	0	0	0	0	0	0				
2046	0	0	0	0	0	0	0	0				
2047	0	0	0	0	0	0	0	0				
2048	0	0	0	0	0	0	0	0				
2049	0	0	0	0	0	0	0	0				
2050	0	0	0	0	0	0	0	0				
2001	0	0	0	0	0	0	0	0				
2052	0	0	0	0	0	0	0	0				
2053	0	0	0	0	0	0	0	0				
2055	0	0	0	0	0	0	0	0				
2056	0	0	0	0	0	0	0	0				
2057	0	0	0	0	0	0	0	0				
2058	0	0	0	0	0	0	0	0				
2059	0	0	0	0	0	0	0	0				
2060	0	0	0	0	0	0	0	0				
2061	0	0	0	0	0	0	0	0				
2062	0	0	0	0	0	0	0	0				
2063	0	0	0	0	0	0	0	0				
2064	0	0	0	0	0	0	0	0				
2065	0	0	0	0	0	0	0	0				
2066	0	0	0	0	0	0	0	0				
2067	0	0	0	0	0	0	0	0				
2000	0	0	0	0	0	0	0	0				
2009	0	0	0	0	0	0	0	0				
2070	0	0	0	0	0	0	0	0				
2072	0	0	0	0	0	0	0	0				
2073	0	0	0	0	0	0	0	0				
2074	0	0	0	0	0	0	0	0				
2075	0	0	0	0	0	0	0	0				
2076	0	0	0	0	0	0	0	0				
2077	0	0	0	0	0	0	0	0				
2078	0	0	0	0	0	0	0	0				
2079	0	0	0	0	0	0	0	0				
2080	0	0	0	0	0	0	0	0				
2081	0	0	0	0	0	0	0	0				
2082	0	0	0	0	0	0	0	0				
2083	0	0	0	0	0	0	0	0				
2084	0	0	0	0	0	0	0	0				
2000	0	0	0	0	0	0	0	0				
2080	0	0	0	0	0	0	0	0				

2088	0	0	0	0	0	0	0	0
2089	0	0	0	0	0	0	0	0
2090	0	0	0	0	0	0	0	0
2091	0	0	0	0	0	0	0	0
2092	0	0	0	0	0	0	0	0
2093	0	0	0	0	0	0	0	0

Low 13 157 163 72 114 114 91.1 Interaction estimates for the Vincourer Landie - Area 22 Year (Transis)	Actual CH ₄	Yleids									-	
Interview Interview <t< th=""><th>L</th><th>113</th><th>157</th><th>143</th><th>72</th><th>114</th><th>114</th><th>91.1</th><th></th><th></th><th></th><th></th></t<>	L	113	157	143	72	114	114	91.1				
Network unstructure for the "Uncome" Landing - Sent 2 Ver Garding Down Torrest (Drms) (Drm	(m'Aonne)							•				
Ver Food Grade Paper Wood Total Paper Visat Vis		Methane g	eneration esti	mates for the	Vancouver	Landfill - Ar	ea 2E		Methane	Total LFG		
Image Image <th< th=""><th>Veet</th><th>Food</th><th>Garden</th><th>Paper</th><th>Wood</th><th>Textile</th><th>Napples</th><th>Total</th><th>Generation Potential</th><th>Flow Rate Estimated</th><th>Vert</th><th>LFG Generation Magnitude for the</th></th<>	Veet	Food	Garden	Paper	Wood	Textile	Napples	Total	Generation Potential	Flow Rate Estimated	Vert	LFG Generation Magnitude for the
98 17 18 18 10 40<	Tear	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(L _{in} m ³ /tonne)	(scfm)	теаг	Vancouver Landfill - Area 2E
1966 2.183 385 1067 90 227 66 4.223 88.0 176 1978 3.135 6.65 1.158 127 275 108 4.143 197 1979 1.155 6.57 1.158 127 275 108 4.153 197 1979 1.165 3.15 1.157 177 228 175 3.02 2000 1.57 3.07 1.58 2.52 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 <	199	4 372	59	158	11	34	10	643	94.9	128	1994	
199 3.05 0.05 1.140 2.10 2.10 0.140 1.105 199 199 1.35 2.5 1.55 2.55 2.5 1.55 2.55 2.55 <t< td=""><td>199</td><td>5 2,193</td><td>385</td><td>1,067</td><td>90</td><td>227</td><td>66</td><td>4,028</td><td>88.0</td><td>799</td><td>1995</td><td></td></t<>	199	5 2,193	385	1,067	90	227	66	4,028	88.0	799	1995	
158 47 158 210 323 44 (131) 282 199 199 103 1	199	6 3,065 7 2,174	526	1,746	22/ 218	3/2	109	6,144		1,219	1996	
120 30 140 20 31 88 3423 60 30 250 75 53 114 117 124 17 236 445 300 250 75 53 114 17 124 17 238 445 300 250 252 252 453 100 127 127 127 228 454 300 250 153 167 177 165 1127 228 300	199	8 1,532	457	1,518	210	323	94	4,134		820	1998	
100 138 130 138 137 131 134 135 134 134 135 135 134 134 135 135 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 <td>199</td> <td>9 <u>1,080</u> 0 761</td> <td>398 346</td> <td>1,415</td> <td>201</td> <td>301 281</td> <td>88</td> <td>3,483</td> <td></td> <td>691 592</td> <td>1999 2000</td> <td></td>	199	9 <u>1,080</u> 0 761	398 346	1,415	201	301 281	88	3,483		691 592	1999 2000	
2020 238 281 1.17 178 2244 71 2203 445 203 2020 282 172 600 168 195 68 1.488 237 203 2020 181 172 600 168 195 68 1.488 237 203 2020 68 133 680 148 117 60 1.372 225 203 2020 64 133 725 133 725 203 203 2021 18 726 132 132 132 213 203 203 2031 18 726 132 132 132 133 133 233 201 2031 18 63 131 133 338 652 1153 201 201 2031 18 631 118 133 158 1157 201 201 201 201 201 201 201 201 201 201 201 201 201 201	200	1 536	301	1,230	185	262	77	2,591		514	2001	
2020 188 197 169 168 122 421 1622 381 2006 2006 183 146 867 153 156 156 157 226 2007	200	2 378	261	1,147	179	244	71	2,280		452	2002	
200 132 172 930 198 188 88 1.448 322 203 200 64 131 854 166 112 120 225 203 200 64 131 854 166 151 64 1123 225 203 200 64 131 854 166 141 1073 233 204 204 201 116 724 641 1213 155 204 118 204 201 201 116 724 641 103 101 31 796 1155 201 201 2014 649 451 103 103 204 116 204	200	4 188	197	997	165	212	62	1,822		361	2004	
2027 66 100 100 110 <td>200</td> <td>5 132</td> <td>172</td> <td>930</td> <td>158</td> <td>198</td> <td>58</td> <td>1,648</td> <td></td> <td>327</td> <td>2005</td> <td></td>	200	5 132	172	930	158	198	58	1,648		327	2005	
2008 45 113 754 140 1251 225 2008 2008 2010 213 65 655 113 142 44 1,173 213 201 201 2010 15 74 616 113 142 44 1,173 213 201 201 2011 16 74 616 113 31 756 115 2013 115 2014 111 103 31 756 115 2014 111 103 2015 2015 2014 111 103 31 756 1137 2015 2014 111 103 2015	200	7 66	130	808	145	172	50	1,372		272	2007	
250 251 252 252 110 251 110 251 110 251 111 14 111 11	200	8 46	113	754	140	161	47	1,261		250	2008	
	200	0 23	90	655	130	140	44	1,02		230	2010	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	201	1 16	74	611	125	130	38	994		197	2011	
	201	2 11 3 8	64 56	570	120	121	35	922		183 170	2012 2013	
20154 42 442 442 462 106 98 29 741 147 2015 2017 2 22 411 98 85 22 644 112 2016 2017 2 22 411 98 85 22 644 112 2016 2016 1 22 334 46 86 22 664 116 2016 2016 1 24 346 86 22 661 116 2016 2021 1 12 346 86 22 852 917 3016 2022 0 16 283 80 60 18 487 97 2024 2023 0 14 244 77 56 16 427 78 2024 2024 0 12 248 74 52 118 400 77 78 2024 2025 0 110 226 711 48 14 3330 66 2026 2025 0 110 236 71 48 112 3377 61 2024 2024 0 7 186 63 40 12 3377 61 2026 2025 0 6 120 81 31 10 277 61 2026 2026 0 7 186 54 10 377 77 2024 2035 0 3	201	4 6	49	495	111	105	31	796		158	2014	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	201	5 4	42	452	105	98	29	741		147	2015	
2018 1 228 374 94 800 223 601 119 2018 2020 1 213 325 67 69 200 102 2016 102 2021 0 118 323 64 655 119 498 977 2021 2022 0 116 223 665 118 4257 997 2021 2023 0 112 2246 77 523 116 4207 786 116 4277 785 116 4207 786 2021 2021 2021 2021 2022 2021 2021 2021 2022 2021 2022 2021 2021 2021 2022 2021	201	7 2	32	401	98	85	25	644		128	2017	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	201	8 1	28	374	94	80	23	601		119	2018	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	201	9 1	24	349	90	69	22	524		104	2019	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	202	1 0	18	303	84	65	19	489		97	2021	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	202	2 0	16	283	80	60 56	18	457		91	2022	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	202	4 0	12	246	74	52	15	400		79	2024	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	202	5 0	10	229	71	49	14	374		74	2025	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	202	7 0	8	199	66	40	13	328		65	2020	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	202	8 0	7	186	63	40	12	307		61	2028	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	202	9 0	5	173	61 58	37	11	288		57	2029 2030	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	203	1 0	5	151	56	32	9	253		50	2031	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	203	2 0	4	140	54	30	9	237		47	2032	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	203	4 Ö	3	122	50	26	8	208		41	2034	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	203	5 0	3	114	48	24	7	195		39	2035	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	203	7 0	2	99	44	21	6	172		34	2037	i
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	203	8 0	2	92	42	20	6	162		32	2038	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	203	0 0	1	80	41 39	10	5	143		28	2039	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	204	1 0	1	75	38	16	5	134		27	2041	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	204	2 0 3 0	1	70 65	36	15	4	126		25 23	2042	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	204	4 0	1	61	33	13	4	111		22	2044	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	204	5 0	1	57	32	12	4	105		21	2045	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	204	7 0	0	49	30	10	3	93		18	2047	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	204	8 0	0	46	28	10	3	87		17	2048	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	204		0	40	26	8	2	77		15	2049	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	205	1 0	0	37	25	8	2	73		14	2051	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	205	3 0	0	30	24	7	2	65		14	2052	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	205	4 0	0	30	22	6	2	61		12	2054	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	205	5 0 6 0	0	28	21	6	2	57		11	2055	
2058 0 0 23 19 5 1 48 10 2058 2059 0 0 21 18 5 1 45 99 2059 2059 2059 2059 2059 2059 2059 2050 2051 2052 2052 2052 2052 2053 0 0 16 16 3 1 356 77 2053 2054	205	7 0	0	24	20	5	2	51		10	2057	
2005 0 21 10 51 1 451 91 2059 2060 0 0 20 18 4 1 43 91 2060 2061 0 0 18 17 4 1 40 81 2061 2062 0 0 17 16 4 1 38 81 2062 2063 0 0 16 16 3 1 364 77 2063 2064 0 0 15 15 3 1 324 61 2065 0 0 14 14 3 1 321 61 2065	205	8 0	0	23	19	5	1	48		10	2058	
2061 0 18 17 4 1 40 8 2061 2062 0 0 17 16 4 1 38 8 2062 2063 0 0 16 16 3 1 36 7 2063 2064 0 0 15 15 3 1 34 7 2064 2065 0 0 14 14 3 1 32 6 2065	205	0 0	0	21	18	5	1	45		9	2059	
2062 0 0 17 16 4 1 38 8 2062 2063 0 0 16 16 3 1 36 7 2063 2064 0 0 15 15 3 1 34 7 2064 2065 0 0 14 14 3 1 32 6 2065	206	1 0	0	18	17	4	1	40		8	2061	
2064 0 0 15 15 3 1 34 7 2064 2065 0 0 14 14 3 1 32 6 2065	206	2 0 3 0	0	17	16	4	1	38		8	2062	
2065 0 0 14 14 3 1 32 6 2065	206	4 0	Ö	15	15	3	1	34		7	2064	
2065 0 0 13 14 3 1 30 6 2065	206	5 0	0	14	14	3	1	32		6	2065	

Methane Generation Estimates from the Vancouver Landfill - Area 2E

	Methane generation estimates for the Vancouver Landfill - Area 2E							Methane	Total LFG		
Maria	Food	Garden	Paper	Wood	Textile	Napples	Total	Generation Potential	Flow Rate Ectimated	Maria	LEG Generation Magnitude for the
Year	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(L., m ² /tonne)	(sofm)	Year	Vancouver Landfill - Area 2E
							. /				
2067	0	0	12	13	3	1	29		5	2057	
2069	0	0	11	12	2	1	26		5	2069	
2070	0	0	10	12	2	1	24		5	2070	
2071	0	0	9	11	2	1	23		5	2071	
2072	0	0	9	11	2	1	22		4	2072	
2074	Ő	Ő	ž	10	2	ŏ	20		4	2074	
2075	0	0	7	10	1	0	18		4	2075	
2076	0	0	6	9	1	0	17		3	2076	
2078	0	0	6	9	1	Ö	16		3	2078	
2079	0	0	5	8	1	0	15		3	2079	
2080	0	0	5	8	1	0	14		3	2080	
2082	0	0	4	7	1	0	13		3	2082	
2083	Ō	0	4	7	1	Ō	12		2	2083	
2084	0	0	4	7	1	0	11		2	2084	
2085	0	0	3	6	1	0	10		2	2085	
2087	ŏ	ŏ	3	6	1	ŏ	10		2	2087	
2088	0	0	3	6	1	0	9		2	2088	
2089	0	0	3	6	1	0	9		2	2089	
2090	0	0	2	5	0	0	8		2	2090	
2092	0	0	2	5	0	0	8		2	2092	
2093	0	0	2	5	0	0	7		1	2093	
2094	0	0	2	5	0	0	7		1	2094	
2050	0	0	2	4	ö	ŏ	6		1	2096	
2097	0	0	1	4	0	0	6		1	2097	
2098	0	0	1	4	0	0	6		1	2098	
2099	0	0	1	4		Ö	5		1	2109	
2101	0	0	1	3	0	0	5		1	2101	
2102	0	0	1	3	0	0	5		1	2102	
2103	0	0	1	3	0	0	4		1	2103	
2105	0	0	1	3	0	0	4		1	2105	
2106	0	0	1	3	0	0	4		1	2106	
210/	0	0	1	3	0	0	4		1	2107	
2109	ŏ	ŏ	1	2	ŏ	ŏ	3		1	2109	
2110	0	0	1	2	0	0	3		1	2110	
2111	0	0	1	2	0	0	3		1	2111	
2112	0	0	ö	2	ö	ö	3		1	2112	
2114	0	0	0	2	0	0	3		1	2114	
2115	0	0	0	2	0	0	2		0	2115	
2110	0	0	0	2	0	0	2		0	2110	
2118	0	0	0	2	0	0	2		0	2118	
2119	0	0	0	2	0	0	2		0	2119	
2120	0	0	0	2	0	0	2		0	2120	
2122	0	0	0	1	ő	0	2		0	2122	
2123	0	0	0	1	0	0	2		0	2123	
2124	0	0	0	1	0	0	2		0	2124	
2125	0	0	ö	1		ö	2		0	2125	
2127	0	0	0	1	0	0	1		0	2127	
2128	0	0	0	1	0	0	1		0	2128	
2129	0	0	0	1	0	0	1		0	2129	
2131	0	0	0	1	0	0	1		0	2131	
2132	0	0	0	1	0	0	1		0	2132	
2133	0	0	0	1	0	0	1		0	2133	
2135	0	0	Ö	1	ŏ	ŏ	1		0 0	2135	
2136	0	0	0	1	0	0	1		0	2136	
2137	0	0	0	1	0	0	1		<u> </u>	2137	
2130	0	0	0	1	0	0	1		0	2130	
2140	0	0	0	1	0	0	1		0	2140	
2141	0	0	0	1	0	0	1		0	2141	
2142	0	0	0	1	0	0	1		0	2142	
2144	0	Ő	ŏ	1	Ő	ŏ	1		0	2144	

Vancouver Landfill - Area 2E

Landfill Gas Generation Analysis GRAPHICAL RESULTS

Average Deposited Waste Composition

Annual MSW Deposition Rates and Total In Place

B.3 iModel-110© Modeling Results – Area 3

Landfill's Site-Specific Information

Enter Site's Name/ ID: Vancouver Landfill - Area 3

Year Filling Started:

1996 Date OK!

Thesis References and Par	ameters	Food waste	Garden waste	Paper &Rubber	Wood	Textile	Nappies
		%	%	%	%	%	%
Table 3.1 of Thesis	DOC _{dry}	0.38	0.49	0.44	0.5	0.3	0.3
Table 2.8 of Thesis	Moisture	50%	45%	20%	18%	14%	14%
Degradability Factor	$\mathbf{f}_{\mathbf{dg}}$	0.84	0.66	0.46	0.2	0.5	0.5
Climate Factor	f _{cl}	1	1	1	1	1	1
Depth Factor	$\mathbf{f}_{\mathbf{dp}}$	0.9	0.9	0.9	0.9	0.9	0.9
Storage Factor	\mathbf{f}_{st}	0.8	1	1	1	1	1
$\mathbf{f} = \mathbf{f}_{dg} \mathbf{x} \mathbf{f}_{cl} \mathbf{x} \mathbf{f}_{dp} \mathbf{x} \mathbf{f}_{st}$	∑Discount	0.60	0.59	0.41	0.18	0.45	0.45
Theoretical Methane Yield	L o	113	158	143	73	114	114

Dry Degradable Organic Carbon Content and Decay Rates for Different Waste Components

Wasta Components	DOC _{dry}	k
waste components	(kg in 1kg dry)	year ⁻¹
Food waste	0.38	0.35
Garden	0.49	0.14
Paper	0.44	0.07
Wood and straw	0.50	0.04
Textiles	0.30	0.07
Disposable nappies	0.30	0.07

Thesis References: Table 3.1 Table 3.15

Methane Characteristics, Generation Calibration Factor & Delay Time

Parameters	Values & Units
CH₄ Density:	0.6775 kg/m ³
CH₄ Fraction:	0.5 m ³ /m ³
CH₄/C (16/12):	1.333 kg/kg
Enter (CF _G) here:	1
Delay Time (T _d):	4 Months

Table 3.16

		Overall To	nnages Depo	sited at the	Vancouver L	andfill - Area.	3		
Year	Food	Garden	Paper	Wood	Textile	Nappies	Inerts	Total	In Place
	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
1996	78,755	22,059	129,102	101,264	34,515	10,085	128,330	504,110	504,110
1997	70,874	19,852	116,182	60,601	31,061	9,076	102,404	410,050	914,160
1998	68,711	19,246	112,638	96,963	30,114	8,799	115,656	452,128	1,366,288
1999	-	-	-	-	-	-	-	-	1.366.288
2000	_	_	_	_	_	_	_	-	1,366,288
2000				_			_		1 366 288
2001	_	_	-	-	_	_	_	_	1,300,200
2002	-	-			-	-	-	-	1,300,200
2003	-	-	-	-	-	-	-	-	1,300,200
2004	-	-	-	-	-	-	-	-	1,366,288
2005	-	-	-	-	-	-	-	-	1,366,288
2006	-	-	-	-	-	-	-	-	1,366,288
2007	-	-	-	-	-	-	-	-	1,366,288
2008	-	-	-	-	-	-	-	-	1,366,288
2009	-	-	-	-	-	-	-	-	1,366,288
2010	-	-	-	-	-	-	-	-	1,366.288
2011	-	-	-	-	_	-	-	-	1.366.288
2012	-	-		-	-	_	-		1 366 288
2012		_							1 366 288
2013		-		-	-	-	-	-	1,300,200
2014	-	-	-	-	-	-	-	-	1,300,200
2015	-	-	-	-	-	-	-	-	1,366,288
2016	-	-	-	-	-	-	-	-	1,366,288
2017	-	-	-	-	-	-	-	-	1,366,288
2018	-	-	-	-	-	-	-	-	1,366,288
2019	-	-	-	-	-	-	-	-	1,366,288
2020	-	-	-	-	-	-	-	-	1,366,288
2021	-	-	-	-	-	-	-	-	1,366,288
2022	-	-	-	-	-	-	-	-	1.366.288
2023	_	-	_	-	_	_	_	-	1.366.288
2024		_	-	-	-	_	-		1 366 288
2024								_	1,000,200
2023		-		-		-	-		1,300,200
2020		-		-	-	-	-	-	1,300,200
2027	-	-	-	-	-	-	-	-	1,300,200
2028	-	-	-	-	-	-	-	-	1,366,288
2029	-	-	-	-	-	-	-	-	1,366,288
2030	-	-	-	-	-	-	-	-	1,366,288
2031	-	-	-	-	-	-	-	-	1,366,288
2032	-	-	-	-	-	-	-	-	1,366,288
2033	-	-	-	-	-	-	-	-	1,366,288
2034	-	-	-	-	-	-	-	-	1,366,288
2035	-	-	-	-	-	-	-	-	1,366,288
2036	-	-	-	-	-	-	-	-	1,366,288
2037	-	-	-	-	-	-	-	-	1,366.288
2038	-	_	-	-	_	_	_	-	1.366.288
2030		_	-	-	-		-		1 366 288
2000				_		_		_	1,000,200
2040		_		-	_	_	_	-	1,300,200
2041	-	-	-	-	-	-	-	-	1,300,200
2042	-	-	-	-	-	-	-	-	1,300,288
2043	-	-	-	-	-	-	-		1,300,288
2044	-	-	-	-	-	-	-	-	1,366,288
2045	-	-	-	-	-	-	-	-	1,366,288
2046		-		-	_	-	-	-	1,366,288
2047	-	-	-	-	-	-	-	-	1,366,288
2048	-	-	-	-	-	-	-	-	1,366,288
2049	-	-	-	-	-	-	-	-	1,366,288
2050	-	-	-	-	-	-	-	-	1.366.288
2051	-	_	-	-	_	_	_	-	1.366.288
2052		_		-			_		1 366 288

		Overall To	nnages Depo	osited at the	Vancouver L	.andfill - Area	3		
Year	Food	Garden	Paper	Wood	Textile	Nappies	Inerts	Total	In Place
	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
2053	-	-	-	-	-	-	-	-	1,366,288
2054	-	-	-	-	-	-	-	-	1,366,288
2055	-	-	-	-	-	-	-	-	1,366,288
2056	-	-	-	-	-	-	-	-	1,366,288
2057	-	-	-	-	-	-	-	-	1,300,288
2058	-	-	-	-	-	-	-	-	1,300,288
2059		-	-	-	-				1,300,200
2000									1,366,288
2001	-	-	-	-	-	-	-	-	1,366,288
2063	-	-	-	-	-	-	-	-	1.366.288
2064	-	-	-	-	-	-	-	-	1,366,288
2065	-	-	-	-	-	-	-	-	1,366,288
2066	-	-	-	-	-	-	-	-	1,366,288
2067	-	-	-	-	-	-	-	-	1,366,288
2068	-	-	-	-	-	-	-	-	1,366,288
2069	-	-	-	-	-	-	-	-	1,366,288
2070	-	-	-	-	-	-	-	-	1,366,288
2071	-	-	-	-	-	-	-	-	1,366,288
2072	-	-	-	-	-	-	-	-	1,366,288
2073	-	-	-	-	-	-	-	-	1,366,288
2074	-	-	-	-	-	-	-	-	1,366,288
2075	-	-	-	-	-	-	-	-	1,366,288
2076	-	-	-	-	-	-	-	-	1,366,288
2077	-	-	-	-	-	-	-	-	1,366,288
2078	-	-	-	-	-	-	-	-	1,300,288
2079	-	-	-	-	-	-	-	-	1,300,200
2080	-	-	-	-	-	-		-	1,300,200
2001									1,300,200
2083	-	_	_	_	-	_	-		1,366,288
2084	-	-	-	-	-	-	-	-	1.366.288
2085	-	-	-	-	-	-	-	-	1.366.288
2086	-	-	-	-	-	-	-	-	1,366,288
2087	-	-	-	-	-	-	-	-	1,366,288
2088	-	-	-	_	-	-	-	-	1,366,288
2089	-	-	-	-	-	-	-	-	1,366,288
2090	-	-	-	-	-	-	-	-	1,366,288
2091	-	-	-	-	-	-	-	-	1,366,288
2092	-	-	-	-	-	-	-	-	1,366,288
2093	-	-	-	-		-	-	-	1,366,288
2094	-	-	-	-	-	-	-	-	1,366,288
2095	-	-	-	-	-	-	-	-	1,366,288
2096	-	-	-	-	-	-	-	-	1,366,288
2097	-	-	-	-	-	-	-	-	1,366,288
2098	-	-	-	-	-	-	-	-	1,366,288
2099	-	-	-	-	-	-	-	-	1,366,288
2100	-	-	-	-	-	-	-	-	1,306,288
2101	-	-	-	-	-	-	-	-	1,300,288
2102	-	-	-	-	-	-	-		1,300,200
2103	-	-	-	-	-	-	-	-	1,300,200
2104	-	-	-	-	-	-	-	-	1,300,200
2103		-	-	-	-	-	-	-	1 366 289
2100	-	-	-	-	-	-	-		1.366 288
2107	-	-	-	-	-	-	-		1,366,288
2109	-	-	-	-	-	-	-	-	1.366.288

ĺ		Overall To	nnages Depo	sited at the	Vancouver L	.andfill - Area	3		
Year	Food	Garden	Paper	Wood	Textile	Nappies	Inerts	Total	In Place
	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
2110	-	-	-	-	-	-	-	-	1,366,288
2111	-	-	-	-	-	-	-	-	1,366,288
2112	-	-	-	-	-	-	-	-	1,366,288
2113	-	-	-	-	-	-	-	-	1,366,288
2114	-	-	-	-	-	-	-	-	1,366,288
2115	-	-	-	-	-	-	-	-	1,366,288
2116	-	-	-	-	-	-	-	-	1,366,288
2117	-	-	-	-	-	-	-	-	1,366,288
2118	-	-	-	-	-	-	-	-	1,366,288
2119	-	-	-	-	-	-	-	-	1,366,288
2120	-	-	-	-	-	-	-	-	1,366,288
2121	-	-	-	-	-	-	-	-	1,366,288
2122	-	-	-	-	-	-	-	-	1,366,288
2123	-	-	-	-	-	-	-	-	1,366,288
2124	-	-	-	-	-	-	-	-	1,366,288
2125	-	-	-	-	-	-	-	-	1,366,288
2126	-	-	-	-	-	-	-	-	1,366,288
2127	-	-	-	-	-	-	-	-	1,366,288
2128	-	-	-	-	-	-	-	-	1,366,288
2129	-	-	-	-	-	-	-	-	1,366,288
2130	-	-	-	-	-	-	-	-	1,366,288
2131	-	-	-	-	-	-	-	-	1,366,288
2132	-	-	-	-	-	-	-	-	1,366,288
2133	-	-	-	-	-	-	-	-	1,366,288
2134	-	-	-	-	-	-	-	-	1,366,288
2135	-	-	-	-	-	-	-	-	1,366,288
2136	-	-	-	-	-	-	-	-	1,366,288
2137	-	-	-	-	-	-	-	-	1,366,288
2138	-	-	-	-	-	-	-	-	1,366,288
2139	-	-	-	-	-	-	-	-	1,366,288
2140	-	-	-	-	-	-	-	-	1,366,288
2141	-	-	-	-	-	-	-	-	1,366,288
2142	-	-	-	-	-	-	-	-	1,366,288
2143	-	-	-	-	-	-	-	-	1,366,288
2144	-	-	-	-	-	-	-	-	1,366,288
2145	-	-	-	-	-	-	-	-	1,366,288
2146	-	-	-	-	-	-	-	-	1,366,288

Dry Tonnages Deposited at the Vancouver Landfill - Area 3

	Food	Garden	Paper	Wood	Textile	Nappies	Inert	Deposited MSW
Moisture	50%	45%	20%	18%	14%	14%	10%	22%
Solid	50%	55%	80%	82%	86%	86%	90%	78%

	Dry Amounts Historically Deposited at the Vancouver Landfill - Area 3												
Year	Food	Garden	Paper	Wood	Textile	Nappies	Inert	Deposited MSW					
	Gg	Gg	Gg	Gg	Gg	Gg	Gg	Gg					
1996	39	12	103	83	30	9	115	392					
1997	35	11	93	50	27	8	92	316					
1998	34	11	90	80	26	8	104	352					
1999	0	0	0	0	0	0	0	0					
2000	0	0	0	0	0	0	0	0					
2001	0	0	0	0	0	0	0	0					
2002	0	0	0	0	0	0	0	0					
2003	0	0	0	0	0	0	0	0					
2004	0	0	0	0	0	0	0	0					
2005	0	0	0	0	0	0	0	0					
2000	0	0	0	0	0	0	0	0					
2007	0	0	0	0	0	0	0	0					
2000	0	0	0	0	0	0	0	0					
2003	0	0	0	0	0	0	0	0					
2010	0	0	0	0	0	0	0	0					
2012	0	0	0	0	0	0	0	0					
2013	0	0	0	0	0	0	0	0					
2014	0	0	0	0	0	0	0	0					
2015	0	0	0	0	0	0	0	0					
2016	0	0	0	0	0	0	0	0					
2017	0	0	0	0	0	0	0	0					
2018	0	0	0	0	0	0	0	0					
2019	0	0	0	0	0	0	0	0					
2020	0	0	0	0	0	0	0	0					
2021	0	0	0	0	0	0	0	0					
2022	0	0	0	0	0	0	0	0					
2023	0	0	0	0	0	0	0	0					
2024	0	0	0	0	0	0	0	0					
2025	0	0	0	0	0	0	0	0					
2026	0	0	0	0	0	0	0	0					
2027	0	0	0	0	0	0	0	0					
2028	0	0	0	0	0	0	0	0					
2029	0	0	0	0	0	0	0	0					
2030	0	0	0	0	0	0	0	0					
2031	0	0	0	0	0	0	0	0					
2032	0	0	0	0	0	0	0	0					
2033	0	0	0	0	0	0	0	0					
2034	0	0	0	0	0	0	0	0					
2035	0	0	0	0	0	0	0	0					
2037	0	0	0	0	0	0	0	0					
2038	0	0	0	0	0	0	0	0					
2039	0	0	0	0	0	0	0	0					
2040	0	0	0	0	0	0	0	0					
2041	0	0	0	0	0	0	0	0					

[Dry Amounts Historically Deposited at the Vancouver Landfill - Area 3											
Year	Food	Garden	Paper	Wood	Textile	Nappies	Inert	Deposited MSW				
	Gg	Gg	Gg	Gg	Gg	Gg	Gg	Gg				
2043	0	0	0	0	0	0	0	0				
2044	0	0	0	0	0	0	0	0				
2045	0	0	0	0	0	0	0	0				
2046	0	0	0	0	0	0	0	0				
2047	0	0	0	0	0	0	0	0				
2048	0	0	0	0	0	0	0	0				
2049	0	0	0	0	0	0	0	0				
2050	0	0	0	0	0	0	0	0				
2051	0	0	0	0	0	0	0	0				
2052	0	0	0	0	0	0	0	0				
2053	0	0	0	0	0	0	0	0				
2054	0	0	0	0	0	0	0	0				
2055	0	0	0	0	0	0	0	0				
2056	0	0	0	0	0	0	0	0				
2057	0	0	0	0	0	0	0	0				
2058	0	0	0	0	0	0	0	0				
2059	0	0	0	0	0	0	0	0				
2060	0	0	0	0	0	0	0	0				
2001	0	0	0	0	0	0	0	0				
2002	0	0	0	0	0	0	0	0				
2003	0	0	0	0	0	0	0	0				
2004	0	0	0	0	0	0	0	0				
2005	0	0	0	0	0	0	0	0				
2000	0	0	0	0	0	0	0	0				
2068	0	0	0	0	0	0	0	0				
2069	0	0	0	0	0	0	0	0				
2070	0	0	0	0	0	0	0	0				
2071	0	0	0	0	0	0	0	0				
2072	0	0	0	0	0	0	0	0				
2073	0	0	0	0	0	0	0	0				
2074	0	0	0	0	0	0	0	0				
2075	0	0	0	0	0	0	0	0				
2076	0	0	0	0	0	0	0	0				
2077	0	0	0	0	0	0	0	0				
2078	0	0	0	0	0	0	0	0				
2079	0	0	0	0	0	0	0	0				
2080	0	0	0	0	0	0	0	0				
2081	0	0	0	0	0	0	0	0				
2082	0	0	0	0	0	0	0	0				
2083	0	0	0	0	0	0	0	0				
2084	0	0	0	0	0	0	0	0				
2085	0	0	0	0	0	0	0	0				
2086	0	0	0	0	0	0	0	0				
2087	0	0	0	0	0	0	0	0				
2088	0	0	0	0	0	0	0	0				
2089	0	0	0	0	0	0	0	0				

	Dry Am	ounts Histo	rically Depo	sited at the	Vancouver	Landfill - Ar	ea 3	
Year	Food	Garden	Paper	Wood	Textile	Nappies	Inert	Deposited MSW
	Gg	Gg	Gg	Gg	Gg	Gg	Gg	Gg
2090	0	0	0	0	0	0	0	0
2091	0	0	0	0	0	0	0	0
2092	0	0	0	0	0	0	0	0
2093	0	0	0	0	0	0	0	0
2094	0	0	0	0	0	0	0	0
2095	0	0	0	0	0	0	0	0

۸	ctual CH ₄ Y	Telds										
	L _o	113	157	143	72	114	114	86.7				
	in sonner											
		Methane ge	eneration esti	mates for the	Vancouver	Landfill - Ar	ea 3		Methane Generation	Total LFG Flow Rate	<u> </u>	
	Year	Food	Garden	Paper	Wood	Textile	Napples	Total	Potential	Estimated	Year	LFG Generation Magnitude for the
		(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(L _c , m ² /tonne)	(scfm)		Vancouver Landfill - Area 3
	1996	342	54	145	33	31	9	615	86.0	122	1996	
	1997	2,995	349 579	1.663	214	206	103	3,787	89.7	/51	1997	
	1999	3,367	724	2,163	477	461	135	7,326		1,453	1999	
	2000	2,373	630 547	2,017	458	430	126	6,032		1,196	2000	
	2001	1,072	476	1,753	440	373	109	4,313		855	2001	
	2003	830	414	1,635	406	348	102	3,735		741	2003	
	2004	412	360	1,524	390	325	95	3,279		578	2004	
	2006	291	272	1,325	360	282	82	2,612		518	2006	
	2007	205	236	1,236	346	263	77	2,363		469	2007	
	2000	102	179	1,132	319	245	67	1,970		391	2000	
	2010	72	155	1,002	307	213	62	1,811		359	2010	
	2011	50	135	934	295	199	58	1,671		331	2011	
	2012	25	102	812	200	173	51	1,435		285	2012	
	2014	18	89	757	262	161	47	1,333		264	2014	
	2015	12	67	705	251	150	44	1,241		245	2015	-
	2017	6	58	614	232	131	38	1,079		214	2017	
	2018	4	51	572	223	122	36	1,007		200	2018	
	2019	2	44	497	214	114	33	941		107	2019	-
	2021	2	33	464	198	99	29	824		163	2021	
	2022	1	29	432	190	92	27	771		153	2022	
	2023	1	23	376	175	80	23	677		143	2023	
	2025	0	19	350	168	75	22	635		126	2025	
	2026	0	17	327	162	70	20	595 559		118	2026	
	2028	0	12	284	149	61	18	524		104	2028	
	2029	0	11	265	144	56	16	492		98	2029	
	2030	0	8	24/	130	49	15	462		92	2030	
	2032	0	7	215	127	46	13	408		81	2032	
	2033	0	6	200	122	43	12	384		76	2033	
	2034	0	5	174	113	37	11	340		67	2034	i i
	2036	0	4	162	108	35	10	320		63	2036	
	2037	0	4	151	104	32	9	283		56	2037	
	2039	0	3	132	96	28	8	267		53	2039	1
	2040	0	2	123	92	26	8	251		50	2040	
	2041	0	2	107	85	23	7	223		44	2041	i i
	2043	0	2	99	82	21	6	210		42	2043	
	2044	0	1	93	79	20	5	198		39	2044 2045	
	2046	0	1	81	73	17	5	176		35	2046	
	2047	0	1	75	70	16	5	167		33	2047	
	2040	0	1	65	64	14	4	148		29	2048	1
	2050	0	1	61	62	13	4	140		28	2050	
	2051	0	0	57	60 57	12	4	132		26	2051	
	2053	0	0	49	55	11	3	118		23	2053	
	2054	0	0	46	53	10	3	112		22	2054	
	2055	0	0	43	49	9	2	100		21	2055	
	2057	0	0	37	47	8	2	95		19	2057	
	2058	0	0	35	45	7	2	90		18	2058	
	2059	0	0	32	43	6	2	80		16	2059	
	2061	0	0	28	40	6	2	76		15	2061	
	2062	0	0	26	38	6	2	72 68		14	2062	
	2064	0	0	23	35	5	1	65		13	2064	i de la companya de la compa
	2065	0	0	21	34	5	1	61		12	2065	
	2066	0	0	20	33	4	1	58		12	2066	
	2068	0	0	17	30	4	1	52		10	2068	i de la companya de la

Methane Generation Estimates from the Vancouver Landfill - Area 3

	Methane generation estimates for the Vancouver Landfill - Area 3							Methane	Total LFG		
	Food	Garden	Paper	Wood	Textile	Napples	Total	Generation Potential	Flow Rate Estimated		LEG Generation Magnitude for the
Year	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(L _p , m ² /tonne)	(scfm)	Year	Vancouver Landfill - Area 3
2050			45	20	,,		50		10	2060	
2009	0	0	10	29	3	1	47		9	2009	
2071	ő	0	14	27	3	1	45		9	2071	
2072	0	0	13	26	3	1	42		8	2072	
2073	0	0	12	25	3	1	40		8	2073	
2074	0	0	11	24	2	1	38		8	2074	
2076	0	0	10	23	2	1	35		7	2075	
2077	0	0	9	21	2	1	33		7	2077	
2078	0	0	9	20	2	1	31		6	2078	
2079	0	0	8	19	2	0	30		6	2079	
2000	0	0	7	18	1	0	20		5	2081	
2082	0	0	6	17	1	0	26		5	2082	
2083	0	0	6	17	1	0	24		5	2083	
2084	0	0	6	16	1	0	23		5	2084	
2005	0	0	5	15	1	0	21		4	2085	
2087	0	0	5	14	1	0	20		4	2087	
2088	0	0	4	14	1	0	19		4	2088	
2089	0	0	4	13	1	0	18		4	2089	
2090	0	0	4	13	1	0	1/		3	2090	
2092	0	0	3	12	1	0	16		3	2092	
2093	0	0	3	11	1	0	15		3	2093	
2094	0	0	3	11	1	0	14		3	2094	
2095	0	0	3	10	1	0	14		3	2095	
2097	0	0	2	9	0	0	12		2	2097	
2098	0	0	2	9	0	0	12		2	2098	
2099	0	0	2	9	0	0	11		2	2099	
2100	0	0	2	8	0	0	11		2	2100	
2101	0	0	2	8	0	0	10		2	2101	
2103	0	0	1	7	ō	Ö	9		2	2103	
2104	0	0	1	7	0	0	9		2	2104	
2105	0	0	1	7	0	0	9		2	2105	
2100	0	0	1	6	0	0	0		2	2100	
2108	0	0	1	6	0	0	7		1	2108	
2109	0	0	1	6	0	0	7		1	2109	
2110	0	0	1	6	0	0	7		1	2110	
2112	0	0	1	5	0	0	6		1	2112	
2113	0	0	1	5	0	0	6		1	2113	
2114	0	0	1	5	0	0	6		1	2114	
2115	0	0	1	5	0	0	5		1	2115	
2110	0	0	1	4	0	0	5			2110	
2118	0	0	1	4	0	0	5		1	2118	
2119	0	0	0	4	0	0	5		1	2119	
2120	0	0	0	4	0	0	4		1	2120	
2121	0	0	0	4	0	0	4		1	2121	
2122	0	0	0	3	0	0	4		1	2122	
2124	0	0	0	3	0	0	4		1	2124	
2125	0	0	0	3	0	0	3		1	2125	
2126	0	0	0	3	0	0	3		1	2126	
2127	0	0	0	3	0	0	3			2127	
2120	0	0	0	3	0	0	3		1	2129	
2130	0	0	0	3	0	0	3		1	2130	
2131	0	0	0	2	0	0	3		1	2131	
2132	0	0	0	2	0	0	3		1	2132	
2133	0	0	0	2	0	0	2		0	2134	
2135	0	0	0	2	0	0	2		0	2135	
2136	0	0	0	2	0	0	2		0	2136	
2137	0	0	0	2	0	0	2		0	2137	
2130	0	0	0	2	0	0	2		0	2130	
2140	0	0	0	2	0	0	2		0	2140	
2141	0	0	0	2	0	0	2		0	2141	
2142	0	0	0	2	0	0	2		0	2142	
2143	0	0	0	2	0	0	2		0	2143	
2145	0	0	0	1	0	0	1		0	2145	
2146	0	0	0	1	0	0	1		0	2146	

Vancouver Landfill - Area 3

Landfill Gas Generation Analysis GRAPHICAL RESULTS

Average Deposited Waste Composition

Annual MSW Deposition Rates and Total In Place

Vancouver Landfill - Area 3

Landfill Gas Generation Analysis GRAPHICAL RESULTS

B.4 iModel-110[©] Modeling Results – Phase 1

Landfill's Site-Specific Information

Enter Site's Name/ ID: Vancouver Landfill - Phase 1

Year Filling Started:

1999 Date OK!

Thesis References and Par	ameters	Food waste	Garden waste	Paper &Rubber	Wood	Textile	Nappies
		%	%	%	%	%	%
Table 3.1 of Thesis	DOC _{dry}	0.38	0.49	0.44	0.5	0.3	0.3
Table 2.8 of Thesis	Moisture	50%	45%	20%	18%	14%	14%
Degradability Factor	$\mathbf{f}_{\mathbf{dg}}$	0.84	0.66	0.46	0.2	0.5	0.5
Climate Factor	f _{cl}	1	1	1	1	1	1
Depth Factor	$\mathbf{f}_{\mathbf{dp}}$	0.9	0.9	0.9	0.9	0.9	0.9
Storage Factor	\mathbf{f}_{st}	0.8	1	1	1	1	1
$\mathbf{f} = \mathbf{f}_{dg} \mathbf{x} \mathbf{f}_{cl} \mathbf{x} \mathbf{f}_{dp} \mathbf{x} \mathbf{f}_{st}$	0.60	0.59	0.41	0.18	0.45	0.45	
Theoretical Methane Yield	L o	113	158	143	73	114	114

Dry Degradable Organic Carbon Content and Decay Rates for Different Waste Components

Wasta Components	DOC _{dry}	k
waste components	(kg in 1kg dry)	year ⁻¹
Food waste	0.38	0.35
Garden	0.49	0.14
Paper	0.44	0.07
Wood and straw	0.50	0.04
Textiles	0.30	0.07
Disposable nappies	0.30	0.07

Thesis References: Table 3.1 Table 3.15

Methane Characteristics, Generation Calibration Factor & Delay Time

Parameters	Values & Units
CH₄ Density:	0.6775 kg/m ³
CH₄ Fraction:	0.5 m ³ /m ³
CH₄/C (16/12):	1.333 kg/kg
Enter (CF _G) here:	1
Delay Time (T _d):	4 Months

Table 3.16

		Overall To	nnages Depo	sited at the	Vancouver L	andfill - Phas	e 1		
Year	Food	Garden	Paper	Wood	Textile	Nappies	Inerts	Total	In Place
	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
1999	72,717	20,368	119,204	106,177	31,869	9,312	123,924	483,572	483,572
2000	60,520	16,952	99,209	126,312	26,524	7,750	119,400	456,666	940,237
2001	63,516	38,839	58,872	95,664	48,971	8,136	140,382	454,381	1,394,618
2002	64,307	39,322	59,605	146,372	49,580	8,237	163,351	530,775	1,925,393
2003	73,819	45,139	68,422	129,289	56,914	9,456	170,913	553,951	2,479,344
2004	104,033	19,839	107,614	138,337	45,049	8,855	199,293	623,019	3,102,363
2005	117,325	22,374	121,363	148,472	50,804	9,986	221,524	691,847	3,794,211
2006	89,073	16,986	92,138	105,330	38,571	7,582	165,014	514,692	4,308,903
2007	-	-	-	-	-	-	-	-	4,308,903
2008	31,120	4,570	34,238	35,252	6,186	2,639	47,994	162,000	4,470,903
2009	-	-	-	-	-	-	-	-	4,470,903
2010	-	-	-	-	-	-	-	-	4,470,903
2011	-	-	-	-	-	-	-	-	4,470,903
2012	-	-	-	-	-	-	-	-	4,470,903
2013	-	-	-	-	-	-	-	-	4,470,903
2014	-	-	-	-	-	-	-	-	4,470,903
2015	-	-	-	-	-	-	-	-	4,470,903
2016	-	-	-	-	-	-	-	-	4,470,903
2017	-	-	-	-	-	-	-	-	4,470,903
2018	-	-	-	-	-	-	-	-	4,470,903
2019	-	-	-	-	-	-	-	-	4,470,903
2020	-	-	-	-	-	-	-	-	4,470,903
2021	-	-	-	-	-	-	-	-	4,470,903
2022	-	-	-	-	-	-	-	-	4,470,903
2023	-	-	-	-	-	-	-	-	4,470,903
2024	-	-	-	-	-	-	-	-	4,470,903
2025	-	-	-	-	-	-	-	-	4,470,903
2026	-	-	-	-	-	-	-	-	4,470,903
2027	-	-	-	-	-	-	-	-	4,470,903
2028	-	-	-	-	-	-	-	-	4,470,903
2029	-	-	-	-	-	-	-	-	4,470,903
2030	-	-	-	-	-	-	-	-	4,470,903
2031	-	-	-	-	-	-	-	-	4,470,903
2032	-	-	-	-	-	-	-	-	4,470,903
2033	-	-	-	-	-	-	-	-	4,470,903
2034	-	-	-	-	-	-	-	-	4,470,903
2035	-	-	-	-	-	-	-	-	4,470,903
2036	-	-	-	-	-	-	-	-	4,470,903
2037	-	-	-	-	-	-	-	-	4,470,903
2038	-	-	-	-	-	-	-	-	4,470,903
2039	-	-	-	-	-	-	-	-	4,470,903
2040	-	-	-	-	-	-	-	-	4,470,903
2041	-	-	-	-	-	-	-		4,470,903
2042	-	-	-	-	-	-	-	-	4,470,903
2043	-	-	-	-	-	-	-		4,470,903
2044	-	-	-	-	-	-	-		4,470,903
2045	-	-	-	-	-	-	-		4,470,903
2040	-	-	-	-	-	-	-		4,470,903
2047	-	-	-	-	-	-	-		4,470,903
2048	-	-	-	-	-	-	-		4,470,903
2049	-	-	-	-	-	-	-		4,470,903
2050	-	-	-	-	-	-	-	-	4,470,903
2051	-	-	-	-	-	-	-	-	4,470,903
2052	-	-	-	-	-	-	-		4,470,903
2053	-	-	-	-	-	-	-		4,470,903
2054	-	-	-	-	-	-	-		4,470,903
∠ບວວ	-	-	-		-	-	-	-	4.4/0.303

		Overall To	nnages Depo	osited at the	Vancouver L	andfill - Phas	se 1		
Year	Food	Garden	Paper	Wood	Textile	Nappies	Inerts	Total	In Place
	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
2056	-	-	-	-	-	-	-	-	4,470,903
2057	-	-	-	-	-	-	-	-	4,470,903
2058	-	-	-	-	-	-	-	-	4,470,903
2059	-	-	-	-	-	-	-	-	4,470,903
2060	-	-	-	-	-	-	-	-	4,470,903
2061	-	-	-	-	-	-	-	-	4,470,903
2002	-	-	-	-	-				4,470,903
2003								-	4,470,903
2065	-	-	-	-	-	-	-	-	4.470.903
2066	-	-	-	-	-	-	-	-	4,470,903
2067	-	-	-	-	-	-	-	-	4,470,903
2068	-	-	-	-	-	-	-	-	4,470,903
2069	-	-	-	-	-	-	-	-	4,470,903
2070	-	-	-	-	-	-	-	-	4,470,903
2071	-	-	-	-	-	-	-	-	4,470,903
2072	-	-	-	-	-	-	-	-	4,470,903
2073	-	-	-	-	-	-	-	-	4,470,903
2074	-	-	-	-	-	-	-	-	4,470,903
2075	-	-	-	-	-	-	-	-	4,470,903
2076	-	-	-	-	-	-	-	-	4,470,903
2077	-	-	-	-	-	-	-	-	4,470,903
2070	-	-	-	-	-	-	-	-	4,470,903
2079		-	-	-		-			4 470 903
2000								-	4 470 903
2082	-	-	-	-	-	-	-	-	4.470.903
2083	-	-	-	-	-	-	-	-	4,470,903
2084	-	-	-	-	-	-	-	-	4,470,903
2085	-	-	-	-	-	-	-	-	4,470,903
2086	-	-	-	-	-	-	-	-	4,470,903
2087	-	-	-	-	-	-	-	-	4,470,903
2088	-	-	-	-	-	-	-	-	4,470,903
2089	-	-	-	-	-	-	-	-	4,470,903
2090	-	-	-	-	-	-	-	-	4,470,903
2091	-	-	-	-	-	-	-	-	4,470,903
2092	-	-	-	-	-	-	-	-	4,470,903
2093	-	-	-	-	-	-	-	-	4,470,903
2094	-	-	-	-	-	-	-	-	4,470,903
2095	-	-	-	-	-	-	-	-	4,470,903
2090		-	-	-					4,470,903
2097								-	4 470 903
2000	-	-	-	-	-	-	-	-	4.470.903
2100	-	-	-	-	-	-	-	-	4.470.903
2101	-	-	-	-	-	-	-	-	4,470,903
2102	-	-	-	-	-	-	-	-	4,470,903
2103	-	-	-	-	-	-	-	-	4,470,903
2104	-	-	-	-	-	-	-	-	4,470,903
2105	-	-	-	-	-	-	-	-	4,470,903
2106	-	-	-	-	-	-	-	-	4,470,903
2107	-	-	-	-	-	-	-	-	4,470,903
2108	-	-	-	-	-	-	-	-	4,470,903
2109	-	-	-	-	-	-	-	-	4,470,903
2110	-	-	-	-	-	-	-	-	4,470,903
2111	-	-	-	-	-	-	-	-	4,470,903
2112	-	- 1	- 1		- 1	i -	-	-	4,470,903

		Overall To	nnages Depo	osited at the	Vancouver L	andfill - Phas	se 1		
Year	Food	Garden	Paper	Wood	Textile	Nappies	Inerts	Total	In Place
	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
2113	-	-	-	-	-	-	-	-	4,470,903
2114	-	-	-	-	-	-	-	-	4,470,903
2115	-	-	-	-	-	-	-	-	4,470,903
2116	-	-	-	-	-	-	-	-	4,470,903
2117	-	-	-	-	-	-	-	-	4,470,903
2118	-	-	-	-	-	-	-	-	4,470,903
2119	-	-	-	-	-	-	-	-	4,470,903
2120	-	-	-	-	-	-	-	-	4,470,903
2121	-	-	-	-	-	-	-	-	4,470,903
2122	-	-	-	-	-	-	-	-	4,470,903
2123	-	-	-	-	-	-	-	-	4,470,903
2124	-	-	-	-	-	-	-	-	4,470,903
2125	-	-	-	-	-	-	-	-	4,470,903
2126	-	-	-	-	-	-	-	-	4,470,903
2127	-	-	-	-	-	-	-	-	4,470,903
2128	-	-	-	-	-	-	-	-	4,470,903
2129	-	-	-	-	-	-	-	-	4,470,903
2130	-	-	-	-	-	-	-	-	4,470,903
2131	-	-	-	-	-	-	-	-	4,470,903
2132	-	-	-	-	-	-	-	-	4,470,903
2133	-	-	-	-	-	-	-	-	4,470,903
2134	-	-	-	-	-	-	-	-	4,470,903
2135	-	-	-	-	-	-	-	-	4,470,903
2136	-	-	-	-	-	-	-	-	4,470,903
2137	-	-	-	-	-	-	-	-	4,470,903
2138	-	-	-	-	-	-	-	-	4,470,903
2139	-	-	-	-	-	-	-	-	4,470,903
2140	-	-	-	-	-	-	-	-	4,470,903
2141	-	-	-	-	-	-	-	-	4,470,903
2142	-	-	-	-	-	-	-	-	4,470,903
2143	-	-	-	-	-	-	-	-	4,470,903
2144	-	-	-	-	-	-	-	-	4,470,903
2145	-	-	-	-	-	-	-	-	4,470,903
2146	-	-	-	-	-	-	-	-	4,470,903
2147	-	-	-	-	-	-	-	-	4,470,903
2148	-	-	-	-	-	-	-	-	4,470,903
2149	-	-	-	-	-	-	-	-	4,470,903

		Dry Tonna	iges Depos	ited at the	Vancouver	Landfill - F	Phase 1	
	Food	Garden	Paper	Wood	Textile	Nappies	Inert	Deposited MSW
Moisture	50%	45%	20%	18%	14%	14%	10%	22%
Solid	50%	55%	80%	82%	86%	86%	90%	78%
	Dry Am	ounts Histor	ically Depos	sited at the	Vancouver	Landfill - Ph	ase 1	
Year	Food	Garden	Paper	Wood	Textile	Nappies	Inert	Deposited MSW
	Gg	Gg	Gg	Gg	Gg	Gg	Gg	Gg
1999	36	11	95	87	27	8	112	377
2000	30	9	79	104	23	<u> </u>	107	359
2001	32	21	47 /18	78 120	42	7	1/20	304 //18
2002	37	22	40 55	120	43	8	147	410
2000	52	11	86	113	39	8	179	488
2005	59	12	97	122	44	9	199	541
2006	45	9	74	86	33	7	149	402
2007	0	0	0	0	0	0	0	0
2008	16	3	27	29	5	2	43	125
2009	0	0	0	0	0	0	0	0
2010	0	0	0	0	0	0	0	0
2011	0	0	0	0	0	0	0	0
2012	0	0	0	0	0	0	0	0
2010	0	0	0	0	0	0	0	0
2015	0	0	0	0	0	0	0	0
2016	0	0	0	0	0	0	0	0
2017	0	0	0	0	0	0	0	0
2018	0	0	0	0	0	0	0	0
2019	0	0	0	0	0	0	0	0
2020	0	0	0	0	0	0	0	0
2021	0	0	0	0	0	0	0	0
2022	0	0	0	0	0	0	0	0
2020	0	0	0	0	0	0	0	0
2025	0	0	0	0	0	0	0	0
2026	0	0	0	0	0	0	0	0
2027	0	0	0	0	0	0	0	0
2028	0	0	0	0	0	0	0	0
2029	0	0	0	0	0	0	0	0
2030	0	0	0	0	0	0	0	0
2031	0	0	0	0	0	0	0	0
2032	0	0	0	0	0	0	0	0
2034	0	0	0	0	0	0	0	0
2035	0	0	0	0	0	0	0	0
2036	0	0	0	0	0	0	0	0
2037	0	0	0	0	0	0	0	0
2038	0	0	0	0	0	0	0	0
2039	0	0	0	0	0	0	0	0
2040	0	0	0	0	0	0	0	0
2041	0	0	0	0	0	0	0	0
2042	0	0	0	0	0	0	0	0
2043	0	0	0	0	0	0	0	0
	Ũ	Ŭ	0	0	v	0	Ŭ	Ŭ

	Dry Amounts Historically Deposited at the Vancouver Landfill - Phase 1								
Year	Food	Garden	Paper	Wood	Textile	Nappies	Inert	Deposited MSW	
	Gg	Gg	Gg	Gg	Gg	Gg	Gg	Gg	
2046	0	0	0	0	0	0	0	0	
2047	0	0	0	0	0	0	0	0	
2048	0	0	0	0	0	0	0	0	
2049	0	0	0	0	0	0	0	0	
2050	0	0	0	0	0	0	0	0	
2051	0	0	0	0	0	0	0	0	
2052	0	0	0	0	0	0	0	0	
2053	0	0	0	0	0	0	0	0	
2054	0	0	0	0	0	0	0	0	
2055	0	0	0	0	0	0	0	0	
2056	0	0	0	0	0	0	0	0	
2057	0	0	0	0	0	0	0	0	
2058	0	0	0	0	0	0	0	0	
2059	0	0	0	0	0	0	0	0	
2000	0	0	0	0	0	0	0	0	
2001	0	0	0	0	0	0	0	0	
2002	0	0	0	0	0	0	0	0	
2003	0	0	0	0	0	0	0	0	
2065	0	0	0	0	0	0	0	0	
2066	0	0	0	0	0	0	0	0	
2067	0	0	0	0	0	0	0	0	
2068	0	0	0	0	0	0	0	0	
2069	0	0	0	0	0	0	0	0	
2070	0	0	0	0	0	0	0	0	
2071	0	0	0	0	0	0	0	0	
2072	0	0	0	0	0	0	0	0	
2073	0	0	0	0	0	0	0	0	
2074	0	0	0	0	0	0	0	0	
2075	0	0	0	0	0	0	0	0	
2076	0	0	0	0	0	0	0	0	
2077	0	0	0	0	0	0	0	0	
2078	0	0	0	0	0	0	0	0	
2079	0	0	0	0	0	0	0	0	
2080	0	0	0	0	0	0	0	0	
2081	0	0	0	0	0	0	0	0	
2082	0	0	0	0	0	0	0	0	
2083	0	0	0	0	0	0	0	0	
2084	0	0	0	0	0	0	0	0	
2085	0	0	0	0	0	0	0	0	
2080	0	0	0	0	0	0	0	0	
2007	0	0	0	0	0	0	0	0	
2000	0	0	0	0	0	0	0	0	
2009	0	0	0	0	0	0	0	0	
2030	0	0	0	0	0	0	0	0	
2092	0	0	0	0	0	0	0	0	

	Dry Am	ounts Histor	rically Depos	sited at the	Vancouver	Landfill - Ph	ase 1	
Year	Food	Garden	Paper	Wood	Textile	Nappies	Inert	Deposited MSW
	Gg	Gg	Gg	Gg	Gg	Gg	Gg	Gg
2093	0	0	0	0	0	0	0	0
2094	0	0	0	0	0	0	0	0
2095	0	0	0	0	0	0	0	0
2096	0	0	0	0	0	0	0	0
2097	0	0	0	0	0	0	0	0
2098	0	0	0	0	0	0	0	0

	M	ethane Ge	neration E	stimates f	rom the	Vancouv	er Landfi	ll - Phase	1			
Actual	сн, ү	elds										
L, m ² to	o Innei	113	157	143	72	114	114	77.0				
-	_	Methane ge	eneration esti	mates for the	Vancouver	Landfill - Ph	1389 1		Methane Generation	Total LFG Flow Rate	<u> </u>	
Ye	ear	Food	Garden	Paper	Wood	Textile	Napples	Total	Potential	Estimated	Year	LFG Generation Magnitude for the Vancouver Landfill - Phase 1
		(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(L _o , m'/tonne)	(scim)		
	1999 2000	316	50 319	134	35 245	29	8	572 3.508	84.7	113 696	1999 2000	
	2001	2,661	568	1,432	469	335	92	5,556	77.5	1,102	2001	
	2002	3,315	1,036	1,723	652 903	569	129	7,424	73.9	1,472	2002	
	2004	4,502	1,839	2,365	1,120	1,030	202	11,058	74.7	2,193	2004	
	2005	5,584	1,882	2,928	1,346	1,201	236	13,176	75.0	2,613	2005	
	2007	6,185	1,877	3,759	1,673	1,449	285	15,228	10.0	3,020	2007	
	2008	4,494	1,643	3,544	1,619	1,357	268	12,924	78.5	2,563	2008	
	2009	2,632	1,401	3,490	1,612	1,292	201	10,171		2,000	2009	
	2011	1,855	1,119	3,034	1,488	1,123	227	8,846		1,755	2011	
	2012 2013	1,307 921	973	2,829	1,430	1,047	212	7,798		1,547	2012 2013	
	2014	649	735	2,460	1,320	910	184	6,258		1,241	2014	
	2015	457	639 556	2,293	1,268	849	171	5,678		1,126	2015	
	2017	227	483	1,994	1,170	738	149	4,761		944	2017	
	2018	160	420	1,859	1,125	688	139	4,391		871	2018	
	2020	79	317	1,616	1,038	598	121	3,770		748	2020	
	2021	56	276	1,507	997	558	113	3,507		696	2021	
	2022	28	240	1,405	921	485	98	3,266		605	2022	
	2024	20	181	1,221	885	452	91	2,850		565	2024	
	2025	14	130	1,139	817	393	79	2,007		495	2025	
	2027	7	119	990	785	366	74	2,341		464	2027	
	2028	5	104	923	754	342	69	2,196		436	2028	-
	2030	2	78	803	696	297	60	1,936		384	2030	
	2031 2032	2	68 59	748	669 642	277	56	1,819		361	2031 2032	
	2033	1	51	651	617	241	49	1,609		319	2033	
	2034	1	45	607	593	224	45	1,515		283	2034	
	2036	0	34	527	547	195	39	1,343		266	2036	
	2037	0	29	492	526	182	37	1,266		251	2037	
	2039	0	22	400	486	158	32	1,125		223	2039	
	2040	0	19	399	466	147	30	1,062		211	2040	
	2042	0	15	346	431	128	26	946		188	2042	i
	2043	0	13	323	414	120	24	893		177	2043	
	2044	0	10	281	382	104	23	797		158	2044	1
	2046	0	8	262	367	97	20	754		149	2046	
	2047	0	6	244 228	339	90	10	674		141	2047	i i
	2049	0	5	212	325	79	16	638		126	2049	
	2050	0	4	185	300	68	14	571		113	2050	i i
	2052	0	4	172	289	64	13	541		107	2052	1
	2053	0	3	160	2// 266	59	12	485		96	2053	i
	2055	0	2	139	256	52	10	460		91	2055	1
	2056	0	2	130	246	48	10	436		82	2056	1
	2058	0	2	113	227	42	8	392		78	2058	1
\vdash	2059	0	1	105	218	39	8	372		74	2059	
	2061	0	1	92	201	34	7	335		66	2061	
\vdash	2062 2063	0	1	85	193 186	32	6	318 302		63 60	2062 2063	
	2064	0	1	74	179	27	6	287		57	2064	
	2065 2066	0	1	69	172	26	5	272		54 51	2065 2066	
	2067	0	0	60	158	22	5	246		49	2067	
	2068	0	0	56	152	21	4	234		46	2068	
	2070	0	0	49	140	18	4	211		44	2070	
	2071	0	0	46	135	17	3	201		40	2071	

	Methane ge	Methane generation estimates for the Vancouver Landfill - Phase 1						Methane	Total LFG		
	Food	Garden	Paper	Wood	Textile	Napples	Total	Generation Potential	Flow Rate Estimated		LEC Concration Magnitude for the
Year	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(L _p , m ² /tonne)	(scfm)	Year	Vancouver Landfill - Phase 1
0070			42	120	45		404		30	2072	
2072	0	0	42	130	15	3	191		30	2072	
2074	0	0	37	120	14	3	173		34	2074	
2075	0	0	34	115	13	3	165		33	2075	
2076	0	0	32	111	12	2	157		31	2076	
2078	0	ő	28	102	10	2	143		28	2078	
2079	0	0	26	98	10	2	136		27	2079	
2080	0	0	24	94	9	2	129		26	2080	
2082	0	0	20	87	8	2	117		23	2082	
2083	0	0	20	84	7	1	112		22	2083	
2084	0	0	18	80	7	1	107		21	2084	
2005	0	0	16	74	6	1	97		20	2085	
2087	0	0	15	71	5	1	93		18	2087	
2088	0	0	14	68	5	1	88		18	2088	
2089	0	0	13	65	5	1	84		17	2089	
2091	0	0	11	61	4	1	77		15	2091	
2092	0	0	10	58	4	1	73		15	2092	
2093	0	0	10	56	4	1	70		14	2093	
2094	0	0	9	52	3	1	64		13	2094	
2096	0	Ő	8	50	3	1	61		12	2096	
2097	0	0	7	48	3	1	58		12	2097	
2098	0	0	7	46	3	1	56		11	2098	
2100	0	0	6	42	2	0	51		10	2100	
2101	0	0	6	41	2	0	49		10	2101	
2102	0	0	5	39	2	0	47		9	2102	
2103	0	0	5	36	2	0	45		9	2103	
2105	0	ő	4	35	2	0	41		8	2105	
2106	0	0	4	33	1	0	39		8	2106	
2107	0	0	4	32	1	0	37		7	2107	
2100	0	0	3	30	1	0	34		7	2100	
2110	0	0	3	28	1	0	33		6	2110	
2111	0	0	3	27	1	0	31		6	2111	
2112	0	0	2	26	1	0	30		6	2112	
2114	0	ő	2	24	1	0	27		5	2114	
2115	0	0	2	23	1	0	26		5	2115	
2116	0	0	2	22	1	0	25		5	2116	
2118	0	0	2	21	1	0	23		5	2118	
2119	0	0	2	20	1	0	22		4	2119	
2120	0	0	1	19	1	0	21		4	2120	
2121	0	0	1	18	0	0	20		4	2121	
2123	0	0	1	17	0	0	19		4	2123	
2124	0	0	1	16	0	0	18		4	2124	
2125	0	0	1	15	0	0	17		3	2125	
2127	0	0	1	14	0	0	16		3	2127	
2128	0	0	1	14	0	0	15		3	2128	
2129	0	0	1	13	0	0	14		3	2129	
2131	0	0	1	12	0	0	13		3	2131	
2132	0	0	1	12	0	0	13		3	2132	
2133	0	0	1	11	0	0	12		2	2133	
2134	0	0	1	10	0	0	11		2	2134	
2136	0	0	0	10	0	0	11		2	2136	
2137	0	0	0	10	0	0	10		2	2137	
2138	0	0	0	9	0	0	10		2	2138	
2140	0	0	0	9	0	0	9		2	2140	
2141	0	0	0	8	0	0	9		2	2141	
2142	0	0	0	8	0	0	8		2	2142	
2143	0	0	0	7	0	0	8		2	2143	
2145	0	0	0	7	0	0	7		1	2145	
2146	0	0	0	7	0	0	7		1	2146	
2147	0	0	0	6	0	0	7		1	2147	
2149	0	Ő	ő	6	0	0	6		1	2149	

Vancouver Landfill - Phase 1

Landfill Gas Generation Analysis GRAPHICAL RESULTS

Average Deposited Waste Composition

Annual MSW Deposition Rates and Total In Place

Vancouver Landfill - Phase 1

Landfill Gas Generation Analysis GRAPHICAL RESULTS

Breakdown of the Methane Generation Rates from Different Components of MSW (CH₄, tonnes year⁻¹) 7,000 Methane Generation rate (tonnes year¹) 6,000 5,000 4,000 3,000 2,000 1,000 Food Garden Paper Wood Textile Nappies

B.5 iModel-110© Modeling Results – Entire Research Boundary

Landfill's Site-Specific Information

Enter Site's Name/ ID: Vancouver Landfill - Research Boundary

Year Filling Started:

1990 Date OK!

Thesis References and Par	Thesis References and Parameters				Wood	Textile	Nappies
		%	%	%	%	%	%
Table 3.1 of Thesis	DOC _{dry}	0.38	0.49	0.44	0.5	0.3	0.3
Table 2.8 of Thesis	Moisture	50%	45%	20%	18%	14%	14%
Degradability Factor	$\mathbf{f}_{\mathbf{dg}}$	0.84	0.66	0.46	0.2	0.5	0.5
Climate Factor	\mathbf{f}_{cl}	1	1	1	1	1	1
Depth Factor	$\mathbf{f}_{\mathbf{dp}}$	0.9	0.9	0.9	0.9	0.9	0.9
Storage Factor	\mathbf{f}_{st}	0.8	1	1	1	1	1
$\mathbf{f} = \mathbf{f}_{dg} \mathbf{x} \mathbf{f}_{cl} \mathbf{x} \mathbf{f}_{dp} \mathbf{x} \mathbf{f}_{st}$	∑Discount	0.60	0.59	0.41	0.18	0.45	0.45
Theoretical Methane Yield	L o	113	158	143	73	114	114

Dry Degradable Organic Carbon Content and Decay Rates for Different Waste Components

Wasto Components	DOC _{dry}	k	
waste components	(kg in 1kg dry)	year ⁻¹	
Food waste	0.38	0.35	
Garden	0.49	0.14	
Paper	0.44	0.07	
Wood and straw	0.50	0.04	
Textiles	0.30	0.07	
Disposable nappies	0.30	0.07	

Thesis References: Table 3.1 Table 3.15

Methane Characteristics, Generation Calibration Factor & Delay Time

Parameters	Values & Units				
CH₄ Density:	0.6775 kg/m ³				
CH₄ Fraction:	0.5 m ³ /m ³				
CH₄/C (16/12):	1.333 kg/kg				
Enter (CF _G) here:	1				
Delay Time (T _d):	4 Months				

Table 3.16

		Overall To	nnages Depo	sited at the	Vancouver L	.andfill-Resea	rch Bounda	у	
Year	Food	Garden	Paper	Wood	Textile	Nappies	Inerts	Total	In Place
	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
1990	91,901	25,742	150,652	34,604	40,277	11,769	113,939	468,883	468,883
1991	91,117	25,522	149,366	34,308	39,933	11,669	112,966	464,881	933,764
1992	88,793	24,871	145,558	33,433	38,915	11,371	110,086	453,028	1,386,792
1993	90,493	25,347	148,344	147,473	39,660	11,589	160,793	623,700	2,010,492
1994	85,613	23,980	140,344	32,236	37,521	10,964	106,142	436,800	2,447,292
1995	84,221	23,591	138,063	87,502	36,911	10,785	128,327	509,400	2,956,692
1996	78,755	22,059	129,102	101,264	34,515	10,085	128,330	504,110	3,460,802
1997	70,874	19,852	116,182	60,601	31,061	9,076	102,404	410,050	3,870,852
1998	68,711	19,246	112,638	96,963	30,114	8,799	115,656	452,128	4,322,980
1999	72,717	20,368	119,204	106,177	31,869	9,312	123,924	483,572	4,806,551
2000	60,520	16,952	99,209	126,312	26,524	7,750	119,400	456,666	5,263,217
2001	63,516	38,839	58,872	95,664	48,971	8,136	140,382	454,381	5,717,598
2002	64,307	39,322	59,605	146,372	49,580	8,237	163,351	530,775	6,248,372
2003	73,819	45,139	68,422	129,289	56,914	9,456	170,913	553,951	6,802,324
2004	104,033	19,839	107,614	138,337	45,049	8,855	199,293	623,019	7,425,343
2005	117,325	22,374	121,363	148,472	50,804	9,986	221,524	691,847	8,117,190
2006	89,073	16,986	92,138	105,330	38,571	7,582	165,014	514,692	8,631,883
2007	-	-	-	-	-	-	-	-	8,631,883
2008	31,120	4,570	34,238	35,252	6,186	2,639	47,994	162,000	8,793,883
2009	-	-	-	-	-	-	-	-	8,793,883
2010	-	-	-	-	-	-	-	-	8,793,883
2011	-	-	-	-	-	-	-	-	8,793,883
2012	-	-	-	-	-	-	-	-	8,793,883
2013	-	-	-	-	-	-	-	-	8,793,883
2014	-	-	-	-	-	-	-	-	8,793,883
2015	-	-	-	-	-	-	-	-	8,793,883
2016	-	-	-	-	-	-	-	-	8,793,883
2017	-	-	-	-	-	-	-	-	8,793,883
2018	-	-	-	-	-	-	-	-	8,793,883
2019	-	-	-	-	-	-	-	-	8,793,883
2020	-	-	-	-	-	-	-	-	8,793,883
2021	-	-	-	-	-	-	-	-	8,793,883
2022	-	-	-	-	-	-	-	-	8,793,883
2023	-	-	-	-	-	-	-	-	8,793,883
2024	-	-	-	-	-	-	-	-	8,793,883
2025	-	-	-	-	-	-	-	-	8,793,883
2026	-	-	-	-	-	-	-	-	8,793,883
2027	-	-	-	-	-	-	-	-	8,793,883
2028	-	-	-	-	-	-	-	-	8,793,883
2029	-	-	-	-	-	-	-	-	8,793,883
2030	-	-	-	-	-	-	-	-	8,793,883
2031	-	-	-	-	-	-	-		8,793,883
2032	-	-	-	-	-	-	-		8,793,883
2033	-	-	-	-	-	-	-		8,793,883
2034	-	-	-	-	-	-	-		8,793,883
2035	-	-	-	-	-	-	-		8,793,883
2036	-	-	-	-	-	-	-		8,793,883
2037	-	-	-	-	-	-	-		8,793,883
2038	-	-	-	-	-	-	-		8,793,883
2039	-	-	-	-	-	-	-		8,793,883
2040	-	-	-	-	-	-	-		8,793,883
2041	-	-	-	-	-	-	-	-	8,793,883
2042	-	-	-	-	-	-	-	-	8,793,883
2043	-	-	-	-	-	-	-	-	8,793,883
2044	-	-	-	-	-	-	-	-	8,793,883
2045	-	-	-	-	-	-	-	-	8,793,883
2046					-		-	-	0.793.883

	Overall Tonnages Deposited at the Vancouver Landfill-Research Boundary												
Year	Food	Garden	Paper	Wood	Textile	Nappies	Inerts	Total	In Place				
	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)				
2047	-	-	-	-	-	-	-	-	8,793,883				
2048	-	-	-	-	-	-	-	-	8,793,883				
2049	-	-	-	-	-	-	-	-	8,793,883				
2050	-	-	-	-	-	-	-	-	8,793,883				
2051	-	-	-	-	-	-	-	-	8,793,883				
2052	-	-	-	-	-	-	-	-	8,793,883				
2053	-	-	-	-	-	-	-	-	0,793,003 8 703 883				
2054				-					8,793,883				
2055	-	-	_	-	-	-	-	-	8.793.883				
2057	-	-	-	-	-	-	-	-	8.793.883				
2058	-	-	-	-	-	-	-	-	8,793,883				
2059	-	-	-	-	-	-	-	-	8,793,883				
2060	-	-	-	-	-	-	-	-	8,793,883				
2061	-	-	-	-	-	-	-	-	8,793,883				
2062	-	-	-	-	-	-	-	-	8,793,883				
2063	-	-	-	-	-	-	-	-	8,793,883				
2064	-	-	-	-	-	-	-	-	8,793,883				
2065	-	-	-	-	-	-	-	-	8,793,883				
2066	-	-	-	-	-	-	-	-	8,793,883				
2067	-	-	-	-	-	-	-	-	8,793,883				
2068	-	-	-	-	-	-	-	-	8,793,883				
2069	-	-	-	-	-	-	-	-	0,793,003 8 703 883				
2070			-	-	-				8 793 883				
2071									8,793,883				
2072	-	-	-	-	-	-	-	-	8.793.883				
2074	-	-	-	-	-	-	-	-	8,793,883				
2075	-	-	-	-	-	-	-	-	8,793,883				
2076	-	-	-	-	-	-	-	-	8,793,883				
2077	-	-	-	-	-	-	-	-	8,793,883				
2078	-	-	-	-	-	-	-	-	8,793,883				
2079	-	-	-	-	-	-	-	-	8,793,883				
2080	-	-	-	-	-	-	-	-	8,793,883				
2081	-	-	-	-	-	-	-	-	8,793,883				
2082	-	-	-	-	-	-	-	-	8,793,883				
2083	-	-	-	-	-	-	-	-	8,793,883				
2084	-	-	-	-	-	-	-	-	8,793,883				
2000	-	-	-	-	-	-	-	-	0,793,003 8 703 883				
2000	-			-	-			-	8 793 883				
2088	-	-	-	-		_	-	-	8,793,883				
2000	-	-	-	-	-	-	-	-	8.793.883				
2090	-	-	-	-	-	-	-	-	8,793,883				
2091	-	-	-	-	-	-	-	-	8,793,883				
2092	-	-	-	-	-	-	-	-	8,793,883				
2093	-	-	-	-	-	-	-	-	8,793,883				
2094	-	-	-	-	-	-	-	-	8,793,883				
2095	-	-	-	-	-	-		-	8,793,883				
2096	-	-	-	-	-	-	-	-	8,793,883				
2097	-	-	-	-	-	-	-	-	8,793,883				
2098	-	-	-	-	-	-	-	-	8,793,883				
2099	-	-	-	-	-	-	-	-	8,793,883				
2100	-	-	-	-	-	-	-	-	8,793,883				
2101	-	-	-	-	-	-	-	-	0,193,003				
2102	-	-	-	-	-	-	-	-	8 793 883				
∠ i U J	-								0,100,000				

		Overall To	nnages Depo	osited at the	Vancouver L	.andfill-Resea	rch Bounda	ry	
Year	Food	Garden	Paper	Wood	Textile	Nappies	Inerts	Total	In Place
	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
2104	-	-	-	-	-	-	-	-	8,793,883
2105	-	-	-	-	-	-	-	-	8,793,883
2106	-	-	-	-	-	-	-	-	8,793,883
2107	-	-	-	-	-	-	-	-	8,793,883
2108	-	-	-	-	-	-	-	-	8,793,883
2109	-	-	-	-	-	-	-	-	8,793,883
2110	-	-	-	-	-	-	-	-	8,793,883
2111	-	-	-	-	-	-	-	-	8,793,883
2112	-	-	-	-	-	-	-	-	8,793,883
2113	-	-	-	-	-	-	-	-	8,793,883
2114	-	-	-	-	-	-	-	-	8,793,883
2115	-	-	-	-	-	-	-	-	8,793,883
2116	-	-	-	-	-	-	-	-	8,793,883
2117	-	-	-	-	-	-	-	-	8,793,883
2118	-	-	-	-	-	-	-	-	8,793,883
2119	-	-	-	-	-	-	-	-	8,793,883
2120	-	-	-	-	-	-	-	-	8,793,883
2121	-	-	-	-	-	-	-	-	8,793,883
2122	-	-	-	-	-	-	-	-	8,793,883
2123	-	-	-	-	-	-	-	-	8,793,883
2124	-	-	-	-	-	-	-	-	8,793,883
2125	-	-	-	-	-	-	-	-	8,793,883
2126	-	-	-	-	-	-	-	-	8,793,883
2127	-	-	-	-	-	-	I	-	8,793,883
2128	-	-	-	-	-	-	I	-	8,793,883
2129	-	-	-	-	-	-	-	-	8,793,883
2130	-	-	-	-	-	-	I	-	8,793,883
2131	-	-	-	-	-	-	-	-	8,793,883
2132	-	-	-	-	-	-	-	-	8,793,883
2133	-	-	-	-	-	-	-	-	8,793,883
2134	-	-	-	-	-	-	-	-	8,793,883
2135	-	-	-	-	-	-	-	-	8,793,883
2136	-	-	-	-	-	-	-	-	8,793,883
2137	-	-	-	-	-	-	-	-	8,793,883
2138	-	-	-	-	-	-	-	-	8,793,883
2139	-	-	-	-	-	-	-	-	8,793,883
2140	-	-	-	-	-	-	-	-	8,793,883

		Dry Tonna	ages Depos	ited at the	vancouver	Landfill-Re	esearch Bo	undary			
	Food	Garden	Paper	Wood	Textile	Nappies	Inert	Deposited MSW			
Moisture	50%	45%	20%	18%	14%	14%	10%	22%			
Solid	50%	55%	80%	82%	86%	86%	90%	78%			
	Dry Am	ounts Histor	rically Depos	sited at the	Vancouver I	_andfill-Res	earch Bound	dary			
Year	Food	Garden	Paper	Wood	Textile	Nappies	Inert	Deposited MSW			
4000	Gg	Gg	Gg	Gg	Gg	Gg	Gg	Gg			
1990	46	14	121	28	35	10	103	356			
1991	40	14	119	20	34	10	102	303			
1993	45	14	119	121	34	10	145	488			
1994	43	13	112	26	32	9	96	332			
1995	42	13	110	72	32	9	115	394			
1996	39	12	103	83	30	9	115	392			
1997	35	11	93	50	27	8	92	316			
1998	34	11	90	80	26	8	104	352			
1999	36	11	95	87	27	8	112	377			
2000	30	9	79	78	∠3 42	7	107	309			
2001	32	21	47	120	42	7	120				
2002	37	25	55	120	49	8	154	433			
2004	52	11	86	113	39	8	179	488			
2005	59	12	97	122	44	9	199	541			
2006	45	9	74	86	33	7	149	402			
2007	0	0	0	0	0	0	0	0			
2008	16	3	27	29	5	2	43	125			
2009	0	0	0	0	0	0	0	0			
2010	0	0	0	0	0	0	0	0			
2011	0	0	0	0	0	0	0	0			
2012	0	0	0	0	0	0	0	0			
2010	0	0	0	0	0	0	0	0			
2015	0	0	0	0	0	0	0	0			
2016	0	0	0	0	0	0	0	0			
2017	0	0	0	0	0	0	0	0			
2018	0	0	0	0	0	0	0	0			
2019	0	0	0	0	0	0	0	0			
2020	0	0	0	0	0	0	0	0			
2021	0	0	0	0	0	0	0	0			
2022	0	0	0	0	0	0	0	0			
2023	0	0	0	0	0	0	0	0			
2025	0	0	0	0	0	0	0	0			
2026	0	0	0	0	0	0	0	0			
2027	0	0	0	0	0	0	0	0			
2028	0	0	0	0	0	0	0	0			
2029	0	0	0	0	0	0	0	0			
2030	0	0	0	0	0	0	0	0			
2031	0	0	0	0	0	0	0	0			
2032	0	0	0	0	0	0	0	0			
2033	0	0	0	0	0	0	0	0			
2035	0	0	0	0	0	0	0	0			
	Dry Amounts Historically Deposited at the Vancouver Landfill-Research Bounda										
------	--	--------	-------	------	---------	---------	-------	------------------	--	--	--
Year	Food	Garden	Paper	Wood	Textile	Nappies	Inert	Deposited MSW			
	Gg	Gg	Gg	Gg	Gg	Gg	Gg	Gg			
2037	0	0	0	0	0	0	0	0			
2038	0	0	0	0	0	0	0	0			
2039	0	0	0	0	0	0	0	0			
2040	0	0	0	0	0	0	0	0			
2041	0	0	0	0	0	0	0	0			
2042	0	0	0	0	0	0	0	0			
2043	0	0	0	0	0	0	0	0			
2044	0	0	0	0	0	0	0	0			
2045	0	0	0	0	0	0	0	0			
2040	0	0	0	0	0	0	0	0			
2047	0	0	0	0	0	0	0	0			
2049	0	0	0	0	0	0	0	0			
2050	0	0	0	0	0	0	0	0			
2051	0	0	0	0	0	0	0	0			
2052	0	0	0	0	0	0	0	0			
2053	0	0	0	0	0	0	0	0			
2054	0	0	0	0	0	0	0	0			
2055	0	0	0	0	0	0	0	0			
2056	0	0	0	0	0	0	0	0			
2057	0	0	0	0	0	0	0	0			
2058	0	0	0	0	0	0	0	0			
2059	0	0	0	0	0	0	0	0			
2060	0	0	0	0	0	0	0	0			
2061	0	0	0	0	0	0	0	0			
2062	0	0	0	0	0	0	0	0			
2063	0	0	0	0	0	0	0	0			
2064	0	0	0	0	0	0	0	0			
2065	0	0	0	0	0	0	0	0			
2065	0	0	0	0	0	0	0	0			
2067	0	0	0	0	0	0	0	0			
2000	0	0	0	0	0	0	0	0			
2009	0	0	0	0	0	0	0	0			
2070	0	0	0	0	0	0	0	0			
2072	0	0	0	0	0	0	0	0			
2073	0	0	0	0	0	0	0	0			
2074	0	0	0	0	0	0	0	0			
2075	0	0	0	0	0	0	0	0			
2076	0	0	0	0	0	0	0	0			
2077	0	0	0	0	0	0	0	0			
2078	0	0	0	0	0	0	0	0			
2079	0	0	0	0	0	0	0	0			
2080	0	0	0	0	0	0	0	0			
2081	0	0	0	0	0	0	0	0			
2082	0	0	0	0	0	0	0	0			

	Dry Am	Dry Amounts Historically Deposited at the Vancouver Landfill-Research Boundary										
Year	Food	Garden	Paper	Wood	Textile	Nappies	Inert	Deposited MSW				
	Gg	Gg	Gg	Gg	Gg	Gg	Gg	Gg				
2083	0	0	0	0	0	0	0	0				
2084	0	0	0	0	0	0	0	0				
2085	0	0	0	0	0	0	0	0				
2086	0	0	0	0	0	0	0	0				
2087	0	0	0	0	0	0	0	0				
2088	0	0	0	0	0	0	0	0				
2089	0	0	0	0	0	0	0	0				

Methane Generation Estimates from the	Vancouver Landfill-Research Boundary

Actual CH₄ Yields

L _o n ^{*/} tonne)	113	157	143	72	114	114	83.2

	Methane ge	eneration esti	mates for the	Vancouver	Landfill-Res	earch Bour	idary	Methane	Total LFG		
Year	Food	Garden	Paper	Wood	Textile	Napples	Total	Potential	Estimated	Year	LFG Generation Magnitude for the
	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(L _o , m ² /tonne)	(scim)		Vancouver Landfill-Research Boundary
1990	399	63	170	11	36	11	690	94.9	137	1990	1 Contraction of the second se
1991	2,357	413	1,146	78	244	71	4,310	94.9	855	1991	
1992	3,712	714	2,046	140	436	127	7,175	94.9	1,423	1992	
1993	4,632	968	2,866	237	775	1/8	9,492	83.5	1,883	1993	
1995	5,659	1,370	4,311	536	918	220	13.062	88.0	2,500	1995	
1996	5,869	1,516	4,917	688	1,047	306	14,343	86.0	2,845	1996	
1997	5,883	1,620	5,418	843	1,154	337	15,255	89.7	3,026	1997	
1998	5,740	1,684	5,810	939	1,238	362	15,772	85.0	3,128	1998	
1999	5,617	1,735	6,165	1,092	1,313	384	16,305	84.7	3,234	1999	
2000	5,000	1,704	6,505	1,201	1,300	403	17 124	77.5	3,396	2000	
2002	5,171	2,143	6,611	1,590	1,610	433	17,557	73.9	3,482	2002	
2003	5,140	2,426	6,565	1,804	1,767	448	18,150	76.3	3,600	2003	
2004	5,423	2,676	6,615	1,986	1,935	467	19,101	74.7	3,789	2004	
2005	6,233	2,609	6,890	2,178	2,045	482	20,437	75.0	4,054	2005	
2000	6,924	2,507	7,100	2,305	2,102	400	21,700	/0.0	4,305	2006	
2007	4 721	2,427	6,755	2,441	2,103	455	18 462	78.5	3,662	2007	
2009	3,896	1,896	6,485	2,321	1,930	447	16,975		3.367	2009	
2010	2,745	1,648	6,047	2,230	1,799	417	14,886		2,953	2010	
2011	1,935	1,433	5,638	2,142	1,677	389	13,214		2,621	2011	
2012	1,363	1,246	5,257	2,058	1,564	363	11,851		2,351	2012	
2013	961	1,083	4,901	1,978	1,458	338	10,719		2,126	2013	
2014	477	819	4,370	1,500	1,360	294	8 944		1,557	2014	
2016	336	712	3,973	1,754	1,182	274	8,231		1,633	2016	
2017	237	619	3,704	1,685	1,102	256	7,603		1,508	2017	
2018	167	538	3,454	1,619	1,028	238	7,044		1,397	2018	
2019	118	468	3,220	1,556	958	222	6,542		1,297	2019	
2020	53	407	3,003	1,495	833	207	5,087		1,207	2020	
2021	41	307	2,600	1,430	777	180	5,074		1.050	2021	
2023	29	267	2,434	1,326	724	168	4,948		981	2023	
2024	20	232	2,269	1,274	675	157	4,627		918	2024	
2025	14	202	2,116	1,224	630	146	4,331		859	2025	
2026	10	1/5	1,9/3	1,176	587	135	4,057		805	2026	
2027	5	133	1,039	1,130	547	12/	3,003		707	2027	-
2029	4	115	1,599	1,043	476	110	3,347		664	2029	
2030	3	100	1,491	1,002	444	103	3,142		623	2030	
2031	2	87	1,390	963	414	96	2,951		585	2031	
2032	1	/6	1,296	925	386	89	2,773		550	2032	-
2033	1	57	1,209	854	335	78	2,007		486	2033	
2035	Ó	50	1,051	820	313	72	2,306		457	2035	
2036	0	43	980	788	292	68	2,171		431	2036	
2037	0	38	913	757	272	63	2,043		405	2037	
2038	0	33	852	728	253	59	1,924		382	2038	
2039	0	20	794	672	230	50	1,013		330	2039	
2040	0	23	690	645	205	48	1,610		319	2041	
2042	0	19	644	620	192	44	1,518		301	2042	
2043	0	16	600	596	179	41	1,432		284	2043	
2044	0	14	560	572	167	39	1,351		268	2044	
2045	0	12	322	528	105	30	1,275		253	2045	
2040	0	9	454	508	135	34	1,137		235	2047	
2048	Ő	8	423	488	126	29	1,074		213	2048	1
2049	0	7	394	469	117	27	1,014		201	2049	
2050	0	6	368	450	109	25	959		190	2050	
2051	0	5	343	433	102	24	906		180	2051	
2052	0	3	320	410	90	22	05/		1/0	2052	
2055	0	3	290	384	83	19	767		152	2054	
2055	0	3	259	369	77	18	726		144	2055	E. C.
2056	0	3	242	354	72	17	687		136	2056	
2057	0	2	225	340	67	16	650		129	2057	
2058	0	2	210	327	62	14	616		122	2058	
2059	0	2	190	314	54	14	553		110	2059	
2061	ŏ	1	170	290	51	12	524		104	2061	1
2062	0	1	159	279	47	11	497		99	2052	1

	Methane generation estimates for the Vancouver Landfill-Research Boundary							Methane	Total LFG		
Vear	Food	Garden	Paper	Wood	Textile	Napples	Total	Potential	Estimated	Veer	LFG Generation Magnitude for the
Teal	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(L _o , m ³ /tonne)	(scfm)	real	Vancouver Landfill-Research Boundary
2063	0	1	148	268	44	10	471		93	2063	I
2064	0	1	138	257	41	10	447		89	2064	1
2065	0	1	129	247	38	9	424		84	2065	
2066	0	1	120	237	36	8	402		80	2066	
2067	0		104	220	31	7	362		70	2067	
2069	0	0	97	211	29	7	344		68	2069	
2070	0	0	91	202	27	6	327		65	2070	l.
2071	0	0	85	194	25	6	310		62	2071	
2072	0	0	79	187	23	5	295		58	2072	
2073	0		69	179	22	5	260		53	2073	
2075	0	0	64	166	19	4	253		50	2075	i
2076	0	0	60	159	18	4	241		48	2076	1
2077	0	0	56	153	17	4	229		45	2077	
2078	0	0	52	147	15	4	218		43	2078	
2079	0		48	141	14	3	207		41	2079	
2000	0	0	42	130	12	3	188		37	2081	
2082	0	0) 39	125	12	3	179		35	2082	i de la companya de la
2083	0	0	36	120	11	3	170		34	2083	
2084	0	0	34	116	10	2	162		32	2084	
2085	0	0	32	111	9	2	154		31	2085	
2000	0		28	107	9	2	147		29	2000	
2088	0	0	26	98	8	2	134		27	2088	i de la companya de la company
2089	0	0	24	95	7	2	127		25	2089	1
2090	0	0	22	91	7	2	121		24	2090	
2091	0	0	21	87	6	1	116		23	2091	
2092	0		19	81	5	1	105		22	2092	
2094	0	0	17	77	5	1	101		20	2094	i de la companya de la company
2095	0	0) 16	74	5	1	96		19	2095	i
2096	0	0	15	71	4	1	92		18	2096	
2097	0	0	14	69	4	1	87		17	2097	
2098	0		13	63	4	1	83		1/	2098	
2100	0	0	11	61	3	1	76		15	2100	
2101	0	0) 10	59	3	1	73		14	2101	İ
2102	0	0) 10	56	3	1	69		14	2102	
2103	0	0	9	54	3	1	66		13	2103	
2104	0		8	52	2	1	61		13	2104	
2106	0	0	7	48	2	1	58		11	2106	i
2107	0	0) 7	46	2	0	55		11	2107	1
2108	0	0	6	44	2	0	53		10	2108	
2109	0		6	43	2	0	51		10	2109	
2110	0		5	39	2	0	40		9	2110	
2112	ő	0	5	38	1	0	44		9	2112	i
2113	0	0) 4	36	1	0	42		8	2113	1
2114	0	0) 4	35	1	0	40		8	2114	
2115	0		4	33	1	0	39		8	2115	
2110	0		4	32	1	0	37		7	2110	
2118	0	0	3	30	1	0	34		7	2118	
2119	0	0	3	28	1	0	33		6	2119	
2120	0	0	3	27	1	0	31		6	2120	
2121	0	0	3	26	1	0	30		6	2121	
2122	0		2	25	1	0	29		5	2122	
2123	ŏ	ŭ	2	23	1	0	26		5	2124	
2125	0	0	2	22	1	0	25		5	2125	İ.
2126	0	0	2	22	1	0	24		5	2126	
2127	0	0	2	21	0	0	23		5	2127	
2128	0		2	20	0	0	22		4	2128	
2129	0		1	19	0	0	21		4	2129	
2131	0	ŭ	1	18	ŏ	Ő	19		4	2131	
2132	0	0	1	17	0	0	19		4	2132	
2133	0	0	1	16	0	0	18		4	2133	
2134	0	0	1	16	0	0	17		3	2134	
2135	0		1	15	0	0	16		3	2135	
2130	0	0	1	14	0	0	10		3	2130	
2138	0	0	1	13	0	0	14		3	2138	
2139	0	0) 1	13	0	0	14		3	2139	
2140	0	0) 1	12	0	0	13		3	2140	

Vancouver Landfill-Research Boundary

andfill Gas Generation Analysis GRAPHICAL RESULTS

Average Deposited Waste Composition

Waste In Place 10 0.8 Annual Tonnage (Millions Tonnes) Waste In Place (Millions Tonnes) 9 0.7 8 0.6 7 0.5 6 0.4 5 4 0.3 3 0.2 2 0.1 1 0.0 2000 2006 1990 1992 1996 1998 2002 2008 1994 2004

Annual MSW Deposition Rates and Total In Place

Vancouver Landfill-Research Boundary

Landfill Gas Generation Analysis GRAPHICAL RESULTS

Appendix C Wellfield Inspection and Temperature Investigations

C.1 LFG Wells and Coordinates

	Phase 1	(42 Well	s)	choose 10			
	WellName	Northing	Easting	G.Elevation (m)	Top Casing Elevation(m)	Pipe ID (in)	Water Depth below ground level (m)
1	F01	5438436.9	500789.2	21.55	23.35	2.070	6.50
2	F02	5438465.4	500792.7	21.51	23.08	2.070	8.60
3	F03	5438493.9	500795.5	21.37	22.84	2.070	9.27
4	F04	5438521.9	500799.8	21.93	23.52	2.070	7.25
5	F05	5438557.1	500793.9	21.98	23.37	2.070	7.60
6	F06	5438587.0	500806.4	23.53	24.85	2.070	9.69
7	F07	5438634.3	500804.2	24.10	25.67	2.070	11.73
8	F08	5438692.0	500809.0	24.81	26.24	2.070	8.96
9	F09	5438745.9	500808.9	25.05	26.70	2.070	11.86
10	F10	5438777.7	500810.0	24.69	26.15	2.070	13.35
11	F11	5438830.1	500811.6	26.21	27.39	2.070	13.20
12	F12	5438893.9	500796.8	24.19	25.86	2.070	11.90
13	F21	5438463.8	500836.3	30.09	32.03	2.070	8.45
14	F22	5438498.0	500838.1	30.11	31.99	2.070	9.66
15	F23	5438538.9	500843.1	30.27	32.21	2.070	8.00
16	F24	5438725.6	500848.0	30.87	33.50	2.070	8.60
17	F25	5438789.2	500848.0	31.05	32.83	2.070	9.28
18	F26	5438831.8	500845.1	30.76	33.04	2.070	11.23
19	F27	5438892.4	500853.8	29.11	31.12	2.070	8.35
20	P01-V030	5438480.6	500885.9	33.21	34.47	2.070	10.60
21	P01-V031	5438540.4	500940.1	19.97	21.63	2.070	11.50
22	P01-V032	5438517.5	500885.0	33.48	34.93	2.070	9.10
23	P01-V033	5438590.3	500945.1	18.75	20.09	2.070	10.45
24	P01-V034	5438576.2	500883.9	35.24	36.70	2.070	11.00
25	P01-V035	5438647.1	500951.7	17.06	18.56	2.070	5.85
26	P01-V036	5438623.7	500881.2	35.76	37.41	2.070	9.75
27	P01-V037	5438692.8	500949.2	18.37	19.93	2.070	7.90
28	P01-V038	5438673.3	500874.0	35.59	37.14	2.070	7.90
29	P01-V039	5438741.0	500940.1	20.05	21.40	2.070	7.90
30	P01-V040	5438723.9	500873.5	35.66	37.36	2.070	7.75
31	P01-V041	5438793.4	500944.3	18.48	20.35	2.070	9.80
32	P01-V042	5438773.2	500883.8	34.18	35.73	2.070	8.55
33	P01-V043	5438846.9	500947.5	17.78	19.00	2.070	8.60

34	P01-V044	5438815.9	500884.8	33.11	34.53	2.070	8.37
35	P01-V045	5438893.3	500943.1	19.33	20.94	2.070	8.10
36	P01-V046	5438853.5	500885.7	32.42	33.53	2.070	7.80
37	P01-V047	5438952.1	500934.1	20.52	22.31	2.070	10.65
38	P01-V048	5438897.6	500892.7	30.17	31.69	2.070	8.30
39	P01-V050	5438960.4	500870.9	19.02	20.78	2.070	10.30
40	P01-V053	5438436.6	500897.2	30.20	31.69	2.070	9.90
41	P01-V054	5438386.0	500934.7	19.88	21.24	2.070	13.95
42	P01-V056	5438379.3	500881.7	18.71	20.14	2.070	11.00

Area 2W (70 Wells)

choose 8

	WellName	Northing	Easting	G.Elevation(m)	CasingElevation	Pipe ID (in)	Water Depth below ground level (m)
1	A2W-V001	5438568.516	500047.430	9.9175	11.3486	2.095	7.73
2	A2W-V002	5438554.671	500009.188	9.4983	10.6960	2.095	7.48
3	A2W-V003	5438571.592	499947.475	10.8126	12.0799	2.095	6.43
4	A2W-V004	5438564.762	499887.119	11.2274	12.6399	2.095	7.55
5	A2W-V005	5438563.670	499846.501	10.0840	11.4735	2.095	8.17
6	A2W-V006	5438618.103	500037.676	10.1395	11.4209	2.095	5.63
7	A2W-V007	5438615.683	499977.220	11.5869	12.7667	2.095	9.02
8	A2W-V008	5438616.146	499916.965	13.1224	14.4393	2.095	7.58
9	A2W-V009	5438616.968	499857.041	11.6512	12.9797	2.095	8.24
10	A2W-V010	5438668.283	500055.567	9.6080	11.0599	2.095	4.75
11	A2W-V011	5438668.216	499998.789	11.0693	12.4593	2.095	6.72
12	A2W-V012	5438668.814	499937.582	12.6335	13.8852	2.095	9.20
13	A2W-V013	5438668.777	499886.700	12.0596	13.3367	2.095	7.10
14	A2W-V014	5438671.806	499843.761	11.4107	12.7161	2.095	6.33
15	A2W-V015	5438720.162	500062.060	9.6651	11.0094	2.095	5.44
16	A2W-V016	5438720.291	500028.840	10.5700	11.8849	2.095	6.04
17	A2W-V017	5438720.080	499975.745	12.2699	13.7410	2.095	7.97
18	A2W-V018	5438720.679	499907.897	12.6386	13.7835	2.095	8.56
19	A2W-V019	5438718.413	499857.937	11.6263	12.8593	2.095	6.98
20	A2W-V020	5438734.639	499831.235	11.5810	12.7883	2.095	5.68
21	A2W-V021	5438769.798	500065.021	9.3162	10.5938	2.095	6.06
22	A2W-V022	5438770.150	500005.159	11.4787	12.8266	2.095	5.82
23	A2W-V023	5438770.191	499955.700	12.6075	13.8562	2.095	7.32
24	A2W-V024	5438770.506	499888.223	13.0037	14.3275	2.095	6.25
25	A2W-V025	5438770.712	499828.342	12.2058	13.5969	2.095	4.68
26	A2W-V026	5438770.696	499768.283	11.7590	12.9796	2.095	7.28
27	A2W-V027	5438770.897	499708.194	10.4464	11.8422	2.095	7.67
28	A2W-V028	5438771.154	499647.913	10.0196	11.2764	2.095	7.77
29	A2W-V029	5438779.329	499606.591	9.8131	11.0670	2.095	8.43

30	A2W-V030	5438821.812	500065.316	9.4500	10.6705	2.095	5.95
31	A2W-V031	5438821.591	500030.448	10.7527	12.0265	2.095	6.80
32	A2W-V032	5438822.015	499972.983	12.1729	13.5315	2.095	-1.35
33	A2W-V033	5438822.407	499907.881	13.1081	14.4540	2.095	7.06
34	A2W-V034	5438822.543	499855.327	13.3470	14.6803	2.095	6.82
35	A2W-V035	5438822.741	499794.921	13.6073	14.9639	2.095	6.07
36	A2W-V036	5438822.684	499738.447	12.3507	13.7955	2.095	5.40
37	A2W-V037	5438822.718	499678.086	12.3048	13.6146	2.095	7.44
38	A2W-V038	5438823.209	499633.880	12.2587	13.5947	2.095	7.48
39	A2W-V039	5438822.543	499590.801	10.4702	11.7740	2.095	7.72
40	A2W-V040	5438873.555	500063.639	9.8694	11.1729	2.095	6.33
41	A2W-V041	5438874.133	500005.061	11.5151	12.8144	2.095	6.44
42	A2W-V042	5438874.137	499955.640	12.6711	13.9481	2.095	7.20
43	A2W-V043	5438874.668	499885.189	12.8807	14.3196	2.095	6.76
44	A2W-V044	5438874.636	499828.272	13.9763	15.2480	2.095	6.52
45	A2W-V045	5438874.576	499768.070	14.2411	15.5362	2.095	8.68
46	A2W-V046	5438874.440	499707.712	13.9957	15.3235	2.095	7.06
47	A2W-V047	5438874.539	499648.239	13.0748	14.4629	2.095	7.60
48	A2W-V048	5438874.244	499596.260	10.6974	11.9829	2.095	5.68
49	A2W-V049	5438925.774	500063.907	10.0252	11.3003	2.095	7.10
50	A2W-V050	5438925.899	500031.935	10.8498	12.1874	2.095	8.02
51	A2W-V051	5438925.538	499972.252	12.1689	13.4922	2.095	7.04
52	A2W-V052	5438926.254	499915.132	12.6065	13.8094	2.095	6.27
53	A2W-V053	5438926.341	499855.503	12.5455	13.8135	2.095	7.18
54	A2W-V054	5438926.415	499798.258	14.1409	15.3699	2.095	7.73
55	A2W-V055	5438926.585	499738.361	13.7373	15.0517	2.095	10.45
56	A2W-V056	5438926.479	499678.091	13.4981	14.8397	2.095	9.05
57	A2W-V057	5438927.242	499631.339	12.5568	13.9630	2.095	7.71
58	A2W-V058	5438926.702	499593.758	10.3776	11.5434	2.095	6.30
59	A2W-V059	5438978.429	500057.993	10.1767	11.4178	2.095	7.85
60	A2W-V060	5438971.697	500002.997	11.2648	12.5123	2.095	8.65
61	A2W-V061	5438981.381	499946.874	10.9083	12.2764	2.095	5.97
62	A2W-V062	5438978.163	499885.310	11.4891	12.7533	2.095	6.28
63	A2W-V063	5438978.080	499828.386	11.3884	12.6612	2.095	5.25
64	A2W-V064	5438978.665	499765.884	12.1720	13.4907	2.095	10.92
65	A2W-V065	5438978.458	499708.542	12.2619	13.6923	2.095	9.77
66	A2W-V066	5438978.431	499648.295	12.2778	13.6361	2.095	11.08
67	A2W-V067	5438978.530	499591.977	10.6090	12.0693	2.095	9.38
68	A2W-V068	5439008.319	499738.417	11.4089	12.6977	2.095	7.92
69	A2W-V069	5439010.860	499678.186	10.7073	11.9756	2.095	9.30
70	A2W-V070	5439011.373	499618.354	10.4825	12.0557	2.095	8.10

	Area 2E	(45 Well	s)	choose 6			
	WellName	Northing	Easting	G.Elevation(m	CasingElevation	Pipe ID (in)	Water Depth below ground level (m)
1	A2E-V001	5438372.246	500314.585	10.7193	12.0041	2.095	4.9
2	A2E-V002	5438372.725	500251.167	10.7103	12.2144	2.095	7.5
3	A2E-V003	5438402.144	500342.419	10.6944	12.1206	2.095	6.55
4	A2E-V004	5438402.539	500282.279	10.6178	12.0096	2.095	6.7
5	A2E-V005	5438402.588	500237.025	10.2920	11.7981	2.095	8.4
6	A2E-V006	5438458.611	500361.118	10.2848	11.5516	2.095	7.55
7	A2E-V007	5438454.736	500312.559	11.0958	12.4496	2.095	7.7
8	A2E-V008	5438454.790	500252.623	10.8819	12.4062	2.095	5.45
9	A2E-V009	5438506.440	500337.494	10.7600	12.0914	2.095	7.3
10	A2E-V010	5438506.100	500282.449	12.2374	13.6055	2.095	9.85
11	A2E-V011	5438506.448	500228.937	12.1708	13.4764	2.095	7.45
12	A2E-V012	5438558.313	500369.579	10.1407	11.4045	2.095	5.65
13	A2E-V013	5438558.658	500312.633	11.8628	13.3392	2.095	9.9
14	A2E-V014	5438558.698	500252.566	12.6978	14.1417	2.095	6.9
15	A2E-V015	5438558.769	500215.352	11.9424	13.4162	2.095	5.8
16	A2E-V016	5438610.080	500342.434	11.2646	12.5271	2.095	6.4
17	A2E-V017	5438610.518	500282.767	11.9232	13.2526	2.095	8.7
18	A2E-V018	5438610.627	500219.663	11.1071	12.5233	2.095	7.5
19	A2E-V019	5438662.045	500366.502	10.0546	11.5246	2.095	6.3
20	A2E-V020	5438661.796	500316.736	11.5887	12.8794	2.095	7
21	A2E-V021	5438662.381	500252.755	11.9839	13.3229	2.095	6.7
22	A2E-V022	5438662.333	500218.290	10.3838	11.8330	2.095	6.2
23	A2E-V023	5438713.628	500367.872	10.6756	12.0460	2.095	5.65
24	A2E-V024	5438713.685	500333.987	10.8921	12.3757	2.095	4.4
25	A2E-V025	5438713.858	500282.721	12.4939	13.8072	2.095	5.7
26	A2E-V026	5438714.594	500222.743	11.0166	12.4805	2.095	7.3
27	A2E-V027	5438765.481	500371.603	10.0509	11.5663	2.095	5.3
28	A2E-V028	5438765.656	500312.890	11.7268	13.0623	2.095	6.6
29	A2E-V029	5438766.280	500256.685	12.3473	13.7522	2.095	7.35
30	A2E-V030	5438766.428	500222.117	10.8018	12.1577	2.095	6.9
31	A2E-V031	5438817.394	500373.471	10.0936	11.2676	2.095	4.95
32	A2E-V032	5438817.901	500341.956	10.7833	12.0630	2.095	6.8
33	A2E-V033	5438817.977	500281.917	12.0258	13.2470	2.095	8.2
34	A2E-V034	5438818.397	500222.168	10.8418	12.2079	2.095	5.85
35	A2E-V035	5438871.399	500371.961	9.8364	11.2079	2.095	4.8

	WellName	Northing	Easting	G.Elevation(m)	CasingElevation	Pipe ID (in)	Water Depth below ground level (m)
36	A2E-V036	5438870.095	500312.115	11.0117	12.3676	2.095	5.4
37	A2E-V037	5438869.697	500251.898	11.1275	12.5159	2.095	6.4
38	A2E-V038	5438870.213	500221.799	10.1644	11.5789	2.095	6.9
39	A2E-V039	5438922.270	500368.281	9.7939	11.1925	2.095	4.5
40	A2E-V040	5438921.577	500336.785	10.6323	12.0381	2.095	6.1
41	A2E-V041	5438921.902	500281.898	11.0337	12.5170	2.095	6.35
42	A2E-V042	5438922.217	500222.185	10.1382	11.4182	2.095	7.3
43	A2E-V043	5438958.441	500355.244	9.6931	11.1372	2.095	6.6
44	A2E-V044	5438962.809	500288.907	10.5684	11.9760	2.095	7.3
45	A2E-V045	5438967.176	500234.873	9.7526	11.2472	2.095	6.4

C.2 LFG Wells Temperature Survey Results

Temperature Data for the LFG well "P01-V007"

ate

Temperature Data for the LFG well "P01-V034" (10m B.G.)

D.2 Full Results of The Flux Chamber Survey and Measured Methane Emission Rates

(MER) at the Vancouver Landfill

					CH ₄ E	mission (N	1ER)	LFG Emissio	LFG Emission at 50%CH ₄	
Date	Area	Grid#	FC#	$R_{\Delta P}$	Measured	Adju	usted	Measured	Adjusted	R ²
				mbar/hr	gr/m²/d	gr/m²/d	kg/area/d	scfm/ha	scfm/ha	
15-Jun-12	Phase 1	163	35	-0.138	4709	3704	370	3546	2789	0.9824
15-Jun-12	Phase 1	163	35D	-0.138	4699	3695	0	3601	2832	0.9831
15-Jun-12	Phase 1	163	37	-0.138	46	36	36	35	27	0.9852
15-Jun-12	Phase 1	163	38	-0.138	135	106	21	104	81	0.9978
15-Jun-12	Phase 1	163	39	-0.138	434	341	34	333	262	0.9998
19-Jul-12	Phase 1	163	39D	-0.538	760	369	0	582	283	0.9985
15-Jun-12	Area 3	158	43	-0.138	48	38	1	37	29	0.9974
26-Jun-12	Area 3	158	44	0.350	419	708	13	304	513	0.9828
26-Jun-12	Area 3	158	45	0.350	58	99	2	42	72	0.9925
26-Jun-12	Area 3	158	46	0.350	29	49	1	21	36	0.9654
17-Jul-12	Area 3	158	46D	-0.067	60	53	0	46	41	0.9583
17-Jul-12	Area 3	158	47	-0.067	37	33	1	28	25	0.9359
17-Jul-12	Area 3	158	48	-0.067	797	704	13	604	533	0.9957
17-Jul-12	Area 3	158	48D	-0.067	890	786	0	672	593	0.9995
17-Jul-12	Area 3	158	49	-0.067	121	107	53	92	81	0.9005
17-Jul-12	Area 3	149	102	-0.067	139	123	2	106	94	0.9914
17-Jul-12	Area 3	149	104	-0.067	19	16	0	14	12	0.9932
17-Jul-12	Area 3	149	105	-0.067	193	171	34	148	131	0.9808
17-Jul-12	Area 3	149	108	-0.067	18	16	2	14	12	0.7802
17-Jul-12	Area 2E	139	91	-0.240	302	205	20	233	158	0.9848
17-Jul-12	Area 2E	139	92	-0.240	55	37	4	42	29	0.9900
17-Jul-12	Area 2E	135	111	-0.240	37	25	1	28	19	0.9802
17-Jul-12	Area 2E	135	114	-0.240	82	56	6	64	43	0.9461
18-Jul-12	Area 2W	102	200	0.013	402	412	10	297	304	0.9972
18-Jul-12	Area 2W	102	205	0.013	1817	559	56	1363	1397	0.9628
19-Jul-12	Area 2W	102	205D	-0.538	3724	542	0	2854	1385	0.9534
18-Jul-12	Area 2W	103	214	0.013	444	455	15	339	348	0.9907
18-Jul-12	Area 2W	103	216	0.013	1963	1006	34	1497	1535	0.9676
18-Jul-12	Area 2W	112	235	0.013	74	76	8	57	58	0.9880
18-Jul-12	Area 2W	104	240	0.013	28	28	10	21	22	0.9917
21-Jun-12	Area 3	151	56	-0.488	510	260	2	389	198	0.9854
26-Jun-12	Area 3	151	56D	0.601	205	447	0	148	324	0.9917
26-Jun-12	Area 3	151	56D2	0.601	185	404	0	134	293	0.9687
19-Jul-12	Area 3	151	56D3	-0.538	750	364	0	572	278	0.9118
21-Jun-12	Area 3	151	57	-0.488	132	67	1	101	51	0.9878
21-Jun-12	Area 3	151	62	-0.488	148	75	2	113	58	0.9936
26-Jun-12	Area 3	151	62D	0.601	68	149	0	49	108	0.9530
26-Jun-12	Area 3	151	64	0.601	37	81	2	27	59	0.9517
26-Jun-12	Area 3	151	65	0.601	195	426	43	141	309	0.9445

					CH ₄ E	mission (N	1ER)	LFG Emission at 50%CH ₄		
Date	Area	Grid#	FC#	$R_{\Delta P}$	Measured	Adju	isted	Measured	Adjusted	R ²
				mbar/hr	gr/m²/d	gr/m²/d	kg/area/d	scfm/ha	scfm/ha	
16-Jul-12	Area 3	146	71D	-0.300	326	205	0	247	155	0.8986
16-Jul-12	Area 3	146	71	-0.300	389	244	12	297	186	0.9881
16-Jul-12	Area 3	146	72	-0.300	500	314	16	381	240	0.9237
16-Jul-12	Area 3	147	76	-0.300	202	127	4	154	97	0.9884
16-Jul-12	Area 3	147	77	-0.300	2462	1546	52	1879	1180	0.9497
16-Jul-12	Area 3	147	78	-0.300	528	331	11	403	253	0.9867
16-Jul-12	Area 3	147	83	-0.300	92	58	58	71	44	0.9248
16-Jul-12	Phase 1	162	88	-0.600	26	12	3	20	9	1.0000
16-Jul-12	Phase 1	162	90	-0.600	17	8	1	13	6	0.9710
16-Jul-12	Phase 1	162	91	-0.600	256	117	6	198	91	0.9513
19-Jul-12	West 40	11	401	-0.538	74	36	36	57	27	0.9688
19-Jul-12	West 40	11	403	-0.538	130	63	63	99	48	0.9748
19-Jul-12	West 40	11	406	-0.538	175	85	85	134	65	0.9912
19-Jul-12	West 40	11	408	-0.538	18	9	9	14	7	0.9627

D.3 Graphical Presentation of the Recorded Barometric Pressure During Preliminary Surface Scan and Flux Measurement Test at the Vancouver Landfill

Barometric Pressure at Vancouver Landfill (July 16, 2012)

	[-								
	Grid	Date	R _{∆P}	SEM	SEM _a	MERa	Area	CH ₄	CH ₄	LFG	CH ₄
	No.		mbar/hr	ppm [C	CH4]	gr/m²/d	m²	Kg/d	m3/hr	scfm	T/Y
	92	07-Dec-11	-0.30003	8.7	5.5	3.15	7,300	22.96	1.41	1.66	12.7
	93	07-Dec-11	-0.30003	10.0	6.3	3.40	10,000	34.00	2.09	2.46	18.8
	94	07-Dec-11	-0.30003	10.7	6.7	3.54	10,000	35.43	2.18	2.56	19.6
	95	07-Dec-11	-0.30003	10.6	6.7	3.52	5,050	17.76	1.09	1.29	9.8
	96	07-Dec-11	-0.30003	11.3	7.1	3.66	5 <i>,</i> 880	21.51	1.32	1.56	11.9
	97	07-Dec-11	-0.30003	4.0	2.5	2.20	10,000	21.97	1.35	1.59	12.1
	98	08-Dec-11	-0.30738	3.2	2.0	2.03	10,000	20.33	1.25	1.47	11.2
	99	08-Dec-11	-0.30738	-0.5	1.0	1.71	7,300	12.46	0.77	0.90	6.9
	100	08-Dec-11	-0.30738	1.1	0.7	1.60	6,630	10.61	0.65	0.77	5.9
	101	12-Dec-11	-0.50706	14.6	7.3	3.72	10,000	37.21	2.29	2.69	20.6
	102	12-Dec-11	-0.50706	27.9	14.0	5.85	10,000	58.54	3.60	4.24	32.4
	103	12-Dec-11	-0.50706	51.6	25.8	9.64	8,110	78.21	4.81	5.66	43.3
	104	12-Dec-11	-0.50706	43.9	21.9	8.41	7,130	59.96	3.69	4.34	33.2
>	105	08-Dec-11	-0.30738	3.8	2.4	2.15	12,090	26.00	1.60	1.88	14.4
2V	106	08-Dec-11	-0.30738	3.8	2.3	2.14	10,000	21.35	1.31	1.55	11.8
rea	107	08-Dec-11	-0.30738	5.3	3.3	2.44	10,000	24.45	1.50	1.77	13.5
A	108	08-Dec-11	-0.30738	6.3	3.9	2.64	10,000	26.42	1.62	1.91	14.6
	109	12-Dec-11	-0.50706	30.5	15.3	6.28	5,950	37.34	2.30	2.70	20.7
	110	12-Dec-11	-0.50706	9.6	4.8	2.92	5,950	17.39	1.07	1.26	9.6
	111	12-Dec-11	-0.50706	13.0	6.5	3.47	10,000	34.70	2.13	2.51	19.2
	112	12-Dec-11	-0.50706	15.6	7.8	3.88	10,000	38.76	2.38	2.81	21.4
	113	08-Dec-11	-0.30738	6.3	3.9	2.65	10,000	26.48	1.63	1.92	14.6
	114	08-Dec-11	-0.30738	6.2	3.9	2.62	10,000	26.24	1.61	1.90	14.5
	115	08-Dec-11	-0.30738	6.2	3.8	2.62	6,150	16.11	0.99	1.17	8.9
	116	08-Dec-11	-0.30738	5.4	3.4	2.47	6,260	15.44	0.95	1.12	8.5
	117	12-Dec-11	-0.50706	6.1	3.1	2.37	10,000	23.70	1.46	1.72	13.1
	118	12-Dec-11	-0.50706	2.7	1.4	1.82	10,000	18.21	1.12	1.32	10.1
	119	12-Dec-11	-0.50706	4.8	2.4	2.16	10,000	21.59	1.33	1.56	11.9
	120	12-Dec-11	-0.50706	8.5	4.2	2.74	10,000	27.43	1.69	1.99	15.2
	121	12-Dec-11	-0.50706	1.7	0.8	1.65	5,900	9.76	0.60	0.71	5.4
	1		Total Metha	ne Emissio	on from	Area 2W	259,700	842	52	61	466
	122	08-Dec-11	-0.30738	6.701	4	2.72	4,250	11.57	0.71	0.84	6.4
	123	08-Dec-11	-0.30738	7.254	5	2.83	7,150	20.25	1.25	1.47	11.2
2E	124	08-Dec-11	-0.30738	6.346	4	2.65	7,150	18.96	1.17	1.37	10.5
ea j	125	08-Dec-11	-0.30738	6.149	4	2.61	7,150	18.68	1.15	1.35	10.3
Ari	126	08-Dec-11	-0.30738	7.455	5	2.87	7,150	20.54	1.26	1.49	11.4
	127	08-Dec-11	-0.30738	7.424	5	2.87	7,150	20.49	1.26	1.48	11.3
	128	08-Dec-11	-0.30738	6.862	4	2.75	7,150	19.69	1.21	1.43	10.9

D.4 Estimated Methane and Landfill Gas Emission Rate at the Vancouver Landfill

Within the Study Boundary

364

	Grid	Data	$R_{\Delta P}$	SEM	SEM_{a}	MER _a	Area	CH ₄	CH ₄	LFG	CH_4
	No.	Date	mbar/hr	ppm [(CH4]	gr/m²/d	m²	Kg/d	m3/hr	scfm	T/Y
	129	08-Dec-11	-0.30738	2.755	2	1.94	3,300	6.39	0.39	0.46	3.5
	130	08-Dec-11	-0.30738	4.927	3	2.37	4,850	11.49	0.71	0.83	6.4
	131	08-Dec-11	-0.30738	5.678	4	2.52	10,000	25.18	1.55	1.82	13.9
	132	08-Dec-11	-0.30738	6.117	4	2.61	10,000	26.06	1.60	1.89	14.4
	133	08-Dec-11	-0.30738	4.838	3	2.35	10,000	23.51	1.45	1.70	13.0
	134	08-Dec-11	-0.30738	3.387	2	2.06	10,000	20.62	1.27	1.49	11.4
	135	08-Dec-11	-0.30738	5.739	4	2.53	10,000	25.31	1.56	1.83	14.0
	136	12-Dec-11	-0.50706	0.079	0	1.40	10,000	13.99	0.86	1.01	7.7
	137	12-Dec-11	-0.50706	12.984	6	3.46	4,900	16.98	1.04	1.23	9.4
	138	12-Dec-11	-0.50706	16.432	8	4.02	4,700	18.88	1.16	1.37	10.4
	139	12-Dec-11	-0.50706	7.193	4	2.54	10,000	25.38	1.56	1.84	14.0
	140	12-Dec-11	-0.50706	4.152	2	2.05	10,000	20.51	1.26	1.48	11.3
	141	12-Dec-11	-0.50706	6.842	3	2.48	10,000	24.82	1.53	1.80	13.7
	142	12-Dec-11	-0.50706	4.250	2	2.07	10,000	20.67	1.27	1.50	11.4
	143	12-Dec-11	-0.50706	4.047	2	2.03	10,000	20.34	1.25	1.47	11.3
	144	12-Dec-11	-0.50706	3.450	2	1.94	10,000	19.39	1.19	1.40	10.7
	145	12-Dec-11	-0.50706	1.557	1	1.64	4,110	6.72	0.41	0.49	3.7
			Total Meth	ane Emiss	ion fron	n Area 2E	189,010	456	28	33	252
	146	12-Dec-11	-0.50706	32.241	16	6.55	5,050	33.06	2.03	2.39	18.3
	147	12-Dec-11	-0.50706	79.238	40	14.07	10,000	140.68	8.65	10.18	77.8
	148	12-Dec-11	-0.50706	22.306	11	4.96	10,000	49.57	3.05	3.59	27.4
	149	12-Dec-11	-0.50706	30.675	15	6.30	10,000	62.96	3.87	4.56	34.8
	150	12-Dec-11	-0.50706	22.178	11	4.94	10,000	49.36	3.04	3.57	27.3
	151	12-Dec-11	-0.50706	11.806	6	3.28	10,000	32.76	2.01	2.37	18.1
	152	12-Dec-11	-0.50706	9.372	5	2.89	10,000	28.87	1.78	2.09	16.0
ea 3	153	12-Dec-11	-0.50706	11.103	6	3.16	5,300	16.77	1.03	1.21	9.3
Are	154	12-Dec-11	-0.50706	6.710	3	2.46	5,400	13.29	0.82	0.96	7.3
	155	12-Dec-11	-0.50706	22.791	11	5.03	10,000	50.34	3.10	3.64	27.8
	156	12-Dec-11	-0.50706	8.121	4	2.69	10,000	26.86	1.65	1.94	14.9
	157	12-Dec-11	-0.50706	11.187	6	3.18	10,000	31.77	1.95	2.30	17.6
	158	12-Dec-11	-0.50706	21.176	11	4.78	10,000	47.76	2.94	3.46	26.4
	159	12-Dec-11	-0.50706	20.687	10	4.70	10,000	46.98	2.89	3.40	26.0
	160	12-Dec-11	-0.50706	4.985	2	2.18	10,000	21.85	1.34	1.58	12.1
	161	09-Dec-11	-0.59981	6.469	3	2.34	4,800	11.21	0.69	0.81	6.2
			Total Met	hane Emis	sion fro	m Area 3	140,550	664	41	48	367
	162	09-Dec-11	-0.59981	64.866	30	10.90	4,700	51.22	3.15	3.71	28.3
>	163*	09-Dec-11	-0.59981	565.034	259	84.24	10,000	842.36	51.81	60.98	17.6
1	164	09-Dec-11	-0.59981	14.728	7	3.55	10,000	35.46	2.18	2.57	19.6
ase	165	09-Dec-11	-0.59981	8.227	4	2.59	10,000	25.93	1.59	1.88	14.3
ЪР	166	09-Dec-11	-0.59981	7.833	4	2.54	10,000	25.35	1.56	1.84	14.0
	167	09-Dec-11	-0.59981	8.771	4	2.67	10,000	26.73	1.64	1.93	14.8
I	168	09-Dec-11	-0.59981	9.750	4	2.82	10,000	28.16	1.73	2.04	15.6

	Grid	Data	$R_{\Delta P}$	SEM	SEM_{a}	MER _a	Area	CH ₄	CH ₄	LFG	CH_4
	No.	Date	mbar/hr	ppm [(CH4]	gr/m²/d	m ²	Kg/d	m3/hr	scfm	T/Y
	169	09-Dec-11	-0.59981	23.989	11	4.90	5,580	27.37	1.68	1.98	15.1
	170	09-Dec-11	-0.59981	21.332	10	4.51	5,580	25.19	1.55	1.82	13.9
	171	09-Dec-11	-0.59981	14.468	7	3.51	10,000	35.08	2.16	2.54	19.4
	172	09-Dec-11	-0.59981	23.512	11	4.83	10,000	48.34	2.97	3.50	26.7
	173	09-Dec-11	-0.59981	19.946	9	4.31	10,000	43.11	2.65	3.12	23.8
	174	09-Dec-11	-0.59981	17.942	8	4.02	10,000	40.18	2.47	2.91	22.2
	175	09-Dec-11	-0.59981	20.597	9	4.41	10,000	44.07	2.71	3.19	24.4
	176	09-Dec-11	-0.59981	3.438	2	1.89	10,000	18.91	1.16	1.37	10.5
	177	09-Dec-11	-0.59981	14.730	7	3.55	5,050	17.91	1.10	1.30	9.9
		Т	otal Methan	e Emissior	n from F	hase 1W	140,910	1,335	82	97	290
	178	09-Dec-11	-0.59981	9.532	4	2.78	5,000	13.92	0.86	1.01	7.7
	179	09-Dec-11	-0.59981	9.792	4	2.82	10,000	28.22	1.74	2.04	15.6
	180	09-Dec-11	-0.59981	1.557	1	1.62	10,000	16.15	0.99	1.17	8.9
	181	09-Dec-11	-0.59981	1.599	1	1.62	10,000	16.21	1.00	1.17	9.0
	182	09-Dec-11	-0.59981	1.597	1	1.62	10,000	16.21	1.00	1.17	9.0
	183	09-Dec-11	-0.59981	1.621	1	1.62	10,000	16.24	1.00	1.18	9.0
щ	184	09-Dec-11	-0.59981	1.534	1	1.61	10,000	16.12	0.99	1.17	8.9
se 1	185	09-Dec-11	-0.59981	6.335	3	2.32	4,300	9.96	0.61	0.72	5.5
has	186	09-Dec-11	-0.59981	2.155	1	1.70	4,300	7.32	0.45	0.53	4.0
_ ₽	187	09-Dec-11	-0.59981	3.368	2	1.88	4,300	8.09	0.50	0.59	4.5
	188	09-Dec-11	-0.59981	3.107	1	1.84	4,300	7.92	0.49	0.57	4.4
	189	09-Dec-11	-0.59981	4.520	2	2.05	4,300	8.81	0.54	0.64	4.9
	190	09-Dec-11	-0.59981	3.578	2	1.91	4,300	8.22	0.51	0.60	4.5
	191	09-Dec-11	-0.59981	2.650	1	1.78	4,300	7.63	0.47	0.55	4.2
	192	09-Dec-11	-0.59981	1.528	1	1.61	4,251	6.85	0.42	0.50	3.8
	193	09-Dec-11	-0.59981	0.614	0	1.48	2,000	2.95	0.18	0.21	1.6
			Total Metha	ne Emissio	on from	Phase 1E	101,351	191	12	14	106
			Total Meth	ane Emissi	ion fron	n Phase 1	242,261	1,526	94	110	396

* unreliable SMC data due to open LFG well at the time of sampling, therefore flux chamber results were used for this grid

Adjusted SEM (SEM _a) =	SEM x (1+	1.9731	$x R_{\Delta P})^{R_{\Delta P}/ R_{\Delta P} $
Adjusted MER (MER _a) =	SEMa x	0.3202	+ 1.3867
Methane Density =	0.6775	kg m⁻³	
E. Correction Factor (CF_E) =	1.515	=1/66%	

Appendix E Stable Isotope Tests Raw Data and Full Results

Vial	Area /Phase	Grid#	Label (FC#)	Date	INI/FIN	[CH ₄] (% Volume)	Average δ ¹³ C (ppt)	Std Dev				
1	01		402	10 1 1 10	INI	0.2	-40.54	0.221				
2	un 4	11	402	19-Jul-12	FIN	0.8	-36.27	0.017				
3	este	11	400	10 1.1 12	INI	0.2	-50.19	0.049				
4	Š		406	19-Jul-12	FIN	1	-46.64	0.010				
5			200	10 Jul 12	INI	0.9	-52.98	0.085				
6		102	200	10-JUI-12	FIN	3.4	-52.16	0.325				
7	N	102	205	18-Jul-12	INI	0.7	-54.17	0.112				
8	ea 2		205	18-Jul-12	FIN	11.7	-52.69	0.016				
9	Ar	103	21/	18-Jul-12	INI	0.8	-51.07	0.311				
10		105	214	10-Jul-12	FIN	2.2	-48.09	0.124				
11		104	309	19-Jul-12	INI	0.3	-47.48	0.017				
12		125	11/	17-Jul-12	INI	0.3	-52.31	0.157				
13	a 21	133	114	17-Jui-12	FIN	0.9	-48.33	0.023				
14	Are	A 120	010	17 Jul 12	INI	0.3	-52.28	0.311				
15		129	916	17-Jui-12	FIN	2.5	-50.68	0.040				
16		146	71	16 Jul 12	INI	0.6	-54.99	0.151				
17		140	/1	10-Jui-12	FIN	4.9	-51.31	0.074				
18		1/17	79	16-Jul-12	INI	0.4	-54.03	0.169				
19		147	78	10-Jui-12	FIN	3.3	-52.56	0.064				
20			211	10_lul_12	INI	1.1	-54.47	0.386				
21				151	511	19-Jul-12	FIN	8.3	-50.45	0.291		
22	ε		62	21-Jun-12	FIN	2.6	-48.59	0.100				
23	rea						лл	26-lun-12	INI	0.4	-53.25	0.242
24	₹	(u		26-Jun-12	FIN	2.5	-53.10	0.019				
25		ake	47	17-Iul-12	INI	0.4	-53.38	0.108				
26		58 (ic t	-17	17 JUL 12	FIN	1	-47.77	0.078				
27		1 10	/18	17-Jul-12	INI	0.7	-53.96	0.113				
28		A)	40	17 JUL 12	FIN	7.9	-47.51	0.040				
29			108	17-Jul-12	INI	0.2	-43.47	0.011				
30			108	17-JUI-12	FIN	0.3	-41.49	0.070				
31		162	91Δ	16-Jul-12	INI	0.2	-49.37	0.238				
32		102	717	10 JUL 12	FIN	4.7	-50.62	0.027				
33		, C			INI	6	-59.30	0.047				
34	Ise :	ake	35	15-Jun-12	FIN	28.6	-56.22	0.109				
35	Pha	63 lic t			FIN(D)	32	-56.38	0.051				
36		1 Nox	38	15-Jun-12	FIN	5.6	-54.47	0.002				
37		A A	300	18-Jul-12	INI	1.4	-57.37	0.291				
38			500	10 101-12	FIN	7.6	-56.07	0.105				

E.1 Flux Chamber Initial and Final Gas Samples

Vial #	Label	Date	[CH₄] (% Volume)	Average δ ¹³ C (ppt)	Std Dev
1	SG1/t0	20-Jul-12	4.9%	-39.10	0.262
2	SG1/t1	20-Jul-12	5.2%	-39.52	0.095
3	SG1/t2	20-Jul-12	4.0%	-39.30	0.182
4	SG1/t3	20-Jul-12	6.0%	-38.82	0.112
5	SG1/t4	20-Jul-12	5.8%	-39.12	0.371
6	SG2/t0	20-Jul-12	5.8%	-39.03	0.099
7	SG2/t1	20-Jul-12	4.3%	-38.83	0.042
8	SG2/t2	20-Jul-12	3.5%	-37.77	0.017
9	SG2/t3	20-Jul-12	5.6%	-36.63	0.048
10	SG2/t4	20-Jul-12	5.4%	-36.06	0.091
11	SG3/t0	20-Jul-12	4.9%	-38.31	0.364
12	SG3/t1	20-Jul-12	3.7%	-35.47	0.072
13	SG3/t2	20-Jul-12	1.7%	-18.77	0.600
14	SG3/t3	20-Jul-12	0.3%	12.55	0.644
15	SG3/t4	20-Jul-12	BDL		
16	SG4/t0	20-Jul-12	5.2%	-39.48	0.003
17	SG4/t1	20-Jul-12	5.1%	-38.54	0.535
18	SG4/t2	20-Jul-12	4.1%	-39.08	0.022
19	SG4/t3	20-Jul-12	5.6%	-39.12	0.312
20	SG4/t4	20-Jul-12	5.6%	-39.11	0.216
21	B1/t0	15-Aug-12	3.9%	-32.71	0.007
22	B1/t5	16-Aug-12	3.8%	-32.85	0.096
23	B1/t7	16-Aug-12	3.9%	-32.41	0.204
24	1a/t0	15-Aug-12	4.0%	-33.48	0.439
24	duplicate		4.0%	-33.94	0.028
25	1a/t2	15-Aug-12	2.8%	-24.48	0.236
26	1a/t3	15-Aug-12	2.6%	-21.63	0.248
27	1a/t4	15-Aug-12	2.1%	-16.59	0.130
28	1a/t5	16-Aug-12	<0.2%	BDL	
29	1b/t0	15-Aug-12	4.1%	-34.31	0.305
30	1b/t2	15-Aug-12	3.3%	-31.12	0.309
31	1b/t4	15-Aug-12	3.2%	-29.36	0.058
32	1b/t5	16-Aug-12	2.2%	-20.99	0.195
33	1b/t7	16-Aug-12	1.5%	-13.53	0.071

E.2 Soil Gas Samples Raw Data, GC-FID, and GCC-IRMS Results

Vial #	Label	Date	[CH₄] (% Volume)	Average δ ¹³ C (ppt)	Std Dev
34	2a/t0	15-Aug-12	4.4%	-35.12	0.149
35	2a/t4	15-Aug-12	3.3%	-27.16	0.064
36	2a/t5	16-Aug-12	1.1%	0.35	0.269
37	2a/t6	16-Aug-12	0.4%	BDL	
38	3a/t0	15-Aug-12	4.3%	-35.58	0.035
39	3a/t2	15-Aug-12	3.5%	-31.56	0.121
40	3a/t4	15-Aug-12	3.4%	-29.92	0.004
41	3a/t5	16-Aug-12	2.7%	-23.13	0.044
42	3a/t7	16-Aug-12	2.2%	-16.93	0.203
43	3b/t0	15-Aug-12	4.5%	-36.02	0.129
44	3b/t1	15-Aug-12	3.3%	-28.08	0.260
45	3b/t2	15-Aug-12	1.9%	-17.34	0.025
46	3b/t3	15-Aug-12	1.6%	-9.05	0.151
47	3b/t4	15-Aug-12	0.5%	12.05	0.465
48	B2/t0	15-Aug-12	4.0%	-36.30	0.128
49	B2/t5	16-Aug-12	3.9%	-36.41	0.284
50	B2/t7	16-Aug-12	4.0%	-36.53	0.148
51	4a/t0	15-Aug-12	4.2%	-36.45	0.034
52	4a/t4	15-Aug-12	4.1%	-35.73	0.016
53	4a/t5	16-Aug-12	4.0%	-35.44	0.082
54	4a/t7	16-Aug-12	3.9%	-35.10	0.048
55	4b/t0	15-Aug-12	4.5%	-36.57	0.013
56	4a/t2	15-Aug-12	3.8%	-34.67	0.239
57	4b/t4	15-Aug-12	2.8%	-33.42	0.059
58	4b/t5	16-Aug-12	2.0%	-29.13	0.016
59	4b/t7	16-Aug-12	1.4%	-25.70	0.029
60	5a/t0	15-Aug-12	4.4%	-36.13	0.138
61	5a/t1	15-Aug-12	1.7%	-26.15	0.059
62	5a/t2	15-Aug-12	1.2%	-10.38	0.199
63	5a/t3	15-Aug-12	0.6%	4.17	0.228
64	5a/t4	15-Aug-12	<0.2%	BDL	
65	5a/t5	16-Aug-12	ND	BDL	
66	5b/t0	15-Aug-12	4.7%	-36.26	0.071
67	5b/t1	15-Aug-12	3.0%	-28.27	0.030
68	5b/t2	15-Aug-12	1.5%	-14.87	0.006
69	5b/t3	15-Aug-12	0.8%	-3.43	0.218
70	5b/t4	15-Aug-12	<0.2%	BDL	
71	6a/t0	15-Aug-12	4.7%	-36.07	0.036

Vial #	Label	Date	[CH₄] (% Volume)	Average δ ¹³ C (ppt)	Std Dev
72	6a/t4	15-Aug-12	4.4%	-36.24	0.086
73	6a/t5	16-Aug-12	4.6%	-36.33	0.023
74	6a/t7	16-Aug-12	4.3%	-36.66	0.035
75	6b/t0	15-Aug-12	4.4%	-36.73	0.107
76	6b/t4	15-Aug-12	4.3%	-35.95	0.090
77	6b/t5	16-Aug-12	4.1%	-33.74	0.025
78	6b/t7	16-Aug-12	3.8%	-32.20	0.187
Soil Incubation Test, FID	esponses and CH	Percentage	Calculations		
---------------------------	-----------------	------------	--------------		
---------------------------	-----------------	------------	--------------		

			-				1	·							_																									1
Date/Time		to = 0	(Augus	st 15, 20	12)	_	t ₀	(Augı	ust 15.	, 201	2)		t ₁				t ₂				t ₃				t ₄			t ₅ (A	Aug 16	, 2012)	1		t	6		t	(Final	FID Run)		
15-Aug-12		FID	Respo	nse		CH4	4 F.	ID Re	espons	e	CH ₄	FID F	lespon	ise	CH_4	FID	Respons	se	CH_4	FID I	Respon	ise	CH ₄	FID I	Respon	ise	CH ₄	FID I	Respor	ıse	CH ₄	FIL	Resp	onse	CH_4	FI	D Res	ponse	CH_4	Notes
16-Aug-12	Area	Time	∆t (mins	s) Avg S	DC	(%)	Are	ea T	Time	Δt	(%)	Area	Time	Δt	(%)	Area	Time	Δt	(%)	Area	Time	Δt	(%)	Area	Time	∆t	(%)	Area	Time	∆t	(%)	Area	Time	Δt (H:M:S)	(%)	Area	Time	Δt (H:M:S)	(%)	
#B1	22449.5 22608.5 21997.8	10:12 10:15 10:17	0:00:00 0:00:00 0:00:00	22351.9	0.01 <i>c</i> 1.4%	3.9%	2235	51.9 1	0:12	0:00	3.9%	22218.9	13:37	3:25	3.8%	21330.3	16:15	6:03	3.7%	22154.4	17:50	7:38	3.8%	22125.2	20:02	9:50	3.8%	22064.2	9:12	23:00	3.8%	21861.1	13:14	27:02:00	3.8%	22343.6	17:16	31:04:00	3.9%	Blank at 25 °C
#1a	23052.5 23653.8 23457.2	10:19 10:22 10:24	0:00:00	23387.8	0.00c 1.3%	4.0%	2338	37.8 1	0:19	0:00	4.0%	20214.0	13:39	3:20	3.5%	16099.7	16:18	5:59	2.8%	14963.1	17:52	7:33	2.6%	12043.3	20:04	9:45	2.1%	604.8	9:14	22:55	<0.2%				NS				NS	Phase 1 at 25°C with 7.7% Moisture w/w
#1b	23694.1 23277.8 23558.6	10:26 10:28 10:30	0:00:00 0:00:00 0:00:00	23510.2	c.212 %6.0	4.1%	2351	0.2 1	0:26	0:00	4.1%	21736.1	13:41	3:15	3.7%	18887.1	16:22	5:56	3.3%	19514.8	17:54	7:28	3.4%	18458.1	20:06	9:40	3.2%	12912.4	9:16	22:50	2.2%	10580.1	13:17	26:51:00	1.8%	8650.5	17:19	30:53:00	1.5%	Phase 1 at 25°C with 10.7% Moisture w/w
#2a	25363.2 25816.9 26008.0	10:33 10:35 10:38	0:00:00	25729.4	2.1cc 1.3%	4.4%	2572	29.4 1	10:33	0:00	4.4%	22977.1	13:43	3:10	4.0%	20966.6	16:24	5:51	3.6%	20274.7	17:57	7:24	3.5%	19094.3	20:08	9:35	3.3%	6604.5	9:18	22:59	1.1%	2733.4	13:19	27:00:00	0.4%	440.9	17:21	31:02:00	<0.2%	Grid 158 at 25°C with 9.7% Moisture w/w
#3a	25127.9 25181.7 25106.1	10:40 10:42 10:44	0:00:00 0:00:00 0:00:00	25138.6	0.2%	4.3%	2513	88.6 1	0:40	0:00	4.3%	22468.7	13:46	3:06	3.9%	20125.4	16:26	5:46	3.5%	20906.4	17:59	7:19	3.6%	19823.7	20:11	9:31	3.4%	15935.2	9:20	22:54	2.7%	13945.6	13:22	26:56:00	2.4%	12708.7	17:23	30:57:00	2.2%	Grid 151 at 25°C with 7.1% Moisture w/w
#3b	26138.2 25925.6 25576.0	10:46 10:49 10:51	0:00:00	25879.9	4.002 1.1%	4.5%	2587	79.9 1	0:46	0:00	4.5%	19111.7	13:48	3:02	3.3%	11119.2	16:29	5:43	1.9%	9235.7	18:01	7:15	1.6%	3460.2	20:13	9:27	0.5%	-	9:23	23:04	ND				SN				NS	Grid 151 at 25°C with 11.8% Moisture w/w
#B2	21823.5 23575.1 23285.1	10:53 10:55 10:58	0:00:00	22894.6	4.1%	4.0%	2289	94.6 1	0:53	0:00	4.0%	22022.4	13:51	2:58	3.8%	20906.6	16:33	5:40	3.6%	22834.4	18:03	7:10	3.9%	23089.6	20:15	9:22	4.0%	22829.4	9:26	23:00	3.9%	23474.7	13:24	26:58:00	4.1%	23012.2	17:26	31:00:00	4.0%	Blank at 5°C
#4a	24738.9 23571.0 24094.3	11:00 11:02 11:05	0:00:00	24134.7	2.4%	4.2%	2413	34.7 1	1:00	0:00	4.2%	23392.9	13:54	2:54	4.0%	22189.6	16:36	5:36	3.8%	23556.9	18:05	7:05	4.1%	23626.4	20:18	9:18	4.1%	23027.6	9:28	23:09	4.0%	22419.2	13:26	27:07:00	3.9%	22326.1	17:29	31:10:00	3.9%	Grid 151 at 5°C with 7.1% Moisture w/w
#4b	26587.4 25857.0 25026.4	11:07 11:10 11:12	0:00:00	25823.6	3.0%	4.5%	2582	23.6 1	1:07	0:00	4.5%	21296.5	13:56	2:49	3.7%	19088.3	16:38	5:31	3.3%	17680.3	18:07	7:00	3.0%	16430.1	20:20	9:13	2.8%	11682.7	9:31	23:05	2.0%	9976.1	13:28	27:02:00	1.7%	8379.5	17:31	31:05:00	1.4%	Grid 151 at 5°C with 11.8% Moisture w/w
#5a	25351.2 25311.1 25318.4	11:14 11:16 11:19	0:00:00	25326.9	$^{21.4}$	4.4%	2532	26.9 1	1:14	0:00	4.4%	10121.5	13:59	2:45	1.7%	7398.7	16:41	5:27	1.2%	4164.1	18:10	6:56	0.6%	347.9	20:23	9:09	<0.2%		9:33	23:14	ΩN				SN				NS	Grid 102 with emission at 25° and 12.4% Moisture
#5b	27577.9 27110.2 26765.6	11:21 11:23 11:25	0:00:00	27151.2	407.7	4.7%	2715	51.2 1	1:21	0:00	4.7%	17469.4	14:01	2:40	3.0%	9021.5	16:43	5:22	1.5%	5387.9	18:12	6:51	0.8%	975.5	20:25	9:04	<0.2%		9:39	23:13	ΟN				SN				SN	Grid 102 with emission at 25° and 16.0% Moisture
#6a	26916.4 26876.5 26925.6	11:28 11:30 11:32	0:00:00	26906.2	0.1%	4.7%	2690	06.2 1	1:28	0:00	4.7%	24861.2	14:03	2:35	4.3%	23434.1	16:46	5:18	4.0%	26117.6	18:14	6:46	4.5%	25411.5	20:27	8:59	4.4%	26409.0	9:46	23:27	4.6%	26744.4	13:31	27:12:00	4.6%	24753.8	17:33	31:14:00	4.3%	Grid 102 without emission at 25° and 4.2% Moisture
#6b	26156.8 25809.7 24720.1	11:34 11:37 11:39	0:00:00	25562.2	2.9%	4.4%	2556	52.2 1	1:34	0:00	4.4%	21848.2	14:05	2:31	3.8%	24237.8	16:48	5:14	4.2%	24532.5	18:17	6:43	4.2%	24830.8	20:29	8:55	4.3%	23817.9	9:48	23:22	4.1%	23090.2	13:33	27:07:00	4.0%	21904.3	17:36	31:10:00	3.8%	Grid 102 without emission at 25° and 14.0% Moisture
	Initial Sa	mple 1	aken																																					
	Soil Gas	Sample	a Taken		_																																			
NC NULS	Final Sar	nple Ta	iken		_	-	-	_																					-						-				\vdash	
NS: Not Sa	npled			++	_																																			
ND: Not De	tected					1																																		

Appendix F Landfill Gas Collection System Wellfield Readings

#	Data	Collected LFG Flow Rate (scfm)													
#	Date	Area 2W	Area 2E	Area 3	Phase 1	Work Site									
1	22-Mar-11	161		129	1,208										
2	31-Mar-11	163	143	247	1,343	1,895									
3	11-Apr-11	151	87	296	1,348	1,883									
4	20-Apr-11	176	164	301	1,369	2,009									
5	29-Apr-11	189	100	313	1,215	1,817									
6	11-May-11	174	154	234	1,199	1,761									
7	16-May-11	126	166	282	1,282	1,857									
8	24-May-11	246	208	275	1,274	2,003									
9	2-Jun-11	246	208	132	1,383	1,969									
10	10-Jun-11	170	205	246	1,087	1,710									
11	14-Jun-11		136		1,198										
12	22-Jun-11	138	152	283	1,208	1,781									
13	30-Jun-11	196	214	173	1,153	1,736									
14	21-Jul-11	139		190	1,230										
15	28-Jul-11			190	1,331										
16	5-Aug-11	108	117	107	1,432	1,764									
17	2-Sep-11	157	133	77	1,424	1,791									
18	8-Sep-11				1,459										
19	16-Sep-11				1,459										
20	19-Sep-11	199			1,262										
21	20-Oct-11		96		1,277										
22	3-Nov-11	142	130	96	1,401	1,769									
23	10-Nov-11				1,203										
24	24-Nov-11	165			1,261										
25	25-Nov-11				1,245										
26	12-Dec-11			116	1,104										
27	15-Dec-11		105		1,308										
28	16-Dec-11														
29	19-Dec-11			112											
30	21-Dec-11		97												
31	3-Jan-12	95	99	109	1,155	1,458									
32	4-Jan-12														
33	9-Jan-12	43	142	91	1,205	1,481									
34	11-Jan-12			110											

F.1 Collected LFG Flow Rates at Manifolds, Adjusted to 50% Methane Content

#	Data	Collected LFG Flow Rate (scfm)												
#	Date	Area 2W	Area 2E	Area 3	Phase 1	Work Site								
35	23-Jan-12		154	240	1,248									
36	2-Feb-12				1,071									
37	3-Feb-12	145	160	219	1,121	1,645								
38	9-Feb-12				1,259									
39	10-Feb-12	122	134	171	1,329	1,756								
40	13-Feb-12	140	147	239	1,275	1,801								
41	14-Feb-12	246												
42	15-Feb-12	166												
43	28-Feb-12			255										
44	29-Feb-12	167	43	281	1,339	1,830								
45	7-Mar-12		147	199	1,261									
46	14-Mar-12	105			1,504									
47	21-Mar-12	213	117	266	1,376	1,972								
48	5-Apr-12	168												
49	11-Apr-12	203												
50	31-May-12			275										
51	4-Jun-12	147		257	1,464									
52	7-Jun-12				1,351									
53	11-Jun-12				1,153									
54	14-Jun-12	158												
55	19-Jun-12	137	155	229	1,179	1,700								
56	25-Jun-12	161	145	99	1,052	1,457								
57	26-Jun-12	112												
58	27-Jun-12		103											
59	28-Jun-12			189										
60	3-Jul-12	84	183	204	1,214	1,685								
61	5-Jul-12	132	118	137										
62	11-Jul-12				1,119									
63	12-Jul-12	149	149	106	1,232	1,636								
64	23-Jul-12	131	187	99	1,251	1,668								
65	10-Aug-12	208	171	152	1,094	1,625								
	Average	157	142	193	1,264	1,758								
	St. Dev	43	38	73	112	151								
	CV%	27%	27%	38%	9%	9%								
	Total # of readings	40	35	40	39	27								