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Abstract

RNA splicing is a process by which introns are excised from precursor mRNA.
Variations in the segments removed — and the resulting mRNA molecule — may
result in gene transcripts with differing and even opposing functions. The mech-
anisms involved in RNA splicing are tightly regulated, the disruption of which
has been implicated in several human diseases including cancer.

This presents the RNA splicing machinery as a potential therapeutic target.
However, the effects of systematic splicing modulation through pharmaceutical
intervention remain under explored. A thorough understanding of splicing can
be investigated through controlled disruption of the molecular machinery.

The Takeda Pharmaceutical Company Limited (Osaka, Japan) has recently
developed a novel compound that inhibits the CDC-like family of kinases, which
regulate key splicing factors. Although splicing inhibitors have already been pub-
lished, their effects on the RNA splicing landscape have not been systematically
described. The creation of a novel splicing inhibitor presents the opportunity
to perform a methodical analysis of transcriptomic response to RNA processing
inhibition using modern RNA sequencing and analysis methods.

It is demonstrated, using the Takeda compound, that restricting the function
of CDC-like kinases perturbs RNA splicing in both malignant and normal cells in
a dose dependent manner. Post-treatment changes in splicing patterns revealed
that these changes are mainly due to inefficient recognition of RNA splice sites.
Splicing factors were among the earliest responders to treatment, indicating splic-
ing autoregulatory mechanisms are sensitive to changes in splicing efficiency.
Downstream effects were seen as dose-dependent changes in gene expression
regulation, and down-regulated genes were enriched for splicing factors. Treat-
ment also resulted in increased generation of conjoined gene transcripts — RNA
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molecules transcribed from at least two different genes, likely caused by tran-
scriptional read-through. This revelation points to a previously undescribed role
for CDC-like kinases in RNA processing.
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tion between the BCCRC and Takeda Pharmaceutical Company. Experimental
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Chapter 1

Introduction

1.1 Overview

Thehuman genome contains approximately 22,000 protein-coding genes [1]. How-
ever, the number of unique protein isoforms is greater than can be explained
by the number of genes alone. To reconcile this disparity, we must look at the
corpus of gene-protein intermediates: ribonucleic acid (RNA) molecules. Before
RNA molecules are ready to be translated into protein peptides, they must un-
dergo a series of modifications to become messenger RNA (mRNA). Splicing is a
pre-mRNA processing mechanism that occurs both during and after transcription
from genes encoded in the DNA.

A typical eukaryotic gene is primarily composed of exons and introns. Ex-
ons are the regions included in the final mRNA product, while introns are the
intervening sequences. When pre-mRNA is transcribed from genes, it contains
both exons and introns. During splicing, the introns are excised from the RNA
molecule and the remaining exons are ligated together, forming mRNA.

Alternative splicing (AS), or the differential inclusion of exons and selection
of splice sites, is an important source of proteome diversity in humans. In fact,
there are approximately 6 protein coding transcript isoforms per gene on aver-
age [2]. Proteins produced from alternatively spliced RNA can have different and
even opposing functions. AS can also impact gene expression regulation; In some
members of the SR gene family inclusion of a small “poison” exon containing a
premature termination codon marks transcripts for decay, reducing transcript
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abundance within the cell [3].
Alterations in the patterns of AS have been implicated in various human dis-

eases. Approximately 15% of all genetic disease-causing mutations specifically
disrupt RNA splicing [4]. In cancer, protein products resulting from aberrant al-
ternative splicing are linked with malignant phenotypes [5, 6]. Modulation of
alternative splicing can retard oncogenic activity in tumour cells with relatively
low cellular toxicity, suggesting the splicing machinery may be targeted for ther-
apeutic intervention [7]. However, more research is needed to obtain a detailed
understanding of the dynamics of splicing regulation and the effects of its suppres-
sion before AS-modulating agents can be used (safely) as clinical therapeutics.

RNA sequencing (RNA-Seq) [8] assays allow the precise measurement of nu-
cleotide sequences and quantification of RNA levels. Many methods have been
developed that use RNA-Seq data to detect and quantify RNA isoforms with high
sensitivity. Recent advances in sequencing technologies, including the Pacific
Biosciences (PacBio) [9] RS platform, provide the ability to sequence up to sev-
eral thousand nucleotides – enough to capture entire transcripts for many genes.
Using these long read methodologies, it is possible to verify the existence of spe-
cific mRNA splice variants. Current RNA assays provide the ability to study RNA
expression and processing mechanisms with unprecedented resolution.

1.2 The Process and Mechanisms of RNA Splicing

RNA splicing is a complex procedure that requires a collaboration of many dis-
tinct proteins and ribonucleoprotein particles. For splicing to occur, a subset of
these splicing factors assemble onto the mRNA precursor around exon junctions
to form the spliceosome complex. Once in place, the spliceosome cleaves the RNA
molecule, removing the non-coding intron segment, and ligates the remaining
exons together. Recognition and precise definition of exon boundaries involves
several cis- and trans-acting elements that can either promote or inhibit splicing
at a candidate exon junction.
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1.2.1 Formation of the spliceosome

Formation of the spliceosome involves the cooperative action of five small nu-
clear ribonucleoprotein particles (snRNPs) in conjunction with many auxiliary
proteins. Spliceosomal snRNPs and protein factors recognise and interact with
several cis-elements including the 5′ splice site, branch point, polypyrimidine
tract, and 3′ splice site during assembly of the spliceosome. Assembly proceeds
in a step-wise fashion, forming several intermediate complexes before forming
the final spliceosome complex [10].

The first pre-spliceosomal complex is formedwhen the U1 snRNP and splicing
factor 1 (SF1) bind to the 5′ splice site and branch point of an intron, respectively,
to form the E’ complex. The E’ complex is transformed into the E complex with
the binding of U2 auxiliary factor (U2AF) to the polypyrimidine tract and 3′ splice
site. The E complex can be converted to the A complex if U2 snRNP is recruited
to the pre-mRNA intron through interactions with U2AF, replacing SF1 at the
branch site. Recruitment of the U4/U6-U5 tri-snRNP to the A complex generates
the B complex. Subsequent extensive rearrangements produce the C spliceosome
complex. The C complex catalyzes the next step in the splicing process before
disassociating [10].

1.2.2 The role of SR proteins in RNA splicing

Regulation of splicing can occur at many different stages in the process of splice
site selection and spliceosome formation. Splicing regulation involves cis-regulatory
elements that are categorized into four groups: exonic splicing enhancers (ESE)
and silencers (ESS), and intronic splicing enhancers (ISE) and silencers (ISS). ESEs
are common, degenerate exonic sequences commonly bound by members of the
SR protein family to promote splicing.

SR proteins are characterized by the presence of a C-terminal Serine/Arginine-
rich RS domain and at least one N-terminal RNA recognition motif (RRM). Tradi-
tional models of SR protein function maintain that the RRM domain mediates in-
teraction between the SR protein and splicing regulatory elements (e.g. ESEs) [11],
while the RS domainmediates protein-protein interactionswith other splicing fac-
tors. For example, the RS domain is believed to facilitate the recruitment of U1
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snRNP, U2AF, and U2 snRNP to the pre-mRNA substrate [10]. However, studies
have also shown that the RS domain contacts the RNA itself during spliceosome
formation [12, 13], and that the RRM of SRSF1 is directly involved in recruiting U1
snRNP to the 5′ splice site [14].

1.2.3 The role of SRSF protein kinases and CDC-like kinases in RNA splicing

Serine residues of SR protein RS domains are phosphorylated by members of
several protein kinase families, including the CDC-like kinases (CLKs) and the
SRSF protein kinases (SRPKs). SRPK-mediated phosphorylation of SR proteins lo-
cated in the cytoplasm results in their nuclear entry, and concentration in speck-
les. Subsequent phosphorylation by CLK is necessary for intra-nuclear localiza-
tion and activation of splicing [15] (see Figure 1.1). Although the exact manner
by which this activity regulates splicing is not completely understood, recruit-
ment of spliceosomal components by some SR proteins are thought to occur
via phosphorylation-enhanced interactions with the SR protein RS domains [16]
(see Figure 1.2a). However, in the case of SRSF1, hyper-phosphorylation of the RS
domain promotes the recruitment of U1 snRNP via an RRM-RRM interaction [14]
(see Figure 1.2b). Regardless of the precise mechanism, RS domain phosphoryla-
tion is a critical step in the formation of the spliceosome.
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Figure 1.1: Regulation of SR protein cellular localization by phosphorylation.
SR proteins in the cytoplasm are phosphorylated by SRPKs which pro-
motes interactions with Transportin-SR and nuclear entry. Within the
nucleus, SR proteins tend to aggregate in nuclear speckles until further
phosphorylation allows them to dissociate from the speckles and partic-
ipate in spliceosome formation. Dephosphorylation of SR protein RS do-
mains is necessary for splicing catalysis [17]. Once splicing is complete,
SR proteins may either remain associated with the mRNA to facilitate
nuclear export and translation, or remain in the nucleus and engage in
further splicing reactions.
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Figure 1.2: Twomodels for spliceosome recruitment by SR proteins. Phospho-
rylated RS domains are indicated by the presence of lowercase ‘p’s. a,
Phosphorylated RS domain mediated recruitment of U2AF via the U2AF
35 kDa subunit’s RS domain. b, Recruitment of U1 snRNP by SRSF1. The
un- or hypo-phosphorylated RS domain of SRSF1 interacts with a non-
RNA-bound interface of the RRM domain. Subsequent phosphorylation
of SRSF1’s RS domain disassociates it from the RRM, leaving the RRM
open for interaction with the U1 snRNP 70 kDa subunit’s RRM domain.
Inspired by figure 6 of [14] and figure 1 of [18].
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1.2.4 Alternative splicing

The selection of exon junctions during RNA splicing can be variable. Changes in
the set of selected splice sites will impact the structural composition of the final
RNA molecule. The exonic structural consequences can be grouped into eight
categories of AS events [19] (see Figure 1.3).
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A3SS:

MXE:

AFE:
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Tandem 3' UTR:

Figure 1.3: Alternative splicing event types. Constitutive exonic regions are
solid black. Regions that may be differentially included are striped. Thin
black lines represent introns. SE: skipped exon, RI: retained intron, A5SS:
alternative 5′ splice site, A3SS: alternative 3′ splice site, MXE: mutually
exclusive exons, AFE: alternative first exon, ALE: alternative last exon.
Inspired by figure 2 from [19]

Changes in splice site selection can, for example, result in the exclusion of en-
tire exons, as with skipped exon (SE) and mutually exclusive exon (MXE) events;
Or, they may cause a shift in the location of an exon’s boundaries as with alter-
native 3’ splice site (A3SS) and alternative 5’ splice site (A5SS) events [19]. AS
events affecting the termini of RNA transcripts (e.g. alternative first exon (AFE)
and alternative last exon (ALE) events) can result in changes to their untranslated
region (UTR) sequences, which can affect transcript stability and localization [20].
This transcriptomic flexibility equips the cell with another regulatory mechanism
with which to fine tune gene function.

Various factors play a role in determining the precise locations of splice sites.
Recognition of splice sites is regulated in part by the binding of splicing factors
(e.g. SR proteins) to splicing enhancer and silencer elements within the exonic
and surrounding intronic sequences. The relative concentrations and activities of
these splicing factors affects the ability of the spliceosome to assemble on exon
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junctions [10]. Therefore, AS (and overall splicing activity) can be modulated
by altering splicing factors’ expression, localization, or functional efficacy. For
example, disrupting the phosphorylation of SR proteins could negatively impact
splicing regulatory programmes.

1.2.5 The role of CLK and SR proteins in non-splicing RNAmetabolic
processes

Therole of SR proteins in RNA splicing and their regulation throughCLK-mediated
phosphorylation has been established. However, members of the SR protein fam-
ily are also involved in non-splicing RNA metabolic reactions, including forma-
tion of the exon junction complex (EJC) [21], and 3′ end formation [20, 22]. Dis-
ruption of regular SR protein activitymay prevent SR proteins from fulfilling their
role in other cellular processes.

EJCs assemble upstream of spliced RNA exon-exon junctions and play a num-
ber of roles including promotion of mRNA export and translation. However, it is
perhaps most well known for its function in the nonsense-mediated mRNA decay
pathway; If an mRNAmolecule contains a pre-mature stop codon upstream of an
EJC, that transcript is marked for degradation. Several SR proteins have been
found to interact with the EJC core and may act to stabilize it [21]. Preventing
SR proteins from loading on the pre-mRNA substrate or interacting with other
proteins may not only reduce levels of splicing, but also broadly inhibit mRNA
transport and translation.

For the majority of eukaryotic transcripts, formation of the 3′ end entails the
cleavage of the nascent RNA molecule, followed by the appending of a poly-
adenine (poly(A)) tail to the 5′ cleaved end. The location of cleavage and poly-
adenylation is subject to regulation, and at least half of human genes are alter-
natively poly-adenylated [23]. Alternative poly-adenylation allows for a greater
diversity of RNA messages and, consequently, proteins. In this sense, alternative
poly-adenylation is similar to alternative splicing.

Generally, recognition of poly(A) sites begins with the binding of cleavage
and polyadenylation specificity factor (CPSF) to an A(A/U)UAAA poly(A) signal
hexamer in conjunction with the binding of cleavage stimulation factor (CstF) to
a U/GU-rich downstream element (DSE). The subsequent steps of cleavage and
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poly-adenylation are performed by these core proteins along with with a collec-
tion of other 3′ processing factors.

CPSF also recognises non-canonical poly(A) signals with reduced efficiency.
In these cases, poly(A) site recognition relies on the cooperative action of auxil-
iary 3′ end processing factors, including cleavage factor I and II (CFIm, CFIIm).
CFIm recognizes a UGUA signal upstream of the poly(A) site and recruits CPSF
to the unprocessed RNA transcript [24].

CFIm is composed of a 25 kDa subunit and a large subunit of either 59, 68,
or 72 kDa. The structures of the 59 and 68 kDa subunit proteins are similar to
SR proteins due to their inclusion of both an RNA-binding domain, and an RS-
like alternating charge domain. CFIm has been demonstrated to interact with SR
proteins [25]. Interactions between SR proteins and CFIm may work to promote
binding of CFIm to the RNA substrate and recognition of non-canonical poly(A)
sites [24].

The phosphorylation status of CFIm can affect 3′ end formation efficiency.
Dephosphorylation of CFIm using Serine/Threonine phosphatases results in the
loss of 3′ transcript end cleavage activity in HeLa cell nuclear extract [26]. De-
phosphorylation of CPSF and CstF do not produce the same effect. Although
the kinase(s) responsible for phosphorylating CFIm are not known, CLKs may be
responsible for phosphorylating the CFIm RS-like domain.

The loading of CstF onto the poly(A) site U/GU-rich DSE is an early and es-
sential step of the 3′ cleavage and polyadenylation process. Like CFIm binding of
UGUA elements, CstF binding to DSEs promotes selection of poly(A) sites with
non-canonical poly(A) signals [27]. SR proteins can affect CstF binding affinity to
regulate alternative 3′ end processing. SRSF3 recognition of splicing enhancer sig-
nals of the calcitonin/calcitonin gene-related peptide (CT/CGRP) gene promotes
recruitment of CstF to the poly(A) site at exon 4 [22]. SRSF3’s influence on CstF
binding to Poly-A sites may involve CFIm as CFIm binds early in the 3′ end cleav-
age reaction, and promotes the recruitment of other core 3′ end processing fac-
tors.

RS domain phosphorylation status is known tomodulate interactions between
SR proteins and other splicing factors. Therefore, it is likely that RS domain
mediated interactions between SR proteins and factors involved in other RNA
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metabolic reactions are also subject to regulation via CLK activity. Disruption of
CLK phosphorylation of SR protein RS domains may result in a reduction of SR
protein-CFIm or SR protein-CstF interaction. Additionally, there is a possibility
that disruption of CLK activity will directly reduce phosphorylation of the CFm
proteins. Either situation would negatively impact the ability of the 3′ end pro-
cessing machinery to recognise poly(A) sites and effectively cleave nascent RNA
molecules.

1.3 Disruption of RNA Processing in Human Disease

Studies of genetic diseases have often focussed on the protein coding regions of
genes, especially mutations changing the amino acid sequence of the translated
peptide. Synonymous exonic changes and changes occurring in intronic regions
can still lead to gene dysfunction and disease. Up to 50% of mutations contribut-
ing to disease affect RNA splicing [28]; 10% directly disrupt splice sites [29].

Essential to splicing is the recognition of splice site signals demarcating in-
tronic sequences. Mutations preventing the identification of splice sites can result
in loss of exon recognition [4, 29] and potentially introduce a premature termina-
tion codon (PTC), as in the case of familial dysautonomia [30]. MCAD deficiency
fatty acid disorder is caused by a mutation that disrupts an ESE in the MCAD
gene, resulting in skipping of exon 5 and nonsense-mediated decay of the RNA
transcript [31].

Mutations affecting RNA splicing have also been implicated in cancer for-
mation and progression. The splicing factor SF3B1 has been shown in a recent
study to be mutated in approximately 20% of patients with myelodysplastic syn-
dromes [32]. In prostate cancer, a mutation creates an ESE in the KLF6 gene and
promotes expression of an isoform that accelerates tumour progression [33].

SR proteins have also been associated with cancer. Both SRSF1 and SRSF3
are up-regulated in ovarian and colon cancer, among others [5, 34]. For exam-
ple, SRSF1 regulates splicing in the oncogene MST1R [35]; Over-expression of
SRSF1 increases expression of an MST1R isoform that bestows greater cell motil-
ity, which is related to tumour progression.

Similar to RNA splicing, mutations in either poly(A) sites or their cis-regulatory
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sequences can lead to disease [36]. Additionally, misregulation of alternative
polyadenylation can cause or exacerbate pathological conditions. For example,
cardiac hypertrophy and some cancers are associated with a general preference
for the selection of proximal poly(A) sites. It is also possible that SR proteins play
a role in disease involving misregulated polyadenylation; they are known to both
regulate poly(A) site selection [20] and to be involved in disease.

1.3.1 The splicing machinery as a therapeutic target

The involvement of the RNA splicing machinery in a broad array of diseases
makes it a potential target for therapeutic intervention. Two approaches have
been identified in the development of therapies for splicing related diseases. One
approach uses antisense oligonucleotides to target specific regions of the nascent
RNA transcript, thus preventing the expression of pathological RNA and protein
isoforms. Another approach uses small molecules to modulate cellular signalling
events that regulate splicing.

Antisense oligonucleotides can be designed to complement specific nucleotide
sequences within a pre-mRNA. Depending on the sequence targeted, the selec-
tion of specific splice junctions or entire exon can be controlled. Isoform expres-
sion itself can be adjusted by promoting the degradation of target transcripts,
while protein-RNA interactions can be prevented by blocking binding sites, for
example, ESEs and ESSs. Antisense oligonucleotides have been successfully used
to treat patients with Duchenne’s muscular dystrophy [34].

Small molecules can be used to modulate splicing by inhibiting or promot-
ing certain cell signalling pathway events. A well known splicing related sig-
nalling event is the post-translational phosphorylation of splicing factors, espe-
cially those of the SR protein family. The phosphorylation status of SR proteins
affects their ability to promote exon recognition. Inhibitors of proteins known to
phosphorylate SR proteins have been recently developed, including KH-CB19 [37]
and T3 (unpublished, but used in this project). Both CB19 and T3 target the activ-
ity of the CLK family of kinases.

Although there is the potential to use small molecules to treat splicing related
diseases, inhibiting components of cellular pathways are likely to have many un-
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intended effects. Aside from potential drug off-targets, splicing regulators (e.g.
CLKs) are important for the normal splicing of diverse transcript species. To
fully comprehend the consequences of small molecule splicing modulation, tran-
scriptomic response must be studied in a systematic manner.

1.4 Detecting andMeasuring Changes in the Transcriptome

There are several methods by which cellular RNA can be measured and compared.
Recently developed RNA sequencing technologies allow the capture and identifi-
cation of RNA transcript sequences — including splice junctions — without prior
knowledge of their existence or composition. RNA-seq, or “Whole Transcriptome
Shotgun Sequencing” samples many short RNA fragments from a population of
cells. It uses “next-generation” sequencing technologies to produce reads usually
around 30–700 base pairs (bp) in length, depending on the technology used. At
the same time, the number of reads produced can be very large — up to hundreds
of millions, or even billions of reads per run. The number of bases sequenced
allows the quantitative representation of the entire transcriptome.

A common approach to RNA sequencing involves fragmenting the transcrip-
tome, or a subset thereof (e.g. only coding, polyadenylated transcripts). The frag-
ments are reverse transcribed to create complimentary DNA (cDNA), which are
amplified and then sequenced. During sequencing, either a single end, or both
ends of the cDNA can be sequenced. Paired-end sequencing libraries, where both
ends of a fragment have been sequenced, have the additional benefit of providing
the expected length between each read mate-pair. This information is useful for
downstream analysis, including gene and RNA isoform quantification.

Standard RNA-Seq methodologies produce reads with no indication of which
DNA strand the RNA fragment was transcribed from. Because there are regions
of the genome in which genes on both strands overlap, RNA-Seq reads may not
always be unambiguously assigned to one strand or the other. To address this
problem, “strand-specific” RNA-seq protocols have been developed [8]. Strand-
specific RNA-seq libraries are useful for quantifying transcript expression from
genomic regions with genes occurring on both the forward and reverse strands.

A drawback of RNA-Seq methods is the short read length. A single RNA-
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Seq read typically cannot unambiguously reveal the structure of the full RNA
molecule from which it was produced (Figure 1.4a). This problem is exacerbated
by the the presence of multi-exonic genes with multiple alternative isoforms. For
example, a readmay indicate the skipping of an exon if it maps to the two adjacent
exons. However, it may not be useful in identifying alternative splicing decisions
made upstream or downstream of that particular exon.
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a.

b.

c.
SRSF2

Figure 1.4: A comparison of RNA-Seq vs PacBio cDNA reads mapped to
SRSF2 using a plot generated by the Integrative Genomics Viewer. The
longer PacBio reads can typically reveal more of a transcript’s structure
than can single RNA-Seq reads. Grey blocks represent sequencing reads.
The thin blue lines between grey blocks represent gaps within reads that
are split across introns. Black dots within reads represent deletions. a,
RNA-Seq reads. b, PacBio reads. c, SRSF2 transcript structure from Ref-
Seq.

Long read sequencing technologies produce read lengths thousands of base
pairs long. The Pacific Biosciences’ (PacBio) Single Molecule Real Time (SMRT)
technology can produce reads with an average length of 4,200–8,500 bp, with
the longest reads reaching greater than 30,000 bp. With these read lengths, large
sections of mRNA, or even entire transcripts may be captured (Figure 1.4b).

A potential disadvantage of the PacBio sequencing platform is the error rate:
approximately 13% on average for raw reads [38]. However, reads with ≥ 99.9%

average accuracy can be constructed from the raw continuous long reads (CLRs):
when a single cDNA molecule is sequenced multiple times, the CLRs can be as-
sembled into a single high quality circular conformation sequencing (CCS) read.
If a cDNAmolecule is too long to be sequenced multiple times before sequencing
termination then CLRs representing large portions or even the entire molecule
can still be produced, albeit with greatly reduced accuracy.
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Another limitation of PacBio sequencing is the moderate throughput. The
PacBio RS platform produces around 100 Mb of sequence, while the Illumina
HiSeq 2000 can produce 600 Gb [39]. Although short-read sequencing is still
preferable for quantitative measurement of transcriptomes, long-read sequenc-
ing is valuable for isoform detection and validation.

Current short- and long-read sequencing technologies should be viewed as
complementary, rather than as competing, approaches. The high-throughput of
RNA-Seq allows the capture of sequence frommany distinct RNA species and pro-
vides a greater sensitivity than the PacBio platform. RNA-Seq also has a greater
per-base accuracy which is critical for mutation detection and accurate identifi-
cation of splice sites. Therefore, RNA-Seq libraries can be used to predict spliced
RNA isoforms with high sensitivity, while PacBio reads can then be used validate
the existence of the predicted transcripts.

1.4.1 Computational methods

Extracting information about the transcriptome of a cell population from RNA-
Seq libraries is a difficult problem. However, many tools have been developed that
attempt to compute statistics from RNA-Seq data, such as gene and RNA isoform
expression levels, and relative inclusion levels of alternatively spliced transcript
components. Studies using RNA sequencing technologies often follow common
analysis workflows starting with read alignment and proceeding to at least one
of several different analyses, including differential expression analysis or RNA
isoform prediction (see Figure 1.5). Each RNA sequencing method has it’s own
sources of error and biases that can confound analyses. So, many studies will
validate results using an independent approach; For example real-time PCR [40]
or Sanger sequencing [41] can be used to verify the existence of spliced isoforms.
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Figure 1.5: Common basic workflow of analysis with RNA sequencing li-
braries. RNA sequencing reads are first aligned to a reference genome.
The resulting aligned reads can then be used in a number of different
analyses, including differential expression analysis, alternative splicing
quantification, gene fusion detection, etc. The products of these analyses
may then be used in further downstream analyses. Validation of results
may be performed using a variety of methods.

Splicing-aware RNA sequencing read alignment

The literature describes many methods for accurately aligning DNA sequencing
reads to a reference genome. However, determining the genomic origins of RNA
reads presents a distinct challenge: RNA reads can represent regions of RNA con-
taining splice junctions. If a read overlapping a splice junction is to be accurately
aligned to a reference genome, the read must be split apart and each portion
mapped to the corresponding exons. Doing so can be difficult if the split read
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portions have insufficient sequence specificity to be accurately mapped to the
reference genome. DNA sequence aligners are not optimized for the large-gap
alignment necessary for RNA read mapping.

A potential solution to the problem of split read alignment is to use refer-
ence transcriptome sequences instead of a reference genome. By aligning to a
reference transcriptome, the need to split RNA sequencing reads across introns
is greatly reduced. However, alignment would be restricted to a set of known or
predicted RNA sequences, hindering novel isoform detection. Additionally, reads
originating from transcripts not present in the reference transcriptome may be
aligned to an incorrect reference transcript.

Rather than align RNA reads to a reference transcriptome, alignment can be
performed against both a reference genome and a database of exon junction se-
quences. This approach eliminates the need for a reference transcriptome and
allows the entire genome to be queried for possible matches. But, the set of splice
junction sequences is also limited to known or predicted exon junctions, making
the alignment of reads containing unknown splice junctions problematic.

These issues motivated the development of methods specifically tailored to
RNA sequencing read alignment. Some short-read (i.e RNA-Seq) alignment meth-
ods, such as GSNAP [42] and STAR [43], are able to detect and map reads across
both annotated and predicted splice junctions. However, short-read alignment
methods may not be the most appropriate choice for longer reads; For example,
the GMAP [44] cDNA aligner is recommended for PacBio reads [45].

Alternative splicing detection and quantification

Common problems in the study of alternative splicing are the identification and
quantification of existing spliced isoforms. Methods developed to address these
problems employ a variety of techniques to accomplish their objectives, and com-
putations can be performed at the level of individual AS events or at the level
of whole alternative transcript isoforms. Some approaches to AS detection and
quantification commonly use information inherent in mapped RNA-Seq reads.
During aligment to a reference genome, some reads are split and each segment
mapped to exonic sequences separated by an intron. These reads are useful for
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indicating the precise location of exon junctions. When paired-end RNA sequenc-
ing data is available, the genomic distance between twomate-pairs mapped to the
reference genome can be compared to the expected value of mate-pair distances
in the originating sequence library. When mate-pair distances are longer than
expected, it is possible that an exon in the gene model has been skipped in the
final mRNA molecule. Although mate-pair distances cannot identify the precise
location of exon junctions, they are valuable for inferring the exonic architecture
of the originating cDNA fragment.

A measure of AS is the percent spliced in (PSI) value

PSI =
I

I +E
(1.1)

where I is the number of inclusion isoform transcripts, and E is the number
of exclusion isoform transcripts [46]. For example, the inclusion isoform for a SE
event would be the isoform containing the potentially skipped exon. PSI values
can be compared between two samples to identify RNA isoforms or AS events
that are differentially spliced.

A popular method for AS analysis is the MISO software package [46]. MISO
calculates PSI values for a set of annotated AS events belonging to 8 different
classes (SE, retained intron (RI), MXE, A3SS, A5SS, AFE, ALE, tandem UTR) using
a Bayesian approach. When comparing PSI values between two samples, MISO
calculates a Bayes factor statistic

BF =
Pr(D|M1)

Pr(D|M2)
(1.2)

where D is the observed data, and M1, M2 are two statistical models. The
Bayes factor in this application is the likelihood ratio of the observed data be-
ing produced under the assumption of differential splicing occurring, over the
assumption of no differential splicing. Essentially, the higher the Bayes factor,
the more likely it is that differential splicing has occurred. MISO is an appropri-
ate choice for projects requiring differential splicing analysis of a broad range of
AS event types in human cells. Although MISO contains only a specific set of
functionality, the field of computational AS methods has developed to the point
where there exists a number of statistically rigorous tools that can satisfy the
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needs of most sequencing based AS studies [47].

Gene expression quantification

The simplest way gene expression can be estimated given a RNA-Seq library is
to count the number of reads or read pairs mapping to regions of the genome
corresponding to annotated gene locations. For some applications, such as differ-
ential gene expression analysis using DESeq [48] or edgeR [49], it is necessary to
calculate expression using this strategy. However, raw read counts are biased by
factors including the sequencing depth of a library, and the length and GC con-
tent of genes. Generally, the higher the sequencing depth, or the longer the gene,
the more reads will map to that gene. As a result, it is necessary to employ some
form of read count normalization when dealing with gene expression analysis.

Some normalization schemes attempt to find a suitable scaling factor used
to divide gene read counts within a sequencing library. The DESeq and edgeR
packages both use this approach for differential expression analysis. Another
approach is to use quantile normalization to transform the gene expression dis-
tributions of each RNA-Seq library in such a way as to make them identical. Yet
another approach is calculating Reads Per Kilobase of exon model per Million
mapped reads (RPKM) values

RPKM =
109C
NL

(1.3)

where C is the number of reads mapped to a gene’s exons, N is the total num-
ber of mapped reads in the sequencing library, and L is the length of the gene’s
exons in base pairs [50]. RPKM values represent global (rather than relative, e.g.
PSI) expression level, and normalize read counts by the number of mapped reads
in a sequencing library and by the lengths of gene models.

A variant of the RPKM measure, Fragments Per Kilobase of exon model per
Million mapped reads (FPKM), is produced by the Cufflinks software [51]. The
calculation of FPKM values takes into account that with paired-end sequencing
data, only one mate of a read pair originating from the same cDNA fragment
might be mapped to the genome reference. This results in the double counting
of fragments with both mate-pairs mapped while only counting other fragments
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once. FPKM attempts to count cDNA fragments rather than individual RNA-Seq
reads, thereby reducing this bias. The Cufflinks software can also correct for frag-
ment bias (certain sequences being preferentially selected for by primers during
PCR) when calculating FPKM values [52].

1.5 Experimental Approach and Aims

Takeda Pharmaceutical Company Limited has recently developed T3 — a novel
compound that suppresses RNA processing by inhibiting CLK phosphorylation
of RS domains. The Takeda T3 compound inhibits CLK activity with a greater
specificity than previously reported CLK inhibitors [unpublished data]. Although
methods for splicing inhibition have been described [37, 53], the transcriptomic
effects of progressively disrupting RNA processing have not been assessed in a
systematic manner. Using this novel T3 compound, cellular responses to pharma-
cological restriction of RNA processing can be measured. Concentration-based
analysis will facilitate the identification of transcriptomic components sensitive
to CLK inhibition, and may provide valuable insight into the importance of RS
domain phosphorylation in the RNA processing regulatory landscape.

Alternative splicing can be categorised into eight different event types (Fig-
ure 1.3). Each event type may rely on the activity of SR proteins to a greater or
lesser extent. SR proteins also have a role in non-splicing reactions, including
3′-end formation. Additionally, the phosphorylation status of the RS domain-
containing CFIm appears to be important to the 3′-end cleavage reaction. The
vulnerability of RNA processing events to CLK inhibition, and the manner in
which these events react to progressive repression of CLK is currently unknown.

Individual RNA processing events may have differing responses to T3 treat-
ment. For example, the PSI values of AS events may increase or decrease to vary-
ing degrees upon treatment. The direction of response and level of sensitivity
may reflect the strength of cis regulatory signals, or other relevant RNA sequence
characteristics. There have been efforts to characterise an RNA splicing code [54];
Nevertheless, there is a lack of research in transcriptome-wide RNA features pre-
dictive of splicing changes caused by the global impedance of SR protein function.

Disruption of RNA processing efficacy can lead to changes in the composi-
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tion of the transcriptome, which may comprise both changes in RNA isoform
balance, as well as gene expression level. These changes may reflect both the di-
rect effects of CLK inhibition, as well as compensatory responses by the cell. For
example, disruption of AS may increase production of aberrant transripts, which
may then prompt the cell to up-regulate the expression of gene isoforms involved
in nonsense-mediated decay. Which biological processes are most vulnerable or
responsive to CLK inhibition and alterations in RNA processing efficacy has yet
to be described.

RNA processing patterns are dependent on biological context, including cell
type [54] and tumour/normal status [5]. CLK phosphorylation of RS domains
appears to be fundamental to the process of RNA processing. However there
may still be variations between cell types in the degree to which RNAmetabolism
relies on CLK activity. To gain insight into the regulation of RNA processing via
CLK-mediated SR protein phosphorylation, HCT116 and hTERT cells were treated
with progressively increasing concentrations of T3. Vehicle-treated cells were
used as a negative control. To compare the effects on splicing between T3 treated
cells and cells with artificially reduced CLK expression, a CLK small interfering
RNA (siRNA) experiment was performed with HCT116 cells. RNA was measured
using RNA-Seq and Pacific Biosciences’ RS platform (see Section 2.1).

Gene expression and RNA splicing changes were quantified computation-
ally using the MISO [46] and Cufflinks [51] software. Preliminary inspection of
treated RNA-Seq libraries revealed the treatment-dependent formation of con-
joined transcripts. So, a transcriptome-wide search for conjoined transcripts was
performed using a published gene-fusion detection method [55]. Biological pro-
cesses affected by T3 treatment were found by selecting genes exhibiting changes
in splicing or expression to build functional interaction networks [56], which
were then queried for enriched GO biological process terms [57]. RNA features
associated with splicing changes due to T3 treatment were computed using gene
annotations and published sequence motifs [58].

A description of the generated datasets and the results of computational anal-
ysis are included in chapter 2 of this document. The results are split up into three
main parts. In Section 2.2, the dose depended effects on AS are reported along
with the results of an investigation into affected biological processes. This section
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also compares the changes in AS between the HCT116 and hTERT cell types, as
well as between T3 treated and CLK siRNA transfected HCT116 cells. Section 2.3
includes a characterisation of conjoined gene transcripts produced as a result of
T3 treatment and biological processes affected by conjoined gene transcription.
Finally, Section 2.4 describes the effects of T3-induced CLK inhibition on gene
expression and the biological processes affected by differential expression.
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Chapter 2

Transcriptomic Consequences of CLK
Inhibition

2.1 Datasets

The CLK inhibitor compound, T3, was applied to HCT116 malignant colon epithe-
lial cells and normal hTERT cells at multiple concentrations. RNA was measured
using either an unstranded (HCT116 cells) or stranded (both HCT116 and hTERT
cells) RNA-Seq protocol, or using Pacific Biosciences SMRT platform [9]. Table 2.1
summarizes the three datasets.
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Table 2.1: Summary of T3 treatment datasets. Each dataset contains se-
quences from either T3 treated or control cell populations. (unstr) and
(str) indicates an unstranded or stranded RNA-Seq protocol was used, re-
spectively. An ‘X’ indicates that a sequencing library exists for the appro-
priate T3 concentration and dataset.

HCT116 hTERT

T3 dose (μM) RNA-Seq (unstr) RNA-Seq (str) PacBio RNA-Seq (str)

0.0 X X X X
0.05 X
0.10 X
0.50 X X X X
1.0 X X X
5.0 X X X X
10.0 X

The primary dataset used for analysis was the HCT116 unstranded RNA-Seq
dataset. This dataset includes the largest number of T3 treatment observations,
providing the ability to detect changes at both very small and large doses as
well as providing greater resolution for response pattern detection. The hTERT
dataset was used to determine whether observed transcriptomic response pat-
terns were HCT116 cell-type specific, or observable in cells with differing biol-
ogy. As the hTERT dataset was sequenced using a stranded RNA-Seq protocol, a
second HCT116 dataset was generated for comparison using the same RNA-Seq
protocol and the same T3 concentrations as the hTERT dataset.

Multiple datasets were also generated with the purpose of validating results
presented in this study. A CLK knockdown data set was generated by using
siRNA to target each or a combination of the CLK proteins in HCT116 cells. Two
control libraries were generated by either knocking down NT3 (a growth factor
in neurons), or treating cells with only vehicle Lipofectamine® 2000. The RNA
from each CLK siRNA sample was sequenced using RNA-Seq (Table 2.2).
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Table 2.2: Summary of CLK siRNA knockdown RNA-Seq libraries. The
knockdown experiment was performed using HCT116 cells. An ‘X’ indi-
cates that the corresponding sequencing library was generated from cells
with the indicated target knocked down. (ctrl) indicates a control library,
and ‘None’ represents a sample treatedwith vehicle Lipofectamine® 2000.

siRNA target

Sample CLK1 CLK2 CLK3 CLK4 NT3 (ctrl) None (ctrl)

1 X
2 X
3 X
4 X
5 X X X
6 X X
7 X X X
8 X X X X
9 X
10 X

Another dataset, consisting of RNA sequences obtained from the PacBio RS
platform, was generated mainly for the purposes of validating the existence of
spliced isoforms arising due to CLK inhibition. The PacBio sequencing platform
is suited for RNA isoform detection as it is able to produce long reads, enabling
the identification of large portions of transcript structure. The Pacbio dataset
includes both high-quality CCS reads, and lower quality CLR sequences.

All of the RNA-Seq libraries were aligned using GSNAP. The aligned libraries
were then processed to remove potential PCR duplicates. The PacBio libraries
were aligned with the GMAP aligner and filtered to only include reads whose
aligned proportion is at least 90%, and have at least 80% identity with the refer-
ence.
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2.2 T3 Treatment Induces Dose-Dependent Alternative Splicing
Changes

Relative inclusion levels of alternative splicing eventswere quantified usingMISO
in all three T3-treated RNA-Seq datasets. The resulting PSI values in each treated
library were compared to corresponding control PSI values. Alternative splicing
events were called as differentially spliced if the MISO-calculated Bayes factor
(Equation 1.2) was ≥ 20 and the difference in PSI values between treated and
untreated samples was ≥ 0.1.

To assess the transcriptome’s sensitivity to CLK inhibition, the number of
differentially spliced events were counted for each treated library. The number
of differentially spliced events increased with higher dosage (Figure 2.1). This
response pattern demonstrates that the Takeda T3 compound is able to inhibit
the splicing of a large number of exon junctions. A large change in the number
of affected events occurred at 0.50μM (4474 events compared with 799 and 1088
for 0.05μM and 0.10μM, respectively, or 5.6 and 4.1 fold more events), suggesting
that at this concentration a regulatory mechanism was disrupted, resulting in
greater numbers of differentially spliced transcripts.
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Figure 2.1: Differentially spliced event counts for the HCT116 and hTERT
datasets. Events have a Bayes-factor >= 20

2.2.1 Alternative splicing response to CLK inhibition is common to both
HCT116 and hTERT cell types

Splicing response to CLK inhibition between HCT116 and non-malignant hTERT
cells was compared to ascertain the extent to which biological context affects
the reliance of splicing on normal CLK activity. Treated hTERT and HCT116 cell
transcriptomes were sequenced with a stranded RNA-Seq protocol (see Table 2.1).
To investigate the degree of overlap between differentially spliced AS events in
the three T3-treated RNA-Seq datasets, the events affected by T3 treatment were
collected for each dataset. The number of overlapping and dataset-specific events
were then counted (Figure 2.2).
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Figure 2.2: Venn diagram illustrating the number of unique overlapping and
dataset-specific differentially spliced MISO events between the HCT116
and hTERT RNA-Seq datasets.

TheHCT116 unstranded RNA-Seq dataset produced the greatest number of dif-
ferentially spliced AS events (11,040), followed by the hTERT (6,110) and HCT116
stranded RNA-Seq datasets (5,734) (Figure 2.2). However, the unstranded RNA-
Seq dataset includes more treated samples, including the 10.0μM concentration.
The large majority of events for both stranded RNA-Seq datasets overlap with
the events from at least one other dataset (HCT116: 86%; hTERT: 75%), while only
50% of events from the HCT116 unstranded RNA-Seq dataset overlap with the
events from another dataset (Figure 2.2). The stranded RNA-Seq libraries may
include less splicing information than the unstranded RNA-Seq libraries (see Sec-
tion 2.5). Of the differentially spliced events detected in hTERT cells, 75% were
also detected in HCT116 cells. 37% of all HCT116 events and 61% of events from
the HCT116 stranded RNA-Seq dataset were also detected in hTERT cells. The
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amount of AS event overlap between hTERT and HCT116 cells suggests that the
effects of CLK inhibition are not predominantly hTERT or HCT116 cell-type spe-
cific.

2.2.2 Splicing and cell cycle related genes are sensitive to CLK inhibition

Identifying genes differentially spliced at low T3 concentrations will point to-
wards the biological processes most sensitive to loss of CLK activity. Additionally,
it may hint at novel roles for CLK phosphorylation in non-splicing processes. Ob-
serving affects only occurring at higher concentrations may reveal how the cell
responds to widespread RNA processing disruption.

Affected biological processes were determined by identifying differentially
spliced genes for each T3 concentration. Genes were then grouped according to
whether they were differentially spliced in the 0.05–0.5μM or 1.0–10.0μM CLK in-
hibitor treated samples. Each group of genes was used to create a gene interaction
network using the ReactomeFI Cytoscape plugin [56]. Gene interaction networks
were queried for enriched GO biological process terms with false discovery rate
controlled at 0.05. Each group of significantly enriched biological process gene
sets was then used to generate an enrichment map [59] (Figure 2.3, Figure 2.4,
Figure 2.5).
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negative regulation of telomerase activitygene expression, transcription

Figure 2.3: Biological process enrichment map for differentially spliced genes
in the HCT116 unstranded RNA-Seq dataset. Each node represents a GO
biological process gene set. Node cores are coloured red when that gene
set is enriched among genes differentially spliced in the the 0.05–0.5μM
samples, and the outer ring is coloured redwhen that gene set is enriched
in the 1.0–10.0μM samples. Edge thickness indicates the level of overlap
between two gene sets, considering the set of differentially spliced genes
in the 0.05–0.5μM (green edges) or 1.0–10.0μM (blue edges) samples.
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Figure 2.4: Biological process enrichment map for differentially spliced genes
in the HCT116 stranded dataset. Each node represents a GO biological
process gene set. Node cores are coloured red when that gene set is
enriched among genes differentially spliced in the the 0.05μM samples,
and the outer ring is coloured red when enriched in the 1.0–5.0μM sam-
ples. Edge thickness indicates the level of overlap between two gene sets,
considering the set of differentially spliced genes in the 0.05μM (green
edges) or 1.0–5.0μM (blue edges) samples.
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Figure 2.5: Biological process enrichment map for differentially spliced genes
in the hTERT dataset. Each node represents a GO biological process gene
set. Node cores are coloured red when that gene set is enriched among
genes differentially spliced in the the 0.05μM samples, and the outer ring
is coloured red when enriched in the 1.0–5.0μM samples. Edge thickness
indicates the level of overlap between two gene sets, considering the set
of differentially spliced genes in the 0.05μM (green edges) or 1.0–5.0μM
(blue edges) samples.
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Splicing factors were found to be affected by differential splicing in the lower
T3 concentration samples. While the splicing machinery is known to be sub-
ject to autoregulation [60], that splicing factors are among the genes affected by
even low doses of CLK inhibitor indicates that splicing autoregulatory processes
are sensitive to changes in CLK activity. Other forms of RNA metabolism were
also affected at lower T3 concentrations, including gene expression and transcrip-
tion. Cell cycle related genes were also found to be sensitive to CLK inhibition;
cell cycle progression is known to rely on the normal operation of RNA splic-
ing [61, 62]. Some groups of related biological processes (e.g. those involved with
transcription or the cell cycle) had gene sets that were affected at only the higher
T3 concentrations. This may be the result of a progressively stronger disruption
of these biological processes with increasing T3 dose. A group of genes involved
in toll-like receptor signaling were found to be predominantly affected in the
1.0–10.0μM samples. This effect may be an innate immune response to toll-like
receptor ligands released from cells dying [63] due to high concentrations of CLK
inhibitor. Genes involved in apoptosis are differentially spliced due to treatment,
which may also indicate cellular lethality at higher T3 concentrations.

2.2.3 CLK knockdown partially reproduces effects of T3 treatment

The T3 compound prevents CLKs from phosphorylating their target RNA pro-
cessing factors. Therefore, one may hypothesize that reducing the expression
of CLK genes would have a similar effect on RNA splicing. To test this notion,
CLK expression was knocked down via siRNA in HCT116 cells and the resulting
transcriptomes sequenced using RNA-Seq (Table 2.2).

The RNA-Seq libraries from the CLK knockdown experiment were analyzed
with MISO; Each CLK knockdown library and the vehicle control library were
compared to the NT3 siRNA control. Differentially spliced AS events were called
at a Bayes factor (Equation 1.2) threshold of 20, and PSI change threshold of 0.1,
similar to the T3 concentration curve experiment (Section 2.2). A list was com-
piled of MISO events found to be differentially spliced in any of the CLK siRNA
libraries but not in the vehicle control library. This list was then compared to lists
of differentially spliced events from the T3-treated HCT116 datasets (Figure 2.6).
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Figure 2.6: Venn diagram showing the number of dataset-specific and com-
mon AS events for the CLK knockdown and T3-treated HCT116 datasets.

In total, 1580 unique AS events were found to be differentially spliced in any
of the CLK knockdown libraries. Of these events, 875 (55%) were found in at least
one of the two T3-treated HCT116 AS event lists, demonstrating that at least some
of the effects of T3 treatment are due to loss of CLK function as opposed to inhi-
bition of other targets. Almost half of the events resulting from CLK knockdown
were not found to be differentially spliced in the T3 treated datasets. This observa-
tion can be partially explained by differences in biological response to depleting
CLK RNA versus inhibiting CLK phosphorylation activity.

Genes differentially spliced in both T3 treated cells and cells transfected with
CLK siRNA are likely to be specifically affected by loss of CLK activity. Biological
processes likely to be affected by splicing changes in this common set of genes
were identified by constructing a gene interaction network with the ReactomeFI
Cytoscape plugin [56]. Functional enrichment analysis was then performed us-
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ing the genes in the network (Table 2.3). Biological processes enriched among
genes differentially spliced in both T3 treated and CLK siRNA transfected cells
included “gene expression”, “mitotic cell cycle”, “chromatin modification”, and
“nuclear mRNA splicing, via spliceosome”. The enrichment of these biological
processes underscores their sensitivity to normal CLK activity.

Table 2.3: Enrichment of GO biological process terms in differentially spliced
genes common between T3 treated and CLK siRNA transfected HCT116
cells.

Biological Process FDR Genes

gene expression 0.001 XPO1, THRA, RPL13, U2AF1, RPL10,
PTBP1, RPS18, MED15, SRSF11, HSPA1A,
HNRNPL, UBE2D3, EIF3B, HNRNPK,
TEAD4, RPL10A, RPS24, EEF1A1, CSTF3,
EIF4H, NCOR1, NCOR2, RPS2, SNAPC5,
POLR1C, EIF4A2, EEF1D, SNRNP70,
GTF3C2

mitotic cell cycle 0.0165 XPO1, CEP78, CDC16, NDEL1, CNTRL,
AZI1, TFDP1, CDC23, POLD2, AKAP9,
POM121, PPP1R12A, ODF2, BUB3, LMNA,
CEP63, CSNK1E

chromatin modification 0.021 MORF4L2, MTF2, HDAC5, NCOR1,
MBTD1, CHD9, CHD3, PHF19

translational initiation 0.024 RPL13, RPL10, RPS18, EIF3B, RPL10A,
RPS24, EIF4H, RPS2, EIF4A2

translational elongation 0.02525 RPL13, RPL10, RPS18, RPL10A, RPS24,
EEF1A1, RPS2, EEF1D

nuclear mRNA splicing,
via spliceosome

0.03183 U2AF1, PTBP1, SRSF10, SRSF11, HNRNPL,
HNRNPK, CSTF3, DDX5, SF1, SNRNP70
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2.2.4 T3 induced CLK inhibition reduces splice junction recognition efficacy

CLK inhibition causes changes in splicing levels in many alternatively spliced ex-
ons. In addition, multiple AS event types exhibited changes in splicing patterns
upon T3 treatment. Understanding the manner in which each AS event type re-
sponds to CLK inhibitionmay provide insight into regulatory differences between
event types. Specifically, relative sensitivities to splicing factor phosphorylation
status may be revealed.

Differentially spliced events were identified and their PSI values in each T3
concentration were collected. Events with missing PSI values were removed. By
inspecting the PSI value distributions at each T3 concentration, several response
patterns can be observed (Figure 2.7, Figure 2.8, Figure 2.9). First, the PSI values of
SE events decrease as drug concentration is increased (medians: -0.02, -0.13, -0.18,
for 0.10μM, 0.50μM, and 1.0μM), indicating that these exons are being skipped
more often due to treatment. The most substantial PSI decrease occurs at the
0.50μM concentration (6.5 fold decrease in median PSI from 0.10μM). This obser-
vation supports the notion that the 0.50μM concentration surpasses a biological
threshold, resulting in widespread structural changes within the transcriptome.
RI events tend to increase in PSI over increasing CLK inhibitor concentration (me-
dians: 0.0, 0.02, 0.09, for 0.10μM, 0.50μM, and 1.0μM), demonstrating a tendency
for introns to be retained more often as a result of treatment. However, retained
introns see a more substantial increase in PSI at 1.0μM, compared to 0.50μM (4.5
fold increase in median PSI from 0.50μM). This response pattern suggests that
intron retention is more resilient to CLK inhibition compared to exon skipping.
In contrast to SE and RI events, A3SS and A5SS events both see a more gradual
increase in PSI. Increases in alternative splice site PSI represents a tendency to-
wards including an exon’s extension (i.e. choosing a splice site farther away from
the centre of the exon).
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Figure 2.7: AS event type PSI distributions across CLK inhibitor concentra-
tion for the HCT116 unstranded RNA-Seq dataset. The number of events
for each event type is shown in parentheses. Notches extend ±1.58 IQR√

n ,
where IQR is the inter-quartile range.
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Figure 2.8: AS event type PSI distributions across CLK inhibitor concentra-
tion for the HCT116 stranded RNA-Seq dataset. The number of events
for each event type is shown in parentheses. Notches extend ±1.58 IQR√

n ,
where IQR is the inter-quartile range.
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Figure 2.9: AS event type PSI distributions across CLK inhibitor concentra-
tion for the hTERT stranded RNA-Seq dataset. The number of events
for each event type is shown in parentheses. Notches extend ±1.58 IQR√

n ,
where IQR is the inter-quartile range.
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The stranded RNA-Seq datasets were unable to show a shift in SE PSI change
distributions at 0.5μM due to the lack of samples that have been treated with T3
concentrations lower than 0.5μM. The dose-dependent changes in RI (and other
event type) PSI distributions were often not as apparent in the stranded RNA-
Seq datasets, partly due to the lack of treatment points, but possibly also due to
reduced splicing information in the stranded RNA-Seq libraries compared to the
unstranded RNA-Seq libraries (see Section 2.5).

The variety in response patterns reveal that different AS event types have
varying levels of sensitivity to CLK inhibition. From these observations, it may
be concluded that different classes of alternative splicing events are regulated
through different mechanisms that in turn exhibit varying levels of sensitivity to
CLK phosphorylation efficacy. Further, the tendency of the splicing machinery to
select the exclusion isoform of SE events and the inclusion isoform of RI events
suggests that CLK inhibition reduces splice site recognition.

2.2.5 PSI clustering reveals distinct AS response groups

In aggregate, AS events respond to CLK inhibition following event type deter-
mined patterns. However, enforcing an event type based segregation of AS events
may be concealing finer-grained response profiles. Clustering of AS event PSI pro-
files will reveal treatment response patterns in an event class unaware manner.

Clustering of PSI profiles was performed using the WGCNA [64] clustering
tool. Events were selected for clustering if they were differentially spliced in any
of the treated samples at a Bayes factor threshold of 20. Events with missing
PSI values were removed unless they contained only two non-consecutive miss-
ing values in the case of the HCT116 unstranded RNA-Seq dataset, or only one
missing value in the stranded RNA-Seq datasets. Missing values were replaced us-
ing linear interpolation. WGCNA was run with networkType=“signed” and min-
ModuleSize=25. The WGCNA clustering package requires a soft threshold value
which can be chosen by attempting to maximise both the scale independence and
connectivity of the PSI correlation network. Soft thresholds of 17, 28, and 24 were
selected for the HCT116 unstranded and stranded RNA-Seq, and hTERT datasets,
respectively (Figure A.1, Figure A.2, Figure A.3). The threshold for the HCT116 un-
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stranded RNA-Seq dataset was chosen by selecting one of the thresholds where
the scale free topology model fit starts to plateau on the model fit versus thresh-
old curve. For the stranded RNA-Seq datasets, values above 20 were chosen as
this produced visually distinct clusters and agrees with the suggested guidelines
for threshold selection when model fit R2 values do not reach above 0.8 [65]. The
scale free topology model fit can be low when clustering time-series data [65],
which the CLK inhibitor concentration curve data can be considered to be. A rep-
resentative event (i.e. “eigenevent”) was calculated for each cluster, and events
whose PSI profiles did not strongly correlate with the eigenevent (Pearson corre-
lation coefficient ≥ 0.75) were removed.

Clustering revealed several distinct response patterns common across multi-
ple event types and both cell types (Figure 2.10, Figure 2.11, Figure 2.12, number of
events per cluster shown in plots). This resulted in 28 distinct PSI profile clusters
for the HCT116 unstranded RNA-Seq dataset, and 7 clusters for the two stranded
RNA-Seq datasets. Similarities in clustered PSI response patterns can be observed
between the HCT116 and hTERT cell types when considering the two stranded
RNA-Seq datasets. Similar response patterns can also be observed in the HCT116
unstranded RNA-Seq dataset, although the PSI response patterns in this dataset
will be somewhat different due to differences in the number of observations. A
summary of proposed similar clusters between the three datasets is included in
Table 2.4. Common response patterns found in the three RNA-Seq datasets are
likely genuine.
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Figure 2.10: AS event PSI clusters for the HCT116 unstranded RNA-Seq
dataset. Black lines represent AS event PSI profiles. Red lines are cluster
eigen-events. The number of events in each cluster is shown in paren-
theses in the cluster label.
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Figure 2.11: AS event PSI clusters for the HCT116 stranded RNA-Seq dataset.
Black lines represent AS event PSI profiles. Red lines are cluster eigen-
events. The number of events in each cluster is shown in parentheses
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Figure 2.12: AS event PSI clusters for the hTERT stranded RNA-Seq dataset.
Black lines represent AS event PSI profiles. Red lines are cluster eigen-
events. The number of events in each cluster is shown in parentheses
in the cluster label.
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Table 2.4: Proposed similar AS PSI response clusters between the three RNA-
Seq datasets. (unstr) and (str) indicates an unstranded or stranded RNA-
Seq protocol was used, respectively.

HCT116 hTERT

RNA-Seq (unstr) RNA-Seq (str) RNA-Seq (str)

1 1 2
1 2 1
3 3 3
2 4 5
7 5 6
12 6 4
25 7 7

As PSI clustering was performed in an AS event type unaware manner, each
cluster may contain a variety of event types. Calculating cluster event type pro-
portions revealed a variety of event type distributions between clusters (Figure 2.13).
Each cluster was enriched for certain event types, compared with the distribu-
tion of all differentially spliced events chosen for clustering (Table 2.5, Table 2.6,
Table 2.7). General distributional trends are most apparent when inspecting the
event type distributions of the two stranded RNA-Seq datasets. Clusters enriched
for SE events (1, 2, 5, and 7 for HCT116; 1, 2, and 6 for hTERT) are characterized
by a decrease in PSI between untreated samples and samples treated with 0.50μM

of T3 CLK inhibitor. After the 0.50μM concentration, these clusters may either
increase or decrease in PSI. The remaining clusters (excluding hTERT cluster 7)
are characterised by an increase in PSI between untreated samples and samples
treated with 0.50μM of T3. These clusters have a lower proportion of SE events
and are enriched for ALE, AFE, A5SS, A3SS, MXE, and RI events. These results
agree with the previous observation that SE events tend to decrease in PSI in a
T3 dose-dependent manner, while RI events tend to increase in PSI with T3 treat-
ment. A likely cause of this pattern is loss of splice junction recognition efficacy
in T3 treated cells.
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Figure 2.13: AS event type proportions across AS PSI clusters. a, HCT116 un-
stranded RNA-Seq dataset. b, HCT116 stranded RNA-Seq dataset. c,
hTERT dataset.
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Table 2.5: AS PSI cluster event type proportion enrichment for the HCT116
unstranded RNA-Seq datasets. Benjamini-Hochberg adjusted p-values
from hypergeometric tests are shown if they are below 0.05.

Cluster A3SS A5SS AFE ALE MXE RI SE

1 0.0
2 1.98e⁻⁰⁶ 1.97e⁻¹⁴ 5.06e⁻³² 5.05e⁻⁷⁵ 1.71e⁻¹²³
3 4.97e⁻⁰⁷ 0.0364 0.00107 7.25e⁻⁰⁸ 0.00203
4 6.11e⁻⁰⁸ 0.00582 3.05e⁻⁰⁵
5 3.16e⁻¹⁸ 1.99e⁻¹¹ 0.00871
6 0.0155 3.64e⁻⁰⁵
7 0.000222
8 0.000339
9 0.0477 0.000271 0.0477
10 0.00530 0.00638 1.06e⁻¹¹
11 0.00582 1.54e⁻⁰⁵
12 0.00181
13 0.0211
14 0.0120
15 0.00201
16 0.0219
17 0.0130
18
19
20 0.00107 0.00871 0.0477
21
22 0.0133
23 0.00553
24 0.00740 0.00997
25
26 0.0106

Continued
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Cluster A3SS A5SS AFE ALE MXE RI SE

27 0.00582
28 0.0125

Table 2.6: AS PSI cluster event type proportion enrichment for the HCT116
stranded RNA-Seq datasets. Benjamini-Hochberg adjusted p-values from
hypergeometric tests are shown if they are below 0.05.

Cluster A3SS A5SS AFE ALE MXE RI SE

1 6.63e⁻⁷²
2 6.04e⁻⁷²
3 1.75e⁻¹⁹ 1.49e⁻¹² 3.21e⁻³⁵ 3.96e⁻¹¹ 0.000305 5.30e⁻¹⁸
4 0.0128 3.88e⁻¹⁵ 2.09e⁻¹³ 5.66e⁻⁵³
5 4.72e⁻¹⁰
6 8.32e⁻⁰⁷ 0.0340 0.0128 0.00153
7 0.000224

Table 2.7: AS PSI cluster event type proportion enrichment for the hTERT.
Benjamini-Hochberg adjusted p-values from hypergeometric tests are
shown if they are below 0.05.

cluster A3SS A5SS AFE ALE MXE RI SE

1 7.88e-136
2 8.42e-54
3 8.76e-23 1.71e-12 3.64e-21 5.70e-18 0.0130 2.20e-39
4 0.00170 2.23e-14 1.32e-09 0.00454 0.000766
5 0.0407 5.00e-15 2.70e-05 1.00e-38
6 1.75e-07
7 0.000378

Analysis of PSI change patterns revealed that AFE and possibly ALE events
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tend to increase with T3 treatment, although PSI did not always clearly change
as a function of T3 dose (Section 2.2.4). However, the event type unaware PSI
profile clustering shows that both AFE and ALE events are more prevalent in
clusters that increase in PSI in a dose-dependent manner. AFE and ALE events
are also present in clusters of events that decrease in PSI, which might explain the
lack of a clear dose response in the event type PSI change analysis (Section 2.2.4).
PSI increases for AFE and ALE events indicate that an isoform beginning closer
to the gene centre is being chosen more often.

2.2.6 ESE density is predictive of splicing response to CLK inhibition

AS events of a particular type with contrasting responses (i.e. increasing vs. de-
creasing with treatment) may contain differences in splicing signals within over-
lapping and nearby RNA sequences. One common class of splicing signal is the
exonic splicing enhancer (ESE). ESEs are recognized by SR proteins, usually to
promote recruitment of the spliceosome to exon junctions. The ESE sequence
motifs are degenerate and common in exonic sequences, especially near exon
junctions [58]. Exons with a higher density of ESE motifs would present more
opportunities for SR proteins to bind to the RNA substrate, promoting inclusion
of the corresponding exon.

To test whether ESE density can explain some difference in splicing response,
SE and RI events from clusters 1 (SE: 4208 events, RI: 145 events) and 2 (SE: 241
events, RI: 584 events) from the HCT116 unstranded RNA-Seq dataset AS event
clustering (Figure 2.10) were selected. These events increase (cluster 2) or de-
crease (cluster 1) in PSI with T3 treatment. Alternatively included regions in
each group of events were queried for the presence of SRSF1, SRSF2, SRSF5, and
SRSF6 binding motifs obtained from ESEfinder [58]. The ESE motif search was
performed in a probabalistic manner, correcting for background nucleotide rates.

The density of each binding motif was calculated for each sequence. SRSF1,
SRSF2, and SRSF5 motif density was significantly higher (one-tailed t-test, Ta-
ble 2.8) in PSI-increasing vs. PSI-decreasing skipped exons (Figure 2.14). For re-
tained introns, SRSF1, SRSF2, and SRSF6 binding motif density was significantly
higher (one-tailed t-test, Table 2.8) in PSI-increasing events (Figure 2.15).
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Figure 2.14: ESE density boxplots for skipped exons increasing (cluster 2) or
decreasing (cluster 1) in PSI with T3 treatment. ESEs tested include
binding motifs for SRSF1, SRSF2, SRSF5, and SRSF6. Cluster 1: 4208
events, cluster 2: 241 events. Notches extend ±1.58 IQR√

n , where IQR is
the inter-quartile range.
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Figure 2.15: ESE density boxplots for retained introns increasing (cluster 2) or
decreasing (cluster 1) in PSI with T3 treatment. ESEs tested include bind-
ing motifs for SRSF1, SRSF2, SRSF5, and SRSF6. Cluster 1: 145 events,
cluster 2: 584 events. Notches extend±1.58 IQR√

n , where IQR is the inter-
quartile range.
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Table 2.8: ESE motif density comparisons for SE and RI events in PSI clusters
1 and 2. One-tailed t-test p-values are shown. Alternative hypothesis
is that the indicated binding motif density is greater in AS events that
increase in PSI upon T3 treatment. NS indicates that the null hypothesis
was not rejected at a significance level of 0.05.

AS event type SRSF1 SRSF2 SRSF5 SRSF6

SE 1.01e⁻⁰⁶ 0.00161 0.0287 NS
RI 0.00379 0.0379 NS 0.0013

The observation that ESE density correlates with splicing response demon-
strates that the number of SR protein binding motifs is an important indicator
of whether an alternatively included region of RNA will be present in the final
transcript. RI and SE events appear to rely on different sets of SR proteins for
their inclusion. Both SRSF1 and SRSF2 were predictive of splicing response in SE
and RI events; However, SRSF5 was only predictive of response in SE events, and
likewise SRSF6 for RI events.

2.3 CLK Inhibition Promotes Conjoined Gene Transcription in a
Dose Dependent Manner

Inspection of splicing patterns using the Integrative Genomics Viewer [66] re-
vealed cases of splicing between consecutive genes located on the same genomic
strand in treated RNA-Seq libraries (Figure 2.16). Conjoined genes (CGs) have
been previously reported in the literature, and are believed to arise from transcrip-
tional read-through from the upstream to the downstream partner gene [67]. This
hypothesis is supported by a common pattern: the second-to-last exon of the up-
stream gene being spliced to the second exon of the downstream gene. Skipping
of the last and first exons of CG partner genes may be due to a lack of splicing sig-
nals at what would normally be a polyadenylation site or transcription start site,
respectively. Additionally, the existence of intergenic exons in some CG tran-
scripts strongly points to transcriptional read-through as the underlying mecha-
nism for CG formation. Both of these patterns are present in the CGs detected in
T3-treated samples.
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Figure 2.16: IGV-generated plot of splicing in the VSIG10-WSB2 conjoined
gene. Plots for T3 treatment concentrations of 0.0, 0.5, 1.0, 5.0, and
10.0μM are shown from top to bottom. The control sample plot is
coloured grey, and the treated sample plots are coloured according to
T3 concentration. RefSeq gene annotations are shown in blue at the bot-
tom of the plot alongwith chromosome 12 coordinates. For each sample,
the y-axis represents read coverage, and the value range is indicated be-
tween brackets. Arcs connecting exons represent reads spliced across
introns, with the number of spliced reads annotated over the line. Only
arcs representing at least 3 reads are shown.
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AlthoughCLKs are known to play an important role in RNA splicing, theman-
ner in which they might regulate 3′-end cleavage is unknown. Characterisation
of CGs produced as a result of CLK inhibition is a first step towards understanding
the genesis of these transcripts. Systematic analysis may provide insight into the
regulation of 3′-end processing and reveal a novel role of CLK phosphorylation.

2.3.1 T3 treatment increases conjoined gene loci detection in a
dose-dependent manner

A genome-wide search for further occurrences of conjoined transcripts was per-
formed using the deFuse gene fusion detection method [55]. The deFuse classifier
was modified by removing two features to increase CG detection sensitivity:

• est_breakseqs_percident

• breakseqs_estislands_percident

Conjoined genes are required to have both participating genes located on the
same strand of the same chromosome. Detected CG events were filtered to have
the following attributes:

• deletion = ‘Y’

• expression ≥ 50 reads for both genes

• splice_score = 4 OR exonboundaries = ‘Y’

• probability ≥ 0.9

These filters were chosen to produce a set of conjoined gene event calls that are
likely due to splicing as opposed to genomic aberrations, and occur with a high
probability. While it is likely that some real conjoined gene events have been
missed due to stringent filter thresholds, this is acceptable as the focus of down-
stream analysis is on the characterisation of a set of true events rather than iden-
tifying all possible events.

Analysis of the RNA-Seq libraries in each T3-treated dataset revealed a com-
mon pattern of T3 dose-dependent detection of CG events (Figure 2.17). The
HCT116 unstranded RNA-Seq dataset demonstrates a pattern similar to some AS
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events (e.g. SE) where the number of affected events increases dramatically at
the 0.50μM T3 concentration. This pattern was not observed in the stranded
RNA-Seq datasets due to the lack of measurements at T3 concentrations lower
than 0.5μM. Nevertheless, the stranded RNA-Seq datasets do not contradict the
results from the unstranded HCT116 dataset as they still reveal an increase in
conjoined gene events at 0.5μM, with a milder dose effect. The similarity with
AS events in dose-dependent response, especially the increase in event detection
at 0.5μM, suggests that the production of CGs due to CLK inhibition is a primary
effect of the treatment itself, rather than a secondary effect induced by disruption
of the transcriptomic landscape.
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Figure 2.17: Conjoined gene counts per RNA-Seq library as detected by amod-
ified deFuse classifier.

A substantial difference exists in the number of detected CGs between the
unstranded and stranded RNA-Seq datasets (HCT116 unstranded RNA-Seq: 586,
HCT116 stranded RNA-Seq: 215, hTERT: 154 unique events for 0.0μM, 0.5μM,
1.0μM, and 5.0μM; 2.7 fold increase in unstranded vs. stranded HCT116 RNA-
Seq). This pattern was also observed in the number of differentially spliced AS
events, and may be due to differences in the amount of splicing information in
the RNA-Seq libraries from the stranded and unstranded RNA-Seq datasets (see
Section 2.5).

Conjoined geneswere also detected in RNA-Seq libraries generated fromHCT116
cells transfected with CLK siRNA. 33 CGs (upstream, downstream gene pairs)
were detected in the siRNA dataset after subtraction of CGs found in the control
libraries. 25 of these CG were also found in the CG lists generated from the T3-
treated sample libraries. Therefore, increased CG transcription can be explained
by loss of CLK activity (as opposed to a T3 off-target), for at least some loci.
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2.3.2 T3 treatment increases conjoined gene PSI in a dose-dependent
manner

Increased detection of CG events upon T3 treatment implies a growth in CG tran-
scription rate. If a constant fraction of transcripts from the upstream partner
gene read through to the downstream partner, then increased CG transcription
may indicate increased expression of the upstream partner gene. Alternatively,
CLK inhibition may increase the proportion of transcripts escaping 3′-end cleav-
age.

To investigate the affect of CLK inhibition on CG production rate, CG isoform
annotations were generated and input into MISO. In cases where the second to
last exon of the upstream CG partner gene is spliced to the second exon of the
downstream partner, the isoform annotations can be constructed by using the
last two exons of the upstream parent as the exclusion (wildtype) isoform, and
the second to last exon of the upstream parent and the second exon of the down-
stream parent as the inclusion (CG) isoform. Any intergenic exons detected in
CGs transcripts are included in the inclusion isoform annotations. When splicing
occurs from the last exon of the upstream gene, annotations are generated where
the terminal exon of the upstream parent is the exclusion isoform, and the same
exon plus the appropriate exon of the downstream parent is the inclusion isoform.
This class of annotations is similar to tandem UTR AS events in the MISO anno-
tations. The generated CG isoform annotations were used by MISO to calculate
PSI values for each CG event.

CGs were called as “differentially spliced” if MISO reported a Bayes factor
≥ 20, and a PSI difference ≥ 0.1 between treated and untreated samples. 603,
194, and 185 CGs were differentially spliced in the HCT116 unstranded RNA-Seq,
HCT116 stranded RNA-Seq, and hTERT datasets. PSI value differences across all
T3 concentrations were collected for each differentially spliced CGs, and CGs
with missing PSI estimations were removed. PSI value distributions were then
compared across each treatment concentration (Figure 2.18, Figure 2.19, Figure 2.20).
Both the HCT116 and hTERT datasets show a dose-dependent increase in CG PSI
(HCT116 unstranded RNA-Seq medians: 0.01, 0.07, and 0.14, for 0.10μM, 0.50μM,
and 1.0μM; hTERT medians: 0.1, 0.16, and 0.23, for 0.50μM, 1.0μM, and 5.0μM). In
the HCT116 unstranded RNA-Seq dataset, a clear increase (7 fold greater median
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PSI than 0.10μM) in PSI value changes can be seen at the 0.5μM concentration.
CLK inhibition clearly increases the proportion of CG to wild-type transcripts
in a dose-dependent manner. CG PSI changes were then compared to the ex-
pression of non-conjoined upstream transcripts, and found that upstream gene
non-conjoined transcription decreased with increased CG PSI (Figure 2.21, Fig-
ure 2.22, Figure 2.23). This pattern demonstrates that CGs “steal” transcription
from the upstream CG participant.
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Figure 2.18: CG PSI change boxplots per T3 treatment for the HCT116 un-
stranded RNA-Seq dataset. N = 603. Notches extend ±1.58 IQR√

n , where
IQR is the inter-quartile range.
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Figure 2.19: CG PSI change boxplots per T3 treatment for the HCT116
stranded RNA-Seq dataset. N = 194. Notches extend ±1.58 IQR√

n , where
IQR is the inter-quartile range.
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Figure 2.20: CGPSI change boxplots per T3 treatment for the hTERT stranded
RNA-Seq dataset. N = 185. Notches extend±1.58 IQR√

n , where IQR is the
inter-quartile range.
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Figure 2.21: Non-conjoined upstream transcript expression ratio vs CG PSI
change in the HCT116 unstranded RNA-Seq dataset. Upstream non-
conjoined transcript expression is reads per million (RPM) mapped
reads supporting the non-conjoined isoform from the CG MISO anal-
ysis. RPM ratio is the RPM of the upstream gene in the treated sample
divided by the RPM in the control sample. PSI change is the difference
in PSI from the control sample to the treated sample for the CG event.
Negative regression line slope indicates decrease in non-conjoined tran-
scription with CG PSI increase.
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Figure 2.22: Non-conjoined upstream transcript expression ratio vs CG PSI
change in the HCT116 stranded RNA-Seq dataset. Upstream non-
conjoined transcript expression is reads per million (RPM) mapped
reads supporting the non-conjoined isoform from the CG MISO anal-
ysis. RPM ratio is the RPM of the upstream gene in the treated sample
divided by the RPM in the control sample. PSI change is the difference
in PSI from the control sample to the treated sample for the CG isoform.
Negative regression line slope indicates decrease in non-conjoined tran-
scription with CG PSI increase.
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Figure 2.23: Non-conjoined upstream transcript expression ratio vs CG PSI
change in the hTERT dataset. Upstream non-conjoined transcript ex-
pression is reads per million (RPM) mapped reads supporting the non-
conjoined isoform from the CG MISO analysis. RPM ratio is the RPM
of the upstream gene in the treated sample divided by the RPM in the
control sample. PSI change is the difference in PSI from the control
sample to the treated sample for the CG isoform. Negative regression
line slope indicates decrease in non-conjoined transcription with CG
PSI increase.
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2.3.3 Similar conjoined genes are sensitive to CLK inhibition in HCT116 and
hTERT cells

RNA 3′-end processing is differentially regulated according to cell type and tu-
mour/normal status, similar to RNA splicing [36]. Despite differences in RNA
processing regulation, CLK inhibition increases CG transcription in both malig-
nant HCT116 and normal hTERT cells. Nevertheless, there may be differences in
the set of CG loci between cell types. The degree of overlap between CGs will
reflect the level of reliance on biological context in the vulnerability of genes to
skip 3′-end cleavage.

Overlapping CGs were identified by generating a unique list of upstream-
downstream CG partner pairs for each dataset. These lists ignore variation in
donor and acceptor splice sites from the same CG partners, as these differences
can be considered to arise from different isoforms (or “events”) of the same CG.
These lists were used to determine the set of conjoined genes common between
cell types and exclusive to each cell type (Figure 2.24). 15 of 117 (12.8%) hTERT
conjoined gene calls were not present in the HCT116 conjoined gene lists. Only
9 of 161 (5.6%) calls from the HCT116 stranded RNA-Seq dataset were not present
in the other conjoined gene lists. Overall, the majority of both stranded RNA-Seq
dataset CGs overlap with those in another dataset. However, 403 of 589 (68.4%)
CGs called in the unstranded HCT116 RNA-Seq dataset were exclusive to that
dataset.
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Figure 2.24: Venn diagram of conjoined genes detected in the two HCT116
and one hTERT RNA-Seq datasets.

The stranded RNA-Seq datasets both revealed many fewer CGs than the un-
stranded HCT116 RNA-Seq dataset. This is likely due, in part, to a greater num-
ber of treament concentrations in the unstranded RNA-Seq dataset, including
the highest tested concentration (10.0μM). The majority of CGs in both of the
stranded RNA-Seq datasets were detected in the unstranded RNA-Seq dataset.
Also, large proportions of the HCT116 (55.3%) and hTERT (33.3%) stranded RNA-
Seq datasets were detected in the unstranded RNA-Seq dataset, but not the other
stranded RNA-Seq dataset. The unstranded RNA-Seq protocol may also be more
sensitive to the detection of spliced sequences (see Section 2.5).

15 conjoined geneswere only present in the high-confidence hTERT calls. The
stringent filtering process for CG events may have removed the CG predictions
found in the hTERT cells from the HCT116 predictions. Or, those particular CGs
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may not have been sampled in the HCT116 RNA-Seq libraries, which could occur
if expression is low.

CGs were also detected in HCT116 cells using cDNA sequences generated
with the Pacific Biosciences’ (PacBio) SMRT sequencing technology [9] (Table 2.1).
The PacBio technology provides the ability to sequence up to several thousand
nucleotides, allowing the capture of entire transcript sequences in many cases.
As deFuse was designed to use paired-end RNA-Seq reads, an alternative method
for CG detection was necessary for the PacBio data. Conjoined transcripts were
detected by selecting reads that mapped across two different genes located on
the same chromosome strand. For a PacBio read to be considered as “mapped” to
a gene for the purposes of CG detection, at least three exon junctions within a
read must match exon junctions belonging to a single gene in the Gencode level
1 and 2 transcript annotations. Cases where one gene is encapsulated within
another gene (e.g. a miRNA located within the intron of another gene) are not
considered conjoined genes. The result is an inclusive list of candidate CGs that
can be compared to the CGs detected the RNA-Seq datasets.

The PacBio CGs were compared to those detected in the RNA-Seq datasets
and overlapping CGswere counted in an identical manner to the RNA-Seq dataset
comparison (Figure 2.25). 173 of 647 (26.7%) CGs detected in the PacBio dataset
overlapped with those found in the RNA-Seq datasets. The PacBio-only CGs may
be due, in part, to increased numbers of false positives: the detection method
for the PacBio dataset was designed to favour sensitivity over specificity. How-
ever, the lower number of reads in the PacBio dataset (mean: 1,919,728) compared
with the RNA-Seq datasets (e.g. HCT116 unstranded RNA-Seq mean: 167,167,942;
approx. 87 times more than PacBio) means that the PacBio dataset may have sam-
pled fewer conjoined gene transcripts. This may partially explain the lower over-
lap of the PacBio CGs with the RNA-Seq CGs.
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Figure 2.25: Venn diagram of conjoined genes detected in the RNA-Seq and
PacBio datasets.

Only 1 of the 15 hTERT-specific CGs from the RNA-Seq dataset comparison
was detected in the PacBio data. These hTERT-specific CGs may indicate a dif-
ferential 3′ end processing response to CLK inhibition. These CGs may also be
explained by cell-type specific gene expression profiles. Specifically, the hTERT-
specific CGs may not be detected in the HCT116 samples merely due to low ex-
pression of the parent genes in HCT116 cells. To investigate this, FPKM values for
genes involved in hTERT-specific CGs were calculated using Cufflinks for each
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of the HCT116 and hTERT datasets. The FPKM distributions of hTERT-specific
CG partner genes reveal a pattern of higher expression in hTERT samples (Fig-
ure A.4, Figure A.5). Therefore, the presence of hTERT-specific CGs may be at
least partially explained by reduced expression of participating genes in HCT116
cells.

2.3.4 Conjoined gene events are validated in both HCT116 and hTERT using
targeted sequencing

While the PacBio dataset adds support for the presence of CGs detected in the
RNA-Seq dataset, the low throughput and resulting lower sensitivity of the PacBio
platform compared to RNA-Seq means that another validation method is neces-
sary to properly estimate the proportion of true CG events. A set of 52 conjoined
gene events (i.e. CG isoforms) was selected for targeted sequencing. The list of
CGs include events found in both HCT116 and hTERT cells, and events found
only in the CG lists of one cell type. The final list of sequencing amplicons also
include regions of constitutive exons from three housekeeping genes. Housekeep-
ing gene exon expression was used to normalize expression of each CG.

Targeted sequencing of the CG and housekeeping gene amplicons was per-
formed on three datasets. Samples from the two HCT116 concentration curve ex-
periments sequenced with unstranded and stranded RNA-Seq were used as two
HCT116 replicate datasets. The hTERT concentration curve experiment samples
were also used for CG targeted sequencing.

The validation sequencing libraries were analyzed for conjoined genes with
deFuse. Detected CGs were compared to the set of CGs selected for validation. 37
of 52 (71.2%) CG events were validated with this method. Interestingly, 5 events
not selected for validation were detected in the validation dataset. Upon inspec-
tion, 4 appear to be alternative isoforms of other CGs selected for validation; the
other is similar to another validation input event except that it involves a more
distant paralog of the upstream gene. This CG event is likely due to reads mis-
aligned to the paralog gene. Considering CG parent genes only, and ignoring
specific splice sites, 40 (76.9%) of the selected CGs were detected in the validation
dataset.

Since the CGs chosen for validation include those found in only HCT116 or
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hTERT cells according to the deFuse analysis, the CGs found in the validation
dataset may support the existence of cell-type specific CG events. However, of
the 42 detected events, only 1 event was found in only one cell type — HCT116.
One event was detected in a single HCT116 dataset and the hTERT dataset. The
vast majority (40) of the detected events were present in all three (2 HCT116, 1
hTERT) datasets.

Many of the CGs detected in the validation dataset (22 of 42, or 52.4%) were
also detected in untreated samples. To verify the effect of CLK inhibition on CG
formation, CG event expression was compared across T3 treatment concentra-
tions (Figure A.6, Figure A.7, Figure A.8). CG expression distributions show a
dose-dependent increase in both HCT116 and hTERT cells.

2.3.5 Upstream partners of conjoined genes are involved in RNAmetabolism
and cell-cycle regulation

CG regulation may be focussed on either the upstream or downstream gene part-
ners. For example, The downstream partners may use the promoter of the up-
stream gene to increase expression; Alternatively, CGsmay form to add the down-
stream gene’s functionality to the upstream gene. To investigate the possibility
that upstream and downstream CG partners are involved in similar biological
processes, the upstream and downstream partners were used to create two gene
interaction networks using the ReactomeFI Cytoscape plugin [56]. The interac-
tion network genes were checked for enriched GO biological process gene sets
with false discovery rate controlled at 0.05. Enriched biological processes in the
upstream and downstream CG partners were then used to generate an enrich-
ment map [59] (Figure 2.26, Figure 2.27, Figure 2.28).
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protein catabolism

Figure 2.26: Enrichment map for genes involved in CGs in the HCT116 un-
stranded RNA-Seq dataset. Each node represents a GO biological pro-
cess gene set. Biological processes enriched in CG upstream partners
have red cores, while biological processes enriched in downstream part-
ners have red outer rings. Edge thickness indicates the level of CG part-
ner overlap between gene sets.
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Figure 2.27: Enrichment map for genes involved in CGs in the HCT116
stranded RNA-Seq dataset. Each node represents a GO biological pro-
cess gene set. Biological processes enriched in CG upstream partners
have red cores, while biological processes enriched in downstream part-
ners have red outer rings. Edge thickness indicates the level of CG part-
ner overlap between gene sets.
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Figure 2.28: Enrichment map for genes involved in CGs in the hTERT dataset.
Each node represents a GO biological process gene set. Biological pro-
cesses enriched in CG upstream partners have red cores, while biolog-
ical processes enriched in downstream partners have red outer rings.
Edge thickness indicates the level of CG partner overlap between gene
sets.
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Analysis of the upstream gene partners produced a greater number of signifi-
cantly enriched biological processes compared to the downstream partners. This
suggests that the upstream gene partners are more related to each other, and that
CG regulation is more focussed on the role of the upstream partners within the
cell. Upstream CG partners are involved in RNA splicing, the cell cycle protein
catabolism, and translation. Genes associated with 3′-end processing, including
A2AF1, CSTF1, and NUDT21 (a component of CFIm), were found to participate
in CG transcription. Formation of CGs involving 3′-end processing factors may
disrupt normal 3′-end cleavage, in turn promoting CG transcription at other loci.

Similar biological processes were affected by CG transcription (Figure 2.26,
Figure 2.27, Figure 2.28) and differential splicing (Figure 2.3, Figure 2.4, Figure 2.5,
Table 2.3), which may suggest that CLKs can regulate this common set of biolog-
ical functions through different RNA processing mechanisms. Formation of CGs
might comprise one aspect of cellular response to CLK inhibition. For example,
CG transcription may be a mechanism for upstream gene expression control if
the CG transcript is targeted for degradation by the nonsense-mediated decay
pathway [67].

2.3.6 Upstream conjoined gene partners may rely on auxiliary 3′-end
processing factors

Transcriptional readthrough of upstream CG partners into downstream genes
may be regulated by components of the 3′-end processing machinery. While a
gene may have multiple alternative cleavage and polyadenylation sites, CG for-
mation requires the skipping of all possible sites in the upstream gene. Yet, final
poly(A) sites generally contain a strong, canonical poly(A) signal [36]. Termi-
nal poly(A)/3′ cleavage sites of upstream CG partners may contain common cis-
regulatory signal patterns that are sensitive to RS domain phosphorylation status.
These genes would then be susceptible to transcriptional read-through upon CLK
inhibition.

Regulatory signals associated with CG formation were investigated by iden-
tifying the annotated locations of terminal poly(A) sites in the genome. The pro-
portion of upstream CG partners with canonical poly(A) signals at their terminal
poly(A) site was similar to the proportion for all genes. Therefore, the absence of
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a canonical poly(A) signal alone does not appear to be associated with CG gen-
eration. The regions around the terminal poly(A) sites were examined for the
presence of a canonical A(A/U)UAAA poly(A) signal, an upstream UGUA signal,
and a U/GU-rich downstream element (DSE). For the purposes of this analysis, a
DSE is defined as a sequence of at least six nucleotides, composed of uracils and
interspersed with up to three non-sequential guanines.

Polyadenylation sites without canonical poly(A) signals are known to rely
on auxiliary 3′-end processing factors for poly(A) site selection [36]. So, genes
were partitioned into two groups based on whether or not their terminal poly(A)
site contained a nearby canonical poly(A) signal, as detected through this analysis.
UpstreamCG partners in the group lacking canonical poly(A) signals had a higher
proportion of detected UGUA signals (chi-squared p-value < 0.01) and DSEs (chi-
squared p-value < 0.05) compared to all genes without an annotated poly(A) site.
This pattern was not found in a similar comparison with the group containing
nearby canonical poly(A) signals.

Upstream CG gene partners lacking canonical poly(A) signals seem to rely
on CFIm binding to UGUA sites and CstF binding to G/GU-rich DSEs more often
than typical genes. Proper 3′ cleavage of these genes may be especially sensitive
to regulation of CFIm andCstF.The heavier reliance onCFIm binding in particular
is interesting, because SR proteins are known to interact with CFIm, potentially
by assisting in the recruitment of CFIm to the RNA substrate [25]. Furthermore,
phosphorylation of CFIm is necessary for the 3′ cleavage reaction to occur [26].
CLKs may regulate RS domain mediated SR protein-CFIm interactions, or may
even phosphorylate the RS-like domain of CFIm itself. This may partially explain
the sensitiviy of these CG loci to CLK inhibition. For genes with canonical poly(A)
signals at terminal polyadenylation sites, CG formation propensity may be deter-
mined by regulation of core components of the 3′-end processing machinery.

2.4 CLK Inhibition Results in the Down Regulation of Splicing
Factors and Cell Cycle Regulators

CLK inhibition causes widespread structural changes in the transcriptome. Any
gene expression changes could be due to changes in transcriptome composition,
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or a direct response to the presence of the T3 compound. Cufflinks [51] was
used to quantify transcript abundances in the three T3-treated RNA-Seq datasets,
which produced FPKM values for each gene. Genes selected for further analy-
sis were required to have FPKM values >= 1 in at least 4 libraries for the un-
stranded HCT116 RNA-Seq dataset, and 3 libraries for the two stranded RNA-Seq
datasets. This filtering was performed to remove unexpressed genes that have a
low FPKM value due to the presence of misaligned reads. Each gene must also
have an FPKM fold change >= 2 for at least one treated library when compared
with the untreated control library. The resulting list represents candidate differ-
entially expressed genes.

Determining whether a gene is differentially expressed in a statistically mean-
ingful manner without biological replicates is challenging. However, by mea-
suring RNA at a variety of CLK inhibitor concentrations, genes with expression
profiles following clear trends across the concentration gradient can identified
as likely to be differentially expressed. Gene expression trends were discovered
by clustering gene expression profiles using the WGCNA [64] clustering method.
WGCNAwas runwith networkType=“signed”, minModuleSize=25, and power=28
for the unstranded HCT116 RNA-Seq dataset, power=27 for the stranded HCT116
RNA-Seq dataset, and power=30 for the HTERT dataset. This resulted in 6 clus-
ters for the unstranded HCT116 RNA-Seq dataset, 5 clusters each for the stranded
HCT116 RNA-Seq and hTERT datasets. For each cluster, a representative gene
expression profile (an “eigengene”) was calculated and genes whose expression
profiles correlated with the eigengene expression profile less than 0.75 were re-
moved.

All three datasets exhibit similar FPKMprofile clusters (Figure 2.29, Figure 2.30,
Figure 2.31). Both stranded RNA-Seq datasets include fewer treatment libraries
and so the expression profiles will appear somewhat different. The number of
down-regulated genes greatly outnumbered up-regulated genes. The splicing and
transcriptional machineries are linked and splicing disruption may have caused
a negative effect on gene expression. In all datasets the largest cluster is charac-
terised by genes that are strongly down-regulated starting at the 0.5μM concen-
tration. Some clusters behave in an opposing manner: their genes are strongly
up-regulated at the same concentrations. This pattern of greater regulatory ac-
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tivity at the 0.5μM concentration was also observed in the differential splicing
analysis (Section 2.2), and the CG analysis (Section 2.3). The cluster profiles for
both HCT116 datasets and the hTERT dataset demonstrates that gene regulatory
processes are affected similarly in both HCT116 and hTERT cells as a result of
CLK inhibitor treatment.
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Figure 2.29: Clustered gene expression profiles from the HCT116 unstranded
RNA-Seq dataset. Genes have been clustered using WGCNA based on
FPKM profiles. Each black line is a gene expression profile; The red
lines are cluster eigengenes.
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Figure 2.30: Clustered gene expression profiles from the HCT116 stranded
RNA-Seq dataset. Genes have been clustered using WGCNA based on
FPKM profiles. Genes have been clustered using WGCNA based on
FPKM profiles. Each black line is a gene expression profile; The red
lines are cluster eigengenes.
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Figure 2.31: Clustered gene expression profiles from the hTERT stranded
RNA-Seq dataset. Genes have been clustered using WGCNA based on
FPKM profiles. Genes have been clustered using WGCNA based on
FPKM profiles. Each black line is a gene expression profile; The red
lines are cluster eigengenes.

Each cluster contains genes that appear to be subject to similar regulatory
processes. Therefore, it is likely that each cluster contains groups of genes that
participate in similar or related biological processes. Identifying biological pro-
cesses enriched within each gene expression cluster will provide a glimpse into
how biological processes are affected by differential expression due to CLK inhbi-
tion.

Functional enrichment analysis of clustered genes was performed using the
ReactomeFI Cytoscape plugin [56]. For each set of clustered genes, a gene interac-
tion network was constructed and genes remaining in the constructed network
were used to perform functional enrichment analysis. Enriched GO biological
process terms with false discovery rate controlled at 0.05 were reported for each
cluster. For the HCT116 datasets, only analysis of clusters 1–3 resulted in a list of
enriched biological processes. The hTERT dataset only produced enriched biolog-
ical processes for clusters 1–4. Enriched biological processes were used to create
enrichment maps [59] (Figure 2.32, Figure 2.33, Figure 2.34).
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Figure 2.32: Biological process enrichment map for differentially expressed
genes in the HCT116 unstranded RNA-Seq dataset. Each node repre-
sents a GO biological process gene set. Red nodes represent biological
processes enriched among up-regulated genes, likewise blue for down-
regulated genes. Node cores are coloured blue when that gene set is
enriched among genes in cluster 1, red for cluster 2. The outer ring is
coloured blue when that gene set is enriched among genes in cluster
3. Edge thickness indicates the level of overlap between two gene sets,
considering the set of up- or down-regulated genes.
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Figure 2.33: Biological process enrichment map for differentially expressed
genes in the HCT116 stranded RNA-Seq dataset. Each node represents
a GO biological process gene set. Red nodes represent biological pro-
cesses enriched among up-regulated genes, likewise blue for down-
regulated genes. Node cores are coloured blue when that gene set is
enriched among genes in cluster 1, red for cluster 2. The outer ring is
coloured blue when that gene set is enriched among genes in cluster
3. Edge thickness indicates the level of overlap between two gene sets,
considering the set of up- or down-regulated genes.
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Figure 2.34: Biological process enrichment map for differentially expressed
genes in the hTERT dataset. Each node represents a GO biological
process gene set. Red nodes represent biological processes enriched
among up-regulated genes, likewise blue for down-regulated genes.
Node cores are coloured blue when that gene set is enriched among
genes in cluster 1, red for cluster 3. The outer ring is coloured blue
when that gene set is enriched among genes in cluster 2, red for cluster
4. Edge thickness indicates the level of overlap between two gene sets,
considering the set of up- or down-regulated genes.
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Genes characterised by strong down-regulation at the 0.5μM concentration
(cluster 1) are enriched for RNA splicing and processing genes (Figure 2.32, Fig-
ure 2.33, Figure 2.34). Up-regulated gene clusters were not enriched for RNA
splicing and processing genes. The down regulation of genes involved in RNA
metabolism may represent an attempt by treated cells to prevent the production
of aberrant RNA transcripts due to CLK inhibition.

Aside from RNA processing, genes involved in cell cycle regulation were
down-regulated. Down-regulation of cell cycle regulators upon T3 treatment sug-
gests that CLK inhibition may disrupt normal cell cycle activity. RNA splicing
is inhibited during mitosis [61] and appears to involve the dephosphorylation of
SRSF10 proteins [68]. In addition, down-regulation of SRSF3 induces G1 cell cycle
arrest in HCT116 colon cancer cells [62]. Splicing repression via CLK inhibition
may have a similar effect.

Genes in the second down-regulated cluster (3 for HCT116, 2 for hTERT) were
fewer than those in cluster 1 and were enriched for many fewer biological process
gene sets. Biological processes enriched in the secondary down-regulated clus-
ter overlapped with those of cluster 1, and are related to RNA metabolism and
cell cycle regulation. A subset of genes are perhaps more resilient to expression
changes in the presence of CLK inhibition, and increasing T3 dose is progressively
disrupting biological processes.

Toll-like receptor signaling genes were down-regulated upon CLK inhibition.
However, this biological process seemed to bemore sensitive in HCT116 cells than
hTERT cells. In HCT116 cells, toll-like receptor signaling was down-regulated in
cluster 1 (strong down-regulation at 0.5μM) as well as cluster 3 (more resilient to
down-regulation). In hTERT cells, toll-like receptor signalingwas down-regulated
in cluster 2 (more resilient to down-regulation).

Up-regulated genes were much fewer than down-regulated genes and thus
affected fewer biological processes. Histone assembly was among the few bio-
logical processes found to be enriched among only up-regulated gene expression
clusters in all three datasets.

Biological processes affected by gene down-regulation are consistent with the
biological processes affected by differential splicing and CG transcription. RNA
metabolic processes (including splicing), cell cycle, and protein catabolism are
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affected by changes in all three processes. Both differential splicing and gene
down-regulation affected DNA repair, histone modification, protein phosphory-
lation, and toll-like receptor signaling. SR proteins are reported to play a role in
transcriptional elongation, and depletion of some SR proteins can have a negative
impact on transcription [69]; Disruption of SR protein activity via CLK inhibition
may attenuate the splicing and expression a common set of genes, potentially
explaining the similarities in biological processes affected by differential splicing
and expression down-regulation.

2.5 Comparison of Unstranded and Stranded RNA-Seq Libraries

The stranded RNA-Seq datasets produced many fewer significant AS and CG
events (Figure 2.1, Figure 2.17). To identify sources of these differences, the RNA-
Seq libraries were compared to each other and to the PacBio libraries using var-
ious metrics. First, PSI values for each AS event were compared at each com-
mon T3 concentration between the HCT116 unstranded and stranded RNA-Seq
libraries (Figure 2.35). AS events were not compared at a certain T3 concentra-
tion if they did not pass a coverage threshold in both datasets of 1 read each for
both the inclusion and exclusion isoforms and 10 reads total for the AS event.
This read coverage filter is the same as applied for the MISO differential splicing
analysis. The unstranded and stranded RNA-Seq dataset AS event PSI values had
a Pearson correlation coefficient of 0.75. A pattern of anti-correlation amongst a
subset of events was also observed.
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Figure 2.35: HCT116 unstranded vs. stranded RNA-Seq hexplot of AS event
PSI values. PSI values were compared for each event at each concentra-
tion. Each hex represents a number of AS events. The lighter the shade
of blue, the greater the number of AS events map to that hex.
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Similarly, the unstranded and stranded HCT116 RNA-Seq AS event PSI values
were compared to PSI values computed from the PacBio sequencing libraries (Fig-
ure 2.36, Figure 2.37). PacBio reads violate some assumptions of the MISO model,
so PSI values were calculated by counting reads supporting the inclusion and ex-
clusion isoforms in the MISO event annotations. PacBio PSI values were more
strongly correlated with the unstranded RNA-Seq dataset (Pearson correlation
coefficient 0.76) compared with the stranded RNA-Seq dataset (Pearson correla-
tion coefficient 0.66). Anti-correlation can also be observed amongst a subset
of events in the PacBio vs. RNA-Seq comparisons, although perhaps to a lesser
extent in the comparison with the unstranded RNA-Seq data. The higher corre-
lation between the PacBio PSI and unstranded RNA-Seq PSI values suggests that
the unstranded RNA-Seq PSI values may be more reliable than those computed
from the stranded RNA-Seq dataset.
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Figure 2.36: HCT116 PacBio vs. unstranded RNA-Seq hexplot of AS event PSI
values. PSI values were compared for each event at each concentration.
Each hex represents a number of AS events. The lighter the shade of
blue, the greater the number of AS events map to that hex.
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Figure 2.37: HCT116 PacBio vs. stranded RNA-Seq hexplot of AS event PSI
values. PSI values were compared for each event at each concentration.
Each hex represents a number of AS events. The lighter the shade of
blue, the greater the number of AS events map to that hex.
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Next, the number of mapped reads between the three RNA-Seq datasets were
compared at each common T3 concentration (Figure 2.38). Generally, the un-
stranded RNA-Seq libraries have a greater number of mapped reads. However,
this pattern is not always consistent; At the 1.0μM concentration the number of
mapped reads is roughly equal between the three datasets. Therefore, while read
coverage may play a role in event count differences between the unstranded and
stranded RNA-Seq libraries, it cannot be the primary cause.
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Figure 2.38: Mapped read counts for RNA-Seq libraries from the three T3-
treated RNA-Seq datasets. Counts for T3 concentrations common
amongst the three datasets are shown.

Finally, the proportion of mapped reads that were split during the mapping
process were compared (Figure 2.39). The majority of these reads are split across
introns and are an important source of evidence for RNA splicing in a sequencing
library. A lower proportion of split reads may result in a reduced ability to detect
and quantify alternative splicing. Lower split read proportions were detected in
the stranded RNA-Seq libraries. In both HCT116 datasets the proportion of split
reads decreases with increasing T3 dose. The hTERT dataset shows a similar dose-
dependent effect, however the decrease in split read proportion is not as strong,
especially at the higher concentrations. This weaker dose effect in the hTERT
dataset can also be observed in the differentially spliced AS event and CG event
counts (Figure 2.1, Figure 2.17). Differences in the proportion of mapped reads
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that align to splice junctions appears to be a main contributor to the reduction of
detected splicing events in the stranded RNA-Seq datasets.
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Figure 2.39: Proportion of mapped reads split during the alignment process.
Proportions for T3 concentrations common amongst the three datasets
are shown.

Dose dependent decreases in split read proportions may be explained by the
increasing presence of aberrantly spliced transcripts. The GSNAP aligner may
struggle to map splice junction reads from novel splice sites in these transcripts.
The overall lower proportion of split read proportions in the stranded RNA-Seq
libraries may suggest that the unstranded RNA-Seq libraries contain a greater pro-
portion of reads erroneously mapped to non-contiguous regions of the genome.
However, the higher correlation of unstranded RNA-Seq and PacBio AS event PSI
values suggests that the opposite may be true: the stranded RNA-Seq datasets
may include less RNA splicing information.
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Chapter 3

Discussion

The results of the analyses presented in this thesis has demonstrated that the
T3 CLK inhibitor is an effective disruptor of normal RNA processing. Applying
the CLK inhibitor to cells in progressively greater concentrations allowed dose-
dependent response patterns to be observed in alternative splicing regulation,
3′-end processing (i.e. conjoined gene formation), and gene expression regula-
tion. Performing concentration-curve experiments in both HCT116 colon cancer
and normal hTERT cells revealed that the majority of observable effects on the
transcriptome were not specific to cancer or normal biology.

AS events exhibited varying levels of sensitivity to CLK inhibition. For exam-
ple, SE events displayed a sharp decrease in PSI starting at the 0.5μM concentra-
tion, compared to lower concentrations. RI events appear to be less dependent on
CLK activity and began to show large increases in PSI at the 1.0μM concentration.
These splicing responses clearly indicate that CLK inhibition disrupts splice site
recognition.

TheRS domain of SR proteins are generally thought to facilitate protein-protein
interactions. However, a recent study has shown that phosphorylation is required
for the RS domain of SRSF1 to dissociate from the RRM domain, allowing the RRM
domain to recruit U1 snRNP [14]. Under either model, repressing RS domain phos-
phorylation prevents SR proteins already bound to the RNA substrate from pro-
moting spliceosome formation. Therefore, RNA-bound and unphosphorylated SR
proteins may directly inhibit splicing.

ESE density appears to be an important predictor of AS inclusion levels. Alter-
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native sequences in SE and RI events that are up-regulated upon CLK inhibition
tend to have a greater density of ESE motifs than down-regulated exons. Greater
ESE density provides more opportunities for SR protein binding, and increases
the chances of a sufficiently phosphorylated SR protein being available to recruit
members of the spliceosome. SEs and RIs appear to be regulated by different SR
proteins; SE events that decreased in PSI with treatment were depleted of SRSF1,
SRSF2, and SRSF5 binding motifs. Similarly responding RI events were depleted
of SRSF1, SRSF2, and SRSF6 binding motifs.

RNA 3′-end cleavage was also shown to be negatively impacted by CLK inhi-
bition. Conjoined gene formation occurred in a T3 dose-dependent manner and,
similar to SE events, greater effects were observed starting at 0.5μM. Targeted
sequencing of a subset of detected CGs recapitulated these results, and verified
the existence of detected CGs in untreated cells. Dose-dependent increases in CG
PSI and decreases in non-conjoined upstream gene transcription indicate that CG
expression is “stolen” from the upstream gene.

Conjoined gene formation through transcriptional read-through appears to
be a natural phenomenon and has received some attention in the literature [67,
70]. T3-induced CG production patterns suggest that CLK phosphorylation is
important for the 3′-end cleavage reaction of some genes. U2AF, a component of
the spliceosome, has been shown to promote 3′-end cleavage by interacting with
CFIm [20]. SR proteins facilitate the recruitment of U2AF to 3′ splice sites [11], and
thus may indirectly promote recruitment of CFImwhen properly phosphorylated.
However, SR proteins have also been shown to interact directly with CFIm [25],
and so may also directly promote its recruitment. Involvement of CFIm in CG
transcription regulation is supported by the finding that, among genes lacking
canonical poly(A) signals at their terminal polyadenylation site, upstream CG
partners have a higher proportion of terminal polyadenylation sites with CFIm-
binding UGUA signals. Interestingly, phosphorylation of CFIm is required for
the 3′-end cleavage reaction to occur [26]. This presents the possibility that CLK
phosphorylates the RS-like domain of CFIm itself and regulates 3′-end processing.

T3 treatment revealed 5–6 gene expression response patterns to CLK inhi-
bition, with the bulk of genes being down-regulated upon treatment. For most
differentially expressed genes, greater changes in expression were observed at
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0.5μM and higher of CLK inhibitor. Gene expression regulation, therefore, shows
a similar sensitivity to CLK inhibition as seen in AS and CG regulation. A notable
exception is a group of genes strongly down-regulated beginning at 5.0μM. These
genes may be more resilient to CLK inhibition, or their down-regulation may be
a secondary response to strong RNA processing disruption.

Splicing factors were among the genes most affected by AS changes at low
doses of T3, indicating that RNA splicing auto-regulation is one of the cellular
processes most sensitive to CLK inhibition. Splicing and other RNA process-
ing factors were also involved in CG formation, and their expression was down-
regulated in treated cells. One method of splicing factor auto-regulation is the
inclusion of a “poison” exon that includes a premature termination codon, and
the resulting degradation of the poisoned transcript [60]. AS changes and CG
formation may lead to the inclusion of premature termination codons, resulting
in reduced expression of RNA processing factors and other genes.

CLK inhibition may also result in cell cycle disruption. Cell cycle progression
is linked to RNA splicing, and knock-down of splicing factors can cause cell cy-
cle arrest [61, 62]. Cell cycle related genes were not only differentially spliced,
but also participated in CG transcription and were generally down-regulated in
treated cells. Therefore, global disruption of splicing through CLK inhibition may
interfere with normal cell cycle progression.

High doses of T3 CLK inhibitor may cause pathological cell death. Toll-like
receptor ligands released from dead and dying cells may have caused an innate im-
mune response in nearby cells [63], explaining the effects on genes in the toll-like
receptor signaling pathway observed in samples treated with high concentrations
of T3.

A noticeable similarity in the biological processes affected by CLK inhibition
was observed in the analysis of differentially spliced and expressed genes, and
CG participants. RNA metabolism (e.g. transcription and splicing), cell cycle pro-
gression, and protein degradation were among those processes sensitive to loss
of CLK activity. Disruption of SR protein activity may cause defects in splicing
and transcription [69] (and maybe 3′-end processing) in a common set of genes,
which would explain the similarity in affected biological processes.
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3.1 Limitations and Future Directions

Alternative splicing analysis was performed using event annotations provided
by MISO. These annotations only include a limited set of events derived from ex-
pressed sequence tags and gene annotation databases. CLK inhibition may cause
splicing defects even in constitutive gene regions and so the MISO annotations
may be too restrictive and may have prevented the capture of the full set of splic-
ing changes present in treated cells. Further study into the effects of CLK in-
hibition on AS would benefit by performing differential splicing analysis on a
more comprehensive set of potential AS events, including those which would not
undergo differential splicing under normal conditions.

In this thesis, ESE density was shown to correlate with SE and RI splicing
response. However, only SE and RI event types were tested and there are likely
to be other genomic features predictive of splicing response. Future investigation
may be able to predict changes in splicing upon CLK inhibition by inspecting a
larger set of features, such as those used in splicing code studies [71], on the full
spectrum of AS event types.

Analysis presented in this thesis suggests that SR protein or CFIm phospho-
rylation may be important for the 3′-end cleavage reaction and CG transcription
regulation. However, further experiments are necessary to fully illuminate the
role of CLKs in CG formation. One approach might be to use HITS-CLIP as-
says (cross-linking and immunoprecipitation combined with high-throughput se-
quencing) to compare RNA processing factor binding profiles in untreated and
treated cells. Likewise, immunoprecipitation methods could be used to investi-
gate changes in protein-protein interactions between and with 3′-end processing
factors. Further, the proportion of CG transcripts translated into proteins may
be tested experimentally. This would shed light on whether CG transcription is
primarily a gene expression regulatory mechanism, or it is intended to produce
functional proteins. Similar experiments could be performed to fully reveal the
mechanism by which CLK inhibition disrupts alternative splicing.

Amanuscript of the presentedwork is in preparationwith the intent to submit
to a scientific journal.
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3.2 Conclusions

This is the first systematic analysis of the transcriptomic consequences of CLK
inhibition. Loss of CLK function resulted in the the disruption of RNA splicing,
3′-end processing, and gene expression for genes involved in a common set of
biological processes. The dependence of transcript 3′-end cleavage on CLK activ-
ity has not been previously reported in the literature. Insights derived from this
thesis’ will inform future investigations into RNA processing regulation, and the
role of CLKs therein.
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Figure A.1: Soft threshold vs. scale independence and vs. mean connectivity
for HCT116 unstranded RNA-Seq AS PSI WGCNA clustering.
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Figure A.2: Soft threshold vs. scale independence and vs. mean connectivity
for HCT116 stranded RNA-Seq AS PSI WGCNA clustering.
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Figure A.3: Soft threshold vs. scale independence and vs. mean connectivity
for hTERT stranded RNA-Seq AS PSI WGCNA clustering.
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Figure A.4: Violin plots of log10 FPKM values for upstream gene partners of
hTERT exclusive conjoined genes. FPKM values are plotted for both
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are HCT116 samples used for stranded RNA-Seq (light blue), and SA502-
505 are hTERT samples (green). Violin plots for each dataset are ordered
by increasing T3 concentration.
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Figure A.5: Violin plots of log10 FPKM values for downstream gene partners
of hTERT exclusive conjoined genes. FPKM values are plotted for both
HCT116 RNA-Seq datasets and the hTERT dataset. SA464-470 are the
HCT116 samples used for unstranded RNA-Seq (dark blue), SA537-540
are HCT116 samples used for stranded RNA-Seq (light blue), and SA502-
505 are hTERT samples (green). Violin plots for each dataset are ordered
by increasing T3 concentration.
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Figure A.6: Normalized conjoined gene expression boxplots across T3 con-
centrations for HCT116 replicate 1 dataset. Conjoined gene expression
has been normalized toACTB expression. This dataset is generated from
the same samples used to generate the HCT116 unstranded RNA-Seq
dataset.
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Figure A.7: Normalized conjoined gene expression boxplots across T3 concen-
trations for HCT116 replicate 2 dataset. Conjoined gene expression has
been normalized to ACTB expression. This dataset is generated from the
same samples used to generate the HCT116 stranded RNA-Seq dataset.
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Figure A.8: Normalized conjoined gene expression boxplots across T3 con-
centrations for hTERT dataset. Conjoined gene expression has been nor-
malized to ACTB expression. This dataset is generated from the same
samples used to generate the hTERT stranded RNA-Seq dataset.
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Figure A.9: Soft threshold vs. scale independence and vs. mean connectivity
for HCT116 unstranded RNA-Seq FPKM WGCNA clustering.
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Figure A.10: Soft threshold vs. scale independence and vs. mean connectivity
for HCT116 stranded RNA-Seq FPKM WGCNA clustering.
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Figure A.11: Soft threshold vs. scale independence and vs. mean connectivity
for hTERT stranded RNA-Seq FPKM WGCNA clustering.
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