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Abstract

In practical applications, some important classes of problems are NP-complete.

Although no worst-case polynomial time algorithm exists for solving them, state-

of-the-art algorithms can solve very large problem instances quickly, and algorithm

performance varies significantly across instances. In addition, such algorithms are

rather complex and have largely resisted theoretical average-case analysis. Em-

pirical studies are often the only practical means for understanding algorithms’

behavior and for comparing their performance.

My thesis focuses on two types of research questions. On the science side, the

thesis seeks a in better understanding of relations among problem instances, algo-

rithm performance, and algorithm design. I propose many instance features/char-

acteristics based on instance formulation, instance graph representations, as well

as progress statistics from running some solvers. With such informative features,

I show that solvers’ runtime can be predicted by predictive performance models

with high accuracy. Perhaps more surprisingly, I demonstrate that the solution of

NP-complete decision problems (e.g., whether a given propositional satisfiability

problem instance is satisfiable) can also be predicted with high accuracy.

On the engineering side, I propose three new automated techniques for achiev-

ing state-of-the-art performance in solving NP-complete problems. In particular,

I construct portfolio-based algorithm selectors that outperform any single solver

on heterogeneous benchmarks. By adopting automated algorithm configuration,

our highly parameterized local search solver, SATenstein-LS, achieves state-

of-the-art performance across many different types of SAT benchmarks. Finally,

I show that portfolio-based algorithm selection and automated algorithm configu-

ration could be combined into an automated portfolio construction procedure. It
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requires significant less domain knowledge, and achieved similar or better perfor-

mance than portfolio-based selectors based on known high-performance candidate

solvers.

The experimental results on many solvers and benchmarks demonstrate that

the proposed prediction methods achieve high predictive accuracy for predicting

algorithm performance as well as predicting solutions, while our automatically

constructed solvers are state of the art for solving the propositional satisfiability

problem (SAT) and the mixed integer programming problem (MIP). Overall, my

research results in more than 8 publications including the 2010 IJCAI/JAIR best

paper award. The portfolio-based algorithm selector, SATzilla, won 17 medals

in the international SAT solver competitions from 2007 to 2012.
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Chapter 1

Introduction

In many practical applications, algorithm designers confront computationally hard

problems. Examples are graph coloring (see, e.g., Garey and Johnson, 1979),

planning and scheduling (see, e.g., Kautz and Selman, 1999), Boolean satisfiability

(SAT) (see, e.g., Cook, 1971), traveling salesperson (TSP) (see, e.g., Applegate

et al., 2006), software/hardware verification (see, e.g., Biere et al., 1999), protein

folding (see, e.g., Fraenkel, 1993), and gene sequencing (see, e.g., Pop et al.,

2002). In complexity theory, such problems belong to the complexity class of

NP-complete problems (NP−C or NPC). These are the most difficult problems

in NP. If one could find a deterministic, polynomial-time solution to any NP-

complete problem, then one would be able to provide a polynomial-time solution

to every other problem in NP. It is widely believed that no worst-case polynomial

time algorithm exists for solving NP-complete problems. The Clay Mathematics

Institute has offered a one million US dollar prize for the first correct proof or

disproof of whether NP is equivalent to the complexity class P, where all problems

would be solved on a deterministic sequential machine in polynomial time [102].

For NP-complete problems, even the best currently known algorithms have

worst-case runtimes that increase exponentially with instance size. Luckily, while

these problems may be hard to solve on worst-case inputs, it is often feasible to

solve large problem instances that arise in practice. However, state-of-the-art algo-

rithms often exhibit exponential runtime variation across instances from realistic

distributions, even when problem size is held constant, and conversely the same
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instance can take exponentially different amounts of time to solve depending on

the algorithm used [13]. There is little theoretical understanding of what causes

this variation, and thus it is nontrivial to determine how long a given algorithm will

take to solve a given problem instance without incurring the potentially large cost

of running the algorithm. This phenomenon suggests that worst case analysis is

not sufficient for studying an algorithm’s behavior on practical applications. In-

stead, empirical studies are often the only practical means for assessing and com-

paring an algorithm’s performance. Researchers and practitioners seek to locate

features/characteristics of instances that explain when instances will be hard for a

particular algorithm, choosing the most promising heuristics for designing high-

performance algorithms, and finding the most efficient algorithm for an unseen

instance drawn from a given instance distribution. Answers to these questions can

help one to better understand and solve NP-complete problems.

My PhD work focuses on studying NP-complete problems based on empirical

data and machine learning techniques, in addition to proposing automated meth-

ods for improving the effectiveness of solving problem instances from real appli-

cations. My work has four major components. For a better understanding of the

nature of NP-complete problems, the relations between instance features and algo-

rithm performance were studied for both NP-complete decision and optimization

problems using supervised machine learning techniques. Furthermore, the rela-

tions between instance features and an instance’s satisfiability status for decision

problems were studied. Based on the successes of these studies, we set out to im-

prove the state of the art in solving NP-complete problems. The thesis proposes

three different approaches. The first is a portfolio-based algorithm selector that

combines the strengths of multiple candidate solvers. Here, predictive models are

used as the basis for an algorithm portfolio that selects the most promising can-

didate solver for an unseen instance automatically. Inspired by the successes of

automated algorithm configuration that is able to find very good parameter set-

tings for highly parameterized algorithms, the second approach suggests a new

algorithm design philosophy. Unlike the traditional approach for building heuristic

algorithms, the algorithm designer should include as many alternate approaches to

solving the same subproblem as seem promising instead of fixing most of the de-

sign choices at development time. The optimal instantiation of heuristic algorithms
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for a given instance benchmark should be automatically produced by automated al-

gorithm configuration tools. The third approach targets domains where only one

highly parameterized algorithm is competitive and combines portfolio-based algo-

rithm selection and automated algorithm configuration together in a novel manner.

By changing the performance measure in algorithm configuration, this approach

automatically discovers algorithm configurations that possess the greatest poten-

tial for improving the current algorithm portfolio.

1.1 Science Side Research
Previous empirical studies on NP-complete problems have revealed many intrigu-

ing results. For example, problem instances with certain properties can be much

harder than others for many algorithms. Mitchell et al. (1992) showed how ran-

dom 3-SAT instances with clauses-to-variables ratios around 4.3 are usually harder

than other random 3-SAT instances of the same size. More recent work studied

the use of machine learning methods to make instance-specific predictions about

solver runtimes. Leyton-Brown et al. (2002, 2009) introduced the use of such mod-

els for predicting the runtimes of solvers for solving NP-complete problems, and

Nudelman et al. (2004) showed that using this approach, surprisingly accurate run-

time predictions can be obtained for uniform random 3-SAT. Nudelman et al. also

noticed that training models on only SAT or UNSAT instances allowed much sim-

pler, albeit very dissimilar, models to achieve high accuracy. Since unconditional

models, without considering SAT/UNSAT status, are able to predict runtimes ac-

curately, despite the qualitative differences between the SAT and UNSAT regimes,

the models must implicitly predict satisfiability status.

Motivated by this result, we investigated the feasibility of predicting the sat-

isfiability of a previously unseen SAT instance by considering a variety of both

structured and unstructured SAT instances. The empirical results proved rather

promising, the classification accuracies were always better than 68% rather than

50% given by random guess. A detailed case study of uniform random 3-SAT at the

phase transition revealed that the classification accuracies remained roughly con-

stant and far above random guessing even using a single decision tree with only two

simple features. Furthermore, we investigated the benefit of having a reasonably
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accurate (but imperfect) classifier on runtime prediction. We improved runtime

prediction by constructing hierarchical hardness models using a mixture-of-experts

approach with fixed (“clamped”) experts, that is, with conditional models trained

on satisfiable instances and unsatisfiable instances separately. The classifier’s con-

fidence correlated with prediction accuracy, giving useful per-instance evidence on

the quality of the runtime prediction. Of course, there are many other regression

techniques that could be used for runtime/performance prediction. We performed

a thorough study on different machine learning techniques on many NP-complete

problems such as the Boolean satisfiability (SAT), the mixed integer programming

(MIP), and the traveling salesperson (TSP).

1.2 Engineering Side Research
The wide applications of NP-complete problems facilitate the development of high-

performance algorithms, while significant research and engineering efforts have led

to sophisticated algorithms. In one prominent and ongoing example, the SAT com-

munity holds an annual SAT Competition/Race/Challenge (http://www.satcompetition.

org/). This competition intends to provide an objective assessment of SAT algo-

rithms, and thus to track the state of the art in SAT solving, to assess and promote

new solvers, and to identify new challenging benchmarks. Solvers are judged based

on their empirical performance with both speed and robustness taken into account.

One observation from the competitions is that algorithm performance highly de-

pends on the type of instances. One algorithm could be much better than others

on solving one class of instances, but dramatically worse on instances from other

classes (see, e.g., Le Berre et al., 2012). One possible explanation is that many

practical problem instances possess some special structure. Solvers can achieve

much better performance if they can exploit such structural.

One manner in which evaluations such as the SAT competition are useful is that

they allow practitioners to determine which algorithm performs best for instances

relevant to their problem domain. However, choosing a single algorithm on the ba-

sis of competition ranks is not always a good approach. Such a “winner-take-all”

approach typically results in the neglect of many algorithms that are not compet-

itive on average but that nevertheless offer very good performance on particular
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instances. Thus, practitioners with hard problems to solve confront a potentially

difficult “algorithm selection problem” [170]: which algorithm(s) should be run

in order to minimize an performance objective, such as expected runtime? The

ideal solution to the algorithm selection problem, conversely, would be to consult

an oracle that knows the amount of time that each algorithm will take to solve

a given problem instance, and then to select the algorithm with the best perfor-

mance. Unfortunately, computationally cheap, perfect oracles of this nature are

not available for SAT or any other NP-complete problem. Inspired by the success

of runtime prediction, Nudelman et al. (2004) proposed an automated algorithm se-

lection approach based on approximate performance predictors, which can be seen

as a heuristic approximation to a perfect oracle. Initial trial of such an approach

demonstrated promising results. In the 2003 SAT Competition, the first version of

SATzilla [155] placed 2nd in two categories and 3rd in another.

Note that due to the nature of NP-completeness, one could not expect such

approximation to be perfect without solving the instances. Therefore, we intro-

duced several new techniques to improve the robustness of SATzilla, such as

pre-solving, backup solver and feature cost prediction. The competition results

demonstrate that my portfolio-based algorithm selectors are capable of achieving

state-of-the-art performance. They won many medals in the 2007 and 2009 SAT

Competitions in conjunction with the 2012 SAT Challenge (with a new selection

technique based on cost-sensitive classification).

We also showed that the general framework of SATzilla was compatible

with other performance predictors, and performed very well on other problem do-

mains, such as MIP. Given that portfolio-based algorithm selectors often achieve

state-of-the-art performance, the community could benefit from rethinking how to

value individual solvers. Developing a solver that helps to improve state-of-the-art

performance should be more valuable than designing a slightly on-average better

solver. We developed techniques for analyzing the extent to which the performance

of the state-of-the-art (SOTA) portfolio depends on each of their component solvers.

High-performance heuristic algorithms are able to solve very large problem in-

stances from practical applications. However, designing them is a time-consuming

task even for domain experts. Traditionally, heuristic algorithms are designed in

an iterative, manual process in which most design choices are fixed at development

5



time, usually based on preliminary experimentation, leaving only a small number

of parameters exposed to the user. Although such an approach has proven to work

effectively in the past, this approach requires a significant amount of effort on the

part of the domain experts. Recently, a new line of research has attempted to au-

tomate parts of the algorithm design process with cheap computing power, and

achieved many successes (see, e.g., Hoos, 2008). Inspired by such work, our team

proposed a new approach to heuristic algorithm design in which the designer fixes

as few design choices as possible, instead exposing all promising design choices

as parameters. This approach removes the burden from the algorithm designer of

making early design decisions without knowing how different algorithm compo-

nents will interact on problem distributions of interest. Instead, now the designer is

encouraged to consider many alternative designs from known solvers in addition to

novel mechanisms. Of course, such flexible, highly parameterized algorithms must

be instantiated appropriately to achieve good performance on a given instance set.

With the availability of advanced automated parameter configurators and cheap

computational resources, finding a good parameter configuration from a huge pa-

rameter space becomes practical (see, e.g., [22, 33, 94]).

Although this general idea is not specifically tailored to a particular domain, in

this work we applied it to the challenge of constructing stochastic local search

(SLS) algorithms for the propositional satisfiability problem (SAT). SLS-based

solvers have exhibited consistently dominant performance for several families of

SAT instances; they also play an important role in state-of-the-art portfolio-based

automated algorithm selection methods for SAT [210]. Our team implemented

a highly parameterized SLS algorithm by drawing mechanisms from two dozen

existing high-performance SLS SAT solvers and also incorporating many novel

strategies and termed this SATenstein-LS. Similar to the ”perfect human be-

ing” created by Victor Frankenstein using scavenged human body parts in the

classic novel Frankenstein, here one scavenges components from existing high-

performance algorithms for a given problem and combines them to build new high-

performance algorithms. Unlike Frankenstein’s creation, our algorithm is built us-

ing an automated construction process that enables one to optimize performance

with minimal human effort. The design space contains a total of 2.01×1014 pos-

sible instantiations, and includes most existing, state-of-the-art SLS SAT solvers
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that have been proposed in the literature. With the aid of automated algorithm

configuration tools, we demonstrate experimentally that our new, automatically-

constructed solvers dramatically outperform the best SLS-based SAT solvers cur-

rently available on six well-known SAT instance distributions, ranging from hard

random 3-SAT instances to SAT-encoded factoring and software verification prob-

lems. This makes it interesting to understand the similarities and differences be-

tween our new configurations and existing SLS algorithms. We propose an au-

tomatic, quantitative approach for visualizing the degree of similarity between a

set of algorithms. Using this approach, we investigated the similarities among our

SATenstein-LS solvers and SLS-based incumbents. This visualization demon-

strates that most of our new solvers are very different from existing solvers.

Although portfolio-based algorithm selection and automated algorithm con-

figuration have demonstrated many positive results in practice [22, 33, 94, 210],

they each have some shortcomings. The former approach requires relatively sig-

nificant domain knowledge, including in particular, a set of relatively uncorrelated

candidate solvers. The latter approach requires no domain knowledge beyond a

parameterized algorithm framework, and no human effort to target a new domain;

however, it produces only a single algorithm, which is designed to achieve a high

performance overall, but which may perform badly on many individual instances.

This drawback is particularly serious when the instance distribution is heteroge-

neous. Once a state-of-the-art portfolio exists for a domain, such as SATzilla

for various SAT distributions, the critical question to the algorithm developer is:

how should new research aim to improve upon it? One approach is to build new

stand-alone algorithms either by hand or by automatic configuration, with the goal

of replacing the portfolio. This approach has the weakness that it reinvents the

wheel: the new algorithm must perform well on all the instances for which the

portfolio is already effective, and must also make additional progress.

Alternatively, one may attempt to build a new algorithm to complement the

portfolio, which has been dubbed “boosting as a metaphor for algorithm design”

[128]. The boosting algorithm in machine learning builds an ensemble of classi-

fiers by focusing on problems that are handled poorly by the existing ensemble.

The proposal is to approach algorithm design analogously, focusing on instances

on which the existing portfolio performs poorly. In particular, the suggestion is
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to use sampling (with replacement) to generate a new benchmark distribution that

will be harder for an existing portfolio, and for new algorithms to attempt to min-

imize average runtime on this benchmark. Indeed, such a method was shown to

be particularly effective for inducing new, hard distributions. While we agree with

the core idea of aiming explicitly to build algorithms that will complement a port-

folio, we have come to disagree with its concrete realization as described most

thoroughly by Leyton-Brown et al. (2009), realizing that average performance on

a new benchmark distribution is not always an adequate proxy for the extent to

which a new algorithm would complement a portfolio. A region of the original

distribution that is exceedingly hard for all candidate algorithms can dominate the

new distribution, leading to stagnation.

Based on this observation, we introduced Hydra, a new method for automat-

ically designing algorithms to complement a portfolio. This name was inspired

by the Lernaean Hydra, a mythological, multi-headed beast that grew new heads

for those cut off during its struggle with the Greek hero Hercules. Hydra, given

only a highly parameterized algorithm and a set of instance features, automatically

generates a set of configurations that form an effective portfolio. It thus does not

require any domain knowledge in the form of existing algorithms. Hydra is an

anytime procedure: it begins by identifying a single configuration with the best

overall performance, and then iteratively adds algorithms to the portfolio. Hydra

is also able to drop previously added algorithms when they are no longer helpful.

Hydra offers the greatest potential benefit in domains where only one highly pa-

rameterized algorithm is competitive (e.g., certain distributions of mixed-integer

programming problems), and the least potential benefit in domains where a wide

variety of strong, uncorrelated solvers already exist. We performed case studies on

both SAT and MIP, where Hydra consistently achieved significant improvements

over the best existing individual algorithms designed both by experts and auto-

matic configuration methods. More importantly, Hydra always at least roughly

matched—and indeed often exceeded—the performance of the best portfolio of

such algorithms.
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1.3 Overview of Contributions
Overall, my research resulted in major advances in understanding a variety of NP-

complete decision and optimization problems, as well as in pushing forward the

state-of-the-art for solving them. My major contributions are summarized as fol-

lows.

• Features: We extended the feature set proposed by Nudelman et al. (2004)

for characterizing the propositional satisfiability problem (SAT). Chapter

3 also introduces new features for other NP-complete problems (TSP and

MIP). Those features were proven to be informative and have been widely

used by other research groups [111].

• Predictive models: We demonstrated that simple rules can predict the solu-

bility of uniform random 3-SAT at the phase with surprisingly high accuracy

[Chapter 4]. Extensive empirical results suggest that classification accuracy

does not decrease with instance size. Chapter 5 relates how to improve

runtime prediction by combing classifiers with conditional hardness mod-

els into a hierarchical hardness model using a mixture-of-experts approach.

Chapter 6 describes a thorough comparison of different existing and new

model building techniques for SAT, MIP, and TSP. We demonstrated that

random forests yield substantially better runtime predictions than previous

approaches.

• Portfolio-based algorithm selection: We made significant advances in build-

ing state-of-the-art portfolio-based algorithm selectors. With many new tech-

niques introduced in Chapter 7, SATzilla won the 2007 and 2009 SAT

Competition, and the 2012 SAT Challenge. Due to the huge success of

SATzilla, the paper by Xu et al. (2008) won the 2010 IJCAI-JAIR best

paper prize. In addition to state-of-the-art performance, SATzilla is useful

for evaluating solver contributions. By omitting a solver from the portfolio,

We measured the contribution of this solver by computing SATzilla’s per-

formance difference with and without it. Chapter 8 shows that solvers that

exploited novel strategies were more valuable than those with the best over-

all performance. We also demonstrate that cost-sensitive classification-based
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algorithm selector achieved the best performance. In fact, SATzilla2012

won the 2012 SAT Challenge by using cost-sensitive decision forests as the

algorithm selector.

• Automatically building high-performance algorithms from components: We

proposed a new approach to heuristic algorithm design in which the design-

ers fix as few design choices as possible at development time, instead ex-

posing a huge number of design choices in the form of parameters. Chapter

9 demonstrates a case study on constructing stochastic local search (SLS)

algorithms for SAT. By taking components from 25 local search algorithms,

we built a highly parameterized local search algorithm, SATenstein-LS,

which can be instantiated as 2.01× 1014 different solvers. The empirical

results show that the automatically constructed SATenstein-LS outper-

forms existing state-of-the-art solvers with both manually and automatically

tuned configurations. In addition, we proposed a new representation for al-

gorithm parameter settings, concept DAGs, and defined a novel similarity

metric based on the transformation cost. We have shown that the visualiza-

tion based on such similarity measure provides useful insights into algorithm

design.

• Automatically configuring algorithms for portfolio-based selection: By com-

bining the strengths of automated algorithm selection and automated algo-

rithm configuration, we proposed a novel technique, Hydra, for automati-

cally discovering a set of solvers iteratively with complementary strengths.

The case study on SAT benchmarks (Chapter 10.2) showed that Hydra with

a single solver, SATenstein-LS, significantly outperforms state-of-the-

art SLS algorithms. Hydra reaches and often exceeds the performance of

portfolios that use many strong local search solvers as candidate solvers. By

adapting the cost-sensitive classification models and modifying method for

selecting candidate configurations, we demonstrated that MIP-Hydra con-

verges faster, and achieves strong performance for MIP (Chapter 10.3).
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Chapter 2

Related Work

Over the last decades, considerable research efforts have led to significant progress

in understanding and solving NP-complete problems. In this chapter, we review

some of the work that is most relevant to this thesis. The remainder of this chap-

ter is structured as follows. Section 2.1 introduces recent advances in empirical

hardness models. Section 2.2 summarizes related work on algorithm portfolios

and the algorithm selection problem. Section 2.3 discusses some automated tech-

niques for constructing high-performance algorithms, which closely relate to my

SATenstein work. Section 2.4 overviews the techniques for automated algo-

rithm configuration. They play an important role in building SATenstein and

Hydra. In the end, we discuss other approaches for automatically configuring

algorithms for portfolio-based selection, and compare them with my Hydra ap-

proach.

2.1 Empirical Hardness Models
Most of the heuristic algorithms for solving NP-complete problems are highly

complex, and thus have largely resisted theoretical average-case analysis. Instead,

empirical studies are often the only practical means for assessing and comparing

their performance. One recent approach for understanding the empirical hardness

of computational hard problems was proposed by Leyton-Brown et al. (2002). It

used linear basis-function regression to build models that predict the time required
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for an algorithm to solve a given problem instance [127]. These so-called empirical

hardness models can be used to evaluate the factors responsible for an algorithm’s

performance, or to introduce challenging instances for a given algorithm [128].

They can also be leveraged to select among several different algorithms for solving

a given problem instance [128, 129, 209] and can be applied in automated algo-

rithm configuration and tuning [92].

On a high level, empirical hardness models represent functional relations be-

tween instance characteristics and algorithm performance (e.g., CPU time). Given

a set of training data (pairs of instance characteristics and algorithm performance),

an empirical hardness model is trained to fit the training data using regression tech-

niques. Later, for a new, unseen problem instance (test data point), a performance

prediction can be made by evaluating the empirical hardness model on the char-

acteristics of the test instance. The instance characteristics are very important for

building good models for predicting algorithm’s performance. Good instance char-

acteristics should correlate well with algorithm performance and be cheap to com-

pute. Algorithm performance is measured by a function that maps from algorithm

output to a real value (e.g., algorithm’s runtime [156], performance score [209], or

solution quality found within a certain budget).

Beyond the previous work conducted in our group [128, 129, 209], there ex-

ist a few other approaches for predicting algorithm runtime. Similar models were

applied by Brewer (1995) and Huang et al. (2010), although they considered only

algorithms with low-order polynomial runtimes. The most closely related work is

by Smith-Miles and van Hemert (2011), who employed neural network models to

predict the runtime of local search algorithms for solving the traveling salesperson

problem. A different approach for predicting the performance of tree search algo-

rithms rests on predictions of the search tree size [116, 118, 138]. The literature

on search space analysis has investigated measures that correlate with algorithm

runtime. Prominent examples include fitness distance correlation [110], landscape

ruggedness [205], and autocorrelation [83]. The typical approach is either to vi-

sually inspect the relationship between a measure and runtime (e.g., in a scatter

plot), or to compute descriptive statistics, such as the Spearman correlation coeffi-

cient between the two.

Empirical hardness models have proven effective in predicting runtime for
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many algorithms on a number of interesting instance distributions. In a study

on combinatorial auction winner determination, a prominent NP-hard optimiza-

tion problem, empirical hardness models were used to predict CPLEX’s runtimes

on randomly-generated problem instances using 30 characteristics [127]. Nudel-

man et al. (2004) used empirical hardness models to predict several tree-search

algorithms’ runtimes on uniform-random 3-SAT instances. One interesting obser-

vation from this work is that if instances were restricted to be either only satisfiable

or only unsatisfiable, very different models were needed to make accurate run-

time predictions. Furthermore, models for each type of instance were simpler and

more accurate than models that must handle both types. Empirical hardness mod-

els have been applied to the study of local search algorithms as well. Based on the

work of Nudelman et al. (2004), Hutter et al. (2006) used empirical hardness mod-

els to predict runtime distributions of randomized, incomplete algorithms. They

also have been used in model-based algorithm configuration procedures (such as

SMAC [99]) to identify promising combinations of algorithm components to eval-

uate.

2.2 Algorithm Portfolios and the Algorithm Selection
Problem

With recent advances in algorithm development, many previously challenging prob-

lem instances can be quickly solved by at least some algorithms. However, one

algorithm often only performs well on some small classes of instances. Hence, one

possible approach for solving NP-complete problems effectively is to use multiple

existing algorithms and find out the best way to allocate computational resources

to each individual algorithm.

One way of using multiple existing algorithms is to build algorithm portfo-

lios. The term “algorithm portfolio” was introduced by Huberman et al. (1997)

to describe the strategy of running k algorithms in parallel, potentially with each

algorithm i getting a share of computational resources si (i = 1, ...,k). Gomes

and Selman (2001) built a portfolio of stochastic algorithms for quasi-group com-

pletion and logistics scheduling problems. Low-knowledge algorithm control by

Carchrae and Beck (2005) employed a portfolio of anytime algorithms, prioritizing
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each algorithm according to its performance so far. Dynamic algorithm portfolios

by Gagliolo and Schmidhuber (2006) also ran several algorithms at once, where an

algorithm’s priority depends on its predicted runtime conditioned on the fact that

it has not yet found a solution. In a recent approach, black-box techniques were

used for learning how to interleave the execution of multiple heuristics to improve

average-case performance based on the development of solution quality [190].

Besides algorithm portfolios, there is another line of research that takes advan-

tage of multiple algorithms. Given a computationally hard problem instance and

multiple algorithms with relatively uncorrelated performance, it is natural to de-

fine an “algorithm selection problem” [170]: which algorithm(s) should be used

to minimize some performance objective, such as classification error (for solving

a classification problem) or expected runtime (e.g., for solving SAT)? Much early

work on solving the algorithm selection problem focused on selecting learning al-

gorithms for solving classification problems [1, 137, 159]. Instead of using the

term “algorithm selection”, they used the term “meta-learning”. For example, Aha

(1992) used rule-based learning algorithms to decide which classification algorithm

should be used based on a number of characteristics of the test data sets. Later, this

learning approach had been applied to many other problem domains. Arinze et al.

(1997) demonstrated a knowledged-based system that selected among three fore-

casting methods with six features for solving a time-series forecasting problem.

Lobjois and Lemaı̂tre (1998) studied the problem of selecting between branch-and-

bound algorithms based on an estimation of search tree size due to Knuth (1975).

Gebruers et al. (2005) employed case-based reasoning to select a solution strategy

for instances of a constraint programming problem. Various authors have proposed

classification-based methods for algorithm selection [55, 65, 66, 84]. Note that one

problem with such approaches is that they typically use an error metric that penal-

izes all misclassifications equally, regardless of their real cost. However, using

a sub-optimal algorithm is acceptable in solving an algorithm selection problem

if the difference between its performance and that of the best algorithm is small.

The studies of Leyton-Brown et al. (2003) and Nudelman et al. (2004) were most

closely related to my own work of SATzilla. (Nudelman et al. (2004) indeed

coined the name SATzilla.) Specifically, they built empirical hardness mod-

els to predict the runtime of given algorithms using regression techniques. By
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modeling a portfolio of algorithms and choosing the algorithm predicted to have

the lowest runtime, empirical hardness models can serve as the basis for building

an automatic system that solves the algorithm selection problem. In fact, such a

system can also be viewed as a type of classification that takes the real cost of

misclassification into account.

Algorithm selection is closely related to algorithm portfolios. They work for

the same reason—they exploit lack of correlation in the best-case performance of

several algorithms in order to obtain improved performance in the average case.

In fact, algorithm selection can be viewed as a special type of algorithm portfolios

such that the algorithm with the best performance has 100% share of computa-

tional resources. To more clearly describe algorithm portfolios in a broad sense,

we introduced some new terminology [210]. An (a,b)-of-n portfolio is defined as a

procedure for selecting among a set of n algorithms with the property that if no al-

gorithm terminates early, at least a and no more than b algorithms will be executed.

We consider a portfolio to have terminated early if it solves the problem before one

of the solvers has a chance to run, or if one of the solvers crashes. For brevity,

we also use the terms a-of-n portfolio to refer to an (a,a)-of-n portfolio, and n-

portfolio for an n-of-n portfolio. It is also useful to distinguish how solvers are

run after being selected. Portfolios can be parallel, sequential, or partly sequen-

tial (some combination of the two). Thus traditional algorithm portfolios can be

described as parallel n-portfolios. In contrast, pure algorithm selection procedures

are 1-of-n portfolios.

Some approaches fall between these two extremes, making decisions about

which algorithms to use on the fly instead of committing in advance to a fixed

number of candidates. Lagoudakis and Littman (2001) employed reinforcement

learning to solve an algorithm selection problem at each decision point of a DPLL

solver for SAT in order to select a branching rule. Similarly, Samulowitz and

Memisevic (2007) employed classification to switch between different heuristics

for QBF solving during the search. These approaches can be viewed as (1,n)-of-n

portfolios.

In the recent SAT Competitions/Challenge, portfolio-based solvers achieved

many successes. Our own portfolio-based algorithm selector, SATzilla, won

a total of 17 medals in the 2007 and 2009 SAT Competitions and the 2012 SAT
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Challenge. A simple parallel portfolio, ppfolio [171] with 5 candidate solvers

performed very well in the 2011 SAT Competition and the 2012 SAT Challenge.

3S [112] achieved remarkable performance by using nearest neighbor classifica-

tion. It also used a powerful fixed solver schedule as the pre-solving step.

2.3 Automated Construction of Algorithms
Designing high-performance heuristic algorithms for solving NP-complete prob-

lems is often a time-consuming task. The traditional approach requires significant

efforts from domain experts to select design choices, and pick default parameters

based on preliminary experimentation. However, the demand for high-performance

solvers for difficult combinatorial problems in practical applications has increased

sharply. With ever-increasing availability of cheap computing power, a new line of

research has automated parts of the algorithm design process (see also Hoos, 2008)

and achieved many successes [31, 50, 51, 54, 64, 145, 157, 158, 207, 210].

Here we discuss three closely related lines of previous work in more detail.

First, Minton (1993) used meta-level theories to produce distribution-specific ver-

sions of generic heuristics, and then found the most useful combination of these

heuristics by evaluating their performance on a small set of test instances. He fo-

cused on producing distribution-specific versions of candidate heuristics, and only

considered at most 100 possible heuristics. The performance of the resulting algo-

rithms was comparable with that of algorithms designed by a skilled programmer,

but not an algorithm expert. Second, Gratch and Dejong (1992) presented a system

that starts with a STRIPS-like planner, and augments it by incrementally adding

search control rules. Finally and most relatedly, Fukunaga (2002) proposed a ge-

netic programming approach that has a goal similar to the one we pursued in our

work on SATenstein 9: the automated construction of local search heuristics for

SAT. Fukunaga considered a potentially unbounded design space, based only on

GSAT-based and WalkSAT-based SLS algorithms up to the year 2000. His can-

didate variable selection mechanisms were evaluated on Random 3-SAT instances

and graph coloring instances with at most 250 variables. While Fukunaga’s ap-

proach could in principle be used to obtain high-performance solvers for specific

types of SAT instances, to our knowledge this potential has never been realized;
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the best automatically constructed solvers obtained by Fukunaga only achieved a

performance level similar to that of the best WalkSAT variants available in 2000 on

moderately-sized SAT instances. In contrast, as mentioned in Chapter 1, our new

SATenstein-LS solvers performs substantially better than current state-of-the-

art SLS-based SAT solvers on a broad range of challenging, modern SAT instances.

We consider a huge but bounded combinatorial space of algorithms based on com-

ponents taken from 25 of the best SLS algorithms for SAT currently available,

and we use an off-the-shelf, general-purpose algorithm configuration procedure to

search this space. Our target distribution contains instances with up to 4 978 vari-

ables.

2.4 Automated Algorithm Configuration Tools
Recently, considerable attention has been paid to the problem of automated al-

gorithm configuration [3, 12, 50, 64, 93, 96]. A variety of black-box, automated

configuration procedures have been proposed. They take as input a highly parame-

terized algorithm, a set of benchmark instances, and a performance metric, and then

optimize the algorithm’s empirical performance automatically. These approaches

can be categorized into two major families: model-based approaches that learn a

response surface over the parameter space, and model-free approaches that do not.

Most of the early approaches were only able to handle relatively small numbers of

numerical (often continuous) parameters. Some relatively recent approaches per-

mit both larger numbers of parameters and/or categorical domains, in particular

Composer [63], F-Race [21–23], and ParamILS [94, 96, 97].

Automated algorithm configuration procedures have been applied to optimize

a variety of parametric algorithms. Gratch and Chien (1996) successfully applied

their Composer system to optimize an algorithm for scheduling communication

between a collection of antennas and spacecraft in deep space. F-Race and its

extensions have been used to optimize numerous algorithms, including iterated

local search for the quadratic assignment problem, ant colony optimization for the

traveling salesperson problem, and the best-performing algorithm submitted to the

2003 timetabling competition [23]. Our group successfully used various versions

of ParamILS to configure algorithms for a wide variety of problem domains [94,
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96, 97].

2.5 Automatically Configuring Algorithms for
Portfolio-Based Selection

In domains where only one highly parameterized algorithm is competitive (e.g.,

certain distributions of mixed-integer programming problems), how should we

build a strong portfolio-based algorithm selector for a given (potentially hetero-

geneous) distribution? Applying automated algorithm configuration tools can im-

prove the overall performance. However, the resulting single configuration may

perform poorly on some subset of instance. Meanwhile, due to the absent of multi-

ple strong and uncorrelated candidate solvers, algorithm selection approaches can-

not give the edge over a single configuration. One possible solution is combining

the above two techniques and performing instance-specific selection from an auto-

matically generated set of algorithm configurations.

Beyond our work on Hydra, there exist a few other approaches for solving

this problem. Stochastic offline programming (SOP) [140] assumes that each of

these algorithms has a particular structure, iteratively sampling from a distribution

over heuristics and using the sampled heuristic for one search step. It clusters the

instances based on features and then configures one algorithm for each cluster. A

custom optimization method is used for building its set of algorithms.

Later, the same research group improved this approach with Instance-Specific

Algorithm Configuration (ISAC) [111]. It first divides instance sets into clusters

based on instance features using the G-means clustering algorithm, then applies an

algorithm configurator to find a good configuration for each cluster. At runtime,

ISAC computes the distance in feature space to each cluster centroid and selects

the configuration for the closest cluster.

We note two theoretical problems with this approach. First, ISAC’s cluster-

ing is solely based on distance in feature space, ignoring the importance of each

feature to runtime. Thus, ISAC’s performance can change dramatically if addi-

tional features are added (even if they are uninformative). Second, no amount of

training time allows ISAC to recover from a misleading initial clustering or an

algorithm configuration run that yields poor results. Nevertheless, ISAC substan-
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tially outperformed solvers with default configurations and configurations obtained

by automated algorithm configuration tools on a set covering problem, MIP, and

SAT [111].
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Chapter 3

Domains of Interest

Computationally hard combinatorial problems are ubiquitous in AI. This thesis

focuses on some fundamental problems in computer science that have wide real-

world application. In particular, we applied machine learning techniques to study

the empirical hardness of the propositional satisfiability problem (SAT), the mixed

integer programming problem, and the traveling salesperson problem (TSP). We

also developed many meta-algorithmic techniques that improved the state of the

art for solving SAT and MIP. This chapter first gives overviews on problem do-

main, and prominent solver for each domain, then introduces the sets of features

for characterizing problem instances in conjunction with benchmarks used for case

studies. 1

3.1 Propositional Satisfiability (SAT)
The propositional satisfiability problem (SAT) asks, for a given propositional for-

mula F , whether there exists a complete assignment of truth values to the variables

of F under which F evaluates to true [83]. F is considered satisfiable if there exists

at least one such assignment, otherwise the formula is labeled unsatisfiable. A SAT

instance is usually represented in conjunctive normal form (conjunction of disjunc-

tions), where each disjunction has one or more literals, each of which is either a

variables or the negation of variables. These disjunctions are called clauses. Thus

1This chapter is based on the joint work with Ashiqur KhudaBukhsh, Frank Hutter, Holger Hoos,
and Kevin Leyton-Brown [101, 115, 209, 210].
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the goal for a SAT solver is to find a variable assignment that satisfies all clauses

or to prove that no such assignment exists. For example, a solution of formula

(A∨B∨C)∧ (¬B∨¬C) is A = true,B = f alse,C = f alse. SAT is one of the most

fundamental problems in computer science. Indeed, there are entire conferences

and journals devoted to the study of this problem. Another important reason for in-

terest in SAT is that instances of other NP-complete problems will be encoded into

SAT and solved by SAT solvers. This approach has been shown effective for solv-

ing several real-world applications, including planning [113, 114], scheduling [39],

graph coloring [202], bounded model checking [20], and formal verification [189].

Over the past decades, considerable research and engineering efforts have been

invested into designing and optimizing algorithms for SAT solving. Today’s high-

performance SAT solvers include tree-search algorithms [41, 44, 46, 73, 121, 139],

local search algorithms [80, 91, 105, 131, 178, 179], and resolution-based prepro-

cessors [9–11, 40, 42, 192]. Here, we will give a brief introduction of the most

popular SAT solving methods: tree search and local search.

3.1.1 Tree Search for SAT

A tree-search algorithm attempts to locate solutions to a problem instance in a sys-

tematic manner. It guarantees that eventually a solution is found if there exists one,

or the algorithm will report that no solution exists. In other words, tree-search is

complete. Most modern tree-search algorithms for SAT are based on the Davis-

Putnam-Logemann-Loveland (DPLL) procedure [41]. This procedure explores a

binary search tree in which each node corresponds to assigning a truth value to

one variable (that value is then fixed for all subtrees beneath that node). Since

the search space size increases exponentially with the number of variables, simple

backtrack search becomes rapidly infeasible even for relatively small problem in-

stances. Fortunately, in many cases, it is possible to prune large parts of the search

tree that do not contain any solution. One of the key techniques used in SAT solv-

ing for reducing the size of the search tree is unit propagation. When SAT instances

are represented in conjunctive normal form, any clause containing a literal with a

“true” assignment can be deleted, and all literals with “false” assignments can be

eliminated from the clauses. Clauses with only one literal are termed unit clauses.
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The literal in a unit clause must be assigned a “true” value. Furthermore, assigning

a value to a variable in a unit clause may lead to more unit clauses. Therefore,

unit propagation is a procedure that propagates the consequences of particular unit

clause’s literal assignment down the search tree and prunes parts of the search tree

that do not contain any solution.

Recent advances in tree search algorithms include clause learning [139], pre-

processing [45], backbone detection [44], and belief propagation [85]. These tech-

niques are used for intelligent backtracking, simplifying the original formula, de-

termining the best variable for branching, and finding the most promising assign-

ments, respectively.

3.1.2 Local Search for SAT

Another common approach for solving hard combinatorial problems is local search.

A local search algorithm starts at some location in the space of candidate solutions

and subsequently moves from the present location to a neighboring location. There

are many ways to define a neighborhood relation. For SAT, the neighbors of a can-

didate solution (a complete assignment) are usually the candidates only differing

from the current one by a single variable assignment. Typically, every candidate

solution has more than one neighbor; the choice of which one to move to is based

on information mainly related to the candidates in the neighborhood of the current

one, such as the number of unsatisfiable clauses for each neighbor. In contrast to

tree search algorithms, typical local search algorithms are incomplete: there is no

guarantee that an existing solution will eventually be found within limit amount of

time, nor can unsatisfiability ever be proven.

The basic local search framework for SAT solving [83] is as follows. Given a

propositional formula F with n variables, first randomly pick a complete variable

assignment that corresponds to a point in the solution space. Then check whether

the current assignment satisfies F . If so, terminate and report the current assign-

ment as a solution. Otherwise, modify the current assignment (i.e., visit a neigh-

boring location) by selecting a variable based on some predefined scoring function

and changing its value from “true” to “false” or vice versa. This procedure repeats

until a solution is found or a maximal number of steps have been performed.
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Many local search algorithms can get stuck in a small part of the solution space

(a situation called search stagnation), and they are unable or unlikely to escape

from this condition without some special mechanisms. In order to avoid search

stagnation, modern local search algorithms are typically randomized, leading to

stochastic local search (SLS) [83]. For example, WalkSAT avoids search stagna-

tion by using a random walk strategy that randomly changes the value of a variable

in an unsatisfied clause [179]. Currently, much research in local search focuses

on finding good tradeoffs of intensification (more intensely searching a promising

small part of the solution space) and diversification (exploring other regions of the

solution space).

Existing SLS-based SAT solvers can be grouped into four broad categories:

GSAT-based algorithms [178], WalkSAT-based algorithms [179], dynamic local

search algorithms [91, 195], and G2WSAT variants [131]. SATenstein-LS, the

highly parameterized algorithm framework described in Chapter 9, takes compo-

nents from solvers from each of these categories; therefore, we describe the major

features in detail for each of these categories in the following subsections.

Category 1: GSAT-based Algorithms

GSAT [178] was one of the earliest SLS SAT solvers. At each step, GSAT com-

putes the score of each variable using a scoring function, then flips the variable

(changes the value from true to f alse or from f alse to true) with the best score.

The score of a variable depends on two quantities, MakeCount and BreakCount.

The MakeCount of a variable with respect to an assignment is the number of

previously-unsatisfied clauses that will be satisfied if the variable is flipped. Simi-

larly, the BreakCount of a variable with respect to an assignment is the number of

previously-satisfied clauses that will be unsatisfied if the variable is flipped. The

scoring function of GSAT is MakeCount - BreakCount.

Variants of GSAT introduced many techniques that were later used by other

SLS solvers. For example, GWSAT [177] performs a conflict-directed random walk

step with probability wp, otherwise it performs a regular GSAT step. Conflict-

directed random walk is an example of a search diversification strategy that was

later used by many SLS solvers. GSAT randomly picks a variable if multiple vari-
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ables have the same score. HSAT [57] introduces a new tie-breaking scheme in

which ties are broken in favor of the least-recently-flipped variable. In subsequent

SLS solvers, breaking ties randomly and breaking in the favor of the least-recently-

flipped variable were prominent tie-breaking schemes. GSAT now has only histori-

cal importance, as there is a substantial performance gap between GSAT and recent

state-of-the-art SLS solvers.

Category 2: WalkSAT-based Algorithms

The major difference between WalkSAT algorithms and GSAT algorithms is the

neighborhood each considers. For a WalkSAT algorithm, the neighborhood con-

sists of the variables appearing in all currently unsatisfied clauses rather than the

full set of variables. At each search step, a WalkSAT algorithm first picks an

unsatisfied clause (e.g., uniformly at random), and then flips a variable from that

clause depending on some heuristic. WalkSAT/SKC [179] was one of the earliest

WalkSAT algorithms, and has a scoring function that only depends on BreakCount.

Novelty [142] and its several variants are among the most prominent Walk-

SAT algorithms. Novelty picks a random unsatisfied clause and computes the

variables with highest and second-highest scores with the same scoring function

as GSAT. Ties are broken in favor of the least-recently-flipped variable. If the

variable with the highest score is not the most recently flipped variable within

the clause, then it is deterministically selected for flipping. Otherwise, it is se-

lected with probability (1 - p), where p is a parameter termed the noise setting

(with probability p, the second-best variable is selected). The idea of consider-

ing flip history is exploited in various ways in different SLS solvers, such as the

age of a variable (e.g., in Novelty), flip counts (e.g., in VW [166]). To prevent

stagnation (getting stuck in local minima), Novelty is often augmented with a

probabilistic conflict-directed random walk [79]. Recent Novelty variants (e.g.,

adaptNovelty+ [80]) also use a reactive mechanism that adaptively changes

the noise parameter. This reactive mechanism is extended to many SLS solvers

[135] and often yields improved performance.
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Category 3: Dynamic Local Search Algorithms

The most prominent feature of dynamic local search (DLS) algorithms is the use

of “clause penalties” or “clause weights”. At each step, the penalty of an unsatis-

fied clause is increased (this increase can be additive [195] or multiplicative [91]).

In this manner, information that pertains to the difficulty of solving a given clause

is recorded in its associated clause penalty. In order to prevent an unbounded in-

crease in weights and to emphasize the most recent information about the difficulty

of a given clause, occasional smoothing steps are performed to reduce them. The

scoring function is the sum of the clause penalties of all unsatisfied clauses. For

prominent DLS solvers, such as SAPS, RSAPS [91], and PAWS [195], the neigh-

borhood consists of variables that appear in at least one unsatisfied clause.

Category 4: G2WSAT Variants

G2WSAT [131] can be viewed as a combination of the GSAT and WalkSAT archi-

tectures. Similar to GSAT, G2WSAT has a deterministic greedy component that

examines a large number of variables belonging to a promising list data structure

that contains promising decreasing variables (defined below). If the list has at least

one promising decreasing variable, G2WSAT deterministically selects the variable

with the best score for flipping. Ties are broken in favor of the least-recently-

flipped variable. If the list is empty, G2WSAT executes its stochastic component, a

Novelty variant that belongs to the WalkSAT architecture.

The definition of a promising decreasing variable is somewhat technical. A

variable x is said to be decreasing with respect to an assignment A if scoreA(x) > 0.

A promising decreasing variable is defined as follows:

1. For the initial random assignment A, all decreasing variables with respect to

A are promising.

2. Let x and y be two different variables where x is not decreasing with respect

to A. If, after y is flipped, x becomes decreasing with respect to the new

assignment A’, then x is a promising decreasing variable with respect to A’.

3. As long as a promising decreasing variable is decreasing, it remains promis-

ing with respect to subsequent assignments in local search.
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Apart from G2WSAT [131], all G2WSAT variants use the reactive mechanism

found in adaptNovelty+ [79]. gNovelty+ [161], the winner of 2007 SAT

Competition in the random satisfiable category, also uses clause penalties and

smoothing found in dynamic local search algorithms [195].

UBCSAT

UBCSAT [198] is an SLS solver implementation and experimentation environment

for SAT. It has already been used to implement many existing high-performance

SLS algorithms from the literature (e.g., SAPS [91], adaptG2WSAT+ [135]).

These implementations generally match or exceed the efficiency of implemen-

tations by the original authors. UBCSAT implementations have therefore been

widely used as reference implementations (see, e.g., [115, 166]) for many well-

known local search algorithms. In addition, it also provides a rich interface that

includes numerous statistical and reporting features facilitating empirical analysis

of SLS algorithms.

Many existing SLS algorithms for SAT share common components and data

structures. The general design of UBCSAT allows for the reuse and extension of

such common components and mechanisms. This rendered UBCSAT a suitable en-

vironment for the implementation of highly-parameterized local search algorithms,

such as our SATenstein-LS solver described in Chapter 9.

3.1.3 SAT Features

For the propositional satisfiability (SAT) problem, we used 138 features listed in

Figure 3.1. Since a preprocessing step can significantly reduce the size of the CNF

formula (particularly for industrial type instances), we chose to apply the prepro-

cessing procedure SatElite [45] on all instances first, and then to compute in-

stance features on the preprocessed instances. The first 90 features, except Features

22–26 and 32–36, were introduced by Nudelman et al. [156]. They can be catego-

rized as problem size features (1–7), graph-based features (8–36), balance features

(37–49), proximity to horn formula features (50–55), DPLL probing features (56–

62), LP-based features (63–68), and local search probing features (69–90).

We incrementally introduced additional features in our work on SATzilla [210,
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Problem Size Features:
1–2. Number of variables and clauses in

original formula: denoted v and c, re-
spectively

3–4. Number of variables and clauses after
simplification with SatElite: denoted
v’ and c’, respectively

5–6. Reduction of variables and clauses by
simplification: (v-v’)/v’ and (c-c’)/c’

7. Ratio of variables to clauses: v’/c’

Variable-Clause Graph Features:
8–12. Variable node degree statistics: mean,

variation coefficient, min, max, and en-
tropy

13–17. Clause node degree statistics: mean,
variation coefficient, min, max, and en-
tropy

Variable Graph Features:
18–21. Node degree statistics: mean, variation

coefficient, min, and max

22–26. Diameter: mean, variation coefficient,
min, max, and entropy

Clause Graph Features:
27–31. Node degree statistics: mean, variation

coefficient, min, max, and entropy

32–36. Clustering Coefficient: mean, variation
coefficient, min, max, and entropy

Balance Features:
37–41. Ratio of positive to negative literals in

each clause: mean, variation coefficient,
min, max, and entropy

42–46. Ratio of positive to negative occur-
rences of each variable: mean, variation
coefficient, min, max, and entropy

47–49. Fraction of unary, binary, and ternary
clauses

Proximity to Horn Formula:
50. Fraction of Horn clauses

51–55. Number of occurrences in a Horn
clause for each variable: mean, varia-
tion coefficient, min, max, and entropy

DPLL Probing Features:
56–60. Number of unit propagations: com-

puted at depths 1, 4, 16, 64 and 256

61–62. Search space size estimate: mean
depth to contradiction, estimate of the
log of number of nodes

LP-Based Features:

63–66. Integer slack vector: mean, variation
coefficient, min, and max

67. Ratio of integer vars in LP solution

68. Objective value of LP solution

Local Search Probing Features, based on 2 sec-
onds of running each of SAPS and GSAT:

69–78. Number of steps to the best local min-
imum in a run: mean, median, variation
coefficient, 10th and 90th percentiles

79–82. Average improvement to best in a run:
mean and coefficient of variation of im-
provement per step to best solution

83–86. Fraction of improvement due to first
local minimum: mean and variation co-
efficient

87–90. Best solution: mean and variation coef-
ficient

Clause Learning Features (based on 2 seconds
of running Zchaff rand):

91–99. Number of learned clauses: mean, vari-
ation coefficient, min, max, 10%, 25%,
50%, 75%, and 90% quantiles

100–108. Length of learned clauses: mean, vari-
ation coefficient, min, max, 10%, 25%,
50%, 75%, and 90% quantiles

Survey Propagation Features

109–117. Confidence of survey propagation: For
each variable, compute the higher
of P(true)/P( f alse) or P( f alse)/P(true).
Then compute statistics across vari-
ables: mean, variation coefficient, min,
max, 10%, 25%, 50%, 75%, and 90%
quantiles

118–126. Unconstrained variables: For each vari-
able, compute P(unconstrained). Then
compute statistics across variables:
mean, variation coefficient, min, max,
10%, 25%, 50%, 75%, and 90% quan-
tiles

Timing Features

127–138. CPU time required for feature compu-
tation: one feature for each of 12 com-
putational subtasks

Figure 3.1: 12 groups of SAT features
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211] since 2007. Our new diameter features 22–26 are based on the variable

graph [71]. For each node i in that graph, we compute the longest of the short-

est path between i and any other node. As with most of the features that follow, we

then compute various statistics over this vector (e.g., , mean, max). Our new clus-

tering coefficient features 32–36 measure the local cliqueness of the clause graph.

For each node in the clause graph, let p denote the number of edges present be-

tween the node and its neighbours, and let m denote the maximum possible number

of such edges; we compute p/m for each node.

Our new clause learning features (91–108) are based on statistics gathered in

2-second runs of Zchaff rand [139]. We measure the number of learned clauses

(features 91–99) and the length of the learned clauses (features 100–108) after

every 1000 search steps.

Our new survey propagation features (109–126) are based on estimates of vari-

able bias in a SAT formula obtained using probabilistic inference [86]. We used

VARSAT’s implementation to estimate the probabilities that each variable is true

in every satisfying assignment, false in every satisfying assignment, or uncon-

strained. Features 109–117 measure the confidence of survey propagation (that

is, max(Ptrue(i)/Pfalse(i),Pfalse(i)/Ptrue(i)) for each variable i) and features 118–126

are based on the Punconstrained vector.

Finally, our new timing features (127–138) measure the time taken by 12 dif-

ferent blocks of feature computation code: instance preprocessing by SatElite,

problem size (1–6), variable-clause graph (clause node) and balance features (7,

13–17, 37–41, 47–49); variable-clause graph (variable node), variable graph and

proximity to Horn formula features (8–12, 18–21, 42–46, 50–55); diameter-based

features (22–26); clause graph features (27–36); unit propagation features (56–

60); search space size estimation (61–62); LP-based features (63–68); local search

probing features (69–90) with SAPS and GSAT; clause learning features (91–108);

and survey propagation features (109–126).

The cost of computing these features depends on the size of the SAT instances.

Normally, feature computation takes less than 200 CPU seconds on a Intel Xeon

3.2GHz CPU, but it may take over 1000 seconds for very large instances (with

millions of variables) from industrial applications.
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3.1.4 SAT Benchmarks

Many interesting SAT benchmarks are used for studying empirical hardness and

constructing high-performance portfolio solvers. They come from three major

sources: SAT Competitions and SAT Races, instance generators, and other sources.

SAT Competitions and SAT Races These benchmarks comprise instances from

2002-2011 SAT competitions in addition to 2006-2010 SAT Races. For each com-

petition, the instances were divided into three categories: Industrial/application

(INDU/APP), Handmade/Crafted (HAND/CRAFTED), and Random (RAND). SAT

races only considered instances from industrial/application. These are very hetero-

geneous benchmarks with the number of instances limited by the actual data used

in the competitions/races.

Instance generators Many instance generators have been used for generating ran-

dom and structured instances. Detailed information about instance generators and

their parameters are listed as follows.

• rand3-fix/R3SAT: uniform-random 3-SAT at the solubility phase transi-

tion (c = 4.258 ·v+58.26 ·v−2/3) [32, 180]. The satisfiable/unsatsfiable ratio

is approximately 50/50.

• rand3-var: uniform-random 3-SAT with clauses-to-variables ratio ran-

domly selected from 3.26 to 5.26.

• QCP: SAT-encoded quasi-group completion problem: the task of determin-

ing whether the missing entries of a partial Latin square can be filled in to

obtain a complete Latin square. We generated instances around the solubil-

ity phase transition using the parameters given by Gomes and Selman (1997)

(order O ∈ [10, ...,30]; holes H = h×O1.55, h ∈ [1.2, ...,2.2]).

• SW-GCP: SAT-encoded graph-coloring on small-world graphs [58] with ring

lattice size S ∈ [100, ...,400], nearest neighbors connected 10, rewiring prob-

ability 2−7, chromatic number 6.

• HGEN: satisfiable only, random instances generated using HGEN2 [76].

29



• FAC: SAT-encoded factoring problems based on prime numbers∈ [3000, ...,4000]

[200].

• CBMC(SE): SAT-encoded software verification instances based on a binary

search algorithm [34] with array size s ∈ [1, ...,2000] and loop-unwinding

values n ∈ [4,5,6]. To reduce the size of the original instances, we prepro-

cessed these instances with SatElite [45].

Other sources Some benchmarks were downloaded from industrial users with

real applications.

• IBM This distribution of SAT-encoded bounded model checking instances

comprises 765 instances generated by Zarpas (2005); these instances were

downloaded from the IBM Formal Verification Benchmarks Library.

• SWV: This distribution of SAT-encoded software verification instances com-

prises 604 instances generated with the CALYSTO static checker [7], used

for the verification of five programs: the spam filter Dspam, the SAT solver

HyperSAT, the Wine Windows OS emulator, the gzip archiver, and a com-

ponent of xinetd (a secure version of inetd).

3.2 Mixed Integer Programming (MIP)
Mixed integer programming (MIP) is a general approach for representing con-

strained optimization problems with integer-valued and continuous variables. Be-

cause MIP serves as a unifying framework for NP-complete optimization problems

and combines the expressive power of integrality constraints with the efficiency of

continuous optimization, it is widely used both in academia and industry. MIP used

to be studied mainly in operations research, but has recently become an important

tool in AI, with applications ranging from auction theory [125] to computational

sustainability [62]. Furthermore, several recent advances in MIP solving have been

achieved with AI techniques [59, 97].
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3.2.1 IBM ILOG CPLEX

One important advantage of the MIP representation is that broadly applicable solvers

can be developed in a problem-independent manner. IBM ILOG’s CPLEX solver

is particularly well known for achieving strong practical performance; it is used by

over 1 300 corporations (including one-third of the Global 500) and researchers at

more than 1 000 universities [103]. CPLEX principally uses a branch and cut al-

gorithm that essentially solves a series of relaxed LP subproblems. In order to find

the optimal solution more effectively, additional cuts and sophisticated branching

strategies are employed at these subproblems. CPLEX also uses heuristics that

help finding initial good solutions, while it includes a sophisticated mixed integer

preprocessing system. There are some other commercial/non-commercial solvers

for MIP, such as XPRESS, Gurobi, and SCIP. Each of them offers its own advan-

tages. For example, the XPRESS MIP Optimizer uses a sophisticated branch and

bound algorithm to solve MIP problems and is well known for its ability to quickly

find high quality solutions [147].

State-of-the-art MIP solvers typically expose many parameters to end users;

for example, CPLEX 12.1 comes with a 221-page parameter reference manual de-

scribing 135 parameters.

3.2.2 MIP Features

Figure 3.2 summarizes 121 features for mixed integer programs (i.e., MIP in-

stances). These include 101 features based on existing work [90, 111, 130], 15 new

probing features, and 5 new timing features. Features 1–101 are primarily based

on features for the combinatorial winner determination problem from our group’s

past work [130], generalized to MIP and previously only described in a Ph.D. the-

sis [90]. These features can be categorized as problem type & size features (1–25),

variable-constraint graph features (26–49), linear constraint matrix features (50–

73), objective function features (74–91), and LP-based features (92–95). We also

integrated ideas from the feature set used by Kadioglu et al., 2010 (right-hand side

features (96–101) and the computation of separate statistics for continuous vari-

ables, non-continuous variables, and their union). We extended existing features

by adding richer statistics where applicable: medians, variation coefficients (vc),

31



Problem Type (trivial):

1. Problem type: LP, MILP, FIXEDMILP, QP,
MIQP, FIXEDMIQP, MIQP, QCP, or MIQCP,
as attributed by CPLEX

Problem Size Features (trivial):

2–3. Number of variables and constraints: de-
noted n and m, respectively

4. Number of non-zero entries in the linear con-
straint matrix, AAA

5–6. Quadratic variables and constraints: num-
ber of variables with quadratic constraints and
number of quadratic constraints

7. Number of non-zero entries in the quadratic
constraint matrix, QQQ

8–12. Number of variables of type: Boolean,
integer, continuous, semi-continuous, semi-
integer

13–17. Fraction of variables of type (summing to
1): Boolean, integer, continuous, semi-
continuous, semi-integer

18-19. Number and fraction of non-continuous
variables (counting Boolean, integer, semi-
continuous, and semi-integer variables)

20-21. Number and fraction of unbounded non-
continuous variables: fraction of non-
continuous variables that has infinite lower or
upper bound

22-25. Support size: mean, median, vc, q90/10 for
vector composed of the following values for
bounded variables: domain size for binary/in-
teger, 2 for semi-continuous, 1+domain size
for semi-integer variables.

Variable-Constraint Graph Features (cheap): each
feature is replicated three times, for X ∈ {C,NC,V}

26–37. Variable node degree statistics: characteristics
of vector (∑c j∈C I(Ai, j 6= 0))xi∈X : mean, me-

dian, vc, q90/10

38–49. Constraint node degree statistics: characteris-
tics of vector (∑xi∈X I(Ai, j 6= 0))c j∈C: mean,

median, vc, q90/10

Linear Constraint Matrix Features (cheap): each fea-
ture is replicated three times, for X ∈ {C,NC,V}

50–55. Variable coefficient statistics: characteristics of
vector (∑c j∈C Ai, j)xi∈X : mean, vc

56–61. Constraint coefficient statistics: characteristics
of vector (∑xi∈X Ai, j)c j∈C: mean, vc

62–67. Distribution of normalized constraint matrix
entries, AAAi, j/bi: mean and vc (only of elements
where bi 6= 0)

68–73. Variation coefficient of normalized absolute
non-zero entries per row (the normalization is
by dividing by sum of the row’s absolute val-
ues): mean, vc

Objective Function Features (cheap): each feature is
replicated three times, for X ∈ {C,NC,V}

74-79. Absolute objective function coefficients
{|ci|}n

i=1: mean and stddev

80-85. Normalized absolute objective function coeffi-
cients {|ci|/ni}n

i=1, where ni denotes the num-
ber of non-zero entries in column i of AAA: mean
and stddev

86-91. squareroot-normalized absolute objective func-
tion coefficients {|ci|/

√
ni}n

i=1: mean and std-
dev

LP-Based Features (expensive):

92–94. Integer slack vector: mean, max, L2 norm

95. Objective function value of LP solution

Right-hand Side Features (trivial):

96-97. Right-hand side for ≤ constraints: mean and
stddev

98-99. Right-hand side for = constraints: mean and
stddev

100-101. Right-hand side for ≥ constraints: mean and
stddev

Presolving Features (moderate):

102-103. CPU times: presolving and relaxation CPU
time

104-107. Presolving result features: # of constraints,
variables, non-zero entries in the constraint
matrix, and clique table inequalities after pre-
solving.

Probing Cut Usage Features (moderate):

108-112. Number of specific cuts: clique cuts, Gomory
fractional cuts, mixed integer rounding cuts,
implied bound cuts, flow cuts

Probing Result features (moderate):

113-116. Performance progress: MIP gap achieved, #
new incumbent found by primal heuristics, #
of feasible solutions found, # of solutions or
incumbents found

Timing Features

117–121. CPU time required for feature computation:
one feature for each of 5 groups of features
(see text for details)

Figure 3.2: MIP instance features; for the variable-constraint graph, linear con-
straint matrix, and objective function features, each feature is computed with
respect to three subsets of variables: continuous, C, non-continuous, NC, and
all, V .
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and percentile ratios (q90/q10) of features, which are based on vectors of values.

We introduce two new sets of features. Firstly, our new MIP probing features

102–116 are based on 5-second runs of CPLEX with default settings. They are

obtained via the CPLEX API and include 6 presolving features based on the output

of CPLEX’s presolving phase (102–107); 5 probing cut usage features describing

the different cuts CPLEX used during probing (108–112); and 4 probing result

features summarizing probing runs (113–116).

Secondly, our new timing features 117–121 capture the CPU time required

for computing five different groups of features: variable-constraint graph, lin-

ear constraint matrix, and objective features for three subsets of variables (“con-

tinuous”, “non-continuous”, and “all”, 26–91); LP-based features (92–95); and

CPLEX probing features (102–116). The cost of computing the remaining features

(1–25, 96–101) is small (linear in the number of variables or constraints).

3.2.3 MIP Benchmarks

Most of the MIP benchmarks were collected from other research groups (except

REG and RCW). In order to test the robustness of our predictive models and MIP

solvers, we also considered some heterogenous benchmarks by combining several

homogeneous benchmarks together.

BIGMIX This benchmark is a highly heterogenous mix of 1 510 publicly avail-

able Mixed Integer Linear Programming (MILP) instances. The instances in this

set have an average of 8 610 variables and 4 250 constraints. Some of the instances

are very large with up to 550 539 variables and 550 339 constraints.

CORLAT This benchmark comprises 2 000 MILP instances based on real data

used for the construction of a wildlife corridor for grizzly bears in the Northern

Rockies region (the instances were described by Gomes et al. (2008) and made

available to us by Bistra Dilkina). All instances have 466 variables with 486 con-

straints on average.
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RCW This benchmark comprises 1 980 MILP-encoded instances from compu-

tational sustainability for modeling the spread of the endangered red-cockaded

woodpecker, conditional on decisions about certain parcels of land to be protected.

We generated 1 980 instances (20 random instances for each combination of 9 maps

and 11 budgets), using the generator from Ahmadizadeh et al. (2010) with the same

parameter setting, but with a smaller sample size of 5.

REG This benchmark comprises 2 000 MILP-encoded instances based on the

winner determination problem in combinatorial auctions. We used the regions

generator from the Combinatorial Auction Test Suite [126], with the number of

bids selected uniformly at random between 750 and 1250, and a fixed bids/goods

ratio of 3.91 (following [130]).

CL∪REG This set is a mixture of two homogeneous subsets, CORLAT and REG.

We randomly selected 1 000 CORLAT and 1 000 REG instances.

CL∪REG∪RCW This benchmark set is the union of CL∪REG and 990 randomly

selected RCW instances.

ISAC(new) This set is a subset of the MIP benchmark set used by Kadioglu

et al. (2010); we could not use the entire set, since the authors informed us that

they irretrievably lost their test set. There are 276 instances in total.

MIX This is a very heterogenous benchmark that combines the sets studied in

Hutter et al. (2010). It includes all instances from MASS (100 instances), MIK (120

instances), CLS (100 instances), and a subset of CL (120 instances) and REG200

(120 instances). (see, e.g., [97] for the description of each underlying set.) There

are 560 instances in total.

MIPLIBless MIPLIB is one of the most widely used benchmark for study-

ing and evaluating MIP solvers. MIPLIBless consists of all 44 instances that

can be solved by CPLEX 12.1 default within 1 800 CPU seconds on our reference
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machines with Intel Xeon 3.2GHz CPUs.

NELAND This benchmark set comprises 640 MIP instances from Northeast Land

Management [141] and is divided into 32 subsets while each subset contains 20

instances.

3.3 Traveling Salesperson (TSP)
The traveling salesperson problem (TSP) is one of the most widely studied com-

binatorial optimization problems. Given an edge-weighted directed graph G with

vertices V = {v1, ...,vn}, the goal is to find a Hamiltonian cycle (tour) in G with

a minimal path weight. For simplicity, a TSP instance is often defined in such

a manner that the underlying graph is complete with very large edge weights for

edges between disconnected nodes. Hence, a Hamiltonian cycle in G corresponds

exactly to a cyclic permutation of the vertices in V . There are many different types

of TSP instances depending on restrictions on their weight functions. The best

studied type is the Euclidean TSP, where the edge weight function w is a Euclidean

distance metric.

Over the past five decades, much work on TSP has been a driving force for

many important research areas, such as stochastic local search [4, 107], branch-

and-cut methods [5], and Ant Colony Optimization algorithms [191].

3.3.1 TSP Solvers

Most state-of-the-art complete algorithms for TSP are based on branch-and-cut

methods. In brief, the basic process of branch-and-cut methods is to formulate a

TSP as an integer programming problem (IP), and repeatedly solve linear program-

ming (LP) relaxations of it. First, a cutting-plane method is used to solve an LP

relaxation of a TSP that allows variables to take arbitrary values between 0 and

1. If the optimal LP solution is also an IP solution, the algorithm terminates and

reports the IP solution; otherwise, a new restriction (cut) is added to the LP relax-

ation that cuts off non-integer solutions but does not cut off any integer solution.

The new LP relaxation (with additional restrictions) is solved to optimality again.

This procedure is repeated until no good “cut” can be found. At this stage, the cur-
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rent problem needs to be branched into two sub-problems: an edge is selected and

forced to be part of all solutions for one sub-problem and not to be part of any so-

lution for another sub-problem. For each sub-problem, the cutting-plane method is

used again. Thus, branch-and-cut methods iterate between a cutting-plane step and

a branching step until an integer solution is found. The state-of-the-art complete

algorithm for TSP, Concorde, can solve very large TSP instances [35].

Much work on incomplete algorithms for solving TSP has been focused on

tour-construction heuristics and iterative tour-improvement algorithms. Tour-construction

heuristics include the Nearest Neighbor Heuristic, the Insert Heuristic, and the

Greedy Heuristic [169]. As an example, the Nearest Neighbor Heuristic constructs

a tour starting from a randomly-chosen vertex u1 and then iteratively adds one un-

visited vertex uk+1 to the current partial tour (u1, · · · ,uk) such that (uk,uk+1) has

minimal weight. After all vertices have been visited, a complete tour is obtained by

connecting the end vertex of the partial tour un to the starting vertex u1. In practice,

the tours obtained by tour-construction heuristics are usually very good for median

size TSP with a few thousand nodes (11-16% to the optimal solutions) [83].

Most successful tour-improvement algorithms are based on k-exchange itera-

tive improvement methods. Two candidate solutions, s and s′, are called direct

k-exchange neighbors if and only if s′ can be obtained from s by deleting k edges

and reconnecting the resulting k tour fragments into a complete tour with k edges

(the new edges may be the same as the deleted ones). The common choices of k

are 2 or 3, and much larger k are rarely used because of the complexity in cod-

ing and the high computational cost in each step (O(nk)). Experimental results

suggest that with larger k (4 or 5), an algorithm’s solution quality can only be

improved slightly [183]. Some additional techniques are available for making k-

exchange more efficient, such as using fixed radius search, candidate lists, and

don’t look bits. One of the most well-known tour-improvement algorithms for TSP

is the Lin-Kernighan (LK) algorithm [136]. This rather complicated algorithm is

the foundation of many state-of-the-art incomplete TSP algorithms such as Iter-

ated Lin-Kernighan [107], Chained Lin-Kernighan [4], and Iterated Helsgaun [70].

Optimal or very close to optimal solutions can be obtained within hours by using

high-performance tour-improvement algorithms for TSPs with tens of thousands

of nodes [108].
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Problem Size Features:

1. Number of nodes: denoted n

Cost Matrix Features:

2–4. Cost statistics: mean, variation coeffi-
cient, skew

Minimum Spanning Tree Features:

5–8. Cost statistics: sum, mean, variation
coefficient, skew

9–11. Node degree statistics: mean, variation
coefficient, skew

Cluster Distance Features:

12–14. Cluster distance: mean, variation coef-
ficient, skew

Local Search Probing Features:

15–17. Tour cost from construction heuristic:
mean, variation coefficient, skew

18–20. Local minimum tour length : mean,
variation coefficient, skew

21–23. Improvement per step: mean, variation
coefficient, skew

24–26. Steps to local minimum: mean, varia-
tion coefficient, skew

27–29. Distance between local minima: mean,
variation coefficient, skew

30–32. Probability of edges in local minima:
mean, variation coefficient, skew

Branch and Cut Probing Features:

33–35. Improvement per cut: mean, variation
coefficient, skew

36. Ratio of upper bound and lower bound

37–43. Solution after probing: Percentage of
integer values and non-integer values in
the final solution after probing. For
non-integer values, we compute statics
across nodes: min,max, 25%,50%, 75%
quantiles

Ruggedness of Search Landscape:

44. Autocorrelation coefficient

Timing Features

45–50. CPU time required for feature compu-
tation: one feature for each of 6 com-
putational subtasks

Node Distribution Features (after instance
normalization)

51. Cost matrix standard deviation: stan-
dard deviation of cost matrix after in-
stance being normalized into the rectan-
gle [(0,0), (400, 400)].

52–55. Fraction of distinct distances: precision
to 1, 2, 3, 4 decimal places.

56–57. Centroid: the (x, y) coordinates of the
instance centroid.

58. Radius: the mean distances from each
node to the centroid.

59. Area: the rectangular area within which
the nodes lie.

60–61. nNNd: the standard deviation and coef-
ficient variation of the normalized near-
est neighbour distance.

62–64. Cluster: #clusters / n , #outliers / n,
variation of #nodels in clusters.

Figure 3.3: 9 groups of TSP features

3.3.2 TSP Features

Figure 3.3 summarizes 64 features for the travelling salesperson problem (TSP).

Features 1–50 are new, while Features 51–64 were introduced by Smith-Miles

et al. [185]. Features 51–64 capture the spatial distribution of nodes (features

51–61) and clustering of nodes (features 62–64); we used the authors’ code (avail-

able at http://www.vanhemert.co.uk/files/TSP-feature-extract-20120212.tar.gz) to

compute these features.
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Our 50 new TSP features are as follows.2 The problem size feature (1) is the

number of nodes in the given TSP. The cost matrix features (2–4) are statistics of

the cost between two nodes. Our minimum spanning tree features (5–11) are based

on constructing a minimum spanning tree over all nodes in the TSP: features 5–8

are the statistics of the edge costs in the tree and features 9–11 are based on its

node degrees. Our cluster distance features (12–14) are based on the cluster dis-

tance between every pair of nodes, which is the minimum bottleneck cost of any

path between them; here, the bottleneck cost of a path is defined as the largest cost

along the path. Our local search probing features (15–32) are based on 20 short

runs (1000 steps each) of LK [136], using the implementation available from [37].

Specifically, features 15–17 are based on the tour length obtained by LK; features

18–20, 21–23, and 24–26 are based on the tour length of local minima, the tour

quality improvement per search step, and the number of search steps to reach a

local minimum, respectively; features 27–29 measure the Hamming distance be-

tween two local minima; and features 30–32 describe the probability of edges ap-

pearing in any local minimum encountered during probing. Our branch and cut

probing features (33–43) are based on 2-second runs of Concorde. Specifically,

features 33–35 measure improvement in the lower bound per cut; feature 36 is the

ratio of upper and lower bound at the end of the probing run; and features 37–43

analyze the final LP solution. Feature 44 is the autocorrelation coefficient: a mea-

sure of the ruggedness of the search landscape, based on an uninformed random

walk (see, e.g., , [83]). Finally, our timing features 45–50 measure the CPU time

required for computing feature groups 2–7 (the cost of computing the number of

nodes can be ignored).

3.3.3 TSP Benchmarks

We used three TSP benchmarks that come from random TSP generators and TSPlib.

The detailed information about these benchmarks is as follows.
2In independent work, Mersmann et al. [144] have introduced feature sets similar to some of

those described here.
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PORTGEN This benchmark comprises 4 993 uniform random EUC-2D TSP in-

stances generated by the random TSP generator portgen [106]. The number of

nodes was randomly selected from 100 to 1 600 and the generated TSP instances

have 849±429 nodes.

PORTCGEN This benchmark comprises 5 001 random clustered EUC-2D TSP

instances generated by the random TSP generator, portcgen [106]. The number of

nodes was randomly selected from 100 to 1 600 and the number of clusters was set

to 1% of the number of nodes. The generated TSP instances have 852±432 nodes.

TSPLIB This benchmark contains a subset of the prominent TSPLIB (http://

comopt.ifi.uni-heidelberg.de/software/TSPLIB95/) repository. We only included

the 63 instances for which both our own feature computation code and the code

by Smith-Miles and van Hemert (2011) completed successfully within 3,600 CPU

seconds on our reference machines.
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Chapter 4

Solution Prediction for SAT

Recent work has studied the use of regression methods to make instance-specific

predictions on solver runtimes. Nudelman et al. (2004) showed that using this

approach, surprisingly accurate runtime predictions can be obtained for uniform

random 3-SAT. They also noticed that training models on only SAT or UNSAT

instances allowed much simpler, but very different, models to achieve high accu-

racies. (In Chapter 5, we demonstrate that such simpler models can be used for

constructing hierarchical hardness models for better runtime prediction.) Since un-

conditional models are able to predict runtimes accurately, despite the qualitative

differences between the SAT and UNSAT regimes, we believe that the models must

implicitly predict satisfiability status. This chapter tests this hypothesis on one of

most difficult SAT benchmarks, the uniform random 3-SAT at the phase transition,

and shows how to build classification models that achieve accuracies of approxi-

mately 70% with a small set of features. Two arguments demonstrate that this is

not a small-size effect. First, the models’ predictive accuracy remains roughly con-

stant, and is far better than that of random guessing (50%) across the entire range

of problem sizes. Second, a classifier trained on our easiest (v = 100) instances

again achieves very accurate predictions across the whole range of instance sizes.

A detailed investigation shows that two features sufficed to achieve good perfor-

mance for all instance sizes: one based on variation in the slack vectors of an LP

relaxation of the problem, and one based on the ratio of positive to negative lit-

erals in the formula. Finally, we trained a three-leaf decision tree based on these
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two features only on the smallest instances, which achieved prediction accuracies

across the entire range of instance sizes close to those of our most complex model.
1

4.1 Uniform Random 3-SAT and Phase Transition
A prominent family of SAT instances is uniform random 3-SAT. Instances from

this class are easy to generate and often hard to solve, they have often been used as

a test bed in the design and evaluation of heuristic algorithms (see, e.g., Le Berre

et al., 2012). One interesting phenomena related to uniform random 3-SAT is the

so-called solubility phase transition: the probability that a random 3-SAT instance

is satisfiable exhibits sharp threshold behavior when the control parameter α = c/v

passes a critical value [32, 146]. The width of the window in which this solubility

phase transition takes place becomes narrower as instance size grows.

Most interestingly, a wide range of state-of-the-art SAT solvers exhibit dra-

matically longer runtimes for instances in this critical region. For intuition, note

that instances are under-constrained when α is small (where few constraints exist,

and therefore many solutions), and over-constrained when α is large (where many

constraints exist, making it relatively easy to derive a contradiction). The so-called

phase transition point occurs between these extremes, when the probability of gen-

erating a satisfiable instance is 0.5. Crawford and Auton (1996) confirmed these

findings in an extensive empirical study and proposed a more accurate formula for

identifying the phase transition point. Kirkpatrick and Selman (1994) used finite-

size scaling, a method from statistical physics, to characterize size-dependent ef-

fects near the transition point, with the width of this transition narrowing as the

number of variables increases. Yokoo (1997) studied the behavior of simple local

search algorithms on uniform random 3-SAT instances, observing a peak in the

hardness of solving satisfiable instances at the phase transition point. He attributed

this hardness peak to a relatively larger number of local minima present in critically

constrained instances, as compared to over-constrained satisfiable instances.

There is a useful analogy between uniform random 3-SAT problems and what

physicists call “disordered materials”: conflicting interactions in the latter are sim-

1This chapter is based on the joint work with Holger Hoos, and Kevin Leyton-Brown [214].
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ilar to the randomly negated variables in the former. Exploiting this connection,

uniform random 3-SAT has been studied using methods from statistical physics.

Monasson and Zecchina [148, 149] applied replica methods to determine the char-

acteristics of uniform random 3-SAT and showed that at the phase transition, the

ground state entropy is finite. They concluded that the transition itself is due to the

abrupt appearance of logical contradictions in all solutions and not to a progressive

decrease in the number of models.

4.2 Experimental Setup
We considered uniform random 3-SAT instances generated at the solubility phase

transition with v ranging from 100 to 600 variables in steps of 25. For each value of

v, we generated 1000 instances with different random seeds using the same instance

generator as used in SAT competitions since 2002 [182]. In total, we generated

21 instance sets jointly comprising 21000 3-SAT instances. For v = 100, 25000

additional instances are generated (referred as v100(large)).

We solved all of these instances using kcnfs07 [44] within 36000 CPU seconds

per instance, with the exception of 2 instances for v = 575 and 117 for v = 600. For

these instances, additional 5 runs of adaptg2wsat09++ [134] were performed with

a cutoff time of 36000 CPU seconds, which failed to solve them. As this cutoff

is more than 100 times larger than the runtime of the hardest instances solved by

adaptg2wsat09++, and the largest increase in running time needed for any size

v > 475 to solve an additional instance we ever observed was lower than a factor

of 6.5, we believe that these instances are unsatisfiable, and so treated them as

such for the remainder of our study. (Readers who feel uncomfortable with this

approach should feel free to disregard our results for v = 575 and v = 600; none of

our qualitative conclusions is affected.)

Figure 4.1 (left) shows the median runtime of kcnfs07 on both satisfiable and

unsatisfiable instances across our 21 instance sets. Median kcnfs07 runtime in-

creased exponentially with the number of variables, growing by a factor of about

2.3 with every increase of 25 variables beyond v = 200 (smaller instances were

solved more quickly than the smallest CPU time one could measure). To verify

that the generating instances are indeed at the phase transition point, we examined
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Figure 4.1: Left: Median runtime of kcnfs07 for each instance set. The solu-
tions of some instances in v = 575 and v = 600 were estimated by running
adaptg2wsat09++ for 36 000 CPU seconds. Right: CDF of kcnfs07’s runtime
for v = 500.

the fraction of satisfiable and unsatisfiable instances for each set; the majority con-

tained between 49 and 51% satisfiable instances (with mean 50.2% and standard

deviation 1.6%), and there was no indication that deviations from the 50% mark

correlated with instance size. The v100(large) set contained 49.5% satisfiable in-

stances. As illustrated in Figure 4.1 (right) for v = 500, unsatisfiable instances

tended to be harder to solve, and to give rise to less runtime variation; satisfiable

instances were easier on average but with larger runtime variation. Intuitively, to

prove unsatisfiability, a complete solver such as kncfs07 needs to reason about

the entire space of candidate assignments, while satisfiability may be proven by ex-

hibiting a single model. Depending on the number of solutions of a given instance,

which is known to vary at the phase transition point, the search cost of finding the

first one can vary significantly.

This work used a state-of-the-art classifier, decision forests, as they can pro-

duce good predictions with robust uncertainty estimates and direct visualization

from tree structures. Decision forests are constructed as collections of T decision

trees [196]; in this work, a rather large number of trees (T = 99) is used for high

classification accuracy. Following Breiman (2001), given n training data points

with k features each, for each tree we drew a bootstrap sample of n training data

points sampled uniformly at random with repetitions; during tree construction, we

sampled a random subset of log2(k)+1 features at each internal node to be consid-
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ered for splitting the data at that node. Predictions were based on majority voting

across all T trees. In our case, the class labels were SAT and UNSAT. Since we

used 99 trees, an instance i was classified as SAT if more than 49 trees predicted

that it was satisfiable. We measured the decision forest’s confidence as the frac-

tion of trees that predicted i to be satisfiable; by choosing T as an odd number, we

avoided the possibility of ties.

We used the feature set as listed in Figure 3.1. The feature computation time

depends on the size of the instance under consideration (e.g., ≈ 50 CPU seconds

on average for all features of a single instance with v = 550, of which ≈ 41 CPU

seconds were spent on computing the 6 LP-based features). Some easy instances

are solved during the computation of certain features (in particular, local search

probing features). Thus, even though these features have been found quite useful

for other problems/taskes [156], we excluded them from this study and resolved

to use 61 features, of which 7 are related to problem size, 29 to graph-based repre-

sentations of the CNF formula, 13 to balance properties, 6 to proximity to a Horn

formula, and 6 to LP relaxations.

For each instance size v, we first partitioned the respective instance set into two

subsets based on satisfiability status, and then randomly split each subset 60:40

into training and test sets. Finally, we combined the training sets for SAT and

UNSAT into the final training set, and the SAT and UNSAT test sets into the final

test set. We trained our decision forests on the training sets only, and used only the

test sets to measure model accuracy. In order to reduce variance in these accuracy

measurements we repeated this whole process 25 times (with different random

training/test splits); the results reported in this paper are medians across these 25

runs.

All runtime and feature data were collected on a computer cluster with 840

nodes, each equipped with two 3.06 GHz Intel Xeon 32-bit processors and 2GB

of RAM per processor. The decision forest classifier was implemented in Matlab,

version R2010a, which we also used for data analysis.
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Figure 4.2: Classification accuracies achieved on our 21 primary instance sets. The
blue box plots are based on 25 replicates of decision forest models, trained
and evaluated on different random splits of training and test data. The median
prediction accuracies of using the decision forest trained on v100(large) are
shown as red stars. The median prediction accuracies of using a single decision
tree trained on v100(large) based on two features are shown as green squares.

4.3 Experimental Results
At the solubility phase transition, uniform random 3-SAT instances are equally

likely to be satisfiable or unsatisfiable. Thus, random guessing can achieve predic-

tive accuracy of only 50%. The first goal was to investigate the extent to which our

models were able to make more accurate predictions. As shown in Figure 4.2 (first

data series) and Table 4.1, the models did achieve accuracies of between about 70%

and 75%. There is no significant difference in the frequency of the two possible

predictive errors (predicting SAT as UNSAT and vice versa).

Figure 4.3 shows two sample distributions (v = 200 and v = 500) of the classi-

fier’s confidence. The plots for other instance sets were qualitatively similar. Recall

that the confidence of the classifier is measured by the fraction of ‘SAT’ predictions

among the 99 trees. Therefore, the classifier had full confidence if all 99 predic-
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Median False False
Variables Accuracy Positives Negatives

100 0.694 0.138 0.168
125 0.709 0.125 0.166
150 0.702 0.148 0.150
175 0.702 0.155 0.144
200 0.682 0.153 0.164
225 0.703 0.148 0.153
250 0.697 0.158 0.148
275 0.740 0.140 0.120
300 0.714 0.143 0.143
325 0.749 0.122 0.130
350 0.704 0.151 0.143
375 0.697 0.148 0.155
400 0.724 0.143 0.135
425 0.727 0.138 0.135
450 0.740 0.128 0.132
475 0.744 0.118 0.138
500 0.737 0.130 0.133
525 0.733 0.143 0.125
550 0.747 0.120 0.133
575 0.762 0.113 0.125
600 0.732 0.129 0.139

Table 4.1: The performance of decision forests with 61 features on our 21 primary
instance sets. We report median classification accuracy over 25 replicates with
different random splits of training and test data as well as the fraction of false
positive and false negative predictions.

tions were consistent, and had small confidence if the numbers of ‘SAT’ predic-

tions and ‘UNSAT’ predictions were about the same. As shown in Figure 4.3, the

classifier had low levels of confidence more often than high levels of confidence.

The representative examples in the left and right panes of Figure 4.3 illustrate that

our decision forests had more difficulty with small instances, in the sense that they

were uncertain about a larger fraction of such instances.

As one would hope, the confidence was positively correlated with classifica-

tion accuracy. This can be seen by comparing the height of the bars for correct

and incorrect predictions at each predicted probability of SAT. When the predicted

probability of SAT was close to 0 or 1, the classifier was almost always correct, and
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Figure 4.3: Classifier confidence vs fraction of instances. Left: v = 200; Right:
v = 500.
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Figure 4.4: Classifier confidence vs instance hardness. Each marker ([x,y]) shows
the average runtime of kcnf07 over a bin of instances with classifier confidence
(predicted probability of SAT) between x−0.05 and x. Each marker’s intensity
corresponds to the amount of data inside the bin. Left: v= 200; Right: v= 500.

when the predicted probability of SAT was close to 0.5, accuracy dropped towards

0.5 (i.e., random guessing).

The decision forest’s confidence was also correlated with kcnfs07’s runtime.

As shown in Figure 4.4, instances tended to be easier to solve when the predicted

probabilities of SAT were close to either 0 or 1. Recall that variation in runtime was

more pronounced on satisfiable instances, as previously illustrated in Figure 4.1

(right).

We now examine the hypothesis that our models’ prediction accuracy decreases

as problem size grows. Two pieces of evidence suggest that this hypothesis should

be rejected. The first evidence is the result of a pairwise comparison of the clas-
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sification accuracies obtained from the full decision forest models trained for each

instance size. For each pair of data sets with instance sizes i and j (i > j), Fig-

ure 4.5 shows a blue dot when classification accuracy on size i was significantly

higher than on size j and a yellow dot when classification accuracy on size i was

significantly lower than on size j, according to a Mann-Whitney U test. Among

the 210 paired comparisons with significance level 0.05, there are 133 blue dots

(63.3%), and 21 yellow dots (10.0%). Thus, there is little evidence that prediction

accuracy decreases as instance size grows; indeed, the data shown in Figure 4.5 ap-

pears to be more consistent with the hypothesis that prediction accuracy increases

with instance size.

The second piece of evidence against the hypothesis of lower accuracies for

bigger problems is that models trained only on the smallest problems achieved

high levels of predictive accuracy across the whole range of problem sizes. The red

stars in Figure 4.2 (the second data series) indicate the performance of the decision

forest trained on v100(large) evaluated on problems of other sizes. This single

model performed about as well—indeed, in many cases better—than the models

specialized to different problem sizes. Although we do not report the results here,

we also trained decision forests on each of the other 20 instance sets; in each case,

the models generalized across the entire range of problem sizes in qualitatively the

same manner.

The next task is to identify the smallest set of features that could be used to

build accurate models. Hopefully, such feature set will be useful to other re-

searchers seeking a theoretical explanation of the phenomenon identified in this

chapter.

One may imagine that most predictive features are different for large instances

and for small instances. Therefore, the 21 instance sets are divided into two groups,

small (10 instance sets, v = 100 to 325) and large (10 instance sets, v = 375 to

600). We do not use the 350-variable set in this analysis in order to keep the two

groups balanced. For every subset of the 61 features with cardinality 1, 2 and

3, we measure the accuracy of the model. For both small and large, the best 1-

and 2-feature sets were subsets of the best 3-feature subset. Next, we use a forward

selection procedure to build subsets of up to 10 features, as exhaustive enumeration

was infeasible above 3 features. Specifically, starting with the best 3-feature set,
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Figure 4.5: Statistical significance of pairwise differences in classification accuracy
for our 21 primary instance sets. Yellow: accuracy on the smaller instance size
is significantly higher than on the larger size. Blue: accuracy on the smaller in-
stance size is significantly lower than on the larger size. No dot: the difference
is insignificant. Significance level: p = 0.05.

and for every feature not in the set, we compute the mean of median classification

accuracy across all of the instance sets in the group. Then, we add the feature with

the best such accuracy to the feature subset. These steps are repeated until the

subset contains 10 features.

Table 4.2 describes the sets of obtained features, as well as the improvement

in classification accuracy achieved at each step. In both cases of small and large,

the classifier was able to achieve good predictive accuracy with a small number of

features; for each number of features, the classification accuracy on large instances

was better than on small instances. The two most informative features were identi-
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Group Features ordered by FW Classification Accuracy Stepwise Improvement

LPSLACK coeff variation 0.614 –
POSNEG ratio var mean 0.670 0.056
LP OBJ 0.681 0.011
VG mean 0.688 0.007

small LPSLACK max 0.690 0.002
VG max 0.692 0.002
VCG var max 0.694 0.002
HORNY var coeff variation 0.694 0.000
LPSLACK mean 0.695 0.001
LP int ratio 0.697 0.002

LPSLACK coeff variation 0.646 –
POSNEG ratio var mean 0.696 0.050
LPSLACK mean 0.706 0.010
LP int ratio 0.714 0.008

large VCG clause max 0.720 0.006
CG mean 0.721 0.001
TRINARYp 0.725 0.004
HORNY var coeff variation 0.727 0.002
DIAMETER entropy 0.728 0.001
POSNEG ratio clause entropy 0.728 0.000

Table 4.2: The mean of median classification accuracy with up to 10 features se-
lected by forward selection. The stepwise improvement for a feature fi at for-
ward selection step k is the improvement when we add fi to the existing k− 1
features. Each median classification accuracy is based on the results of 25 runs
of classification with different random split of training and test data.

cal for both groups, and adding additional features beyond this point offered little

marginal benefit.

It is worth understanding the meaning of these features. LPSLACK coeff variation

is based on solving a linear programming relaxation of an integer program repre-

sentation of SAT instances. For each variable i with LP solution Si, LPSLACKi is de-

fined as min{1− Si,Si}: Si’s proximity to integrality. LPSLACK coeff variation

is then the coefficient of variation of the vector LPSLACK. POSNEG ratio var mean

is the average ratio of positive and negative occurrences of each variable. For each

variable i with Pi positive occurrences and Ni negative occurrences, POSNEG ratio vari

is defined as 2 · |0.5−Pi/(Pi +Ni)|. POSNEG ratio var mean is then the average

over elements of the vector POSNEG ratio var.
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Figure 4.6: Distribution of LPSLACK coeff variation over instances in each of our
21 sets. Left: SAT; Right: UNSAT. Top: original value; Bottom: value after
normalization. The line at y = 0.0047 indicates the decision threshold used in
the tree from Figure 4.8.

There are three main findings: (1) models achieved high accuracies; (2) mod-

els trained on small instances were effective for large instances; (3) a model con-

sisting of only two features was nearly as accurate as the full model. We now

show that all of these findings also held simultaneously where we were able to

achieve high accuracies using a two-feature model trained only on small instances.

Specifically, we construct a single decision tree (rather than a random forest) us-

ing only the LPSLACK coeff variation and POSNEG ratio var mean features, and

trained using only the very easiest instances, v100(large). We further simplify this

model by setting the parameter minparent of the tree building procedure to 10 000.

The minparent parameter defines the smallest number of observations that impure

51



0.16

0.18

0.2

0.22

0.24

0.26

0.28
10

0

12
5

15
0

17
5

20
0

22
5

25
0

27
5

30
0

32
5

35
0

37
5

40
0

42
5

45
0

47
5

50
0

52
5

55
0

57
5

60
0

Instance Size (SAT)

P
O

S
N

E
G

_r
at

io
_v

ar
_m

ea
n

0.16

0.18

0.2

0.22

0.24

0.26

0.28

10
0

12
5

15
0

17
5

20
0

22
5

25
0

27
5

30
0

32
5

35
0

37
5

40
0

42
5

45
0

47
5

50
0

52
5

55
0

57
5

60
0

Instance Size (UNSAT)

P
O

S
N

E
G

_r
at

io
_v

ar
_m

ea
n

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

10
0

12
5

15
0

17
5

20
0

22
5

25
0

27
5

30
0

32
5

35
0

37
5

40
0

42
5

45
0

47
5

50
0

52
5

55
0

57
5

60
0

Instance Size (SAT)

N
or

m
al

iz
ed

 P
O

S
N

E
G

_r
at

io
_v

ar
_m

ea
n

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

10
0

12
5

15
0

17
5

20
0

22
5

25
0

27
5

30
0

32
5

35
0

37
5

40
0

42
5

45
0

47
5

50
0

52
5

55
0

57
5

60
0

Instance Size (UNSAT)

N
or

m
al

iz
ed

 P
O

S
N

E
G

_r
at

io
_v

ar
_m

ea
n

Figure 4.7: Distribution of POSNEG ratio var mean over instances in each of our 21
instance sets. Left: SAT; Right: UNSAT. Top: original value; Bottom: value
after normalization. The line at y = 0.1650 indicates the decision threshold
used in the tree from Figure 4.8.

nodes may contain before they are allowed to further split; setting it to such a large

value forced the decision tree to be extremely simple. This tree’s performance is

plotted using green squares (third data series) in Figure 4.2. Overall, it achieved

remarkably good prediction accuracies of always more than 65% on all instance

sets.

Figure 4.8 shows the decision tree. First, it classifies instances as satisfi-

able if LPSLACK coeff variation takes a large value: that is, if LPSLACK ex-

hibits large variance across the variables in the given formulae (region A). When

LPSLACK coeff variation takes a small value, the model considers the balance

between positive and negative literals in the formula (POSNEG ratio var mean). If

the literals’ signs are relatively balanced, the model predicts unsatisfiability (re-
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LPSLACK_coeff_variation
>=0.00466585

Yes No

SAT [A] POSNEG_ratio_var_mean
>= 0.164963

UNSAT [C]SAT [B]

Yes No

Figure 4.8: The decision tree trained on v100(large) with only the features
LPSLACK coeff variation and POSNEG ratio var mean, and with (minparent)
set to 10 000.

gion B). Otherwise, it predicts satisfiability (region C). To gain further understand-

ing about the effectiveness of this model, we partitioned each of our 21 data sets

into the three regions and observed the fraction of each partition that was correctly

labeled by the tree. These fractions were between 60 and 70% (region A), between

70 and 80% (region C), and about 50% (region B).

Finally, Figures 4.6 and 4.7 show the distribution of the LPSLACK coeff variation

and POSNEG ratio var mean features over each of our 21 instance sets, before and

after normalization, and considering satisfiable and unsatisfiable instances sepa-

rately. Note that both features’ pre-normalization variations decreased with in-

stance size, while their median values remained relatively constant. After nor-

malization, both features’ distributions remained very similar as instance size in-

creased. The decision thresholds used by our simple decision tree are plotted as

solid horizontal lines in these figures. Both thresholds were located near the 25th

or 75th percentiles of the respective distributions, regardless of instance size.

4.4 Conclusion
Uniform random 3-SAT instances from the solubility phase transition are challeng-

ing to solve considering their size. Nevertheless, this work has shown that the sat-
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isfiability of such instances can be predicted efficiently and with surprisingly high

accuracy. The experimental results demonstrated that high prediction accuracies

(19.4% – 26.2% better than random guessing) can be achieved across a wide range

of instance sizes, and that there is little support for the hypothesis that this accu-

racy decreases as instance sizes grow. The predictive confidence of our classifiers

correlates with the prediction accuracy obtained and with the runtime of a state-

of-the-art complete SAT solver. A classifier trained on small, very easy instances

also performed well on large, extremely challenging instances. Furthermore, the

features most important to models trained on different problem sizes were sub-

stantially the same. Finally, using only two features, LPSLACK coeff variation

and POSNEG ratio var mean, we could build a trivial, three-leaf decision tree that

achieved classification accuracies only slightly below those for the most complex

decision forest classifier. Examining the operation of this model, we observe the

surprisingly simple rules that instances with large variation in LPSLACK (distance

of LP solutions to integer values) across variables are likely to be satisfiable, while

instances with small variation of LPSLACK and roughly the same number of positive

and negative literals are likely to be unsatisfiable. We hope that these rules will lead

to novel heuristics for SAT solvers targeting random instances, and will serve as a

starting point for new theoretical analysis of uniform random 3-SAT at the phase

transition.

54



Chapter 5

Runtime Prediction with
Hierarchical Hardness Models

The previous chapter shows that the satisfiability of SAT instances can be pre-

dicted with high accuracy for uniform random 3-SAT at the phase transition. This

chapter demonstrates that such satisfiability prediction can be used for construct-

ing hierarchical hardness models for better runtime prediction. First, we confirm

the observation of Nudelman et al. (2004) that better models can be learned with

only satisfiable instances (SAT) or only unsatisfiable instances (UNSAT). Then,

we show that predicting satisfiability is possible in general by considering a va-

riety of both structured and unstructured SAT instances. More importantly, satis-

fiability prediction is useful for combining SAT models and UNSAT models into

hierarchical hardness models using a mixture-of-experts approach. Such hierarchi-

cal models improve overall runtime prediction accuracy. Classification confidence

correlates with runtime prediction accuracy, giving useful per-instance evidence

about the quality of the runtime prediction. 1

5.1 Empirical Hardness Models
For a given problem instance, empirical hardness models predict the runtime of an

algorithm based on polytime-computable instance features using regression tech-

1This chapter is based on the joint work with Holger Hoos, and Kevin Leyton-Brown [208].
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niques. One of the most popular methods is linear basis-function ridge regression,

which has previously been demonstrated to be very successful in studies of uniform

random SAT and combinational auctions [127, 156].

5.1.1 Overview of Linear Basis-function Ridge Regression

In order to predict the runtime of an algorithm A on a distribution D of problem

instances, one first collects the runtimes of algorithm A on n instances drawn from

D, yyy, and computes p-dimensional feature vectors, XXX . Let IIIppp be the p× p identity

matrix, and let ε be a small constant. Then, compute the weight vector

www = (XXX TXXX + εIIIppp)
−1XXX>>>yyy,

where XXX T denotes the transpose of matrix XXX . The effect of ε > 0 is to regularize

the model by penalizing large coefficients www and to improve numerical stability.

For the latter reason, we also use forward selection to eliminate highly correlated

features. Since algorithm runtime can often be better approximated by a polyno-

mial function than by a linear one, a quadratic basis function expansion was used

by Leyton-Brown et al. (2002), augmenting each model input XXX i = [xi,1, . . . ,xi,p]
T

with pairwise product inputs xi, j · xi,q for j = 1, . . . , p and q = j, . . . , p. Then, an-

other pass of forward feature selection is performed for selecting a subset of ex-

tended features ΦΦΦ. The final empirical hardness model is learned with ΦΦΦ and yyy.

Given a new unseen instance with extended feature vector ΦΦΦn+1, ridge regression

predicts fwww(ΦΦΦn+1) = wwwTΦΦΦn+1.

Empirical hardness models have a probabilistic interpretation. The features ΦΦΦ

and the empirical algorithm runtime y, when seen as random variables, are related

as in the following graphical model:

x y

In this model, the feature vector ΦΦΦ (or XXX), and the probability distribution over run-

time y is conditionally dependent on ΦΦΦ. Since one trains a linear model using least

squares fitting, we have implicitly chosen to represent P(y|ΦΦΦ) as a Gaussian with

mean www>>>ΦΦΦ and some fixed variance β . The prediction of an empirical hardness
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Figure 5.1: Graphical model for our mixture-of-experts approach.

model is actually E(y|ΦΦΦ), the mean of this distribution conditioned on the observed

feature vector.

5.1.2 Hierarchical Hardness Models

Previous work [156] has shown that if instances are restricted to be either only

satisfiable or only unsatisfiable, very different models are needed to make accurate

runtime predictions. Furthermore, models for each type of instance are simpler and

more accurate than models that must handle both types, which means that better

empirical hardness models can be built if one knows the satisfiability of instances.

With accurate satisfiability prediction (shown in the previous chapter), it would be

tempting to construct a hierarchical model that uses a classifier to pick the most

likely conditional model and then simply return that model’s prediction. However,

while this approach could sometimes be a good heuristic, it is not theoretically

sound. Intuitively, the problem is that the classifier does not take into account the

accuracies of the different conditional models. The model trained on one class of

instances could have very large (indeed, unbounded) prediction error on instances

from another class.
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A more principled method of combining conditional models can be derived

based on the probabilistic interpretation of empirical hardness models given in

Section 5.1.1. As shown previously (see Figure 5.1), there is a set of features

that are always observed and a random variable representing runtime that is con-

ditionally dependent on the features. Now the features and our classifier’s pre-

diction s are combined into a new feature vector (ΦΦΦ,s). A new random variable,

z∈ {sat,unsat}, is introduced to represent the oracle’s choice of which conditional

model will perform best for a given instance. Instead of selecting one of the predic-

tions from the two conditional models for runtime y, we use their weighted sum.

P(y|(ΦΦΦ,s)) = ∑
z∈{sat,unsat}

P(z|(ΦΦΦ,s)) ·PMz(y|(ΦΦΦ,s)), (5.1)

where PMz(y|(ΦΦΦ,s)) is the probability of y evaluated according to model Mz. Since

the models are fit using ridge regression, Eq. (5.1) can be written as

P(y|(ΦΦΦ,s)) = ∑
z∈{sat,unsat}

P(z|(ΦΦΦ,s)) ·N (y|wwwzΦΦΦ,βz), (5.2)

where wwwz and βz are the weights and the standard deviation of model Mz respec-

tively. Thus, the weighting functions P(z|(ΦΦΦ,s)) are learned to maximize the like-

lihood of the training data according to P(y|(ΦΦΦ,s)). As a hypothesis space for these

weighting functions we chose the commonly used softmax function

P(z = sat|(ΦΦΦ,s)) =
evvv>(ΦΦΦ,s)

1+ evvv>(ΦΦΦ,s)
, (5.3)

where vvv is a vector of free parameters that must be learned [24]. Therefore, the

loss function is as follows, where E(yi,z|ΦΦΦiii) is the prediction of Mz and ŷi is the

real runtime:

L =
N

∑
i=1

(
ŷi−

(
∑

k∈{sat,unsat}
P(z = k|(ΦΦΦiii,si)) ·E(yi,z|ΦΦΦiii)

))2

. (5.4)

This can be seen as a mixture-of-experts problem with the experts clamped to Msat

and Munsat (see, e.g., [24]). For implementation convenience, we used an existing

mixture of experts implementation, which is built around an EM algorithm and
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performs iterative reweighed least squares in the M step [150]. This code was

modified slightly to clamp the experts and to set the initial values of P(z|(ΦΦΦ,s)) to

s (i.e., we initialized the choice of experts to the classifier’s output). To evaluate

the model and obtain a runtime prediction for test data, we simply compute the

features xxx and the classifier’s output s, and then evaluate

E(y|(ΦΦΦ,s)) = ∑
k∈{sat,unsat}

P(z|(ΦΦΦ,s)) ·www>k ·Φ, (5.5)

where wwwk are the weights from Mk and Φ is the basis function expansion of XXX .

Thus, the classifier’s output is not directly used to select a model, but rather as a

feature upon which the weighting functions P(z|(ΦΦΦ,s)) depend, and for initializing

the EM algorithm.

5.2 Experimental Setup
For the experiments conducted throughout this chapter, two distributions of un-

structured SAT instances and two of structured instances were selected, rand3-fix

and rand3-var with 400 variables, QCP and SWGCP. Each instance set was ran-

domly split into training, validation and test sets, at a ratio of 70:15:15. All pa-

rameter tuning was performed with a validation set; test sets were used only to

generate the final results reported in this chapter. For each instance, 84 features

from nine categories were computed: problem size, variable-clause graph, vari-

able graph, clause graph, balance features, proximity to Horn formulae, LP-based,

DPLL search space, and local search space. We used quadratic basis functions

in addition to raw features to achieve better runtime prediction accuracy. The ac-

curacy of logarithm runtime prediction was measured by root mean squared error

(RMSE).

For uniform random 3-SAT instances, we ran four solvers that are known to

perform well on these distributions: kcnfs [44], oksolver [121], march dl

[72], and satz [133]. For structured SAT instances, we ran six solvers that are

known to perform well on these distributions: oksolver, zchaff [221], sato

[220], satelite [45], minisat [46], and satzoo [46]. Note that in the 2005

SAT competition, satelite won gold medals for the Industrial and Handmade
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SAT+UNSAT categories; minisat and zchaff won silver and bronze, respec-

tively, for Industrial SAT+UNSAT; and kcnfs and march dl won gold and sil-

ver, respectively, in the Random SAT+UNSAT category.

For classification, we used Sparse Multinomial Logistic Regression (SMLR)

[120], a state-of-the-art sparse classification algorithm. Similar to relevance vec-

tor machines and sparse probit regression, SMLR learns classifiers use sparsity-

promoting priors to control the expressivity of the learned classifier, thereby tend-

ing to result in better generalization. SMLR encourages parameter weights either

to be significantly large or exactly zero. It also learns a sparse multi-class classifier

that scales favorably in both the number of training samples and the input dimen-

sionality, which is important for our problems since we have tens of thousands of

samples per data set. We used the same set of raw features as were available to

the regression model, although in this case we did not find it necessary to use a

basis-function expansion of these features. Note that, since the goal of this chapter

was to obtain the highest classification accuracy, we also used probing features in

the study.

We performed all of our experiments using a cluster consisting of 50 computers

equipped with dual Intel Xeon 3.2GHz CPUs with 2MB cache and 2GB RAM,

running Suse Linux 9.1. All runs of any solver that exceeded 1 CPU hour were

terminated and recorded in our database of experimental results with a runtime of

1 CPU hour; this occurred in fewer than 3% of all runs.

5.3 Experimental Results
This section presents three sets of results. Section 5.3.1 confirms Nudelman et al.’s

observation that much simpler and more accurate empirical hardness models can

be learned when all instances are either satisfiable or unsatisfiable [156]. We refer

these two models to conditional models, while models trained on all instances are

referred to unconditional models. Let Msat (Munsat) denote a model trained only

on satisfiable (unsatisfiable) instances. The models equipped with an oracle that

knows which conditional model performs better for a given instance are refereed

to oracular models. (Note that the oracle chooses the best model for a particular

instance, not the model trained on data with the same satisfiability status as the
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Figure 5.2: Prediction accuracy comparison of oracular model (left, RMSE=0.247)
and unconditional model (right, RMSE=0.426). Distribution: QCP, solver:
satelite.

instance.) Section 5.3.2 shows that satisfiability can be accurately predicted for a

variety of data sets. Section 5.3.3 compares the prediction accuracy of hierarchical

hardness models with unconditional models and oracular models.

5.3.1 Performance of Conditional and Oracular Models

Figure 5.2 shows the difference between using oracular models and unconditional

models on structured SAT instances (distribution: QCP, solver: satelite). For

oracular models, we observed almost perfect predictions of runtime for unsatis-

fiable instances and more noisy, but unbiased predictions for satisfiable instances

(Figure 5.2, left). Figure 5.2 (right) shows that the runtime prediction for unsatis-

fiable instances made by unconditional models can exhibit both less accuracy and

more bias.

Even though using the best conditional model can result in higher prediction

accuracy, there is a large penalty for using the wrong conditional model to predict

the runtime of an instance. Figure 5.3 (left) shows that if Msat is used for runtime

prediction on an unsatisfiable instance, the prediction error is often very large.

The large bias in the inaccurate predictions is due to the fact that models trained

on different types of instances are very different. As shown in Figure 5.3 (right),

similar phenomena occur when we use Munsat to predict the runtime on a satisfiable
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Figure 5.3: Actual vs predicted logarithm runtime using only Msat (left,
RMSE=1.493) and only Munsat (right, RMSE=0.683), respectively. Distribu-
tion: QCP, solver: satelite.

instance.

The results in Table 5.1 are consistent across data sets and solvers. Oracu-

lar models always achieve higher accuracy than unconditional models. The very

large prediction errors in Table 5.1 for Msat and Munsat indicate that these models

are very different. In particular, the RMSE for using models trained on unsatisfi-

able instances to predict runtimes on a mixture of instances is as high as 14.914

(distribution: QCP, solver: sato).

Unfortunately, oracular models rely on information that is unavailable in prac-

tice: the respective accuracies of the two conditional models on a given (test) in-

stance. Nevertheless, the prediction accuracies achieved by oracular models sug-

gest that it may be promising to find some practical means of combining con-

ditional models. However, it could also be harmful, as if one makes the wrong

choices, prediction error can be much higher than when using an unconditional

model.

5.3.2 Performance of Classification

Considering the difficulty of the classification task, our experimental results proved

very good. Overall accuracy on test data is as high as 98%, and never lower than
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RMSE for rand3-var models RMSE for rand3-fix models
Solvers sat. unsat. unconditional oracular sat. unsat. unconditional oracular

satz 5.481 3.703 0.385 0.329 0.459 0.835 0.420 0.343
march dl 1.947 3.705 0.396 0.283 0.604 1.097 0.542 0.444
kcnfs 4.766 4.765 0.373 0.294 0.550 0.983 0.491 0.397

oksolver 8.169 4.141 0.443 0.356 0.689 1.161 0.596 0.497

RMSE for QCP models RMSE for SW-GCP models
Solvers sat. unsat. unconditional oracular sat. unsat. unconditional oracular

zchaff 1.866 1.163 0.675 0.303 1.230 1.209 0.993 0.657
minisat 1.761 1.150 0.574 0.305 1.280 1.275 1.022 0.682
satzoo 1.293 0.876 0.397 0.240 0.709 0.796 0.581 0.384
satelite 1.493 0.683 0.426 0.247 1.232 1.226 0.970 0.618

sato 2.373 14.914 0.711 0.375 1.682 1.887 1.353 0.723
oksolver 1.213 1.062 0.548 0.427 1.807 2.064 1.227 0.601

Table 5.1: Accuracy of hardness models for different solvers and instance distribu-
tions.
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rand3sat-var 0.9791 0.9891 0.9840
rand3sat-fix 0.8480 0.8814 0.8647

QCP 0.9801 0.9324 0.9597
SW-GCP 0.7516 0.7110 0.7340

Figure 5.4: Classification accuracy for different data sets

73%, substantially better than random guessing. Compared to Chapter 4, we show

classification can be applied to a large variety of instance distributions. With prob-

ing features (e.g., local-search probing), we are able to achieve even better classi-

fication accuracy for rand3sat-fix. Furthermore, the classifier is usually very

confident about the satisfiability of an instance (i.e., returned probabilities very

close to 0 or 1), and the more confident the classifier is, the more accurate it tends

to be. These results are summarized in Figures 5.4–5.6.

For the rand3-var data set (Figure 5.5, left), the overall classification er-

ror was only 1.6%. Using only the clauses-to-variables ratio (greater or less than

4.26) as the basis for predicting the satisfiability of an instance yielded error of
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Figure 5.5: Classification accuracy vs classifier output (top) and fraction of in-
stances within the given set vs classifier output (bottom). Left: rand3-var,
right: QCP.

3.7%; therefore, by using SMLR rather than this simple classifier, the classifica-

tion error was halved. On the QCP data set (Figure 5.5, right), classification ac-

curacy was 96%, and the classifier was extremely confident in its predictions. For

rand3sat-fix (Figure 5.6, left), the classification accuracy was even higher,

86% vs. 75% (in the previous chapter), with probing features now included. For

SW-GCP (Figure 5.6, right), classification accuracy was much lower (73%). This

was because the features were less predictive on this instance distribution, which

was consistent with the results of unconditional hardness models for SW-GCP.

Note that the fraction of instances, for which the classifier was confident was

smaller for the last two distributions than for rand3-var and QCP. However,

even for SW-GCP, there was a strong correlation between the classifier’s output

and classification accuracy on test data.

One further interesting finding is that classifiers can achieve very high accu-

racies even given very small sets of features. For example, on the QCP data, the

SMLR classifier achieved 93% accuracy with only 5 features. The five most impor-

tant features for classification on all four data sets are shown in Table 5.2. Local-

search-based features turned out to be very important for classification in all four

data sets, which may be because easy instances can be solved by computing these

probing features.
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Figure 5.6: Classification accuracy vs classifier output (top) and fraction of the in-
stances within the given set vs classifier output (bottom). Left: rand3-fix,
right: SW-GCP.

Data sets rand3-var rand3-fix

gsat BestCV Mean saps BestSolution CoeffVariance
Five saps BestStep CoeffVariance gsat BestSolution Mean

features lobjois mean depth over vars saps BestCV Mean
VCG VAR max lobjois mean depth over vars

saps BestSolution Mean gsat BestCV Mean

Accuracy (5 features) 98.4% 86.5%

Accuracy (all features ) 98.4% 86.5%

Data sets QCP SW-GCP

lobjois log num nodes over vars vars reduced depth
Five saps BestSolution Mean gsat BestCV Mean

features saps BestCV Mean nvars
vars clauses ratio VCG VAR min

saps BestStep CoeffVariance saps BestStep Mean

Accuracy (5 features) 93.0% 73.2%

Accuracy (all features) 96.0% 73.4%

Table 5.2: The five most important features (listed from most to least important) for
classification as chosen by backward selection.

Overall, the experimental results confirmed that a classifier may be used to

make accurate polynomial-time predictions pertaining to the satisfiability of SAT

instances. This finding may be useful in its own right. For example, researchers

interested in evaluating incomplete SAT algorithms on large numbers of satisfiable

instances drawn from a distribution that produces both satisfiable and unsatisfiable
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RMSE (rand3-var models) RMSE (rand3-fix models)
Solvers oracular uncond. hier. oracular uncond. hier.

satz 0.329 0.385(85%) 0.344(96%) 0.343 0.420(82%) 0.413(83%)
march dl 0.283 0.396(71%) 0.306(92%) 0.444 0.542(82%) 0.533(83%)
kcnfs 0.294 0.373(79%) 0.312(94%) 0.397 0.491(81%) 0.486(82%)

oksolver 0.356 0.443(80%) 0.378(94%) 0.497 0.596(83%) 0.587(85%)

RMSE (QCP models) RMSE (SW-GCP models)∗
Solvers oracular uncond. hier. oracular uncond. hier.

zchaff 0.303 0.675(45%) 0.577(53%) 0.657 0.993(66%) 0.983(67%)
minisat 0.305 0.574(53%) 0.500(61%) 0.682 1.022(67%) 1.024(67%)
satzoo 0.240 0.397(60%) 0.334(72%) 0.384 0.581(66%) 0.581(66%)

satelite 0.247 0.426(58%) 0.372(66%) 0.618 0.970(64%) 0.978(63%)
sato 0.375 0.711(53%) 0.635(59%) 0.723 1.352(53%) 1.345(54%)

oksolver 0.427 0.548(78%) 0.506(84%) 0.601 1.337(45%) 1.331(45%)

Table 5.3: Comparison of oracular, unconditional and hierarchical hardness mod-
els. The second number of each entry is the ratio of the model’s RMSE to the
oracular model’s RMSE. ( ∗For SW-GCP, even the oracular model exhibits a
large runtime prediction error.)

instances could use a complete search algorithm to label a relatively small training

set, and then use the classifier to filter instances.

5.3.3 Performance of Hierarchical Models

The broader performance of different unconditional, oracular and hierarchical mod-

els is shown in Table 5.3. For rand3-var, classification accuracy was very high

(classification error was only 1.6%). Our experiments confirmed that hierarchical

hardness models can achieve almost the same runtime prediction accuracy as orac-

ular models for all four solvers considered in our study. Figure 5.7 shows that using

the hierarchical hardness model to predict satz’s runtime was much better than

using the unconditional model.

On the rand3-fix dataset, results for all four solvers were qualitatively sim-

ilar: hierarchical hardness models gave slightly but consistently better runtime pre-

dictions than unconditional models. On this distribution, the gap in prediction ac-

curacy between unconditional and oracular models was already quite small, which

made further significant improvements more difficult to achieve. Detailed analysis

of actual vs. predicted runtimes for satz (see Figure 5.8) shows that particularly

for unsatisfiable instances, the hierarchical model tended to produce slightly more
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Figure 5.7: Actual vs. predicted logarithm runtime for satz on rand3-var.
Left: unconditional model (RMSE=0.387); right: hierarchical model
(RMSE=0.344).
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Figure 5.8: Actual vs. predicted logarithm runtime for satz on rand3-fix.
Left: unconditional model (RMSE=0.420); right: hierarchical model
(RMSE=0.413).

accurate predictions. Further investigation confirmed that those instances in Fig-

ure 5.8 (right) that were far away from the ideal prediction line (y = x) possessed

low classification confidence.

For the structured QCP instances, similar runtime prediction accuracy improve-

ments were obtained by using hierarchical models. Since the classification accu-
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Figure 5.9: Actual vs. predicted logarithm runtime for satelite on QCP.
Left: unconditional model (RMSE=0.426); right: hierarchical model
(RMSE=0.372).

racy for QCP was higher than the classification accuracy for rand3-fix, we

expected bigger improvements. The experimental results confirm this hypothe-

sis (Figure 5.9). For example, a hierarchical model for the satelite solver

achieved a RMSE of 0.372, compared to 0.462 obtained from an unconditional

model (whereas the oracular model yields RMSE 0.247).

However, the runtime prediction accuracy obtained by hierarchical hardness

models depends on the quality of the underlying conditional models (experts). In

the case of data set SW-GCP (see Figure 5.10), both unconditional and oracular

models had fairly large prediction error. This is also consistent with classification

error on SW-GCP being much higher (26.6%, compared to 4.0% on QCP and 13.5%

on rand3sat-fix).

When investigating the relationship between the classifier’s confidence and re-

gression runtime prediction accuracy, we find that higher classification confidence

tends to be indicative of more accurate runtime predictions. This relationship is

illustrated in Figure 5.11 for the satelite solver on the QCP data set: when the

classifier was more confident about the satisfiability of an instance, both prediction

error (Figure 5.11, left) and RMSE (Figure 5.11, right) were smaller.
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Figure 5.10: Actual vs. predicted logarithm runtime for zchaff on SW-GCP.
Left: unconditional model (RMSE=0.993); right: hierarchical model
(RMSE=0.983).
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Figure 5.11: Classifier output vs runtime prediction error (left); relationship
between classifier output and RMSE (right). Data set: QCP, solver:
satelite.

5.4 Conclusions
This chapter shows that there are big differences between models trained only on

satisfiable and unsatisfiable instances, not only for uniform random 3-SAT (as was

previously reported in Nudelman et al. (2004)), but also for distributions of struc-

69



tured SAT instances, such as QCP and SW-GCP. Furthermore, these models have

higher prediction accuracy than the respective unconditional models. A classifier

can be used to distinguish between satisfiable and unsatisfiable instances for all

above distributions with high accuracy. Compared to Chapter 4, we confirm that

adding probing features significantly improves classification accuracy. Further-

more, such a classifier can be combined with conditional hardness models into a

hierarchical hardness model using a mixture-of-experts approach. In cases of high

classification accuracy, the hierarchical models thus obtained always offered sub-

stantial improvements over an unconditional model. In the case of less accurate

classification, the hierarchical models could not offer a substantial improvement

over the unconditional model; however, hierarchical models were never signifi-

cantly worse. It should be noted that the hierarchical models come at virtually no

additional computational cost, as they depend on the same features as used for the

individual regression models.
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Chapter 6

Performance Prediction with
Empirical Performance Models

The previous chapter has demonstrated that an algorithm’s runtime can be pre-

dicted with high accuracy by using linear regression models. However, we nei-

ther have to use linear regression models nor have to predict runtime. This chap-

ter extends empirical hardness models (EHMs) to empirical performance models

(EPMs) to reflect these broadened scopes. Such models have important applica-

tions to algorithm analysis, portfolio-based algorithm selection, and the automatic

configuration of parameterized algorithms.

Over the past decade, a wide variety of techniques have been studied for build-

ing such models. In this chapter, we describe a thorough comparison of different

existing and new model building techniques for SAT, MIP, and TSP. Our exper-

iments consider 11 algorithms and 35 instance distributions with the least struc-

tured having been generated uniformly at random and the most structured having

emerged from real industrial applications. Overall, we demonstrate that our new

models yield substantially better runtime predictions than previous approaches. 1

1This chapter is based on the joint work with Frank Hutter, Holger Hoos, and Kevin Leyton-
Brown [101].
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6.1 Methods Used in the Literature
The goal of performance prediction is to find a mapping from instance features to

algorithm performance. Therefore, any regression technique can be applied. In

this chapter, we only consider machine learning methods that have previously been

used to predict algorithm runtimes: ridge regression [28, 29, 88, 92, 127, 130, 156,

209, 210], neural networks [184], Gaussian process regression [92], and regression

trees [15].

Let XXX i denote a p-dimensional feature vector for instance i. Let yyyi denote the

performance of an algorithm A on i. An EPM is a stochastic process f : XXX 7→ yyy that

defines a probability distribution over performance measures yyy for A and problem

instances with features XXX . The prediction at a particular input is a distribution over

performance values. Let Π be the set of n training instances drawn from an instance

distribution D. The training data for the regression models is simply {(XXX i,yi)}n
i=1.

Throughout this chapter, we focus on runtime as a performance measure and use

a log transformation. Since many of the methods yield only point-valued runtime

predictions, our experimental analysis focuses on the accuracy of mean predictions.

6.1.1 Ridge Regression

Ridge regression [see, e.g., 24] is a simple regression method that fits a linear func-

tion fwww(XXX) of its inputs XXX . Due its simplicity (both conceptual and computational)

and its interpretability, ridge regression has been widely used for building EPMs

[92, 127, 130, 156, 208].

As mentioned in the previous chapter, two key techniques are widely used to

better approximate algorithm performance: feature expansion for extending fea-

ture space and feature selection for removing redundant features. Many different

methods exist for feature expansion and selection, and we review three different

ridge regression variants from the recent literature that only differ in these design

decisions.

Ridge Regression Variant RR: Two-phase forward selection [209, 210]

Chapter 5 uses a simple and scalable feature selection method based on forward

selection [see e.g., 68] to build the regression models. This iterative method starts
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with an empty input set, greedily adds one linear input at a time to minimize cross-

validation error at each step, and stops when l linear inputs have been selected. It

then performs a full quadratic expansion of these l linear features (using the orig-

inal features, and then normalizing the resulting quadratic features again to have

mean zero and standard deviation one). Finally, it carries out another pass of for-

ward selection with the expanded feature set to select q features. One advantage

of this two-phase approach is scalability: it can handle a very large number of

features. The computational complexity of forward selection can be reduced by

exploiting the fact that the inverse matrix A′−1 resulting from including one ad-

ditional feature can be computed incrementally by two rank-one updates of the

previous inverse matrix A−1, requiring quadratic time rather than cubic time [181].

In the experiments, we fix l = 30 to keep the result of a full quadratic basis

function expansion manageable in size. Free parameters are the maximum number

of quadratic terms q and the ridge penalizer ε; by default, we use q = 20 and

ε = 10−3.

Ridge Regression Variant SPORE-FoBa: Forward-backward selection [88]

Recently, Huang et al. (2010) described a method for predicting algorithm run-

time, termed Sparse POlynomial REgression (SPORE), which is based on ridge

regression with forward-backward (FoBa) feature selection. In contrast to the two

RR variants, SPORE-FoBa employs a cubic feature expansion (based on its own

normalization of the original predictors). Essentially, it performs a single pass of

forward selection, adding a small set of terms at each step determined by a forward-

backward phase on a feature’s candidate set. Specifically, having already selected

a set of terms T based on raw features S, SPORE-FoBa loops over all raw features

r /∈ S, constructing a candidate set Tr that consists of all polynomial expansions

of S∪{r} that include r with non-zero degree and whose total degree is bounded

by 3. For each such candidate set Tr, the forward-backward phase iteratively adds

the best term t ∈ T \Tr if its reduction χ of root mean squared error (RMSE) ex-

ceeds a threshold γ (forward step), and then removes the worst term t ∈ T , if its

reduction of RMSE is below 0.5 · γ (backward step). This phase terminates when

no single term t ∈ T \Tr can be added to reduce RMSE by more than γ . Finally,
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SPORE-FoBa’s outer forward selection loop chooses the T resulting from the best

of its forward-backward phases, and iterates until the number of terms in T reach

a pre-specified maximum of tmax terms. SPORE-FoBa’s free parameters are the

ridge penalizer ε , tmax, and γ , with defaults ε = 10−3, tmax = 10, and γ = 0.01.

6.1.2 Neural Networks

Neural networks are a well-known regression method inspired by information pro-

cessing in human brains. The multilayer perceptron (MLP) is a particularly popular

type of neural network that organizes single computational units (“neurons”) in lay-

ers (input, hidden, and output layers), using the outputs of all units in a layer as the

inputs of all units in the next layer. Each neuron ni in the hidden and output layers

with k inputs ai = [ai,1, . . . ,ai,k] has an associated weight vector wi = [wi,1, . . . ,wi,k]

and a bias term bi, and computes a function wi
Tai +bi. For neurons in the hidden

layer, the result of this function is further propagated through a nonlinear acti-

vation function g : R→ R (which is often instantiated as tanh). Given an input

x = [x1, . . . ,xp], a network with a single hidden layer of h neurons n1, . . . ,nh and a

single output neuron nh+1 then computes output

f̂ (x) =

(
h

∑
j=1

g(wT
j ·x+b j) ·wh+1, j

)
+bh+1.

The p ·h+h weight terms and h+1 bias terms can be combined into a single weight

vector w, which can be set to minimize the network’s prediction error using any

continuous optimization algorithm (e.g., the classic “backpropagation” algorithm

performs gradient descent to minimize squared prediction error).

Smith-Miles and van Hemert (2011) used an MLP with one hidden layer of 28

neurons to predict the runtime of local search algorithms for solving timetabling

instances. They used the proprietary neural network software Neuroshell, but ad-

vised us to compare to an off-the-shelf Matlab implementation instead. We thus

employed the popular Matlab neural network package NETLAB [151]. NETLAB

uses activation function g = tanh and supports a regularizing prior on weights,

minimizing the error metric ∑
N
i ( f̂ (xi)− yi)

2 +α ·wT ·w, where α is a parameter

determining the prior’s strength. In the experiments, we used NETLAB’s default
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optimizer (scaled conjugate gradients, SCG), to minimize this error metric, stop-

ping the optimization after the default of 100 SCG steps. Free parameters are the

regularization prior α and the number of hidden neurons h; for the default, we used

NETLAB’s default α = 0.01 and, like Smith-Miles and van Hemert [184], h = 28.

6.1.3 Gaussian Process Regression

Stochastic Gaussian processes (GPs) [168] are a popular class of regression mod-

els with roots in geostatistics, where they are also termed Kriging models [119].

GPs are the dominant modern approach for building response surface models for

modeling a process when the underlying fundamental mechanism is largely un-

known [14, 109, 172, 174].

To construct a GP regression model, we first select a parameterized kernel

function kλ to characterize the degree of similarity between two elements of the

input space. We also need to determine the variance σ2 of Gaussian-distributed

observation noise, which in our setting corresponds to the variance of the tar-

get algorithm’s runtime distribution. The predictive distribution of a zero-mean

Gaussian stochastic process for response yn+1 at input XXXn+1 given training data

D = {(XXX1,y1), . . . ,(XXXn,yn)}, measurement noise variance σ2, and kernel function

k, is then the Gaussian

p(yn+1|XXXn+1,XXX1:n,yyy1:n) = N (yn+1|µn+1,Varn+1) (6.1)

with mean and variance

µn+1 = kkk∗T · [KKK +σ
2 · IIInnn]

−1 · yyy1:n

Varn+1 = k∗∗− kkk∗T · [KKK +σ
2 · I]−1 · kkk∗,
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where

KKK =


k(XXX1,XXX1) . . . k(XXX1,XXXn)

. . .

k(XXXn,XXX1) . . . k(XXXn,XXXn)


kkk∗ = (k(XXX1,XXXn+1), . . . ,k(XXXn,XXXn+1))

T

k∗∗ = k(XXXn+1,XXXn+1)+σ
2.

Refer to Rasmussen and Williams [168] for a derivation.

A variety of kernel functions are possible, but the most common choice for

continuous predictors is the squared exponential kernel

Kcont(XXX i,XXX j) = exp

[
p

∑
l=1

(−λl · (Xi,l−X j,l)
2)

]
, (6.2)

where λ1, . . . ,λp are kernel parameters. This kernel is most appropriate if the re-

sponse is expected to vary smoothly in the predictors XXX .

The GP equations above assume fixed kernel parameters λ1, . . . ,λp and fixed

observation noise variance σ2. These constitute the GP’s hyperparameters, which

are typically set by maximizing the marginal likelihood p(yyy1:N) of the data with

a gradient-based optimizer. We refer to Rasmussen and Williams [168] for the

equations. The choice of optimizer can make a substantial difference in practice.

We used minFunc [176] with its default setting of a limited-memory version of

BFGS [154].

Learning a GP model from data can be computationally expensive. Inverting

the n by n matrix [KKK +σ2 · In] takes O(n3) time and has to be performed in every

step of the hyperparameter optimization (h steps in total), yielding a total complex-

ity of O(h · n3). Subsequent predictions at a new input are relatively cheap: O(n)

and O(n2) for predictions of the mean and the variance, respectively.

6.1.4 Regression Trees

Regression trees [27] are simple tree-based regression models. They are known to

handle discrete predictors well; we believe that their first application to the predic-
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tion of algorithm runtime was by Bartz-Beielstein and Markon (2004).

The leaf nodes of regression trees partition the input space into disjoint regions

R1, . . . ,RM, and use a simple model for prediction in each region Rm; the most com-

mon choice is to predict a constant cm. This leads to the following prediction for

an input point XXX : µ̂(XXX) = ∑
M
m=1 cm · IXXX∈Rm , where the indicator function Iz takes

value 1 if the proposition z is true and 0 otherwise. Note that since the regions

Rm partition the input space, this sum will always involve only one nonzero term.

We denote the subset of training data points in region Rm as Dm. Under the stan-

dard squared error loss function ∑
n
i=1 (yi− µ̂(XXX i))

2, the error-minimizing choice of

constant cm in region Rm is then the sample mean of the data points in Dm:

cm =
1
|Dm| ∑

XXX i∈Rm

yi. (6.3)

To construct a regression tree, we use the following standard recursive proce-

dure (see, e.g., Breiman et al. (1984)), which starts at the root of the tree with all

available training data points D = {(XXX i,yi)}n
i=1. We consider binary partitionings

of a given node’s data along split variables j and split points s. For a real-valued

split variable j, s is a scalar and data point XXX i is assigned to region R1( j,s) if

Xi, j ≤ s and to region R2( j,s) otherwise. For a categorical split variable j, s is a

set, and data point xxxi is assigned to region R1( j,s) if Xi, j ∈ s and to region R2( j,s)

otherwise. At each node, we select split variable j and split point s to minimize the

sum of squared differences to the regions’ means,

l( j,s) =

[
∑

XXX i∈R1( j,s)
(yi− c1)

2 + ∑
XXX i∈R2( j,s)

(yi− c2)
2

]
, (6.4)

where c1 and c2 are chosen according to Equation (6.3) as the sample means in

regions R1( j,s) and R2( j,s) respectively. We continue this procedure recursively,

finding the best split variable and split point, partitioning the data into two child

nodes, and recursing into the child nodes. The process terminates when all train-

ing data points in a node share the same xxx values, meaning that no more splits

are possible. This procedure tends to overfit the data, which can be mitigated by

recursively pruning away branches that contribute little to the model’s predictive
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accuracy. We use cost-complexity pruning with 10-fold cross-validation to identify

the best tradeoff between complexity and predictive quality (see, e.g., Hastie et al.

(2009) for details).

In order to predict the response value at a new input, XXX i, we propagate XXX down

the tree, that is, at each node with split variable j and split point s, we continue to

the left child node if XXX i, j ≤ s, and to the right child node otherwise. The predictive

mean for XXX i is the constant cm in the leaf that this process selects; there is no

variance predictor.

6.2 New Modeling Techniques for EPMs
We also introduce some advanced machine learning techniques, and apply them

for the first time to algorithm performance prediction. In particular, we introduce

two new, more sophisticated, runtime prediction models. The first is based on

an approximate version of Gaussian processes that scale gracefully to many data

points, and also includes a new kernel function for handling categorical data. The

second one is based on random forests, collections of regression trees that yield

much better predictions than single trees and are known to perform well for discrete

inputs.

6.2.1 Scaling to Large Amounts of Data with Approximate Gaussian
Processes

Fitting Gaussian processes has complexity cubic in the number of data points,

which limits the amount of data that can practically be used to fit these models.

To deal with this obstacle, the machine learning literature has proposed various

approximations to Gaussian processes [see, e.g., 167]. We experimented with

the Bayesian committee machine [199], the informative vector machine [123], and

the projected process (PP) approximation [168]. All of these methods performed

rather similarly, with a slight edge for the PP approximation. Following, we give

the final equations for the PP’s predictive mean and variance (see, e.g., Rasmussen

and Williams (2006) for a derivation).

The PP approximation to GPs uses a subset of a of the n training data points,

the so-called active set. Let v be a vector consisting of the indices of these a data
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points. We extend the notation for exact GPs (see Section 6.1.3) as follows: let

Kaa denote the a by a matrix with Kaa(i, j) = k(xxxv(i),xxxv( j)) and let KKKan denote the

a by n matrix with KKKan(i, j) = k(xxxv(i),xxx j). The predictive distribution of the PP

approximation is then a Gaussian with mean and variance

µn+1 = kkk∗T · (σ2 ·KKKaa +KKKan ·KKKT
an)
−1KKKan · y1:n

Varn+1 = k∗∗− kkk∗T ·KKK−1
aa · kkk∗+σ

2 · kkk∗T · (σ2 ·KKKaa +KKKan ·KKKT
an)
−1 · kkk∗.

We perform h steps of hyperparameter optimization based on a standard GP

trained using a set of a data points sampled uniformly at random without replace-

ment from the n input data points. We then use the resulting hyperparameters and

another independently sampled set of a data points (sampled in the same way) for

the subsequent PP approximation. In both cases, if a> n, we only use n data points.

The complexity of the PP approximation is superlinear only in a, meaning

that the approach is much faster when we choose a << n. The hyperparameter

optimization based on a data points takes O(h ·a3) time. In addition, there is a one-

time cost of O(a2 · n) for evaluating the PP equations. Thus, the complexity for

fitting the approximate GP model is O([ha+ n] · a2), as compared to O(h · n3) for

the exact GP model. The complexity for predictions with this PP approximation is

O(a) for the mean and O(a2) for the variance of the predictive distribution [168],

as compared to O(n) and O(n2) for the exact version. In our experiments we set

a = 300 and h = 50 to achieve a good compromise between speed and predictive

accuracy.

6.2.2 Random Forest Models

Random forests [26] are a flexible tool for regression and classification, and are

particularly effective for high-dimensional and discrete input data. To the best of

our knowledge, they have not yet been used for algorithm runtime predictions ex-

cept in the most recent work on algorithm configuration [98, 99] performed by our

own group. Here, we describe the standard RF framework and some nonstandard

implementation choices.
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The Standard Random Forest Framework

A random forest (RF) consists of a set of regression trees. If grown to sufficient

depths, regression trees can capture very complex interactions and thus have low

bias. However, they can also have high variance: small changes in the data can

lead to a dramatically different tree. Random forests [26] reduce this variance

by aggregating predictions across multiple different trees. These trees are made

to be different in one of two ways: by training them on different subsamples of

the training data, or by permitting only a random subset of the variables as split

variables at each node. Our experiments show slightly worse performance with a

combination of the two approaches. Therefore, we chose the latter option with the

full training set for each tree.

Mean predictions for a new input xxx are trivial: predict the response for xxx with

each tree and average the predictions. Predictive quality improves as the number

of trees B grows, but computational cost also grows linearly in B. We used B = 10

throughout our experiments to keep computational costs low. Random forests have

two additional hyperparameters: the percentage of variables to consider at each

split point, perc, and the minimal number of data points required in a node to make

it eligible to be split further, nmin. We set perc = 0.5 and nmin = 5 by default.

Modifications to Standard Random Forests

We introduce a simple, yet effective, method for quantifying predictive uncertainty

in random forests. (Our method is similar to that of Meinshausen [143], who re-

cently introduced quantile regression trees that allow for predictions of quantiles

of the predictive distribution; in contrast, we predict mean and variance.) In each

leaf of each regression tree, in addition to the empirical mean of the training data

associated with that leaf, we store that data’s empirical variance. To avoid mak-

ing deterministic predictions for leaves with few data points, we round the stored

variance up to at least the constant σ2
min; we set σ2

min = 0.01 throughout. For

any input, each regression tree Tb thus yields a predictive mean µb and a predic-

tive variance σ2
b . To combine these estimates into a single estimate, we treat the

forest as a mixture model of B different models. We denote the random variable

for the prediction of tree Tb as Lb and the overall prediction as L, and then have
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L = Lb if Y = b, where Y is a multinomial variable with p(Y = i) = 1/B for

i = 1, . . . ,B. The mean and variance for L can then be expressed as follows:

µ = E[L] =
1
B

B

∑
b=1

µb

σ
2 = Var(L) = E[Var(L|Y )]+Var(E[L|Y ])

=

(
1
B

B

∑
b=1

σ
2
b

)
+
(
E[E(L|Y )2]−E[E(L|Y )]2

)
=

(
1
B

B

∑
b=1

σ
2
b

)
+

(
1
B

B

∑
b=1

µ
2
b

)
−E[L]2

=

(
1
B

B

∑
b=1

σ
2
b +µ

2
b

)
−µ

2.

Thus, the mean prediction is simply the mean across the individual trees’ mean

predictions. To compute the variance prediction, we used the law of total variance

[206], which computes the total variance as the variance across the individual trees’

mean predictions (predictions are uncertain if the trees disagree), plus the average

variance of each tree (predictions are uncertain if the individual tree predictions are

uncertain).

A second nonstandard ingredient in our models concerns the choice of split

points. Consider splits on a real-valued variable j. Note that when the loss in

Equation (6.4) is minimized by choosing split point s between the values of xxxk, j

and xxxl, j, one is still free to choose the exact location of s anywhere in the interval

(xxxk, j,xxxl, j). In typical implementations, s is chosen as the midpoint between xxxk, j and

xxxl, j. Instead, here we draw it uniformly at random from (xxxk, j,xxxl, j). In the limit of

an infinite number of trees, this leads to a linear interpolation of the training data

instead of a partition into regions of constant prediction. Furthermore, it causes

variance estimates to vary smoothly and to grow with the distance from observed

data points.

Complexity of Fitting Random Forests

The computational cost for fitting a random forest is relatively low. We need to fit

B regression trees, each of which is somewhat easier to fit than a normal regression
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Abbreviation Reference Section Description

RR 6.1.1 Ridge regression with 2-phase forward selection
SP 6.1.1 SPORE-FoBa (ridge regression with forward-backward selection)
NN 6.1.2 Feedforward neural network with one hidden layer
PP 6.2.1 Projected process (approximate Gaussian process); optimized via minFunc
RT 6.1.4 Regression tree with cost-complexity pruning
RF 6.2.2 Random forest

Table 6.1: Overview of our models.

tree since at each node we only consider v=max(1,bperc · pc) out of the p possible

split variables. Building B trees simply takes B times as long as building a single

tree. Thus, the complexity of learning a random forest is O(B · v · n2 · logn) in the

worst case (splitting off one data point at a time) and O(B · v ·n · log2 n) in the best

case (perfectly balanced trees).

Prediction with a random forest model entails predicting with B regression

trees (plus an O(B) computation to compute mean and variance across those pre-

dictions). The complexity of predictions is thus O(B · n) in the worst case and

O(B · logn) for perfectly balanced trees.

6.3 Experimental Setup
Table 6.1 provides an overview of the models we evaluated; we evaluate each

method’s accuracy at predicting the runtime of a variety of solvers for SAT, MIP,

and TSP on multiple benchmarks, which are described in Chapter 3.

For SAT, we used a wide range of instance distributions. Briefly, INDU, HAND,

and RAND are collections of industrial, handmade, and random instances from the

international SAT competitions and races. COMPETITON is their union. SWV and

IBM are sets of software and hardware verification instances, and SWV-IBM is

their union. Finally, RANDSAT is a subset of RAND containing only satisfiable in-

stances. For all distributions but this last one, we ran the popular tree search solver,

Minisat 2.0 [46]. For INDU, SWV and IBM, we also ran two more solvers: the

winner of the SAT Race 2010, CryptoMiniSat [186], and SPEAR [8] (which

has shown state-of-the-art performance on IBM and SWV with optimized parameter

settings [93]). Finally, to evaluate predictions for local search algorithms, we used

the RANDSAT instances, and considered two solvers: TNM [203] (the winner of the
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SAT 2009 competition in the random satisfiable category) and the dynamic local

search algorithm SAPS [91] (which we see as a baseline).

For MIP, we used two instance distributions from computational sustainabil-

ity (RCW and CORLAT), one from winner determination in combinatorial auctions

(REG), two unions of these (CR and CRR), and a very heterogeneous mix of publicly

available MIP instances (BIGMIX). We used the two state-of-the-art commercial

solvers, CPLEX 12.1 [104] and Gurobi 2.0 [67]. We also used the two strongest

non-commercial solvers, SCIP 1.2.1.4 [17] and lp solve 5.5 [16].

For TSP, we used three instance distributions: uniform random instances (PORTGEN),

random clustered instances (PORTCGEN), and TSPLIB, a heterogeneous set of

prominent TSP instances. We ran the most prominent systematic and local search

algorithms, Concorde [5] and LK-H [70]. For the latter, we computed runtimes

as the time required to find a solution with optimal quality.

For each algorithm–distribution pair, we executed the algorithm with its default

parameter setting on all instances of the distribution, measured runtimes, and col-

lected the results. All algorithm runs were executed on a cluster of 55 dual 3.2GHz

Intel Xeon PCs with 2MB cache and 2GB RAM, running OpenSuSE Linux 11.1;

runtimes were measured as CPU time on these reference machines. We cut off each

algorithm run after one CPU hour; this gives rise to capped runtime observations,

because we only observe a lower bound on the runtime. Like most past work on

runtime modeling, we simply counted such capped runs as having taken one hour.

Due to the resolution of the CPU timer, runtimes below 0.01 seconds are measured

as 0 seconds. To make yi = log(ri) well defined in these cases, such low runtimes

are counted as 0.005.

Since the goal is to compare different model construction techniques, all the

features listed in Chapter 3 were used. The features that have constant value across

all training data points are removed and the remaining ones are normalized to have

mean 0 and standard deviation 1. For some instances, certain feature values were

missing because of timeouts, crashes, or because they were undefined (e.g., be-

cause preprocessing already solved an instance). These missing values occur rel-

atively rarely, a simple mechanism is used for handling them: disregard missing

values for the purposes of normalization, and then set the missing values to zero.

This means that the feature’s value is at the data mean and is thus minimally in-
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formative; in some models (ridge regression and neural networks), this mechanism

actually lead us to ignore the feature, since its weight is multiplied by zero.

We evaluate methods for building empirical performance models by assess-

ing the quality of the predictions they make about inputs that were not used to

train the model. This can be done visually (for example, in the scatter plots in

Figure 6.1), or quantitatively. We considered three complementary quantitative

metrics to evaluate mean predictions {µi}n
i=1 and predictive variances {σ2}n

i=1

given true performances {yi}n
i=1. Root mean squared error (RMSE) is defined as√

1/n ·∑n
i=1(yi−µi)2; Pearson’s correlation coefficient (CC) is defined as (∑n

i=1(µiyi)−
n · µ̄ · ȳ)/((n−1) · sµ · sy), where x̄ and sx denote sample mean and standard devia-

tion of x; and log likelihood (LL) is defined as ∑
n
i=1 logϕ( yi−µi

σi
), where ϕ denotes

the probability density function (PDF) of a standard normal distribution. Intui-

tively, LL is the log probability of observing the true values yi under the predicted

distributions N (µi,σ
2
i ). For CC and LL, higher values are better, while for RMSE

lower values are better. We used k-fold cross-validation and report means of these

measures across the k folds. Scatter plots show cross-validated predictions for a

random subset of up to 1 000 data points.

6.4 Experimental Results
Table 6.2 provides quantitative results for all benchmarks, and Figure 6.1 visu-

alizes results. At the broadest level, we can conclude that most of the methods

were able to capture sufficient information pertaining to algorithm performance on

training data to make meaningful predictions on test data, most of the time: easy

instances tended to be predicted as easy, and hard ones as hard. For example, in the

case of predicting the runtime of Minisat 2.0 on a heterogeneous mix of SAT

competition instances (refer to the leftmost column in Figure 6.1 and the top row

of Table 6.2), Minisat 2.0 runtimes varied by almost six orders of magnitude,

while predictions with the better models rarely were off by more than one order

of magnitude (outliers may draw the eye in the scatter plot, but quantitatively, the

RMSE for predicting log10 runtime is low – e.g., 0.47 for random forests, which

means an average misprediction of a factor of 3).

In our experiments, random forests were indeed the overall winner among the
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RMSE Time to learn model (s)

Domain RR SP NN PP RT RF RR SP NN PP RT RF

Minisat-COMPETITON 1.01 1.25 0.62 0.92 0.68 0.47 6.8 28.08 21.84 46.56 20.96 22.42
Minisat-HAND 1.05 1.34 0.63 0.85 0.75 0.51 3.7 7.92 6.2 44.14 6.15 5.98
Minisat-RAND 0.64 0.76 0.38 0.55 0.5 0.37 4.46 7.98 10.81 46.09 7.15 8.36
Minisat-INDU 0.94 1.01 0.78 0.86 0.71 0.52 3.68 7.82 5.57 48.12 6.36 4.42
Minisat-SWV-IBM 0.53 0.76 0.32 0.52 0.25 0.17 3.51 6.35 4.68 51.67 4.8 2.78
Minisat-IBM 0.51 0.71 0.29 0.34 0.3 0.19 3.2 5.17 2.6 46.16 2.47 1.5
Minisat-SWV 0.35 0.31 0.16 0.1 0.1 0.08 3.06 4.9 2.05 53.11 2.37 1.07

CryptoMiniSat-INDU 0.94 0.99 0.94 0.9 0.91 0.72 3.65 7.9 5.37 45.82 5.03 4.14
CryptoMiniSat-SWV-IBM 0.77 0.85 0.66 0.83 0.62 0.48 3.5 10.83 4.49 48.99 4.75 2.78
CryptoMiniSat-IBM 0.65 0.96 0.55 0.56 0.53 0.41 3.19 4.86 2.59 44.9 2.41 1.49
CryptoMiniSat-SWV 0.76 0.78 0.71 0.66 0.63 0.51 3.09 4.62 2.09 53.85 2.32 1.03

SPEAR-INDU 0.95 0.97 0.85 0.87 0.8 0.58 3.55 9.53 5.4 45.47 5.52 4.25
SPEAR-SWV-IBM 0.67 0.85 0.53 0.78 0.49 0.38 3.49 6.98 4.32 48.48 4.9 2.82
SPEAR-IBM 0.6 0.86 0.48 0.66 0.5 0.38 3.18 5.77 2.58 45.72 2.5 1.56
SPEAR-SWV 0.49 0.58 0.48 0.44 0.47 0.34 3.09 6.24 2.09 56.09 2.38 1.13

TNM-RANDSAT 1.01 1.05 0.94 0.93 1.22 0.88 3.79 8.63 6.57 46.21 7.64 5.42
SAPS-RANDSAT 0.94 1.09 0.73 0.78 0.86 0.66 3.81 8.54 6.62 49.33 6.59 5.04

CPLEX-BIGMIX 2.7E8 0.93 1.02 1 0.85 0.64 3.39 8.27 4.75 41.25 5.33 3.54
Gurobi-BIGMIX 1.51 1.23 1.41 1.26 1.43 1.17 3.35 5.12 4.55 40.72 5.45 3.69
SCIP-BIGMIX 4.5E6 0.88 0.86 0.91 0.72 0.57 3.43 5.35 4.48 39.51 5.08 3.75
lp solve-BIGMIX 1.1 0.9 0.68 1.07 0.63 0.5 3.35 4.68 4.62 43.27 2.76 4.92

CPLEX-CORLAT 0.49 0.52 0.53 0.46 0.62 0.47 3.19 7.64 5.5 27.54 4.77 3.4
Gurobi-CORLAT 0.38 0.44 0.41 0.37 0.51 0.38 3.21 5.23 5.52 28.58 4.71 3.31
SCIP-CORLAT 0.39 0.41 0.42 0.37 0.5 0.38 3.2 7.96 5.52 26.89 5.12 3.52
lp solve-CORLAT 0.44 0.48 0.44 0.45 0.54 0.41 3.25 5.06 5.49 31.5 2.63 4.42

CPLEX-RCW 0.25 0.29 0.1 0.03 0.05 0.02 3.11 7.53 5.25 25.84 4.81 2.66
CPLEX-REG 0.38 0.39 0.44 0.38 0.54 0.42 3.1 6.48 5.28 24.95 4.56 3.65
CPLEX-CR 0.46 0.58 0.46 0.43 0.58 0.45 4.25 11.86 11.19 29.92 11.44 8.35
CPLEX-CRR 0.44 0.54 0.42 0.37 0.47 0.36 5.4 18.43 17.34 35.3 20.36 13.19

LK-H-PORTGEN 0.61 0.63 0.64 0.61 0.89 0.67 4.14 1.14 12.78 22.95 11.49 11.14
LK-H-PORTCGEN 0.71 0.72 0.75 0.71 1.02 0.76 4.19 2.7 12.93 24.78 11.54 10.79
LK-H-TSPLIB 9.55 1.11 1.77 1.3 1.21 1.06 1.61 3.02 0.51 4.3 0.17 0.11

Concorde-PORTGEN 0.41 0.43 0.43 0.42 0.59 0.45 4.18 3.6 12.7 22.28 10.79 9.9
Concorde-PORTCGEN 0.33 0.34 0.34 0.34 0.46 0.35 4.17 2.32 12.68 24.8 11.16 10.18
Concorde-TSPLIB 120.6 0.69 0.99 0.87 0.64 0.52 1.54 2.66 0.47 4.26 0.22 0.12

Table 6.2: Quantitative comparison of models for runtime predictions on pre-
viously unseen instances. We report 10-fold cross-validation perfor-
mance. Lower RMSE values are better (0 is optimal). Note the very
large RMSE values for ridge regression on some data sets (we use sci-
entific notation, denoting “×10x” as “Ex”); these large errors are due to
extremely small/large predictions for a few data points. Boldface indi-
cates performance not statistically significantly different from the best
method in each row.

85



Spearman rank correlation coefficient Log likelihood

Domain RR SP NN PP RT RF PP RF

Minisat-COMPETITON 0.69 0.57 0.86 0.79 0.83 000...999 -4.78 −−−000...333333
Minisat-HAND 0.69 0.59 0.87 0.81 0.84 000...999111 -2.65 −−−000...444333
Minisat-RAND 0.79 0.74 000...888222 0.8 0.78 000...888333 -1.12 −−−000...111888
Minisat-INDU 0.7 0.66 0.85 0.79 0.87 000...999222 -5.72 −−−000...444333
Minisat-SWV-IBM 0.95 0.89 0.97 0.96 0.98 000...999999 -6.64 000...111222
Minisat-IBM 0.94 0.91 0.97 0.97 0.98 000...999999 -6.13 000...000666
Minisat-SWV 0.94 0.95 0.97 000...999888 000...999999 000...999999 -4.83 000...222

CryptoMiniSat-INDU 0.66 0.59 0.72 0.71 0.76 000...888111 -5.99 −−−000...999
CryptoMiniSat-SWV-IBM 0.93 0.9 0.94 0.91 0.96 000...999777 -6.91 −−−000...333777
CryptoMiniSat-IBM 0.93 0.85 0.94 0.94 000...999666 000...999777 -5.8 −−−000...222333
CryptoMiniSat-SWV 0.92 0.94 000...999555 0.93 000...999777 000...999777 -6.88 −−−000...555999

SPEAR-INDU 0.63 0.62 0.78 0.75 0.82 000...888888 -6.66 −−−000...555999
SPEAR-SWV-IBM 0.94 0.91 0.95 0.92 0.97 000...999888 -13.6 −−−000...222222
SPEAR-IBM 0.95 0.87 0.96 0.93 0.96 000...999888 −−−222...555888 −−−000...111888
SPEAR-SWV 0.95 0.93 0.94 0.95 0.96 000...999777 -7.33 −−−000...111999

TNM-RANDSAT 0.87 0.86 0.9 0.89 0.83 000...999111 -4.65 −−−111...333222
SAPS-RANDSAT 0.9 0.86 0.93 0.92 0.91 000...999555 -3.16 −−−000...777999

CPLEX-BIGMIX 0.82 0.81 0.81 0.76 0.84 000...999 -8.06 −−−000...777
Gurobi-BIGMIX 000...666222 000...666222 0.57 0.57 0.54 000...666444 -18.09 −−−222...333666
SCIP-BIGMIX 0.81 0.76 0.81 0.73 0.84 000...888999 -7.33 −−−000...777222
lp solve-BIGMIX 0.34 0.31 0.35 0.22 0.47 000...666 -13.22 −−−000...222444

CPLEX-CORLAT 0.95 0.95 0.94 000...999666 0.93 000...999555 -4.46 −−−000...555333
Gurobi-CORLAT 000...999555 0.93 0.94 000...999555 0.92 000...999555 -3.12 −−−000...333888
SCIP-CORLAT 0.94 0.94 0.93 000...999555 0.91 000...999444 -5.04 −−−000...333888
lp solve-CORLAT 0.76 0.75 0.75 0.75 000...888222 0.76 -1.53 −−−000...222555

CPLEX-RCW 0.94 0.92 0.99 111 1 111 222 0.23
CPLEX-REG 000...888777 000...888777 0.82 000...888777 0.75 0.84 -8.52 −−−000...555999
CPLEX-CR 0.9 0.86 0.9 000...999111 0.85 0.9 -15.46 −−−000...555444
CPLEX-CRR 0.89 0.85 0.9 000...999222 0.88 000...999222 -20.04 −−−000...222999

LK-H-PORTGEN 000...888222 0.81 0.8 0.82 0.7 0.77 -46.04 −−−111...111666
LK-H-PORTCGEN 000...777333 0.72 0.69 000...777333 0.55 0.68 -26.86 −−−111...222555
LK-H-TSPLIB 000...666444 000...888 000...555555 000...777111 000...777666 000...777555 -3.78 −−−222

Concorde-PORTGEN 000...888888 0.88 0.88 000...888888 0.79 0.86 -34.47 −−−000...666666
Concorde-PORTCGEN 000...888666 0.85 0.85 0.85 0.76 0.84 -26.36 −−−000...333666
Concorde-TSPLIB 000...777333 000...888666 0.72 0.67 000...888666 000...999111 −−−111...444444 −−−111...111

Table 6.3: Quantitative comparison of models for runtime predictions on un-
seen instances. We report 10-fold cross-validation performance. Higher
rank correlations are better (1 is optimal); log-likelihoods are only de-
fined for models that yield a predictive distribution (here: PP and RF);
higher values are better. Boldface indicates results not statistically sig-
nificantly from the best.
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Figure 6.1: Visual comparison of models for runtime predictions on previ-
ously unseen test instances. The data sets used in each column are
shown at the top. The x-axis of each scatter plot denotes true runtime
and the y-axis 2-fold cross-validated runtime as predicted by the respec-
tive model; each dot represents one instance. Predictions above 3000 or
below 0.001 are denoted by a blue cross rather than a black dot. Plots
for other benchmarks are qualitatively similar.
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different methods, yielding the best predictions in terms of all our quantitative

measures (refer to root mean squared error results in Table 6.2; correlation coeffi-

cients and log likelihoods results in Table 6.3). For SAT, they were always the best

method, and for MIP they clearly yielded the best performance for the most het-

erogeneous instance set, BIGMIX (refer to Column 2 of Figure 6.1). We attribute

the strong performance of random forests on highly heterogeneous data sets to a

tree-based approach being able to model very different parts of the data separately,

whereas methods that fit continuous functions typically allow the fit in one region

to affect the fit in another. Indeed, all ridge regression variants posed problems with

extremely-badly-predicted outliers for BIGMIX. For the other MIP datasets, either

random forests or projected processes performed best, often followed closely by

ridge regression variant RR. CPLEX’s performance on set RCW was a special case

that could be predicted extremely well across models (see Column 3 of Figure 6.1).

Finally, for TSP, projected processes and ridge regression had a slight edge for the

homogeneous PORTGEN and PORTCGEN benchmarks, whereas tree-based meth-

ods (once again) performed best on the most heterogeneous benchmark, TSPLIB.

The last column of Figure 6.1 shows that in the case where random forests per-

formed worst the qualitative differences in predictions were small. In terms of

computational requirements, random forests were among the cheapest methods,

taking between 0.1 and 11 seconds for model learning.

Since the number of instances for which performance data is available can be

very limited in practical, we are interested in how the predictive quality of our mod-

els depends on the number of training instances. Figure 6.2 visualizes this scaling

behaviour for six representative benchmarks (plots for other benchmarks are qual-

itatively similar). We show CC rather than RMSE, for two reasons. First, plots of

RMSE are often cluttered due to poorly performing outliers (mostly of the ridge

regression variants). Second, plotting CC allows immediate visual performance

comparisons across benchmarks since CC ∈ [−1,1].

Overall, random forests performed best across training set sizes. Interestingly,

both versions of ridge regression (SP and RR) performed poorly for small training

sets. This observation is significant since most past work employed ridge regres-

sion to construct empirical performance models in situations when data was sparse

as in old versions of SATzilla, for example [210].
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Figure 6.2: Prediction quality for varying numbers of training instances. For
each model and number of training instances, we plot the mean (taken
across 10 cross-validation folds) correlation coefficient (CC) between
true and predicted runtimes for new test instances; larger CC is better, 1
is perfect. Plots for other benchmarks are qualitatively similar.

6.5 Conclusions
This chapter assessed and advanced the state of the art in predicting the perfor-

mance of combinatorial algorithms. We proposed new techniques for building such

predictive models and conducted the largest experimental study of which we are

aware—predicting the performance of 11 algorithms on 35 instance distributions

from SAT, MIP and TSP—comparing our new modeling approaches with all those

previously used in the literature. We showed that our new approaches—chiefly

those based on random forests, but also approximate Gaussian processes—offer the

best performance, whether we consider predictions for unseen problem instances.

We also demonstrated that very accurate predictions (correlation coefficients be-

tween predicted and true runtime exceeding 0.9) are possible based on very small

amounts of training data (only hundreds of runtime observations). Overall, we

showed that our methods are fast, general, and achieve good, robust performance;

we hope they will be useful to a wide variety of researchers who seek to model al-
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gorithm performance for algorithm analysis, scheduling, algorithm portfolio con-

struction, automated algorithm configuration, and other applications.
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Chapter 7

SATzilla: Portfolio-based
Algorithm Selection for SAT

It has been widely observed that there is no single “dominant” SAT solver; in-

stead, different solvers perform best on different instances. Rather than following

the traditional approach of choosing the best solver for a given class of instances,

we advocate making this decision online on a per-instance basis. In particular,

this chapter describes SATzilla, an automated approach for constructing per-

instance algorithm portfolios for solving SAT, that use machine learning techniques

to choose among their constituent solvers. SATzilla takes as input a distribution

of problem instances and a set of component solvers, and constructs a portfolio

optimizing a given objective function (such as mean runtime, percent of instances

solved, or score in a competition).

In addition to demonstrating the design and analysis of the first state-of-the-art

portfolio-based algorithm selector on SAT, SATzilla07, this chapter goes well

beyond it by making the portfolio construction scalable and completely automated,

by improving it with local search solvers as candidate solvers, by predicting per-

formance score instead of runtime, and by using hierarchical hardness models that

consider different types of SAT instances. The effectiveness of these new tech-

niques is demonstrated through extensive experimental results.

SATzilla remains an ongoing project. In 2009, a new procedure for predic-

tion feature computation cost was added into SATzilla09 to improve SATzilla’s
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performance on the industrial category. In 2012, SATzilla2012 introduced

a new selection procedure based on an explicit cost-sensitive loss function that

punishes misclassifications in direct proportion to their impact on portfolio per-

formance. The excellent performance of SATzilla on SAT was independently

verified in the 2007/2009 SAT Competition and the 2012 SAT Challenge, where

SATzilla solvers won more than 10 medals. 1

7.1 Procedure of Building Portfolio based Algorithm
Selection

The general methodology for building a portfolio based algorithm selector that we

use in this work follows Leyton-Brown et al. (2003) in its broad strokes, but we

have made significant extensions here. Portfolio construction transpires offline, as

part of algorithm development, and comprises the following steps.

1. Identify a target distribution of problem instances. Practically, this means

selecting a set of instances believed to be representative of some underly-

ing distribution, or using an instance generator that constructs instances that

represent samples from such a distribution.

2. Select a set of candidate solvers that have relatively uncorrelated runtimes

on this distribution and are known or expected to perform well on at least

some of the instances.

3. Identify features that characterize problem instances. In general this cannot

be done automatically, but rather must reflect the knowledge of a domain

expert. To be usable effectively for automated algorithm selection, these

features must be related to instance hardness and be relatively cheap to com-

pute.

4. On a training set of problem instances, compute these features and run each

algorithm to determine its running times.

1This chapter is based on the joint work with Frank Hutter, Holger Hoos, and Kevin Leyton-
Brown [210, 211, 216].

92



5. Identify one or more solvers to use for pre-solving instances. These pre-

solvers will later be run for a short amount of time before features are com-

puted (refer to step 9), in order to ensure good performance on very easy in-

stances and to allow the empirical performance models to focus exclusively

on harder instances.

6. Using a validation data set, determine which solver achieves the best perfor-

mance for all instances that are not solved by the pre-solvers and on which

the feature computation times out. We refer to this solver as the backup

solver. In the absence of a sufficient number of instances for which pre-

solving and feature computation timed out, we employed the single best

component solver (i.e., the winner-take-all choice) as a backup solver.

7. Construct an empirical performance model for each algorithm in the portfo-

lio, which predicts the runtime of the algorithm for each instance, based on

the instance’s features.

8. Choose the best subset of solvers to use in the final portfolio. We formalize

and automatically solve this as a simple subset selection problem: from all

given solvers, select a subset for which the respective portfolio (which uses

the empirical performance models learned in the previous step) achieves the

best performance on the validation set. (Observe that because our runtime

predictions are not perfect, dropping a solver from the portfolio entirely can

increase the portfolio’s overall performance.)

Then, online, to solve a given problem instance, the following steps are per-

formed.

9. Run each pre-solver until a predetermined fixed cutoff time is reached.

10. Compute feature values. If feature computation cannot be completed for

some reason (error or timeout), select the backup solver identified in step 6.

11. Otherwise, predict each algorithm’s runtime using the empirical performance

models from step 7.
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12. Run the algorithm predicted to be the best. If a solver fails to complete its

run (e.g., it crashes), run the algorithm predicted to be next best.

Since 2009, we introduced an additional step prior to Step 7 that constructs

a model for predicting the cost of feature computation based on some cheap fea-

tures (e.g., number of variables, number of clauses). For a new test instance, before

feature computation (Step 10), SATzilla first extracts the cheap features and pre-

dicts the cost of computing all features. If the predicted cost is higher than a given

threshold, then SATzilla runs the backup solver instead of performing feature

computation. In 2012, the empirical performance models were replaced by pair-

wise cost-sensitive classification models. Nevertheless, the described procedure is

the basis of many advanced algorithm selectors.

7.2 Algorithm Selection Core: Predictive Models
The effectiveness of an algorithm selector depends on the ability to learn empir-

ical performance models that can accurately predict a solver’s performance on a

given instance using efficiently computable features. In the experiments presented

in this chapter, we use the same ridge regression method as in Chapter 5 that has

previously proven to be very successful in predicting runtime on uniform random

k-SAT, on structured SAT instances, and on combinatorial auction winner determi-

nation problems [92, 127, 156]. It should be noted that our portfolio methodology

can make use of any regression/classification approach that provides sufficiently

accurate estimates of an algorithm’s performance and that is adequately compu-

tationally efficient where the time spent making a prediction can be compensated

for by the performance gain obtained through improved algorithm selection. The

detailed information on building predictive models has been described in previous

chapters. In what follows, we introduce some special techniques that help to obtain

more robust algorithm selectors.

7.2.1 Accounting for Censored Data

As is common with heuristic algorithms for solving NP-complete problems, SAT

algorithms tend to solve some instances very quickly, while taking an extremely

long amount of time to solve other instances. Hence, runtime data can be very

94



costly to gather, as individual runs can take literally weeks to complete, even when

other runs on instances of the same size require only milliseconds. The common

solution to this problem is to “censor” some runs by terminating them after a fixed

cutoff time.

The question of how to fit good models in the presence of censored data has

been extensively studied in the survival analysis literature in statistics, which orig-

inated in actuarial questions, such as estimating a person’s lifespan given mortality

data as well as the ages and characteristics of others who are still alive. Observe

that this problem is the same as ours, except that in our case, data points are always

censored at the same value, a subtlety that turns out not to matter.

The best approach that we know for dealing with censored data is to build

models that use all available information about censored runs by using the censored

runtimes as lower bounds on the actual runtimes. To our knowledge, this technique

was first used in the context of SAT by Gagliolo and Schmidhuber (2006). This

chapter chooses the simple, yet effective method by Schmee and Hahn (1979) to

deal with censored samples. In brief, this method first trains a hardness model

treating the cutoff time as the true (uncensored) runtime for censored samples, and

then repeats the following steps until convergence.

1. Estimate the expected runtime of censored runs using the hardness model.

Since in ridge regression, predictions are in fact normal distributions (with

fixed variance), the expected runtime conditional on the runtime exceeding

the cutoff time is the mean of the corresponding normal distribution trun-

cated at the cutoff time.

2. Train a new hardness model using true runtimes for the uncensored instances

and the predictions generated in the previous step for the censored instances.

We compared this approach with two other approaches to managing censored

data: dropping such data entirely, and treating censored runs as though they fin-

ished at the cutoff threshold. The experimental results [209] demonstrated that

both of these methods are significantly worse than the method presented above. In-

tuitively, both old methods introduce bias into empirical hardness models, whereas

the method by Schmee and Hahn (1979) is unbiased.
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7.2.2 Predicting Performance Score Instead of Runtime

The general portfolio methodology is based on empirical hardness models, which

predict an algorithm’s runtime. However, one may not simply be interested in us-

ing a portfolio to pick the solver with the lowest expected runtime. For example,

in the 2007 SAT competition, solvers were evaluated based on a complex scoring

function that depends only partly on a solver’s runtime. Although the idiosyncra-

cies of this scoring function are somewhat particular to the SAT competition, the

idea that a portfolio should be built to optimize a performance score more com-

plex than runtime has wide applicability. In this section we describe techniques for

building models that predict such a performance score directly.

One critical issue is that—as long as one depends on standard supervised learn-

ing methods that require independent and identically distributed training data—one

can only deal easily with scoring functions that actually associate a score with each

single instance and combine the partial scores of all instances to compute the over-

all score. Given training data labeled with such a scoring function, SATzilla

can simply learn a model of the score (rather than runtime) and then choose the

solver with highest predicted score. Unfortunately, the scoring function used in

the 2007 SAT Competition does not satisfy this independence property: the score

a solver attains for solving a given instance depends in part on its (and, indeed,

other solvers’) performance on other, similar instances. More specifically, in the

SAT competition each instance P has a solution purse SolutionP and a speed purse

SpeedP; all instances in a given series (typically 5–40 similar instances) share one

series purse SeriesP. Algorithms are ranked by summing three partial scores de-

rived from these purses.

1. For each problem instance P, its solution purse is equally distributed be-

tween the solvers Si that solve the instance within the cutoff time (thereby

rewarding robustness of a solver).

2. The speed purse for P is divided among a set of solvers S that solved the

instance as Score(P,Si) =
SpeedP×SF(P,Si)

Σ jSF(P,S j)
, where the speed factor SF(P,S) =

timeLimit(P)
1+timeUsed(P,S) is a measure of speed that discounts small absolute differences

in runtime.
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3. The series purse for each series is divided equally and distributed between

the solvers Si that solved at least one instance in that series.

Si’s partial score from problem P’s solution and speed purses solely depends on

the solver’s own runtime for P and the runtime of all competing solvers for P.

Thus, given the runtimes of all competing solvers as part of the training data, we

can compute the score contributions from the solution and the speed purses of

each instance P, and these two components are independent across instances. In

contrast, since a solver’s share of the series purse will depend on its performance

on other instances in the series, its partial score received from the series purse for

solving one instance is not independent of its performance on other instances.

Our solution to this problem is to approximate an instance’s share of the series

purse score by an independent score. If N instances in a series are solved by any

of SATzilla’s component solvers, and if n solvers solve at least one of the in-

stances in that series, we assign a partial score of SeriesP/(N×n) to each solver Si

(where i = 1, . . . ,n) for each instance in the series it solved. This approximation of

a non-independent score as independent is not always perfect, but it is conservative

because it defines a lower-bound on the partial score from the series purse. Pre-

dicted scores will only be used in SATzilla to choose between different solvers

on a per-instance basis. Thus, the partial score of a solver for an instance should

reflect how much it would contribute to SATzilla’s score. If SATzilla were

perfect (i.e., for each instance, it always selected the best algorithm) our score

approximation would be correct: SATzilla would solve all N instances from the

series that any component solver can solve, and thus would actually achieve the se-

ries score SeriesP/(N×n)×N = SeriesP/n. If SATzilla performed very poorly

and did not solve any instance in the series, our approximation would also be exact,

since it would estimate the partial series score as zero. Finally, if SATzilla were

to pick successful solvers for some (say, M) but not all instances of the series that

could be solved by its component solvers (i.e., M < N), we would underestimate

the partial series purse, since SeriesP/(N×n)×M < SeriesP/n.

While the learning techniques require an approximation of the performance

score as an independent score, our empirical evaluation of solver scores employ the

actual SAT competition scoring function. As explained previously, in the SAT com-
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petition, the performance score of a solver depends on the score of all other solvers

in the competition. In order to simulate a competition, we select a large number

of solvers and pretend that these “reference solvers” and SATzilla are the only

solvers in the competition. Throughout our analysis, we used the 19 solvers listed

in Tables 7.3, 7.4 and 7.5. This is not a perfect simulation, since the scores change

somewhat when different solvers are added to or removed from the competition.

However, we obtained much better approximations of the performance score by

following the methodology outlined here than by using cruder measures, such as

learning models to predict mean runtime or the numbers of benchmark instances

solved.

Finally, predicting performance score instead of runtime has a number of im-

plications for the components of SATzilla. First, notice that one can compute

an exact score for each algorithm and instance, even if the algorithm times out

unsuccessfully or crashes—in these cases, the score from all three components is

simply zero. When predicting scores instead of runtimes, we thus no longer need

to rely on censored sampling techniques (see Section 7.2.1). Secondly, notice that

the oracles for maximizing SAT competition score and for minimizing runtime are

identical, since always using the solver with the smallest runtime guarantees that

the highest values in all three components are obtained.

7.2.3 More General Hierarchical Performance Models

In this chapter, we consider a very heterogeneous instance distribution that con-

sists of all instances from the categories Random, Crafted and Industrial.

In order to further improve performance on this benchmark, we extend our previ-

ous hierarchical hardness model approach (predicting satisfiability status and then

using a mixture of two conditional models as in Chapter 5) to the more general

scenario of six underlying empirical hardness models (one for each combination of

category and satisfiability status). The output of the general hierarchical model is

a linear weighted combination of the output of each component. As described in

Chapter 5, we can approximate the model selection oracle by a softmax function

whose parameters are estimated using EM.
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7.3 Portfolio Construction
In this section, we describe the procedure of constructing SATzilla solvers for

the SAT Competition that features three main categories of instances, Random,

Crafted (also known as Handmade) and Industrial. In order to study

SATzilla’s performance on an even more heterogeneous instance distribution,

a third version of SATzilla is trained on data from all three categories of the

competition; we label this new category ALL.

All of the SATzilla solvers were built using the design methodology detailed

in Section 7.1. Each of the following subsections corresponds to one step from this

methodology.

7.3.1 Selecting Instances

In order to train empirical performance models for any of the above scenarios,

we needed instances that would be similar to those used in the real competition.

For this purpose we used instances from the respective categories of the previous

SAT competitions (2002, 2003, 2004, and 2005), as well as from the 2006 SAT

Race (which only featured Industrial instances). Instances that were repeated

in previous competitions were also repeated in our data sets. Overall, there were

4811 instances: 2300 instances in category Random, 1490 in category Crafted

and 1021 in category Industrial; of course, category ALL included all of these

instances. In addition to all instances prior to 2007, we also added the 869 instances

from the 2007 SAT Competition into our four data sets. Overall, this resulted in

5680 instances: 2811 instances in category Random, 1676 in category Crafted

and 1193 in category Industrial. Approximately 72% of the instances could

be solved by at least one of the 19 solvers considered within the cutoff time of 1200

CPU seconds on the reference machine; the remaining instances were excluded

from our analysis.

We randomly split the above benchmark sets into training, validation and test

sets, as described in Table 7.1. All parameter tuning and intermediate testing was

performed on validation sets, and test sets were used only to generate the final

results reported here.

We will be interested in analyzing SATzilla’s performance as we vary the
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“Old” instances before 2007 “New” instances in 2007

Training (40%) To (1925 instances) Tn (347 instances)
Validation (30%) Vo (1443 instances) Vn (261 instances)

Test (30%) Eo (1443 instances) En (261 instances)

Table 7.1: Instances from before 2007 and from 2007 randomly split into training
(T), validation (V) and test (E) data sets. These sets include instances for all
categories: Random, Crafted and Industrial.

Data set Training Validation Test

D′ To Vo Eo∪En
D+ To∪Tn Vo∪Vn Eo∪En

Table 7.2: Data sets used in our experiments. Note that all data sets use identical
test data, but different test data.

data that was used to train it. To make it easy to refer to our different data sets, we

describe them here and assign them names (D′, D+). Table 7.1 shows the division

of our data into “old” (pre-2007) and “new” (2007) instances. Table 7.2 shows

how we combined this data to construct the two data sets we use for evaluation.

Data set D′ uses only pre-2007 instances for training, validation, and both old and

new instances for testing. Data set D+ combines both old and new instances in its

training, validation and test sets.

Since both data sets use the same test sets, the performance of portfolios trained

using these different sets can be compared directly. However, we expect a portfo-

lio trained using D+ to be at least slightly better, because it has access to more

data. For different categories, we use D′r, D′h, D′i to refer instances from Random,

Crafted, Industrial (same for D+).

7.3.2 Selecting Solvers

To decide what algorithms to include in our portfolio, we considered a wide variety

of solvers that had been entered into previous SAT competitions and into the 2006

SAT Race. We manually analyzed the results of these competitions, identifying all

algorithms that yielded the best performance on some subset of instances. Since
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the instance sets contain both satisfiable and unsatisfiable instances, we considered

a case study that did not chose any incomplete algorithms (the cost of misclassi-

fication would be very high if we choose a local search solver on an unsatisfiable

instance). Ultimately, we selected the seven high-performance solvers shown in

Table 7.3 as candidates for the SATzilla07 portfolio.

Solver Reference

Eureka [152]
Kcnfs06 [44]

March dl04 [75]
Minisat [47]

Rsat 1.03 [162]
Vallst [201]

Zchaff Rand [139]

Table 7.3: The seven solvers in SATzilla07; we refer to this set of solvers
as S.

When we shift to predicting and optimizing performance score instead of run-

time, local search solvers always obtain a score of exactly zero on unsatisfiable

instances, since they are guaranteed not to solve them within the cutoff time. (Of

course, they do not need to be run on an instance during training if the instance is

known to be unsatisfiable.) Hence, we can build models for predicting the score of

local search solvers using exactly the same methods as for complete solvers. There-

fore, we considered eight new complete solvers (Tables 7.4) and four local search

solvers (Tabl 7.5) from the 2007 SAT Competition for inclusion in our portfolio.

As with training instances, the sets of candidate solvers are treated as an input

parameter of SATzilla, S. The sets of candidate solvers used in our experiments

are detailed in Table 7.6.

7.3.3 Choosing Features

The choice of instance features has a significant impact on the performance of

empirical performance models. Good features need to correlate well with (solver-

specific) instance hardness and need to be cheap to compute, since feature compu-

tation time counts as part of SATzilla07’s runtime.
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Solver Reference

Kcnfs04 [43]
TTS [188]

Picosat [19]
MXC [25]

March ks [74]
TinisatElite [87]
Minisat07 [187]
Rsat 2.0 [163]

Table 7.4: Eight complete solvers from the 2007 SAT Competition.

Solver Reference

Ranov [160]
Ag2wsat0 [30]
Ag2wsat+ [204]
Gnovelty+ [161]

Table 7.5: Four local search solvers from the 2007 SAT Competition.

Name of Set Solvers in the Set

S all 7 solvers from Table 7.3
S+ all 15 solvers from Tables 7.3 and 7.4
S++ all 19 solvers from Tables 7.3, 7.4 and 7.5

Table 7.6: Solver sets used in our second series of experiments.

We used a subset of features from Figure 3.1. These features can be classified

into nine categories: problem size, variable-clause graph, variable graph, clause

graph, balance, proximity to Horn formulae, LP-based, DPLL probing and local

search probing features. In order to limit the time spent computing features, we

excluded a number of computationally expensive features, such as LP-based and

clause graph features. The computation time for each of the local search and DPLL

probing features was limited to 1 CPU second, and the total feature computation

time per instance was limited to 60 CPU seconds. After eliminating some features

that had the same value across all instances and some that were too unstable given
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only 1 CPU second of local search probing, we ended up using 48 raw features.

7.3.4 Computing Features and Runtimes

All our experiments were performed using a computer cluster consisting of 55

machines with dual Intel Xeon 3.2GHz CPUs, 2MB cache and 2GB RAM, running

Suse Linux 10.1. As in the SAT competition, all runs of any solver that exceeded a

certain runtime were aborted (censored) and recorded as such. In order to keep the

computational cost manageable, we chose a cutoff time of 1200 CPU seconds.

7.3.5 Identifying Pre-solvers

As described in Section 7.1, in order to solve easy instances quickly without spend-

ing any time for the computation of features, we use one or more pre-solvers: algo-

rithms that are run unconditionally but briefly before features are computed. Good

algorithms for pre-solving solve a large proportion of instances quickly.

The naive approach for identifying pre-solvers is manual selection of pre-

solvers based on an examination of the training runtime data. There are several

limitations to this approach. First and foremost, manual pre-solver selection does

not scale well. If there are many candidate solvers, manually finding the best com-

bination of pre-solvers and cutoff times can be difficult and requires significant

amounts of valuable human time. In addition, the manual pre-solver selection con-

centrates solely on solving a large number of instances quickly and does not take

into account the pre-solvers’ effect on model learning. In fact, there are three con-

sequences of pre-solving.

1. Pre-solving solves some instances quickly before features are computed. In

the context of the SAT competition, this improves SATzilla’s scores for

easy problem instances due to the “speed purse” component of the SAT com-

petition scoring function. (See Section 7.2.2 above.)

2. Pre-solving increases SATzilla’s runtime on instances not solved during

pre-solving by adding the pre-solvers’ time to every such instance. Like

feature computation itself, this additional cost reduces SATzilla’s scores.

3. Pre-solving filters out easy instances, allowing our empirical performance
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models to be trained exclusively on harder instances.

Manual selection considers (1) and (2), but not (3). In particular, it ignores the fact

that the use of different pre-solvers and/or cutoff times results in different train-

ing data and hence in different learned models, which can also affect a portfolio’s

effectiveness.

The new automatic pre-solver selection technique functions as follows. We

committed in advance to using a maximum of two pre-solvers: one of three com-

plete search algorithms and one of three local search algorithms. The three candi-

dates for each of the search approaches are automatically determined for each data

set as those with highest score on the validation set when run for a maximum of 10

CPU seconds. We also use a number of possible cutoff times, namely 2, 5 and 10

CPU seconds, as well as 0 seconds (i.e., the pre-solver is not run at all) and con-

sider both orders in which the two pre-solvers can be run. For each of the resulting

288 possible combinations of two pre-solvers and cutoff times, SATzilla’s per-

formance on the validation data is evaluated by performing steps 6, 7 and 8 of the

general methodology presented in Section 7.1:

6. determine the backup solver for selection when features time out;

7. construct an empirical performance model for each algorithm; and

8. automatically select the best subset of algorithms to use as part of SATzilla.

The best-performing subset found in this last step—evaluated on validation data—

is selected as the algorithm portfolio for the given combination of pre-solver / cut-

off time pairs. Overall, this method aims to choose the pre-solver configuration

that yields the best-performing portfolio.

7.3.6 Identifying the Backup Solver

We computed average runtime of every solver on every category counting timeouts

as runs that completed at the cutoff time of 1 200 CPU seconds. For categories

Random and Crafted, we did not encounter instances for which feature compu-

tation timed out. Thus, we employed the winner-take-all solver as a backup solver

in both of these domains. For categories Industrial and ALL, we chose the
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solver that performed best on those instances that remained unsolved after pre-

solving and for which feature computation timed out.

7.3.7 Learning Empirical Performance Models

We learned empirical performance models for predicting each solver’s runtime/per-

formance as described in Section 7.1, using the procedure of Schmee and Hahn

(1979) for managing censored data and also employing hierarchical hardness mod-

els.

7.3.8 Solver Subset Selection

For a small number of candidate solvers, we performed automatic exhaustive sub-

set search as outlined in Section 7.1 to determine which solvers to include in

SATzilla. For a large number of component solvers, such a procedure is in-

feasible (N component solvers would require the consideration of 2N solver sets,

for each of which a model would have to be trained). The automatic pre-solver

selection methods described previously in Section 7.3.5 further worsen this sit-

uation: solver selection must be performed for every candidate configuration of

pre-solvers, because new pre-solver configurations induce new models.

As an alternative to exhaustively considering all subsets, we implemented a

randomized iterative improvement procedure to search for a good subset of solvers.

The local search neighborhood used by this procedure consists of all subsets of

solvers that can be reached by adding or dropping a single component solver. Start-

ing with a randomly selected subset of solvers, in each search step, we consider a

neighboring solver subset selected uniformly at random and accept it if validation

set performance increases; otherwise, we accept the solver subset anyway with a

probability of 5%. Once 100 steps have been performed with no improving step, a

new run is started by re-initializing the search at random. After 10 such runs, the

search is terminated and the best subset of solvers encountered during the search

process is returned. Preliminary evidence suggests that this local search procedure

is efficient in finding very good subsets of solvers.
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SATzilla version Description

SATzilla07(S,D′) Basic version for the 2007 SAT Competition,
but evaluated on an extended test set.

SATzilla07(S+,D+) The same design as SATzilla07(S,D′),
but includes new complete solvers (Table 7.4)
and new data (Section 7.3.1).

SATzilla07+(S++,D+) In addition to new complete solvers and data,
this version uses local search solvers (Ta-
ble 7.5) and all of the new design elements
except “more general hierarchical hardness
models” (Section 7.2.3).

SATzilla07∗(S++,D+) This version uses all solvers, all data and all
new design elements. Unlike for the other
versions, we trained only one variant of this
solver for use in all data set categories.

Table 7.7: The different SATzilla versions evaluated in our second set of
experiments.

7.3.9 Different SATzilla Versions

With new design ideas for SATzilla (Section 7.3.5, 7.3.8, 7.2.3, 7.2), new

training data (Section 7.3.1) and new solvers (Section 7.3.2), we were interested in

evaluating how much our portfolio improved as a result. In order to gain insights

into how much performance improvement was achieved by these different changes,

we studied several intermediate SATzilla solvers, which are summarized in Ta-

ble 7.7.

SATzilla07(S,D’) used manual pre-solver selection, exhaustive search

for solver subset selection, and EHMs for predicting runtime. It only consid-

ered “old” solvers and training data. The construction of SATzilla07(S+,D+)

was the same as that for SATzilla07(S,D’), except that it relied on different

solvers and corresponding training data.

SATzilla07+(S++,D+) and SATzilla07∗(S++,D+) incorporated the

new techniques. Pre-solvers were identified automatically as described in Section

7.3.5, using the (automatically determined) candidate solvers listed in Table 7.8.

We built models to predict the performance score of each algorithm. This score is

well defined even in case of timeouts and crashes; thus, there was no need to deal
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Random Crafted Industrial ALL

Complete Kcnfs06 March dl04 Rsat 1.03 Minisat07
Pre-solver March dl04 Vallst Picosat March ks
Candidates March ks March ks Rsat 2.0 March dl04

Local Search Ag2wsat0 Ag2wsat0 Ag2wsat0 SAPS
Pre-solver Gnovelty+ Ag2wsat+ Ag2wsat+ Ag2wsat0
Candidates SAPS Gnovelty+ Gnovelty+ Gnovelty+

Table 7.8: Pre-solver candidates for our four data sets. These candidates were
automatically chosen based on the scores on validation data achieved by
running the respective algorithms for a maximum of 10 CPU seconds.

with censored data. In the manner of SATzilla07, SATzilla07+ used hier-

archical empirical hardness models [208] with two underlying models (Msat and

Munsat) for predicting a solver’s score. For SATzilla07∗, we built more general

hierarchical hardness models for predicting scores; these models were based on six

underlying empirical hardness models (Msat and Munsat trained on data from each

SAT competition category). We chose solver subsets based on the results of the

local search procedure for subset search as outlined in Section 7.3.8.

Observe that all of these solvers were built using identical test data and were

thus directly comparable. We generally expected each solver to outperform its

predecessors in the list. The exception was SATzilla07∗(S++,D+): this last

solver was designed to achieve good performance across a broader range of in-

stances. Thus, we expected SATzilla07∗(S++,D+) to outperform the others

on category ALL, but not to outperform SATzilla07+(S++,D+) on the more

specific categories. The resulting final components of SATzilla07, SATzilla07+

and SATzilla07∗ for each category are described in detail in the following sec-

tion.

7.4 Performance Analysis of SATzilla
The effectiveness of our new techniques was investigated by evaluating the four

SATzilla versions (Table 7.7): SATzilla07(S,D′), SATzilla07(S+,D+),

SATzilla07+(S++,D+) and SATzilla07∗(S++,D+). To evaluate their
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SATzilla version Pre-Solvers (time) Component solvers

SATzilla07(S,D′r)
March dl04(5);
SAPS(2)

Kcnfs06, March dl04, Rsat
1.03

SATzilla07(S+,D+r )
March dl04(5);
SAPS(2)

Kcnfs06, March dl04,
March ks,
Minisat07

SATzilla07+(S++,D+r )
SAPS(2);
Kcnfs06(2)

Kcnfs06, March ks,
Minisat07, Ranov, Ag2wsat+,
Gnovelty+

Table 7.9: SATzilla’s configurations for the Random category; cutoff times for
pre-solvers are specified in CPU seconds.

performance, we constructed a simulated SAT competition using the same scoring

function as in the 2007 SAT Competition, but differing in a number of important as-

pects. The participants in our competition were the 19 solvers listed in Tables 7.3,

7.4, and 7.5 (all solvers were considered for all categories), and the test instances

were Eo ∪En as described in Tables 7.1 and 7.2. Furthermore, our computational

infrastructure differed from the 2007 competition, and we also used shorter cutoff

times of 1200 seconds. For these reasons some solvers ranked slightly differently

in our simulated competition than in the 2007 competition.

7.4.1 Random Category

Table 7.9 shows the configuration of the three SATzilla versions for the Random

category. Note that the automatic solver selection in SATzilla07+(S++,D+r )

included different solvers than the ones used in SATzilla07(S+,D+r ); in par-

ticular, it chose three local search solvers, Ranov, Ag2wsat+, and Gnovelty+,

that were not available to SATzilla07. Also, the automatic pre-solver selection

chose a different order and cutoff time of pre-solvers than our manual selection: it

chose to first run SAPS for two CPU seconds, followed by two CPU seconds of

Kcnfs06. Even though running the local search algorithm SAPS did not help for

solving unsatisfiable instances, we see in Figure 7.1 (left) that SAPS solved many

more instances than March dl04 in the first few seconds.

Table 7.10 shows the performance of different versions of SATzilla com-
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pared to the best solvers in the Random category.

All versions of SATzilla outperformed every non-portfolio solver in terms

of average runtime and number of instances solved. SATzilla07+ and SATzilla07∗,

the variants optimizing score rather than another objective function, also clearly

achieved higher scores than the non-portfolio solvers. This was not always the

case for the other versions; for example, SATzilla07(S+,D+r ) achieved only

86.6% of the score of the best solver, Gnovelty+ (where scores were com-

puted based on a reference set of 20 reference solvers: the 19 solvers from Ta-

bles 7.3, 7.4, and 7.5, as well as SATzilla07(S+,D+r )). Table 7.10 and Figure

7.1 show that adding complete solvers and training data did not greatly improve

SATzilla07. At the same time, substantial improvements were achieved by the

new mechanisms in SATzilla07+, leading to 11% more instances solved, a re-

duction of average runtime by more than half, and an increase in score of over 50%.

Interestingly, the performance of the more general SATzilla07∗(S++,D+)

trained on instance mix ALL and tested on the Random category was quite close

to the best version of SATzilla specifically designed for Random instances,

SATzilla07+(S++,D+r ). Note that due to their excellent performance on satis-

fiable instances, the local search solvers in Table 7.10 (Gnovelty+ and Ag2wsat

variants) tended to have higher overall scores than the complete solvers (Kcnfs04

and March ks), even though they solved fewer instances and in particular could

not solve any unsatisfiable instance. In the 2007 SAT Competition, however, all

winners of the random SAT+UNSAT category were complete solvers, which led to

speculation that local search solvers were not considered in this category (while in

the Random SAT category, all winners were indeed local search solvers).

Figure 7.1 presents CDFs summarizing the performance of the best non-portfolio

solvers, SATzilla solvers and two oracles. All non-portfolio solvers omitted had

CDFs below those shown. The oracles represent ideal versions of SATzilla that

choose among component solvers perfectly and without any computational cost.

More specifically, given an instance, an oracle picks the fastest algorithm; it is al-

lowed to consider SAPS (with a maximum runtime of 10 CPU seconds) and any

solver from the given set (S for one oracle and S++ for the other).

Table 7.11 indicates how often each component solver of SATzilla07+(S++,D+r )

was selected, how often it was successful, and the amount of its average runtime.
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Solver Avg. runtime [s] Solved [%] Performance score

Kcnfs04 852 32.1 38309
March ks 351 78.4 113666
Ag2wsat0 479 62.0 119919
Ag2wsat+ 510 59.1 110218
Gnovelty+ 410 67.4 131703

SATzilla07(S,D′r) 231 85.4 — (86.6%)
SATzilla07(S+,D+r ) 218 86.5 — (88.7%)
SATzilla07+(S++,D+r ) 84 97.8 189436 (143.8%)
SATzilla07∗(S++,D+) 113 95.8 — (137.8%)

Table 7.10: The performance of SATzilla compared to the best
solvers on Random. The cutoff time was 1 200 CPU seconds;
SATzilla07∗(S++,D+) was trained on ALL. Scores were computed
based on 20 reference solvers: the 19 solvers from Tables 7.3, 7.4, and
7.5, as well as one version of SATzilla. To compute the score for each
non-SATzilla solver, the SATzilla version used as a member of the
set of reference solvers was SATzilla07+(S++,D+r ). Since we did not
include SATzilla versions other than SATzilla07+(S++,D+r ) in the
set of reference solvers, scores for these solvers are incomparable to the other
scores given here, and therefore, we do not report them. Instead, for each
SATzilla solver, we indicate in parentheses its performance score as a
percentage of the highest score achieved by a non-portfolio solver, given a
reference set in which the appropriate SATzilla solver took the place of
SATzilla07+(S++,D+r ).
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Figure 7.1: Left: CDFs for SATzilla07+(S++,D+r ) and the best non-portfolio
solvers on Random; right: CDFs for the different versions of SATzilla on
Random shown in Table 7.9, where SATzilla07∗(S++,D+) was trained
on ALL. All other solvers’ CDFs are below the ones shown here.
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Pre-Solver (Pre-Time) Solved [%] Avg. Runtime [CPU sec]

SAPS(2) 52.2 1.1
March dl04(2) 9.6 1.68

Selected Solver Selected [%] Success [%] Avg. Runtime [CPU sec]

March dl04 34.8 96.2 294.8
Gnovelty+ 28.8 93.9 143.6
March ks 23.9 92.6 213.3
Minisat07 4.4 100 61.0

Ranov 4.0 100 6.9
Ag2wsat+ 4.0 77.8 357.9

Table 7.11: The solvers selected by SATzilla07+(S++,D+r ) for the Random
category. Note that column “Selected [%]” shows the percentage of instances
remaining after pre-solving for which the algorithm was selected, and this
sums to 100%. Cutoff times for pre-solvers are specified in CPU seconds.

We found that the solvers picked by SATzilla07+(S++,D+r ) solved the given

instance in most cases. Another interesting observation is that when a solver’s

success ratio was high, its average runtime tended to be lower.

7.4.2 Crafted Category

The configurations of the three SATzilla versions designed for the Crafted

category are shown in Table 7.12. Again, SATzilla07+(S++,D+h ) included

three local search solvers, Ranov, Ag2wsat+ and Gnovelty+, which were not

available to SATzilla07. Similar to the manual choice in SATzilla07, the

automatic pre-solver selection chose to run March dl04 for five CPU seconds.

Unlike the manual selection, it abstained from using SAPS (or indeed any other

solver) as a second pre-solver. Table 7.13 shows the performance of the differ-

ent versions of SATzilla compared to the best solvers for category Crafted.

Here, about half of the observed performance improvement was achieved by using

more solvers and more training data; the other half was due to the improvements in

SATzilla07+. Note that for the Crafted category, SATzilla07∗(S++,D+)

performed quite poorly. We attribute this to a weakness of the feature-based clas-

sifier on Crafted instances, an issue discussed further in Section 7.4.4.

Table 7.14 indicates how often each component solver of SATzilla07+(S++,D+h )
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SATzilla Pre-Solver (time) Components

SATzilla07(S,D′h)
March dl04(5);
SAPS(2)

Kcnfs06, March dl04,
Minisat, Rsat 1.03

SATzilla07(S+,D+h )
March dl04(5);
SAPS(2)

Vallst, Zchaff rand, TTS,
MXC,
March ks, Minisat07, Rsat
2.0

SATzilla07+(S++,D+h ) March ks(5)

Eureka, March dl04;
Minisat, Rsat 1.03, Vallst,
TTS, Picosat, MXC, March ks,
TinisatElite, Minisat07,
Rsat 2.0, Ranov, Ag2wsat0,
Gnovelty+

Table 7.12: SATzilla’s configurations for the Crafted category.

Solver Avg. runtime [s] Solved [%] Performance score

TTS 729 41.1 40669
MXC 527 61.9 43024

March ks 494 63.9 68859
Minisat07 438 68.9 59863
March dl04 408 72.4 73226

SATzilla07(S,D′h) 284 80.4 — (93.5%)
SATzilla07(S+,D+h ) 203 87.4 — (118.8%)
SATzilla07+(S++,D+h ) 131 95.6 112287 (153.3%)
SATzilla07∗(S++,D+) 215 88.0 — (110.5%)

Table 7.13: The performance of SATzilla compared to the best solvers on
Crafted. Scores for non-portfolio solvers were computed using a reference
set in which the only SATzilla solver was SATzilla07+(S++,D+h ).
Cutoff time: 1200 CPU seconds; SATzilla07∗(S++,D+) was trained on
ALL.
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Figure 7.2: Left: CDFs for SATzilla07+(S++,D+h ) and the best non-portfolio
solvers on Crafted; right: CDFs for the different versions of SATzilla
on Crafted shown in Table 7.12, where SATzilla07∗(S++,D+) was
trained on ALL. All other solvers’ CDFs are below the ones shown here.

Pre-Solver (Pre-Time) Solved [%] Avg. Runtime [CPU sec]

March ks(5) 39.0 3.2

Selected Solver Selected [%] Success [%] Avg. Runtime [CPU sec]

Minisat07 40.4 89.3 205.1
TTS 11.5 91.7 133.2
MXC 7.2 93.3 310.5

March ks 7.2 100 544.7
Eureka 5.8 100 0.34

March dl04 5.8 91.7 317.6
Rsat 1.03 4.8 100 185.1
Picosat 3.9 100 1.7
Ag2wsat0 3.4 100 0.5

TinisatElite 2.9 100 86.5
Ranov 2.9 83.3 206.1

Minisat 2.0 1.4 66.7 796.5
Rsat 2.0 1.4 100 0.9
Gnovelty+ 1.0 100 3.2
Vallst 0.5 100 <0.01

Table 7.14: The solvers selected by SATzilla07+(S++,D+h ) for the Crafted
category.
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SATzilla Pre-Solver (time) Components

SATzilla07(S,D’i) Rsat 1.03 (2)
Eureka, March dl04,
Minisat, Rsat 1.03

SATzilla07(S+,D+i ) Rsat 2.0 (2)
Eureka, March dl04,
Minisat, Zchaff Rand, TTS,
Picosat, March ks

SATzilla07+(S++,D+i )
Rsat 2.0 (10);
Gnovelty+(2)

Eureka, March dl04,
Minisat, Rsat 1.03, TTS,
Picosat, Minisat07, Rsat
2.0

Table 7.15: SATzilla’s configuration for the Industrial category.

was selected, how many problem instances it solved, and its average runtime for

these runs. There are many solvers that SATzilla07+(S++,D+h ) picked quite

rarely; however, in most cases, their success ratios are close to 100%, and their

average runtimes are very low.

7.4.3 Industrial Category

Table 7.15 shows the configuration of the three SATzilla versions designed for

the Industrial category. Local search solvers performed poorly for the in-

stances in this category, with the best local search solver, Ag2wsat0, only solving

23% of the instances within the cutoff time. Consequently, no local search solver

was selected by the automatic solver subset selection in SATzilla07+(S++,D+i ).

However, automatic pre-solver selection did include the local search solver Gnovelty+

as the second pre-solver, to be run for 2 CPU seconds after 10 CPU seconds of run-

ning Rsat 2.0.

Table 7.16 compares the performance of different versions of SATzilla and

the best solvers on Industrial instances. It is not surprising that more training

data and more solvers helped SATzilla07 to improve in terms of all our metrics

(avg. runtime, percentage solved and score). A bigger improvement was due to

the new mechanisms in SATzilla07+ that led to SATzilla07+(S++,D+i )

outperforming every non-portfolio solver with respect to every metric, particu-

larly in terms of performance score. Note that the general SATzilla version
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Solver Avg. runtime [s] Solved [%] Performance score

Rsat 1.03 353 80.8 52740
Rsat 2.0 365 80.8 51299
Picosat 282 85.9 66561

TinisatElite 452 70.8 40867
Minisat07 372 76.6 60002
Eureka 349 83.2 71505

SATzilla07(S,D′i) 298 87.6 — (91.3%)
SATzilla07(S+,D+i ) 262 89.0 — (98.2%)
SATzilla07+(S++,D+i ) 233 93.1 79724 (111.5%)
SATzilla07∗(S++,D+) 239 92.7 — (104.8%)

Table 7.16: The performance of SATzilla compared to the best solvers
on Industrial. Scores for non-portfolio solvers were com-
puted using a reference set in which the only SATzilla solver
was SATzilla07+(S++,D+i ). Cutoff time: 1 200 CPU seconds;
SATzilla07∗(S++,D+) was trained on ALL.

SATzilla07∗(S++,D+) trained on ALL achieved performance very close to

that of SATzilla07+(S++,D+i ) on the Industrial data set in terms of av-

erage runtime and percentage of solved instances.

As can be seen from Figure 7.3, the performance improvements achieved by

SATzilla over non-portfolio solvers were smaller for the Industrial cate-

gory than for other categories. Note that the best Industrial solver, Picosat,

performed very well, solving 85.9% of the instances within the cutoff time of 1200

CPU seconds. Recall that this number means the solver solved 85.9% of the in-

stances that could be solved by at least one solver. Compared to our other data sets,

it would appear that either solvers exhibited more tightly correlated behavior on

Industrial instances or that instances in this category exhibited greater vari-

ability in hardness. Nevertheless, SATzilla07+(S++,D+i ) had significantly

smaller average runtime (17%) and solved 7.2% more instances than the best com-

ponent solver, Picosat. Likewise, the score for SATzilla07+(S++,D+i )was

11.5% higher than that of the top-ranking component solver (in terms of score),

Eureka.

Table 7.17 indicates how often each component solver of SATzilla07+(S++,D+i )

was selected, how many problem instances it solved, and its average runtime for
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Figure 7.3: Left: CDFs for SATzilla07+(S++,D+i ) and the best non-
portfolio solvers on Industrial; right: CDFs for the different ver-
sions of SATzilla on Industrial shown in Table 7.15, where
SATzilla07∗(S++,D+) was trained on ALL. All other solvers’ CDFs (in-
cluding Eureka’s) are below the ones shown here.

Pre-Solver (Pre-Time) Solved [%] Avg. Runtime [CPU sec]

Rsat 2.0(10) 38.1 6.8
Gnovelty+ (2) 0.3 2.0

Selected Solver Selected [%] Success [%] Avg. Runtime [CPU sec]

Eureka (BACKUP) 29.1 88.5 385.4
Eureka 15.1 100 394.2
Picosat 14.5 96.2 179.6
Minisat07 14.0 84.0 306.3

Minisat 2.0 12.3 68.2 709.2
March dl04 8.4 86.7 180.8

TTS 3.9 100 0.7
Rsat 2.0 1.7 100 281.6
Rsat 1.03 1.1 100 10.6

Table 7.17: The solvers selected by SATzilla07+(S++,D+i ) for the
Industrial category.

these runs. In this case, the backup solver Eureka was used for problem instances

for which feature computation timed out and pre-solvers did not produce a solution.
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SATzilla Pre-Solver (time) Components

SATzilla07(S,D’)
March dl04(5);
SAPS(2)

Eureka, Kcnfs06,
March dl04,
Minisat,Zchaff rand

SATzilla07(S+,D+)
March dl04(5);
SAPS(2)

Eureka, March dl04,
Zchaff rand, Kcnfs04,
TTS, Picosat, March ks,
Minisat07

SATzilla07+(S++,D+)
SAPS(2);
March ks(2)

Eureka, Kcnfs06, Rsat 1.03,
Zchaff rand, TTS, MXC,
TinisatElite, Rsat 2.0,
Ag2wsat+, Ranov

SATzilla07∗(S++,D+)
SAPS(2);
March ks(2)

Eureka, Kcnfs06,
March dl04, Minisat,
Rsat 1.03, Picosat, MXC,
March ks, Minisat07,
Ag2wsat+, Gnovelty+

Table 7.18: SATzilla’s configurations for the ALL category.

7.4.4 ALL

There are four versions of SATzilla specialized for category ALL. Their detailed

configurations are listed in Table 7.18. The results of automatic pre-solver selec-

tion were identical for SATzilla07+ and SATzilla07∗: both chose to first run

the local search solver SAPS for two CPU seconds, followed by two CPU seconds

of March ks. These solvers were similar to our manual selection, but their order

was reversed. For solver subset selection, SATzilla07+ and SATzilla07∗

yielded somewhat different results, but both of them kept two local search algo-

rithms, Ag2wsat+ & Ranov, and Ag2wsat+ & Gnovelty+, respectively.

Table 7.19 compares the performance of the four versions of SATzilla on

our ALL test set. Roughly equal improvements in terms of all our performance met-

rics were due to more training data and solvers on the one hand, and to the improve-

ments in SATzilla07+ on the other hand. The best performance in terms of all

our performance metrics was obtained by SATzilla07∗(S++,D+). Recall that

the only difference between SATzilla07+(S++,D+) and SATzilla07∗(S++,D+)

was the use of more general hierarchical hardness models, as described in Sec-

117



Solver Avg. runtime [s] Solved [%] Performance score

Rsat 1.03 542 61.1 131399
Kcnfs04 969 21.3 46695
TTS 939 22.6 74616

Picosat 571 57.7 135049
March ks 509 62.9 202133

TinisatElite 690 47.3 93169
Minisat07 528 61.8 162987
Gnovelty+ 684 43.9 156365
March dl04 509 62.7 205592

SATzilla07(S,D’) 282 83.1 — (125.0%)
SATzilla07(S+,D+) 224 87.0 — (139.2%)
SATzilla07+(S++,D+) 194 91.1 — (158%)
SATzilla07∗(S++,D+) 172 92.9 344594 (167.6%)

Table 7.19: The performance of SATzilla compared to the best solvers on ALL.
Scores for non-portfolio solvers were computed using a reference set in which
the only SATzilla solver was SATzilla07∗(S++,D+). Cutoff time:
1200 CPU seconds.

tion 7.2.3.

Note that using a classifier is of course not as good as using an oracle for de-

termining the distribution an instance comes from; thus, the success ratios of the

solvers selected by SATzilla07∗ over the instances in the test set for distribu-

tion ALL (see Table 7.20) were slightly lower than those for the solvers picked by

SATzilla07+ for each of the distributions individually (see Tables 7.11, 7.14,

and 7.17). However, when compared to SATzilla07+ on distribution ALL,

SATzilla07∗ performed significantly better: achieving overall performance im-

provements of 11.3% lower average runtime, 1.8% more solved instances and 9.6%

higher score. This supports our initial hypothesis that SATzilla07∗ would per-

form slightly worse than specialized versions of SATzilla07+ in each single

category, yet would yield the best result when applied to a broader and more het-

erogeneous set of instances.

The runtime cumulative distribution function (Figure 7.4, right) shows that

SATzilla07∗(S++,D+) dominated the other versions of SATzilla on ALL

and solved approximately 30% more instances than the best non-portfolio solver,
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Figure 7.4: Left: CDF for SATzilla07∗(S++,D+) and the best non-portfolio
solvers on ALL; right: CDFs for different versions of SATzilla on ALL
shown in Table 7.18. All other solvers’ CDFs are below the ones shown here.

March dl04 (Figure 7.4, left).

Pre-Solver (Pre-Time) Solved [%] Avg. Runtime [CPU sec]

SAPS(2) 33.0 1.4
March ks (2) 13.9 1.6

Selected Solver Selected [%] Success [%] Avg. Runtime [CPU sec]

Minisat07 21.2 85.5 247.5
March dl04 14.5 84.0 389.5
Gnovelty+ 12.5 85.2 273.2
March ks 9.1 89.8 305.6

Eureka (BACKUP) 8.9 89.7 346.1
Eureka 7.2 97.9 234.6
Picosat 6.6 90.7 188.6
Kcnfs06 6.5 95.2 236.3

MXC 5.5 88.9 334.0
Rsat 1.03 4.0 80.8 364.9

Minisat 2.0 3.5 56.5 775.7
Ag2wsat+ 0.5 33.3 815.7

Table 7.20: The solvers selected by SATzilla07∗(S++,D+) for the ALL cate-
gory.

Table 7.21 shows the performance of the general classifier in SATzilla07∗

(S++,D+). We note several patterns: Firstly, classification performance for Random

and Industrial instances was much better than for Crafted instances. Sec-
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R, sat R, unsat H, sat H, unsat I, sat I, unsat
classified R, sat

92% 5% 1% – 1% 1%

classified R, unsat 4% 94% – 1% – 1%
classified H, sat – – 57% 38% – 5%

classified H, unsat – 1% 23% 71% 1% 4%
classified I, sat – – 8% – 81% 11%

classified I, unsat – – – 5% 6% 89%

Table 7.21: Confusion matrix for the 6-way classifier on data set ALL.

ondly, for Crafted instances, most misclassifications were not due to a misclas-

sification of the instance type, but rather due to the satisfiability status. Finally, one

can observe that Random instances were almost perfectly classified as Random,

and only very few other instances were classified as Random, while Crafted

and Industrial instances were confused somewhat more often. The compa-

rably poor classification performance for Crafted instances partly explains why

SATzilla07∗(S++,D+) did not perform as well for the Crafted category as

for the others.

7.5 Further Improvements over the Years
Our group is actively working on introducing new techniques for improving SATzilla’s

performance. Currently, SATzilla is still considered the state-of-the-art, even

when compared to many new portfolio-building techniques.

7.5.1 SATzilla09 for Industrial

SATzilla07 achieved less improvement in the domain of Industrial. One

reason is that Industrial instances are often very large; the feature computa-

tion could be very costly and take a large proportion of the total CPU budget. The

other reason is that the state-of-the-art solvers for solving Industrial are com-

plete algorithms based on the DPLL procedure. To better handle Industrial

instances, we introduced two new techniques in SATzilla09.

1. New instance features. After 2007, we introduced several new classes of

instance features: 18 features based on clause learning, 18 based on survey
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propagation, and 5 based on graph diameter. For the Industrial cat-

egory, we also discarded 12 computationally expensive features based on

DPLL probing and graph diameter.

2. Prediction of feature computation time. Before feature computation, we

introduced an additional step that predicts the time required for feature com-

putation. If that prediction exceeds two minutes, we run the backup solver;

otherwise we continue with feature computation. In order to predict the fea-

ture computation time for an instance based on its number of variables and

clauses, we built a simple linear regression model with quadratic basis func-

tions. This was motivated by the fact that SATzilla’s feature computation

timed out on over 50% of the Industrial instances in the 2007 SAT

competition and the 2008 SAT Race. By applying feature cost prediction,

we force SATzilla to use a default solver on very large Industrial

instances without paying the large cost of feature computation.

With the above two improvements and updated candidate solvers, training data,

SATzilla09 performed very well on the 2009 SAT Competition. For the first

time, SATzilla won a gold medal in the INDUSTRIAL category.

7.5.2 SATzilla2012 with New Algorithm Selector

Previous versions of SATzilla perform algorithm selection based on empirical

performance models for predicting algorithm’s performance. However, the goal

of algorithm selection is to select solvers in order to optimize some performance

objective. If multiple solvers have similar performance on instance i, selecting any

of them does not reduce the performance of SATzilla. By contrast, if solvers

have very different performance on instance j, then picking an incorrect solver

for j is more harmful than picking an incorrect solver for i. Therefore, the cost of

misclassification depends on the performance difference among multiple candidate

solvers. The new SATzilla2012 [216] is based on cost-sensitive classification

models that punish misclassifications in direct proportion to their impact on portfo-

lio performance. In addition, we also introduced a new procedure that generates a

stand-alone SATzilla executable based on models learned within Matlab. These

two improvements are described in detail in what follows.
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1. New algorithm selector. Our new selection procedure is based on classifica-

tion models with cost-sensitive loss function. To the best of our knowledge,

this is the first time this approach has been applied to algorithm selection.

We construct cost-sensitive decision forests (DFs) as collections of 99 cost-

sensitive decision trees for every pair of algorithms. Each DF casts a vote for

the better solver. The best solver is selected based on the number of votes

received.

2. New SATzilla executable. To reduce the hassle of installing the free Matlab

runtime environment (MRE) for making predictions based on models built

with Matlab, we then converted our Matlab-built models to Java and provide

Java code to make predictions using them. Thus, running SATzilla2012

now only requires the scripting language Ruby (which is used for running

the SATzilla pipeline).

SATzilla2012won first place in Application, Hard Combinatorial,

and Sequential Portfolio; second place in Application, Hard Combinatorial,

and Random SAT; third place in Random SAT (see [124] for detailed informa-

tion).

7.6 Conclusions
Algorithms can be combined into portfolios to build a whole greater than the sum

of its parts. We have significantly extended earlier work on algorithm portfolios

for SAT that select solvers on a per-instance basis using empirical hardness models

for runtime prediction. We have demonstrated the effectiveness of the portfolio

construction method, SATzilla07, on four large sets of SAT competition in-

stances. The experiments reveal that the SATzilla07 portfolio solvers always

outperformed their components. Furthermore, SATzilla07’s excellent perfor-

mance in the 2007 SAT Competition demonstrates the practical effectiveness of

our approach.

Following this work, we pushed the SATzilla approach further beyond SATzilla07.

For the first time, we showed that portfolios can optimize complex scoring func-

tions and integrate local search algorithms as component solvers. Furthermore, we
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showed how to automate the process of pre-solver selection, one of the last aspects

of our approach that was previously based on manual engineering. In 2012, we

introduced a completely new algorithm selector based on cost-sensitive classifica-

tion models that punished misclassifications in direct proportion to their impact on

portfolio performance. As demonstrated in extensive computational experiments

and the competition results, these enhancements improved SATzilla07’s per-

formance substantially.

SATzilla is now at a stage where it can be applied “out of the box” given

a set of possible component solvers along with representative training and vali-

dation instances. In an automated built-in meta-optimization process, the com-

ponent solvers to be used and the solvers to be used as pre-solvers are automat-

ically determined from the given set of solvers, without any human effort. The

computational bottleneck is to execute the possible component solvers on a rep-

resentative set of instances in order to obtain adequate runtime data to build rea-

sonably accurate empirical hardness models. However, these computations can be

parallelized very easily and require no human intervention, only computer time,

which becomes ever cheaper. The code for building empirical hardness mod-

els and SATzilla portfolios that use these models are available online at http:

//www.cs.ubc.ca/labs/beta/Projects/SATzilla.

SATzilla’s performance ultimately depends on the power of all its com-

ponent solvers and automatically gets better as they are improved. Furthermore,

SATzilla takes advantage of solvers that are only competitive for certain kinds

of instances and perform poorly otherwise, and thus SATzilla’s success demon-

strates the value of such solvers. Indeed, the identification of more such solvers,

which are otherwise easily overlooked, still has the potential to further improve

SATzilla’s performance substantially.
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Chapter 8

Evaluating Component Solver
Contributions
to Portfolio-Based Algorithm
Selectors

Having established SATzilla’s effectiveness in 2007 and 2009, our team decided

not to compete in the solver track of the 2011 competition, to avoid discouraging

new work on (non-portfolio) solvers. Instead, we entered SATzilla in a new

“analysis track”, hoping other portfolio authors would do the same. However, other

portfolio-based methods did feature prominently among the winners in every solver

track: the algorithm selection and scheduling system 3S [112] and the simple, yet

efficient parallel portfolio ppfolio [171] won a combined seven gold and 16

other medals (out of 18 categories overall).

Considering that portfolio-based solvers often achieve state-of-the-art perfor-

mance, we believe that the community could benefit from rethinking how the value

of individual solvers is measured. In this chapter, we demonstrate techniques for

analyzing the extent to which state-of-the-art (SOTA) portfolio’s performance de-

pends on each of its component solvers. Such measures of solver contributions

may also be applied to other portfolio approaches, including parallel portfolios.
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We hope that this analysis serves as an encouragement to the community to fo-

cus on creative approaches that complement the strengths of existing solvers, even

though they may (at least initially) be effective only on certain classes of instances.
1

8.1 Measuring the Value of a Solver
One of the main reasons for holding a solver competition is to answer the ques-

tion: what is the current state of the art (SOTA)? The traditional answer to this

question has been the winner of the respective category of the competition; we call

such a winner a single best solver (SBS). However, as clearly demonstrated by the

efficacy of algorithm portfolios, different solver strategies are (at least sometimes)

complementary. This fact suggests a second answer to the SOTA question: the

virtual best solver (VBS), defined as the best competition entry on a per-instance

basis. The VBS typically achieves much better performance than the SBS, and does

provide a useful theoretical upper bound on the performance currently achievable.

However, this bound is typically not tight: the VBS is not an actual solver, because

it only informs which underlying solver to run after the performance of each solver

on a given instance has been measured, and thus the VBS cannot be (efficiently)

run on new instances. Here, we propose a third answer to the SOTA question: the

best portfolio that can be constructed in a fully automated fashion from available

solvers; we call such a portfolio a SOTA portfolio. Since algorithm portfolios often

substantially outperform their component solvers, SOTA portfolios can be expected

to achieve better performance than SBS’s; unlike the VBS, a SOTA portfolio is an

executable algorithm that can be run on novel instances.

The most natural way of assessing the performance of a solver is by means of

some statistic of its performance over a set (or distribution) of instances, such as

the number of instances solved in a time budget, or its average runtime on an in-

stance set. While there is value in these natural performance measures, we believe

that they are not sufficient for capturing the value a solver brings to the community.

Take, for example, two solvers MiniSAT’++ and NewSAT, where MiniSAT’++

1This chapter is based on the joint work with Frank Hutter, Holger Hoos, and Kevin Leyton-
Brown [215].
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is based on MiniSAT [46] and improves some of its components, while NewSAT

is a (hypothetical) radically different solver that performs extremely well on a lim-

ited class of instances and poorly elsewhere. While solver MiniSAT’++ has

a good chance to win medals in the SAT competition’s Application track,

solver NewSAT may not even be submitted, since (due to its poor average perfor-

mance) it would be unlikely to even survive Phase 1 of the competition. However,

MiniSAT’++ may only very slightly improve on the previous (MiniSAT-based)

incumbent’s performance, while NewSAT might represent deep new insights into

the solution of instances that are intractable for all other known techniques.

The notion of state-of-the-art (SOTA) contributors [193] captures a solver’s

value to the community much more effectively than does average algorithm per-

formance. The drawback is that it describes idealized solver contributions rather

than contributions to an actual executable method. We propose instead measuring

the SOTA contribution of a solver as its contribution to a SOTA portfolio that can

be automatically constructed from the available solvers. This new notion resembles

the prior notion of SOTA contributors, but directly quantifies their contributions to

an executable portfolio solver, rather than to an abstract virtual best solver (VBS).

We must still describe exactly how we should assess a solver A’s contribu-

tion to a portfolio. One may measure the frequency with which the portfolio se-

lects A, or the number of instances the portfolio solves using A. However, neither

of these measures accounts for the fact that if A were not available other solvers

would be chosen instead, and might perform nearly as well. (Consider again Solver

MiniSAT’++, and presume that it is chosen frequently by a portfolio. However,

if it had not been created, the set of solved instances may be the same, and the port-

folio’s performance may be only slightly less.) We argue that a solver A should be

judged by its marginal contribution to the SOTA: the difference between the SOTA

portfolio’s performance including A and the portfolio’s performance excluding A.

(Here, we measure portfolio performance as the percentage of instances solved

since this is the main performance metric in the SAT competition.)
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8.2 Experimental setup

Solvers. In order to evaluate the SOTA portfolio contributions of the SAT com-

petition solvers, we constructed SATzilla portfolios using all sequential, non-

portfolio solvers from Phase 2 of the 2011 SAT Competition as component solvers:

9, 15, and 18 candidate solvers for the Random, Crafted, and Application

categories, respectively. (These solvers are listed in Table 8.2; see, e.g., [124] for

their detailed information.) We hope that in the future, fully automated construc-

tion procedures will also be made publicly available for other portfolio builders,

such as 3S [112]; if so, our analysis could be easily and automatically repeated

for them. For each category, we also computed the performance of an oracle over

sequential non-portfolio solvers (an idealized algorithm selector that picks the best

solver for each instance) and the virtual best solver (VBS, an oracle over all 17,

25 and 31 entrants for the Random, Crafted and Application categories,

respectively). These oracles do not represent the current state of the art in SAT

solving, since they cannot be run on new instances; however, they serve as up-

per bounds on the performance that any portfolio-based selector over these solvers

could achieve. We also compared to the performance of the winners of all three

categories (including other portfolio-based solvers).

Features. We used a subset of 115 features from Figure 3.1. They fall into 9

categories: problem size, variable graph, clause graph, variable-clause graph, bal-

ance, proximity to Horn formula, local search probing, clause learning, and survey

propagation. Feature computation averaged 31.4, 51.8 and 158.5 CPU seconds

on Random, Crafted, and Application instances, respectively; this time

counted as part of SATzilla’s runtime budget.

Methods. We constructed SATzilla11 portfolios using the improved procedure

described in Section 7.5.2. We set the feature computation cutoff t f = 500 CPU

seconds (a tenth of the time allocated to solve an instance). To demonstrate the

effectiveness of our improvement, we also constructed a version of SATzilla09

(which uses ridge regression models), using the same training data.

We used 10-fold cross-validation to obtain an unbiased estimate of SATzilla’s

performance. First, we eliminated all instances that could not be solved by any can-
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didate solver (we denote those instances as U). Then, we randomly partitioned the

remaining instances (denoted S) into 10 disjoint sets. Treating each of these sets in

turn as the test set, we constructed SATzilla using the union of the other 9 sets

as training data, and measured SATzilla’s runtime on the test set. Finally, we

computed SATzilla’s average performance across the 10 test sets.

To evaluate how important each solver was for SATzilla, for each category

we quantified the marginal contribution of each candidate solver, as well as the per-

centage of instances solved by each solver during SATzilla’s presolving (Pre1

or Pre2), backup, and main stages. Note that our use of cross-validation means

that we constructed 10 different SATzilla portfolios using 10 different subsets

(“folds”) of instances. These 10 portfolios can be qualitatively different (e.g., se-

lecting different presolvers); we report aggregates over the 10 folds.

Data. Runtime data was provided by the organizers of the 2011 SAT competi-

tion. All feature computations were performed by Daniel Le Berre on a quad-core

computer with 4GB of RAM and running Linux, using our code. Four out of 1200

instances (from the Crafted category) had no feature values, due to a database

problem caused by duplicated file names. We treated these instances as timeouts

for SATzilla, thus obtaining a lower bound on SATzilla’s true performance.

8.3 Experimental Results
We begin by assessing the performance of our SATzilla portfolios, to confirm

that they did indeed yield SOTA performance. Table 8.1 compares SATzilla11

to the other solvers discussed above. In all categories SATzilla11 outperformed

all of its component solvers. It also always outperformed SATzilla09, which in

turn was slightly worse than the best component solver on Application.

SATzilla11 also outperformed each category’s gold medalist (including

portfolio solvers such as 3S and ppfolio). Note that this does not constitute a

fair comparison of the underlying portfolio construction procedures, as SATzilla

had access to data and solvers unavailable to portfolios that competed in the solver

track. This finding does, however, give us reason to believe that SATzilla portfo-

lios either represent or at least closely approximate the best performance reachable

by current methods. Indeed, in terms of instances solved, SATzilla11 reduced
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Solver Application Crafted Random
Runtime (Solved) Runtime (Solved) Runtime (Solved)

VBS 1104 (84.7%) 1542 (76.3%) 1074 (82.2%)
Oracle 1138 (84.3% ) 1667 (73.7%) 1087 (82.0%)
SATzilla11 1685 (75.3%) 2096 (66.0%) 1172 (80.8%)
SATzilla09 1905 (70.3%) 2219(63.0%) 1205 (80.3%)
Gold medalist Glucose2: 1856 (71.7%) 3S: 2602 (54.3%) 3S: 1836 (68.0%)
Best comp. Glucose2: 1856 (71.7%) Clasp2: 2996 (49.7%) Sparrow: 2066 (60.3%)

Table 8.1: Comparison of SATzilla11 to the VBS, an Oracle over its compo-
nent solvers, SATzilla09, the 2011 SAT competition winners, and the best
single SATzilla11 component solver for each category. We counted timed-
out runs as 5000 CPU seconds (the cutoff).

the gap between the gold medalists and the (upper performance bound defined by

the) VBS by 27.7% on Application, by 53.2% on Crafted and 90.1% on

Random. The remainder of this chapter studies the contributions of each com-

ponent solver to these portfolios. To substantiate our previous claim that marginal

contribution is the most informative measure, here we contrast it with various other

measures.

Random. Figure 8.1 presents a comprehensive visualization of our findings for

the Random category; Table 8.2 (top) shows the underlying data. First, Figure 8.1a

considers the set of instances that could be solved by at least one solver, and shows

the percentage that each component solver is able to solve. By this measure, the

two best solvers were Sparrow and MPhaseSAT M. The former is a local search

algorithm; it solved 362 + 0 satisfiable and unsatisfiable instances, respectively.

The latter is a complete search algorithm; it solved 255 + 104 = 359 instances.

Neither of these solvers won medals in the combined SAT + UNSAT Random

category, as they were outperformed by portfolio solvers that combined both lo-

cal and complete solvers. Figure 8.1b shows a correlation matrix of component

solver performance: the entry for solver pair (A,B) is computed as the Spearman

rank correlation coefficient between A’s and B’s runtime, with black and white

representing perfect correlation and perfect independence respectively. Two clus-

ters are apparent: six local search solvers (EagleUP, Sparrow, Gnovelty+2,

Sattime11, Adaptg2wsat11, and TNM), and two versions of the complete

solver March, which achieved almost identical performance. MPhaseSAT M per-

formed well on both satisfiable and unsatisfiable solvers; it was strongly correlated
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with local search solvers on the satisfiable instance subset, and very strongly cor-

related with the March variants on the unsatisfiable subset. Figure 8.1c shows

the frequency with which different solvers were selected in SATzilla11. The

main solvers selected in SATzilla11’s main phase were the best-performing lo-

cal search solver Sparrow and the best-performing complete solver March. As

shown in Figure 8.1d, the local search solver EagleUP was consistently chosen

as a presolver and was responsible for more than half (51.3%) of the instances

solved by SATzilla11 overall. We observe that MPhaseSAT M did not play

a large role in SATzilla11: it was only run for 2 out of 492 instances (0.4%).

Although MPhaseSAT M achieved very strong overall performance, its versatility

appears to have come at the price of not excelling on either satisfiable or unsatisfi-

able instances, being largely dominated by local search solvers on the former and

by March variants on the latter. Figure 8.1e shows that SATzilla11 closely ap-

proximated both the Oracle over its component solvers and the VBS, and stochas-

tically dominated 3S, the gold medalist. Finally, Figure 8.1f shows the metric that

we previously argued is the most important: each solver’s marginal contribution

to SATzilla11’s performance. The most important portfolio contributor was

Sparrow, with a marginal contribution of 4.9%, followed by EagleUP with a

marginal contribution of 2.2%. EagleUP’s low marginal contribution may be sur-

prising at first glance (recall that it solved 51.3% of the instances SATzilla11

solved overall); however, 49.1% of these instances were also solvable by other

local search solvers. Similarly, both March variants had very low marginal con-

tributions (0% and 0.2%, respectively) since they were essentially interchangeable

(correlation coefficient 0.9974). Further insight can be gained by examining the

marginal contribution of sets of highly correlated solvers. The marginal contri-

bution of the set of both March variants was 4.0% (MPhaseSAT M could still

solve most instances), while the marginal contribution of the set of six local search

solvers was 22.5% (nearly one-third of the satisfiable instances were not solvable

by any complete solver).

Crafted. Overall, sufficiently many solvers were relatively uncorrelated in the

Crafted category (Figure 8.2) to yield a portfolio with many important contrib-

utors. The most important of these was Sol, which solved all of the 13.7% of the
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instances for which SATzilla11 selected it; without it, SATzilla11 would

have solved 8.1% fewer instances. We observe that Sol was not identified as an

important solver in the SAT competition results, ranking 11th of 24 solvers in the

SAT+UNSAT category. Similarly, MPhaseSAT M, Glucose2, and Sattime

each solved a 3.6% fraction of instances that would have gone unsolved without

them. (This is particularly noteworthy for MPhaseSAT M, which was only se-

lected for 5% of the instances in the first place.) Considering the marginal contri-

butions of sets of highly correlated solvers, we observed that {Clasp1, Clasp2}
was the most important at 6.3%, followed by {Sattime, Sattime11} at 5.4%.

{QuteRSat, CryptoMiniSat} and {PicoSAT, JMiniSat, Minisat07,

RestartSAT, SApperloT}were relatively unimportant even as sets, with marginal

contributions of 0.5% and 1.8% respectively.

Application. All solvers in the Application category (Figure 8.3) exhibited

rather highly correlated performance. It is thus not surprising that in 2011, no

medals were awarded to portfolio solvers in the sequential Application track,

and that in 2007 and 2009, SATzilla versions performed worst in this track,

only winning a single gold medal in the 2009 satisfiable category. As mentioned

earlier, SATzilla11 did outperform all competition solvers, but here the margin

was only 3.6% (as compared to 12.8% and 11.7% for Random and Crafted,

respectively). All solvers were rather strongly correlated and each solver could be

replaced in SATzilla11 without a large decrease in performance; for example,

dropping the competition winner only decreased SATzilla11’s percentage of

solved instances by 0.4%. The highest marginal contribution across all 18 solvers

was four times larger: 1.6% for MPhaseSAT64. Similar to MPhaseSAT in the

Crafted category, it was selected infrequently (only for 3.6% of the instances)

but was the only solver able to solve about half of these instances. We conjecture

that this was due to its unique phase selection mechanism. Both MPhaseSAT64

and Sol (in the Crafted category) thus come close to the hypothetical solver

NewSAT mentioned earlier: they showed outstanding performance on certain in-

stances and thus contributed substantially to a portfolio, while having achieved

an unremarkable ranking in the competition (9th of 26 for MPhaseSAT64, 11th

of 24 for Sol). We did observe one larger marginal contribution than that of
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MPhaseSAT64 when dropping sets of solvers: 2.3% for {Glueminisat, LR

GL SHR}. The other three highly correlated clusters also gave rise to relatively

high marginal contribution: 1.5% for {CryptoMiniSat, QuteRSat}, 1.5% for

{Glucose1,Glucose2,EBGlucose}, and 1.2% for {Minisat,EBMiniSAT,

MiniSATagile}.

8.4 Conclusions
This chapter investigates the question of assessing the contributions of individ-

ual SAT solvers by examining their value to SATzilla, a portfolio-based al-

gorithm selector. SATzilla11 is an improved version of this procedure based

on cost-based decision forests, which entered into the new analysis track of the

2011 SAT competition. Its automatically generated portfolios achieved state of the

art performance across all competition categories, and consistently outperformed

both its constituent solvers, other competition entrants, and our previous version of

SATzilla. The experimental results show that the selection frequency of a com-

ponent solver is a poor measure of that solver’s contribution to SATzilla11’s

performance. Instead, we advocate assessing solvers in terms of their marginal

contributions to the state of the art in SAT solving.

One main observation was that the solvers with the largest marginal contribu-

tions to SATzilla were often not competition winners (e.g., , MPhaseSAT64

in Application SAT+UNSAT; Sol in Crafted SAT+UNSAT). To encourage

improvements to the state of the art in SAT solving and taking into account the

practical effectiveness of portfolio-based approaches, we suggest rethinking the

way future SAT competitions are conducted. In particular, we suggest that all

solvers that solve some instances that no other solver can handle pass Phase 1 of the

competition, and that solvers contributing most to the best-performing portfolio-

based approaches be given formal recognition. We also recommend that portfolio-

based solvers be evaluated separately—and with access to all submitted solvers as

components—rather than competing with traditional solvers.
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Solver Indiv. Perform. Average Used as Backup Used as Pre Picked by Model Marg. contrib.
Runtime (solved) Correlation (Solved) (Solved) (Solved) SATzilla(Oracle)

EagleUP 1761 (66.7%) 0.70 - (-) 10/10 (47.6%) 4.5% (3.7%) 2.2% (0.2%)
R Sparrow 1422 (73.6%) 0.67 - (-) - (-) 20.3% (20.3%) 4.9% (2.4%)
A March rw 2714 (51.0%) 0.23 - (-) - (-) 20.1% (19.9%) 0.0% (0.0%)
N March hi 2725 (51.0%) 0.23 - (-) - (-) 5.3% (5.1%) 0.2% (0.0%)
D Gnovelty+2 2146 (60.6%) 0.71 - (-) - (-) 0.8% (0.8%) 0.4% (0.0%)
O MPhaseSAT M 1510 (73.0%) 0.67 - (-) - (-) 0.4% (0.4%) 0.2% (0.0%)
M Sattime11 1850 (67.9%) 0.70 - (-) - (-) 0.4% (0.4%) 0.6% (0.0%)

Adaptg2wsat11 1847 (66.7%) 0.70 - (-) - (-) 0.4% (0.2%) -0.4% (0.2%)
TNM 1938 (65.9%) 0.70 - (-) - (-) 0.2% (0.2%) 0.4% (0.0%)

Sattime 2638 (49.3%) 0.39 - (-) 2/10 (6.4%) 15.5% (12.8%) 3.6% (1.4%)
Sol 2563 (52.5%) 0.48 - (-) 1/10 (1.4%) 13.7% (13.7%) 8.1% (6.4%)
Clasp2 2280 (67.4%) 0.69 - (-) - (-) 17.4% (15.5%) 2.7% (0.4%)
PicoSAT 2729 (54.8%) 0.73 - (-) - (-) 10.1% (10.1%) 0.5% (0.4%)

C Clasp1 2419 (67.4%) 0.67 - (-) - (-) 7.8% (6.9%) 1.4% (1.4%)
R QuteRSat 2793 (49.8%) 0.69 - (-) - (-) 6.9% (6.4%) 1.4% (0.0%)
A Sattime+ 2681 (48.0%) 0.40 - (-) - (-) 6.4% (5.9%) 1.4% (1.4%)
F MPhaseSAT 2398 (59.7%) 0.62 - (-) - (-) 5.0% (4.6%) 3.6% (1.8%)
T CryptoMiniSat 2766 (49.8%) 0.68 - (-) - (-) 3.2% (2.7%) 0.5% (0.0%)
E RestartSAT 2773 (50.7%) 0.73 - (-) - (-) 2.7% (1.4%) 1.4% (0.0%)
D SApperloT 2798 (49.3%) 0.73 - (-) - (-) 1.4% (1.4%) 1.8% (0.0%)
Glucose2 2644 (56.6%) 0.66 - (-) - (-) 0.5% (0.5%) 3.6% (0.0%)
JMiniSat 3026 (44.3%) 0.74 - (-) - (-) 0.5% (0.5%) 0.9% (0.0%)
Minisat07 2738 (55.2%) 0.70 - (-) - (-) 0.0% (0.0%) 0.0% (0.0%)
Sathys 2955 (43.4%) 0.69 - (-) - (-) 0.0% (0.0%) 0.0% (0.0%)

Glucose2 1272 (85.0%) 0.86 10/10 (8.7%) 3/10 (6.3%) 9.9% (9.5%) 0.4% (0.0%)
Glueminisat 1391 (83.4%) 0.86 - (-) 5/10 (13.4%) 12.7% (9.9%) 0.8% (0.0%)
QuteRSat 1380 (81.4%) 0.80 - (-) - (-) 12.7% (11.1%) 0.8% (0.0%)

A Precosat 1411 (81.4%) 0.85 - (-) - (-) 5.5% (4.7%) 0.4% (0.0%)
P EBGlucose 1630 (78.7%) 0.87 - (-) 1/10 (2.8%) 1.9% (1.6%) 0.8% (0.0%)
P CryptoMiniSat 1328 (81.8%) 0.82 - (-) - (-) 3.6% (3.6%) 0.4% (0.4%)
L Minisat psm 1564 (77.9%) 0.88 - (-) 1/10 (2.8%) 0.4% (0.4%) 1.2% (0.0%)
I MPhaseSAT64 1529 (79.4%) 0.82 - (-) - (-) 3.6% (2.8%) 1.6% (1.2%)
C Lingeling 1355 (82.2%) 0.86 - (-) - (-) 2.4% (2.4%) 0.8% (0.4%)
A Contrasat 1592 (78.7%) 0.80 - (-) - (-) 2.4% (2.0%) 1.2% (0.0%)
T Minisat 1567 (76.7%) 0.88 - (-) - (-) 2.0% (2.0%) -0.4% (0.0%)
I LR GL SHR 1667 (75.1%) 0.85 - (-) - (-) 2.0% (1.6%) 0.8% (0.0%)
O RestartSAT 1437 (79.4%) 0.88 - (-) - (-) 1.9% (1.2%) 0.4% (0.4%)
N Rcl 1752 (72.7%) 0.86 - (-) - (-) 1.2% (1.2%) 0.4% (0.0%)
MiniSATagile 1626 (74.7%)) 0.87 - (-) - (-) 1.6% (0.8%) 0.4% (0.0%)
Cirminisat 1514 (79.8%) 0.88 - (-) - (-) 0.8% (0.8%) 0.0% (0.0%)
Glucose1 1614 (77.8%) 0.86 - (-) - (-) 0.0% (0.0%) 0.0% (0.0%)
EBMiniSAT 1552 (77.5%) 0.89 - (-) - (-) 0.0% (0.0%) 0.0% (0.0%)

Table 8.2: Performance of SATzilla11 component solvers, disregarding in-
stances that could not be solved by any component solver. We counted timed-out
runs as 5 000 CPU seconds (the cutoff). Average correlation for s is the mean
of Spearman correlation coefficients between s and all other solvers. Marginal
contribution for s is negative if dropping s improved test set performance. (Usu-
ally, SATzilla’s solver subset selection avoids such solvers, but they can slip
through when the training set is too small.) SATzilla11(Application)
ran its backup solver Glucose2 for 10.3% of the instances (and thereby solved
8.7%). SATzilla11 only chose one presolver for all folds of Random and
Application; for Crafted, it chose Sattime as the first presolver in 2
folds, and Sol as the second presolver in 1 of these; for the remaining 8 folds,
it did not select presolvers.
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Chapter 9

Automatically Building
High-performance Algorithms
from Components

Designing high-performance solvers for computationally hard problems is a diffi-

cult and often time-consuming task. Although such design problems are tradition-

ally solved by the application of human expertise, we argue instead for the use of

automatic methods. In this work, we consider the design of stochastic local search

(SLS) solvers for the propositional satisfiability problem (SAT). We first introduce

a generalized, highly parameterized solver framework, dubbed SATenstein, that in-

cludes components drawn from or inspired by existing high-performance SLS al-

gorithms for SAT. The parameters of SATenstein determine which components are

selected and how these components behave; they allow SATenstein to instantiate

many high-performance solvers previously proposed in the literature, along with

trillions of novel solver strategies. We used an automated algorithm configuration

procedure to find instantiations of SATenstein that perform well on several well-

known, challenging distributions of SAT instances. Our experiments show that

SATenstein solvers achieved dramatic performance improvements as compared to

the previous state of the art in SLS algorithms; for many benchmark distributions,

our new solvers also significantly outperformed all automatically tuned variants

of previous state-of-the-art algorithms. To better understand the novel algorithm
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designs generated in our work, we propose a new metric for quantitatively measur-

ing the similarity between algorithm configurations, and show how to leverage this

metric for visualizing the relative similarities between different solver designs. 1

9.1 SATenstein-LS
SATenstein advocates designing new solvers by inducing a single parameterized

solver from distinct examples in the literature, and then searching this parameter

space automatically [115]. This approach is an example of—and indeed was part

of the inspiration for—a design philosophy we call Programming by Optimization

(PbO) [82]. In general, PbO means seeking and exposing design choices during a

development process, and then automatically finding instantiations of these choices

that optimize performance in a given use context. SATenstein-LS can be seen as an

example of PbO in which the algorithm design space has been obtained by unify-

ing a large number of local search schemes for SAT into a tightly integrated, highly

parametric algorithm framework. However, the PbO philosophy goes further and is

ultimately more general: it emphasizes encouraging developers to identify and ex-

pose design choices as parameters, rather than merely recovering parameters from

existing, fully implemented examples. Because of its emphasis on changing the

software development process, the PbO paradigm is also supported by program-

ming language extensions that allow parameters and design choices to be exposed

quickly and transparently. For more information, please see the PbO website at

www.prog-by-opt.net.

9.1.1 Design

As discussed in Section 3.1.2, most SLS algorithms for SAT can be categorized into

four broad categories: GSAT, WalkSAT, dynamic local search and G2WSAT. Since

no recent, state-of-the-art SLS solver is GSAT-based, we constructed SATenstein-LS

by drawing components from algorithms belonging to the three remaining cate-

gories.

As shown in the high-level algorithm outline (Procedure SATenstein-LS), SATenstein-LS

1This chapter is based on the joint work with Ashiqur KhudaBukhsh, Holger Hoos, and Kevin
Leyton-Brown [115].
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is comprised of five major building blocks, B1–B5. Any instantiation of SATenstein-LS

follows the same high-level structure:

1. Optionally execute B1, which performs search diversification.

2. Execute either B2, B3 or B4, thus performing a G2WSAT-based, WalkSAT-

based, or dynamic local search procedure, respectively.

3. Optionally execute B5, to update data structures such as promising list, clause

penalties, dynamically adaptable parameters or tabu attributes.

Each of our building blocks is composed of one or more components (listed in

Table 9.1); some of these components are shared across different building blocks.

Each component is configurable by one or more parameters. Out of 42 param-

eters overall, 6 of SATenstein-LS’s parameters are integer-valued (listed in

Table 9.5), 19 are categorical (listed in Table 9.4), and 17 are real-valued (listed

in Table 9.6). All of these parameters are exposed on the command line so that

they can be optimized using an automatic configurator. After fixing the domains

of integer- and real-valued parameters to between 3 and 16 values each (as we did

in our experiments, reported later) the total number of valid SATenstein-LS

instantiations was 2.01×1014.

We now give a high-level description of each of the building blocks. B1 is

constructed using the SelectClause(), DiversificationStrategy() and Diversification-

Probability() components. SelectClause() is configured by one categorical param-

eter and, depending on its value, either selects an unsatisfied clause uniformly at

random or selects a clause with probability proportional to its clause penalty [198].

Component diversificationStrategy() can be configured by a categorical parameter

to do any of the following with probability diversificationProbability(): flip the

least recently flipped variable [131], flip the least frequently flipped variable [166],

flip the variable with minimum variable weight [166], or flip a randomly selected

variable [80].

Block B2 instantiates G2WSAT-based algorithms that use a data structure promis-

ing list that keeps track of a set of variables considered for being flipped. In the

literature on G2WSAT, there are two strategies for selecting a variable from the

promising list: choosing the variable with the highest score [131] or choosing
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Procedure SATenstein-LS(. . .)
Input: CNF formula φ ; real number cutoff ;

Booleans performDiversification, singleClauseAsNeighbor,
usePromisingList;

Output: Satisfying variable assignment
Start with random assignment A;
Initialize parameters;
while runtime < cutoff do

if A satisfies φ then
return A;

varFlipped← FALSE;
if performDiversification then

B1 with probability diversificationProbability() do
B1 c← selectClause();
B1 y← diversificationStrategy(c) ;
B1 varFlipped← TRUE;

if not varFlipped then
if usePromisingList then

B2 if promisingList is not empty then
B2 y← selectFromPromisingList() ;

else
B2 c← selectClause();
B2 y← selectHeuristic(c) ;

else
if singleClauseAsNeighbor then

B3 c← selectClause();
B3 y← selectHeuristic(c) ;

else
B4 sety← selectSet();
B4 y← tieBreaking(sety);

flip y ;
B5 update();

the least recently flipped variable [135]. We added nine novel strategies based

on variable selection heuristics from other solvers. These, to the best of our knowl-

edge, have never been used before in the context of promising variable selection

for G2WSAT-based algorithms. For example, in previous work, variable selection

mechanisms used in Novelty variants are only applied to variables of unsatisfi-

able clauses, not to promising lists. Table 9.2 lists the eleven possible strategies for

SelectFromPromisingList.
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Component Block Parameters Instantiations Detailed Info

diversificationStrategy() 1 searchDiversificationStrategy 4 Table 9.4
SelectClause() 1, 2, 3 selectClause 2 Table 9.4
diversificationProbability() 1 rdp, rfp, rwp 216 Table 9.6
selectFromPromisingList() 2 selectPromVariable 4312 Table 9.2, 9.4

promDp, promWp, promNovNoise Table 9.6
selectHeuristic() 2, 3 heuristic Table 9.3, 9.4

performAlternateNovelty 1.83×106 Table 9.4
wp, dp, wpWalk, novNoise, s, c Tabel 9.6

selectSet() 4 scoringMeasure, smoothingScheme Table 9.4
maxinc 24576 Table 9.5
alpha,rho, sapsthresh, pflat Table 9.6

tiebreaking() 4 tieBreaking 4 Table 9.4
update() 5 useAdaptiveMechanism, adaptivenoisescheme, Table 9.4

adaptWalkProb, performTabuSearch, Table 9.4
useClausePenalty, adaptiveProm, Table 9.4
adaptpromwalkprob, updateSchemePromList, 1.76×108 Table 9.4
tabuLength, phi, theta, promPhi,promTheta, Table 9.5
ps Table 9.6

Table 9.1: SATenstein-LS components.
.

Param Value Design choice Based on

1 If freebie exists, use tieBreaking(); [179]
else, select uniformly at random

2 Variable with best score [131]
3 Least-recently-flipped variable [135]
4 Variable with best VW1 score [166]
5 Variable with best VW2 score [166]
6 Variable selected uniformly at random [79]
7 Variable selection from Novelty [142]
8 Variable selection from Novelty++ [131]
9 Variable selection from Novelty+ [79]

10 Variable selection from Novelty++′ [132]
11 Variable selection from Novelty+p [132]

Table 9.2: Design choices for selectFromPromisingList().

If promising list is empty, B2 behaves exactly as B3, which instantiates WalkSAT-

based algorithms. As previously described in the context of B1, component Select-

Clause() is used to select an unsatisfiable clause c. The SelectHeuristic() compo-

nent selects a variable from c for flipping. Depending on a categorical parameter,

SelectHeuristic() can behave as any of the thirteen well-known WalkSAT-based

heuristics that include Novelty variants, VW1 and VW2. Table 9.3 lists these

heuristics and related continuous parameters. We also extended the Novelty

variants with an optional “flat move” mechanism as found in the selection strategy

of gNovelty+ [161, 195].

Block B4 instantiates dynamic local search algorithms. The selectSet() compo-
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Param. Value Selected Heuristic Dependent Parameters

1 Novelty [142] novnoise
2 Novelty+ [80] novnoise, wp
3 Novelty++ [131] novnoise, dp
4 Novelty++′ [132] novnoise, dp
5 R-Novelty [142] novnoise
6 R-Novelty+ [80] novnoise, wp
7 VW1 [166] wpwalk
8 VW2 [166] s, c, wp
9 WalkSAT-SKC [179] wpwalk

10 Noveltyp [132] novnoise
11 Novelty+p [132] novnoise, wp
12 Novelty++p [132] novnoise, dp
13 Novelty++′p [132] novnoise, dp

Table 9.3: List of heuristics chosen by the parameter heuristic and dependent
parameters.

nent considers the set of variables that occur in any unsatisfied clause. It associates

with each such variable v a score, which depends on the clause weights of each

clause that changes satisfiability status when v is flipped. These clause weights

reflect the perceived importance of satisfying each clause. For example, weights

might increase the longer a clause has been unsatisfied, and decrease afterwards

[91, 195]. After scoring the variables, selectSet() returns all variables with maximal

score. Our implementation of this component incorporates three different scoring

functions, including those due to [142], [179], and a novel, greedier variant that

only considers the number of previously unsatisfied clauses that are satisfied by a

variable flip. The tieBreaking() component selects a variable from the maximum-

scoring set according to the same strategies used by the diversificationStrategy()

component.

Block B5 updates data structures required by the previously mentioned mech-

anisms, (e.g., dynamic local search) after a variable has been flipped. Performing

these updates in an efficient manner is of crucial importance for the performance

of many SLS algorithms. As the SATenstein-LS framework supports the com-

bination of mechanisms from many different SLS algorithms, each depending on

different data structures, the implementation of the update() function was techni-

cally quite challenging.
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Parameter Active When Domain Description

performSearchDiversification Base level parameter {0,1} If true, block B1 is performed

usePromisingList Base level parameter {0,1} If true, block B2 is performed

singleClauseAsNeighbor Base level parameter {0,1} If true, block B3 is performed
else, block B4 is performed

selectPromVariable usePromisingList = 1 {1, 11} See Table 9.2

heuristic singleClauseAsNeighbor = 1 {1, 13} See Table 9.3
performAlternateNovelty singleClauseAsNeighbor = 1 {0,1} If true, performs Novelty

variant with “flat move”.
useAdaptiveMechanism Base level parameter {0,1} If true, uses adaptive mechanisms.

adaptivenoisescheme useAdaptiveMechanism = 1 {1,2} Specifies adaptive noise mechanisms.
usePromisingList = 1

adaptWalkProb useAdaptiveMechanism = 1 {0,1} If true, walk probability or diversification
probability of a heuristic is adaptively
tuned.

performTabuSearch Base level parameter {0,1} If true, tabu variables are
not considered for flipping.

useClausePenalty Base level parameter {0,1} If true, clause penalties are computed.

selectClause singleClauseAsNeighbor = 1 {1,2} 1 selects an UNSAT clause uniformly
at random.
2 selects an UNSAT clause with a
probability proportional to its
clause penalty.

searchDiversificationStrategy performSearchDiversification = 1 {1,2,3,4} 1 randomly selects a variable from an
UNSAT clause.
2 selects the least-recently-flipped
-variable from an UNSAT clause.
3 selects the least-frequently-flipped
variable from an UNSAT clause.
4 selects the variable with least
VW2 weight from an UNSAT clause.

adaptiveProm usePromisingList = 1 {0,1} If true, performs adaptive versions of
Novelty variants to select variable
from promising list.

adaptpromwalkprob usePromisingList = 1 {0,1} If true, walk probability or diversification
adaptiveProm = 1 probability of Novelty variants used

on promising list is adaptively tuned.
scoringMeasure usePromisingList = 0 {1,2,3} Specifies the scoring measure.

singleClauseAsNeighbor = 0 1 uses MakeCount - BreakCount
2 uses MakeCount
3 uses -BreakCount

tieBreaking usePromisingList = 1 {1,2,3,4} 1 breaks ties randomly.
selectPromVariable ∈ { 1,4,5 } 2 breaks ties in favor of the
or singleClauseAsNeighbor = 0 least-recently-flipped variable.

3 breaks tie in favor of the
least-frequently-flipped variable.
4 breaks tie in favor of the
variable with least VW2 score.

updateSchemePromList usePromisingList = 1 {1,2,3} 1 and 2 follow G2WSAT .
3 follows gNovelty+.

smoothingScheme useClausePenalty = 1 {1,2} When singleClauseAsNeighbor = 1 :
1 performs smoothing for only random
3-SAT instances with 0.4 fixed
smoothing probability.
2 performs smoothing for all instances.
When singleClauseAsNeighbor = 0 :
1 performs SAPS-like smoothing.
2 performs PAWS-like smoothing.

Table 9.4: Categorical parameters of SATenstein-LS. Unless otherwise
mentioned, multiple “active when” parameters are combined together us-
ing AND.

9.1.2 Implementation and Validation

SATenstein-LS is built on top of UBCSAT [198], a well-known framework for
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Parameter Active When Description Values considered

tabuLength performTabuSearch = 1 Specifies tabu step-length 1, 3, 5, 7, 10, 15, 20
phi useAdaptiveMechanism = 1 Parameter for adaptively setting noise 3, 4, 5, 6, 7, 8, 9, 10

singleClauseAsNeighbor = 1
theta useAdaptiveMechanism = 1 Parameter for adaptively setting noise 3, 4, 5, 6, 7, 8, 9, 10

singleClauseAsNeighbor = 1
promPhi usePromisingList = 1 Parameter for adaptively setting noise 3, 4, 5, 6, 7, 8, 9, 10

adaptiveProm = 1
selectPromVariable ∈ {7,8,9,10,11}

promTheta usePromisingList = 1 Parameter for adaptively setting noise 3, 4, 5, 6, 7, 8, 9, 10
adaptiveProm = {1}
selectPromVariable ∈ {7,8,9,10,11}

maxinc singleClauseAsNeighbor = 0 PAWS [195] parameter for 5, 10, 15, 20
useClausePenalty = 1 additive clause weighting
smoothingScheme = 2

Table 9.5: Integer parameters of SATenstein-LS and the values consid-
ered during ParamILS tuning. Multiple “active when” parameters are
combined together using AND. Existing defaults are highlighted in bold.
For parameters first introduced in SATenstein-LS, default values are
underlined.

developing and empirically evaluating SLS algorithms for SAT. UBCSAT makes

use of a trigger-based architecture that facilitates the reuse of existing mechanisms.

While designing and implementing SATenstein-LS, we not only studied exist-

ing SLS algorithms, as presented in the literature, but we also analyzed the SAT

competition submissions of such algorithms. We found that the pseudocode of

VW2 according to [166] differed from its SAT competition 2005 version, which

includes a reactive mechanism; we included both versions in SATenstein-LS’s

implementation. We also found that in the SAT competition implementation of

gNovelty+, Novelty uses a PAWS-like [195] “flat move” mechanism. We im-

plemented this alternate version of Novelty in SATenstein-LS and exposed

a categorical parameter to choose between the two implementations. While exam-

ining the implementations of various SLS solvers, we noticed that certain key data

structures were implemented in different ways. In particular, different G2WSAT

variants use different realizations of the update scheme of promising list. We in-

cluded all these update schemes in SATenstein-LS and declared parameter up-

dateSchemePromList to select between them.

Since SATenstein-LS is quite complex, we took great care in validating its

implementation of existing SLS-based SAT solvers. We compared our SATenstein-LS

implementation with ten well-known algorithms’ reference implementations (specif-

ically, every algorithm listed in Table 9.7 except for Ranov), measuring running
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Parameter Active When Description Discrete Values Considered

wp singleClauseAsNeighbor = 1 Randomwalk probability for Novelty+ 0, 0.01, 0.03, 0.04, 0.05, 0.06, 0.07,
heuristic ∈ {2,6,11} 0.1, 0.15, 0.20
useAdaptiveMechanism = 0
or smoothingScheme = 1
singleClauseAsNeighbor = 0
useClausePenalty = 0

dp singleClauseAsNeighbor = 1 Diversification probability for Novelty++ 0.01, 0.03, 0.05, 0.07, 0.1, 0.15, 0.20
heuristic ∈ {3,4,12,13} and Novelty++′

useAdaptiveMechanism = 0
promDp usePromisingList = 1 Diversification probability for Novelty 0.01, 0.03, 0.05, 0.07, 0.1, 0.15, 0.20

selectPromVariable ∈ {8,10} variants used to select variable from
adaptiveProm = 0 promising list

novNoise singleClauseAsNeighbor = 1 Noise parameter for all Novelty variants 0.01, 0.03, 0.05, 0.07, 0.1, 0.15, 0.20
heuristic ∈ {1,2,3,4,5,6,10,11,12,13}
useAdaptiveMechanism = 0

wpWalk singleClauseAsNeighbor = 1 Noise parameter for WalkSAT and VW1 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 , 0.8
heuristic ∈ {7,9}
useAdaptiveMechanism = 0

promWp usePromisingList = 1 Randomwalk probability for Novelty 0.01, 0.03, 0.05, 0.07, 0.1, 0.15, 0.20
selectPromVariable ∈ {9,11} variants used to select variable

from promising list
promNovNoise usePromisingList = 1 Noise parameter for all Novelty 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 , 0.8

selectPromVariable ∈ 7,8,9,10,11 variants used to select variable
from promising list

alpha singleClauseAsNeighbor = 0 Parameter for SAPS 1.01, 1.066, 1.126, 1.189, 1.3, 1.256,
useClausePenalty = 1 1.326, 1.4
smoothingScheme = 1

rho singleClauseAsNeighbor = 0 Parameter for SAPS 0, 0.17, 0.333, 0.5, 0.666, 0.8, 0.83, 1
useClausePenalty = 1
smoothingScheme = 1

sapsthresh singleClauseAsNeighbor = 0 Parameter for SAPS -0.1, -0.2, -0.3, -0.4
useClausePenalty = 1
smoothingScheme = 1

ps useClausePenalty = 1 Smoothing parameter for SAPS, RSAPS, 0, 0.033, 0.05, 0.066, 0.1, 0.133, 0.166,
singleClauseAsNeighbor = 1 and gNovelty+ 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
or singleClauseAsNeighbor = 0
useClausePenalty = 1
useAdaptiveMechanism = 0
smoothingScheme = 1

s singleClauseAsNeighbor = 1 VW parameter for smoothing 0.1, 0.01, 0.001
useAdaptiveMechanism = 0
or singleClauseAsNeighbor = 0
tieBreaking = 4
useAdaptiveMechanism = 0

c singleClauseAsNeighbor = 1 VW parameter for smoothing 0.1, 0.01, 0.001, 0.0001, 0.00001,
useAdaptiveMechanism = 0 0.000001
or singleClauseAsNeighbor = 0
tieBreaking = 4
useAdaptiveMechanism = 0

rdp performSearchDiversification = 1 Parameter for search diversification 0.01, 0.03, 0.05, 0.07, 0.1, 0.15
searchDiversificationStrategy ∈ {2,3}

rfp performSearchDiversification = 1 Parameter for search diversification 0.01, 0.03, 0.05, 0.07, 0.1, 0.15
searchDiversificationStrategy = 4

rwp performSearchDiversification = 1 Parameter for search diversification 0.01, 0.03, 0.05, 0.07, 0.1, 0.15
searchDiversificationStrategy = 1

pflat singleClauseAsNeighbor = 0 Parameter for PAWS that controls 0.05, 0.10, 0.15, 0.20
useClausePenalty = 1 “flat-moves”
smoothingScheme = 2

Table 9.6: Continuous parameters of SATenstein-LS and values consid-
ered during ParamILS tuning. Unless otherwise mentioned, multiple
“active when” parameters are combined together using AND. Exist-
ing defaults are highlighted in bold. For parameters first introduced in
SATenstein-LS, default values are underlined.

times as the number of variable flips.2 These ten algorithms span G2WSAT-based,

2Since SATenstein-LS does not use any preprocessor, we manually disabled the preprocess-
ing steps of G2, AG2p, AG2+, and AG20 when performing this validation.
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WalkSAT-based, and dynamic local search procedures, and also make use of all the

prominent SLS solver mechanisms discussed earlier. Our validation results showed

that in every case reference solvers and their SATenstein-LS implementations

had the same run-length distributions on a small set of validation instances choosen

from block world and software verification, based on a Kolmogorov-Smirnov test

(5000 runs per solver–instance pair with significance threshold 0.05).

9.2 Experimental Setup
In order to study the effectiveness of our proposed approach for algorithm design,

we configured SATenstein-LS on training sets from various distributions of

SAT instances and compared the performance of the SATenstein-LS solvers

thus obtained against that of several existing high-performance SAT solvers on

disjoint test sets.

9.2.1 Benchmarks

We considered six sets of well-known benchmark instances for SAT. They can be

roughly categorized into three broad categories of SAT instances, namely indus-

trial (CBMC(SE), FAC), handmade (QCP, SW-GCP), and random (R3SAT, HGEN).

Because SLS algorithms are unable to prove unsatisfiability, we constructed our

benchmark sets to include only satisfiable instances.

The instance generators for HGEN [76] and FAC [200] only produce satisfi-

able instances. For each of these two distributions, we generated 2000 instances.

For QCP [60] and SW-GCP [58], we first filtered out unsatisfiable instances us-

ing complete solvers and then randomly chose 2000 satisfiable instances. For

R3SAT [180], we generated a set of 1000 instances with 600 variables and a

clauses-to-variables ratio of 4.26. We identified 521 satisfiable instances and ran-

domly chose 500 instances. Finally, we used the CBMC generator [34] to generate

611 SAT-encoded software verification instances. We preprocessed these instances

using SatELite [45], identifying 604 of them as satisfiable and the remaining 7 as

unsatisfiable.

We randomly split each of the six instances sets thus obtained into training and

test sets of equal size.
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9.2.2 Tuning Scenario and PAR

In order to perform automatic algorithm configuration, we first had to quantify

performance using an objective function. Consistent with most previous work on

SLS algorithms for SAT, we chose to focus on mean runtime. In order to deal with

runs that had to be terminated at a given cutoff time, following Hutter et al., [2009],

we used a variant of mean runtime known as penalized average runtime (PAR-10),

defined as the average runtime over a given set of runs, where timed-out runs are

counted as 10 times the given cutoff time. Unless explicitly stated otherwise, all

runtimes reported in this chapter were measured using PAR-10 over the respective

set of instances.

To perform automated configuration, we used the FocusedILS procedure from

the ParamILS framework, version 2.3 [95]. We chose this method because it has

been demonstrated to operate effectively on many extremely large, discrete pa-

rameter spaces (see, e.g., 94, 97, 165, 197), and because it supports conditional

parameters (discussed below). FocusedILS takes as input a parameterized algo-

rithm (the so-called target algorithm), a specification of domains and (optionally)

conditions for all parameters, a set of training instances, and an evaluation met-

ric. It outputs a parameter configuration of the target algorithm that approximately

minimizes the given evaluation metric.

As just mentioned, FocusedILS supports conditional parameters, which are

important to SATenstein-LS. For example, condition A|B = b means that A

is activated if B takes the value b. When more than one such condition is given

for the same parameter A, these are interpreted as being connected by logical

“AND”. For example, the two conditions, A|B = b and A|C = c, are interpreted

as A|(B = b)∧ (C = c). Some parameters in SATenstein-LS can be activated

in more than one way. While this cannot be directly specified in the input to Fo-

cusedILS, we can express such disjunctive conditions using dummy parameters, as

illustrated in the following example. Consider an algorithm S with four parame-

ters, {A,B,C,D}, and where A is activated if B = b or C = c, while D is activated

if A = a. As it is impossible to express the condition A|(B = b)∨ (C = c) directly

in the input to FocusedILS, we introduce two dummy parameters, A∗ and D∗. Us-

ing these additional parameters, the given conditions can be expressed as A|B = b;
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A∗|C = c; A∗|B 6= b; D|A = a; D∗|A∗ = a. Since only one of (A,A∗)/(D,D∗) is

activated, we can simply map A∗ to A and D∗ to D when instantiating S with a

parameter configuration found by FocusedILS.

We used a cutoff time of 5 CPU seconds for each target algorithm run, and

allotted 7 days to each run of FocusedILS; we note that, while 5 CPU seconds

is unrealistically short for assessing the performance of SAT solvers, using short

cutoff times during configuration is important for the efficiency of the configura-

tion process and typically works well, as demonstrated by our SATenstein-LS

results. Since ParamILS cannot operate directly on continuous parameters, each

continuous parameter was discretized into sets containing between 3 and 16 values

that we considered reasonable (see Table 9.5). Except for a small number of cases

(e.g., the parameters s,c) for which we used the same discrete domains as men-

tioned in the publication first describing it [166]), we selected these values using

a regular grid over a range of values that appeared reasonable. For each integer

parameter, we specified 4 to 10 values, always including the known defaults (see

Table 9.6). In all cases, these choices included the parameter values required to

cover the default configurations of the solvers whose components were integrated

into SATenstein-LS’s design space. Categorical parameters and their respec-

tive domains are listed in Table 9.4. As mentioned before, based on this discretiza-

tion, SATenstein-LS’s parameter configuration space consists of 2.01× 1014

distinct configurations.

Since the performance of FocusedILS can vary significantly depending on the

order in which instances appear in the training set, we ran FocusedILS 20 times on

the training set, using different, randomly determined instance orderings for each

run. From the 20 parameter configurations obtained from FocusedILS for each

instance distribution D, we selected the parameter configuration with the best pe-

nalized average runtime on the training set. We then evaluated this configuration on

the test set. For a given distribution D, we refer to the corresponding instantiation

of a solver S as S[D].
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9.2.3 Solvers Used for Performance Comparison

For each instance distribution D, we compared the performance of SATenstein-LS[D]

against that of 11 high-performance SLS-based SAT solvers on the respective test

sets. We included every SLS algorithm that won a medal in any category of a

SAT competition between 2002 and 2007, because those algorithms are all part of

the SATenstein-LS design space. Although dynamic local search (DLS) algo-

rithms have not won medals in recent SAT competitions, we also included three

prominent, high-performing DLS algorithms for two reasons. First, some of them

represented the state of the art when introduced (e.g., SAPS [91]) and still of-

fer competitive performance on many instances. Second, techniques used in these

algorithms have been incorporated into other recent high-performance SLS algo-

rithms. For example, the additive clause weighting scheme used in PAWS is also

used in the 2007 SAT Competition winner gNovelty+ [161]. We call these

algorithms challengers and list them in Table 9.7. In order to demonstrate the full

performance potential of these solvers, we also tuned the parameters for all param-

eterized challengers using the same configuration procedure and protocol as for

SATenstein-LS, including the same choices of discrete values for continuous

and integer parameters.

SATenstein-LS can be instantiated such that it emulates all 11 challenger

algorithms (except for preprocessing components used in Ranov, AG2p, AG2plus,

and AG20). However, in some cases, the original implementations of these algo-

rithms are more efficient—on our data, by at most a factor of two on average per

instance set—mostly, because SATenstein-LS’s generality rules out some data

structure optimizations. Thus, we based all of our experimental comparisons on

the original algorithm implementations, as submitted to the respective SAT Com-

petitions. The exceptions are PAWS, whose implementation within UBCSAT is

almost identical to the original in terms of runtime, as well as SAPS, RSAPS, and

ANOV, whose UBCSAT implementations are those used in the competitions. All

of our comparisons on the test set are based on running each solver 25 times per

instance, with a per-run cutoff of 600 CPU seconds.

Our goal was to improve the state of the art in SAT solving. Thus, although the

design space of SATenstein-LS consists solely of SLS solvers, we have also
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Algorithm Abbrev Reason for Inclusion Parameters

Ranov
[160] Ranov gold 2005 SAT Competition (random) wp

G2WSAT
[131]

G2 silver 2005 SAT Competition (random) novNoise, dp

VW
[166] VW bronze 2005 SAT Competition (ran-

dom)
c, s, wpWalk

gNovelty+
[161]

GNOV gold 2007 SAT Competition (random) novNoise, wpWalk, ps

adaptG2WSAT0
[132]

AG20 silver 2007 SAT Competition (random) NA

adaptG2WSAT+
[135]

AG2+ bronze 2007 SAT Competition (ran-
dom)

NA

adaptNovelty+
[80]

ANOV gold 2004 SAT Competition (random) wp

textttadaptG2WSATp
[135]

AG2p performance comparable to
G2WSAT [131], Ranov, and
adaptG2WSAT+; see [132]

NA

SAPS
[91]

SAPS prominent DLS algorithm alpha, ps, rho, sapsthresh, wp
RSAPS
[91]

RSAPS prominent DLS algorithm alpha, ps, rho, sapsthresh, wp
PAWS
[195]

PAWS prominent DLS algorithm maxinc, pflat

Table 9.7: Our eleven challenger algorithms.

Category Solver Reason for Inclusion

Industrial Picosat gold, silver
(CBMC(SE) and FAC) [18, 19] 2007 SAT Competition (industrial)

Minisat2.0 bronze, silver
[187] 2007 SAT Competition (industrial)

Handmade Minisat2.0 bronze, silver
(QCP and SW-GCP) [187] 2007 SAT Competition (handmade)

March pl Improved, bug-free version of
[73] March ks [74],

gold in 2007 SAT Competition (handmade)
Random Kcnfs 04 silver

(HGEN and R3SAT) [44] 2007 SAT Competition (random)
March pl Improved, bug-free version of
[73] March ks [74], silver

in 2007 SAT Competition (random)

Table 9.8: Complete solvers we compared against.

compared its performance to that of high-performance complete solvers (listed in

Table 9.8). Unlike SLS solvers, these complete solvers are deterministic. Thus,

for every instance in each distribution, we ran each complete solver once with a

per-run cutoff of 600 CPU seconds.
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9.2.4 Execution Environment

We performed our experiments on a cluster of 55 dual 3.2GHz Intel Xeon PCs

with 2MB cache and 2GB RAM, running OpenSuSE Linux 11.1. Our computer

cluster was managed by a distributed resource manager, Sun Grid Engine software

(version 6.0). Runtimes for all algorithms (including FocusedILS) were measured

as CPU time on these reference machines. Each run of any solver only used one

CPU.

9.3 Performance Results
In this section, we present the results of performance comparisons between SATenstein-LS

and the 11 challenger SLS solvers (listed in Table 9.7), configured versions of

these challengers, and two complete solvers for each of our benchmark distribu-

tions (listed in Table 9.8). Although in our configuration experiment, we optimized

SATenstein-LS for penalized average runtime (PAR-10), we also examine its

performance in terms of other performance metrics, such as median runtime and

percentage of instances solved within the given cutoff time.

9.3.1 Comparison with Challengers

For every one of our six benchmark distributions, we were able to find a SATenstein-LS

configuration that outperformed all 11 challengers. Our results are summarized in

Table 9.9 and Figure 9.1.

In terms of penalized average runtime, the performance metric we explic-

itly optimized using ParamILS (with a cutoff time of 5 CPU seconds rather than

the 600 CPU seconds used here for testing, as explained in Section 5.2), our

SATenstein-LS solvers achieved better performance than every challenger on

every distribution. For QCP, HGEN, and CBMC(SE), SATenstein-LS achieved

a PAR-10 score that was orders of magnitude better than the respective best chal-

lengers. For SW-GCP, R3SAT, and FAC, there was substantial, but less dramatic

improvement. The modest improvement in R3SAT was not very surprising (Fig-

ure 9.1: Left); R3SAT is a well-known SAT distribution on which SLS solvers

have been evaluated and optimized for decades. Conversely, on a new bench-

mark distribution, CBMC(SE), where DPLL solvers represent the state of the art,
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0.08 0.03 1.11 0.02 10.89 4.75
SATenstein-LS[D] 0.01 0.02 0.14 0.01 7.90 0.02
[115] 100% 100% 100% 100% 100% 100%

Solvers QCP SW-GCP R3SAT HGEN FAC CBMC(SE)

1054.99 0.64 2.14 137.02 3594.40 2169.77
AG20 0.03 0.11 0.13 0.57 N/A 0.56
[132] 81.2% 100% 100% 98.1% 35.9% 61.1%

1119.96 0.43 2.35 105.30 1954.83 2294.24
AG2p 0.02 0.06 0.14 0.48 330.26 2.57
[135] 80.1% 100% 100% 98.4% 80.6% 61.1%

1091.37 0.67 3.04 148.28 1450.89 2181.92
AG2+ 0.03 0.08 0.16 0.59 238.31 0.64
[135] 80.3% 100% 100% 98.0% 91.0% 61.1%

25.42 4.86 11.17 109.94 2897.52 2021.22
ANOV 0.02 0.04 0.15 0.50 588.23 3.10
[80] 99.6% 100% 100% 98.6% 51.4% 61.1%

2942.13 4092.29 3.69 104.55 5947.80 2139.12
G2 341.60 N/A 0.13 0.60 N/A 0.57
[131] 50.9% 31.0% 100% 98.7% 0% 65.4%

414.69 1.20 11.14 52.58 5935.39 2236.85
GNOV 0.03 0.09 0.15 0.71 N/A 0.67
[161] 93.3% 100% 100% 99.4% 0% 61.5%

1127.84 4495.50 1.77 62.18 22.05 1693.82
PAWS 0.03 N/A 0.08 0.82 10.41 0.18
[195] 81.0% 24.3% 100% 99.4% 100% 70.8%

73.38 0.15 18.29 151.11 887.33 1227.07
RANOV 0.1 0.12 0.36 0.90 152.16 0.58
[160] 99.1% 100% 100% 98.2% 96.8% 79.7%

1255.94 5635.54 18.42 33.28 17.86 827.81
RSAPS 0.05 N/A 1.86 2.33 11.53 0.02
[91] 79.2% 5.4% 100% 99.7% 100% 85.0%

1248.34 3864.74 22.93 40.17 16.41 646.89
SAPS 0.04 N/A 1.77 2.65 10.56 0.02
[91] 79.4% 34.2% 100% 99.5% 100% 89.7%

1022.69 161.74 12.45 176.18 3382.02 385.12
VW 0.25 40.26 0.82 3.13 N/A 0.23
[166] 81.9% 99.4% 100% 97.8% 35.3% 93.4%

Table 9.9: Performance of SATenstein-LS and the 11 challengers. Every
algorithm was run 25 times with a cutoff of 600 CPU seconds per run.
Each cell 〈i, j〉 summarizes the test-set performance of algorithm i on
distribution j as a/b/c, where a (top) is the the PAR10 score; b (middle)
is the median of the median runtime(where the outer median is taken
over the instances and the inner median over the runs); c (bottom) is
the percentage of instances solved (median runtime < cutoff). The best-
scoring algorithm(s) in each column are indicated in bold, and the best-
scoring challenger(s) are underlined.
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SATenstein-LS solvers performed markedly better than every SLS-based chal-

lenger. We were surprised to see the amount of improvement we obtained for

HGEN, a hard random SAT distribution very similar to R3SAT, and QCP, a widely-

known SAT distribution. We noticed that on HGEN, some older solvers such as

SAPS and PAWS performed much better than more recent medal winners such

as GNOV and AG20. Also, for QCP, a somewhat older algorithm, ANOV, turned

out to be the best challenger. These observations led us to believe that the strong

performance of SATenstein-LS was partly due to the fact that the past seven

years of SLS SAT solver development have not taken these types of distributions

into account and have not yielded across-the-board improvements in SLS solver

performance.

We also evaluated the performance of SATenstein-LS solvers using two

other performance metrics: median-of-median runtime and percentage of solved

instances. If a solver finishes most of the runs on most instances, the capped runs

will not affect its median-of-median performance, and hence the metric does not

need a way of accounting for the cost of capped runs. (When the median of medians

is a capped run, we say that the metric is undefined.) Table 9.9 shows that, although

the SATenstein-LS solvers were obtained by optimizing for PAR-10, they still

outperformed every challenger in every distribution except for R3SAT, in which the

challengers achieved slightly better performance than SATenstein-LS. Finally,

we measured the percentage of instances on which the median runtime was below

the cutoff used for capping runs. According to this measure, SATenstein-LS

either equalled or beat every challenger, since it solved 100% of the instances in

every benchmark set. In contrast, only 4 challengers managed to solve more than

50% of instances in every test set. Overall, SATenstein-LS solvers scored well

on these measures, even though its performance was not explicitly optimized for

them.

The relative performance of the challengers varied significantly across different

distributions. For example, the three dynamic local search solvers (SAPS, PAWS,

and RSAPS) performed substantially better than the other challengers on factor-

ing instances (FAC). However, on SW-GCP, their performance was weak. Sim-

ilarly, GNOV (SAT Competition 2007 winner in the random satisfiable category)

performed very poorly on our two industrial benchmark distributions, CBMC(SE)
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Challengers QCP SW-GCP R3SAT HGEN FAC CBMC(SE)

AG20 76.1 (23.3) 95.8 (4.2) 45.6 (17.6) 98.0 (1.5) 100.0 (0.0) 100.0 (0.0)
AG2p 70.6 (28.6) 88.9 (10.7) 47.6 (15.2) 98.2 (1.1) 100.0 (0.0) 100.0 (0.0)
AG2+ 75.4 (24.1) 94.3 (5.7) 61.6(12.4) 98.5 (1.1) 100.0 (0.0) 100.0 (0.0)
ANOV 57.7 (40.4) 68.5 (27.2) 57.2 (8.0) 97.6 (1.3) 99.9 (0.0) 100.0 (0.0)
G2 81.4 (18.6) 100.0 (0.0) 34.0 (15.2) 98.0 (1.4) 100.0 (0.0) 100.0 (0.0)
GNOV 97.5 (2.4) 99.6 (0.4) 48.8 (16.4) 99.4 (0.4) 100.0 (0.0) 100.0 (0.0)
PAWS 69.0 (30.1) 100.0 (0.0) 19.6 (3.2) 100.0 (0.0) 68.8 (0.0) 100.0 (0.0)
RANOV 100.0 (0.0) 100.0 (0.0) 99.2 (0.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0)
RSAPS 71.5 (28.0) 99.8 (0.2) 96.8 (3.2) 100.0 (0.0) 81.1 (0.0) 42.2 (54.5)
SAPS 70.9 (28.5) 100.0 (0.0) 96.8 (2.4) 100.0 (0.0) 73.7 (0.2) 48.8 (48.5)
VW 85.3 (14.7) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0)

Table 9.10: Percentage of instances on which SATenstein-LS achieved
better (equal) median runtime than each of the 11 challengers. Medians
were taken over 25 runs on each instance with a cutoff time of 600 CPU
seconds per run.

and FAC, but solved SW-GCP and HGEN instances quite efficiently.3 This suggests

that different distributions are most efficiently solved by rather different solvers.

We are thus encouraged that our automatic algorithm construction process was

able to find good configurations for each distribution.

So far, we have discussed performance metrics that describe aggregate perfor-

mance over the entire test set. One might wonder if SATenstein-LS’s strong

performance is due its ability to solve relatively few instances very efficiently,

while performing poorly on others. Table 9.10 shows that this is typically not the

case, summarizing the performance of each SATenstein-LS solver compared

to each challenger on a per-instance basis. Except for R3SAT, SATenstein-LS

solvers outperformed the respective best challengers for each distribution on a per-

instance basis. R3SAT was an exception: PAWS outperformed SATenstein-LS[R3SAT]

most frequently (77.2%), but still achieved a lower PAR-10 score, indicating that

SATenstein-LS[R3SAT] achieved dramatically better performance than PAWS

on a relatively small number of hard instances.

3Interestingly, on both types of random instances we considered, GNOV failed to outperform some
of the older solvers, in particular, PAWS and RSAPS.

154



10
−2

10
0

10
2

10
−2

10
−1

10
0

10
1

10
2

SATenstein[R3SAT] median runtime (CPU sec)

P
A

W
S

 m
ed

ia
n 

ru
nt

im
e 

(C
P

U
 s

ec
)

 

 

R3SAT

10
−2

10
0

10
2

10
−2

10
−1

10
0

10
1

10
2

SATenstein[FAC] median runtime (CPU sec)

S
A

P
S

 m
ed

ia
n 

ru
nt

im
e 

(C
P

U
 s

ec
)

 

 

FAC

Figure 9.1: Performance comparison of SATenstein-LS and the best
challenger. Left: R3SAT; Right: FAC. Medians were taken over 25
runs on each instance with a cutoff time of 600 CPU seconds per run.

9.3.2 Comparison with Automatically Configured Versions of
Challengers

The fact that SATenstein-LS solvers achieved significantly better performance

than all 11 challengers with default parameter configurations (i.e., those selected

by their designers) admits two possible explanations. First, it could be due to the

fact that SATenstein-LS’s (vast) design space includes useful new configura-

tions that combine solver components in novel ways. Second, the performance

gains may have been achieved simply by better configuring existing SLS algo-

rithms within their existing, and quite small, design spaces. To determine which

of these two hypotheses holds, we compared SATenstein-LS solvers against

challengers configured for optimized performance on our benchmark sets, using

the same automated configuration procedure and protocol.

Table 9.11 summarizes the performance thus obtained, and Figure 9.2 shows

the PAR-10 ratios of SATenstein-LS solvers over the default and configured

challengers. Compared to challengers with default configurations (see Table 9.9),

the specifically optimized versions of the challenger solvers often achieved signifi-

cantly better performance, reducing their performance gaps to SATenstein-LS

solvers. For example, automatic configuration of G2 led to a speedup of 5 orders

of magnitude in terms of PAR-10 on SWGCP and solved 100% of the instances in

that benchmark set within a 600 second cutoff (vs. 31% for G2 default). However,

it is worth noting that the configured challengers sometimes also exhibited worse

performance than the default configurations (in the worst case, VW[SWGCP] was
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Solvers QCP SW-GCP R3SAT HGEN FAC CBMC(SE)

26.13 0.06 2.68 119.75 1731.16 994.94
ANOV[D] 0.02 0.04 0.12 0.54 296.84 0.50
[80] 99.6% 100% 100% 98.2% 90.1% 83.4%

514.29 0.05 3.64 98.70 617.83 1084.60
G2[D] 0.03 0.05 0.15 0.75 110.42 0.58
[131] 91.4% 100% 100% 99.1% 97.8% 81.4%

417.33 0.22 8.87 68.24 5478.75 2195.76
GNOV[D] 0.03 0.09 0.17 0.62 N/A 0.19
[161] 92.9% 100% 100% 99.4% 0.3% 61.8%

68.06 0.70 1.91 64.48 22.01 1925.56
PAWS[D] 0.02 0.35 0.09 0.83 10.39 0.50
[195] 99.2% 100% 100% 99.4% 100% 67.7%

75.06 0.15 13.85 141.61 336.27 1223.83
RANOV[D] 0.1 0.12 0.24 0.77 95.53 0.47
[160] 98.9% 100% 100% 98.1% 100% 80.4%

868.37 0.19 1.32 42.99 12.17 67.59
RSAPS[D] 0.04 0.15 0.11 0.64 7.86 0.02
[91] 85.2% 100% 100% 99.5% 100% 99.0%

27.69 0.31 1.54 31.77 10.68 62.63
SAPS[D] 0.06 0.21 0.16 0.75 7.00 0.02
[91] 99.8% 100% 100% 99.6% 100% 99.0%

0.33 417.71 1.26 57.44 32.38 16.45
VW[D] 0.02 8.43 0.15 1.00 17.60 0.02
[166] 100% 94.8% 100% 99.6% 100% 100%

Table 9.11: Performance summary of the automatically configured versions
of 8 challengers (three challengers have no parameters). Every algo-
rithm was run 25 times on each problem instance with a cutoff of 600
CPU seconds per run. Each cell 〈i, j〉 summarizes the test-set perfor-
mance of algorithm i on distribution j as a/b/c, where a (top) is the
the penalized average runtime; b (middle) is the median of the median
runtimes over all instances (not defined if fewer than half of the median
runs failed to find a solution within the cutoff time); c (bottom) is the
percentage of instances solved (i.e., having median runtime < cutoff).
The best-scoring algorithm(s) in each column are indicated in bold.
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Default Tuned for CBMC(SE)

Figure 9.2: Performance of SATenstein-LS solvers vs challengers with
default and optimized configurations. For every benchmark distribution
D, the base-10 logarithm of the ratio between SATenstein[D] and
one challenger (default and optimized) is shown on the y-axis, based
on data from Tables 9.9 and 9.11. Top-left: QCP; Top-right: SWGCP;
Middle-left: R3SAT; Middle-right: HGEN; Bottom-left: FAC; Bottom-
right: CBMC(SE)

2.58 times slower than VW default in terms of PAR-10 with a cutoff of 600 CPU

seconds). This was caused by the short cutoff time used during the configuration

process, as motivated in Section 5.2; had we used the same 5 CPU second cut-

off time for computing PAR-10 score, we expected that the configured challengers

would have always outperformed the default versions.

Examining benchmark distributions individually and ranging over our 8 chal-

lengers, we observed average and median speedups over default configurations of
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396 and 3.58 (for QCP), 15,900 and 3,240 (for SWGCP), 5.84 and 2.74 (for R3SAT),

1.23 and 1.01 (HGEN), 15.4 and 1.61 (FAC), 6.61 and 2.00(CBMC(SE)). We were

surprised to observe only small speedups for all challengers on HGEN. Considering

challengers individually and ranging over our 6 benchmark distributions, average

and median PAR-10 improvement was 15.0 and 1.85 (for ANOV), 13,200 and 3.84

(for G2), 1.74 and 1.05 (for GNOV), 1,070 and 0.98 (for PAWS), 1.33 and 1.03 (for

RANOV), 4,870 and 6.85 (for RSAPS), 2,080 and 12.3 (for SAPS), 539 and 16.6

(for VW). RANOV showed the smallest performance improvement as a result of au-

tomated configuration across all benchmarks; this is likely due to RANOV’s small

parameter space (it has only one parameter).

Table 9.12 shows the performance of our SATenstein-LS solvers, the best

default challengers, and the best automatically configured challengers. For QCP,

HGEN and CBMC(SE), the SATenstein-LS solvers still significantly outper-

formed the best configured challengers. For R3SAT and SWGCP, the performance

difference was small, but still above 10%. The only benchmark where the best

configured challenger outperformed SATenstein-LS was FAC. As we will see

later (in Figure 9.3), SATenstein-LS[FAC] turns out to be very similar to the

best configured challenger, SAPS[FAC].

Overall, these experimental results provide evidence in favour of our first hy-

pothesis: the good performance of SATenstein-LS solvers is due to combining

components gleaned from existing high-performance algorithms in novel ways.

Later in Section 9.4.3, we provide detailed analysis for demonstrating the design

difference between configured SATenstein-LS solvers and component solvers.

9.3.3 Comparison with Complete Solvers

Table 9.13 compares the performance of SATenstein-LS solvers and four promi-

nent complete SAT solvers (two for each distribution). For four out of our six

benchmark distributions, SATenstein-LS solvers comprehensively outperformed

the complete solvers. For the other two industrial distributions (FAC and CBMC(SE)),

the performance of the selected complete solvers was much better than that of ei-

ther the SATenstein-LS solvers and any of our other local search solvers. The

success of DPLL-based complete solvers on industrial instances is not surprising;
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Distribution QCP SW-GCP R3SAT HGEN FAC CBMC(SE)

Best Challenger(default) ANOV RANOV PAWS RSAPS SAPS VW
25.42 0.15 1.77 33.28 16.41 385.12

Performance 0.02 0.12 0.08 2.33 10.56 0.23
99.6% 100% 100% 99.7% 100% 93.4%

Best Challenger(tuned) VW[D] G2[D] VW[D] SAPS[D] SAPS[D] VW[D]
0.33 0.05 1.26 31.77 10.68 16.45

Performance 0.02 0.05 0.15 0.75 7.00 0.02
100% 100% 100% 99.6% 100% 100%

0.08 0.03 1.11 0.02 10.89 4.75
SATenstein-LS[D] 0.01 0.02 0.14 0.01 7.90 0.02
Performance 100% 100% 100% 100% 100% 100%

Table 9.12: Performance of SATenstein-LS solvers, the best challengers
with default configurations and the best automatically configured chal-
lengers. Every algorithm was run 25 times on each instance with a
cutoff of 600 CPU seconds per run. Each table entry 〈i, j〉 indicates the
test-set performance of algorithm i on distribution j as a/b/c, where a
(top) is the the penalized average runtime; b (middle) is the median of
the median runtimes over all instances; c (bottom) is the percentage of
instances solved (i.e., those with median runtime < cutoff).

it is widely believed to be due to their ability to take advantage of instance structure

(by means of unit propagation and clause learning). Our results confirm that state-

of-the-art local search solvers cannot compete with state-of-the-art DPLL solvers

on industrial instances. However, SATenstein-LS solvers have made signif-

icant progress in closing the gap. For example, for CBMC(SE), state-of-the-art

complete solvers were five orders of magnitude better than the next-best SLS chal-

lenger, VW. SATenstein-LS reduced the performance gap to three orders of

magnitude. We also obtained some modest improvements (a factor of 1.51) for

FAC.

9.3.4 Configurations Found

To better understand the automatically-constructed SATenstein-LS solvers, we

compared their automatically selected design choices to the design of the existing

SLS solvers for SAT. The full parameter configurations of the six SATenstein-LS

solvers are shown in Table 9.14.
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Distribution QCP SW-GCP R3SAT HGEN FAC CBMC(SE)

Complete Solver Minisat2.0 Minisat2.0 Kcnf 04 Kcnf 04 Minisat2.0 Minisat2.0
35.05 2.17 4905.6 3108.77 0.03 0.23

Performance 0.02 0.9 N/A N/A 0.02 0.03
99.5% 100% 18.8% 49.5% 100% 100%

Complete Solver March pl March pl March pl March pl Picosat Picosat
120.29 253.99 3543.01 2763.41 0.02 0.03

Performance 0.2 1.12 N/A 400.78 0.02 0.01
98.1% 95.8% 42.0% 55.2% 100% 100%

0.08 0.03 1.11 0.02 10.89 4.75
SATenstein-LS[D] 0.01 0.02 0.14 0.01 7.90 0.02
Performance 100% 100% 100% 100% 100% 100%

Table 9.13: Performance summary of SATenstein-LS and the complete
solvers. Every complete solver was run once (SATenstein-LS was
run 25 times) on each instance with a per-run cutoff of 600 CPU sec-
onds. Each cell 〈i, j〉 summarizes the test-set performance of algorithm
i on distribution j as a/b/c, where a (top) is the the penalized aver-
age runtime; b (middle) is the median of the median runtimes over all
instances (for SATenstein-LS, it is the median of the median run-
times over all instances. the median runtimes are not defined if fewer
than half of the median runs failed to find a solution within the cutoff
time); c (bottom) is the percentage of instances solved (i.e., having me-
dian runtime < cutoff). The best-scoring algorithm(s) in each column
are indicated in bold.

SATenstein-LS[QCP] uses building blocks 1, 3, and 5. Recall that block

1 is used for performing search diversification, and block 5 is used to update data

structures, tabu attributes and clause penalties. In block 3, which is used to in-

stantiate a solver belonging to the WalkSAT architecture, the heuristic is based on

Novelty++′ , and in block 1, diversification flips the least-frequently-flipped vari-

able from an UNSAT clause. SATenstein-LS[SW-GCP] is similar to SATenstein-LS[QCP]

but does not use block 1. In block 3, the heuristic is based on Novelty++ as used

within G2. SATenstein-LS[R3SAT] uses blocks 1, 4 and 5; it is closest to

SAPS, but performs search diversification. A tabu list with length 3 is used to ex-

clude some variables from the search neighborhood. Recall that block 4 is used

to instantiate dynamic local search algorithms. SATenstein-LS[HGEN] uses

blocks 1, 3, and 5. It is similar to SATenstein-LS[QCP] but uses a heuris-

tic based on VW1 as well as a tabu list of length 3. SATenstein-LS[FAC]

uses blocks 4 and 5; its instantiation closely resembles that of SAPS, but differs in
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Distribution Parameter Configuration

-useAdaptiveMechanism 0 -performSearchDiversification 1 -usePromisingList 0
QCP -singleClauseAsNeighbor 1 -adaptWalkProb 0 -selectClause 1 -useClausePenalty 0

-performTabuSearch 0 -heuristic 4 -performAlternateNovelty 0 -searchDiversificationStrategy 3
-dp 0.07 -c 0.0001 -novNoise 0.5 -rfp 0.1 -s 0.1

-useAdaptiveMechanism 0 -performSearchDiversification 0 -usePromisingList 0
-singleClauseAsNeighbor 1 -adaptWalkProb 0 -selectClause 1 -useClausePenalty 0

SW-GCP -performTabuSearch 0 -heuristic 3 -performAlternateNovelty 0
-dp 0.01 -c 0.01 -novNoise 0.1 -s 0.1

-useAdaptiveMechanism 0 -performSearchDiversification 1 -singleClauseAsNeighbor 0
R3SAT -scoringMeasure 3 -tieBreaking 2 -useClausePenalty 1 -searchDiversificationStrategy 1

-smoothingScheme 1 -tabuLength 3 -performTabuSearch 1
-alpha 1.189 -ps 0.1 -rho 0.8 -sapsthresh -0.1 -rwp 0.05 -wp 0.01

-useAdaptiveMechanism 0 -performSearchDiversification 1 -usePromisingList 0
-singleClauseAsNeighbor 1 -tabuLength 3 -performTabuSearch 1

HGEN -useClausePenalty 0 -searchDiversificationStrategy 4
-adaptWalkProb 0 -selectClause 1 -heuristic 7
-c 0.001 -rfp 0.15 -s 0.1 -wpWalk 0.1

-useAdaptiveMechanism 0 -performSearchDiversification 0 -singleClauseAsNeighbor 0
FAC -scoringMeasure 3 -tieBreaking 1 -useClausePenalty 1 -smoothingScheme 1 -tabuSearch 0

-alpha 1.189 -ps 0.066 -rho 0.83 -sapsthresh -0.3 -wp 0.03

-useAdaptiveMechanism 0 -performSearchDiversification 1 -singleClauseAsNeighbor 0
-useClausePenalty 1 -smoothingScheme 1 -performTabuSearch 0 -searchDiversificationStrategy 4

CBMC(SE) -scoringMeasure 3 -tieBreaking 2 -alpha 1.066 -ps 0 -rho 0.83 -sapsthresh -0.3 -wp 0.01 -rfp 0.1

Table 9.14: SATenstein-LS parameter configuration found for each dis-
tribution.

the way in which variable scores are computed. SATenstein-LS[CBMC(SE)]

uses blocks 1, 4, and 5; it computes variable scores using -BreakCount and

employs a search diversification strategy similar to that of VW.

Interestingly, none of the six SATenstein-LS configurations we found uses

a promising list (block 2), a technique integrated into many recent SAT Competi-

tion winners. This indicates that many interesting designs that could compete with

existing high-performance solvers still remain unexplored in SLS design space. In

addition, we found that all SATenstein-LS configurations differ from existing

SLS algorithms (except for SATenstein[FAC], whose configuration and per-

formance is similar to SAPS). This underscores the importance of an automated

approach, since manually finding such good configurations from a huge design

space is very difficult.
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9.4 Quantitative Comparison of Algorithm
Configurations

So far, we have examined the parameter configurations identified for each of our six

benchmark distributions, quantitatively assessed the performance they achieved,

and qualitatively observed that most were substantially different from existing

solver designs. We would like to be able to dig deeper, saying something about how

similar each of these configurations is to existing designs. More broadly, we would

like automatic and quantitative techniques for comparing different solver designs

in terms of their similarities and differences. In the case of highly configurable

algorithms like SATenstein-LS, this requires some sophistication, because pa-

rameters share conditional dependencies. The approach presented in the following

can deal with arbitrary levels of conditional parameter dependence and be applied

to arbitrary parametric algorithms. Unlike previous work on this problem, which

only considered the edit distance between configurations [153], the metric we in-

troduce takes into account not only differences between the parameters that are

active in two given configurations, but also the importance of each parameter.

9.4.1 Concept DAGs

To preserve the hierarchical structure of parameter dependencies, we use a novel

data structure called a concept DAG to represent algorithm configurations. Our

notion of a concept DAG is based on that of a concept tree [217]. We then define

four operators whose repeated application that can be used to map between arbi-

trary concept DAGs, and assign each operator a cost. To compare two parameter

configurations, we first represent them using concept DAGs and then define their

similarity as the minimal total cost of transforming one DAG into the other.

A concept DAG is a six-tuple G= (V,E,LV ,R,D,M), where V is a set of nodes,

E is a set of directed edges between the nodes in V such that they form an acyclic

graph, LV is a set of lexicons (terms) for concepts used as node labels, R is a dis-

tinguished node called the root, D is the domain of the nodes, and M is an injective

mapping from V to LV . A parameter configuration can be expressed as a concept

DAG4 in which each node in V represents a parameter and each directed edge in

4It was necessary for us to base this data structure around DAGs rather than trees because pa-
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E represents the conditional dependence relationship between two parameters. D

is the domain of all parameters and M specifies which values any given parameter

v ∈ V can take. We add an artificial root node R, which connects to all param-

eter nodes that do not have any parent, and refer to these parameters as level 1

parameters.

We can transform one concept DAG into another by a series of delete, insert,

relabel and move operations, each of which has an associated cost. For measur-

ing the degree of similarity between two algorithm configurations, we first express

them as concept DAGs, DAG1 and DAG2. We define the distance between these

DAGs as the minimal total cost required for transforming DAG1 into DAG2. Obvi-

ously, the distance between two identical configurations is 0.

The parameters with the biggest impact on an algorithm’s execution path are

likely to have low level (i.e., to be conditional upon few or no other parameters)

and/or to turn on a complex mechanism (i.e., to have many parameters conditional

upon them). Therefore, we say that the importance of a parameter v is a function of

its depth (the length of the longest path from the root R of the given concept DAG

to v) and the total number of other parameters conditional on it. To capture this

definition of importance, we define the cost of each of the four DAG-transforming

operations as follows.

Deletion cost C(delete(v)) = 1
|V | ·(height(DAG)−depth(v)+1+ |DE(v)|), where

height(DAG) is the height of the DAG, depth(v) is the depth of node v and

DE(v) is the set of descendants of node v. This captures the idea that it

is more costly to delete low-level parameters and parameters that turn on

complex mechanisms.

Insertion cost C(insert(u,v))= 1
|V | ·(height(DAG)−depth(u)+1+|DE(v)|), where

DE(v) is the set of descendants of v after the insertion.

Moving cost C(move(u,v)) = |V |−2
2·|V | · [C(delete(v))+C(insert(u,v))], where |V |>

2.

rameters may have more than one parent parameter, where the child is only active if the parents take
certain values. For example, the noise parameter phi is only activated when both useAdaptiveMech-
anism and singleClauseAsNeighbor are turned on.
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Relabelling cost C(relabel(v, lv, lv∗)= [C(delete(v))+C(insert(u,v))]·s(lv, lv∗), where

s(lv, lv∗) is a measure of the distance between two labels lv and lv∗ . For

parameters with continuous domains, s(lv, lv∗) = |lv− lv∗ |. For parameters

whose domains are some finite, ordinal and discrete set {lv1 , lv2 , . . . , lvk},
s(lv, lv∗)= abs(v−v∗)/(k−1), where abs(v−v∗) measures the number of in-

termediate values between v and v∗. For categorical parameters, s(lv, lv∗) = 0

if lv = lv∗ and 1 otherwise.

9.4.2 Comparison of SATenstein-LS Configurations

We are now able to compare our automatically identified SATenstein-LS solver

designs to all of the challengers, without having to resort to expert knowledge. As

previously mentioned, 3 of our 11 challengers (AG2p, AG2plus, and AG20) are

parameter free. Furthermore, RANOV only differs from ANOV by the addition of a

preprocessing step, and so can be understood as a variant of the same algorithm.

This leaves us with 7 parameterized challengers to consider. For each, we sam-

pled 50 configurations (consisting of the default configuration, one configuration

optimized for each of our 6 benchmark distributions, and 43 random configura-

tions). We then computed the pairwise transformation cost between the resulting

359 configurations (7 × 50 challengers’ configurations + 6 SATenstein-LS

solvers + AG2p + AG2plus + AG20). The result can be understood as a graph

with 359 nodes and 128 522 edges, with nodes corresponding to concept DAGs,

and edges labeled by the minimum transformation cost between them. To visual-

ize this graph, we used a dimensionality reduction method to map it onto a plane,

with the aim of positioning points so that the Euclidean distance between every pair

of points approximated their transformation cost as accurately as possible. In par-

ticular, we used the Isomap algorithm [194], which builds on a multidimensional

scaling technique but has the ability to preserve the intrinsic geometry of the data,

as captured in the geodesic manifold distances between all pairs of data points. It

is capable of discovering the nonlinear degrees of freedom that underlie complex

natural observations. We implemented the transformation cost computation code

using Matlab, and performed all computations using the same computer cluster as

described in Section 9.2.
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Figure 9.3: Visualization of the transformation costs in the design of 16 high-
performance solvers (359 configurations) obtained via Isomap.

The final layout of similarities among 359 configurations (16 algorithms) is

shown in Figure 9.3. Observe that in most cases the 50 different configurations for

a given challenger solver were so similar that they mapped to virtually the same

point in the graph.

As noted earlier, the distance between any two configurations shown in Fig-

ure 9.3 only approximates their true distance. In addition, the result of the visu-

alization also depends on the number of configurations considered: adding an ad-

ditional configuration may affect the position of many or all other configurations.

Thus, before drawing further conclusions about the results illustrated in Figure 9.3,

we validated the fidelity of the visualization to the original distance data. As can be

seen from Figure 9.4, although Isomap tended to underestimate the true distances

between configurations, there was a strong correlation between the computed and

mapped distances (Pearson correlation coefficient: 0.93). Also, the mapping did

a good job of preserving the relative ordering of the true distances between con-

figurations (Spearman correlation coefficient 0.91)—in other words, distances that
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Figure 9.4: True vs mapped distances in Figure 9.3. The data points corre-
spond to the complete set of SATenstein-LS[D] for all domains and
all challengers with their default and domain-specific, optimized con-
figurations.

appear similar in the 2D plot tend to correspond to similar true distances (and vice

versa). Digging deeper, we confirmed that the challenger closest in Figure 9.3 to

each given SATenstein-LS solver was indeed the one having the lowest true

transformation cost. This was not true for the most distant challengers; however,

we find this acceptable, since in the following, we are mainly interested in exam-

ining which configurations are similar to each other.

Having confirmed that our dimensionality reduction method is performing reli-

ably, let us examine Figure 9.3 in more detail. Overall, and unsurprisingly, we first

note that the transformation cost between two configurations in the design space

is very weakly related to their performance difference (quantitatively, the Spear-

man correlation coefficient between performance difference (PAR-10 ratio) and

configuration difference (transformation cost) was 0.25). As we suspected based

on our manual examination of parameter configurations, each SATenstein-LS

solver except SATenstein-LS[FAC]was quite different from every challenger.

This provides further evidence that the superior performance of SATenstein-LS

solvers is due to combining components from existing SLS algorithms in novel

ways. Examining algorithms by type, we note that all dynamic local search al-

gorithms are grouped together, on the right side of Figure 9.3; likewise, the al-
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gorithms using adaptive mechanisms are grouped together at the bottom of Fig-

ure 9.3. SATenstein-LS solvers were typically more similar to each other than

to challengers, and fell into two broad clusters. The first cluster also includes the

SAPS variants (SAPS, RSAPS), while the second also includes G2 and VW. None

of the SATenstein-LS solvers uses an adaptive mechanism to automatically ad-

just other parameters; in fact, as shown in Table 9.12, the same is true of the best

performance-optimized challengers. This suggests that in many cases, contrary to

common belief (see, e.g., [80, 135]) it may be preferable to expose parameters so

they can be instantiated by sophisticated configurators rather than automatically

adjusting them at running time using a simple adaptive mechanism.

We now consider benchmarks individually. For the FAC benchmark, SATenstein-LS[FAC]

had similar performance to SAPS[FAC]; as seen in Figure 9.3, both solvers are

structurally very similar as well. Overall, for the ‘industrial’ distributions, CBMC(SE)

and FAC, dynamic local search algorithms often yielded the best performance

amongst all challengers. Our automatically-constructed SATenstein-LS solvers

for these two distributions are also dynamic local search algorithms. Due to the

larger search neighbourhood and the use of clause penalties, dynamic local search

algorithms are more suitable for solving industrial SAT instances, which often have

some special global structure.

For R3SAT, a well-studied distribution, many challengers showed good perfor-

mance (the top three challengers were VW, RSAPS, and SAPS). The performance

of SATenstein-LS[R3SAT] is only slightly better than that of VW[R3SAT].

Figure 9.3 shows that SATenstein-LS[R3SAT] is a dynamic local search al-

gorithm similar to RSAPS and SAPS.

For HGEN, even the best performance-optimized challengers, RSAPS[HGEN]

and SAPS[HGEN], performed poorly. SATenstein-LS[HGEN] achieves more

than 1,000-fold speedups against all challengers. Its configuration is far away from

any dynamic local search algorithm (the best challengers), and closest to VW and

G2.

For QCP, VW[QCP] does not reach the performance of SATenstein-LS[QCP],

but significantly outperforms all other challengers. Our transformation cost anal-

ysis shows that VW is the closest neighbour to SATenstein-LS[QCP]. For

SWGCP, many challengers achieve similar performance to SATenstein-LS[SWGCP].
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Figure 9.3 shows that SATenstein-LS[SWGCP] is close to G2[SWGCP], which

is the best performing challenger on SWGCP.

9.4.3 Comparison to Configured Challengers

Since there are large performance gaps between default and configured challengers

(as seen in Figure 9.2), we were also interested in the transformation cost between

the configurations of individual challenger solvers. Recall that after configuring

each challenger for each distribution, we found that SAPS was best on HGEN and

FAC; G2 was best on SWGCP, and VW was best on CBMC(SE), QCP, and R3FIX.

Figure 9.5:left visualizes the parameter spaces for each of these three solvers (43

random configurations + default configuration + 6 optimized configurations). Fig-

ure 9.5:right shows the same thing, but also adds the best SATenstein-LS con-

figurations for each benchmark on which the challenger had top performance.

Examining these figures in the left column of Figure 9.5, we first note that

the SAPS configurations optimized for FAC and HGEN are very similar but differ

substantially from SAPS’s default configuration. On SWGCP, the optimized con-

figuration of G2 not only performed much better than the default but, as seen in

Figure 9.5:middle-left, is also quite different. All three top-performing VW config-

urations are rather different from VW’s default, and none of them uses the adap-

tive mechanism for choosing parameter wpWalk, s, and c. Since the parameter

useAdaptiveMechanism is a level-1 parameter and many other parameters

are conditionally dependent on it, the transformation costs between VW default and

optimized configurations of VW are very large, due to the high relabelling cost for

these nodes in our concept DAGs.

The right column of Figure 9.5 illustrates the similarity between optimized

SATenstein-LS solvers and the best performing challenger for each benchmark.

As previously noted, SATenstein[FAC] and SAPS[FACT] are not only very

similar in performance, but also structurally similar. Likewise, SATenstein[SWGCP]

is similar to G2SWGCP. On R3SAT, many challengers have similar performance.

SATenstein[R3SAT] (PAR-10=1.11) is quite different from the best challenger

VW[R3SAT] (PAR-10=1.26), but resembles SAPS[R3SAT] (PAR-10=1.53). For

the three remaining benchmarks, SATenstein-LS solvers exhibited much better
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performance than the best optimized challengers, and their configurations likewise

differ substantially from the challengers’ configurations.

As an aside, it might initially be surprising that qualitative features of the visu-

alizations in Figures 9.5 appear to be absent from Figure 9.3. In particular, the sets

of randomly sampled challenger configurations that are quite well-separated in Fig-

ure 9.5 are nearly collapsed into single points in Figure 9.3, although the scales are

not vastly different. The reason for this lies in the fact that the 2D-mapping of the

highly non-planar pairwise distance data performed by Isomap focuses on mini-

mal overall distortion. For example, when visualizing the differences within a set

of randomly sampled SAPS configurations (Figure 9.5 (a)), Isomap spreads these

out into a cloud of points to represent their differences. However, the presence of

a single SATenstein-LS configuration that has large transformation costs from

all of these SAPS configurations forces Isomap to use one dimension to capture

those differences, leaving essentially only one dimension to represent the much

smaller differences between the SAPS configurations (Figure 9.5 (b)). Adding fur-

ther very different configurations (as present in Figure 9.3) leads to mappings in

which the smaller differences between configurations of the same challenger be-

come insignificant.

9.5 Conclusions
In this chapter, we have proposed a new approach for designing heuristic algo-

rithms based on (1) a framework that can flexibly combine components drawn

from existing high-performance solvers, and (2) a powerful algorithm configura-

tion tool for finding instantiations that perform well on given sets of instances. We

have demonstrated the effectiveness of our approach by automatically constructing

high-performance stochastic local search solvers for SAT. We have shown empir-

ically that these automatically constructed SAT solvers outperform existing state-

of-the-art solvers with manually and automatically optimized configurations on a

range of widely studied distributions of SAT instances.

We have also proposed a new metric for quantitatively assessing the similar-

ity between configurations for highly parametric solvers. We first introduce a data

structure, concept DAGs, that preserves the internal hierarchical structure of pa-
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rameters. We then estimate the similarity of two configurations as the transfor-

mation cost from one configuration to another. We have demonstrated that visual-

izations based on transformation costs can provide useful insights into similarities

and differences between solver configurations. In addition, we believe that this

metric could be useful for suggesting potential links between algorithm structure

and algorithm performance. While this chapter only applied our metric to com-

pare SATenstein-LS and several local search algorithms on SAT, we expect

the same technique will be useful more broadly for comparing different algorithm

designs that can be expressed within the same configuration space.

Our original inspiration comes from Mary Shelley’s classic novel, Franken-

stein. One important methodological difference is that we use automated methods

for selecting components for our monster instead of picking them by hand. The

outcomes are quite different. Unlike the tragic figure of Dr. Frankenstein, whose

monstrous creature haunted him enough to quench forever his ambitions to create

a ‘perfect’ human, we feel encouraged to unleash not only our new solvers, but

also the full power of our automated solver-building process onto other classes of

SAT benchmarks. Like Dr. Frankenstein, we find our creations somewhat mon-

strous, recognizing that the SATenstein solvers do not always represent the most

elegant designs. Thus, desirable lines of future work include techniques for under-

standing importance of different parameters to achieving strong performance on a

given benchmark; the extension of our solver framework with preprocessors; and

the investigation of algorithm configuration procedures other than ParamILS in the

context of our approach. Encouraged by the results achieved on SLS algorithms

for SAT, we believe that the general approach behind SATenstein-LS is equally

applicable to non-SLS-based solvers and to other combinatorial problems. Finally,

we encourage participators from the SAT community to apply SATenstein-LS

on their own problem distributions, and to extend SATenstein-LS with their

own heuristics. Source code and documentation for our SATenstein-LS frame-

work are freely available at http://www.cs.ubc.ca/labs/beta/Projects/SATenstein.
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Chapter 10

Hydra: Automatic Configuration
of Algorithms for Portfolio-Based
Selection

This chapter introduces Hydra, a novel technique for combining automated algo-

rithm configuration and portfolio-based algorithm selection, thereby realizing the

benefits of both. Hydra automatically builds a set of solvers with complementary

strengths by iteratively configuring new algorithms. It is primarily intended for

use in problem domains for which an adequate set of candidate solvers does not al-

ready exist. Nevertheless, we tested Hydra on a widely studied domain, stochastic

local search algorithms for SAT, in order to characterize its performance against a

well-established and highly competitive baseline. We found that Hydra consis-

tently achieves major improvements over the best existing individual algorithms,

and always at least roughly matches—and indeed often exceeds—the performance

of the best portfolios of these algorithms. 1

For mixed integer programming problems, there are very few strong solvers,

and state-of-the-art solvers are highly parameterized. Such observations render

MIP a perfect case for applying techniques such as Hydra. We demonstrate how

to improve Hydra to achieve strong performance for MIP based on single MIP

1This work is based on the joint work with Holger Hoos, and Kevin Leyton-Brown [212].
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solver, IBM ILOG’s CPLEX. By applying advanced algorithm selection tech-

nique and modifying Hydra’s method for selecting candidate configurations, we

show that Hydra dramatically improves CPLEX’s performance for a variety of

MIP benchmarks, as compared to ISAC [111], algorithm configuration alone, and

CPLEX’s default configuration. 2

10.1 Hydra
Once state-of-the-art algorithm portfolios exist for a problem, such as the SATzilla

portfolios for various categories of SAT instances, the question arises: how should

new research aim to improve upon it? Inspired by the idea of “boosting as a

metaphor for algorithm design” [128], we believe that algorithm design should

focus on problems for which the existing portfolio performs poorly. In particular,

[128] suggested to use sampling (with replacement) to generate a new benchmark

distribution that will be harder for an existing portfolio, and for new algorithms

to attempt to minimize average runtime on this benchmark. While we agree with

the core idea of aiming explicitly to build algorithms that will complement a port-

folio, we have come to disagree with its concrete realization as described most

thoroughly by Leyton-Brown et al. (2009), realizing that average performance on

a new benchmark distribution is not always an adequate proxy for the extent to

which a new algorithm would complement a portfolio.

We note that a region of the original distribution that is exceedingly hard for

all candidate algorithms can dominate the new distribution, leading to stagnation.

A further problem is illustrated in the following, more complex example (due to

Frank Hutter). Consider a uniform distribution over instance types A, B, and C.

The current portfolio solves C instances in 0.01 seconds, and A and B instances in

20 seconds each. The new distribution S thus emphasizes instance types A and B.

There are three kinds of algorithms. X algorithms solve A instances in 0.1±ε sec-

onds and B instances in 100±ε seconds each, where ε is a number between 0 and

0.01; the actual runtime varies randomly within this range across given algorithm–

instance pairs. Y algorithms solve B instances in 0.1±ε seconds and A instances

2This work is based on the joint work with Frank Hutter, Holger Hoos, and Kevin Leyton-
Brown [213].
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in 100±ε seconds each. Z algorithms solve both A and B instances in 25±ε sec-

onds each. All three algorithm types solve C instances in 10±ε seconds each. The

best average performance on S will be achieved by some Z algorithm, which we

thus add to the portfolio. However, observe that this new Z algorithm is dominated

by the current portfolio. Thus our new distribution S′ will be the same as S. The

process thus stagnates (endless algorithms of type Z exist), and we never add any

X or Y algorithm to the portfolio, although adding any pair of these would lead to

improved overall performance.

To overcome these limitations, we introduce Hydra, a new method for auto-

matically designing algorithms to complement a portfolio. This name is inspired

by the Lernaean Hydra, a mythological, multi-headed beast that grew new heads

for those cut off during its struggle with the Greek hero Heracles. Hydra, given

only a highly parameterized algorithm and a set of instance features, automati-

cally generates a set of configurations that form an effective portfolio. It thus does

not require any domain knowledge in the form of existing algorithms or algorithm

components that are expected to work well, and can be applied to any problem.

Hydra is an anytime algorithm: it begins by identifying a single configuration

with the best overall performance, and then iteratively adds algorithms to the port-

folio. It is also able to drop previously added algorithms when they are no longer

helpful.

The critical idea behind Hydra is that a new candidate algorithm should be

preferred exactly to the extent that it improves upon the performance of a (slightly

idealized) portfolio. Hydra is thus implemented by changing the performance

measure given to the algorithm configuration. A candidate algorithm is scored with

its actual performance in cases where it is better than the existing portfolio, but with

the portfolio’s performance in cases where it is worse. Thus an algorithm is not

penalized for bad performance on instances for which it should not be selected, but

is only rewarded to the extent that it outperforms the portfolio. The examples given

earlier would be handled properly by this approach: the presence of intractable

instances does not lead one to ignore performance gains elsewhere, while X and Y

algorithms would be chosen in the first two iterations.

As shown in pseudocode, Hydra takes five inputs: a parameterized solver s, a

set of training problem instances I, an algorithm configuration procedure AC with a
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performance metric m to be optimized, and a procedure PB for building portfolio-

based algorithm selectors.

In its first iteration, Hydra uses configurator AC to produce a configuration of

s, dubbed s1, that is optimized on training set I according to performance metric

m. Solver s1 is then run on all instances of I in order to collect data that can

eventually be input to PB; runs performed during the earlier configuration process

can be cached and reused as appropriate. We define portfolio P1 as the portfolio

that always selects s1, and solver set S1 as {s1}.
Then, in each subsequent iteration k ≥ 2, Hydra defines a modified perfor-

mance metric mk as the better of the performance of the solver being assessed and

the performance of the current portfolio, both measured according to performance

metric m. The configurator AC is run to find a configuration sk of s that optimizes

mk on the entire training set I. As previously, the resulting solver is evaluated on

the entire set I and then added to the solver set S. We then use PB to construct a

new portfolio Pk from the given set of solvers. In each iteration of Hydra, the size

of the candidate solver set Sk grows by one; however, PB may drop solvers that do

not contribute to the performance of portfolio Pk (as in SATzilla [210]). Slightly

modifying the second example provided earlier, if Z algorithms have slightly bet-

ter performance on A and B instances than the current portfolio, some Z algorithm

will be chosen in the first iteration. However, X and Y algorithms are chosen in the

next two iterations, at which point the Z algorithm will be dropped, because it is

dominated by the pair of X and Y algorithms.

Hydra can be terminated using various criteria, such as a user-specified bound

on the number of iterations and/or a total computation-time budget.

The algorithm configuration procedure AC used within Hydra must be able

to deal efficiently with configurations having equal performance on some or all

instances, because such configurations can be expected to be encountered fre-

quently. (For example, all configurations dominated by portfolio Pk−1 will have

equal performance under performance metric mk.) It is also possible to exploit mk

for computational gain when optimizing runtime (as we do in our experimental

study below). Specifically, a run of s on some instance i ∈ I can be terminated

during configuration once its runtime reaches portfolio Pk−1’s runtime on i. (Refer

to the analogous discussion of capping in algorithm configuration by Hutter et al.
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Procedure Hydra(s, I, AC, m, PB)
Input: Parametric solver s; Instance set I;

Algorithm configurator AC;
Performance metric m;
Portfolio builder PB

Output: Portfolio P

k := 1; m1 = m ;

obtain a solver s1 by running configurator AC on parametric solver s and instance set I with
performance metric m1;

measure performance of s1 on all instances in I, using performance metric m;

let P1 by a portfolio that always selects s1;

let S1 := {s1};
while termination condition not satisfied do

k := k+1;

define performance metric mk as the better of the performance of the solver being
assessed and the performance of portfolio Pk−1, both measured using performance
metric m;

obtain a new solver sk by running configurator AC on parametric solver s and instance
set I with performance metric mk;

measure performance of sk on all instances in I, using performance metric m;

Sk = Sk−1∪{sk};
obtain new portfolio Pk by running portfolio builder PB on S;

return P

(2009).)

It should be noted that Hydra need not be started from an empty set of algo-

rithms, or only consider one parameterized algorithm. For example, it is straight-

forward to initialize S with existing state-of-the-art algorithms before running Hydra,

or to optimize across multiple parameterized algorithms.

10.2 Hydra for SAT
Hydra offers the greatest potential benefit in domains where only one highly pa-

rameterized algorithm is competitive (e.g., certain distributions of mixed-integer

programming problems), and the least potential benefit in domains where a wide

variety of strong, uncorrelated solvers already exist. Nevertheless, we chose to

evaluate Hydra on SAT—possibly the most extreme example of the latter category—

effectively building a SATzilla of SATensteins. We did so for several rea-

176



sons. Most of all, to demonstrate the usefulness of the approach, we considered it

important to work on a problem for which the state of the art is known to be very

strong. SLS-based SAT algorithms have been the subject of a large and sustained

research effort over the past two decades, and the success of SATzilla demon-

strates that existing SAT algorithms can be combined together to form very strong

portfolios. The criteria for success is thus set extremely high in this domain. Fur-

ther, studying SLS for SAT also offered several pragmatic benefits: a wide variety

of datasets exist and are agreed to be interesting; effective instance-based features

are available; and SATenstein is a suitable configuration target. Finally, because

SAT is an important problem, even small improvements are significant.

10.2.1 Experimental Setup

We chose inputs for Hydra to facilitate comparisons with past work, setting s, I,

AC, and m as in Chapter 9, and taking PB from Chapter 7. Inputs s, I and m define

the application context in which Hydra is run. In contrast, AC and PB are generic

components; we chose these “off the shelf” and made no attempt to modify them

to achieve domain-specific performance improvements. We do not expect that an

end user would have to vary them either.

Parametric Solver: SATenstein-LS . As our parametric solver s, we chose

SATenstein-LS, a generalized, highly parameterized stochastic local search

(SLS) framework (Chapter 9).

Instances We investigated the effectiveness of Hydra on four distributions, draw-

ing on well-known families of SAT instances. As no state-of-the-art SLS algo-

rithms are able to prove unsatisfiability, we considered only satisfiable instances.

We identified these by running all complete algorithms that had won a SAT com-

petition category between 2002 and 2007 for one hour. First, the BM data set is

constructed from 500 instances taken from each of the six distributions used by

Chapter 9 (QCP, SWGCP, FACT, CBMC, R3FIX, and HGEN), split evenly into train-

ing and test sets. Second, the INDULIKE data set is a mixture of 500 instances

from each of the CBMC and FACT distributions, again split evenly into training and
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test sets. Third and fourth, the HAND and RAND data sets include all satisfiable in-

stances from the Random and Handmade categories of the SAT Competitions held

between 2002 and 2007; we split the data 1141:571 and 342:171 into training and

test sets, respectively.

Algorithm Configurator: FocusedILS As our algorithm configurator AC, we

chose the FocusedILS procedure from the ParamILS framework, version 2.3

[96]. ParamILS is able to deal with extremely large configuration spaces such

as SATenstein-LS’s, and indeed was the method used to identify the high-

performing SATenstein-LS configurations mentioned previously. FocusedILS

compares a new configuration with an incumbent by running on instances one at a

time, and rejects the new configuration as soon as it yields weakly worse overall

performance on the set of instances than the incumbent. As we expect many ties

in Hydra’s modified performance measures mk, particularly in later iterations, we

changed this mechanism in order that new configurations are rejected only once

they yield strictly worse overall performance. We also modified FocusedILS

to cap all runs at the corresponding runtime for the portfolio Pk−1, as discussed

previously.

Performance Metric: PAR We followed the approach of Chapter 9, capping runs

at 5 seconds and setting our performance metric m to be Penalized Average Runtime–

10 (PAR-10). We performed 10 independent FocusedILS runs on training data

with different instance orderings and with a one-day time bound. We retained the

parameter configuration that yielded the best PAR score on training data.

Portfolio Builder: SATzilla As our portfolio builder PB we used the SATzilla

framework [210] based empirical hardness models.

We computed the same set of features as in Figure 3.1. For BM and INDULIKE,

we only used 40 very efficiently computable features (with an average feature com-

putation time of 0.04 seconds in both cases) since initial, exploratory experiments

revealed that Hydra could achieve performance on the order of seconds on these

data sets. For the same reason, we also reduced the time allowed for subset se-
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lection on these distributions by a factor of 10, allowing time budgets taken from

{0s,0.2s,0.5s,1s}. For RAND and HAND, we used all features except the most

expensive ones (LP-based and clause-graph-based features); the average feature

computation times were 4.2 seconds and 4.9 seconds, respectively.

Challengers As previously explained, one reason that we studied SLS for SAT is

that a wide variety of strong solvers exist for this domain. In particular, we iden-

tified 17 such algorithms, which we dubbed “challengers.” Following Chapter 9,

we included all 7 SLS algorithms that won a medal in any of the SAT Competi-

tions between 2002 and 2007, and also 5 additional prominent high-performance

algorithms. We also included the 6 SATenstein-LS configurations introduced

in Chapter 9. While in some sense this set a high standard for Hydra (it had to

compete against strong configurations of its own parametric solver) we included

these configurations because they were shown to outperform the previous state of

the art.

Experimental Environment We collected training data and performed ParamILS

runs on two different compute clusters. The first had 55 dual 3.2GHz Intel Xeon

machines with 2MB cache and 2GB RAM, running OpenSuSE Linux 11.1; the

second cluster from Westgrid had 384 dual 3.0GHz Intel Xeon E5450 quad-core

machines with 16GB of RAM running Red Hat Linux 4.1.2. Although the use of

different machines added noise to the runtime observations in our training data, it

had to be undertaken to leverage additional computational resources. To ensure that

our results were meaningful, we gathered all test data using only the first cluster;

all results reported in this chapter were collected using this data, and the data was

used for no other purpose. Runtime was always measured as CPU time.

10.2.2 Experimental Results

To establish a baseline for our empirical evaluation, we first ran all 17 challenger

algorithms on each of our test sets. The best-performing challengers are identified

in the third column of Table 10.1, and their PAR-10 scores are shown in the fourth

column. We also report the percentages of instances that each algorithm solved.
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Dataset Metric Best Challenger Chall. Perf Portf. 11-Chall. Portf. 17-Chall. Hydra[D,1] Hydra[D,7]
BM PAR Score SATenstein-LS 224.53 54.04 3.06 249.44 3.06

Solved (%) [FACT] 96.4 99.3 100 96.0 100
INDULIKE PAR Score SATenstein-LS 11.89 135.84 7.74 33.49 7.77

Solved (%) [CBMC] 100 98.1 100 100 100
RAND PAR Score gNovelty+ 1128.63 897.37 813.72 1166.66 631.35

Solved (%) 81.6 85.5 86.9 80.8 89.8
HAND PAR Score adaptG2WSAT+ 2960.39 2670.22 2597.71 2915.22 2495.06

Solved (%) 50.9 55.8 56.9 51.7 58.7

Table 10.1: Performance comparison between Hydra, SATenstein-LS,
challengers, and portfolios based on 11 (without 6 SATenstein-LS
solvers) and 17 (with 6 SATenstein-LS solvers) challengers. All
results are based on 3 runs per algorithm and instance; an algorithm
solves an instance if its median runtime on that instance is below the
given cutoff time.

We then used SATzilla to automatically construct portfolios, first from the

11 manually crafted challenger algorithms, and then from the full set of 17 chal-

lengers that also included the 6 SATenstein-LS solvers. As can be seen from

column 6 of Table 10.1, the latter portfolios perform much better than the best indi-

vidual challenger, and the same holds for the former, more limited portfolios (col-

umn 5) as compared to the best of their 11 handcrafted component solvers. As one

would expect, the performance gain was particularly marked for instance set BM,

which is highly heterogeneous. In all cases, the inclusion of the 6 SATenstein-LS

solvers, which were derived by automatic configuration on the six instance distribu-

tions considered by [115], led to improved performance. While this was expected

for BM and INDULIKE, which are combinations of the instance distributions for

which the 6 SATenstein-LS solvers were built, we were more surprised to ob-

serve the same qualitative effect for RAND and HAND.

Column 7 (Table 10.1) shows the performance of the single SATenstein-LS

configuration that was obtained in the initial phase of Hydra. Comparing these

results to those the portfolio obtained after 7 iterations (column 8), we confirm

that Hydra is able to automatically configure solvers to work well as components

of a portfolio. Furthermore, in all cases the Hydra portfolio outperformed the

portfolio of 11 challengers. The Hydra portfolio outperformed the portfolio of 17

challengers in RAND and HAND, and effectively tied with it in BM and INDULIKE.

Note that these latter distributions are those for which SATenstein-LS solvers
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were specifically built; indeed, we found that the 17-challenger portfolios relied

very heavily on these solvers. Furthermore, we note that Chapter 9 devoted about

240 CPU days to the construction of the 6 SATenstein-LS solvers, while the

construction of the entire Hydra[D,7] portfolio required only about 70 CPU days.

Overall, recall that the success of the challenger-based portfolios depends crit-

ically upon the availability of domain knowledge in the form of very strong solvers

(some handcrafted, such as 11 of the challengers, and some constructed automati-

cally based on clearly-delineated instance distributions, such as the 6 SATenstein-LS

solvers). In contrast, Hydra always achieved equivalent or significantly better per-

formance without relying on such domain knowledge.

Figure 10.1 shows the PAR-10 performance improvements achieved in each

Hydra iteration, considering both training and test data for BM and INDULIKE.

In all cases, test performance closely resembled training performance. Hydra’s

test performance improved monotonically from one iteration to the next. Further-

more, on BM, HAND and RAND, Hydra achieved better performance than the best

challenger after at most two iterations. On INDULIKE, Hydra took five iterations

to outperform the best challenger, SATenstein-LS[CBMC]. While this may ap-

pear surprising considering that the latter is a configuration of SATenstein-LS,

it is attributed to much less CPU time for each Hydra iteration than the construc-

tion of SATenstein-LS[CBMC].

Figure 10.2 compares the test-set performance of Hydra[D,1] and Hydra[D,7]

for BM and INDULIKE. (The plots for HAND and RAND are not shown here, but re-

semble the BM plot.) Note that Hydra[D,7] is substantially stronger than Hydra[D,1],

particularly on hard instances. The fact that Hydra[D,1] on occasion outperforms

Hydra[D,7] is due to the feature-based selection not always choosing the best

solver from the given portfolio, and that the algorithms are randomized.

Table 10.2 shows, over each of the 7 iterations, the fraction of training instances

solved by each Hydra portfolio component. Obviously, a total of k solvers are

available in each stage k. Note that solver subset selection does lead Hydra to

exclude solvers from the portfolio; this transpires on RAND for example, where the

third solver was dropped in iteration 7. Another interesting effect can be observed

in iteration 3 on INDULIKE, where the second solver was effectively replaced by

the third, whose instance share is marginally higher. Had we allowed the algorithm
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Figure 10.1: Hydra’s performance progress after each iteration, for BM (left)
and INDULIKE (right). Performance is shown in terms of PAR-10
score; the vertical lines represent the best challenger’s performance
for each data set.

configurator to run longer in iteration 2, it would eventually have found this latter

solver. The fact that it was found in the subsequent iteration illustrates Hydra’s

ability to recover from insufficient allocation of runtime to the algorithm configu-

rator. A similar phenomenon occurred in iterations 6 and 7 on INDULIKE. The

solver found in iteration 6 turned out not to be useful at all, and was therefore

dropped immediately; in the next round of algorithm configuration a useful solver

was found. (However, we see in Figure 10.1 that the overall benefit derived from

using this latter solver turned out to be quite small.) Finally, we note that for all

four distributions, the Hydra[D,7] portfolios consisted of at least 5 solvers, each

of which were executed on between 6.8 and 41.8% of the instances. This indicates

that the individual solvers constructed by Hydra indeed worked well on sizeable

subsets of our instance sets, without the explicit use of problem-dependent knowl-

edge (such as instance features) for partitioning these sets.

10.3 Hydra for MIP
It is difficult to directly apply the original Hydra to the MIP domain, for two rea-

sons. First, the data sets we are dealt in MIP tend to be highly heterogeneous;

preliminary prediction experiments showed that Hydra’s linear regression mod-
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Figure 10.2: Performance comparison between Hydra[D,7] and
Hydra[D,1] on the test sets, for BM (left) and INDULIKE (right).
Performance is shown in terms of PAR-10 score.

s1 s2 s3 s4 s5 s6 s7
P1 100 0 0 0 0 0 0
P2 45.1 54.9 0 0 0 0 0
P3 27.4 44.4 28.2 0 0 0 0
P4 18.1 31.0 21.6 29.4 0 0 0
P5 13.9 25.9 19.8 26.1 14.3 0 0
P6 12.5 22.9 16.8 23.2 13.2 11.5 0
P7 12.5 23.9 0 22.8 13.2 13.2 14.4

s1 s2 s3 s4 s5 s6 s7
P1 100 0 0 0 0 0 0
P2 50.0 50.0 0 0 0 0 0
P3 49.0 0 51.0 0 0 0 0
P4 47.8 0 42.8 9.4 0 0 0
P5 35.8 0 42.6 9.4 12.2 0 0
P6 35.8 0 42.6 9.4 12.2 0 0
P7 31.2 0 41.8 9.2 11.0 0 6.8

Table 10.2: The percentage of instances for each solver chosen by algorithm
selection at each iteration for RAND (left) and INDULIKE (right). Pk
and sk are respectively the portfolio and algorithm obtained in iteration
k.

els were not robust for such heterogeneous inputs, sometimes yielding extreme

mispredictions of more than ten orders of magnitude. Second, individual Hydra

iterations can take days to run—even on a large computer cluster—making it diffi-

cult for the method to converge within a reasonable amount of time. (We say that

Hydra has converged when substantial increases in running time cease to lead to

significant performance gains.)

For MIP, we proposed two major improvements to Hydra that address both of

these issues. First, we modify the model-building method used by the algorithm

selector, using a classification procedure based on decision forests with a non-

uniform loss function. Second, we modify Hydra to add multiple solvers in each

iteration and to reduce the cost of evaluating these candidate solvers, speeding up

convergence. We denote the original method as HydraLR,1 (“LR” stands for linear
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regression and “1” indicates the number of configurations added to the portfolio

per iteration), the new method including only our first improvement as HydraDF,1
(“DF” stands for decision forests), and the full new method as HydraDF,k.

• Cost-sensitive Decision Forests for Algorithm Selection: Since 2011, the

new versions of SATzilla are based on cost-sensitive classification mod-

els, in particular cost-sensitive decision forest (DF). DFs offer the promise

of effectively partitioning the feature space into qualitatively different parts,

particularly for heterogeneous benchmark sets. In contrast to clustering

methods, DFs take runtime into account when determining that partitioning.

Therefore, we adopt this new approach into Hydra and construct a cost-

sensitive DF for every pair of configurations (i, j) based on training data.

The cost for a given instance n for configuration pair (i, j) is defined as the

performance difference between i and j. For a test instances, we apply each

DF to vote for the stronger configuration and select the configuration with

the most votes as the best algorithm for that instance.

• Speeding Up Convergence: Hydra uses an automated algorithm configura-

tor as a subroutine, which is called in every iteration to find a configuration

that augments the current portfolio as well as possible. Since algorithm con-

figuration is a hard problem, configuration procedures are incomplete and

typically randomized. As a single run of a randomized configuration proce-

dure may not yield a high-performing parameter configuration, it is common

practice to perform multiple runs in parallel and to use the configuration that

performs best on the training set [93, 96, 97, 212].

Here, we make two modifications to Hydra to speed up its convergence.

First, in each iteration, we add k promising configurations to the portfolio,

rather than just the single best. If algorithm configuration runs were inexpen-

sive, this modification to Hydra would not help: additional configurations

could always be found in later iterations, if they indeed complemented the

portfolio at that point. However, when each iteration must repeatedly solve

many difficult MIP instances, it may be impossible to perform more than a

small number of Hydra iterations within any reasonable amount of time,

even when using a computer cluster. In such a case, when many good (and
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rather different) configurations are found in an iteration, it can be wasteful

to retain only one of these.

Our second change to Hydra concerns the way that the ‘best’ configurations

returned by different algorithm configuration runs are identified. HydraDF,1
determines the ‘best’ of the configurations found in a number of independent

configurator runs by evaluating each configuration on the full training set and

selecting the one with best performance. This evaluation phase can be very

costly: for example, if we use a cutoff time of 300 seconds per run during

training and have 1 000 instances, then computing the training performance

of each candidate configuration can take nearly four CPU days. Therefore,

in HydraDF,k, we select the configuration for which the configuration pro-

cedure’s internal estimate of the average performance improvement over the

existing portfolio is largest. This alternative is computationally cheap: it

does not require any evaluations of configurations beyond those already per-

formed by the configurator. However, it is also potentially risky as different

configurator runs typically use the training instances in a different order and

evaluate configurations using different numbers of instances. It is thus possi-

ble that the configurator’s internal estimate of improvement for a parameter

configuration is high, but that it turns out to not help for instances the config-

urator has not yet used. Fortunately, adding k parameter configurations to the

portfolio in each iteration mitigates this problem: if each of the k selected

configurations has independent probability p of yielding a poor configura-

tion, the probability of all k configurations being poor is only pk.

10.3.1 Experimental Setup

While the improvements to Hydra presented were motivated by MIP, they can

nevertheless be applied to any domain. The parameterized solver, instance bench-

mark and performance metric define the application context in which Hydra is

run. In contrast, the automated algorithm configuration tool and portfolio builder

are generic components.
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CPLEX Parameters. Out of CPLEX 12.1’s 135 parameters, we selected a sub-

set of 74 parameters to be optimized. These are the same parameters considered

in [97], minus two parameters governing the time spent for probing and solution

polishing. (These led to problems when the captime used during parameter op-

timization was different from that used at test time.) We were careful to keep all

parameters fixed that change the problem formulation (e.g., parameters such as the

optimality gap below which a solution is considered optimal). The 74 parameters

we selected affect all aspects of CPLEX. They include 12 preprocessing parame-

ters; 17 MIP strategy parameters; 11 parameters controlling how aggressively to

use which types of cuts; 8 MIP “limits” parameters; 10 simplex parameters; 6 bar-

rier optimization parameters; and 10 further parameters. Most parameters have an

“automatic” option as one of their values. We allowed this value, but also included

other values (all other values for categorical parameters, and a range of values for

numerical parameters). Exploiting the fact that 4 parameters were conditional on

others taking certain values, they gave rise to 4.75× 1045 distinct parameter con-

figurations.

MIP Benchmark Sets. Our goal was to obtain a MIP solver that works well on

heterogenous data. Thus, we selected four heterogeneous sets of MIP benchmark

instances, composed of many well studied MIP instances. They range from a rela-

tively simple combination of two homogenous subsets (CL∪REG) to heterogenous

sets using instances from many sources (e.g., , MIX). While previous work in au-

tomated portfolio construction for MIP [111] has only considered very easy in-

stances (ISAC(new) with a mean CPLEX default runtime below 4 seconds), our

three new benchmarks sets are much more realistic, with CPLEX default runtimes

ranging from seconds to hours. We split these instances 50:50 into training and

test sets except for ISAC(new), where we divided the 276 instances into a new

training set of 184 and a test set of 92 instances. Due to the small size of the data

set, we performed this in a stratified fashion, first ordering the instances based on

CPLEX default runtime and then picking every third instance for the test set.

We used all 143 MIP features from Figure 3.2 including 101 features from

[90, 111, 130] and 42 new probing features. In our feature computation, we used a

5-second cutoff for computing probing features. We omitted these probing features
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(only) for the very easy ISAC(new) benchmark set.

Algorithm Configurator: FocusedILS. For algorithm configuration we used

ParamILS version 2.3.4 with its default instantiation of FocusedILSwith adap-

tive capping [96]. We always executed 25 parallel configuration runs with different

random seeds with a 2-day cutoff. (Running times were always measured using

CPU time.) During configuration, the captime for each CPLEX run was set to 300

seconds, and the performance metric was penalized average runtime (PAR-10). For

testing, we used a cutoff time of 3 600 seconds.

Portfolio Builder: SATzilla based on cost-sensitive decision forests. We used

the Matlab version R2010a implementation of cost-sensitive decision trees as de-

scribed in Chapter 7. For any pair of algorithms (i, j), a cost-sensitive decision

forest was built with 99 trees. Therefore, i receives a vote from j if more than 44

trees predict it being “better”. The algorithm with the most votes is selected as the

best algorithm for a given instance. Ties are broken by only counting the votes from

those decision forests that involve algorithms which received equal votes; further

ties are broken randomly.

Experimental Environment. All of our experiments were performed on a clus-

ter of 55 dual 3.2GHz Intel Xeon PCs with 2MB cache and 2GB RAM, running

OpenSuSE Linux 11.1.

Computational Cost. The total running time for the various Hydra procedures

was often dominated by the time required for running the configurator and there-

fore turned out to be approximately proportional to the number of Hydra itera-

tions performed. Each iteration required 50 CPU days for algorithm configura-

tion, as well as validation time to (1) select the best configuration in each iteration

(only for HydraLR,1 and HydraDF,1); and (2) gather performance data for the

selected configurations. Since HydraDF,4 selects 4 solvers in each iteration, it has

to gather performance data for 3 additional solvers per iteration (using the same

captime of 3 600 seconds), which roughly offsets its savings due to ignoring the
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validation step. Using the format (HydraDF,1, HydraDF,4), the overall runtime

requirements in CPU days were as follows: (366,356) for CL∪REG; (485, 422)

for CL∪REG∪RCW; (256,263) for ISAC(new); and (274,269) for MIX. Thus, the

computational cost for each iteration of HydraLR,1 and HydraDF,1 was similar.

10.3.2 Experimental Results

We evaluated our full HydraDF,4 approach for MIP; on all four MIP benchmarks,

we compared it to HydraDF,1, to the best configuration found by ParamILS, and

to the CPLEX default. For ISAC(new) and MIX we also assessed HydraLR,1.

We did not do so for CL∪REG and CL∪REG∪RCW because they are relatively sim-

pler and we expected the DF and LR models to perform almost identically.

Table 10.3 presents these results. First, comparing HydraDF,4 to Param-

ILS alone and to the CPLEX default, we observed that HydraDF,4 achieved dra-

matically better performance, yielding between 2.52-fold and 8.83-fold speedups

over the CPLEX default and between 1.35-fold and 2.79-fold speedups over the

configuration optimized with ParamILS in terms of average runtime. Note that

(likely due to the heterogeneity of the data sets) the built-in CPLEX self-tuning

tool was unable to find any configurations better than the default for any of our

four data sets. Compared to HydraLR,1, HydraDF,4 yielded a 1.3-fold speedup

for ISAC(new) and a 1.5-fold speedup for MIX. HydraDF,4 also typically per-

formed better than our intermediate procedure HydraDF,1, with speedup factors

up to 1.21 (ISAC(new)). However, somewhat surprisingly, it actually performed

worse for one distribution, CL∪REG∪RCW. We analyzed this case further and found

that in HydraDF,4, after iteration three ParamILS did not find any configurations

that would further improve the portfolio, even with a perfect algorithm selector.

This poor ParamILS performance could be explained by the fact that Hydra’s

dynamic performance metric only rewarded configurations that made progress on

solving some instances better; almost certainly starting in a poor region of config-

uration space, ParamILS did not find configurations that made progress on any

instances over the already strong portfolio, and thus lacked guidance towards better

regions of configuration space. We believed that this problem could be addressed

by means of better configuration procedures in the future.
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DataSet Solver Train (cross valid.) Test
Time PAR (Solved) Time PAR (Solved)

Default 424 1687 (96.7%) 424 1493 (96.7%)
CL ParamILS 145 339 (99.4%) 134 296 (99.5%)
∪REG HydraDF,1 64 97 (99.9%) 63 63 (100%)

HydraDF,4 42 42 (100%) 48 48 (100%)
MIPzilla 40 40 (100%) 39 39 (100%)
Oracle 33 33 (100%) 33 33 (100%)

(MIPzilla)
CL Default 405 1532 (96.5%) 406 1424 (96.9%)
∪REG ParamILS 148 148 (100%) 151 151 (100%)
∪RCW HydraDF,1 89 89 (100%) 95 95 (100%)

HydraDF,4 106 106 (100%) 112 112 (100%)
MIPzilla 99 99 (100%) 99 99 (100%)
Oracle 89 89 (100%) 89 89 (100%)

(MIPzilla)
Default 3.98 3.98 (100%) 3.77 3.77 (100%)

ISAC ParamILS 2.06 2.06 (100%) 2.13 2.13 (100%)
(new) HydraLR,1 1.67 1.67 (100%) 1.52 1.52 (100%)

HydraDF,1 1.2 1.2 (100%) 1.42 1.42 (100%)
HydraDF,4 1.05 1.05 (100%) 1.17 1.17 (100%)
MIPzilla 2.19 2.19 (100%) 2.00 2.00 (100%)
Oracle 1.83 1.83 (100%) 1.81 1.81 (100%)

(MIPzilla)
Default 182 992 (97.5%) 156 387 (99.3%)
ParamILS 139 717 (98.2%) 126 357 (99.3%)

MIX HydraLR,1 74 74 (100%) 90 205 (99.6%)
HydraDF,1 60 60 (100%) 65 181 (99.6%)
HydraDF,4 53 53 (100%) 62 177 (99.6%)
MIPzilla 48 48 (100%) 48 164 (99.6%)
Oracle 34 34 (100%) 39 155 (99.6%)

(MIPzilla)

Table 10.3: Performance (average runtime and PAR in seconds, and percent-
age solved) of HydraDF,4, HydraDF,1 and HydraLR,1 after 5 itera-
tions.

Figure 10.3 shows the test performance the different Hydra versions achieved

as a function of their number of iterations, as well as the performance of the

MIPzilla portfolios we built manually. When building these MIPzilla portfo-

lios for CL∪REG, CL∪REG∪RCW, and MIX, we exploited ground truth knowledge

about the constituent subsets of instances, using a configuration optimized specifi-

cally for each of these subsets. As a result, these portfolios yielded very strong per-

formance. Although our various Hydra versions did not have access to this ground

truth knowledge, they still roughly matched MIPzilla’s performance (indeed,

HydraDF,1 outperformed MIPzilla on CL∪REG). For ISAC(new), our base-
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Figure 10.3: Performance per iteration for HydraDF,4, HydraDF,1 and

HydraLR,1, evaluated on test data.

line MIPzilla portfolio used CPLEX configurations obtained by ISAC [111];

all Hydra versions clearly outperformed MIPzilla in this case, which suggests

that its constituent configurations are suboptimal. For ISAC(new), we observed

that for (only) the first three iterations, HydraLR,1 outperformed HydraDF,1. We

believed that this occurred because in later iterations the portfolio had stronger

solvers, making the predictive models more important. We also observed that

HydraDF,4 consistently converged more quickly than HydraDF,1 and HydraLR,1.

While HydraDF,4 stagnated after three iterations for data set CL∪REG∪RCW (re-

fer to our prior discussion), it achieved the best performance at every given point in

time for the three other data sets. For ISAC(new), HydraDF,1 did not converge

after 5 iterations, while HydraDF,4 converged after 4 iterations and achieved bet-
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ter performance. For the other three data sets, HydraDF,4 converged after two

iterations. The performance of HydraDF,4 after the first iteration (i.e., with 4 can-

didate solvers available to the portfolio) was already very close to the performance

of the best portfolios for MIX and CL∪REG.

We spent a tremendous amount of effort attempting to compare HydraDF,4
with ISAC [111], since ISAC is also a method for automatic portfolio construc-

tion and was previously applied to a distribution of MIP instances. ISAC’s au-

thors supplied us with their training instances and the CPLEX configurations their

method identified, but are generally unable to make their code available to other re-

searchers and, as mentioned previously, were unable to recover their test data. We

therefore compared HydraDF,4’s and ISAC’s relative speedups over the CPLEX

default (thereby controlling for different machine architectures) on their training

data. We note that HydraDF,4 was given only 2/3 as much training data as ISAC

(due to the need to recover a test set from [111]’s original training set); the methods

were evaluated using only the original ISAC training set; the data set is very small,

and hence high-variance; and all instances were quite easy even for the CPLEX de-

fault. In the end, HydraDF,4 achieved a 3.6-fold speedup over the CPLEX default,

as compared to the 2.1-fold speedup reported in [111].

As shown in Figure 10.3, all versions of Hydra performed much better than a

MIPzilla portfolio built from the configurations obtained from ISAC’s authors

for the ISAC(new) dataset. In fact, even a perfect oracle of these configurations

only achieved an average runtime of 1.82 seconds, which is a factor of 1.67 slower

than HydraDF,4.

10.4 Conclusions
In this chapter, we introduced Hydra, a new automatic algorithm design approach

that combines portfolio-based algorithm selection with automatic algorithm con-

figuration. We applied Hydra to SAT, a particularly well-studied and challenging

problem domain, producing high-performance portfolios based only on a single

highly parameterized SLS algorithm, SATenstein-LS. Our experimental results

on widely-studied SAT instances showed that Hydra significantly outperformed

17 state-of-the-art SLS algorithms. Hydra reached, and in two of four cases ex-
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ceeded, the performance of portfolios that used all 17 challengers as candidate

solvers, 6 of which had been configured automatically using domain knowledge

about specific types of SAT instances. At the same time, the total CPU time used

by Hydra to reach this performance level for each distribution was less than a

third of that used for configuring the 6 automatically-configured challengers.

We also showed how to extend Hydra to achieve strong performance for

heterogeneous MIP distributions, outperforming CPLEX’s default, ParamILS

alone, ISAC and the original Hydra approach. This was accomplished by us-

ing a cost-sensitive classification model for algorithm selection (which also led to

performance improvements in SATzilla), along with improvements to Hydra’s

convergence speed. We expect that HydraDF,k can be further strengthened by

using improved algorithm configurators, such as model-based procedures (e.g.,

SMAC [99]). Overall, the availability of effective procedures for constructing

portfolio-based algorithm selectors, such as our new Hydra, should encourage

the development of highly parametrized algorithms for other prominent NP-hard

problems in AI, such as planning and CSP.
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Chapter 11

Conclusion and Future Work

Computationally hard problems play a key role in many practical applications, in-

cluding formal verification, planning and scheduling, resource allocation and man-

agement. Even though theoretically, no worst-case polynomial time algorithm

exists, heuristic methods are able to solve large problems effectively in practice.

However, designing a high-performance heuristic solver is not an easy task. Tra-

ditionally, algorithm developers manually explore the combinations of algorithmic

components and empirically evaluate them on small benchmarks. Due to the nature

of NP-completeness, it is often the case that the developed solver is only good on

certain types of benchmarks. Given a new benchmark, the whole difficult, tedious

and time-consuming process needs to be repeated again.

Motivated by an increasing demand for high-performance solvers for difficult

combinatorial problems in practical applications, by the desire to reduce the human

effort required for building such algorithms, and by an ever-increasing availability

of cheap computing power that can be harnessed for automating parts of the al-

gorithm design process, this thesis leveraged rigorous statistical methods to study

such computationally hard problems. My work has already displayed great impact

in many areas of research and development. The sets of instance characteristics

we proposed were widely used for obtaining insights into understanding the hard-

ness of problem instances and designing algorithms for solving them (see, e.g.,

[111, 112, 140]). The constructed statistical methods can characterize algorithm

runtime (even satisfiability status for NP-complete decision problems) with high
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levels of confidence. My automated algorithm design approaches have led to sub-

stantial improvements for solving a range of hard computational problems.

11.1 Statistical Models of Instance Hardness and
Algorithm Performance

Traditional notions of complexity cannot adequately explain the strong perfor-

mance of heuristic algorithms; empirical methods are often the only practical means

for assessing and comparing algorithms’ performance. Through adapting super-

vised machine learning techniques, we constructed statistical models that predict

solvers’ performance without actually running them.

Inspired by the success of Leyton-Brown et al. [127] that predicted an algo-

rithm’s runtime using so-called empirical hardness models (EHMs), my work made

significant advances on improving prediction accuracy. Firstly, we extended the

feature set that characterizes propositional satisfiability (SAT) instances. In addi-

tion, we introduced features for other type of NP-complete problems such as the

travelling salesman problem and the mixed integer programming problem (Chap-

ter 3). Such features proved to be informative and have been widely appropriated

by other research groups [111]. Secondly, we used new statistical models (e.g.,

Gaussian processes, random forests [101], hierarchical hardness models [208]),

substantially improving prediction accuracies over previous linear regression mod-

els (Chapter 5, Chapter 6). Thirdly, we showed that EHMs were not limited to pre-

dicting the runtime of an algorithm, and instead can predict arbitrary user-defined

measures of algorithm performance (e.g., penalized runtime or some arbitrary per-

formance score). Finally, we showed that other statistical models (classification)

could be constructed to predict the solution of NP-complete decision problems

(Chapter 4). My classifiers achieved high accuracy in predicting the satisfiability

status of SAT instances ranging from randomly generated to industrial; the classifi-

cations were sufficiently accurate to help make a better prediction of an algorithm’s

performance [208].

Overall, the extensive experimental study showed that the regression models

achieved good, robust performance in predicting algorithms’ performance. These

models are useful for algorithm analysis, scheduling, algorithm portfolio construc-

194



tion, automated algorithm configuration, and other applications. The classification

models were able to predict the satisfiability status of SAT instances with high

accuracy even for uniform random 3-SAT instances from the solubility phase tran-

sition (Chapter 4). Further study on this benchmark showed that one could build a

three-leaf decision tree trained with very small instances and only two features that

achieved good classification accuracies across a wide range of instance sizes.

11.2 Portfolio-based Algorithm Selection
Heuristic algorithms are capable of handling very large instances, but they often

only perform well on certain types of instances. Therefore, practitioners confront

a potentially difficult algorithm selection problem: given a new instance, which

algorithm should be used in order to optimize some performance objective. We

developed a portfolio-based algorithm selector, SATzilla, which solved the al-

gorithm selection problem automatically based on statistical models introduced

in the previous section. By exploiting the complementary strengths of different

SAT solvers, SATzilla won more than 10 medals in 2007, 2009 SAT competi-

tions [124], and the 2012 SAT challenge [13]. It encouraged the development of

many other portfolio-based solvers, and represented state-of-the-art in SAT solving

for many years.

The goal of algorithm selection is to find a mapping from instances to algo-

rithms that optimizes some performance metric. SATzilla approached this prob-

lem by using EHMs to predict the solvers’ performance. For a new instance, it first

predicts the performance of each solver based on instance features, then picks the

one that is predicted to be the best. Several new techniques were introduced in

Chapter 7 to improve the robustness of SATzilla, such as pre-solvers, backup

solvers, and solver subset selection [209, 210]. These components played impor-

tant roles on the success of SATzilla and became standard techniques widely

used in constructing portfolio-based algorithm selectors. Recently, we improved

SATzilla’s performance even further by adapting a new cost-sensitive classifi-

cation technique that punishes misclassification in direct proportion to impact on

portfolio performance (Chapter 7). The new SATzilla won the 2012 SAT chal-

lenge.
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The general framework of SATzilla can be applied to any problem domain.

In Chapter 10.3, we showed that MIPzilla (SATzilla for MIP) also achieved

state-of-the-art performance on solving mixed integer programming problem.

In addition to its state-of-the-art performance, portfolio-based algorithm se-

lection is useful for evaluating solver contributions. By omitting a solver from the

portfolio, one can measure the contribution of this solver by computing SATzilla’s

performance difference with and without it. In Chapter 8, we showed that solvers

that exploit novel strategies proved more valuable than those that exhibited the best

overall performance.

11.3 Automatically Building High-performance
Algorithms from Components

Designing high-performance heuristic algorithms for solving NP-complete prob-

lems is a time-consuming task even for domain experts. The resulting algorithm

may not meet users’ requirements due to 1) absence of the optimal combination

of heuristics and 2) lack knowledge of user’s benchmarks or performance metric.

We solved the first problem by designing a generalized, highly parameterized al-

gorithm with many different promising heuristics. Furthermore, the choices and

behaviors of heuristics are often controlled by a large set of parameters. Therefore,

this approach removes the burden of making early design choices without knowing

the interaction of multiple heuristics and encourages the designer to consider many

alternative designs from existing algorithms in addition to novel mechanisms. To

better meet the requirements of end users, we used automated algorithm configura-

tion tools [96] that optimized solver parameters given any benchmark and perfor-

mance metric.

This general approach could be applied to many domains with its effectiveness

demonstrated on the domain of SAT (Chapter 9). By taking components from 25

local search algorithms, we built a highly parameterized local search algorithm,

SATenstein, that could be instantiated as 2.01× 1014 different solvers. Most

of these instantiations had never been previously studied. Given a benchmark and

a performance metric, we applied a black-box automated algorithm configurator

to optimize SATenstein’s parameters. Empirical evidence demonstrates that
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the automatically constructed SATenstein outperformed existing state-of-the-

art solvers with manually and automatically tuned configurations in several widely

studied SAT benchmarks. In addition, we have proposed a new data structure,

concept DAG, to represent the parameter configurations, and defined a novel sim-

ilarity metric for comparing different configurations based the transformation cost

between concept DAGs. The visualization of these similarity measure provided

useful insights into algorithm design. For example, contrary to common belief

(see, e.g., [80, 135]), it is preferable to expose parameters so they can be instanti-

ated by automated configurators rather than adjusting them at running time using a

simple adaptive mechanism.

11.4 Automatically Configuring Algorithms for
Portfolio-Based Selection

In a problem domain with only one or a few high-performance parameterized algo-

rithms, it would be difficult to construct a portfolio-based algorithm selector due to

the small number of candidates. An automated algorithm configuration produces a

single algorithm, which could achieve high performance overall, but may perform

badly on many individual instances. To overcome these problems, we developed

a new automated algorithm design approach, Hydra, that combines the strength

of algorithm selection and algorithm configuration, and achieved state-of-the-art

performance on SAT (Chapter 10.2) and MIP (Chapter 10.3) with a single param-

eterized algorithm.

Once a portfolio exists for a domain, how should new research aim to improve

up it? Hydra approaches this question by adapting the concept of boosting which

focuses on problems that are handled poorly with the current portfolio. Hydra

is implemented by iteratively changing the performance metric given to the algo-

rithm configurator. Such a metric emphasizes the potential marginal contribution of

a new configuration to the existing portfolio. In each iteration, one algorithm (con-

figuration) is added into the candidate algorithm set to improve the performance

of the current portfolio. With a single parameterized solver, Hydra reached, and

often exceeded, the performance of portfolios that used the state-of-the-art solvers

as candidate solvers (including solvers configured using domain knowledge of spe-
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cific types of instances). Later in Chapter 10.3, we further improved Hydra us-

ing a more advanced algorithm selection technique, along with improvements for

speedup convergence. The resulting HydraDF,k achieved strong performance for

heterogeneous MIP distributions, outperforming CPLEX’s default, configurations

from ParamILS alone , and ISAC.

Since Hydra requires only very little domain knowledge (one parameterized

algorithm and an instance feature extractor), it is extremely attractive in cases of

new problem domains. It also encourages the development of highly parameterized

algorithms for other prominent NP-complete problems in AI, such as planning and

CSP.

11.5 Future Research Directions
I am rather interested in studying and solving problems that have a substantial

impact on society and industry, such as computational sustainability, bioinformat-

ics, hardware and software verification, and other problems pertinent to industrial

applications. I firmly believe that meta-algorithmic techniques are the future in

solving hard computational problems in a broad range of areas. Therefore, I plan

to continue developing new techniques and am looking forward to collaboration

with domain experts in a variety of areas. Evidenced by the successes on SAT

and MIP, I believe that my research on automated algorithm design will generate

state-of-the-art algorithms for problems in real world applications.

Informative Features. One challenge in applying meta-algorithmic techniques

on practical applications is to discover a set of features that is both easy to compute

and yet correlate well with an algorithm’s performance. Although our feature sets

(for SAT, MIP, and TSP) have proven to be informative and efficient, more pow-

erful features can be obtained by using heuristic information from new algorithms

or intuition from domain experts. For example, the distribution of flip counts over

variables (based on local search probing) could be used to indicate the number of

local minima.

More Applications. Although my proposed automated algorithm design ap-

proaches have been applied to SAT and MIP, they can be applied to any computa-

tional hard problems. I continually seek more applications, for example, building
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portfolio-based algorithm selectors to solve protein folding problems, constructing

highly parameterized complete solvers for SAT and optimizing them by automated

algorithm configuration tools.

Integrating Strong Presolving Techniques. In SATzilla’s presolving phase,

two algorithms are run for a short duration of time with the goal of solving easy

instances. Recently there were many advances in optimizing solver schedule.

3S [112] introduced a new approach for presolving by constructing a fixed solver

schedule using mixed integer programming. aspeed [77] used ASP to solve

timeout-optimal scheduling. I believe that SATzilla’s performance could be

further improved by adapting such advanced techniques for optimizing presolving.

Explaining instance hardness. In real applications, it would be important to

know “what property makes some type of instances hard?” or “Which algorithm

components are most important to achieve good performance on certain types of

instances?” I plan to extend my work on EHMs and develop an automated proce-

dure for analysis of instances and algorithm components. This research will per-

mit domain experts to gain insights into the functionality and interaction between

multiple heuristics. Our group has been actively working on this topic: Hutter

et al. (2014) proposed efficient methods for gaining insight into the relative im-

portance of different hyperparameters and their interaction for machine learning

algorithms; Fawcett et al. (2014) studied the relative importance of features for

domain-independent planners.

Parallel Algorithm Portfolios: Depending on which heuristics are used, dif-

ferent algorithms’ performance can vary significantly on the same instance. Run-

ning multiple solvers in parallel can, on average, be beneficial. Therefore, I plan

to extend sequential portfolio techniques into a parallel environment. In the case

of great uncertainty in algorithm selection, running more uncorrelated solvers in

parallel can reduce the cost of picking a solver with a runtime much larger than the

best solver. One recent approach [78] used an automatic algorithm configurator to

produce a set of configurations to be executed in parallel.
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