
In Which The Fixation Probability Of
A Superstar Is Determined

And A Contradiction In The Literature Is Addressed

by

Alastair David Jamieson-Lane

B.Sc., The University of Canterbury, 2012

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

The Faculty of Graduate and Postdoctoral Studies

(Mathematics)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

October 2014

c© Alastair David Jamieson-Lane 2014



Abstract

Population structures can be crucial determinants of evolutionary processes.
For the spatial Moran process certain structures suppress selective pressure,
while others amplify it (Lieberman et al. 2005 Nature 433 312-316). Evo-
lutionary amplifiers suppress random drift and enhance selection. Recently,
some results for the most powerful known evolutionary amplifier, the super-
star, have been invalidated by a counter example (Dı́az et al. 2013 Proc.
R. Soc. A 469 20130193). Here we correct the original proof and derive
improved upper and lower bounds, which indicate that the fixation proba-
bility remains close to 1− 1/r4H for population size N →∞ and structural
parameter H > 1. This correction resolves the differences between the two
aforementioned papers. We also confirm that in the limit N,H →∞ super-
stars remain capable of providing arbitrarily strong selective advantages to
any beneficial mutation, eliminating random drift. In addition, we investi-
gate the robustness of amplification in superstars,and find that it appears to
be a fragile phenomenon with respect to changes in the selection or mutation
processes.
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Preface

This project was initiated by Professor Christoph Hauert in response to the
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Chapter 1

In which concepts are
introduced

1.1 Context

Populations evolve according to the principles of natural selection and ran-
dom drift. The balance between the two competing processes is determined
by numerous factors, including both population size and structure [Antal
et al., 2006, Bürger and Lande, 1994, Nowak and May, 1992, Fu and Nowak,
2013]. The most malignant tumour is unlikely to cause harm if it arises in
the outermost layer of skin and is easily brushed aside, and the most imper-
ative model for climate change has limited influence until it has worked its
way from a researchers desk, through the literature into policy making and
public awareness. Position matters.

One of the simplest and most influential models of stochastic evolu-
tionary processes in finite populations is the Moran process [Moran, 1962,
Nowak, 2006]. It is based on an unstructured (or well-mixed) population of
size N , where each individual is classified either as a resident (wild type)
or mutant. Each type is assigned a constant fitness, which determines its
propensity to reproduce. The fitness of wild types is normalized to 1 and
mutants have fitness r. An advantageous mutant has r > 1, a disadvanta-
geous mutant has r < 1 and a neutral mutant is indistinguishable in terms
of fitness, r = 1. In every time step, an individual is randomly selected for
reproduction with each individual’s probability proportional to their fitness.
The selected individual then produces a clonal offspring that replaces an
individual, selected uniformly at random, in the population. This process is
repeated until eventually the population has reached one of the homogenous
states of all residents, if the mutant went extinct, or all mutants, if the mu-
tant successfully took over the entire population [Moran, 1962, Nowak et al.,
2004, Lieberman et al., 2005]. In both cases, the population has reached fix-
ation, although for the sake of this document when talking of fixation we will
be referring to fixation of mutants, unless stated otherwise. In the absence
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1.1. Context

of mutation, the two homogeneous states are absorbing.
The Moran process models evolutionary dynamics based on selection and

random drift in finite populations: an advantageous mutant has a higher
probability, but no guarantee, to reach fixation and, similarly, an inferior
mutant is more likely to be eliminated, but not with certainty. Because of
the simple (or rather, non-existent) topology of the original Moran process,
all possible states of the system can be described by simply stating the cur-
rent number of mutants. At any given time step, this number can either
increase or decrease by one, with known probabilities. Any time step where
the actual make up of the population changes must be associated with some
interaction between a resident and a mutant – one replacing the other. Be-
cause mutants are always r times more likely to replace resident individuals
than the converse, it can be shown that the chance of an increase in the
number of mutant individuals is always r times greater than the chance of
a decrease, leading to a “forward bias” of r regardless of the make-up of
the population. These simple dynamics allow the system to be described as
a random walk, where Xt denotes the current number of mutants, and the
forward bias is always r. Simple martingale arguments can then be used to
determine the probabilities of hitting either end of this random walk, from
any starting point, and thus the fixation probabilities of either residents or
mutants can be found for any given initial configuration. Of particular in-
terest is the fixation probability, ρM , of a single mutant that arises in an
otherwise homogeneous population of resident individuals:

ρM =
1− 1

r

1− 1
rN

. (1.1)

In the neutral limit, r → 1, all individuals in the population are equally likely
to end up as the single common ancestor, leading to a fixation probability
of 1/N .

The original Moran process ignores population structures – but this is
easily addressed by arranging individuals of a population on a graph, such
that each node refers to one individual and the links to other nodes define its
neighbourhood. Maruyama [1970] and Slatkin [1981] conjectured that the
fixation probability of a mutant in this Moran process on graphs remains
unaffected by population structures. Lieberman et al. [2005] proved that
this is indeed true for a broad class of structures and, in particular, holds
for simple structures such as lattices or regular networks. At the same
time, this classification indicated that fixation probabilities, ρ, may differ
for some structures by tilting the balance between selection and random
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1.2. Introduction to the Moran process on graphs

drift. Evolutionary suppressors enhance random drift and suppress selection
(ρ < ρM for r > 1 and ρ > ρM for r < 1), whereas evolutionary amplifiers
enhance selection and suppress random drift (ρ > ρM for r > 1 and ρ < ρM
for r < 1).

In recent years, various aspects of the Moran processes on graphs have
been explored, including effects of population structures on fixation prob-
abilities [Antal et al., 2006, Broom and Rychtář, 2008, Burton Voorhees,
2013], or fixation times [Joshua L. Payne, 2009, Frean et al., 2013], as well
as computational techniques [Shakarian and Roos, 2011, Fu et al., 2009].
However, the most surprising result remains that even perfect evolutionary
amplification appears to be possible: “The superstar. . . [has] the amazing
property that for large [population sizes] N , the fixation probability of an
advantageous mutant converges to one, while the fixation probability of a
disadvantageous mutant converges to zero.” [Lieberman et al., 2005].

A more recent paper Dı́az et al. [2013] provided a counter example that
contradicted the fixation probabilities reported in Lieberman et al. [2005].
In this thesis, I give a brief overview of the arguments in both papers,
compare their predictions to some numerical results, and go on to identify
the problem in the original proof and correct it. This yields new upper and
lower bounds on the fixation probability for superstars. It is found that for
any r > 1, a graph can be constructed such that ρ is arbitrarily close to 1,
thus confirming the existence of perfect evolutionary amplification.

1.2 Introduction to the Moran process on graphs

Population structure can be represented by assigning individuals to nodes
on a graph, with links representing each individual’s neighbourhood1. The
Moran process on graphs follows the same procedure as the original Moran
process except for the crucial difference that the offspring does not replace
a random member of the entire population but rather replaces a neighbour
of the reproducing individual, selected uniformly at random (Fig. 1.1).

On directed graphs, the offspring replaces a downstream neighbour by
selecting one outgoing link uniformly at random. As before, the population
has reached fixation once either one of the absorbing homogeneous states is
reached. For any number of mutants, m (0 < m < N), the fixation prob-

1Models also exist where nodes represent “islands” or some other unit of geographically
isolated subpopulation. While interesting and certainly biologically relevant, this was the
assumption of neither of the articles that this work is based on, thus is not what we will
be assuming here.
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1.2. Introduction to the Moran process on graphs

A B

C D

Figure 1.1: Spatial Moran process. (A) graph structure and initial distribu-
tion of residents (dark blue) and mutants (pale yellow). (B) selection: an
individual (dashed outline) is selected to reproduce with a probability pro-
portional to its fitness. (C) replacement: a downstream neighbour (dashed
arrow) is randomly selected for replacement. (D) reproduction: the neigh-
bour is replaced by the clonal offspring of the upstream reproducing indi-
vidual.

abilities of residents and mutants are both non-zero on strongly connected
graphs, i.e. graphs where every node can be reached from any other node
through a series of moves between nodes that are connected by links (for
directed graphs, only moves in the direction of the link are permitted). If a
graph is not strongly connected, then the structure may prevent the spread-
ing or elimination of a mutant type regardless of its fitness and hence the
fixation probability for either or both types may be zero.

For the Moran process on graphs, the fixation probabilities are the same
as in unstructured populations, c.f. Eq. (1.1), provided that the graph is a
circulation [Lieberman et al., 2005]. A circulation is defined as a graph such
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1.2. Introduction to the Moran process on graphs

that the sum of weights of all outgoing links is equal to the sum of weights
of all incoming links for each node. This means that every node has the
same impact on the environment as the environment has on the node.

A graph is an evolutionary suppressor if the fixation probability of an
advantageous mutant is less than for the original Moran process, ρ < ρM .
The simplest example is a linear chain: a graph with a single source node,
which connects to one end of a (directed) chain of nodes [Nowak et al., 2003].
Any mutation that does not occur at the top of the chain has no chance
of reaching fixation. However, if the mutation occurs at the top node it
will eventual reach fixation with certainty. Assuming that mutations arise
spontaneously and are equally likely in any location, the resulting fixation
probability is simply 1/N , regardless of the mutant’s fitness r. The linear
chain is an example of a graph that is not strongly connected, because the
source node cannot be reached from any node in the chain. Evolutionary
suppressors are sometimes found when high fidelity copying is of paramount
importance, such as in slowing down the somatic evolution of cancer [Nowak
et al., 2003, Michor et al., 2004].

In contrast, an evolutionary amplifier is a graph which increases the
fixation probability of advantageous mutants as compared to the original
Moran process, ρ > ρM . The simplest evolutionary amplifier is the star
graph: a single root node is connected to a reservoir of peripheral leaf nodes
through bi-directional links. The fixation probability of a single mutant for
N � 1 is [Lieberman et al., 2005, Broom and Rychtář, 2008]

ρ0 ≈
1− 1

r2

1− 1

r2N

. (1.2)

On the star, a mutant with fitness r has roughly the same fixation probability
as a mutant with fitness r2 would in an unstructured population. Thus, the
fixation probability of beneficial mutations (r > 1) is enhanced, but for
deleterious mutants (r < 1) it is reduced. Note that the fixation probability
depends on where the single mutant arises. If the mutant is located in the
root node then, for N � 1, it is almost certainly replaced in the next time
step because one of the N − 1 reservoir nodes is selected for reproduction.
However, if mutants arise at random, then for N � 1 they almost surely
arise in the reservoir and the fixation probability is as specified in Eq. (1.2).
Evolutionary amplifiers would seem to provide promising structures for tasks
where strong selection is advantageous, such as in the adaptive immune
system or in collaboration networks.
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Figure 1.2: The superstar consists of three distinct types of nodes: the root
node (pale blue), the reservoir nodes (green) and the stem nodes (dark red).
The reservoir nodes connect to the start of the stem, the end of the stem
connects to the root node and the root node connects to all reservoir nodes
in each branch. The depicted superstar has B = 5 branches each with L = 5
reservoir nodes and a stem of length H = 4, which yields a total population
size of N = B(L+H) + 1 = 46.

1.2.1 Superstars

The two most prominent features of the star graph are the large reservoir
where changes occur on a slow time scale, and the bottleneck caused by the
hub, where changes occur quickly. In particular, the bottleneck introduces
a second level for selection to act upon. Lieberman et al. [2005] claim that
this basic insight can be exploited to increase evolutionary amplification
by elongating the bottleneck and providing further levels where selection
can act. Superstars act as a more extreme version of the basic star, and are
proposed as a way to increase evolutionary amplification further [Lieberman
et al., 2005]. The superstar consists of a single root node surrounded by B
branches (Fig. 1.2). Each branch consists of a large reservoir of L nodes
feeding into one end of a directed chain of length H, the stem. The last
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stem node in each branch feeds into the root node, which then connects
to all reservoir nodes in every branch. The population size is thus given
by N = B(L + H) + 1. Nodes are classified based on their locations on
the graph. This classification is designed to simplify discussions but does
not affect the rate of reproduction of the individual occupying the node.
Lieberman et al. [2005] report the fixation probability for superstars with
L,B � H as

ρH ≈
1− 1

rK

1− 1

rKN

, (1.3)

where K = H + 2 is a structural parameter and indicates the number of
moves needed to reach any reservoir node from any other reservoir node.
This is the number of levels selection can act upon. Consequently it is
argued that a single mutant that arises in the reservoir of a superstar with
fitness r has approximately the same fixation probability as a mutant with
fitness rK in an unstructured population. This result would then imply
that by increasing the length of the stem, the fixation probability, ρH , of
any advantageous mutant, r > 1, could be brought arbitrarily close to 1,
indicating arbitrarily strong amplification or perfect selection.

Recently Dı́az et al. [2013] provided a counter-example demonstrating
that the fixation probability in Eq. (1.3) is too optimistic in the particular
case of H = 3 and thus invalidated the proof in Lieberman et al. [2005].
In addition, they provided substantial simulation based evidence indicating
that Eq. (1.3) also fails for higher values of H. For the counter-example
they show that in the limit N →∞:

ρ3 < 1− 1 + r

2r5 + r + 1
. (1.4)

This upper bound reflects the probability that a mutant in a reservoir cre-
ates a second mutant in any reservoir before getting replaced by resident
offspring. The fixation probability according to Eq. (1.3) grows faster with
increasing r than Eq. (1.4) and for r > 1.42 results in a contradiction.

Upon arriving at the University of British Columbia I was asked to ex-
amine these conflicting results. In particular, I was tasked with:

• Reading both proofs in full detail.

• Determining whether the two results did in fact contradict each other
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• In the case of conflict, determining precisely where the conflict oc-
curred.

• In the case of conflict, determine which of the two was correct

• Having determined which was correct, find the flaw in the incorrect
proof

This initial work is covered in chapter 2. Having identified the critical
flaw in the original proof [Lieberman et al., 2005], we then go on to consider
a corrected proof, more accurate than [Lieberman et al., 2005], and more
general than Dı́az et al. [2013]. A general sketch of this proof is provided
in chapter 3, with error terms and full rigor provided in chapter 4. Further
explorations, and other loose ends are explored in chapter 5.

8



Chapter 2

In which prior work is
discussed

The work in this thesis is concerned mainly with the work of two previous
papers, namely Lieberman et al. [2005] and Dı́az et al. [2013]. This chapter
describes the basic arguments made in each paper, then goes on to discuss
the significant conflicts between the two arguments, as well as some simula-
tion results used to guide research near the start of the investigation. Where
conflicts between our notation and that of the original authors arise, we use
our own notation, so as to maintain internal consistency of this document.

2.1 Original proof: Lieberman et al (2005)

In this section, I describe the original argument, sketched in the supple-
mentary material of Lieberman et al. [2005]. For the sake of completeness,
I follow the proof as presented in Lieberman [2010, p. 47-54], which goes
substantially beyond the original sketch.

The argument begins by first recognizing that, with overwhelming like-
lihood, the initial mutant (placed uniformly at random) will occur in the
reservoir.

It is then argued that, if we have a series of populations in series,
each downstream from the last, then, given one population with fixed mu-
tant density d, the density of mutants in the following population will be
dr/(1 + d(r − 1)). This can be viewed as the weighted fitness of mutants
in the upstream population, dr relative to the total fitness of the upstream
population 1 + d(r − 1). Density is not described precisely in the proof,
but might be thought of as “the likelihood that a randomly chosen node,
observed at a random time in the distant future, will contain a mutant”.

From this, induction is used to argue that, for population ν steps below
our initial population, the density of mutants must be

d(ν) =
drν

1 + d(rν − 1)
(2.1)

9



2.1. Original proof: Lieberman et al (2005)

This argument is extended to include the root node, thus leading to the
root node having a mutant density of

d(K − 1) =
drK−1

1 + d(rK−1 − 1)
(2.2)

Where d = Xt/BL (Xt is the current number of reservoir mutants) and K
is the length of the shortest cycle on the superstar (equivalent to H + 2) 2.

Lieberman et al. [2005] then gives a timing argument to argue that the
density of mutants in the root has time to update such that it accurately
reflects the density of mutants in the reservoirs (before any change occurs in
the reservoirs). Unfortunately the timing argument as presented is flawed.
The argument repeatedly uses the probability that a mutant will eventually
pass a particular node in the stem before being replaced. In actual fact,
the timespan needed is the per time step probability that a particular node
is replaced by any upstream individual (since all upstream individuals can
be considered as accurate measures of the upstream mutant density). As
it happens, the corrected timing argument ends up showing that the time
until update is faster than that predicted by Lieberman [2010], and thus this
particular flaw in the original proof can be easily rectified without making
any alterations to the surrounding arguments.

Next in the proof Eq. (2.2) is used to conclude that as long as the number
of reservoir mutants is not too high, the probability that the number of
reservoir mutants increases is very close to:

r

N +Xt(r − 1)

drK−1

1 + d(rK−1 − 1)
(1− d). (2.3)

While the probability of the number decreasing is close to

1

N +Xt(r − 1)

1− d
1 + d(rK−1 − 1)

d. (2.4)

The proof then considers a slower time scale, such that we only track time
steps where the number of reservoir mutants changes (effectively condition-
ing on the occurrence of one of the above events). This allows them to

2For the benefit of any reader comparing this thesis to the original proof, we are forced
to note that the original proof incorrectly refers to the root as node K. Because the
reservoir is treated as level 0 it is believed that the root should be K − 1. Later in the
the proof formulas are given treating the root as K − 1, leading to a slight inconsistency
with previous working, but correcting for the previous mistake. Here we treat the root as
node K − 1 throughout, in an attempt to follow the presumed intent of Lieberman et al.
[2005] rather than the exact wording.

10



2.2. Counter example: Dı́az et al (2013)

divide out all common terms in the above, normalising such that the prob-
abilities sum to 1. The probability of reservoir mutants increasing rather
than decreasing is found to be

rK

1 + rK
. (2.5)

The total number of reservoir mutants is then treated as a random walk,
with the above bias when Xt is small, and no bias otherwise. We omit the
remainder of the proof, as it diverges substantially from anything we shall
need to cover in this thesis.

2.2 Counter example: Dı́az et al (2013)

Rather than attempting to form general results about all superstars, Dı́az
et al. [2013] instead focus on the particular case K = 5 (equivalently H = 3).
They consider the behavior of the first mutant in the first branch, before
any other reservoir mutants have been created. They show that at this early
stage, the system has only 25 possible states, one for each combination of
states of the initial mutant and its four downstream nodes (the last being
the root). By the time any other node on the superstar is a mutant, we
are no longer in the early stages of mutant propagation. Dı́az et al. [2013]
add one additional state to the above list, representing mutant propagation
to another reservoir node. They then explicitly calculate the transition
probabilities between all 33 states, resulting in a Markov chain with two
absorbing states (extinction and propagation).

All transition probabilities are calculated symbolically in Dı́az et al.
[2013]. By excluding absorbing states, the problem is reduced to a sys-
tem of 31 equations with 31 variables where each variable represents the
probability of propagation occurring before extinction, given a particular
starting state. This can be written in matrix notation as

Mρ = ρ+ s

where M is our transition matrix, ρ is a vector containing the eventual
mutant propagation probabilities of each state, and s is a vector containing
the probability of our mutant strain propagating to a new branch this time
step. This variable is referred to as “FS” in Dı́az et al. [2013].

Mathematica is used to solve this system symbolically, resulting in an
explicit expression for the probability that the mutant propagates to at least
one other branch before extinction occurs. By taking the limit of large B
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Figure 2.1: An illustration of Dı́az et al. [2013]’s Markov chain argument.
Possible states of the initial branch are listed, and all transition probabilities
are calculated. Please note- many possible states and transitions are not
represented, as doing so for all possible states would be impractical.

and L (M and L in Dı́az et al. [2013]) all “dominated terms” are removed,
resulting in

ρ3 ≤ 1− 1 + r

1 + r + 2r5
, (2.6)

an upper bound in direct conflict with the result stated in Lieberman et al.
[2005] for sufficiently large r.

The paper then goes on to present results from a significant number of
simulations, for a variety of r and K values. Generically, the results of the
simulation disagree with the result stated in Lieberman et al. [2005], with a
few minor exceptions for r ≈ 1 and small K.

12



2.3. Initial comparison

2.3 Initial comparison

Examining the proofs it can be seen that fundamentally the two proofs
disagree on the probability that a single mutant will give rise to a second
mutant. Any further arguments about fixation probability are made on the
basis of this initial “mutant propagation probability”, and thus any attempt
to resolve or explain this contradiction must begin with an explanation for
their differing propagation probabilities.

My first step (after reading both proofs) was to implement the techniques
of Dı́az et al. [2013] numerically using MatLab. The code used can be found
at the end of this thesis in appendix A.1. This was done primarily as a
means of validating their program. If similar results were found using an
independently written set of code, in a different programming language,
using numerical rather than symbolic logic, this would strongly suggest that
the Mathematica results were correct, and that any possibility for error
would thus be limited to the conceptual part of the proof.

Running the code for K = 5, B = 5000, L = 5000 and r = 1.5, we find
the probability of early extinction is 0.1415. We compare this to Eq. (2.6)’s
prediction of 0.1413 and Eq. (2.5)’s prediction of 0.1164 .

It was observed that for any r value tested, the propagation probability
found by the code converged to Dı̀az et al ’s prediction for large L, B. This
was considered strong evidence for the correctness of Dı́az et al. [2013]’s
code.

Next, I wished to test the validity of Lieberman et al. [2005]’s density
argument. This I did by writing a simple java program to simulate the be-
havior of a single branch of my superstar. The small size of this subsystem
allowed me to avoid many of the computational limitations encountered by
simulators who attempted to analyze the entire system from t = 1 all the
way to fixation. By only dealing with a single branch, the data structures re-
quired were also significantly simplified. This code can be found in appendix
A.2.

Running this system for several days, for a variety of parameter values, I
was able to extract the mutant density for all nodes in the stem, as well as the
correlation between the states of neigbouring nodes. It was soon observed
that the results of the simulation did not agree with the predictions made
in Lieberman et al. [2005].

Table 2.1 contains some sample results.
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2.3. Initial comparison

Node Prediction ×10−5 Simulation ×10−5 Correlation

1 7.499 2.538 0.600316261771
2 11.24 3.045 0.719631574002
3 16.87 3.452 0.775873379784
4 25.30 3.802 0.807957544715
5 37.95 4.098 0.829692206727
6 56.92 4.342 0.844752636008
7 85.35 4.536 0.854818725014
8 127.9 4.683 0.862140794289
9 191.8 4.793 0.867951883031
10 287.4 4.879 0.871855826581
11 430.6 4.944 0.874703301922
12 644.5 4.997 0.877706319947
13 963.7 5.046 0.879744964568

Table 2.1: Predicted mutant density based on Lieberman et al ’s density
argument, compared with the recorded density from the ChainTest program
in A.2. Parameter values L = 20000, r = 1.5, K = 15. The results are
recorded at time t = 67108864000 in the special and condensed time frame
of the program. Predictions are calculated using Eq. (2.1). When we refer to
correlation here we mean “the probability that node i+1 contains a mutant,
given that i contains a mutant”

It turns out that Eq. (2.2) is calculated under the implicit assumption
that the states of neighbouring nodes are independent of one another. It
implies that whenever mutants are rare the probability of a mutant repro-
ducing and replacing another mutant must also be low, even though the
states of neighbouring nodes are highly correlated.

We might hope that taking neighbour-neighbour correlations into ac-
count will give us a more accurate induction formula. If we consider Mi,
the state of node i being a mutant at a given time step, and Ri the state of
node i being a resident type individual at a given time step, we can see that
trivially:

P(Mi+1) = P(Mi+1|Mi)P(Mi) + P(Mi+1|Ri)P(Ri)

because R and M are the only possible states. We might also remember that,
in any given position, for every resident that gets replaced by a mutant, one
mutant must be replaced by a resident (a lightbulb must be turned off before
it can be turned back on again) . Because these two events must alternate
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Figure 2.2: Here we compare the density recorded during our simula-
tion (solid orange line) with density predictions made either accounting for
(yellow, fine dash) or not accounting for (blue, long dash) the effects of
neighbour-neighbour correlation. When accounting for correlation we use
Eq. (2.7), and when ignoring it we use Eq. (2.1). It is observed that ac-
counting for correlation in this most simple manner significantly improves
the resulting density prediction, but still results in error.

with one another, and can get at most 1 out of sync, we can predict that in
the long term the probability of these two events must equal. To calculate
these probabilities we multiply the probability our graph is in a suitable
state (mutant following resident, or resident following mutant) by the per
time step probability that the upstream member of the pair reproduces.
This gives:

r

N
P(Ri+1|Mi)P(Mi) ≈

1

N
P(Mi+1|Ri)P(Ri)

Where here we use 1/N to approximate the fitness normalisation factor.
Taken together these give:

P(Mi+1) ≈ P(Mi) [P(Mi+1|Mi) + r(1− P(Mi+1|Mi))] . (2.7)

This we can use to inductively predict the mutant density for nodes
far down the chain (see Fig. 2.3), thus illustrating the importance of this
correlation.

The “corrected” density formula identified gives a better prediction, but
still differs significantly from our experimental observations – possibly due
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2.3. Initial comparison

to failure to taken long distance correlation into account. Worse still, it can
not be computed without using correlation data, which in the above example
was collected from the simulation itself. Thus, its predictive power is largely
post hoc. It serves as an illustration of the importance of correlation, but
is of little use in predicting long term behavior. In order to truly predict
the behavior of mutants in the stem, and hence calculate the overall fixation
probability of superstar, we will need far more sophisticated arguments.
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Chapter 3

In which a proof is described

Having determined that neighbour-neighbour correlation along the stem is
an important feature of the system, it is clear this must be explicitly mod-
eled if we wish to find the true fixation probability. Despite its rigor, the
structure of Dı́az et al. [2013] does not readily lend itself to extension to ar-
bitrary H (although extension to any particular H is straight forward, but
computationally expensive as H becomes large). Lieberman et al. [2005],
while flawed in its details, is well structured, and was used as a starting point
in what follows. Many of Lieberman et al ’s steps are echoed - although the
results and argument for each step often differ.

In this chapter we lay out a proof that in the asymptotic case the true
fixation probability is

1− 1

r4(H − 1)(1− 1/r)2
≤ 1− 1

r4T
≤ ρH ≤ 1− 1

1 + r4T
≤ 1− 1

1 + r4H
(3.1)

where T is “train length”- a value to be defined in section 3.3. In order
to match previous work as closely as possible, it is assumed that there are
many branches, B, and large reservoirs, L. Additionally, mutations are
assumed to be beneficial, r > 1. As has been argued previously, if mutations
arise spontaneously and with equal probability at any node, then the initial
mutant almost certainly arises in a reservoir node, because reservoir nodes
vastly outnumber nodes of all other types. As in both Dı́az et al. [2013]
and Lieberman et al. [2005], we study the dynamics of a single branch in
detail, and use this to determine the much slower dynamics of changes in
the reservoirs.

On occasion, it will prove useful to refer to the total fitness of all indi-
viduals in our superstar at a given time, we label this Ft. N < Ft < rN .
All instances of Ft cancel throughout the proof and hence the exact value is
not tracked.

This chapter sketches out the main thrust of the proof, following (roughly)
the argument as it was created. For simplicity in sketching it is assumed
B = L ≈

√
N . In the following chapter such simplifying assumptions are
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3.1. Timescales

dropped, and due attention is given to error bounds, taking limits simulta-
neously, and other omitted details.

3.1 Timescales

Different nodes get updated at different rates. More precisely, any given
node of interest is updated if one of its upstream neighbours reproduces and
the node of interest is chosen for replacement. Thus, individuals in nodes
with high (weighted) in-degrees, tend to be short lived, while individuals in
nodes with low (weighted) in-degrees, tend to be long lived. Here we follow
the convention that each node has a total weighted out-degree of 1, and that
weight is evenly distributed among outgoing links (each link has weight 1/k
where k is the number of links).

Assuming 1 ≈ r � N , every node is selected for reproduction with prob-
ability ≈ 1/N . The root node has an in-degree of B and all its upstream
neighbours have out degrees of 1, hence it updates with a probability close
to B/N ≈ 1/

√
N . Similarly, reservoir nodes are replaced with probability

of approximately 1/N2, the first stem node with probability on the order
of 1/

√
N , and all other stem nodes with probability of approximately 1/N .

For N � 1, this results in three different timescales: the slowest for reser-
voir nodes that get replaced, on average, only once in N2 time steps; an
intermediate timescale for the stem nodes (with the exception of the first
node of each stem), which get replaced once in N time steps; and a fast
timescale for the root node as well as the first stem node in each branch,
which update once in

√
N time steps, respectively.

For N � 1, it is possible to separate the three timescales and analyze
the dynamics of the different types of nodes individually. More specifically,
this allows us to focus on the intermediate timescale associated with the dy-
namics in the stem, while treating the state of the slowly updating reservoir
nodes as constant. Because the fast updating nodes are unlikely to repro-
duce twice without first being replaced many times themselves, we can treat
them as random variables, with some probability of being a mutant on any
given time step.

In the following, we derive the evolutionary dynamics for the top, middle
and bottom of the stem in a single branch. The results determine the slow
dynamics of reservoir nodes and describes the early stages of the invasion
process, when mutants are rare among the reservoir nodes. This allows us
to derive upper and lower bounds on the fixation probabilities.
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3.2. Top of stem

3.2 Top of stem

The first node of the stem gets replaced on the fast time scale, which allows
us to treat its state as a random variable. Out of all L upstream neighbours
in the reservoir of the corresponding branch, only one is a mutant. Hence, at
any given time step, the top node is occupied by a mutant with probability
close to r/L. This mutant reproduces with a probability r/Ft and hence the
probability that a mutant is placed in the second stem node is approximately
r2/(FtL) in each time step (for error terms, see 4.1). For reasons which will
soon become apparent, this event is referred to as “train creation”.

3.3 Middle of stem

We refer to the collection of nodes that update on the medium time scale
(that is, all stem nodes except the first) as the stem body. Simulations nicely
illustrate the dynamics along the body of the stem: clusters of mutants begin
at the top of the stem, then grow and move along the stem. In the following,
we refer to these clusters as trains. A train moves forward and increases in
length whenever the front mutant reproduces, which happens at a rate r/Ft.
A train shrinks whenever a resident reproduces and replaces the back end
of the train, which occurs at a rate 1/Ft, see Fig. 3.1. Thus, as the train
moves along the stem, the train length for beneficial mutants increases, on
average.

Note that for small superstars with a single node in the stem body, which
corresponds to H = 2 (or K = 4), the two stem nodes can be treated as
effectively uncorrelated, due to their differing timescales. No train argument
is needed. However, for H > 2 this assumption breaks down and results
in an overestimation of the fixation probabilities. This explains why the
predictions of Lieberman et al. [2005] hold in all cases they simulated, but
break down for larger H.

In order to link the stem dynamics to the slow timescale of reservoir
nodes, we need to know the expected train length, T , when the train first
reaches the root end of the stem.

At any time, t, the state of a train can be described by two integers:
At and Zt. Here At refers to the position of the mutant at the front of the
train, and Zt refers to the position of the resident directly behind the train.
The current length of the train is thus given by At − Zt. Because in most
time steps no change occurs in this particular stem, we consider the process
in a condensed time frame which only accounts for events that change the
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t0

t1

t4

t2

t3

t0

t1

t4

t2

t3

Top of stem Towards root Top of stem Towards root 

a b
Figure 3.1: Two possible histories of a train of mutants (white) proceeding
along a stem filled with residents (black). a We begin with two mutants (t0).
The top node is quickly replaced by a resident (on the fast time scale) (t1).
Some time later the remaining mutant reproduces (t2), and then the new top
node reproduces again (t3). Finally we lose a single mutant from the back of
our train (t4). This general growing pattern applies whenever r > 1. b We
begin with two mutants (t0), and immediately lose the back mutant of our
train (t1). The front of the train reproduces, creating a second mutant (t2),
but both fall prey to bad fortune (or low fitness) and are removed (t3, t4).
This behaviour is likely when r < 1, but even for beneficial mutations many
trains do not reach the end of the stem.

state of the train. On this timescale At increases with probability r/(1 + r)
while Zt increases with probability 1/(1 + r). Thus, for beneficial mutants
the length tends to increase over time. If at any time Zt ≥ At the train has
vanished and the stem is cleared of mutants. In this case, we say that the
train, which “arrives” at the end of the stem, has length zero.

In order to determine the expected train length, T , we consider the above
process on a grid, where the horizontal axis represents the position of the
front, At, and the vertical axis the back of the train, Zt. Each point on
the grid and below the diagonal, At = Zt, represents a possible configura-
tion of a train in the stem, see Fig. 3.2. All other points represent invalid
configurations, which we refer to as ghost states. For each train, the initial
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Figure 3.2: Grid showing collection of possible train states. Permitted states
(black outline), ghost states (grey outline) and extinction states (black fill)
as well as a number of possible paths from our initial state (black outline,
green fill) to a sample end state (black outline orange fill). Depicted are
a permitted path (continuous), an invalid path (leading to extinction, long
dash) and the associated “ghost path” from the reflection of our initial state
to the sample end state (fine dash).

configuration is (A0, Z0) = (2, 1), that is, the second stem node is a mutant,
while the state of the first stem node is a resident. Note that this assumes
that the top of the stem is replaced by a resident on the fast timescale which
leads to a slight underestimate.

Each train produces a path on the grid that originates in (A0, Z0) and
ends when the train reaches its destination, Aτ = H. Here τ refers to the
trains time of arrival. If at any point in time At ≤ Zt then this represents an
invalid path because the train has gone extinct part way down the stem. The
expected train length, T , is the weighted average over all paths, with invalid
paths being considered as having length zero. The number of valid paths to
any given end state (H,Zτ ), can be calculated using the reflection principle
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3.3. Middle of stem

[Koralov and Sinai, 2007, p. 88], which describes a one-to-one correspon-
dence between invalid paths and “ghost paths” starting from (Z0, A0). The
trajectory of a ghost path is the reflection of the corresponding invalid path
along the diagonal At = Zt, up to the point where the invalid path touches
At = Zt for the first time. From then on the ghost path and the remainder
of the invalid path coincide, see Fig. 3.2. In order to calculate the expected
train length, T , we consider all possible paths ending in Aτ = H subtract
the number of invalid paths, to obtain the number of valid paths leading
to a given end state. The number of ghost paths corresponds to all paths
starting from (Z0, A0), the reflection of (A0, Z0) and hence the name of the
method. Having counted the number of valid paths reaching a particular
end state we then weigh each path by its probability, multiply each end state
by the corresponding train length, and sum over all paths to find:

T = (1− α)H−2
H−1∑
z=1

(H − z)αz−1

[(
H − 3 + z − 1

z − 1

)
−
(
H − 3 + z − 1

z − 2

)]
(3.2)

with α = 1/(1 + r). We assume beneficial mutations, r > 1, such that
0 < α < 1/2. All paths require H−2 steps that increase At from the starting
point at 2 to the end point at H, each of these steps occur with probability
1 − α. The combinatorial sum then accounts for every possible series of
increments that Zt might undergo along all valid paths. In particular, the
index variable z indicates the final position of the tail of the train and hence
H− z specifies the train length. The tail starts at 1 and, for any valid path,
reaches at most H−1. Because we are interested in the length of the train at
the moment of arrival, the final step must be an increment of At, this acts to
limit the number of possible paths, lowering our binomials significantly. It
follows that z = H − 1 has zero valid paths – a reassuring result as we know
that no train could possibly have length one at the moment of its arrival.
Note that we have used the convention that

(
n
k

)
= 0 for k < 0, which applies

only if the tail remains at Zt = 1 and admits only a single valid path.
For H ≥ 2, r > 1 simple bounds for T exist (see section 4.2.1):

(H − 1)

(
1− 1

r

)2

≤ T ≤ H. (3.3)

This indicates that for r > 1 the expected train length T grows approxi-
mately linearly with increasing stem length H.
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3.4 Bottom of stem

Whenever a train reaches the root end of the stem, its mutants compete
with the resident nodes from the other branches to occupy the root node.
Since the root node is updated on the fast timescale we can again treat its
state as a random variable. Thus, once a train has reached the root end
of the stem, the root node is a mutant with probability close to r/B. As
long as the train sits at the root end of the stem, the probability in any
given time step that the root node is a mutant and reproduces is close to
r2/(FtB). However, the train is simultaneously being eroded from behind,
with train mutants being replaced with probability 1/Ft. Thus, the train
remains at the root end for TFt time steps, on average. Put together, this
means that any given train succeeds in producing a second mutant in any
reservoir with a probability close to r2T/B (for detailed error bounds see
4.3).

3.5 Slow dynamics in reservoirs

At any given time step, the probability of losing the initial mutant in the
reservoir is close to 1/(FtBL). In order to calculate the probability of cre-
ating a new reservoir mutant, we note that for each new reservoir mutant
a successful train must have been launched, hence it suffices to find the per
time step probability of launching a successful train. This can be easily
calculated by simply multiplying the per time step probability of launching
a train (r2/(FtL), see section 3.2 ) by the probability that a given train is
successful (r2T/B, see section 3.4 ), yielding approximately r4T/(FtBL).

Thus, the probability to eventually go from one to two mutants in the
reservoirs, as opposed to losing the initial mutant, is close to

r4T

1 + r4T
. (3.4)

Since T can be made arbitrarily large (by increasing the stem length H, see
Eq. (3.3)), the transition from one to two mutants becomes almost certain
and, similarly, the probability of losing the initial mutant becomes vanish-
ingly small.

3.6 Upper bound on fixation probability

To find an upper bound on the fixation probability, ρH , we note that before
our mutant can reach fixation, the superstar must first transition from a
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3.7. Lower bound on fixation probability

state with one mutant in a reservoir to a state with two mutants in the
reservoirs (this is the basis of Dı́az et al. [2013]). Thus, an upper bound on
this transition probability serves as an upper bound on the mutant fixation
probability for the system. Moreover, the upper bound can be made inde-
pendent of T by assuming that all trains have the maximum possible train
length. Thus, in the limit of large B and L we find

ρH ≤ 1− 1

1 + r4T
≤ 1− 1

1 + r4H
. (3.5)

For any given H, r we can find T explicitly using Eq. (3.2). In particular,
we note that for H = 3, we find T = 2r/(r + 1), thus recovering the upper
bound identified in Dı́az et al. [2013].

3.7 Lower bound on fixation probability

We find a lower bound on the fixation probability using the same approach as
Lieberman [2010, p. 47-54], although the results we reach are very different.
We approximate the dynamics of the system with a random walk, and then
calculate the fixation probability on our random walk. This random walk
has a forward bias given by Eq. (3.4) as long as mutants are rare, and
we assume no forward bias otherwise. Because even for larger numbers of
mutants the forward bias persists (but there is no simple way to quantify
the bias) we obtain a lower bound of the fixation probability, ρH .

For any finite number of steps, a sufficiently strong initial bias would
suffice to ensure that the random walk eventually reaches fixation with high
probability. However, the limit N → ∞ also requires an arbitrarily large
number of forward steps. In order to resolve the interplay between these two
limiting behaviours we set up a martingale and apply the optional stopping
theorem [Klenke, 2006, p. 210] (see 4.4.2 for details).

In the limit of large B and L we find:

ρH ≥ ρ̂H = 1− 1

r4T
≥ 1− 1

r4(H − 1)(1− 1/r)2
. (3.6)

Once again we note that for any given H, r we can find T explicitly, Eq. (3.2).
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3.8. Narrow window

3.8 Narrow window

Taken together, Eq. (3.6) and Eq. (3.5) give us narrow bounds on the possible
values of fixation probability. For B = L we find in the limit B →∞:

1− 1

r4(H − 1)(1− r−1)2
≤ 1− 1

r4T
≤ ρH ≤ 1− 1

1 + r4T
≤ 1− 1

1 + r4H
.

(3.7)
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Chapter 4

In which error bounds are
found

Despite any intuitive appeal the previous chapter may have, and to some
extent because of this, it is necessary to keep a most careful eye on any
and all error terms that may arise. Previous dealings with superstars have
demonstrated how delicate the balance is between the various limits we are
dealing with. Our own investigations were occasionally led astray by the
most innocuous of assumptions. Thus it is that we proceed with caution.

In this chapter, more formal arguments are given, to back up the intuitive
notions in the previous chapter. We find exact error bounds, εi, on the
numerous types of error that finite L and B introduce, and show that all
such errors tend to zero. At the end of the chapter, all such error terms are
collated to create the finite case upper and lower bounds for the fixation
probability on superstars.

4.1 Initial conditions

If mutations arise spontaneously and with equal probability in any node then
the initial mutant arises in a reservoir node with probability BL/(BL+ 1 +
HB). This probability can be made arbitrarily close to one, for suitably
large L. The mutant arises in a stem or root node with probability

ε0 =
1 +HB

BL+ 1 +HB
. (4.1)

Thus, the final fixation probability, ρH (see Eq. (6.1)), will need to include a
1− ε0 factor to account for this possibility. Because ε0 is only used to derive
the lower bound on ρH , assuming extinction of all mutants not arising in
a reservoir node preserves inequalities. By doing this we are effectively
ignoring the small possibility that an invading mutant placed in stem nodes
or the root node could still reach fixation.

The first node of the stem gets replaced on the fast time scale, which
allows us to treat its state as a random variable. However, at early stages
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4.2. Details of expected train length T .

of invasion, only one of the L upstream neighbours is a mutant. Hence, at
any given time step, the top node is occupied by a mutant with probability
r/(L− 1 + r) = (1− ε1)r/L, where

ε1 =
r − 1

L+ r − 1
. (4.2)

This mutant reproduces with a probability r/Ft and hence the probabil-
ity that a mutant is placed in the second stem node is r2/(Ft(L + r − 1))
in each time step. However, we need to account for the possibility that the
initial mutant in the reservoir is replaced before the first node in that stem.
On a given time step, the chance that the reservoir mutant is replaced by a
resident is less than 1/(FtBL). Conversely, the probability of the first node
in the chain being replaced exceeds L/Ft. Thus the chance that the initial
mutant is replaced before the first node in the chain is

ε2 < 1/(1 +BL2). (4.3)

For our proof we assume that the first node in any chain can be treated as
a random variable. The above error terms ε1 and ε2 account for the slight
simplifications we make in doing so.

4.2 Details of expected train length T .

In section 3.3, we showed that the expected length of a train in a stem was

T = (1− α)H−2
H−1∑
z=1

(H − z)αz−1

[(
H − 3 + z − 1

z − 1

)
−
(
H − 3 + z − 1

z − 2

)]
(4.4)

In this section, we identify upper and lower bounds on this expectation
value, and deal with another source of minor error.

4.2.1 Bounding T

Finding an upper bound on T is very straight forward: because of the struc-
ture of the graph H > T .

To find a useful lower bound we are forced to resort to algebraic manip-
ulation. Various binomial coefficient identities are used throughout. It is
assumed that r > 1 and hence 0 < α < 1/2

T = (1− α)H−2
H−1∑
z=1

(H − z)αz−1

[(
H + z − 4

z − 1

)
−
(
H + z − 4

z − 2

)]
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4.2. Details of expected train length T .

using Pascal’s rule

= (1− α)H−2
H−1∑
z=1

(H − z)αz−1

[(
H + z − 3

z − 1

)
− 2

(
H + z − 4

z − 2

)]
splitting sum

= (1− α)H−2
H−1∑
z=1

(H − z)αz−1

(
H + z − 3

z − 1

)

− 2α(1− α)H−2
H−1∑
z=1

(H − z)αz−2

(
H + z − 4

z − 2

)
changing second summation to obtain lower bound

≥ (1− α)H−2
H−1∑
z=1

(H − z)αz−1

(
H + z − 3

z − 1

)

− 2α(1− α)H−2
H∑
z=2

(H + 1− z)αz−2

(
H + z − 4

z − 2

)
merging sums and relabeling indices

= (1− 2α)(1− α)H−2
H−2∑
z=0

(H − 1− z)αz
(
H + z − 2

z

)
expanding factor

= (1− 2α)(1− α)H−2
H−2∑
z=0

(2(H − 1)− (H − 1)− z)αz
(
H + z − 2

z

)
using the combinatorial identity (n+ k)

(n+k−1
k

)
= (n+ k)

(n+k−1
n−1

)
= n

(n+k
n

)
= n

(n+k
k

)

= (H − 1)(1− 2α)(1− α)H−2
H−2∑
z=0

αz
[
2

(
H + z − 2

z

)
−
(
H + z − 1

z

)]
extending the sum to∞ can only decrease the lower bound because 2

(n+k
k

)
−
(n+k+1

k

)
=
(n+k

k

)
−(n+k

k−1

)
≤ 0 for k > n and (1− 2α) > 0

≥ (H − 1)(1− 2α)(1− α)H−2
∞∑
z=0

αz
[
2

(
H + z − 2

z

)
−
(
H + z − 1

z

)]
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4.2. Details of expected train length T .

using (1− α)−n−1 =
∑∞

k=0 α
k
(n+k

k

)
since |α| < 1

= (H − 1)(1− 2α)(1− α)H−2
[
2(1− α)1−H − (1− α)−H

]
= (H − 1)

(
1− 2α

1− α

)2

.

And so we have

T ≥ (H − 1)

(
1− 1

r

)2

. (4.5)

Hence, for r > 1, the expected train length, T , can be made arbitrarily long
by choosing a suitably long chain, H.

4.2.2 Train collisions

The above derivation of the expected train length neglects the possibility
that two trains may collide and merge, which introduces a source of error.
Any train collision effectively reduces the train length of the first train be-
cause it is eredicated from behind at a greater rate than expected. Therefore,
collisions decrease the expected train length T – despite the fact that merg-
ing trains may lead to longer overall lengths – hence Eq. (3.2) overestimates
the expected train length. A lower bound for T is obtained by assuming
that the second train completely eradicates the first train. In order to find
this lower bound we need to determine the probability that a train collision
occurs. An upper bound on this collision probability is given by the proba-
bility that a second train is generated while another train is still occupying
the stem and can be formulated in terms of a negative binomial distribution
where the generation of a new train counts as a “success” while a decrease
in length of the existing train in the stem counts as a “failure”. If the rear
of the train has incremented H times before a new train is generated, then
the trains can not even co-habit the stem, let alone collide.

In each time step a new train is generated with probability r2/(Ft(L +
r − 1)) whereas the probability that the existing train length decreases, i.e.
the resident directly behind the train reproduces, is at least 1/Ft (exactly
1/Ft along the stem, but greater for the first stem node). After H failure
events we know that the stem must be cleared and contain only residents.
Therefore, train collisions occur at most with the probability that a new
train is generated prior to H failure events:

P (no 2nd train ≥
(

1− r2

L+ r − 1 + r2

)H
> 1−H r2

L+ r − 1 + r2
. (4.6)
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4.3. Interaction of trains with root node

The inequality in Eq. (4.6) results from expanding and truncating the power
term. This yields an alternating sum and, for sufficiently large L, the ab-
solute value of the terms is strictly decreasing. The chance that a second
train is launched while another one still occupies the stem is at most

ε3 =
Hr2

L+ r − 1 + r2
(4.7)

and becomes small for L � Hr2. Thus, the true expected train length lies
between T (1− ε3) and T .

4.3 Interaction of trains with root node

Here we calculate upper and lower bounds on the probability that a train
of mutants, which arrives at the base of the stem with an initial length l,
succeeds in taking over the root node and placing a new mutant in one of the
reservoirs (T = E(l)). We adapt the technique used in Dı́az et al. [2013] and
consider a finite state Markov process with two absorbing states: either a
new mutant is placed in one reservoir, or the mutant train has disappeared.
All other states correspond to a current train length and state of the root
node. This is illustrated in Fig. 4.3.

For each state, the probability of eventually succeeding is pil, where i ≤ l
indicates the current train length and l indicates whether the root node is
occupied by a mutant, ↑, or resident, ↓. Clearly p0↓ = 0 because the train
has disappeared, the root is a resident and hence an absorbing state has
been reached. Similarly, p0↑ = r/(B + r), denotes the probability that the
mutant in the root node reproduces before being replaced by the offspring
of residents in any of the B branches. By examining all possible transitions
we obtain:

(B + r)pi↑ = (B − 1)pi↓ + r + pi−1↑ (4.8)

(r + 1)pi↓ = rpi↑ + pi−1↓ (4.9)

If the train is i mutants long, and the root is a mutant, the system can
transition into the “successful” absorbing state, with relative weight r, can
lose the root mutant, with relative weight B − 1 (because there are B − 1
other branches), or the train may erode, with relative weight 1, leaving
the root node unchanged. If the root node is a resident, then the only
possible actions are for the train to replace the root node, or for the train
to be eroded from behind, with relatively probabilities r and 1 respectively.
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4.3. Interaction of trains with root node

  

Figure 4.1: Possible states of the end of the stem, along with the transitions
between them. Here mutants are yellow, residents blue. States further to the
left, with longer mutant trains, have been omitted. We note the similarity
to the argument of Dı́az et al. [2013], but emphisize the simplicity gained by
considering only the base of the stem, rather than the entire branch. This
system contains far fewer states and far fewer transitions making it more
amenable to analytic reasoning.
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4.3. Interaction of trains with root node

Finally, coefficients on the left hand side of the equations normalise over all
possible courses of action. Written as a matrix equation this gives:[

B + r 1−B
−r r + 1

] [
pi↑
pi↓

]
=

([
r
0

]
+

[
pi−1↑
pi−1↓

])
which yields[

pi↑
pi↓

]
=

1

B + 2r + r2

[
r + 1 B − 1
r r +B

]([
r
0

]
+

[
pi−1↑
pi−1↓

])
. (4.10)

We now calculate both upper and lower bounds on the expected success
probability, E(pl↓), when our train first arrives at the root.

4.3.1 An upper bound on train success probability

By neglecting terms from the denominator of our fraction, and increasing
several of our matrix entries, we find an upper bound on the R.H.S. of
Eq. (4.10). This works because pi↑, pi↓ ≥ 0, and thus we are making the
R.H.S. strictly more positive. It also significantly simplifies our equation.[

pi↑
pi↓

]
<

1

B + 2r + 1

[
r + 1 B + r
r + 1 r +B

]([
r
0

]
+

[
pi−1↑
pi−1↓

])
where the inequality applies element-wise. Substituting p0↑ = r/(B +
r), p0↓ = 0 into the above gives

p1l <
r2 + r

B + 2r + 1

(
1 +

1

B + r

)
.

Using the fact that the upper bounds for pi↑ and pi↓ are equal (because both
rows of the matrix are identical) gives:

pil <
r2 + r

B + 2r + 1
+

(r + 1) + (B + r)

B + 2r + 1
pi−1l =

r2 + r

B + 2r + 1
+ pi−1l.

By induction we find

pil <
r2 + r

B + 2r + 1

(
i+

1

B + r

)
.
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4.3. Interaction of trains with root node

This yields an upper bound for pi↑, which we then use in calculating a tighter
bound for pi↓. From Eq. (4.8) and Eq. (4.9) we can derive:

pi↑ <
Bpi↓ + r + pi−1↑

B

(r + 1)pi↓ <
r

B
(Bpi↓ + r + pi−1↑) + pi−1↓

pi↓ <
r

B
(r + pi−1↑) + pi−1↓

⇒ pi↓ <
i∑

n=1

r

B
(r + pn−1↑) ≤

ir2

B

(
1 +

r + 1

(B + 2r + 1)(B + r)
+
H − 1

2

r + 1

B + 2r + 1

)
And thus we have pi↓ < ir2(1 + ε4+)/B, where

ε4+ =
1 + r

B + 2r + 1

(
1

B + r
+
H − 1

2

)
(4.11)

is our error term. This error term can be made arbitrarily small for suffi-
ciently large B.

4.3.2 A lower bound on train success probability

For the lower bound, we must deal with the possibility that a small number
δ of branches contain mutants. Because the train collision argument (sec-
tion 4.2.2) is dependent on at most a single mutant existing in each branch,
we wish to only consider reproductive events which place new mutants into
branches that currently have no mutants, neglecting the rest (this causes
no issue when calculating a lower bound). Further, trains from other mu-
tants may compete for control of the root node, this must be accounted
for. Although generically trains do not encounter one another, this lower
bound is calculated as if all other mutant occupied branches have mutants
at the base of their stems at all times. This arrangement, while unrealistic,
describes the situation which minimizes the success probability of a given
train, and is thus useful for finding lower bounds. The following equations
are written under the assumption of this “worst case scenario” (worst from
the perspective of the train we are focusing on).[

B + r + (δ − 1)(r − 1) 1−B − (δ − 1)(r − 1)
−r r + 1

] [
pi↑
pi↓

]
=

([
rB−δB

0

]
+

[
pi−1↑
pi−1↓

])
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4.3. Interaction of trains with root node

[
pi↑
pi↓

]
=

1

B + δ(r − 1) + 1 + r + r2

[
r + 1 B + δ(r − 1)− r
r 1 +B + δ(r − 1)

]([
rB−δB

0

]
+

[
pi−1↑
pi−1↓

])
By ignoring the positive effects of pi−1↑ on pi↓ we form the inequality

pi↓ >
1

B + δ(r − 1) + 1 + r + r2

(
r2B − δ

B
+ (1 +B + δ(r − 1))pi−1↓

)
for i ≥ 1. By induction this leads to

pi↓ >
B − δ
B

r2

B + δ(r − 1) + 1 + r + r2

i−1∑
n=0

(
B + 1 + δ(r − 1)

B + δ(r − 1) + r2 + r + 1

)n

=
B − δ
B

r2

B + δ(r − 1) + 1 + r + r2

1−
(

B+1+δ(r−1)
B+δ(r−1)+r2+r+1

)i
1− B+1+δ(r−1)

B+δ(r−1)+r2+r+1

By re-writing B+1+δ(r−1)
B+δ(r−1)+r2+r+1

as 1− r2+r
B+δ(r−1)+r2+r+1

, and then simplfying

the denominator of the equation we find

pi↓ >
B − δ
B

r2

r + r2

(
1−

(
1− r2 + r

B + δ(r − 1) + r2 + r + 1

)i)
Using the binomial theorem to expand the inner bracket, we find an

alternating series. As long as i(r2 + r)/(B + δ(r − 1) + r2 + r + 1) < 1
the series expansion of the inner bracket will give an alternating sequence
with monotone decreasing absolute terms. Truncating the series after three
terms will preserve the inequality because the sum of the first three terms
is greater than any subsequent sum. This leads to:

pi↓ >
B − δ
B

ir2

B + δ(r − 1) + r2 + r + 1

(
1− i− 1

2

r2 + r

B + δ(r − 1) + r2 + r + 1

)
.

Remembering that 1/(1 + x) < 1− x whenever x > −1, we find:

pi↓ >
ir2

B

(
1− δ

B
− δ(r − 1) + r2 + r + 1

B
− H − 1

2

r2 + r

B
+O(B−2)

)
We are free to drop the very small positive terms at the end, and find the
result pi↓ > (1− ε4−)ir2/B, where

ε4− =
δr + r2 + r + 1

B
+

(H − 1)(r2 + r)

2B
(4.12)
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4.4. Bounds on fixation probabilities

can be made small whenever δ,H � B. Thus E(pl↓) > Tr2B−1(1 − ε4−).
Armed with the constraints

(1− ε4−)ir2/B < pi↓ < (1 + ε4+)ir2/B, (4.13)

we note that E(pl↓) ≈ E(ir2/B) = Tr2/B.

4.4 Bounds on fixation probabilities

4.4.1 Upper bound

The probability of transitioning from 1 to 2 mutants in the reservoir serves
as an upper bound on the mutant fixation probability. We therefore make
several optimistic (from the mutants point of view) assumptions:

1. The original mutant appears in a reservoir node (ignoring ε0, see
Eq. (4.1)).

2. Simplified train launching probability (ignoring ε1, see Eq. (4.2)).

3. No detrimental effects based on our initial conditions (ignoring ε2, see
Eq. (4.3)).

4. No train collisions (ignoring ε3, see Eq. (4.7))

5. We use the upper bound for the probability that a train succeeds in
producing another reservoir mutant (Tr2(1 + ε4+)/B, see Eq. (4.11)).

A single mutant in any reservoir produces a new train with a probability
of at most r2/(FtL) per time step. Subsequently, each train succeeds in
placing another mutant in any reservoir with a probability of at most (1 +
ε4+)Tr2/B. At the same time, the central root node has a probability of
at least B−1

B+r−1
1

FtBL
to remove the mutant node from the reservoir. Thus,

the chance of the mutant producing a successful train before being erased
by the root node is at most :

ρH ≤ ρH+ =
Tr4(1 + ε4+)

Tr4(1 + ε4+) + B−1
B+r−1

≈ 1− 1

Tr4 + 1
(4.14)

The approximation in Eq. (4.14) becomes exact in the limit of large B. Note
that because of T < H we can replace T by H in Eq. (4.14) to obtain a
more generous upper bound.
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4.4. Bounds on fixation probabilities

4.4.2 Lower bound

On the slow timescale the dynamics can be approximated by a random walk
Xt on the number of mutants in the reservoir. When reservoir mutants are
rare, our forward bias is as calculated previously. Unfortunately, because
the analytic arguments in the previous sections are based on the assumption
of having only a few reservoir mutants, further arguments must be made
to determine a lower bound on forward bias when reservoir mutants are
common.

All changes made in the reservoir can ultimately be treated as the de-
scendants of some reservoir occupant replacing the occupant of some other
reservoir node. The chance of any particular reservoir mutant replacing any
particular reservoir resident is always higher than the converse, as even in
the worst case scenario where a mutant is competing with L− 1 other mu-
tants in its branch, and a reservoir resident suffers from no such competition
(thus eradicating and advantage the mutant might attain along the stem),
the mutant will still have an advantage of at least r when competing for and
propagating from the central root node. This would indicate that, condi-
tioning on a particular pair of nodes replacing one another, the bias must
be at least r2. Because all pairwise interactions between reservoir nodes
are biased in the mutants favour, the random walk itself must be at least
somewhat biased in the mutants favour for all values of Xt. A random walk
on the integers from 0 to BL + 1 with forward bias γ for Xt < δ � B and
no bias for Xt ≥ δ will thus significantly underestimate the fixation proba-
bility of the true process. We bound our walk at BL + 1 rather than BL
because we require not only that all reservoir nodes are mutants, but also
that this propagates down to the root and all stem nodes. By overshooting
our intended target we demand that the system remain in the state BL long
enough to propagate forward- and hence long enough that all stems will
have been replaced by mutant reservoir nodes multiple times (as changes to
the reservoir nodes are on a slower timescale). Please note that the actual
superstar never enters a state with BL + 1 reservoir mutants, and this is
merely a useful tool for dealing with the random walk. The fixation prob-
ability of the random walk described thus acts as a lower bound on the
fixation probability of the true process. In the following, we assume that H
and r are fixed and that B,L� H.

In order to determine the fixation probability of the random walk Xt,
we construct a martingale, Q(Xt). A martingale is a stochastic process such
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4.4. Bounds on fixation probabilities

that the expected value in the next time step is equal to the current value:

E(Q(Xt+1)|X1, X2...Xt) = Q(Xt). (4.15)

Because our system is Makov, it is sufficient to condition only on Xt. For
Q(Xt) to be a martingale, we thus require:

Q(k) =


γ

1 + γ
Q(k + 1) +

1

1 + γ
Q(k − 1) 0 < k < δ (forward bias)

1

2
Q(k + 1) +

1

2
Q(k − 1) δ ≤ k < BL+ 1 (no bias).

(4.16)

These constraints admit the solution Q(k) = γ−k for k < δ, and Q(k) =
Ak +D for k ≥ δ. For Q(k) to satisfy the martingale conditions as needed,
we demand δ ∈ N. The constants A,D are determined by connecting the
solutions for the two regions. In particular,

γ−δ = Q(δ) = Aδ +D

must hold such that Q(δ) is well defined and

2(Aδ +D) = γ−δ+1 +Aδ +A+D

to satisfy the martingale property at δ. Thus,

A = γ−δ(1− γ)

D = γ−δ(1− δ(1− γ))

which yields

Q(0) = 1

Q(1) = γ−1

Q(BL+ 1) = γ−δ + γ−δ(1− γ)(BL+ 1− δ).

Let τ be the first time Xt reaches one end of the random walk. Because
Q(k) is bounded for all relevant values of k we are able to invoke the optional
stopping theorem [Klenke, 2006, p. 210]. The O.S.T. then implies that

Q(1) = Q(X0) = E(Q(Xτ )) = Q(0)P (0) +Q(BL)P (BL),
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4.4. Bounds on fixation probabilities

where P (0) and P (BL) represent the probabilities of reaching either end of
our random walk. Using P (0) = 1− P (BL) we find

P (BL) =
Q(1)−Q(0)

Q(BL)−Q(0)
=

1− γ−1

1− γ−δ − γ−δ(1− γ)(BL+ 1− δ)
. (4.17)

In order to keep error terms small, we must select δ such that γδ � BL
and δ � B,L. As long as B and L are large and sufficiently similar, this is
possible provided that γ > 1 (to be shown). Thus, for any choice of H, and
for any r > 1 we can select B and L such that

P (BL) =
Q(1)−Q(0)

Q(BL)−Q(0)
=

1− γ−1

1 + ε5
(4.18)

with

ε5 = γ−δ ((γ − 1)(BL+ 1− δ)− 1)� 1.

In order to bound ε5, a lower bound on γ is required. This is found by
taking the lower bound on the production rate of successful trains, (1 −
ε1)(1 − ε3)(1 − ε4−)Tr4/(BLFT )), and comparing to our upper bound on
the removal probability for reservoir mutants, 1/(BLFt). This represents
the eventual forward bias once the first node in the stem has been replaced
at least once. To account for the possibility of mutant loss before the first
stem node is replaced we must consider ε2, which acts as an additive penalty
(because it only applies once per reservoir mutant). This yields

γ ≥ r4T (1− ε1)(1− ε3)(1− ε4−)− ε2. (4.19)

In the limit of large B and L all error terms tend to zero. Thus, to show
γ > 1, it is sufficient to show that r4T > 1. Recalling that At−Zt represents
the length of a train at time t (see 4.2), and noting that it is submartingale
(the expected future value is greater than the current value) whenever r > 1,
we can easily show that T = E(Aτ − Zτ ) ≥ A0 − Z0 = 1, and thus, in the
limit, γ ≥ r4 > 1. Thus ε5 can be made arbitrarily small.

Substituting Eq. (4.19),our lower bound on γ into Eq. (4.18) yields a
lower bound on P (BL), which in turn provides a lower bound on the fixation
probability.

In cases where generic bounds not dependent on T are desired, the lower
bound (H − 1)(1 − 1/r)2) can be substituted into Eq. (4.19) in T ′s place,
resulting in a looser bound on fixation probability.
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4.5 Bringing it all together

Collating Eq. (4.18) and Eq. (4.14), we find:

1− ε0
1 + ε5

(
1− 1

r4T (1− ε1)(1− ε3)(1− ε4−)− ε2

)
≤ ρH ≤ 1−

B−1
B+r−1

Tr4(1 + ε4+) + B−1
B+r−1

(4.20)

where

T = (1− α)H−2
H−1∑
z=1

(H − z)αz−1

[(
H − 3 + z − 1

z − 1

)
−
(
H − 3 + z − 1

z − 2

)]
,

(H − 1)(1− r−1)2 ≤ T ≤ H, Length of train in stem, Eq. (3.2), section 4.2.1

ε0 =
1 +HB

BL+ 1 +HB
,Chance that initial mutant is not in reservoir, Eq. (4.1)

ε1 =
r − 1

L+ r − 1
, Simplification of train launch probability, Eq. (4.2)

ε2 =
1

1 +BL2
,Mutant removal before top of stem updates, Eq. (4.3)

ε3 = H
r2

L+ r − 1 + r2
,Upper bound on train collisions, Eq. (4.7)

ε4− =
δr + r2 + r + 1

B
+

(H − 1)(r2 + r)

2B
,Train success, lower bound Eq. (4.12)

ε4+ =
(r + 1)

B + 2r + 1

(
1

B + 1
+
H − 1

2

)
,Train success, upper bound Eq. (4.11)

ε5 = γ−δ[(γ − 1)(BL+ 1− δ)− 1],Martingale error term, Eq. (4.18) .

All error terms can be simultaneously made small when B,L � H, δ and
(r4T )δ � BL. To find looser upper and lower bounds independent of T
we can substitute in our upper and lower bounds for T (respectively) into
Eq. (4.20).

In the particular limit B → ∞, with
√
B − 1 < δ ≤

√
B and L = B

all error terms disappear. Other L,B relations are possible – for example
L = Bβ will also work if β > 0, although L = βB is liable to cause problems
for our ε5 bound, as it is not immediately clear that γ−δβB must tend to
zero in the limit.

Even though fixation probabilities can be made arbitrarily close to 1 on
large superstars and sufficiently large H, the fixation probability remains
bounded away from 1 for any finite graph. As a concrete example, consider
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r = 2 and H = 50, which leads to T ≈ 13.25 and 0.995283 ≤ ρ50 ≤ 0.995306
in the appropriate limits of large B,L. In comparison, a sizable superstar
with B = L = 5000 (N ≈ 2.5 · 105) yields 0.985323 ≤ ρN50 ≤ 0.995375,
which includes all error terms. The fixation probability for a similarly sized
isothermal graph is just short of 0.5. It is interesting to note that in this
case, the greatest source of error (in the lower bound) is the possibility that
the original mutant will arise in either the stem or root, leading to fixation
with low probability.
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Chapter 5

In which some loose ends are
tied up and others are left
open

It turns out that superstars act as evolutionary amplifiers only under very
specific conditions. Here we discuss the most important requirements.

5.1 Selection & sequence

The original Moran process is formulated as a fecundity based birth-death
process, that is, fitness affects the rate of birth (reproduction) whereas death
(replacement) occurs uniformly at random. Alternatively, fitness could just
as well affect survival such that birth events occur uniformly at random
but death events occurring with probability inversely proportional to fit-
ness. Similarly, the sequence of events could be reversed such that first an
individual dies and then the remaining individuals compete to repopulate
the vacant site. This yields a total of four distinct scenarios: Bd, bD, dB
and Db, where capital letters refer to the fitness dependent selection step.
The original Moran process corresponds to Bd and the fixation probability
is given in Eq. (1.1). In unstructured populations the four dynamical sce-
narios result in only marginal differences in fixation probabilities. However,
they can have crucial effects on the evolutionary outcome in structured pop-
ulations [Ohtsuki et al., 2006, Ohtsuki and Nowak, 2006, Zukewich et al.,
2013]. Frean and Baxter [2008] examine all four cases for both complete
graphs, and star graphs, showing that stars act as evolutionary suppressors
in both the dB and Db cases, and are significantly less effective in the bD
case compared to the original Bd case. Similar results apply to superstars:

bD updates: For the birth-death process with selection on survival, mu-
tants only gain any advantage when the root node reproduces. Whenever
any other node reproduces, there is only a single downstream node, and thus
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5.1. Selection & sequence

no opportunity for competition, rendering any fitness advantage irrelevant.
This lack of advantage in the stem leads to an expected train length of 1,
regardless of stem length or mutant’s fitness. The chance of launching a
successful train in a given time step is 1/(NLB) and the chance of replac-
ing the original mutant is 1/(NBLr − N(r − 1)). This results in a bias
of approximately r

1+r for the initial mutant to eventually create a second
reservoir mutant – the same bias as for the original Moran process. Thus,
we might expect fixation probabilities similar to the original Moran process
on BL nodes, and certainly nowhere close to the amplification observed for
Bd.

Db updates: For the death-birth process with selection on survival, the
prospects of mutants drop even further. The probability to successfully
place even a single offspring in the top of the stem is only r/(L + r). As
the train propagates along the stem it tends to grow because the mutant
at the back of the train is less likely to die than the resident in front of
it, leading to the same train dynamics observed for the Bd process. Note
that for death-birth processes the top of the stem no longer changes on
the fast timescale and hence trains start at the top instead of the second
node. Upon reaching the end of the stem the train competes with the other
branches for control over the root node and succeeds with probability near
rT/B (over the lifetime of the train). Once a mutant occupies the root, it
is predestined to have many offspring – in each time step a reservoir node
dies with high probability and gets replaced by an offspring of the mutant in
the root node, whereas the probability is low that the root node is replaced.
More specifically, we expect rN/(1 + r) reservoir nodes to become mutants
before the root node is replaced. At that point it is reasonable to assume
that mutants reach fixation with high probability. We conjecture that the
probability of mutant fixation on the superstar is close to the probability
of a mutant eventually being placed in the root node. Thus, we expect a
fixation probability close to r2T/BL. This result is significantly less than
the almost certain fixation found in superstars for the Bd process, and is in
fact smaller than even the fixation probability of the original Moran process
(c.f. Eq. (1.1)), suggesting that for Db dynamics superstars act as strong
evolutionary supressors. The result does, however, match well with the 1/N
scaling found for the fixation on stars [Frean and Baxter, 2008].

dB updates: The final case is the death-birth process with selection on
reproduction. Once again the probability of placing a mutant offspring in the
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stem before losing the reservoir mutant is near r/L, but now without further
benefits along the stem. Consequently, trains that do reach the root still
have an expected length of 1. Thus, each train has a probability of roughly
r/B for claiming the root node, which then produces N/2 mutants in the
reservoirs, on average – enough to suggest fixation with high probability,
but less than for Db. Thus, we conjecture fixation probabilities near r2/N –
the worst outcome of the four scenarios. Once again, we note the significant
penalty as compared to the original Moran process as well as the similarities
to the 1/N scaling for stars [Frean and Baxter, 2008].

5.2 Mutations

Even though we did not explicitly model the process of mutation, we implic-
itly assumed that mutations are rare and arise spontaneously in any node
selected uniformly at random. For the superstar this means that most mu-
tations arise in a reservoir node – simply because the overwhelming majority
of nodes are reservoir nodes.

An alternative and equally natural assumption is that mutations arise
during reproduction events. Such a change does not affect the fixation prob-
abilities in the original Moran process. However, in highly heterogeneous
population structures crucial differences in the fixation probabilities can
arise because mutants preferentially arise in certain locations [Maciejewski
et al., 2014]. For superstars, when using the Bd or bD update rules, mu-
tants most likely arise at the top of a stem. This is an unfortunate position
because the mutant is likely to be replaced before reproducing even once –
extinction is almost certain. In contrast, for Db and dB, mutants again most
likely arise among the reservoir nodes – but for those updates superstars do
not act as evolutionary amplifiers.

Even though the dynamical properties of superstars are intriguing, the
list of caveats demonstrates that the evolutionary amplification is highly
sensitive to the details of the model – maybe this is the reason that superstar-
like structures have not been reported in nature.

5.3 Deleterious mutations, r < 1

As a final remark, we note that all discussion so far is based on the assump-
tion of a beneficial mutation, r > 1. In addition to promoting beneficial
mutations, an evolutionary amplifier must also suppress the fixation of dele-
terious mutations, r < 1. Here we argue that a deleterious mutant indeed

43



5.3. Deleterious mutations, r < 1

disappears almost surely on sufficiently large superstars.
Consider a single mutant with fitness 1, in a population of residents

with fitness 1/r. Note that we can rescale “fitness” without changing the
dynamics of the system, since fitness is used only as a weighting factor and
never in an absolute sense, only relative fitness matters. We next observe
that all calculations performed previously with respect to a rare mutant with
a fitness advantage would now apply to a resident, if it were to become rare -
that is, if residents were rare we would expect trains of residents to propagate
down the stem, incrementing with probability 1/(r+1) > 1/2 and shrinking
with probability α = r/(1 + r) < 1/2, leading to T > (H − 1)(1− r)2. The
same martingale argument that we previously used to find a lower bound
on mutant fixation probability can now be used to form a lower bound on
resident fixation probability. This time we use Xt to track the number of
residents in our reservoir nodes. Thus X0 = BL − 1. Xt can be treated
as a random walk that has forward bias γ ≈ r−4T when residents are rare,
and no bias otherwise. This leads to a formula for the fixation probability
of residents

1− ρH ≥ P (BL) =
Q(0)−Q(BL− 1)

Q(0)−Q(BL)

=
1− γ−δ − γ−δ(1− γ)(BL− 1− δ)

1− γ−δ − γ−δ(1− γ)(BL− δ)

= 1− γ−δ(γ − 1)

1− γ−δ − γ−δ(1− γ)(BL− δ)

ρH ≤
γ−δ(γ − 1)

1− γ−δ − γ−δ(1− γ)(BL− δ)
ρH ≤ γ1−δ

In the above we require γ to be the bias in favour of the resident. In order
to calculate it we need to find the expected train lengths of our resident
trains. Structurally the train equation is the same as previously, but with
r replaced by 1/r (the fitness of our resident strain). Because 1/r is now
greater than one, all train length arguments that previously depended on
r > 1 for beneficial mutations can now be applied to the resident when
1/r > 1. Thus, we can show that the expected length of resident trains is
large. Because γ ≈ r−4T , large T leads directly to a large γ (in the residents
favour), and γ−δBL � 1. Our Martingale will significantly underestimate
the fixation probability for our resident, thus we expect the above bound to
overestimate the probability of mutant fixation. In order to calculate exact
bounds on our new γ we must apply error terms similar to ε1, ε2, ε3, ε4−,
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giving us lower bounds on the effectiveness of “resident trains”. No error
term equivalent to ε0 will be required, as the possibility of our initial mutant
being placed not in a reservoir node can only reduce our mutant fixation
probability. Thus, it can be seen that the fixation probability of a deleterious
mutant tends to zero, and in particular that ρH ≤ γ1−δ. In the limit asB and
L are taken to infinity (in an appropriate manner) we find ρH ≤ (r−4T )1−δ
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In which concluding remarks
occur

In this thesis I have explained and explored two mutually contradictory
proofs. In doing so, I went beyond the counter-example provided by Dı́az
et al. [2013], and managed to identify the errors in Lieberman et al. [2005]
that led the argument astray, thus plugging a distinctive gap in the liter-
ature, and providing an explanation for the contradiction between the two
proofs, rather than merely a proof that one of them was wrong.

Further than that, I was able to determine true limits on the fixation
probability of superstars.

In completing this proof I have drawn upon a wide variety of mathemati-
cal and computational techniques, ranging from basic simulations, induction,
and a wide range of algebraic identities, to more conceptual tools such as
Martingales and reflection principles.

While this paper may have answered at least one question regarding
superstars- namely the identification of the true fixation probability – many
questions still remain. While chapter 5 gives some suggestions regarding
how to proceed in finding the fixation probability under a variety of differ-
ent regimes, it by no means provides solid proof. Lieberman et al. [2005]
states that the fixation probability for both funnels and metafunnels are
also governed by Eq. (1.3), but given the difficulties regarding superstars, it
would seem prudent for such claims to be investigated further. One might
also question the interaction between the superstar structures and fixation
time – in pushing the fixation probability towards certainty, do we also push
the fixation time to infinity, placing our so called certainty out of reach?

Superstars represent the most prominent representatives of evolutionary
amplifiers – structures that are capable of increasing selection and suppress-
ing random drift. For r > 1 and in the limit of large N we have derived
upper and lower bounds for the fixation probability, ρH :

1− 1

r4T
≤ ρH ≤ 1− 1

1 + r4T
, (6.1)
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where (H − 1)(1− 1/r)2 ≤ T ≤ H.
The upper bound for ρH in Eq. (6.1) results in a contradiction with the

originally reported fixation probability, Eq. (1.3), for sufficiently large r. For
the specific case of H = 3 the discrepancy was pointed out in Dı́az et al.
[2013]. At the same time, the lower bound for ρH confirms that superstars
are indeed capable of providing an arbitrarily strong evolutionary advantage
to any beneficial mutation, as suggested in Lieberman et al. [2005]. Using
symmetry arguments, it also follows that for r < 1 the fixation probability
can be made arbitrarily small (see 5.3).

In the case H = 2 (or k = 4 in Lieberman et al. [2005]) we obtain an

expected train length of T = 1 and recover the original bias, r4

1+r4
. Discrep-

ancies arise only forH ≥ 3 (or k ≥ 5) but those cases were not included in the
simulations in Lieberman et al. [2005]. For H = 3, we obtain T = 2r/(1+r),

which results in a bias of 2r5

1+r+2r5
and recovers the upper bound reported by

Dı́az et al. [2013], but our derivation offers a more illuminating explanation.
The agreement extends to higher values of H when extending the technique
in Dı́az et al. [2013] numerically (using the program avaliable in A.1).

An appropriately skeptical reader might ask why the theory presented
here should be trusted over those previously presented in the literature –
after all, both claim to offer rigorous proof. First, we note the agreement
between predictions made here, and both Lieberman et al. [2005] and Dı́az
et al. [2013] for the appropriate values of H. Second, we identify correlations
between neighbouring stem nodes as the cause for the discrepancies between
the two previous papers. Finally, we invite readers to scrutinize the proof
offered here most thoroughly, to convince themselves of its rigor. Superstars
have already presented unexpected subtleties, and as always, we need cau-
tion and vigilance to discern between scientific selection and random drift.
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Appendix A

Programs

A.1 superstarSolve

SuperstarSolve.m is a piece of matlab code I used to test various predictions
for the probability of early extinction against the numerical results found
using markov chains on possible states of a branch. The code requires a
particular k, r, L and B, and hence can not be used in a general sense.
k = H + 2. This is a polished version of the code, with slight changes in
output format and variable names compared to the original, but is effectively
identical.

This program can be found online at:
https://github.com/alastair-JL/Academic/tree/master/Superstar-Project-

2013-2014 .

function [x,b,A] = superstarSolve(k,r,L,B)

A=zeros(2^k,2^k);

b=zeros(2^k,1);

q=zeros(k,1);

Row=1;

A(1,1)=1;

while (Row<2^k)

q(1)=q(1)+1;

Row=Row+1;

jjj=1;

while (jjj<k)

if (q(jjj)>1.2)

q(jjj)=0;

q(jjj+1)=1+q(jjj+1);

end

jjj=jjj+1;

end

%%have now calibrated the q to the correct label.
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if (q(k)>0)

b(Row)=-r;

if(q(k-1)==1)

A(Row,Row-2^(k-1))=L-1;

end

if(q(k-1)==0)

A(Row,Row-2^(k-1))=L;

end

end

if (q(k)==0 && q(1)==1)

A(Row,Row-1)=1/(L*B);

end % Possible actions of the center,

%either ending the test, or erasing X

jjj=1;

while (jjj<k-1)

jjj=jjj+1;

if (q(jjj)==1 && q(jjj+1)==0)

A(Row,Row+2^(jjj))=r;

end

if (q(jjj)==0 && q(jjj+1)==1 && jjj+1~=k )

A(Row,Row-2^(jjj))=1;

end

end %%mutation passing down chain

%%special behavior of first node.

if (q(1)==1 && q(2)==0)

A(Row,Row+2)=r;

end

if (q(1)==1 && q(2)==1)

A(Row,Row-2)=B-1;

end

if (q(1)==0 && q(2)==1)

A(Row,Row-2)=B;

end

jjj=0;%%sum up rows to get diagonals...

sum=0;

while (jjj<2^k)

jjj=jjj+1;

sum= sum + A(Row,jjj);

end

sum=sum- b(Row);
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A(Row,Row)= - sum;

end

x=A\b;

PropagationProbability= x(2)

LiebermanPrediction= r^k/(1+r^k)

LieberRatio= (1-PropagationProbability)/(1-LiebermanPrediction)

if(k==5)

DiazPrediction= 2*r^5/(1+r+2*r^5)

DiazRatio= (1-PropagationProbability)/(1-DiazPrediction)

end

if(k>=4&& k<=10)

%%Note, Train length makes no predictions for small k, and quickly

%%breaks the machine for large k.

T= makeTrainLength(k,r);

AJLpredict= r^4*T/(r^4*T+1)

AJLRatio= (1-PropagationProbability)/(1-AJLpredict)

end

end

%%A few comments to those who may use this program in the future.

%% I used the ratio of the FAILURE PROBABILITIES compared

%% to the actual result for the failure probabilities as my

%% test. This is because failure probability is close to zero,

%% and thus its ratio is more sensitive then dividing a

%% bunch of things near one.

%%It is worth noting that for k=5, Diaz’s predictions get more and more

%%accurate for larger values of L(leaf number) and B(branch number).

%%Lieberman’s predictions plateau- reaching a maximal accuracy for

%% any given k,r combination.

function [T] = makeTrainLength(k,r)
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if (k==4)

T=1;

else

H=k-2;

alpha= 1/(1+r)

T=(H-1)*alpha^0*nchoosek(H-4+1,1-1);

z=2;

while(z<H)

T=T+(H-z)*alpha^(z-1)*(nchoosek(H-4+z,z-1)-nchoosek(H-4+z,z-2) );

z=z+1;

end

T=(r/(1+r))^(H-2)*T;

end

end

A.2 SimpleChainTest

SimpleChainTest is a Java program that simulates a single chain for a large
amount of time, and was used for the simulations in this paper. This version
is an extention of the version used for my initial investigation, and collects
significantly more data than the original. The underlying simulation struc-
ture remains unchanged.

This program can be found online at:
https://github.com/alastair-JL/Academic/tree/master/Superstar-Project-

2013-2014 .

package simplestartest;

import java.util.Random;

/**

*

* @author Babblefish

*/

public class SimpleChainTest {

/**

* @param args the command line arguments

*/
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public static void main(String[] args) {

int k=15;

boolean weirdRecord=true;

boolean changeMade=false;

int numsuccess=0;

double Mcount[]= new double[k];

int MM[]= new int[k-1];

int TrainArrive[][]= new int[k][k];

//first index refers to location, second to train length.

int TrainTime[][]= new int[k][k];

//first index refers to location, second to train length.

int MostRecentTrainLength[]=new int[k];

// Index refers to location;

long WW[]= new long[k-1];

int numTrainsLeave=0;

long numsample=0;

int printseperator=4;

double TotalTotalWeight=0;

String trainPrint;

for (int jij=0; jij<k-1; jij++){

Mcount[jij]=0;

MM[jij]=0;

WW[jij]=0;

}

Mcount[k-1]=0;

for (int iii=0; iii<20; ++iii){

boolean chain[]= new boolean[k];

double r=1.5;

Random picker= new Random();

chain[0]=true;

int M=20000;

double totalweight= chain.length;

double pick=0;
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boolean success=false;

boolean extinct=false;

while (numsample< Long.MAX_VALUE-5){

changeMade=false;

chain[0]= (picker.nextDouble()*(M +r-1)<r);

totalweight=0;

for (boolean b: chain){

totalweight+= (b?r:1);

}

TotalTotalWeight+=totalweight;

pick= picker.nextDouble()*totalweight;

int select=0;

double pickcopy = pick;

while (pickcopy>0 && select<k){

pickcopy-= (chain[select]?r:1);

select++;

}

select--;

if (select==k-1){

changeMade=true;

//if final rung... do nothing!

}else{

if (chain[select] && !chain[select+1]){ //new train arrive

int trainLength=0;

while((trainLength<select)&& (chain[select-trainLength]) ) {

trainLength++;

}

TrainArrive[select+1][trainLength]++;

MostRecentTrainLength[select+1]=trainLength;

}

if (chain[select+1]!=chain[select]){

changeMade=true; }

chain[select+1]=chain[select];

if (chain[select]&& select==0){
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numTrainsLeave++; }

}

for (int ppp=0; ppp<k;ppp++){

//loop to add time to correct train length.

if (chain[ppp]){

TrainTime[ppp][MostRecentTrainLength[ppp]]++;

}

}

if (changeMade || !weirdRecord){

for (int jij=0; jij<k; ++jij){

Mcount[jij]+= (chain[jij]?1:0);

if (jij<k-1 && chain[jij] &&chain[jij+1] ){

MM[jij]++;}

if (jij<k-1 && !chain[jij] && !chain[jij+1] ){

WW[jij]++;}

}

}

/*

//NOTE: Uncomment this section to view trains.

//Also, it is worth reducing L to something small

//before doing so.

trainPrint="";

for (int iij=0; iij<k-1; iij++){

trainPrint=trainPrint+ (chain[iij]?"0":"-");

}

System.out.println(trainPrint);

*/

numsample++;

if (numsample/1000==printseperator){

// NOTE: this is where the output goes.

//Output is seperated further and further apart as time

//goes on. This part of the function is frequently

// rewritten, depending on what output is needed.
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printseperator*=2;

// System.out.println("Train density"+ (float)(numTrainsLeave)/numsample

// +" weight average"+TotalTotalWeight/numsample);

double OldPredict=0;

double cunningPredict=Mcount[0]/numsample;

System.out.println("t"+ numsample);

for (int iij=1; iij<k-1; iij++){

//System.out.print("\n Height" + iij+" ");

OldPredict=(Math.pow(r,iij)/M)/((Math.pow(r,iij)/M)+1-1/M);

System.out.println(""+iij+ " & " + OldPredict+ " & "

+ Mcount[iij]/numsample+" & "+ (MM[iij]/Mcount[iij])

+" \\\\" );

/* //When uncommented this section

//prints information about trains.

//This was used to test the predictions made in

// the paper against actual simulated results.

for (int ddd=1; ddd<k-1; ddd++){

if (TrainArrive[iij][ddd]>0){

System.out.print("length" + ddd+" occurance"

+(double)(TrainArrive[iij][ddd])/numTrainsLeave

+ "Exptime"

+(double)TrainTime[iij][ddd]/(TrainArrive[iij][ddd]) );

}

}*/

}

for (int iij=1; iij<k-1; iij++){

OldPredict=(Math.pow(r,iij)/M)/((Math.pow(r,iij)/M)+1-1/M);

cunningPredict=cunningPredict*(MM[iij]/Mcount[iij])

+ r*cunningPredict*(1-MM[iij]/Mcount[iij]);

System.out.println(""+iij+ ";" + OldPredict+ ";"+

Mcount[iij]/numsample+";"+ (MM[iij]/Mcount[iij])

+";"+cunningPredict);

}

}

}

}
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}

}
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