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Abstract

Estimating population size is an important task for epidemiologists and ecologists

alike, for purposes of resource planning and policy making. One method is the

“multiplier method” which uses information about a binary trait to infer the size

of a population. The first half of this thesis presents a likelihood-based estimator

which generalizes the multiplier method to accommodate multiple traits as well

as any number of categories (strata) in a trait. The asymptotic variance of this

likelihood-based estimator is obtained through the Fisher Information and its be-

haviour with varying study designs is determined. The statistical advantage of

using additional traits is most pronounced when the traits are uncorrelated and of

low prevalence, and diminishes when the number of traits becomes large. The use

of highly stratified traits however, does not appear to provide much advantage over

using binary traits. Finally, a Bayesian implementation of this method is applied

to both simulated data and real data pertaining to an injection-drug user popula-

tion. The second half of this thesis is a first systematic approach to quantifying the

uncertainty in marginal count data that is an essential component of the multiplier

method. A migration model that captures the stochastic mechanism giving rise to

uncertainty is proposed. The migration model is applied, in conjunction with the

multi-trait multiplier method, to real-data from the British Columbia Centre for

Disease Control.

ii



Preface

This dissertation is original, unpublished, independent work by the author, V. Meng.

Chapter 3, Appendix A, Appendix B, Appendix C, Appendix D and Appendix E

contain work submitted to the Annals of Applied Statistics, titled “Inferring Pop-

ulation Size: Extending the Multiplier Method to Incorporate Multiple Traits with a

Likelihood-Based Approach” (under review), co-authored with Prof. Paul Gustafson

who provided guidance for the research which led to said journal submission.

iii



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Problem with using multiple traits in the multiplier method . . . . 6

2.2 Problem with capturing uncertainties in marginal counts . . . . . 6

2.3 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Extended Multiplier Method for Multiple Traits . . . . . . . . . . . 8
3.1 A Likelihood Model for Estimating N . . . . . . . . . . . . . . . 9

3.1.1 The Reparameterized Multinomial Likelihood Model for

Modelling Two Binary Traits . . . . . . . . . . . . . . . . 9

3.1.2 Generalizing the Reparameterization for k Traits . . . . . 11

3.2 Uncertainty about the Maximum Likelihood Estimator of N . . . . 12

3.2.1 The Effect of n and N on Estimation Uncertainty . . . . . 13

iv



3.2.2 The Effect of Additional Traits of Given Prevalence and

Degree of Association . . . . . . . . . . . . . . . . . . . 13

3.2.3 The Effect of Increased Stratification . . . . . . . . . . . 14

3.3 Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Application: San Francisco Injection-Drug User Study . . . . . . 19

3.4.1 Obtaining a Single Estimate of the Size of IDU Population

Using Two Traits . . . . . . . . . . . . . . . . . . . . . . 20

3.4.2 Alternative Analysis with Marginal Prevalences Only . . . 22

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Uncertainty in Marginal Counts – Accounting for Migration . . . . 25
4.1 A Model for Migration . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Combining the Migration Model with the Multiplier Method . . . 28

4.3 Application: Estimating the Size of MSM Population in GVRD . 29

4.3.1 The Data . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.2 Bayesian Inference . . . . . . . . . . . . . . . . . . . . . 30

4.3.3 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

A On the Inappropriateness of Using Capture-Recapture Inspired Method-
ology to Analyse Data for the Multiplier Method . . . . . . . . . . . 41

B Bench-Marking with Equi-Correlation and Equi-Prevalence for the
General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

C Deriving the Fisher Information . . . . . . . . . . . . . . . . . . . . 47
C.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

C.2 Defining a Reparameterization for the Cell Probabilities . . . . . . 48

C.3 The Fisher Information . . . . . . . . . . . . . . . . . . . . . . . 48

C.4 Examining the Effect of Changing N on Var(N̂MLE) . . . . . . . . 49

v



D Implementing Bayesian Inference . . . . . . . . . . . . . . . . . . . 51
D.1 Model Specification for Inferring N with Information from Two

Traits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

D.2 Model Specification for Inferring N with Information from Three

Traits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

E Properties of the Bayesian Estimator using Multiple Traits with the
Multiplier Method – a Simulation Study . . . . . . . . . . . . . . . . 56
E.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . 57

F JAGS Model File for Combined Modelling of Migration and Multi-
ple Trait Multiplier Method . . . . . . . . . . . . . . . . . . . . . . . 59

vi



List of Tables

Table 3.1 Contingency table for two traits, binary categories . . . . . . . 9

Table 3.2 Estimates and prevalences from Johnston et al. (2013) study . . 20

Table 3.3 RDS-adjusted proportions in the contingency table for IDU’s in

San Francisco in 2009. . . . . . . . . . . . . . . . . . . . . . . 21

Table 3.4 Pseudo-data for estimating size of IDU population with the mul-

tiplier method . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Table 3.5 Multiplier method under multiple scenarios analysis with marginal

data from Johnston et al. (2013) . . . . . . . . . . . . . . . . . 22

Table 4.1 Selected hyper-parameter values for parameters relating to mi-

gration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Table 4.2 Result from inferring size of MSM population with the com-

bined model . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Table A.1 Difference in summary statistics between capture recapture stud-

ies and multiplier method studies . . . . . . . . . . . . . . . . 42

Table E.1 Performance of Bayesian inference under select populations and

prior distributions . . . . . . . . . . . . . . . . . . . . . . . . 58

vii



List of Figures

Figure 3.1 Effect of changing design parameters on the precision of N̂ . . 15

Figure 3.2 Schematic of the simulation study exploring the effect of strat-

ification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 3.3 Effect of stratification on precision of N̂ . . . . . . . . . . . . 17

Figure B.1 Benchmarking any combination of traits with equi-correlation

and equi-prevalence . . . . . . . . . . . . . . . . . . . . . . . 46

viii



Acknowledgments

I would like to thank Prof. Paul Gustafson for his guidance in my research, and

NSERC for financial support. Dr. Mark Gilbert and Travis Salway Hottes have

been a major source of motivation for this research. I would also like to thank

Dr. Lisa Johnston and H. Fisher Raymond for providing data that complements the

theoretical analysis in Chapter 3. Lastly, thanks mom, dad, and Johnty for your

continued support.

ix



Chapter 1

Introduction

Population size estimation is a fundamental interest for ecologists and epidemiol-

ogists alike. This knowledge is used for resource allocation, program planning,

and estimating disease incidence, amongst other important applications. Popular

methods for estimating population size include: capture-recapture, “direct” sur-

vey, network scale-up, and the multiplier method. The capture-recapture method

uses identified membership of a sampled individual across multiple lists to infer

population size. It was originally developed for applications in ecology (Pollock

et al., 1990), but applications for epidemiological purposes can be found in, as ex-

amples, Paz-Bailey et al. (2011) and Hook and Regal (1995). The “direct” survey

method uses information on the size of a super-population which encompasses the

target population together with the proportion of people belonging to the target

population in the inference (Purcell et al., 2012; Lieb et al., 2011). The network

scale-up method uses sampled individuals from a super-population whereby each

respondent is asked to provide information on the size of his/her personal network

and the number of his/her acquaintances belonging to the target population (Ezoe

et al., 2012; Salganik et al., 2011). Lastly, the multiplier method (UNAIDS/WHO

Working Group on Global HIV/AIDS and STI Surveillance, 2010; Johnston et al.,

2013) uses knowledge of the exact count (marginal count) of people with a certain

trait (Nt) in the target population and a sample proportion of this trait ( p̂t) to infer

the size of the target population, N, based on the simple relationship pt = Nt/N.

The World Health Organization has a publication that gives a good account of the
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advantages and disadvantages of the various methods listed above (UNAIDS/WHO

Working Group on Global HIV/AIDS and STI Surveillance, 2010). This document

also points out the importance of considering data-availability and data-reliability

in the selection of an appropriate estimation method.

The work documented in this dissertation is motivated by an application in

collaboration with the British Columbia Centre for Disease Control (BCCDC),

whereby estimating the size of a “hard-to-reach population” (Magnani et al., 2005)

is of importance to public health. When inferring the size of hard-to-reach pop-

ulations, extra constraints are imposed in the method selection. It is often noted

(Fendrich et al., 1999; Colón et al., 2001; Delaney-Black et al., 2010) that members

of the hard-to-reach population do not self-report on their behaviour readily which

results in biased estimates; as a result, the reliability of direct survey and network-

scale-up methods is compromised due to relying on self-reporting of membership

in the hard-to-reach population in a survey of a super-population. As a second

constraint, privacy regulations in Canada often result in data free of personal iden-

tifying information, which makes capture-recapture studies difficult to implement

for human populations. In contrast, the multiplier method is unaffected by the two

constraints above.

The highly popular multiplier method was, however, developed at a time when

data were hard to come by. The method prescribes a way to estimate popula-

tion size based on one binary trait only, whereas recently, data on the marginal

counts and sample prevalences for numerous health related traits are available to

public health agencies (Okal et al., 2013; Raymond et al., 2013; Johnston et al.,

2013). Without a statistically sound prescription to incorporate data from multiple

traits, researchers resort to constructing multiple estimates of N with the multiplier

method, one from each trait, while using sample prevalences captured in a single

survey. This attempt is statistically unsatisfactory because it ignores the correlation

between multiple estimates derived from the same survey. Additionally, it does not

result in a unified statistical conclusion about the size of the target population.

Furthermore, the importance of accounting for uncertainty in the marginal

counts has rarely been discussed in literature. This uncertainty may be attributed

to various mechanisms, yet previous attempts to capture uncertainty on marginal

counts have resorted to using a simple parametric distribution based on the intuition
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of the practitioner (Archibald et al., 2001; Johnston et al., 2013). In these instances,

a scientific evaluation of the quality of the selected distribution is difficult when the

rationale for selection is not formulated explicitly based on stochastic mechanisms.

These serious problems were encountered in collaborative work with the British

Columbia Center for Disease Control (BCCDC), and motivated the methodologies

presented in this thesis. These methodologies advance the multiplier method to-

ward a statistically correct utilization of data on multiple traits based on a popu-

lar data collection scheme, and a tractable formulation of uncertainty in marginal

counts; this is approached using a likelihood-based and model-based extension of

the multiplier method. As an additional feature, the new methodology now al-

lows categorical traits in the analysis without having to collapse them into binary

categories as before. This thesis contains work that can impact the practice of

epidemiology immediately and widely, given current interests in the epidemiology

literature on estimating population with the multiplier method using multiple traits.
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Chapter 2

Background

The original multiplier method developed out of the epidemiology literature, with

little use of statistical language in its definition even in an authoritative reference

document by the UNAIDS/WHO Working Group on Global HIV/AIDS and STI

Surveillance (2010). The method has acquired many aliases, including the service

multiplier method and the indirect method. The method relies on the following

definition for a trait proportion:

pt =
Nt

N
(2.1)

where N, Nt , pt are as defined in Chapter 1. If Nt and pt are known exactly, a

rearrangement of Equation 2.1 leads to the exact population size, with no need for

estimation.

However, neither the exact proportion nor marginal count of people with a

particular trait is known exactly in the majority of cases and so are inferred from

data. A survey is conducted within the target population to obtain the sample trait

prevalence. While the target population has no defined sampling frame, sampling

designs exist, e.g. venue-based sampling (Muhib et al., 2001) or respondent-driven

sampling (Heckathorn, 1997), to give estimators of prevalences that are unbiased

under certain mathematical assumption and adjustments.

As for the marginal count for a trait, it is inferred from pre-existing records in

public health agencies. These records provide a list, and hence a head-count, of

people with the trait in question. The raw head-count may differ from the actual
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marginal count of a trait in the target population if, for example, trait misidentifi-

cation occurs during record-keeping (Archibald et al., 2001) or if the population

“catchable” by the record keeping procedure is not the same as the target popula-

tion in question, as noted by UNAIDS/WHO Working Group on Global HIV/AIDS

and STI Surveillance (2010). However, the raw head-count is commonly accepted

as an estimate of the marginal count without formal justification.

Nevertheless, a substitution of pt and Nt with their estimates in Equation 2.1

gives an estimate of N. While the majority of studies consulted do not calculate

uncertainty on the estimated population size (Raymond et al., 2013; Okal et al.,

2013; Luan et al., 2005), the papers by Archibald et al. (2001) and Johnston et al.

(2013) give two approaches to generating the confidence interval for the following

estimator,

N̂ =
N̂t

p̂t
. (2.2)

Archibald et al. (2001) treats N̂ as a function of two random variables, and

uses a Monte Carlo simulation to obtain the distribution of N̂. Archibald assumed

a Normal distribution for both N̂t , based on ad hoc a priori information, and p̂t ,

based on information from survey sampling.

Johnston et al. (2013) obtains the confidence interval for the estimator in Equa-

tion 2.2 by assuming its convergence to the Normal distribution. The variance is

approximated by the Delta Method (Taylor series expansion),

Var(N̂)≈ Var(N̂t)

E[p̂t ]2
+
E[N̂t ]

2

E[p̂t ]4
Var(p̂t).

The 95% confidence interval is hence

95%CI = N̂±1.96Var(N̂).

Both methods in (Archibald et al., 2001) and in (Johnston et al., 2013) deal

with quantifying the statistical uncertainty from estimating population size with

the multiplier method using a single binary trait. However, these formulas 1) do

not extend naturally to estimation with multiple traits , and 2) lack a systematic way

to specify the uncertainty in the inferred marginal count. The following subsections
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highlight each of these problems in detail.

2.1 Problem with using multiple traits in the multiplier
method

In recent studies, epidemiologists have reported access to information on a vast

number of “traits” with which to carry out their estimation. Generally there is

accepted intuition that using more information provides better estimates. Such

belief has lead epidemiologists to synthesize k estimates of the same population

size using information from k traits, i.e.

N̂1 =
N̂t1

p̂t1
,

N̂2 =
N̂t2

p̂t2
,

...

N̂k =
N̂tk
p̂tk

,

see (Raymond et al., 2013) for example. Should estimators N̂1, · · · , N̂k be indepen-

dent, standard procedures, e.g. inverse variance weighting, exist to combine them

into a single best estimate of N.

However, these estimates are not independent in the studies involving multiple

traits, due to a data collection scheme commonly adopted for practicality. In these

studies, a single survey querying k traits is conducted, such that p̂t1 , · · · , p̂tk are

estimated from a single sample of the target population. Currently, no statistical

method exists to account for dependency that arises from the particular design for

surveying the population only once for multiple traits.

2.2 Problem with capturing uncertainties in marginal
counts

The uncertainty in marginal counts may be due to several important factors, e.g.

population migration (“mobility” in Saidel et al. (2010)), record under-counting/over-
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counting due to various reasons, that occur in conjunction or in isolation. In the

past, uncertainty in inferred marginal counts is often specified in an ad hoc man-

ner. As an example, Johnston et al. (2013) treated the inferred marginal count

as variable according to a single parameter Poisson distribution with mean value

equal to the raw head-count, without further justification. Archibald et al. (2001)

assumes inferred marginal count to be Normally distributed with mean value equal

to the raw head-count, and lower and upper 95th percentile value determined based

on “the extent of duplicates, risk-category misclassification together with [their]

subjective assessment of the likely magnitude of uncertainty.” In either case, it is

difficult to support nor rebut the parametric distributions selected when they are

chosen in an ad hoc manner. A systematic way to describing the mechanism may

be the key toward better assessing model misspecification.

2.3 Thesis organization
This thesis makes two contributions to the statistical literature on the multiplier

method. It firstly outlines a likelihood-based approach to address current method-

ological limitations due to the “one survey multiple traits” design in Chapter 3, and

secondly presents the first systematic approach to capture uncertainty in marginal

counts in Chapter 4. However, the scope of Chapter 4 is limited to addressing a

single mechanism, population migration, as the source of uncertainty in inferred

marginal counts, which is motivated by the needs of a collaboration in progress.

This thesis concludes with remarks on limitations and future work in Chapter 5.
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Chapter 3

Extended Multiplier Method for
Multiple Traits

In this chapter a likelihood-based method is developed for estimating the size of

a population with multi-trait data that is currently inadequately addressed by the

single-trait multiplier method due to employing a particular data collection design.

A likelihood-based estimator is presented in Section 3.1 to represent the design

with which the data are obtained. Properties of this estimator are explored in Sec-

tion 3.2 under varying study design parameters. In Section 3.3, considerations for

Bayesian inference with the proposed likelihood are outlined. A real data example

of Bayesian inference with the proposed likelihood is shown in Section 3.4. Fi-

nally, a discussion on the advantages and limitations of the method developed in

this chapter is found in Section 3.5.
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Table 3.1: Contingency table for two traits, binary categories

X2
absent (0) present (1)

X1
absent (0) n00 n01
present(1) n10 n11

n

3.1 A Likelihood Model for Estimating N

3.1.1 The Reparameterized Multinomial Likelihood Model for
Modelling Two Binary Traits

Data and Assumptions

In the case that information on two binary traits, X1 and X2, are collected for the

purpose of inferring population size, the following likelihood is suitable for data

resulting from a data collection scheme that results in

• a 2 by 2 contingency table (Table 3.1) that cross-classifies respondents of a

sample survey based on two traits,

• marginal count N1·, the number of people in the target population with X1 =

1,

• marginal count N·1, the number of people in the target population with X2 =

2.

It is assumed that no personal identifying information is available where the

above data come from due to privacy regulations. Secondly, the target population

is assumed closed without births, deaths, or migrations. The marginal counts are

assumed to be exact, i.e. known without uncertainty – this restriction is relaxed

in Chapter 4. The sample survey is obtained through simple random sampling

without replacement (SRSWOR). For target populations without a sampling frame,

the assumption of sampling through SRSWOR cannot be met, but is used here to

simplify the theoretical development. Application of the method in violation of

SRSWOR assumption is addressed in Section 3.4 and Section 3.5.
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The above data may at first appear equivalent to multiple “lists” that can be

analysed with capture-recapture methods but this is not so, as persons appearing

in each data source may not be cross-identified due to privacy regulations – one of

many reasons why such data ought not be analysed with capture-recapture (Pollock

et al., 1990) or similar methods (Olkin et al., 1981) of analysis (see Appendix A

for details).

A likelihood for the stochastic mechanism

The mechanism that gave rise to the data at hand is analogous to drawing marbles

out of a bag where the total number of marbles in the bag, N, is unknown. Each

marble in the bag may be either clear, red, sparkly, or red and sparkly. Additionally,

we know exactly the number of marbles that are red, and the number of marbles that

are sparkly in the bag. Finally, a random sample of n marbles are drawn without

replacement, their traits observed and recorded in a contingency table.

For this process, a multinomial likelihood is appropriate for approximating

the distribution of the sample frequencies of every trait combinations obtained via

SRSWOR. The usual multinomial likelihood has parameters p00, p01, p10, p11 that

determine the frequencies observed in Table 3.1. Note that only three of these

parameters are free to vary in the support space because the parameter space is

constrained by ∑ pi j = 1.

Additionally, knowledge of marginal counts N1· and N·1 presents extra infor-

mation that further constrains the support space. Necessarily in the overall target

population,
N1·
N

= p10 + p11, (3.1)

N·1
N

= p01 + p11. (3.2)

The additional constraints on the support are incorporated by reparameterizing

via p10 = N1·/N− p11, and p01 = N·1/N− p11. The reparameterized likelihood of

survey data is, given fixed marginal counts,
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L (p11,N|data) =

(∑ni j)!
n00!n10!n01!n11!

pn11
11

(
N1·
N
− p11

)n10
(

N·1
N
− p11

)n01
(

1− N1·+N·1
N

+ p11

)n00

,

(3.3)

where the statistics ni j = the number of people in the survey with status i for the

first trait, and status j for the second trait.

As a consequence of the above reparameterization, the population size, N, has

become a parameter in the likelihood (Eq.(3.3)). Estimation of N can be carried

out via several standard techniques, e.g. maximum likelihood or Bayesian infer-

ence. As a side note, this reparameterized multinomial likelihood must not be con-

fused with the multinomial models in capture-recapture inspired methodology –

the stochastic mechanisms described by these methods are fundamentally different

(Appendix A).

3.1.2 Generalizing the Reparameterization for k Traits

Let a set of k traits be denoted by {X1, . . . ,Xk}. A trait Xi has li categories (strata),

coded from 0 to li−1. Throughout this thesis, a trait with more strata than another

is referred to as being more “stratified”. Let stratum 0 always represent the absence

of a trait. As an example, if “positive test result for disease a” is a trait of interest,

then stratum 0 necessarily corresponds to the absence of a positive result and stra-

tum 1 to stratum li− 1 may be defined to represent a positive result diagnosed in

different time periods.

As data, a k-dimensional contingency table is observed. The contingency table

is populated by cross-classifying a sample of people from the target population

based on the status of k traits. A set of marginal counts is also known to us. Let the

observed marginal count be denoted by Mis, where i ∈ {1, . . . ,k} indexes the trait,

and s ∈ {1, . . . , li−1} specifies the stratum/sub-type of this trait. Let MMM denote the

collection of marginal counts observed, where the size of the collection, |MMM|, is

[
k
∑

i=1
(li−1)].

In this case the development of the reparameterized likelihood follows a similar
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procedure to that in the previous section. Beginning with the standard multinomial

likelihood, the parameters of this multinomial likelihood are reparameterized based

on |MMM| known marginal counts using equations similar to Eq.(3.1) and Eq.(3.2)

to incorporate constraints on the support space. A systematic reparameterization

scheme has been chosen, which rearranges each marginalization equation in the

form

Mis

N
=

l1−1

∑
j1=0
· · ·

li−1−1

∑
ji−1=0

li+1−1

∑
ji+1=0

· · ·
lk−1

∑
jk=0

Pr{X1 = ji, . . . ,Xi−1 = ji−1,Xi = s,Xi+1 = ji+1, . . . ,Xk = jk}

(3.4)

for the probability of having only 1 trait.

The exact expression of the reparameterized likelihood is found in Appendix C.

Note that the resulting reparameterized likelihood will have {[(
k
∏
i=1

li)−1]−|MMM|+

1} free parameters. The first term, [(
k
∏
i=1

li)−1], is the number of free parameters of

a standard multinomial likelihood. The second term, −|MMM|, is a reduction in free

parameters equal to the number of observed marginal counts. The last term, +1,

results from the inclusion of N as a parameter in the reparameterization process.

With N being a parameter of the likelihood, its estimation may be carried out using

standard likelihood-based methods.

3.2 Uncertainty about the Maximum Likelihood
Estimator of N

The following section assesses the uncertainty in the proposed estimator (MLE)

obtained from maximum likelihood theory. The variance of the MLE based on the

reparameterized likelihood is approximated asymptotically from the Fisher Infor-

mation, the derivation of which is documented in Appendix C.

An important outcome from this section is understanding how multiple traits

may best be used to provide a desired level of precision for the population size

estimate from a study-design perspective. Thus, the Fisher Information is used to
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explore the behaviour of the estimation uncertainty, SD(N̂MLE), as important pa-

rameters and design factors are varied. In specific, the parameter N is investigated

along with the following design factors: sample size, the number of traits used, and

the level of trait stratification. The effects of trait prevalence and strength of trait

association are also explored. Note that “trait prevalence” and “strength of trait

association” are two functions of the cell probability parameters in the reparame-

terized multinomial likelihood. They are chosen for investigation instead of cell

probability parameters due to better interpretability and better chance that a priori

information exist about them. While they are not entirely controllable by the study

designer, the use of a priori information about prevalence and association leads

to better design selection in light of the results shown in the following sections.

Hence, in this thesis, any reference to the set of design factors will also include

prevalence and trait association.

3.2.1 The Effect of n and N on Estimation Uncertainty

The SWSWOR assumption on the survey data implies that SD(N̂MLE) ∝ 1/
√

n, a

well-known classical result. The derivation of the effect of N is, however, non-

trivial and thus reserved for Appendix C. There it is shown that SD(N̂MLE) ∝ N

when all other design parameters are kept fixed. An extension of this result with the

Delta Method shows SD(log N̂MLE) to be unaffected by the size of N as well. The

proportionality between population size and estimation uncertainty allows the ef-

fect of design parameters to be studied on the scale of relative error (SD(N̂MLE)/N),

or equivalently, SD(log N̂MLE), in the sections to come.

3.2.2 The Effect of Additional Traits of Given Prevalence and Degree
of Association

In this section, designs with varying number of traits, prevalence and correlation

are mapped to cell probabilities to obtain the Fisher Information. This exploration

is restricted to binary traits of equi-prevalence and equal pairwise correlation (equi-

correlation). The equi-prevalence, equi-correlation restriction is used to reduce the

complexity of the design parameters under exploration, and may be extrapolated

to represent general situations– this is justified Appendix B. Appendix B also pro-
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vides guidance to benchmarking estimator precision from a study-design perspec-

tive using the equi-correlation, equi-prevalence assumption. Note that situations

beyond binary stratification are explored in the next section.

Figure 3.1 provides a summary of the effect of increasing the number of binary

traits, prevalence and correlation. One makes the observations that (a), increasing

the number of traits has a beneficial but diminishing effect for lowering the un-

certainty, (b), the addition of traits is most effective at lowering uncertainty when

traits are not correlated, (c), using more prevalent traits is effective for lowering the

uncertainty, and (d), when the prevalence is high (≈ 10%), the impact of additional

traits becomes negligible.

3.2.3 The Effect of Increased Stratification

Stratification, as previously mentioned, refers to the fineness of the categorization

for a trait. When the stratification is beyond binary, it is challenging to map a given

set of design factor values to a point in the parameter space because trait prevalence

and trait association are typically defined for binary traits (indicators). Instead, a

Monte Carlo, generative approach is taken to explore the parameter space directly

for a given level of stratification. One will see shortly that a distribution for the

estimation uncertainty results for a given set of design parameters based on this

approach.

This Monte Carlo simulation is motivated by the situation where a subject-area

expert may have some expectation of the strength of association and prevalence for

a set of binary traits but is unsure if obtaining further detailed information (strat-

ification) for each trait will provide useful information to lower estimation uncer-

tainty, given there is no knowledge concerning what the stratification will look like.

To provide practical advice to this hypothetical subject-area expert, test scenarios

were generated randomly in a way that captures the variability in the estimation

uncertainty assuming a priori any stratification is equally likely to happen.

Let us begin by assuming a set of two binary traits as the starting point for

exploring traits with three strata. Take a population with two binary traits of given

prevalence and association. This specification translates to some cell probability

parameters when sampling and observing trait combinations with SRSWOR. When
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Figure 3.1: Examining the effect of increasing the number of binary traits
with changing prevalence and association on the relative error of esti-
mating N. The association between traits is measured by φ , ranging
from 0 (no association) to 1 (complete association). One makes the ob-
servation that the relative error decreases with (1) increasing number
of traits (2) increasing trait prevalence and (3) decreasing association
between traits. The advantage of additional traits disappears as traits
become completely associated, or as prevalence becomes high. One
may further note that the relative error doubles as n is decreased by 4
folds, reflecting its inversely proportional relationship with

√
n.

the binary category for “trait present” is stratified into two mutually exclusive cate-

gories, each cell probability parameter, pre-stratification, is necessarily equivalent

to the sum of a set of d parameters post-stratification (see Figure 3.2 for an illus-

tration). One may see that the mapping from pre-stratification cell probabilities to

post-stratification cell probabilities is not unique.

Thus in the Monte Carlo experiment, to generate one possible instance of strat-

ification, a sample from the d-dimensional Dirichlet(1,...,1) distribution is drawn to
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Figure 3.2: Showing how binary traits are further stratified in the simulation
in Section 3.2.3.

provide the weights with which a cell probability, pre-stratification, is distributed

into the post-stratified cells. Estimator error is then calculated using the post-

stratified cell probabilities. This process is repeated 100 times for a given set of

binary traits to characterize the variation in estimator error in the space of possible

scenarios for stratification. A similar process is applied to k starting binary traits

of equi-prevalence and equi-correlation up to k = 4 traits.

The result of this simulation study is shown in Figure 3.3, where each box-plot

summarizes the estimation uncertainty of all randomly generated scenarios that

correspond to the same starting k binary traits. Generally speaking, the reduction

in estimation uncertainty from increased stratification is small compared with the

reduction due to an increased number of traits, given an uninformative a priori

belief about stratification. While there are a few special cases where stratification

provides reduction comparable to that from additional traits, it is difficult for the

subject-area expert to evaluate if a set of traits of interest might constitute such a

special case.

3.3 Bayesian Inference
In recent years, both in the research of statistical methodologies and in subject-area

applications, Bayesian inference has grown to be increasingly useful and popular.

Bayesian estimation has several strengths for inferring population size with the
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Figure 3.3: The effect of stratification: smooth curves show estimator uncer-
tainty obtained with binary traits with varying strength of association.
The boxplots show the empirical distributions of estimator uncertainty
when binary traits are increased to three strata at varying strengths of
association from φ = 0 to φ = 1 in increments of 0.1. Given k traits at
some the level of association (along the x-axis), the vertical difference
between the location of the “box” and the curve for shows the effect of
stratification. Compare this with the vertical difference between curves,
which marks the effect of increased number of traits. The comparison
shows that stratification has a small effect for reducing estimation un-
certainty relative to the effect of using more traits.
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reparameterized multinomial model described in this chapter. Firstly, one is likely

to observe a sparse contingency table, based on surveying the absence/presence of

multiple traits in a population, should the trait prevalences be low. This sparsity

poses a problem in MLE-based inference but not in Bayesian inference. Secondly,

with limited computational expertise, Bayesian inference is easier to implement

than the MLE for complex models are specified through standard distributions and

simple deterministic functions due to availability of many MCMC software pack-

ages. Lastly, while the Bayes estimator in theory agrees asymptotically with the

MLE as n→∞, in subject-area applications, a Bayes estimator may achieve a lower

level of uncertainty compared with the MLE when the use of informative priors can

be justified.

However, one recognizes the challenge to find an easy to implement, valid

joint-prior for a large set of parameters in a constrained space. The following para-

graphs outline some suggestions on an appropriate prior and its implementation.

The proposed prior is evaluated with a simulation study and is shown to have good

estimation properties (Appendix E).

The key requirement of a suitable prior is that it allows expert knowledge to

enter the analysis in a natural way. The set of parameters in the reparameterized

likelihood function is, according to Appendix C, ηηη = {θθθ ,N}. Rather than defin-

ing a prior π(θθθ ,N) multivariately, factorizing the joint-prior into smaller modules

results in a simpler implementation and is easier to interpret. Two factorizations

are considered: π(N)×π(θθθ |N) and π(θθθ)×π(N|θθθ). Substantive prior knowledge

of π(θθθ) is unlikely to exist because this requires knowledge of how the traits are

associated with each other and prior knowledge of every cell probability, and for

this reason the use of π(θθθ)×π(N|θθθ) is not pursued. On the other hand, knowl-

edge about π(N) is relatively easy to elicit from an expert in the form of perceived

natural limits to population sizes. Thus the formulation π(N)×π(θθθ |N) is a useful

choice for carrying out Bayesian inference.

In the case of data consisting of two binary traits (k = 2, l1 = l2 = 2), recall the

notations in Section 3.1.1. One possible formulation of the prior with factorization
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π(p11|N)×π(N) is to let

N ∼Uni f orm(L,U), (3.5)

p11|N ∼Uni f (0,bN), (3.6)

where L≥max(N·1,N1·,n), and U is the upper bound on the possible size of N re-

flecting the range of possible values a priori, bN = min(N·1/N,N1·/N) – the small-

est value appearing in the set of marginal probabilities. Further details on the exact

implementation of these priors can be found in Appendix D.

In the case of inference with three or more binary traits, once again, the nota-

tion ({θθθ ,N}), as given by Appendix C, is adopted for the set of parameters. Let

N ∼Uni f orm(L,U) with L,U defined as in the case of two binary traits. For the

parameter θθθ , a uniform prior prior is placed in the constrained parameter space

given N, that is, π(θ |N) = 1/VN . The quantity VN can be interpreted as the “vol-

ume” of the constraint space for θθθ defined by the inequalities 0 < pc < 1; here pc

is a cell probability and a function of parameters θθθ and N. Appendix D lists the

details for implementing this prior for inferring N with three binary traits.

3.4 Application: San Francisco Injection-Drug User
Study

A recent study using the multiplier method to infer the population size of San

Francisco Injection-Drug Users (IDUs) in 2009 had been documented in Johnston

et al. (2013). In this study, information about a number of traits, ranging from

service usages to disease diagnoses, were used to construct several estimates of

population size via the traditional multiplier method, without taking into account

correlation between traits. Note that a single Respondent-Driven Sampling (RDS)

survey was conducted that asked each respondent to self-report on all traits.

An illustration of the likelihood-based multi-trait multiplier method shall be

made with with two binary traits – usage of a particular substance use treatment

center (Walden House) and status of being a reported HIV case. Table 3.2 shows,

for each trait, the marginal count, the RDS adjusted prevalence estimate, and pop-

ulation size estimate made with the Multiplier Method. No respondent indicated
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Table 3.2: Marginal count and estimated prevalences of two traits in the IDU
population in San Francisco in 2009. The table also lists two estimates on
the size of IDU population obtained by applying the Multiplier Method
to each trait.

Trait Marginal Count p̂RDS s.e.(p̂RDS) N̂Multiplier 95% C.I.

Using Walden House 104 2% 0.008 5,200 1,003 - 9,398
Reported HIV cases 3,308 7.3% 0.017 45,315 24,576 - 66,057

to being a reported HIV case and also using Walden House, based on a personal

communication with the authors of Johnston et al. (2013).

3.4.1 Obtaining a Single Estimate of the Size of IDU Population
Using Two Traits

To estimate the population size of IDU population in San Francisco in 2009 (N)

with two traits, a contingency table that cross-classifies the survey data according to

usage of Walden House and reported HIV status is required, on top of the marginal

counts appearing in Table 3.2. However, pseudo-data, synthesized based on the

raw data with some adjustments, is used in place of a raw contingency table of the

RDS sample, to account for one unmet requirement that the survey be carried out

through SRSWOR. The RDS design differs from SRSWOR in having a selection

bias and a reduced efficiency; hence, two adjustments are built in to the pseudo-

data.

To adjust for bias in RDS sampling, unbiased RDS adjusted proportion esti-

mates is used to construct the pseudo-data. Let the answer to a survey question be

coded 1 for “yes” and 0 for “no”, and let p̂i jRDS indicate the RDS adjusted estimate

for the proportion of IDUs who answer i for using Walden House and answer j

for being a reported HIV case. Given that no respondents in the survey indicated

being both a reported HIV case and a user of Walden House, p̂00RDS must be zero

– the rest of the RDS-adjusted proportion estimates are calculated using this fact

together with the RDS-adjusted marginal prevalences in Table 3.2. Table 3.3 shows

the RDS adjusted sample proportions as per calculation.

To adjust for the RDS sampling being less efficient that SRSWOR, the effective

sample size (ESS) is used in constructing the pseudo-data. ESS represents the
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Table 3.3: RDS-adjusted proportions in the contingency table for IDU’s in
San Francisco in 2009.

Reported HIV case = no Reported HIV case = yes
Uses Walden House = no 90.7% 2%
Uses Walden House = yes 7.3% 0%

Table 3.4: Pseudo-data: adjusted contingency table for estimating the size of
IDU population in San Francisco in 2009 with the proposed method of
analysis.

Reported HIV case = no Reported HIV case = yes
Uses Walden House = no 245 5
Uses Walden House = yes 20 0

sample size required of a SRSWOR survey to yield the same estimation uncertainty

as the given RDS survey, and is defined (Kish, 1965) in the case of estimating a

proportion as

ESS =
n

De f f
=

n
(var(p̂)RDS/var(p̂)SRSWOR)

=
p(1− p)

var(p̂)RDS
. (3.7)

The ESS is estimated by substituting the RDS-adjusted prevalence estimate and its

standard error for each trait into Eq. (3.7). This results in two estimates of ESS,

234 and 306, that are similar in magnitude; an average value ( ˆESS = 270) is used

to construct the pseudo-data.

Finally, the pseudo-data consists of “cell counts”, n∗i j = ESS× p̂i jRDS , rounded

to the nearest whole number. The adjusted contingency table containing this pseudo-

data is shown Table 3.4.

A Bayesian approach is taken to infer the size of an IDU population in San

Francisco in 2009. Note that the presence of a 0 count in the pseudo-data poses

no difficulty for the use of Bayesian inference. Following the recommendations

in Section 3.3, a prior distribution where N ∼ Uni f (3308,1e10) and p11|N ∼
Uni f (0,104/N) is chosen to reflect the lack of prior knowledge about N, given the

marginal counts of 104 and 3308. The posterior distribution of logN is obtained via

Markov Chain Monte Carlo (MCMC) in the software JAGS. To set-up MCMC, the
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Table 3.5: Analysis of plausible scenarios with proposed method. Each row
contains hypoethetical pseudo-data that fit the required ESS and esti-
mated marginal prevalences (2% and 7.3%), followed by an estimated
population size based on analysing this pseudo-data.

n∗00;n∗01;n∗10;n∗11 N̂Bayes 95% CI

245; 5; 20; 0 38966 [27059, 58561]
246; 4; 19; 1 40511 [27843, 61688]
247; 3; 18; 2 42206 [28795, 64631]
248; 2; 17; 3 44078 [29828, 68462]
249; 1; 16; 4 46180 [30898, 72729]
250; 0; 15; 5 48430 [32023, 77213]

model-file appearing in Appendix D, the marginal counts and the pseudo contin-

gency table are supplied to the software. The MCMC is run for a total of 500,000

iterations and demonstrates good convergence. The population size is estimated

with N̂Bayes defined as the exponentiated posterior expectation of logN. The 95%

CI is obtained through exponentiating the HPD 95%CI for the posterior of logN.

Based on this analysis, the population size of IDU in San Francisco in 2009 was

38,966 people with a 95% CI of [27059, 58561].

3.4.2 Alternative Analysis with Marginal Prevalences Only

In the above application, extraneous information beyond what is readily available

in the published study is required in order to complete the analysis. However, there

is merit in considering the likelihood-based multi-trait multiplier method even if

only marginal prevalences and marginal counts are accessible, i.e. the information

contained in Table 3.2. To demonstrate, Table 3.5 lists, in each row, pseudo-data

with an ESS of 270 that fit the RDS-adjusted marginal prevalences of 7.3% and

2% along with an estimate of N made by analysing that pseudo-data with the repa-

rameterized likelihood method to combine multiple traits. One may contrast the

estimates in Table 3.5 with that of the original study in Table 3.2; by attempting the

analysis in a “what-if” approach, one may still obtain a sense of what combining

multiple traits says about N that is otherwise difficult to replicate with intuition and

marginal estimates alone.
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3.5 Discussion
This chapter outlines a likelihood based method for estimating population size,

N, based on extending the multiplier method to multiple traits. This is achieved

through reparameterizing the multinomial likelihood to incorporate N as a param-

eter. The statistical advantage of using additional traits, of varying association and

prevalence, is explored by comparing the asymptotic standard deviation of the es-

timator for N. This understanding of how different parameters affect the efficiency

is useful to subject-area experts for obtaining the desired precision on N through

a well-planned study design. One may find in Appendix B some suggestions re-

garding the approach to the design process. Figure 3.1 may also serve as a starting

point for visually extrapolating design values that provide the required estimation

precision.

In many applications, Bayesian inference presents important advantages over

maximum likelihood methods, for example when the observed data table contains

a 0 frequency or when prior knowledge exists. A joint prior outlined in this chapter

emphasizes considering the prior knowledge on population size marginally. One

may find in Appendix D details on how to obtain the posterior distribution in con-

venient MCMC software with the recommended prior. Appendix E documents

a simulation study which verifies the performance of estimating population size

using this recommended Bayesian approach.

An application of the multi-trait multiplier method is provided which estimates

the population size of IDUs in San Francisco in 2009, based on data published in

Johnston et al. (2013). The data requirement outlined in Section 3.1.1 is trans-

lated to this particular context. Note that, in practice, the survey data may require

adjustments as in this application when it is not collected through SRSWOR.

As mentioned in the introduction, this chapter addresses the gap in methodol-

ogy for combining multiple correlated estimates arising from the multiplier method.

Certainty one may approach this problem in other ways, e.g. by minimizing the

variance of linear combination of correlated estimators. A likelihood-based ap-

proach is chosen because not only does it accomplish the original task of com-

bining multiple estimates with asymptotically optimal properties, it also provides

an easy transition to the Bayesian framework. A likelihood approach further en-
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ables simple model extensions to deal with problems that arise with real data. As

an example, the concern of marginal counts being inexact was noted in (Johnston

et al., 2013). In this situation, the reparameterized likelihood model can be easily

extended to model population migration, or other mechanisms that causes uncer-

tainty in the marginal counts; the subsequent chapter addresses this issue in depth.
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Chapter 4

Uncertainty in Marginal Counts –
Accounting for Migration

This chapter presents a systematic approach to accounting for uncertainty in marginal

counts that result from population migration through the use of a migration model.

The migration mechanism is motivated by an application of the multiplier method

to data collected with the disease surveillance system employed by the British

Columbia Center for Disease Control (BCCDC) and the Public Health Agency of

Canada (PHAC). The model outlined in this chapter may be generalized to coun-

tries with a similar model of disease monitoring for extended applications.

Central to the problem of migration is the requirement of defining a “closed”

target population as the target of inference in the multiplier method. A closed

population (Lukacs, 2009), is one that is fixed in composition, with no migration,

births nor deaths. However, the composition of human populations is constantly

changing. Thus to achieve a truly closed population, one must consider the target

population at a single instance in time (target time) in a certain well-defined region

(target region). Thus, the two essential descriptors necessary to define a human

target population are geography and time.

The previous chapter demonstrated inference under the assumption that the

marginal counts are known exactly. As a reminder, a marginal count is the num-

ber of individual with a certain trait (marked individuals) in the target population.

However, in reality, data on the exact number of marked individuals in the target
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region at the exact target time is impossible to obtain, since collecting such data is

not instantaneous.

During the time between enrolling a marked individual in the record and the

target time, an individual is subject to migration. Should recorded individuals mi-

grate out of the target region before the target time without notifying the record

keeping agency, the records present an over-counting of actual marginal counts.

Similarly, should marked individuals who lived outside the target region migrate

into the region without being noted in the relevant record, the records produce an

under-counting of actual marginal counts. However, this nuance has been over-

looked in previous literature and no adjustment method has been proposed.

This problem was observed in a collaboration with the British Columbia Centre

for Disease Control (BCCDC) to infer the population size of Men-who-have-sex-

with-men (MSM) living in the Greater Vancouver Regional District (GVRD) at the

end of year 2008. In this application, the disease surveillance database, whose data

are collected over the years, appear initially as a source for tabulating “marginal

counts” for traits related to disease diagnosis. However, as individuals diagnosed

with diseases are not tracked over time in the Canadian disease surveillance system,

the surveillance data does not provide the actual marginal count at the target time.

While the true marginal count for a trait is not observed, fuzzy information on

the marginal count can be obtained if one is to make modelling assumptions. In

the following sections a simple model is outlined, followed by details on how to

integrate the migration model with the multiplier method via Bayesian inference.

This is followed by an application of the proposed model and inference to real data.

The chapter concludes with a discussion of the proposed method.

4.1 A Model for Migration
The proposed migration model contains two basic components, emigration and im-

migration. The unobserved marginal count is composed of individuals who stayed

in the region of interest until the target time, J, after a being recorded at a earlier

time j. The model simplifies the continuous time migration process into discrete

time process (with time indexed incrementally by integers). A limitation of the

proposed model is that it may be used with the single trait multiplier method, or
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multi-trait multiplier method with only one marginal count affected by migration.

Let

• Nt be the marginal count, i.e. number of marked individuals in the target

population, i.e. living in the target region at the target time,

• S j be the count of marked individuals who stay in the target region at the

target time after being listed in the record as residing in target region at time

j,

• I j be the count of marked individuals who immigrate to the target region

by the target time after being listed in the record as residing outside target

region at time j,

• D j be the count of marked individuals enlisted in the record as residing in

target region at time j,

• O j be the count of marked individuals enlisted in the record as residing out-

side target region at time j,

• ps be the probability that a marked individual residing in the target region at

time j stays in the target region at time j+1,

• pm be the probability that a marked individual residing outside the target

region at time j move in to the target region at time j+1.

A model, Mm for Nt is the following:

Nt = ∑
j

S j + I j (4.1)

S j ∼ Binomial(p(J− j)
s ,D j) (4.2)

I j ∼ Binomial(1− (1− pm)
(J− j),O j). (4.3)

The above model makes the following assumptions about migration:

1. Migration is a discrete time process.

2. The probabilities ps, pm that dictate the chance of staying/moving do not

vary with time.
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3. The probability of moving more than once is negligible.

4. An individual’s probability of being in the target population depends on a

binary residency descriptor (in the target region or not) at the time he/she

was enlisted in the records.

4.2 Combining the Migration Model with the Multiplier
Method

To infer N with uncertainty in one of the marginal counts with the migration model

Mm is to use the migration model as a prior for Nt in the likelihood-based multiplier

method of Chapter 3 in a Bayesian inference, creating a two-level combined model.

The parameters pm and ps in Mm are effectively hyper-parameters in the combined

model.

To infer N in the case of two binary traits, the reparameterized likelihood for

the survey data follows the parameterization based on the Section 3.1.1. Where Nt1

is affected by migration, the posterior distribution of the combined model is

f (p11,N,Nt1, pm, ps|data) ∝ f (data|p11,N,Nt1, pm, ps)× f (p11,N,Nt1, pm, ps).

(4.4)

An intuitive prior that allows a subject area expert to prioritize a-priori knowl-

edge on N over p11, can be obtained by factoring f (p11,N,Nt1, pm, ps) as f (p11|N,Nt1, pm, ps)×
f (N|Nt1, pm, ps)× f (Nt1|pm, ps)× f (pm|ps)× f (ps).

For example, one may choose the following:

• ps ∼Uni f orm(a,b), with a,b reflecting subject area knowledge

• pm|ps = pm ∼Uni f orm(c,d), with c,d reflecting subject area knowledge

• Nt1|pm, ps is the model Mm

• N|Nt1, pm, ps = N|Nt1 ∼Uni f orm(L,U), with L ≥ max(N·1,N1·,n) , and U

an upper bound on the possible size of N

• p11|N,Nt1, pm, ps = p11|N,Nt1∼Uni f orm(0,bN), wtih bN =min(N·1/N,N1·/N)
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Note that the above example highlights some important observations about in-

tegrating uncertainty on marginal count with performing the Bayesian inference

on N with the method in Chapter 3. Should Nt1 be given, the variables N, p11 do

not depend on the mechanism that determines Nt1. In this respect, the migration

model can be thought of as “standing-alone”. Therefore the prior on N, p11 can be

formulated according to Section 3.3, without consideration of migration.

4.3 Application: Estimating the Size of MSM Population
in GVRD

4.3.1 The Data

As a potential source of marginal counts, the British Columbia Centre for Disease

Control (BCCDC) monitors new diagnoses of sexually transmitted infections such

as HIV, syphilis, etc. Beginning in 2004, any first time diagnosis of either HIV or

Syphilis, a reportable disease, must be reported to the BCCDC. The surveillance

database also contains detailed demographic information, e.g. age, sex, residence,

etc., on each patient. As a potential source for the trait prevalence, the BCCDC also

has data from The ManCount Project (Moore et al., 2011), a survey undertaken to

understand the sexual health of MSM in Vancouver, Canada. The survey included

questions regarding time of an individual’s first diagnosis of HIV and Syphilis, if

any. This survey was conducted at the end of 2008 using Venue-Based Sampling

(VBS). The survey was restricted to MSM who were age 19 or older at the time

of the survey. The survey captures information regarding the sexual behaviour,

disease diagnosis, disease testing behavior, together with basic demographic infor-

mation (e.g. age, residence, etc.). A total of 1012 respondents from the Greater

Vancouver Regional District (GVRD) were surveyed.

An appropriate definition of the target population is “the population of MSM

above age 19 living in GVRD at the end of year 2008,” based on the information

contained in the data. Secondly, based on the above two sources, two traits of

interest are identified as the following:

• Trait 1: First diagnosis of HIV between 2004 and 2008.
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• Trait 2: First diagnosis of Syphilis in year 2008.

Based on the definition of the target population, a perfect marginal count for each

trait needs to be tabulated at the end year 2008. However, the BCCDC surveil-

lance database enrols people into the database at the time of their diagnosis with-

out tracking the location of these individuals after enrolment in database. As such,

the marginal count for trait 1 is suspected to be inaccurate as the oldest records are

from 2004 giving those individuals plenty of time to migrate out of GVRD. Further-

more, other provincial health agencies also do not report emigration of individuals

diagnosed in their provinces to BCCDC, such that anyone who was diagnosed in

another province but moved to GVRD by 2008 would not be present in the BCCDC

record. Epidemiologists agree that international migration does not seriously af-

fect marginal count for trait 1 due to stringent immigration rules surrounding HIV

infected individuals.

In order to model the effect of inter-provincial migration on the surveillance

counts, further data are needed. At a minimum, data on the number of new HIV

diagnosis within Canada each year is required. These data are readily available

from the Public Health Agency of Canada (PHAC), in publicly accessible reports

(Surveillance and Risk Assessment Division, Centre for Communicable Diseases

and Infection Control, 2010). This report also provides new HIV diagnoses strat-

ified by province. However, in the following model all outside-GVRD diagnoses

are aggregated to reduce model complexity. Further notes about this modelling

decision are given in the discussion.

4.3.2 Bayesian Inference

As in Section 4.2, the posterior distribution of model parameters is, f (p11,N,Nt1, pm, ps|data)∝

f (data|p11,N,Nt1, pm, ps)× f (p11,N,Nt1, pm, ps). To implement the reparametrized

likelihood with pre-defined distributions in popular MCMC software, e.g. JAGS,
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Table 4.1: Selected hyper-parameter values for parameters relating to migra-
tion

a b c d
Set 1 0.9 1 0 0.06
Set 2 0.978 1 0 0.004

it may be written as,

x∼Multinomial(p,n)

p10 = Nt1/N− p11

p01 = Nt2/N− p11

p00 = 1− p10− p01− p11.

The prior distribution is specified according to Section 4.2, with migration

hyper-parameters as in Table 4.1. Table 4.1 lists two sets of values. Hyper-

parameter values in Set 1 reflects a conservative (wide) prior upon consulting epi-

demiologists at BCCDC. Hyper-parameters in Set 2 are based on inter-provincial

migration statistics (BC Stats, 2009; Statistics Canada, Demography Division, 2013)

for the overall BC population, with the mean migration probability matching the

average migration proportion in 2004-2008 and upper cut-off extending to 1 for

ps and lower cut-off extending to 0 for pm. The prior for f (N|Nt1) is capped at

maximum of 270,000 which is roughly 30% of the adult male population in 2008

according to Statistics Canada.

Population size, N, is estimated based on the posterior distribution of its loga-

rithm, i.e. log(N), a standard practice for estimating variables that are necessarily

positive. The Bayes estimate, N̂Bayes, is defined as the exponentiated mean of the

posterior distribution for log(N). A 95% credibility interval (CI) for N is obtained

by exponentiating the end-points of the 95% HPD CI for log(N). Note that the

posterior is obtained with 50,000 MCMC runs in JAGS. A complete model file for

the model is found in Appendix F.
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Table 4.2: Result from inferring size of MSM population with the combined
model

migration (parameter set 1) migration (parameter set 2)
N̂Bayes +22% no change

95%CI N̂Bayes +32% no change
mean(Nt1) +27% no change

length C.I.(Nt1) 500 people 60 people

4.3.3 Result

Due to confidentiality, the exact estimate on the size of MSM population in 2008

cannot be disclosed in this thesis. Detailed results are planned for publication in

an epidemiology journal in the near future. Nevertheless, the difference in key

quantities between inference with migration versus without migration are provided

in Table 4.2.

By using migration hyper-parameter set 1 (see Table 4.1), which is a conser-

vative (wide) prior, migration resulted in a large amount of uncertainty on Nt1,

with 95% CI range of 500 people. Both the estimate of N and its standard er-

ror increased by a large percentage (+22% and +32%). Using the second set of

hyper-parameters, a tight prior, in the migration model resulted in a range for 95%

CI for the unobserved Nt1 of about 60 people. This uncertainty, however, had a

negligible effect on the population size estimate and its standard error. Though

not displayed due to confidentiality, both sets of hyper-parameters resulted in the

confidence interval for N̂Bayes after adjusting for migration overlapping with the CI

without adjusting for migration, indicating no large inconsistency in estimating N

without accounting for migration and versus accounting for migration.

4.4 Discussion
This chapter introduced a migration model in attempt to systematically capture

the uncertainty in marginal count data due to migration. The model can be easily

integrated with the multi-trait multiplier method of Chapter 3 under a Bayesian

framework. The Bayesian analysis is demonstrated with an example to estimate

the population size of MSM in GVRD in 2008 with data hosted by the BCCDC. In
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this application extra data from outside the region are required, but these extra data

are easily found using the data from Canada wide disease surveillance database.

Section 4.1 noted four important assumptions in the proposed migration model.

Firstly, the proposed model describes migration in discrete time steps. While re-

ducing the length of each time-step may increase the resemblance of the discrete

time model to one of continuous time, there are disadvantages. As the time-interval

decreases, the probabilities ps and pm may become too small for epidemiologists

to formulate an appropriate prior for them. Furthermore, there is an advantage

in using a time-interval based on a natural time division in human activities, e.g.

monthly or yearly. In many organizations records are summarized periodically by

the year, or by the month so that supplementary data may be easily acquired. In

the exemplary application, by using time-steps by the year, inter-provincial migra-

tion statistics (BC Stats, 2009) can be used to derive a suitable prior for ps and pm.

However, the need to explore trade off between model fit and ease of implementa-

tion due to varying time-interval length remains.

Secondly, the model assumes ps and pm as invariant in time. This allows a

greater degree of parsimony. This assumption can be empirically validated in the

case of the example application. One may obtain, again, from the inter-provincial

migration statistics the proportion of people leaving and entering BC each year; this

number is roughly the same over the period of 2004-2008 so there is no good reason

to suspect the necessity of time-varying parameters. Furthermore, as the proportion

of overall inter-provincial migration in Canada is small (BC Stats, 2009; Statis-

tics Canada, Demography Division, 2013), the assumption regarding the chance of

moving more than once as negligible is likely adequate.

Lastly, in this model, the only “covariate” that influences the probability of

migration is the binary indicator of a person being in the target region or not at the

time enlisted in the records. This is again a simplification of migration mechanism

for 1) parsimony, and 2) the ease of generating prior information. In the context of

the example application, data on migration into and out of BC exist, but these data

stratified by the province from which an immigrant comes from are not publicly

accessible. As such, a complicated model which incorporate finer geographical

information may be difficult to implement due to the lack of prior information

on ps and pm for small regions. On a similar note, other covariates (e.g. age,
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ethnicity, etc.) may also have an important role in the probability of migration, but

as such information is not well documented in migration records in Canada, prior

knowledge on migration with respect to any combination of covariates would be

extremely difficult to obtain.

In the application, two sets of hyper-parameter values were tested with results

shown in Table 4.2. The choice of hyper-parameter values has a significant effect

on how much uncertainty is place on the unobserved Nt1. Based on the two test

cases, increased uncertainty on Nt1 translates into uncertainty about N̂, but when

the uncertainty about Nt1 is small, the amount of uncertainty surrounding N̂ may

not be affected at all. The two sets of scenarios tested represent very extreme

cases; one likely ought to adjust the final hyper-parameter choice to be somewhere

in between the values used in the two sets. According to the collaborators, the

GVRD is attractive to MSM due to lifestyle and the quality of care for STI diag-

nosed individuals, such that an influx of MSM over time to GVRD is a reasonable

expectation.

Finally, the chapter has not included any validation of the migration model, nor

comparison with the ad-hoc method to account for uncertainty in marginal count.

The method described here also is also suitable for when only one marginal count

is affected by migration. These shortcomings will hopefully be addressed in future

work.
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Chapter 5

Conclusions

This thesis has highlighted two important improvements on the multiplier method.

Firstly, a likelihood-based method is presented to incorporate information from

multiple traits for a widely practised data collection scheme. This likelihood-based

extension not only enables the multiplier method to use data from multiple traits

simultaneously, but also allows the use of categorical traits should one desire. In

addition, the exploration on the effect of study design on inference precision (Sec-

tion 3.2 and Appendix B) enables the prediction of inference precision associated

with choices made in study design, such that resources may be spent in a pre-

dictable way.

Secondly, Chapter 4 is the first body of work to account for uncertainty in

the marginal count data based on an explicitly formulated migration model. An

explicit specification of the migration model allows distributional parameters to

be chosen or critiqued based on publicly available data, as in the application in

Section 4.3. This model can be conveniently integrated into the likelihood-model

presented in Chapter 3 under a Bayesian framework. Furthermore, an implemen-

tation of Bayesian inference is also outlined which may be carried out in freely

available MCMC software.

As final remarks, this work is by no means a comprehensive solution that covers

every problem with the multiplier method. The method in Chapter 3 is is tailored

to the data collection scheme where a single survey queries multiple traits. While

this particular data collection scheme is the only one employed at the moment,
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when new data collection designs surface in the public health system, develop-

ment of new statistical methods to infer population size will be necessary. Also,

the migration model in Chapter 4 falls under what is completely model-based in-

ference, where model misspecification could seriously undermine the estimation.

Thus, work to examine the robustness of the migration model is prioritized for the

immediate future. Future work may also include validating the practicality of the

migration model, and comparison with previous methods to capturing uncertainty

in the marginal counts.
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Appendix A

On the Inappropriateness of
Using Capture-Recapture
Inspired Methodology to Analyse
Data for the Multiplier Method

The following discussion is restricted to applying the multiplier method with at

least two traits. Recall that in the multiplier method, one has data on the exact

number of people in the target population with a trait for t traits, and a survey

querying the status of all t traits in a sample of the target population. One may

be inclined to draw parallels between the formation of a trait with “capturing and

tagging” individuals in the target population which forms the basis of capture-

recapture type inference. Should one take this view, data on t marginal counts gives

rise to t “lists” in capture-recapture terminology, Lm1 , . . . ,Lmt . However, unlike true

capture-recapture, individuals cannot be matched at all across these first t lists, due

to privacy regulations.

The survey component of data for multiplier method gives rise to another list,

Ls, of individuals sampled from the target population. By design, survey respon-

dents self-report on t traits for which marginal counts are available. This means

only for members of Ls can their membership in Lm1 , . . . ,Lmt be ascertained. Thus
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Table A.1: Comparison of observable statistics from a two trait multiplier
method study to a true three list capture-recapture study. N000 is never
observable even in true capture-recapture designs.

Observable summary statistics for capture-recapture analysis
N000 N001 N010 N011 N100 N101 N110 N111

data from
multiplier-
method study

X X X X X X X X

data from
true capture-
recapture study

X X X X X X X X

data for the multiplier method, when cast under the “capture-recapture” framework,

produces t +1 lists with some unmatchable member. Table A.1 illustrates the criti-

cal information missing from casting a two trait multiplier method study in a three

list capture-recapture analysis. While connections between capture-recapture and

multiplier method likely exists, the following paragraphs emphasize the limitations

of forcing capture-recapture analysis on multi-trait multiplier method data.

Capture-recapture methodologies for lists with unmatchable members are under-

developed for application in epidemiology. Sutherland (2003) argues that classical

models motivated by ecological applications for lists with unmatchable members

are unsuitable given the mechanism in epidemiology. A method motivated by epi-

demiological applications is described in Sutherland (2003) for two-list capture-

recapture. However without extension to multi-list this method cannot be applied

to the problem at hand.

Furthermore, key assumptions in analysis tailored for capture-recapture ex-

periments cannot be justified in the multiplier data. A fundamental flaw is the

requirement that any person in the target population must have non-zero proba-

bility of being on any list (Chao et al., 2001). Say for example, that one of the

traits is “positive diagnosis of HIV.” Given the epidemiological practice of using

confirmatory testing to eliminate false positives, people without the HIV virus are

surely excluded from the list of people diagnosed with HIV. According to Chao

et al. (2001), an epidemiologist must modify the definition of the target population

to exclude those with zero probability of being jointly captured in all lists. How-

42



ever, in the example of using HIV diagnosis as one of the traits, this advice leads

to exclusion of the majority of the intended target population as HIV prevalence

is expected to be low - rendering the inference useless in practice. Furthermore,

given the wide variety of traits that can be employed in the multiplier method, e.g.,

disease diagnosis, service usage, etc., it is difficult for epidemiologists to justify

choosing any particular structure for dependencies between traits when employ-

ing either the ecological or log-linear models of capture-recapture. While Chao

et al. (2001) note a third category of analysis in capture-recapture, the “sample

coverage” approach, which bypasses this requirement, this method does rely on an

untestable assumption.

A second type of analysis – known as “capture-recapture without recapture”

(Carroll and Lombard, 1985; Olkin et al., 1981) – does not require cross-identification

of subjects across lists. However, these methods makes a key assumption that

the probability of members of the target population appearing on a list being the

same across lists, which does not apply to the data at hand. Furthermore, this type

of analysis assumes equal catchability of all members and having no uncatchable

members, which, similar to classical capture-recapture. These assumptions are are

unwarranted in the epidemiology data used in the multiplier method for the reasons

given in the previous paragraph.

In contrast, the reparameterized likelihood multiplier method of Chapter 3 does

not share the above concerns of capture-recapture due to having been truly moti-

vated by the data at hand. An analogy of the reparameterized likelihood method

is drawing marbles out of a bag where one observes each marble having up to t

types of markings (traits), conditional on the number of each type of marking in

the bag being known exactly. The only assumptions required, besides having a

closed-population, is that the survey be a representative probability survey of the

target population.
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Appendix B

Bench-Marking with
Equi-Correlation and
Equi-Prevalence for the General
Case

In Section 3.2, the relationship between estimation uncertainty and properties of

the traits being used was explored under equi-prevalence and equi-correlation sce-

narios only. However, intuition suggests that the observed behaviour of estimation

uncertainty may be extrapolated to apply more generally. In this section, this intu-

ition is verified by showing that the performance in general falls between bench-

marking numbers generated under the equi-correlation, equi-prevalence restriction.

This is done via a Monte Carlo simulation.

The simulation is restricted to study designs with between 3 to 5 binary traits,

each with 100 test cases. To generate a random case of k binary traits, qqq, a k di-

mensional vector of marginal prevalences is sampled one dimension at a time from

Uni f orm(0, pmax), and ρρρ , representing
(k

2

)
correlation parameters is sampled from

Uni f (0,1) one dimension at a time. This selected case is mapped to cell prob-

abilities by using the cumulative distribution for a k-variate Normal distribution,

MV Nk(0,Σ), with a vector of cut-points which correspond to marginal trait preva-
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lences qqq. The diagonal elements of Σ are equal to 1, and off-diagonal elements

of Σ are set as randomly selected correlations ρρρ . The cut-points are the desired

trait prevalences are specified through. The matrix Σ is confirmed to be positive-

definite, otherwise ρρρ is re-drawn.

The estimation uncertainty for this randomly generated set of traits is calculated

upon obtaining the contingency table. Three bench-marks for this uncertainty are

investigated: bl , bm, bu. Each benchmark is obtained from a set of k traits of equi-

correlation and equi-prevalence for which the correlation is a function of ρρρ , and

prevalence is a function of qqq. The first benchmark, bl , uses max(qqq) and min(ρρρ) for

prevalence and correlation. The second, bm, uses avg(qqq) and avg(ρρρ) for prevalence

and correlation, Lastly, bu uses min(qqq) and max(ρρρ) for prevalence and correlation.

The result of the study shows that the estimator uncertainty arising from a

general set of traits is always bounded by the maximum and minimum of the 3

benchmarks. The result from this simulation study is visualized in Figure B.1. In

particular, bm appear to be highly predictive of the actual estimator error. This

property suggests only the a priori knowledge on the average prevalence and aver-

age correlation is required of an subject-area expert to produce good predictions of

the study precision.
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Figure B.1: The case of unequal association and unequal prevalence. Solid-
circles in the plot represent the actual estimation uncertainty for each
randomly selected test-scenario. Each circle is accompanied by a verti-
cal line extending from the lower bench-mark (bl) to the upper bench-
mark (bu). Each vertical line is accompanied by a tick-mark which lo-
cate the middle bench-mark (bm). Each bench-mark is obtained with the
assumption of equi-correlation (chosen to be a function of

(K
2

)
original

correlations) and equi-prevalence (chosen to be a function of K original
prevalences). One observes that the actual estimator error is always less
than bu. This suggests an a priori knowledge of the maximum plausible
correlation and minimum plausible prevalence will lead to a conserva-
tive prediction of the estimation uncertainty. However, in some cases,
this usage may be overly conservative. Instead, bm appears highly pre-
dictive of the actual estimation uncertainty which suggests the use of
average prevalence and average correlation in study design.
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Appendix C

Deriving the Fisher Information

C.1 Notations
In this section some new notations are defined for describing k traits building on

those appearing in Section 2.3 of the main body . Let xxx be a vector which denotes

the statuses of k traits, xxx = (x1, . . . ,xk). Next, viewing the k traits as forming a

multi-dimensional contingency table, let C denote the number of cells in this con-

tingency table, C =
K
∏
i=1

li. Intuitively, each cell in the contingency table corresponds

to a unique combination of the status of k traits, i.e. there exist a 1-1 function g

which maps xxx to cell index, c. In this thesis the following mapping is followed:

c = g(xxx) = 1+ x1 + l1x2 + l1l2x3 + . . .+

(
k−1

∏
i=1

li

)
xk (C.1)

It is easy to see that cell indexing begins from 1, and that cell 1 corresponds to the

situation where all k traits are of status 0 – an absence of every trait. Using g, a

new random variable Z = g(XXX) is defined, and it is interpreted as the multinomial

variable indicating the cell in the k dimensional table a sampled individual falls

under. Let ppp = (p1, . . . , pC) be the cell probabilities that govern the frequencies in

the k dimensional table, i.e., pc = Pr[Z = c]. Lastly, define xxx(c) = g−1(c) which

returns the combination of the k statuses that correspond to cell c.
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C.2 Defining a Reparameterization for the Cell
Probabilities

The reparameterization of a particular cell probability pc, c ∈ {1, . . . ,C}, depends

on the combination of trait statuses given by xxx(c). Because this systematic ap-

proach to reparameterization relies on expressing the cells that correspond to 1 or

less traits being present as a function of the rest of the probabilities, the following

sets of cell indices are defined to help express this mapping:

• S = {1, . . . ,C}: the complete set of possible index numbers

• A =

{
c :

k
∑

i=1
I [xxx(c)i > 0] = 1

}
: the index of the cells that correspond to trait

combinations where only one trait is non-zero

• B = S \ (A ∪{1}): the index of the cells that correspond to trait combina-

tions where more than one trait is non-zero

Secondly, the cell probabilities that do not need reparameterizing are defined

as identity mapped to a vector θθθ . The elements of θθθ are part of the parameters in

the reparameterized likelihood.

Next the function h is defined, such that pc = h(θθθ ,N,MMM,c):

pc =



θc if c ∈B
k
∑

i=1

li−1
∑

s=1
I [xxx(c)i = s]

(
Mis

N
− ∑

m∈B
θmI [xxx(m)i = xxx(c)i]

)
if c ∈A

1−
k
∑

i=1

li−1
∑

s=1

Mis

N
+ ∑

m∈B
θm

(
k
∑
j=1
I [xxx(m) j > 0]−1

)
if c = 1

(C.2)

Note that θθθ = {θc : c ∈B}. This means the size of θθθ is |B|, and θc is named

with indices that identify to which pc it is identity mapped, which also identify the

unique combination of k trait values it represents.

C.3 The Fisher Information
Using the multinomial likelihood approximation for simple random sampling with-

out replacement from a large population, a likelihood model for the survey data is:
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log f (Z1, . . . ,Zn) =
C
∑

c=1

(
n
∑

i=1
I [Zi = c]

)
log pc. Here pc is used for simplicity but it

is understood to be a function of θθθ , N, MMM and c as in Equation (C.2). Note that MMM

is known in this case.

To obtain the Fisher Information with respect to vector of parameters ηηη =

{θθθ ,N} of length |B|+1, let

A =


∂ p1

∂θ1
· · · ∂ p1

∂N
...

. . .
...

∂ pC

∂θ1
· · · ∂ pC

∂N

 .

As is standard for multinomial models, it is hereby stated without proof the form

of the Fisher information matrix:

I = EZ

[
Atdiag

(
I [Z = 1]

p2
1

, . . . ,
I [Z =C]

p2
C

)
A
]

= Atdiag
(

1
p1

, . . . ,
1
pC

)
A

C.4 Examining the Effect of Changing N on Var(N̂MLE)

Assuming each person is sampled independently, the variance-covariance matrix

VCOV (η̂ηηMLE)≈ I−1
1 /n, where I−1

1 is the inverse of the Fisher Information for one

sample. The variance component of interest is given as Var(N̂MLE)≈ (I−1
1 )N,N/n.

In the last section, it was shown that I = Atdiag
(

1
p1

, . . . ,
1
pC

)
A. In order to

examine the effect of increasing N on Var(N̂MLE), while keeping all other param-

eters the same, an expression for I−1 that isolates out all appearances of N in the

expression is desired. Let qis = Mis/N be the marginal prevalence of a trait, where

i ∈ {1, . . . ,k} ,s ∈ {1, . . . , li−1}. Note that qis is kept constant.

In the matrix of partial derivatives, A, according to the parameterization of pc

in Eqn. (C.2),
∂ pc

∂θl
does not contain N no matter which c or l. As for the elements
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∂ pc

∂N
in the matrix A, the partial derivatives are:

∂ pc

∂N
=


0 if c ∈B

−
k
∑

i=1

li−1
∑

s=1
I [xxx(c)i = s]

(qis

N

)
if c ∈A

k
∑

i=1

li−1
∑

s=1

qis

N
if c = 1

∝
1
N

With the above knowledge I may be factored into the following matrix sub-

blocks:

I =

[
B1

1
N B2

1
N Bt

2
1

N2 B3

]

where sub-block B1 is of dimension (|B|× |B|), B2 is of dimension (|B|×1) and

B3 of dimension (1×1).

Using the block inversion matrix formula, the element (I−1)(N,N) = ( 1
N2 B3−

1
N Bt

2×B1× 1
N B2)

−1 ∝ N2. Hence asymptotically, Var(N̂MLE)∝ N2, and SD(N̂MLE)∝

N. �
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Appendix D

Implementing Bayesian Inference

This appendix outlines the details regarding implementing Bayesian inference ap-

pearing in Section 3.3 of the main body with Markov Chain Monte Carlo (MCMC)

in the software package OpenBUGS.

D.1 Model Specification for Inferring N with
Information from Two Traits

In the case that inference is carried out with information from two traits, the spec-

ification of the reparameterized likelihood and priors can be done with built-in

distribution functions in OpenBUGS. In this case the chain for logN is directly

generated by OpenBUGS and inference from MCMC can be performed with the

coda() package in R. Please see the following for the model file:

#uninformative (Uniform prior) #logN

#requires x, n, Marg1, Marg2

# U is the upper limit ...

model{

logN <- log(N)

x ˜ dmulti(pi, n)

pi[1] <- p00

pi[2] <- p01
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pi[3] <- p10

pi[4] <- p11

p00 <- 1-p01-p10-p11

p01 <- Marg2/N - p11

p10 <- Marg1/N - p11

p11 ˜ dunif(0, min(Marg1/N, Marg2/N))

N ˜ dunif(max(n,Marg1,Marg2),U)

}

D.2 Model Specification for Inferring N with
Information from Three Traits

In the main body, an argument was presented for preferring a prior of the form

π(N)× π(θθθ |N). However, specifying a joint prior in a convenient MCMC soft-

ware (e.g. OpenBUGS) of the form π(N)×π(θθθ |N) in the case of K > 2 traits is

non-trivial. This is because the sampled θθθ vector must satisfy marginal probabili-

ties (constraints) given N, which will likely involve custom distribution functions

and MCMC samplers. A simple work-around is to first obtain the posterior MCMC

chains under a “convenience prior”, π(θθθ)×π(N|θθθ), then post-process these chains

with importance sampling to represent the actual posterior distribution. This ap-

proach simplifies the sampling because the convenience prior involves a uncon-

strained multivariate distribution, π(θθθ), and a constrained univariate distribution,

π(N|θθθ). Constraints on univariate distributions are readily implemented in most

convenient MCMC software. The convenience prior chosen for this simulation

consists of π(θθθ) taken to be the first |θθθ | dimensions of a Dirichlet(ααα) distribution,

and π(N|θθθ) ∼Uni f orm(Lθθθ ,Uθθθ ) with Lθθθ ,Uθθθ being the upper and lower limits as

determined by θθθ , based on the constraints that 0 < pc < 1 for all pc a function of

θθθ ,N (i.e. Equation C.2).

Let g′(N,θ) be the posterior density under the convenience prior, and g(N,θ)

be the posterior density up to a proportionality constant, i.e. without the normaliza-

tion constant. Let f ′(N,θ) be the actual posterior density, and f (N,θ) the actual

posterior density up to a proportionality constant. An importance sampling esti-

mate of the posterior expected value of a function of parameters h(N,θθθ), based on
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a MCMC chain of length T , is E f ′ [h(N,θθθ)]≈ h̃T where

h̃T =

1
T

T
∑

t=1

[
h(N(t),θθθ (t)) f (N(t),θθθ (t))

g(N(t),θθθ (t))

]
1
T

T
∑

i=1

[
f (N(t),θθθ (t))

g(N(t),θθθ (t))

]

f (N(t),θθθ (t)) =
1

U−L
1

VN(t)
π(data|p,N)

g(N(t),θθθ (t)) =

(
|θθθ |
∏
j=1

(θ
(t)
j )α j−1

)(
1−

|θθθ |
∑
j=1

θ
(t)
j

)α|θθθ |+1−1

B(ααα)

1
U

θθθ
(t)−L

θθθ
(t)

π(data|p,N)

The above re-weighting of the MCMC samples can be carried out completely

in R, by using the R packages geometry and rcdd to obtain the approximate

“volume” of the constraint space, VN , for a given sample of N. To obtain the per-

formance measures appearing in Table 2 in the main body with importance sam-

pling, let h1(N,θθθ) = logN and h2(N,θθθ) = (logN)2 which gives the 1st and 2nd

moment of logN, and let h3(N,θθθ) = I[logN < t] for obtaining the equal tailed

95% credibility interval for logN.

The model file for obtaining the posterior MCMC chain under the convenience

prior is provided below:

#uninformative (Uniform prior) -> f(pi)f(N|pi)

#requires x, n, Marg1, Marg2, Marg3, alpha

model{

logN <- log(N)

x[1:8] ˜ dmulti(pp[1:8], n)

pp[1] <- 1- sum(pp[2:8])

pp[2] <- Marg1/N - a-b-d

pp[3] <- Marg2/N - a-c-d
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pp[4] <- a

pp[5] <- Marg3/N - b-c-d

pp[6] <- b

pp[7] <- c

pp[8] <- d

theta[1:5]˜ ddirich(alpha[1:5]) # let alpha be c(1,1,1,1,4)

a <- theta[1]

b <- theta[2]

c <- theta[3]

d <- theta[4]

U2 <- Marg1/(a+b+d)

U3 <- Marg2/(a+c+d)

U4 <- Marg3/(b+c+d)

U1 <- (Marg1+Marg2+Marg3)/(a+b+c+2*d)

L2 <- Marg1/(1+a+b+d)

L3 <- Marg2/(1+a+c+d)

L4 <- Marg3/(1+b+c+d)

L1 <- (Marg1+Marg2+Marg3)/(1+a+b+c+2*d)

#specify new prior for N|p

dummy <- 0

dummy ˜ dloglik(phi)

phi <- log(S) #logLik of N

N ˜ dflat()

S <- step(UpperLim- N)*step(N- LowerLim)*Y/Z

Z <- UpperLim-LowerLim

#define some vars

#check to make sure the upper limit > lower limit

Y <- step(UpperLim-LowerLim)
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LowerLim <- max(n,max(L1,max(L2,max(L3,L4))))

UpperLim <- min(U1,max(U2,max(U3,U4)))

}
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Appendix E

Properties of the Bayesian
Estimator using Multiple Traits
with the Multiplier Method – a
Simulation Study

The purpose of this simulation study is twofold – to demonstrate that Bayesian in-

ference, in terms of estimation uncertainty, performs similarly to the MLE with the

use of an uninformative prior, and outperforms the MLE with the use of an informa-

tive prior. For each selected scenario, a random sample of size n from is drawn from

a simulated population B = 1000 times. With each sample of size n, Bayesian in-

ference is obtained from logN with ˆlogNBayes =E[logN|Data] and SD[logN|Data]

playing the role of standard error. The estimator error, SD( ˆlogNBayes), is numeri-

cally approximated with the standard deviation of B values of ˆlogNBayes.

In the summary of results,
( ˆlogNBayes

)
= 1/B∑

B
i=1( ˆlogNBayes)i is provided

to assess bias, SD( ˆlogNBayes) is listed alongside SD( ˆlogNMLE) for comparison,

SD [logN|Data] = 1/B
B
∑

i=1
SD[logN|Data]i is provided to assess the quality of us-

ing SD[logN|Data] as an substitute for estimator standard deviation- a leap of faith

that is necessary in real applications. The coverage probability from equal-tailed

95% credibility interval is also presented as a indication of the performance of
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finite-sample inference.

E.1 Simulation Results
Table E.1 summarises the performance of the Bayes estimator in select hypothetical

populations. Comparing ˆlogNBayes with logN gives an approximation of bias. Note

that in all cases the numerically obtained bias indicates a multiplicative bias of a

few percent on the scale of N.

The standard deviation of the Bayes estimator is numerically approximated by

SD
( ˆlogNBayes

)
. A comparison of the standard deviation of the Bayes estimator that

uses an uninformative prior with the theoretical asymptotic standard deviation of

the MLE reveals close agreement. This gives us confidence in the results obtained

from the theoretical exploration in previous sections. Furthermore, empirically, a

gain in efficiency is observed with the use of informative priors, as seen in the top

half and bottom half of Table E.1.

In practice, the posterior standard deviation of log(N) plays the role of standard

error. From Table E.1, the standard deviation of posterior density, SD [logN|Data],

on average agrees with the standard deviation of the Bayes estimator. Furthermore,

the equal-tailed 95% credibility interval provides good coverage probability. Over-

all, this simulation has demonstrated many good properties that support the use

of Bayesian inference with the proposed reparameterized multinomial likelihood

(Chapter 3) to infer population size.
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Table E.1: Performance of Bayesian inference under select populations and prior distributions

Description of Population Prior distribution logN
(

ˆlogNBayes

)
SD
( ˆlogNMLE

)
SD
(

ˆlogNBayes

)
SD [logN|Data] coverage prob.

N = 20000, p = 0.05, uninformative:
9.903 9.869 0.218 0.21 0.221 0.95

n = 200, k = 2, φ = 0 ∼Uniform(L, 1e6)
N = 20000, p = 0.05, informative:

9.903 9.83 0.218 0.159 0.191 0.958
n = 200, k = 2, φ = 0 ∼Uniform(L, 30000)
N = 40000, p = 0.1, uninformative:

10.597 10.588 0.077 0.075 0.079 0.96
n = 500, k = 3, φ = 0 ∼Uniform(L, 1e6)
N = 40000, p = 0.1, informative:

10.597 10.584 0.077 0.069 0.076 0.964
n = 500, k = 3, φ = 0 ∼Uniform(L, 50000)
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Appendix F

JAGS Model File for Combined
Modelling of Migration and
Multiple Trait Multiplier Method

#in JAGS syntax

model{

logN <- log(N)

x ˜ dmulti(pi, n)

pi[1] <- p00

pi[2] <- p01

pi[3] <- p10

pi[4] <- p11

p00 <- 1-p01-p10-p11

p01 <- N_t2/N - p11

p10 <- N_t1/N - p11

#prior

p11 ˜ dunif(0, min(N_t1/N, N_t2/N))

N ˜ dunif(max(n,N_t1,N_t2),270000)

N_t1 <- sum(S) + sum(I)
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S[1] ˜ dbin(p_sˆ4, D[1])

S[2] ˜ dbin(p_sˆ3, D[2])

S[3] ˜ dbin(p_sˆ2,D[3])

S[4] ˜ dbin(p_s, D[4])

S[5] <- D[5] # S[j], where j = 5 represent year 2008

I[1] ˜ dbin( 1- (1-p_m)ˆ4, O[1])

I[2] ˜ dbin( 1- (1-p_m)ˆ3, O[2])

I[3] ˜ dbin( 1- (1-p_m)ˆ2, O[3])

I[4] ˜ dbin( 1- (1-p_m), O[4])

I[5] = 0

## hyper prior

p_m ˜ dunif(0,0.06)

p_s ˜ dunif(0.9,1)

}
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