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Abstract

This dissertation addresses two topics in the domain of operations manage-
ment. First we study a single utility’s optimal policies under the Renewable
Portfolio Standard, which requires it to supply a certain percentage of its
energy from renewable resources. The utility demonstrates its compliance
by holding a sufficient amount of Renewable Energy Certificates (RECs) at
the end of each year. The utility’s problem is formulated as a stochastic dy-
namic program. The problem of determining the optimal purchasing policies
under stochastic demand is examined when two energy options, renewable
or regular, are available, with different prices. Meanwhile, the utility can
buy or sell RECs in any period before the end of the horizon in an outside
REC market. Both the electricity prices and REC prices are stochastic. We
find that the optimal trading policy in the REC market is a target inter-
val policy. Sufficient conditions are obtained to show when it is optimal to
purchase only one kind of renewable energy and regular energy, and others
to show when it is optimal to purchase both of them. Explicit formulas are
derived for the optimal purchasing quantities in each case.

In the second essay, we examine the interaction between a buyer (Orig-
inal Equipment Manufacturer, OEM) and his supplier during new product
development. A “white box” relationship is assumed: the OEM designs the
specification of the product and outsources the production to his supplier.
The supplier may suggest potential specification problems. Our research is
motivated by the fact that the supplier may detect potential specification
problems, and one cannot take for granted that the supplier would inform
the OEM. We solve an optimization problem from the perspective of the
OEM. We first prove that it is strictly better for the OEM to design the
contract so that the supplier will inform the OEM should she detects any
flaws. Then we characterize the optimal solutions for the OEM. We also
perform some sensitivity analysis at the end.
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Chapter 1

Introduction

This dissertation presents two essays, each contributing to the fields of oper-
ations management by attempting to mitigate a gap identified in academic
literature.

The first essay examines a newly initiated mechanism on renewable
energy in the United States, known as the Renewable Portfolio Standard
(RPS). The mechanism requires each obligated utility to supply a certain
percentage of their energy from renewable resources. Different states may
have different percentage levels, and the percentage levels will increase over
time. For example, in California, the percentage level was 20% annually
since 2012, and will be raised up to 25% starting from 2016, and eventually
33% starting from 2020 (Wiser and Barbose, 2008).

The RPS mechanism is similar to the cap-and trade program, which
has been widely studied in operations management literature. The way
for utilities to demonstrate their compliance is by holding Renewable En-
ergy Certificates (REC). An REC is given to energy generators for every
megawatt hour of renewable energy they generate. Utilities have the option
of purchasing these RECs with or without the renewable energy that they
came from. At the end of each year, the utilities with shortage in RECs
are charged a penalty cost of $50 -$55 per unit of RECs they are short on
(Wiser and Barbose, 2008).

Since RECs can be traded separately from the underlying energy, an
REC market has been formed, where RECs can be sold or purchased. The
trading is often private, and the trading price of RECs can vary widely over
time and region. Utilities may trade in the REC market to speculate or
hedge against the price volatility.

We study a single utility’s optimal policies under the RPS. The utility’s
problem is formulated as a stochastic dynamic program. The problem of
determining the optimal purchasing policies under stochastic demand is ex-

1



Chapter 1. Introduction

amined when two energy options, renewable or regular, are available, with
different prices. Meanwhile, the utility can buy or sell RECs in any period
before the end of the horizon in an outside REC market. Both the electric-
ity prices and REC prices are stochastic. We find that the optimal trading
policy in the REC market is a target interval policy. Some sufficient condi-
tions are obtained to show when it is optimal to purchase only one kind of
renewable energy and regular energy, and others to show when it is optimal
to purchase both of them. Explicit formulas are derived for the optimal
purchasing quantities in each case.

This paper will be the first one investigating the RPS in OM literature.
In general, this paper will be the first one to examine the policy from the
perspective of a utility. This may have to do with the fact that the RPS is a
newly initiated program, and many states did not start their initial compli-
ance year until 2010. Most of the existing literature is from economics and
focuses on the efficacy of the RPS.

Our interest is not to discuss the efficacy of the RPS. The RPS has been
rapidly expanding with increasing percentage requirements, and the very
urgent question for those obligated utilities is how to deal with it. We feel it
is needed to untangle the trade-offs in choosing energy sources and provide
guidelines for utilities to comply with the RPS with minimum cost.

The second essay studies the interaction between a buyer (Original Equip-
ment Manufacturer, OEM) and his supplier during new product develop-
ment. We consider a “white box” buyer-supplier relationship: the OEM
owns product specification and outsources the production to a supplier.
The supplier may suggest potential specification problems. Our research
is motivated by the fact that the supplier may perceive potential specifica-
tion problems based on manufacturer alternatives, local market tastes, and
different regulatory mandates, which the OEM firm may not be able to an-
ticipate a priori.

One cannot take for granted that suppliers will always be willing to point
out specification problems to OEM. Often the supplier’s objective is not per-
fectly aligned with that of the OEM’s. For example, specification flaws are
often observed only after the volume production has begun, and hence the
supplier may lose significant business if it points out the specification flaw
but no immediate resolutions are available.

2



Chapter 1. Introduction

Given that suppliers may not always be willing to point out specifica-
tion flaws, one possible solution could be integrating the supplier in project
teams. There has been extant literature discussing the pros and cons of this
solution. The discussions mainly focus on how the OEM should involve the
suppliers, e.g., the timing and depth of supplier involvement, in new product
development. An implicit assumption in these papers is that the supplier
will share process knowledge with the OEM as long as they are “included”.
This implicit assumption, however, is not necessarily true. We feel the need
to fill the gap in literature by examining whether or not the suppliers are
willing to share their knowledge even when they are included in the project
team.

We started by identifying potential levers that the OEM may use to mo-
tivate the supplier to voluntarily point out potential specification flaws. We
focus on two levers in this essay, the ordering quantities and the contingent
cancellation payment. We then solve the optimization problem from the
perspective of the OEM. First we solve the optimal strategy of the OEM on
the condition that he will design the contract so that the supplier will not
inform even if she detects the flaws. Then we solve the optimal strategy of
the OEM on the condition that he will design the contract to motivate the
supplier to inform. We compare the optimal profit of the OEM in these two
cases and prove that it is strictly better for the OEM to design the contract
to motivate the supplier to inform. Having this principle in mind, we then
provide full description of the optimal solutions of the OEM, and conduct
sensitivity analysis on some parameters. In specific, we find that the can-
cellation payment provided by the OEM should decrease in his capability to
fix the flaws in time, and also decrease in the spillover effect from the first
period sales.

3



Chapter 2

Coping with the Renewable
Portfolio Standard: A
Utility’s Perspective

2.1 Introduction

In the past decade, many countries have made enthusiastic efforts in the har-
nessing of renewable energy such as hydro, wind, solar and biomass power.
In 2004, global investment in renewable energy was $40 billion, and the share
of renewable energy in power capacity expansion was 10%. By 2012, these
rose to $244 billion and 42% (McCrone (2013)), respectively. Ambitious
targets were announced, followed by various mechanisms. China aims to
provide 15% of its annual national power from renewable resources by 2020,
EU 20% by 2020, and the U.S. 25% by 2025.

One new initiative in the U.S. to promote renewable energy production
is the “Renewable Portfolio Standard” (RPS). This policy breaks down the
responsibility for achieving the national target to state level, with many
states in turn requiring utility companies to supply a specified percentage of
their energy from renewable resources by a given date. There is no federal
policy. The target for each state is set on an individual basis and is expected
to increase over time. For example, California’s requirement was 20% in
2012, but will rise to 25% by 2016 and 33% by 2020. New York’s percentage
level was 24% in 2013 and will rise to 30% by 2015 (Wiser and Barbose,
2008). The RPS has been adopted in 33 out of 50 states of the U.S. (Figure
2.1). Similar mechanisms have been adopted in many other countries.

Since the restructuring of the U.S. electricity market, most utilities no
longer own power generators themselves, so purchase electricity from a
wholesale electricity market and then supply their end-users in a retail elec-
tricity market. The RPS further stipulates a certain amount of the supply
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2.1. Introduction

Figure 2.1: State RPS policies (Wiser and Barbose (2008)).

be renewable. Given that the RPS is unlikely to be abandoned, and given
the highly competitive nature of the electricity market, the imperative for
utility companies must be to comply in the most cost effective manner. This
paper builds a theoretical model from the perspective of a utility company
illustrating the tradeoffs of compliance options and suggest strategies en-
abling the utility company to comply with the RPS but at minimum cost.

How much will it cost companies to comply with their obligations under
the RPS? Consider the case of a California utility in 2011 which supplied
electricity at an average rate of $132.2 per megawatt hour (Institute For En-
ergy Research, 2011). The company was obliged to supply 20% of its energy
from renewable resources, or face a penalty of $50 per megawatt hour short of
its target (Wiser and Barbose, 2008). Suppose the utility did not supply any
renewable energy, the RPS would penalize the utility 8% ($50 · 20%/$132.2)
of its revenue. One may consider this overestimation. After all, If a utility
company could easily meet its obligation, then the RPS would not incur
such a high additional cost. In reality, many utilities in California in 2011
failed to meet the required percentage level of the RPS and paid penalties.
What’s more, the California Public Utilities Commission placed a cap on
RPS charges, so that no utility would pay more than $25 million per year
in penalties (Institute For Energy Research, 2011). The RPS has undoubt-
edly resulted in challenges to companies seeking to avoid incurring increased
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2.1. Introduction

costs but the RPS does provide some flexibility in terms of compliance. It
is the opportunity that this flexibility offers that is the subject of this paper.

The RPS works as follows. Renewable energy producers receive from the
government one renewable energy certificate (REC) for each megawatt hour
of renewable energy they generate. Utilities who do not generate renewable
energy purchase RECs from renewable energy producers to demonstrate
their compliance of the RPS. Utilities can purchase RECs with the underly-
ing energy, termed “REC-bundled” energy, or purchase RECs without the
underlying energy, termed “unbundled” RECs. At the beginning of each
year, the Public Utility Commission (PUC) checks whether utilities have
sufficient RECs to cover the required percentage of the output from the pre-
vious year, and charges those who do not a penalty. Most states set the
penalty at between $50 and $60 per megawatt hour of renewable energy
the utility is deficient or, equivalently, per unit of REC the utility is short
(Wiser and Barbose, 2008).

Since RECs can be traded separately from the underlying energy, a sec-
ondary market has formed, where RECs are bought and sold. We refer this
secondary market as “REC market”. Trading is often private and can be
done bilaterally or assisted by an REC agent (U.S. Department of Energy,
2014). The REC trading price varies widely over time, from less than $2
to $50-$55 per unit (essentially the RPS penalty cost) (Heeter and Bird,
2011). Since the PUC checks utilities’ REC amount only once a year, and
since RECs can be banked without costs, utilities have incentive to trade in
the REC market to speculate or hedge against price volatility.

Aside from acquiring RECs, utility companies need to purchase electric-
ity from the wholesale electricity market in order to supply their customers.
Because electricity is nonstorable, and because utilities are obliged to sat-
isfy the customer demands instantly with exactitude though the customer
demands are volatile and difficult to predict, utilities seek instantaneous sup-
plies. This is provided by an Independent System Operator (ISO) through
a“spot” market. In the spot market, parties bid on or offer electricity on
a real-time basis. The ISO matches the aggregate supply and demand,
announces the market-clearing price known as the “spot” price, and coor-
dinates the transmission of electricity. Utilities are thus able to purchase
electricity and supply their customers instantaneously. Inevitably, the spot
price is highly volatile, as indicated by an empirical study of the spot price
from 2000 to 2002 at the PJM market, the largest ISO in the United States
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(Longstaff and Wang, 2004). During peak hours, from 1 pm to 6 p.m., the
spot price rocketed to above $1000 per megawatt hour, nearly 21 times the
average value during these hours. At the other extreme, during the night,
the spot price could drop to zero.

In an attempt to mitigate the volatility of the spot price, ISOs run a
“day-ahead” market before the spot market, where utilities can purchase
electricity to be delivered during the subsequent day. The electricity price
at the day-ahead market tends to be less volatile than the spot price, though
not significantly so (Longstaff and Wang, 2004). To achieve greater price
stability, utilities purchase most of their power directly from power gener-
ators in a “bilateral” market, not through ISOs. In Texas, for instance,
95-98% of the energy is traded bilaterally (Hortacsu and Puller, 2008).

Power trading occurs first in the bilateral market, then in the day-ahead
market, and lastly on the spot market. The bilateral market and the day-
ahead market are “forward” market, as the delivery times specified in the
contracts are in the future. Spot markets, on the other hand, are instanta-
neous. Utilities purchase power from the forward market, and then adjust
their output in the spot market so that they can meet the customer demands
instantly. Specifically, if utilities electricity bought from the forward mar-
ket is insufficient to meet the demand, they will purchase additional power
from the spot market; otherwise they will sell redundant power to the spot
market. ISOs only facilitates the trading of regular energy (non-renewable
energy or renewable energy with the REC removed). Therefore if utilities
want to acquire REC-bundled energy, they can only do so through bilateral
contracts.

We formulate a utility company’s problem as a stochastic dynamic pro-
gram. We divide an RPS compliance year into multiple periods. During
each period, the company purchases electricity from a wholesale electricity
market to meet a random demand in a retail electricity market. At the same
time, the company buys or sells unbundled RECs in an REC market. The
RECs can be carried over. The wholesale electricity market is modeled as
two settlements, first a forward market and then a spot market. In the for-
ward market, the utility chooses between REC-bundled and regular energy.
Then the demand occurs and the utility balances its output through the spot
market in order to meet the demand. Periodic decisions made by the utility
relate to trading actions in the REC market and the purchasing quantities
from each source in the forward market. The utility seeks to minimize the

7



2.1. Introduction

total discounted cost during the planning horizon.

Intuitively, a utility should sell RECs when its REC amount is in ex-
cess of need and should purchase RECs otherwise. How exactly should a
company reach its decision that its REC level is in excess of need? In a
given period, even if a utility has decided that its RECs are in excess, and it
encounters low priced RECs, it might still have an incentive to hoard RECs.
In this way, if the REC price increases later, the utility has secured some
RECs purchased at a lower price, and it can even sell RECs to gain profit.
Similarly, how exactly should a company decide that the REC price is low
enough? Our analysis shows that a utility company should follow a target
interval policy in the REC market: it should purchase or sell RECs in order
to adjust its REC level between two thresholds. These two thresholds de-
pend on a series of state variables, including the REC price, the electricity
price, the mount of RECs the utility has on hand and he amount of demand
the utility has met. We show that the thresholds are monotonic in some of
the state variables.

We assume there are only two energy options in the forward electricity
market, REC-bundled energy and regular energy. One unit of REC-bundled
energy is, essentially, one unit of regular energy plus one unit of unbundled
REC. Comparing these two options is more subtle than simply comparing
their market prices. This is because from the perspective of the utility,
RECs hold different values depending on the situation. For instance, RECs
are more valuable to a utility with an insufficient numbers of RECs and at
the end of the horizon. We describe some conditions under which a util-
ity company should purchase only one kind of renewable energy or regular
energy, and present others that show when it is optimal to purchase both
of them. In each case, we describe optimal purchasing quantities. We also
analyze the monotonicity of these optimal purchasing quantities and explain
the intuition behind a utility’s optimal policies.

The remainder of the paper is structured as follows: We start with a
literature review in Section 2.2. Then we present the model formulation
in Section 2.3 and describe the optimal strategy of the utility company in
Section 2.4. Finally we conclude with a discussion in Section 2.5.

8



2.2. Literature Review

2.2 Literature Review

As far as we know, this paper is the first one investigating the RPS from
the perspective of a utility. This may have to do with the fact that the
RPS is a newly initiated program, and many states did not start their ini-
tial compliance year until 2010. Most of the existing literature focus on the
efficacy of the RPS. Wiser and Barbose (2008) conducted empirical studies
to show that approximately 76% of new renewable capacity was contributed
by the states with the RPS in 2007. They therefore concluded that the RPS
was effective in promoting renewable energy. Other supporters of RPS in-
clude Menz and Vachon (2006) and Hailu and Adelaja (2008). Some critics,
include Bushnell et al. (2007) and Michaels (2007), pointed out that the
mechanism of RPS will cause unbalance development of different renewable
resources. Yin and Powers (2009) asserted that the cross border trade of
RECs can “significantly” weaken the renewable energy development in cer-
tain states with scarce renewable resources, since the utilities in these states
can purchase RECs from other states, essentially they are “paying the fresh
air in other states”.

Our interest is not to discuss the efficacy of the RPS. The RPS has been
rapidly expanding with increasing percentage requirements, and the very ur-
gent question for those obligated utilities is how to deal with it. This paper
untangles the trade-offs in choosing energy sources and provides guidelines
for utilities to act both in the electricity market and REC market, and so
to comply with the RPS with minimum cost.

One important feature of our model is that the utility can trade un-
bundled RECs in an outside market. The information of the trading price
is very limited. One reason might be that the REC market emerges as a
byproduct of the RPS and thus has a short history. Another reason is that
most of the REC tradings are private. Heeter and Bird (2011) provides a
status report of the REC market in 2010, from which we know that the REC
price is quite volatile.

The REC trading scheme resembles the allowances trading scheme under
the cap-and-trade program. There is scant literature in Operations Research
studying the REC trading scheme, but there is extant literature on the cap-
and-trade program. Factories, who emit pollutants during production, are
granted with an initial allocation of allowances from the government. The
amount of the allowances represents the total amount of pollutants the fac-
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tories can emit in the following year. The factories may purchase or sell
allowances in an outside market. The factories who fail to hold sufficient
allowances at the end of the year will face a fine.There are some similarities
if we compare the problems faced by utilities under the RPS and factories
under the cap-and-trade. Factories under the cap-and-trade program often
face options involving technology choice, capacity planning, investment in
pollution abatement equipment, pricing decisions, etc. In addition, they can
bank and trade allowances in a secondary market.

In many papers in the cap-and-trade literature, the entities of interest
are electricity generators. For instance, Subramanian et al. (2007) mod-
eled a three-stage game in an oligopoly setting. Electricity generators make
investment decisions, bid for allowances and then decides production quan-
tities. The selling price of the products is represented as an inverse demand
function. Drake et al. (2010) studied a single electricity generator’s technol-
ogy choice and capacity decisions in a two-period stochastic setting. The
price is fixed. The demand is realized once with penalty for unmet demand.
Zhao et al. (2010) discussed the long-term impacts of different emissions al-
location schemes on electricity generator’s investment and pricing decisions,
with a demand function decreasing in price. Our paper differs from these
papers in three ways. First, they did not include the electricity generators’
option of trading allowances in an outside market. Second, In these papers,
electricity generators face options with fixed and known costs, or they can
internalize the costs as decision variables. They make independent decisions
on the prices and quantities they produce. In our paper, utilities purchase
electricity at exogenous and random prices, and then sell electricity at fixed
prices. The demands are random, and need to be satisfied. Third, these pa-
pers suggest long-term decisions of electricity generators, such as technology
or capacity choice. While in our paper, a utility makes periodic observations
and decisions.

Gong and Zhou (2013) presented a muti-period model studying a fac-
tory’s technology choice and production plan under the cap-and-trade pro-
gram. The factory was not a electricity generator. They also captured the
factory’s option of trading allowances in a secondary market with stochas-
tic prices. Two factors contribute to the differences between our model
and theirs, the difference between the cap-and-trade program and the RPS
mechanism, and the specialty of electricity market. Under the cap-and-trade
program, a fixed amount of allowance is allocated to the factory at the be-
ginning, and the factory can decide independently the producing quantity,
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and therefore the amount of allowances it needs. The amount of allowances
the factories need is fixed and endogenous. Under the RPS, there is no ini-
tial allocation. The required amount of RECs is a percentage of the total
demand, which is both random and exogenous. The amount of RECs the
utility needs is random and exogenous. Furthermore, for factories under the
cap-and-trade program, the technologies are with known and fixed emission
levels and costs. For utilities, the electricity prices in the wholesale market
are random. As a result, the utility needs to make periodic observations of
the electricity prices, and keeps updating the cumulative demand it has sup-
plied, and then makes periodic decisions. Most importantly, the products of
factories under the cap-and-trade are regular products and can be carried on
from period to period. On the other hand, electricity is prohibitively expen-
sive to be stored. As a result, utilities face a unique multi-leveled wholesale
electricity market. In general, a utility under the RPS and a factory under
the cap-and-trade are facing different problems. The only resemblance is
the trading scheme of certificates.

Another important feature of our model is the multiple settlement struc-
ture of the wholesale electricity market. The wholesale electricity market in
different regions can be at different status and under different regulations.
Many technical reports discuss the deregulation or the potential design of
the wholesale electricity market, to name a few, see Stoft (2002), Trebil-
cock and Hrab (2004), Chao and Wilson (1999), and Boucher and Smeers
(2001). Another stream of research on electricity market is from finance
and economics. They focus on how electricity should be priced and how
the price actually behaves in those centralized markets hosted by ISOs, in-
cluding day-ahead market, the hour-ahead market and the real-time market.
For example, Longstaff and Wang (2004) collected data from the PJM mar-
ket, and did empirical work to study the relationship between the electricity
prices in the day-ahead market and the real-time market.

Our paper contributes to the literature in both applied and method-
ological sides. We investigated the impact of the RPS on a single utility
and have provided practical guidelines for the utility to purchase electricity
and to trade RECs. On the methodological side, although some results of
our paper look similar to those in Gong and Zhou (2013), the models are
different.
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2.3 Model Formulation

We model an RPS compliance year as a finite horizon of T periods, indexed
as 1, · · · , T . At the beginning of each period t, a utility first observes the
REC price and the electricity prices. The utility then buys or sells unbun-
dled RECs in an REC market, and purchases electricity from a wholesale
electricity market in order to supply a random demand in a retail electricity
market. At the end of the horizon, the utility needs to hold sufficient RECs
to cover a percentage, say α, of its total supply during the entire horizon.
If the utility does not have sufficient RECs, it pays a penalty cost π per
unit it is short on. In practice, the tradings in electricity markets and the
REC market can be continuous and simultaneous, but we think of them as
periodic decisions, and assume that in each period the utility trades in the
REC market first, then the electricity markets.

The utility acts as a price taker in the REC market, the wholesale elec-
tricity market and the retail electricity market. Therefore, we assume these
markets as exogenous, stochastic, and independent from each other. In this
section, we start by describing the set-ups of these three markets in subsec-
tions 2.3.1, 2.3.2 and 2.3.3. We then discuss the objective of the utility in
subsection 2.3.4. After that, we state the sequence of events in subsection
2.3.5. Lastly, we write the dynamic programming in subsection 2.3.6.

2.3.1 REC market

At the beginning of each period t, the utility observes the REC price in an
REC market. We use two random variables, bt and st, to represent the trad-
ing prices of RECs, with bt being the per unit cost of buying RECs and st
being the per unit revenue of selling RECs. Later we refer bt as the buying
price of REC and st as the selling price of REC. We allow bt and st to be
different and assume bt is greater or equal to st. The gap between them can
be resulted from the transaction cost and the bid-ask spread in REC trading
(Holt et al., 2011; Gillenwater, 2008). We denote Rt = (bt, st) and assume
{Rt = (bt, st), 1 ≤ t ≤ T} forms a Markov chain for trackability.

Theoretically, the trading prices of REC should not exceed the penalty
cost of the RPS, as otherwise, the utility will have no incentive to buy any
RECs, and will wait until the end of the horizon and pays the penalty cost.
This is also observed in practice (Heeter and Bird, 2011). Therefore we as-
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sume that Pr(st ≤ bt ≤ γT−t+1π) = 1, with γ being the one-period discount
factor, 0 < γ ≤ 1.

We assume the utility can sell RECs even when it has zero or negative
amount of RECs on hand. This assumption is made since the utility’s REC
amount will be checked only once at the end of the horizon.

Let xt and x̄t be the utility’s REC level before and after the REC trading
in period t, respectively. If the utility buys RECs, then x̄t > xt, and the
utility generates a cost of bt(x̄t − xt). Otherwise x̄t < xt, and the utility
earns a revenue of st(xt − x̄t).

2.3.2 Wholesale electricity market

After trading RECs, the utility needs to purchase electricity from a wholesale
electricity market in order to satisfy its end-users. We capture two flavors
of the wholesale electricity market, the multiple settlements and the high
volatility of the spot price. To incorporate the first flavor, we assume the
utility purchases electricity from a forward market first and then balances its
output (either buy or sell electricity) in a spot market. In the forward mar-
ket, the utility purchases power directly from power producers. In the spot
market, tradings are centralized through an ISO. To incorporate the second
flavor, we impose some properties on the utility’s expected cost function
in the spot market to reflect the utility’s tendency to avoid trading in the
spot market. This tendency is driven by the high volatility of the spot price.

Forward Market

In the forward market, the utility company can purchase power from a va-
riety of sellers through a variety of power purchase contracts. We simplify
the pool of sellers as two power producers, one sells REC-bundled renewable
energy and the other sells regular energy. In addition, we assume that the
power purchase contracts are unit-price forward contracts and the specified
prices are for only one period. Specifically, in period t, REC-bundled re-
newable energy can be purchased at p1t per unit, and regular energy can
be purchased at p2t per unit. These prices are are only for period t. The
prices for next period may be different. Since the electricity prices are ex-
ogenous for the utility, we assume the prices are random variables, and
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{(p1t, p2t), 1 ≤ t ≤ T} is a Markov chain for trackability. It is also reason-
able to assume REC-bundled renewable energy should be valued more than
regular energy, since one unit of REC-bundled renewable energy includes
both one unit of regular energy and one unit of REC. Nevertheless, electric-
ity prices can be unpredictable, and all the results in this paper hold with
or without this assumption. The prices (p1t, p2t) in the forward market are
referred to as forward prices. We denote Pt = (p1t, p2t).

We assume there is no capacity constraint on the two power producers.
They can provide as much electricity the utility requests. We make this
assumption because most of the contracts in the forward market are only
“financially binding” (Stoft et al., 1998). Financially binding contracts en-
sure the utility will, in the end, receive the exact amount of electricity at
the exact price specified in the contracts. If the power producer is not able
to provide sufficient amount of electricity specified in the contract in any
period, the utility will buy electricity from the spot market, and the power
producer will compensate the expense.

Let y1t be the amount of REC-bundled energy the utility purchases and
y2t be the total amount of electricity the utility purchases from the forward
market, then y2t− y1t is the amount of regular energy the utility purchases.

Spot Market

After the utility purchased electricity from the forward market, a random
demand Dt is realized. If the demand is more (less) than the amount the
utility had purchased from the forward market, the utility will need to buy
additional (sell redundant) electricity in the spot market, incurring expenses
(revenue). The buying or selling will be conducted at the spot price with
no bid-ask spread.

The utility does not make decisions in the spot market. The demand
has to be satisfied, the spot price is exogenous, and the expense or revenue
will take place. However, the utility had to take into account the expense
or revenue to be incurred in the spot market when it made decisions in the
forward market. At that time, neither the demand nor the spot price was
revealed, and the utility needed to make decisions in the forward market
based on an expectation on the expense or revenue to be incurred in the
spot market. The utility’s expectation is two fold including the demand
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and the spot price. It is appealing to write the utility’s expectation as∫∞
y2t
et(z − y2t)fDt(z) dz −

∫ y2t

−∞ et(y2t − z)fDt(z) dz, where et is utility’s ex-
pectation on the spot price, y2t is the amount of electricity the utility had
purchased in the forward market, and fDt(·) is the probability density func-
tion of the customer demand Dt. However, we do not use this function as
utility’s expectation because this function relies on an accurate prediction of
the spot price, which is unrealistic, and leads to some far-fetched strategies
of utilities. Under this function, if the utility expects the spot price et to
be greater than the forward price of regular energy p2t, it will purchase as
much as it can in the forward market, sell the excessive amount into the
spot market, and make profit on the price difference. On the other hand, if
the utility expects et < p2t, it will purchase nothing in the forward market,
and relies entirely on the spot market to satisfy the customer demand. Both
of these cases are very different from what we observe in practice, where
the utility purchase most of the energy needed in the forward market and
trading in the spot market only when necessary.

We define Gt(y2t) as the utility’s expectation on its expense or revenue to
be incurred in the spot market, where y2t is the amount of electricity it has
purchased from the forward market. In the following, we use one example
of Gt(y2t) to present some desirable properties of Gt(y2t). The specific form
of Gt(y2t) is not restricted to this example.

Gt(y2t) =

∫ ∞
y2t

G+
t (z − y2t)fDt(z) dz −

∫ y2t

−∞
G−t (y2t − z)fDt(z) dz. (2.1)

In equation (2.1), the first term represents the case when the demand is
greater than the utility’s energy on hand. Here z represents the realized
demand. If z > y2t, the utility would need to purchase z − y2t amount
of additional energy. We assume the expense is a function of z − y2t, and
write it as G+

t (z − y2t). Therefore
∫∞
y2t
G+

t (z − y2t)fDt(z) dz is the utility’s
expectation on its expense of purchasing additional energy when the demand
is greater than its energy on hand. Note that G+

t (z − y2t) is nonnegative.
We make the following assumptions:

• G+
t (z − y2t) decreases in y2t. This assumption simply means that the

less electricity the utility has on hand, the more it needs to purchase,
and thus the more it spends in the spot market.

• G+
t (z−y2t) is convex in y2t. This assumption implies that the marginal

cost of buying electricity is increasingly more expensive when the util-
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ity purchases more. Hence the utility wants to purchase at little as
possible in the spot market.

• G+
t (z − y2t) is diffrentiable, and |dG+

t (z − y2t)/dy2t| > p2t. Under
this assumption, the per unit cost of buying electricity is always more
expensive than the unit price of regular energy in the forward market.
Hence the utility strictly prefers purchasing in the forward market.

The second term represents the case when the demand z is less than
the utility’s energy on hand y2t. In this case, the utility would need to sell
y2t − z amount of excessive energy. We assume the revenue is a function of
y2t − z, and write it as G−t (y2t − z). Therefore

∫ y2t

−∞G
−
t (y2t − z)fDt(z) dz

is the utility’s expectation on its revenue of selling excessive energy when
the demand is less than its energy on hand. Note that G−t (y2t − z) is also
nonnegative. We make the following assumptions:

• G−t (y2t − z) increases in y2t. This assumption simply means that the
more electricity the utility sells to the spot market, the more revenue
it earns.

• G−t (y2t − z) is concave in y2t.

• G−t (y2t−z) is diffrentiable, and dG−t (y2t−z)/d y2t approaches 0 as y2t

approaches infinity. These two assumptions suggest that the marginal
revenue of selling electricity to the spot market decreases as the utility
sells more, and will approach zero eventually as the selling amount
approaches infinity.

• dG−t (y2t − z)/d y2t < p2t. This assumption implies that the per unit
revenue of selling electricity to the spot market is strictly less than the
unit price of regular energy in the forward market. Hence there is no
economic incentive for the utility to over purchase electricity from the
forward market so as to sell into the spot market.

In aggregate Gt(y2t) (2.1) is the utility’s expectation on its expense or
revenue in the spot market, with a positive value implying expense and a
negative value implying revenue. Later we refer Gt(y2t) as the “expected
balancing cost” in the spot market. There are four properties of Gt(y2t):

• Gt(y2t) decreases in y2t;

• Gt(y2t) is convex in y2t;
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• |dGt(y2t)/dy2t| > p2t when Gt(y2t) ≥ 0, and |dGt(y2t)/dy2t| < p2t

when Gt(y2t) ≤ 0;

• dGt(y2t)
dy2t

→ 0 as y2t → +∞.

The specific form of Gt(y2t) should not be restricted to (2.1), but the
four properties should preserve. As we will see, the first and second prop-
erties are important for deriving optimal strategies. The third and fourth
properties exclude some unreasonable boundary solutions.

2.3.3 Retail electricity market

We assume the customer demands in different periods are independent ran-
dom variables, and the demand in period t is distributed with a continuous
and strictly positive probability density function fDt(·). In addition, we
assume the customer demands are independent from the REC prices and
the electricity prices. In practice, these random variables can be correlated.
From the perspective of a utility, however, REC market and electricity mar-
kets are exogenous, and the correlation between them is not the focus of this
paper.

2.3.4 Objective of the utility

We assume the utility’s objective is to minimize the expected total dis-
counted cost over the planning horizon. We ignore the utility’s revenue from
selling electricity to its customers since the utility has little control over its
operations in the retail electricity market. The retail electricity rates are
capped by the state government, and the demand elasticity is fairly small
(Borenstein, 2009). We thus focus on utility’s strategy in the wholesale elec-
tricity market and the REC market, not the retail electricity market.

2.3.5 Dynamic programming formulation

At the beginning of each period t, utility observes its REC amount on hand
xt as well as its cumulative demand ut, cumulative demand being the de-
mand the utility has supplied from from period 1 to period t−1. In addition,
the utility also observes the buying and selling prices of unbundled RECs
(Rt = (bt, st)), as well as the prices of REC-bundled energy and regular
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energy (Pt = (p1t, p2t)). The utility then begins its decision making process
by trading in the REC market, adjusting its REC level from xt to x̄t. After
that, the utility decides how much energy to purchase from the forward mar-
ket. The utility purchases y1t amount of REC-bundled energy and y2t − y1t

amount of regular energy. Finally, the demand Dt realizes, the utility bal-
ances its output in the spot market, generating cost or revenue Gt(y2t). At
the end of period t, the utility’s REC level updates to xt+1 = x̄t + y1t,
and its cumulative demand level updates to ut+1 = ut + Dt. At the end of
the horizon, if the utility does not have enough RECs, it will be charged a
penalty cost.

Let Vt(xt, ut, Rt, Pt) be the minimal expected cost of utility from period
t to the end of the horizon given the utility’s REC level xt, the cumulative
demand ut, the REC prices Rt and the energy prices Pt. Then the utility
solves the following dynamic program.

Vt(xt, ut, Rt, Pt)

= min
x̄t

y2t≥y1t≥0

{bt(x̄t − xt)+ − st(xt − x̄t)+ + p1ty1t + p2t(y2t − y1t)

+Gt(y2t) + γEt[Vt+1(x̄t + y1t, ut +Dt, Rt+1, Pt+1)]}. (2.2)

In the optimization equation (2.2), the decision variables are x̄t, y1t and
y2t. These decision variables represent the three decisions the utility makes
in each period, i.e., how many RECs to buy or sell, how much REC-bundled
energy to purchase, and how much regular energy to purchase. There is no
constraint on x̄t, because he utility is allowed to buy or sell RECs irrespon-
sible of the amount of RECs it has on hand. The constraints on y1t and y2t

make sure the utility purchases non-negative amounts of energy from power
producers. On the right hand side of (2.2), bt(x̄t − xt)+ − st(xt − x̄t)+ is
the utility’s expense or revenue from REC trading, p1ty1t + p2t(y2t − y1t) is
the utility’s expense to purchase electricity in the forward market, Gt(y2t)
is utility’s expectation on its expense or revenue in the spot market, and
finally is the minimal expected cost from period t + 1 till the end of the
horizon. We use Et[·] to denote EDt [E(Rt+1,Pt+1)[·|(Rt, Pt)]].

The value function at the end of the horizon is

VT+1(zT+1, uT+1) = π(αuT+1 − zT+1)+. (2.3)

If the utility does not have sufficient RECs to cover α percent of its total
supply during the horizon (uT+1), it will be charged π dollars per unit of
RECs it is short. The salvage value of excessive RECs is set to be zero.
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2.4 Optimal Policies

In this section, we give a complete characterization of utility’s optimal poli-
cies in both the REC market and the electricity market. We divide the
utility’s decision making process in each period into two stages in time se-
quence. At stage one, the utility buys or sells RECs in the REC market. At
stage two, the utility purchases electricity in the forward market.

The next theorem establishes the intuition that the utility should sell
RECs when it has more RECs on hand, and should be buy RECs when it
has less. Specifically, the utility should follow a target interval policy with
two thresholds Lt(ut, Rt, Pt) and Ht(ut, Rt, Pt). If the utility’s REC level
is higher than Ht(ut, Rt, Pt), it should sell RECs; if the utility’s REC level
is lower than Lt(ut, Rt, Pt), it should purchase RECs; if the utility’s REC
level is between these two thresholds, it should not trade in the REC market.
We will give more detailed description of these two thresholds later when
we move on to the utility’s optimal policies in the electricity market.

Theorem 2.4.1 In each period t, t = 1, . . . , T , given state (xt, ut, Rt, Pt),
the utility’s optimal REC trading policy is a target intervel policy with two
state-dependent thresholds Lt(ut, Rt, Pt) and Ht(ut, Rt, Pt), with
Lt(ut, Rt, Pt) ≤ Ht(ut, Rt, Pt). The optimal REC level after REC trading
can be characterized as

x̄∗t =


Lt(ut, Rt, Pt) if xt ≤ Lt(ut, Rt, Pt);
xt if Lt(ut, Rt, Pt) < xt < Ht(ut, Rt, Pt);
Ht(ut, Rt, Pt) if xt ≥ Ht(ut, Rt, Pt).

The threshold structure comes from the convexity of the cost-to-go function
(Lemma A.0.1). There are two thresholds since the buying and selling price
of RECs may be different. Because the buying price of RECs is more than
the selling price of RECs, if the utility purchases RECs, it should purchase
up to a lower target level than if it sells them.

Both of the thresholds depend on other state variables, including the
cumulative demand, the REC prices and the electricity prices. In order to
develop the monotonic property of the thresholds, we need the following
lemma.

Lemma 2.4.2 The value function Vt(x, u, R, P ) is submodular on (x, u).
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The submodularity of the value function implies that REC is a economic
complement of the cumulative demand and leads to the following proposition
that both of the thresholds increase in the cumulative demand. At the end
of the horizon, the compulsory REC amount the utility needs to hold is a
percentage of the cumulative demand it has supplied. Therefore if the utility
has supplied more demand, it should be more conservative to sell RECs and
more willing to buy RECs, which is reflected as higher target interval.

Proposition 2.4.3 Lt(ut, Rt, Pt) and Ht(ut, Rt, Pt) increase in ut.

After the utility traded RECs in the REC market, it will purchase electric-
ity from the forward electricity pmarket. There are two products to choose,
REC-bundled energy and regular energy. REC-bundled energy will be sep-
arated as two parts upon purchase. One part is energy, which feeds into
the power grids equivalently as regular energy. The other part is RECs,
which can be stored for the RPS obligation till the end of horizon or sold
for revenue before that. In some sense, these two products are substitutes.

The next proposition describes certain conditions under which it is op-
timal for the utility to purchase only one of the two products. We identify
4t = p1t − p2t, the price difference between REC-bundled energy and regu-
lar energy, to be a critical value when compare these two products. In the
remainder of this paper we refer 4t as the “intrinsic” REC price, for it is
essentially the price of the RECs from REC-bundled energy. We define the
optimal purchasing quantities of REC-bundled energy and regular energy in
period t as y∗1t and y∗2t, respectively.

Proposition 2.4.4 In each period t, t = 1, . . . , T , given state (xt, ut, Rt, Pt),
the utility’s optimal energy choice in the forward market can be characterized
as

(a) If 4t ≥ bt, it is optimal to purchase only regular energy, i.e., y∗1t = 0;

(b) If 4t ≤ st, it is optimal to purchase only REC-bundled energy, i.e.,
y∗2t = y∗1t;

(c) If st < 4t < bt,

• when xt ≤ Lt(ut, Rt, Pt), it is optimal to purchase only REC-
bundled energy, i.e., y∗2t = y∗1t;
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• when xt ≥ Ht(u, Rt, Pt), it is optimal to purchase only regular
energy, i.e., y∗1t = 0.

Figure 2.2: Optimal energy choice in the forward market.

Proposition 2.4.4 is presented with Figure 2.2. If 4t ≥ bt, i.e., the in-
trinsic REC price is greater than the buying price of RECs, we claim that
REC-bundled energy is dominated by regular energy in terms of price, so
that the utility has no economic incentive to purchase REC-bundled energy.
To explain this, write 4t ≥ bt as p1t ≥ p2t + bt. In this case, if the utility
purchases one unit of regular energy and one unit of REC, and combine
them together, it can get essentially the same product as one unit of REC-
bundled energy, but at a cheaper price.

If 4t ≤ st, i.e., the intrinsic REC price is less than the selling price of
RECs, we claim that regular energy is dominated by REC-bundled energy
in terms of price, so that the utility has no economic incentive to purchase
regular energy. To explain this, write 4t ≤ st as p1t − st ≤ p2t. In this
case, by purchasing one unit of REC-bundled energy and selling the REC,
the utility gets essentially the same product as one unit of regular energy,
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but at a cheaper price.

Proposition 2.4.4 (c) consider the case where st < 4t < bt, i.e, the in-
trinsic REC price is between the selling price and the buying price of RECs.
In this case, we consider REC-bundled energy and regular energy to be com-
petitive in price, and the optimal strategy of the utility is more subtle than
one might expect. The utility should make its energy choice based on its
REC level at the beginning of period t.

We explain the intuition of Proposition 2.4.4 (c) by contradiction. Write
st < 4t < bt as p1t < p2t+bt and p2t < p1t−st. When xt ≤ Lt(u, Rt, Pt), by
Theorem 2.4.1, a utility who follows the optimal policy in the REC market
should have bought some unbundled RECs at stage one. If the utility pur-
chases some regular energy on top of that, for one unit of regular energy it
purchases together with a unit of REC it has already bought, it could have
gotten them by purchasing one unit of REC-bundled energy at a cheaper
price as p1 < p2 + bt. Thus there is no incentive for the utility to purchase
regular energy. Similarly, when xt ≥ Ht(ut, Rt, Pt), the utility should have
sold some RECs at stage one. If the utility purchases some REC-bundled
energy on top of that, then in aggregate it is purchasing regular energy,
which is actually available at a cheaper price since p2t < p1t − st. Thus in
this case, it is always better for the utility to purchase only regular energy.

There is one circumstance that is not included in Proposition 2.4.4, which
is if st < 4t < bt and Lt(ut, Rt, Pt) < xt < Ht(ut, Rt, Pt). In this case, so
far by Theorem 2.4.1, we know that the utility should not trade in the REC
market. We haven’t talked about utility’s optimal energy choice in the for-
ward market. For that, additional analysis is required. However, before we
come to this case, we use next two theorems to give a detailed description
of utility’s optimal purchasing quantities under the scenarios corresponding
to Proposition 2.4.4 (a) and (b), when the utility is single sourcing.

Theorem 2.4.5 In each period t, t = 1, . . . , T , given state (xt, ut, Rt, Pt),
if 4t ≥ bt, then the optimal purchasing quantities of the utility in the forward
market, (y∗1, y

∗
2), can be characterized as y∗1t = 0, y∗2t = S2t(p2t), where

S2t(p2t) = arg min
y≥0
{p2ty +Gt(y)}. (2.4)

Moreover, S2t(p2t) decreases in p2t.
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Theorem 2.4.5 specifies the optimal purchasing quantities for the case
presented in Proposition 2.4.4 (a), and is presented in the fourth column of
Figure 2.3. In period t, if the intrinsic REC price 4t is above the buying
price of unbundled REC bt, it is optimal for the utility to use the following
strategy to comply with the RPS: purchasing regular energy to supply the
end-users and buying unbundled RECs separately. These two activities does
not interact with each other. As results, the optimal purchasing quantity
depends only on the price of regular energy, and it decreases with the price.

From the definition of S2t(p2t) (2.4), we can see that the third assump-
tion we made about Gt(y) ensure a positive and finite value for S2t(p2t).
When y = 0, the utility had purchased nothing from the forward market,
thus Gt(y) is positive, representing the utility’s cost to purchase additional
energy from the spot market. From the third assumption we made about
Gt(y), we know that the derivative of Gt(y) at y = 0 is less than −p2t,
thus p2ty + Gt(y) is strictly decreasing at y = 0, thus S2t(p2t) > 0. On
the other hand, assume that the demand is bounded, then S2t(p2t) will be
a finite number. Consider when y is large enough so that the utility gener-
ates revenue by selling excessive energy to the spot market. In that case,
Gt(y) is negative, and the derivative of Gt(y) is more than −p2t. Therefore
p2ty + Gt(y) is strictly increasing when y is large enough, thus S2t(p2t) is
finite.

Theorem 2.4.6 In each period t, t = 1, . . . , T , given state (xt, ut, Rt, Pt),
if4t ≤ st, then the optimal purchasing quantities of the utility in the forward
market, (y∗1, y

∗
2), can be characterized as

y∗1t = y∗2t =


SL

1t(p1t, bt) if xt ≤ Lt(ut, Rt, Pt);
s1t(xt, ut, Rt, Pt) if Lt(ut, Rt, Pt) < xt < Ht(ut, Rt, Pt);
SH

1t (p1t, st) if xt ≥ Ht(ut, Rt, Pt).
(2.5)

where

SL
1 (p1t, bt) = arg min

y≥0
{(p1t − bt)y +Gt(y)}, (2.6)

s1t(xt, ut, Rt, Pt) = arg min
y≥0
{p1ty +Gt(y)

+ γE[Vt+1(xt + y, ut +Dt, Rt+1, Pt+1)]}, (2.7)
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SH
1t (p1t, st) = arg min

y≥0
{(p1t − st)y +Gt(y)}. (2.8)

Moreover, the two thresholds

Lt(ut, Rt, Pt) = wL
t (ut, Rt, Pt)− SL

1t(p1t, bt),

Ht(ut, Rt, Pt) = wH
t (ut, Rt, Pt)− SH

1t (p1t, st), (2.9)

where wL
t (ut, Rt, Pt), w

H
t (ut, Rt, Pt) are the optimal REC levels at the

end of period t when the utility buys or sells RECs in the REC market
respectively.

Theorem 2.4.6 specifies the optimal purchasing quantities for the case
in Proposition 2.4.4 (b), and is presented in the second column of Figure
2.3. If the intrinsic REC price 4t is less than the selling price of REC st,
it is optimal for the utility to use the following strategy to comply with the
RPS: supplying all of the customer demand with renewable energy. The op-
timal purchasing quantity is given by (2.5). If the utility has bought (sold)
RECs in the REC market, the optimal purchasing quantity is SL

1 (p1t, bt)
(SH

1 (p1t, st)). These two quantities are independent of utility’s REC level or
cumulative demand. If the utility has not done any REC trading, the op-
timal purchasing quantity is s1t(xt, ut, Rt, Pt), which depends on its REC
level and cumulative demand.

Note that the third and fourth assumptions we made about Gt(y) ex-
clude some unreasonable boundary values for SL

1 (p1t, bt) and SH
1 (p1t, st).

From the third assumption of Gt(y), we know that dGt(y)/dy is less than
−p2t at y = 0. Therefore we have p1t−bt+dGt(y)/dy < p1t−bt−p2t = 4t−bt.
Because the condition in Theorem 2.4.6 is 4t < st, we have 4t < bt. There-
fore, (p1t − bt)y + Gt(y) is strictly decreasing when y = 0. Therefore from
the definition we know that SL

1 (p1t, bt) > 0. Similarly we can show that
SH

1 (p1t, st) > 0. On the other hand, when y approaches infinity, from the
fourth assumption of Gt(y), we know that dGt(y)/dy approaches 0, so that
the first derivative of (p1t − bt)y + Gt(y) approaches p1t − bt. We did not
make any assumption regarding the relationship between p1t and bt because
the electricity prices can be unpredictable. However, in most cases, it would
be reasonable to assume that in the same period, one unit of REC-bundled
energy should be more expensive than one unit of unbundled REC, i.e.,
p1t > bt, then we have SL

1 (p1t, bt) being finite. Similar argument can be
made about SH

1 (p1t, st) if we assume p1t > st.
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In rare cases, if REC-bundled energy costs less than the buying price
of unbundled RECs in period t, i.e., p1t < bt, intuitively the utility should
never purchase any unbundled RECs. This is in line with the results in
the Theorem. Given p1t < bt, according to the descriptions (2.6) and (2.9),
the optimal purchasing quantity SL

1 (p1t, bt) −→ +∞, and the lower thresh-
old Lt(ut, Rt, Pt) −→ −∞. Since the lower threshold approaches minus
infinity, the utility’s REC level will never be lower than that, and thus will
never purchase RECs. In other words, the case where z ≤ Lt(ut, Rt, Pt)
will not happen. Similarly, if p1t < st, then according to the descriptions
(2.8) and (2.9), the optimal purchasing quantity SH

1 (p1t, st) −→ +∞, and
the higher threshold Ht(ut, Rt, Pt) −→ −∞. Since the higher threshold ap-
proaches minus infinity, the utility’s REC level will be above that, and the
utility should sell an infinite amount of unbundled RECs, since it can gain
profit by selling unbundled RECs and then purchasing REC-bundled energy.

We also give another characterization of the two thresholds in the REC
trading policy. We define wt = x̄t + y1t as the REC level at the end of
period t. Define wL

t (ut, Rt, Pt) as the optimal REC level at the end of pe-
riod t given that the utility had purchased RECs to increase its REC level
to L(ut, Rt, Pt). Similarly, define wH

t (ut, Rt, Pt) as the optimal REC level
at the end of period t given that the utility had sold RECs to decrease
its REC level to H(ut, Rt, Pt). If the utility has an REC level lower than
Lt(ut, Rt, Pt), it would purchase some RECs to increase its REC level up
to Lt(ut, Rt, Pt). Then since the utility will purchase SL

1 (p1t, bt) amount of
REC-bundled energy, the end-of period REC level wL

t (ut, Rt, Pt) should be
a sum of Lt(ut, Rt, Pt) and SL

1 (p1t, bt). Therefore, we have Lt(ut, Rt, Pt) =
wL
t (ut, Rt, Pt)−SL

1t(p1t, bt). Similar analysis can be done to Ht(ut, Rt, Pt).

Next we develop some monotonic properties of the optimal purchasing
quantities given in Theorem 2.4.6.

Proposition 2.4.7 (a) SL
1t(p1t, bt) decreases in p1t and increases in bt.

(b) SH
1t (p1t, st) decreases in p1t and increases in st.

(c) s1t(xt, ut, Rt, Pt) decreases in xt and increases in ut.

(d) SL
1t(p1t, bt) ≥ s1t(xt, ut, Rt, Pt) ≥ SH

1t (p1t, st).

If 4t ≤ st, the utility should purchase only REC-bundled energy. As
results, when the price of REC-bundled energy goes up, the purchasing
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quantities go down. Thus both SL
1t(p1t, bt) and SH

1t (p1t, bt) decrease in p1t.

When xt ≤ Lt(ut, Rt, Pt), the utility buys RECs. It also purchases the
amount SL

1t(p1t, bt) of REC-bundled energy. If the buying price of REC in-
creases, the utility would have an incentive to gain RECs through buying
REC-bundled energy instead of buying unbundled RECs. This explains why
SL

1t(p1t, bt) increases in bt.

When xt ≥ Ht(ut, Rt, Pt), the utility sells RECs. It also purchases the
amount SH

1t (p1t, st) of REC-bundled energy. If the selling price of REC in-
creases, the utility would have an incentive to purchase more REC-bundled
energy so that it can sell into the REC market. This explains why SH

1t (p1t, st)
increases in st.

When Lt(ut, Rt, Pt) < xt < Ht(ut, Rt, Pt), the utility neither buys nor
sells RECs. The only REC source is REC-bundled energy. If there is higher
energy demand, i.e., higher ut, the utility needs to buy more RECs as
the compulsory level of REC is proportional to the energy demand. Thus
s1t(xt, ut, Rt, Pt) increases in ut. On the other hand, if the utility has more
RECs to start with, i.e., higher xt, the utility needs less RECs. Thus
s1t(xt, ut, Rt, Pt) decreases in xt.

Proposition 2.4.7 (d) implies that as the REC level increases, the amount
of REC bundled energy the utility purchases decreases. This is reasonable
because one purpose that the utility purchases REC-bundled energy is to
gain RECs, if it has more RECs to begin with, then it will need less.

The following theorem demonstrates the optimal purchasing quantities
under the scenario corresponding to Proposition 2.4.4 (c). If st < 4t < bt,
when the utility buys or sells unbundled RECs, it should do single sourcing
as well, and the optimal purchasing quantities are independent of its REC
level and cumulative demand.

Theorem 2.4.8 In each period t = 1, . . . , T , given state (xt, ut, Rt, Pt), if
st < 4t < bt,

(a) When xt ≤ Lt(ut, Rt, Pt), it is optimal to purchase only REC-bundled
energy, and y∗1t = y∗2t = SL

1t(p1t, bt);

(b) When xt ≥ Ht(ut, Rt, Pt), it is optimal to purchase only regular energy,
and y∗1t = 0, y∗2t = S2t(p2t).
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Moreover, the two thresholds

Lt(ut, Rt, Pt) = wL
t (ut, Rt, Pt)− SL

1t(p1t, bt), (2.10)

Ht(ut, Rt, Pt) = wH
t (ut, Rt, Pt). (2.11)

Theorem 2.4.8 is presented in the third column of Figure 2.3. The re-
sult is different from Theorem 2.4.5 and 2.4.6 in that the energy choice
depends not only on the relationship between the intrinsic REC price and
the REC prices, but also on the utility’s REC level. If the utility is in need
of RECs, REC-bundled energy is more attractive, the utility should pur-
chase SL

1t(p1t, bt) amount of REC-bundled energy. In this case, the REC
level at the end of period t should be a sum of the lower threshold for
REC trading and the amount of REC-bundled energy the utility purchased,
thus wL

t (ut, Rt, Pt) = Lt(ut, Rt, Pt) + SL
1t(p1t, bt), thus Lt(ut, Rt, Pt) =

wL
t (ut, Rt, Pt)−SL

1t(p1t, bt). If the utility sells RECs, regular energy is more
attractive, the utility should purchase S2t(p2t) amount of regular energy. In
this case, the REC level at the end of period t should be the same as the
higher threshold, i.e., Ht(ut, Rt, Pt) = wH

t (ut, Rt, Pt).

Finally, we show how the utility should choose the product when st <
4t < bt and Lt(ut, Rt, Pt) < xt < Ht(ut, Rt, Pt). This will complete our
characterization of the utility’s optimal policy.

Theorem 2.4.9 In each period t = 1, . . . , T , given state (xt, ut, Rt, Pt), if
St < 4t < bt, there exists a pair of thresholds (lt(ut, Rt, Pt), ht(ut, Rt, Pt))
satisfying

Lt(ut, Rt, Pt) ≤ lt(ut, Rt, Pt) ≤ ht(ut, Rt, Pt) ≤ Ht(ut, Rt, Pt), (2.12)

such that the optimal purchasing quantities in the forward market, (y∗1t, y
∗
2t),

can be characterized as

(a) When Lt(ut, Rt, Pt) < xt ≤ lt(ut, Rt, Pt), it is optimal to purchase only
REC-bundled energy, and y∗1t = y∗2t = s1t(xt, ut, Rt, Pt);

(b) When lt(ut, Rt, Pt) < xt < ht(ut, Rt, Pt), it is optimal to purchase both

REC-bundled energy and regular energy, and y∗1t = w4t (ut, Rt, Pt) −
xt, y

∗
2t = S2t(p2t);

(c) When ht(ut, Rt, Pt) ≤ xt < Ht(ut, Rt, Pt), it is optimal to purchase
only regular energy, and y∗1t = 0, y∗2t = S2t(p2t);
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Figure 2.3: Optimal strategies in the forward market when single sourcing.

Moreover, the two new thresholds

lt(ut, Rt, Pt) =w4t (ut, Rt, Pt)− S2t(p2t),

ht(ut, Rt, Pt) =w4t (ut, Rt, Pt),

where w4t (ut, Rt, Pt) is the optimal REC level at the end of period t
when the utility does not trade RECs in the REC market.

Note that Theorem 2.4.8 and Theorem 2.4.9 together characterize util-
ity’s optimal policy in the forward market if St < 4t < bt, and these re-
sults are presented in the third column of Figure 2.4. These two Theorems
together states that if xt ≤ lt(ut, Rt, Pt), it is optimal to purchase only
REC-bundled energy. If xt ≥ ht(ut, Rt, Pt), it is optimal to purchase only
regular energy. It is only when lt(ut, Rt, Pt) < xt < ht(ut, Rt, Pt), both
regular energy and REC-bundled energy are purchased. The properties of
the optimal purchasing quantities stated in Proposition 2.4.7 also applies
here.
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2.5. Conclusion

From the third column of Figure 2.4, we can see that as the REC level
increases, the utility is in less need of RECs, thus it is gradually switching
from REC-bundled energy to regular energy.

Figure 2.4: Optimal strategies in the forward market .

2.5 Conclusion

A utility under the RPS faces the challenge to comply with the regulation
with minimum cost. The electricity prices and REC prices are stochastic
and revealed at the beginning of each period. The utility observes these
prices, as well as its REC level and cumulative demand level, and make pe-
riodic decisions in trading RECs and purchasing electricity in the forward
market. In specific, the optimal REC trading policy is a target interval
policy. If the utility’s REC level is lower than the lower threshold, then it
should purchase RECs to raise its REC level to the lower threshold. If the
utility’s REC level is higher than the higher threshold, then it should sell
RECs to reduce its REC level to the higher threshold. If the utility’s REC
level is between these two thresholds, it should not do REC trading.
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After the REC trading, the utility purchases electricity from the for-
ward market. The optimal purchasing quantities are summarized in Figure
2.4. We identify the ”intrinsic” REC price, the price difference between
REC-bundled energy and regular energy, as a critical value for utility’s en-
ergy choice. When the intrinsic REC price is less than the selling price
of unbundled RECs, the utility should exclusively purchase REC-bundled
energy (the second column of Figure 2.4). When the utility trades RECs,
the optimal purchasing quantities are irrelevant with the utility’s REC level
or cumulative demand. While when the utility is not trading RECs, the
optimal purchasing quantity would be based on the utility’s REC level and
cumulative demand. What’s more, from the top to the bottom, the utility’s
REC level increases, and it is in less urgent need for RECs, thus the optimal
purchasing quantity decreases. When the intrinsic REC price is more than
the buying price of unbundled RECs, the utility should exclusively purchase
regular energy (the forth column of Figure 2.4). In this case, the purchasing
quantity is irrelevant with the utility’s REC level, cumulative demand, or
the REC prices, it only depends on the price of regular energy. When the
intrinsic REC price is between the selling price and the buying price of un-
bundled RECs, the utility’s energy choice should depend on its REC level
(the third column of Figure 2.4). We show that only when the utility’s REC
level is between the two additional thresholds, it is optimal for the utility to
purchase both kinds of energy. In this case, from the top to the bottom, the
utility’s REC level increases, the utility becomes less keen in RECs, thus
the utility gradually switches from REC-bundled energy to regular energy.

We believe this paper can be a starting point for studying more sophisti-
cated systems involve multiple utilities such as the market equilibrium with
inelastic demand and the influence of REC price on the market equilibrium.
One can also study a variation of our model with elastic demand and include
pricing as a decision variable of the utility, since that is the vision of a future
electricity market.

30



Chapter 3

Leveraging Suppliers to
Calibrate Product
Specification

3.1 Introduction

“In many cases, the supplier simply executes the design
specifications from the manufacturer. If there is a design issue,

a quality audit may not pick this up. It may be perfectly
produced to a faulty design.”

—Corporate Executive Board, (Gilligan, 2010).

Setting right product specifications is a vital function for any firm, and in-
correctly or inappropriately set production specifications can significantly
impact a firm’s sales and reputation. As such, firms often closely exam-
ine their internal design and engineering processes to ensure specifications
match what the market want. Specification flaws or mismatches, however,
may persist even with best intentions from within the firm, and in this case
the firm may benefit from tapping its suppliers’ expertise to calibrate prod-
uct specification.

Globalization has afforded suppliers ample opportunities to learn, de-
velop, and accumulate unique and often tacit product and process knowl-
edge. Such supplier-held knowledge can help firms calibrate and refine their
product specifications to create successful products in the market. (Petrick,
2012) It is especially valuable when product specifications interact subtly
with production process and technology choice: the supplier may perceive
potential specification problems based on material/manufacturing alterna-
tives, local/regional market tastes, and/or different regulatory mandates,
which the OEM firm may not be able to anticipate a priori.
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Petersen et al. (2005) noted that “suppliers, because of their product and
process knowledge or expertise, may have more realistic information on the
tradeoffs involved in achieving particular goals. Such goals are not limited to
cost but often include product performance characteristics (such as weight,
size, speed, etc.). The buying company will have the ultimate authority in
goal setting, but the suppliers involvement can help in setting goals that are
achievable.” Similarly, Ragatz et al. (2002) reported that ”using the knowl-
edge and expertise of suppliers to complement internal capabilities may help
reduce concept to customer cycle time, costs, quality problems,” and that “
interest in such efforts is growing.”

From an industry’s perspective, for example, suppliers (contract manu-
facturers) in chemical process industries can help to improve product specifi-
cations by suggesting “alternative chemical pathways” to a product. (Graff,
2014) Louis Assante, president of the Contemporary Cosmetic Group, noted
that as a contract manufacturer it often “make suggestions for improvements
or new technologies in personal care to our clients”. (Jeffries, 2004) Similar
observations can be found in many other industries as well. In particular,
Petrick (2012) noted that there is ample empirical evidence that supplier
held knowledge can be important in creating successful products in the mar-
ket place.

One cannot take for granted, however, that suppliers will always be will-
ing to point out potential specification problems by sharing their product
process knowledge with the OEM firm. Often the OEM firm’s objective is
not perfectly aligned with that of the supplier’s, and hence the supplier may
not be willing to suggest improvements or point out specification flaws. The
supplier, for example, may notice that a particular ingredient may nega-
tively impact the product’s fit to the local market’s taste, but it may know
for sure whether the OEM could rapidly engineer an alternative specification.
In addition, specification flaws are often observed only after the volume pro-
duction has begun, and hence the supplier could lose significant business if it
points out the specification flaw but no immediate resolutions are available.
In 2007, for example, Dell had to discontinue its “pearl white” color specs
with XPS notebooks when dust contamination problem was found with vol-
ume production runs not small test runs. (Cheng and Lawton, 2007) Here
we focus on the incentive of the suppliers. We do not discuss ethic issues
and reputation damage for suppliers.

Given that suppliers may not always be willing to suggest improvements
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or point out specification flaws, we seek to understand what factors may
motivate the supplier to voluntarily help the OEM firm improve product
specifications. The extant literature in supplier integration has examined
the pros and cons of including suppliers in project teams (Ragatz et al.,
2002; Hoegl and Wagner, 2005; Koufteros et al., 2005; Das et al., 2006;
Parker et al., 2008). This stream of literature focuses primarily on how the
OEM firm should involve the suppliers, e.g., the timing and depth of sup-
plier involvement, in product development effort. An implicit assumption
is that the suppliers will share tacit product and process knowledge with
the OEM firm as long as they are “included”. Relatively sparse attention
has been paid, however, to whether the suppliers are willing to share their
insights with the OEM firm even if they are included in the team.

We first examine when it is in the supplier’s interest to voluntarily
help the OEM to improve product specifications or pinpoint specification
flaws. This question is particularly relevant when the OEM firm and its
supplier form a “white box” relationship, where “buyer consults with sup-
plier on buyer’s design, discussion are held with suppliers about specifica-
tions/requirements but the buying company makes all design and specifi-
cations decisions. (Handfield and Lawson, 2007) Our research framework is
in general not appropriate for the “black box” setting where “design is pri-
marily supplier driven, based on buyer’s performance specifications. As we
focus on the “white box” type of relationships, we do not explore long term
business contracts with commodity type of products. In other words, we are
interested in industries with “fast clock speed”.

Intuitively, the supplier would suggest to the OEM about potential speci-
fication issues only if doing so helps the supplier’s current and/or near-future
businesses. Given that the OEM controls product specification, the supplier
cannot be faulted for any quality problems associated with specification
problems. Nevertheless, the supplier may still be motivated to help the
OEM improve product specifications if the supplier’s current or near-future
business is otherwise in jeopardy. Note that in this paper we ignore the
supplier’s outside options, which could either reinforce or diminish the sup-
plier’s incentive to improve product specifications. As the supplier becomes
less dependent on the OEM firm’s business, it becomes less concerned about
losing the particular business with the OEM firm and therefore may have
a stronger incentive to suggest specification problems. On the other hand,
however, the supplier also becomes less interested in securing the OEM firm’s
business, which could dampen the supplier’s incentives. The combined effect
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could be ambiguous and oftentimes are influenced by specific organizational
culture and inter-firm relationships.

We then study the OEM’s optimal strategy. The OEM’s profit depends
on the supplier’s decision to inform or not inform. The OEM, however, does
have the ability to design the contract to direct the supplier to choose to
inform or not inform, whichever brings more profit to the OEM himself. If
the supplier informs, the benefit for the OEM is that he might be able to
rectify the flaw in time and thus will be able to satisfy the current period
demand. In addition, the reputation of the products will bring a positive
spillover effect to the demand in the future. The downside of the supplier
informing is that the OEM might not be able to rectify the flaw in time. In
that case, the OEM may need to cancel the order and pays a cancellation
payment to the supplier. This cancellation payment might be expensive,
especially given the fact that it might be just the incentive for the supplier
to inform the OEM. What’s more, the delay of releasing the products may
hurt the OEM’s market demand in the future.

If the supplier does not inform the OEM, the OEM will benefit by avoid-
ing the cancellation payment. The OEM will be able to realize the flaw by
collecting feedback and response from the customer. If the demand for the
current period is fairly small and the cancellation payment is large, this may
be better for the OEM. The downside for the OEM if the supplier does not
inform is obvious. The OEM may lose the demand in the current period if
the customers return the products. The defected products in the current pe-
riod may cause reputation damage, which will negatively affect the demand
in the future. Again, if the demand for the current period is fairly small,
this might not be a sufficient incentive for the OEM to direct the supplier
to inform. With all these factors entangled, the OEM’s optimal strategy is
ambiguous.

Therefore we solve two optimization problems from the perspective of
the OEM. We first examine the optimal strategy for the OEM to maximize
his profit given that he does not want the supplier to inform. We then
explore the optimal strategy for the OEM to maximize his profit given that
he wants the supplier to inform. After that, we compare the optimal profits
of the OEM in these two cases. We prove that it is strictly better for the
OEM to design the contract so that the supplier will inform if she detects
any flaw. We give full description of the optimal solutions of the OEM and
therefore provide guidelines for the OEM to design the contract.
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3.2 Literature Review

Our paper is related to the supplier integration literature. Interestingly, this
stream of literature has found conflicting evidences on whether supplier in-
tegration helps the OEM firm. Hoegl and Wagner (2005) empirically show
that involving supplier in product development project can positively in-
fluence cost and schedule, but too much communication intensity may not
benefit the project. Das et al. (2006) also discuss pros and cons of supplier
integration. They find that too much investment in supplier integration is
not productive. Koufteros et al. (2005) explores the relationship between
internal integration and external integration, and find that internal inte-
gration positively influences external integration and product development
outcomes. Parker et al. (2008) noted that cost of integrating suppliers across
organizational boundaries imply that the benefit of integration must be sig-
nificantly higher to justify the supplier’s inclusion. From a general quality
improvement perspective, Zhu et al. (2007) find that buyer’s involvement
plays a critical role in improving product quality and supply chain profits.

This study is also related to (but differs from) the extant literature on
warranty services. In that stream of literature, the output quality is in-
fluenced by the supplier’s effort (which may not be observable) and/or the
OEMs effort. The OEM could motivate the supplier to produce higher qual-
ity product by sharing warranty cost with the supplier. Such shared war-
ranty service is especially useful when the OEM cannot clearly disentangle
the supplier’s responsibility in the final product’s quality problems. Reyniers
and Tapiero (1995) study how price and warranty influence the supplier’s
quality effort in a game theoretical setting, where the quality decision is
made by the supplier. Lim (2001) considers a similar problem, but incorpo-
rates information asymmetry where the buyer does not know the supplier’s
quality type and therefore must offer a menu of contract with appropriate
warranty terms. Chao et al. (2009) explore warranty cost sharing contract
based on selective or complete root cause analysis. Interestingly, they prove
that both approaches could achieve optimal efforts (as compared with an
integrated system), but cost sharing based on selective root cause analysis
could achieve a higher profit for the supply chain. From a somewhat differ-
ent angle, Dai et al. (2012) explore how the length of warranty influences
the product quality and system profit. In their model, it is the supplier that
determines the product quality level, but either party may determine the
length of warranty period. They found that the party that bears a higher
fraction of warranty cost should be delegated to set the warranty period.
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Huang et al. (2008) study warranty service from an inventory management
point of view, and they do not consider interactions between the supplier
and the OEM. Note that the use of warranty service has also received ex-
tensive treatment in the new product development context, and we refer the
interested reader to Murthy and Djamaludin (2002) for an excellent review
of the literature on new product warranty.

Our research complements the above literature by considering how an
OEM could motivate the supplier to voluntarily suggest potential specifica-
tion issues, when the OEM is responsible for setting product specifications.
In such a scenario, a shared warranty service would not be as effective be-
cause the supplier cannot be held responsible for mismatches between cus-
tomer demand and product specification problems.

In closing, we note that Iyer et al. (2005) also explore the product spec-
ification problem, but with a very different focus. In contrast to our paper,
they consider a “black-box” relationship where the supplier owns the prod-
uct specification, but the OEM may allocate resources to help the supplier
improve product specification. One can thus view our paper as complemen-
tary to theirs.

3.3 The Model

3.3.1 A descriptive overview

We consider an OEM firm sourcing a critical product (or component/subassembly)
from an external supplier. The OEM firm determines the product features
to be offered to the market and develops the corresponding specifications,
whereas the supplier executes the OEM firm’s order based on the OEM’s
specifications. Product specifications influence the market demand, and in-
correct or misaligned specifications leads to lower demand.

The OEM firm may not be able to detect potential specification prob-
lems. That is, the OEM firm may perceive the specifications to fit the market
taste well while in reality they may not. This could happen for several rea-
sons. First, the distributed nature of production configuration often leads to
dispersed product and process knowledge beyond the OEM’s organizational
boundary. Second, the supplier’s process technology may interact subtly
with product specifications (and performance), and it can be difficult for
the OEM to access tacit supplier knowledge a priori. Third, the OEM may
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not have prior expertise in certain (new) markets whereas the supplier has
accumulated unique and tacit knowledge in market tastes/trends through
their relationship with other OEMs.

The supplier may recognize the OEM’s specification problems, although
the supplier may not may not be sure about whether the problems can be re-
solved timely. Such uncertainty exists if the supplier recognizes specification
problems through its tacit production knowledge but does not have design
and engineering capabilities to come up with a new set of specifications, or
alternatively, if the supplier is unsure whether the OEM has the capability
to re-engineer alternative specifications timely. Note that the OEM could
reduce such supplier’s uncertainty by sharing information about its engi-
neering capabilities and/or collaborate more closely with the supplier.

Once the supplier recognizes the OEM’s potential specification problems,
it may either voluntarily point out the problem (and/or suggest improve-
ments) to the OEM, or remain silent and simply execute the OEM’s order
to the print. In the former case, the OEM firm may or may not be able to
fix the specification problems (or implement the suggested improvements)
in time to satisfy current period market demand. If not, the OEM firm will
cancel the order for the current period but will place another order for the
next period. We assume that if the specification problems cannot be fixed
in the current period, it will be fixed in the next period. Demand that can-
not be satisfied in the current period is lost. We will consider a two-period
model: such as model will best suit for fast-changing industries, and will
serve as a starting point for other stable industries where the OEM firm has
plenty of time to iron out winkles in its product specifications.

If the supplier remains silent and completes the OEM’s order to the print,
the OEM will subsequently recognize the specification problems through
lower than expected market demand in the current period. We assume that
the supplier’s production production process does not introduce other de-
fects and therefore the OEM cannot fault the supplier for the lower than
expected product performance. Implicitly, this means that even though the
supplier’s production process may interact subtly with the OEM’s specifi-
cations, the performance problem can be solely attributed to the OEM’s
specification flaws as opposed to production errors. This is quite different
from the case where the root cause of the problem cannot be clearly disen-
tangled (Kim and Tomlin, 2013).
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Should the OEM discover its specification flaws through lower market
demand, the OEM may also suffer from reputation damage from its second
period demand. Such reputation damage is often referred to as product
harm crises if the specification flaw is serious (Heerde et al., 2007). In such
a case, even if the OEM is able to correct its specification flaws by the
beginning of the second period, demand will still be lower due to customers’
bad experience with its first period product offerings.

3.4 The Model Setup

Having sketched the general aspects of the model, we are now in a position
to set up the model formally. In the following we refer the OEM as he and
the supplier as she.

Let t = 1, 2 denote the time period. At the beginning of the first period,
the OEM determines his product specification. We assume that with prob-
ability θ there are flaws in the specification. Note that the OEM is aware of
this probability but is not sure about the existence of flaws. The OEM then
offers a contract (q1, T ) to the supplier on a “take it or leave it” basis, with
q1 as the ordering quantity for the first period, and T as the cancellation
payment if the OEM cancels the order in the first period.

The supplier receives the order and produces the products. If the OEM’s
specification is correct, then the supplier delivers to the OEM. After the
OEM receives delivery from the supplier, he satisfies a market demand d1

as much as possible. Unsatisfied demand is lost (with no penalty cost), but
excess inventory can be carried over to the next period (with a holding cost
h per unit). Note that the sale amount should be the minimum of d1 and
q1. The OEM carries over (q1 − d1)+ to the second period. The successful
delivery of the products in the first period will bring a positive spill over
effect. The market demand in the second period will be d2 + β(d1 ∧ q1),
where d2 is a base market demand in the second period, β is a positive
spillover effect that is only effective on sales. At the beginning of the second
period, the OEM will update his forecast on the demand in the second
period accordingly, and will hence order [d2 +β(d1∧q1)− (q1−d1)+]+. This
scenario is presented as Case 0 in Figure 3.1.
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Figure 3.1: Sequence of events and cases

If the OEM’s specification has flaws, the supplier may detect the flaws.
We assume that the more the OEM orders, the better chance the supplier
may detect the flaws. One explanation is that if the OEM orders more,
the supplier may conduct a more refined and thorough preparation, and
therefore has more chance to detect the flaw even before any production.
Alternatively, imagine the supplier runs inspection on each individual unit
as it produces. Assuming the passing rate for each individual unit is γ, then
if the supplier has produced q1 units, she can detect the flaw as long as one
of these q1 units failed the inspection. Therefore, the probability for the
supplier to detect the flaw after producing q1 unit is 1− γq1 . This function
is concave and increasing in q1. As q1 increases, the probability for the
supplier to detect the flaws increases. In addition, the marginal increase in
the detecting probability decreases as q1 increases. After certain value of q1,
the marginal increase is fairly small, and the detecting probability is very
close to 1. We give an example of 1 − γq1 with γ = 0.95 in Figure 3.2(a),
where the detecting probability is larger or equal to 0.98 when q1 is at
least 80. In fact, for any value of γ and an arbitrarily small value ε, there
exists a threshold of q1, such that for any q1 larger than the threshold, the
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detecting probability is larger than 1−ε. In other words, after producing the
amount of the threshold, the marginal increase in detecting probability if the
supplier produces even more is negligible. In practice, the value of γ can vary
depending on the property of the products and the OEM’s specifications, and
the threshold will vary accordingly. For the purpose of analysis, we normalize
this threshold as 1, and use a piece wise function G(q1) (Figure 3.2(b)) to
approximate the probability of the supplier to detect the flaws when she
produces q1, where

G(q1) =

{
q1, q1 ∈ [0, 1]
1, q1 ∈ (1,+∞),

so that when q1 is less than 1, the detecting probability increases in q1 lin-
early. After that, the detecting probability is 1. Producing more will not
result in a higher detecting probability.

Figure 3.2: Probability of detecting flaws

We assume that d1 < 1, so that producing the market demand in the
first period will not be enough for the supplier to detect the flaws with cer-
tainty. We make this assumption to better examine under what condition
the OEM will order more than the demand in the first period just for the
sake of increasing the supplier’s detect probability.

If the supplier detects any flaws, she may choose either to inform the
OEM or remain silent. The supplier faces a dilemma because she is unsure
about whether an immediate resolution is available to correct the specifica-
tion flaws. Even the OEM himself is not sure about this, because he was not
aware of the specification flaws and thus can not guarantee the problem can
be resolved in time. We assume the OEM has communicated thoroughly
with the supplier. As results, they have a common knowledge that with
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probability α the specification flaws can be corrected without significant de-
lay (so that production can be completed in time for the current period’s
demand), and with probability 1 − α the specification flaw cannot be cor-
rected until by the beginning of the next period. For the rest of the paper,
we refer to α as the OEM’s capability to correct any potential specification
flaws. One could also alternatively interpret α as the supplier’s engineering
and process capability, but for exposition ease we use the former interpreta-
tion throughout the paper, with the understanding that all results developed
in the paper could be adapted to the latter interpretation.

If the supplier detects the specification flaws and points out the specifi-
cation issues to the OEM, there are two possible scenarios. One scenario is
that the OEM immediately corrects the specification flaws, then the supplier
produces the products and delivers to the OEM. The OEM then satisfies
the demand d1 and carries over any left over inventory. In the second pe-
riod, the demand will be positively affected, the OEM will therefore order
[d2 + β(d1 ∧ q1) − (q1 − d1)+]+. This scenario is presented as Case 1 in
Figure 3.1. Another scenario is that the OEM fails to find an immediate
resolution. The OEM then cancels the first period’s order and pays a fixed
compensation fee T to the supplier. In this case, we assume that the OEM
will find a resolution with certainty until the beginning of the second period.
Because the first period’s order is canceled, the demand in the second period
will just be the base market demand d2. The OEM will therefore order d2

in the second period. This scenario is presented as Case 2 in Figure 3.1.

In contrast, if the supplier detects the specification flaws but remains
silent, she finishes production with the OEM’s original specifications. In
this case, we assume the demand in the first period is lost. Customers
return the defected products. The OEM discovers the specification flaws
through the lost demand and salvages the products at s per unit. Until
the beginning of the second period, the OEM has a chance of α again to
find a resolution. If he does correct the flaws, there will be a market de-
mand in the second period. The demand in the second period, however, will
be negatively affected due to a reputation damage caused by the defected
products from the first period. We assume the negative spillover effect is
the same magnitude as the positive spillover effect. Therefore we can write
the demand in the second period as d2 − β(d1 ∧ q1). We assume d2 ≥ βd1,
i.e., the base market demand in the second period is big enough so that the
reputation damage from the first period will at most result in zero demand
in the second period. Because there is no inventory carried over from the
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first period, the OEM will hence order d2− β(d1 ∧ q1). This scenario is pre-
sented as Case 3 in Figure 3.1. On the other hand, if the OEM is not able
to correct the flaws until the beginning of the second period, the demand in
the second period will be lost. The OEM will update his demand forecast
accordingly and hence order nothing for the second period. This scenario is
presented as Case 4 in Figure 3.1.

On the other hand, it is possible that there are specification flaws but the
supplier does not detect any. In this case, the supplier delivers the defected
products. The first period demand is lost. The OEM salvages those defected
products. In the second period, the OEM has a chance of α to correct the
specification flaws. If he succeed, he will satisfy a demand d2 − β(q1 ∧ d1).
Otherwise the second period demand will also be lost. Note that the OEM
cannot differentiate this scenario from the scenario where the supplier de-
tects the flaws but choose to remain silent, nor can the OEM blame the
supplier for the specification flaws. This is precisely why we need to explore
and disentangle the incentives for the supplier to inform the OEM should
there be any flaws. Only having that clearly stated, we can then take the
next step to discuss from the perspective of the OEM under what condi-
tions it is beneficial for himself to design the contract so that the supplier
will voluntarily inform should there be any flaws.

In the best scenario for the OEM, i.e., there is no flaw in the speci-
fication, the maximum total demand the OEM satisfies in two periods is
d1 + d2 + βd1. We assume that if the OEM orders this amount at the be-
ginning of the first period, then the supplier can detect the flaws for sure.
We write this assumption as d1 + d2 + βd1 ≥ 1 given the structure of the
detecting probability G(q1).

The OEM pays the supplier a unit wholesale price of w for all units
delivered, sells the product at a unit price of p, and the supplier incurs a
unit production cost of c. We assume these prices are the same for two
periods. In practice, these prices may be different for different periods. In
addition, the supplier’s unit production cost may change as the OEM cor-
rects the specification flaws. To focus on the supplier’s incentive to suggest
potential specification flaws and the OEM’s optimal strategy in designing
the contract, we ignore the possible changes of wholesale price, selling price,
and production cost. In addition, we assume p > w > c > h ≥ s, and
w − c − h > 0. Another thing to point out is that all of the parameters in
our model is assumed to be common knowledge.
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3.5 Problem Formulation

We first describe the supplier’s decision problem, and then the OEM’s deci-
sion problem.

3.5.1 The supplier’s decision problem

The supplier needs to make a decision only when there are flaws in the
specification and when she has detected the flaws. The supplier needs to
decide whether to inform the OEM about the flaws. Let a ∈ {I,N} denote
the supplier’s action of either informing or not informing the OEM. If the
supplier informs the OEM, her expected profit is

SI =α{(w − c)q1 + (w − c)[d2 + β(q1 ∧ d1)− (q1 − d1)+]+}
+ (1− α)[T + (w − c)d2].

We assume the supplier can fully salvage the production cost of those
units that have already been produced using the faulted specification. The
supplier has many ways to salvage those units which are still on the produc-
tion line. She can use them for production with the corrected specification.
There will be extra cost, but the extra cost can be negligible if the modifi-
cation is minor. She can also sell those units to a secondary market or to
other OEMs who may have different standards. She can at least disassemble
those units and salvage them as raw materials.

Under this assumption, with probability α, the OEM resolves the spec-
ification flaws immediately. The supplier fully salvages the units that have
already been produced. The supplier then produces with the correct spec-
ification. She incurs a production cost cq1 for the first period order, and
receives wq1 from the OEM. The OEM satisfies a demand d1, and carries
over (q1− d1)+ amount of inventory to the second period. At the beginning
of the second period, the OEM updates his demand forecast for the second
period as d2 +β(q1∧d1) and orders [d2 +β(q1∧d1)−(q1−d1)+]+. Therefore
the supplier receives (w − c)[d2 + β(q1 ∧ d1) − (q1 − d1)+]+ in the second
period. On the other hand, with probability 1−α, the OEM cannot revolve
the specification flaws in time. He cancels the first period order, and pays a
cancellation fee T to the supplier. The supplier fully salvages the units that
have already been produced. In the second period, the OEM corrects the
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specification flaws, and update his demand forecast for the second period as
d2. Since there is no inventory carried over from the first period, the OEM
then orders d2 from the supplier. Therefore, the supplier receives T in the
first period, and (w − c)d2 in the second period.

In contrast, if the supplier does not inform the OEM, her expected profit
is

SN = (w − c)q1 + α(w − c)[d2 − β(q1 ∧ d1)],

where the supplier carries out production as usual in the first period (the
OEM cannot blame the supplier for his specification flaws), but in the sec-
ond period the supplier carries out production only if the specification flaws
can be rectified at the beginning of the second period. Note that the OEM’s
second period order d2−β(q1 ∧ d1) is based on an updated demand forecast
due to reputation damage caused by first period specification flaws.

Given the OEM’s contract (q1, T ), the supplier’s problem is to decide
a ∈ {I,N} to maximize {SI , SN}. Note that in the above formulation, we
implicitly assume that the supplier knows the OEM’s second period order
at the beginning of the first period. This is reasonable because all the pa-
rameters in our model are assumed to be common knowledge. If, on the
other hand, the supplier has to estimate the OEM’s second period order in
advance, then we need to replace the order quantity with supplier’s expec-
tation on the OEM’s order quantity. If the supplier is risk neutral and her
estimation is unbiased, then such as change will not affect our analysis. If,
however, the supplier is risk averse or has biased estimation, then a different
model that incorporates risk aversion or asymmetric information would be
more appropriate.

3.5.2 The OEM’s decision problem

The OEM needs to design the contract in the first period (q1, T ) to max-
imize his total profit over two periods, where q1 is the order quantity for
the first period, and T is the cancellation payment if he cancels the order in
the first period. Note that the OEM does need to decide the order quantity
in the second period as well. This decision, however, is straightforward.
Once the OEM has the updated demand information, he just orders up to
the market demand in the second period, as we stated in the previous sec-
tions. Therefore we focus on the OEM’s decision problem in the first period.
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We first write down the OEM’s profit in each case (Figure 3.1). We use
V i to denote the OEM’s profit in Case i, i = 0, 1, 2, 3, 4.

V 0 =V 1 = −wq1 + p(q1 ∧ d1)− h(q1 − d1)+

+ {−w[d2 + β(q1 ∧ d1)− (q1− d1)+]+ + p[d2 + β(q1 ∧ d1)]},
V 2 = −T + (p− w)d2,

V 3 = −wq1 + sq1 + (p− w)[d2 − β(q1 ∧ d1)],

V 4 = −wq1 + sq1.

Note that from the OEM’s perspective, Case 0 where there is no spec-
ification flaw, is equivalent as Case 1 where there are specification flaws,
the supplier detects and informs the OEM, and the OEM rectifies the flaws
instantly. In Case 1 and 2, the supplier detects the flaws after a certain
amount of production, she informs the OEM about the flaws and fully sal-
vages the production cost of those units. In Case 3 and Case 4, the defected
products have been delivered to the OEM and sold to the customers. It is
the OEM who salvages the defected products. We assume it is much harder
for the OEM to retrieve the cost. The salvage value is at s, lower than the
supplier’s production cost c.

The OEM’s total expected profit in two periods will depend on the sup-
plier’s decision.

If the supplier decides to NOT inform the OEM even if she detects the
flaw, the OEM’s expected profit is

VN (q1, T ) = (1− θ)V 0 + θ{αV 3 + (1− α)V 4}

If there is no flaw in the OEM’s specification, then it is Case 0. If there is
flaw in the OEM’s specification, because the supplier has decided NOT to
inform the OEM even if she detects the flaw, it does not matter whether or
not the supplier detects the flaw. The supplier carries out the production
according to the OEM’s original specification and delivers to the OEM. The
demand in the first period is lost. The OEM realizes the flaws through the
lost demand and salvages the defected products. At the beginning of the
second period, the OEM has a probability of α to rectify the flaw.

• If the OEM rectifies the flaws, the demand in the second period will
be d2 − β(q1 ∧ d1), and the OEM will order d2 − β(q1 ∧ d1). (Case 3).
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• If the OEM is not able to rectify the flaws, the demand in the second
period will be lost, and the OEM will order nothing (Case 4).

In contrast, if the supplier decides to inform the OEM if she detects the
flaw, the OEM’s expected profit is

VI(q1, T ) = (1− θ)V 0 + θ{G(q1)[αV 1 + (1− α)V 2] + [1−G(q1)][αV 3 + (1− α)V 4]}.

If there is no flaw in the OEM’s specification, then it is Case 0. If there is
flaw in the OEM’s specification, then the supplier has a probability of G(q1)
to detect the flaw.

• If the supplier detects the flaw, she then informs the OEM. The OEM
has a probability of α to rectify the flaws in a timely manner.

– If the OEM rectifies the flaw in time, the demand in the first
period will not be affected, the OEM carries over inventory (if
any) to the second period. The demand in the second period will
be d2 + β(q1 ∧ d1), and the OEM will order [d2 + β(q1 ∧ d1) −
(q1 − d1)+]+. (Case 1).

– Otherwise, the OEM fails to resolve the flaws in time, he cancels
the order. At the beginning of the second period, the OEM rec-
tifies the flaw. The demand in the second period will be d2, and
the OEM will order d2. (Case 2).

• If the supplier does not detect the flaw, then the demand in the first
period is lost. The OEM realizes the flaw through the lost demand
and salvages the defected products. At the beginning of the second
period, the OEM again has a probability of α to rectify the flaw.

– If the OEM rectifies the flaw, the demand in the second period
will be d2 − β(q1 ∧ d1), and the OEM will order d2 − β(q1 ∧ d1).
(Case 3).

– Otherwise, the OEM is not able to rectify the flaw, the demand
in the second period will be lost again, and the OEM will order
nothing (Case 4).

The OEM can design the contract (q1, T ) to direct the supplier to inform
or not inform. Therefore we solve the OEM’s decision problems as follows.
We will characterize the optimal solutions for the OEM to maximize his
expected total profit given that he directs the supplier to not inform or in-
form, respectively (section 2.4.1 and section 2.4.2). Then we will compare
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the OEM’s optimal expected profit in these two cases (section 2.4.3). We
will show that it is strictly better for the OEM to design (q1, T ) so that
the supplier will inform should she detect any flaw. Finally, we will con-
duct sensitivity analysis on the optimal solutions to gain some managerial
insights.

3.6 Analysis

3.6.1 Optimization problem N

In this section, we examine the optimal solutions of the OEM on the con-
dition that the OEM directs the supplier NOT to inform when she detects
flaws. The OEM’s decision problem can be written as

max
q1≥0,T

VN (q1) = VN (q1, T )

s.t.SI ≤ SN
SN ≥ 0

T ≥ 0,

where VN (q1) is the OEM’s expected total profit if he orders q1 in the first
period given that the supplier does NOT inform even if she detects any
flaw, SI ≤ SN is the incentive constraint for the supplier to NOT inform,
SN ≥ 0 is the individual rationality constraint for the supplier, and T ≥ 0 is
the nonnegative constraint for the cancellation payment. Because we have
assumed that d2 ≥ βd1, the individual rationality constraint always holds.

Note that the objective function in optimization problem N does not
depend on T . The OEM does not want the supplier to inform, thus he
will never try to rectify the flaws, and thus will never cancel the order and
pay the cancellation payment T . Cancellation payment serves as an empty
threat in the contract. The only constraint on the cancellation payment is
that it needs to be small enough so that the supplier will not have incentive
to inform.

We can summarize the optimal solutions for the OEM in optimization
problem N as follows.

Theorem 3.6.1 The optimal solutions for the OEM in optimization prob-
lem N are as follows.
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• When d2 >
1− α(1 + 2β)

1− α d1, q
∗
1 = α(1+2β)d1+(1−α)d2, and T

∗ = 0.

• When d2 ≤
1− α(1 + 2β)

1− α d1, the optimal solutions will depend on the

value of θ.

– When θ ≤ (p− w)(1 + β)

(p− w)(1 + β + αβ) + w − s , q
∗
1 = d1, and T

∗ can be

any value satisfying the incentive constraint. We set T ∗ = 0.

– When θ >
(p− w)(1 + β)

(p− w)(1 + β + αβ) + w − s , q
∗
1 =

1− α
1− α− 2αβ

d2,

and T ∗ = 0.

We can demonstrate Theorem 3.6.1 on the (d1, d2) map, as shown in Fig-

ure 3.3 (a). Note that because we have assumed d2 ≥ βd1, if
1− α(1 + 2β)

1− α ≤
β, theorem 3.6.1 degenerates to only the first case where q∗1 = α(1+2β)d1 +
(1− α)d2 and T ∗ = 0, as shown in Figure 3.3 (b).

Figure 3.3: The optimal solutions for optimization problem N

3.6.2 Optimization problem I

In this section, we explore the optimal solutions of the OEM on the condition
that the OEM directs the supplier to inform when she detects flaws. The
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OEM’s decision problem can be written as

max
q1≥0,T

VI(q1, T )

s.t.SI ≥ SN
SI ≥ 0

T ≥ 0,

where VI(q1, T ) is the OEM’s expected total profit if he orders q1 in the first
period and sets T as the cancellation payment on the condition that the
supplier chooses to inform should there be flaws, SI ≥ SN is the incentive
constraint for the supplier to inform, SI ≥ 0 is the individual rationality
constraint, and T ≥ 0 is the nonnegative constraint for the cancellation
payment.

One observation we make here is that if the incentive constraint holds,
then the individual rationality constraint also holds. Specifically, because
we have assumed d2 ≥ βd1, then SN ≥ 0, therefore if SI ≥ SN , then SI ≥
0. Thus the individual rationality constraint is redundant. Optimization
problem I is equivalent as

max
q1,T

VI(q1, T )

s.t.SI ≥ SN
T ≥ 0.

There are two piece-wise functions in the objective function, one is

[d2+β(q1∧d1)−(q1−d1)+]+ =


d2 + βq1, q1 ≤ d1,
(β + 1)d1 + d2 − q1, d1 < q1 ≤ (β + 1)d1 + d2,

0, q1 > (β + 1)d1 + d2,

the other is

G(q1) =

{
q1, q1 ∈ [0, 1],
1, q1 ∈ (1,+∞).

We therefore divide the region of q1 into four subregions: [0, d1], (d1, 1],
(1, (β+ 1)d1 + d2], and ((β+ 1)d1 + d2,+∞), and examine the local optimal
solutions in these four subregions receptively. After that, we will evaluate
the local optimal solutions in these subregions to get the global optimal so-
lutions for the OEM in optimization problem I.
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Optimal Solutions in the subregion [0, d1]

We first study the local optimal solutions for the OEM in optimization
problem I when q1 ∈ [0, d1).

Proposition 3.6.2 In the subregion q1 ∈ [0, d1], the optimal solutions for
the OEM in optimization problem I are as follows.

• When d2 >
1− α(1 + 2β)

1− α d1, T
∗ = 0.

– When (d1, d2) is above Line 1, q∗1 = d1.

– Otherwise q∗1 = 0.

• When d2 ≤
1− α(1 + 2β)

1− α d1:

– When (d1, d2) is above Line 2, q∗1 = d1, and T
∗ =

w − c
1− α [(1−α−

2αβ)d1 − (1− α)d2].

– Otherwise q∗1 = 0, and T ∗ = 0.

The equations for the Lines are

Line 1: d2 =− [
α(1 + 2β)

1− α +
w − s

(1− α)(p− w)
]d1

+
θ(w − s)− (p− w)[(1 + β)(1− θ)− αβθ]

θ(1− α)(p− w)
,

Line 2: d2 =− [
α(1 + 2β)

1− α +
c− s

(1− α)(p− c) ]d1

+
θ(w − s)− (p− w)[(1 + β)(1− θ)− αβθ]

θ(1− α)(p− c) .

We can demonstrate Proposition 3.6.2 on (d1, d2) map in Figure 3.4(a).

Note that if
1− α(1 + 2β)

1− α ≤ β, Proposition 3.6.2 degenerates to only the

first part, as shown in Figure 3.4(b). Another thing to note is that when

θ ≤ (p− w)(1 + β)

(p− w)(1 + β + αβ) + w − s , both Line 1 and Line 2 has nonpositive

intercepts. In that case, the optimal solutions for the OEM in optimization
problem I in the subregion [0, d1] are q∗1 = d1 and T ∗ = 0.
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Figure 3.4: The optimal solutions for optimization problem I when q1 ∈
[0, d1]

Optimal Solutions in the subregion (d1, 1]

We then explore the optimal solutions for the OEM in optimization problem
I when q1 ∈ (d1, 1].

Proposition 3.6.3 In the subregion (d1, 1], the optimal solutions for the
OEM in optimization problem I are as follows.

• When d2 ≤
1− α(1 + 2β)

1− α d1:

– When (d1, d2) is above Line 6, q∗1 = 1, and T ∗ =
w − c
1− α [1−α(1 +

2β)d1 − (1− α)d2].

– Otherwise, q∗1 = d1, and T
∗ =

w − c
1− α [(1−α−2αβ)d1−(1−α)d2].

• When d2 > −
α(1 + 2β)

1− α d1 +
1

1− α , then T
∗ = 0.

– When it is above Line 3, q∗1 = 1.

– Otherwise, q∗1 = d1.

• When d2 ≤ −
α(1 + 2β)

1− α d1 +
1

1− α :

– When (d1, d2) is above both Line 4 and Line 5, q∗1 = 1 and

T ∗ =
w − c
1− α [1− α(1 + 2β)d1 − (1− α)d2].
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– When (d1, d2) is below both Line 4 and Line 5, q∗1 = d1 and
T ∗ = 0 .

– When (d1, d2) is above Line 4 and below Line 5, q∗1 = α(1 +
2β)d1 + (1− α)d2 and T ∗ = 0.

– When (d1, d2) is below Line 4 and above Line 5, q∗1 could be d1

or 1. If q∗1 = d1, then T ∗ = 0. If q∗1 = 1, then T ∗ =
w − c
1− α [1 −

α(1 + 2β)d1 − (1− α)d2].

The equations of the lines are

Line 6: d2 =− [
α(1 + 2β)

1− α +
c− s

(1− α)(p− c) ]d1

+
θ(w − c) + h(1− θ + αθ)

θ(1− α)(p− c) .

Line 3: d2 =− [
α(1 + 2β)

1− α +
w − s

(1− α)(p− w)
]d1

+
h(1− θ + αθ)

θ(1− α)(p− w)
.

Line 4: d2 =− [
α(1 + 2β)

1− α +
w − s

(1− α)(p− αh− s) ]d1

+
θ(w − s) + h(1− θ)
θ(1− α)(p− αh− s) .

Line 5: d2 =− [
α(1 + 2β)

1− α +
αh

(1− α)(p− αh− s) ]d1

+
θ(w − c) + h(1− θ + θα)

θ(1− α)(p− αh− s) .

Depending on the positions of these Lines, the division of (d1, d2) map can
be of various forms. One representative case is shown in Figure 3.5(a). Note

that If
1− α(1 + 2β)

1− α ≤ β, the first case in Proposition 3.6.3 does not exist,

as presented in Figure 3.5(b).
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Figure 3.5: The optimal solutions for optimization problem I when q1 ∈
(1, d1]

Optimal Solutions in the subregion (1, (β + 1)d1 + d2]

Next, we examine the optimal solutions for optimization problem I when
q1 ∈ (1, (β + 1)d1 + d2].

Proposition 3.6.4 In the subregion q1 ∈ (1, (β+ 1)d1 + d2], the optimal q1

for the OEM in optimization problem I is q∗1 = 1.

• When d2 ≤ −
α(1 + 2β)

1− α d1 +
1

1− α , then T
∗ =

w − c
1− α [1−α(1+2β)d1−

(1− α)d2].

• Otherwise, T ∗ = 0.

Optimal Solutions in the subregion ((β + 1)d1 + d2,+∞)

Finally we study the optimal solutions for optimization problem I when
q1 ∈ ((β + 1)d1 + d2,+∞). If there is no specification flaw in the OEM’s
design, or there is flaw but the supplier detects, informs, and the OEM
corrects the flaw in time, then the total demand for two periods would be
(β + 1)d1 + d2. Thus (β + 1)d1 + d2 is the maximum total demand for the
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OEM in two periods. Intuitively, the OEM has no incentive to order more
than (β + 1)d1 + d2 in the first period.

Proposition 3.6.5 In the subregion q1 ∈ ((β+ 1)d1 +d2,+∞), the optimal
solutions for optimization problem I are q∗1 = (β + 1)d1 + d2, and

T ∗ = (w − c)(β + 1)d1 +
α

1− α(w − c)(d2 − βd1).

Optimal Solutions for optimization problem I

Now we are ready to state the optimal solutions for the OEM in optimization
problem I. The possible optimal values of q∗1 are 0, d1, α(1+2β)d1+(1−α)d2,
and 1.

Theorem 3.6.6 When d2 ≤
1− α(1 + 2β)

1− α d1, the optimal solutions for op-

timization problem I are as follows.

(a) If θ ≤ (p− w)(1 + β) + h

(p− w)(1 + β + αβ) + c− s+ (1− α)h
, then

• when (d1, d2) is above Line 6, q∗1 = 1 and

T ∗ =
w − c
1− α [1− α(1 + 2β)d1 − (1− α)d2].

• When (d1, d2) is below Line 2, q∗1 = 0 and T ∗ = 0.

• When (d1, d2) is above Line 2 and below Line 6, q∗1 = d1 and

T ∗ =
w − c
1− α [(1− α− 2αβ)d1 − (1− α)d2].

(b) If θ >
(p− w)(1 + β) + h

(p− w)(1 + β + αβ) + c− s+ (1− α)h
, then

• When (d1, d2) is above Line 2, q∗1 = 1 and

T ∗ =
w − c
1− α [1− α(1 + 2β)d1 − (1− α)d2].

• When (d1, d2) is below Line 6, q∗1 = 0 and T ∗ = 0.

• When (d1, d2) is above Line 6 and below Line 2, in the area that is
above Line 7, q∗1 = 1 and T ∗ = 0. In the part that is below Line 7,
q∗1 = 0 and T ∗ = 0.

Theorem 3.6.6 is presented in Figure 3.6. Note that Line 2 can have negative
intercept. Both Line 2 and Line 6 can have intercepts that is big enough so
that they do not contribute to divisions.
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Figure 3.6: The global optimal solutions for the OEM in optimization prob-

lem I when d2 ≤
1− α(1 + 2β)

1− α d1.

Theorem 3.6.7 When d2 >
1− α(1 + 2β)

1− α d1, the optimal solutions for the

OEM in optimization problem I is as follows.

(i) If θ ≤ (p− w)(1 + β)

(p− w)(1 + β + αβ) + w − s , then the optimal q1 for optimiza-

tion problem I is restricted on [d1, 1]. The possible optimal value for
q1 is d1, 1, and α(1 + 2β)d1 + (1− α)d2.

(ii) If θ >
(p− w)(1 + β)

(p− w)(1 + β + αβ) + w − s , then the optimal q1 for optimiza-

tion problem I is restricted on [0, 1]. The possible optimal value for q1

is 0, d1, 1, and α(1 + 2β)d1 + (1− α)d2.

• When q∗1 = 0 or α(1 + 2β)d1 + (1− α)d2, T
∗ = 0.

• When q∗1 = d1, T
∗ = max{w − c

1− α [(1− α− 2αβ)d1 − (1− α)d2], 0}.

• When q∗1 = 1, T ∗ = max{w − c
1− α [1− α(1 + 2β)d1 − (1− α)d2], 0}.

We shown a representative case of the optimal solutions for the OEM in
optimization problem I in Figure 3.7. It is worth pointing out that under
Line 1, the local optimal q1 in the subregion [0, d1] is q∗1 = 0, and the local
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optimal q1 in the subregion (d1, 1] is q∗1 = d1, then the global optimal q1 is
q∗1 = 0. This is implied by the continuity of the optimization problem. In
the next section, we will further discuss the division of (d1, d2) map.

Figure 3.7: The global optimal solutions for optimization problem I.

3.6.3 Overall optimal solutions for the OEM

General Structure

Theorem 3.6.8 The optimal objective value of optimization problem I is
strictly bigger than the optimal objective value of optimization problem N.

This is a strong conclusion. This theorem implies that it is always better
for the OEM to design the contract so that the supplier voluntarily informs.
The optimal solutions for the OEM are the same as the optimal solutions
for the OEM in optimization problem I.

Having this theorem, next we focus on providing guidelines for the OEM
to design the contract. In the following, we conduct sensitivity analysis on
the parameters θ, α, and β, to gain some insights from previous results.

Sensitivity Analysis on θ

First, we want to isolate the influence of θ on the optimal solutions (q∗1, T
∗)

of the OEM. We fix other parameters at reasonable values and explore how
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the optimal solutions change as θ changes.

Figure 3.8 presents the optimal solutions of the OEM in a case when
the demands in two periods are comparable. When θ is small, meaning that
there is a small chance the specification has flaws, the OEM should order
only d1. Because if the OEM orders more than d1 in the first period, he
incurs holding cost on the inventory. At this point, the supplier informs
voluntarily without the OEM providing cancellation payment. However, as
θ increases, once θ reaches a certain level, the benefits of ordering more
which is the increased detecting probability exceeds the cost of ordering
more which is the holding cost, and the OEM should order 1. At the same
time, because the OEM orders a large amount in the first period, if the sup-
plier informs, she might loose the first period order and only gets the second
period demand, which is 0.5. Therefore, the supplier prefers to remain silent
about the flaws unless the OEM provides a positive cancellation payment.
Because if the supplier remains silent, she gets the order of 1 in total in any
case.

Figure 3.9 presents the optimal solutions of the OEM in a case when
the second period’s demand is substantially larger than the fist period’s de-
mand, and the spill over effect is strong. In this case, the OEM does not
want to risk losing the second period’s demand. Therefore as long as there
is a tiny probability that the specification has flaws, the OEM will order 1
in the first period so that the supplier can detect the flaw with certainty and
informs the OEM. On the other hand, because the second period’s demand
is significantly larger than the first period’s demand, the supplier wants to
inform out of her own interest. Therefore the OEM does not need to provide
a cancellation payment.

Figure 3.10 presents the optimal solutions of the OEM in a case when the
second period’s demand is small, and the spill over effect is weak. When θ is
small, the OEM orders only d1 to avoid the holding cost. At the same time,
because the first period’s demand is larger, the supplier has an incentive to
remain silent, and the OEM needs to offer a positive cancellation payment
so that the supplier would inform the OEM should she detects any flaws.
As θ increases, once θ reaches a certain level, the OEM starts to order 1 so
that the supplier can detect the flaws with certainty. The OEM needs to
provide a larger cancellation payment to maintain the supplier’s preference
to inform.
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The case in Figure 3.11 is to show that the OEM’s order quantity does
not necessarily jump among 0, d1 and 1. Sometimes the OEM will order an
intermediate amount between d1 and 1, which is q∗1 = α(1+2β)d1+(1−α)d2.
When he orders this amount, T ∗ = 0, meaning that the supplier will volun-
tarily inform without a cancellation payment.

Figure 3.8: The optimal solutions versus θ when demands are comparable
(with d1 = d2 = 0.5, β = 1, p = 4, w = 2, c = 1, h = 0.1, s = 0.2, and
α = 0.3).

Figure 3.9: The optimal solutions versus θ when d2 is large (with d1 = 0.8,
d2 = 30, β = 20, p = 4, w = 2, c = 1, h = 0.1, s = 0.2, and α = 0.3).
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Figure 3.10: The optimal solutions versus θ when d2 is small (d1 = 0.8,
d2 = 0.2, β = 0.01, p = 4, w = 2, c = 1, h = 0.1, s = 0.2, and α = 0.3).

Figure 3.11: The optimal solutions versus θ with intermediate q∗1 presented
(with d1 = 0.46, d2 = 0.38, β = 0.8, p = 3, w = 2, c = 1, h = 0.3, s = 0.3,
and α = 0.3).

Sensitivity Analysis on α

Secondly, we want to isolate the influence of α on the optimal solutions
(q∗1, T

∗) of the OEM. We expect T ∗ to be decreasing in α. If α increases,
the OEM has a better capability to rectify the flaws immediately, therefore
should need less cancellation payment to motivate the supplier to inform.

Figure 3.12 presents the optimal solutions of the OEM in a case when the
demands in two periods are comparable. As α increases, supplier becomes
more confident in the OEM’s capability to resolve the flaws in time. There-
fore the OEM does not need to provide as much incentive for the supplier
to inform. This explains why T ∗ decreases as α decreases.
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Figure 3.13 presents the optimal solutions of the OEM in a case when the
demand in the second period is substantially larger than the demand in the
first period, and the spill over effect is strong. In this case, the OEM does
not want to lose the demand in the second period. Therefore the OEM will
always order 1 so that the supplier can detect the flaw. At the same time,
because the second period’s demand is much larger than the first period’s
demand, the supplier will inform without cancellation payment.

Figure 3.14 presents the optimal solutions of the OEM in a case when
the demand in the second period is small, and the spillover effect is weak.
In this case, when α is small, there is a big chance that the OEM is not able
to rectify the flaw in time, and because the demand in the second period
is very small, thus the OEM should order only d1. When α increases, the
OEM has more confidence to rectify the flaw in time, then he should order
1 so that the supplier can detect the flaw and inform him.

An interesting observation in this particular case is that when α ap-
proaches 1, T ∗ approaches infinity. When α is almost 1, meaning that the
OEM in most cases can correct the flaws immediately. Suppose cancella-
tion payment is zero, then the supplier would prefer not to inform. If the
supplier informs, the OEM will correct the flaws, the supplier will get the
first period’s order, which is 1. In the second period, the demand will be
d2 + βd1, but the OEM will order only βd1, for he carries over some inven-
tory from the first period. The supplier in total gets order 1 + βd1 = 1.08.
In contrast, if the supplier does not order, she gets the first period demand
1. The OEM recognizes the flaws through lost demand. Defected products
are salvaged, not carried over. In the second period, the demand will be
d2 − βd1, and the OEM will need to order d2 − βd1. The supplier in total
gets order 1 +d2−βd1 = 1.12. Therefore the supplier gets more order if she
does not inform. In order to make the supplier inform, the OEM will need to
fill this gap using the cancellation payment, so that the expected payment
for the supplier to inform is better than not to inform. The cancellation
payment is only effective when the OEM cannot rectify the flaws. Because
this probability 1−α approaches zero, the cancellation payment approaches
infinity.

The case in Figure 3.15 is to show that sometimes the OEM will order an
intermediate amount between d1 and 1, which is q∗1 = α(1+2β)d1+(1−α)d2.
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Figure 3.12: The optimal solutions versus α when demands are comparable
(with d1 = d2 = 0.5, β = 1, p = 4, w = 2, c = 1, h = 0.1, s = 0.2, and
θ = 0.5).

Figure 3.13: The optimal solutions versus α when d2 is large (with d1 = 0.8,
d2 = 30, β = 20, p = 4, w = 2, c = 1, h = 0.1, s = 0.2, and θ = 0.5).

Figure 3.14: The optimal solutions versus α when d2 is small (with d1 = 0.8,
d2 = 0.2, β = 0.01, p = 4, w = 2, c = 1, h = 0.1, s = 0.2, and θ = 0.5).
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Figure 3.15: The optimal solutions versus α with intermediate q∗1 presented
(d1 = 0.46, d2 = 0.38, β = 0.8, p = 3, w = 2, c = 1, h = 0.3, s = 0.3, and
θ = 0.5).

Sensitivity Analysis on β

Finally, we want to isolate the influence of β on the optimal solutions (q∗1, T
∗)

of the OEM. Intuitively, as β increases, the spillover effect is stronger, the
OEM has more incentive to direct the supplier to inform so that the poten-
tial flaws do not jeopardize the second period’s demand. On the other hand,
the supplier herself would have stronger incentive to voluntarily inform be-
cause she wants to secure the second period’s demand. The interests of the
OEM and the supplier are aligned. What’s more, the optimal value of T ∗

should decrease in β. Because if β is larger, the supplier has stronger in-
centive to voluntarily inform and therefore does not need as much incentive
provided from the OEM. Note that we have the assumptions that d2 ≥ βd1,
and (β + 1)d1 + d2 > 1. Therefore for different values of α, d1, and d2, the
feasible value for β varies.

Figure 3.16 presents the optimal solutions of the OEM in a case when
the demands in two periods are comparable. In this case, the OEM will
order 1, and will need to provide positive cancellation payment so that the
supplier will inform.

Figure 3.17 presents the optimal solutions of the OEM in a case when
the second period’s demand is substantially larger than the first period’s
demand, and the spill over effect is strong. In this case, the supplier will
voluntarily inform without a cancellation payment.

Figure 3.18 presents the optimal solutions of the OEM in a case when
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the demand in the second period is small, and the spillover effect is weak.
In this case, the demand in second period is not sufficient enough for the
supplier to inform voluntarily, the OEM will need to provide a positive can-
cellation payment.

The case in Figure 3.19 is to show that sometimes q∗1 = α(1 + 2β)d1 +
(1 − α)d2. Note that T ∗ decreases in β. Because if the spillover effect is
stronger, the supplier has a stronger incentive in inform voluntarily, so that
the OEM does not need to provide as much incentive through T ∗.

Figure 3.16: The optimal solutions versus β when demands are comparable
(with d1 = d2 = 0.5, p = 4, w = 2, c = 1, h = 0.1, s = 0.2, θ = 0.5, and
α = 0.5).

Figure 3.17: The optimal solutions versus β when d2 is large (with d1 = 0.2,
d2 = 20, p = 4, w = 2, c = 1, h = 0.1, s = 0.2, θ = 0.5, and α = 0.5).
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Figure 3.18: The optimal solutions versus β when d2 is small (with d1 = 0.8,
d2 = 0.2, p = 4, w = 2, c = 1, h = 0.1, s = 0.2, θ = 0.5, and α = 0.5).

Figure 3.19: The optimal solutions versus β with intermediate q∗1 presented
(with d1 = 0.46, d2 = 0.38, p = 3, w = 2, c = 1, h = 0.3, s = 0.3, θ = 0.5,
and α = 0.5).

3.7 Conclusion

In this research, we first explore potential factors that may motivate the
supplier to help the OEM improve product specifications by pointing out
potential specification flaws and /or suggest improvements in product spec-
ifications. Our research is especially relevant when the supplier cannot be
faulted for product quality issues arising from the OEM’s specification flaws,
where some common approaches such as shared warranty services may not
be effective.

We then solve the optimization problem for the OEM. We prove that it
is strictly better for the OEM to design the contract so that the supplier
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will inform if she detects flaws. This is a strong conclusion. With this prin-
ciple in mind, we characterize the optimal strategy of the OEM, including
order quantities in each period, and cancellation payment in the first pe-
riod. We find that the optimal solutions are very sensitive with regard to
some parameters. We perform sensitivity analysis on those parameters. One
thing we show is that whenever the OEM is paying a positive cancellation
payment to the supplier, then the cancellation payment should decrease as
the OEM’s capability increases, and decrease as the spillover effect for the
demand increases.

Leveraging supplier’s capabilities to improve product specifications and
quality performance is an important area of research, and we hope that
future research in this direction, either by us or others, will provide further
insights in tapping the supplier’s knowledge to create successful products.
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Appendix A

Appendix for Chapter 2

In each period t, t = 1, · · · , T , the utility trades in the REC market first,
then purchases electricity from the forward market. We write two cost-to-go
functions for these two stages for ease of analysis.

In stage two, the utility’s had adjusted its REC level to x̄t, the decision
variables are y1t and y2t. Given state (x̄t, ut, Rt, Pt), the cost-to-go function
after REC trading can be written as

Wt(x̄t, ut, Rt, Pt) = min
y1t≥0

y2t≥y1t

{p1ty1t + p2t(y2t − y1t) +Gt(y2t)

+ γEt[Vt+1(x̄t + y1t, ut +Dt, Rt+1, Pt+1)]}
(A.1)

In stage one, the decision variable is x̄t, the cost-to-go function before
REC trading can be written as

Vt(xt, ut, Rt, Pt) = min
x̄t

{Ct(x̄t − xt, Rt) +Wt(x̄t, ut, Rt, Pt)} (A.2)

In the appendix, for simplicity, we use “increase (decrease)” to indi-
cate“nondecrease (nonincrease)”. Also, we omit the subscription t un-
less there is confusion. For instance, in the following Lemma, we write
Wt(x, u,R, P ) instead of Wt(xt, ut, Rt, Pt).

Lemma A.0.1 Wt(x, u, R, P ) and Vt(x, u, R, P ) are jointly convex on
(x, u).

Proof of lemma A.0.1:
We prove this lemma by induction in three steps:

(i) VT+1(x, u) = π(αu− z)+ is jointly convex on (x, u);

(ii) If Vt+1(x, u, R, P ) is jointly convex on (x, u), then Wt(x̄, u, R, P ) is
jointly convex on (x̄, u);
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(iii) If Wt(x̄, u, R, P ) is jointly convex on (x̄, u), then Vt(x, u, R, P ) is
jointly convex on (x, u).

We show the proofs of these three steps in the following.

(i) Since πx+ is convex in x, VT+1(x, u) = π(αu−z)+ = π((α,−1)(u, z)T)+

is jointly convex on (x, u) by the preservation of convexity under com-
position with an affine mapping (Boyd and Vandenberghe, 2004).

(ii) According to equation (A.1), by the preservation of convexity under
minimization, it is sufficient to show:

(a) {(y1, y2) : y1 ≥ 0, y2 ≥ y1} is a convex set;

(b) p1y1 + p2(y2− y1) +Gt(y2) + γEt[Vt+1(x̄+ y1, u+D,Rt+1, Pt+1)]
is convex on (x̄, u, y1, y2).

(a) is easy to verify. Now we prove (b). Since Vt+1(x, u, R, P ) is
jointly convex on (x, u), Vt+1(x̄+ y1, u+D,Rt+1, Pt+1) is jointly con-
vex in (x̄, u) and (y1, u), also jointly convex in (x̄, y1) by the preser-
vation of convexity under composition with an affine mapping. Thus,
Vt+1(x̄+y1, u+D,Rt+1, Pt+1) is convex in (x̄, u, y1). Then Et[Vt+1(x̄+
y1, u+D,Rt+1, Pt+1)] is convex in (x̄, u, y1) by preservation of convex-
ity under nonnegative weighted sums (Boyd and Vandenberghe, 2004).
Moreover, Gt(y2) is convex in y2. Thus, we’ve proved (b), and we’ve
proved (ii).

(iii) According to equation (A.2), by the preservation of convexity under
minimization, it is sufficient to show Ct(x̄− x, R) +Wt(x̄, u, R, P ) is
convex in (x, u, x̄). Since bx+ − s(−x)+ is convex in x, by the preser-
vation of convexity under composition with an affine mapping, Ct(x̄−
x,R) = b(x̄−z)+−s(z−x̄)+ = b((1,−1)(x̄, z)T)+−s(−(1,−1)(x̄, z)T)+

is jointly convex on (x̄, z). Meanwhile, W (x̄, u, R, P ) is convex in
(x̄, u) by assumption. Thus, Ct(x̄ − x, R) + W (x̄, u, R, P ) is convex
in (x, u, x̄).

Lemma A.0.2 Wt(x, u, R, P ) and Vt(x, u, R, P ) are submodular on (x, u).

Proof of lemma 2.4.2:
We prove this lemma by induction in three steps:

(i) VT+1(x, u) is submodular on (x, u);
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(ii) If Vt+1(x, u,R, P ) is submodular on (x, u), then Wt(x̄, u,R, P ) is sub-
modular on (x̄, u);

(iii) If Wt(x̄, u,R, P ) is submodular on (x̄, u), then Vt(x, u,R, P ) is sub-
modular on (x, u).

We show the proofs of these three steps in the following.

(i) Since πx+ is convex in x, VT+1(x, u) = π(αu − z)+ is submodular on
(x, u) (Topkis, 1998), Lemma 2.6.2.

(ii) According to equation (A.1), by the preservation of submodularity
(Topkis, 1998), Theorem 2.7.6, it is sufficient to show:

(a) (a) {((x̄, u), (y1, y2)) : u ≥ 0, y1 ≥ 0, y2 ≥ y1} forms a lattice;

(b) (b) p1y1+p2(y2−y1)+Gt(y2)+γEt[Vt+1(x̄+y1, u+D,Rt+1, Pt+1)]
is submodular on ((x̄, u), (y1, y2)).

(a) is easy to verify. Now we prove (b). Note p1y1 + p2(y2 − y1) is
linear in (y1, y2) and Gt(y2) is a function of a single variable, thus,
p1y1 + p2(y2 − y1) + Gt(y2) is submodular on (y1, y2). If we can
show Vt+1(x̄+y1, u+D,Rt+1, Pt+1) is submodular on ((x̄, u), y1), then
p1y1 +p2(y2−y1)+Gt(y2)+γEt[Vt+1(x̄+y1, u+D,Rt+1, Pt+1)] is sub-
modular on ((x̄, u), (y1, y2)), because the sum of two submodular func-
tions is also submodular. We know that Vt+1(x̄+y1, u+D,Rt+1, Pt+1)
is submodular on (x̄, u) and (y1, u) by the assumption. Also, because
V (x, u,R, P ) decreases in z, Vt+1(x̄+y1, u+D,Rt+1, Pt+1) is submod-
ular on (x̄, y1). Thus we’ve proved (b), and we’ve proved (ii) .

(iii) Since bx+ − s(−x)+ is convex in x, Ct(x̄ − x,R) = b(x̄ − z)+ − s(z −
x̄)+ is submodular on (x̄, z) (Topkis, 1998), Lemma 2.6.2. Because
Wt(x̄, u,R, P ) is submodular on (x̄, u) by assumption, Ct(x̄ − x,R) +
Wt(x̄, u, R, P ) is submodular on (x, u, x̄). By the preservation of sub-
modularity (Topkis, 1998), Theorem 2.7.6, Vt(x, u,R, P ) is submodular
on (x, u).

Proof of Theorem 2.4.1:
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We can write equation (A.2) as

Vt(x, u,R, P ) = min
x̄
{Ct(x̄− x,R) +Wt(x̄, u,R, P )}

= min
x̄
{min
x̄≥z
{bz̄ − bz +Wt(x̄, u,R, P )},

min
x̄≤z
{−sz + sz̄ +Wt(x̄, u,R, P )}}

= min
x̄
{−bz + min

x̄≥z
{bz̄ +Wt(x̄, u,R, P )}, (A.3)

− sz + min
x̄≤z
{sz̄ +Wt(x̄, u,R, P )}}

Define

Lt(u, R, P ) = arg min
x̄
{bz̄ +Wt(x̄, u, R, P )}

Ht(u, R, P ) = arg min
x̄
{sz̄ +Wt(x̄, u, R, P )}

Since Wt(x̄, u, R, P ) is convex in x̄ (Lemma A.0.1) and b ≥ s, we have
Lt(u, R, P ) ≤ Ht(u, R, P ). Consider the two sub-optimization problems
in (A.4). We refer to −bz + minx̄≥z{bz̄ + Wt(x̄, u,R, P )} as optimization
problem I and −sz + minx̄≤z{sz̄ +Wt(x̄, u,R, P )} as optimization problem
II.

(i) If z ≥ Ht(u, R, P ), then z ≥ Lt(u, R, P ). Let’s consider optimiza-
tion problem I first. From the definition of Lt(u, R, P ) and convexity
of Wt(x̄, u, R, P ) on x̄, bz̄ + Wt(x̄, u,R, P ) is increasing in x̄ when
x̄ ≥ z. Thus, for optimization problem I, the optimal solution is
x̄ = z, which gives an optimal value −bz + bz + Wt(x, u,R, P ) =
Wt(x, u,R, P ). Now let’s consider optimization problem II. Note the
optimal solution for optimization problem I, x̄ = z, is a feasible solu-
tion for optimization problem II. However, according to the definition
of Ht(u, R, P ), x̄ = Ht(u, R, P ) is the optimal solution to optimiza-
tion problem II, which gives an optimal value −sz + sHt(u, R, P ) +
Wt(Ht(u, R, P ), u,R, P ). From the definition of Ht(u, R, P ), we have
sHt(u, R, P ) +Wt(Ht(u, R, P ), u,R, P ) ≤ sz +Wt(x, u,R, P ). There-
fore −sz + sHt(u, R, P ) +Wt(Ht(u, R, P ), u,R, P )
≤Wt(x, u,R, P ), meaning that the optimal value of optimization prob-
lem II is less than the optimal value of optimization problem I. Thus,
for optimization problem (A.4), x̄∗ = Ht(u, R, P ).

(ii) If z ≤ Lt(u, R, P ), then z ≤ Ht(u, R, P ). Let’s consider optimization
problem II first. From the definition of Ht(u, R, P ) and convexity of
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Wt(x̄, u, R, P ) on x̄, sz̄+Wt(x̄, u,R, P ) is decreasing in x̄ when x̄ ≤ z.
Thus, for optimization problem II, the optimal solution is x̄ = z, which
gives an optimal value −sz+sz+Wt(x, u,R, P ) = Wt(x, u,R, P ). Now
let’s consider optimization problem I.

Note the optimal solution for optimization problem II, x̄ = z, is a
feasible solution for optimization problem I. However, according to the
definition of Lt(u, R, P ), x̄ = Lt(u, R, P ) is the optimal solution to op-
timization problem I, which gives an optimal value−bz+bLt(u, R, P )+
Wt(Lt(u, R, P ), u,R, P ). From the definition of
Lt(u, R, P ), we have bLt(u, R, P ) +Wt(Lt(u, R, P ), u,R, P )
≤ bz +Wt(x, u,R, P ). Therefore −bz + bLt(u, R, P ) +
Wt(Lt(u, R, P ), u,R, P ) ≤ Wt(x, u,R, P ), meaning that the optimal
value of optimization problem I is less than the optimal value of op-
timization problem II . Thus, for optimization problem (A.4), x̄∗ =
Lt(u, R, P ).

(iii) If Lt(u, R, P ) ≤ z ≤ Ht(u, R, P ), bz̄+Wt(x̄, u,R, P ) is increasing in x̄
when x̄ ≥ z, sz̄ +Wt(x̄, u,R, P ) is decreasing in x̄ when x̄ ≤ z. Thus,
for both optimization problem I and II, the optimal solution is x̄∗ = z.
Therefore, for optimization problem (A.4), x̄∗ = z.

Lemma A.0.3 In period t, t = 1, ·, T , given state (x, u,R, P ), any feasible
action (x̄, y1, y2) with y2 ≥ y1 ≥ 0 can be categorized into two types accord-
ing to either x̄ ≥ z or x̄ ≤ z. We can represent these two types as follows.

Type one: (−x,A,B)(x ≥ 0, A ≥ 0, B ≥ 0), which means selling x
units of unbundled RECs, buying A units of REC-bundled energy and
B units of regular energy.

Type two: (+y,A,B)(y ≥ 0, A ≥ 0, B ≥ 0), which means buying y
units of unbundled RECs, buying A units of REC-bundled energy and
B units of regular energy.

We make two observations as follows:

(i) When 4t ≥ bt, if the optimal action is type one (−x,A,B) , then
x ≥ A.

(ii) When 4t ≤ st, if the optimal action is type two (y,A,B), then y ≥ B.
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Proof of Lemma A.0.3:
We prove this Lemma by contradiction.

(i) When 4t ≥ bt, suppose a = (−x,A,B) is the optimal action and
x < A. Consider another action a′ = (0, A − x,B + x). By taking
either action a or a′, the utility obtains A − x units of RECs and
A + B units of electricity in period t. The costs of these two actions,
however, are different. Note

cost(a)− cost(a′) =− stx+ p1tA+ p2tB − [p1t(A− x) + p2t(B + x)]

=− stx+ p1tx− p2tx

=x(4t − st) ≥ 0.

Thus a′ is a better action than a, contradicts with the optimality of a.

(ii) When 4t ≤ st, suppose b = (y,A,B) is the optimal action and y < B.
Consider another action b′ = (0, A+y,B−y). By taking either action
b or b′, the utility obtains (A + y) units of RECs and (A + B) units
of electricity in period t. The costs

cost(b)− cost(b′) =bty + p1tA+ p2tB − [p1t(A+ y) + p2t(B − y)]

=bty − p1ty + p2ty

=y(bt −4t) ≥ 0.

Thus b′ is a better action than b, contradicts with the optimality of
b.

Proof of proposition 2.4.4:
We prove this proposition by sample path and contradiction.

(i) In period t, if 4t ≥ bt, we want to show that it is optimal to purchase
only regular energy. Suppose the optimal action involves purchasing
some REC-bundled renewable energy. Note 4t ≥ bt implies p1t ≥
p2t + bt. This means for every unit of REC-bundled energy, the utility
can get the equivalent product by combining one unit of regular energy
and one unit of REC, but at a cheaper price. Therefore if 4t ≥ bt, it
is always better to purchase only regular energy.

(ii) In period t, if 4t ≤ st, we want to show that it is optimal to purchase
only REC-bundled energy. Suppose the optimal action involves pur-
chasing some regular energy. Note that 4t ≤ st implies p2t ≥ p1t − st.
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This means for every unit of regular energy, the utility can get the
equivalent product by purchasing one unit of REC-bundled energy and
then selling the REC comes with it. The resulting price is cheaper than
purchasing regular energy directly. Therefore if 4t ≤ st, it is always
better to purchase only REC-bundled energy.

(iii) In period t, if st < 4t < bt,

when z ≤ Lt(u,R, P ), according to Theorem 2.4.1, it is optimal
to purchase RECs. Therefore we can write the optimal action as
type two b1 = (y,A,B). By Lemma A.0.3 we know that y ≥ B.
Consider another action b2 = (y−B,A+B, 0) . By taking either
of action b1 or b2, , the utility gains y + A units of RECs and
A+B units of electricity in period t. Compare the costs of these
two actions, we have

cost(b1)− cost(b2)

=bty + p1tA+ p2tB − [bt(y −B) + p1t(A+B)]

=btB + p2tB + p1t(−B)

=B(bt −4t) ≥ 0.

Thus action b2 is better than action b1, contradicts with the as-
sumption that action b1 is optimal. Therefore it is optimal to
purchase only REC-bundled energy.

When z ≥ Ht(u,R, P ), according to Theorem 2.4.1, it is optimal
to sell RECs. Therefore we can write the optimal action as type
one a1 = (−x,A,B). By Lemma A.0.3 we know that x ≥ A.
Consider action a2 = (−(x − A), 0, A + B), By taking either of
action a1 or a2, the utility gains −x+A units of RECs and A+B
units of electricity in period t. Compare the costs of these two
actions, we have

cost(a1)− cost(a2)

=− stx+ p1tA+ p2tB − [−st(x−A) + p2t(A+B)]

=− stA− p2tA+ p1tA

=A(4t − st) ≥ 0.

Thus action a2 is better than action a1, contradicts with the
assumption that actiona1 is optimal. Therefore it is optimal to
purchase only regular energy.
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Proof of Theorem 2.4.5:
If4t ≥ bt, by Proposition 2.4.4, it is optimal to purchase only regular energy,
i.e., y∗1 = 0. We can write the cost-to-go function after the REC trading
(A.1) as

Wt(x̄t, ut, Rt, Pt) = min
y2≥0
{p2y2 +Gt(y2)

+ γEt[Vt+1(x̄, u+Dt, Rt+1, Pt+1)]}
Thus

y∗2 = arg min
y2≥0
{p2y2 +Gt(y2)} 4= S2t(p2)

Further, the convexity of Gt(y) implies that S2t(p2) decreases in p2.

Proof of Theorem 2.4.6:

If4t ≤ st, by Proposition 2.4.4, it is optimal to purchase only REC-bundled
energy, i.e. , y∗1 = y∗2. We consider three cases based on the utility’s REC
level at the beginning of period t. For ease of analysis, we write w = x̄+ y1

as the REC level at the end of period t.

(i) When z ≤ Lt(u,R, P ), by Theorem 2.4.1, it is optimal for the utility
to purchase RECs to increase its REC level up to x̄∗ = Lt(u,R, P ).
Therefore, we can write the cost-to-go function as

Vt(x, u,R, P )

= min
y1≥0
w

{bt[(w − y1)− z)] + p1y1 +Gt(y1)

+ γEt[Vt+1(w, u+D,Rt+1, Pt+1)]}
=− btz + min

y1≥0
w

{(p1 − bt)y1 +Gt(y1)

+ btw + γEt[Vt+1(w, u+D,Rt+1, Pt+1)]}
The objective function in the bracket is a separate convex functions on
(y1, w), thus

w∗ = arg min
w
{btw + γEt[Vt+1(w, u+D,Rt+1, Pt+1)]} 4= wL

t (ut, Rt, Pt),

(A.4)

y∗1 = arg min
y1≥0
{(p1 − bt)y1 +Gt(y1)} 4= SL

1t(p1, bt), (A.5)
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and

Lt(u,R, P ) = x̄∗ = w∗ − y∗1 = wL
t (ut, Rt, Pt)− SL

1t(p1, bt).

(ii) When z ≥ Ht(u,R, P ), by Theorem 2.4.1, it is optimal for the utility
to sell RECs to decrease its REC level to x̄∗ = Ht(u,R, P ). Therefore,
we can write the cost-to-go function as

Vt(x, u,R, P )

= min
y1≥0
w

{−st[z − (w − y1)] + p1y1 +Gt(y1)

+ γEt[Vt+1(w, u+D,Rt+1, Pt+1)]}
=− stz + min

y1≥0
w

{(p1 − st)y1 +Gt(y1)

+ stw + γEt[Vt+1(w, u+D,Rt+1, Pt+1)]}

Thus

w∗ = arg min
w
{stw + γEt[Vt+1(w, u+D,Rt+1, Pt+1)]} 4= wH

t (ut, Rt, Pt),

y∗1 = arg min
y1≥0
{(p1 − st)y1 +Gt(y1)} 4= SH

1t (p1, st),

Ht(u,Rt, P ) = x̄∗ = w∗ − y∗1 = wH
t (ut, Rt, Pt)− SH

1t (p1, st). (A.6)

(iii) When Lt(u,R, P ) < z < Ht(u,R, P ), by Theorem 2.4.1, it is optimal
for the utility not to trade RECs, i.e., x̄∗ = z. Therefore, we can write
the cost-to-go function as

Vt(x, u,R, P )

= min
y1≥0
{p1y1 +Gt(y1) + γEt[Vt+1(z + y1, u+D,Rt+1, Pt+1]}.

Thus

y∗1 = arg min
y≥0
{p1y +Gt(y) + γEt[Vt+1(z + y, u+D,Rt+1, Pt+1]}

=s1t(x, u,R, P ).

From the definitions above, s1t(Lt(u,R, P ), u,R, P ) = SL
1t(p1, bt) and

s1t(Ht(u,R, P ), u,R, P ) = SH
1t (p1, st).
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Proof of proposition 2.4.7:

(a) Since f(x, y) = xy is supermodular on (x, y), and (p1 − bt)y + Gt(y)
is supermodular on (p1, y) and submodular on (bt, y), SL

1t(p1, bt) (A.5)
decreases in p1 and increases in bt by Topkis (1998) (Theorem 2.8.2).

(b) Similar with (a) we can prove (b).

(c) Define a function g(x, u,R, P, y) as

s1t(x, u,R, P )

= arg min
y≥0
{p1y +Gt(y) + γEt[Vt+1(z + y, u+D,Rt+1, Pt+1]}

= arg min
y≥0

g(x, u,R, P, y).

In order to show s1t(x, u, R, P ) decreases in z, it is sufficient to show
that g(x, y, u,R, P ) is supermodular on (x, y) (Topkis, 1998), Theorem
2.8.2. Since {(x, y) : y ≥ 0} is a sublattice of R2, and Vt+1(x, u,R, P )
is convex on z ∈ R, thus, Vt+1(z + y, u,R, P ) is supermodular on (x, y)
(Topkis, 1998), Lemma 2.6.2. Thus, g(x, y, u,R, P ) is supermodular on
(x, y). In order to show s1t(x, u, R, P ) increases in u, it is sufficient to
show that g(x, u,R, P, yt) is submodular on (u, y), which is true since
Vt+1(x, u,R, P ) is submodular on (x, u). Thus we’ve proved (c).

(d) From the convexity of Gt(y) and the assumption st ≤ bt, we have
SL

1t(p1, bt) ≤ s1t(x, u,R, P ) ≤ SH
1t (p1, st).

Proof of theorem 2.4.8:
If st < 4t < bt,

(a) when xt ≤ Lt(ut, Rt, Pt), we know x̄∗t = Lt(ut, Rt, Pt) (Theorem 2.4.1
), and it is optimal to purchase only REC-bundled energy (Proposition
2.4.4), i.e., y∗1t = y∗2t. Denote wt = x̄t + y1t, we can write the cost-to-go
function as

Vt(xt, ut, Rt, Pt)

= min
y1t≥0
wt

{bt[(wt − y1t)− xt] + p1ty1t +Gt(y1t)

+ γEt[Vt+1(wt, ut +Dt, Rt+1, Pt+1]}
=− btxt + min

y1t≥0
wt

{(p1t − bt)y1t +Gt(y1t)

+ btwt + γEt[Vt+1(wt, ut +Dt, Rt+1, Pt+1]}
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Thus y∗1t = SL
1t(p1t, bt), w

∗
t = wL

t (ut, Rt, Pt). Moreover, we have

Lt(ut, Rt, Pt) = x̄∗t = w∗t − y∗1t = wL
t (ut, Rt, Pt)− SL

1t(p1t, bt).

(b) when xt ≥ Ht(ut, Rt, Pt), we know x̄∗t = Ht(ut, Rt, Pt) (Theorem 2.4.1),
and it is optimal to purchase only regular energy (Proposition 2.4.4),
i.e., y∗1t = 0. We can write the cost-to-go function as

Vt(xt, ut, Rt, Pt)

= min
y2t≥0

x̄t

{−st(xt − x̄t) + p2ty2t +Gt(y2t)

+ γEt[Vt+1(x̄t, ut +Dt, Rt+1, Pt+1]}
=− stxt + min

y2t≥0
x̄t

{p2ty2t +Gt(y2t)

+ stx̄t + γEt[Vt+1(x̄t, ut +Dt, Rt+1, Pt+1]}

Thus y∗2t = S2t(p2t), Ht(ut, Rt, Pt) = x̄∗t = wH
t (ut, Rt, Pt).

Proof of theorem 2.4.9:
If st < 4t < bt, when Lt(ut, Rt, Pt) < xt < Ht(ut, Rt, Pt), x̄

∗
t = xt (Theorem

2.4.1). We can write the cost-to-go function as

Vt(xt, ut, Rt, Pt) = Wt(xt, ut, Rt, Pt)

= min
wt≥xt

y2t≥wt−xt

{4t(wt − xt) + p2ty2t +Gt(y2t)

+ γEt[Vt+1(wt, ut +Dt, Rt+1, Pt+1]}
= min

wt≥xt
y2t≥wt−xt

{−4txt + p2ty2t +Gt(y2t)

+4twt + γEt[Vt+1(wt, ut +Dt, Rt+1, Pt+1]}

= min
wt≥xt

y2t≥wt−xt

f(xt, ut, Rt, Pt, wt, y2t). (A.7)

Denote (w∗t , y
∗
2t) = arg min wt≥xt

y2t≥wt−xt

f(xt, ut, Rt, Pt, wt, y2t) as the optimal

solutions to this optimization problem.
Note f(xt, ut, Rt, Pt, wt, y2t) is a separate convex function on (wt, y2t). Define

w4t (ut, Rt, Pt) = arg min
w
{4tw + γEt[Vt+1(w, u+D,Rt+1, Pt+1)]},
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then (w4t (ut, Rt, Pt), S2t(p2t)) is the global minimum of f on R2 plane.
W.l.o.g, we assume this global optimum is unique.

As xt increases from −∞ to +∞, the feasible area {(wt, y2t) ∈ R2 : wt ≥
xt, y2t ≥ wt − xt} is moving towards right. In the following we divide the
region of xt (Lt(ut, Rt, Pt) < xt < Ht(ut, Rt, Pt)) into three sub-regions, so
that we can discuss whether or not the sub-region has the global minimum
as an interior point.

To this end, define

lt(ut, Rt, Pt) =w4t (ut, Rt, Pt)− S2t(p2t),

ht(ut, Rt, Pt) =w4t (ut, Rt, Pt).

First we show when st < 4t < bt,

Lt(ut, Rt, Pt) ≤ lt(ut, Rt, Pt) ≤ ht(ut, Rt, Pt) ≤ Ht(ut, Rt, Pt),

so that we can divide Lt(ut, Rt, Pt) < xt < Ht(ut, Rt, Pt) into three sub-
regions, Lt(ut, Rt, Pt) < xt ≤ lt(ut, Rt, Pt), lt(ut, Rt, Pt) < xt < ht(ut, Rt, Pt),
and ht(ut, Rt, Pt) ≤ xt < Ht(ut, Rt, Pt).
From the definition of lt(ut, Rt, Pt) and ht(ut, Rt, Pt), we know that it is
equivalent to show

Lt(ut, Rt, Pt) ≤ w4t (ut, Rt, Pt)−S2t(p2t) ≤ w4t (ut, Rt, Pt) ≤ Ht(ut, Rt, Pt).

Let us start with the first inequality. When st < 4t < bt, we have Lt(ut, Rt, Pt)
= wL

t (ut, Rt, Pt)−SL
1t(p1t, bt). Thus in order to prove the first inequality, it is

sufficient to show wL
t (ut, Rt, Pt) ≤ w4t (ut, Rt, Pt) and SL

1t(p1t, bt) ≥ S2t(p2t).

From the definition of wL
t (ut, Rt, Pt), w

4
t (ut, Rt, Pt), and the submodularity

of V (x, u,R, P ) on (x, u), we know that wL
t (ut, Rt, Pt) ≤ w4t (ut, Rt, Pt). On

the other hand, from the definition of SL
1t(p1t, bt), S2t(p2t) and the convexity

of Gt(y), we know that SL
1t(bt, p1t) ≥ S2t(p2t). Thus we’ve proved the first

inequality.

The second inequality is obvious since S2t(p2t) ≥ 0.

Let us look at the third inequality. When st < 4t < bt, Ht(ut, Rt, Pt) =

wH
t (ut, Rt, Pt). Thus the third inequality is equivalent as w4t (ut, Rt, Pt) ≤

wH
t (ut, Rt, Pt). From the definition of w4t (ut, Rt, Pt), w

H
t (ut, Rt, Pt), and
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the submodularity of V (x, u,R, P ) on (x, u), we know that w4t (ut, Rt, Pt) ≤
wH
t (ut, Rt, Pt). Thus the third inequality holds.

Now we’ve proved the legitimacy of dividing Lt(ut, Rt, Pt) ≤ xt
≤ Ht(ut, Rt, Pt) into three sub-regions with lt(ut, Rt, Pt) and Ht(ut, Rt, Pt).
In the following ,we discuss whether or not each of the three sub-regions has
the global minimum as an interior point.

(a) When Lt(ut, Rt, Pt) < xt ≤ lt(ut, Rt, Pt), the feasible area is on the left-

hand-side of the global minimum (w4t (ut, Rt, Pt), S2t(p2t)) and does not
include it as an interior point. Since f(xt, ut, Rt, Pt, wt, y2t) is jointly
convex on (wt, y2t), the optimal solution to optimization problem (A.7),
(w∗t , y

∗
2t), is on the right boundary of the feasible set. Thus y∗2t = w∗t −

xt. Therefore y∗2t = y∗1t, the utility should purchase only REC-bundled
energy. We have

Vt(xt, ut, Rt, Pt) = Wt(xt, ut, Rt, Pt)

= min
y1t≥0

{p1ty1t +Gt(y1t) + γEt[Vt+1(xt + y1t, ut +Dt, Rt+1, Pt+1)]}.

Thus y∗1t = y∗2t = s1t(xt, ut, Rt, Pt).

(b) When lt(ut, Rt, Pt) < xt < ht(ut, Rt, Pt), the global minimum

(w4t (ut, Rt, Pt), S2t(p2t)) is in the interior of the feasible set. Thus the
global minimum is the optimal solution to optimization problem (A.7).
In this case, the utility should purchase both REC-bundled energy and
regular energy. We have (w∗t , y

∗
2t) = (w4t (ut, Rt, Pt), S2t(p2t)).

Thus y∗1t = w4t (ut, Rt, Pt)− xt, y∗2t = S2t(p2t).

(c) When ht(ut, Rt, Pt) ≤ xt < Ht(ut, Rt, Pt), the feasible area is on the

right-hand-side of the global minimum (w4t (ut, Rt, Pt), S2t(p2t)) and
does not include it as an interior point. Since f(xt, ut, Rt, Pt, wt, y2t)
is jointly convex on (wt, y2t), the optimal solution to optimization prob-
lem (A.7), (w∗t , y

∗
2t), is on the left boundary of the feasible set. Thus

w∗t = xt. Therefore y1t = 0, the utility should purchase only regular
energy. We have

Vt(xt, ut, Rt, Pt)

= min
y2t≥0,x̄t

{p2ty2t +Gt(y2t) + γEt[Vt+1(x̄t, ut +Dt, Rt+1, Pt+1)]}.

Thus y∗1t = 0, y∗2t = S2t(p2t).
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Appendix for Chapter 3

B.1 Analysis for optimization problem N

There is a piece-wise function in the objective function

[d2+β(q1∧d1)−(q1−d1)+]+ =


d2 + βq1, q1 ≤ d1
(β + 1)d1 + d2 − q1, d1 < q1 ≤ (β + 1)d1 + d2
0, q1 > (β + 1)d1 + d2.

This piece-wise function divides the region of q1 into three subregions: [0, d1],
(d1, (β + 1)d1 + d2], and ((β + 1)d1 + d2,+∞). Therefore in our analysis,
we consider these three subregions respectively. Although we will solve this
optimization problem based on subregions of q1, it is important to point out
that because the objective function and the constraints are all continuous in
q1, the objective value at the division points are consistent regardless which
subregion we include them in.
Let us start with the first subregion q1 ∈ [0, d1].

Proposition B.1.1 In the subregion q1 ∈ [0, d1]:

• when
d2

d1
>

1− α− 2αβ

1− α , there is no feasible solution in this subregion.

• when
d2

d1
≤ 1− α− 2αβ

1− α ,

– when θ ≤ (p− w)(1 + β)

(p− w)(1 + β + αβ) + w − s , then q∗1 = d1, and T ∗

can be any value satisfying the incentive constraint. We set T ∗ =
0.

– when θ >
(p− w)(1 + β)

(p− w)(1 + β + αβ) + w − s , then q
∗
1 =

1− α
1− α− 2αβ

d2,

and T ∗ = 0.
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Proof of proposition B.1.1
With the restriction q1 ∈ [0, d1], we can write the the first order derivative
of the objective function w.r.t. q1 as

V ′N (q1) = (1− θ)(p− w)(1 + β) + θ[−w + s− αβ(p− w)]

= (p− w)(1 + β)− θ[(p− w)(1 + β + αβ) + w − s]

Therefore VN (q1) is linear, but the sign of V ′N (q1) is indeterminate.

• If θ ≤ (p− w)(1 + β)

(p− w)(1 + β + αβ) + w − s , then V ′N (q1) ≥ 0.

• If θ >
(p− w)(1 + β)

(p− w)(1 + β + αβ) + w − s , then V ′N (q1) < 0.

On the other hand, SI ≤ SN can be written as

(1− α)(w − c)d2 + (1− α)T ≤ q1(w − c)(1− α− 2αβ),

Therefore the constraints SI ≤ SN and T ≥ 0 can be combined as

(1− α)d2 ≤ (1− α− 2αβ)q1.

• If (1 − α)d2 > (1 − α − 2αβ)d1, there is no feasible solution in this
subregion.

• If (1 − α)d2 ≤ (1 − α − 2αβ)d1, the optimal solutions will depend on
the sign of V ′N (q1).

– If θ ≤ (p− w)(1 + β)

(p− w)(1 + β + αβ) + w − s , then VN (q1) increases in

this subregion, q∗1 = d1, and T ∗ can be any value satisfying the

incentive constraint, i.e., 0 ≤ T ∗ ≤ 1− α− 2αβ

1− α (w− c)d1− (w−
c)d2.

– If θ >
(p− w)(1 + β)

(p− w)(1 + β + αβ) + w − s , then VN (q1, T ) decreases in

this subregion, q∗1 =
1− α

1− α− 2αβ
d2, and T ∗ = 0.

Next we look at the second subregion q1 ∈ (d1, (β + 1)d1 + d2].

Proposition B.1.2 In the subregion q1 ∈ (d1, (β + 1)d1 + d2],
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• when
d2

d1
>

1− α− 2αβ

1− α , then q∗1 = α(2β + 1)d1 + (1 − α)d2, and

T ∗ = 0.

• when
d2

d1
≤ 1− α− 2αβ

1− α , then q∗1 = d1, and T ∗ can be any value

satisfying the incentive constraint. We set T ∗ = 0.

Proof of proposition B.1.2
With the restriction q1 ∈ (d1, (β + 1)d1 + d2], we can write the objective
function as

VN (q1)

=− q1[h(1− θ) + θ(w − s)] + d1{[(p− w)(β + 1) + h](1− θ)− αβθ(p− w)}
+ d2(p− w)(1− θ + αθ)

Thus the first order derivative of the objective function is

V ′N (q1) = −(1− θ)h− θ(w − s) < 0.

Therefore VN (q1) decreases in q1 in this subregion.
On the other hand, SI ≤ SN can be written as

q1(w − c) ≥ (1− α)T + (1− α)(w − c)d2 + α(w − c)(2β + 1)d1.

Therefore the constraints SI ≤ SN and T ≥ 0 can be combined as

q1(w − c) ≥ (1− α)(w − c)d2 + α(w − c)(2β + 1)d1

q1 ≥ (1− α)d2 + α(2β + 1)d1

Thus

• If (1−α)d2 +α(2β+ 1)d1 ≤ d1, the optimal solutions are q∗1 = d1, and
T ∗ can be any value satisfying the incentive constraint;

• If d1 < (1 − α)d2 + α(2β + 1)d1 ≤ (β + 1)d1 + d2, then the optimal
solutions are q∗1 = (1− α)d2 + α(2β + 1)d1 and T ∗ = 0;

• If (1−α)d2 +α(2β+1)d1 > (β+1)d1 +d2, there is no feasible solution
in this region.

First let us compare compare (1 − α)d2 + α(2β + 1)d1 and (β + 1)d1 + d2.
We can show that (1− α)d2 + α(2β + 1)d1 ≤ (β + 1)d1 + d2.

(1− α)d2 + α(2β + 1)d1 ≤ (β + 1)d1 + d2

⇔[α(1 + 2β)− (β + 1)]d1 ≤ αd2
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Hence if α(1 + 2β)− (β + 1) ≤ 0, this condition always holds.

If α(1+2β)−(β+1) > 0, this condition is equivalent as
d2

d1
≥ 2β+1− β + 1

α
.

Because

2β + 1− β + 1

α
− β = β + 1− β + 1

α
≤ 0.

Thus from
d2

d1
≥ β we know that

d2

d1
≥ 2β+1− β + 1

α
. Therefore (1−α)d2 +

α(2β + 1)d1 ≤ (β + 1)d1 + d2 always holds.
Secondly, let us compare (1− α)d2 + α(2β + 1)d1 and d1.

(1− α)d2 + α(2β + 1)d1 > d1

⇔(1− α)d2 > [1− α(2β + 1)]d1

• when
d2

d1
>

1− α− 2αβ

1− α , then q∗1 = α(2β + 1)d1 + (1 − α)d2, and

T ∗ = 0.

• when
d2

d1
≤ 1− α− 2αβ

1− α , then q∗1 = d1, and T ∗ can be any value

satisfying the incentive constraint. We set T ∗ = 0.

Finally we examine the third subregion q1 ∈ ((β + 1)d1 + d2,+∞).

Proposition B.1.3 In the subregion q1 ∈ ((β + 1)d1 + d2,+∞), q∗1 = (β +
1)d1 + d2, and T

∗ can be any value satisfying the incentive constraint. We
set T ∗ = 0.

Proof of proposition B.1.3
With the restriction q1 ∈ ((β + 1)d1 + d2,+∞), we can write the objective
function as

VN (q1) =(1− θ)q1(−w − h) + (1− θ)d1(p+ pβ + h) + (1− θ)d2p

+ θ(−w + s)q1 + θα(p− w)(d2 − βd1).

The first order derivative of the objective function is

V ′N (q1) = −(1− θ)(w + h)− θ(w − s) < 0,

thus VN (q1, T ) decreases in q1 in this subregion.
On the other hand, SI ≤ SN can be written as

(1− α)(w − c)q1 ≥ (1− α)T + (1− 2α)(w − c)d2 + α(w − c)βd1.
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Therefore the constraints SI ≤ SN and T ≥ 0 can be combined as

q1 ≥
(1− 2α)d2 + αβd1

1− α .

Thus

• If
(1− 2α)d2 + αβd1

1− α > (β + 1)d1 + d2, then q∗1 =
(1− 2α)d2 + αβd1

1− α
and T ∗ = 0.

• If
(1− 2α)d2 + αβd1

1− α ≤ (β+1)d1+d2, then q∗1 = (β+1)d1+d2, and T ∗

can be any value satisfying the incentive constraint. We set T ∗ = 0.

Next we show that
(1− 2α)d2 + αβd1

1− α ≤ (β + 1)d1 + d2 always holds.

(1− 2α)d2 + αβd1

1− α ≤ (β + 1)d1 + d2 ⇔ [α(1 + 2β)− (β + 1)]d1 ≤ αd2.

If α(1 + 2β)− (β + 1) ≤ 0, then this condition always holds.

If α(1 + 2β) − (β + 1) > 0, then this condition is equivalent as
d2

d1
≥ (1 +

2β)− β + 1

α
.

Because

(1 + 2β)− β + 1

α
− β = β + 1− β + 1

α
≤ 0.

Therefore from
d2

d1
≥ β we know that

d2

d1
≥ (1 + 2β)− β + 1

α
.

In summary, in the subregion q1 ∈ ((β+1)d1 +d2,+∞), q∗1 = (β+1)d1 +d2,
and T ∗ can be any value satisfying the incentive constraint. We set T ∗ = 0.

Proof of theorem 3.6.1
We have the following results from previous analysis.

• If d2 >
1− α(1 + 2β)

1− α d1,

– In the subregion q1 ∈ [0, d1], there is no feasible solution (propo-
sition B.1.1).

– In the subregion q1 ∈ (d1, (β+ 1)d1 +d2], q∗1 = α(1 + 2β)d1 + (1−
α)d2, and T ∗ = 0 (proposition B.1.2).
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– In the subregion q1 ∈ ((β + 1)d1 + d2,+∞], q∗1 = (β + 1)d1 + d2,
and T ∗ can be any value satisfying the incentive constraint. We
set T ∗ = 0 (proposition B.1.3).

Therefore if d2 >
1− α(1 + 2β)

1− α d1, the global optimal solutions for

optimization problem N are q∗1 = α(1 + 2β)d1 + (1−α)d2, and T ∗ = 0.

• If d2 ≤
1− α(1 + 2β)

1− α d1,

– in the subregion q1 ∈ [0, d1], according to proposition B.1.1,

∗ If θ ≤ (p− w)(1 + β)

(p− w)(1 + β + αβ) + w − s , then q∗1 = d1, and T ∗

can be any value satisfying the incentive constraint. We set
T ∗ = 0.

∗ If θ >
(p− w)(1 + β)

(p− w)(1 + β + αβ) + w − s , then q∗1 =
1− α

1− α− 2αβ
d2,

and T ∗ = 0.

– In the subregion q1 ∈ (d1, (β + 1)d1 + d2], q∗1 = d1, and T ∗ can
be any value satisfying the incentive constraint. We set T ∗ = 0
(proposition B.1.2) .

– In the subregion q1 ∈ ((β + 1)d1 + d2,+∞), q∗1 = (β + 1)d1 + d2,
and T ∗ can be any value satisfying the incentive constraint. We
set T ∗ = 0 (proposition B.1.3).

Therefore if d2 ≤
1− α(1 + 2β)

1− α d1, the global optimal solutions for

optimization problem N will depend on the value of θ.

If θ ≤ (p− w)(1 + β)

(p− w)(1 + β + αβ) + w − s , then q∗1 = d1, and T ∗ can be

any value satisfying the incentive constraint. We set T ∗ = 0. If θ >
(p− w)(1 + β)

(p− w)(1 + β + αβ) + w − s , then q∗1 =
1− α

1− α− 2αβ
d2, and T ∗ = 0.

B.2 Analysis for optimization problem I

For convenience of analysis, we define

f(q1, T ) = αV 1 + (1− α)V 2 − [αV 3 + (1− α)V 4],

89



B.2. Analysis for optimization problem I

and write optimization problem I as

max
q1,T

VI(q1, T ) =(1− θ)V 0 + θ[αV 3 + (1− α)V 4] + θG(q1)f(q1, T )

s.t.SI ≥ SN ,
T ≥ 0.

Proof of proposition 3.6.2
In the subregion q1 ∈ [0, d1], G(q1) = q1, the optimization problem can be
written as

max
q1,T

VI(q1, T ) =q1{−θ(w − s) + (p− w)[(1 + β)(1− θ)− αβθ]}

+ d2(p− w)(1− θ + θα) + θq2
1[w − s+ α(p− w)(1 + 2β)]

+ θq1d2(1− α)(p− w)− (1− α)Tq1θ

s.t.(1− α)T ≥(w − c)[q1(1− α− 2αβ)− (1− α)d2],

T ≥0,

q1 <d1.

• If d2 >
1− α− 2αβ

1− α d1, then in the region [0, d1], the incentive con-

straint is always met, thus is redundant, and T ≥ 0 is binding at the
optimum. We plug T = 0 into the objective function and get

VI(q1, 0) =q1{−θ(w − s) + (p− w)[(1 + β)(1− θ)− αβθ]}
+ d2(p− w)(1− θ + θα) + θq2

1[w − s+ α(p− w)(1 + 2β)]

+ θq1d2(1− α)(p− w).

We derive the first order derivative and the second order derivative:

dVI(q1, 0)

dq1
=− θ(w − s) + (p− w)[(1 + β)(1− θ)− αβθ]

+ 2θq1[w − s+ α(p− w)(1 + 2β)] + θd2(1− α)(p− w),

d2VI(q1, 0)

dq2
1

=w − s+ α(p− w)(1 + 2β) > 0.

Thus VI(q1, 0) is convex in q1.
Define q1

1,1 to be the root of the first order condition, then

q1
1,1 =

θ(w − s)− (p− w)[(1 + β)(1− θ)− αβθ]− θd2(1− α)(p− w)

2θ[w − s+ α(p− w)(1 + 2β)]
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We compare q1
1,1 with the midpoint of [0, d1] to get the optimal solu-

tions in this subregion.

– If q1
1,1 ≤

d1

2
, then q∗1 = d1;

– If q1
1,1 >

d1

2
, then q∗1 = 0.

We can write

q1
1,1 ≤

d1

2
⇔ d2 ≥− [

α(1 + 2β)

1− α +
w − s

(1− α)(p− w)
]d1

+
θ(w − s)− (p− w)[(1 + β)(1− θ)− αβθ]

θ(1− α)(p− w)
.

• If d2 ≤
1− α− 2αβ

1− α d1 (this implies that 1 − α − 2αβ > 0), then we

need to divide [0, d1] into two parts:

– In the first part q1 ∈ [0,
(1− α)d2

1− α− 2αβ
], the incentive constraint is

always met, thus is not binding at the optimum, and T ≥ 0 is
binding. We plug T = 0 into the objective function. We find that
VI(q1, 0) is convex in q1, and the root of the first order condition

is q1
1,1.We compare q1

1,1 with the midpoint of [0,
(1− α)d2

1− α− 2αβ
] to

get the optimal solutions in this part.

∗ If q1
1,1 ≤

1

2
· (1− α)d2

1− α− 2αβ
, then the local optimal point in

[0,
(1− α)d2

1− α− 2αβ
] is

(1− α)d2

1− α− 2αβ
.

∗ If q1
1,1 >

1

2
· (1− α)d2

1− α− 2αβ
, then the local optimal point in

[0,
(1− α)d2

1− α− 2αβ
] is 0.

We can write

q1
1,1 ≤

1

2
· (1− α)d2

1− α− 2αβ

⇔d2 ≥
(1− α− 2αβ){θ(w − s)− (p− w)[(1 + β)(1− θ)− θαβ}

θ(1− α)(p− s)
(B.1)
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– In the latter part q1 ∈ (
(1− α)d2

1− α− 2αβ
, d1], the incentive constraint

is binding, i.e., (1−α)T ∗ = (w− c)[q1(1−α− 2αβ)− (1−α)d2].
We plug T ∗ into the objective function and get

f(q1, T
∗) = q1[(p− c)α(1 + 2β) + c− s] + d2(1− α)(p− c),

VI(q1, T
∗) =q1{(p− w)[(1− θ)(1 + β)− θαβ] + θ(−w + s)}

+ d2(1− θ + θα)(p− w) + θG(q1)f(q1, T
∗).

We derive the first order derivative and the second order deriva-
tive of VI(q1, T

∗) w.r.t. q1,

dVI(q1, T
∗)

dq1
=q12θ[(p− c)α(1 + 2β) + c− s]

+ θd2(1− α)(p− c) + (p− w)[(1− θ)(1 + β)− θαβ]

+ θ(−w + s),

d2VI(q1, T
∗)

dq2
1

=2θ[(p− c)(α+ 2αβ) + c− s] > 0

This implies that VI(q1, T
∗) is convex.

Define q2
1,1 to be the root of first order condition,

q2
1,1 =

θ(w − s)− (p− w)[(1− θ)(1 + β)− θαβ]− θd2(1− α)(p− c)
2θ[c− s+ (p− c)α(1 + 2β)]

.

We compare q2
1,1 with the midpoint of (

(1− α)d2

1− α− 2αβ
, d1] to get

the optimal solutions is this part.

∗ If q2
1,1 ≤

1

2
[

(1− α)d2

(1− α− 2αβ)
+ d1], the local optimal q1

in (
(1− α)d2

1− α− 2αβ
, d1] is d1.

∗ If q2
1,1 >

1

2
[

(1− α)d2

(1− α− 2αβ)
+ d1], the local optimal q1

in (
(1− α)d2

1− α− 2αβ
, d1] is

(1− α)d2

(1− α− 2αβ)
.
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We can write

q2
1,1 ≤

1

2
[

(1− α)d2

(1− α− 2αβ)
+ d1]

⇔ d2 ≥−
(1− α− 2αβ)[c− s+ (p− c)α(1 + 2β)]

(1− α)(p− s) d1

+
(1− α− 2αβ){θ(w − s)− (p− w)[(1 + β)(1− θ)− θαβ}

θ(1− α)(p− s)
(B.2)

Now we can summarize the case when d2 ≤
1− α− 2αβ

1− α d1. Notice

that inequality B.1 can imply inequality B.2.

– When

d2 ≥
(1− α− 2αβ){θ(w − s)− (p− w)[(1 + β)(1− θ)− θαβ]}

θ(1− α)(p− s) ,

in the first part [0,
(1− α)d2

1− α− 2αβ
], the local optimal q1 is

(1− α)d2

1− α− 2αβ
; in the latter part (

(1− α)d2

1− α− 2αβ
, d1], the local op-

timal q1 is d1. Therefore in the region [0, d1], the optimal q1 is
d1.

– When

d2 ≤−
(1− α− 2αβ)[c− s+ (p− c)α(1 + 2β)]

(1− α)(p− s) d1

+
(1− α− 2αβ){θ(w − s)− (p− w)[(1 + β)(1− θ)− θαβ}

θ(1− α)(p− s) ,

in the first part [0,
(1− α)d2

1− α− 2αβ
], the local optimal q1 is 0; in

the latter part q1 ∈ (
(1− α)d2

1− α− 2αβ
, d1], the local optimal q1 is

(1− α)d2

1− α− 2αβ
. Therefore in the region [0, d1], the optimal q1 is 0.
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– When

− (1− α− 2αβ)[c− s+ (p− c)α(1 + 2β)]

(1− α)(p− s) d1

+
(1− α− 2αβ){θ(w − s)− (p− w)[(1 + β)(1− θ)− θαβ]}

θ(1− α)(p− s)
< d2 <

(1− α− 2αβ){θ(w − s)− (p− w)[(1 + β)(1− θ)− θαβ]}
θ(1− α)(p− s) ,

in the part q1 ∈ [0,
(1− α)d2

1− α− 2αβ
), the optimal q1 is 0; in the part

q1 ∈ (
(1− α)d2

1− α− 2αβ
, d1], the optimal q1 is d1. we need to compare

the objective value at 0 and d1.

Overall, when d2 ≤
1− α− 2αβ

1− α d1, the optimal q1 is either q∗1 =

0 (with T ≥ 0 binding) or q∗1 = d1 (with the incentive constraint
binding). We only need to compare the objective value at these two
points to get the optimal solution.
The objective value at q∗1 = 0 (with T ≥ 0 binding) is

VI(0, 0) = d2(p− w)(1− θ + θα).

The objective value at q∗1 = d1 (with the incentive constraint binding)
is

VI(d1, T
∗) =d1{(p− w)[(1− θ)(1 + β)− θαβ] + θ(−w + s)}

+ d2(p− w)(1− θ + θα) + θd2
1[(p− c)α(1 + 2β) + c− s]

+ θd1d2(1− α)(p− c).

The difference of these two values

VI(d1, T
∗)− VI(0, 0) =d1{(p− w)[(1− θ)(1 + β)− θαβ]

+ θ(−w + s)}+ θd2
1[(p− c)α(1 + 2β) + c− s]

+ θd1d2(1− α)(p− c).
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Thus

VI(d1, T
∗) ≥VI(0, 0)

⇔ d2 ≥−
(p− c)α(1 + 2β) + c− s

(1− α)(p− c) d1

+
θ(w − s)− (p− w)[(1− θ)(1 + β)− θαβ]

θ(1− α)(p− c) .

Thus we proved proposition 3.6.2.

Proof of proposition 3.6.3 :
In the subregion q1 ∈ (d1, 1], G(q1) = q1, the optimization problem I can be
written as

max
q1,T

VI(q1, T ) =− q1[(1− θ)h+ θ(w − s)] + d2(p− w)(1− θ + θα)

+ d1{(1− θ)h+ (p− w)[(1 + β)(1− θ)− αβθ]}+ θq1f(q1, T )

s.t.(1− α)T ≥(w − c)[q1 − α(1 + 2β)d1 − (1− α)d2]

T ≥0,

d1 <q1 ≤ 1,

where

f(q1, T ) =q1(−αh+ w − s) + d1α[(p− w)(1 + 2β) + h]

+ d2(1− α)(p− w)− (1− α)T.

Note the right hand side of the incentive constraint is nonnegative if and
only if q1 ≥ α(1 + 2β)d1 + (1 − α)d2. Depending on the position of α(1 +
2β)d1 + (1− α)d2, we will have the following three scenarios:

• When α(1 + 2β)d1 + (1 − α)d2 ≤ d1, then in the subregion (d1, 1],
the right hand side of the incentive constraint is nonnegative, thus is
binding at the optimum.

• When α(1 + 2β)d1 + (1− α)d2 > 1, then in the subregion (d1, 1], the
right hand side of the incentive constraint is negative, thus T ≥ 0 is
binding at the optimum.

• When d1 < α(1 + 2β)d1 + (1 − α)d2 ≤ 1, then we need to divide
the subregion (d1, 1] into two parts. In the first part q1 ∈ (d1, α(1 +
2β)d1 +(1−α)d2], T ≥ 0 is binding at the optimum. In the latter part
q1 ∈ (α(1 + 2β)d1 + (1− α)d2, 1], the incentive constraint is binding.
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Next we discuss these three scenarios respectively.

• When α(1 + 2β)d1 + (1 − α)d2 ≤ d1, i.e., d2 ≤
1− α− 2αβ

1− α d1, then

in the subregion (d1, 1], the incentive constraint is binding at the op-
timum. We find that VI(q1, T ) is convex, and q1

1,2 is the root to the

first order condition. We compare q1
1,2 with the midpoint of (d1, 1] to

get the optimal solution.

– If q1
1,2 ≤

1

2
(d1 + 1), q∗1 = 1.

– If q1
1,2 >

1

2
(d1 + 1), q∗1 = d1.

We can write

q1
1,2 ≤

1

2
(d1 + 1)

⇔ d2 ≥ −[
α(1 + 2β)

1− α +
c− s

(1− α)(p− c) ]d1 +
θ(w − c) + h(1− θ + αθ)

θ(1− α)(p− c) .

We define Line 6 as

d2 = −[
α(1 + 2β)

1− α +
c− s

(1− α)(p− c) ]d1 +
θ(w − c) + h(1− θ + αθ)

θ(1− α)(p− c) .

• When α(1 + 2β)d1 + (1 − α)d2 > 1, i.e., d2 > −
α(1 + 2β)

1− α d1 +
1

1− α
, in the subregion (d1, 1], T ≥ 0 is binding at the optimum. We plug
T = 0 into the objective function, and derive the first order derivative
and second order derivative,

dVI(q1, 0)

dq1
=− (1− θ)h− θ(w − s) + 2θq1(−αh+ w − s)

+ θd1α[(p− w)(1 + 2β) + h] + θd2(1− α)(p− w),

d2VI(q1, 0)

dq2
1

=− αh+ w − s > 0.

Thus VI(q1, 0) is convex. Define q2
1,2 to be the root of the first order

condition, then

q21,2 =
θ(w − s) + h(1− θ)− d1θα[(p− w)(1 + 2β) + h]− θd2(1− α)(p− w)

2θ[−αh+ w − s] .

We compare q2
1,2 with the midpoint of (d1, 1] and get the optimal so-

lution.
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– If q2
1,2 ≤

1

2
(d1 + 1), q∗1 = 1.

– If q2
1,2 >

1

2
(d1 + 1), q∗1 = d1.

We can write

q2
1,2 ≤

1

2
(d1 + 1)

⇔ d2 ≥ −[
α(1 + 2β)

1− α +
w − s

(1− α)(p− w)
]d1 +

h(1− θ + αθ)

θ(1− α)(p− w)
.

Define Line 3 as

d2 = −[
α(1 + 2β)

1− α +
w − s

(1− α)(p− w)
]d1 +

h(1− θ + αθ)

θ(1− α)(p− w)
.

• When d1 < α(1 + 2β)d1 + (1 − α)d2 ≤ 1, i.e., d2 ≤ −
α(1 + 2β)

1− α d1 +

1

1− α .

– In the region q1 ∈ (d1, α(1 + 2β)d1 + (1−α)d2], T ≥ 0 is binding.
We plug T = 0 into the objective function. We find that VI(q1, 0)
is convex, and q2

1,2 is the root of the first order condition. We

compare q2
1,2 with the midpoint of (d1, α(1 + 2β)d1 + (1 − α)d2]

to get the optimal solution.

∗ When q2
1,2 ≤

1

2
[d1 + α(1 + 2β)d1 + (1 − α)d2], then q∗1 =

α(1 + 2β)d1 + (1− α)d2.

∗ When q2
1,2 >

1

2
[d1 + α(1 + 2β)d1 + (1− α)d2], then q∗1 = d1.

We can write

q2
1,2 ≤

1

2
[d1 + α(1 + 2β)d1 + (1− α)d2]

⇔ d2 ≥− [
α(1 + 2β)

1− α +
w − s

(1− α)(p− αh− s) ]d1

+
θ(w − s) + h(1− θ)
θ(1− α)(p− αh− s)

Define Line 4 as

d2 =− [
α(1 + 2β)

1− α +
w − s

(1− α)(p− αh− s) ]d1

+
θ(w − s) + h(1− θ)
θ(1− α)(p− αh− s)
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– In the region q1 ∈ [α(1 + 2β)d1 + (1 − α)d2, 1], the incentive
constraint is binding. We plug the binding incentive constraint
into the objective function.

f(q1, T
∗) =q1(−αh+ c− s)

+ d1α[(p− c)(1 + 2β) + h] + d2(1− α)(p− c),

VI(q1, T
∗) =− q1[(1− θ)h+ θ(w − s)]

+ d1{(p− w)[(1 + β)(1− θ)− αβθ] + h(1− θ)}
+ d2(p− w)(1− θ + αθ) + θq1f(q1, T

∗)

We then derive the first order derivative and the second order
derivative.

dVI(q1, T
∗)

dq1
=q12θ(−αh+ c− s) + d1θα[(p− c)(1 + 2β) + h]

+ d2θ(1− α)(p− c)− θ(w − s)− h(1− θ),
d2VI(q1, T

∗)

dq2
1

=2θ(−αh+ c− s) > 0.

Thus VI(q1, T ) is convex. We define q1
1,2 as the root of the first

order condition.

q11,2 =
θ(w − s) + h(1− θ)− d1θα[(p− c)(1 + 2β) + h]− θd2(1− α)(p− c)

2θ(−αh+ c− s)
.

– When q11,2 ≤ 1

2
[α(1 + 2β)d1 + (1− α)d2 + 1], then q∗1 = 1.

– When q11,2 >
1

2
[α(1+2β)d1+(1−α)d2+1], then q∗1 = α(1+2β)d1+(1−α)d2.

We can write

q1
1,2 ≤

1

2
[α(1 + 2β)d1 + (1− α)d2 + 1]

⇔ d2 ≥− [
α(1 + 2β)

1− α +
αh

(1− α)(p− αh− s) ]d1

+
θ(w − c) + h(1− θ + θα)

θ(1− α)(p− αh− s) .

Define Line 5 as

d2 = −[
α(1 + 2β)

1− α +
αh

(1− α)(p− αh− s) ]d1 +
θ(w − c) + h(1− θ + θα)

θ(1− α)(p− αh− s) .
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Therefore when d2 ≤ −
α(1 + 2β)

1− α d1 +
1

1− α :

– In the area that is above both Line 4 and Line 5, in the first part
(d1, α(1 + 2β)d1 + (1 − α)d2], q∗1 = α(1 + 2β)d1 + (1 − α)d2]. In
the latter part (α(1 + 2β)d1 + (1− α)d2, 1], q∗1 = 1. Therefore in

the subregion (d1, 1], q∗1 = 1 and T ∗ =
w − c
1− α [1 − α(1 + 2β)d1 −

(1− α)d2].

– In the area that is below both Line 4 and Line 5, in the first
part (d1, α(1 + 2β)d1 + (1 − α)d2], q∗1 = d1. In the latter part
(α(1+2β)d1+(1−α)d2, 1], q∗1 = α(1+2β)d1+(1−α)d2. Therefore
in the subregion (d1, 1], q∗1 = d1 and T ∗ = 0 .

– In the area that is above Line 4 and below Line 5, in the first part
(d1, α(1+2β)d1 +(1−α)d2], q∗1 = α(1+2β)d1 +(1−α)d2]. In the
latter part (α(1+2β)d1+(1−α)d2, 1], q∗1 = α(1+2β)d1+(1−α)d2.
Therefore in the subregion (d1, 1], q∗1 = α(1 + 2β)d1 + (1 − α)d2

and T ∗ = 0.

– In the area that is below Line 4 and above Line 5, in the first
part (d1, α(1 + 2β)d1 + (1 − α)d2], q∗1 = d1. In the latter part
(α(1 + 2β)d1 + (1 − α)d2, 1], q∗1 = 1. Therefore in the subregion
(d1, 1], q∗1 could be d1 or 1. If q∗1 = d1, then T ∗ = 0. If q∗1 = 1,

then T ∗ =
w − c
1− α [1− α(1 + 2β)d1 − (1− α)d2].

Thus we proved proposition 3.6.3.

Proof of proposition 3.6.4:
In the subregion q1 ∈ (1, (β+1)d1+d2], G(q1) = 1, the optimization problem
can be written as

max
q1,T

VI(q1, T )

s.t.(1− α)T ≥ (w − c)[q1 − α(1 + 2β)d1 − (1− α)d2],

T ≥ 0,

1 <q1 ≤ (β + 1)d1 + d2.

Note that the right hand side of the incentive constraint is nonpositive if
and only if q1 ≤ α(1 + 2β)d1 + (1− α)d2.

• If α(1 + 2β)d1 + (1 − α)d2 > (β + 1)d1 + d2, then in the subregion
(1, (β + 1)d1 + d2], the incentive constraint is always met, thus is not
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binding at the optimum. Because the objective function decreases in
T , T ≥ 0 is binding at the optimum. We plug T = 0 into the objective
function,

VI(q1, 0) =− q1[(1− θ)h+ θ(w − s)] + d2(p− w)(1− θ + θα)

+ d1{(1− θ)h+ (p− w)[(1 + β)(1− θ)− αβθ]}
+ θ{q1(−αh+ w − s) + d1α[(p− w)(1 + 2β) + h]

+ d2(1− α)(p− w)}.

We derive the first order derivative

dVI(q1, 0)

dq1
= −(1− θ + αθ)h < 0.

Therefore VI(q1, 0) decreases in q∗1, the optimal solutions are q∗1 = 1
and T ∗ = 0.

• If α(1+2β)d1 +(1−α)d2 ≤ 1, then in the subregion (1, (β+1)d1 +d2],
the incentive constraint is binding at the optimum. We plug (1 −
α)T ∗ = (w−c)[q1−α(1+2β)d1−(1−α)d2] into the objective function,

VI(q1, T
∗) =q1[−θ(w − s)− h(1− θ)]

+ d1{[(p− w)(β + 1) + h](1− θ)− αβθ(p− w)}
+ d2(p− w)(1− θ + αθ) + θ{q1(−α+ c− s)
+ d1α[(p− c)(1 + 2β) + h] + d2(1− α)(p− c)}.

We derive the first order derivative

dVI(q1, T
∗)

dq1
= −θ(w − c)− h(1− θ + θα) < 0.

Thus VI(q1, T
∗) decreases in q∗1, the optimal solutions are q∗1 = 1 and

T ∗ =
w − c
1− α [1− α(1 + 2β)d1 − (1− α)d2] .

• If 1 < α(1 + 2β)d1 + (1 − α)d2 ≤ (β + 1)d1 + d2, then we need to
divide the subregion (1, (β + 1)d1 + d2] into two parts, the first part
is (1, α(1 + 2β)d1 + (1− α)d2], the second part is (α(1 + 2β)d1 + (1−
α)d2, (β + 1)d1 + d2]. In the first part, at the optimum T ≥ 0 is
binding, we have shown that the objective function decreases in q1. In
the second part, at the optimum the incentive constraint is binding, we
have shown that the objective function also decreases in q1. Therefore
in the subregion(1, (β + 1)d1 + d2], the objective function decreases in
q1, the optimal solutions are q∗1 = 1 and T ∗ = 0.
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Thus we proved proposition 3.6.4.

Proof of proposition 3.6.5:
In the subregion q1 ∈ ((β + 1)d1 + d2,+∞), G(q1) = 1, the optimization
problem can be written as

max
q1,T

VI(q1, T )

s.t.(1− α)T ≥ (1− α)(w − c)(q1 − d2) + α(w − c)(d2 − βd1)

T ≥ 0

q1 > (β + 1)d1 + d2.

Note that (1 − α)(w − c)(q1 − d2) + α(w − c)(d2 − βd1) ≥ 0, therefore
the incentive constraint is binding at the optimum. We plug (1 − α)T ∗ =
(1− α)(w − c)(q1 − d2) + α(w − c)(d2 − βd1) into the objective function,

f(q1, T
∗) =q1[−αh+ (1− α)c− s] + d1[(α+ 2αβ)p+ αh− αβc]

+ d2[(1− α)w − (1− 2α)c],

VI(q1, T
∗) =q1[−w − h(1− θ) + θs] + d1[(p+ pβ + h)(1− θ)− αβθ(p− w)]

+ d2[p(1− θ) + αθ(p− w)] + θf(q1, T
∗).

We derive the first order derivative,

dVI(q1, T
∗)

dq1
= −w − h(1− θ)− θαh+ θ(1− α)c < 0

Therefore VI(q1, T
∗) decreases in this subregion, and the optimal q1 is q∗1 =

(β + 1)d1 + d2. Thus we proved proposition 3.6.5.

Proof of theorem 3.6.6:

When d2 ≤
1− α(1 + 2β)

1− α d1, from proposition 3.6.4 and proposition 3.6.5,

we know that the objective function of optimization problem I decreases
when q1 > 1. Thus the optimal q1 for optimization problem I will be in the
region q1 ∈ [0, 1]. From proposition 3.6.2, in the subregion q1 ∈ [0, d1],

• When (d1, d2) is above Line 2, then q∗1 = d1 and T ∗ makes the incentive
constraint binding.

• When (d1, d2) is below Line 2, then q∗1 = 0 and T ∗ = 0.
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The equation for Line 2 is

d2 = −[
α(1 + 2β)

1− α +
c− s

(1− α)(p− c) ]d1 +
θ(w − s)− (p− w)[(1 + β)(1− θ)− αβθ]

θ(1− α)(p− c) .

From proposition 3.6.3, in the subregion q1 ∈ (d1, 1],

• When (d1, d2) is above Line 6, then q∗1 = 1 and T ∗ makes the incentive
constraint binding.

• When (d1, d2) is below Line 6, then q∗1 = d1 and T ∗ makes the incentive
constraint binding.

The equation for Line 6 is

d2 = −[
α(1 + 2β)

1− α +
c− s

(1− α)(p− c) ]d1 +
θ(w − c) + h(1− θ + αθ)

θ(1− α)(p− c) .

Notice that Line 2 and Line 6 has the same slope. Compare the intercept
of Line 2 and Line 6,

θ(w − s)− (p− w)[(1 + β)(1− θ)− αβθ]
θ(1− α)(p− c) ≤ θ(w − c) + h(1− θ + αθ)

θ(1− α)(p− c)
⇔θ(w − s)− (p− w)[(1 + β)(1− θ)− αβθ] ≤ θ(w − c) + h(1− θ + αθ)

⇔θ ≤ (p− w)(1 + β) + h

(p− w)(1 + β + αβ) + c− s+ (1− α)h
.

Note that we have

(p− w)(1 + β) + h

(p− w)(1 + β + αβ) + c− s+ (1− α)h
>

(p− w)(1 + β)

(p− w)(1 + β + αβ) + w − s.

Therefore we have the following results.

• If θ ≤ (p− w)(1 + β) + h

(p− w)(1 + β + αβ) + c− s+ (1− α)h
, then Line 2’s intercept

is less than Line 6’ intercept.

– When (d1, d2) is above Line 6, in the subregion q1 ∈ [0, d1],
q∗1 = d1 and T ∗ makes the incentive constraint binding. In the
subregion q1 ∈ (d1, 1], q∗1 = 1 and T ∗ makes the incentive con-
straint binding. Therefore in the region q1 ∈ [0, 1], q∗1 = 1 and T ∗

makes the incentive constraint binding.
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– When (d1, d2) is below Line 2, in the subregion q1 ∈ [0, d1], q∗1 = 0
and T ∗ = 0. In the subregion q1 ∈ (d1, 1], q∗1 = d1 and T ∗

makes the incentive constraint binding. Therefore in the region
q1 ∈ [0, 1], q∗1 = 0 and T ∗ = 0.

– When (d1, d2) is above Line 2 and below Line 6, in the subre-
gion q1 ∈ [0, d1], q∗1 = d1 and T ∗ makes the incentive constraint
binding. In the subregion q1 ∈ (d1, 1], q∗1 = d1 and T ∗ makes the
incentive constraint binding. Therefore in the region q1 ∈ [0, 1],
q∗1 = d1 and T ∗ makes the incentive constraint binding.

• If θ >
(p− w)(1 + β) + h

(p− w)(1 + β + αβ) + c− s+ (1− α)h
, then Line 2 has a big-

ger intercept than Line 6. Then

– When (d1, d2) is above Line 2, in the subregion q1 ∈ [0, d1],
q∗1 = d1 and T ∗ makes the incentive constraint binding. In the
subregion q1 ∈ (d1, 1], q∗1 = 1 and T ∗ makes the incentive con-
straint binding. Therefore in the region q1 ∈ [0, 1], q∗1 = 1 and T ∗

makes the incentive constraint binding.

– When (d1, d2) is below Line 6, in the subregion q1 ∈ [0, d1], q∗1 = 0
and T ∗ = 0. In the subregion q1 ∈ (d1, 1], q∗1 = d1 and T ∗

makes the incentive constraint binding. Therefore in the region
q1 ∈ [0, 1], q∗1 = 0 and T ∗ = 0.

– When (d1, d2) is above Line 6 and below Line 2, in the subregion
q1 ∈ [0, d1], q∗1 = 0 and T ∗ = 0. In the subregion q1 ∈ (d1, 1],
q∗1 = 1 and T ∗ makes the incentive constraint binding. Therefore
in the region q1 ∈ [0, 1], we need to compare the objective value
VI(0, 0) and VI(1, T ∗).

VI(0, 0) =d2(p− w)(1− θ + θα),

VI(1, T ∗) =− [(1− θ)h+ θ(w − s)] + d2(p− w)(1− θ + αθ)

+ d1{(1− θ)h+ (p− w)[(1 + β)(1− θ)− αβθ]}
+ θ(c− s− αh) + θd1α[(p− c)(1 + 2β) + h]

+ θd2(1− α)(p− c).
Therefore

VI(1, T ∗)− VI(0, 0)

=− [(1− θ)h+ θ(w − s)]
+ d1{(1− θ)h+ (p− w)[(1 + β)(1− θ)− αβθ]}
+ θ(c− s− αh) + θd1α[(p− c)(1 + 2β) + h] + θd2(1− α)(p− c).

103



B.2. Analysis for optimization problem I

We have

VI(1, T ∗) > VI(0, 0)⇔ d2 > −[
α(1 + 2β)

1− α +
αh

(1− α)(p− c)

+
(1− θ)h+ (p− w)[(1 + β)(1− θ)− αβθ]

θ(1− α)(p− c) ]d1 +
θ(w − c) + h(1− θ + αθ)

θ(1− α)(p− c) .

Define Line 7 as

d2 =− [
α(1 + 2β)

1− α +
αh

(1− α)(p− c)

+
(1− θ)h+ (p− w)[(1 + β)(1− θ)− αβθ]

θ(1− α)(p− c) ]d1

+
θ(w − c) + h(1− θ + αθ)

θ(1− α)(p− c) .

Recall that the equation for Line 6 is

d2 = −[
α(1 + 2β)

1− α +
c− s

(1− α)(p− c) ]d1 +
θ(w − c) + h(1− θ + αθ)

θ(1− α)(p− c) .

Note that Line 7 and Line 6 has the same intercept. Compare
the slope of Line 7 and Line 6, we have

αh

(1− α)(p− c) +
(1− θ)h+ (p− w)[(1 + β)(1− θ)− αβθ]

θ(1− α)(p− c)
<

c− s
(1− α)(p− c)

⇔θ > (p− w)(1 + β) + h

(p− w)(1 + β + αβ) + c− s+ (1− α)h
.

Therefore Line 6 is steeper than Line 7. Line 7 divides the region
between Line 6 and Line 2 into two parts. In the part that is
above 7, q∗1 = 1 and T ∗ = 0. In the part that is below Line 7,
q∗1 = 0 and T ∗ = 0.

We proved theorem 3.6.6.

Proof of theorem 3.6.6:

When d2 >
1− α(1 + 2β)

1− α d1, from proposition 3.6.4 and proposition 3.6.5,

we know that the objective function of optimization problem I decreases
when q1 > 1. Thus the optimal q1 for optimization problem I will be in the
region q1 ∈ [0, 1].
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• If θ ≤ (p− w)(1 + β)

(p− w)(1 + β + αβ) + w − s , both Line 1 and Line 2 has neg-

ative intercepts, therefore according to proposition 3.6.2, in the sub-
region q1 ∈ [0, d1], the optimal q∗1 = d1. Therefore the optimal q∗1 for
optimization problem I is in the region [d1, 1], and the possible values
are d1, 1, and α(1 + 2β)d1 + (1− α)d2(proposition3.6.3).

• If θ >
(p− w)(1 + β)

(p− w)(1 + β + αβ) + w − s , according to proposition 3.6.2

and proposition3.6.3, the possible values for optimal q∗1 are 0, d1, 1,
and α(1 + 2β)d1 + (1− α)d2.

We proved theorem 3.6.7.

B.3 Analysis for overall optimal solutions for the
OEM

Proof of theorem 3.6.8:
First, let us compare the optimal expected profit for the OEM in optimiza-

tion problem N and optimization problem I when d2 >
1− α(1 + 2β)

1− α d1.

From theorem 3.6.1, we know that the optimal q1 for optimization problem
N is q∗1 = α(1 + 2β)d1 + (1 − α)d2 and T ∗ = 0. At the optimum, the sup-
plier is indifferent between inform or not inform. Next we show that given
q∗1 = α(1 + 2β)d1 + (1 − α)d2 and T ∗ = 0, the OEM can do strictly better
if the supplier informs. Therefore the OEM strictly prefers the supplier to
inform. Note that d1 < α(1 + 2β)d1 + (1− α)d2 ≤ (β + 1)d1 + d2. Because

VI(q1, 0) =− [h(1− θ) + θ(w − s)]q1 + d1{(p− w)[(1 + β)(1− θ)− αβθ]
+ h(1− θ)}+ d2(p− w)(1− θ + αθ) + θG(q1)f(q1, 0).

The difference between this two

VI(q1, 0)− VN (q1) = θG(q1)f(q1, 0),

where

f(q1, 0) =q1(−αh+ w − s) + d1α[(p− w)(1 + 2β) + h]

+ d2(1− α)(p− w).

Because G(q1) > 0 and f(q1, 0) > 0, thus VI(q1, 0) > VN (q1). Thus
it is optimal for the OEM to direct the supplier to inform when d2 >
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1− α(1 + 2β)

1− α d1.

Secondly, let us compare the optimal expected profit for the OEM in opti-

mization problem N and optimization problem I when d2 ≤
1− α(1 + 2β)

1− α d1.

From theorem 3.6.1 and theorem 3.6.6, we have the following results.

• If θ ≤ (p− w)(1 + β)

(p− w)(1 + β + αβ) + w − s , the optimal solutions for the

OEM in optimization problem N is q∗1 = d1 and T∗ can be any value

satisfying 0 ≤ T ∗ ≤ w − c
1− α [(1− α− 2αβ)d1 − (1− α)d2]. The optimal

objective value for optimization problem N is

V ∗N =d1{(p− w)[(1 + β)(1− θ)− θαβ] + θ(−w + s)}
+ d2(p− w)(1− θ + αθ).

At q∗1 = d1 and T∗ =
w − c
1− α [(1−α− 2αβ)d1− (1−α)d2], the supplier

is indifferent between inform or not inform. If we can show that when

q∗1 = d1 and T∗ =
w − c
1− α [(1 − α − 2αβ)d1 − (1 − α)d2], the objective

value of optimization problem N is less than the objective value of
optimization problem I, then it is optimal for the OEM to direct the
supplier to inform.

VI(d1, T
∗) =d1{(p− w)[(1 + β)(1− θ)− θαβ] + θ(−w + s)}

+ d2(p− w)(1− θ + αθ) + θd2
1[(p− c)α(1 + 2β) + c− s]

+ θd1d2(1− α)(p− c).

Apparently VI(d1, T
∗) > V ∗N . Therefore it is optimal for the OEM to

direct the supplier to inform.

• If θ >
(p− w)(1 + β)

(p− w)(1 + β + αβ) + w − s , the optimal q1 for optimization

problem N is q∗1 =
1− α

1− α(1 + 2β)
d2 and T ∗ = 0. The optimal objective

value for optimization problem N is

V ∗N ={(p− w)[(1 + β)(1− θ)− θαβ] + θ(−w + s)} 1− α
1− α(1 + 2β)

d2

+ d2(p− w)(1− θ + αθ).
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The optimal solutions (q∗1, T
∗) for optimization problem I is (0, 0),

(d1,max{w − c
1− α [(1−α−2αβ)d1−(1−α)d2], 0}), or (1,max{w − c

1− α [1−
α(1+2β)d1− (1−α)d2], 0}). In order to prove optimization problem I
dominates optimization problem N, it is sufficient to prove that at one
of these points, the objective value of optimization problem I is bigger
than the optimal objective value of optimization problem N. Next we
show VI(0, 0) is bigger than V ∗N .

VI(0, 0) = d2(p− w)(1− θ + θα).

V ∗N − VI(0, 0) =

{(p− w)[(1 + β)(1− θ)− θαβ] + θ(−w + s)} 1− α
1− α(1 + 2β)

d2 < 0.

The inequality comes from the condition that θ >
(p− w)(1 + β)

(p− w)(1 + β + αβ) + w − s .

Therefore it is optimal for the OEM is to direct the supplier to inform

where d1 ≤
1− α(1 + 2β)

1− α d1. We’ve proved theorem 3.6.8.
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