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Abstract 

Fast-paced integral weighing systems such as conveyor belt scales are used in the bulk 

material handling industry. Despite their numerous benefits and widespread use, 

measurement errors caused by mis-calibration, out of calibration, mechanical 

malfunctioning and maintenance-related errors can be extremely costly; therefore 

weighing systems need constant monitoring. This research proposes a method to monitor 

and control the error in conveyor belt scales by the use of Statistical Process Control. The 

cumulative conveyed weight on a scale network was analyzed to identify process error 

limits. Further, series of pattern recognition identifiers, along with statistical tools, were 

used to monitor and locate unnatural patterns within the scale network. A process 

validation was conducted using four series of scale data that were obtained from industrial 

scales. The proposed method performed successfully in determining the start points and 

types of nine defined patterns. It outperformed conventional monitoring techniques that 

are based on experimental values, and also provided more detailed information on types, 

start points, exact locations and potential cases of the unnatural patterns than other 

conventional methods used in manufacturing known as Western Electric Company (WECO) 

rules.  
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Chapter 1  

Introduction 

1.1 Preliminary remarks 

 Global manufacturing and service industries are actively seeking technological 

solutions that enable them to quickly respond to expanding client demand and improved 

services. Hou emphasizes that agility has become the key to survival and success [1]. In 

order to take advantage of intelligent automated machinery and improve the quality and 

efficiency of services as well as integrate systems, utilizing intelligent information 

technology is inevitable. New technologies such as dynamic monitoring, fault diagnosis and 

self-maintaining and prognostic condition monitoring solutions are growing rapidly to 

meet the industry demand.  

Earlier in 20th century, considerable efforts were made to improve the quality of 

manufacturing as well as reduce the product development cycle. Amongst the biggest 

contributors to the quality control field were Walter A. Shewhart and W. Edwards Deming, 

the pioneers of the modern quality control. Chisholm states that “Shewhart, a Bell Labs 

man, pioneered quality control and was a major inspiration to Deming (who met him at 
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Bell Labs)” [2]. Deming is well known in his own right for his contributions to such things 

as the manufacturing quality in post-war Japan and the foundations of Six-Sigma. Today 

continuous improvement and quality control remain one of the most critical deciding 

factors in the survival of a business. Lean and Six Sigma practices are the two general terms 

that are used to signify the importance of preserving value while reducing costs and 

resources (Lean); while improving quality to 

ensure the least possible amount of failures or 

defects (Six Sigma) in service or manufacturing 

processes.  These two terms are interrelated in 

a sense that Lean manufacturing leads to 

shorter production cycles. This agility lead to 

more frequent results per time unit which can 

result in improved quality by analysis of 

causes of variation and process enhancements. 

(Please see Plate 1) 

The term Lean originated from the Toyota Production Systems in the 1990s. It refers to 

a practice that considers the reduction of wasteful procedures that does not add value to 

the manufacturing or service process [3]. The core concepts of Lean are experimental 

rather than statistical. The objective of Lean is to prevent conditions under which the value 

of time and the activities in which resources are engaged exceed the value of the product 

being manufactured within that time and by those resources [4]. 

Plate1: Seven main categories of 
waste in Lean strategies: 
 Rework 
 Overproduction, Muda (Japanese 

term for “wasteful activity”) 
 Conveyance (moving of product 

within the shop)  
 Queue time  
 Inventory  
 Movement (of people or 

equipment) 
 Over processing 
 
Source: BPM Process Excellence Network 
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Six Sigma has a stronger historical background. The name is derived from statistics and 

the probability theory that relates to the 3.4 defective parts per a million observations. It 

largely originated from Motorola in 1986. The focus in Six Sigma is mostly variation, it is 

said that variation is the evil of the process and therefore it is identified and attacked by 

some robust statistical analysis and series of techniques. Origins of these techniques for 

service industries mostly lie in continuous data, which are the quantities that are collected 

in terms of continuous variables such as time. The main objectives of Six Sigma are to 

achieve high performance capabilities by eliminating or eradicating variation [4]. 

Six Sigma practices aim to improve quality by implementing two distinct strategies; 

towards existing products and towards new products or processes. This research will 

concentrate on the existing process strategies 

which consist of five concepts, DMAIC. (Please 

see Plate 2) Management of quality 

improvement techniques, Statistical Quality 

Control, involves implementing a series of tools 

that enable the making of decisions regarding 

the status of products or processes to 

manufacture products. These tools are divided 

into three main categories: 

1.1.1 Descriptive statistics: 

Parameters of the process are indicators of the statistical distribution or performance 

indicators e.g. mean standard deviation, the sample Moving Range, etc.  

Plate 2: Six Sigma Process strategies 

for existing processes, DMAIC are 

acronyms for: 

 Define  

 Measure 

 Analyze 

 Improve 

 Control 

 
Source: BPM Process Excellence Network 
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1.1.2 Statistical process Control (SPC): 

SPC is the practice of investigating random samples of the output product or a process 

variable in order to determine if the process is generating acceptable results. 

1.1.3 Acceptance sampling: 

Random sampling of a batch and generalizing the decision of pass or fail for a whole 

population based on the random inspection. 

MacCarthy suggests that the 

applications of SPC have been spread from 

the primary domain (manufacturing 

businesses) to other so-called non-

conventional fields. There has been 

growing emphasis on performance 

measurements, performance monitoring 

and benchmarking in many organizations 

[5]. An increase in the availability of 

analytics has enabled the industry to rely 

more on process statistics in decision-

making and strategies. The capabilities of 

the tools and methods in process control 

are large contributors to the quality 

revolution. (Please see plate 3) 

Plate 3: Research performed by the 

McKinsey Global Institute in June 2011 

analyzed how leaps in technology are 

enabling countless data-mining 

possibilities. The challenge however, 

remains for companies to crunch the 

numbers so they can better service their 

customers. Business intelligence software 

is a solution that is gaining more 

popularity because of its ability to 

diagnose the trends and key performance 

indicators. Statistical concepts have 

enables engineers to decode the big data 

numbers into comprehendible 

information. 

 
Source: Technology Review Magazine: Data 
analytics by the numbers, Tuesday, May 31, 2011 
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Importance of the service sector in many economies, suggests MacCarthy, is another 

factor of the rising trend of SPC applications in industry. Sharp surge in world population - 

7billion as of 2011, and hence rising commodity and agricultural product prices have made 

SPC a popular tool to improve efficiency, increase the capabilities of the industry and to 

reduce the costs of production and transportation [6]. Based on International Monetary 

Fund analytics, the commodity food and metal prices have gone up by two-fold and five-

fold respectively in the past 15 years, Figure 1. 

 

Figure 1: Food and metal commodity index prices [1996-2011] 

The motivation of the work reported in this thesis has been the consideration of a 

process within a complex material handling facility. The process consists of the receiving, 

weighing, storing, and transporting bulk cargo. This work addresses some of the 

complexities that arise in the implementation of Statistical Process Control (SPC) in a non-

conventional field. It proposes a monitoring system for weight measurement to improve 

the performance of the weighing process. 

Price,  
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1.2 Material handling and challenges within bulk material weighing 

Bulk cargo is a commodity that is transported unpackaged in large quantities, Figure 2. 

It is usually a mass of relatively small solid particles (e.g. ores, coal, oil sand, grains, etc.) 

that is generally poured or dropped into containers using a shovel bucket. Bulk solids are 

handled and transported within short distances on bulk material handling systems such as 

conveyor belts, stackers, re-claimers, bucket elevators, rail car dumpers, ship loaders or 

hoppers.  Conveyors belts are stationary machinery that are typically composed of two or 

more pulleys, with a continuous loop of material, the belt, that circulates around them. One 

or more pulleys can be powered and the tension of the belt can be adjusted using the 

tensioners such as shown in Figure 3. 

 

Figure 2: Potash is transported in bulk form 

Raw material in many industries come in the form of bulk solids, therefore exact 

gravimetric assessment of the bulk material is crucial for product consistency and uniform 
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high quality services in industries such as plastic processing facilities, batch glass and 

ceramic processing plants.  Trading, weighing, and storing and handling of bulk material 

are based on wet masses of cargos, where the insurance charges are base in value. 

Therefore both the buyer and the seller encounter some measure of risk. The magnitude of 

this risk is determined by the precision and the bias of the measuring equipment and the 

techniques that have been applied to weigh the wet weight [7].  Uncertainties in the 

weighing process make it very complex to translate the wet weight into dry weight and the 

dry weight into monetary value.   

 

Figure 3: Conventional conveyor belt mechanism (Source: www.NISA.org) 

1.3 Literature review 

Shewhart suggested that the control may serve to firstly define the goal or standards 

for a process, secondly as an instrument to attain that goal and finally to review whether or 

not the goal has been reached [8]. Gibra researched quality control and the implementation 

of control charts from Second World War until 70’s [8] and Vance, Schilling and Nelson 
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made many contributions on the effects of non-normality and the control charts published 

in late 70’s[8, 9].   

The principal domain for Quality Control and specifically Statistical Process Control 

(SPC) has been manufacturing. Therefore, conventional SPC research has been limited to 

manufacturing processes. Since the 1990s, more research has been conducted in the 

application of SPC in other domains. MacCarthy and Wasusri have reviewed and 

categorized the literature into four main fields [5]: Engineering, industrial and 

environmental applications, healthcare applications, general service sector, and statistical 

applications. 

Among these four groups about 43 percent of the research has been categorized to 

belong to engineering and industrial applications. Literature has largely focused on 

statistics and fault detections criteria rather than the potential complications and 

challenges in implementation of these methods. One example of implementation 

complexity that is unique not only to each field but also individual application is the 

regulation of Type I and Type II errors (Explained in 1.4). 

1.4 Implementation complexities 

While working at Western Electric, Shewhart tried on several failed attempts to limit 

variations in the manufacturing process [10]. It was not until he moved to Bell laboratories 

that he realized a categorical difference between the types of variations, the common 

causes and the special causes. The common causes are inherent to the system, whereas the 

special causes are imposed on the system by operator related issues, mechanical 
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inaccuracies, etc. and they can be avoided. Application of SPC to non-conventional domains 

aims to detect and reduce the special causes of variations. A process that is statistically “in 

control” generates independently and normally distributed outputs [5, 11]. An “out of 

control” state can be detected when a point is plotted outside of the control limits. Possible 

“out of control” states are then detectable by the application of so called “run rules” such as 

the eight consecutive points above and below the process mean [5, 11]. A successful fault 

detection system will be able to pinpoint all simple (cycles, trends, shifts) or complex 

special causes. Complex patterns are combinations of two or more simple patterns and are 

called superimposed patterns. The superimposed patterns can be further divided into four 

subtypes [12] cycle, mixture, complex and multiple shift). However, there is a tradeoff in 

over sensitive fault detections systems—false alarm. False alarms are the states that are 

falsely detected as “out of control” where the process is really “in control”. Type I error 

refers to such errors. On the other hand, Type II error occurs when the system is not 

sensitive enough to detect the “out of control” states where there is one. In the literature, 

several researchers have tried to devise new methods of intelligent fault detections using 

methods that are either Neural Networks-based pattern recognition or expert system-

based pattern recognition. Wang and colleague used Neural Networks to recognize 

complex patterns and identify process noise. This method cannot easily be incorporated in 

material handling industry, since it does not provide a mathematical model for fault 

recognition [12, 13]. Methods based on probability, such as what Shewhart suggested (a 

series of simple pattern recognition rules that were developed within Western Electric in 

the 1990s), still remains one of the most practical tools to balance a monitoring system. 

Nelson used the Shewhart approach to develop “out of control” conditions for a process, 
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establishing a uniform and scientifically based interpretation for simple patterns. In 

developing run rules, that are called alarm Modes in this research, I have incorporated 

some concepts that were initially developed by Shewhart [13]. 

1.5 Research objectives 

As a consequence of the issues outlined in previous sections, the related industry’s 

operational demand has been to develop better control and monitoring means for the bulk 

handling systems with the focus of applications on conveyor belt s. The proposed research 

specifically focuses on: 

 Analyzing the operation flow and creating a suitable error function model, by assessing 

the effects of the model on application, performance effectiveness and conformity to 

integrate on-line detection systems. 

 Developing algorithms to identify, locate, and characterize sources of variation and 

trends in the scale network. 

 Using an experimental setup that enables the research to implement the proposed 

algorithm and verify the results.  

 Generating and developing computer software that analyses data and generates error 

detection signals based on the calculated controls limits. 

1.6 Scope of the present work 

This research was conducted to introduce a solution for error measurement and 

control of an industrial conveyor belt network. A non-conventional approach was taken to 

form the solution. The proposed method utilizes manufacturing Statistical Process Control 
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methods, and it is driven by industry analytics rather than computer simulated data. 

Previous studies have been done on conveyor belt error control and control chart pattern 

methods separately. This research is conducted to develop a method that combines 

previous research in these fields to address weighing variations in bulk material handling.  

1.7 Organization of the thesis 

This thesis has been prepared to address the outlined scope. The organization of this 

thesis is as follows: 

Chapter 1 introduces basics of descriptive statistics and quality control methods in 

bulk material handling. Furthermore, chapter 1 discusses the complexities in monitoring 

and reducing the errors in metrology of conveyor belt scales as well as introducing the 

scope and objectives of this research.  

Chapter 2 discusses core statistical concepts that are utilized to develop a methodology 

to identify the statistical limits, as well as natural and unnatural patterns in measurement 

error. Chapter 2 also introduces a system setup and different ways of bulk cargo 

measurement.  

Chapter 3 reviews previous research in the field, discusses the major issues and ways 

to address them. As well, Chapter 3 provides a step-by-step explanation of the structure of 

the proposed method, followed by a detailed example of the process.  

Chapter 4 evaluates the proposed method using four data samples “A”, “B”, “C” and “D” 

and identifying the faulty patterns. The results are then compared to conventional 

standards that are used in similar manufacturing industries.  
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Chapter 5 concludes and remarks on the findings and proposes ideas for future work to 

improving the implementation and further refining of the technique. 

1.8 Notations and symbols 

SPC has been used in several major domains; therefore industries in applied statistics 

have put forth the effort to standardize the terms and symbols of SPC, however different 

terms can still be shown by various symbols depending on the field of study.   Table 1 lists 

the terms and symbols that are used in this thesis. The definitions for less frequently used 

variables are given within the context.  

Table 1: Notations and sumbols used in this research 

Variable Description 

n Number of measurements (sample size) 

k Total number of samples 

Xi ith data item form a number sequence 

μ Mean of the individual measurements 

i Indexing integer 

σ2 variance 

σ  Standard deviation 

UAL Upper Action Limit  

UWL Upper Warning Limit  

UOSL Upper One Sigma Limit 

CR  Center Line 

LOSL Lower One Sigma Limit 

LWL Lower Warning Limit  

LAL Lower Action Limit 
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Chapter 2  

Descriptive statistics and system setup 

2.1 Descriptive statistics 

This chapter introduces a set of useful statistical concepts and describes the initial data 

exploration that has been performed on the data that will be used to verify the 

methodology. Subsequently, the system component setup and how they function and 

interact with each other is described in more detail.   

In order to understand the applications of quality control it is essential to understand 

certain statistical theory.  In weighing and measurement, statistics are used heavily to 

develop various tools and techniques. “A single estimate does not provide any information 

on variability of precision, but the absolute difference between two observations is already 

an effective measure for precision.” [7] By using statistical tools such as mean and the sum 

of a set of measurements and their variances measures for precision such as the standard 
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deviation and the coefficient of variation can be used to develop confidence intervals and 

warning and action limits for future measurements.  

2.1.1 The mean 

In a process that outputs a desirable quantifiable parameter, the arithmetic average of 

the population for all the readings is called the distribution mean. In cases where sampling 

is required, the arithmetic average of the samples is called the sample mean which is an 

estimate of population mean. Therefore: 

 ̅  
∑   

 
   

 
 

Where:  

 ̅           

                              

                         

2.1.2 Variance and types of variation 

If one looks at a batch of rings in a manufacturing line, one will notice that the exact 

diameters of the rings are not the same.  One can be 10.93 mm and the other can be 11.08 

mm. This inconsistency in outcomes is called variation. In manufacturing processes 

variations can be caused by many factors e.g. differences in operator skill, differences in 

raw materials, weather conditions, tools, machines, etc. These causes of the variation are 

called random/common causes or chance causes of variation. In Quality Control, these 

variations are part of the process; even though they cannot be reduced to zero, it is 
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important that the range and the main sources are identified in order to recognize limits of 

these variations. [14]. 

Second type of variation that is observed is special causes or assignable cause of 

variation. Assignable causes are due to events that are not inherent in the system. 

Shewhart was greatly concerned with detecting and identifying these types of variations.  

The main goal of Quality Control is to reduce or remove the causes from the system 

through statistical methods.  Chisholm calls this “statistically predictable behavior.”[2] 

The fundamental measure of variability in a set of data is variance. Variability in 

metrology is a quality that causes the measurements of the same character to differ in 

replications. And it is quantified by variance. Variance of a randomly distributed data is a 

measure of how far a set of data are spread apart from each other and it is calculated: 

        
∑     ̅  

   
 

Where:  

                                

 ̅           
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2.1.3 The Moving Range and standard deviation 

In the example from the ring manufacturing in the previous section, the amount of 

natural variation, range, between the smallest diameter (10.93 mm) and the largest 

diameter(11.08 mm) is 0.15 mm. Moving range is the difference between the two 

consecutive observations. Moving Range can carry significance by being an indicator of 

quality. If, in a process observation, the Moving Range surpasses a significant statistical 

limit, the process can be assumed to be “out of control.” This is shown in a separate run 

chart beside regular control charts (introduced in section 2.1.5).  

              

Where:  

                                 

                            

Another measure of variation is standard deviation. Standard deviation is calculated as 

follows:  

  √
∑     ̅  

   
 

Where:  

                                    

 ̅           
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Small values of the Moving Range and the standard deviation are an indication that the 

population distribution is closely clustered around the mean. And similarly large values 

mean that the data set is widely spread. 

2.1.4 Distribution of data 

Distributions can be symmetric or skewed- with large or small variance, Figure 4 

  

Figure 4: Distributions with different small and large/symmetric or skewed spread 

 

2.1.5 Developing control charts 

As discussed earlier, the aim of SPC is to differentiate between the random (common) 

variations and assignable causes and to identify, investigate and eliminate special variation 

[14]. This way, the process can be studied to reduce the random variations [15]. 
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Figure 5: Conventional format of Control Chart proposed by Shewhart 

 

 In engineering practices this is usually done by targeting a quantifiable variable that is 

an indicator of a process characteristic or a desirable outcome. The performance of such a 

variable is plotted in a run chart as individual readings. An example is shown in Figure 5. 

The chart area is limited to the control lines and the lines are signified by the previous 

behavior of the process. It is said that the process is “out of control” if a reading falls 

outside of the lines.  In the control chart in Figure 5 the round dots are the quantifiable 

readings, the horizontal axis shows the center line and the vertical axis represents the 

quality characteristics of the variable. The outer dashed lines are the Upper Control Limit 

(UCL) and the Lower Control Limit (LCL). The UCL is the maximum acceptable variation 

from the mean and the LCL is the minimum acceptable variation from the mean. The inner 

dashed line represents a tighter control limit that is usually applied to provide a means of a 

warning, Upper Warning Limit (UWL) and the Lower Warning Limit (LWL). This chart is 
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usually coupled with another chart called Moving Range chart for better performance. The 

Moving Range chart records 

the Moving Range between 

the two consecutive 

observations similar to Xi 

control charts. The UCL and 

LCL are set at 3 standard 

deviations that capture 

99.73% of the distribution 

assuming a normal 

distribution. The 

probability of readings 

falling within these limits is 

called the confidence limits.  

Confidence limits are 

generally used as 95.45% 

for 2 standard deviations 

and 99.73 % for 3 Sigma. 

(Please see plate 4) 

2.2 System setup (Gravimetric measurement for bulk material) 

Gravimetric devices generally work in two main ways: differential and integral 

weighing. Differential weighing devices are most commonly used. They work by taking a 

Plate 4: Probabilities in normal distribution 

 About 68.27% of the values of a normally 

distributed data set lie within 1 standard 

deviation of the mean. 

 Similarly, about 95.45% of the values lie within 

2 standard deviations of the mean.  

 Nearly all (99.73%) of the values lie within 3 

standard deviations of the mean. 

 

Source: http://en.wikipedia.org 

http://en.wikipedia.org/
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measurement and adding or subtracting another measurement then reporting the 

difference. All truck scales, rail car scales and most stationary scales work with this 

method. Integral weighing instruments rely on a simple integrating method to sum the 

conveyed material and calculate a cumulative result. Conveyor belts are integrating 

instruments that will be discussed in 2.3.2.  

2.3 Weight measurement terminology and measurement concepts 

Random variations in measurements will lead to risks of losing or winning by the same 

degree. By increasing the number of data points the random variable will cancel out to 

make the buying or the selling partner identically lucky or unlucky. However, the bias may 

accumulate and grow to show one of the parties has statistically incurred a loss. The 

random variations can stem from different sources; however, the systematic errors are 

caused by factors such as malfunctioning machinery or operator.  

Uncertainty in weight measurements and weighing devices has been identified by 

different terms internationally. In some handbooks, the use of the term “error” is restricted 

to a bias or systematic error, while other sources have referred to “error” as “maximum 

permissible error”, known as “tolerance” as a measure for random variations in a weight 

measurement technique [7]. In metrology and weighing instrumentations, bias and 

precision are fundamental concepts and a clear understanding of them facilitates the 

development of techniques to achieve them. 
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Accuracy: “A generic term implying closeness of agreement between a measurement 

and its unknown true value” [7]. Accuracy as a concept cannot be measured; nevertheless, 

the lack of accuracy can be measured as bias. 

Bias: “A statistically significant difference between a single measurement, or a mean of 

a set, and the most reliable estimate of its unknown true value.” Bias is a systematic error 

in weight measurement. 

Precision: “A generic term that relates to the cumulative effect of random variations in 

a measurements system”. Precision is a generic qualifier with no quantitative implications. 

The variance on weight measurements is a fundamental measure for precision. It also plays 

a key role in identifying the bias in weight measurements and the sensitivity of a statistical 

student’s t-test. 

2.3.1 Static weight measurements 

Static scales still have a wide variety of usage in the industry and they are the simplest 

of all gravimetric equipment. Common industrial scales use strain gauges to measure the 

deflections. Deflections of the mechanical members then translate to calibrate weight 

readings using a set of four varying electrical resistances called a “Wheatstone bridge”. 

While the static scales reduce the risk of mis-measurement to the lowest possible degree, 

they are not feasible in dynamic processing plants since the material has to be stopped for 

weight measurement.  

2.3.2 Conveyor belt scales 

This section will focus on how conveyor belt scales work and how the two factors of 

speed and instantaneous weight are used to determine the total weight conveyed. 
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Conveyor belt scales are integrating weighing devices. They use a simple integrating 

method to sum the conveyed material and calculate a cumulative result. A load cell is 

placed along the belt by replacing a number of the idlers by a series of idlers that sit within 

a floating frame, Figure 6.  

 

Figure 6: Schematic of a conveyor belt integrated with a scale (source: www.NISA.org) 

The principle of operation is very simple. One of belt conveyor idlers' is resting on load 

reactor (weight scale); therefore signal from its sensor Uq corresponds to weight of bulk 

material/per idler span. 

        

Where:  

                                [   ⁄ ] 
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Rotary speed sensor measures the angular velocity of the idlers that rotate as the belt 

moves. The velocity sensor produces a signal Uv corresponding to speed of the traveled 

belt. 

        

Where:  

                 [  ] ⁄  

                        

To calculate the instantaneous flow rate: 

             

Where: 

                           [   ] ⁄  

To calculate the total material passed through the scale where there is continuous flow 

of material instantaneous flow is integrated with respect to time. This is done by a 

(totalizer). 

   ∫     

Where: 

                          [  ] 
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The integrator or the totalizer receives the weight of the floating frame in high 

frequency. This is coincident with a tachometer pulse generator that is synchronized with 

the speed of the belt conveyor. The frequency of the weight measurements can be up to 

4000 Hz for more accurate readings.  This enables high resolutions by integrating the 

weight functions with regards to the distance traveled. In order to sum the measured 

weights and generate a total number, the movement of the belt can be considered in very 

small segments (i.e. 0.01 m). Weight sensors measure the weight of a small portion of the 

material that passes in a given time. The gross weight that the sensor shows is the sum of 

the belt weight, conveyor idlers and the material on the belt.  The net weight of the material 

is gross weight minus the weight of the belt and the idlers.  

A continuous weight traveling on a conveyor belt crosses through the weighing 

carriage as seen in Figure 6. The force function that it generates with the variable of 

distance or time is a trapezoid that starts from zero force and reaches a maximum of less 

than the full weight of whole continuous material and then back to zero. In other words, at 

any given position of the belt (or time) the weight of the material on the scale is the sum of 

all the particles on the weighing area [15]. In a special case where the length of the 

conveyed weight is the same as the idler span, weight function forms a triangle with a 

maximum of whole material weight. (Please see plate 5)  

Total conveyed material for time t is calculated by: 
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Where: 

                               [  ] 

As for conveyors we have flow rate measured in tons per hour. Last expression could 

be written as: 

            

Where: 

                     

           [            ] 

Conventional scales use one of the 

following four methods to calculate the 

sum: 

 Left-hand approximation: takes the 

initial of the two pulses. 

 Right-hand approximation: takes 

the latter of the two pulses. 

 Trapezoid approximation: forms a 

trapezoid between the values of the 

two pulses. 

 Simpson’s rule approximation: takes the first, second and the middle values and fits 

a parabolic curve to approximate the area under the slice of the material. The 

Plate 5: Belt scale function for a weight 

length equal to scale span 
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Simpson rule approximation is the most accurate of the four methods which is used 

in new generations of the scales [15]. 

2.3.3 Draft surveys (Displacement measurement) 

An alternative weighing method of bulk cargos is draft surveys. This method is rooted 

in Archimedes’ Law.  The Archimedes law maintains that the mass of a floating vessel is 

equal to the mass of the fluid it dispenses. (Please see plate 6) Where the means are 

available (usually when the destination is a cargo vessel) it is possible to use the draft 

surveying method to verify the total transported weight. This method, due to a large 

number of variables and the limitations of application, is one of the least practical methods 

used.  
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Plate 6: Weight of a floating body 

  

Weight of the displaced volume = 

(Ship + bunkers + stores + consumables + cargo) 

Draft surveying is used in ports as estimation, since it can lack precision due to a 

wide range of external conditions and unknown variables. Errors can occur in: 

 Difference between draft table (based on drawings) and built vessel 

 Observation error due to physical geographical limitations e.g. waves 

 Accuracy limitations, draft marks are normally 0.10 m  

 Water density estimate  

 Complexity in determining bunkers, stores, etc. 

Source: www.bulk-online.com 
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Chapter 3  

Application of statistical process control in 

scale monitoring 

As discussed in Chapter 2, the weighing methodology of the studied process revolves 

around a load sensor with an input and an output stream. The weight imbalance between 

the two readings at various sections of the network creates a difference between the 

weight of the material received and the weight of the material processed or shipped. These 

differences are used to analyze the performance of the individual components of the 

weighing network using SPC. Figure 7 demonstrates a schematic of the setup that has been 

used for this research. Each scale unit is shown in upper case letter and the stream of 

material is shown by arrows.  
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Figure 7: Calculation of weight imbalance between different stages of the process 

This chapter concentrates on conditions of previous work on SPC tools, and the 

methods of pattern recognition in control charts. The following are discussed: 

 Selection methodology based on the targeted non-standard application  

 Categorical methods of detecting patterns in the literature and the integration of the 

proposed method 

 Step by step structure of the modules in the proposed method 

 Introduction to the capabilities and limitations of the proposed method 

 Illustration of an example from the process 
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3.1 Selection methodology 

Much of the research on control charts has been categorically based on either neural 

networks or expert systems [16, 17]. Both methods have been able to demonstrate 

advantages and disadvantages for many applications. The neural networks approach is 

successful in detecting highly complex and superimposed patterns within the control 

charts as well as predicting the starting points of the unnatural patterns; however it is very 

cumbersome to provide mathematical formulations for complex networks. The expert 

systems approach relies on statistics and probability theory; therefore it is able to predict 

the faulty behavior through a system by assigning a probability of success vs. failure. The 

expert systems approach works very well with single patterns and has been used widely in 

the manufacturing industry due to its reliability. In this report the research has been based 

on expert systems that were initially further explored and standardized by Nelson [9].  

Here, based on of Nelson’s ideas, the expert system approach has been chosen for its 

simplicity. Wang believes that Nelson’s work provides a uniform and scientific basis for the 

considerations of more complex patterns [12].  He divides this category into two 

subcategories in the sense of pattern recognition. The first approach, which was also 

adopted by the Western Electric Company, is defined by using descriptive words such as 

trends, cycles etc. The second approach involves a plot of observation points and limits on a 

control chart. The control chart is then divided into several zones with a span of 1 standard 

deviation of distribution. In some research these zones have been termed zones A, B, C, C, B, 

A as shown in the Figure 8 [18]. 
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Figure 8: Control chart is devided into 1σ band zones 

Anjard suggests an Xi chart along with a Moving Range (MR) chart for processes that 

only utilize one piece of data at a given time for experiments (as compared to a sample) 

[16]. Since the outcome of a weight imbalance between the input and the output of a 

conveyor belt scale produces a single percentage error reading per shipment, the Xi-

individual chart along with the MR chart have been used for this research. The combination 

of the Xi-individual chart and MR chart is called an Xi/MR chart for short.  In a non-

standard application like the one in this research, it would be appropriate to use Xi/MR 

charts. Stapenhurst supported the work done by Wheeler that the Xi/MR chart could be a 

fall back option if one is not sure which chart would be more effective[19, 20].  

Furthermore, as Anjard reported, the pattern directions have not been explicitly 

specified in the literature, however this work has includes the direction of the patterns for 

added clarification in fault detection [16]. 
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MacCarthy has simplified a chart selection methodology in the form of an algorithm. He 

suggests that assuming lack of autocorrelation and normality are the two key issues in the 

selection of the Xi-individual chart. In the presence of autocorrelation however, there are 

ways to successfully detect “out of control” variations Zhang suggests. Using residual charts 

such as Cumulated Sum Cu Sum chart or Exponentially Weighted Moving Average, EWMA 

chart is one of the ways of dealing with autocorrelation [21]. Even though Zhang has 

studied residual control charts and proposed residual Exponentially Weighted Moving 

Average for Stationary charts (EWMAST), he, as do others, suggest that the detection 

capabilities of the Xi-individual’s chart can exceed that of the residual charts on occasions 

[21, 22, 23]. 

3.2 Xi-individual and MR charts 

X charts are known as the Xi individual charts. They are used when data sampling is 

not an option. Stapenhurst argues that they are less sensitive than conventional  ̅    

charts in identifying of “out of control” states. Furthermore, he suggests that although they 

are generally less robust to non-normality than  ̅    charts, they have wider applications 

due to their ease of adjustability to different applications [20].  

3.3 Patterns recognition tests 

Does and Schriver amongst many others suggested the practicality of a protocol to be 

used for pattern recognitions in control charts that was initially advocated and widely used 

by the Western Electric Company, WECO for the quality control program. The WECO rules 

have been successful in detecting most common patterns of “out of control” states in 
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control charts [8] . The scientific basis of these rules lies in statistics and the probability 

theory of normal distribution. The chances of an independent event occurring between -3σ 

and +3σ in a normally distributed event is 99.73%. [24]. 

                 

                 

                         

Upper and Lower Control Limits are shown as UCL and LCL which correspond to 

probabilities of the far ends of normal distribution [8]. 

              

Therefore, the probability of an event outside the 3σ limit is: 

                        

3.4 General structure of proposed method - Process modules 

This section is a summary of all the steps taken to generate the results. The cycle starts 

with an inquiry of data over a particular time period for a specific scale or a network of 

scales.  

Module 1 

 Data acquisition and filtering from the scales network  

 Comparison of the acquired data with reference value and generating 

percentage error value for each scale 
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 Generating of control limits and run charts to identify “out-of-control” states  

Module 2 

 SPC decision matrix  

 Fault monitoring  

 Pareto analysis 

 Statistical capabilities  

In the proposed method a user interface has been designed to serve two main 

purposes. First, is to refine the base of the analysis in a specific period of the past 

performance, and second is to apply alternative assisting tools for that specific period in 

order to ease the decision making process. The user interface control is responsible for 

signaling the data acquisition unit to obtain data from the required scales so that it is 

passed on to modules 1 and 2 for further processing. The generated results are then loaded 

back into the user interface from the output of module 2. See Figure 9 for the process 

diagram.  

Module 1 explanation 

3.4.1 Data acquisition and clean up 

In this phase, each shipment is divided into segments that address the amount of 

material that passes through one scale during a certain time. This includes all the scales 

that are engaged in a particular shipment. The process time on each scale is defined by    . 

Where z is the indicator of the scale and k is the indicator of the time period, 

for           and              
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Figure 9: Monitoring flow chart [Starts from the User Interface] 
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3.4.2 Individual scale error values 

As illustrated in Figure 10, the amount of material received from Scale “A” in period 1 is 

compared to the amount of material passed through Scale “B” in period 1 and the weight 

imbalance between the two observations is treated as a percentage error function: 

                                                     

                                                     

                 
       

   
      

 

Figure 10: Individual scales generate control charts based on historical performance 

Even though the reference values are obtained from very accurate static scales, the 

absolute accuracy of the reference readings is not the target in this phase. This is because 
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the absolute accuracy in reference values will affect the readings of all the engaged scales 

with same intensity; therefore, an individual scale patterns such as wear and tear, 

mechanical failure, operator related issues over time will be visible regardless of absolute 

inaccuracy of the reference value in a single reading. 

3.4.3 Run charts and identifying “out-of-control” states 

The scale data collected from each of these stages includes series of error 

measurements that correspond to the performance of an individual scale during a period of 

time in a shipment process.  

Let Xi, Xi+1, Xi+2, ... , Xn be independent normally distributed observations with a mean of 

µ and variance of    for i=1, 2, … , n. In high volume manufacturing processes, observations 

are sampled or sub-grouped to calculate statistical parameters such as  ̅ and  .  

Where:   

 ̅  
∑  

 
             

                                                                          

In cases where sampling is required different types of control charts are used i.e.  ̅  . 

Occasionally observations are taken in such ways that sampling or subgrouping is not 

possible. In this case the individual measurements are considered as their own sample or 

subgroup of size 1. In which case short term variability is measured using a parameter, 

Moving Range; MR is the absolute difference between the successive observations. These 

moving ranges are treated like ranges from subgroups of size 2.  
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    |       |                   

Where:  

                                      

                               

The average Moving Range (MR) is calculated as: 

  ̅̅̅̅̅  
∑    

 
   

   
 

Where:  

  ̅̅̅̅̅                       

The estimate of standard deviation is calculated based on the Moving Range using 

Hartley’s constant (for sample size 2, d2 = 1.128) [20].  

    
  ̅̅̅̅̅

     
 

Xi-Individual chart:  

Plot:    for               . Xi-Individual control limits can be calculated as follows: 

                         ̅           

                          ̅           

                          ̅           

                         ̅           
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Moving Range, MR chart: 

Plot:     for             . The MR chart there is only one upper limit which is calculated 

as:  

                        ̅̅ ̅̅ ̅          ̅̅ ̅̅̅ 

                ̅̅ ̅̅ ̅    ̅̅̅̅̅ 

There are differences between British and American conventions for drawing and 

intercepting control charts, Stapenhurst acknowledges [20]. The British systems suggest 

that: 

Action limits at       standard deviation from the mean 

Warning limits at       standard deviations from the mean 

These limits correspond to 2 in 1000 probability of an observation outside the action 

limits by chance, and 2 in 40 probability of an observation falling outside the warning limits 

by chance given that the distribution is normal. These limits for American systems suggest 

that: 

Action limits at    standard deviation from the mean  

Warning limits at    standard deviations from the mean  

This corresponds to 3 in 1000 probability of “out of control” states by chance. 

Regardless of these limits, Stapenhurst suggests, the success of control charts have not 

been only because they follow theoretical models but because they work in practice [20].  
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3.4.4 Possible causes of control chart signals 

As discussed in section 3.1, a set of rules were introduced in the Western Electric 

Company’s statistical Quality Control handbook to detect unnatural patterns in a statistical 

process [25]. In a system compelling to six sigma standards these rules are based on events 

whose probability of accruing is 0.27%.  In cases where random sampling proves higher 

probability than the limit, an alarm is triggered. These rules are known as Western Electric 

Company, WECO rules [8, 18]. 

In processing the Xi values, a matrix including the specifications of each measurement 

(negative/positive readings, the magnitude of error, and the placement of the reading with 

respect to the zones A, B, C, C, B, A) is generated, Binary Process Matrix, BPM. Patterns of 

irregular observations are then detected for each point on the plot. If a faulty behavior is 

detected up to the current observation, an alarm mode is recorded in a separate matrix, 

SPC Decision Matrix which will be discussed in module 2. The proposed model is capable of 

detecting nine different patterns of “out of control” states that are identified as “fault 

modes”. 

Module 2 explanation 

3.4.5 SPC decision matrix 

SPC Decision Matrix consists of 9 rows representing the “out of control” modes and n 

columns representing the number of Xi data points for each scale. Each element of the 

matrix corresponds to an alarm mode for a specific data point.  

For example, in matrix Ajxi, (i) is observation index number and (j) is the “out of 

control” mode. The matrix A9x4 shows that in the observations Xi+1, and Xi+2, Mode6 alarm is 
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triggered. In observation Xi+2 Mode2 alarm is also triggered and in observation Xi+3, Mode2, 

Mode3 and Mode9 alarms are triggered. As shown in Table 2 this is interpreted as: 

For Xi+1: Six consecutive readings have been trending up. Xi+2: the uptrend is still 

present, but 2 out of three consecutive points are also beyond 2 sigma level. Xi+3: 

observation has fallen out of 3 sigma level as well as the moving range value is out of MR 

control level.  

3.4.6 Fault monitoring rules: 

 As discussed before, control chart pattern recognition techniques are based on 

either a neural network approach, which are complex in their learning methods. Or they 

have been based on statistics and experimental probability theory, which are called Expert 

System methods in literature. The main challenge between the two methods is to use 

methods that offer a balanced ratio of Type I and Type II errors [26]. The proposed method 

defines 9 unnatural patterns signals as seen in Table 2: 

Table 2: Descision matrix for four consecutive observations [Xi, Xi+3] 
 

 Ni Ni+1 Ni+2 Ni+3 

Mode 1 1 σ Limit Triggered 4 out of 5 Times 0 0 0 0 

Mode 2 2 σ Limit Triggered 2 out of 3 Times 0 0 1 1 

Mode 3 3 σ Limit Triggered  0 0 0 1 

Mode 4  8 Observations Shifted Up 0 0 0 0 

Mode 5 8 Observations Shifted Down 0 0 0 0 

Mode 6  6 Observations Trended Up 0 1 1 0 

Mode 7 6 Observations Trended Down 0 0 0 0 

Mode 8 14 Consecutive Points Alternating Around the Mean 0 0 0 0 

Mode 9 Moving Range Limit Triggered 0 0 0 1 
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Mode1: In five consecutive observations at least four have fallen beyond 1σ limits (beyond 

zone C) 

Mode2: In three consecutive observations at least two have fallen beyond 2σ limits 

(beyond zone B) 

Mode 3: Current observation has fallen beyond 3σ limits (beyond zone A) 

Mode4: Eight consecutive observations have all fallen above the mean (top side of the 

control chart) 

Mode5: Eight consecutive observations have all fallen below the mean (bottom side of the 

control chart) 

Mode6: Six consecutive observations have been trending up  

Mode7: Six consecutive observations have been trending down 

Mode8: 14 consecutive observations have alternated above and below the mean 

Mode9: Moving Range between the current reading and the previous have fallen beyond 

the upper control limit  

Several tools are used in statistical process control to facilitate decision making by 

pointing to suitable corrective direction. In this research Pareto analysis and statistical 

capability indices have been introduced to assist decision making and proposing methods 

to reduce causes of variation. 
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3.4.7 Pareto analysis 

Control charts can still offer hints and clues that can direct management into ways of 

efficiently improving the process. Prato analysis is a tool that assists identifying the “vital 

few” from the “useful many” causes of variation [20].   

 

Figure 11: Standard Pareto chart that identifies “vital few” vs. “useful many” 

Detecting variations within a process can be challenging, however the next step is to 

remove the variations causes. As shown in Figure 11 for a random set of data Mode 1 

failure has been the most frequent cause of variation followed by Mode 9 and Mode3. 

Considering this reveals statistical details about a process and assists targeted corrective 

action for reducing variation. For example: in Figure 11, Mode 1 shows frequent 

observations that fall outside zone “A” (1σ) – refer to 3.1. As well interpreting from Mode 9 

alarms, the process shows an unusually frequent number of “out-of-control” Moving Range 

values. This explains some of the Mode 3 alarms that are observations out of zone “C” (3σ). 

These assistive tools indicate a process that is calibrated considerably well due to low 
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number of Mode 4 and Mode 5 alarms, however random sources of variation are present. 

These can be caused be structural failures or poor maintenance scheduling.    

3.4.8 Statistical capability indices 

So far what has been discussed has been how well the process is performing based on 

descriptive statistics given previous performance. The faulty observations are detected 

based on the process statistical capability. Sometimes the process requires that certain 

guidelines or regulations are met. One of the metrics that can be used for this purpose is 

called process capabilities or Six Sigma capabilities when the control limits are selected 

    for the control charts [27]. For an application such as the proposed concept, the ideal 

mean for the weight imbalance is to get a zero percentage difference between the two 

sources. This would ensure minimal scale error; however achieving zero error is practically 

not possible due to series of uncontrollable variables in real processes. Therefore certain 

levels of accuracy or permitted error are defined within industry to certify measuring 

devices. In case of conveyor scales the National Institute of Standards and Technology 

provides the error limits for bulk material conveyor scales to be within       [28]. 

Process capability indices enable us to find out whether or not a process is following the 

instructed guideline. Cp is process capability index which is computed as the ratio of the 

specification width to the width of the process variability: 

   
                   

             
  

       

  
 

Where:  
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Naturally, it is ideal to have a ratio of larger than one, meaning that the process is 

within the specified limits. Cpk is used in cases where the variability of the process is not 

centered on the specification range. Therefore it measures the capability of each half and 

takes the smaller of the two. 

       (
     

  
 
     

  
) 

In systems where process capabilities are not centered around the mean of the 

specified capabilities, using Cpk ensures that capability index reflects a true measure of 

process capabilities by using the smallest of the upper and lower indices.  

      , ratio larger than 1: The process variability is tighter than the specified 

capability. 

     , ratio smaller than 1: The process variability is outside the process 

specifications.  

3.5 Evaluation of the proposed method compared to conventional 

monitoring systems 

Even though the application of the proposed method is specifically tailored to the field 

being studied, the data sets were later analyzed by conventional WECO run rule to compare 

the results. The WECO rules have a generic application. They are considered to be the most 

suitable generic pattern recognition in related unconventional fields. The conventional run 

rules are as follows:   
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Mode A) 8 or more successive observations above or below centerline  

Mode B) 8 or more successive points alternating above and below centerline 

Mode C) Sets of 5 observations with at least 4 beyond one standard deviation 

Mode D) Sets of 3 observations with at least 2 beyond two standard deviations 

As mentioned earlier in chapter 3, the proposed method suggests performance and 

fault diagnosis system using analytics that are obtained from cumulative weights of 

incoming rail cars. Rail car weights are accurately measured by static scales. The scales are 

evaluated in the network using reference car weights based on SPC criteria. Degradation 

patterns become evident once the performance of the scales are studied in long term and 

therefore improved maintenance and calibration practices are proposed based on data 

driven system. This ensures the reliability of the instruments that report the conveyed 

material through the network of hoppers, conveyor belts, surge bins, inventory containers 

etc. when there is no other redundancy reference is in place. A visual example of the 

proposed method for a single scale has been given in the following Plate. Chapter four 

verifies the proposed method using four series of data, where the results using proposed 

method are compared to the conventional methods of monitoring.  
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3.6 Illustration of a process example 

Plate 7: Shows the steps of the monitoring from data acquisition, process through the two 

modules until generation of the results. 

Phase 1: Data acquisition from scales B, C and D (specifications are read from user 

interface) 

 

Module 1: 

Phase 2: Comparison of the acquired data with reference value (A) and generation of 

error values for each scale  

 

 

Phase 3: Calculations of Control limits  

UAL = μ+3σ 0.0048835 

UWL = μ+2σ 0.0037694 

Mean (μ) 0.0015413 

LWL = μ+-2σ -0.0006869 

LAL = μ+-3σ -0.0018010 

 

Conveyor belts 

Cargo vessel 
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Plate 7 continued … 

Phase 3: Generation of run charts and Binary Process Matrix (BPM) 

 

Xi Xi+1 Xi+2 Xi+3 

MR sign (+~1) 0 1 1 1 

Xi Sign (+~1) 1 1 1 1 

1 sigma (0/1) 0 0 0 0 

2 sigma (0/1) 0 0 1 1 

3 sigma (0/1) 0 0 0 1 

 

Module 2: 

Phase 4: Application of pattern recognition rules to detect “out of control” states and 

generation of SPC Decision Matrix 

 Ni Ni+1 Ni+2 Ni+3 

Mode 1 1 σ Limit Triggered 4 out of 5 Times 0 0 0 0 

Mode 2 2 σ Limit Triggered 2 out of 3 Times 0 0 1 1 

Mode 3 3 σ Limit Triggered  0 0 0 1 

Mode 4  8 Readings Shifted Up 0 0 0 0 

Mode 5 8 Readings Shifted Down 0 0 0 0 

Mode 6  6 Readings Trend Up 0 1 1 0 

Mode 7 6 Reading Trend Down 0 0 0 0 

Mode 8 14 Consecutive Points Alternating  0 0 0 0 

Mode 9 Moving Range Limit Triggered 0 0 0 1 
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Plate 7 continued … 

Phase 5: Generating performance metrics—Pareto analysis & Statistical Capabilities 

 

 

Process Statistical Capability Index 

The Actual Process Capability Cpk~1 0.8072 

The Potential Process Capability Cp~1 0.9061 

Failures Part Per Million (PPM~2700) 6528 PPM 

Upper Specification Limit (USL) 0.005 

Lower Specification Limit (LSL) -0.005 

Statistical Standard Deviation 0.0018394 

The mean 0.0005455 

 

Phase 6: Report results for individual scales 
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Chapter 4  

Evaluation of results using four data sets “A”, 

“B”, “C”, and  “D”. 

4.1 Data set conditioning 

In this chapter, four sets of data samples that have been obtained from industrial scale 

observations are further considered. The data included dates and the error percentage 

measurements between each scale and the corresponding rail car weight. Initially, the data 

were analyzed to find out if they were fit to be examined by the proposed model, then the 

results were generated. To compare the performance of the proposed method the same 

data set was analyzed by a different model that uses conventional WECO rules. 

Observations are discussed after evaluating the model for each data set and briefly 

explained at the end of section in 4.8.2, for data set “A”, 4.9.2, for data set “B”, 4.10.2 for 

data set “C” and 4.11.2 for data set “D”. Conclusive summery is presented in section 4.12.  
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Correlation between the sets has not been an issue for the purposes of this research 

since the factors that affect the four scales are common for all in the same way. The 

proposed method uses an individual observation control chart. Xi-individual/MR control 

charts require that the data are normally distributed and are not auto-correlated. 

Therefore, before validating the model the four data sets were tested for assumptions, 

normality and auto-correlation. Observations obtained from belt scales for each set did not 

exceed 6000 data points; therefore 

Shapiro-Wilk test for normality was used. 

(Please see plate 8). P-value for data sets 

was considerably smaller than the 

confidence level        therefore the 

hypothesis that they were not from a 

Normal or Gaussian distribution was 

rejected.  

Central limit theorem in statistics and probability theory states that the sum of a large 

number of independent observations from the same distribution will have a normal 

distribution. In cases where normality is an issue, sampling can be performed in order to 

utilize the proposed method [29]. “A key theoretical result, called the central limit theorem, 

underpins many methods of analysis. It states that the means of random samples from any 

distribution will themselves have a normal distribution; As a consequence, when we have 

samples of hundreds of observations we can often ignore the original distribution of the 

data” [30]. 

Plate 8:  Shapiro-Wilk test for normality.  

The null hypothesis: the data is normally 

distributed. If p-value > or = α (significance 

level). It means that there is no evidence to 

reject null hypothesis. Otherwise the null 

hypothesis is rejected.   
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4.2 Data exploration and application of SPC on scale data 

In this section the data is analyzed for assumptions of normality and autocorrelation as 

well as overall distribution specifications such as distribution parameters. Initial data 

exploration is performed to identify normality using Shapiro-Wilk test. The data is also 

tested for autocorrelation with different lag factors. Normal distribution parameters were 

calculated using maximum likelihood estimation (MLE) method. Consequently a visual data 

exploration is performed to identify any visible outliers or unexpected data distribution. 

This includes four types of visual aids:  

 Histogram 

 Density plot 

 Box plot  

 Normal QQ plot 

 

In sections 4.3, 4.4, 4.5, 4.6 initial data exploration for four data sets “A”, “B”, “C”, and 

“D” have been discussed, respectively.  

Table 4, and Figure 13 present the quartiles and visual data exploration of the data set 

“A” respectively. The distribution is normal with no significant outliers.   

Table 7 and Figure 16 present the quartiles and visual data exploration of data set “B”, 

respectively. Data set “B” is also normally distributed with the right skewness.  

Table 10 and Figure 19 present the data “C” with one potential outlier which can be 

neglected and treated as an “out of control” state.  

Table 13 and Figure 22 present the quartiles of data set “D”. Data set “D” is normally 

distributed with 3 evident outliers. These will be treated as “out of control” states since 
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there are three close values that could have been caused by a mechanical “out of control” a 

lost state or a mis-calibration. It is important to identify outliers and “out of control” states. 

The outliers are considered to be single significantly large or small numbers, whereas “out 

of control” states are large error readings that have been caused by an unnatural cause.  
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4.3 Data exploration of set “A” 

Based on the Shapiro-Wilk test we cannot reject the idea that readings from data set 

“A” come from a normal distribution with 95% confidence. The mean is µ= 0.000545474 

and the standard deviation is σ= 0.002484827. 

 
Figure 12: Plot of auto-correlaton for successive observations in set “A” 

 

 

Table 3: Auto-correlation coefficient for lags of [1-3] 
Autocorrelation Function 

Time lag k ACF(k) T-STAT P-value 

1 0.281253 4.4736 6e-06 
2 0.138939 2.21 0.014002 
3 0.16662 2.6503 0.004275 

 

The coefficient of auto-correlation in Figure 12 and Table 3 has been calculated to be at 

most 0.28; therefore data-set “A” is not significantly auto-correlated.  



55 
 

4.3.1 Application of SPC on data set “A” 

Table 4: Exploration of data set ”A” 

    Date       Data point number             Xi             

 30-Dec:   6  Min.   : -0.0108447 
 12-Jul:   5 1st Qu.: -0.0008545 
 28-Mar:   5 Median : 0.0002428 
 12-Jun:   4 Mean   :  0.0005455 
 29-Jun:   4 3rd Qu.: 0.0015315 
 1-Jul:   3 Max.   :  0.0114670 
 Data points: 226   

 
 

   

 
Figure 13: Visual data exploration of data set “A” 

The statistical limits of data set “A” are calculated in Table 5 and Figure 14. 
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Table 5: SPC limits for data set “A” 

Control limits (Set A) 

Upper Action Limit  UAL = μ+3σ 0.0060638 

Upper Warning Limit UWL = μ+2σ 0.0042243 

Mean Centre Line Mean 0.0005455 

Lower Warning Limit LWL = μ+-2σ -0.0031334 

Lower Action Limit LAL = μ+-3σ -0.0049728 

Upper Moving Range Limit UAL=MR × 3.27 0.0067849 

 

 
 

 
Figure 14: Control chart indicating some “out of control” states for data set “A” 

Vertical axis values are unit-less percentage error measurments 
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4.4 Data exploration of set “B” 

Based on the Shapiro-Wilk test we cannot reject the idea that readings from data set 

“B” come from a normal distribution with 95% confidence. The mean is µ= -0.00008774 

(unit-less error percentage value) and the standard deviation is σ= 0.001678307. 

 

Figure 15: Plot of auto-correlaton for successive observations in set “B” 

 
 
 

Table 6: Auto-correlation coefficient for lags of [1-3] 
Autocorrelation Function 

Time lag k ACF(k) T-STAT P-value 

1 0.206735 2.9017 0.002067 
2 0.241623 3.3913 0.00042 
3 0.049984 0.7016 0.241889 

 
The coefficient of autocorrelation in Figure 15 and Table 6 has been calculated to be at 

most 0.24; therefore data-set “B” is not significantly auto-correlated either.  
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4.4.1 Application of SPC on data set “B” 

Table 7: Exploration of data set ”B” 

Date Data point number  Xi 

 27-Nov:   4 Min.   : -0.0056220 
 30-Aug:   4 1st Qu.: -0.0008688 
 31-Dec:   4 Median : -0.0000614 
 14-May:   3 Mean   : -0.0000877 
 15-Jan:   3 3rd Qu.:  0.0007082 
 21-May:   3 Max.   :  0.0099830 
Data points : 176   

 

 
Figure 16: Visual data exploration of data set “B” 

The statistical limits of data set “B” are calculated in Table 8 and Figure 17. 
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Table 8: SPC limits for data set “B” 

Control limits (Set B) 

Upper Action Limit  UAL = μ+3σ 0.0036236 

Upper Warning Limit UWL = μ+2σ 0.0023429 

Mean Centre Line Mean -0.0002187 

Lower Warning Limit LWL = μ+-2σ -0.0027802 

Lower Action Limit LAL = μ+-3σ -0.0040610 

Upper Moving Range Limit UAL=MR × 3.27 0.0047242 

 

 

 
Figure 17: Control chart indicating some “out of control” states for data set “B” 

Vertical axis values are unit-less percentage error measurments 
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4.5 Data exploration of set “C” 

Based on the Shapiro-Wilk test we cannot reject the idea that readings from data set 

“C” come from a normal distribution with 95% confidence. The mean is µ= 0.000948457 

(unit-less error percentage value) and the standard deviation is σ= 0.001197873. 

 

Figure 18: Plot of auto-correlaton for successive observations in set “C” 

 
 
 

Table 9: Auto-correlation coefficient for lags of [1-3] 
Autocorrelation Function 

Time lag k ACF(k) T-STAT P-value 

1 0.247502 3.0313 0.001435 
2 0.179014 2.1925 0.014944 
3 0.09009 1.1034 0.135816 

 
The coefficient of autocorrelation in Figure 18 and Table 9 has been calculated to be at 

most 0.25; therefore data-set “C” is not significantly auto-correlated either. 
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4.5.1 Application of SPC on data set “C” 

Table 10: Exploration of data set ”C” 

Date Data point number  Xi 

 8-Feb :   7 Min.   : -0.00305 
 12-Mar:   6 1st Qu.:  0.000229 
 30-May:   6 Median :  0.00094 
 7-Apr :   6 Mean   :  0.000949 
 12-Jul:   4 3rd Qu.: 0.001672 
 17-Oct:   4 Max.   : 0.007323 
 Data points : 117   

 

 
Figure 19: Visual data exploration of data set “C” 

 
The statistical limits of data set “C” are calculated in Table 11, Figure 20. 
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Table 11: SPC limits for data set “C” 

Control limits (Set C) 

Upper Action Limit  UAL = μ+3σ 0.0036424 
Upper Warning Limit UWL = μ+2σ 0.0027444 
Mean Centre Line Mean 0.0009485 

Lower Warning Limit LWL = μ+-2σ -0.0008475 
Lower Action Limit LAL = μ+-3σ -0.0017455 
Upper Moving Range Limit UAL=MR ×3.27 0.0033122 

 

 

 
Figure 20: Control chart indicating some “out of control” states for data set “C” 

Vertical axis values are unit-less percentage error measurments 
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4.6 Data exploration of set “D” 

Based on the Shapiro-Wilk test we cannot reject the idea that readings from data set 

“D” come from a normal distribution with 95% confidence. The mean is µ= 0.001541254 

and the standard deviation is σ= 0.002108014. 

 

Figure 21: Plot of auto-correlaton for successive observations in set “D” 

 
 

Table 12: Auto-correlation coefficient for lags of [1-3] 
Autocorrelation Function 

Time lag k ACF(k) T-STAT P-value 

1 0.348184 3.6016 0.000241 
2 0.119659 1.2378 0.109257 
3 -0.044274 -0.458 0.323952 

 
The coefficient of autocorrelation in Figure 21 and Table 12 has been calculated to be 

at most 0.34; therefore dataset “D” is not significantly auto-correlated either.  
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4.6.1 Application of SPC on data set “D” 

Table 13: Exploration of data set ”D” 

Date Data point number  Xi 

 12-Jul:  4 Min.   : -0.00209 
 17-Oct:  4 1st Qu.:  0.000559 
 20-Aug:  4 Median :  0.001372 
 30-Oct:  4 Mean   :  0.001541 
 8-Jul:  4 3rd Qu.: 0.001797 
 23-Aug:  3 Max.   :  0.013966 
Data points  : 84   

 

 

Figure 22: Visual data exploration of data set “D” 
 

The statistical limits of data set “D” are calculated in Table 14 and Figure 23. 
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Table 14: SPC limits for data set “D” 

Control limits (Set D) 

Upper Action Limit  UAL = μ+3σ 0.0048835 
Upper Warning Limit UWL = μ+2σ 0.0037694 
Mean Centre Line Mean 0.0015413 

Lower Warning Limit LWL = μ+-2σ -0.0006869 
Lower Action Limit LAL = μ+-3σ -0.0018010 
Upper Moving Range Limit UAL=MR × 3.27 0.0041093 

 

 

 
Figure 23: Control chart indicating some “out of control” states for data set “D” 

Vertical axis values are unit-less percentage error measurments 
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4.7 SPC decision matrix 

In this section the data generated from the run charts, Process Binary Matrix, were 

analyzed to generate SPC Decision Matrix. As discussed in section 3.4.5, nine alarm modes 

have been defined for the proposed model to detect the unnatural patterns within the 

control charts. A set of significance measure weights have been assigned to each alarm 

mode which enables the generation of an index called performance index. The performance 

index is a normalized index that shows the performance of the scale based on the number 

of the “out of control” alarms and their importance. This information along with other tools 

such as Pareto analysis and capability indices can be used to facilitate corrective actions to 

reduce the causes of variation.  

Based on the performance of individual scales, Pareto charts have been created for 

each data set. They signify the importance of the “crucial few” alarms in comparison to the 

“useful many “.  

The capability indices discussed in section 3.4.8 give operators further measures of 

performance. They represent a measure of how well the process has been within externally 

imposed limits that could be established as guidelines or process rules.  Furthermore they 

unveil a very quick look at the spread of the data and can estimate the number of failures 

that could occur by chance in such a data distribution. In cases where the alarms are 

triggered more frequently than a random normal process, appropriate corrective actions 

are taken.  
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4.8 Application of run rules on data set “A”: 

Decision rules on data set “A” are shown in Table 15 for different modes. Figure 24 

shows Pareto analysis of data set “A”. 

Table 15: Application of decision rules on data set “A” 

Failure Quick Overview Symbol Out of Control 
States 

Mode 1 1 σ limit triggered 4 out of 5 times 1 Sigma 20 

Mode 2 2 σ limit triggered 2 out of 3 times 2 Sigma 7 

Mode 3 3 σ limit triggered  3 Sigma 11 

Mode 4  Observations shifted UP Mean-UP 21 

Mode 5 Observations shifted DOWN Mean-DOWN 10 

Mode 6  Observations trending UP Trend-UP 0 

Mode 7 Observations trending DOWN Trend-DOWN 0 

Mode 8 14 consecutive points alternating  Instability 0 

Mode 9 Moving Range limit triggered MR 10 

 

 
Figure 24: Pareto analysis of data set “A” 

 
Process capabilities of data set “A” are shown in Table 16 and discussed in 4.8.2. 
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Table 16: Process capabilities of data set “A” 

Process Statistical Capability Index 

The Actual Process Capability Cpk~1 0.8072 

The Potential Process Capability Cp~1 0.9061 

Failures Part Per Million (PPM~2700) 6528 PPM 

Upper Specification Limit (USL) 0.005 

Lower Specification Limit (LSL) -0.005 

Statistical Standard Deviation 0.0018394 

The mean 0.0005455 

4.8.1 Conventional SPC run rules 

According to WECO rules, the out of control states for set “A” are shown in Table 17. 

Table 17: Application of WECO rules on data set “A” 

Failure Description Out of control 
States 

Mode A Runs above or below centerline of length 8 or greater 36 

Mode B Runs up or down of length 8 or greater 0 

Mode C Sets of 5 observations with at least 4 beyond 1.0 sigma 14 

Mode D Sets of 3 observations with at least 2 beyond 2.0 sigma 11 

Total 61 

 

4.8.2 Discussion, data set “A” 

Set “A” showed a total number of 79 incidents of “out of control” states. This was more 

than the conventional method’s 61 “out of control” states. Mode 4 followed by Mode 1are 

the main causes of the failure alarms. This means that the variance for the measurements is 

generally high and they are shifted up. The process capability indices support this. Cp 

equals 0.906075, which is usually considered to be not good.  The mean is located 

10.9095% of the way from the center of the specs toward the upper specification limit. 
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4.9 Application of run rules for data set “B” 

Decision rules on data set “B” are shown in Table 18 for different modes. Figure 25 

shows Pareto analysis of data set “B”. 

Table 18: Application of decision rules on data set “B” 

Failure Quick Overview Symbol Out of Control 
States 

Mode 1 1 σ limit triggered 4 out of 5 times 1 Sigma 36 

Mode 2 2 σ limit triggered 2 out of 3 times 2 Sigma 10 

Mode 3 3 σ limit triggered  3 Sigma 16 

Mode 4  Observations shifted UP Mean-UP 1 

Mode 5 Observations shifted DOWN Mean-DOWN 12 

Mode 6  Observations trending UP Trend-UP 0 

Mode 7 Observations trending DOWN Trend-DOWN 0 

Mode 8 14 consecutive points alternating  Instability 0 

Mode 9 Moving Range limit triggered MR 22 

 
 
 

 
Figure 25: Pareto analysis of data set “B” 
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Process capabilities of data set “B” are shown in Table 19 and discussed in 4.9.2. 

Table 19: Process capabilities of data set “B” 

Process Statistical Capability Index 

The Actual Process Capability Cpk~1 1.2785 

The Potential Process Capability Cp~1 1.3013 

Failures Part Per Million (PPM~2700) 96 PPM 

Upper Specification Limit (USL) 0.005 

Lower Specification Limit (LSL) -0.005 

Statistical Standard Deviation 0.0012808 

The mean -0.0000877 

4.9.1 Conventional SPC run rules 

According to WECO rules, the out of control states for set “B” are shown in Table 20. 

Table 20: Application of WECO rules on data set “B” 

Failure Description Out of control 
States 

Mode A Runs above or below centerline of length 8 or greater 18 

Mode B Runs up or down of length 8 or greater 0 

Mode C Sets of 5 observations with at least 4 beyond 1.0 sigma 11 

Mode D Sets of 3 observations with at least 2 beyond 2.0 sigma 11 

Total 40 

4.9.2 Discussion, data set “B” 

Set “B” showed a total number of 97 incidents of “out of control” states. This is 

considerably higher than the conventional method’s 40 “out of control” states. Mode 1 

followed by Mode 9 are the main causes of the failure alarms. This means that the variance 

for the measurements is spread in zone B more than usual.  The Mode 9 failure shows large 

jumps between the consecutive measurements that show a degree of randomness. Cp 

equals 1.30129, which is usually considered to be okay.    The mean is located 1.75477% of 

the way from the center of the specification limits toward the lower specification limit 
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4.10 Application of run rules to data set “C” 

Decision rules on data set “C” are shown in Table 21 for different modes. Figure 26 

shows Pareto analysis of data set “C”. 

Table 21: Application of decision rules on data set “C” 

Failure Quick Overview Symbol Out of Control 
States 

Mode 1 1 σ limit triggered 4 out of 5 times 1 Sigma 17 

Mode 2 2 σ limit triggered 2 out of 3 times 2 Sigma 4 

Mode 3 3 σ limit triggered  3 Sigma 4 

Mode 4  Observations shifted UP Mean-UP 43 

Mode 5 Observations shifted DOWN Mean-DOWN 0 

Mode 6  Observations trending UP Trend-UP 0 

Mode 7 Observations trending DOWN Trend-DOWN 0 

Mode 8 14 consecutive points alternating  Instability 0 

Mode 9 Moving Range limit triggered MR 12 

 
 

 
Figure 26: Pareto analysis of data set “C” 

 
Process capabilities of data set “C” are shown in Table 22 and discussed in 4.10.2. 
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Table 22: Process capabilities of data set “C” 

Process Statistical Capability Index 

The Actual Process Capability Cpk~1 1.5039 
The Potential Process Capability Cp~1 1.8560 
Failures Part Per Million (PPM~2700) 0.03 PPM 
Upper Specification Limit (USL) 0.005 
Lower Specification Limit (LSL) -0.005 
Statistical Standard Deviation 0.0008980 
The mean 0.0009485 

4.10.1 Conventional SPC run rules 

According to WECO rules, the out of control states for set “C” are shown in Table 23. 

Table 23: Application of WECO rules on data set “C” 

Failure Description Out of control 
States 

Mode A Runs above or below centerline of length 8 or greater 15 

Mode B Runs up or down of length 8 or greater 0 

Mode C Sets of 5 observations with at least 4 beyond 1.0 sigma 4 

Mode D Sets of 3 observations with at least 2 beyond 2.0 sigma 5 

Total 24 

 

4.10.2 Discussion, set “C” 

Set “C” showed a total number of 81 incidents of “out of control” states. This is 

considerably higher than the conventional method’s 24 “out of control” states. Mode 1 

followed by Mode 9are the main causes of the failure alarms. This means that the variance 

for the measurements is spread in zone B more than usual. It is expected that the 

distribution would be shifted up and would bring down the capability indices. However, it 

should be noted that the Cp equals 1.85602, which is usually considered to be good. The 

mean is located on the center of the specs toward the upper specification limit. This shows 

that there has been an up shift in the readings however the corrective actions have been 

enough to bring the process to required specifications.  
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4.11 Application of run rules to data set “D” 

Decision rules on data set “D” are shown in Table 24 for different modes. Figure 27 

shows Pareto analysis of data set “D”. 

Table 24: Application of decision rules on data set “D” 

Failure Quick Overview Symbol Out of Control 
States 

Mode 1 1 σ limit triggered 4 out of 5 times 1 Sigma 21 

Mode 2 2 σ limit triggered 2 out of 3 times 2 Sigma 6 

Mode 3 3 σ limit triggered  3 Sigma 10 

Mode 4  Observations shifted UP Mean-UP 58 

Mode 5 Observations shifted DOWN Mean-DOWN 0 

Mode 6  Observations trending UP Trend-UP 1 

Mode 7 Observations trending DOWN Trend-DOWN 0 

Mode 8 14 consecutive points alternating  Instability 0 

Mode 9 Moving Range limit triggered MR 10 

 
 

 
Figure 27: Pareto analysis of data set “D” 

 
Process capabilities of data set “D” are shown in Table 25 and discussed in 4.11.2. 
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Table 25: Process capabilities of data set “D” 

Process Statistical Capability Index 

The Actual Process Capability Cpk~1 1.0349 
The Potential Process Capability Cp~1 1.4960 
Failures Part Per Million (PPM~2700) 7.13 PPM 
Upper Specification Limit (USL) 0.005 
Lower Specification Limit (LSL) -0.005 
Statistical Standard Deviation 0.0011141 
The mean 0.0015413 

4.11.1 Conventional SPC run rules, data set “D” 

According to WECO rules, the out of control states for set “D” are shown in Table 26. 

Table 26: Application of WECO rules on data set “D” 

Failure Description Out of control 
States 

Mode A Runs above or below centerline of length 8 or greater 35 

Mode B Runs up or down of length 8 or greater 0 

Mode C Sets of 5 observations with at least 4 beyond 1.0 sigma 7 

Mode D Sets of 3 observations with at least 2 beyond 2.0 sigma 5 

Total 47 

4.11.2 Discussion, set “D” 

Set “D” showed a total number of 106 incidents of “out of control” states. This is 

considerably more than the conventional method’s 47 “out of control” states. Mode 4 

followed by Mode 1are the main causes of the failure alarms. This shows a large shift up in 

the measurements, which could have been caused by a calibration issue. The spread of the 

measurements are in zone B more than usual.  Cp equals 1.496, which is usually considered 

to be good which suggests a good process. Therefore, one can conclude that there is 

definitely a “calibration issue” in the process “D”. The mean is located 30.8252% of the way 

from the center of the specs toward the upper specification limit, which again suggests the 

up shift of the measurements.  
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4.12 Summary of the results 

Results showed that the proposed method performed better in alarming the shift 

pattern, direction of the shift and identifying sudden change in process. This is due to Xi-

individual chart’s high sensitivity to unnatural variations. Using  ̅ charts to sample the data, 

where possible, reduces the sensitivity of detecting sudden changes in control charts; 

Standard deviation of the process was calculated based on moving ranges of sample size 2 

(Individual observations), therefore the proposed method shows very little leniency  to 

sudden shifts in moving range than the WECO rule method. Developed method offers alarm 

modes indicating shift direction. This is important in monitoring and maintaining scale 

calibration and zero setting. Similarly, it offers the capability to detect directional trending 

that is suitable mechanical wear indicators. The data sets did not show any signs of 

trending in this test. Most frequent alarm modes are identified in Table 27, where 

importance (weight) is given to number of occurrence in all four data sets.  

 

Table 27: Most to least frequent alarm modes for all sets 

 Alarm Mode 

Most Frequent  Mode 1 

 Mode 4 

 Mode 3 

 Mode 9 

 Mode 2 

 Mode 5 

 Mode 6 

 Mode 7 

Least Frequent Mode 8 
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Mostly occurred alarm refers to Mode 1, 4 out of 5 points fall in zone “C”, 1σ. Next to 

that is Mode 4, which refers to more than eight consecutive points observed above the 

mean. Followed by Mode 3, where a single “out of control” state observation falls out of 3σ 

limit. Mode 9 indicates a sudden shift in moving range caused by mechanical failure. 
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Chapter 5  

Discussions and conclusions 

5.1 Summary 

This research was conducted to develop a practical method of monitoring bulk 

material weighing networks. The focus was on moving conveyor belt weighing systems that 

have the capability to perform high speed gravimetric measurement during material 

handling process.  

In the development of a methodology a real scenario was considered and the solution 

architecture revolved around that particular application. Referring to the process 

optimization methodologies, one of the most practical monitoring tools, Statistical Process 

Control, was used. Since the application of Statistical Process Control has been mainly in 

manufacturing processes, implementation of the SPC tools such as Control charts for the 

current research was considered an unconventional use of control charts.  



78 
 

Useful metrics of the process were obtained to form the variables and the structure to 

be used in the control charts. The following are two challenges that were considered: 

a) Choosing the right type of a control chart 

b) Utilizing a suitable method to detect the unnatural patterns within the control 

chart 

a) After reviewing the literature on unconventional applications of SPC in processes 

outside the manufacturing domain, it was decided to use a combination of Xi-Individual 

chart and Moving Range chart. The combination has the ability to detect a variety of faulty 

measurements by two methods. First, is the absolute performance of the scale within the 

current process with respect to standards and industry guidelines, and the second, is the 

relative performance of the current process with respect to the systems’ past performance. 

b) The second challenge was to use a suitable technique to detect the unnatural 

variations and patterns within the control chart while forgiving the natural randomness 

that is inherent in the system. Extensive research has been done on SPC during past 

decades. They can generally be categorized to have used two approaches: Neural Networks 

approach and the Expert Systems approach. Both methods demonstrate advantages and 

disadvantages for many applications. The Neural Networks approach is successful in 

detecting highly complex and superimposed patterns within the control charts as well as 

predicting the starting points of the unnatural patterns; however it is not possible to offer 

solid mathematical formulas leading to results since there is a learning process for the 

model. The expert systems approach relies on statistics and probability theory; therefore it 

is able to predict the faulty behavior through a system by assigning a probability of success 
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versus failure. The expert system approach works very well with single patterns and has 

been used widely in the manufacturing industry due to its reliability. In this research, it was 

decided to construct a series of nine fault modes based on the expert systems approach. The 

nine fault modes suit the application of this study and offer a balance between the Type I 

and Type II errors.  

The proposed model was tested on four sets of data that were obtained from real 

conveyor belt scales in a bulk material handling company. In order to make sure that the 

model would perform as desired, it was required that the data sets were both normally 

distributed and did not have significant auto-correlation. Shapiro-Wilk normality test was 

satisfied to assure the rejection of the hypothesis that the sets were not coming from 

normal distributions. Consequently, the data sets were analyzed and met the requirements 

of the model.  

Pareto analysis of alarm modes and capability indices were generated for the proposed 

model as alternative assisting tools of monitoring. The performance of the model satisfied 

the purpose of the research. The next subsection summarizes the outcomes of the study.   

5.2 Concluding remarks 

Fast paced integral weighing systems such as conveyor belts are gaining popularity 

due to their accuracy and instant response compared to other available systems.  An 

important issue frequently faced in bulk material handling practices is to define methods of 

controlling and minimizing the metrology error and monitor the calibration of the 
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equipment. Inaccurate measurements will be costly to manufacturers and handlers of the 

material due to lost material, industry regulations and down time.  

The proposed method offers a new way of analysis on belt scales by utilizing available 

information of the process to produce useful metrics that can be translated to key 

performance indicators. A monitoring system is developed based on Statistical Process 

Control techniques. Evaluation results using real data reveal that the proposed method can 

successfully identify and classify the unnatural measurements based on external guidelines 

and previous performance. From the results of performance comparisons, the proposed 

method detects unnatural patterns more efficiently than conventional methods, while also 

offering the advantage of error classification and process capabilities with respect to 

expectations.   

The proposed method is targeted to a specific scenario for validation. Nevertheless, 

application of this method to similar cases is possible with minor adjustments in the data 

acquisition methods. Xi-individuals chart was used for this application, since the data was 

normally distributed and lacked auto-correlation. The Xi-individuals chart combined by 

Moving Range chart offered a suitable combination swift response while enabling the use of 

other tools such as capability indices for a wider range of performance monitoring tools. 

Other types of charts such as  ̅   charts can be used when data sampling is possible. The 

proposed method can be utilized in cases where the purpose is to reduce the measurement 

errors to zero. It is also capable of eliminating the need of use of EWMA (Exponentially 

Weighted Moving Average) or CuSum, (Cumulated Summation) charts that are used for 
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detecting the mean shift. Once the process mean and the standard deviation are known, the 

proposed method can effectively recognize 9 types of unnatural patterns addressed in 3.4 

Shewhart charts are very sensitive to trends and shifts in the mean which offers this 

model its agility in detecting mean shift; however this can cause more than usual number of 

false alarms. Results showed that the proposed method performed better in alarming the 

shift patterns in data. Generally, Xi-individual charts are more sensitive to unnatural 

variations; therefore they might generate more Type I errors than other charts [31]. (I.e. a 

Mode 3 alarm is generated, if a measurement point is beyond     control limits. In a 

normally distributed set of observation probability of such an event happening is one in 

about 371 observations. Using the WECO rules increases the frequency of false alarms to 

about one in every 91.75 points, on the average [32].  

In agreement with Does’ argument, despite practicality of Statistical Process Control in 

industry, the common failure of SPC implementation is due to organizational, social and 

human factors. Lack of management and operational commitment as well as inefficient 

instructions and operator training would be an impending factor in popularity of 

applications of SPC. MacCarthy also notes that commitment of the top management in 

implementation is important especially in non-standard applications of the SPC [5, 8].   

5.3 Suggestions to improve capabilities of this work 

This research has used control chart pattern method based on expert systems rather 

than neural networks method due to its successful applications in the industry. A hybrid of 

control chart pattern method and neural network based approach could be a beneficial 
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method for applications in non-standard fields such as bulk material handling. Guh has 

researched unnatural patterns using a hybrid method and has proposed a method for 

issues in miss-classification of the unnatural patterns [31]. More research can be conducted 

to predict the optimum starting point of an unnatural pattern and the occurrence of more 

complex patterns using the agility of the control chart patterns and the extensive ability of 

neural network based pattern recognition methods to improve the quality of this research.  

This research proposes monitoring method that can be used in unconventional fields 

such as bulk material handling. A crucial factor in quality improvement practice remains to 

be the corrective actions that are taken towards returning a system to being under control. 

The latter part requires extensive experimental knowledge and physical involvement with 

the mechanical systems and the process steps. This work can be offered as a tool to detect 

and plan the corrective actions and a gauge to direct the experts in right directions based 

on analytics of the system. There has been extensive consulting with the field experts in 

this research, however in implementation of the real systems conditions and the limitations 

can judge the success of a system.  
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Appendix 

R code for Initial data exploration 

Set A 

R version 2.11.1 (2010-05-31) 
Copyright (C) 2010 The R Foundation for Statistical Computing 
ISBN 3-900051-07-0 
 
R is free software and comes with ABSOLUTELY NO WARRANTY. 
You are welcome to redistribute it under certain conditions. 
Type 'license()' or 'licence()' for distribution details. 
 
  Natural language support but running in an English locale 
 
R is a collaborative project with many contributors. 
Type 'contributors()' for more information and 
'citation()' on how to cite R or R packages in publications. 
 
Type 'demo()' for some demos, 'help()' for on-line help, or 
'help.start()' for an HTML browser interface to help. 
Type 'q()' to quit R. 
 
[Previously saved workspace restored] 
 
>DataA<-read.table(file.choose(),header=T,sep="\t") 
>names(DataA) <- c("Date", "Xi") 
>summary(DataA) 
        Date        Xi             
 30-Dec-10:   6    Min.   : -0.0108447   
 12-Jul-10:   5    1st Qu.: -0.0008545   
 28-Mar-11:   5    Median :  0.0002428   
 12-Jun-11:   4    Mean   :  0.0005455   
 29-Jun-10:   4    3rd Qu.:  0.0015315   
 1-Jul-08 : 3    Max.   :  0.0114670   
 (Other)  : 226                        
>str(DataA) 
'data.frame':   253 obs. of  2 variables: 
 $ Date: Factor w/ 156 levels "1-Apr-10","1-Dec-10",..: 115 42 42 74 74 85 85 133 103 112 
... 
 $ Xi  :num  0.000999 0 0.000418 -0.007377 0.001418 ... 
>attach(DataA) 
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>par(mfrow = c(2, 2)) 
>hist(Xi, xlab="Individual Error Values", main="Histogram") 
>plot(density(Xi), xlab="Individual Error Values", main="Density Plot") 
>boxplot(Xi, ylab="Individual Error Values", main="Boxplot") 
>qqnorm(Xi, main = "Normal Q-Q Plot", xlab = "Theoretical Quantiles", ylab = "Sample 
Quantiles") 
>qqline(Xi) 
>shapiro.test(test1) 
 
        Shapiro-Wilk normality test 
 
data:  test1  
W = 0.9157, p-value = 9.231e-11 

Set B 

>DataB<-read.table(file.choose(),header=T,sep="\t") 
>names(DataB) <- c("Date", "Xi") 
>summary(DataB) 
        Date            Xi             
 27-Nov-08:   4    Min.   : -5.622e-03   
30-Aug-08:   4    1st Qu.: -8.688e-04   
 31-Dec-08:   4    Median : -6.140e-05   
14-May-10:   3    Mean   : -8.774e-05   
 15-Jan-08:   3    3rd Qu.:  7.082e-04   
 21-May-10:   3    Max.   :  9.983e-03   
 (Other)  : 176                        
>str(DataB) 
'data.frame':   197 obs. of  2 variables: 
 $ Date: Factor w/ 154 levels "1-Apr-10","1-Dec-10",..: 112 12 12 41 41 41 48 68 81 146 ... 
 $ Xi  :num  0.000609 0.001594 0.001361 0.000229 -0.000501 ... 
>attach(DataB) 
>par(mfrow = c(2, 2)) 
>hist(Xi, xlab="Individual Error Values", main="Histogram") 
>plot(density(Xi), xlab="Individual Error Values", main="Density Plot") 
>boxplot(Xi, ylab="Individual Error Values", main="Boxplot") 
>qqnorm(Xi, main = "Normal Q-Q Plot", xlab = "Theoretical Quantiles", ylab = "Sample 
Quantiles") 
>qqline(Xi) 
>shapiro.test(test2) 
 
        Shapiro-Wilk normality test 
 
data:  test2  
W = 0.9092, p-value = 1.245e-09 
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Set C 

>DataC<-read.table(file.choose(),header=T,sep="\t") 
>names(DataC) <- c("Date", "Xi") 
>summary(DataC) 
        Date             Xi             
 8-Feb-11 : 7    Min.   : -0.0030520   
 12-Mar-11:   6    1st Qu.:  0.0002287   
 30-May-10:   6    Median : 0.0009399   
 7-Apr-11 : 6    Mean   :  0.0009485   
 12-Jul-10:   4    3rd Qu.:  0.0016724   
 17-Oct-10:   4    Max.   :  0.0073228   
 (Other)  : 117                        
>str(DataC) 
'data.frame':   150 obs. of  2 variables: 
 $ Date: Factor w/ 65 levels "1-Dec-10","1-May-11",..: 30 30 46 23 35 16 39 39 33 33 ... 
 $ Xi  :num  0.000596 0.000939 -0.000336 0.003385 0.0016 ... 
>attach(DataC) 
> 
>par(mfrow = c(2, 2)) 
>hist(Xi, xlab="Individual Error Values", main="Histogram") 
>plot(density(Xi), xlab="Individual Error Values", main="Density Plot") 
>boxplot(Xi, ylab="Individual Error Values", main="Boxplot") 
>qqnorm(Xi, main = "Normal Q-Q Plot", xlab = "Theoretical Quantiles", ylab = "Sample 
Quantiles") 
>qqline(Xi) 
>shapiro.test(test3) 
 
        Shapiro-Wilk normality test 
 
data:  test3  
W = 0.9466, p-value = 1.741e-05 

Set D 

>DataD<-read.table(file.choose(),header=T,sep="\t") 
>names(DataD) <- c("Date", "Xi") 
>summary(DataD) 
        Date             Xi             
 12-Jul-10:  4    Min.   : -0.0020868   
 17-Oct-10:  4    1st Qu.:  0.0005592   
 20-Aug-10:  4    Median : 0.0013723   
 30-Oct-10:  4    Mean   :  0.0015413   
 8-Jul-10 : 4    3rd Qu.:  0.0017971   
 23-Aug-10:  3    Max.   :  0.0139659   
 (Other)  : 84                        
>str(DataD) 
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'data.frame':   107 obs. of  2 variables: 
 $ Date: Factor w/ 81 levels "1-Dec-10","10-Nov-10",..: 72 80 80 35 60 69 12 12 26 42 ... 
 $ Xi  :num  0.00225 0.010669 0.011924 0.001042 -0.000249 ... 
>attach(DataD) 
> 
>par(mfrow = c(2, 2)) 
>hist(Xi, xlab="Individual Error Values", main="Histogram") 
>plot(density(Xi), xlab="Individual Error Values", main="Density Plot") 
>boxplot(Xi, ylab="Individual Error Values", main="Boxplot") 
>qqnorm(Xi, main = "Normal Q-Q Plot", xlab = "Theoretical Quantiles", ylab = "Sample 
Quantiles") 
>qqline(Xi) 
>shapiro.test(test4) 
 
        Shapiro-Wilk normality test 
 
data:  test4  
W = 0.6066, p-value = 1.694e-15 

 


