Speculation and Price Volatility: The Case of Rice in United States

by

Ali Doroudian

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

The Faculty of Graduate Studies

(Agricultural Economics)

THE UNIVERSITY BRITISH COLUMBIA (Vancouver)

August 2011

© Ali Doroudian, 2011

Abstract

In response to the rampant and high volatility in rice prices relative to other grains over the past few decades and calls by governments for tighter control and regulation on futures trading to limit speculation and curtail volatility, this work evaluates the performance of the rice futures market in United State in terms of its impact on the nation's rice cash price volatility.

This study presents a refined form of Milton Friedman's original theory (1953) that speculation leads to less volatility unless it is carried out by irrational speculators. It will test this theory empirically using time series econometrics.

Generalized autoregressive conditional heteroskedasticity (GARCH) is used to measure volatility of the price of rice. Vector autoregressive (VAR) models are deployed to measure the impact of trading activity on cash price volatility through Granger Causality test, forecast error variance decomposition (FEVD), and impulse response (IR) methods.

Results show that rice cash price volatility after the introduction of the rice futures market on the Chicago Board of Trade is lowered by 51%. The Granger Causality test also indicates that sudden changes in the futures market trading activity (proxy for the presence of irrational speculators) cause higher volatility in the cash market. The FEVD, and IR methods indicate that a sudden rise in non-commercial open interest has a larger impact on cash price volatility than changes in trading volume.

Abstract	ii
Table of Contents	iii
List of Tables	vi
List of Figures	vii
Acknowledgements	viii
Dedication	ix
Chapter 1: Introduction and Objectives	1
1.1 Introduction	1
1.2 Objective	4
1.2.1 Specific Objectives	4
1.3 Study Plan	5
Chapter 2: Background	6
2.1 The Rice Market	
2.1.1 World Rice Market	6
2.1.2 United States' Rice Market	10
2.2 Futures Markets and the Impact of Speculation on Price Volatility	11
2.2.1 Futures Markets and Contracts	11
2.2.2 Speculation and Price Volatility	13
2.2.3 Speculation through Futures Markets and Cash Price Volatility	16
2.2.4 Futures Market and Cash Price Volatility: Empirical Evidence	19
2.2.5 Cash Price Volatility before and after the Introduction of Futures Market	20
2.2.6 Level of Futures Trading Activity and Cash Price Volatility	22
2.2.7 World and U.S. Rice Price: Pre and Post Introduction of Rice Futures on CBOT	24
2.2.8 United States' Rice Futures Market	25
2.3 Summary	27
Chapter 3: Theory	
3.1 The General Theory and its Application to this Study	
3.2 The Theoretical Model	
3.3 Summary	
Chapter 4: Econometrics	
4.1 Rice Cash Price Volatility	

Table of Contents

4.2 Vector Autoregressive Models (VARs)	
4.2.1 Granger Causality Test	43
4.2.2 Impulse Response Function (IR)	44
4.2.3 Forecast Error Variance Decomposition (FEVD)	45
4.3 Detrending Futures Trading Volume and Open Interest	46
4.4 Summary	
Chapter 5: Data and Results	50
5.1 Data	
5.1.1 Data Source	50
5.1.2 Cash Price Data	51
5.1.3 World Prices	51
5.1.4 Open Interest Data	52
5.2 Results	
5.2.1 Summary of Results	52
5.2.2 Has Speculation Reduced Cash Price Volatility of Rice?	53
5.2.3 Have Irrational Speculators Increased Cash Price Volatility of Rice?	57
5.3 Summary	
Chapter 6: Conclusion	61
6.1 Limitations	
Tables	
Figures	
Bibliography	
Appendices	
Appendix A: Derivation of Equations 3.7, 3.8 and 3.9	
Appendix B: Another GARCH Model	
Appendix C: Another Form of Equation (4.7)	
Appendix D: Seasonality Test Results (Stata Output)	
Appendix E: Different Ordering of Variables in I.R. and FEVD Analysis	
Appendix F: Choosing Separate Lags for each Variable of a VAR Model	
Appendix G: Monthly Variance Generated by GARCH (1,1) Model	
Appendix H: Results of Estimating Volatility by GARCH Model (Stata Output)	100

Appendix I: Correlation between the Change in US and World Rice Price before and afte	r Rice
Futures on the CBOT	109
Appendix J: Results of Granger Causality, Impulse Response Analysis, and Forecast Erro	
Variance Decomposition from Stata	110

List of Tables

Table 1: Rough Rice Price Volatility Estimation (equations 4.4 and 4.7) 1982-2011	63
Table 2: Rough Rice Price Volatility before and after CBOT Rice Futures Market 1982-Sep1994 and 1994-2011 (equation 5.1)	
Table 3: Milled Rice Price Volatility Estimation (equations 4.4 and 4.7) 1979-2010	63
Table 4: Milled Rice Price Volatility before and after Futures Market 1979-Sep1994 and Oct1994-2007*(equation 5.1)	63
Table 5: Impact of Trading Activity on Cash Price Volatility: Granger Causality	64
Table 6: Impact of Trading Activity on Cash Price Volatility: IR Analysis	64
Table 7: Correlation between Detrended Price Change in Milled, Rough and Futures Rice Price	64
Table 8: Impact of Trading Activity on Cash Price Volatility: FEVD Analysis	64
Table I. 1: Rough Rice Price and World Price Correlation	109
Table I. 2: Milled Rice Price and and World Price Correlation	109

List of Figures

Figure 1: Speculator with Perfect Foresight	65
Figure 2: Top Ten Rice Producers in the World and USA	66
Figure 3: Total Rice, Wheat, and Maize Production in the World (1961-2009) Data Source: FAOSTAT (2009) Production/Crops	
Figure 4: Top Ten Rice Exporting Countries	67
Figure 5: Top Ten Rice Importing CountriesNote: figures are tonnes of rice (milled equivalent)	67
Figure 6: Rice Production in United States (1961-2009)	68
Figure 7: World Price of Rice (1960-2011) *Thai 100% B Second Grade F.O.B Bangkok	68
Figure 8: Rough Rice Futures Contract Specification	69
Figure 9: Total non-commercial Futures Contract Long Positions (1994-2010)	70
Figure 10: Rice Futures Contract Trading Volume (2000-2011) Data Source: Reuters Datastream CBO Rough Rice Futures Trade Data	
Figure 11: Total non-commercial Rice Futures Open Interest (2000-2010) Data Source: US Commodit Futures Trading Commission	
Figure 12: Detrended Futures Trading Volume and non-Commercial Open Interest-FD Method	71
Figure 13: Detrended Futures Trading Volume and non-commercial Open Interest-P3 Method	72
Figure 14: Detrended Futures Trading Volume and non-commercial Open Interest-CMA Method	72
Figure 15: Rough Rice Price Return Variance (GARCH) pre Futures	73
Figure 16: Rough Rice Price Return Variance (GARCH) post Futures	73
Figure 17: Milled Rice Price Return Variance (GARCH) pre Futures	74
Figure 18: Milled Rice Price Return Variance (GARCH) post Futures	74
Figure 19: World Rice Price Volatility pre Zhengzhou Rice Futures Market	75
Figure 20: World Rice Price Volatility post Zhengzhou Rice Futures Market	75
Figure 21: World Price Volatility pre Rice Futures on the CBOT	76
Figure 22: World Price Volatility post Rice Futures on the CBOT	76

Acknowledgements

I would like to thank my supervisor Professor James Vercammen for his unwavering support and invaluable input that opened doors for me in agricultural economics and made this study possible. I would also like to thank my thesis committee members, Professors Richard Barichello and Adlai Fisher for their guidance. I also thank Laval University for their financial support, which made research towards finishing this work possible. I would also like to thank Dr. David Dawe for his guidance and support during my stay at F.A.O.

Dedication

This Work is dedicated to **Dr. Ahmad Doroudian**

Chapter 1: Introduction and Objectives

Planting rice in never fun; Bent from morn till set of sun; Cannot stand and cannot sit; Cannot rest for a little bit. Oh, my back is like to break; Oh, my bones with dampness ache; And my legs are numb and set From the soaking in the wet

(Fowke & Glazer, 1973) a Filipino song

1.1 Introduction

Food prices have increased and become significantly more volatile during the past few years. Periods of rapid price increase have been followed by precipitous decline in prices. What separates the current period of high volatility in food prices from others in recent history is its persistence. This lingering high volatility in staple foods and agricultural commodity prices is particularly disastrous for the poor, who must rely on very few affordable sources of food for survival of which rice is one.

Rice is a staple food for more than half of the world's population, mainly in East and South East Asia. Relative to other grains, rice requires very little processing to reach consumption stage. Also unlike other grains, it is produced only for human consumption. These characteristics along with its high calorie content make it a valuable source of food for the poor. The price of rice has not been immune to the high rampant volatility in food prices over the past few years. The unprecedented high volatility in rice prices jeopardized the lives of millions and led to short term political and social unrest in some countries that depend on the grain as a major source of food. Therefore, understanding the sources of price volatility and seeking ways to avoid or navigate through it is important in ensuring food security and stability.

The thinness in rice trade and geographical concentration of its production has always been a cause for concern about the supply of rice. In order to secure supplies and stabilize domestic prices, the governments of many rice dependent countries have emergency policies in place that could stop trade and lead to high volatility in global rice prices in a very short period of time. Therefore other tools should be developed and promoted to prevent such price volatility in the rice market. The futures market could be one such tool, and by evaluating the rice futures market's impact on cash price volatility some light could be shed on whether rice futures market could be used to stabilize cash prices.

Several reasons have been put forward to explain the recent rise in food prices and high volatility. Amongst these is the rapid economic growth that developing economies have experienced over the past few decades. Economic growth in these economies has increased global demand for meat. As a result a significant amount of land that could be used for grain production is now used for livestock. This certainly puts constraint on supplies of grains and basic food items. Another reason cited for high price volatility is inconsistency of supplies caused by climate change. Recent droughts, floods, and other unusual weather patterns have disrupted the flow of grains and other agricultural products around the globe. Lastly, speculation has been widely blamed for the high volatility in food prices.

The food market has attracted a relatively large sum of investment over the past several years. Most of this investment has been placed by entities that do not plan to be involved in any part of the food supply chain. Instead their objective has been to speculate on food prices. These entities are referred to as the non-commercial interest in the market. Their activities have come under great scrutiny by both the academic and political establishment.

Speculation and its impact on price volatility has been a subject of many studies. However it seems that a clear answer as to whether speculation stabilizes or destabilizes prices in the market for a commodity has not yet been provided. Most studies acknowledge this and instead focus on presenting conditions under which speculation can lead to higher or lower volatility. Almost all the speculation by non-commercial interest on food prices is carried out through futures markets. Agricultural commodities are widely traded on futures markets around the world. Futures contracts are a hedging tool for participants and traders in the physical commodity market (commercial interest)¹. However, recently more than ever before futures contracts have become prominent tools for speculation in the commodities market by non-commercial interest. Speculation in the futures markets has been blamed for fuelling the sharp grain price increases of 2007. Many studies have been conducted to examine the role that futures markets play in the price volatility of the physical commodity (cash price). Some studies have concluded that the futures market was a contributing factor in destabilizing the markets in the short term (FAO, 2010), while others blame the futures markets and speculators entirely for the high volatility in commodity markets (Medlock & Myers, 2009).

Rice futures market has not been included in any of these studies. The thinness of trade in both physical and futures market has prevented much attention to be drawn to the rice futures market. This market was permanently established on the CBOT in October of 1994. The rice futures contracts have much lower trading volume relative to futures contracts of other major grains and agricultural products. However, in the past decade speculative activity has clearly been on the rise in the rice futures market. Open interest and trading volume attributed to speculators (non-commercial interest) have been consistently increasing over the past several years. Therefore, it is time for the rice futures market to be scrutinized and its relationship with the rice cash market studied.

The purpose of this study is to examine the impact of futures trading and changes in speculative positions in the futures market on the cash price volatility of rice in United States. This work builds on Friedman's (1953) argument that speculation by rational (informed)

¹ In this work commercial traders are defined as those who hold positions in both the underlying commodity and in the futures contract of that commodity. The source of this definition is the U.S. Commodity Futures Trading Commission (<u>www.cftc.gov/oce/web/index.htm</u>)

speculators leads to lower cash price volatility, whereas excessively speculative trading by irrational (misinformed) speculators would lead to the destabilization of the cash price.

The theoretical model presented in this study shows that agents form price expectations and decide on storage levels by using the information they receive about the future demand levels. The model demonstrates how use of more accurate information leads to more efficient storage decisions and lower price volatility. Further, it illustrates how basing storage decisions on inaccurate information leads to less efficient storage of goods and higher price volatility.

In order to test the prediction of the theoretical model, two types of empirical analysis are proposed. First Generalized Autoregressive Conditional Heteroskedasticity (GARCH) is used to measure cash price volatility before and after the introduction of the rice futures market. The second method makes use of Vector Autoregressives (VAR) and the Granger Causality Test to measure the impact of change in speculative positions in the futures market on the cash price volatility of rice.

1.2 Objective

The general objective of this work is to present and empirically test a refined form of Friedman's (1953) theory on the impact of speculators on price volatility. This study uses rice futures market as a proxy for the presence of speculators in the rice market.

1.2.1 Specific Objectives

There are several specific objectives that need to be met in order to achieve the goal of this work specified above. The following line indicate these specific objectives.

- a) Develop an understanding of the world and US physical rice market.
- Explain the mechanics of the futures markets and how they are used for speculation in the physical market.

- c) Establish a theoretical model to assess the impact of informed and irrational speculation on price volatility.
- d) Measure rice cash price volatility prior to and after the introduction of the rice futures market in United State.
 - i. Measure international rice price volatility before and after the introduction of the rice futures market in China and on the CBOT.
- e) Measure the impact of a sudden rise in futures trading activity as a proxy for the presence of irrational (misinformed) speculators on rice cash price volatility.

In addition to these objectives, the other goal of this work is to draw attention to the rice futures market and establish the ground for further research on the role that a viable rice future market can potentially play in stabilizing the world rice market

1.3 Study Plan

This chapter offers an introduction of the work along with the objectives that this project seeks to meet. Chapter 2 offers a background and a review of the global and U.S. rice markets. It provides a comprehensive literature review on the impact of speculation on price volatility through futures markets. Chapter 3 presents the theoretical model of this thesis. Chapter 4 describes the empirical methods and econometric tools used to test the theory. Chapter 5 discusses the data series used in this work and offers discussion and analysis of the results. Chapter 6 concludes this study by outlining the results and major findings of this work. It discusses possible directions for future studies.

Chapter 2: Background

This chapter is divided into two major sections. The first offers a review of the rice market. The second section presents a comprehensive review of the futures markets as well as the theoretical and empirical work that have been carried out to measure the impact of speculation on price volatility.

2.1 The Rice Market

It is important to understand the international and the U.S. rice markets before we engage in the analysis of the rice futures market in United States. A review of the world rice market dynamics helps one understand the high volatility that seems so embedded in the world price of rice. This global volatility in international prices could also be a major source of volatility in the cash market for rice in the U.S. given that for the most part United States is a price taker. United States produces only about 2% of the world's rice (FAO 2007)², and volatility of prices in United States could be greatly affected by the events on the world stage. Therefore, it is important to explore the dynamics of the world rice market before discussing the rice futures market on the CBOT.

2.1.1 World Rice Market

Rice is an important staple food for about half of the world's population. It accounts for 30% of the total cereal production, and ranks second largest produced grain after maize (FAO 2007). However, unlike other important staple foods such as wheat and corn it does not trade in a free market environment. It has a weak connection to other commodities in that it is only produced for human consumption and not for animal feed or bio-fuel (Timmer, 2008).

The market for rice is extremely thin as only about 5% of the rice produced in the world is traded. Therefore, rice has a high consumption to production ratio that has remained fairly

² Figure 6 reports the total rice production in United States from 1961-2009

stable over the past few decades. This ratio is higher in South and South East Asian countries than other parts of the world where rice is produced. Approximately 80% of the traded rice is supplied by five countries, Thailand, Vietnam, United States, India, and Pakistan. For the most part rice is produced for domestic consumption. For instance China produces about 30% of world's rice, yet her participation in the world market is close to zero (Timmer, 2009). Countries like Vietnam and India could be exceptions to this general rule, but even they stop exports of rice to secure supplies for domestic consumption³. Indeed the government of India's policy of banning rice exports in 2007 is a testimony to how easily the world rice market could be left without any participants in it.

Constant government intervention to control the supply and demand of rice does not allow world prices to play an important role in the decision making of market participants⁴. Siamwalla's et al (1983) analysis of 55 countries showed that only 17 showed some degree of responsiveness to world prices. Therefore, world rice prices do not reflect the true supply and demand levels in the rice market. Government intervention in the market tends to be a sudden reaction to the current situation in the market, which could lead to higher price volatility. Indeed, in the six months between October 2007 and April 2008 the price of rice tripled to about \$1000/tonne and reached unseen levels in nominal terms (Dawe & Slayton, 2009)⁵. This unpredictability in the price of rice discourages private participation in the rice market.

The world rice market is one in which its participants for the most part are there to secure domestic supplies to avoid shortages and political instability, or to achieve self-sufficiency for largely domestic political reasons. They are not there to profit from price swings. This has been

³ Since the early 1980s Thailand has become a consistent exporter of rice with fluctuating quantities. It is now the biggest exporter of rice in the world.

⁴ It should be noted that the governments of South and South East Asian countries are the largest participants in the world rice market. Therefore, unless specified any reference to government policy or intervention in the rice market involves those governments.

⁵ The world price is the price of Thai 100% B second grade-Figure 7

the norm for decades in the rice market and has led to shortages and price volatility unseen in other major grains' markets.

High level of government involvement in the rice market may lead one to conclude that the rice market is the most regulated and stable of all grain markets. Despite the presence of governments and this degree of regulation, the rice market has experienced and continues to experience tremendous price fluctuations. The sharp price increase of 2007-08 mentioned earlier was followed by a fall of 40% from May to December 2008. A few decades earlier, rice prices increased by \$200 per metric tonne per month in 1972 and 1973 after more than a decade of almost no change (Petzel & Monke, 1979). These price fluctuations did not reflect the true scale of shortages or abundance in the world rice market.

It is now generally agreed that perception (rather than reality) about the immediate supply of rice and subsequent policies of some of the Asian governments played a significant role in rapid price increases of 2007 and 2008 (Timmer, 2009). To cite a few examples; the government of India (the second largest exporter in 2007 with 5 mmt⁶) imposed a ban on non-basmati rice in 2007 in order to secure domestic supply to prevent domestic prices from increasing. The government of Thailand, the largest exporter of rice with nearly 10 mmt in 2007 discussed the reduction of exports for the same purpose in March 2007.

On the demand side, the Philippines (the largest importers of rice in the world)⁷ announced its plans to increase its rice stocks by two or three folds (Dawe & Slayton, 2009). According to Timmer's (2009) supply and demand model, a 25% increase in short-run demand will lead to a 167% increase in rice prices. Panic led to both shortages and political instability in some countries that depend on rice as a major source for food, the very thing that the government policies intended to avoid.

⁶ mmt = million metric tonnes

⁷ The Philippines is expected to import more than 2.4 mmt in 2010 (Source: Food and Agricultural Organization)

Indeed studies show that the structure of the rice market results in such an outcome. Speculation is present in the rice market however, it is in the form of supply speculation and not price speculation. Another characteristic of the rice market is that rice is produced by smallholders and traded by a small group of traders. Unlike other grains rice is not always stored by commercial interest in the market. This characteristic makes collecting inventory data on rice difficult.

According to Timmer (2009) short run price behaviour in commodities that have reliable and readily available inventory data depends on supply behaviour. However, short run price behaviour of commodities with scarce and unreliable inventory data, depends on changing price expectations reflected by hoarding and dishoarding the commodity. The scarcity of data on rice inventories, thinness of the rice trade, and absence of private agents in the market are all structural characteristics of the world rice market, which are the main contributors to the rampant volatility in the rice market.

The world production of rough rice is approximately equal to the production of maize and wheat. However, its trade quantity is much lower than the two. In 2007 the production of rice paddy (rough rice), wheat, and maize stood at 657, 611, and 788 million tonnes respectively. In the same year only 31 million tonnes of rice was traded compared to 110 and 133 million tonnes of maize and wheat respectively (FAO, 2010). Figure 3 provides a juxtaposition of total annual production for rice, wheat and maize over past five decades.

Siamwalla et al (1983) suggest that the creation of the role of seller of last resort or a central market for rice alters these characteristics and reduces rice price volatility. They cite the wheat market as an example where the presence of the United States as a central market (where wheat futures contracts are traded) and a seller of last resort has been a stabilizing factor. It has also been suggested that United States can do the same for the rice market.

2.1.2 United States' Rice Market

United States has traditionally played an important role in the world rice market. With the exception of the Civil War years It has always been a major exporter of rice since the 1700s (Cole, 1927). In the early 1800s U.S. was exporting more than 90% of its rice output which amounted to about 10% of the total trade (Coclanis, 1993). In present day nearly all the rice in the United States is grown in five states: California, Louisiana, Arkansas, Mississippi, and Texas. California produces the short grain high quality japonica type, and the other four produce the indica type given their hotter climates (USDA, 2007).

United States is the only major rice exporting country that is not preoccupied with securing domestic supply. There are also a few other features that make the U.S. unique in world rice market. Only 2% of the annual world rice production belongs to the U.S, yet its share of trade in the global market is more than 10% (Childs & Balwin, 2009)⁸. United States has never put any restrictions on rice trade particularly on the quantity of exports, and it is one of the few major rice producing/exporting countries that respond to world price of rice⁹. However, pricing of rice in United States is done through cooperative pool pricing, and not competitive auctions (McKenzie, Jiang, Djunaidi, Hoffman, & Wailes, 2002). Government intervention in export of rice from the US is limited to export subsidies and quantity produced (Siamwalla & Haykin, 1983).

The U.S. government has never implemented a policy to build rice stockpiles similar to other major rice producing countries. There have been policies that have indirectly affected exports of rice from the U.S. In response to rice price volatility and in order to lower it, the US government implemented the Rice Marketing Loan in 1985. This resulted in the U.S. rice prices

⁸ The US' share of global rice trade was much higher. From the early 1700s until the beginning of the civil war the United States was the largest exporter of rice in the world. It even exported to major rice producing countries such as China. Due to the civil war United States lost this status only to regain it in the beginning of the 1960s and maintaining it until the middle of 1980s (Coclanis, 1993).

⁹ Prices in Thailand's domestic market also respond to world prices

being above the world price for almost two decades and effectively reduced U.S. rice exports while increasing government rice stocks (Taylor, Bessler, Waller, & Rister, 1996).

Despite the relatively liberal policies toward rice exports, United States is still not a seller of last resort in the world rice market. Perhaps the only issue that has prevented the United States from acting as the seller of last resort in the rice market is that unlike wheat, U.S. is not a large enough producer of rice. Therefore, it can never build enough stocks to meet a sudden surge in demand from the major rice consuming countries (Siamwalla & Haykin, 1983).

The world rice market needs "relevant stockholdings" which implies that stored rice can affect world prices. Many countries store rice, but this does not mean that they have the intention of releasing the rice in stock into the world market. Therefore, the existence of an offshore storage where storage of rice is done by speculators or private enterprise could be an important factor in stabilizing the market. This offshore storage should not be subjected to government policies of various countries. The speculators should be motivated to get involved in this market for profit.

Only in the U.S. does such a central market exist for rice in the form of a futures market. The results of this study could shed some light on whether rice futures markets are a viable solution to reducing (even if not eliminating) the seemingly inherent volatility in the rice market.

2.2 Futures Markets and the Impact of Speculation on Price Volatility

Prior to describing the nature of the rice futures market in United States, it is important to have a broad understanding of the mechanics of futures markets in general and their impact on cash price volatility in particular by speculative behaviour.

2.2.1 Futures Markets and Contracts

Futures contracts are standardized contracts that oblige their holders to deliver or take delivery of a specified quantity of a specified commodity at a specified date in the future. These

11

contracts are traded on futures exchanges around the world. The most notable exchange is the Chicago Board of Trade (CBOT), which was founded in 1848 and listed the first futures contract in 1864. The agent who enters a futures contract to take delivery of a commodity in the future is said to be taking a "long" position. The one who is obliged to deliver the commodity at a specified date in the future is said to be taking a "short" position.

The speculative agent with the "long" position expects prices to rise and the one with the short position expects prices to decline by the time the futures contract s/he has entered in matures. For example an agent who takes a "long" position in February 2012 rice futures contract believes that rice prices in February 2012 will be higher than what the market currently expects rice prices to be in February 2012. The agent with a "short" position anticipates the opposite.

There is a "short" position for every "long" position. Therefore, all gains in a "long" or "short" position are offset by losses in the opposing "short" or "long" positions respectively. The role of the futures market in the economy extends beyond providing a platform for individuals to engage in a zero sum game. The presence of the futures contracts and markets allows for a more complete market.

A complete market is one in which there exist enough investment instruments to allow investors to bet on or protect themselves against (either directly or indirectly by combining different existing instruments) all possible outcomes in the market. Transaction costs prevent the existence of a market that takes into account all states of the world. Yet uncertainty about the future state of the world concerns investors and they look for ways to be as prepared for any future state of the world as possible. They do this either by hedging their current position or speculating that a particular state of the world will materialize (Strong & Walker, 1987). Futures market allows market participants (hedgers and speculators) to do that. Futures market and futures contracts provide a cost effective way for agents to prepare for anticipated or unanticipated states of the world that affect market outcomes.

2.2.2 Speculation and Price Volatility

Participants in the futures market can be divided into two groups: hedgers and speculators. Hedgers enter the futures market to lock the price of a commodity they plan to buy or sell in the future. Speculators enter the futures market to bet on the price movement of a particular commodity, and hence are in the futures market for profits.

As hedgers go "long" or "short" in the futures market depending on whether they wish to buy or sell (respectively) a commodity in the future, speculators take the opposite side of the contract and bear the price risk that initially rested with the hedgers. In order to transfer the risk to speculators, hedgers are willing to pay a premium. The expectation of receiving this premium is one of the reasons that speculators enter the futures market and bear the price risk (Keynes, 1930)¹⁰.

Therefore, speculators are a necessary part of the futures market, if it is to function as a place where traders of the physical commodity can hedge their positions. Despite the role they play in mitigating the risk to the physical market participants, futures contracts are viewed with concern as many believe they may also have negative impacts on the price and allocation of the underlying commodity.

Futures contracts and markets have been a subject of controversy from their inception in Chicago in 1864, over their impact on the spot (cash) price of the physical commodity. Politicians and many traders in the physical (cash) market believe that speculation in the futures

¹⁰ Keynes asserts that the "short" position of hedgers requires the speculators to take a "long" position. The speculators take that position if the expected future price of the commodity in the futures contract is higher than the current future price specified in the contract (i.e. $E(S_{t+1}) > F_t$), where $E(S_{t+1})$ is the expected spot price in the future and F_t is the current future price reflected in the futures contract (Keynes, 1930).

market leads to volatility (destabilization) of the spot market (Antoniou & Holmes, 1995). The impact of speculation on the stability of the cash market has been a subject of numerous studies.

Friedman (1953) asserts that there is no reason for speculation to lead to the destabilization of prices in the physical market, because speculators buy when prices are low (low demand and high supply) and sell when prices are high (high demand and low supply). This course of action by speculators causes prices to rise when they are low and decline when they are high (Friedman, 1953). In addition, Friedman argues that saying speculation is destabilizing is equivalent to saying that speculators lose money¹¹. According to Friedman only irrational (misinformed) speculators destabilize prices.

Hart et al. (1986)¹² take an opposite view and argue that in a market where rational agents have access to identical information and history, speculation may increase price volatility. According to them, rational speculators base their decision to enter the market in this period on the probability of high demand level in the next period. In the Hart et al. model speculators buy and store a commodity if they receive the high demand signal for next period. It should be noted that the signal only indicates high probability and therefore the next period high demand may not materialize. False signal means that next period speculators will dump the commodity in the physical market leading to a further decrease in prices¹³. Therefore, when demand is low, the lowest price in the absence of speculators is higher than the lowest price in their presence. The presence of speculators widens the range over which prices fluctuate (Hart & Krept, 1986).

¹¹ According to Friedman speculators would destabilize the market if they buy when prices are high, leading to further rise in prices, and if they sell when prices low, leading to further decline in prices. This action will lead to losses for speculators.

¹² Although Hart and Kreps (1986) paper does not assess the impact of futures market on the spot market, it offers a comprehensive study of the impact of speculation on the spot price of the physical commodity. Therefore citing their work is warranted given that speculation is an essential component of the futures market.

¹³ The model assumes speculators can only store for one period, demand for the commodity is elastic, and every period a fresh fixed amount of the commodity is supplied to the market irrespective of consumers' and speculators' demands and actions.

This may not be true if speculators have foresight. In the extreme case of perfect foresight where next period's prices are visible in this period, the presence of speculators does not lead to wider range of prices. There are two cases in perfect foresight: 1) $P_{t+1} > P_t$ or 2) $P_{t+1} < P_t$.

In the first case, there will be speculative demand in the market in period t given that speculators know that prices in the next period (t+1) will be higher. This extra demand by speculators means a higher price in period t than the lowest price without speculators in that period. In period t+1, when speculators sell their stored commodity, prices would be lower than what they would be without speculators.

In the second case, speculators do not enter the market to buy the commodity at time t knowing that prices will be lower at t+1. In this case prices are not raised further in t relative to t+1 because there will not be an additional demand from speculators. Also, prices are not depressed further in t+1 because there are no additional supplies released into the market by speculators. In general Hart et al. assert that complete foresight is required for speculation to be stabilizing (Hart & Krept, 1986). Figure 1 demonstrates this. In both cases in figure 1 the width of price range (volatility) between the two periods is lower when speculators have foresight and are informed than when they are not.

Further in their analysis, Hart et al. indicate that speculation could lead to stability from the production side. Current increase in speculative demand could also be a signal to producers that demand for their products will be higher in the future. As a result producers invest in increasing capacity in the current period in order to produce more in later periods. Under these circumstances prices would be lower in the future when demand is high than they would have been without the extra production.

2.2.3 Speculation through Futures Markets and Cash Price Volatility

Speculation through a futures market, where speculators do not necessarily store the physical commodity, may have additional and somewhat distinct ways of affecting the volatility of prices in the physical market. Miller (1991) points out that the interdependency of the physical (cash) and the futures market requires that price changes in one be transferred to the other. This could lead to volatility, which is exacerbated if markets are separated in terms of trading hours, speed with which trading can be done, and transactions costs etc (Miller, 1991).

Valentine (1995) mentions that value of the futures contracts exceed the value of the physical underlying asset because there can be an unlimited number of futures contracts. This makes unlimited speculation possible, which can lead to higher or lower prices than otherwise would be possible in the physical market. However, this flexibility in the futures market can absorb the shocks in physical market. A supply shortage leads to higher prices in the physical market by allowing traders to take long positions and claim future supplies rather than seeking the goods now for later use (Valentine, 1995).

Powers (1970) addresses the role that futures markets play in increasing information about the fundamentals (supply and demand) in the physical market. According to Powers a price series has a systematic and a random component (2.1). Therefore, variance and volatility in a price series also have a random and systematic component (2.2).

$$P_t = S_t + R_t \tag{2.1}$$

 P_t = price time-series S_t = systematic component R_t = Random component $V(P_t) = V(S_t) + V(R_t)$ V= variance (2.2)

The systematic part of the price series reflects the changes in the fundamentals of the commodity such as supply and demand. The random part reflects the "noise" and movement in price that is not related to the fundamentals. This component distorts the message that prices (which are essential for further allocation of resources in the economy), send. The random component (disturbance) may arise from insufficient information and distorted price messages sent to the market. This disturbance may have several sources.

Kawai (1983) points to the importance of the source of random disturbances in determining whether the introduction of futures market has any impact on cash price volatility. In Kawai's model there are three types of agents in the physical market: consumers, producers, and inventory carriers (dealers). The introduction of the futures market could have a stabilizing or destabilizing effect depending on which of these agents is the source of volatility. For example, when dealers are infinitely risk averse, the introduction of a futures market increases price stability in the cash market if random disturbances are predominantly coming from the activities of consumers. However, the opposite would be true, if the disturbances were predominantly from the production or dealer side (Kawai, 1983)¹⁴.

The more informed economic agents are about the fundamentals the more they will base their decisions on real changes in supply and demand. The futures market allows for a better and faster flow of information, hence reducing the variance in the random component of the price series. Prices in the futures contracts include information on production, storage, supplies, demand, current cash price etc. This information, available through numerous institutions and exchanges around the world is used by speculator and cash market participants alike (Powers, 1970)¹⁵.

¹⁴ Kawai's model is applied to storable commodities

¹⁵ Although Powers' analysis shows that the random component of price variance is reduced after the introduction of the futures market, it does not address the impact of the futures market on the variance of the systematic component of the price series. He acknowledges that the introduction of the futures market may have a different

Higher quantity of information does not necessarily imply higher quality of information. Cox (1976) addresses this issue by analyzing the influence that speculators could have on the allocation of storable goods in the cash market. Futures markets attract traders (speculators) who are only interested in the price movement of the underlying commodity, do not handle it, and would not be present in the market had it not been for the futures market. The speculators take net long or short positions, which implies that hedgers could be taking the opposite position. Therefore, speculators' belief about the future price leads to the reallocation of some of the current physical stock hence changing the cash price¹⁶.

By this analogy misinformed speculators can alter price expectations in the spot market that do not really reflect true market fundamentals¹⁷. Whether speculators who spend time and resources to acquire information about the underlying commodity have high quality information to bring efficiency to the market is still debated (Cox, 1976).

However, Ross' (1989) argument of the relationship between information flow volatility and price volatility renders the information quality argument somewhat immaterial. Ross' model asserts that in the absence of arbitrage¹⁸, the volatility of prices should equal the volatility of information flow (Ross, 1989). This could imply that the introduction of futures markets, while increasing the volume of available information, also increases the volatility of information flow and lead to higher price volatility.

It may not be possible to assert with certainty whether futures markets lead to volatility in cash prices or not. None of the literature reviewed in this section reach a general conclusion

effect on the variance of the systematic component of seasonally produced and storable commodities (Powers, 1970).

¹⁶ Hedgers here are not just producers of the commodity but also agents who may use the underlying commodity in the production of other goods.

¹⁷ This argument could perhaps be applied to when two speculators enter a futures contract (no hedgers involved). Participants in the physical market view this transaction from outside. Based on their belief about which speculator is better at predicting the future price, they can shift and reallocate the physical stock.

¹⁸ Ross' assumption has two major assumptions: 1) markets are efficient (no arbitrage) 2) information for period t only becomes available in period t).

about the impact of the futures market on cash price volatility. However, collectively they lay the theoretical ground for a better understanding of the rice futures market in the U.S. and its impact on rice cash price volatility.

2.2.4 Futures Market and Cash Price Volatility: Empirical Evidence

In addition to theoretical works, there have been many empirical studies on the impact of futures trading on cash price volatility. Many agricultural and non-agricultural commodities have been the subject of these studies. These studies measure cash price volatility before and after the introduction of the futures market. The following paragraphs offer a review of several of these works.

The U.S. congress banned the trading of onion futures contracts through the Onion Futures Act in August 1958 (U.S. Code, 1958). The implementation of this act ignited research on effect of futures trading on cash price volatility. Early works by researchers such as Gray 1959 concluded that onion futures contract trading reduced the seasonal spot price range in the onion market (Gray, 1959). Gray's 1963 work suggested that after the banning of the futures trading in the onion market, the price range was increasing and going back to its pre futures trading years (Gray, 1963). Building on this, subsequent research was conducted to evaluate the impact of futures trading in other commodities' markets.

These early works concluded that the futures market: a) lowers seasonal price range due to the presence of speculative support at harvest time. Speculators are willing to take ownership of the harvest, hence prices do not drop, and this leads to more grain being stored by the farmer. More grain in store prevents prices from rising too high later in the year b) acts as a guide for better production planning and hence leads to less annual price fluctuations c) allows for better anticipation of price adjustments and rational storage decisions by commercial traders, which would lead to lower volatility (Powers, 1970), (Leuthold & Taylor, 1974), and (Morgan, 1999).

The futures market achieves the three points above by facilitating information flow through the actions of thousands of traders in the market. More information causes the market price to be closer to the equilibrium price which would signal the true level of supply and demand. Therefore, there will be less variability in cash price once the decision of suppliers and consumers are based on close to equilibrium prices (Powers, 1970).

There have only been a few studies on rough rice futures market in United States. These works have focused on market efficiency and estimating whether the rice futures market is biased¹⁹. In a 2002 paper, McKenzie et al used various methods (Johansen cointegration procedure and Error Correction Model) to analyse the ability of the current futures price to provide an unbiased estimate of cash price when the contract matures. They find that rice futures prices outperformed both of those methods in forecasting the future cash price of rice in short and long run (McKenzie, Jiang, Djunaidi, Hoffman, & Wailes, 2002).

Taylor et al. (1996) study the relationship between US rough rice cash prices, Thai milled rice price and rough rice futures price (Taylor, Bessler, Waller, & Rister, 1996). A detailed review of this work will be offered in section 2.2.7.

2.2.5 Cash Price Volatility before and after the Introduction of Futures Market

Futures markets have allowed non-commercial interest and speculative money to enter the commodities market. This has given rise to the question of whether the presence of this speculative money and generally futures trading has increased cash price volatility. It is said that a well functioning futures market guides the commodity storage decision and smoothes its release into the market (Morgan, 1999). Majority of the analyses using various methodologies show that futures trading has indeed reduced cash price volatility.

¹⁹ Downward biased futures price means lower current futures price than what is expected to be received at maturity. Upward biased futures price means higher current futures price than what is expected to be received at maturity.

Powers (1970) used the Variate Difference Method to separate the random (noise) component of the time-series price from the systematic component²⁰ for pork bellies and cattle before and after introduction of futures trading for these two commodities. He found that the variance of the random component was reduced after the introduction of the futures trading for both commodities (Powers, 1970).

Leuthold et al (1974) simply used the variance of the monthly average cash price of cattle around two eight year period averages. They concluded that this variance was significantly lower in the second eight year period (during futures trading) than in the first eight year period (before futures trading).

Morgan (1999) used standard deviation to measure cash price volatility of potato in Britain and concluded that after the introduction of futures trading in 1980, cash price volatility has been reduced.

Antoniou et al (1992) used the GARCH model to represent the cash price return volatility of crude oil and their results strongly rejected the null of no change in volatility pre and post futures trading (Antoniou & Foster, 1992). In addition, the coefficient of their cash return volatility was less important in explaining cash returns after the introduction of futures trading. They tested both models for unit root to assess the persistence of the shocks in the crude market and found that the post future volatility model was stationary whereas that of pre-futures was not.

Their results also indicated that post introduction of futures trading, 'news' becomes more relevant in explaining the conditional variance of cash return as information flow and hence reaction to news is faster because of the futures market. In contrast, lagged volatility becomes less important in explaining current period variance, and the authors attribute this to the fact that any risk posed by lagged volatility could be hedged away²¹.

²⁰ Systematic component refers to fundamental economic conditions such supply and demand

²¹ The detailed model used by the authors will be discussed in the Model section of this thesis.

In this study the GARCH model will be used to measure the cash price volatility of rice before and after the introduction of rough rice futures trading on CBOT. The rice futures market is a thinly traded market. Therefore, trading frequency may play a part in determining whether a futures market is beneficial in allowing for better flow of information in the market for the underlying commodity.

Using the GARCH volatility model Holmes (1996) demonstrate that a thinly traded futures market lowered the volatility in the cash price of the underlying asset²². By analysing the components of the GARCH volatility model, he shows that despite a low trading volume in the futures market, the information flow was improved and persistence of shocks (new information) in the market was reduced²³. This implies that despite low frequency of trade, the futures market could still facilitate information flow and price discovery.

2.2.6 Level of Futures Trading Activity and Cash Price Volatility

More recent literature has focused on the question of how trading activity in an existing futures market affects spot price volatility. This section is concerned with the impact of change in futures trading volume and open interest (i.e. level of futures trading activity) on cash price volatility. The activity level of the futures market contributes to the volatility in the cash market in three ways: First is when manipulation and technical factors distort futures prices, and traders in the futures market act on false signals. Second, lack of speculation in the futures market and pure hedge trading in that market could lead to instability in the cash market. The hedging pressure in the futures market affects the cash market through dealers and market makers who are now bearing the risk from both the cash and the futures market.

Finally, if traders in the futures market are not as well informed as the participants in the cash market, then the actions of the former lead to distortions in the cash price. The better

²² The futures contracts were written for FTSE Eurotrack 100 index which covers the largest capitalized companies in 12 European countries.

²³ Please see "Model" section of this work for a detailed analysis of the GARCH volatility model.

informed commercial traders in the cash market will then use this distortion to generate profit (through arbitrage) and inadvertently stabilize the futures market at the expense of increasing volatility in the cash market (Figlewski, 1981). The last point implies that due to less friction and lower transaction costs, prices adjust much faster in the futures market. This price adjustment enters the underlying cash market through arbitrage and given that normally large transactions are required to generate profits from arbitrage, the cash market becomes more volatile (Antoniou & Foster, 1992).

Harris (1989) found short run volatility in the stock price returns as trading volume in S&P 500 index futures contract increased. Large transactions in the futures market are normally accompanied by related transactions in the cash market. Therefore, lack of liquidity in the cash market (in terms of the volume of transaction) and higher trading volume (activity) in the futures market would lead to higher volatility in the cash market. He found no such relationship in the long run once liquidity has entered the market (Harris, 1989).

Another interesting study done by Adrangi and Chatrath (1998) on exchange rates found no relationship between the open interest position of large hedgers and change in cash price volatility. However, they found such relationship between open interest and cash price volatility once there was an increase in open interest position of speculators in the market (Adrangi & Chatrath, 1998).

Epps et al (1976) suggest that if traders disagree on the magnitude of the impact of new information on asset valuation, then both trading volume and price volatility would rise (Epps & Epps, 1976). Their study was not specifically directed at the interaction between futures trading volume and cash price volatility, but their result is applicable to that field. The rapid absorption of the information in the futures market and traders' decision based on their interpretation of the new information could increase futures trading volume and in turn affect the cash price volatility as described earlier.

Bessembinder et al (1992) found that cash price volatility decreased after the introduction of equity futures market. However, they conclude that an increase in unexpected trading volume in equity futures market increased cash price volatility (BESSEMBINDER & SEGUIN, 1992). In addition, they found a reduction in cash price volatility as open interests position increased in the futures market.

There have been only a few empirical studies on the effect of the level of futures trading on cash price volatility for agricultural commodities. Yang et al (2005) study the lead-lag relationship between the futures trading level and cash price volatility for several agricultural commodities (not including rice). They used the Granger Causality test and the Generalized Forecast Error Variance Decomposition (GFEVD) to examine the effect of an increase in future trading volume and open interest positions on cash price volatility (which they modeled using GARCH 1,1). They concluded that an unexpected increase in futures trading volume of these commodities caused an increase in cash price volatility for most of the commodities under examination (Yang, Balyeat, & Leatham, 2005).

2.2.7 World and U.S. Rice Price: Pre and Post Introduction of Rice Futures on CBOT

The relationship between U.S. rice and world rice prices has come under scrutiny in the context of studying how integrated the world rice market is. In evaluating the degree of integration in the world rice market Petzel et al (1979) studied the reaction of rice prices in United States to changes in world prices. They used the Granger causality test and found that Thai prices from the previous month explained the current prices of US rice (Petzel & Monke, 1979). Understanding this relationship has become more interesting with the introduction of the rice futures trading in United States.

Taylor et al (1996) concluded that there is a long run equilibrium price relationship between the rough rice futures market and Thai rice. Therefore, the rough rice futures market in United States could be an important price discovery tool in the international rice market or at least it can be relied upon to convey new information in the international rice market (Taylor, Bessler, Waller, & Rister, 1996). This price discovery role by a central market has been sought by experts in international rice market for decades and was discussed in earlier sections.

Similar studies in other areas may shed light on how a thinly traded futures market can link the larger world market to the domestic cash market. Martikainen et al (1994) show that the information from world's stock markets is transmitted to the Finnish stock market through the Finnish stock index futures. They found that world stock market returns Granger cause changes in the Finnish index futures returns. Subsequently the Finnish index futures returns Granger cause the change in the returns of the Finnish stock market (Martikainen & Puttonen, 1994). Therefore, the presence of a futures market, however thin could be a communicator of information in a particular market.

2.2.8 United States' Rice Futures Market

The first rice futures market was established in the Tokugawa period in the city of Osaka in Japan in 1730. Research shows that this futures market possessed all the characteristics of a modern futures market (Schaede, 1989)²⁴. The New Orleans rice futures market which was established in the mid 1970's and closed a few years later, was perhaps the first attempt at allowing in investors and speculators into the rice market in United States²⁵.

Rough Rice futures contracts began trading for a second time in U.S. on the Chicago Board of Trade in 1994²⁶. Each futures contract obliges the owner to purchase or sell

²⁴ Same source claims that this market is the oldest modern futures market in the world.

²⁵ The U.S. government policy of floor loan rate led to a domestic price higher than the world price, and little to no variation in the market price. Therefore, a central market with the desirable objective mentioned above could not exist.

²⁶ Starting in 1986 rice futures resumed trading on the Chicago Rice & Cotton Exchange, which then merged with Mid American Exchange. Rice futures traded there until their move to CBOT in October 1994. The contract is for the delivery of No. 2 U.S. long grain or a better quality. Contracts size is for 2000 hundredweight of rough rice (200,000 pounds) (CBOT, Rough Rice Futures, 2008).

approximately 91 tons (or 2000 hundredweights) of long grain no. 2 rough rice with a milling yield of not less than 65% (CME, 2011)²⁷.

With the introduction of the futures market on the CBOT, the entrance of speculators and non-commercial interest into the rice market in the United States was facilitated, and there has been a steady growth of non-commercial interest in the market. For example, in 1994 non-commercial long positions (Figure 8) in the market as a percentage of total reported long positions was about 23% compared to 55% at end of 2009 (CFTC, 2009)²⁸. However, the rice futures market is still considered a very thin market relative to the other grain futures market in United States namely maize and wheat. For instance, during the last trading week of 2009, the wheat futures market had 18 times and 117 times more non-commercial long and short open interest positions respectively than the rough rice futures market (CFTC, 2009). The trading volume of maize and wheat futures contracts expiring in May 2010 were 1183 and 2783 respectively, whereas that of rough rice was only 321 (CBOT, 2010)²⁹.

Despite the thinness of trade in the rice futures market, it would be interesting to evaluate its impact on the rice inventories and cash prices in United States and abroad. The CBOT may not be large enough to accommodate the speculative and hedging position of all rice market participants in the world but it can act as a launching pad for the creation and expansion of other such markets elsewhere in the world.

Indeed in March 2009 Zhengzhou Commodity Exchange introduced rice futures, which could be the first step in establishing a large central market for rice where private speculation can take place (Forbes, 2011). It is therefore, essential to evaluate the 16 year performance of the rice

²⁷ Figure 8 shows the complete specification of a rough rice futures contract

²⁸ The share of non-commercial short position in total reported short positions has been consistently falling since 1994. At the end of 2009 it stood at 8%. This could be due to the usage of short contracts as hedging vehicles by farmers or the board, and the fact that the price of rice has not shown sign of decline since that time to motivate speculator to take short positions in the futures market.

²⁹ March 18th 2010

futures market on the CBOT in terms of affecting the volatility of the cash (spot) price of rice and its impact on world rice prices.

The impact of futures contract trading on cash prices of the underlying commodity has been a topic of discussion in agricultural economics for many years. Many studies have been done on various commodities' futures trading. Futures contracts are used by hedgers to lock their profit/revenue from the crops they cultivate. They are also used by speculators to bet on the price direction of commodities. Futures contracts are the only vehicles that speculators (noncommercial traders) can use to profit from the price movement of a commodity, without having to take possession of the actual commodity³⁰. It is the actions of the latter in the futures market that has given rise to numerous works on the impact of futures contract trading on the cash price of the underlying commodity.

This study has been motivated by allegations that the activity of non-commercial interest in the futures market is responsible for cash price volatility. The rice futures market with all the unique characteristics that the rice market has will enable us to test theories relating speculation to price volatility. Almost all commodities with traded futures contracts on the CBOT have been analyzed, and the analysis has been focused on assessing the cash price volatility prior to and after the establishment of the futures market. More recent work has been focused on analysing the impact of the level of trading activity in the futures market on cash price volatility. In this work both analyses will be conducted to examine the theory that will be put forward in the next chapter.

2.3 Summary

The world rice market has experienced significant price volatility over the past few years. The mechanics of the rice market do not allow it to function and allocate the rice based on prices.

³⁰ By owning exchange traded funds, investors trade futures contracts indirectly.

United States is a rice producer and in recent years has become a major supplier of rice to the world market. It hosts the only major rice futures market in the world.

Futures markets have played a key role in allowing market participants to hedge their positions. They have also attracted speculative non-commercial interests to the market. The actions of this group and their impact on cash price volatility have been a subject of many theoretical and empirical studies. These studies have failed to provide a clear answer on the impact of speculation on price volatility. However, they provide the necessary theoretical and empirical framework for studying the impact of futures trading on rice price volatility.

Chapter 3: Theory

This chapter presents the theoretical model of this study, which is built on Milton Friedman's (1953) work on the impact of speculation on price volatility. It begins by presenting the general theory and describing how it applies to this thesis. The second part of this chapter discusses the details of the theoretical model that this thesis tests.

3.1 The General Theory and its Application to this Study

The general theory of this thesis is that speculation lowers price variation from one period to the next, unless it is carried out by irrational speculators. The following paragraphs explain how this theory could be applied to examine the impact of speculation in the rice futures market on its cash price volatility.

In Friedman's (1953) work, speculators buy and store the commodity, which makes them different from the speculators in the futures market. The latter do not take possession of the underlying commodity and simply close their positions by entering the opposite side of the futures contract. It may seem that speculators' actions in the futures market do not have any impact on the physical market.

On closer inspection however, the speculators' actions and foresight in the futures market may entice the actors in the physical market to reallocate the commodity for sale or purchase to a later period. Therefore, the speculators in the futures market could have an indirect effect on the allocation of the commodity in the physical market, making Friedman's theoretical work applicable to a situation where speculators act through the futures market.

As described earlier the futures market increases the flow and quantity of information. The price of the underlying commodity indicated in the futures contract reveals market participants' expectations about the future of supply and demand of that commodity. These expectations are formed through research done by many agents with commercial and noncommercial interests. Needless to say, the non-commercial interest (speculators) would not be there without the existence of a futures market.

Friedman (1953) asserts that only irrational speculators who act on misinformation destabilize the market. The proxy for the presence of irrational speculators in the futures market could be a sudden rise in the activity of speculators in the futures market. The unanticipated temporary presence of additional non-commercial interest in the futures market could lead (directly or indirectly) to higher price volatility.

Friedman argues that irrational speculators lose money. They buy when prices are high and sell when prices are low, hence increasing the magnitude of the price variation. The sudden rise in the futures market activity is captured by a rise in volume and open interests in the futures contracts. Therefore, we will be looking at the impact of speculators' trading activities in an established futures market on price volatility in the physical market.

3.2 The Theoretical Model

The following paragraphs explain the details of the theoretical model of this work. The model illustrates how speculation could lead to lower price volatility and how the presence of irrational speculators leads to higher price volatility (the full mathematical derivation of the results is available in appendix A)³¹.

The first part of this section describes the parameters and assumptions of the theoretical model. It describes price volatility under the condition of certainty about the future. In the second part uncertainty about the future is added to the model. Under uncertainty, the model compares price volatility in a market with speculators to one without speculators.

³¹ I am forever grateful to my supervisor Professor James Vercammen for developing this section, which I call a refined form of Friedman's theory. The theoretical framework of this study could not have been presented with such clarity had it not been for his input.

The theory is based on a two period model (t_1 and t_2). In the first period (t_1), individuals are endowed with a fixed quantity of a good (Q_1). Some of this good is consumed in the first period (t_1) and some is stored (with a cost = m) for consumption in the second period (t_2). Therefore, the quantity stored (S) in the first period dictates the level of prices in period 1 and period 2 (P_1 and P_2 respectively). 3.1 and 3.2 present P_1 and P_2 as a function of S.

$$P_{1} = a - (Q_{1} - S)$$
(3.1)

$$P_{2} = \tilde{\alpha} - S$$
(3.2)

 $\tilde{\alpha}$ is the demand level in the t₂ which could either be high or low

(S*) is the equilibrium quantity of the stored good. It is the amount of storage that minimizes the difference between P₂ and P₁. As (3.3) indicates the minimum difference between P₂ and P₁ should equal the storage cost (m)³².

$$\mathbf{P}_2 - \mathbf{P}_1 = \mathbf{m} \tag{3.3}$$

If $(P_2 - P_1) > m$, then more can be stored in t_1 to be released in t_2 and lower P_2 . Therefore, storage will continue until (3.3) is achieved. $P_2 - P_1 < m$, would signify that too much is stored in t_1 and losses would occur carrying the goods from t_1 to t_2 . Therefore, less should be stored to establish the equality in (3.3). It is worth mentioning that the storage cost (m) is expressed in terms of the good (i.e. it costs m goods to store the good in t_1 for consumption in t_2).

The Model with Uncertainty

The assumption so far, has been that demand levels for the endowed good are the same in both periods. However, demand levels (relative to supply levels) are subject to change from one period to another due to a number of factors. Indeed the reason for the existence of a futures market is to protect market participants from potential variation and change in the fundamentals.

³² This is the law of one price which indicates that the difference in price of a good between two periods must equal the cost of carrying that good from one period to the next. This assumes that all other factors such as demand level remain unchanged between the two periods.

The demand for the good in the second period (t₂) of our model could be high or low (α_H or α_L respectively). This uncertainty in the demand level in the second period may cause more or less than the equilibrium level of stocks be carried over to t₂ from t₁.

Therefore, with the element of uncertainty in second period demand level, the measure of price variability between the two periods, expressed as the expected squared price difference (ESPD) between t_2 and t_1 would become:

$$E(P_2 - P_1)^2 = m^2 + \frac{1}{4}(\alpha_H - \alpha_L)$$
(3.4)

ESPD as a measure of volatility is higher when there is uncertainty about demand levels in the second period. Inequality (3.5) demonstrates that volatility is higher when there is uncertainty about next period's demand level:

$$m^{2} + \frac{1}{4}(\alpha_{H} - \alpha_{L}) > m^{2}$$
(3.5)

 m^2 is the ESPD when demand level is certain in the second period (i.e 3.3 squared).

In reality uncertainty is always present and there is always under or over allocation of goods to another period, which may cause prices to move away from the equilibrium point. The purpose of this study is to assess whether speculation could lower this under or over allocation of goods to another period. Could the presence of speculators in the market at least reduce the ESPD shown in (3.4) and bring its value closer to the m²? In other words, could speculation lower price volatility?

The Model with Speculators

The two period model presented here makes the following assumptions to incorporate speculators.

1) There are two types of speculators

- a. Speculators who act on information about the demand level in the second period. The quality of this information (ϵ), determines how likely it is for particular demand level to occur in the second period.
- b. Speculators who are convinced that demand level in the second period will be high, no matter what ϵ indicates. These speculators either do not have access to the information that the first group has, or have some preconceived ideas of where the market is heading. Therefore, they are always bullish no matter what the information indicates. The degree of this bullishness is represented by δ .
- 2) There is an equal chance that the news regarding the demand level in t₂ indicates either α_H or α_L .
- 3) The chances that one of α_H or α_L materializes depends on which state ϵ favours and its magnitude.

Therefore, the expression for the expected squared price difference (ESPD) between the first and the second period in the market with speculators is as follows:

$$E_{WS}(P_2 - P_1)^2 = \frac{1}{2} \left[\left(\frac{1}{2} + \epsilon\right) \left(P_2^L(A) - P_1(A) \right)^2 + \left(\frac{1}{2} - \epsilon\right) \left(P_2^H(A) - P_1(A) \right)^2 \right] + \frac{1}{2} \left[\left(\frac{1}{2} - \epsilon\right) \left(P_2^L(B) - P_1(B) \right)^2 + \left(\frac{1}{2} + \epsilon\right) \left(P_2^H(B) - P_1(B) \right)^2 \right]$$
(3.6)

In state A, news in t₁ indicates that demand in the second period will be low (i.e. $\tilde{\alpha} = \alpha_L$). In State B, news in t₁ indicates that demand in the second period (t₂) will be high (i.e. $\tilde{\alpha} = \alpha_H$). The probability of either news states A or B happening is 50%.

There are two possible outcomes once either state A or B is revealed. The actual demand level in the second period could be either low (α_L) or high (α_H) . In case of state A, the probability that demand will be low (i.e. $\tilde{\alpha} = \alpha_L$) in the second period is $(\frac{1}{2} + \epsilon)$ and the

probability of $\tilde{\alpha} = \alpha_H \text{is } (\frac{1}{2} - \epsilon)$. In case of state B, the probability of $\tilde{\alpha} = \alpha_L \text{is } (\frac{1}{2} - \epsilon)$ and of $\tilde{\alpha} = \alpha_H \text{ is } (\frac{1}{2} + \epsilon)$.

 $P_2^L(A)$ indicates P_2 in state A, where actual demand level in the second period is low. $P_2^L(B)$ signifies P_2 in state B, where actual demand level in the second period is low. The other two notations ($P_2^H(A)$ and $P_2^H(B)$) represent period two prices in states A and B, where actual demand level is high in the second period.

Equation (3.6) and the left hand side of inequality (3.5) are the ESPD for the markets with and without speculators respectively. The following sentences describe the dynamics and ESPD value in the market with speculators, and compare the results to the ones from the market without speculators.

NS = without speculators WS = with speculators

$$E_{NS}(P_2 - P_1)^2 = m^2 + \frac{1}{4}(\alpha_H - \alpha_L) = \text{ESPD}_{NS}$$

$$E_{WS}(P_2 - P_1)^2 = \delta^2(\alpha_H - \alpha_L)^2 + 2\delta m(\alpha_H - \alpha_L) - \epsilon^2(\alpha_H - \alpha_L)^2 + m^2 + \frac{1}{4}(\alpha_H - \alpha_L)^2 = \text{ESPD}_{WS}$$
(3.7)
(3.7)
(3.7)
(3.7)
(3.7)

Two immediate results emerge from equation (3.8). The first is that as ϵ increases, ESPD_{WS} falls. As indicated earlier, ϵ signifies the quality of the information available in t₁ about the level of demand in the t₂ (i.e. $\tilde{\alpha}$).

As ϵ increases there will be less uncertainty about the future demand, a more efficient allocation of goods for consumption in the second period takes place. ESPD_{WS}, which captures the price difference between the two periods, falls. Speculation would be absent if $\epsilon = 0$. Therefore, $\epsilon > 0$ implies that speculators enter the market and act on this information regarding demand level in the next period. Therefore (3.8) demonstrates that speculation lowers the price volatility and leads to more stability. The second result from (3.8) is that as δ increases, ESPD_{WS} (i.e. price volatility) also increases. As explained earlier, δ represents the degree of irrationality (bullishness) of uninformed speculators. This result confirms Friedman's argument that only irrational speculators destabilize the market. In the absence of irrational speculators ($\delta = 0$), and when speculators, who are acting on $\epsilon > 0$ are present, there is less volatility (ESPD_{WS} < ESPD_{NS}). However, as δ increases for a given ϵ , the positive effects of informed speculation on stabilizing the market erode.

Further analysis of equation (3.8) indicates that there is a relationship between δ and ϵ . For a given value of ϵ , there is a value for δ (i.e. δ^*) that neutralizes the stabilizing (i.e. volatility reducing) effects of ϵ on lowering volatility. In other words, δ^* sets ESPD_{WS} = ESPD_{NS}.

$$\delta^* = \frac{-m + \sqrt{m^2 + \epsilon^2 (\alpha_H - \alpha_L)^2}}{(\alpha_H - \alpha_L)} \tag{3.9}$$

Equation (3.9) demonstrates that as the value of ϵ rises, the value of δ^* also rises. As the quality of information increases, it takes more and more bullishness by irrational speculators to neutralize the stabilizing effects of speculation by informed speculators.

There are three possible values for δ for any given value of ϵ :

- 1) $\delta < \delta^*$: in this case ESPD_{WS} < ESPD_{NS}
- 2) $\delta = \delta^*$: in this case ESPD_{WS} = ESPD_{NS}
- 3) $\delta > \delta^*$: in this case ESPD_{WS} > ESPD_{NS}

The three cases above indicate that the quality of information (ϵ) should be sufficiently high to counter the destabilizing effects the presence of irrational speculators.

The model presented in this section confirms Friedman's assertion that speculation leads to less price volatility, unless it is carried out by irrational (uninformed) speculators. The model indicates that the impact of uncertainty on price variability from one period to another is mitigated once information based speculation is introduced into the market. As discussed earlier, the futures market is a conveyer of information about the fundamentals in the spot market.

3.3 Summary

This chapter describes the theoretical model of this study. The model shows that speculation reduces price volatility unless it is carried out by speculators who do not act on information. The action of these irrational speculators counters the stabilizing effect of speculation based on information.

Higher quality of information leads to less price volatility and increases the level of misinformed speculation needed neutralize the stabilizing effect of speculation based on information.

Chapter 4: Econometrics

This chapter describes the econometric models used to test the theory that was discussed in chapter 3. It begins by describing the GARCH model, which is used to measure the rice price volatility before and after the introduction of the futures market on the CBOT. It then proceeds to specify vector autoregressive models (VAR) for the purposes of conducting the Granger Causality test and the impulse response function analysis. The latter two are performed to detect and measure any causality between futures trading activity and rice price volatility respectively³³. Lastly, three detrending methods are proposed to capture sudden changes in futures trading activity.

4.1 Rice Cash Price Volatility

Generalized autoregressive conditional heteroskedasticity (GARCH) is used to model the volatility of the rice cash market in United States and the world. The GARCH model is commonly used when dealing with time series data. The use of GARCH as a model of volatility allows for the past shocks in the rice market to be included in the measure of current period volatility. More specifically, a GARCH (p,q) model would take the contribution from the lagged values of conditional variances into account (Bollerslev, 1986). Equation (4.3) represents a GARCH (p,q) model.

$$y_t = \alpha + \sum_{i=1}^q \beta_i y_{t-i} + \epsilon_t \tag{4.1}$$

$$h_t = a_\circ + \sum_{i=1}^q a_i \ \epsilon_{t-i}^2 \tag{4.2}^{34}$$

$$h_t = a_\circ + \sum_{i=1}^q a_i \,\epsilon_{t-i}^2 + \sum_{j=1}^p b_j h_{t-j} \tag{4.3}$$

³³ Forecast error variance decomposition (FEVD) analysis will also be carried out along with the impulse response function analysis

³⁴ Equation (4.2) represents the ARCH (Autoregressive Conditional Heteroskedasticity) process where the error variance is calculated only based on the lagged values of the error term.

 y_t represents the return on the asset over a period of time. β_i is the coefficient on the past values of asset returns. Equation (4.1) indicates that the current value of the return depends on the past values of the return plus an error term, represented by ϵ_t which has a zero mean and a conditional variance of h_t . The error term may not necessarily have a constant variance, h_t over time. This is due to the effect of shocks as they carry over to other periods in a time series data before they completely subside.

The error variance in the GARCH model depends on past variance (persistence effect of past information, h_{t-j}) as well as exogenous shocks (new information, ϵ_{t-i}^2). A reduction in the value of b_j implies that news from previous periods has a less persistent effect on current price changes. Similarly, an increase in the value of a_i implies that prices absorb new information more rapidly.

This quality makes the GARCH model applicable to the analysis of the volatility of the rice cash market before and after the introduction of the futures market. It allows the change in cash price volatility in the rice market to be dissected into two major components with different implications. For example, an increase in rice cash price volatility after the introduction of the futures market could imply a more rapid absorption of information (larger value of a_i) by the market. Higher volatility could also indicate a higher persistence of the effect of past shocks and information (larger values of h_{t-j}) in the market. The latter case implies that the futures market is not playing its roles as a conveyer of information and a market price discovery tool (Holmes, 1996).

The GARCH model is widely used in measuring price volatility in commodities, as it is superior to other volatility measures such as the simple standard deviation or the weighted average of historical price variance. The drawback with these methods is that they do not distinguish between the predictable components of error variance, namely past error terms (h_{t-i}) and the unpredictable ones (ϵ_{t-i}^2) as GARCH does. In the GARCH model, price risk and forecast are determined simultaneously where price risk is specified as a function of variance of the errors of prices (Jayne & Myers, 1994). In addition, as inferred above, the GARCH model accounts for the time-varying pattern of price volatility (Yang, Haigh, & Leatham, 1992).

To model the impact of futures trading on the volatility of the cash price of rice the following regression is proposed:

$$r_t = \beta_0 + \beta_1 CRB_t + \beta_2 WP_t + \epsilon_t \tag{4.4}$$

Where r_t is the log return of cash price for rice at time t, CRB_t and WP_t are the log returns of the proxy variables (more below), and ϵ_t is the error term in estimating the cash price return. It should be mentioned that log return refers to the log of the ratio of next period's price to the current one (i.e. $\log(\frac{P_{t+1}}{P_t}))^{35}$.

The use of proxy variables in the model allows the impact of market wide changes on rice cash price returns to be isolated, leaving the error term to explain the sources of change specific to the rice market. The proxy variables should be commodities for which there are no trading futures contracts (Antoniou & Foster, 1992) or the price of which is not affected by the introduction of the rice futures market. In 2010 finding a commodity without an established trading futures market is a tedious task. Instead, the return on CRB Reuters Commodity Index (CRB) is used.

CRB has been in existence since 1957 and provides a good reflection of the impact of shocks and new information in the commodity market in general³⁶. Despite the fact that there have been futures trading on this index since 1986, similar studies have used it as a proxy variable in their models. It should also be noted that the values of r_t from previous periods (r_{t-i})

 $[\]frac{1}{3^5}$ It should be noted that log return and return are used interchangeably in this study and both mean $\log(\frac{P_{t+1}}{p_r})$

³⁶ The composition of CRBR index is as follows: Oil & Natural Gas: 17.6%, Grains (wheat, corn, and soybean): 17.6%, Industrials: 11.8%, Meats: 11.8%, Softs: 23.5%, Precious metals: 17.6% (Reuters, 2010)

are not included in the model specified by equation (4.4). The proxy variables specified in equation (4.4) contains all the information that (r_{t-i}) do and more, because they reflect the state of the wider commodity market. In addition to the CRB Index, the use of log return of the world price of rice in equation (4.4) controls for the exogenous events that solely impact the rice market and not other commodities. The volatility in the world price of rice has not been influenced by the introduction of the rice futures market on the CBOT (as will be shown in chapter 5).

All literature reviewed for this work pointed to the presence of heteroskedasticity in the price returns of various commodities. Therefore, it is assumed that rice is not an exception. The error term in equation (4.4) is estimated using a GARCH(1,1) model (equation (4.6))

$$\epsilon_t = h_t z_t \tag{4.5}$$

$$h_t = a_0 + a_1 \epsilon_{t-1}^2 + b_1 h_{t-1} \tag{4.6}$$

Most of the previous work on commodity market volatility have chosen the GARCH(1,1) specification (Antoniou & Foster, 1992) and (Yang, Balyeat, & Leatham, 2005). The frequency of the data used in this work is monthly, a GARCH(1,1) model should be adequate to fully account for the effect of past news on current volatility³⁷.

The entire cash price series is divided into two sub series belonging to pre and post rice futures market. The GARCH(1,1) model is used to estimate the volatility for each period and then volatility results from each period are compared. In addition, the volatility of the entire price series is measured with a dummy variable in the GARCH model to account for the introduction of rice futures contract trading on CBOT in October 1994.

The significance of the coefficient on this dummy variable indicates whether the introduction of the futures market has affected cash price volatility or not. The rough rice price

³⁷ There are several alterations of the classic GARCH model. Appendix B provides a detailed theoretical explanation of one of these alternative models. Choosing GARCH(1,1) over the other methods allows for better comparison of results with previous studies on other commodities.

level is also included in the model to control for the level effect. Several works have concluded that there is less volatility at higher price levels. Reilly et al (1978) examined several stocks after a split and conclude that prices are significantly more volatile post split than before the split when prices were at a higher level (Reilly & Drzycimski, 1978). The general conclusion is that there is less volatility when prices rise and more when prices fall. Therefore the final equation modelling volatility in this work is³⁸:

$$h_{t} = \alpha_{\circ} + \alpha_{1} \epsilon_{t-1}^{2} + \alpha_{2} h_{t-1} + \alpha_{3} D_{t} + \alpha_{4} P_{t}$$
(4.7)

D takes the value of 0 to signify the era prior to the introduction of rice futures on the CBOT, and value of 1 for after. P is the price of rough rice (or milled rice when milled rice is examined).

The log return of the rice price was also tested for seasonality. The coefficients on the dummy variables representing each month of the year were insignificant with p-values higher than 0.05^{39} .

$$r_t = \gamma_1 D_1 + \gamma_2 D_2 + \gamma_3 D_3 + \gamma_4 D_4 + \gamma_5 D_5 + \gamma_6 D_6 + \gamma_7 D_7 + \gamma_8 D_8 + \gamma_9 D_9 + \gamma_{10} D_{10} + \gamma_{11} D_{11} + \gamma_{12} D_{12}$$
(4.8)

The joint null hypothesis failed to reject that $\gamma_i = 0$ (p-value = 0.06)⁴⁰. The same method was applied to wheat price series and strong seasonality was detected with the joint test of the hypothesis strongly rejecting the null of $\gamma_i = 0$. Seasonal patterns in the price of wheat are well known and documented. Therefore, running the same regression as (4.8) with wheat price returns confirms validity of (4.8) in detecting the presence of seasonality in rough rice price returns. Seasonality test results are reported in Appendix D.

³⁸ Another form of this equation is presented in Appendix C. The equation in appendix C controls for the effect of previous periods' dummies on this period's volatility. However since the structural break occurres once in our model and is permanent with the same value, it was decided that both forms would yield approximately the same result, therefore the simpler one was chosen for this study.

³⁹ The coefficients for October and November were significant (p-values 0.033 and 0.003 respectively). However, given that the joint test was not significant, it was concluded that seasonality is not present in the series.

⁴⁰ The same test was applied to the rough rice futures price series and seasonality was also rejected for that series. The value of the joint test was 0.55

4.2 Vector Autoregressive Models (VARs)

There are three forms of VARs: reduced form, recursive form, and structural. This study will use the reduced form and recursive forms for the Granger causality test.

$$\sigma_t = a_o + \sum_{i=1}^p \alpha_i \sigma_{t-i} + \sum_{i=1}^q \beta_i T V_{t-i} + \sum_{i=1}^r \gamma_i O I_{t-i} + \epsilon_t$$

$$\tag{4.9}$$

$$TV_{t} = b_{o} + \sum_{i=1}^{q} \beta_{i} TV_{t-i} + \sum_{i=1}^{r} \gamma_{i} OI_{t-i} + \sum_{i=1}^{p} \alpha_{i} \sigma_{t-i} + u_{t}$$
(4.10)

$$OI_{t} = c_{o} + \sum_{i=1}^{r} \gamma_{i} OI_{t-i} + \sum_{i=1}^{q} \beta_{i} TV_{t-i} + \sum_{i=1}^{p} \alpha_{i} \sigma_{t-i} + v_{t}$$
(4.11)

Where σ_t is the rice cash price volatility, *TV* is the detrended rice futures contract trading volume, and *OI* is the detrended non-commercial open interest position in the rice futures contract. ϵ_t , u_t , v_t are the error terms. TV and OI are expressed in percentage form and have no units as will be discussed in section 4.3.

The concern with using the reduced form VAR is that the errors may be serially correlated. In order to address this problem, recursive VAR analysis is proposed. The recursive form VAR has the following structure:

$$\sigma_t = a_o + \sum_{i=1}^p \alpha_i \sigma_{t-i} + \sum_{i=1}^q \beta_i T V_{t-i} + \sum_{i=1}^r \gamma_i O I_{t-i} + \varepsilon_t$$
(4.12)

$$TV_{t} = b_{o} + \sum_{i=1}^{q} \beta_{i} TV_{t-i} + \sum_{i=1}^{r} \gamma_{i} OI_{t-i} + \sum_{i=1}^{p} \alpha_{i} \sigma_{t-i} + \varphi \sigma_{t} + u_{t}$$
(4.13)

$$OI_{t} = c_{o} + \sum_{i=1}^{r} \gamma_{i} OI_{t-i} + \sum_{i=1}^{q} \beta_{i} TV_{t-i} + \sum_{i=1}^{p} \alpha_{i} \sigma_{t-i} + \varphi \sigma_{t} + \tau TV_{t} + v_{t}$$
(4.14)

 ϵ_t , u_t , and v_t are uncorrelated. The inclusion of the current value of volatility (σ) in equation (4.13) removes any correlation between the error terms in equations (4.12) and (4.13). Therefore, the impact of the error in estimating equation (4.13) on the future value of volatility (σ) will only come from shocks to *TV* and not other variables in the system. The drawback with the recursive method is that the results depend on the ordering of variables (Stock & Watson, 2001). This

work includes three variables in the VAR model. Therefore, the ordering of the variables will not alter the results significantly⁴¹.

More recent literature has discussed the need to examine the level of trading activity in existing futures markets to understand their impact on cash price volatility. Granger causality test will be deployed to examine whether level of trading in the futures market causes changes in cash price volatility.

4.2.1 Granger Causality Test

The Granger causality test is used to determine whether past changes in variable X Granger cause (or explain) current changes in variable Y over and above past values of Y. Vector Autoregressive (VAR) techniques are used to carry out the Granger causality test. The first stage involves a regression in which variable Y is regressed on its own lagged values to determine how much of the current value of Y is explained by its lagged values. In the second stage lagged values of another variable (X) are included in the regression. If the lagged values of X have any explanatory power (i.e. statistically significant) then X is said to Granger cause Y. The Granger causality test makes use of the following specification:

$$Y_t = \alpha_o + \sum_{i=1}^p \beta_i Y_{t-i} + \epsilon_t \tag{4.15}$$

$$Y_t = \alpha_o + \sum_{i=1}^p \beta_i Y_{t-i} + \sum_{i=1}^q \gamma_i X_{t-i} + u_t$$
(4.16)

X represents other factors that may Granger cause Y. ϵ_t and u_t are white noise residuals respectively.

The null hypothesis of the Granger Causality test indicates that:

$$\gamma_1 = \gamma_2 = \dots = \gamma_q = 0 \tag{4.17}$$

Therefore, failing to reject the null in the Granger causality test implies that X does not Granger cause Y.

⁴¹ Different ordering of variables mean that there will be six different combinations (n! Or 3!). The different combinations were examined but the results were similar as there are only three variables (Appendix E)

4.2.2 Impulse Response Function (IR)

Another advantage of the recursive VAR with uncorrelated errors is that it allows for an impulse response function analysis (IRF). The impact of one unit increase in error of estimating one of the variables on the current and future values of the other variables is purpose of the IR analysis.

Increasing v_t by one unit in equation (4.14) and having the ε_t and u_t from equations (4.12) and (4.13) constant allows one to observe the change in the current and future values of TV and σ . This indicates the impact that a unit increase in OI will have on TV and σ . The future horizon over which the impact is studied has to be chosen long enough so that the effect levels off or reverts to zero.

An important aspect of working with VAR models is the choice for the lag length of the variable in the model. The following part addresses this issue.

Akaike Information Criterion (AIC)

After determining the appropriate variables to be included in the VAR model (in this case detrended futures trading volume and open interest), one also has to specify the number of lags from each of those variable to be included in the model. Akaike Information Criterion (AIC) is chosen to determine the lag length for the VAR model in this study (Akaike, 1974).

$$AIC = 2T - 2\ln(L) \tag{4.18}$$

Where T = number of parameters L = value of likelihood function (maximized)

$$\ln L = ln \sqrt{\prod_{i=1}^{n} \left(\frac{1}{2\pi\sigma_i^2}\right)} - \frac{1}{2} \sum_{i=1}^{n} \frac{\left(y_i - f(x)\right)^2}{\sigma_i^2}$$
(4.19)

Where y_i = actual observation f(x) = estimated results σ_i^2 = conditional variance The lag length associated with the lowest AIC value will be included in the VAR model. Choosing the right lag order is important in rejecting or failing to reject the null hypothesis for Granger causality. Granger chose all lags for all variables to be equal (Granger, 1969). For larger number of variables in the model, Atukeren (2005) suggests another methodology to choose different lag for each variable. There is a description of this methodology in appendix F.

4.2.3 Forecast Error Variance Decomposition (FEVD)

Another method of studying the impact of a sudden change in either trading volume or open interest on cash price volatility is Forecast Error Variance Decomposition (FEVD). This method indicates the percentage of error made in forecasting a variable that is due to shocks in another variable in the recursive VAR model over a specified forecast horizon⁴². The FEVD method indicates how a shock to one variable contributes to the unpredictability of the other variable in the VAR model.

The IR analysis (described in 4.2.2) and FEVD point to the economic significance of a variable. These methods allow one to see the size of change in a variable caused by changes in another variable and not just whether the change is statistically significant or not (Abdullah & Rangazas, 1988). Therefore, variable A may fail the joint F-test of the Granger causality, indicating that it does cause changes in variable B, however variable A may explain a large percentage of the error variance when forecasting variable B. Therefore, it is important use the FEVD method as a supplement to the Granger Causality test to realize the magnitude of the effect of change in one variable on another.

⁴² This study uses 100 steps ahead in order to have a long enough horizon. The effect of a current shock in one variable will have a long term impact on the error of forecasting another variable. This effect levels off after a few periods and becomes the long term effect. Therefore, in order to avoid the short term and intermediate fluctuations in the impact of shock to one variable on another, it is important to choose a long enough time horizon in this study to detect the long term impact of the shock to one variable (for example futures trading volume) on another variable (for example rice cash price volatility)

4.3 Detrending Futures Trading Volume and Open Interest

Level of futures trading is divided into two parts: trading volume and open interests. The goal of this section is to isolate the unexpected changes from long term trends in trading volume and open interests and estimate whether they cause changes in rice cash price volatility. The unexpected change in trading volume and open interest could be attributed to the sudden entrance of speculators into the futures market. The term speculation is referred to the activity of non-commercial interest in the rice market. Individuals whose sole purpose is to draw profits from the rice price fluctuations using futures contracts, without assuming position of any amount of rice.

In order to obtain the data pertaining to unexpected rise in trading volume and open interest, one has to detrend the data. The trading volume and open interest data of non-commercial interests has to be detrended to account for secular trends in trading volume and open interest numbers in the futures market⁴³. Indeed both non-commercial open interest and trading volume demonstrate an increasing trend over time (Figures 10 and 11). Three detrending methods are proposed: one period percent change, polynomial of third degree, and centre moving average⁴⁴.

Percent Change (or First Difference Method-FD)

The percent change (represented by equation 4.20) of open interest and trading volume from one period to another is calculated. The Granger causality method tests whether change in percentage change of open interest or trading volume causes change in cash price volatility. The

⁴³ Unlike open interests the U.S. Commodity Futures Trading Commission does not provide non-commercial trading volume. This data could not be obtained from another source either. The detrending methods used in this study are adequate to ensure that only sudden momentary changes in the series are captured. General assumption of this study is that sudden changes in trading volume are attributable to the presence of non-commercial agents who are not normally present in the market. Therefore, lack of separate data on trading volume from non-commercial agents should not alter the results of this study.

⁴⁴ Please refer to the DATA section of this work for explanation on data selection.

advantage of using a one-period percent change is that one period change does not contain the long term trend in the time series.

$$\frac{X_{t} - X_{t-1}}{X_{t-1}} \tag{4.20}$$

X = Open interest or trading volume

Figure 12 demonstrates the trading volume and open interest data after be detrended by the first difference method.

Polynomial of Third Degree (P3)

This method takes into account of the possibility that open interest and trading volume may increase in a cubic function form (figures 10 and 11). The open interest or trading volume number is regressed on time in the following format:

$$X_{t_{est}} = \beta_0 + \beta_1 t + \beta_2 t^2 + \beta_3 t^3 + e_t$$
(4.21)

Where X = open interest or trading volume, t = time and e_t is the error term at time t. The difference between observed X and estimated X (i.e. e_t) is then divided by estimated X (i.e. $X_{t_{est}}$) to yield:

$$\frac{e_t}{X_{t\ est}} \tag{4.22}$$

The value of this ratio should be very close from one period to the next unless there are shocks to open interest and trading volume numbers during a period. Increase in the ratio for indicates a sudden jump in trading volume or open interest (figure 13). The Granger Causality method tests to determine whether change in the ratio specified by (4.22) causes a change in cash price volatility.

Centre Moving Average (CMA)

This method subtracts the current period trading volume or open interest from a five week average and then divides it by the average. The result clearly eliminates the long term trend in the data (figure 14)

$$\frac{X_{t}-average(X_{t-2},X_{t-1},X_{t},X_{t+1},X_{t+2})}{average(X_{t-2},X_{t-1},X_{t},X_{t+1},X_{t+2})}$$
(4.23)

Where is X is trading volume or open interest. The Granger Causality test analyzes the effect of change in the value of this ratio (i.e. 4.23) on cash price volatility.

The three detrending methods specified above, eliminate the long term trend in the data set used in this work (figures 12-14). The Granger causality test will be conducted using the detrended trading volume and non-commercial open interest from each of the methods specified above.

Detrended open interest and trading volume may Granger cause rice cash price volatility under one detrending method and not another. For example, trading volume may Granger cause cash price volatility after being detrended by the FD method and not cause volatility under P3 method. Therefore, a rule needs to be established for a final verdict (on whether sudden changes in trading volume and open interest Granger cause change in cash price volatility) while considering the results from the three detrending method.

In order for a sudden change in trading volume or/and open interest to Granger cause a significant change in cash price volatility two of the three detrending methods have to indicate so and at 5% level (i.e. P-values ≤ 0.05). This is referred to as the two-out-of-three rule.

4.4 Summary

Rice cash price volatility from before the introduction of the rice futures market is compared the one after. In addition, a dummy variable is introduced in the volatility model to mark the era of pre and post rice futures market. The significance of this dummy variable would be a strong indication that the presence of the futures market impacts cash price volatility. GARCH(1,1) model is used to measure volatility and Vector Autoregressive models (VARs) are used to carry out the Granger Causality test, impulse response analysis, and forecast error variance decomposition.

In order to capture the sudden change in trading activity and to eliminate the long term trends in volume and open interest data, the two are detrended using three methods of rate of change (first difference-FD), third degree polynomial (P3), and centre moving average (CMA). The impact of trading activity on cash price volatility is measured three times, with one of these detrending methods being used each time. These detrending methods clearly removed the long term trend present in the open interest and trading volume data.

Chapter 5: Data and Results

This chapter is divided into two parts. The first part reveals the sources of data and the way they were used in the empirical analysis. The second part of this chapter offers an analysis of the results.

5.1 Data

The following sections describe the sources of the data that this study used to carry out the empirical analysis. In addition, they describe any operation done on the data series prior to use in the analysis.

5.1.1 Data Source

Two sets of prices are used as cash prices in our analysis. One is price of rough rice, which is the price received by farmers. The other is milled price of rice, which is the price received at milling stations by their operators. The volatility of the price of rough rice is the main focus of this study as it is underlying commodity of the rice futures contract on the CBOT. Both sets of prices are received from USDA's Rice Yearbook⁴⁵ (USDA, 2010).

The price for rough rice was available from September 1982 to February 2011 on a monthly basis. The milled rice prices were available from September 1979 to February 2010⁴⁶. The futures contract trading volume data for rough rice is obtained from Datastream in a continuous stream format (Datastream, 2007)⁴⁷ and on a monthly basis⁴⁸. Although rough rice

⁴⁵ 2010 and earlier versions

⁴⁶ The 2010 version of rice yearbook only included prices up to February 2010. The price of rough rice from February 2010 to February 2011 was found in recent reports published by USDA

⁽http://www.ers.usda.gov/briefing/rice/data.htm). However no such reports were found for milled rice ⁴⁷ Datastream provides a few continuous stream formats. The one that was chosen takes the closing price of the nearest contract. Once the delivery month is reached (on the first trading day of the delivery month), the data stream then switches over to the next nearest contract to obtain closing prices.

⁴⁸ Datastream provides trading volume data with daily and weekly frequencies. The monthly data is simply a sum of the daily trading volume

contracts were introduced to the CBOT in October 1994, the trading volume data were available only from February 2000.

Non-commercial open interest data were obtained from the U.S. Commodity Futures Trading Commission⁴⁹. CRB Reuters Commodity Index numbers were obtained with monthly frequency from Datastream. The price of Thai 100% B second grade, which represents the world price of rice, was partially obtained from the Food and Agricultural Organization (F.A.O) International Commodity Price data base (please refer to 5.1.3 for more details)⁵⁰.

5.1.2 Cash Price Data

Milled rice prices are the average price of long grain no. 2 from three milling centres in United States (Louisiana, Arkansas, and Texas). Milled rice prices were divided into two sub series. The first series is from September 1979 to November September 1994. The second series is from October 1994 to February 2010. These two series fall before and after the introduction of the futures market on the CBOT and are equal in the number of observations.

The same process was applied to rough rice prices. They were divided into two series one spanning from September 1982 to September 1994 and the other from October 1994 to February 2011 (145 and 197 observations for each period respectively). The price data reported in USDA publications are expressed in US dollars/hundredweight (CWT). These figures are converted to metric tonne (1 cwt = 0.045352 tonnes).

5.1.3 World Prices

World rice prices (Thai 100% B second grade, Bangkok) are obtained from USDA rice year book from January 1960 to January 2010. From February 2010 to February 2011 prices are

⁴⁹ <u>http://www.cftc.gov/MarketReports/CommitmentsofTraders/HistoricalCompressed/index.htm</u>

⁵⁰ http://www.fao.org/es/esc/prices/PricesServlet.jsp?lang=en

obtained from the Food and Agricultural Organization's (FAO) International Commodity Prices database⁵¹. The FAO database contains price data with weekly frequency.

The futures market in Zhengzhou was established in April 2009. Therefore, there were 104 weekly observations of world prices after the introduction of the futures market⁵². The volatility of this series was compared to 104 weekly world price observations from 2003 to 2005 signifying the period before the introduction of the rice futures market in Zhengzhou⁵³.

5.1.4 Open Interest Data

The non-commercial open interest data were available from October 1994 with weekly frequency, and were converted to monthly by taking the average of the open interest values of the four (or five) weekly data in each month. As indicated in 5.1.1, trading volume data were only available from February 2000, and therefore open interest data are also used from February 2000.

5.2 Results

This section presents and analyzes the results of the empirical analysis. It also offers an assessment of the empirical results in testing the theory that was presented in Chapter 3. In general the empirical results confirm the theory that the introduction of the futures market reduces cash price volatility.

5.2.1 Summary of Results

Results indicate that rice cash price volatility is lower after the introduction of the rice futures market. In addition, Granger Causality tests reveal that sudden changes in futures trading activity lead to higher volatility in cash prices. This indicates that the presence of irrational

⁵¹ <u>http://www.fao.org/es/esc/prices/PricesServlet.jsp?lang=en</u>

⁵² April 2009 to April 2011

⁵³ The era of 2007 to 2009, which would have been a natural choice for the period without the futures market was left out because of the crisis and the extraordinary circumstances in the rice market. Therefore, a random period that is far from this crisis and not too far from the realities of the current rice market was chosen.

speculators (represented by sudden and temporary changes in futures trading volume and open interest) leads to higher cash price volatility.

5.2.2 Has Speculation Reduced Cash Price Volatility of Rice?

The monthly cash price return variance, measured by the GARCH (1,1), is lower after the introduction of the futures market on the CBOT in October 1994. The average monthly log return variance of the price received by farmers (rough rice) from September 1982 to September 1994 was 0.0076, whereas from October 1994 to February 2011, the variance was 0.0019. This is also despite the world rice market crisis of 2007-2008. The results of the same analysis on milled rice prices indicated that the variance was higher in the period prior to the introduction of the futures market (0.0051 versus 0.0009).

Figures 15 to 18 demonstrate this higher volatility for both rough and milled rice during the period before the introduction of the rice futures market. Appendix G reports the monthly variance generated by the GARCH(1,1) model for both rough and milled rice.

Rough Rice Price Volatility

The estimation of equation 4.7 ($h_t = \alpha_0 + \alpha_1 \epsilon_{t-1}^2 + \alpha_2 h_{t-1} + \alpha_3 D_t + \alpha_4 P_t$) reveals that the coefficient on the dummy variable (α_3) is significant (p-value = 0.000) and the introduction of the rice futures market has reduced cash price volatility by about 51%. The coefficient on the price level (α_4) is also significant (p-value = 0.046) and confirms that an increase in price level lowers the volatility and vice versa by 0.5%. Therefore, controlling for the price level in the volatility model is important as price changes generate different magnitude of volatility at different price levels.

Estimation of equation 4.4 ($r_t = \beta_o + \beta_1 CRB_t + \beta_2 WP_t + \epsilon_t$) reveals that the monthly return on world price has a positive and significant effect on the price return of rough rice in Unite States (8.8% and p-value= 0.00). This result demonstrates the link between the world and

U.S. rice market and justifies controlling for the impact of return on world rice price on the US rough rice price. The coefficient on the CRB Index return was not significant (p-value = 0.64), which is an indication that wider commodity events in the world do not have a significant effect on rough rice price returns in Untied States. Table 1 summarizes the results discussed above.

The following equation was estimated separately for each period before and after the introduction of the rice futures market to compare the characteristics of the price volatility from each period. The purpose of this analysis is to see how sources and characteristics of volatility in the rough rice price change in the presence and absence of the rice futures market.

$$h_t = \alpha_\circ + \alpha_1 \,\epsilon_{t-1}^2 + \alpha_2 h_{t-1} + \alpha_3 P_t \tag{5.1}$$

It is interesting to note that none of the coefficients $(\alpha_1, \alpha_2 \text{ and } \alpha_3)$ are significant in the period after the introduction of the futures market. This indicates that news from previous periods has a less persistent effect on current price changes and that prices absorb new information more rapidly. This confirms the earlier theoretical discussion about the effect of the futures market on increasing information flow, which seems to apply to the rice market in United States.

The coefficients in equation (5.1) were all significant when the analysis was done for the period prior to the introduction of the rice futures market (Table 2). This indicates that before the rice futures market, shocks were more persistent and took longer to show their full effect on the market.

In addition, price level effect discussed earlier was significant in the period prior to the futures market, whereas it was not after the introduction of the futures market. This result could be due to the fact that the futures market creates the possibility of hedging hence price level movement in either direction does not have as pronounced asymmetric effect as it would in the absence of the futures market.

The coefficient on the world price return is also significant and has positive effect on rough rice price return in United State before the rice futures market (unlike after the introduction of the futures market). The hedging effect made possible by the futures market perhaps makes the rough rice market in United States less susceptible to high volatility due to temporary shocks to the world rice market.

Milled Rice Price Volatility

This study is mainly concerned with the volatility of the price of rough rice. However, for reasons cited earlier, the volatility of milled rice prices are also investigated. The dummy variable specified by equation (4.7) was significant (p-value = 0.00) and indicated that the introduction of the futures market has led to a 47% reduction in the volatility of milled rice. As in the case of rough rice the world price returns also have a significant impact on the milled rice price returns (p-value = 0.00). However, unlike rough rice, milled rice price returns are linked with the CRB index return (p-value=0.02). Rice millers maybe more exposed the wider commodity spectrum where the prices of other commodities have a more direct impact on the price they charge than rice farmers. Table 3 summarizes the results of monthly volatility estimation for milled rice.

The volatility characteristics of milled rice price before and after the introduction of the futures market were compared by estimating equation (5.1). Table 4 presents a summary of the results. Change in world price return has a significant effect on the price return of milled rice both before and (unlike rough rice) after the introduction of the futures market. Also, change in price level has an impact on change in price volatility both before and after the futures market. The rice futures market seems to have had a more significant impact on the volatility of rough rice than milled rice. Perhaps this is expected given that the underlying rice futures contract is rough rice.

Rice Futures Market in China and Global Rice Price Volatility

The volatility of world rice prices prior to and after the introduction of rice futures market in Zhengzhou is measured using GARCH (1,1). Comparing the two volatility series shows that the weekly volatility is lower for most of the months in the period prior to the introduction of the futures (Figures 19 and 20). However, as statistics show (below), one cannot conclude that the world price is affected by the introduction of the rice futures in Zhengzahou. The coefficients of equation (5.3) are estimated to determine the volatility of the world price of rice:

$$r_t = \beta_0 + \beta_1 CRB_t + \epsilon_t \tag{5.2}$$

$$h_{t} = \alpha_{\circ} + \alpha_{1} \epsilon_{t-1}^{2} + \alpha_{2} h_{t-1} + \alpha_{3} D_{t}$$
(5.3)

 r_t is the world price return and CRB_t is the return on the CRB index. The CRB index controls for the events that affect the commodity markets and also have an impact on the world rice market. Therefore ϵ_t captures the shocks exclusive to the rice market⁵⁴. The estimate of the coefficient on the dummy variable in equation (5.3) is not significant (p-value = 0.73). Therefore, one cannot claim that the newly established futures market in China has led to less volatility in world rice prices.

Rice Futures on the CBOT and Global Rice Price Volatility

The volatility of world rice prices prior to and after the introduction of rice futures market on the CBOT was measured using GARCH (1,1). Juxtaposing the two price series volatilities (January 1978 to September 1994 and October 1994 to April 2011) does not show a higher or lower volatility of world prices prior to or after the introduction of the rice futures market on the CBOT (Figures 21 and 22). The estimate of the coefficient (α_3) on the dummy variable in equation (5.3) is not significant (p-value = 0.24). Therefore, one cannot claim that the

⁵⁴ The CRB coefficient is significant (p-value =0.00) post establishment of rice futures market in Zhengzhou and not before. This could be due to the general volatility that commodity markets have been experiencing since 2006 and is continuing today. This condition did not exist prior to 2006, therefore the return on CRB index does not have a significant (p-value=0.56) explanatory power for the world rice price return. It should be noted that the pre Zhengzhou rice futures period spans from 2003 to 2005 in this study

establishment of the rice futures market on the CBOT has led to less volatility in world rice prices⁵⁵.

5.2.3 Have Irrational Speculators Increased Cash Price Volatility of Rice?

The impact of trading volume and open interest on cash price volatility at both farm level and after milling is analyzed. The results of the Granger Causality test indicate that change in detrended trading volume and non-commercial open interest Granger cause a positive change in the variance of the cash price return of rice at both farm (rough rice) and milled rice level. The results are significant with p-values of less than 0.05 for all three detrending methods in case of rough rice, and for P3 and CMA in case of milled rice (two-tailed joint test), hence satisfying the two-out-of-three rule that was established in 4.3. Table 5 reports the p-values of the two-tailed test for causality in the rough rice market.

The results of the IR analysis indicate that errors in estimating the changes in the values of volume and open interest do not have a large impact on predicting the future changes in cash price variance. One unit increase in error of estimating the change in the detrended trading volume only leads to a 0.06% (using the first difference detrending method) change in variance estimation of the cash price. This value was 0.03% and 0.07% when the same analysis was done with P3 and CMA as detrending methods respectively.

One unit increase in error of estimating the change in the detrended open interest leads to 0.1%, 0.08%, and 0.1% change in variance estimation of the cash price when deploying FD, P3, and CMA methods respectively. The results of the IR analysis indicate that sudden changes in detrended volume and open interest do not have a significant (not statistically speaking) on the change in the volatility of the cash price at the farm level.

⁵⁵ Appendix I offers a brief discussion on the correlation between the price of rough rice in United States and the world before and after the introduction of the rice futures market on the CBOT. This could shed further light on the impact that the introduction of this market may have had on the way the US rice market interacts with the world rice market.

The error in estimating changes in rice futures trading volume and open interest using their lagged values explained more (although not significatnly more) of the change in the volatility of the price of milled rice than rough rice. One unit increase in the trading volume error leads to a 0.3%, 0.03%, and -0.5% change in the volatility of the milled rice price using FD, P3, and CMA methods respectively⁵⁶. These values are 0.02%, 0.4%, and 0.9% for open interest for each of the methods specified above (these figures are summarized in Table 6).

The futures trading volume and non-commercial open interest seem to have a larger impact on the price volatility of milled rice than rough rice. Indeed studying the correlation between the change in rough rice and futures price, and milled rice and futures price reveals that the futures price is more correlated with milled than rough rice (Table 7)⁵⁷. This could partially explain why futures trading activity has a larger impact on milled rice price volatility in the IR analysis.

The results of the FEVD analysis paint a different picture than those from the IR analysis. In the case of rough rice, sudden changes in trading volume contributes 3.3%, 2.3%, (using FD and P3 detrending methods) and 2.7% (using CMA detrending method) to the error in forecasting the volatility of the rough rice price. Therefore, it could be concluded that sudden changes in trading volume does not have a significant (not in statistical sense) impact on the rough rice price volatility. In case of non-commercial open interest these values were 18.9%, 15.2%, and 7.4%. Therefore, shocks to futures open interest numbers contribute significantly (in an economic sense) to the error in forecasting rough rice price volatility.

In case of milled rice, shocks to trading volume have a larger contribution to changes in price volatility than rough rice. Using the three detrending methods specified earlier, a shock to

⁵⁶ The negative value (-0.5%) obtained from the CMA detrending method indicates that positive sudden change in futures trading volume could lead to a decrease in volatility. However, given that this figure is small and that the other two numbers from FD and P3 methods (two-out-of-three rule) are positive, this negative value is ignored

⁵⁷ The results from the P3 method should be viewed with skepticism as all three values generated by this method are the highest and far off the other two values

trading volume number leads to 3.8%, 6.2%, and 9.5% (FD, P3, CMA respectively) change in milled price volatility. The values of these shocks were 0.1%, 7.8%, and 3.0% in case of open interest. The results are summarized in Table 8.

The results above indicate that shocks to futures open interest have a larger impact on rough rice (farm) price volatility than trading volume. Change in non-commercial open interest numbers could be a signal to farmers that speculators are anticipating higher or lower prices in the future and hence farmers allocate their harvest accordingly. For instance, a surge in the number of non-commercial short positions could be a signal prices will fall in the future. Farmers⁵⁸ may decide to sell all they can today (including what they store) as they perceive today's prices to be higher than tomorrow. This surge in supply in the market, while lowering the price that farmers receive, could also lead to higher volatility.

Shocks to futures trading volume seem to have a larger impact on milled rice price volatility than rough rice according to the FEVD analysis. Milling operations could be more engaged in the trading of the rice futures contracts than farmers. They are constantly buying and selling the physical rice stocks (they do not wait for harvest etc.). Therefore, sudden changes in rice futures trading volume which reflects the temporary conditions in the rice market affects rice millers more than rice farmers. Higher futures trading volume and the presence of more (irrational) speculators may be inviting for rice millers to adjust the price of milled rice to take advantage of the temporary market conditions, leading to higher volatility in the price milled rice⁵⁹.

5.3 Summary

The rice market seems to be less volatile after the introduction of the rice futures market on the CBOT, hence confirming the theory presented in chapter 3. In addition, the tests reveal

⁵⁸ or other agents who carry rice inventories

⁵⁹ Stata output for section 5.2 is available in appendix J

that sudden increase in rice futures trading activity, which is a proxy for the presence of irrational speculators, causes higher rice cash price volatility.

The cash price of rice shows more volatility prior to the introduction of the rice futures market on the CBOT than afterwards. The dummy variable, which distinguishes the pre and post futures periods in the GARCH(1,1) volatility equation, is significant. The same analysis on the impact of the introduction of the rice futures market in China produced insignificant results.

Sudden change in trading activity which is a proxy for the presence of irrational speculators in the market Granger caused the cash price volatility (farm and milled prices). The IR analysis indicated that a change in detrended open interest or trading volume data has a minor effect on cash price volatility of rough rice. These effects are more pronounced when the same analysis is carried out using milled rice prices. The FEVD method indicates that sudden changes in futures trading volume affect the volatility of milled rice prices more than rough rice prices. The reverse is true when the impact of temporary shocks to non-commercial open interest on milled and rough rice price volatility is examined.

The Granger Causality test indicates that the trading activity in the rice futures market has a significant impact on cash price volatility of rice. However, this should be viewed with caution as Granger Causality points to statistical significance of the results. The magnitude of this impact, measured by IR and FEVD methods, indicates that the price volatility of rough rice is not affected by futures trading volume as much as milled rice. This could be attributed to the higher correlation between milled rice and futures price than rough rice and futures price. However, sudden change to futures open interest had a higher impact on rough rice price volatility than milled rice. Perhaps better understanding of the structure of rice market in United States could shed more light on this matter, and why open interest matters more to rough rice price volatility than milled rice price volatility

60

Chapter 6: Conclusion

This work presents and tests Friedman's original statement that speculators stabilize the market (reduce price volatility) unless they are irrational. The first part of this theory asserts that the presence of speculators in the market and better foresight about the future price of the commodity does lead to less volatility. The second part indicates that only the presence of irrational (uninformed) speculators lead to increase price volatility.

This study proposes the use of the futures market as a proxy for the presence of speculators in the market. Sudden changes in futures trading activity figures such as trading volume and open interest is set as a proxy for the presence of irrational speculators.

The rice futures market on the CBOT is chosen for this project. Rice is an important staple food for about half the world's population, yet it does not have a viable global market like wheat and maize. The intention is that the empirical testing of the impact on speculation on price volatility using the rice futures market could provide a direction for further research in forming a more functional and less volatile global rice market.

Based on the results of the empirical analysis, the introduction of rice futures market has led to lower cash price volatility in the rice market in United States. This indicates that the presence of speculators with enhanced foresight through futures market has led to more stability in the rice market in United States. GARCH(1,1) model was used to measure the volatility of rice prices. In addition, a dummy variable was added to the GARCH(1,1) model to separate the two periods of pre and post introduction of rice futures market on the CBOT.

Using the Granger Causality method, modeled by a recursive VAR reveals that trading activity in the futures market increases cash price volatility. However, Granger Causality test only points out the statistical significance of one variable explaining another. FEVD and IR analysis are proposed to measure the effect of futures trading activity on cash price volatility. The latter tests reveal that a sudden change in trading volume and open interest lead to higher degree of volatility in the cash price of milled rice than rough rice (farm price). Sudden entrance of speculators in the futures market destabilizes the rice cash market. However, understanding the market for a commodity is important in determining where this irrational speculative presence is most destabilizing.

This study could be applied to another more global rice futures market in the future to assess its impact on world price volatility. The same assessment in this work revealed no impact on world prices by rice futures market on the CBOT. Future research could focus more directly on how a viable global rice futures market and private speculative presence in that market could lead to more stability in world rice prices.

6.1 Limitations

The more prominent impact of rice futures trading activity on the volatility of milled rice prices may be an indication that rice milling operators use the futures market more than farmers. However, data on futures trading and open interest do not distinguish between the two. Therefore, obtaining separate data on farmer's and milling operators' activities in the futures market could shed light on the reason for the different degree of interaction between rough rice (farm), milled rice, and rice futures market.

The thinness of trade in the rice market, illiquidity in futures market and a relatively low number of monthly observations make it an inherently volatile market in terms of trading activity. As a result the rice futures market may not be a good proxy for the presence of speculation in the market to test the theory put forward in chapter 3. However, the importance of rice as a global staple food makes the current study using the rice futures market relevant. Never the less, these results should be revisited a few years from now once there is longer time series on rice futures trading activity and when the rice futures market is more active.

62

Tables Table 1: Rough Rice Price Volatility Estimation (equations 4.4 and 4.7) 1982-2011

ļ	3 ₀	β_1	β_2	α。	α_1	α2	α3	$lpha_4$
0.0	089	0.0352	0.0890	-5.8528	0.4226	0.3277	-0.5124	-0.0050
0.	.76	0.64	0.00	0.00	0.00	0.00	0.00	0.05

*note: last row report the p-value

Table 2: Rough Rice Price Volatility before and after CBOT Rice Futures Market 1982-Sep1994 and Oct 1994-2011 (equation 5.1)⁶⁰

	β_o	β_1	β_2	$lpha_{\circ}$	α_1	α2	α3
1982-Sep94	-0.0146	0.0306	0.2338	-0.0682	0.2401	0.5111	-0.0472
p-value	0.67	0.84	0.00	0.92	0.02	0.00	0.00
Oct94-2011	0.0007	0.0679	0.0784	-7.5920	0.2230	0.4786	0.0007
p-value	0.83	0.48	0.14	0.00	0.09	0.06	0.76

Table 3: Milled Rice Price Volatility Estimation (equations 4.4 and 4.7) 1979-2010

β_o	β_1	β_2	$lpha_{\circ}$	α_1	α2	α3	α_4
-0.0103	0.1298	0.0821	-7.7117	1.1916	0.0042	-0.4716	0.0012
0.00	0.02	0.00	0.00	0.00	0.85	0.00	0.10

*note: last row report the p-value

Table 4: Milled Rice Price Volatility before and after Futures Market 1979-Sep1994 and Oct1994-2007*(equation 5.1)⁶¹

	β_o	β_1	β_2	$lpha_{\circ}$	α1	α2	α3
1979-Sep94	-0.0014	0.1213	0.1724	-0.2889	0.8998	0.3776	-0.0239
p-value	0.34	0.06	0.00	0.84	0.00	0.00	0.00
Oct94-2007	-0.0020	0.1532	0.1201	-4.9863	0.0143	0.9494	-0.0180
p-value	0.35	0.10	0.00	0.00	0.21	0.00	0.013

*note: Stata encountered problems estimating the GARCH(1,1) with data running to 2010 for the post futures period. Therefore, data series to study the post futures for milled rice were chosen to December 2007

 $^{^{60}}$ Stata results of estimating equations (4.4), (4.7) and (5.1) are presented in Appendix H

⁶¹ Stata results of estimating equations (4.4), (4.7) and (5.1) are presented in Appendix H

Table 5: Impact of Trading Activity on Cash Price Volatility: Granger Causality

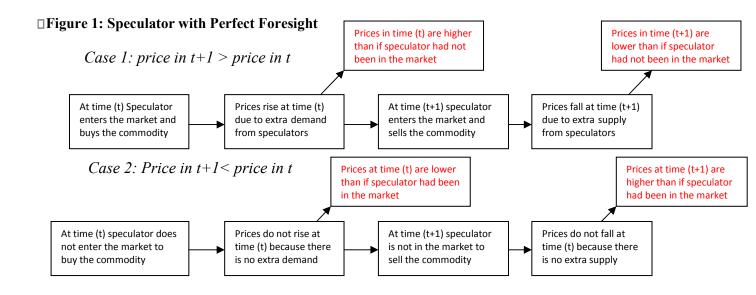
Detrending Method	$TV {\rightarrow} \sigma$	$OI \to \sigma$	TV& OI $\rightarrow \sigma$ (Joint Test)
FD	0.078	0.000	0.001
P3	0.399	0.002	0.006
СМА	0.068	0.012	0.003

*note: \rightarrow signifies direction of causality. TV $\rightarrow \sigma$ change in trading volume (TV) Granger causes cash price volatility OI $\rightarrow \sigma$ change in open interest (OI) Granger causes cash price volatility

Table 6: Impact of Trading Activity on Cash Price Volatility: IR Analysis

	Rough Rice		Milled Rice	
	Open Trading		Open	Trading
Detrending Method	Interest	Volume	Interest	Volume
FD	0.1%	0.06%	0.02%	0.3%
P3	0.08%	0.03%	0.4%	0.03%
СМА	0.1%	0.07%	0.9%	-0.5%

Table 7: Correlation between Detrended Price Change in Milled, Rough and Futures Rice Price


	Futures-	Futures-	Rough-
Detrending Method	Rough	Milled	Milled
FD	0.18	0.33	0.57
P3	0.80	0.81	0.85
СМА	0.0007	0.13	0.42

Note: Price series is from February 2000 to February 2010

Table 8: Impact of Trading Activity on Cash Price Volatility: FEVD Analysis

	Rough Rice		Milled Rice	
	Open Trading		Open	Trading
Detrending Method	Interest Volume		Interest	Volume
FD	18.9%	3.3%	0.1%	3.8%
P3	15.2%	2.3%	7.8%	6.2%
СМА	7.4%	2.7%	3.0%	9.5%

Figures

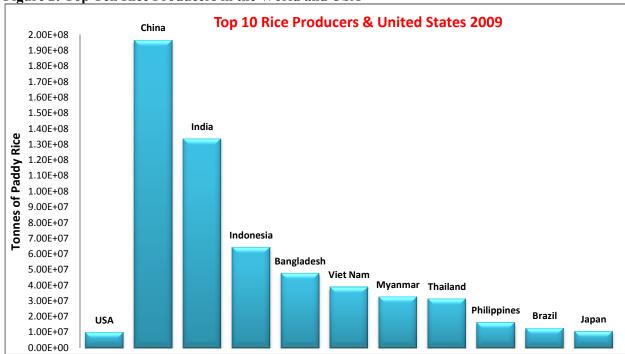
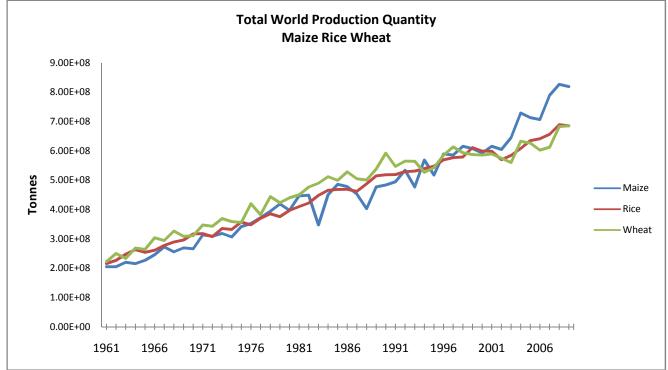
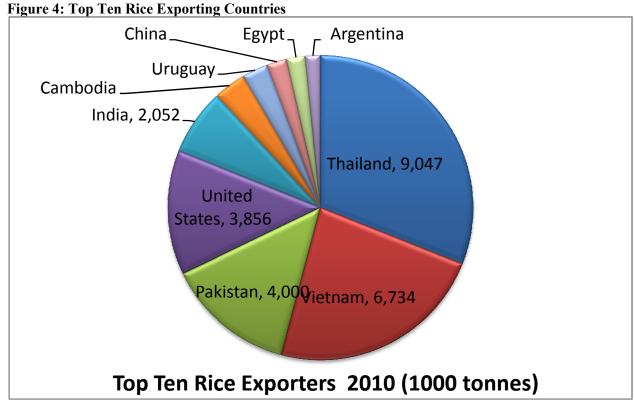
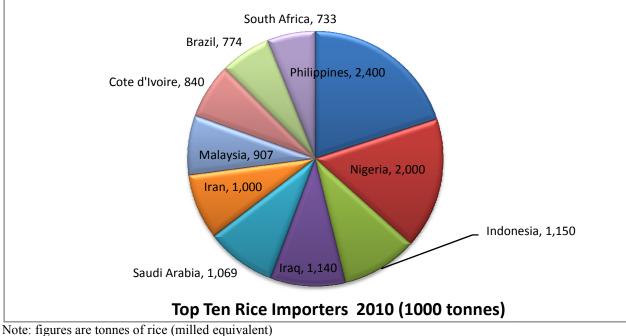
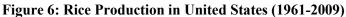


Figure 2: Top Ten Rice Producers in the World and USA


Figure 3: Total Rice, Wheat, and Maize Production in the World (1961-2009)



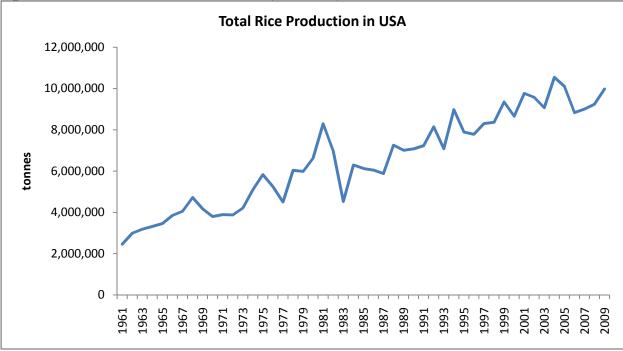
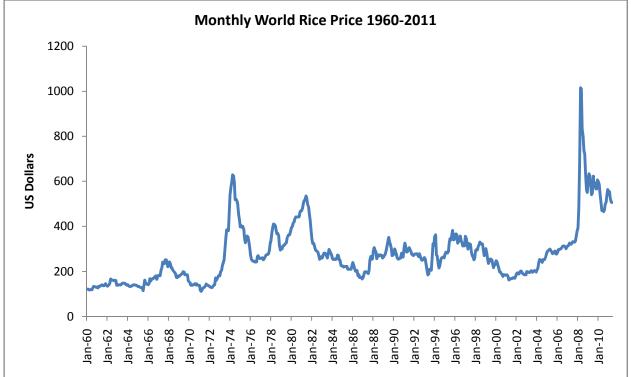

Note: figures are tonnes of rice (milled equivalent) Data Source: USDA Rice Yearbook (2011) Table 23

Figure 5: Top Ten Rice Importing Countries


Data Source: USDA Rice Yearbook (2011) Table 23

*Thai 100% B Second Grade F.O.B Bangkok

Data Source: USDA Rice Yearbook Table 20 and Food and Agricultural Organization (F.A.O) International Commodity Price data base

Figure 8: Rough Rice Futures Contract Specification Source: Chicago Mercantile Exchange (CME Group) http://www.cmegroup.com/trading/agricultural/grain-and-oilseed/rough-rice_contract_specifications.html

Contract Size	2,000 hundredweights (CWT) (~ 91 Metric Tons)					
Deliverable Grade	U.S. No. 2 or better long grain rough rice with a total milling yield of not less than 65% including head rice of not less than 48%. Premiums and discounts are provided for each percent of head rice over or below 55%, and for each percent of broken rice over or below 15%. No heat-damaged kernels are permitted in a 500-gram sample and no stained kernels are permitted in a 500-gram sample. A maximum of 75 lightly discolored kernels are permitted in a 500-gram sample.					
Pricing Unit	Cents per hundredweight					
Tick Size (minimum fluctuation)	1/2 cent per hundredweight (\$10.0	00 per contract)				
Contract Months/Symbols	January (F), March (H), May (K), July (N), September (U) & November (X)					
Trading Hours	CME Globex (Electronic Platform)	6:00 pm - 7:15 am and 9:30 am - 1:15 pm Central Time, Sunday - Friday				
	Open Outcry (Trading Floor)	9:30 am - 1:15 pm Central Time, Monday - Friday				
Daily Price Limit	limit bid or limit offer. There shall b	able to \$0.75 and then to \$1.15 when the market closes at be no price limits on the current month contract on or after g the first day of the delivery month.				
Settlement Procedure	Physical Delivery					
Last Trade Date	The business day prior to the 15th	calendar day of the contract month.				
Last Delivery Date	Seventh business day following the last trading day of the month.					
Product Ticker Symbols	CME Globex (Electronic Platform)	ZR 14=Clearing				
	Open Outcry (Trading Floor)	RR				
Exchange Rule	These contracts are listed with, ar	id subject to, the rules and regulations of CBOT.				

Figure 9: Total non-commercial Futures Contract Long Positions (1994-2010)

Data Source: US Commodity Futures Trading Commission

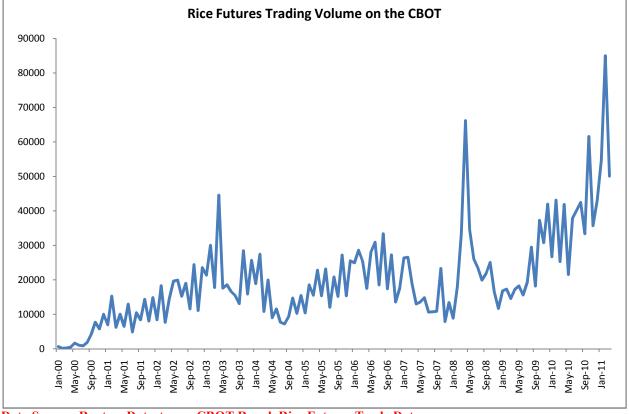


Figure 10: Rice Futures Contract Trading Volume (2000-2011)

Data Source: Reuters Datastream CBOT Rough Rice Futures Trade Data

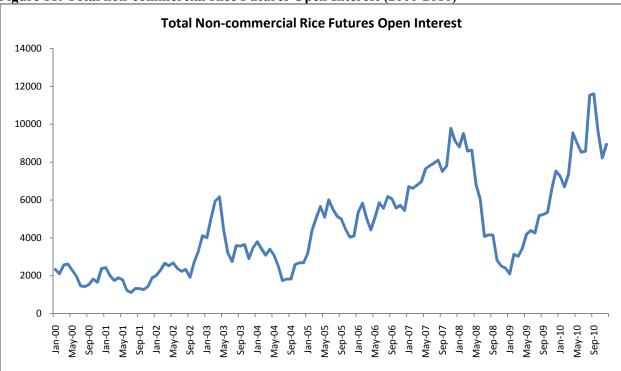
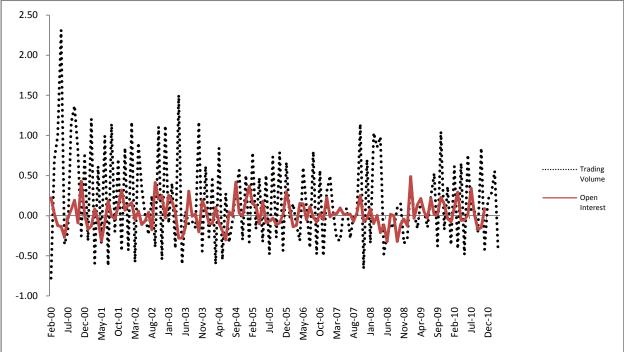



Figure 11: Total non-commercial Rice Futures Open Interest (2000-2010)

Data Source: US Commodity Futures Trading Commission

Figure 12: Detrended Futures Trading Volume and non-Commercial Open Interest-FD Method

Data Source: Datastream and US Commodity Futures Trading Commission

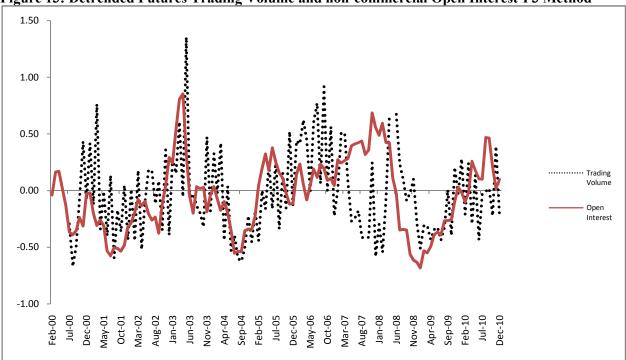


Figure 13: Detrended Futures Trading Volume and non-commercial Open Interest-P3 Method

Data Source: Datastream and US Commodity Futures Trading Commission

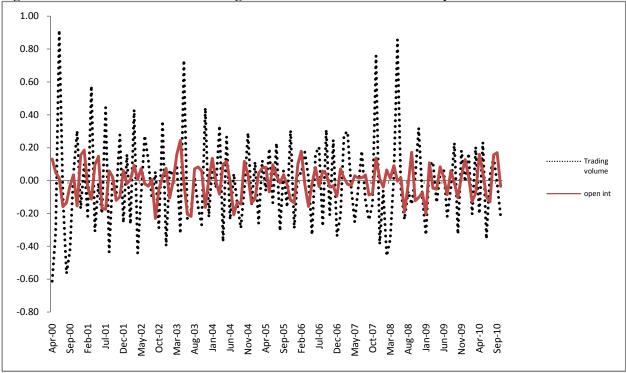


Figure 14: Detrended Futures Trading Volume and non-commercial Open Interest-CMA Method

Data Source: Datastream and US Commodity Futures Trading Commission

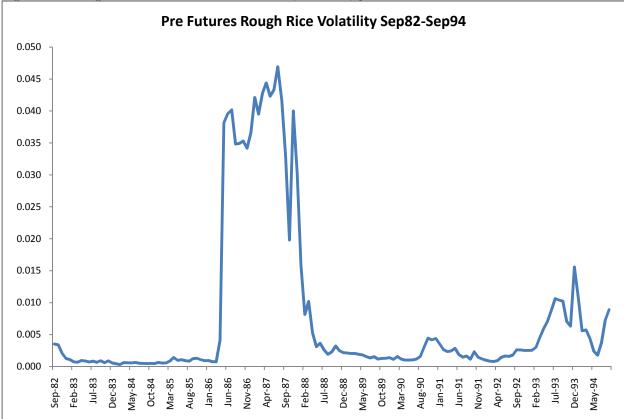


Figure 15: Rough Rice Price Return Variance (GARCH) pre Futures



Figure 17: Milled Rice Price Return Variance (GARCH) pre Futures

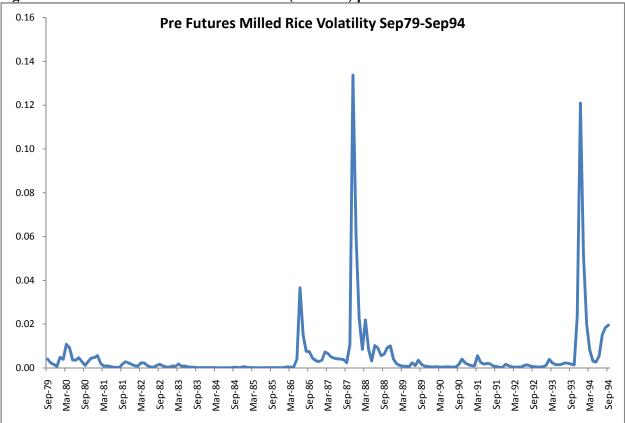
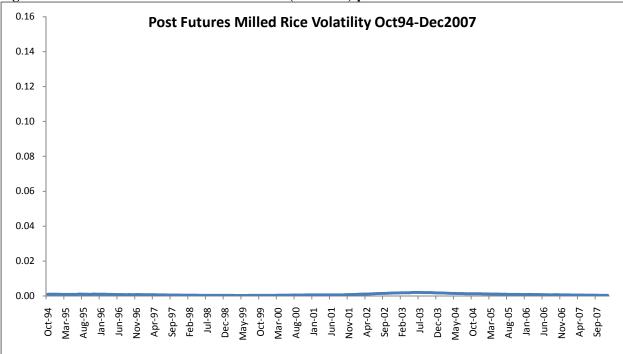
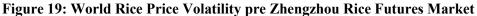
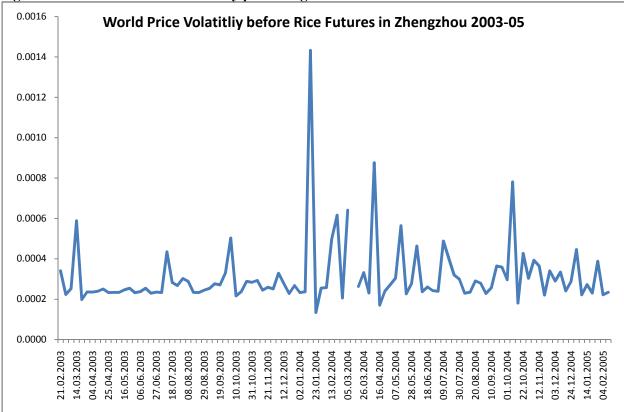
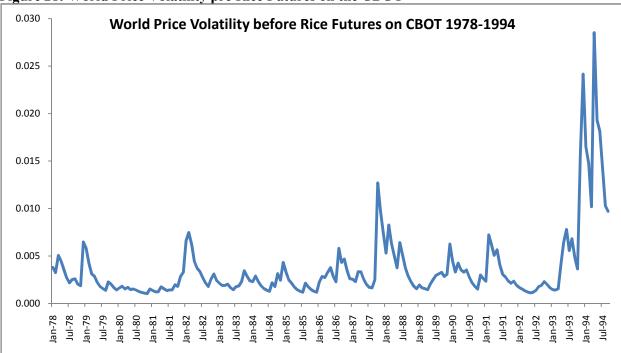




Figure 18: Milled Rice Price Return Variance (GARCH) post Futures

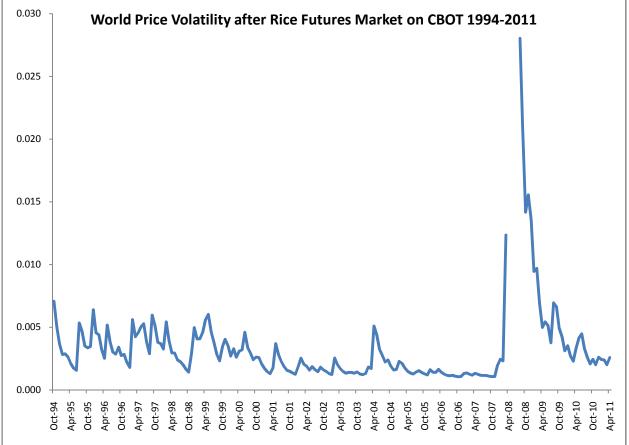

Figure 20: World Rice Price Volatility post Zhengzhou Rice Futures Market

Figure 21: World Price Volatility pre Rice Futures on the CBOT

Bibliography

Abdullah, D. A., & Rangazas, P. C. (1988). Money and the Business Cycle: Another Look. *The Review of Economics and Statistics*, 680-685.

Adrangi, B., & Chatrath, A. (1998). FUTURES COMMITMENTS AND EXCHANGE RATE VOLATILITY. *Journal Business Finance & Accounting*, 501-520.

Akaike, H. (1974). A New Look at the Statistical Model Identification. *IEEE Transactions on Automatic Control, Vol 19 No.6*, 716-723.

Akgiray, V. (1989). Conditional Heteroscedasticity in Time Series of Stock Returns: Evidence and Forecasts. *The Journal of Business*, 55-80.

Antoniou, A., & Foster, A. J. (1992). THE EFFECT OF FUTURES TRADING ON SPOT. *Journal of Business Finance & Accounting*, 473-484.

Antoniou, A., & Holmes, P. (1995). Futures trading, information and spot price volatility: evidence for the FTSE-100 Stock Index Futures contract using GARCH. *Journal of Banking & Finance*, 117-129.

Atukeren, E. (2005). Measuring the strength of cointegration and Granger-causality. *Applied Economics*, 1607-1614.

BESSEMBINDER, H., & SEGUIN, P. J. (1992). Futures Trading Activity and Stock Price Volatility. *The Journal of Finance*, 2015-2034.

Bollerslev, T. (1986). GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTICITY. *Journal of Econometrics*, 307-327.

Brewer, E., Carson, J. M., Elyasiani, E., Mansur, I., & Scott, W. L. (2007). INTEREST RATE RISK AND EQUITY VALUES OF LIFE:INSURANCE COMPANIES: A GARCH–M MODEL. *The Journal of Risk and Insurance*, 401-423.

CBOT. (2010, March). *Chicago Mercantile Exchange*. Retrieved March 2010, from http://www.cmegroup.com/trading/commodities/grain-and-oilseed/

CBOT. (2008). Rough Rice Futures. In CBOT, Chicago Board of Trade Rule Book. Chicago.

CFTC. (2009). U.S. Commodity Futures Trading Commission. Retrieved March 18, 2010, from http://www.cftc.gov/marketreports/commitmentsoftraders/CFTC009781.html

Childs, N., & Balwin, K. (2009). *Rice Trade*. Washington DC: Unites States Department of Agriculture, http://www.ers.usda.gov/Briefing/Rice/trade.htm .

CME. (2011). *Rough Rice contract specification*. Retrieved May 2011, from Chicago Mercantile Exchange: http://www.cmegroup.com/trading/agricultural/grain-and-oilseed/rough-rice_contract_specifications.html

Coclanis, P. A. (1993). The Creation of a World Market in Rice and the Transformations It Wrought. *The American Historical Review*, 1050-1078.

Cole, A. H. (1927). The American Rice-Growing Industry: A Study of Comparative Advantage. *The Quarterly Journal Economics*, 595-643.

Cox, C. C. (1976). Futures Trading and Market Information. Journal of Political Economy, 1215-1237.

Creed, R. c. (1999-2009). Creed Rice Market Report. Houston: Creed Rice Co. Inc.

Datastream. (2007). *Futures Continuous Series on the Datastream Product, Definition & Methodology.* Datastream.

Dawe, D., & Slayton, T. (2009). The World Rice Market Crisis of 2007-2008. In D. Dawe, *The Rice Crisis* (pp. 15-16). Rome: earthscan.

Epps, T., & Epps, M. (1976). The stochastic dependence of security price changes and transaction volumes: Implications for the mixture-of-distributions hypothesis. *Econometrica*, 305-321.

FAO. (2010, March 19). *FAOSTAT*. Retrieved from http://faostat.fao.org/site/535/DesktopDefault.aspx?PageID=535#ancor

FAO. (2010). *Policy Brief: Price Volatility in Agricultural Markets*. Rome: Food and Agricultural Organization of the U.N.

Figlewski, S. (1981). GNMA PASSTHROUGH SECURITIES: Futures Trading and Volatility in the GNMA. *Journal of Finance*, 445-456.

Forbes. (2011). Retrieved from http://www.forbes.com/feeds/afx/2009/03/23/afx6198713.html

Fowke, E., & Glazer, J. (1973). Songs of Work and Protest. New York: Dover Publications.

Friedman, M. (1953). Essays in Positive Economics. Chicago: University of Chicago Press.

Granger, C. (1969). Investigating causal relationships by econometric models and cross-spectral methods. *Econometrica*, 424-438.

Gray, R. W. (1963). Onions Revisited. Journal of Farm Economics, 273-276.

Gray, R. W. (1959). Speculation Helps Onion Grower. Minnesota Farm Business Notes .

Hailu, G., & Weersink, A. (2010). *Commodity Price Volitility: The Impact of Commodity Index Traders.* Guelph: CATPRN.

Harris, L. (1989). S&P 500 Cash Stock Price Volatilities. The Journal of Finance, 1155-1175.

Hart, O. D., & Krept, D. M. (1986). Price Destabilizing Speculation. *The Journal of Political Economy*, 927-952.

Holmes, P. (1996). Spot price volatility, information and futures trading: evidence from a thinly traded market . *Applied Economics Letters*, 63-66.

IRRI, I. R. (2010). Retrieved May 5, 2010, from IRRI: http://beta.irri.org/news/index.php/rice-today/global-rice-trade-what-does-it-mean-for-future-food-security.html

Jayne, T. S., & Myers, R. J. (1994). The Effect of Risk on Price Levels and Margins in International Wheat Markets. *Review of Agricultural Economics*, 63-73.

Kawai, M. (1983). Price Volatility of Storable Commodities under Rational Expectations in Spot and Futures Markets. *International Economic Review*, 435-459.

Keynes, J. M. (1930). A Treatise on Money. London: Macmillan.

Leuthold, R. M., & Taylor, G. S. (1974). The linfluence of Trading on Cash Cattle Price Variations. *Food Research Institute, Stanford University*, 28-35.

Martikainen, T., & Puttonen, V. (1994). International Price Discovery in Finnish Stock Index Futures and Cash Markets. *Journal of Banking & Finance*, 809-822.

McKenzie, A. M., Jiang, B., Djunaidi, H., Hoffman, L. A., & Wailes, E. J. (2002). Unbiasedness and Market Efficiency Tests of the U.S. Rice Futures Market. *Review of Agricultural Economics*, 474-493.

Medlock, K. B., & Myers, A. (2009). *Who is in the Oil Futures Market and how has it Changed*? Houston: James A. Baker III Institute for Public Policy Rice University.

Miller, M. (1991). Financial Innovations and Market Volatility. Oxford: Blackwell.

Morgan, C. (1999). Futures Markets and Spot Price Volatility. *Journal of Agricultural Economics*, 247-257.

Petzel, T. E., & Monke, E. A. (1979). The Integration of the International Rice Market. *Food Research Institute Studies No. 17*, 307-326.

Powers, M. J. (1970). Does Futures Trading Reduce Price Fluctuations in the Cash Markets? *The American Economic Review*, 460-464.

Powers, M. J. (1970). Does Futures Trading Reduce Price Fluctuations in the Cash Markets? *The American Economic Review*, 460-464.

Reilly, F. K., & Drzycimski, E. F. (1978, August 24). Price Volatility and Price Level. *Faculty Working Papers University of Illinois at Urbana-Champaign*.

Reuters. (2010, March). *CRB Commodity Index*. Retrieved March 2010, from Moore Research Centre Inc.: http://www.mrci.com/client/crb.php

Ross, S. A. (1989). Information and Volatility: The No-Arbitrage Martingale Approach to Timing and Resolution Irrelevancy. *The Journal of Finance*, 1-17. Schaede, U. (1989). FORWARDS AND FUTURES IN TOKUGAWA-PERIOD JAPAN: A New Perspective on the D6jima Rice Market. *Journal of Banking and Finance*, 487-513.

Siamwalla, A., & Haykin, S. (1983). *The World Rice Market: Structure, Conduct, and Performance*. International Food Policy Research Institute, Report 39.

Stock, J. H., & Watson, M. W. (2001). Vector Autoregressions. *The Journal Economic Perspectives*, 101-115.

Strong, N., & Walker, M. (1987). Information and Capital Markets. Oxford: Blackwell.

Taylor, E. L., Bessler, D. A., Waller, M. L., & Rister, E. M. (1996). Dynamic relationships between US and Thai rice prices. *Agricultural Economics*, 123-133.

Timmer, C. P. (2008). *Causes of High Food Prices*. Asian Development Bank.

Timmer, C. P. (2009). *Did Speculation Affect World Rice Prices*? Rome: ESA Working Paper No. 09-07 The Food and Agricultural Organization of The United Nations.

U.S. Code, U. (1958, August 28). *US Code.* Retrieved March 2010, from Office of the Law Revision Council: http://frwebgate.access.gpo.gov/cgi-bin/usc.cgi?ACTION=RETRIEVE&FILE=\$\$xa\$\$busc7.wais&start=533805&SIZE=1165&TYPE=TEXT

USDA. (2010). Retrieved May 3, 2011, from http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1229

USDA. (2007). *Rice Yearbook.* Washington DC: United States Department of Agriculture.

Valentine, T. (1995). Putting Derivatives in their Proper Place. Agenda , 321-332.

Yang, J., Balyeat, B. R., & Leatham, D. J. (2005). Futures Trading Activity and Commodity Cash Price Volatility. *Journal of Business Finance & Accounting*, 297-323.

Yang, J., Haigh, M. S., & Leatham, D. J. (1992). Agricultural liberalization policy and commodity price volatility: a GARCH application. *Applied Economics Letters*, 593-598.

Appendices

Appendix A: Derivation of Equations 3.7, 3.8 and 3.9

Two periods: t_1 and t_2 State A: $\tilde{\alpha} = \alpha_L$ State B: $\tilde{\alpha} = \alpha_H$ $\tilde{\alpha} = t_1$ news of Demand in (t₂) Q_1 = first period endowment a = intercept value S = quantity stored in the first period S^* = equilibrium quantity of storage m= storage cost $P_1 = a - Q_1 + S = price in t_1$ (A.1) $P_2 = \tilde{\alpha} - S = price in t_2$ (A.2) $P_2 - P_1 = m$ (A.3) Solving for S^{*}: $P_2 - P_1 = m$ $\tilde{\alpha} - S - a + Q_1 - S = m$ $S^* = \frac{1}{2}(\tilde{\alpha} + Q_1 - a - m)$ (A.4)

A. Expected Squared Price Difference (ESPD_{NS}) (Derivation of 3.7)

$$\begin{aligned} \epsilon &= \delta = 0 \\ \tilde{\alpha} &= \frac{1}{2} \alpha_L + \frac{1}{2} \alpha_H \to \text{equal probability for either high or low demand in second period} \\ E_{NS}(P_2 - P_1)^2 &= \frac{1}{2} [\alpha_L - 2S^* - a + Q_1]^2 + \frac{1}{2} [\alpha_H - 2S^* - a + Q_1]^2 \\ &= \frac{1}{2} \Big[\alpha_L - \Big(\frac{1}{2} \alpha_H + \frac{1}{2} \alpha_L + Q_1 - a - m \Big) - a + Q_1 \Big]^2 + \frac{1}{2} \Big[\alpha_H - \Big(\frac{1}{2} \alpha_H + \frac{1}{2} \alpha_L + Q_1 - a - m \Big) - a + Q_1 \Big]^2 \\ &= \frac{1}{2} \Big[m - \frac{1}{2} (\alpha_H - \alpha_L) \Big]^2 + \Big[m + \frac{1}{2} (\alpha_H - \alpha_L) \Big]^2 \\ &= \frac{1}{2} m^2 - \frac{1}{2} m (\alpha_H - \alpha_L) + \frac{1}{8} (\alpha_H - \alpha_L)^2 + \frac{1}{2} m^2 + \frac{1}{2} m (\alpha_H - \alpha_L) + \frac{1}{8} (\alpha_H - \alpha_L)^2 \\ &= m^2 + \frac{1}{4} (\alpha_H - \alpha_L)^2 = \text{ESPD}_{\text{NS}} = (\text{T.7}) \end{aligned}$$
(A.5)
End

B. Expected Squared Price Difference with Speculation (ESPD_{WS}) (Derivation of 3.8)

State A: $\tilde{\alpha} = \left(\frac{1}{2} + \epsilon - \delta\right) \alpha_L + \left(\frac{1}{2} - \epsilon + \delta\right) \alpha_H$ State A indicates that t_1 news points to low demand in period 2 State B: $\tilde{\alpha} = \left(\frac{1}{2} - \epsilon - \delta\right) \alpha_L + \left(\frac{1}{2} + \epsilon + \delta\right) \alpha_H$ State B indicates that t_1 news points to high demand in period 2 Equal probability of each state happening

Two possible S^{*} (please see A. for derivation of S^{*}):

$$S_A^* = \frac{1}{2} \left[\alpha_L \left(\frac{1}{2} + \epsilon - \delta \right) + \alpha_H \left(\frac{1}{2} - \epsilon + \delta \right) - \alpha + Q_1 - m \right]$$

$$S_{B}^{*} = \frac{1}{2} \left[\alpha_{L} \left(\frac{1}{2} - \epsilon - \delta \right) + \alpha_{H} \left(\frac{1}{2} + \epsilon + \delta \right) - a + Q_{1} - m \right]$$

$$E_{WS} (P_{2} - P_{1})^{2} = \frac{1}{2} \left[\left(\frac{1}{2} + \epsilon \right) \left(P_{2}^{L}(A) - P_{1}(A) \right)^{2} + \left(\frac{1}{2} - \epsilon \right) \left(P_{2}^{H}(A) - P_{1}(A) \right)^{2} \right] + \frac{1}{2} \left[\left(\frac{1}{2} - \epsilon \right) \left(P_{2}^{L}(B) - P_{1}(B) \right)^{2} + \left(\frac{1}{2} + \epsilon \right) \left(P_{2}^{H}(B) - P_{1}(B) \right)^{2} \right]$$
(A.6)

Begin Aside:

Recall
$$P_2 - P_1 = \tilde{\alpha} - 2S^* + m$$

Therefore:
 $\left(P_2^L(A) - P_1(A)\right)^2 = (\alpha_L - [\tilde{\alpha} - (\epsilon - \delta)(\alpha_H - \alpha_L) + m])^2$
(A.7)

$$\left(P_2^{n}(A) - P_1(A)\right) = \left(\alpha_H - \left[\tilde{\alpha} - (\epsilon - \delta)(\alpha_H - \alpha_L) + m\right]\right)^2 \tag{A.8}$$

$$\left(P_{L}^{2}(B) - P_{1}(B)\right) = \left(\alpha_{L} - \left[\tilde{\alpha} + (\epsilon + \delta)(\alpha_{H} - \alpha_{L}) + m\right]\right)^{2}$$
(A.9)

$$(P_2^H(A) - P_1(A))^2 = (\alpha_H - [\tilde{\alpha} + (\epsilon + \delta)(\alpha_H - \alpha_L) + m])^2$$
(A.10)

Rearrange (A.7):

$$\begin{aligned} (I.7) &= (\alpha_L - [\tilde{\alpha} - \epsilon \alpha_H + \epsilon \alpha_L + \delta \alpha_H - \delta \alpha_L + m])^2 = \left(\alpha_L - \frac{1}{2}\alpha_L - \frac{1}{2}\alpha_H + \epsilon \alpha_H - \epsilon \alpha_L - \delta \alpha_H + \delta \alpha_L - m\right)^2 = \\ \left(\frac{1}{2}\alpha_L - \frac{1}{2}\alpha_H + \epsilon \alpha_H - \epsilon \alpha_L - \delta \alpha_H + \delta \alpha_L - m\right)^2 &= \left(\epsilon(\alpha_H - \alpha_L) - \delta(\alpha_H - \alpha_L) - \frac{1}{2}(\alpha_H - \alpha_L) - m\right)^2 \\ &= \left[\left(\epsilon - \delta - \frac{1}{2}\right)(\alpha_H - \alpha_L) - m\right]^2 = \left[\left(\epsilon - \delta - \frac{1}{2}\right)(\alpha_H - \alpha_L) - m\right] \left[\left(\epsilon - \delta - \frac{1}{2}\right)(\alpha_H - \alpha_L) - m\right] \\ &= (Z - m)(Z - m) = (Z - m)^2 \end{aligned}$$

Rearrange (A.8):

(I.8) =
$$\left(\epsilon(\alpha_H - \alpha_L) - \delta(\alpha_H - \alpha_L) + \frac{1}{2}(\alpha_H - \alpha_L) - m\right)^2$$

= $\left[\left(\epsilon - \delta + \frac{1}{2}\right)(\alpha_H - \alpha_L) - m\right]^2 = (Y - m)^2$

Rearrange (A.9):

$$(I.9) = \left(-\epsilon(\alpha_H - \alpha_L) - \delta(\alpha_H - \alpha_L) - \frac{1}{2}(\alpha_H - \alpha_L) - m\right)^2 \\ \left[\left(-\epsilon - \delta - \frac{1}{2}\right)(\alpha_H - \alpha_L) - m\right]^2 = (W - m)^2$$

Rearrange (A.10): (I.10) = $\left(-\epsilon(\alpha_H - \alpha_L) - \delta(\alpha_H - \alpha_L) + \frac{1}{2}(\alpha_H - \alpha_L) - m\right)^2$ = $\left[\left(-\epsilon - \delta + \frac{1}{2}\right)(\alpha_H - \alpha_L) - m\right]^2 = (F - m)^2$

End Aside

$$\begin{aligned} (A.6) &= \frac{1}{2} \left[\left(\frac{1}{2} + \epsilon \right) (Z - m)^2 + \left(\frac{1}{2} - \epsilon \right) (Y - m)^2 \right] + \frac{1}{2} \left[\left(\frac{1}{2} - \epsilon \right) (W - m)^2 + \left(\frac{1}{2} + \epsilon \right) (F - m)^2 \right] \\ &= \frac{1}{2} \left[\left(\frac{1}{2} + \epsilon \right) (Z - m)^2 + \left(\frac{1}{2} - \epsilon \right) (Y - m)^2 + \left(\frac{1}{2} - \epsilon \right) (W - m)^2 + \left(\frac{1}{2} + \epsilon \right) (F - m)^2 \right] \\ &= \frac{1}{2} \left[2m^2 - m(Z + Y + W + F) + \epsilon(Z^2 - Y^2 - W^2 + F^2) + \frac{1}{2}(Z^2 + Y^2 + W^2 + F^2) - 2\epsilon m(Z - Y - W + F) \right] \\ \end{aligned}$$
(A.11)

$$\frac{\text{Aside}}{(\mathbf{Z} + \mathbf{Y} + \mathbf{W} + \mathbf{F})} = \left(\epsilon - \delta - \frac{1}{2}\right)(\alpha_H - \alpha_L) + \left(\epsilon - \delta + \frac{1}{2}\right)(\alpha_H - \alpha_L) + \left(-\epsilon - \delta - \frac{1}{2}\right)(\alpha_H - \alpha_L) \\
+ \left(-\epsilon - \delta + \frac{1}{2}\right)(\alpha_H - \alpha_L) \\
= (\alpha_H - \alpha_L)\left[\epsilon - \delta - \frac{1}{2} + \epsilon - \delta + \frac{1}{2} - \epsilon - \delta - \frac{1}{2} + \frac{1}{2} - \epsilon - \delta\right] \\
= -4\delta(\alpha_H - \alpha_L)$$
(A.12)

$$(\mathbf{Z}^{2} - \mathbf{Y}^{2} - \mathbf{W}^{2} + \mathbf{F}^{2})$$

$$= \left(\epsilon - \delta - \frac{1}{2}\right)^{2} (\alpha_{H} - \alpha_{L})^{2} - \left(\epsilon - \delta + \frac{1}{2}\right)^{2} (\alpha_{H} - \alpha_{L})^{2}$$

$$- \left(-\epsilon - \delta - \frac{1}{2}\right)^{2} (\alpha_{H} - \alpha_{L})^{2} + \left(-\epsilon - \delta + \frac{1}{2}\right)^{2} (\alpha_{H} - \alpha_{L})^{2}$$

$$= (\alpha_{H} - \alpha_{L})^{2} \left[\epsilon^{2} - 2\epsilon\delta - \epsilon + \delta^{2} + \delta + \frac{1}{4} - \epsilon^{2} + 2\epsilon\delta - \epsilon - \delta^{2} + \delta - \frac{1}{4} - \epsilon^{2}$$

$$- 2\epsilon\delta - \epsilon - \delta^{2} - \delta - \frac{1}{4} + \frac{1}{4} - \epsilon - \delta + \epsilon^{2} + 2\epsilon\delta + \delta^{2} \right] = -4\epsilon(\alpha_{H} - \alpha_{L})^{2}$$
(A.13)

$$(Z^{2} + Y^{2} + W^{2} + F^{2})$$

$$= (\alpha_{H} - \alpha_{L})^{2} \left[\epsilon^{2} - 2\epsilon\delta - \epsilon + \delta^{2} + \delta + \frac{1}{4} + \epsilon^{2} - 2\epsilon\delta + \epsilon - \frac{1}{4} + \epsilon^{2} + 2\epsilon\delta + \epsilon + \epsilon^{2} + 2\epsilon\delta + \epsilon^{2} + 2\epsilon\delta + \delta^{2} \right] = (4\epsilon^{2} + 4\delta^{2} + 1)(\alpha_{H} - \alpha_{L})^{2}$$
(A.14)

$$(\mathbf{Z} - \mathbf{Y} - \mathbf{W} + \mathbf{F}) = (\alpha_H - \alpha_L) \left[\epsilon - \delta - \frac{1}{2} - \epsilon + \delta - \frac{1}{2} + \epsilon + \delta + \frac{1}{2} + \frac{1}{2} - \epsilon - \delta \right] = 0$$
(A.15)

End Aside

Going back to (A.6) deriving (3.8):

$$E_{WS}(P_2 - P_1)^2 = \frac{1}{2} \Big[2m^2 - m \Big(-4\delta(\alpha_H - \alpha_L) \Big) + \epsilon (-4\epsilon(\alpha_H - \alpha_L)^2) \\
+ \frac{1}{2} (4\epsilon^2 + 4\delta^2 + 1)(\alpha_H - \alpha_L)^2 - 2\epsilon m(0) \Big] \\
= \frac{1}{2} \Big[2m^2 + 4m\delta(\alpha_H - \alpha_L) - (\alpha_H - \alpha_L)^2 \Big(2\epsilon^2 - 2\delta^2 - \frac{1}{2} \Big) \Big] \\
= m^2 + 2m\delta(\alpha_H - \alpha_L) - \epsilon^2(\alpha_H - \alpha_L)^2 + \delta^2(\alpha_H - \alpha_L)^2 + \frac{1}{4} (\alpha_H - \alpha_L)^2 \\
= (3.8)$$
(A.16)

(A.16) is the ESPD_{WS}. As the value of ϵ increases, ESPD_{WS} falls. As the value of δ increases, ESPD_{WS} rises.

Value of δ^* Derivation of 3.9

In order to derive the value of δ^* , (3.7) has to be set equal to (3.8)

$$\begin{split} ESPD_{NS} &= ESPD_{WS} \to \\ m^{2} + \frac{1}{4}(\alpha_{H} - \alpha_{L})^{2} &= m^{2} + 2m\delta(\alpha_{H} - \alpha_{L}) - \epsilon^{2}(\alpha_{H} - \alpha_{L})^{2} + \delta^{2}(\alpha_{H} - \alpha_{L})^{2} + \frac{1}{4}(\alpha_{H} - \alpha_{L})^{2} \\ 2m\delta(\alpha_{H} - \alpha_{L}) - \epsilon^{2}(\alpha_{H} - \alpha_{L})^{2} + \delta^{2}(\alpha_{H} - \alpha_{L})^{2} = 0 \end{split}$$

Use quadratic formula to solve for δ :

$$\delta = \frac{-2m(\alpha_H - \alpha_L) \pm \sqrt{\left(2m(\alpha_H - \alpha_L)\right)^2 - 4(\alpha_H - \alpha_L)^2(-\epsilon^2(\alpha_H - \alpha_L)^2)}}{2(\alpha_H - \alpha_L)^2}$$
$$= \frac{-2m(\alpha_H - \alpha_L) \pm \sqrt{4m^2(\alpha_H - \alpha_L) + 4(\alpha_H - \alpha_L)^2(\epsilon^2(\alpha_H - \alpha_L)^2)}}{2(\alpha_H - \alpha_L)^2}$$
$$= \frac{-2m(\alpha_H - \alpha_L) \pm 2(\alpha_H - \alpha_L)\sqrt{m^2 + \epsilon^2(\alpha_H - \alpha_L)^2}}{2(\alpha_H - \alpha_L)^2}$$
$$= \frac{-m \pm \sqrt{m^2 + \epsilon^2(\alpha_H - \alpha_L)^2}}{(\alpha_H - \alpha_L)}$$

 $\delta = \frac{-m - \sqrt{m^2 + \epsilon^2 (\alpha_H - \alpha_L)^2}}{(\alpha_H - \alpha_L)} = negative \ value$ $=\frac{-m+\sqrt{m^2+\epsilon^2(\alpha_H-\alpha_L)^2}}{(1-\alpha_L)^2}=(3.9)$

$$\delta^* = \frac{-m + \sqrt{m^2 + e^2(\alpha_H - \alpha_L)^2}}{(\alpha_H - \alpha_L)}$$

Appendix B: Another GARCH Model

The GARCH-in-mean (GARCH-M) model is one of those which may allow for a better estimation of the rice spot returns. The general equation for the GARCH-M model is:

$$y_t = \alpha + \sum_{i=1}^{q} \beta_i y_{t-i} + \delta h_t + \epsilon_t \tag{B.1}$$

GARCH-M allows the conditional variance to provide an explanation for the dependent variable, and equation (4.4) becomes:

$$r_t = \beta_o + \beta_1 CRB_t + \beta_2 WP_t + \delta h_t + \epsilon_t \tag{B.2}$$

Where h_t is defined by equation (4.3).

The GARCH-M model is a general form of the GARCH model which adds the current period conditional variance (h_t) as an exogenous variable to the model estimating the current period returns (r_t) . GARCH-M has a few advantages over the conventional GARCH model. The GARCH-M model allows for the spot price return to be expressed directly as a function of conditional variance. Two other characteristics which are thought to be appealing to the rice market are discussed here. First, excluding the error variance (h_t) from equation (B.2) when price fluctuation is high during the sample period, may ignore the problems of heteroskedasticity. Second, GARCH-M model explains how much of the return is due to the current period volatility (Brewer, Carson, Elyasiani, Mansur, & Scott, 2007).

Appendix C: Another Form of Equation (4.7)

This section presents another form of equation (4.7), which controls for the past values of the dummy variable while determining the current period's volatility.

For simplicity P_t from equation (4.7) is ignored and that equation is takes the following form.

$$h_{t} = \alpha_{\circ} + \alpha_{1} \epsilon_{t-1}^{2} + \alpha_{2} h_{t-1} + \alpha_{3} D_{t}$$
(C.1)

In order to remove the effect of last period's dummy on current period's volatility (J.1) has to take the following form:

$$h_t = \alpha_\circ + \alpha_1 \,\epsilon_{t-1}^2 + \alpha_2 (h_{t-1} - \alpha_3 D_{t-1}) + \alpha_3 D_t \tag{C.2}$$

$$\begin{split} \mathbf{h}_{t} &= \alpha_{\circ} + \alpha_{1} \, \epsilon_{t-1}^{2} + \alpha_{2} (\mathbf{h}_{t-1} - \alpha_{3} \mathbf{D}_{t-1}) + \alpha_{3} \mathbf{D}_{t} \\ &= \alpha_{\circ} + \alpha_{1} \, \epsilon_{t-1}^{2} + \alpha_{2} ([\alpha_{\circ} + \alpha_{1} \, \epsilon_{t-2}^{2} + \alpha_{2} (\mathbf{h}_{t-2} - \alpha_{3} \mathbf{D}_{t-2}) + \alpha_{3} \mathbf{D}_{t-1}] - \alpha_{3} \mathbf{D}_{t-1}) + \alpha_{3} D_{t} \\ &= \alpha_{\circ} + \alpha_{1} \, \epsilon_{t-1}^{2} + \alpha_{2} (\alpha_{\circ} + \alpha_{1} \, \epsilon_{t-2}^{2} + \alpha_{2} (\mathbf{h}_{t-2} - \alpha_{3} \mathbf{D}_{t-2}) + \alpha_{3} D_{t} \\ &= \alpha_{\circ} + \alpha_{1} \, \epsilon_{t-1}^{2} + \alpha_{2} (\alpha_{\circ} + \alpha_{1} \, \epsilon_{t-2}^{2} + \alpha_{2} (\alpha_{\circ} + \alpha_{1} \, \epsilon_{t-3}^{2} + \alpha_{2} (\mathbf{h}_{t-3} - \alpha_{3} \mathbf{D}_{t-3}) + \alpha_{3} \mathbf{D}_{t-2}) - \alpha_{3} \mathbf{D}_{t-2}) \\ &+ \alpha_{3} D_{t} = \alpha_{\circ} + \alpha_{1} \, \epsilon_{t-1}^{2} + \alpha_{2} (\alpha_{\circ} + \alpha_{1} \, \epsilon_{t-2}^{2} + \alpha_{2} (\alpha_{\circ} + \alpha_{1} \, \epsilon_{t-3}^{2} + \alpha_{2} (\mathbf{h}_{t-3} - \alpha_{3} \mathbf{D}_{t-3}) + \alpha_{3} \mathbf{D}_{t-2}) \\ &+ \alpha_{3} D_{t} = \alpha_{\circ} + \alpha_{1} \, \epsilon_{t-1}^{2} + \alpha_{2} (\alpha_{\circ} + \alpha_{1} \, \epsilon_{t-2}^{2} + \alpha_{2} (\alpha_{\circ} + \alpha_{1} \, \epsilon_{t-3}^{2} + \alpha_{2} (\mathbf{h}_{t-3} - \alpha_{3} \mathbf{D}_{t-3}) + \alpha_{3} \mathbf{D}_{t-2}) \\ &+ \alpha_{3} D_{t} = \alpha_{\circ} + \alpha_{1} \, \epsilon_{t-1}^{2} + \alpha_{2} (\alpha_{\circ} + \alpha_{1} \, \epsilon_{t-2}^{2} + \alpha_{2} (\alpha_{\circ} + \alpha_{1} \, \epsilon_{t-3}^{2} + \alpha_{2} (\mathbf{h}_{t-3} - \alpha_{3} \mathbf{D}_{t-3}) + \alpha_{3} \mathbf{D}_{t-3}) \\ &+ \alpha_{3} D_{t} = \alpha_{\circ} + \alpha_{1} \, \epsilon_{t-1}^{2} + \alpha_{2} (\alpha_{\circ} + \alpha_{1} \, \epsilon_{t-2}^{2} + \alpha_{2} (\alpha_{\circ} + \alpha_{1} \, \epsilon_{t-3}^{2} + \alpha_{2} (\mathbf{h}_{t-3} - \alpha_{3} \mathbf{D}_{t-3}) + \alpha_{3} \mathbf{D}_{t-3}) \\ &+ \alpha_{3} D_{t} = \alpha_{\circ} + \alpha_{1} \, \epsilon_{t-1}^{2} + \alpha_{2} (\alpha_{\circ} + \alpha_{1} \, \epsilon_{t-2}^{2} + \alpha_{2} (\alpha_{\circ} + \alpha_{1} \, \epsilon_{t-3}^{2} + \alpha_{2} (\mathbf{h}_{t-3} - \alpha_{3} \mathbf{D}_{t-3}) + \alpha_{3} \mathbf{D}_{t-3}) \\ &+ \alpha_{3} D_{t} = \alpha_{\circ} + \alpha_{1} \, \epsilon_{t-1}^{2} + \alpha_{2} (\alpha_{\circ} + \alpha_{1} \, \epsilon_{t-2}^{2} + \alpha_{2} (\alpha_{\circ} + \alpha_{1} \, \epsilon_{t-3}^{2} + \alpha_{2} (\mathbf{h}_{t-3} - \alpha_{3} \mathbf{D}_{t-3}) + \alpha_{3} \mathbf{D}_{t-3}) \\ &+ \alpha_{\ast} + \alpha$$

Repeating this process to infinity:

$$h_{t} = \alpha_{\circ} + \alpha_{1} \epsilon_{t-1}^{2} + \alpha_{2} (\alpha_{\circ} + \alpha_{1} \epsilon_{t-2}^{2} + \alpha_{2} (\alpha_{\circ} + \alpha_{1} \epsilon_{t-3}^{2} + \alpha_{2} (\alpha_{\circ} + \alpha_{1} \epsilon_{t-4}^{2} + \dots + \alpha_{2} (\alpha_{\circ} + \alpha_{1} \epsilon_{t-\infty}^{2} + \alpha_{2} (h_{t-\infty} - \alpha_{3} D_{t-\infty})))) + \alpha_{3} D_{t}$$

$$(C.3)$$

Expanding (C.3)

$$\begin{split} h_t &= \alpha_\circ + \alpha_1 \, \epsilon_{t-1}^2 + \alpha_2 \alpha_\circ + \alpha_2 \alpha_1 \, \epsilon_{t-2}^2 + \alpha_2^2 \alpha_\circ + \alpha_2^2 \alpha_1 \, \epsilon_{t-3}^2 + \alpha_2^3 \alpha_0 + \alpha_2^3 \alpha_1 \, \epsilon_{t-4}^2 + \dots + \alpha_2^{\infty-1} \alpha_0 + \alpha_2^{\infty-1} \epsilon_{t-\infty}^2 + \alpha_2^{\infty-1} (h_{t-\infty} - \alpha_3 D_{t-\infty}) + \alpha_3 D_t \end{split} \tag{C.4}$$
 $\alpha_2 < 1 \text{ because volatility from periods further in the past contributes less to the volatility in the current period. Therefore,}$

$$\alpha_2^{\infty-1} \approx 0 \tag{C.5}$$

and (C.4) becomes:

$$h_{t} = \alpha_{\circ} + \alpha_{1} \epsilon_{t-1}^{2} + \alpha_{2} \alpha_{\circ} + \alpha_{2} \alpha_{1} \epsilon_{t-2}^{2} + \alpha_{2}^{2} \alpha_{\circ} + \alpha_{2}^{2} \alpha_{1} \epsilon_{t-3}^{2} + \alpha_{2}^{3} \alpha_{0} + \alpha_{2}^{3} \alpha_{1} \epsilon_{t-4}^{2} + \dots + \alpha_{2}^{\infty-1} \alpha_{0} + \alpha_{2}^{\infty-1} \epsilon_{t-\infty}^{2} + D_{t}$$
(C.6)

Therefore, the only dummy value that is left is D_t . The dummy variable in each period explains the volatility h_t in that period and not the volatility in future periods. Not subtracting previous period dummy variable values yields the following result.

$$h_{t} = \alpha_{\circ} + \alpha_{1} \epsilon_{t-1}^{2} + \alpha_{2} h_{t-1} + \alpha_{3} D_{t} = \alpha_{\circ} + \alpha_{1} \epsilon_{t-1}^{2} + \alpha_{2} (\alpha_{\circ} + \alpha_{1} \epsilon_{t-2}^{2} + \alpha_{2} (h_{t-2}) + \alpha_{3} D_{t-1}) + \alpha_{3} D_{t} \quad (C.7)$$

Repeating this process to infinity, it becomes evident that dummy variables from all previous periods are explanatory variables for the current volatility h_t . Therefore, (C.7) becomes:

$$h_{t} = \alpha_{\circ} + \alpha_{1} \epsilon_{t-1}^{2} + \alpha_{2} (\alpha_{\circ} + \alpha_{1} \epsilon_{t-2}^{2} + \dots + \alpha_{2} (\alpha_{\circ} + \alpha_{1} \epsilon_{t-\infty}^{2} + \alpha_{2} h_{t-\infty} + \alpha_{3} D_{t-\infty+1}) + \dots + \alpha_{3} D_{t-1}) + \alpha_{3} D_{t}$$
(C.8)

Appendix D: Seasonality Test Results (Stata Output)

Wheat Seasonality Test

. tabulate month, gen(m)

Apr 23 8.13 8.13 Aug 24 8.48 16.61 Dec 24 8.48 25.09 Feb 23 8.13 3.22 Jan 24 8.48 41.70 Jul 24 8.48 50.18 Jun 23 8.13 58.30 Mar 23 8.13 74.56 Nov 24 8.48 91.52 Sep 24 8.48 100.00 Total 283 Model .104940799 .reg rtrnw ml m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12, noconstant F(12, 271) = 3.87 Model .104940799 12 .008745067 Fr cob > F = 0.0000 Residual .612487282 271 .002260101 R-squared = 0.1463 mtrnw Coef. Std. Err. t P> t [95% Conf. Interval] mtrnw Coef. Std. Err. t P> t [95% Conf. Interval] .0165187 .00	month	Freq.	Percent	Cum.	
. reg rtrnw ml m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12, noconstant Source SS df MS Number of obs = 283 F(12, 271) = 3.87 Model .104940799 12 .008745067 Prob > F = 0.0000 Residual .612487282 271 .002260101 R-squared = 0.1463 Adj R-squared = 0.1463 Adj R-squared = 0.1085 Root MSE = .04754 Total .717428081 283 .002535082 Root MSE = .04754 m1 0022488 .0099129 -0.23 0.8210217648 .0172673 m2 .0165187 .0097042 1.70 0.0900025865 .0356238 m3 .0101389 .0097042 1.04 0.2970089662 .0292441 m40039844 .0099129 -0.40 0.6880235005 .0155316 m5 .0005898 .0097042 0.06 0.9520185153 .0196949 m6 0310489 .0097042 -3.20 0.0020501540119437 m7 0397279 .0099129 -4.01 0.0000592440202119 m8 .0000231 .0099129 -1.14 0.2560308007 .0082314 m10 .0086941 .0097042 0.90 0.3710104111 .0277992 m11 .0284294 .0097042 2.93 0.004 .0093243 .0475346	Aug Dec Feb Jan Jul Mar May Nov Oct	24 24 23 24 23 23 23 23 24 24 24	8.48 8.48 8.13 8.48 8.48 8.13 8.13 8.13 8.13 8.48 8.48 8.48	16.61 25.09 33.22 41.70 50.18 58.30 66.43 74.56 83.04 91.52 100.00	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Total				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $. reg rtrnw mi	L m2 m3 m4 m5	m6 m7 m8 m9	m10 m11 m12, n	noconstant
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Source				
Total .717428081 283 .002535082 Root MSE = .04754 rtrnw Coef. Std. Err. t P> t [95% Conf. Interval] m1 0022488 .0099129 -0.23 0.821 0217648 .0172673 m2 .0165187 .0097042 1.70 0.090 0025865 .0356238 m3 .0101389 .0097042 1.04 0.297 0089662 .0222441 m4 0039844 .0099129 -0.40 0.688 0235005 .0155316 m5 .0005898 .0097042 -3.20 0.002 050154 0119437 m7 0397279 .0099129 -4.01 0.000 059244 0202119 m8 .0000231 .0099129 -1.14 0.256 0308007 .0082314 m10 .0086941 .0097042 0.90 0.371 0104111 .0277992 m11 .0284294 .0097042 2.93 0.004 .0093243 .0475346	Residual	.104940799 .612487282	12 .008 271 .002	745067 260101	Prob > F = 0.0000 R-squared = 0.1463
m1 0022488 .0099129 -0.23 0.821 0217648 .0172673 m2 .0165187 .0097042 1.70 0.090 0025865 .0356238 m3 .0101389 .0097042 1.04 0.297 0089662 .0292441 m4 0039844 .0099129 -0.40 0.688 0235005 .0155316 m5 .0005898 .0097042 -0.06 0.952 0185153 .0196949 m6 0310489 .0097042 -3.20 0.002 050154 0119437 m7 0397279 .0099129 -4.01 0.000 059244 0202119 m8 .0000231 .0099129 -1.14 0.256 0308007 .0082314 m10 .0086941 .0097042 0.90 0.371 0104111 .0277992 m11 .0284294 .0097042 2.93 0.004 .0093243 .0475346					
m10022488.0099129-0.230.8210217648.0172673m2.0165187.00970421.700.0900025865.0356238m3.0101389.00970421.040.2970089662.0292441m40039844.0099129-0.400.6880235005.0155316m5.0005898.00970420.060.9520185153.0196949m60310489.0097042-3.200.0020501540119437m70397279.0099129-4.010.0000592440202119m8.0000231.0099129-1.140.2560308007.0082314m10.0086941.00970422.930.004.0093243.0475346					[95% Conf. Interval]
miz i .uzzzzbz .uu9zu4z z.z9 u.uz3 .uu3l215 .u4l3318	m2 m3 m4 m5 m7 m8 m9	.0165187 .0101389 0039844 .0005898 0310489 0397279 .0000231 0112847 .0086941 .0284294	.0097042 .0097042 .0099129 .0097042 .0097042 .0099129 .0099129 .0099129 .0099129 .0097042	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0025865 .0356238 0089662 .0292441 0235005 .0155316 0185153 .0196949 059244 0202119 0194929 .0195392 0308007 .0082314 0104111 .0277992 .0093243 .0475346

Rice Seasonality Test

. tabulate month, gen(m)

month	Fre	q. Perce	ent Cum.
Month Apr Aug Dec Feb Jan Jul Jun Mar May Nov		28 8 28 8 29 8 29 8 29 8 28 8 28 8 28 8 28 8 28 8 28 8 28 8	Int Cum. 19 8.19 19 16.37 48 24.85 48 33.33 48 41.81 19 50.00 19 58.19 19 66.37 19 74.56 48 83.04
month Oct Sep	i :	29 8.	ercent Cum. 48 91.52 48 100.00
	+		

Total | 342 100.00

. reg spot m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12, noconstant

Source		df			Number of obs F(12, 330)		
	.063835781 1.02154456	12 .005	319648 309559		Prob > F R-squared Adj R-squared	= 0.0616 = 0.0588	
Total	1.08538034				Root MSE		
spot	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]	
m1	0102574	.0105146	-0.98	0.330	0309415	.0104267	
m2	001397	.0105146	-0.13	0.894	0220811	.0192871	
m3	.0108695	.0103317	1.05	0.294	0094548	.0311939	
m4	.0025304	.0103317	0.24	0.807	0177939	.0228548	
m5	.0095848	.0103317	0.93	0.354	0107396	.0299091	
m6	0101483	.0105146	-0.97	0.335	0308324	.0105358	
m7	0089429	.0105146	-0.85	0.396	029627	.0117412	
m8	0072255	.0105146	-0.69	0.492	0279096	.0134586	
m9	0144594	.0105146	-1.38	0.170	0351435	.0062247	
m10	.0308802	.0103317	2.99	0.003	.0105559	.0512046	
m11	.0221058	.0103317	2.14	0.033	.0017814	.0424301	
m12	003188	.0103317	-0.31	0.758	0235124	.0171363	

Rice Futures Price Seasonality Test (Stata output)

. tabulate month, gen(m)

month	Freq.	Percent	Cum.
Apr	12	8.96	8.96
Aug	11	8.21	17.16
Dec	11	8.21	25.37
Feb	11	8.21	33.58
Jan	11	8.21	41.79
Jul	11	8.21	50.00
Jun	11	8.21	58.21
Mar	12	8.96	67.16
May	11	8.21	75.37
Nov	11	8.21	83.58
Oct	11	8.21	91.79
Sep	11	8.21	100.00
Total	134	100.00	

. reg futspot m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12, noconstant

Source Model Residual 	SS .077935625 .890072269 .968007894	122 .00	MS 6494635 7295674 0722394		Number of obs F(12, 122) Prob > F R-squared Adj R-squared Root MSE	= 0.89 = 0.5588 = 0.0805
futspot	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
m1 m2 m3 futspot	0081064 0000467 .0119898 Coef.	.0246571 .0257535 .0257535 Std. Err.	-0.33 -0.00 0.47 t	0.743 0.999 0.642 P> t	0569176 0510283 0389919 [95% Conf.	.0407048 .0509349 .0629714 Interval]
m4 m5 m6 m7 m8	0057409 0024888 0406545 011686 .0474054	.0257535 .0257535 .0257535 .0257535 .0257535 .0246571	-0.22 -0.10 -1.58 -0.45 1.92	0.824 0.923 0.117 0.651 0.057	0567225 0534704 0916361 0626677 0014058	.0452408 .0484928 .0103272 .0392956 .0962167

futspot	1	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
m9		.0463902	.0257535	1.80	0.074	0045915	.0973718
m10		.0168421	.0257535	0.65	0.514	0341396	.0678237
m11		.0108874	.0257535	0.42	0.673	0400943	.061869
m12		0059414	.0257535	-0.23	0.818	056923	.0450403

Appendix E: Different Ordering of Variables in I.R. and FEVD Analysis

Different ordering of variables in a VAR model could yield different results. However, as indicated in section 4.2.1, different ordering of variables do not change the results of this study, because there are only two explanatory variables (trading volume and open interest) other than dependent variable (price volatility). Therefore the following two VAR models, where the position of trading volume (TV) and open interest (OI) have been changed in the second model are tested and the results compared. The CMA method is used to detrend the futures trading volume and open interest. The first VAR model, used in this study and indicated by equations (4.12-4.14) in section 4.2, is represented by the following set of equations here:

$$\sigma_t = a_o + \sum_{i=1}^p \alpha_i \sigma_{t-i} + \sum_{i=1}^q \beta_i T V_{t-i} + \sum_{i=1}^r \gamma_i O I_{t-i} + \varepsilon_t$$
(E.1)

$$TV_{t} = b_{o} + \sum_{i=1}^{q} \beta_{i} TV_{t-i} + \sum_{i=1}^{r} \gamma_{i} OI_{t-i} + \sum_{i=1}^{p} \alpha_{i} \sigma_{t-i} + \varphi \sigma_{t} + u_{t}$$
(E.2)

$$OI_{t} = c_{o} + \sum_{i=1}^{r} \gamma_{i} OI_{t-i} + \sum_{i=1}^{q} \beta_{i} TV_{t-i} + \sum_{i=1}^{p} \alpha_{i} \sigma_{t-i} + \varphi \sigma_{t} + \tau TV_{t} + v_{t}$$
(E.3)

The second VAR model with changing of the order of the explanatory variables (TV and OI) is represented by the following set of equations:

$$\sigma_t = a_o + \sum_{i=1}^p \alpha_i \sigma_{t-i} + \sum_{i=1}^q \beta_i O I_{t-i} + \sum_{i=1}^r \gamma_i T V_{t-i} + \varepsilon_t$$
(E.4)

$$OI_{t} = b_{o} + \sum_{i=1}^{q} \beta_{i} OI_{t-i} + \sum_{i=1}^{r} \gamma_{i} TV_{t-i} + \sum_{i=1}^{p} \alpha_{i} \sigma_{t-i} + \varphi \sigma_{t} + u_{t}$$
(E.5)

$$TV_{t} = c_{o} + \sum_{i=1}^{r} \gamma_{i} TV_{t-i} + \sum_{i=1}^{q} \beta_{i} OI_{t-i} + \sum_{i=1}^{p} \alpha_{i} \sigma_{t-i} + \varphi \sigma_{t} + \tau OI_{t} + v_{t}$$
(E.6)

The results of the Granger Causality Test, IR, and FEVD analyses are reported in the following tables (Stata outputs). There is clear indication that different ordering of variables in the VAR did not alter the results of this study. The VAR model that is used in this study (equations E.1 to E.3) is referred to as Model 1 and the one represented by equations E.4 to E.6 is referred to as Model 2.

Granger Causality Test

Model 1 Granger causality Wald tests

Equation	Excluded	chi2	df P	rob > chi2
garchm	cmavol	17.423	3	0.004
garchm	cmaoi		3	0.307
garchm	ALL		6	0.008
cmavol cmavol cmavol	garchm cmaoi ALL	2.4016 21.101	3 3 6	0.493 0.000 0.000
cmaoi	garchm	12.257	3	0.007
cmaoi	cmavol	.54747	3	0.908
cmaoi	ALL	13.089	6	0.042

Model 2

Granger causality Wald tests

Equation	Excluded	chi2	df E	rob > chi2
garchm	cmaoi		3	0.307
garchm	cmavol		3	0.004
garchm	ALL		6	0.008
cmaoi	garchm		3	0.007
cmaoi	cmavol		3	0.908
cmaoi	ALL		6	0.042
cmavol	garchm	2.4016	3	0.493
cmavol	cmaoi	21.101	3	0.000
cmavol	ALL	25.187	6	0.000

Impulse Response Analysis (IR)

Model	1:		Model 2:					
Step	garch-garch	TV-garch	OI-garch	Step	garch-garch	OI-garch	TV-garch	
1	0.655796	-0.00477	0.008841	1	0.655796	0.008841	-0.00477	
2	0.267846	-0.00663	0.004279	2	0.267846	0.004279	-0.00663	
3	0.09384	-0.00272	-0.00086	3	0.09384	-0.00086	-0.00272	
4	0.06486	0.002445	-0.00469	4	0.06486	-0.00469	0.002445	
5	0.064405	0.000698	-0.00231	5	0.064405	-0.00231	0.000698	
6	0.070075	-0.00159	0.001726	6	0.070075	0.001726	-0.00159	
7	0.042706	-0.00149	0.003159	7	0.042706	0.003159	-0.00149	
8	0.001602	0.000463	-0.00044	8	0.001602	-0.00044	0.000463	
9	-0.01762	0.000623	-0.00225	9	-0.01762	-0.00225	0.000623	
10	0.004971	1.90E-06	-0.00066	10	0.004971	-0.00066	1.90E-06	

Note:

- garch-garch indicates the impact of a shock in the current volatility of cash price on future volatility of the cash price of rice (garch)
- TV-garch indicates the impact of a shock in detrended futures trading volume (TV) on future volatility of the cash price of rice (garch)

- OI-garch indicates the impact of a shock in detrended futures open interest (OI) on future volatility of the cash price of rice (garch)
- Ten steps are chosen as beyond 10th period the effect of the shocks become very small in magnitude

Forecast Error Variance Decomposition ((FEVD)
---	--------

Model	1			Model 2				
Step	garch-garch	TV-garch	OI-garch	Step	garch-garch	OI-garch	TV-garch	
1	1	0	0	1	1	0	0	
2	0.953134	0.017641	0.029225	2	0.953134	0.02848	0.018386	
3	0.902067	0.019605	0.078327	3	0.902067	0.077195	0.020737	
4	0.894453	0.019573	0.085975	4	0.894453	0.084897	0.020651	
5	0.884734	0.023701	0.091564	5	0.884734	0.090321	0.024944	
98	0.874527	0.028739	0.096735	98	0.874527	0.095336	0.030137	
99	0.874527	0.028739	0.096735	99	0.874527	0.095336	0.030137	
100	0.874527	0.028739	0.096735	100	0.874527	0.095336	0.030137	

Note:

- garch-garch indicates the impact of a shock in the current volatility of cash price on future unpredictability (error) in estimating future volatility of the cash price of rice (garch)
- TV-garch indicates the impact of a shock in detrended futures trading volume (TV) on future unpredictability (error) in estimating future volatility of the cash price of rice (garch)
- OI-garch indicates the impact of a shock in detrended futures open interest (OI) on unpredictability (error) in estimating future volatility of the cash price of rice (garch)
- 100 steps are chosen to have long enough horizon and assess the long term impact of current shocks to TV and OI on cash price volatility

Appendix F: Choosing Separate Lags for each Variable of a VAR Model

Choosing all lags for all variables to be equal could lead to rapid loss of degrees of freedom in the model. Granger causality test is sensitive to the selection of lag orders. Including insignificant lags could lead to rejecting the null hypothesis of the Granger causality test where one should fail to reject it. Atukeren (2005) suggests a few steps to identify the appropriate lag orders and these steps are adopted in this work. First, the following autoregressions are estimated based on lag orders p=1 to 8. The autoregression with the lowest AIC value identifies the appropriate value of p.

$$\sigma_t = a_o + \sum_{i=1}^p \varphi_i \sigma_{t-i} + \nu_t \tag{F.1}$$

Second, lagged values of *TV* are added to equation (F.1), and several autoregressions based lag orders q = 1 to 8 are estimated. The estimation with the lowest AIC identifies the appropriate value for q and of course p was determined in the first step.

$$\sigma_t = a_o + \sum_{i=1}^p \alpha_i \sigma_{t-i} + \sum_{i=1}^q \beta_i T V_{t-i} + u_t$$
(F.2)

Same process is continued in step three to find the appropriate lag order for OI (r value).

$$\sigma_t = a_o + \sum_{i=1}^p \alpha_i \sigma_{t-i} + \sum_{i=1}^q \beta_i T V_{t-i} + \sum_{i=1}^r \gamma_i O I_{t-i} + \varepsilon_t$$
(F.3)

OI and TV are detrended values of futures contract trading volume and open interest

After each stage if the AIC from estimating the bivariate (equation F.2) or the trivariate (equation F.3) models is lower than that obtained from estimating the autoregression in (F.1), then that is an indication that TV (alone) and TV and OI Granger cause σ (Atukeren, 2005). However, this work uses Granger's original method of choosing all variable lengths the same. There are only three variables in the current VAR model, and given the low frequency of the data, it is believed that the lag lengths are fairly close to one another.

Rough Rice

Date	GARCH(1,1)	Date	GARCH(1,1)	Date	GARCH(1,1)	Date	GARCH(1,1)
Sep-82	0.0035257	Oct-85	0.0012828	Dec-88	0.0021625	Jan-92	0.000996
Oct-82	0.0034043	Nov-85	0.0010716	Jan-89	0.0021096	Feb-92	0.0008484
Nov-82	0.0020686	Dec-85	0.0009073	Feb-89	0.002052	Mar-92	0.0007816
Dec-82	0.0012752	Jan-86	0.0009489	Mar-89	0.0020352	Apr-92	0.000912
Jan-83	0.001083	Feb-86	0.0007734	Apr-89	0.0019288	May-92	0.0014334
Feb-83	0.0007312	Mar-86	0.0007493	May-89	0.0018112	Jun-92	0.0016538
Mar-83	0.0006734	Apr-86	0.0041169	Jun-89	0.001542	Jul-92	0.0016014
Apr-83	0.0009526	May-86	0.0381241	Jul-89	0.0013556	Aug-92	0.0017977
May-83	0.0008804	Jun-86	0.0395468	Aug-89	0.001553	Sep-92	0.0026311
Jun-83	0.0007085	Jul-86	0.0401789	Sep-89	0.0011611	Oct-92	0.0026041
Jul-83	0.0008541	Aug-86	0.0348185	Oct-89	0.00128	Nov-92	0.0025331
Aug-83	0.0006628	Sep-86	0.0349172	Nov-89	0.0012968	Dec-92	0.0025127
Sep-83	0.000912	Oct-86	0.0352923	Dec-89	0.0013947	Jan-93	0.0025482
Oct-83	0.0005857	Nov-86	0.0341708	Jan-90	0.0011198	Feb-93	0.0030201
Nov-83	0.0008894	Dec-86	0.0365883	Feb-90	0.0015763	Mar-93	0.0045487
Dec-83	0.0005787	Jan-87	0.0421163	Mar-90	0.0011661	Apr-93	0.0059408
Jan-84	0.0004301	Feb-87	0.0395152	Apr-90	0.001025	May-93	0.0070729
Feb-84	0.0003172	Mar-87	0.0426977	May-90	0.0010139	Jun-93	0.0087642
Mar-84	0.0006228	Apr-87	0.0443778	Jun-90	0.0010496	Jul-93	0.0106368
Apr-84	0.0006022	May-87	0.0423127	Jul-90	0.0011577	Aug-93	0.0104125
May-84	0.0005588	Jun-87	0.0433015	Aug-90	0.0015778	Sep-93	0.0102445
Jun-84	0.0006348	Jul-87	0.0469157	Sep-90	0.0030803	Oct-93	0.0070498
Jul-84	0.0005183	Aug-87	0.0416929	Oct-90	0.0044404	Nov-93	0.0063384
Aug-84	0.0005017	Sep-87	0.0328997	Nov-90	0.0041711	Dec-93	0.0155953
Sep-84	0.00046	Oct-87	0.0197929	Dec-90	0.0044109	Jan-94	0.0108309
Oct-84	0.0004857	Nov-87	0.0400088	Jan-91	0.0035307	Feb-94	0.0055906
Nov-84	0.0004576	Dec-87	0.0303825	Feb-91	0.0026551	Mar-94	0.0057207
Dec-84	0.0006381	Jan-88	0.015819	Mar-91	0.0023552	Apr-94	0.0044096
Jan-85	0.0005317	Feb-88	0.0081527	Apr-91	0.0024345	May-94	0.0024258
Feb-85	0.0005747	Mar-88	0.0101805	May-91	0.0028439	Jun-94	0.0017808
Mar-85	0.0008636	Apr-88	0.0052967	Jun-91	0.0018627	Jul-94	0.0036936
Apr-85	0.0014131	May-88	0.0031177	Jul-91	0.0014682	Aug-94	0.0072898
May-85	0.0009728	Jun-88	0.0036462	Aug-91	0.0016388	Sep-94	0.0089007
Jun-85	0.0010597	Jul-88	0.0026187	Sep-91	0.0011557		
Jul-85	0.0009211	Aug-88	0.0019172	Oct-91	0.0023271		
Aug-85	0.0008429	Sep-88	0.0022867	Nov-91	0.0014767		
Sep-85	0.0012485	Oct-88	0.0032191	Dec-91	0.0011865		
		Nov-88	0.0024818				

Before the Introduction of Rice Futures Contracts on the CBOT

After the Introduction of Rice Futures Contracts on the CBOT

Date	GARCH(1,1)								
Oct-94	0.0018912	Mar-98	0.0012772	Aug-01	0.0017247	Jan-05	0.0019226	Jun-08	0.0030854
Nov-94	0.0019446	Apr-98	0.0012178	Sep-01	0.002197	Feb-05	0.0014812	Jul-08	0.0027426
Dec-94	0.0015305	May-98	0.0013978	Oct-01	0.0027032	Mar-05	0.0023664	Aug-08	0.0020652
Jan-95	0.0013015	Jun-98	0.0012644	Nov-01	0.0025524	Apr-05	0.0017029	Sep-08	0.002828
Feb-95	0.0013622	Jul-98	0.0012623	Dec-01	0.0019913	May-05	0.0013768	Oct-08	0.0026464
Mar-95	0.001273	Aug-98	0.0011863	Jan-02	0.0014944	Jun-05	0.0012206	Nov-08	0.0044376
Apr-95	0.0011948	Sep-98	0.0019934	Feb-02	0.0012546	Jul-05	0.001145	Dec-08	0.0046119
May-95	0.001164	Oct-98	0.0020115	Mar-02	0.001422	Aug-05	0.0011776	Jan-09	0.0034507
Jun-95	0.0011686	Nov-98	0.0015511	Apr-02	0.001618	Sep-05	0.0013949	Feb-09	0.0026734
Jul-95	0.0011764	Dec-98	0.001429	May-02	0.0013417	Oct-05	0.001358	Mar-09	0.0057531
Aug-95	0.0011639	Jan-99	0.0012779	Jun-02	0.0011848	Nov-05	0.0014525	Apr-09	0.0034934
Sep-95	0.0025309	Feb-99	0.0012127	Jul-02	0.0011949	Dec-05	0.0025857	May-09	0.0026372
Oct-95	0.0019365	Mar-99	0.0011593	Aug-02	0.001311	Jan-06	0.0018091	Jun-09	0.0020675
Nov-95	0.0034145	Apr-99	0.0011304	Sep-02	0.0014493	Feb-06	0.0016403	Jul-09	0.0016183
Dec-95	0.0027348	May-99	0.0015519	Oct-02	0.0015486	Mar-06	0.0014681	Aug-09	0.0018196
Jan-96	0.0020494	Jun-99	0.0016387	Nov-02	0.0013306	Apr-06	0.0012775	Sep-09	0.0016851
Feb-96	0.0016117	Jul-99	0.0013573	Dec-02	0.001725	May-06	0.0012093	Oct-09	0.0014375
Mar-96	0.0014332	Aug-99	0.0012126	Jan-03	0.0018928	Jun-06	0.0012549	Nov-09	0.0013879
Apr-96	0.0012688	Sep-99	0.0084033	Feb-03	0.0017399	Jul-06	0.0011929	Dec-09	0.0014402
May-96	0.001302	Oct-99	0.0072155	Mar-03	0.0033988	Aug-06	0.0011522	Jan-10	0.0014104
Jun-96	0.0014755	Nov-99	0.0043431	Apr-03	0.0022258	Sep-06	0.0026616	Feb-10	0.0016487
Jul-96	0.0012932	Dec-99	0.0026368	May-03	0.0026267	Oct-06	0.0019172	Mar-10	0.0014414
Aug-96	0.0012086	Jan-00	0.0018283	Jun-03	0.0022861	Nov-06	0.0031357	Apr-10	0.001552
Sep-96	0.0014034	Feb-00	0.0014597	Jul-03	0.0044193	Dec-06	0.0023618	May-10	0.0013706
Oct-96	0.0012717	Mar-00	0.0013796	Aug-03	0.0027668	Jan-07	0.0017736	Jun-10	0.0014633
Nov-96	0.0013808	Apr-00	0.0013975	Sep-03	0.0046311	Feb-07	0.0014391	Jul-10	0.0017517
Dec-96	0.001371	May-00	0.001328	Oct-03	0.0048044	Mar-07	0.0015015	Aug-10	0.00191
Jan-97	0.0016339	Jun-00	0.0012605	Nov-03	0.0043453	Apr-07	0.001362	Sep-10	0.0032675
Feb-97	0.0013715	Jul-00	0.0011929	Dec-03	0.0042834	May-07	0.0013123	Oct-10	0.0027736
Mar-97	0.0013003	Aug-00	0.0011561	Jan-04	0.0045203	Jun-07	0.0013175	Nov-10	0.0019364
Apr-97	0.0012583	Sep-00	0.001239	Feb-04	0.0027404	Jul-07	0.0012235	Dec-10	0.0021999
May-97	0.0012538	Oct-00	0.0013719	Mar-04	0.0023181	Aug-07	0.0011856	Jan-11	0.0026927
Jun-97	0.0012538	Nov-00	0.0012078	Apr-04	0.0017363	Sep-07	0.0011578	Feb-11	0.0019216
Jul-97	0.0013962	Dec-00	0.0012968	May-04	0.0014753	Oct-07	0.0011717		
Aug-97	0.001284	Jan-01	0.0011803	Jun-04	0.0013858	Nov-07	0.0026609		
Sep-97	0.0012027	Feb-01	0.0012865	Jul-04	0.0019337	Dec-07	0.0025626		
Oct-97	0.0011652	Mar-01	0.0012966	Aug-04	0.0015176	Jan-08	0.0018805		
Nov-97	0.0011596	Apr-01	0.0011888	Sep-04	0.0018827	Feb-08	0.0021238		
Dec-97	0.001192	May-01	0.0011386	Oct-04	0.0021944	Mar-08	0.0016418		
Jan-98	0.0011618	Jun-01	0.001735	Nov-04	0.0041748	Apr-08	0.0018902		
Feb-98	0.0013026	Jul-01	0.0019792	Dec-04	0.0028229	May-08	0.0018693		

Milled Rice

Before the Introduction of Rice Futures Contracts on the CBOT

Date	GARCH(1,1)								
Sep-79	0.0041226	Jan-83	0.0009458	May-86	0.0041575	Sep-89	0.0016349	Jan-93	0.0012684
Oct-79	0.0022628	Feb-83	0.0007354	Jun-86	0.036585	Oct-89	0.000916	Feb-93	0.0039818
Nov-79	0.0016281	Mar-83	0.0018097	Jul-86	0.01485	Nov-89	0.000674	Mar-93	0.00227
Dec-79	0.0006763	Apr-83	0.0007826	Aug-86	0.0075986	Dec-89	0.0005043	Apr-93	0.0015416
Jan-80	0.0047892	May-83	0.0008809	Sep-86	0.0073544	Jan-90	0.0004774	May-93	0.0014353
Feb-80	0.0039536	Jun-83	0.0004892	Oct-86	0.0045009	Feb-90	0.0005524	Jun-93	0.0017151
Mar-80	0.0108331	Jul-83	0.0003965	Nov-86	0.0033739	Mar-90	0.0003865	Jul-93	0.0023065
Apr-80	0.0093283	Aug-83	0.000379	Dec-86	0.0029258	Apr-90	0.0004569	Aug-93	0.0021293
May-80	0.0036639	Sep-83	0.0001817	Jan-87	0.0035244	May-90	0.0004991	Sep-93	0.0017912
Jun-80	0.0035218	Oct-83	0.0001171	Feb-87	0.0073282	Jun-90	0.000497	Oct-93	0.0014032
Jul-80	0.0047081	Nov-83	0.0002113	Mar-87	0.0064847	Jul-90	0.0003671	Nov-93	0.023621
Aug-80	0.0028749	Dec-83	0.0001745	Apr-87	0.0050383	Aug-90	0.0004159	Dec-93	0.1208422
Sep-80	0.0011458	Jan-84	0.0001324	May-87	0.0044472	Sep-90	0.0016238	Jan-94	0.0515679
Oct-80	0.0029271	Feb-84	0.0001994	Jun-87	0.0041388	Oct-90	0.0040535	Feb-94	0.0198445
Nov-80	0.0045622	Mar-84	0.0001333	Jul-87	0.0041213	Nov-90	0.0023601	Mar-94	0.0082164
Dec-80	0.004785	Apr-84	0.0000889	Aug-87	0.0037908	Dec-90	0.0015729	Apr-94	0.0031664
Jan-81	0.0056222	May-84	0.0000774	Sep-87	0.0023785	Jan-91	0.001084	May-94	0.002716
Feb-81	0.0021546	Jun-84	0.0001433	Oct-87	0.0105829	Feb-91	0.0009222	Jun-94	0.0054772
Mar-81	0.000876	Jul-84	0.0000928	Nov-87	0.1337221	Mar-91	0.0055773	Jul-94	0.015007
Apr-81	0.0009394	Aug-84	0.0001268	Dec-87	0.059164	Apr-91	0.0024726	Aug-94	0.0184427
May-81	0.0007564	Sep-84	0.0003746	Jan-88	0.0224998	May-91	0.0017754	Sep-94	0.0195466
Jun-81	0.0003682	Oct-84	0.000194	Feb-88	0.0085009	Jun-91	0.0020385		
Jul-81	0.0002902	Nov-84	0.0001513	Mar-88	0.0219036	Jul-91	0.0018853		
Aug-81	0.0002389	Dec-84	0.0005594	Apr-88	0.0084103	Aug-91	0.0009004		
Sep-81	0.0017248	Jan-85	0.0003178	May-88	0.0032112	Sep-91	0.0006381		
Oct-81	0.0028472	Feb-85	0.0001709	Jun-88	0.0102441	Oct-91	0.0003706		
Nov-81	0.0022725	Mar-85	0.0001518	Jul-88	0.0090346	Nov-91	0.0002318		
Dec-81	0.001589	Apr-85	0.0001107	Aug-88	0.0056405	Dec-91	0.0016624		
Jan-82	0.0010574	May-85	0.0001208	Sep-88	0.006261	Jan-92	0.0010336		
Feb-82	0.0009077	Jun-85	0.0001132	Oct-88	0.0092338	Feb-92	0.0004966		
Mar-82	0.0023142	Jul-85	0.0001369	Nov-88	0.0101021	Mar-92	0.0002845		
Apr-82	0.0022632	Aug-85	0.0001486	Dec-88	0.0041441	Apr-92	0.0004903		
May-82	0.0011041	Sep-85	0.0001307	Jan-89	0.0019776	May-92	0.0003532		
Jun-82	0.0005081	Oct-85	0.0001614	Feb-89	0.0011535	Jun-92	0.0011864		
Jul-82	0.0003094	Nov-85	0.0001313	Mar-89	0.0007983	Jul-92	0.0013699		
Aug-82	0.001178	Dec-85	0.0001266	Apr-89	0.0008051	Aug-92	0.0008543		
Sep-82	0.0016561	Jan-86	0.0002144	May-89	0.0005843	Sep-92	0.0005796		
Oct-82	0.0009194	Feb-86	0.0004949	Jun-89	0.0023709	Oct-92	0.0004338		
Nov-82	0.0004175	Mar-86	0.0003108	Jul-89	0.0010919	Nov-92	0.0004399		
Dec-82	0.000359	Apr-86	0.0004554	Aug-89	0.0034928	Dec-92	0.0005828		

After the Introduction of Rice Futures Contracts on the CBOT

Alter	the introduc	tion of Kic	e rutures Con	itracts on t					
Date	GARCH(1,1)	Date	GARCH(1,1)	Date	GARCH(1,1)	Date	GARCH(1,1)	Date	GARCH(1,1)
Oct-94	0.0009861	Jan-98	0.000476	Apr-01	0.000617	Jul-04	0.001376	Oct-07	0.000409
Nov-94	0.0010032	Feb-98	0.000456	May-01	0.000623	Aug-04	0.001311	Nov-07	0.000402
Dec-94	0.0009904	Mar-98	0.000437	Jun-01	0.000637	Sep-04	0.001269	Dec-07	0.000409
Jan-95	0.0009792	Apr-98	0.000434	Jul-01	0.000642	Oct-04	0.001333		
Feb-95	0.0009596	May-98	0.000417	Aug-01	0.00065	Nov-04	0.0013		
Mar-95	0.0009425	Jun-98	0.0004	Sep-01	0.000674	Dec-04	0.001255		
Apr-95	0.0009239	Jul-98	0.000385	Oct-01	0.000761	Jan-05	0.001211		
May-95	0.0008981	Aug-98	0.000371	Nov-01	0.0008	Feb-05	0.001166		
Jun-95	0.0009175	Sep-98	0.000358	Dec-01	0.000847	Mar-05	0.001129		
Jul-95	0.0010802	Oct-98	0.000357	Jan-02	0.00092	Apr-05	0.001092		
Aug-95	0.0010498	Nov-98	0.000345	Feb-02	0.000983	May-05	0.00106		
Sep-95	0.0010025	Dec-98	0.000345	Mar-02	0.001066	Jun-05	0.001025		
Oct-95	0.0009632	Jan-99	0.000333	Apr-02	0.001143	Jul-05	0.000993		
Nov-95	0.0010896	Feb-99	0.000327	May-02	0.001214	Aug-05	0.000965		
Dec-95	0.0010378	Mar-99	0.000319	Jun-02	0.001293	Sep-05	0.000939		
Jan-96	0.0010022	Apr-99	0.000314	Jul-02	0.001375	Oct-05	0.000911		
Feb-96	0.0009696	May-99	0.000309	Aug-02	0.00144	Nov-05	0.000885		
Mar-96	0.0009299	Jun-99	0.000326	Sep-02	0.00149	Dec-05	0.000869		
Apr-96	0.0008892	Jul-99	0.000335	Oct-02	0.001565	Jan-06	0.000838		
May-96	0.0008665	Aug-99	0.000334	Nov-02	0.001654	Feb-06	0.000877		
Jun-96	0.000853	Sep-99	0.000346	Dec-02	0.001723	Mar-06	0.000853		
Jul-96	0.0008126	Oct-99	0.000351	Jan-03	0.001777	Apr-06	0.000822		
Aug-96	0.0007732	Nov-99	0.000355	Feb-03	0.001817	May-06	0.000787		
Sep-96	0.0007915	Dec-99	0.000366	Mar-03	0.001859	Jun-06	0.000753		
Oct-96	0.0007552	Jan-00	0.000377	Apr-03	0.001838	Jul-06	0.000722		
Nov-96	0.0008003	Feb-00	0.000404	May-03	0.002057	Aug-06	0.00069		
Dec-96	0.0008017	Mar-00	0.000421	Jun-03	0.002062	Sep-06	0.000693		
Jan-97	0.0007639	Apr-00	0.000442	Jul-03	0.002008	Oct-06	0.000711		
Feb-97	0.0007269	May-00	0.000467	Aug-03	0.001943	Nov-06	0.000678		
Mar-97	0.0007219	Jun-00	0.0005	Sep-03	0.001955	Dec-06	0.000647		
Apr-97	0.0006946	Jul-00	0.000532	Oct-03	0.001899	Jan-07	0.000617		
May-97	0.0006641	Aug-00	0.000556	Nov-03	0.00183	Feb-07	0.000588		
Jun-97	0.0006339	Sep-00	0.000579	Dec-03	0.001774	Mar-07	0.000561		
Jul-97	0.0006037	Oct-00	0.000592	Jan-04	0.001726	Apr-07	0.000537		
Aug-97	0.0005775	Nov-00	0.000608	Feb-04	0.001649	May-07	0.000514		
Sep-97	0.0005515	Dec-00	0.000609	Mar-04	0.001573	Jun-07	0.000491		
Oct-97	0.0005316	Jan-01	0.000611	Apr-04	0.0015	Jul-07	0.000469		
Nov-97	0.0005179	Feb-01	0.000612	May-04	0.001432	Aug-07	0.000448		
Dec-97	0.0004981	Mar-01	0.000614	Jun-04	0.001417	Sep-07	0.000428		

World Rice (Thai 100% B Second Grade)

Date	GARCH(1,1)								
Jan-78	0.0038039	May-81	0.0015619	Sep-84	0.0017814	Jan-88	0.0053109	May-91	0.0056669
Feb-78	0.0032594	Jun-81	0.0013632	Oct-84	0.0031604	Feb-88	0.0082689	Jun-91	0.0040759
Mar-78	0.0050708	Jul-81	0.0014306	Nov-84	0.0024427	Mar-88	0.0063135	Jul-91	0.0030758
Apr-78	0.0044706	Aug-81	0.0014389	Dec-84	0.0043256	Apr-88	0.0049808	Aug-91	0.0028018
May-78	0.0035989	Sep-81	0.0019821	Jan-85	0.003293	May-88	0.0037601	Sep-91	0.0024007
Jun-78	0.0027178	Oct-81	0.001799	Feb-85	0.0025018	Jun-88	0.0064208	Oct-91	0.0021468
Jul-78	0.0021793	Nov-81	0.0028374	Mar-85	0.0021444	Jul-88	0.0050636	Nov-91	0.0023672
Aug-78	0.0025218	Dec-81	0.0032813	Apr-85	0.0017423	Aug-88	0.0037388	Dec-91	0.0019368
Sep-78	0.0026003	Jan-82	0.0065978	May-85	0.0014764	Sep-88	0.0029128	Jan-92	0.0016833
Oct-78	0.0020449	Feb-82	0.007477	Jun-85	0.0013005	Oct-88	0.0022891	Feb-92	0.0015368
Nov-78	0.0018732	Mar-82	0.0062121	Jul-85	0.0011849	Nov-88	0.0018387	Mar-92	0.0013452
Dec-78	0.0064945	Apr-82	0.0044313	Aug-85	0.0021511	Dec-88	0.0015494	Apr-92	0.0012229
Jan-79	0.0058551	May-82	0.0037185	Sep-85	0.0017474	Jan-89	0.0019532	May-92	0.0011376
Feb-79	0.0042269	Jun-82	0.0033635	Oct-85	0.0014805	Feb-89	0.0016578	Jun-92	0.0011889
Mar-79	0.0031186	Jul-82	0.0027309	Nov-85	0.0013039	Mar-89	0.001568	Jul-92	0.0013853
Apr-79	0.0028792	Aug-82	0.0021528	Dec-85	0.0011872	Apr-89	0.0014597	Aug-92	0.0017824
May-79	0.002231	Sep-82	0.0017915	Jan-86	0.0022838	May-89	0.0020536	Sep-92	0.0019082
Jun-79	0.0018023	Oct-82	0.0025858	Feb-86	0.0028567	Jun-89	0.0025485	Oct-92	0.0023077
Jul-79	0.0015844	Nov-82	0.003112	Mar-86	0.0027544	Jul-89	0.00296	Nov-92	0.0020331
Aug-79	0.0013827	Dec-82	0.0024266	Apr-86	0.0032823	Aug-89	0.0031192	Dec-92	0.0016754
Sep-79	0.0022798	Jan-83	0.0021364	May-86	0.0037827	Sep-89	0.0032883	Jan-93	0.0014775
Oct-79	0.0020468	Feb-83	0.0019074	Jun-86	0.0028664	Oct-89	0.0028477	Feb-93	0.0014134
Nov-79	0.0016791	Mar-83	0.0019142	Jul-86	0.0022979	Nov-89	0.0030708	Mar-93	0.0015579
Dec-79	0.0014358	Apr-83	0.0020352	Aug-86	0.0058186	Dec-89	0.0062638	Apr-93	0.0041141
Jan-80	0.0016538	May-83	0.0016708	Sep-86	0.0043335	Jan-90	0.0044716	May-93	0.0064303
Feb-80	0.0018176	Jun-83	0.001453	Oct-86	0.0046875	Feb-90	0.0033189	Jun-93	0.0078027
Mar-80	0.0015402	Jul-83	0.0017681	Nov-86	0.0034443	Mar-90	0.0042579	Jul-93	0.0055777
Apr-80	0.0017016	Aug-83	0.0018489	Dec-86	0.0026192	Apr-90	0.0035632	Aug-93	0.0068266
May-80	0.0014616	Sep-83	0.0023091	Jan-87	0.002562	May-90	0.0033081	Sep-93	0.0048394
Jun-80	0.0015344	Oct-83	0.0034609	Feb-87	0.0023029	Jun-90	0.0035438	Oct-93	0.0036499
Jul-80	0.0014243	Nov-83	0.0028479	Mar-87	0.0033547	Jul-90	0.0027953	Nov-93	0.0154693
Aug-80	0.0012668	Dec-83	0.0024005	Apr-87	0.0033357	Aug-90	0.0021722	Dec-93	0.0241592
Sep-80	0.0011626	Jan-84	0.002306	May-87	0.0025307	Sep-90	0.0018043	Jan-94	0.0165033
Oct-80	0.0010937	Feb-84	0.0029036	Jun-87	0.0020121	Oct-90	0.0015273	Feb-94	0.0147085
Nov-80	0.0010482	Mar-84	0.002332	Jul-87	0.0016968	Nov-90	0.0029941	Mar-94	0.0101855
Dec-80	0.0015287	Apr-84	0.001867	Aug-87	0.00166	Dec-90	0.0026315	Apr-94	0.0285152
Jan-81	0.0013754	May-84	0.0015805	Sep-87	0.0024878	Jan-91	0.0023431	May-94	0.0192977
Feb-81	0.0012344	Jun-84	0.0014232	Oct-87	0.0127057	Feb-91	0.0072285	Jun-94	0.0181338
Mar-81	0.0012306	Jul-84	0.001287	Nov-87	0.0097905	Mar-91	0.0061954	Jul-94	0.0143248
Apr-81	0.0017561	Aug-84	0.0021894	Dec-87	0.007531	Apr-91	0.0050771	Aug-94	0.0102819

Date	GARCH(1,1)								
Sep-94	0.0097	Jan-98	0.0032564	May-01	0.0036926	Sep-04	0.0023876	Jan-08	0.0024496
Oct-94	0.0070773	Feb-98	0.0054281	Jun-01	0.0027955	Oct-04	0.001908	Feb-08	0.0023193
Nov-94	0.0050104	Mar-98	0.0039358	Jul-01	0.0022632	Nov-04	0.0015881	Mar-08	0.0123589
Dec-94	0.0036532	Apr-98	0.002949	Aug-01	0.001842	Dec-04	0.0016388	Apr-08	
Jan-95	0.0028234	May-98	0.0029462	Sep-01	0.0015601	Jan-05	0.0022736	May-08	
Feb-95	0.002875	Jun-98	0.002392	Oct-01	0.0014882	Feb-05	0.002109	Jun-08	
Mar-95	0.0026181	Jul-98	0.002249	Nov-01	0.0013668	Mar-05	0.0017508	Jul-08	
Apr-95	0.0021065	Aug-98	0.0020049	Dec-01	0.0012426	Apr-05	0.0014921	Aug-08	0.0280304
May-95	0.0017327	Sep-98	0.0016508	Jan-02	0.0018418	May-05	0.0013444	Sep-08	0.0207093
Jun-95	0.0015693	Oct-98	0.0014233	Feb-02	0.0025287	Jun-05	0.0012768	Oct-08	0.0141608
Jul-95	0.0053413	Nov-98	0.002934	Mar-02	0.0020487	Jul-05	0.00142	Nov-08	0.0155558
Aug-95	0.0046856	Dec-98	0.004972	Apr-02	0.001901	Aug-05	0.0015356	Dec-08	0.0135458
Sep-95	0.003498	Jan-99	0.0040694	May-02	0.0015808	Sep-05	0.001394	Jan-09	0.0094476
Oct-95	0.0033549	Feb-99	0.0040747	Jun-02	0.0018573	Oct-05	0.0012785	Feb-09	0.0096885
Nov-95	0.0034697	Mar-99	0.004601	Jul-02	0.001619	Nov-05	0.0011895	Mar-09	0.0069312
Dec-95	0.0063976	Apr-99	0.0055902	Aug-02	0.0014495	Dec-05	0.0016219	Apr-09	0.0049789
Jan-96	0.004554	May-99	0.0060269	Sep-02	0.0018204	Jan-06	0.0014154	May-09	0.0054255
Feb-96	0.0043946	Jun-99	0.0046153	Oct-02	0.0016087	Feb-06	0.0014002	Jun-09	0.0051381
Mar-96	0.0032348	Jul-99	0.0037916	Nov-02	0.0014791	Mar-06	0.0016459	Jul-09	0.0037585
Apr-96	0.0025215	Aug-99	0.002831	Dec-02	0.001313	Apr-06	0.0014126	Aug-09	0.006945
May-96	0.0051722	Sep-99	0.0023162	Jan-03	0.0012355	May-06	0.0012573	Sep-09	0.0066445
Jun-96	0.003821	Oct-99	0.0034328	Feb-03	0.0025458	Jun-06	0.0011664	Oct-09	0.0049147
Jul-96	0.0030152	Nov-99	0.0040398	Mar-03	0.0020218	Jul-06	0.001131	Nov-09	0.004235
Aug-96	0.0028476	Dec-99	0.0035268	Apr-03	0.0016963	Aug-06	0.0011732	Dec-09	0.0031255
Sep-96	0.0034186	Jan-00	0.0026985	May-03	0.0014807	Sep-06	0.0010991	Jan-10	0.0035254
Oct-96	0.0027366	Feb-00	0.0032833	Jun-03	0.0013313	Oct-06	0.0010545	Feb-10	0.0027214
Nov-96	0.0028361	Mar-00	0.0026108	Jul-03	0.0013983	Nov-06	0.0010657	Mar-10	0.0022888
Dec-96	0.0022044	Apr-00	0.0030991	Aug-03	0.001393	Dec-06	0.0013044	Apr-10	0.0032974
Jan-97	0.0017932	May-00	0.0031932	Sep-03	0.0013303	Jan-07	0.0013655	May-10	0.0041315
Feb-97	0.0056064	Jun-00	0.0046044	Oct-03	0.0014371	Feb-07	0.0012578	Jun-10	0.0044761
Mar-97	0.004242	Jul-00	0.0033819	Nov-03	0.001276	Mar-07	0.0011633	Jul-10	0.0032887
Apr-97	0.0045474	Aug-00	0.002941	Dec-03	0.0012166	Apr-07	0.0013163	Aug-10	0.0025991
May-97	0.0050307	Sep-00	0.0024119	Jan-04	0.001313	May-07	0.0012501	Sep-10	0.0020753
Jun-97	0.005278	Oct-00	0.0026267	Feb-04	0.0018344	Jun-07	0.0011659	Oct-10	0.0024449
Jul-97	0.003825	Nov-00	0.0025885	Mar-04	0.0017029	Jul-07	0.0011542	Nov-10	0.0020065
Aug-97	0.0028943	Dec-00	0.0020774	Apr-04	0.0050999	Aug-07	0.0011585	Dec-10	0.0026044
Sep-97	0.0059701	Jan-01	0.0017213	May-04	0.0043711	Sep-07	0.0010981	Jan-11	0.0024354
Oct-97	0.005103	Feb-01	0.0014626	Jun-04	0.0032396	Oct-07	0.0010625	Feb-11	0.002393
Nov-97	0.0037956	Mar-01	0.0012907	Jul-04	0.0027411	Nov-07	0.0010735	Mar-11	0.0020067
Dec-97	0.0036887	Apr-01	0.0017599	Aug-04	0.002229	Dec-07	0.0019524	Apr-11	0.0025868

Appendix H: Results of Estimating Volatility by GARCH Model (Stata Output)

Estimation of (4.4 and 4.7)	
$r_t = \beta_o + \beta_1 CRB_t + \beta_2 WP_t + \epsilon_t$	(4.4)
$h_t = \alpha_\circ + \alpha_1 \epsilon_{t-1}^2 + \alpha_2 h_{t-1} + \alpha_3 D_t + \alpha_4 P_t$	(4.7)

Rough Rice

. tsset time time variable: time, 1 to 342

. arch spot crb wprtrn, het(dum cash) arch(1) garch(1)

(setting o	ntimizat	ion to BHHH)			
Iteration	-	likelihood =	524.67564		
Iteration	-	j likelihood =	534.30804		
Iteration		j likelihood =	541.34092		
Iteration		<pre>g likelihood = </pre>	542.63938		
Iteration	-	g likelihood =	542.81027		
-	-	ation to BFGS)			
Iteration	-	g likelihood =	547.41497		
Iteration	-	g likelihood =	548.90147		
Iteration	-	g likelihood =	549.15428		
Iteration	-	g likelihood =	549.15428	(backed up))
Iteration		g likelihood =	549.24244		
Iteration		g likelihood =	549.42047		
Iteration		g likelihood =	549.44315		
Iteration		g likelihood =	549.48556		
Iteration	13: lo <u>c</u>	g likelihood =	549.53128		
Iteration	14: log	g likelihood =	549.53425		
(switching	optimiz	ation to BHHH)			
Iteration	15: log	g likelihood =	549.5346		
Iteration	16: log	g likelihood =	549.63989		
Iteration	17: log	g likelihood =	549.65658		
Iteration	18: loc	likelihood =	549.66548		
Iteration	19: loc	likelihood =	549.66933		
(switching	optimiz	ation to BFGS)			
Iteration		likelihood =	549.67367		
Iteration	-	likelihood =	549.68119		
Iteration	-	likelihood =	549.6815		
Iteration		likelihood =	549.68178		
Iteration	-	likelihood =	549.68232		
Iteration	-	<pre>likelihood =</pre>	549.68387		
Iteration		1 likelihood =	549.68389	(backed up	-)
Iteration	-	<pre>g likelihood =</pre>	549.68414	(backed up)
Iteration	-	j likelihood =	549.68419		
Iteration	-	<pre>g likelihood =</pre>	549.68424		
		ation to BHHH)			
Iteration	-				
	-	<pre>g likelihood = </pre>	549.68426		
Iteration	-	<pre>g likelihood = </pre>	549.68431		
Iteration	-	<pre>g likelihood = </pre>	549.68431		
Iteration		g likelihood =	549.68433		
Iteration		y likelihood =	549.68433		
-	-	ation to BFGS)			
Iteration	-	g likelihood =	549.68433	(backed up	
Iteration		g likelihood =	549.68433	(backed up))
Iteration	-	g likelihood =	549.68433		
Iteration		g likelihood =	549.68433	(backed up))
Iteration	-	g likelihood =	549.68433		
Iteration	-	g likelihood =	549.68433	(backed up))
Iteration		g likelihood =	549.68433	(backed up))
Iteration	42: lo <u>c</u>	g likelihood =	549.68433		
Iteration	43: log	g likelihood =	549.68433	(backed up))
Iteration		g likelihood =	549.68433	(backed up)
(switching		ation to BHHH)			
Iteration	45: log	g likelihood =	549.68433	(backed up))
Iteration	46: log	g likelihood =	549.68433	(backed up))
Iteration	47: log	g likelihood =	549.68433	(backed up))
Iteration	48: loc	, g likelihood =	549.68433	(backed up)
Iteration		, g likelihood =	549.68433	(backed up))
(switching	optimiz	ation to BFGS)		-	
2					

	log likeliho	= boc	549.68433	(backed	up)		
Iteration 51:	log likeliho	= boc	549.68433	(backed	lup)		
Iteration 52:	log likeliho	= boc	549.68433	(backed	up)		
Iteration 53:	log likeliho	= boc	549.68433	(backed	lup)		
Iteration 54:	log likeliho	= boc	549.68433	(backed	lup)		
Iteration 55:	log likeliho	= boc	549.68433	(backed	lup)		
Iteration 56:	log likeliho	= boc	549.68433	(backed	lup)		
Iteration 57:	log likeliho	= boc	549.68433	(backed	lup)		
Iteration 58:	log likeliho	= boc	549.68433	(backed	up)		
Iteration 59:	log likeliho	= boc	549.68433	(backed	lup)		
(switching opt							
Iteration 60:	log likeliho	ood =	549.68433	(backed	up)		
Iteration 61:	log likeliho	ood =	549.68433	(backed	up)		
Iteration 62:	log likeliho	= boc	549.68433	(backed	lup)		
Iteration 63:	log likeliho	= boc	549.68433	(backed	lup)		
Iteration 64:	log likeliho	= boc	549.68433	(backed	lup)		
(switching opt	cimization to	BFGS)					
Iteration 65:	log likeliho	= boc	549.68433	(backed	up)		
Iteration 66:	log likeliho	= boc	549.68433	(backed	up)		
Iteration 67:	log likeliho	= boc	549.68433	(backed	lup)		
Iteration 68:	log likeliho	ood =	549.68433	(backed	up)		
Iteration 69:	log likeliho	= boc	549.68433	(backed	lup)		
Iteration 70:	log likeliho	ood =	549.68433	(backed	up)		
Iteration 71:	log likeliho	ood =	549.68433	(backed	up)		
Iteration 72:	log likeliho	ood =	549.68433	(backed	up)		
Iteration 73:	log likeliho	od =	549.68433	(backed	up)		
Iteration 74:		od =	549.68433				
ARCH family regression multiplicative heteroskedasticity Sample: 1 to 342 Number of obs = 342							
_	-	nultip]	licative he	Nur	ber of ok		
_	342	nultipl	licative he	Num Wal	_	=	12.92
Sample: 1 to	342			Num Wal	ber of ok d chi2(2)	=	12.92
Sample: 1 to Log likelihood	342 d = 549.6843	OF	 ?G	Num Wal Prc	ber of ok d chi2(2) b > chi2	= =	12.92 0.0016
Sample: 1 to	342 d = 549.6843		 ?G	Num Wal Prc	ber of ok d chi2(2) b > chi2	= =	12.92
Sample: 1 to Log likelihood spot	342 d = 549.6843	OF	 ?G	Num Wal Prc	ber of ok d chi2(2) b > chi2	= =	12.92 0.0016
Sample: 1 to Log likelihood spot spot	342 A = 549.6843 Coef.	OF Std.	PG Err.	Num Wal Prc	ber of ok d chi2(2) b > chi2 z [9	= = 05% Conf.	12.92 0.0016
Sample: 1 to Log likelihood 	342 A = 549.6843 Coef.	OF Std. .0750	PG Err. 0278 0.	Num Wal Prc z P> .47 0.6	ber of ok d chi2(2) b > chi2 z [9 391	= = 25% Conf. 	12.92 0.0016 Interval] .1822308
Sample: 1 to Log likelihood 	342 a = 549.6843 Coef. .035179 .0889872	OF Std. .0750 .0258	2G Err. 0278 0. 3457 3.	Num Wal Prc z P> 	ber of ok d chi2(2) b > chi2 z [9 391 01 .(= = 95% Conf. 118727 0383306	12.92 0.0016 Interval] .1822308 .1396438
Sample: 1 to Log likelihood 	342 a = 549.6843 Coef. .035179 .0889872	OF Std. .0750 .0258	2G Err. 0278 0. 3457 3.	Num Wal Prc z P> .47 0.6	ber of ok d chi2(2) b > chi2 z [9 391 01 .(= = 25% Conf. 	12.92 0.0016 Interval] .1822308
Sample: 1 to Log likelihood spot spot crb wprtrn _cons	342 a = 549.6843 Coef. .035179 .0889872	OF Std. .0750 .0258	2G Err. 0278 0. 3457 3.	Num Wal Prc z P> 	ber of ok d chi2(2) b > chi2 z [9 391 01 .(= = 95% Conf. 118727 0383306	12.92 0.0016 Interval] .1822308 .1396438
Sample: 1 to Log likelihood spot spot crb wprtrn HET	342 d = 549.6843 Coef. .035179 .0889872 0008927	OF Std. .0750 .0258 .0029	2G Err. 0278 0. 3457 3. 9301 -0.	Num Wal Prc z P> 47 0.6 44 0.0 30 0.7	ber of ok d chi2(2) b > chi2 z [9 	= 25% Conf. .118727 0383306 0066356	12.92 0.0016 Interval] .1822308 .1396438 .0048502
Sample: 1 to Log likelihood spot spot crb wprtrn cons HET dum	342 d = 549.6843 Coef. .035179 .0889872 0008927 5124324	OF Std. .0750 .0258 .0029	2G Err. 0278 0. 3457 3. 9301 -0.	Num Wal Prc z P> 	ber of ok d chi2(2) b > chi2 	= 	12.92 0.0016 Interval] .1822308 .1396438 .0048502 24139
Sample: 1 to Log likelihood spot crb wprtrn _cons HET dum cash	342 d = 549.6843 Coef. .035179 .0889872 0008927 5124324 0049808	OF Std. .0750 .0258 .0029 .1382 .0024	2G Err. 0278 0. 3457 3. 9301 -0. 2895 -3. 4909 -2.	Num Wal Prc z P> 	ber of ok d chi2(2) b > chi2 	= 	12.92 0.0016 Interval] .1822308 .1396438 .0048502 24139 0000986
Sample: 1 to Log likelihood spot spot crb wprtrn cons HET dum	342 d = 549.6843 Coef. .035179 .0889872 0008927 5124324 0049808	OF Std. .0750 .0258 .0029 .1382 .0024	2G Err. 0278 0. 3457 3. 9301 -0. 2895 -3. 4909 -2.	Num Wal Prc z P> 	ber of ok d chi2(2) b > chi2 	= 	12.92 0.0016 Interval] .1822308 .1396438 .0048502 24139 0000986
Sample: 1 to Log likelihood spot spot crb wprtrn HET dum cash sons	342 d = 549.6843 Coef. .035179 .0889872 0008927 5124324 0049808	OF Std. .0750 .0258 .0029 .1382 .0024	2G Err. 0278 0. 3457 3. 9301 -0. 2895 -3. 4909 -2.	Num Wal Prc z P> 	ber of ok d chi2(2) b > chi2 	= 	12.92 0.0016 Interval] .1822308 .1396438 .0048502 24139 0000986
Sample: 1 to Log likelihood 	342 a = 549.6843 Coef. .035179 .0889872 0008927 5124324 5124324 0049808 -5.852786	OF Std. .0750 .0258 .0029 .1382 .0024	2G Err. 0278 0. 3457 3. 9301 -0. 2895 -3. 4909 -2.	Num Wal Prc z P> 	ber of ok d chi2(2) b > chi2 	= 	12.92 0.0016 Interval] .1822308 .1396438 .0048502 24139 0000986
Sample: 1 to Log likelihood spot crb wprtrn cons HET dum cash cons ARCH arch	342 a = 549.6843 Coef. .035179 .0889872 0008927 5124324 0049808 -5.852786	OF Std. .0750 .0258 .0029 .1382 .0024 .3187	2G Err. 0278 0. 3457 3. 9301 -0. 2895 -3. 4909 -2. 7265 -18.	Num Wal Prc z P> .47 0.6 .44 0.0 .30 0.7 .71 0.0 .00 0.0 .36 0.0	ber of ok d chi2(2) b > chi2 z [9 391 01 .0 610 007 460 00 -6.	= 	12.92 0.0016 Interval] .1822308 .1396438 .0048502 24139 0000986 -5.228094
Sample: 1 to Log likelihood spot crb wprtrn cons HET dum cash cons ARCH arch L1.	342 a = 549.6843 Coef. .035179 .0889872 0008927 5124324 5124324 0049808 -5.852786 .4225579	OF Std. .0750 .0258 .0029 .1382 .0024 .3187	2G Err. 0278 0. 3457 3. 9301 -0. 2895 -3. 4909 -2.	Num Wal Prc z P> .47 0.6 .44 0.0 .30 0.7 .71 0.0 .00 0.0 .36 0.0	ber of ok d chi2(2) b > chi2 z [9 391 01 .0 610 007 460 00 -6.	= 	12.92 0.0016 Interval] .1822308 .1396438 .0048502 24139 0000986
Sample: 1 to Log likelihood 	342 a = 549.6843 Coef. .035179 .0889872 0008927 5124324 0049808 -5.852786 .4225579	OF Std. .0750 .0258 .0029 .1382 .0024 .3187	2G Err. 0278 0. 3457 3. 9301 -0. 2895 -3. 4909 -2. 7265 -18. 0238 4.	Num Wal Pro z P> .47 0.6 .44 0.0 .30 0.7 .71 0.0 .00 0.0 .36 0.0 .91 0.0	ber of ok d chi2(2) b > chi2 2 [9 391 01 .0 610 007 460 00 -6.	= 	12.92 0.0016 Interval] .1822308 .1396438 .0048502 24139 0000986 -5.228094 .5911615
Sample: 1 to Log likelihood spot crb wprtrn cons HET dum cash cons ARCH arch L1.	342 a = 549.6843 Coef. .035179 .0889872 0008927 5124324 0049808 -5.852786 .4225579	OF Std. .0750 .0258 .0029 .1382 .0024 .3187	2G Err. 0278 0. 3457 3. 9301 -0. 2895 -3. 4909 -2. 7265 -18. 0238 4.	Num Wal Prc z P> .47 0.6 .44 0.0 .30 0.7 .71 0.0 .00 0.0 .36 0.0	ber of ok d chi2(2) b > chi2 2 [9 391 01 .0 610 007 460 00 -6.	= 	12.92 0.0016 Interval] .1822308 .1396438 .0048502 24139 0000986 -5.228094

Milled Rice

. tsset time

time variable: time, 1 to 366

. arch milled crb wprtrn, het(dum cash) arch(1) garch(1)

(setting optimization to BHHH)
Iteration 0: log likelihood = 636.30661
Iteration 1: log likelihood = 659.23883
Iteration 2: log likelihood = 668.41137
Iteration 3: log likelihood = 678.05973
(switching optimization to BFGS)
Iteration 5: log likelihood = 679.60549
Iteration 7: log likelihood = 680.39368
Iteration 7: log likelihood = 686.7832
Iteration 9: log likelihood = 688.90191

Iteration 10: Iteration 11: Iteration 12: Iteration 13: Iteration 14: (switching opt Iteration 15: Iteration 16: Iteration 17: Iteration 19: (switching opt Iteration 20: Iteration 21: Iteration 22: Iteration 23: Iteration 24: Iteration 25: Iteration 26: Iteration 27: Iteration 28: ARCH family re	log likeliho log likeliho timization to log likeliho log likeliho	$\begin{array}{rcl} \text{bod} &=& 691.\\ \text{bod} &=& 691.7\\ \text{bod} &=& 692.2\\ \text{bod} &=& 692.3\\ \text{BHHH} \\ \text{bod} &=& 692.3\\ \text{bod} &=& 692.4\\ \text{bod} &=& 6$	5507 9982 1058 1443 8653 3812 4464 4486 5113 4533 7041 7697 8118 4828 8282 8282 8282 8282	oskedasti	city	
Sample: 1 to	2	÷			-	366
Log likelihood				Wald ch Prob >	i2(2) =	
		OPG				
milled	Coef. +	Std. Err.	Z Z	P> z	[95% Conf.	Interval]
milled	 1297854	055997	2 32	0 020	0200332	2395375
wprtrn	.1297854 .0820868	.0192359	4.27			
_cons	0102783 +	.001563	-6.58	0.000	0133417	0072149
HET		1.000 7.00				1
	4716149 .0012217					
_cons		.3227048		0.000	-8.344158	-7.079178
ARCH	+ 					
arch						
L1. garch		.1427916	8.34	0.000	.9117134	1.471446
L1.		.0220867	0.19	0.850	0391219	.0474562

World Rice (Impact of Rice Futures on the CBOT)

. arch wprtrn crbrtrn, het(dum) arch(1) garch(1)

(setting optimization to BHHH)
Iteration 0: log likelihood = 592.80672
Iteration 1: log likelihood = 597.14604
Iteration 2: log likelihood = 605.37951
Iteration 3: log likelihood = 610.32706
Iteration 4: log likelihood = 611.18809
(switching optimization to BFGS)
Iteration 5: log likelihood = 611.32873
Iteration 6: log likelihood = 611.40914
Iteration 7: log likelihood = 611.41736
Iteration 8: log likelihood = 611.41799

ARCH family regression -- multiplicative heteroskedasticity

Sample: 1 to 400		Number of obs	=	400
		Wald chi2(1)	=	1.06
Log likelihood =	611.418	Prob > chi2	=	0.3023

	wprtrn	Coef.	OPG Std. Err.	Z	P> z	[95% Conf.	. Interval]	
wprt	rn crbrtrn _cons	.123953	.1201777 .0025046	1.03 0.66	0.302 0.511	111591 0032614	.359497 .0065564	
HET	dum _cons	2818254 -7.96268	.2436502 .3273619	-1.16 -24.32	0.247 0.000	7593709 -8.604298	.1957202 -7.321063	
ARCH	arch L1. garch L1.	.2537816	.0420329 .0425368	6.04 15.92	0.000	.1713985 .5936573	.3361646	

Estimation of Volatility before and after the Introduction of the Rice Futures on the CBOT Estimation of (5.1)

$$h_t = \alpha_\circ + \alpha_1 \epsilon_{t-1}^2 + \alpha_2 h_{t-1} + \alpha_3 P_t$$

(5.1)

Rough Rice pre Futures

. tsset time time variable: time, 1 to 145

. arch spot crb wprtrn, het(cash) arch(1) garch(1)

(aatting anti	migation to DUUU)		
Iteration 0:	.mization to BHHH) log likelihood =	185.7151	
Iteration 1:	log likelihood =		
Iteration 1: Iteration 2:	log likelihood =		(backed up)
Iteration 3:	log likelihood =		(backed up)
Iteration 3: Iteration 4:	log likelihood =		
	timization to BFGS		
Iteration 5:	log likelihood =		
Iteration 6:	log likelihood =		
Iteration 7:	log likelihood =		(backed up)
Iteration 8:	log likelihood =		(backed up)
Iteration 8: Iteration 9:	log likelihood =		
	2		
Iteration 10: Iteration 11:	2		
Iteration 12:			
Iteration 13:	2		
Iteration 14:	2		
	timization to BHHH		
Iteration 15:	2		
Iteration 16:			
Iteration 17:	2		
Iteration 18:	2		
Iteration 19:			
	timization to BFGS		
Iteration 20:	2		
Iteration 21:	2		
Iteration 22:	2		
Iteration 23:	2		
Iteration 24:	2		
Iteration 25:			
Iteration 26:			
Iteration 27:			
Iteration 28:			
Iteration 29:			
	timization to BHHH		
Iteration 30:	2		
Iteration 31:	2		
Iteration 32:	-		
Iteration 33:			
Iteration 34:			
	otimization to BFGS		
Iteration 35:			
Iteration 36:	2		
Iteration 37:			
Iteration 38:	log likelihood =	223.01418	

Iteration 39: log likelihood = 223.01419 Iteration 40: log likelihood = 223.01419 Iteration 41: log likelihood = 223.01419 Iteration 42: log likelihood = 223.01419 ARCH family regression -- multiplicative heteroskedasticity Number of obs = 145 Wald chi2(2) = 13.91 Prob > chi2 = 0.0010 Sample: 1 to 145 Log likelihood = 223.0142 _____ OPG spot | Coef. Std. Err. z P>|z| [95% Conf. Interval] _____ spot _____ crb | .0306101 .1520313 0.20 0.840 -.2673658 wprtrn | .2337961 .0638407 3.66 0.000 .1086707 _cons | -.0014647 .003421 -0.43 0.669 -.0081697 .328586 .3589216 .0052402 HET cash | -.0472173 .0057529 -8.21 0.000 -.0584927 -.0359418 _cons | -.0682407 .7121321 -0.10 0.924 -1.463994 1.327513 _____ ARCH arch | .0295695 L1. | .2400776 .1074041 2.24 0.025 .4505857 garch | L1. | .5111449 .0800673 6.38 0.000 .3542158 .668074 _____

Rough Rice post Futures

. tsset time

time variable: time, 1 to 197

. arch spot crb wprtrn, het(cash) arch(1) garch(1)

(setting optimization to BHHH)
Iteration 0: log likelihood = 342.04218
Iteration 1: log likelihood = 346.35268
Iteration 2: log likelihood = 346.39511
Iteration 3: log likelihood = 346.39695
(switching optimization to BFGS)
Iteration 5: log likelihood = 346.40034
Iteration 6: log likelihood = 346.42034
Iteration 7: log likelihood = 346.42034
Iteration 9: log likelihood = 346.4222
Iteration 10: log likelihood = 346.42226
Iteration 11: log likelihood = 346.4226

ARCH family regression -- multiplicative heteroskedasticity

Sample: 1 to	197			Number	of obs	= 197
				Wald ch	ni2(2)	= 3.50
Log likelihoo	d = 346.4223			Prob >	chi2	= 0.1740
	 Caaf	OPG	_		FOE® Comf	
spot	COEI.	Sta. Err.	Z	P> Z	[95% Conf	. Interval]
spot	+ 					
crb	.0678762	.0954526	0.71	0.477	1192076	.2549599
wprtrn		.0527498	1.49	0.137	0250076	.1817679
cons	.0007341	.0034416	0.21	0.831	0060113	.0074794
	+					
HET						
cash	.0006997	.0022743	0.31	0.758	0037578	.0051573
_cons	-7.592031	.6729529	-11.28	0.000	-8.910995	-6.273068
	+					
ARCH						
arch						
L1.	.2230368	.130504	1.71	0.087	0327463	.4788198

 spot	Coef.	OPG Std. Err.	Z	₽> z	[95% Conf.	Interval]
garch L1.	.4785565	.2545573	1.88	0.060	0203666	.9774796

Milled Rice pre Futures . tsset time

time variable: time, 1 to 181

. arch milled crb wprtrn, het(cash) arch(1) garch(1)

(setting optimization to BHHH)

(setting optim	ization to BHHH)	
Iteration 0:	log likelihood =	269.79774
Iteration 1:	log likelihood =	287.79507
Iteration 2:	log likelihood =	289.86851
Iteration 3:	log likelihood =	291.48128
Iteration 4:	log likelihood =	295.17766
(switching opt	imization to BFGS)	
Iteration 5:	log likelihood =	305.20887
Iteration 6:	log likelihood =	316.58162
Iteration 7:	log likelihood =	318.18448
Iteration 8:	log likelihood =	321.56573
Iteration 9:	log likelihood =	329.03388
Iteration 10:	log likelihood =	332.02454
Iteration 11:	log likelihood =	332.57227
Iteration 12:	log likelihood =	333.26637
Iteration 13:	log likelihood =	333.69829
Iteration 14:	log likelihood =	334.00653
(switching opt	imization to BHHH)	
Iteration 15:	log likelihood =	334.90762
Iteration 16:	log likelihood =	337.7614
Iteration 17:	log likelihood =	339.19864
Iteration 18:	log likelihood =	340.06857
Iteration 19:	log likelihood =	340.31456
(switching opt	imization to BFGS)	
Iteration 20:	log likelihood =	340.39954
Iteration 21:	log likelihood =	340.47101
Iteration 22:	log likelihood =	340.4889
Iteration 23:	log likelihood =	340.49219
Iteration 24:	log likelihood =	340.49277
Iteration 25:	log likelihood =	340.49281
Iteration 26:	log likelihood =	340.49281

ARCH family regression -- multiplicative heteroskedasticity

Sample: 1 to	181				of obs =	
Log likelihood	4 = 340.4928				ni2(2) = chi2 =	0.0000
 milled	Coef.	OPG Std. Err.	Z	P> z	[95% Conf.	Interval]
milled						
crb	.1213094	.0633392 OPG	1.92	0.055	0028332	.245452
milled	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
milled						
					.120291	
_cons	0014053	.0014687	-0.96	0.339	0042839	.0014733
HET						
cash	0238578	.0043449	-5.49	0.000	0323736	015342
_cons	2889215	1.397403	-0.21	0.836	-3.027781	2.449938
ARCH						
arch						
L1.	.899769	.1372182	6.56	0.000	.6308262	1.168712
garch						
L1.	.3775949	.0549957	6.87	0.000	.2698053	.4853844

Milled rice post Futures

*****POST FUTURES**** October 1994 to December 2007 . tsset time

```
time variable: time, 1 to 159
```

. arch milled crb wprtrn, het(cash) arch(1) garch(1)

(setting optimization to BHHH)

(setting d	optimi	lzati	ion to BHHH)	
Iteration	0:	log	likelihood =	322.5688
Iteration	1:	log	likelihood =	325.6554
Iteration	2:	log	likelihood =	327.42804
Iteration	3:	log	likelihood =	329.07989
Iteration	4:	log	likelihood =	330.97627
(switching	g opti	Lmiza	ation to BFGS)	
Iteration	5:	log	likelihood =	332.54269
Iteration	6:	log	likelihood =	332.77856
Iteration	7:	log	likelihood =	333.74915
Iteration	8:	log	likelihood =	334.92089
Iteration	9:	log	likelihood =	335.12921
Iteration	10:	log	likelihood =	335.34701
Iteration	11:	log	likelihood =	335.69087
Iteration	12:	log	likelihood =	335.98004
Iteration	13:	log	likelihood =	336.30806
Iteration	14:	log	likelihood =	336.35333
(switching	g opti	Lmiza	ation to BHHH)	
Iteration	15:	log	likelihood =	336.52425
Iteration	16:	log	likelihood =	336.67211
Iteration	17:	log	likelihood =	336.68899
Iteration	18:	log	likelihood =	336.6908
Iteration	19:	log	likelihood =	336.6911
(switching	g opti	Lmiza	ation to BFGS)	
Iteration	20:	log	likelihood =	336.6912
Iteration	21:	log	likelihood =	336.69124
Iteration	22:	log	likelihood =	336.69124
Iteration	23:	log	likelihood =	336.69124
ARCH famil	ly red	ress	sion multip	licative heteros

ARCH family regression -- multiplicative heteroskedasticity

Sample: 1 to 159 Number of obs = 159 Wald chi2(2) = 15.16									
Log likelihoo	Log likelihood = 336.6912 Prob > chi2								
milled	Coef.	OPG Std. Err.	Z	₽> z	[95% Cont	. Interval]			
milled	+ 								
wprtrn	.153215 .1201143 0020257	.0415242	2.89	0.004	.0387284	.2015001			
 нет	+								
	0179978	.0072617	-2.48	0.013	0322304	0037652			
		OPG							
milled HET	Coef.	Std. Err.	Z	₽> z	[95% Cont	[. Interval]			
	-4.986346	1.676782	-2.97	0.003	-8.272778	-1.699915			
ARCH									
arch L1. garch	.0142886	.0113278	1.26	0.207	0079135	.0364906			
-	.9494134	.0199533	47.58	0.000	.9103057	.9885211			

World Price before Zhengzhou Rice Futures Market

Estimation of equations (5.2) and (4.6):

$r_t = \beta_o + \beta_1 CRB_t + \epsilon_t$	(5.2)
$h_t = a_0 + a_1 \epsilon_{t-1} + b_1 h_{t-1}$	(4.6)

. arch wp crb	, arch(1) gard	ch(1)						
Iteration 0: Iteration 1: Iteration 2: Iteration 3: Iteration 4:	log likeliho log likeliho log likeliho timization to log likeliho log likeliho log likeliho log likeliho log likeliho log likeliho	bod = 269.87 bod = 270.98 bod = 273.94 bod = 274.43 bod = 274.58 bod = 274.78 bod = 274.78 bod = 274.85 bod = 274.87	8982 1391 3796 5061 8357 8988 2075 5599 7199 7245					
ARCH family r	egression							
Sample: 1 to	104				of obs = i2(1) =			
Log likelihoo	d = 274.8725			Prob >	chi2 =	0.0018		
		OPG				l l		
qw 	Coel. +	Sta. Err.	Z	₽> Z 	[95% Conf.	Interval]		
wp crb _cons	 .5410251 .0035222				.2006755 .0002593			
ARCH arch Ll. garch Ll.	.3643266				.145491 4704396			
_cons		.0000726		0.000	.0001118	.0003962		

World Price after Zhengzhou Rice Futures Market Estimation of equations (5.2) and (4.6):

Estimation of equations (5.2) an $r_t = \beta_o + \beta_1 CRB_t + \epsilon_t$ $h_t = a_0 + a_1 \epsilon_{t-1} + b_1 h_{t-1}$	nd (4.6):			(5.2) (4.6)
. tsset time time variable: time, 1	to 104			
. arch wp crb, arch(1) garch(1)				
<pre>(setting optimization to BHHH) Iteration 0: log likelihood = Iteration 1: log likelihood = Iteration 2: log likelihood = Iteration 3: log likelihood = Iteration 4: log likelihood = (switching optimization to BFGS) Iteration 5: log likelihood = Iteration 6: log likelihood = Iteration 7: log likelihood = Iteration 8: log likelihood =</pre>	260.68565 261.00538 261.06492 261.08911 261.26828 261.34244 261.34577			
Iteration 9: log likelihood =	261.34604			
ARCH family regression				
Sample: 1 to 104 Log likelihood = 261.346		Number of obs Wald chi2(1) Prob > chi2	=	
-				

	wp	 Coef.	OPG Std. Err.	Z	P> z	[95% Conf.	Interval]
wp	crb _cons	.097071 .0027701	.1685686	0.58 -1.06	0.565 0.289	2333174 0078922	.4274594
ARCH	arch L1. garch L1. _cons	.190394 .4661546 .0001372	.1413746 .3549539 .0001164	1.35 1.31 1.18	0.178 0.189 0.238	0866952 2295423 0000909	.4674832 1.161851 .0003654

Appendix I: Correlation between the Change in US and World Rice Price before and after Rice Futures on the CBOT

Table I. 1: Rough Rice Price and World Price Correlation

FD		Р	3	CMA		
Pre	Post	Pre	Post	Pre	Post	
0.419	0.101	0.738	0.727	0.280	0.098	

 Table I. 2: Milled Rice Price and and World Price Correlation

FD		Р	3	CMA		
Pre	Post	Pre	Post	Pre	Post	
0.455	0.495	0.708	0.703	0.290	0.361	

The prices are detrended using the three methods outlined in chapter 4. Change in rough rice prices are clearly less correlated with the world price after the introduction of the rice futures market on the CBOT. It seems that the change in world prices has less effect on the US rough rice prices and is not transmitted to the US market post introduction of the futures market. This could be another factor contributing to the reduction of rough rice price volatility post futures market. The rice futures market in United States reduces the transmission of world price volatility to the domestic market. Therefore, reducing the part of rice price volatility in United States that is attributable to the volatility in world prices.

The correlation between changes in milled rice price and the world price of rice shows a slight increase post futures market. This could be an indication that rice futures market in United States does not isolate the milled rice market from the world market. The higher correlation value could be due to the recent (2007-08) high volatility in world rice prices that have been transmitted to the milled rice market. More frequent and larger changes in world rice prices imply more action and changes in the milled rice prices and hence the higher correlation post futures.

Rough Rice

Granger Causality (FD Method) . var garchr fdvol fdoi, lags(1/5)

Vector autoregression

Sample: Log likelihood FPE Det(Sigma_ml)	6 130 d = 675.5257 = 8.79e-09 = 4.06e-09			No. o AIC HQIC SBIC		= 125 = -10.04041 = -9.599197 = -8.954338
Equation	Parms	RMSE	R-sq	chi2	P>chi2	
garchr fdvol fdoi	16 16 16	.001191 .406959 .162957	0.4989 0.5256 0.1252	124.4592 138.5008 17.88271	0.0000 0.0000 0.2689	
	Coef.	Std. Err.	Z	P> z	[95% Conf	. Interval]
garchr	 					
garchr					0.000.45	<i></i>
L1.		.0884207	5.00 1.27	0.000 0.205	.268845	.6154479
L2. L3.		.094697 .0945208	0.76	0.203	0656527 1134456	.3055527 .2570692
L4.		.09102	1.69	0.091	0244194	.3323725
L5.		.083307	-1.60	0.109	2966283	.0299291
fdvol						
L1.		.0002588	2.41	0.016	.0001172	.0011318
L2.		.0002328	0.92	0.357	000242	.0006704
L3. L4.		.0002161 .0002189	-2.04 -0.70	0.042 0.485	0008639 0005819	0000167 .0002761
L4. L5.		.0002189	-0.65	0.485	0005841	.0002928
fdoi		.0002237	0.05	0.010	.0003041	.0002920
L1.		.0006464	1.52	0.128	0002843	.0022496
L2.	002444	.0006716	-3.64	0.000	0037603	0011277
L3.	.0001443	.0007024	0.21	0.837	0012324	.0015209
L4.		.0007134	-2.62	0.009	0032682	0004717
L5.		.0007266	-0.65	0.518	0018937	.0009547
_cons	.0009197	.0002589	3.55	0.000	.0004123	.0014271
fdvol	· 					
garchr			0.10			co. 1.co.co.
L1.		30.21383	0.10	0.922	-56.27233	62.16369
L2. L3.		32.35846 32.29826	0.00 -0.94	0.999 0.347	-63.39701 -93.66957	63.4458 32.93727
L4.		31.10201	0.38	0.707	-49.24809	72.66955
L5.		28.46643	0.15	0.879	-51.47006	60.11629
fdvol						
L1.	3311274	.0884356	-3.74	0.000	504458	1577967
L2.		.0795422	1.02	0.310	0750874	.2367124
L3.		.0738542	-0.81	0.421	2042403	.0852627
L4.		.0747993	4.02	0.000	.154406	.4476139
L5. fdoi		.0764412	1.67	0.094	0218662	.2777778
L1.		.2208781	3.34	0.001	.3043025	1.170129
L2.		.229489	-1.17	0.242	7180587	.1815219
L3.		.2400088	3.15	0.002	.2851341	1.225951
L4.		.2437731	-2.16	0.031	-1.004698	0491243
L5.		.2482953	-0.60	0.548	6359246	.3373752
_cons	.1440533	.088469	1.63	0.103	0293427	.3174493

	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
fdoi	+ 					
garchr						
L1.	-12.30073	12.09839	-1.02	0.309	-36.01313	11.41168
L2.	23.19322	12.95715	1.79	0.073	-2.202331	48.58877
L3.	5.454734	12.93305	0.42	0.673	-19.89357	30.80304
L4.	-24.43042	12.45404	-1.96	0.050	-48.83989	0209507
L5.	11.50206	11.39869	1.01	0.313	-10.83895	33.84308
fdvol	l					
L1.	0294766	.0354119	-0.83	0.405	0988826	.0399294
L2.	0057484	.0318507	-0.18	0.857	0681747	.0566779
L3.	.0035379	.0295731	0.12	0.905	0544243	.0615001
L4.	0454095	.0299516	-1.52	0.129	1041134	.0132945
L5.	.0122882	.030609	0.40	0.688	0477043	.0722808
fdoi						
L1.	.1670226	.0884452	1.89	0.059	0063269	.3403721
L2.	015609	.0918933	-0.17	0.865	1957166	.1644985
L3.	0997128	.0961056	-1.04	0.299	2880764	.0886508
L4.	.1864804	.097613	1.91	0.056	0048375	.3777984
L5.	0440031	.0994238	-0.44	0.658	2388702	.1508639
_cons	.0253242	.0354252	0.71	0.475	044108	.0947563

Granger causality Wald tests

df Pro	chi2	Excluded	Equation
5	9.8948	fdvol	garchr
5	22.75	fdoi	garchr
10	30.791	ALL	garchr
5	1.068	qarchr	fdvol
5	25.246	fdoi	fdvol
10	28.329	ALL	fdvol
5	6.709	qarchr	fdoi
5	4.1229	fdvol	fdoi
10	10.362	ALL	fdoi

Impulse Response and FEVD (FD Method) . irf ctable (fdr garchr garchr fevd, noci) (fdr fdvol garchr fevd, noci) (fdr fdoi garchr fevd, noci) (fdr > garchr garchr irf, noci) (fdr fdvol garchr irf, noci) (fdr fdoi garchr irf, noci)

+						
1	(1)	(2)	(3)	(1)	(2)	(3)
step	fevd	fevd	fevd	irf	irf	irf
0	0	0	, 0	1	+ 0	0
1	1	0	0	.442146	.000624	.000983
2	.945951	.039631	.014418	.305196	.000255	001385
3	.921734	.039602	.038664	.300381	000154	000863
4	.916231	.038918	.044851	.319591	000023	002187
5	.874264	.034565	.091171	.108821	.000104	001816
6	.845378	.033267	.121355	.118747	.00016	002154
7	.808108	.03205	.159842	.072154	000102	000906
8	.801674	.0326	.165726	.0535	.000065	001253
9	.790149	.0321	.177752	.013269	.000013	000538
10	.788029	.032006	.179966	.031058	.000118	000868
11	.782204	.032275	.185521	.001031	000043	000108
12	.782023	.032391	.185586	.002025	.000064	000425
13	.780577	.032498	.186925	008094	000023	.000058
14	.78054	.032521	.186939	.006292	.000074	000319
15	.77961	.032732	.187657	008154	000029	.00013
16	.779465	.032765	.187771	00163	.000046	000168
17	.779177	.032856	.187967	007803	00003	.000165
18	.778958	.032884	.188157	.00262	.000045	00015
19	.778718	.032974	.188308	005391	000026	.000142
20	.778554	.032994	.188452	.000745	.000033	000107
21	.77843	.033041	.188529	004706	000027	.000137
22	.778274	.033065	.188661	.002332	.000029	0001
23	.77817	.033101	.188729	00305	000022	.000108
24	.778071	.033118	.188811	.001795	.000023	000086
25	.777998	.033141	.188862	002779	000021	.000096
26	.777916	.033157	.188927	.002005	.00002	000077

128 .777855 .033145 1.88901 .00174 .000017 .000069 129 .777761 .033125 1.89045 .001541 .000015 .000059 131 .777656 .033225 1.8915 .001331 .000015 .000053 132 .777651 .033225 1.89141 -001282 .000013 .000053 133 .777631 .033228 1.89141 -001282 -000011 .000043 134 .777690 .033228 1.89158 .001171 .000011 .000042 135 .777574 .033228 1.89212 -001084 -8.49-06 -000031 136 .777574 .0332351 1.89212 -000174 7.5e-06 -000023 137 .777527 .033255 1.89225 -0001707 7.5e-06 -000023 144 .777507 .033261 1.89235 .000573 5.2e-06 -000023 144 .777592 .033261 1.89235 .000573 5.2e-06 -000023 144 .777489 .033264 1.89235	step	(1) fevd		(3) fevd	(1) irf		(3) irf
129 1.777761 1.033206 1.89075 0.001562 1.000015 1.000015 131 1.777666 0.033225 1.8917 1.00152 1.000013 1.000057 1 132 1.777667 0.033225 1.89112 1.00133 1.000011 1.000014 1.000014 133 1.777651 0.033228 1.89158 1.00104 9.4e-06 1.000049 135 1.77759 0.033248 1.89158 1.00047 9.4e-06 1.000014 136 1.77754 0.033245 1.89125 1.000876 1.6.9e-06 1.000023 137 1.77754 0.033245 1.89202 1.000877 1.7.0e-06 1.000027 138 1.77754 0.033245 1.89225 1.000870 1.6.5e-06 1.000027 144 1.777528 0.332259 1.89232 1.000671 5.2e-06 1.000022 144 1.777507 0.332269 1.89242 1.000523 1.4e-06 1.000022 144 1.777494 0.33261 1.89244 1.000456 4.5e-06 1.000012	27	.777858	.033174	.188968			.000078
131 777749 033215 .18911 00013 000037 132 .777657 .033222 .189122 .001333 .000013 000035 133 .777657 .033228 .189141 .000128 .000014 000049 134 .777659 .033238 .189158 .001171 .000014 000042 135 .777574 .033242 .189159 000044 000013 000034 136 .777547 .033245 189124 000697 5e-06 000031 138 .777537 .033255 189212 000697 5e-06 000031 140 777522 .033255 92025 000651 5e-06 000023 143 777544 .033258 189235 000567 5e-06 000023 144 777502 .033258 189244 000454 4.5e-06 000021 144 777484 .033261 .189247 000454 4.5e-06 000017 145 777484 .033261 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
131 -777666 -033225 -18912 00133 000013 000013 000013 133 .777651 .033228 189128 00133 000011 000014 134 .777659 .033233 189158 .00104 9.4=06 000047 135 .777574 .033245 .189144 00146 9.4=06 000037 137 .777567 .033245 .189204 000872 B.0=-06 000031 138 .777537 .033251 .189204 000872 B.0=-06 000031 140 .777528 .033255 .189235 000767 7.5e-06 000027 141 .777560 .033258 .189238 000660 5.6e-06 000023 144 .777564 .033254 .189234 000567 1.5.2e-06 000021 143 .777564 .033254 .189234 000451 1.3e-06 000011 144 .7777464 .033264 .189224 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
133 -777657 0.03222 1.89141 -000123 -000033 -000034 134 -777609 0.032233 1.89141 -001162 -000014 -000045 135 -777574 0.032233 1.89152 -001064 9.4e-06 -000034 136 -777574 0.03242 1.89195 -000074 9.4e-06 -000034 138 -777547 0.03255 1.89212 -0000701 -6.5e-06 -000031 140 -777528 0.03255 1.89225 -000701 -6.5e-06 -0000027 141 -777507 0.032529 1.89235 -000523 -5.6e-06 -0000021 144 -777507 0.33259 1.89242 -000533 -5.6e-06 -0000021 144 -777448 0.33263 1.89244 -000454 -4.8e-06 -000017 144 -777448 0.33263 1.89249 -000211 3.3e-06 -000011 144 -777448 0.33263 1.89249 -0000231							
135 .77759 .033233 .189128 .001171 .000011 .000014 136 .777574 .033234 .189124 .00104 9.4e-06 .000039 137 .777574 .033245 .189195 .000972 8.0e-06 .000034 138 .777574 .033251 .189212 .000872 8.0e-06 .000031 140 .777528 .033255 .189225 .00065 6.0e-06 .000027 141 .777501 .033257 .189223 .00065 6.0e-06 .000021 143 .777502 .033256 .189242 .000567 5.2e-06 .0000021 144 .777494 .033261 .189244 .000464 4.5e-06 .000012 145 .777488 .033263 .189245 .000363 3.3e-06 .000014 150 .777484 .033263 .189252 .000331 3.2e-06 .000012 151 .777484 .033265 .189255 .000313 3.3e-06 .000012 153 .7774745 .033266 .189256							
135 77759 1.033242 .189172 001068 000014 .000042 137 .77756 .033245 .189195 000943 8.7e-06 .000036 138 .777577 .033245 .189212 000809 7.7e-06 .000031 139 .777537 .033251 .189212 000809 -7.7e-06 .000027 141 .77752 .033255 .189225 000701 -6.5e-06 .000027 142 .777507 .033256 .189225 000608 -5.6e-06 .000022 143 .777507 .033256 .189242 000523 -4.8e-06 .000022 144 .777498 .033261 .189247 000454 -4.5e-06 .000017 146 .777486 .033263 .189247 000454 -4.2e-06 .000015 150 .777486 .033263 .189254 00038 -3.3e-06 .000014 151 .777486 .033265 .189254 00038 -3.1e-06 .000011 152 .777478 .033266	33	.777631	.033228	.189141	001282		.000049
137 .77754 1.033242 .189184 .00104 9.4e-06 1.000339 138 .777547 1.033248 .189204 .000872 8.0e-06 .000034 139 .777537 1.033253 .189212 .000767 7.0e-06 .000029 141 .777528 1.033257 .189223 .00065 6.0e-06 .000027 142 .777507 .033258 .189238 .000567 5.2e-06 .000021 144 .777749 .033261 .189242 .000567 5.2e-06 .000021 145 .777494 .033261 .189244 .000466 4.5e-06 .000012 146 .777494 .033263 .189249 .000421 3.9e-06 .000014 150 .777488 .033263 .189252 .000331 3.3e-06 .000015 151 .777494 .033263 .189255 .000313 2.9e-06 .000011 152 .777474 .033265 .189254 .0002231 2.2e-06 .000011 153 .777474 .033266 .189258 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
138 77754 1.033245 1.189195 000943 806 1.000036 139 .777537 1.033251 1.189212 000809 7.5e-06 .000031 140 .777528 1.033255 1.189225 000701 6.5e-06 .000027 141 .777528 1.033257 1.18923 000608 -5.5e-06 .000023 142 .777507 1.033256 1.18924 .000557 5.2e-06 .000023 144 .777507 1.033261 1.189242 .000523 -4.5e-06 .000021 145 .777498 1.033262 1.189242 .000454 -4.5e-06 .000017 146 .777486 1.033263 1.189247 .000454 -4.2e-06 .000015 150 .777486 .033263 1.189254 .000338 -3.3e-06 .000011 151 .777486 .033265 1.189254 .000231 -2.7e-06 .000011 152 .777479 .033265 1.189254 .000231 -2.7e-06 .000011 152 .777478 .033							
139 .777547 1.033251 .189212 .000872 8.0e-06 1.000034 140 .777538 .033251 .189219 .000767 7.0e-06 .000029 141 .777528 .033255 .189225 .00065 6.0e-06 .000027 142 .777531 .033255 .189235 .00065 6.0e-06 .000023 144 .777592 .033261 .189242 .000567 5.2e-06 .000021 145 .777494 .033261 .189244 .000466 4.5e-06 .000019 146 .777494 .033263 .189247 .000461 4.2e-06 .000015 150 .777484 .033263 .189252 .000331 3.3e-06 .000012 151 .777474 .033265 .189255 .000331 2.9e-06 .000011 152 .777478 .033266 .189258 .000231 2.2e-06 9.0e-06 155 .777476 .033266 .189258 .000231 2.2e-06 9.0e-06 155 .777476 .033266 .189258							
139 1.777537 1.03225 1.189212 1.000767 7.0e-06 1.000029 141 1.77752 1.032257 1.189225 1.00067 7.0e-06 1.000027 142 1.777510 1.032257 1.189235 1.00068 6.0e-06 1.000021 143 1.777507 1.032257 1.189235 1.000567 5.2e-06 1.000021 144 1.777498 1.032362 1.189242 1.000464 4.5e-06 000021 145 1.777498 1.033262 1.189241 1.000464 4.2e-06 000011 147 1.777481 1.033263 1.189251 1.000361 3.3e-06 000011 150 1.777482 1.033265 1.189254 1.000331 2.9e-06 000011 151 1.777482 1.033265 1.189258 1.000231 2.2e-06 000011 152 1.777479 1.033265 1.189258 1.000231 2.2e-06 000011 154 1.777479 1.033266 1.89259 000217 2.2e-06 0000112 154 1.777475<							
141 .77752 .033257 .189225 .00067 6.0=06 .000027 142 .777507 .033257 .189235 .000567 5.2=06 .000023 144 .777507 .033256 .189242 .000577 5.2=06 .000021 145 .777498 .033261 .189242 .000464 .4.8=06 .000017 146 .777491 .033263 .189247 .000434 .4.2=06 .000017 147 .777486 .033263 .189251 .000361 .3.8=06 .000011 150 .777486 .033265 .189254 .000331 .3.2=06 .000011 151 .777481 .033265 .189258 .000231 .2.2=06 .000011 152 .77747 .033265 .189258 .000231 .2.2=06 .0.2=06 155 .777477 .033266 .189259 .000222 .0.2=06 .7.2=06 155 .777474 .033266 .189251 .000127 .2.5=06 .							
143 1.777507 1.033258 1.189235 1.000567 5.2e-06 1.000022 144 1.777502 1.033261 1.189242 1.000573 1.4.8e-06 1.000017 145 1.777498 1.033262 1.189244 1.000454 1.4.8e-06 1.000017 146 1.777488 1.033263 1.189249 1.000451 1.4.8e-06 1.000017 147 1.777488 1.033263 1.189249 1.000346 1.4.8e-06 1.000013 150 1.777488 1.033264 1.189252 1.000338 1.3.8e-06 1.000013 151 1.777484 1.033265 1.189257 1.000231 1.2.7e-06 1.000011 153 1.777478 1.033266 1.189258 1.000231 1.2.7e-06 9.7e-06 155 1.777476 1.033266 1.189259 1.000217 1.2.2e-06 8.4e-06 156 1.777476 1.033266 1.189259 1.000217 1.2.2e-06 8.4e-06 157 1.777475 1.033266 1.189259 1.000212 1.5e-06 6.7e-06 158							
144 1.777302 1.03226 1.189228 1.000567 15.2e-06 1.000022 1 145 1.777494 1.033261 1.189244 1.000466 1.4.5e-06 1.000017 1 147 1.777491 1.033262 1.189247 1.000466 1.4.5e-06 1.000017 1 148 1.777486 1.033263 1.189247 1.000341 3.2e-06 1.000016 149 1.777486 1.033263 1.189254 1.000331 3.3e-06 1.000011 150 1.777482 1.033265 1.189254 1.000331 2.3e-06 1.000011 151 1.777479 1.033265 1.189258 1.000231 2.2e-06 -9.0e-06 155 1.777479 1.033266 1.189259 1.000221 1.9e-06 -7.8e-06 155 1.777474 1.033266 1.189259 1.000217 1.2.5e-06 -7.0e-06 157 1.777474 1.033266 1.189261 1.000137 1.7e-06 7.2e-06 156 1.777474 1.033266 1.189261 1.000121 1.1.5e-06 6.2e-06 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
148 1.777488 1.03263 1.189249 1.000421 3.9e-06 1.00015 150 1.777484 1.03264 1.189251 1.000338 1.3.1e-06 1.000115 151 1.777482 1.03264 1.189255 1.000313 2.9e-06 1.000112 153 1.777479 1.03265 1.189256 1.000211 2.5e-06 1.000011 154 1.777479 1.033265 1.189257 1.000233 2.2e-06 1.9.0e-06 155 1.777477 1.033266 1.189259 1.000212 1.9e-06 1.9.0e-06 155 1.777475 1.033266 1.189259 1.000212 1.9e-06 1.7.8e-06 159 1.777474 1.033266 1.189259 1.000174 1.6e-06 1.6.7e-06 160 1.774743 1.033266 1.189261 1.00015 1.4.4e-06 1.5.4e-06 161 1.777473 1.033267 1.189261 1.00014 1.1.2e-06 5.4e-06 163 1.777473 1.033267 1.189261 1.000121 1.1.1e-06 4.6e-06 164 1							
149 1.777486 1.033263 1.189251 000363 3.3e-06 1.000015 150 1.777482 1.033264 1.189254 000338 1.3e-06 1.000011 151 1.777482 1.033265 1.189256 1.000313 1.2.9e-06 1.000011 153 1.777478 1.033265 1.189256 1.000251 1.2.5e-06 9.7e-06 155 1.777476 1.033266 1.189258 1.000252 1.2.e-06 8.4e-06 156 1.777475 1.033266 1.189259 1.000217 1.2.e-06 8.4e-06 158 1.777474 1.033266 1.189261 1.000127 1.2.e-06 6.2.e-06 159 1.777474 1.033266 1.189261 1.00015 1.4e-06 5.4e-06 161 1.777473 1.033267 1.189261 1.00112 1.4e-06 5.4e-06 163 1.777473 1.033267 1.189261 1.00112 1.1.e-06 4.6e-06 164 1.777473 1.033267 1.189261 00112 1.1.e-06 4.4e-06 165 1.777							
150 1.777484 1.033264 1.189254 .000338 1.3.2e-06 000014 151 1.777482 1.033265 1.89255 .000313 1.2.9e-06 .000011 152 1.777479 1.033265 1.89256 000271 2.2.8e-06 9.7e-06 155 1.777477 1.033265 1.89258 000233 2.2.8e-06 9.7e-06 155 1.777477 1.033266 1.89259 000213 1.2.2e-06 9.7e-06 157 1.777475 1.033266 1.89259 000217 1.2.2e-06 7.9e-06 158 1.777474 1.033266 1.89261 000121 1.7e-06 6.7.2e-06 160 1.777474 1.033266 1.89261 00014 1.6e-06 6.2e-06 161 1.777473 1.033267 1.89261 00014 1.1e-06 4.4e-06 162 1.777472 1.033267 1.89261 00014 1.1e-06 4.4e-06 163 1.777472 1.033267 1.89262 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
151 .777482 .033264 .189254 .000333 .3.1e-06 .000012 152 .77748 .033265 .189256 .000313 2.9e-06 000012 153 .777479 .033265 .189256 .000251 -2.7e-06 .000011 154 .777478 .033265 .189258 .000252 -2.3e-06 9.7e-06 155 .777476 .033266 .189259 .000217 -2.0e-06 8.4e-06 157 .777475 .033266 .189259 .000217 -1.7e-06 7.2e-06 160 .777474 .033266 .189261 .000174 1.6e-06 -6.7e-06 161 .777473 .033267 .189261 .00015 1.4e-06 5.8e-06 163 .777473 .033267 .189261 .000131 1.2e-06 5.0e-06 164 .777472 .033267 .189261 .000121 1.1e-06 4.4e-06 166 .777472 .033267 .189262 .000071 8.9e-07 -3.7e-06 166 .777471 .033267 .189262<							
153 1.777479 1.033265 1.19256 000291 -2.78-06 1.00011 154 1.777478 1.033265 1.189258 1.000271 2.55-06 1.00011 155 1.777477 1.033265 1.189258 1.000233 2.2e-06 1.9.0e-06 156 1.777475 1.033266 1.189259 1.000213 2.2e-06 1.9.0e-06 158 1.777475 1.033266 1.189259 1.000212 1.9e-06 1.7.8e-06 159 1.777474 1.033266 1.189261 1.000174 1.6e-06 1.6.2e-06 161 1.777473 1.033267 1.189261 1.00014 1.1.5e-06 6.2e-06 163 1.777472 1.033267 1.189261 1.000112 1.1.e-06 4.6e-06 164 1.774742 1.033267 1.189261 1.000121 1.1.e-06 4.6e-06 166 1.777472 1.033267 1.189262 1.000197 1.9e-06 1.3.5e-06 167 1.777471 1.033267 1.189262 1.000097 8.9e-07 1.3.2e-06 168 1							
154 .777478 .033265 .189257 .000271 2.5e-06 -000011 155 .777477 .033265 .189258 .000233 2.2e-06 9.7e-06 156 .777475 .033266 .189259 .000217 -2.3e-06 9.7e-06 157 .777475 .033266 .189259 .0002017 -2.9e-06 8.4e-06 159 .777474 .033266 .189261 000162 -1.7e-06 7.2e-06							
155 .777477 .033265 .189258 000233 2.2e-06 9.7e-06 156 .777475 .033266 .189259 000233 2.2e-06 -9.0e-06 157 .777475 .033266 .189259 000217 -2.0e-06 -7.8e-06 158 .777474 .033266 .189259 00017 -1.7e-06 -7.8e-06 160 .777474 .033266 .189261 .000174 1.6e-06 -6.7e-06 161 .777473 .033267 .189261 .00015 1.4e-06 -5.8e-06 162 .777473 .033267 .189261 .00014 -1.3e-06 5.4e-06 163 .777472 .033267 .189261 .000121 -1.1e-06 4.6e-06 166 .777472 .033267 .189262 .000014 -9.6e-07 4.0e-06 168 .777471 .033267 .189262 .000078 8.9e-07 -3.7e-06 171 .777471 .033267 .189262 .000072 6.6e-07 -3.2e-06 171 .777471 .033267 .							
156 1.777476 1.033266 1.189258 1.000233 1.2.2-06 1-9.0e-06 157 1.777475 1.033266 1.189259 1.000202 1.9e-06 8.4e-06 1 158 1.777474 1.033266 1.18926 1.000217 1.9e-06 7.2e-06 1 160 1.777474 1.033266 1.18926 1.0001187 1-1.7e-06 7.2e-06 1 161 1.777473 1.033266 1.189261 1.00015 1.4e-06 6.2e-06 1 162 1.777473 1.033267 1.189261 1.00013 1.2e-06 4.5e-06 1 163 1.777472 1.033267 1.189261 1.00013 1.2e-06 4.6e-06 1 164 1.777472 1.033267 1.189262 1.00012 1.0e-06 4.4e-06 1 167 1.77471 1.033267 1.189262 1.000078 8.9e-07 -3.2e-06 1 171 1.777471 1.033267 1.189262 1.000078 7.1e-07 3.0e-06 1 172 1.777471 1.033267							
IS7 I.777475 I.033266 I.189259 I.000217 I.2.0e-06 I.8.4e-06 I IS8 I.777474 I.033266 I.189259 I.000202 I.9.e-06 I.7.8e-06 I.7.8e-06 IS9 I.777474 I.033266 I.18926 I.000174 I.6e-06 I.6.7.8e-06 I.6.2e-06 IG1 I.777473 I.033266 I.18926 I.000174 I.1.6e-06 I.6.2e-06 I.6.2e-07 I.3.2e-06 I.6.2e-07 I.3.2e-06 I.6.2e-07 I.3.2e-06 I.6.2e-07 I.3.2e-06 I.89262 I.000121 I.1.e-06 I.4.6e-06 I.6.2e-07 I.3.2e-06 I.6.2e-07 I.3.2e-06 I.6.2e-07 I.3.2e-06 I.6.2e-07 I.3.2e-06 I.6.2e-07 I.2.8e-06 I.6.2e-07 I.2.8e-06 I.6.2e-07 I.2.8e-06 I.7.77471 I.033267 I.189262 I.000072 I.6.6e-07 I.2.8e-06 I.7.77471 I.033267							
159 1.777474 1.033266 1.18926 000187 -1.7e-06 7.2e-06 1 160 1.777473 1.033266 1.18926 .000174 1.6e-06 1-6.7e-06 1 161 1.777473 1.033266 1.189261 .00015 1.4e-06 1-5.8e-06 1 163 1.777473 1.033267 1.189261 .000115 1.4e-06 1-5.8e-06 1 164 1.777472 1.033267 1.189261 000121 1-1.e-06 4.6e-06 1 165 1.777472 1.033267 1.189261 000121 1.1e-06 4.6e-06 1 166 1.777472 1.033267 1.189262 000104 -9.6e-07 4.0e-06 1 168 1.777471 1.033267 1.189262 000081 7.7e-07 -3.2e-06 1 171 1.777471 1.033267 1.189262 000081 7.7e-07 -3.2e-06 1 172 1.777471 1.033267 1.189262 000051 -5.6e-07 -2.8e-06 1 173 1.777471							
160 .777474 .033266 .18926 .000174 1.6e-06 -6,7e-06 161 .777473 .033266 .189261 .000152 1.4e-06 5.4e-06 163 .777473 .033267 .189261 .00013 1.2e-06 5.0e-06 164 .777472 .033267 .189261 .000112 .1.e-06 .4.6e-06 165 .777472 .033267 .189261 .000112 .1.e-06 .4.6e-06 167 .777472 .033267 .189262 .000097 8.9e-07 .3.7e-06 .4.e-06 .777471 .033267 .189262 .000097 .6.2e-07 .2.8e-06 .7.7a471 .033267 .189262 .000078 .7.1e-07 .3.2e-06 .777471 .033267 .189262 .000067 .6e-07 .2.8e-06 .777471 .033267 .189262 .000067 .5.9e-07 .2.4e-06 .777471 .033267 .189262							
61 .777473 .033266 .18926 000162 -1.5e-06 6.2e-06 62 .777473 .033267 .189261 .00015 1.4e-06 -5.8e-06 63 .777473 .033267 .189261 .00013 1.2e-06 5.4e-06 64 .777472 .033267 .189261 .000121 1.1e-06 4.8e-06 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
62 .777473 .033266 .189261 .00015 1.4e-06 -5.8e-06 63 .777473 .03267 .189261 00014 -1.3e-06 5.4e-06 64 .777472 .033267 .189261 000121 -1.e-06 4.6e-06 66 .777472 .033267 .189261 000121 1.0e-06 -4.3e-06 67 .777472 .033267 .189262 000104 -9.6e-07 -4.0e-06 68 .777471 .033267 .189262 000097 8.9e-07 -3.7e-06 69 .777471 .033267 .189262 000078 -7.1e-07 :3.0e-06 71 .777471 .033267 .189262 000078 :5.e-07 :2.8e-06 73 .777471 .033267 .189262 .000067 :5.9e-07 :2.2e-06 74 .777471 .033267 .189262 .000058 :5.9e-07 :2.1e-06 77 .777471 .033267<							
63 .777473 .033267 .189261 00014 -1.3e-06 5.4e-06 64 .777472 .033267 .189261 .00013 1.2e-06 5.4e-06 65 .777472 .033267 .189261 .000121 1.1e-06 4.6e-06 66 .777472 .033267 .189262 .000112 1.0e-06 -4.3e-06 67 .777472 .033267 .189262 .000097 8.9e-07 .3.7e-06 68 .777471 .033267 .189262 .000083 7.7e-07 .3.2e-06 70 .777471 .033267 .189262 .000071 .6.e-07 .2.e-06 73 .777471 .033267 .189262 .000054 .5.0e-07 .2.e-06 74 .777471 .033267 .189262 .000054 .5.0e-07 .2.4e-06 75 .777471 .033267 .189262 .000054 .5.0e-07 .2.4e-06 76							
65 .777472 .033267 .189261 000121 -1.1e-06 4.6e-06 66 .777472 .033267 .189261 .000112 1.0e-06 -4.3e-06 67 .777472 .033267 .189262 000097 8.9e-07 -4.0e-06 68 .777471 .033267 .189262 000097 8.9e-07 -3.7e-06 70 .777471 .033267 .189262 000083 7.7e-07 -3.2e-06 71 .777471 .033267 .189262 000078 -7.1e-07 3.0e-06 72 .777471 .033267 .189262 000078 -7.1e-07 -2.8e-06 73 .777471 .033267 .189262 000058 -5.3e-07 -2.4e-06 74 .777471 .033267 .189262 .000054 5.0e-07 -2.1e-06 76 .777471 .033267 .189262 .000054 5.0e-07 -1.8e-06 78 .777471 .033267 .189262 .000046 4.3e-07 -1.8e-06 81 .777471 .03326		.777473	.033267	.189261	00014	-1.3e-06	5.4e-06
166 .777472 .033267 .189261 .000112 1.0e-06 -4.3e-06 167 .777472 .033267 .189262 00104 -9.6e-07 4.0e-06 168 .777471 .033267 .189262 .000097 8.9e-07 -3.7e-06 169 .777471 .033267 .189262 .000097 8.9e-07 -3.7e-06 170 .777471 .033267 .189262 .000078 7.7e-07 -3.2e-06 171 .777471 .033267 .189262 .000072 6.6e-07 -2.8e-06 172 .777471 .033267 .189262 .000052 5.7e-07 -2.4e-06 174 .777471 .033267 .189262 .000054 5.0e-07 -2.4e-06 175 .777471 .033267 .189262 .000054 5.0e-07 -2.4e-06 176 .777471 .033267 .189262 .000054 4.3e-07 1.7e-06 177 .777471 .033267 .189262 .000046 4.3e-07 1.7e-06 180 .777471 .033267 .1892							
67 .777472 .033267 .189262 00104 -9.6e-07 .4.0e-06 68 .777472 .033267 .189262 .000097 .8.9e-07 .3.5e-06 69 .777471 .033267 .189262 .000097 .8.9e-07 .3.5e-06 70 .777471 .033267 .189262 .000078 .7.1e-07 .3.2e-06 71 .777471 .033267 .189262 .000072 .6.6e-07 .2.8e-06 73 .777471 .033267 .189262 .000062 .5.7e-07 .2.8e-06 74 .777471 .033267 .189262 .000051 .5.9e-07 .2.2e-06 75 .777471 .033267 .189262 .000054 .5.9e-07 .2.2e-06 77 .777471 .033267 .189262 .000046 .4.3e-07 .1.8e-06 79 .777471 .033267 .189262 .000043 .4.0e-07 .1.8e-06 80 .777471 .033267 .189262 .000032 .3.2e-07 .1.8e-06							
68 .777472 .033267 .189262 .000097 8.9e-07 -3.7e-06 69 .777471 .033267 .189262 .000093 7.7e-07 3.2e-06 70 .777471 .033267 .189262 .000072 6.e-07 3.0e-06 71 .777471 .033267 .189262 .000072 6.e-07 3.0e-06 72 .777471 .033267 .189262 .000067 6.e-07 .2.e-06 73 .777471 .033267 .189262 .000058 .5.7e-07 .2.4e-06 74 .777471 .033267 .189262 .000054 .5.0e-07 .2.1e-06 76 .777471 .033267 .189262 .000046 .4.3e-07 .1.8e-06 78 .777471 .033267 .189262 .000041 .3.e-07 .1.8e-06 81 .777471 .033267 .189262 .000043 .4.0e-07 .1.7e-06 82 .777471 .033267 .189262 .000035 .3.2e-07 .1.8e-06 82<							
170 1.777471 1.033267 1.189262 1.000083 7.7e-07 -3.2e-06 171 1.777471 1.033267 1.189262 000078 -7.1e-07 13.0e-06 172 1.777471 1.033267 1.189262 000078 6.6e-07 -2.8e-06 173 1.777471 1.033267 1.189262 000067 -6.2e-07 2.6e-06 174 1.777471 1.033267 1.189262 000058 -5.3e-07 2.2e-06 176 1.777471 1.033267 1.189262 000054 5.0e-07 1.2e-06 176 1.777471 1.033267 1.189262 000054 5.0e-07 1.2e-06 177 1.777471 1.033267 1.189262 000044 4.3e-07 1.8e-06 179 1.777471 1.033267 1.189262 000043 -4.0e-07 1.7e-06 181 .777471 1.033267 1.189262 000031 -3.4e-07 1.4e-06 182 .777471 1.033267 1.189262 .000032 3.2e-07 1.2e-06 183 .777471 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
71 .777471 .033267 .182262 000078 .71.1e-07 .3.0e-06 72 .777471 .033267 .189262 .000072 .6.e-07 .2.e-06 73 .777471 .033267 .189262 .000067 .6.e-07 .2.e-06 74 .777471 .033267 .189262 .000058 .5.7e-07 .2.4e-06 75 .777471 .033267 .189262 .000054 .5.0e-07 .2.1e-06 76 .777471 .033267 .189262 .000046 .4.3e-07 .1.8e-06 78 .777471 .033267 .189262 .00004 .4.0e-07 .1.7e-06 80 .777471 .033267 .189262 .000035 .3.2e-07 .1.8e-06 81 .777471 .033267 .189262 .000035 .3.2e-07 .1.8e-06 82 .777471 .033267 .189262 .000035 .3.2e-07 .1.2e-06 83 .7774		.777471	.033267	.189262	00009		3.5e-06
172 .777471 .033267 .189262 .000072 6.6e-07 -2.8e-06 173 .777471 .033267 .189262 000067 -6.2e-07 2.6e-06 174 .777471 .033267 .189262 000067 5.7e-07 2.2e-06 175 .777471 .033267 .189262 000058 -5.3e-07 2.2e-06 176 .777471 .033267 .189262 000058 -5.3e-07 2.2e-06 176 .777471 .033267 .189262 000051 -4.6e-07 1.9e-06 178 .777471 .033267 .189262 000043 4.3e-07 1.18e-06 179 .777471 .033267 .189262 .000037 -3.4e-07 1.4e-06 180 .777471 .033267 .189262 .000031 3.2e-07 1.3e-06 181 .777471 .033267 .189262 .000031 3.2e-07 1.3e-06 183 .777471 .033267 .189262 .000032 2.3e-07 1.2e-06 184 .777471 .033267 .							
173 1.777471 1.033267 1.189262 1.000067 1.6.2e-07 2.6e-06 174 1.777471 1.033267 1.189262 1.000067 5.7e-07 1.2.6e-06 175 1.777471 1.033267 1.189262 1.000058 5.5.e-07 1.2.2e-06 176 1.777471 1.033267 1.189262 1.000054 5.0e-07 1.2.2e-06 176 1.777471 1.033267 1.189262 1.000054 5.0e-07 1.2.e-06 177 1.777471 1.033267 1.189262 1.000046 4.3e-07 1.18-06 179 1.777471 1.033267 1.189262 -000043 -4.0e-07 1.7e-06 181 1.777471 1.033267 1.189262 -000043 3.7e-07 1.4e-06 182 1.777471 1.033267 1.189262 1.000032 3.2e-07 1.2e-06 183 1.777471 1.033267 1.189262 1.000032 2.8e-07 1.2e-06 184 1.77471 1.033267 1.189262 1.000028 2.2e-07 9.2e-07 185 1.777471							
74 .777471 .033267 .189262 .000062 5.7e-07 -2.4e-06 75 .777471 .033267 .189262 .000058 -5.3e-07 2.2e-06 76 .777471 .033267 .189262 .000054 5.0e-07 2.1e-06 77 .777471 .033267 .189262 .000054 5.0e-07 7.2e-06 78 .777471 .033267 .189262 .000046 4.3e-07 .1ee-06 79 .777471 .033267 .189262 .000043 -4.6e-07 .1ee-06 80 .777471 .033267 .189262 .000031 -3.4e-07 .1ee-06 81 .777471 .033267 .189262 .000035 3.2e-07 -1.3e-06 82 .777471 .033267 .189262 .000035 3.2e-07 .1e-06 84 .777471 .033267 .189262 .000031 2.8e-07 .2e-06 85 .777471 .033267 .189262 .000024 -2.2e-07 .9e-07 87 .777471 .033							
176 .777471 .033267 .189262 .000054 5.0e-07 -2.1e-06 177 .777471 .033267 .189262 00005 -4.6e-07 1.9e-06 178 .777471 .033267 .189262 .000046 4.3e-07 -1.8e-06 179 .777471 .033267 .189262 .000043 -4.0e-07 1.7e-06 180 .777471 .033267 .189262 .000043 -4.0e-07 1.7e-06 181 .777471 .033267 .189262 000037 -3.4e-07 1.4e-06 182 .777471 .033267 .189262 000032 -3.0e-07 1.2e-06 183 .777471 .033267 .189262 .000032 2.8e-07 -1.2e-06 184 .777471 .033267 .189262 .000028 -2.6e-07 1.1e-06 185 .777471 .033267 .189262 .000024 -2.2e-07 9.2e-07 185 .777471 .033267 .189262 .000021 -2.2e-07 9.2e-07 187 .777471 .033267 .							
77 .777471 .033267 .182262 00005 -4.6e-07 .19-06 78 .777471 .033267 .182262 .000046 4.3e-07 .18-06 79 .777471 .033267 .182262 .000045 4.3e-07 .1.7e-06 80 .777471 .033267 .182262 .000043 .4.0e-07 .1.7e-06 81 .777471 .033267 .182262 .000035 .3.2e-07 .1.8e-06 82 .777471 .033267 .182262 .000035 .3.2e-07 .1.2e-06 83 .777471 .033267 .182262 .00003 .2.8e-07 .1.2e-06 84 .777471 .033267 .182262 .000028 .2.2e-07 .9.2e-07 85 .777471 .033267 .182262 .000024 .2.2e-07 .9.2e-07 87 .777471 .033267 .182262 .000021 .2.0e-07 .8.2e-07 88 .777471 .033267 .182262 .000019 .8.0e-07 .9.2e-07							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
79 .777471 .033267 .182262 000043 -4.0e-07 .1.7e-06 80 .777471 .033267 .189262 .00004 .3.7e-07 .1.7e-06 81 .777471 .033267 .189262 .000037 .3.4e-07 .1.4e-06 82 .777471 .033267 .189262 .000035 .3.2e-07 .1.4e-06 83 .777471 .033267 .189262 .000032 .3.2e-07 .1.2e-06 84 .777471 .033267 .189262 .00003 .2.8e-07 .1.2e-06 85 .777471 .033267 .189262 .000026 .2.4e-07 .9.9e-07 86 .777471 .033267 .189262 .000024 .2.2e-07 .9.2e-07 87 .777471 .033267 .189262 .000012 .2.e-07 .8.6e-07 89 .777471 .033267 .189262 .000012 .2.e-07 .8.6e-07 90 .777471 .033267 .189262 .000019 .8.e07 .7.4e-07 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
180 .777471 .033267 .189262 .00004 3.7e-07 -1.5e-06 181 .777471 .033267 .189262 000037 -3.4e-07 1.4e-06 182 .777471 .033267 .189262 000035 3.2e-07 1.13e-06 183 .777471 .033267 .189262 000035 3.2e-07 1.2e-06 184 .777471 .033267 .189262 000032 -3.0e-07 1.2e-06 185 .777471 .033267 .189262 000028 2.8e-07 -1.2e-06 186 .777471 .033267 .189262 000028 2.4e-07 -9.9e-07 187 .777471 .033267 .189262 000024 -2.2e-07 9.2e-07 188 .777471 .033267 .189262 000021 -1.9e-07 8.0e-07 199 .777471 .033267 .189262 .000012 1.19-07 8.0e-07 190 .777471 .033267 .189262 .000018 1.8e-07 -7.4e-07 191 .777471 .033267 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
82 .777471 .033267 .182262 .000035 3.2e-07 -1.3e-06 83 .777471 .033267 .182262 .000032 -3.0e-07 .1.2e-06 84 .777471 .033267 .182262 .00003 2.8e-07 -1.2e-06 85 .777471 .033267 .182262 .000028 2.4e-07 .1.2e-06 86 .777471 .033267 .182262 .000028 2.4e-07 .9.9e-07 87 .777471 .033267 .182262 .000024 2.2e-07 9.2e-07 88 .777471 .033267 .182262 .000021 2.0e-07 8.6e-07 89 .777471 .033267 .182262 .000012 2.0e-07 8.6e-07 90 .777471 .033267 .182262 .000019 1.8e-07 -7.4e-07 91 .777471 .033267 .182262 .000017 1.5e-07 -6.4e-07 92 .777471 .033267 .182262 .000017 1.5e-07 -5.5e-07 92 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
183 .777471 .033267 .189262 000032 -3.0e-07 1.2e-06 184 .777471 .033267 .189262 .00003 2.8e-07 -1.2e-06 185 .777471 .033267 .189262 .000028 2.8e-07 -1.2e-06 185 .777471 .033267 .189262 .000028 2.4e-07 -9.9e-07 186 .777471 .033267 .189262 .000024 2.4e-07 9.2e-07 187 .777471 .033267 .189262 .000021 2.0e-07 9.2e-07 188 .777471 .033267 .189262 .000021 -1.9e-07 8.0e-07 199 .777471 .033267 .189262 .000012 1.19e-07 8.0e-07 191 .777471 .033267 .189262 .000018 1.8e-07 -7.4e-07 192 .777471 .033267 .189262 .000017 1.5e-07 -6.4e-07 193 .777471 .033267 .189262 .000015 -1.4e-07 5.9e-07 193 .777471 .033267 .1892							
184 .777471 .033267 .189262 .00003 2.8e-07 -1.2e-06 185 .777471 .033267 .189262 00028 2.8e-07 1.1e-06 186 .777471 .033267 .189262 .000028 2.4e-07 9.9e-07 187 .777471 .033267 .189262 .000028 2.4e-07 9.9e-07 187 .777471 .033267 .189262 .000024 -2.2e-07 9.2e-07 188 .777471 .033267 .189262 .000021 -1.9e-07 8.0e-07 189 .777471 .033267 .189262 .000012 1.9e-07 8.0e-07 90 .777471 .033267 .189262 .000019 1.8e-07 -7.4e-07 91 .777471 .033267 .189262 .000017 1.5e-07 6.4e-07 92 .777471 .033267 .189262 .000017 1.5e-07 5.9e-07 93 .777471 .033267 .189262 .000014 1.3e-07 -5.5e-07 94 .777471 .033267 .189262							
85 .777471 .033267 .189262 000028 -2.6e-07 1.1e-06 86 .777471 .033267 .189262 .000026 2.4e-07 -9.9e-07 87 .777471 .033267 .189262 .000024 -2.2e-07 -9.9e-07 88 .777471 .033267 .189262 .000024 -2.2e-07 9.2e-07 88 .777471 .033267 .189262 .000021 -1.9e-07 8.0e-07 90 .777471 .033267 .189262 .000019 1.8e-07 -7.4e-07 91 .777471 .033267 .189262 .000019 1.8e-07 -5.9e-07 92 .777471 .033267 .189262 .000017 1.5e-07 -5.9e-07 93 .777471 .033267 .189262 .000015 -1.4e-07 -5.9e-07 94 .777471 .033267 .189262 .000013 -1.2e-07 -5.5e-07 95 .777471 .033267 .189262 .000012 1.1e-07 -4.8e-07 95 .777471 .0							
187 .777471 .033267 .189262 000024 -2.2e-07 9.2e-07 188 .777471 .033267 .189262 .000022 2.0e-07 -8.6e-07 189 .777471 .033267 .189262 000021 -1.9e-07 8.0e-07 190 .777471 .033267 .189262 000012 -1.9e-07 8.0e-07 191 .777471 .033267 .189262 .000019 1.8e-07 -7.4e-07 192 .777471 .033267 .189262 .000017 1.5e-07 -6.4e-07 193 .777471 .033267 .189262 .000017 1.5e-07 -6.4e-07 193 .777471 .033267 .189262 .000017 1.5e-07 -5.5e-07 194 .777471 .033267 .189262 .000014 1.3e-07 -5.5e-07 195 .777471 .033267 .189262 .000013 -1.2e-07 5.1e-07 196 .777471 .033267 .189262 .000012 1.1e-07 -4.8e-07 197 .777471 .033267							1.1e-06
188 .777471 .033267 .189262 .000022 2.0e-07 -8.6e-07 189 .777471 .033267 .189262 000021 -1.9e-07 8.0e-07 190 .777471 .033267 .189262 .000019 1.8e-07 -7.4e-07 191 .777471 .033267 .189262 .000019 1.8e-07 -7.4e-07 192 .777471 .033267 .189262 000018 -1.6e-07 6.9e-07 192 .777471 .033267 .189262 000015 -1.4e-07 5.9e-07 193 .777471 .033267 .189262 .000017 1.5e-07 -5.5e-07 194 .777471 .033267 .189262 .000013 -1.2e-07 -5.5e-07 195 .777471 .033267 .189262 .000012 1.1e-07 -4.8e-07 195 .777471 .033267 .189262 .000012 1.1e-07 -4.8e-07 196 .777471 .033267 .189262 .000011 1.1e-07 -4.4e-07 197 .777471 .033267 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
189 .777471 .033267 .189262 000021 -1.9e-07 8.0e-07 9.0e-07 190 .777471 .033267 .189262 .000019 1.8e-07 -7.4e-07 191 .777471 .033267 .189262 000018 -1.6e-07 6.9e-07 192 .777471 .033267 .189262 .000017 1.5e-07 -6.4e-07 193 .777471 .033267 .189262 .000015 -1.4e-07 5.9e-07 194 .777471 .033267 .189262 000013 -1.2e-07 5.9e-07 194 .777471 .033267 .189262 000013 -1.2e-07 5.9e-07 195 .777471 .033267 .189262 000013 -1.2e-07 5.1e-07 196 .777471 .033267 .189262 .000012 1.1e-07 -4.8e-07 197 .777471 .033267 .189262 .000011 1.1e-07 4.4e-07 198 .777471 .033267 .189262 .000011 9.8e-08 -4.1e-07 198 .777471 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
90 .777471 .033267 .18262 .00019 .18e-07 -7.4e-07 91 .777471 .033267 .18262 .00018 -1.6e-07 6.9e-07 92 .777471 .033267 .18262 .00017 .5e-07 6.4e-07 93 .777471 .033267 .18262 .00017 .5e-07 5.9e-07 94 .777471 .033267 .18262 .00014 .3e-07 5.9e-07 94 .777471 .033267 .18262 .00013 1.2e-07 5.9e-07 95 .777471 .033267 .18262 .00012 1.1e-07 4.8e-07 96 .777471 .033267 .18262 .000012 1.1e-07 4.4e-07 97 .777471 .033267 .18262 .000011 9.8e-08 4.1e-07 98 .777471 .033267 .18262 .000011 9.8e-08 4.1e-07 98 .777471 .033267 .18262 .000011 9.8e-08 4.1e-07 99							
91 .777471 .033267 .182262 .000017 .1.6e-07 .6.9e-07 92 .777471 .033267 .182262 .000017 .1.6e-07 .6.4e-07 93 .777471 .033267 .182262 .000015 .1.4e-07 .5.9e-07 94 .777471 .033267 .182262 .000014 .1.3e-07 .5.9e-07 95 .777471 .033267 .182262 .000012 .1.e-07 .5.1e-07 96 .777471 .033267 .182262 .000012 .1.e-07 .4.8e-07 97 .777471 .033267 .182262 .000011 .1.e-07 .4.4e-07 98 .777471 .033267 .182262 .000011 .9.8e-08 .4.1e-07 99 .777471 .033267 .182262 .000011 .9.8e-08 .4.1e-07							
93 .777471 .033267 .189262 000015 -1.4e-07 5.9e-07 94 .777471 .033267 .189262 .000014 .3e-07 -5.5e-07 95 .777471 .033267 .189262 .000013 -1.2e-07 5.1e-07 96 .777471 .033267 .189262 .000012 1.1e-07 -4.8e-07 97 .777471 .033267 .189262 .000011 1.1e-07 4.4e-07 98 .777471 .033267 .189262 .000011 9.8e-08 -4.1e-07 99 .777471 .033267 .189262 .000011 9.8e-08 -4.1e-07 98 .777471 .033267 .189262 .900011 9.8e-08 -4.1e-07 99 .777471 .033267 .189262 .90e-06 -9.1e-08 3.8e-07		.777471	.033267	.189262		-1.6e-07	6.9e-07
194 .777471 .03267 .18262 .00014 .1.3e-07 .5.5e-07 195 .777471 .033267 .18262 .00013 .1.2e-07 .5.1e-07 196 .777471 .033267 .18262 .00012 .1.1e-07 .4.8e-07 197 .777471 .033267 .18262 .000011 .1.1e-07 .4.4e-07 198 .777471 .033267 .18262 .000011 .8e-08 .4.1e-07 199 .777471 .033267 .18262 .000011 .8e-08 .4.1e-07 199 .777471 .033267 .18262 .000011 .9.8e-08 .4.1e-07							
95 .777471 .033267 .189262 000013 -1.2e-07 5.1e-07 96 .777471 .033267 .189262 .000012 1.1e-07 -4.8e-07 97 .777471 .033267 .189262 .000011 1.1e-07 4.4e-07 98 .777471 .033267 .189262 .000011 9.8e-08 -4.1e-07 99 .777471 .033267 .189262 .9.9e-06 -9.1e-08 3.8e-07							
96 .777471 .033267 .189262 .000012 1.1e-07 -4.8e-07 97 .777471 .033267 .189262 000011 -1.1e-07 4.4e-07 98 .777471 .033267 .189262 .000011 9.8e-08 -4.1e-07 99 .777471 .033267 .189262 .000011 9.8e-08 -4.1e-07 99 .777471 .033267 .189262 -000011 9.8e-08 -4.1e-07							
197 .777471 .032267 .182262 000011 -1.1e-07 4.4e-07 198 .777471 .033267 .182262 .000011 9.8e-08 -4.1e-07 199 .777471 .033267 .182262 -9.9e-06 -9.1e-08 .3.8e-07							
98 .777471 .033267 .189262 .000011 9.8e-08 -4.1e-07 99 .777471 .033267 .189262 -9.9e-06 -9.1e-08 3.8e-07						-1.1e-07	4.4e-07
					.000011		
1.00 .///4/1 .00020/ .100202 9.20-00 0.00-08 -3.00-0/							
	+	/ / 4 / 1	.USSZ6/		9.2e-Ub	1 0.3e-U8	+

Granger Causality (P3 Method)

```
. tsset time
    time variable: time, 1 to 131
. irf set p3r
(file p3r.irf created)
(file p3r.irf now active)
. var garchr p3vol p3oi, lags(1/5)
Vector autoregression
```

Equation Parms RMSE R-eq chi2 P>chi2 garchr 16 .001211 0.4788 115,7411 0.0000 p3vol 16 .361363 0.3705 74,15863 0.0000 garchr 16 .13916 0.8481 703.6829 0.0000 garchr Coef. Std. Err. z P>lz1 1938 Conf. Interval garchr 1.1. .4552553 .0848247 5.41 0.000 .2330019 .6255086 1.2. .1200236 .092667 1.30 0.195 0616003 .3016476 1.3. .0748445 .0906909 0.83 0.409 002156 .3016476 1.3. .0748455 .08025 -1.73 0.084 3062211 .019331 1.2. .0000301 .0002203 0.130 0.192 0001516 .0007511 1.2. .0000315 .0138 013 .00077 .0004547 .00022394	Sample: Log likelihood FPE Det(Sigma_ml)	6 131 4 = 713.0889 = 5.24e-09 = 2.44e-09			No. of AIC HQIC SBIC	=	126 -10.55697 -10.118 -9.476478
p3ool 16	Equation	Parms	RMSE	R-sq	chi2	P>chi2	
garchr 	p3vol	16	.361363	0.3705	74.15863	0.0000	
garchr L1. .4592553 .0848247 5.41 0.000 .2930019 .6255086 L2. .1200236 .092667 1.30 0.1950616003 .3016476 L3. .0748445 .090609 0.83 0.4091029063 .2525953 L4. .1517996 .0893151 1.70 0.0990232548 .326854 L5. 1434951 .083025 -1.73 0.0843062211 .019231 p3vol L1. .0003001 .0002305 -0.38 0.7070004986 .0003381 L2. 000803 .0002088 -1.69 0.0900007628 .0000556 L4. .0001756 .0002062 0.85 0.3940002285 .0005797 L5. .000819 .0002030 .41 0.6830003106 .0004744 p301 L1. .0003751 .001786 1.03 0.3020006947 .0022394 L2. 0033311 .0017762 .83 0.00500543180009741 L3. .0007723 .0007485 1.03 0.3020006947 .0022394 L2. 0030876 .0011786 2.83 0.005 .001021 .0056411 L4. 0030876 .0011786 2.83 0.005 .0008781 .004673 		Coef.	Std. Err.	 Z	P> z	[95% Conf.	Interval]
<pre>1.1. 4592553 .0448247 5.41 0.000 .293001 .625508 1.2. 1.200336 .092667 1.30 0.1950616003 .3016476 1.3. 1.0748445 .0906909 0.83 0.4091029063 .2525953 1.4. 1.1517996 .0893151 1.70 0.0890232548 .226854 1.5. 11434951 .003302 1-7.73 0.0843062211 .0109231 p3vol 1.1 1. 0.003001 .0002301 1.30 0.192000151 .0007511 1.2. 10003536 .0002088 -1.69 0.0900007628 .0000356 1.4. 1.0001756 .0002062 0.85 0.3940002628 .000556 1.4. 1.0001756 .0002062 0.85 0.3940002858 .0005797 1.5. 1.0000819 .0002003 0.41 0.6830006947 .0022394 1.2. 10032015 .001138 -2.81 0.00500543180009711 1.3. 1.0033876 .0011786 2.83 0.005 .00104744 p3oi 1.4. 1.0030876 .001176 2.83 0.005 .001021 .0056431 1.4. 1.0030876 .001176 2.83 0.000 .0006373 .0007415 1.5. 1.0024727 .0008136 3.04 0.002 .0006381 .0040673 .cons .0008287 .000228 3.63 0.000 .0003818 .0012756 .cons .0008287 .000228 3.63 0.000 .0003818 .0012756 .0008287 .000228 3.63 0.000 .0003818 .0012756 .0008287 .000228 3.63 0.000 .0003818 .0012756 .0008287 .000228 3.63 0.000 .0003818 .0012756 .1. 1. 1.94606 27.66244 0.43 0.666 -42.27134 66.16345 1.3. 1-20.44368 27.07254 -0.76 0.450 -73.50489 32.61752 .1.4. 19.69729 26.66186 0.74 0.460 -32.559 71.50357 1.5. 12.22666 24.78418 0.49 0.622 -36.334944 60.80276 p3vol 1.1. 2.186745 .0686925 3.18 0.001 .00448466 .2346206 1.30012202 .0623223 -0.022 0.9841233694 .353394 1.2. 1.1697336 .0663719 2.66 0.008 .0448466 .353394 1.2. 1.1697336 .065394 -0.12 0.9081240791 .1102699 p3oi 1.1781757 .2234439 3.50 0.000 .3438149 1.219699 1.2699345 .0263646 -2.27 0.023 -1.4338171038837 .3. 1.107517 .351833 3.15 0.002 -2.078446777781 .3. 1.107517 .351833 3.15 0.002 -2.078446777781 .3. 1.107517 .351833 3.15 0.002 -2.078446777781 .3. 1.107517 .518303 3.15 0.002 -2.078446777781 .3. 1.107517 .518303 3.15 0.002 -2.078446777781 .3. 1.107517 .517569 9.546788 0.79 0.431 -11139379 26.22893 .3. 3.010599 10.42826 0.29 0.773 -7.428412 23.44961 .49.188267 .0245444 -0.89 0.375</pre>	garchr						
L2. .1200236 .092667 1.30 0.1950616003 .3016476 L3. .074845 .0906909 0.83 0.4091029063 .2525953 L4. .1517996 .0893151 1.70 0.0890232548 .326854 L5. 1434951 0.83022 -1.73 0.0843062211 0.19231 p3vol L1. .0003001 .0002301 1.30 0.192000151 0.007511 L2. 000803 .0002135 -0.38 0.7070004986 .0003381 L3. 000356 .0002088 -1.69 0.0900007628 .0000556 L4. .0001756 .0002062 0.85 0.3940002285 .0005797 L5. .0000819 .0002003 0.41 0.6830003106 .0004744 p30al L1. .0033311 .0011786 2.83 0.055 .010121 .0056411 L4. 003376 .001138 -2.81 0.0050006947 .0022394 L5. .0002472 .000138 1.03 0.3020006947 .0022394 L5. .0002472 .000138 3.044 0.002 .0003818 .0012756 	-	4502552	0010017	F /1	0 000	2020010	6255096
L3. .0748445 .0906909 0.83 0.4091029063 .252595 L4. .1517996 .0893151 1.70 0.0890232548 .326854 L5. 1434951 .083025 -1.73 0.0843062211 .019231 p3vol L1. .0003001 .0002301 1.30 0.192000151 .0007511 L2. 0008536 .0002088 -1.69 0.0900007628 .0000556 L4. .0001756 .0002062 0.85 0.3940002285 .000737 L5. .0000819 .0002003 0.41 0.6830002085 .000747 p3oi L1. .0003712 .0007485 1.03 0.3020006947 .0022394 L2. 0032015 .001138 -2.81 0.0050054318000711 L3. .003311 .001786 2.83 0.005 .001021 .0056431 L4. 0030876 .00197 -2.58 0.100054337007415 L5. .0024727 .0008136 3.04 0.002 .0008781 .0040673 							
LS. 1434951 .083025 -1.73 0.0843062211 .019231 p3v01 L1. .0003001 .0002301 1.30 0.192000151 .0007511 L2. 0003536 .000208 -1.69 0.900007428 .0003536 L4. .0003536 .000208 -1.69 0.900007428 .000556 L4. .0001756 .0002062 0.85 0.3940002285 .0005797 L5. .0000819 .0002003 0.41 0.6830003106 .0004744 p301 L1. .0007723 .0007485 1.03 0.3020006947 .0022394 L2. 0032015 .001138 -2.81 0.005 .01021 .0056411 L4. .0038076 .001197 -2.58 0.1000054318000711 L5. .0024727 .0008136 3.04 0.002 .0008781 .0040673 							
p3vol p3vol L1. .0003001 .0002315 -0.38 0.707 0004986 .0003381 L3. 0003536 .0002088 -1.69 0.90 007628 .0000556 L4. .0001756 .0020203 0.41 0.683 0003166 .0004744 p30i .0003311 .001758 1.03 0.302 0006947 .0022394 L2. 0032015 .001138 -2.81 0.005 0054318 0009711 L3. .0003311 .001772 .000477 .002437 .0004673 .0004273 _cons .0004277 .000218 .0010 .0003818 .0012756 _cons .0008287 .000228 3.63 0.000 .0003818 .0012756 _garchr .							
L1. .0003001 .0002301 1.30 0.192000151 .0007511 L2. 0003536 .0002135 -0.38 0.707000496 .0003381 L3. .0003536 .0002082 -1.69 0.900007628 .00055797 L5. .000819 .0002003 0.41 0.6830003106 .0004744 p30i L1. .0007723 .0007485 1.03 0.3020006947 .0022394 L2. 0032015 .001138 -2.81 0.0050054318000371 L3. .003876 .001137 -2.58 0.1000054317 .0007415 L5. .0024727 .0008136 3.04 0.002 .0008781 .0046673 		1434951	.083025	-1.73	0.084	3062211	.019231
L3. 0003536 .0002088 -1.69 0.0900007628 .0000556 L4. .0001756 .002062 0.85 0.394000285 .0005797 L5. .0000819 .0002003 0.41 0.6630005417 .0022394 L2. 0032015 .001138 -2.81 0.00500543180009111 L3. .0033311 .0011786 2.83 0.005 .001021 .0056411 L4. 0030876 .001197 -2.58 0.01000543370007415 L5. .0024727 .0008136 3.04 0.002 .0008781 .0040673 		.0003001	.0002301	1.30	0.192	000151	.0007511
L4. .0001756 .0002062 0.85 0.3940002285 .0005797 L5. .000819 .0002003 0.41 0.6630003106 .0004744 p30i L1. .0007723 .0007485 1.03 0.3020006947 .0022394 L2. 0032015 .001138 -2.81 0.005 .001021 .0056411 L4. 0032015 .001138 -2.88 0.01000543370007415 L5. .00024727 .0008136 3.04 0.002 .0008781 .0040673 		0000803					
L5. 0.000819 .000203 0.41 0.6830003106 .0004744 p30i L1. 0.007723 .0007485 1.03 0.3020006947 .0022394 L20032015 .001138 -2.81 0.00500543180009711 L3. 0.003311 .001176 2.83 0.005 .001021 .0056411 L40033076 .001197 -2.58 0.01000543370007415 L5. 0.0042727 .0008136 3.04 0.002 .0008781 .0040673 							
p3oi .0007723 .0007485 1.03 0.302 0006947 .0022394 L2. 0033015 .001138 -2.81 0.005 0054318 0009711 L3. .0033311 .0011786 2.83 0.005 .001021 .0056411 L4. 0030876 .00197 -2.58 0.010 0054337 0007415 L5. .0024727 .0008136 3.04 0.002 .0003818 .0012756 p3vol							
L2. 0032015 .001138 -2.81 0.00500543180009711 L3. .0033311 .0011786 2.83 0.005 .00121 .0056411 L4. 0030876 .001197 -2.58 0.0100054337007415 L5. .0024727 .0008136 3.04 0.002 .0008781 .0040673 cons .0008287 .000228 3.63 0.000 .0003818 .0012756 garchr L1. -10.13995 25.3214 -0.40 0.689 -59.76899 39.4891 L2. 11.94606 27.66244 0.43 0.666 -42.27134 66.16345 L3. -20.44368 27.0724 -0.76 0.450 -73.50489 32.61752 L4. 19.69729 26.66186 0.74 0.460 -32.559 71.95357 L5. 12.22666 24.78418 0.49 0.622 -36.34944 60.80276 p3vol L1. .2186745 .0686925 3.18 0.001 .0840396 .3533094 L2. .169736 .063719 2.66 0.008 .0448466 .2946206 L3. -0012202 .0623223 -0.02 0.9841233696 .1209293 L4. .1425515 .0615483 2.32 0.021 .021919 .263184 L5. -0069046 .059784 -0.12 0.9081240791 .1102699 p3oi L1. .781757 .2234439 3.50 0.000 .4348149 1.219699 L2. .1619438 .2428741 2.52 0.012 .135923 1.038537 L3. 1.107517 .3518303 3.15 0.002 .417942 1.797091 L4. -1.378116 .357322 -3.86 0.000 -2.0784546777781 L5. .6119483 .2428741 2.52 0.012 .1359239 1.087973 _cons 0285156 .068066 -0.42 0.6751619226 .1048913 		.0000015	.0002005	0.41	0.005	.0003100	.0001/11
L3. .0033311 .0011786 2.83 0.005 .001021 .0056411 L4. 0030876 .001197 -2.58 0.01000543370007415 							
L4. 0030876 .001197 -2.58 0.01000543370007415 L5. .0024727 .0008136 3.04 0.002 .0008781 .0040673 							
L5. .0024727 .0008136 3.04 0.002 .0008781 .0040673 _cons .0008287 .000228 3.63 0.000 .0003818 .0012756 p3vol garchr L1. -10.13995 25.3214 -0.40 0.689 -59.76899 39.4891 L2. 11.94606 27.66244 0.43 0.666 -42.27134 66.16345 L3. -20.44368 27.07254 -0.76 0.450 -73.50489 32.61752 L4. 19.69729 26.66186 0.74 0.460 -32.559 71.95357 L5. 12.22666 24.78418 0.49 0.622 -36.34944 60.80276 p3vol L1. .2186745 .0686925 3.18 0.001 .0840396 .3533094 L2. .1697336 .063719 2.66 0.008 .0448466 .2946206 L3. 0012202 .0623223 -0.02 0.9841233696 .1209293 L4. .1425515 .0615483 2.32 0.021 .021919 .263184 L5. 0069046 .059784 -0.12 0.9081240791 .1102699 p3oi L1. .781757 .2234439 3.50 0.000 .3438149 1.219699 L2. 7696456 .339696 -2.277 0.023 -1.4354371038537 L3. 1.107517 .3518303 3.15 0.002 .417942 1.797091 L4. .1378116 .357322 -3.66 0.000 -2.0784546777781 L5. .6119483 .2428741 2.52 0.012 .1359239 1.067973 _cons 0285156 .068066 -0.42 0.6751619226 .1048913 p3oi garchr L1. -9.98707 9.753724 -1.02 0.306 -29.10402 9.129878 L2. 11.85343 10.65549 1.11 0.266 -9.03093 32.7378 L3. 3.010599 10.42826 0.29 0.773 -17.42841 23.44961 L4. -19.53252 10.27006 -1.90 0.057 -39.66148 .5964313 .55. 7.517569 9.546788 0.79 0.431 -11.19379 26.22893 p3vol L1. -057965 .0264601 -2.19 0.0281098259006104 L2. 0217965 .0264601 -2.19 0.0281098259006104 L2. 0217955 .0264601 -2.19 0.0281098259006104 L2. 0217955 .0264601 -2.19 0.0281098259006104 L2. 0217955 .0264601 -2.19 0.0281098259006104 L2. 0018267 .0237082 -0.08 0.393048294 .0446403							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	'						
garchr L1. -10.13995 25.3214 -0.40 0.689 -59.76899 39.4891 L2. 11.94606 27.66244 0.43 0.666 -42.27134 66.16345 L3. -20.44368 27.07254 -0.76 0.450 -73.50489 32.61752 L4. 19.69729 26.66186 0.74 0.460 -32.559 71.95357 L5. 12.22666 24.78418 0.49 0.622 -36.34944 60.80276 p3vol L1. .2186745 .0686925 3.18 0.001 .0840396 .3533094 L2. .1697336 .063719 2.66 0.008 .0448466 .2946206 L3. -0012202 .0623223 -0.02 0.9841233696 .1209293 L4. .1425515 .0615483 2.32 0.021 .021919 .263184 L5. -0069046 .059784 -0.12 0.9081240791 .1102699 p3oi L1. .781757 .2234439 3.50 0.000 .3438149 1.219699 L2. 7696456 .339696 -2.27 0.023 -1.4354371038537 L3. 1.107517 .3518303 3.15 0.002 .417942 1.797091 L4. -1.378116 .357322 -3.86 0.000 -2.0784546777781 L5. .6119483 .2428741 2.52 0.012 .1359239 1.087973 _cons 0285156 .068066 -0.42 0.6751619226 .1048913 	_cons	.0008287	.000228	3.63	0.000	.0003818	.0012756
garchr L1. -10.13995 25.3214 -0.40 0.689 -59.76899 39.4891 L2. 11.94606 27.66244 0.43 0.666 -42.27134 66.16345 L3. -20.44368 27.07254 -0.76 0.450 -73.50489 32.61752 L4. 19.69729 26.66186 0.74 0.460 -32.559 71.95357 L5. 12.22666 24.78418 0.49 0.622 -36.34944 60.80276 p3vol L1. .2186745 .0686925 3.18 0.001 .0840396 .3533094 L2. .1697336 .063719 2.66 0.008 .0448466 .2946206 L3. -0012202 .0623223 -0.02 0.9841233696 .1209293 L4. .1425515 .0615483 2.32 0.021 .021919 .263184 L5. -0069046 .059784 -0.12 0.9081240791 .1102699 p3oi L1. .781757 .2234439 3.50 0.000 .3438149 1.219699 L2. 7696456 .339696 -2.27 0.023 -1.4354371038537 L3. 1.107517 .3518303 3.15 0.002 .417942 1.797091 L4. -1.378116 .357322 -3.86 0.000 -2.0784546777781 L5. .6119483 .2428741 2.52 0.012 .1359239 1.087973 _cons 0285156 .068066 -0.42 0.6751619226 .1048913 	+ p3vol						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	'						
L4. 19.69729 26.66186 0.74 0.460 -32.559 71.95357 L5. 12.22666 24.78418 0.49 0.622 -36.34944 60.80276 p3vol L1. .2186745 .0686925 3.18 0.001 .0840396 .5533094 L2. .1697336 .063719 2.66 0.008 .0448466 .2946206 L3. 0012202 .0623223 -0.02 0.9841233696 .1209293 L4. .1425515 .0615483 2.32 0.021 .021919 .263184 L5. 0069046 .059784 -0.12 0.9081240791 .1102699 p3oi L1. .781757 .2234439 3.50 0.000 .3438149 1.219699 L2. 7696456 .339696 -2.27 0.023 -1.4354371038537 L3. 1.107517 .3518303 3.15 0.000 .4417942 1.797091 L4. -1.378116 .357322 -3.86 0.000 -2.0784546777781 L5. .6119483 .2428741 2.52 0.012 .1359239 1.087973 _cons 0285156 .068066 -0.42 0.6751619226 .1048913 							
p3vol L1. .2186745 .0686925 3.18 0.001 .0840396 .3533094 L2. .1697336 .063719 2.66 0.008 .0448466 .2946206 L3. 001202 .0623223 -0.02 0.9841233696 .1209293 L4. .1425515 .0615483 2.32 0.021 .021919 .263184 L5. 0069046 .059784 -0.12 0.9081240791 .1102699 p3oi L1. .781757 .2234439 3.50 0.000 .3438149 1.219699 L2. 7696456 .339696 -2.27 0.023 -1.4354371038537 L3. 1.107517 .3518303 3.15 0.002 .417942 1.797091 L4. -1.378116 .357322 -3.86 0.000 -2.0784546777781 L5. .6119483 .2428741 2.52 0.012 .1359239 1.087973 _cons 0285156 .068066 -0.42 0.6751619226 .1048913 							
L1. .2186745 .0686925 3.18 0.001 .0840396 .3533094 L2. .1697336 .063719 2.66 0.008 .0448466 .2946206 L3. 0012202 .0623223 -0.02 0.9841233696 .1209293 L4. .1425515 .0615483 2.32 0.021 .021919 .263184 L5. 0069046 .059784 -0.12 0.9081240791 .1102699 p30i L1. .781757 .2234439 3.50 0.000 .3438149 1.219699 L2. 7696456 .339696 -2.27 0.023 -1.4354371038537 L3. 1.107517 .3518303 3.15 0.002 .417942 1.797091 L4. -1.378116 .357322 -3.86 0.000 -2.0784546777781 L5. .6119483 .2428741 2.52 0.012 .1359239 1.087973 _cons 0285156 .068066 -0.42 0.6751619226 .1048913 p30i p30i p30i garchr L1. -9.98707 9.753724 -1.02 0.306 -29.10402 9.129878 L2. 11.85343 10.65549 1.11 0.266 -9.030938 32.7378 L3. 3.010599 10.42826 0.29 0.773 -17.42841 23.44961 L4. -19.53252 10.27006 -1.90 0.057 -39.66148 .5964313 L5. 7.517569 9.546788 0.79 0.431 -11.19379 26.22893 p3vol L1. 057965 .0264601 -2.19 0.0281098259006104 L2. 0.27965 .0264601 -2.19 0.0281098259006104 L2. 0217965 .0264601 -2.19 0.281098259006104 L2. 0217965 .0245444 -0.89 0.375 -0699026 .0263095 L3. 0.039916 .0240064 0.17 0.86804306 .0510432 L4. 0018267 .0237082 -0.08 0.939048294 .0446405		12.22666	24.78418	0.49	0.622	-36.34944	60.80276
L2. .1697336 .063719 2.66 0.008 .0448466 .2946206 L3. 0012202 .0623223 -0.02 0.9841233696 .1209293 L4. .1425515 .0615483 2.32 0.021 .021919 .263184 L5. 0069046 .059784 -0.12 0.9081240791 .1102699 p30i L1. .781757 .2234439 3.50 0.000 .3438149 1.219699 L2. 7696456 .339696 -2.27 0.023 -1.4354371038537 L3. 1.107517 .3518303 3.15 0.002 .417942 1.797091 L4. -1.378116 .357322 -3.86 0.000 -2.0784546777781 L5. .6119483 .2428741 2.52 0.012 .1359239 1.087973 _cons 0285156 .068066 -0.42 0.6751619226 .1048913 p30i garchr L1. -9.98707 9.753724 -1.02 0.306 -29.10402 9.129878 L2. 1.85343 10.65549 1.11 0.266 -9.030938 32.7378 L3. 3.010599 10.42826 0.29 0.773 -17.42841 23.44961 L4. -19.53252 10.27006 -1.90 0.057 -39.66148 .5964313 L5. 7.517569 9.546788 0.79 0.431 -11.19379 26.22893 p3vol L1. -057965 .0264601 -2.19 0.0281098259006104 L2. 0217965 .0264601 -2.19 0.2881098259006104 L2. -0217965 .0264544 -0.89 0.3750699026 .0263095 L3. .0039916 .0240064 0.17 0.86804306 .0510432 L4. 0018267 .0237082 -0.08 0.939048294 .0446405			000000	2 10	0 001	0040206	2522004
L3. 0012202 .0623223 -0.02 0.9841233696 .1209293 L4. .1425515 .0615483 2.32 0.021 .021919 .263184 L5. 0069046 .059784 -0.12 0.9081240791 .1102699 p30i L1. .781757 .2234439 3.50 0.000 .3438149 1.219699 L2. 7696456 .339696 -2.27 0.023 -1.4354371038537 L3. 1.107517 .3518303 3.15 0.002 .417942 1.797091 L4. -1.378116 .357322 -3.86 0.000 -2.0784546777781 L5. .6119483 .2428741 2.52 0.012 .1359239 1.087973 _cons 0285156 .068066 -0.42 0.6751619226 .1048913 p30i garchr L1. -9.98707 9.753724 -1.02 0.306 -29.10402 9.129878 L2. 11.85343 10.65549 1.11 0.266 -9.030938 32.7378 L3. 3.010599 10.42826 0.29 0.773 -17.42841 23.44961 L4. -19.53252 10.27006 -1.90 0.057 -39.66148 .5964313 L5. 7.517569 9.546788 0.79 0.431 -11.19379 26.22893 p3vol L1. -0.57965 .0264601 -2.19 0.0281098259006104 L2. 0217965 .0245444 -0.89 0.375669026 .0263095 L3. .0039916 .0240064 0.17 0.86804306 .0510432 L4. 0018267 .0237082 -0.08 0.939048294 .0446405							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0069046	.059784	-0.12	0.908	1240791	.1102699
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.781757	.2234439	3.50	0.000	.3438149	1.219699
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
garchr L1. -9.98707 9.753724 -1.02 0.306 -29.10402 9.129878 L2. 11.85343 10.65549 1.11 0.266 -9.030938 32.7378 L3. 3.010599 10.42826 0.29 0.773 -17.42841 23.44961 L4. -19.53252 10.27006 -1.90 0.057 -39.66148 .5964313 L5. 7.517569 9.546788 0.79 0.431 -11.19379 26.22893 p3vol L1. 057965 .0264601 -2.19 0.0281098259006104 L2. 0217965 .0245444 -0.89 0.3750699026 .0263095 L3. .0039916 .0240064 0.17 0.86804306 .0510432 L4. 0018267 .0237082 -0.08 0.939048294 .0446405							
garchr L1. -9.98707 9.753724 -1.02 0.306 -29.10402 9.129878 L2. 11.85343 10.65549 1.11 0.266 -9.030938 32.7378 L3. 3.010599 10.42826 0.29 0.773 -17.42841 23.44961 L4. -19.53252 10.27006 -1.90 0.057 -39.66148 .5964313 L5. 7.517569 9.546788 0.79 0.431 -11.19379 26.22893 p3vol L1. 057965 .0264601 -2.19 0.0281098259006104 L2. 0217965 .0245444 -0.89 0.3750699026 .0263095 L3. .0039916 .0240064 0.17 0.86804306 .0510432 L4. 0018267 .0237082 -0.08 0.939048294 .0446405	+						
L1. -9.98707 9.753724 -1.02 0.306 -29.10402 9.129878 L2. 11.85343 10.65549 1.11 0.266 -9.030938 32.7378 L3. 3.010599 10.42826 0.29 0.773 -17.42841 23.44961 L4. -19.53252 10.27006 -1.90 0.057 -39.66148 .5964313 L5. 7.517569 9.546788 0.79 0.431 -11.19379 26.22893 p3vol L1. 057965 .0264601 -2.19 0.0281098259006104 L2. 0217965 .0245444 -0.89 0.3750699026 .0263095 L3. .0039916 .0240064 0.17 0.86804306 .0510432 L4. 0018267 .0237082 -0.08 0.939048294 .0446405	-						
L3. 3.010599 10.42826 0.29 0.773 -17.42841 23.44961 L4. -19.53252 10.27006 -1.90 0.057 -39.66148 .5964313 L5. 7.517569 9.546788 0.79 0.431 -11.19379 26.22893 p3vol L1. 057965 .0264601 -2.19 0.0281098259006104 L2. 0217965 .0245444 -0.89 0.3750699026 .0263095 L3. .0039916 .0240064 0.17 0.86804306 .0510432 L4. 0018267 .0237082 -0.08 0.939048294 .0446405	-		9.753724	-1.02	0.306	-29.10402	9.129878
L4. -19.53252 10.27006 -1.90 0.057 -39.66148 .5964313 L5. 7.517569 9.546788 0.79 0.431 -11.19379 26.22893 p3vol L1. 057965 .0264601 -2.19 0.0281098259006104 L2. 0217965 .0245444 -0.89 0.3750699026 .0263095 L3. .0039916 .0240064 0.17 0.86804306 .0510432 L4. 0018267 .0237082 -0.08 0.939048294 .0446405	L2.	11.85343	10.65549		0.266	-9.030938	32.7378
L5. 7.517569 9.546788 0.79 0.431 -11.19379 26.22893 p3vol L1. 057965 .0264601 -2.19 0.0281098259006104 L2. 0217965 .0245444 -0.89 0.3750699026 .0263095 L3. .0039916 .0240064 0.17 0.86804306 .0510432 L4. 0018267 .0237082 -0.08 0.939048294 .0446405							
p3vol L1. 057965 .0264601 -2.19 0.0281098259006104 L2. 0217965 .0245444 -0.89 0.3750699026 .0263095 L3. .0039916 .0240064 0.17 0.86804306 .0510432 L4. 0018267 .0237082 -0.08 0.939048294 .0446405							
L2. 0217965 .0245444 -0.89 0.3750699026 .0263095 L3. .0039916 .0240064 0.17 0.86804306 .0510432 L4. 0018267 .0237082 -0.08 0.939048294 .0446405				0.10		,	
L3. .0039916 .0240064 0.17 0.86804306 .0510432 L4. 0018267 .0237082 -0.08 0.939048294 .0446405							
L4. 0018267 .0237082 -0.08 0.939048294 .0446405							

	Coef.	Std. Err.	Z	P> z	[95% Conf.	[Interval]
p3oi						
L1.	1.10643	.0860699	12.86	0.000	.9377363	1.275124
L2.	2211061	.1308498	-1.69	0.091	477567	.0353548
L3.	1107649	.1355239	-0.82	0.414	3763869	.154857
L4.	.4242464	.1376393	3.08	0.002	.1544784	.6940145
L5.	3219079	.0935543	-3.44	0.001	505271	1385447
_cons	.0129296	.0262188	0.49	0.622	0384583	.0643176

Granger causality Wald tests

Equation	Excluded	chi2	df E	Prob > chi2
garchr	p3vol	5.143	5	0.399
garchr	p3oi	18.516	5	0.002
garchr	ALL	24.738	10	0.006
p3vol	garchr	1.7031	5	0.889
p3vol	p3oi	36.944	5	0.000
p3vol	ALL	41.157	10	0.000
p3oi	qarchr	4.9598	5	0.421
p3oi	p3vol	5.6614	5	0.341
p3oi	ALL	10.705	10	0.381

Impulse Response and FEVD (P3 Method) . irf ctable (p3r garchr garchr fevd, noci) (p3r p3vol garchr fevd, noci) (p3r p3oi garchr fevd, noci) (p3r sarchr garchr irf, noci) (p3r p3vol garchr irf, noci) (p3r p3vol garchr irf, noci)

	(1)	(2)	(3)	(1)	(2)	(3)
step	fevd	fevd	fevd	irf	irf +	irf
0	0	0	0	1	0	0
1	1	0	0	.459255	.0003	.000772
2	.988175	.005446	.006378	.320183	.000078	001758
3	.958458	.006132	.03541	.30651	000141	000177
4	.959816	.00684	.033344	.344863	.000113	002077
5	.927508	.00796	.064532	.145095	.000288	00046
6	.922235	.012732	.065033	.139785	.000178	000792
7	.916533	.014718	.068749	.091939	.000078	.00087
8	.911544	.014676	.073779	.093974	.000081	.000164
9	.911539	.014889	.073572	.040372	.000036	.001073
10	.903728	.014742	.08153	.048993	000014	.000813
11	.899333	.014732	.085935	.013053	000064	.001604
12	.881739	.015138	.103123	.018453	00009	.001127
13	.872931	.01579	.111279	001037	000121	.001412
14	.859286	.01692	.123794	.002255	000124	.001012
15	.852011	.017988	.130001	017731	000132	.001224
16	.841842	.019208	.13895	013192	00013	.000831
17	.836809	.020269	.142923	021863	000127	.000849
18	.831702	.021274	.147024	018047	000109	.000504
19	.829637	.021968	.148395	02557	000097	.000519
20	.82763	.022526	.149844	020576	000081	.000254
21	.82698	.02288	.15014	022696	000068	.00023
22	.826499	.023125	.150375	017585	00005	.000021
23	.826424	.023238	.150338	018591	000036	.000017
24	.826399	.023297	.150305	013732	000023	000116
25	.826326	.023308	.150366	013007	000013	000111
26	.82627	.023308	.150423	008533	-2.1e-06	000199
27	.826052	.023301	1.150647	007652	5.0e-06	000177
28	.825877	.023301	.150822	004173	.000011	000219
29	.825595	.023309	.151096	003232	.000015	000185
30	.825384	.023324	.151292	000514	.000018	000203
31	.825128	.023345	.151527	.000081	.000019	000164
32	.824952	.023369	.151679	.001826	.00002	000163
33	.824778	.023393	.151829	.002052	.000019	000123
34	.824672	.023415	.151913	.003123	.000018	000114
35	.824582	.023434	.151984	.003015	.000016	000079
36	.824534	.023448	.152018	.003476	.000014	000067
37	.8245	.023459	.152041	.00311	.000011	000038
38	.824486	.023466	.152047	.003203	9.3e-06	000027
39	.824479	.023471	.15205	.002709	7.0e-06	-5.7e-06
40	.824477	.023473	.152049	.002561	5.0e-06	1.4e-06
41	.824477	.023474	.152049	.002021	3.1e-06	.000016
42	.824476	.023475	.15205	.001776	1.6e-06	.000019

43	.824474	.023474	.152052	.00128	1.8e-07	.000027	
44	.82447	.023474	.152056	.001023	-8.5e-07	.000027	1
45	.824466	.023474	.15206	.000607	-1.7e-06	.000031	L

1	(1)	(2)	(3)	(1)	(2)	(3)
step	fevd	fevd	fevd	irf	irf	irf
46	.82446	.023475	.152065	.000394	-2.3e-06	.000028
47	.824455	.023475	.15207	.000087	-2.7e-06	.000028
48	.82445	.023475	.152074	000057	-2.8e-06	.000024 I
4 9	.824446	.023476	.152078	000259	-2.8e-06	.000023 I
150	.824443	.023476	.152081	000333	-2.7e-06	.000018 I
151	.824441	.023477	.152082	000442	-2.5e-06	.000016
152	.824439	.023477	.152084	000455	-2.3e-06	.000011
153	.824438	.023477	.152084	000493	-2.0e-06	9.0e-06 I
154	.824437	.023478	.152085	000462	-1.6e-06	5.5e-06
155	.824437	.023478	.152085	000452	-1.3e-06	3.4e-06
156	.824437	.023478	.152085	000396	-9.9e-07	8.2e-07
157	.824437	023478	.152085	000359	-7.0e-07	-5.8e-07
158	.824437	.023478	.152085	000294	-4.3e-07	-2.3e-06
159	1.824437	023478	.152085	000247	-2.0e-07	-3.0e-06
160	1.824437	023478	.152085	000184	-9.0e-09	-3.9e-06
161	1.824437	023478	.152085	000139	1.4e-07	-4.1e-06
162	1.824437	023478	.152085	0000139	2.6e-07	-4.4e-06
			.152085			
63	.824437 .824436	.023478 .023478	.152085	00005 000011	3.4e-07 3.9e-07	-4.1e-06
64						-4.0e-06
65	.824436	.023478	.152086	.000013	4.1e-07	-3.5e-06
166	.824436	.023478	.152086	.000038	4.1e-07	-3.2e-06
67	.824436	.023478	.152086	.000051	3.9e-07	-2.6e-06
68	.824436	.023478	.152086	.000064	3.7e-07	-2.2e-06
169	.824436	.023478	.152086	.000068	3.3e-07	-1.6e-06
170	.824436	.023478	.152086	.000071	2.8e-07	-1.2e-06
71	.824436	.023478	.152086	.000068	2.3e-07	-7.7e-07
72	.824436	.023478	.152086	.000065	1.9e-07	-4.4e-07
173	.824436	.023478	.152086	.000057	1.4e-07	-1.0e-07
74	.824436	.023478	.152086	.000051	9.7e-08	1.2e-07
175	.824436	.023478	.152086	.000042	5.8e-08	3.4e-07
176	.824436	.023478	.152086	.000035	2.6e-08	4.6e-07
177	.824436	.023478	.152086	.000026	-1.3e-09	5.7e-07
78	.824436	.023478	.152086	.000019	-2.3e-08	6.0e-07
179	.824436	.023478	.152086	.000012	-3.9e-08	6.3e-07
180	.824436	.023478	.152086	6.5e-06	-5.0e-08	6.0e-07
81	.824436	.023478	.152086	1.3e-06	-5.7e-08	5.7e-07
82	.824436	.023478	.152086	-2.5e-06	-6.0e-08	5.1e-07
83	.824436	.023478	.152086	-5.7e-06	-6.0e-08	4.5e-07
84	.824436	.023478	.152086	-7.8e-06	-5.7e-08	3.8e-07
85	.824436	.023478	.152086	-9.3e-06	-5.3e-08	3.1e-07
186	.824436	.023478	.152086	-9.9e-06	-4.7e-08	2.3e-07
87	.824436	.023478	.152086	00001	-4.0e-08	1.7e-07
88	.824436	.023478	.152086	-9.8e-06	-3.3e-08	1.1e-07
89	.824436	.023478	.152086	-9.3e-06	-2.6e-08	5.8e-08
90	.824436	.023478	.152086	-8.3e-06	-1.9e-08	1.2e-08
91	.824436	.023478	.152086	-7.2e-06	-1.3e-08	-2.2e-08
92	.824436	.023478	.152086	-6.0e-06	-7.9e-09	-5.1e-08
193	.824436	.023478	.152086	-4.9e-06	-3.3e-09	-6.9e-08
194	.824436	.023478	.152086	-3.7e-06	5.7e-10	-8.3e-08
195	.824436	.023478	.152086	-2.7e-06	3.6e-09	-8.9e-08
196	.824436	.023478	.152086	-1.7e-06	5.9e-09	-9.1e-08
97	.824436	.023478	.152086	-8.5e-07	7.4e-09	-8.8e-08
98	.824436	.023478	.152086	-1.3e-07	8.4e-09	-8.2e-08
199	.824436	.023478	.152086	4.2e-07	8.7e-09	-7.4e-08
100	.824436	.023478	.152086	8.7e-07	8.7e-09	-6.4e-08
+						+

(1) irfname = p3r, impulse = garchr, and response = garchr (2) irfname = p3r, impulse = p3vol, and response = garchr (3) irfname = p3r, impulse = p3oi, and response = garchr

$\begin{array}{l} Granger \ Causality \ (CMA \ Method) \\ . \ {\tt tsset \ time} \end{array}$

time vari	able: time	, 1 to 127	7					
. irf set cmar (file cmar.irf cr (file cmar.irf nc	,							
. var garchr cmavol cmaoi, lags(1/4)								
Vector autoregres	sion							
Sample: 5 Log likelihood = FPE = Det(Sigma_ml) =	814.5507 6.71e-10			No. of AIC HQIC SBIC	obs			
Equation	Parms	RMSE	R-sq	chi2	P>chi2			

= 123 = -12.61058 = -12.24839 = -11.71891

garchr	13	.001225	0.4633	106.1758	0.0000
cmavol	13	.205039	0.4629	106.0187	0.0000
cmaoi	13	.089736	0.2961	51.74788	0.0000

	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
+ garchr						
garchr						
L1.	.4618128	.0883253	5.23	0.000	.2886984	.6349273
L2.	.1641758	.095624	1.72	0.086	0232438	.3515954
L3.	0147788	.0933951	-0.16	0.874	1978298	.1682723
L4.	.0759585	.0861658	0.88	0.378	0929235	.2448404
cmavol						
L1.	.0006823	.000535	1.28	0.202	0003662	.0017309
L2.	000106	.0005496	-0.19	0.847	0011832	.0009712
L3.	0006775	.0005352	-1.27	0.206	0017265	.0003714
L4.	.0005415	.00048	1.13	0.259	0003993	.0014822
cmaoi						
L1.		.0012217	0.82	0.411	0013904	.0033984
L2.	0044146	.0012945	-3.41	0.001	0069517	0018774
L3.	.0016207	.0012944	1.25	0.211	0009162	.0041576
L4.	0033623	.0013603	-2.47	0.013	0060285	0006962
_cons	.0007372	.0002274	3.24	0.001	.0002915	.001183
mavol						
garchr						
L1.	-2.228709	14.78319	-0.15	0.880	-31.20323	26.74581
L2.	17.66916	16.00479	1.10	0.270	-13.69965	49.03796
L3.	-12.97091	15.63173	-0.83	0.407	-43.60854	17.66672
L4.	3.229754	14.42176	0.22	0.823	-25.03637	31.49588
cmavol						
L1.		.0895406	-6.37	0.000	7454783	3944857
L2.		.091988	-4.73	0.000	6155525	2549663
L3.	402937	.0895757	-4.50	0.000	5785021	227372
L4.	038156	.0803388	-0.47	0.635	195617	.1193051
cmaoi	7102525	2044722	2 5 2	0 000	2105050	1 100110
L1.	.7193535 0061372	.2044723	3.52	0.000	.3185952	1.120112
L2. L3.		.2166605 .2166428	-0.03 3.97	0.977 0.000	430784 .4360192	.4185096 1.285244
L3. L4.	3498513	.2276798	-1.54	0.000	7960955	.0963929
cons	0399838	.0380643	-1.05	0.124	1145885	.0346209
	0599050	.0380845		0.294	1143005	.0340209
maoi						
garchr						
L1.		6.469875	-1.95	0.051	-25.30081	.0606301
L2.		7.004507	0.77	0.439	-8.309369	19.14779
L3.		6.841239	1.28	0.200	-4.638905	22.17826
L4.	-4.076669	6.311693	-0.65	0.518	-16.44736	8.294022
cmavol		0001055	0.4.6		0001155	
L1.		.0391875	-0.16	0.872	0831155	.0704967
L2.		.0402586	-1.20	0.228	1274008	.03041
L3.	0354125	.0392029	-0.90	0.366	1122486	.0414237
L4.		.0351603	-1.46	0.144	1202455	.0175804
cmaoi		0004074	1 4 0	0 1 4 5	045050	2057052
L1.		.0894874	1.46	0.145	045059	.3057253
L2.		.0948216	-4.80	0.000	6405555	2688615
L3. L4.		.0948139	-0.56	0.573	2392308 1343485	.1324328
		.0996442 .0166589	0.61 -0.27	0.541 0.784	0372228	.2562497
_cons	004372	.0100009	-0.21	0./04	03/2220	.0280788

Granger causality Wald tests +-----+

	Equation	Excluded	chi2	df Prob >	chi2
	garchr garchr garchr	cmavol cmaoi ALL			2
	cmavol cmavol cmavol Equation	garchr cmaoi ALL Excluded	24.116 27.613	4 0.80 4 0.00 8 0.00 df Prob >	0 1
	cmaoi	garchr	4.7754	4 0.31	1
	Equation	Excluded	chi2	df Prob > c	hi2
 +	cmaoi cmaoi	cmavol ALL	3.5158 7.7272	4 0.47 8 0.46	-

Impulse Response and FEVD (CMA Method)

. irf ctable (cmar garchr garchr fevd, noci) (cmar cmavol garchr fevd, noci) (cmar cmaoi garchr fevd, noci) > (cmar garchr garchr irf, noci) (cmar cmavol garchr irf, noci) (cmar cmaoi garchr irf, noci)

step	(1) fevd	(2) fevd	(3) fevd	(1) irf	(2) irf	(3) irf
)	+	-+ 0	-+ 0	+	-+ 0	+ 0
1	1	0	0	.461813	.000682	.001004
2	.984545	.011135	.00432	.363256	000186	003329
3	.94548	.010541	.043978	.288723	000697	001082
1	.936173	.018991	.044836	.255937	1.000723	002522
5	.913341	1.025368	.061291	1.178665	1.000223	001454
5	1.90879	.025284	065926	1.177345	1.000223	001434
7	1.905348	1.025706	1.068946	.111515	000285	.000466
		.026185		.087097		
3	.904756		.069059		.000196	000897
9	.902672	.02649	.070838	.070925	000014	00076
LO	.90149	026365	.072145	.080068	.000155	000817
11	.899909	026502	.073589	.048407	000055	000204
L2	.899881	.026508	.073611	.034728	1.000097	00022
L3	.899712	.026615	.073673	.024759	000031	000203
L 4	.899629	.026618	.073753	.031995	.000062	000431
L5	.899183	.026631	.074187	.021459	000027	.000024
L6	.899196	.026635	.07417	.015779	.00005	00008
L7	.899162	.026665	.074173	.008918	000015	000021
L8	.899162	.026667	.07417	.012085	.000028	000184
L9	.899078	.026671	.074251	.008779	000016	-1.0e-05
20	.899078	.026674	.074247	.007269	.000022	000047
21	.89907	.02668	.07425	.003562	-7.3e-06	.000011
22	.899069	.026681	.07425	.004612	.000014	000072
23	.899055	.026682	.074262	.003364	-8.6e-06	-5.9e-06
24	.899055	.026683	.074262	.003217	9.7e-06	000028
25	.899052	.026684	.074263	.001499	-4.1e-06	9.3e-06
26	.899052	.026685	.074263	.001835	7.1e-06	000029
27	.89905	.026685	.074265	.001252	-4.1e-06	-1.2e-06
28	.899049	.026685	.074265	.001376	4.4e-06	000015
29	.899049	.026686	.074266	.000629	-2.4e-06	5.3e-06
30	.899049	.026686	.074266	.000756	3.4e-06	000012
31	.899048	.026686	.074266	.000461	-1.9e-06	4.8e-07
32	.899048	.026686	.074266	.000579	2.1e-06	-7.3e-06
33	.899048	.026686	.074266	.000258	-1.3e-06	2.7e-06
34	.899048	.026686	.074266	.000319	1.6e-06	-5.0e-06
35	.899048	.026686	.074266	.000169	-9.4e-07	7.3e-07
36	.899048	.026686	.074266	.000242	1.0e-06	-3.5e-06
37	.899048	.026686	.074266	.000104	-6.7e-07	1.4e-06
38	.899048	.026686	.074266	.000137	7.6e-07	-2.2e-06
39	.899048	.026686	.074266	.000061	-4.7e-07	5.8e-07
10	.899048	.026686	.074266	.000101	4.9e-07	-1.7e-06
11	.899048	.026686	.074266	.000041	-3.4e-07	6.7e-07
12	.899048	.026686	.074266	.000059	3.6e-07	-1.0e-06
13	.899048	.026686	.074266	.000022	-2.3e-07	3.8e-07
14	.899048	.026686	.074266	.000042	2.4e-07	-7.8e-07
15	.899048	.026686	.074266	.000015	-1.7e-07	3.3e-07
16	.899048	.026686	.074266	.000026	1.7e-07	-4.7e-07
17	.899048	.026686	.074266	7.5e-06	-1.2e-07	2.2e-07
18	.899048	.026686	.074266	.000018	1.2e-07	-3.6e-07
19	.899048	.026686	.074266	5.5e-06	-8.4e-08	1.6e-07
50	.899048	.026686	.074266	.000011	8.1e-08	-2.2e-07
51	.899048	.026686	.074266	2.5e-06	-5.7e-08	1.2e-07
52	.899048	.026686	.074266	7.5e-06	5.6e-08	-1.7e-07
53	.899048	.026686	.074266	1.8e-06	-4.2e-08	8.2e-08
54	1.899048	1.026686	.074266	5.0e-06	3.9e-08	-1.1e-07
55	1.899048	1.026686	.074266	7.9e-07	-2.9e-08	6.2e-08
56	1.899048	1.026686	.074266	3.2e-06	2.7e-08	-7.8e-08
57	1.899048	1.026686	.074266	5.4e-07	-2.0e-08	4.2e-08
58	1.899048	1.026686	.074266	2.2e-06	1.9e-08	-5.1e-08
20	1.899048	.026686	.074266	1 2.28-00	1 1.36-00	1 .2.TG-00

60	.899048	.026686	.074266	1.4e-06	1.3e-08	-3.7e-08	1
61	.899048	.026686	.074266	1.2e-07	-1.0e-08	2.1e-08	1
62	.899048	.026686	.074266	9.8e-07	9.1e-09	-2.5e-08	1
63	.899048	.026686	.074266	2.7e-08	-7.0e-09	1.6e-08	1
64	.899048	.026686	.074266	6.3e-07	6.4e-09	-1.7e-08	1
65	.899048	.026686	.074266	6.3e-10	-4.9e-09	1.1e-08	1
66	.899048	.026686	.074266	4.3e-07	4.4e-09	-1.2e-08	1
67	.899048	.026686	.074266	-1.7e-08	-3.5e-09	8.0e-09	1
68	.899048	.026686	.074266	2.8e-07	3.1e-09	-8.2e-09	1
69	.899048	.026686	.074266	-2.3e-08	-2.4e-09	5.5e-09	1
70	.899048	.026686	.074266	1.9e-07	2.2e-09	-5.7e-09	1
71	.899048	.026686	.074266	-2.1e-08	-1.7e-09	3.9e-09	1
72	.899048	.026686	.074266	1.3e-07	1.5e-09	-3.9e-09	1
73	.899048	.026686	.074266	-2.0e-08	-1.2e-09	2.7e-09	1

1	(1)	(2)	(3)	(1) (2)	(3)
step	fevd	fevd	fevd	irf irf	irf
74	.899048	.026686	.074266	8.7e-08 1.0e-09	-2.8e-09
75	.899048	.026686	.074266	-1.6e-08 -8.4e-10	2.0e-09
76	.899048	.026686	.074266	5.8e-08 7.3e-10	-1.9e-09
77	.899048	.026686	.074266	-1.3e-08 -5.8e-10	1.4e-09
78	.899048	.026686	.074266	4.0e-08 5.1e-10	-1.3e-09
79	.899048	.026686	.074266	-1.0e-08 -4.1e-10	9.6e-10
80	.899048	.026686	.074266	2.7e-08 3.6e-10	-9.1e-10
81	.899048	.026686	.074266	-7.9e-09 -2.9e-10	6.8e-10
82	.899048	.026686	.074266	1.8e-08 2.5e-10	-6.4e-10
83	.899048	.026686	.074266	-5.8e-09 -2.0e-10	4.8e-10
84	.899048	.026686	.074266	1.2e-08 1.7e-10	-4.4e-10
85	.899048	.026686	.074266	-4.4e-09 -1.4e-10	3.4e-10
86	.899048	.026686	.074266	8.4e-09 1.2e-10	-3.1e-10
87	.899048	.026686	.074266	-3.2e-09 -9.8e-11	2.3e-10
88	.899048	.026686	.074266	5.7e-09 8.4e-11	-2.1e-10
89	.899048	.026686	.074266	-2.4e-09 -6.9e-11	1.7e-10
90	.899048	.026686	.074266	3.9e-09 5.9e-11	-1.5e-10
91	.899048	.026686	.074266	-1.7e-09 -4.8e-11	1.2e-10
92	.899048	.026686	.074266	2.7e-09 4.1e-11	-1.0e-10
93	.899048	.026686	.074266	-1.3e-09 -3.4e-11	8.1e-11
94	.899048	.026686	.074266	1.8e-09 2.9e-11	-7.3e-11
95	.899048	.026686	.074266	-9.1e-10 -2.4e-11	5.7e-11
96	.899048	.026686	.074266	1.3e-09 2.0e-11	-5.1e-11
97	.899048	.026686	.074266	-6.5e-10 -1.6e-11	4.0e-11
98	.899048	.026686	.074266	8.6e-10 1.4e-11	-3.5e-11
199	.899048	.026686	.074266	-4.7e-10 -1.2e-11	2.8e-11
100	.899048	.026686	.074266	5.9e-10 9.8e-12	-2.5e-11
+					+

(1) irfname = cmar, impulse = garchr, and response = garchr (2) irfname = cmar, impulse = cmavol, and response = garchr (3) irfname = cmar, impulse = cmaoi, and response = garchr

Milled Rice

Granger Causality (FD Method)

. tsset time time variable: time, 1 to 120 . irf set fdm (file fdm.irf created) (file fdm.irf now active) . var garchm fdvol fdoi, lags(1/5) Vector autoregression No. of obs = 115 AIC = -7.490102 HOIC Sample: 6 120 No. of obs Log likelihood = 478.6809 FPE = 1.13e-07 Det(Sigma_ml) = 4.87e-08 = -7.025064 HQIC = -6.344391 SBIC Parms RMSE R-sq chi2 P>chi2 Equation _____ garchm16.0049940.376569.444550.0000fdvol16.3961520.5627148.00390.0000fdoi16.153150.237035.729840.0019 _____ _____ | Coef. Std. Err. z P>|z| [95% Conf. Interval] _____

garchm |

garchm	I					
L1.		.0969926	6.20	0.000	.4114051	.7916092
L2.		.1123941	-2.01	0.044	4462873	0057105
L3.		.1165051	0.85	0.397	1296764	.3270151
L4.		.1177078	0.36	0.716	1879554	.2734508
L5.		.0990377	-0.08	0.936	2020807	.1861398
fdvol		•••••••	0.00	0.900	.2020007	.1001090
L1.		.0011989	2.47	0.014	.000608	.0053075
L2.	.0007833	.0010488	0.75	0.455	0012722	.0028388
L3.	0002661	.0009606	-0.28	0.782	0021489	.0016168
L4.	.0000573	.0009521	0.06	0.952	0018087	.0019233
L5.	001671	.0009541	-1.75	0.080	003541	.0001991
fdoi						
L1.	0001995	.0029038	-0.07	0.945	0058907	.0054918
	Coef.	Std. Err.	Z	P> z	[95% Conf.	
L2.	0017896	.0029642	-0.60	0.546	0075993	.0040201
L3.		.0028759	0.04	0.964	005508	.0057654
L4.	004657	.0029638	-1.57	0.116	0104659	.0011519
	Coef.	Std. Err.	Z	P> z	[95% Conf.	Intervall
			-		[
L5.	.0034567	.0029767	1.16	0.246	0023775	.0092909
_cons	.0010793	.0007157	1.51	0.132	0003234	.002482
	+					
fdvol garchm						
L1.		7.693498	0.53	0.593	-10.96713	19.19083
L2.		8.915149	-1.45	0.146	-30.43408	4.512662
L3.		9.241234	0.11	0.913	-17.10609	19.11889
L4.		9.336638	-2.53	0.011	-41.94862	-5.34967
L5.	11.46207	7.855712	1.46	0.145	-3.934843	26.85898
fdvol						
L1.	3622938	.0950967	-3.81	0.000	5486799	1759077
L2.		.0831881	1.03	0.303	0773317	.2487598
L3.		.0761988	-0.60	0.551	1948156	.1038781
L4.		.0755177	4.65	0.000	.2027812	.4988052
L5.		.0756821	2.41	0.016	.0343308	.3309992
fdoi						
L1.		.2303278	3.42	0.001	.3354009	1.238269
L2.		.2351192	-1.89	0.059	904774	.0168762
L3.		.2281195	2.79	0.005	.1896607	1.083873
L4.		.2350888	-2.72	0.007	-1.099347	1778158
L5. cons	0782563 .1582295	.2361113 .0567667	-0.33 2.79	0.740 0.005	5410259 .0469687	.3845134
		.0307007	Z./9		.0409007	.2094902
fdoi						
garchm						
L1.	-4.409868	2.974262	-1.48	0.138	-10.23931	1.419579
L2.	-7.119328	3.446546	-2.07	0.039	-13.87443	3642227
L3.		3.572608	2.18	0.029	.7896658	14.79403
L4.		3.609491	-0.11	0.909	-7.488821	6.660122
L5.		3.036973	-2.60	0.009	-13.84574	-1.941026
fdvol						
L1.		.0367638	-0.80	0.423	1015133	.0425983
L2.		.0321601	0.50	0.619	047059	.0790061
L3.		.029458	0.58	0.562	0406619	.0748114
L4.		.0291947	-1.90 -0.14	0.057 0.892	1128256	.0016155
L5. fdoi		.0292583	-0.14	0.892	0613105	.0533798
L1.		.0890434	1.17	0.243	0704968	.2785469
L2.		.0908957	0.28	0.243	1530476	.2032571
L3.		.0881897	-0.96	0.337	2574801	.0882171
L4.		.090884	0.76	0.448	1091915	.2470672
L5.		.0912793	-1.71	0.086	3353851	.0224231
cons		.0219457	3.09	0.002	.0248293	.1108548

Gra	nger	causality	Wald	tests								
+												+
		Equation	n		Excluded	1	chi2	df	Prob	>	chi2	

garchm	fdoi	7.4866	5	0.187
garchm		3.5262	5	0.619
garchm		8.9019	10	0.541
fdvol	5	12.913	5	0.024
fdvol		27.755	5	0.000
fdvol		42.86	10	0.000
fdoi	fdvol	25.687	5	0.000
fdoi		5.4421	5	0.364
fdoi		29.776	10	0.001

Impulse Response and FEVD (FD Method) . irf ctable (fdm garchm garchm fevd, noci) (fdm fdvol garchm fevd, noci) (fdm fdoi garchm fevd, noci) (fdm fdvol garchm irf, noci) (fdm fdvol garchm irf, noci)

	(1)	(2)	(3)	(1)	(2)	(3)
step	fevd	fevd	fevd	irf	irf	irf
D	0	0	0	1	0	0
1	1	0	0	.601507	.002958	000199
2	.969521	.030455	.000024	.148853	.001497	.000397
3	.962615	.03727	.000115	.019755	.000342	001077
4	.961711	.037499	.000789	.065691	000023	003447
5	.955171	.037206	.007622	.020555	000357	000912
6	.954213	.037694	.008092	.020304	.00022	-5.1e-06
7	.954081	.037832	.008087	.005258	1.00008	.000503
8 9	.953909	.037859	.008231	.005474	.000223	000486
	.953657	.037979	.008364	.038843	00022	.001072
10	.952957	.038031	.009012	.020214	.000165	000175
11 12	.952882 .952808	.038093 .038095	.009025 .009098	002454 004397	.000021 .000129	.000359 000553
13	1.952606	.038123	009098	.011623	000155	1.000283
14	.952499	.038185	.009316	003309	1.000046	000403
15	.952407	.038184	.009408	004906	000044	1.000286
16	.952361	.038184	.009454	003767	.000079	000316
17	.952293	.038196	.009511	.005606	000078	.000254
18	.952244	.038208	.009547	.000543	.000034	000159
19	.952228	.03821	.009562	.0008	000028	.000236
20	.952197	.03821	.009593	002275	.000057	000201
21	.952167	.038216	.009616	.002514	000043	.000148
22	.952151	.03822	.009629	.000128	.00002	000133
23	.952141	.03822	.009639	.000189	000025	.000128
24	.952131	.038221	.009648	002093	.000033	00013
25	.95212	.038223	.009657	.001139	000026	.000096
26	.952113	.038224	.009663	.000031	.000014	000085
27	.952109	.038224	.009667	.000471	000017	.000089
28	.952104	.038225	.009671	00104	.000021	000075
29	.9521	.038226	.009674	.000662	000014	1.000062
30	.952098	.038226	.009676	000062	9.9e-06	000056
31	.952096 .952094	.038226	.009678	000402	000012	.000055
32 33	.952094 .952092	.038226 .038227	.00968 .009681	000634 .000291	.000012 -8.8e-06	000048 .000039
33 34	.952092	.038227	1.009682	000119	-8.8e-06 6.7e-06	.000039 000037
35	1.952091	.038227	009683	.000302	-7.9e-06	.000035
36	1.95209	.038227	.009684	000356	7.5e-06	00003
37	.952089	.038227	.009684	.00017	-5.4e-06	.000025
38	.952089	.038227	.009684	000098	4.6e-06	000024
39	.952088	.038227	.009685	.00021	-5.1e-06	.000022
40	.952088	.038227	.009685	000202	4.6e-06	000019
41	.952088	.038227	.009685	.0001	-3.4e-06	.000016
42	.952087	.038227	.009685	000086	3.1e-06	000015
43	.952087	.038227	.009685	.000134	-3.2e-06	.000014
44	.952087	.038227	.009686	000116	2.8e-06	000012
45	.952087	.038227	.009686	.000063	-2.2e-06	.000011
46	.952087	.038227	.009686	000064	2.1e-06	-9.8e-06
47	.952087	.038227	.009686	.000085	-2.0e-06	8.8e-06
48	.952087	.038227	.009686	000066	1.7e-06	-7.5e-06
49	.952087	.038227	.009686	.000042	-1.4e-06	6.8e-06
50	.952087	.038227	.009686	000045	1.3e-06	-6.2e-06
51	.952087	.038227	.009686	000052	-1.3e-06	5.5e-06
52	952087	.038227	009686	00004	1.1e-06	-4.8e-06
53 54	.952087 .952087	.038227	009686	.000028 000031	-9.1e-07	4.3e-06
54 55	.952087	.038227 .038227	.009686 .009686	.000031	8.7e-07 -8.1e-07	-4.0e-06 3.5e-06
55 56	1.952087	.038227	1.009686	000024	6.8e-07	-3.1e-06
57	.952087	.038227	009686	.000019	-5.9e-07	2.8e-06
58	.952087	.038227	.009686	00002	5.6e-07	-2.5e-06
59	1.952087	1.038227	1.009686	.00002	-5.1e-07	2.2e-06
60	.952087	1.038227	.009686	000015	4.3e-07	-2.0e-06
61	.952087	.038227	.009686	.000013	-3.8e-07	1.8e-06
62	.952087	.038227	.009686	000013	3.6e-07	-1.6e-06
63	.952087	.038227	.009686	.000012	-3.2e-07	1.4e-06
64	.952087	.038227	.009686	-9.4e-06	2.7e-07	-1.3e-06

65 .952087 66 .952087 67 .952087 68 .952087 69 .952087 70 .952087 71 .952087 72 .952087 74 .952087 74 .952087 76 .952087 77 .952087 78 .952087 78 .952087 78 .952087 80 .952087 81 .952087 82 .952087 83 .952087 83 .952087 83 .952087 83 .952087 84 .952087 84 .952087 84 .952087 84 .952087 85 .952087	.038227 .038227	.009686 .009686	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1.1e-06 -1.0e-06 9.0e-07 -8.0e-07 -6.5e-07 5.7e-07 5.7e-07 4.6e-07 4.6e-07 -3.3e-07 2.9e-07 2.9e-07 2.2e-07 -2.1e-07 1.5e-07 1.5e-07 1.3e-07
--	--	--	---	--

I.	(1)	(2)	(3)	(1) (2)	(3)
step	fevd	fevd	fevd	irf irf	irf
86	.952087	.038227	.009686	-8.5e-07 2.4e-08	-1.1e-07
87	.952087	.038227	.009686	7.4e-07 -2.1e-08	9.5e-08
88	.952087	.038227	.009686	-6.6e-07 1.9e-08	-8.5e-08
89	.952087	.038227	.009686	6.1e-07 -1.7e-08	7.6e-08
90	.952087	.038227	.009686	-5.4e-07 1.5e-08	-6.8e-08
91	.952087	.038227	.009686	4.7e-07 -1.3e-08	6.0e-08
92	.952087	.038227	.009686	-4.2e-07 1.2e-08	-5.4e-08
93	.952087	.038227	.009686	3.9e-07 -1.1e-08	4.8e-08
94	.952087	.038227	.009686	-3.4e-07 9.5e-09	-4.3e-08
95	.952087	.038227	.009686	3.0e-07 -8.5e-09	3.9e-08
96	.952087	.038227	.009686	-2.7e-07 7.6e-09	-3.4e-08
97	.952087	.038227	.009686	2.5e-07 -6.8e-09	3.1e-08
98	.952087	.038227	.009686	-2.2e-07 6.1e-09	-2.7e-08
99	.952087	.038227	.009686	1.9e-07 -5.4e-09	2.5e-08
100	.952087	.038227	.009686	-1.7e-07 4.9e-09	-2.2e-08
+					+

(1) irfname = fdm, impulse = garchm, and response = garchm
(2) irfname = fdm, impulse = fdvol, and response = garchm
(3) irfname = fdm, impulse = fdoi, and response = garchm

Granger Causality (P3 Method)

. tsset time time variable: time, 1 to 121

. irf set p3m (file p3m.irf created) (file p3m.irf now active)

. var garchm p3vol p3oi, lags(1/5)

Vector autoregression

Sample: 6 Log likelihood = FPE = Det(Sigma_ml) =	4.90e-08			No. o AIC HQIC SBIC		= 116 = -8.322257 = -7.859719 = -7.18284
Equation	Parms	RMSE	R-sq	chi2	P>chi2	
garchm p3vol p3oi	16 16 16	.00477 .359254 .135435	0.4193	86.0969 83.77463 719.497		
 					-	. Interval]
garchm garchm Ll.	.5911772 233564 .1389206		5.89	0.000 0.040 0.238	.3945203	

	L4.	0046484	.1165485	-0.04	0.968	2330791	.2237824
	L5.	.0273461	.0957494	0.29	0.775	1603192	.2150114
	p3vol						
	L1.		.0010109	0.33	0.743	0016497	.002313
					0.155	0030689	
	L2.		.000907	-1.42			.0004865
	L3.		.0008888	-1.33	0.182	0029279	.0005562
	L4.	0010621	.0008692	-1.22	0.222	0027657	.0006416
	L5.	0009183	.0008523	-1.08	0.281	0025887	.0007521
	p3oi						
	L1.		.003303	1.29	0.199	0022268	.0107207
	L2.		.0050075	-0.87	0.383	0141859	.0054433
	L3.		.004901	0.84	0.401	0054934	.0137184
	L4.		.0048285	-1.29	0.197	0156985	.0032288
	L5.	.0082588	.0034289	2.41	0.016	.0015383	.0149793
	cons	.0015171	.0005583	2.72	0.007	.0004227	.0026114
		+					
p3vol							
POVOT							
	garchm		8 55 68 6 6	1	0 0 5 0	1 0	00 07700
	L1.		7.556793	1.80	0.073	-1.244409	28.37768
	L2.	-7.503612	8.580774	-0.87	0.382	-24.32162	9.314395
	L3.	12.98333	8.861139	1.47	0.143	-4.38418	30.35084
	L4.	-20.56606	8.777745	-2.34	0.019	-37.77012	-3.361991
	1	Coef.	Std. Err.	z	P> z	[95% Conf.	
	т Б — I			1.72		-	-
	L5.		7.211281	1.12	0.086	-1.761956	26.50575
	p3vol						
	L1.	.1813719	.0761361	2.38	0.017	.032148	.3305959
		Coof	Ctd Exm	-	DNITI	[05% Conf	Totomroll
		Coef.	Std. Err.	Z	P> z	[95% Conf.	Intervalj
	L2.	.1662555	.0683102	2.43	0.015	.03237	.300141
	L3.	0099347	.0669403	-0.15	0.882	1411353	.1212658
	L4.	.1829413	.0654653	2.79	0.005	.0546317	.3112509
	L5.		.0641869	-0.09	0.925	1318749	.119733
				0.05		1310/49	.110/00
	p3oi						
	p3oi L1.	1.068023	.2487623	4.29	0.000	.5804576	1.555588
	p3oi	1.068023		4.29 -2.97	0.000		1.555588 3811995
	p3oi L1.	1.068023 -1.120376	.2487623	4.29	0.000	.5804576	1.555588
	p3oi L1. L2. L3.	1.068023 -1.120376 1.252971	.2487623 .3771378 .3691181	4.29 -2.97 3.39	0.000 0.003 0.001	.5804576 -1.859552 .5295125	1.555588 3811995 1.976429
	p3oi L1. L2. L3. L4.	1.068023 -1.120376 1.252971 -1.528619	.2487623 .3771378 .3691181 .3636529	4.29 -2.97 3.39 -4.20	0.000 0.003 0.001 0.000	.5804576 -1.859552 .5295125 -2.241366	1.555588 3811995 1.976429 8158724
	p3oi L1. L2. L3. L4. L5.	1.068023 -1.120376 1.252971 -1.528619 .6767306	.2487623 .3771378 .3691181 .3636529 .2582444	4.29 -2.97 3.39 -4.20 2.62	0.000 0.003 0.001 0.000 0.009	.5804576 -1.859552 .5295125 -2.241366 .1705809	1.555588 3811995 1.976429 8158724 1.18288
	p3oi L1. L2. L3. L4.	1.068023 -1.120376 1.252971 -1.528619 .6767306	.2487623 .3771378 .3691181 .3636529	4.29 -2.97 3.39 -4.20	0.000 0.003 0.001 0.000	.5804576 -1.859552 .5295125 -2.241366	1.555588 3811995 1.976429 8158724
	p3oi L1. L2. L3. L4. L5.	1.068023 -1.120376 1.252971 -1.528619 .6767306	.2487623 .3771378 .3691181 .3636529 .2582444	4.29 -2.97 3.39 -4.20 2.62	0.000 0.003 0.001 0.000 0.009	.5804576 -1.859552 .5295125 -2.241366 .1705809	1.555588 3811995 1.976429 8158724 1.18288
 p3oi	p3oi L1. L2. L3. L4. L5. 	1.068023 -1.120376 1.252971 -1.528619 .6767306 0179049	.2487623 .3771378 .3691181 .3636529 .2582444	4.29 -2.97 3.39 -4.20 2.62	0.000 0.003 0.001 0.000 0.009	.5804576 -1.859552 .5295125 -2.241366 .1705809	1.555588 3811995 1.976429 8158724 1.18288
 p3oi	p3oi L1. L2. L3. L4. L5.	1.068023 -1.120376 1.252971 -1.528619 .6767306 0179049	.2487623 .3771378 .3691181 .3636529 .2582444	4.29 -2.97 3.39 -4.20 2.62	0.000 0.003 0.001 0.000 0.009	.5804576 -1.859552 .5295125 -2.241366 .1705809	1.555588 3811995 1.976429 8158724 1.18288
 p3oi	p3oi L1. L2. L3. L4. L5. 	1.068023 -1.120376 1.252971 -1.528619 .6767306 0179049	.2487623 .3771378 .3691181 .3636529 .2582444	4.29 -2.97 3.39 -4.20 2.62	0.000 0.003 0.001 0.000 0.009	.5804576 -1.859552 .5295125 -2.241366 .1705809	1.555588 3811995 1.976429 8158724 1.18288
 p3oi	p3oi L1. L2. L3. L4. L5. cons garchm L1.	1.068023 -1.120376 1.252971 -1.528619 .6767306 0179049 -2.134806	.2487623 .3771378 .3691181 .3636529 .2582444 .0420512 2.848826	4.29 -2.97 3.39 -4.20 2.62 -0.43	0.000 0.003 0.001 0.009 0.670	.5804576 -1.859552 .5295125 -2.241366 .1705809 1003237	1.555588 3811995 1.976429 8158724 1.18288 .0645139 3.448791
 p3oi	p3oi L1. L2. L3. L4. L5. garchm L1. L2.	1.068023 -1.120376 1.252971 -1.528619 .6767306 0179049 -2.134806 -5.60574	.2487623 .3771378 .3691181 .3636529 .2582444 .0420512 2.848826 3.234856	4.29 -2.97 3.39 -4.20 2.62 -0.43 -0.75 -1.73	0.000 0.003 0.001 0.000 0.670	.5804576 -1.859552 .5295125 -2.241366 .1705809 1003237 	1.555588 3811995 1.976429 8158724 1.18288 .0645139 3.448791 .7344606
 p3oi	p3oi L1. L2. L3. L4. L5. 	1.068023 -1.120376 1.252971 -1.528619 .6767306 0179049 -2.134806 -5.60574 6.599546	.2487623 .3771378 .3691181 .3636529 .2582444 .0420512 2.848826 3.234856 3.34055	4.29 -2.97 3.39 -4.20 2.62 -0.43 -0.75 -1.73 1.98	0.000 0.003 0.001 0.009 0.670	.5804576 -1.859552 .5295125 -2.241366 .1705809 1003237 	1.555588 3811995 1.976429 8158724 1.18288 .0645139 3.448791 .7344606 13.1469
 p3oi	p3oi L1. L2. L3. L4. L5. cons garchm L1. L2. L3. L4.	1.068023 -1.120376 1.252971 -1.528619 .6767306 0179049 -2.134806 -5.60574 6.599546 -1.287298	.2487623 .3771378 .3691181 .3636529 .2582444 .0420512 2.848826 3.234856 3.34055 3.309112	4.29 -2.97 3.39 -4.20 2.62 -0.43 -0.75 -1.73 1.98 -0.39	0.000 0.003 0.001 0.009 0.670 0.454 0.083 0.048 0.697	.5804576 -1.859552 .5295125 -2.241366 .1705809 1003237 -7.718403 -11.94594 .0521881 -7.773038	1.555588 3811995 1.976429 8158724 1.18288 .0645139 3.448791 .7344606 13.1469 5.198441
 p3oi	p3oi L1. L2. L3. L4. L5. 	1.068023 -1.120376 1.252971 -1.528619 .6767306 0179049 -2.134806 -5.60574 6.599546 -1.287298 -3.685058	.2487623 .3771378 .3691181 .3636529 .2582444 .0420512 2.848826 3.234856 3.34055	4.29 -2.97 3.39 -4.20 2.62 -0.43 -0.75 -1.73 1.98	0.000 0.003 0.001 0.009 0.670	.5804576 -1.859552 .5295125 -2.241366 .1705809 1003237 	1.555588 3811995 1.976429 8158724 1.18288 .0645139 3.448791 .7344606 13.1469
 p3oi	p3oi L1. L2. L3. L4. L5. _cons garchm L1. L2. L3. L4. L5. p3vol	1.068023 -1.120376 1.252971 -1.528619 .6767306 0179049 -2.134806 -5.60574 6.599546 -1.287298 -3.685058	.2487623 .3771378 .3691181 .3636529 .2582444 .0420512 2.848826 3.234856 3.34055 3.309112 2.718572	4.29 -2.97 3.39 -4.20 2.62 -0.43 -0.75 -1.73 1.98 -0.39 -1.36	0.000 0.003 0.001 0.009 0.670 0.454 0.083 0.048 0.697 0.175	.5804576 -1.859552 .5295125 -2.241366 .1705809 1003237 -7.718403 -11.94594 .0521881 -7.773038 -9.013362	1.555588 3811995 1.976429 8158724 1.18288 .0645139 3.448791 .7344606 13.1469 5.198441 1.643245
 p3oi	p3oi L1. L2. L3. L4. L5. 	1.068023 -1.120376 1.252971 -1.528619 .6767306 0179049 -2.134806 -5.60574 6.599546 -1.287298 -3.685058	.2487623 .3771378 .3691181 .3636529 .2582444 .0420512 2.848826 3.234856 3.34055 3.309112	4.29 -2.97 3.39 -4.20 2.62 -0.43 -0.75 -1.73 1.98 -0.39	0.000 0.003 0.001 0.009 0.670 0.454 0.083 0.048 0.697	.5804576 -1.859552 .5295125 -2.241366 .1705809 1003237 -7.718403 -11.94594 .0521881 -7.773038	1.555588 3811995 1.976429 8158724 1.18288 .0645139 3.448791 .7344606 13.1469 5.198441
 p3oi	p3oi L1. L2. L3. L4. L5. _cons garchm L1. L2. L3. L4. L5. p3vol	1.068023 -1.120376 1.252971 -1.528619 .6767306 0179049 -2.134806 -5.60574 6.599546 -1.287298 -3.685058 0383016	.2487623 .3771378 .3691181 .3636529 .2582444 .0420512 2.848826 3.234856 3.34055 3.309112 2.718572	4.29 -2.97 3.39 -4.20 2.62 -0.43 -0.75 -1.73 1.98 -0.39 -1.36	0.000 0.003 0.001 0.009 0.670 0.454 0.083 0.048 0.697 0.175	.5804576 -1.859552 .5295125 -2.241366 .1705809 1003237 -7.718403 -11.94594 .0521881 -7.773038 -9.013362	1.555588 3811995 1.976429 8158724 1.18288 .0645139 3.448791 .7344606 13.1469 5.198441 1.643245
 p3oi	p3oi L1. L2. L3. L4. L5. garchm L1. L2. L3. L4. L5. p3vol L1. L2.	1.068023 -1.120376 1.252971 -1.528619 .6767306 0179049 -2.134806 -5.60574 6.599546 -1.287298 -3.685058 0383016 .0004541	.2487623 .3771378 .3691181 .3636529 .2582444 .0420512 2.848826 3.234856 3.34055 3.309112 2.718572 .0287024 .0257522	4.29 -2.97 3.39 -4.20 2.62 -0.43 -0.75 -1.73 1.98 -0.39 -1.36 -1.33 0.02	0.000 0.003 0.001 0.009 0.670 0.454 0.083 0.048 0.697 0.175 0.182 0.986	.5804576 -1.859552 .5295125 -2.241366 .1705809 1003237 -7.718403 -11.94594 .0521881 -7.773038 -9.013362 0945573 0500192	1.555588 3811995 1.976429 8158724 1.18288 .0645139 3.448791 .7344606 13.1469 5.198441 1.643245 .0179542 .0509274
 p3oi	p3oi L1. L2. L3. L4. L5. garchm L1. L2. L3. L4. p3vol L1. L2. L3. L4. L5. p3vol L1. L2. L3.	1.068023 -1.120376 1.252971 -1.528619 .6767306 0179049 -2.134806 -5.60574 6.599546 -1.287298 -3.685058 0383016 .0004541 0044454	.2487623 .3771378 .3691181 .3636529 .2582444 .0420512 2.848826 3.234856 3.34055 3.309112 2.718572 .0287024 .0257522 .0252357	4.29 -2.97 3.39 -4.20 2.62 -0.43 -0.75 -1.73 1.98 -0.39 -1.36 -1.33 0.02 -0.18	0.000 0.003 0.001 0.009 0.670 0.454 0.083 0.048 0.697 0.175 0.182 0.986 0.860	.5804576 -1.859552 .5295125 -2.241366 .1705809 1003237 -7.718403 -11.94594 .0521881 -7.773038 -9.013362 0945573 0500192 0539066	1.555588 3811995 1.976429 8158724 1.18288 .0645139 3344606 13.1469 5.198441 1.643245 .0179542 .0509274 .0450157
 p3oi	p3oi L1. L2. L3. L4. L5. _cons garchm L1. L2. L3. L4. L5. p3vol L1. L2. L3. L4. L4. L2. L3. L4. L4.	1.068023 -1.120376 1.252971 -1.528619 .6767306 0179049 -2.134806 -5.60574 6.599546 -1.287298 -3.685058 0383016 .0004541 0044454 0146685	.2487623 .3771378 .3691181 .3636529 .2582444 .0420512 2.848826 3.234856 3.34055 3.309112 2.718572 .0287024 .0257522 .0252357 .0246797	4.29 -2.97 3.39 -4.20 2.62 -0.43 -0.75 -1.73 1.98 -0.39 -1.36 -1.33 0.02 -0.18 -0.59	0.000 0.003 0.001 0.009 0.670 0.454 0.083 0.048 0.697 0.175 0.182 0.986 0.860 0.552	.5804576 -1.859552 .5295125 -2.241366 .1705809 1003237 -7.718403 -11.94594 .0521881 -7.773038 -9.013362 0945573 0500192 0539066 0630398	1.555588 3811995 1.976429 8158724 1.18288 .0645139 3.448791 .7344606 13.1469 5.198441 1.643245 .0179542 .0509274 .0450157 .0337028
 p3oi	p3oi L1. L2. L3. L4. L5. garchm L1. L2. L3. L4. L5. p3vol L1. L2. L3. L4. L5. L3. L4. L5.	1.068023 -1.120376 1.252971 -1.528619 .6767306 0179049 -2.134806 -5.60574 6.599546 -1.287298 -3.685058 0383016 .0004541 0044454 0146685 .014683	.2487623 .3771378 .3691181 .3636529 .2582444 .0420512 2.848826 3.234856 3.34055 3.309112 2.718572 .0287024 .0257522 .0252357	4.29 -2.97 3.39 -4.20 2.62 -0.43 -0.75 -1.73 1.98 -0.39 -1.36 -1.33 0.02 -0.18	0.000 0.003 0.001 0.009 0.670 0.454 0.083 0.048 0.697 0.175 0.182 0.986 0.860	.5804576 -1.859552 .5295125 -2.241366 .1705809 1003237 -7.718403 -11.94594 .0521881 -7.773038 -9.013362 0945573 0500192 0539066	1.555588 3811995 1.976429 8158724 1.18288 .0645139 3344606 13.1469 5.198441 1.643245 .0179542 .0509274 .0450157
 p3oi	p3oi L1. L2. L3. L4. L5. garchm L1. L2. L3. L4. L5. p3vol L1. L2. L3. L4. L5. p3vol L1. L2. L3. L4. L5. p3vol	1.068023 -1.120376 1.252971 -1.528619 .6767306 0179049 -2.134806 -5.60574 6.599546 -1.287298 -3.685058 0383016 .0004541 0044454 0146685 .014683	.2487623 .3771378 .3691181 .3636529 .2582444 .0420512 .2582444 .0420512 .234856 3.234856 3.34055 3.309112 2.718572 .0287024 .0257522 .0252357 .0246797 .0241977	4.29 -2.97 3.39 -4.20 2.62 -0.43 -0.75 -1.73 1.98 -0.39 -1.36 -1.33 0.02 -0.18 -0.59 0.61	0.000 0.003 0.001 0.009 0.670 0.454 0.083 0.048 0.697 0.175 0.182 0.986 0.986 0.986 0.552 0.544	.5804576 -1.859552 .5295125 -2.241366 .1705809 1003237 -7.718403 -11.94594 .0521881 -7.773038 -9.013362 0945573 0500192 0539066 0630398 0327437	1.555588 3811995 1.976429 8158724 1.18288 .0645139 3.448791 .7344606 13.1469 5.198441 1.643245 .0179542 .0509274 .0450157 .0337028 .0621097
p3oi	p3oi L1. L2. L3. L4. L5. garchm L1. L2. L3. L4. L5. p3vol L1. L2. L3. L4. L5. L3. L4. L5.	1.068023 -1.120376 1.252971 -1.528619 .6767306 0179049 -2.134806 -5.60574 6.599546 -1.287298 -3.685058 0383016 .0004541 0044454 0146685 .014683	.2487623 .3771378 .3691181 .3636529 .2582444 .0420512 2.848826 3.234856 3.34055 3.309112 2.718572 .0287024 .0257522 .0252357 .0246797	4.29 -2.97 3.39 -4.20 2.62 -0.43 -0.75 -1.73 1.98 -0.39 -1.36 -1.33 0.02 -0.18 -0.59	0.000 0.003 0.001 0.009 0.670 0.454 0.083 0.048 0.697 0.175 0.182 0.986 0.860 0.552	.5804576 -1.859552 .5295125 -2.241366 .1705809 1003237 -7.718403 -11.94594 .0521881 -7.773038 -9.013362 0945573 0500192 0539066 0630398	1.555588 3811995 1.976429 8158724 1.18288 .0645139 3.448791 .7344606 13.1469 5.198441 1.643245 .0179542 .0509274 .0450157 .0337028
 p3oi	p3oi L1. L2. L3. L4. L5. garchm L1. L2. L3. L4. L5. p3vol L1. L2. L3. L4. L5. p3vol L1. L2. L3. L4. L5. p3vol	1.068023 -1.120376 1.252971 -1.528619 .6767306 0179049 -2.134806 -5.60574 6.599546 -1.287298 -3.685058 0383016 .0004541 0044454 014685 .014683 1.067046	.2487623 .3771378 .3691181 .3636529 .2582444 .0420512 .2582444 .0420512 .234856 3.234856 3.34055 3.309112 2.718572 .0287024 .0257522 .0252357 .0246797 .0241977	4.29 -2.97 3.39 -4.20 2.62 -0.43 -0.75 -1.73 1.98 -0.39 -1.36 -1.33 0.02 -0.18 -0.59 0.61	0.000 0.003 0.001 0.009 0.670 0.454 0.083 0.048 0.697 0.175 0.182 0.986 0.986 0.986 0.552 0.544	.5804576 -1.859552 .5295125 -2.241366 .1705809 1003237 -7.718403 -11.94594 .0521881 -7.773038 -9.013362 0945573 0500192 0539066 0630398 0327437	1.555588 3811995 1.976429 8158724 1.18288 .0645139 3.448791 .7344606 13.1469 5.198441 1.643245 .0179542 .0509274 .0450157 .0337028 .0621097
 p3oi	p3oi L1. L2. L3. L4. L5. _cons 	1.068023 -1.120376 1.252971 -1.528619 .6767306 -0179049 -2.134806 -5.60574 6.599546 -1.287298 -3.685058 0383016 .0004541 0044454 014685 .014685 .014683 1.067046 1418135	.2487623 .3771378 .3691181 .3636529 .2582444 .0420512 2.848826 3.234856 3.34055 3.309112 2.718572 .0287024 .0257522 .0252357 .0246797 .0241977 .0937806 .1421767	4.29 -2.97 3.39 -4.20 2.62 -0.43 -0.75 -1.73 1.98 -0.39 -1.36 -1.33 0.02 -0.18 -0.59 0.61 11.38 -1.00	0.000 0.003 0.001 0.009 0.670 0.454 0.083 0.048 0.697 0.175 0.182 0.986 0.860 0.552 0.544 0.000 0.319	.5804576 -1.859552 .5295125 -2.241366 .1705809 1003237 -7.718403 -11.94594 .0521881 -7.773038 -9.013362 0945573 0500192 0539066 0630398 0327437 .8832392 4204748	1.555588 3811995 1.976429 8158724 1.18288 .0645139 3.448791 .7344606 13.1469 5.198441 1.643245 .0179542 .0509274 .0450157 .0337028 .0621097 1.250852 .1368477
 p3oi	p3oi L1. L2. L3. L4. L5. cons garchm L1. L2. L3. L4. L5. p3vol L1. L2. L3. L4. L5. p3vol L1. L2. L3. L4. L5. p3oi L1. L2. L3. L4. L3. L3. L4. L3. L4. L3. L4. L3. L4. L2. L3. L4. L3. L4. L3. L4. L3. L4. L3. L4. L3. L4. L2. L3. L4. L3. L4. L3. L4. L5. L4. L5. L5. L4. L5. L5. L5. L5. L5. L5. L5. L5. L5. L5	1.068023 -1.120376 1.252971 -1.528619 .6767306 0179049 -2.134806 -5.60574 6.599546 -1.287298 -3.685058 0383016 .0004541 0044454 014685 .014683 1.067046 1418135 0798038	.2487623 .3771378 .3691181 .3636529 .2582444 .0420512 2.848826 3.234856 3.34055 3.309112 2.718572 .0287024 .0257522 .0252357 .0246797 .0241977 .0937806 .1421767 .1391534	4.29 -2.97 3.39 -4.20 2.62 -0.43 -0.75 -1.73 1.98 -0.39 -1.36 -1.33 0.02 -0.18 -0.59 0.61 11.38 -1.00 -0.57	0.000 0.003 0.001 0.009 0.670 0.454 0.083 0.048 0.697 0.175 0.182 0.986 0.860 0.552 0.544 0.000 0.319 0.566	.5804576 -1.859552 .5295125 -2.241366 .1705809 1003237 -7.718403 -11.94594 .0521881 -7.773038 -9.013362 0945573 0500192 0539066 0630398 0327437 .8832392 4204748 3525394	1.555588 3811995 1.976429 8158724 1.18288 .0645139 3344606 13.1469 5.198441 1.643245 .0179542 .0509274 .0450157 .0337028 .0621097 1.250852 .1368477 .1929319
 p3oi	p3oi L1. L2. L3. L4. L5. garchm L1. L2. L3. L4. L5. p3vol L1. L2. L3. L4. L5. p3oi L1. L2. L3. L4. L5. p3oi L1. L2. L3. L4. L2. L3. L4. L2. L3. L4. L4. L2. L3. L4. L4. L2. L3. L4. L4. L2. L3. L4. L4. L2. L3. L4. L4. L2. L3. L4. L4. L2. L3. L4. L2. L3. L4. L2. L3. L4. L5. L4. L5. L4. L2. L5. L4. L5. L4. L5. L4. L2. L5. L4. L2. L3. L4. L2. L3. L4. L2. L3. L4. L2. L3. L4. L2. L3. L4. L2. L3. L4. L2. L3. L4. L2. L3. L4. L4. L2. L3. L4. L2. L3. L4. L2. L3. L4. L2. L3. L4. L4. L2. L3. L4. L4. L3. L4. L4. L2. L3. L4. L4. L4. L5. P3vol L1. L2. L3. L4. L2. L3. L1. L2. L3. L1. L2. L3. L1. L2. L3. L1. L2. L3. L1. L2. L3. L4. L2. L3. L4. L4. L2. L3. L4. L4. L4. L4. L4. L4. L4. L4. L4. L4	1.068023 -1.120376 1.252971 -1.528619 .6767306 0179049 -2.134806 -5.60574 6.599546 -1.287298 -3.685058 0383016 .0004541 0044454 0146685 .014683 1.067046 1418135 0798038 .2061639	.2487623 .3771378 .3691181 .3636529 .2582444 .0420512 2.848826 3.234856 3.34055 3.309112 2.718572 .0287024 .0257522 .0252357 .0246797 .0241977 .0937806 .1421767 .1391534 .1370931	4.29 -2.97 3.39 -4.20 2.62 -0.43 -0.75 -1.73 1.98 -0.39 -1.36 -1.33 0.02 -0.18 -0.59 0.61 11.38 -1.00 -0.57 1.50	0.000 0.003 0.001 0.009 0.670 0.454 0.083 0.048 0.697 0.175 0.182 0.986 0.860 0.552 0.544 0.000 0.319 0.566 0.133	.5804576 -1.859552 .5295125 -2.241366 .1705809 1003237 -7.718403 -11.94594 .0521881 -7.773038 -9.013362 0945573 0500192 0539066 0630398 0327437 .8832392 4204748 3525394 0625335	1.555588 3811995 1.976429 8158724 1.18288 .0645139 7344606 13.1469 5.198441 1.643245 .0179542 .0509274 .0450157 .0337028 .0621097 1.250852 .1368477 .1929319 .4748614
 p3oi	p3oi L1. L2. L3. L4. L5. garchm L1. L2. L3. L4. L5. p3vol L1. L2. L3. L4. L5. p3oi L1. L2. L3. L4. L5. p3oi	1.068023 -1.120376 1.252971 -1.528619 .6767306 0179049 -2.134806 -5.60574 6.599546 -1.287298 -3.685058 0383016 .0004541 0044454 0146685 .014683 1.067046 1418135 0798038 .2061639 1574802	.2487623 .3771378 .3691181 .3636529 .2582444 .0420512 2.848826 3.234856 3.34055 3.309112 2.718572 .0287024 .0257522 .0252357 .0246797 .0241977 .0937806 .1421767 .1391534 .1370931 .0973552	4.29 -2.97 3.39 -4.20 2.62 -0.43 -0.75 -1.73 1.98 -0.39 -1.36 -1.33 0.02 -0.18 -0.59 0.61 11.38 -1.00 -0.57 1.50 -1.62	0.000 0.003 0.001 0.009 0.670 0.454 0.083 0.048 0.697 0.175 0.182 0.986 0.860 0.552 0.544 0.000 0.319 0.566 0.133 0.106	.5804576 -1.859552 .5295125 -2.241366 .1705809 1003237 -7.718403 -11.94594 .0521881 -7.773038 -9.013362 0945573 0500192 0539066 0630398 0327437 .8832392 4204748 3525394 0625335 348293	1.555588 3811995 1.976429 8158724 1.18288 .0645139 7344606 13.1469 5.198441 1.643245 .0179542 .0509274 .0450157 .0337028 .0621097 1.250852 .1368477 .1929319 .4748614 .0333326
 p3oi	p3oi L1. L2. L3. L4. L5. garchm L1. L2. L3. L4. L5. p3vol L1. L2. L3. L4. L5. p3oi L1. L2. L3. L4. L5. p3oi	1.068023 -1.120376 1.252971 -1.528619 .6767306 0179049 -2.134806 -5.60574 6.599546 -1.287298 -3.685058 0383016 .0004541 0044454 0146685 .014683 1.067046 1418135 0798038 .2061639 1574802	.2487623 .3771378 .3691181 .3636529 .2582444 .0420512 2.848826 3.234856 3.34055 3.309112 2.718572 .0287024 .0257522 .0252357 .0246797 .0241977 .0937806 .1421767 .1391534 .1370931	4.29 -2.97 3.39 -4.20 2.62 -0.43 -0.75 -1.73 1.98 -0.39 -1.36 -1.33 0.02 -0.18 -0.59 0.61 11.38 -1.00 -0.57 1.50	0.000 0.003 0.001 0.009 0.670 0.454 0.083 0.048 0.697 0.175 0.182 0.986 0.860 0.552 0.544 0.000 0.319 0.566 0.133	.5804576 -1.859552 .5295125 -2.241366 .1705809 1003237 -7.718403 -11.94594 .0521881 -7.773038 -9.013362 0945573 0500192 0539066 0630398 0327437 .8832392 4204748 3525394 0625335	1.555588 3811995 1.976429 8158724 1.18288 .0645139 7344606 13.1469 5.198441 1.643245 .0179542 .0509274 .0450157 .0337028 .0621097 1.250852 .1368477 .1929319 .4748614

Granger causality Wald tests

+	Equation	Excluded	chi2	df P:	rob > chi	+ 2
 	garchm garchm garchm	p3vol p3oi ALL		5 5 10	0.199 0.003 0.032	

	+				
p3vol	garchm	8.7342	5	0.120	- 1
p3vol	p3oi	44.358	5	0.000	- 1
p3vol	ALL	50.517	10	0.000	- 1
	1				1
 p3oi	garchm	11.612	5	0.041	
 p3oi p3oi	garchm p3vol	11.612 2.3111	5 5	0.041 0.805	
. 1	2 1				

Impulse Response and FEVD (P3 Method) . irf ctable (p3m garchm garchm fevd, noci) (p3m p3vol garchm fevd, noci) (p3m p3oi garchm fevd, noci) (p3m p3vol garchm irf, noci) (p3m p3oi garchm irf, noci)

step	(1) fevd	(2) fevd	(3) fevd	(1) irf	(2) irf	(3) irf
	0	0	0	1	0	0
	1	0	0	.591177	.000332	.004247
	.989346	.000433	.010221	.11136	001198	.003025
	.980727	.004017	.015256	.017675	002188	.002976
	.964199	.016059	.019742	.050238	002632	002387
	.943578	.034093	.02233	.026893	002436	.000465
	.92965	.048352	.021998	.021779	001831	.004368
	.91377	.054952	.031278	036675	001468	.005924
	.89486	.057578	.047562	075488	001305	.00437

1	(1)	(2)	(3)	(1)	(2)	(3)
step	fevd	fevd	fevd	irf	irf	irf
19	.885194	.059453	.055353	050223	001196	.004022
10	.877048	.061138	.061814	035825	000899	.003574
111	.871176	.061911	.066913	056849	000622	.003344
112	.866949	.061854	.071198	069514	000401	002429
13	.86521	.061571	.073219	060226	000265	.001558
14	.864686	.061378	.073936	047754	000111	1.000728
115	.864723	.061265	.074012	039316	.000034	.000341
116	.864802	.061207	.073991	033257	.000161	000111
117	.864801	.061235	.073964	02559	.000228	I000523 I
118	.864615	.061321	.074064	015598	.000267	000892
119	.864186	.061429	.074384	006095	.000285	001051
20	1.863637	.061539	.074824	.000186	1.000292	001141
21	1.863025	.061641	.075334	.004678	.000276	001153
22	.862434	.061718	.075848	.00883	1.000245	001135
23	.861898	.061761	.076341	.01224	1.000206	001042
123	.861476	.061776	.076748	.01403	1.000165	00091
25	.861174	.061772	.077053	.01445	.000123	000747
26	1.860986	.06176	.077254	.01405	1.000082	000587
27	.860881	.061745	.077374	.013161	1.000043	000425
28	1.860835	.061731	.077434	.011772	9.5e-06	000272
129	1.860822	.061722	1.077456	.00994	000018	000129
130	1.860823	.061719	1.077458	.007867	1000039	000012
31	1.860823	.061721	1.077456	.005811	000055	1.000086
132	1.860815	.061726	1.077458	.003875	000064	.000159 I
133	1.860799	1.061733	1.077468	.002097	000069	.00021
34	1.860774	.06174	.077485	.000522	000068	1.00024
135	1.860746	.061747	.077508	000778	000065	.000251
136	.860717	.061751	.077532	001775	000058	1.000246
137	.860691	.061755	.077554	002479	00005	1.000229
138	1.86067	.061756	1.077574	00292	00004	1.000223
139	1.860655	.061756	.077589	003123	000031	.000171
40	1.860644	.061756	1.077599	003117	000021	1.000136
40	1.860639	.061755	1.077606	002942	000012	1.000130
42	1.860636	.061755	1.077609	002942	-4.6e-06	1.000066
43	1.860635	.061754	.07761	002259	2.0e-06	1.000035
44	1.860635	.061754	.077611	001829	7.1e-06	7.5e-06
45	1.860635	.061754	.077611	001381	.000011	000015
46	1.860635	.061754	.077611	000945	.000013	000032
47	1.860634	.061755	.077611	000542	.000015	000044
48	1.860633	.061755	.077612	000188	1.000015	000052
149	1.860632	.061755	.077613	.000109	.000014	I000055
150	1.86063	.061756	.077614	.000343	.000013	000055
151	1.860629	.061756	.077615	.000514	.000011	000051
152	1.860628	.061756	.077616	.000624	9.3e-06	000046
153	1.860628	.061756	.077617	.00068	7.2e-06	000039
154	1.860627	.061756	.077617	.000688	5.1e-06	000032
155	1.860626	.061756	.077618	.000658	3.1e-06	000024
156	1.860626	.061756	.077618	.000598	1.4e-06	000016
157	1.860626	.061756	.077618	.000518	-1.4e-07	-9.2e-06
158	1.860626	.061756	.077618	.000425	-1.3e-06	-3.0e-06
159	1.860626	.061756	.077618	.000327	-2.2e-06	2.1e-06
160	1.860626	.061756	.077618	.00023	-2.8e-06	6.2e-06
161	1.860626	.061756	.077618	.00014	-3.2e-06	9.1e-06
162	1.860626	.061756	.077618	.000059	-3.3e-06	.000011
102	.000020	1 .001/JU	.0//010	.0000000	1 3.36 00	1 .000011

63	.860626	.061756	.077618	-9.3e-06	-3.2e-06	.000012
64	.860626	.061756	.077618	000064	-2.9e-06	.000012
65	.860626	.061756	.077618	000105	-2.6e-06	.000012
66	.860626	.061756	.077618	000132	-2.2e-06	.00001
67	.860626	.061756	.077618	000147	-1.7e-06	9.0e-06
68	.860626	.061756	.077618	000151	-1.2e-06	7.4e-06
69	.860626	.061756	.077618	000147	-7.9e-07	5.6e-06
70	.860626	.061756	.077618	000135	-3.9e-07	4.0e-06
71	.860626	.061756	.077618	000118	-4.5e-08	2.4e-06
72	.860626	.061756	.077618	000098	2.3e-07	9.7e-07
73	.860626	.061756	.077618	000077	4.5e-07	-2.2e-07
74	.860626	.061756	.077618	000056	6.0e-07	-1.2e-06
75	.860626	.061756	.077618	000035	6.8e-07	-1.9e-06
76	.860626	.061756	.077618	000017	7.2e-07	-2.3e-06
77	.860626	.061756	.077618	-1.3e-06	7.1e-07	-2.6e-06
78	.860626	.061756	.077618	.000011	6.6e-07	-2.7e-06
79	.860626	.061756	.077618	.000021	5.9e-07	-2.6e-06
80	.860626	.061756	.077618	.000028	5.0e-07	-2.4e-06
81	.860626	.061756	.077618	.000032	4.0e-07	-2.1e-06
82	.860626	.061756	.077618	.000033	2.9e-07	-1.7e-06
83	.860626	.061756	.077618	.000033	2.0e-07	-1.3e-06
84	.860626	.061756	.077618	.00003	1.1e-07	-9.6e-07
85	.860626	.061756	.077618	.000027	2.7e-08	-6.0e-07
86	.860626	.061756	.077618	.000023	-3.8e-08	-2.8e-07
87	.860626	.061756	.077618	.000018	-8.8e-08	-1.1e-08
88	.860626	.061756	.077618	.000013	-1.2e-07	2.1e-07
89	.860626	.061756	.077618	8.8e-06	-1.5e-07	3.8e-07
90	.860626	.061756	.077618	4.7e-06	-1.6e-07	4.9e-07
91	.860626	.061756	.077618	1.1e-06	-1.6e-07	5.6e-07
92	.860626	.061756	.077618	-1.9e-06	-1.5e-07	5.8e-07
93	.860626	.061756	.077618	-4.2e-06	-1.3e-07	5.7e-07
94	.860626	.061756	.077618	-5.8e-06	-1.1e-07	5.3e-07
95	.860626	.061756	.077618	-6.8e-06	-9.2e-08	4.7e-07
96	.860626	.061756	.077618	-7.2e-06	-7.0e-08	3.9e-07
97	.860626	.061756	.077618	-7.2e-06	-4.8e-08	3.1e-07
98	.860626	.061756	.077618	-6.8e-06	-2.8e-08	2.3e-07
99	.860626	.061756	.077618	-6.1e-06	-9.8e-09	1.5e-07
100	.860626	.061756	.077618	-5.2e-06	5.2e-09	7.8e-08
100 + (1) irfn (2) irfn	.860626 .ame = p3m, in	061756 npulse = gar npulse = p3v	chm, and resp	-5.2e-06 ponse = garch onse = garchm	5.2e-09 m	

Granger Causality (CMA Method)

. tsset time time variable: time, 1 to 119

. irf set cmam (file cmam.irf created) (file cmam.irf now active)

. var garchm cmavol cmaoi, lags(1/3)

Vector autoregression

Sample: Log likelihood FPE Det(Sigma_ml)	4 119 d = 612.0589 = 8.81e-09 = 5.24e-09			No. o AIC HQIC SBIC	f obs	= 116 = -10.0355 = -9.746413 = -9.323364
Equation	Parms	RMSE	R-sq	chi2	P>chi2	
garchm cmavol cmaoi	10 10 10	.004676 .207052 .087607	0.4154 0.4518 0.3007	82.42696 95.58593 49.8698	0.0000 0.0000 0.0000	
	Coef.	Std. Err.	Z	₽> z	[95% Coni	f. Interval]
garchm garchm L1. L2. L3. cmavol L1. L2. L3. cmaoi L1. L2. L3. cmaoi L1. L2. L3.	.6557957 1636187 .1089096 0047655 0064984 0036996 .008841 .0007178 .0055065	.092877 .109394 .0922027 .0017956 .0019412 .0016987 .0048596 .0044381 .004880	7.06 -1.50 1.18 -2.65 -3.35 -2.18 1.82 0.16 1.13	0.000 0.135 0.238 0.008 0.001 0.029 0.069 0.872 0.259	.4737603 378027 0718043 0082847 0103031 007029 0006836 0079807 0040586	.8378312 .0507896 .2896236 0012462 0026938 0003702 .0183656 .0094163 .0150716
_cons	.0009786	.000497	1.97	0.049	4.45e-06	.0019528

cmavol	1					
garchm						
garchim L1.	3.201407	4.112778	0.78	0.436	-4.85949	11.2623
L1. L2.	1.952684	4.844187	0.78	0.430	-7.541747	11.44712
L2. L3.	1.246162	4.08292	0.40	0.007	-6.756214	9.248537
cmavol	1 1.240102	4.00292	0.51	0.700	-0./50214	9.240337
L1.	6280672	.0795119	-7.90	0.000	7839076	4722268
L2.	4631388	.0859593	-5.39	0.000	6316159	2946618
L3.	4243152	.0752212	-5.64	0.000	571746	2768844
cmaoi	•1210102	.0752212	5.04	0.000	. 371740	.2700011
L1.	.7433044	.2151925	3.45	0.001	.3215349	1.165074
L2.	.244413	.1965277	1.24	0.214	1407743	.6296003
L3.	.7969228	.2161073	3.69	0.000	.3733603	1.220485
cons	0387496	.0220099	-1.76	0.078	0818883	.004389
	+					
cmaoi	I					
garchm						
L1.	1.88354	1.740184	1.08	0.279	-1.527158	5.294238
L2.	-6.895753	2.049655	-3.36	0.001	-10.913	-2.878504
L3.	3.893586	1.72755	2.25	0.024	.5076492	7.279522
cmavol						
L1.	.0006	.0336428	0.02	0.986	0653387	.0665386
L2.	.0170802	.0363708	0.47	0.639	0542052	.0883656
L3.	.0215352	.0318273	0.68	0.499	0408452	.0839156
cmaoi						
L1.	.147642	.0910515	1.62	0.105	0308156	.3260996
	Coef.	Std. Err.	Z	P> z	[95% Conf	. Interval]
L2.		.0831541	-5.10	0.000	5871891	261231
L3.	.0067385	.0914385	0.07	0.941	1724777	.1859548
_cons	008012	.0093128	-0.86	0.390	0262646	.0102407

Granger causality Wald tests

Equation	Excluded	chi2	df F	rob > chi2
garchm	cmavol	13.418	3	0.004
garchm	cmaoi	3.6074	3	0.307
garchm	ALL	17.423	6	0.008
cmavol	 garchm	2.4016	3	0.493
cmavol	cmaoi	21.101	3	0.000
cmavol	ALL	25.187	6	0.000
cmaoi	garchm	12.257	3	0.007
cmaoi	cmavol	.54747	3	0.908
cmaoi	ALL	13.089	6	0.042

Impulse Response and FEVD (CMA Method)
. irf ctable (cmam garchm garchm fevd, noci) (cmam cmavol garchm fevd, noci) (cmam cmaoi garchm irf, noci)
> (cmam garchm garchm irf, noci) (cmam cmavol garchm irf, noci) (cmam cmaoi garchm irf, noci)

step	(1) fevd	(2) fevd	(3) fevd	(1) irf	(2) irf	(3) irf
0	0	0	0	1	0	0
1	1	0	0	.655796	004765	.008841
2	.953134	.02848	.018386	.267846	006625	.004279
3	.902067	.077195	.020737	.09384	002716	000863
4	.894453	.084897	.020651	.06486	.002445	004686
5	.884734	.090321	.024944	.064405	.000698	002307
6	.883578	.090473	.025949	.070075	001594	.001726
7	.880782	.092798	.02642	.042706	001491	.003159
8	.876924	.094739	.028337	.001602	.000463	000441
9	.876681	.094951	.028368	017616	.000623	002253
10	.875423	.09521	.029367	.004971	1.9e-06	000656
11	.875347	.095201	.029453	.020703	00045	.001419
12	.874824	.095335	.029841	.00861	000107	.000725
13	.874725	.095331	.029944	009394	.000091	000569
14	.874667	.095327	.030006	006337	.000138	000661
15	.874574	.095334	.030092	.004306	000019	.000173
16	.87457	.095333	.030098	.005832	000059	.000377
17	.874544	.095331	.030125	00068	000056	.000059
18	.87454	.095334	.030126	003064	.00003	000199
19	.874533	.095333	.030134	000666	.000039	000086
20	.87453	.095335	.030135	.001544	9.1e-06	.000052
21	.87453	095335	.030135	.000844	i000034	000079

22	.874528	.095336	.030137	000355	000012	2.0e-06	1
23	.874528	.095336	.030137	000637	.000012	000037	1
24	.874527	.095336	.030137	000069	.000016	000028	1
25	.874527	.095336	.030137	.000291	-5.6e-06	.000014	1
26	.874527	.095336	.030137	.000236	-9.0e-06	.000022	1
27	.874527	.095336	.030137	000083	-1.7e-06	3.8e-06	1
28	.874527	.095336	.030137	000182	6.1e-06	000016	1
29	.874527	.095336	.030137	000045	1.9e-06	-7.2e-06	1
30	.874527	.095336	.030137	.000116	-1.7e-06	6.1e-06	1
31	.874527	.095336	.030137	.00007	-2.4e-06	7.9e-06	1
32	.874527	.095336	.030137	000042	5.5e-07	-1.7e-06	1
33	.874527	.095336	.030137	000065	1.1e-06	-4.8e-06	1
34	.874527	.095336	.030137	6.8e-06	5.4e-07	-1.1e-06	1
35	.874527	.095336	.030137	.000039	-6.5e-07	2.7e-06	1
36	.874527	.095336	.030137	.000012	-4.2e-07	1.3e-06	1
37	.874527	.095336	.030137	00002	1.7e-08	-8.3e-07	1
38	.874527	.095336	.030137	000013	4.1e-07	-1.2e-06	1
39	.874527	.095336	.030137	5.7e-06	7.3e-08	9.8e-08	1
40	.874527	.095336	.030137	.00001	-1.5e-07	6.3e-07	1
41	.874527	.095336	.030137	2.0e-07	-1.8e-07	3.0e-07	1
42	.874527	.095336	.030137	-5.1e-06	7.5e-08	-2.9e-07	1
43	.874527	.095336	.030137	-2.7e-06	1.0e-07	-2.6e-07	1
4 4	.874527	.095336	.030137	2.0e-06	2.2e-08	1.5e-08	1
45	.874527	.095336	.030137	2.3e-06	-7.7e-08	2.0e-07	1
46	.874527	.095336	.030137	5.0e-08	-2.5e-08	5.8e-08	1
47	.874527	.095336	.030137	-1.5e-06	2.3e-08	-8.3e-08	1
48	.874527	.095336	.030137	-6.2e-07	3.4e-08	-8.7e-08	1
49	.874527	.095336	.030137	6.1e-07	-8.7e-09	2.7e-08	1
50	.874527	.095336	.030137	7.3e-07	-1.6e-08	5.7e-08	1
51	.874527	.095336	.030137	-1.4e-07	-6.5e-09	1.2e-08	

L	(1)	(2)	(3)	(1)	(2)	(3)
step	fevd	fevd	fevd	irf	irf	irf
152	.874527	.095336	.030137	-4.7e-07	1.1e-08	-3.5e-08
153	.874527	.095336	.030137	-1.3e-07	5.1e-09	-1.7e-08
154	.874527	.095336	.030137	2.6e-07	-1.5e-09	1.1e-08
155	.874527	.095336	.030137	1.6e-07	-5.6e-09	1.7e-08
156	.874527	.095336	.030137	1 -7.9e-08	-1.0e-10	-2.1e-09
57	.874527	.095336	.030137	-1.4e-07	2.2e-09	-9.2e-09
158	.874527	.095336	.030137	2.2e-09	1.9e-09	-3.6e-09
159	.874527	.095336	.030137	7.4e-08	-1.2e-09	4.7e-09
60	.874527	.095336	.030137	3.4e-08	-1.2e-09	3.4e-09
61	.874527	.095336	.030137	-3.4e-08	-1.7e-10	-7.8e-10
62	.874527	.095336	.030137	-3.0e-08	9.9e-10	-2.8e-09
63	.874527	.095336	.030137	4.1e-09	2.5e-10	-4.0e-10
64	.874527	.095336	.030137	2.2e-08	-3.1e-10	1.2e-09
165	.874527	.095336	.030137	5.4e-09	-4.3e-10	9.8e-10
166	.874527	1.095336	.030137	-9.4e-09	1.4e-10	-4.9e-10
67	.874527	1.095336	.030137	-8.4e-09	2.2e-10	-6.9e-10
168	.874527	1.095336	.030137	2.9e-09	7.7e-11	-8.8e-11
169	.874527	.095336	.030137	5.8e-09	-1.5e-10	4.6e-10
170	.874527	.095336	.030137	1.1e-09	-6.3e-11	1.9e-10
171	.874527	1.095336	.030137	-3.5e-09	3.0e-11	-1.6e-10
172	.874527	1.095336	.030137	-1.8e-09	7.6e-11	-2.1e-10
173	.874527	1.095336	.030137	1.2e-09	-6.5e-12	4.0e-11
174	1.874527	1.095336	.030137	1.7e-09	-3.2e-11	1.2e-10
175	.874527	1.095336	.030137	-1.3e-10	-2.2e-11	4.2e-11
176	1.874527	1.095336	.030137	-1.0e-09	1.9e-11	-6.8e-11
177	.874527	1.095336	.030137	-4.0e-10	1.4e-11	-4.2e-11
178	1.874527	1.095336	.030137	4.9e-10	2.8e-13	1.5e-11
179	.874527	1.095336	.030137	3.9e-10	-1.3e-11	3.7e-11
180	1.874527	1.095336	.030137	-9.5e-11	-2.0e-12	1.7e-12
					4.3e-12	
81	.874527 .874527	.095336 .095336	.030137 .030137	-3.0e-10 -4.4e-11	4.3e-12 5.2e-12	-1.8e-11 -1.1e-11
82				-4.4e-11 1.4e-10		-1.1e-11 8.1e-12
83	.874527 .874527	.095336 .095336	.030137 .030137	1.4e-10	-2.2e-12 -2.7e-12	8.6e-12
84						
85	.874527 .874527	.095336 .095336	.030137 .030137	-5.3e-11 -7.4e-11	-8.2e-13 2.1e-12	1.0e-13 -6.2e-12
86						
87	.874527	.095336	.030137	-6.2e-12	7.2e-13	-1.8e-12
88	.874527	.095336	.030137	4.7e-11	-4.8e-13	2.4e-12
189	.874527	.095336	.030137	2.0e-11	-1.0e-12	2.6e-12
190	.874527	.095336	.030137	-1.7e-11	1.7e-13	-7.4e-13
91	.874527	.095336	.030137	-2.2e-11	4.4e-13	-1.6e-12
92	.874527	.095336	.030137	3.6e-12	2.6e-13	-4.3e-13
193	.874527	.095336	.030137	1.3e-11	-2.9e-13	9.5e-13
94	.874527	095336	.030137	4.3e-12	-1.7e-13	5.0e-13
195	.874527	.095336	.030137	-7.0e-12	2.0e-14	-2.6e-13
196	.874527	095336	.030137	-4.7e-12	1.7e-13	-4.9e-13
97	.874527	.095336	.030137	1.7e-12	1.0e-14	1.8e-14
98	.874527	.095336	.030137	4.0e-12	-6.1e-14	2.5e-13
99	.874527	.095336	.030137	2.7e-13	-6.3e-14	1.3e-13
100	.874527	.095336	.030137	-2.0e-12	3.5e-14	-1.2e-13
+						+

(1) irfname = cmam, impulse = garchm, and response = garchm
 (2) irfname = cmam, impulse = cmavol, and response = garchm
 (3) irfname = cmam, impulse = cmaoi, and response = garchm