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Abstract

The first essay, co-authored with Sumeet Gulati, estimates the increase in the market share of

ENERGY STAR-qualified appliances attributed to utility rebates in the US. Results show that a

dollar increase in the rebate leads to a 0.3% increase in the share of ENERGY STAR-qualified

clothes washers while the effect is not significant for dishwashers and refrigerators. Assuming a

redemption rate of 40%, the cost of a megawatt hour saved is lower than the estimated cost of

building and operating an additional power plant and the average on-peak spot price. Therefore,

rebate programs for ENERGY STAR clothes washers are a cost-effective way to reduce energy

demand.

In the second essay I analyse the presence of pollution spillovers by looking at emission levels

and changes in emissions. I use a spatial autoregressive (SAR) model with geographic distance

and industry distance weight matrices as well as an extension of the SAR model that uses the two

weight matrices simultaneously to exploit the variation in the toxicity-weighted emission levels and

emission changes in a large sample of manufacturing facilities in Canada. I find that, compared to

OLS results, these spatial linkages exist and are stronger for within sector linkages than geographic

linkages.

In the third essay I use firm-level characteristics to predict the lobbying and abatement decision

of firms in a model with two non-cooperating firms. There are three sources of firm heterogene-

ity, viz. the marginal cost of production, the emission intensity and the marginal cost factor of

abatement. The decision to lobby or abate or do both depends on the cost-effectiveness of lobby-

ing against that of abating. I find that a firm will abate and not lobby if its effective marginal

abatement cost, which depends on output, is lower than a threshold value.
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Preface

Utility Rebates for ENERGY STAR Appliances: Are They Effective? is a manuscript co-authored

with Prof. Sumeet Gulati. Souvik Datta is the primary author in all regards. The identification

and design of the research program for this paper were carried out jointly. Background research,

the data analysis, and the preparation of the manuscript were performed by Souvik Datta, with

comments on revisions provided by Prof. Sumeet Gulati.

Chapter 2 of the thesis, Utility Rebates for ENERGY STAR Appliances: Are They Effective?

(Datta and Gulati, 2010), has been submitted for publication.
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Chapter 1

Introduction

This thesis deals with three separate issues in environmental economics. The first essay is about

the effectiveness of utility rebates on the purchase of energy-efficient appliances. The second essay

uses spatial econometric methods to investigate spillovers that may exist in pollution emissions.

The third and final essay utilizes a theoretical model to make predictions about the decisions of

heterogeneous firms to lobby or abate or do both.

It is now widely accepted that anthropogenic greenhouse gas (GHG) emissions are the main

cause of climate change. The energy sector accounts for approximately 65% of our output of

GHGs (International Energy Agency, 2009) and thus reducing emissions in this sector is a crucial

element of GHG reduction. To reduce GHGs increasing energy efficiency is considered a “low-

hanging fruit” because of its low marginal cost. The World Energy Outlook 2009, published by the

International Energy Agency (IEA) highlights the huge potential of CO2 reductions from increased

energy efficiency (see Figure 1.1). In the first essay we analyse a policy used to encourage the

adoption of energy efficient appliances and thus lower the demand for electricity.

Federal and local governments and utility companies across the United States and Canada

promote the adoption of energy efficient appliances identified by a voluntary eco-labelling program,

the Energy Star label, by offering financial incentives. The Energy Star label is designed to

promote the use of energy-efficient products and thus help to reduce the emissions of greenhouse

gases by reducing energy consumption. These incentives are usually in the form of rebates or sales

tax holidays. The adoption of energy efficient appliances has public (reduced GHG emissions) and

private (saving in utility bills) benefits.1 In this essay we ask two questions, what is the sales impact

1According to calculations made by D&R International Ltd. the lifetime cost for clothes washers, using the
product database from 2007, was US$1,883 for a standard model and US$1,726 for an Energy Star model. While
the median purchase price for a standard model (US$573) was much lower than an Energy Star model (US$966)

1



Chapter 1. Introduction

Figure 1.1: World Energy-related CO2 Emissions Abatement (Source: IEA)

of these rebates? Is it cost effective for a utility company to offer a rebate to its consumer to buy

an Energy Star labelled appliance?

Our research contributes to the the effectiveness of rebate programs in Demand Side Manage-

ment (DSM) initiatives, research on sales promotions of durable goods and the empirical literature

on eco-labelling. There has been, to the best of our knowledge, no research on evaluating the

cost-effectiveness of utility rebates to promote the sale of Energy Star appliances.

The rebate programs we study are a part of Demand Side Management (DSM) initiatives

undertaken by utility companies initiated in the late 1970s primarily due to the rising gas and

oil prices.2 DSM refers to the “planning, implementation, and monitoring of utility activities

designed to encourage consumers to modify patterns of electricity usage, including the timing and

level of electricity demand” (Energy Information Administration, 2009). Energy-changing and

load-shaping objectives are achieved through educating consumers on energy efficiency, promoting

energy-efficient products by providing low-interest loans and other financial incentives, controlling

load, energy automation and real-time pricing.

The Energy Information Administration (2009) reports that the total actual peak load reduction

achieved in 2007 through DSM was 30,276 MW with 58% being attributed to energy efficiency while

the average energy costs for the former were much higher at US$1,310 than the latter (US$760). The underlying
utility function in our model is such that the consumer internalizes the net cost savings. The utility rebate will have
an effect on the marginal consumer and lead to her purchasing the Energy Star appliance.

2See Eto (1996); Nadel and Geller (1996); Nadel (2000) for a history of utility DSM in the US.

2



Chapter 1. Introduction

the total DSM cost was US$2.5 billion. Gillingham et al. (2006) provide a review of, among other

things, DSM activities and report the range of negawatt3 costs calculated in the existing literature

to be between US$8 and US$229 per megawatt hour saved. Loughran and Kulick (2004) claim that

DSM effects have been overstated by utilities. However, using the same data Auffhammer et al.

(2008) show that the savings reported by utility companies cannot be rejected. A recent paper

by Arimura et al. (2009) finds that DSM expenditures over the last couple of decades have cost

utilities around US$60 per MWh saved.

Our focus is on a specific component of DSM, the rebate program supporting energy efficient

appliances. Revelt and Train (1998) estimate the impact of rebates and loans on the choice of

efficiency of refrigerators by residential customers of Southern California Edison (SCE) using stated

preference data. They predict that the rebate program has led 8.5% customers to switch from a

standard-efficiency refrigerator to a high-efficiency one. They also find that loan programs have a

greater impact with 22.6% of buyers switching from standard to high efficiency.4 Very few studies,

though, have looked at the cost-effectiveness of rebate programs in the residential sector. In a

survey of the literature on the various kinds of DSM programs Nadel (1992) shows that the cost

per kilowatt hour incurred by a utility in rebate programs ranges from low to moderate5 and is

generally between 1.4 cents to 5 cents per kilowatt hour.6 Nadel (1990) reports the cost to utilities

for rebate programs in the commercial and industrial sectors to be US$20-30 per megawatt hour.7

Earlier work in marketing focuses on the effects of sales promotions in the nondurable goods and

durable goods sector with more focus on the nondurable goods sector. Thompson and Noordewier

(1992) investigate the effects of sales promotions on automobile sales of the Big Three automobile

manufacturers in the US and find that major year-end promotions using low-rate financing and

cash rebates to stimulate sales were effective in 1985 and 1986 but not in 1987.

Research on the Energy Star program has focused almost exclusively on the energy, dollar

3“Negawatt” is a term coined by Amory Lovins of the Rocky Mountain Institute to refer to a watt of electricity
that does not have to be produced due to an energy saving process in place.

4See Train and Atherton (1995) for a similar paper.
5This is based on rebate programs for commercial and industrial as well as residential sectors.
6US$14 to US$50 per megawatt hour
7We hereon, convert all figures originally reported in kilowatt hours to megawatt hours for consistency. 1 megawatt

hour = 1,000 kilowatt hours.

3



Chapter 1. Introduction

and carbon savings or the overall success of the Energy Star program. Howarth et al. (2000) find

that the Green Lights and Energy Star Office Products programs have very little effect on the

demand for energy but improvements in energy efficiency lead to one-to-one reductions in energy

use. In terms of calculating savings estimates, Webber et al. (2000) conclude that 740 petajoules

of energy has been saved8 and 13 million metric tonnes of carbon avoided due to the Energy

Star program. In a more recent study, Sanchez et al. (2008) estimate that Energy Star-labelled

products have saved 4.8EJ of primary energy and avoided 82Tg C equivalent.9.

In the second essay I investigate the presence of emission linkages in Canadian manufacturing

plants by incorporating spatial effects in my analysis. These spatial effects are the result of spillovers

that may occur when the emission of plant i affects that of plant j. I consider two channels of

these spillovers and use spatial econometric methods to model this. One channel to measure

spatial linkages uses geographic distance while the second channel uses the Standard Industrial

Classification (SIC) to measure the similarity in a pair of polluting facilities.

This paper extends the literature in three ways. Firstly, I use the Standard Industrial Classifi-

cation (SIC) code at the two-digit level to construct a supplementary measure of the closeness of

two facilities. The hypothesis being that two facilities with the same SIC code will have a greater

similarity in emissions than two facilities with different SIC codes. Previous research has used a

decaying function of the Euclidean distance with a single parameter as a measure of closeness. The

most commonly used specification is the inverse of the distance squared because of its resemblance

to the gravity equation in the trade literature.

Secondly, I simultaneously use the SIC distance as well as the geographical distance in the

same specification. This means that the measure of closeness involving the SIC distance captures

the effect of plants in similar industries and the proximity measure using the Euclidean distance10

captures the spatial dependence of facilities that are geographically nearer. Therefore, the two types

of spatial dependencies in the dependent variable are separated out by using these two measures

of closeness. Using two measures of distance or closeness simultaneously will also enable us to

81 petajoule = 1015 Joules. 740 petajoules is equivalent to 205.5× 106 MWh. 1 MWh = 3.6× 109 Joules.
91EJ (Exajoule)=1018 Joules. 4.8EJ is equivalent to 1.3× 109 MWh. 1Tg (Teragram) = 1012 grams

10I use the Haversine formula to measure the orthodromic (great circle) distance between two facilities.

4



Chapter 1. Introduction

determine the strength and magnitude in the two types of spatial dependencies in the dependent

variable.

Thirdly, the data I use is a comprehensive pollution inventory of all manufacturing facilities in

Canada. Unlike other studies, this paper includes all the facilities that are required to report to the

pollution inventory and is not limited to manufacturing facilities in certain regions. The advantage

of using such a comprehensive database, apart from the benefits of having access to more observa-

tions, is that we can exploit the various measures of distance, especially the geographic measure by

calculating it for all manufacturing facility pairs spread across the country. The standard procedure

to measure closeness, as mentioned previously, has been to use a decaying function of the Euclidean

distance. If facilities are distant from each other the measure of closeness will, by construction, be

very low. In other words, the distance between firms i and j will be very high and, assuming a

measure of closeness that is the square of the inverse of the distance, the measure will be very low.

The third essay uses a non-cooperative model with two heterogeneous firms to analyse their

decision to lobby or abate or do both. Political lobbying has been an important part of the political

scene in the US for a long time. The campaign contributions for candidates running for elections

sees millions of dollars being spent, especially during the Presidential race. Apart from these

contributions, firms and other organizations have lobbying firms in Washington, DC that lobby the

government on various issues including the environment. There are a number of lobbying firms

engaged in lobbying for the environment and Superfund.11 The literature on political lobbying

has received a considerable amount of attention especially since the contributions of Grossman and

Helpman (1994). The creation of powerful lobbying groups has influenced a wide range of activities

ranging from resisting gun control to resisting elimination of trade barriers. Similarly, with regard

to environmental regulations firms have taken advantage to lobby the government and resist stricter

environmental regulations or to weaken existing ones.

Recently, though, there has been a rise in the literature on corporate environmentalism. This

11Superfund is the name commonly given to the Comprehensive Environmental Response, Compensation, and
Liability Act (CERCLA) that was enacted by the US Congress on December 11, 1980 in response to the Love Canal
disaster. The law imposed a tax on the chemical and petroleum industries and the revenue was used to create a fund
for cleaning up abandoned or uncontrolled hazardous waste sites. The CERCLA was later amended by the Superfund
Amendments and Reauthorization Act (SARA) on October 17, 1986. Among other amendments, the size of the trust
fund was increased from the $1.6 billion collected under the CERCLA to $8.5 billion.

5



Chapter 1. Introduction

deals with firms that regulate their pollution on their own free will even when there is no obvious

need to. Maxwell et al. (2000) list a variety of reasons why firms would want to voluntarily regulate

themselves and reduce pollution. Some of the reasons include reducing consumer uncertainty about

product quality and ensuring that products have the same operating standards, increasing employee

satisfaction by ensuring a healthy and safe working environment, using self-regulation to soften

competition or to preempt government regulation.

There have been a number of papers that have incorporated self-regulation in a model where

firms are lobbying for less stringent environmental regulations. Damania (2001) has used a model

to explain why old and very polluting firms can often lobby effectively for less stringent environ-

mental regulations and are slow to adopt new and cleaner technologies. He suggests that political

considerations may lead to firms rejecting environmentally beneficial investments even though they

may lower production costs. Glazer and Janeba (2004) focus on maximization of social welfare

rather than on lobbying and find, unlike Damania (2001), that a firm subject to an emissions tax

may overinvest in abatement. Maxwell et al. (2000) model self-regulation as a way to preempt gov-

ernment regulation, examine the conditions under which preemption is possible and, if it occurs,

examine the welfare consequences.

6



Chapter 2

Utility Rebates for ENERGY STAR

Appliances: Are They Effective?

“Efficiency is the steak. Renewables are the sizzle.” – Carl Pope, executive director of

the Sierra Club 12

2.1 Introduction

In this essay we calculate the impact of utility rebates on the market share of energy efficient

ENERGY STAR appliances. To study the impact of the rebates on the sales of energy efficient

ENERGY STAR appliances we use quarterly sales data on the percentage of ENERGY STAR

labelled appliances (clothes washers, dishwashers, and refrigerators) for all 50 US states. We

combine this with a detailed utility-level, and state level dataset on rebate programs between 2001

and 2006. Our aim is to identify the impact of rebates on sales of ENERGY STAR appliances by

correlating differences in the market share of ENERGY STAR appliances with variation in rebate

values across and within appliances and across and within US states over time. The panel nature of

our dataset allows us to account for changes in purchasing behaviour specific to a single state but

invariant over time, or occurring in all states but invariant at a certain time period. This allows us

to ensure that we do not attribute state level differences, or national level common time effects to

the rebate variable. This is crucial for accounting for sales that would have occurred even in the

absence of utility rebates. Our results indicate that the utility rebates increased the market share

of ENERGY STAR qualified clothes washers by 4.5%. We also find that the utility rebates had no

12Wald (2007)
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impact on the sales of dishwashers and refrigerators.

We use the above estimates to evaluate the cost of a tonne of carbon emissions saved as well

as the cost of a megawatt hour saved. The former cost calculation will enable us to compare the

cost with that of the social opportunity cost of carbon while the latter cost can be informative

in comparing with the cost of constructing and operating a power plant or the average price of

additional electricity bought in the spot market. The cost of reducing a tonne of carbon, depends

on the assumption for redemption rates of mail-in rebates(the main avenue for these rebates), and

ranges from US$171 to US$426. We also calculate the cost of a megawatt hour saved due having the

rebate programs in place for comparisons with the estimated cost of building and operating a power

plant as well as the cost of on-peak spot prices. Given the assumption of a 40% redemption rate

on mail in rebates, the cost of a megawatt hour saved is around US$35 which is significantly lower

than the cost of constructing and operating the cheapest power plant.13 Average on-peak prices

at US$60 are also higher than the cost of rebate programs which means that buying electricity in

case demand exceeds supply is more expensive than reducing electricity demand through increased

efficiency.

The rest of the chapter is organized as follows. In the next section, we provide an overview of

the ENERGY STAR program. We then discuss the rebate programs offered by utility companies

in section 2.3 and follow it up with a description of the data, its sources and limitations in section

2.4. The empirical strategy is laid out in section 2.5 and the econometric results are discussed in

section 2.6. The penultimate section in this chapter uses the results from our regression model to

calculate the energy saving and cost of having the rebate programs in place while the final section

has concluding remarks.

2.2 A Brief Overview of ENERGY STAR

The ENERGY STAR program was introduced in 1992 by the United States Environmental Protec-

tion Agency (EPA) as a voluntary labelling program designed to promote the use of energy-efficient

13The cost of a coal-fired power plant, according to Du and Parsons (2009), is the lowest at US$62 per megawatt
hour.
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products and thus help to reduce the emissions of greenhouse gases. Its mission is to set standards

for the ENERGY STAR label; label energy-efficient products; provide objective information to

consumers; work with national, regional and local groups to promote energy efficiency; and lower

the costs of owning energy efficient equipment and products through alternative financing. The US

EPA, in 1991, had already introduced another eco-labelling program, the Green Lights Program,

which was a partnership program designed to promote efficient lighting systems in commercial and

industrial buildings. This was integrated into the ENERGY STAR program for buildings in 1995.

The ENERGY STAR program, which had been administered exclusively by the US EPA since

its beginning, became a partnership of the EPA and the US Department of Energy (DOE) in

June, 1996. The ENERGY STAR label for dishwashers, refrigerators and room air-conditioners

(RACs) was announced in October, 1996. Clothes washers were included in July of the following

year. The label is now displayed in over 50 product categories including major appliances, office

equipment, lighting, home electronics and other products. It also covers new homes and commercial

and industrial buildings.

In this chapter we focus on the ENERGY STAR program for clothes washers, dishwashers and

refrigerators. More details about the ENERGY STAR program for these particular appliances are

provided in Appendix A. These appliances markets have traditionally been quite stable (Paton,

2005) as can be seen in Figure 2.1 where the quarterly unit shipments of clothes washers shows

a very gentle upward trend. The figures for ENERGY STAR qualified clothes washers, however,

show a very strong upward trend. In terms of the share of the market, ENERGY STAR qualified

clothes washers have increased from 10% in 2001 to almost 38% in 2006. The picture looks even

more drastic for dishwashers with ENERGY STAR qualified dishwashers having captured a little

more than 92% of the market in 2006 as compared to around 10% in 2001 (Figure 2.1). Figure

2.2 shows the fraction of ENERGY STAR qualified dishwashers, clothes washers and refrigerators

from 2001 to 2006. It shows the stark contrast in the penetration of ENERGY STAR qualified

dishwashers as compared to clothes washers and refrigerators.
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2.3. Utility Rebates

Figure 2.1: Sales of Clothes Washers, Refrigerators and Dishwashers (Source: Ap-
pliance Design (various years) and ENERGY STAR)

2.3 Utility Rebates

US states and regional utility companies encourage consumers to switch from standard appliances

and other electric products to more energy and resource efficient ENERGY STAR products using

several types of financial incentives (for example: mail in or instant rebates, or tax credits and

exemptions). Of these the most popular are mail-in and instant rebates. Rebates are meant to

help consumers overcome the initial cost of buying and installing a higher-priced energy-efficient

appliance.

Regional utility companies have supported the purchase of ENERGY STAR appliances almost

since the beginning of the ENERGY STAR program for appliances. In 1998, in the Northwestern

United States ENERGY STAR qualified clothes washers were promoted through rebates and in-

centives offered by the Northwest Energy Efficiency Alliance. Supplemental rebates and financing

10
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Figure 2.2: Share of ENERGY STAR qualified Dishwashers, Clothes Washers and
Refrigerators (Source: ENERGY STAR)

was offered by a number of utilities in Washington, Oregon, Montana and Idaho (Energy Star

Sales Report, 1999). Similarly, most utility companies in California and several utility companies

in New England (through the Northeast Energy Efficiency Partnerships, Inc.) and Wisconsin also

supported the sale of ENERGY STAR appliances (Energy Star Sales Report, 1999). The same

regions experienced a much larger penetration of ENERGY STAR qualified clothes washers than

other regions.

While the savings to consumers, in terms of lower utility bills, are quite obvious there are a

number of reasons why utilities would want to promote the use of ENERGY STAR products.14

It is argued that promoting energy efficiency costs less than building brand new power plants.

There are also environmental reasons. Utility companies need to follow a number of environmental

regulations. There are emissions control strategies in place and saving energy on the margin will

allow the more polluting plants to be removed from producing electricity. Lastly, the California

electricity crisis of 2000 and 2001 showed that reducing peak demand combined with reducing

14Benefits to consumers can be seen by comparing the average energy use of an ENERGY STAR and a non-
ENERGY STAR qualified appliance. See tables 2.7 and A.5 for information on the energy used by an average
ENERGY STAR versus an average non-ENERGY STAR clothes washer and dishwasher and refrigerator respectively.
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energy demand can lead to grid reliability.

2.4 Data Description

We use data from a number of sources. The sales data of ENERGY STAR-qualified appliances are

from the US Department of Energy (2008a). Information about the utility rebates on ENERGY

STAR products is from D&R International Ltd. Demographic data come from the Current Pop-

ulation Survey, the Bureau of Economic Analysis and the US Census. Electricity price data are

from the Energy Information Administration of the US Department of Energy.

2.4.1 Energy Star Sales

The ENERGY STAR website has data on sales of the four major appliances, viz. clothes washers,

dishwashers, air conditioners and refrigerators. The data are disaggregated by the type of major

appliance in each US state by quarter from 2001 to 2006. We exclude air conditioners in our analysis

due to missing data. Sales of appliances are categorized into ENERGY STAR and non-ENERGY

STAR units. The appliance manufacturers report the sale of ENERGY STAR units to the US EPA

every year. For obtaining sales figures of non-ENERGY STAR units the EPA uses the difference of

the sales figures of total ENERGY STAR units sold and the total US sales obtained from industry

reports.

2.4.2 Utility Rebates

Financial incentives are in the form of rebates that vary in amount as well as form across utility

companies and across different appliances. For example, in 2006, the City of Lompoc Utilities

in California offered a rebate of US$120 on ENERGY STAR qualified clothes washers paid as a

US$10 per month credit on a consumer’s utility bill. In another example, also in 2006, customers of

National Grid in Massachusetts were given a US$100 either at the time of purchase or as a mail-in

application.

Information about rebates and incentives provided by utilities between 2001 and 2006 was

12



2.4. Data Description

Table 2.1: Number of Utility Rebates for Energy Star Appliances (2001–2006)

State Clothes Washers Dishwashers Refrigerators

California 28 23 36
Colorado 8 1 2
Connecticut 6 0 3
Iowa 12 11 13
Idaho 12 8 5
Illinois 2 0 0
Massachusetts 21 2 0
Minnesota 19 6 7
Missouri 1 0 0
Montana 7 6 6
New Hampshire 8 0 0
Nevada 10 3 8
New York 2 0 0
Oregon 51 35 30
Rhode Island 3 0 0
South Dakota 2 0 0
Texas 0 0 1
Utah 0 0 1
Washington 60 26 21
Wisconsin 2 2 3
Wyoming 1 1 1

Total 255 124 137

Note: Numbers indicate total number of utility rebates offered.

obtained from D&R International Ltd. This includes details of the incentive type, the program

name, the amount of rebate offered, a summary of the rebate with the period of time the rebate is

offered and the appliances or products to which the rebate applies. Table 2.1 provides details on

the number of utility companies providing rebates to its customers from 2001 to 2006 for various

appliances. Rebates are concentrated mostly in the northwestern states and California as well as

northeastern states. We have considered only mail-in and instant rebates that constitute 91% of

the total incentives on offer. Our dataset has a total of 602 financial incentives out of which 546

are mail-in and instant rebates. Of those, 95% are mail-in and 5% are instant rebates. Table

2.2 provides a detailed breakdown of the various types of financial incentives offered by utility

companies. Figure 2.3 shows the rebate amounts and corresponding frequencies in our sample.

Most of the rebate amounts have a US$50 or US$100 value for clothes washers. Rebates for

dishwashers and refrigerators in our sample are typically US$25 or US$50.
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Table 2.2: Types of Financial incentives Offered by Utility Companies (2001–2006)

Type of Dollar Incentive/Rebate Frequency Percent

Instant Rebate (at point of sale) 14 2.56
Instant Rebate (as credit on bill) 15 2.74
Mail-in Rebate 517 94.69

The disadvantage of not having sales figures by smaller geographic entities is that rebates

provided by utility companies are local in nature and, usually, do not apply to the entire state.

That leads to an aggregation problem when we are trying to estimate the effectiveness of rebates

on the sales of ENERGY STAR units for the state as a whole. Consider a situation where we have

rebates in two states with a similar population, and preferences. The rebates are assumed, for the

sake of simplicity, to be of equal value. However, the extent of the rebates differ with one state

having it in, say, just one county served by a utility company and the other state having it in many

more counties. This should not lead to the same effect on the state-wide sales share of ENERGY

STAR appliances. In this situation we would expect the latter of the two states to have a bigger

impact on the sales share. To rectify this we assign weights to the rebates. The weights that we

use are the share of the residential customers served by the utility company providing the rebate

to the total number of residential customers in a state. The number of customers served by each

utility company are from the Energy Information Administration (2006) of the US Department of

Energy. Using weighted rebates means that utilities serving a larger customer base will have higher

weights assigned to their rebates.15

2.4.3 Demographic and Electricity Data

We use state quarterly income estimates from the US Bureau of Economic Analysis to measure

income. Personal income is the income received by all persons from all sources. It is therefore a

15Our preferred specifications use weighted rebates. However in the text we also report results from using a simple
average of utility rebate offered. We have also analysed the impact of utility rebates after controlling for state level
sales tax rebates on ENERGY STAR appliances. Unlike the utility rebates, which last typically for an year or more,
most state level rebates typically lasted for a few days during a year. These results are not reported in the thesis
and can be requested from the authors. We find that the results of regressions controlling for the sales tax rebate are
essentially the same as those reported here. Coefficients on the sales tax rebates are not significant. This is because
these rebates were in place only for a few days and we use quarterly sales data making it hard to identify their impact.
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Figure 2.3: Histogram of ENERGY STAR Rebate Amounts (2001–2006)

good measure of the average wealth. The CPS is a monthly household survey conducted by the

Bureau of Labor Statistics to measure participation and employment of the US labour force. The

CPS has details on the highest level of education obtained. We construct a measure of education,

‘Having a degree’, that gives us the fraction of people in a particular US state to have completed

a degree of any kind.16

Electricity prices are from the (Energy Information Administration, 2008) of the US Department

of Energy. We calculate the quarterly price for each state from 2001 to 2006 using the monthly

retail price for electricity in the residential sector.

16Associate Degree-Occupational/Vocational, Associate Deg.-Academic Program, Bachelor’s Degree(ex: BA, AB,
BS), Master’s(ex: MA, MS, MEng, MEd, MSW), Professional School Deg(ex: MD, DDS, DVM) or Doctorate
Degree(ex: PhD, EdD).
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Table 2.3: Summary Statistics (2001–2006)

Variable Mean Std. Dev. Min. Max. Obs.

Clothes Washers Share 0.274 0.138 0.026 0.842 1200
Log of Clothes Washers Share -1.460 0.626 -3.663 -0.173 1200
Dishwashers Share 0.607 0.286 0.056 1.000 1200
Log of Dishwashers Share -0.663 0.641 -2.875 0.000 1200
Refrigerators Share 0.273 0.108 0 0.595 1200
Log of Refrigerators Share -1.473 0.838 -6.847 -0.520 1199
Log Average Personal Income 11.628 1.055 9.595 14.203 1200
Share of people with degrees 0.317 0.049 0.174 0.468 1200
Log Electricity Price in current quarter -0.261 0.262 -0.761 0.762 1200

2.5 Empirical Strategy

The timing and size of rebates varies across states and time. We use this variation to estimate the

impact of the utility rebates on the sales of ENERGY STAR labelled clothes washers, dishwashers

and refrigerators. In addition there are several states that did not provide any such incentives to

its customers. We utilize the panel nature of the data and our dependent variable is the logarithm

of the market share of ENERGY STAR appliances. Formally, our empirical specification is:

log(ENERGY STAR share)cit = β0 +
3∑
c=1

β1cAppliance dummycit

+
3∑
c=1

β2cAppliance dummycit*Util. Reb.cit + β3Xcit + εcit, (2.1)

where c is the index for the appliance type (i.e. clothes washer, dishwasher or refrigerator), i is

the US state index and t is the year-quarter time index. The β2c coefficients on the right-hand

side are our variables of interest since they indicate the effect of the rebate offered on a particular

appliance on the market share of that particular appliance. Xcit is a vector of controls and εcit is

the standard i.i.d. error term.

This specification enables us to estimate the impact of incentives provided by utility companies

as well as control for various other factors that may affect the share of ENERGY STAR appliances.17

17Note that even though the individual coefficients on the impact of the rebate can differ, our regression pools all
three appliances together. This is because we believe that the same underlying utility function determines the choice
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A positive estimate for all three β2c coefficients would imply that the rebates are having a favourable

impact and that the utility companies are being successful in encouraging people to switch to more

energy-efficient technologies. In our set of controls, among other time and state dummies, we also

include the fraction of the population having at least a degree, the average personal income (in

logarithmic form) for each US State, and the price of electricity. Summary statistics are presented

in Table 2.3.

Recall that data on rebates are at the utility level. For our aggregation to the state level we

present results of two indicators. We first use the average rebate amount in a state. We construct

this by calculating the simple average of all the rebates given by utility companies in a state in

a particular quarter for a particular appliance. Our second measure of the utility rebate variable

attaches weights to the rebate values. These weights are calculated by dividing the number of

residential customers served by the utility company providing the rebate with the total number of

residential customers in a state. We do this to ensure that areas with a higher residential customer

base in a state have larger weights attached to the utility rebates.

We provide summary statistics of the different rebate measures in Table 2.4. The last column

in the table, Obs., indicates the number of data points in our dataset that the rebates imply.

For example, there are 239 state-quarter rebates for clothes washers. Since our panel has 50 US

states that we track over four quarters for a period of six years between 2001 and 2006 there are

1200 observations for clothes washers alone. For clothes washers, out of those 1200 observations,

239 data points have rebates. The table shows us that the number of utility rebates available for

clothes washers far exceeds that for dishwashers and refrigerators. If we consider the average rebate

amount and the average weighted rebate amount we see that clothes washers get a much higher

rebate amount when compared to dishwashers and refrigerators. The number of rebates as well as

the average amount of a rebate is lowest for dishwashers.

We use both fixed and random effects panel data regression models. In the specifications we first

observe the effects of the utility rebates on the market share of ENERGY STAR appliances without

controlling for any other factors. We then introduce demographic variables, namely the average

between an ENERGY STAR and a non-ENERGY STAR appliance.
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Table 2.4: Rebate Statistics for US States Providing Rebates (2001–2006)

Variable Mean Std. Dev. Min. Max. Obs.

Clothes Washers
Avg. Rebate Amount 69.699 27.547 25 200 239
Avg. Weighted Rebate Amount 15.215 21.722 0.057 100 239
Dishwashers
Avg. Rebate Amount 34.746 13.505 10 62.5 158
Avg. Weighted Rebate Amount 1.588 4.365 0.019 35 158
Refrigerators
Avg. Rebate Amount 50.640 26.324 15 117.5 177
Avg. Weighted Rebate Amount 6.826 15.524 0.022 100 177

personal income (in logarithmic form), the fraction of people having degrees and also electricity

prices. In the third specification we interact the appliance dummies with quarter dummies to control

for any seasonality that may exist. Lastly, we introduce year-quarter time dummies interacted with

the appliance dummies that will capture all changes over time. Since we have state fixed effects

in our fixed effects specification introducing year-quarter dummies will take into account most

of the variation that may occur. This is, therefore, the most comprehensive and our preferred

specification.

2.6 Results

We now present the results of the specifications and describe the methods used to estimate the

coefficients. The dependent variable in all the specifications is the log of share of ENERGY STAR

appliances. In Table 2.5 the rebate variable we use is the simple average rebate in each state while

in Table 2.6 we use our preferred weighted rebate variable.

It is often customary while reporting panel regression results to report the results from the

pooled OLS specification. In the interest of preserving space we have left out the pooled OLS

results. This is because, the F -test of the null hypothesis that the constant terms are equal across

all the states is rejected. In other words, there are significant state level effects which implies that

pooled OLS would be inappropriate. In the main text of this chapter (see Tables 2.5 and 2.6) we

only present results from a fixed effects panel data specification. The alternative random effects
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estimation (presented in Tables A.6 and A.7 in Appendix A) assumes the exogeneity of all the

regressors with the random individual effects.18 This is a strong assumption may not be realistic

in our case. We use a test for overidentifying restrictions to test for fixed versus random effects

and find that the hypothesis of the regressors being orthogonal to the state-level fixed effect is

rejected.19 For this reason the fixed effect specifications is our preferred specification.

The columns FE1, FE2, FE3 and FE4 in Tables 2.5 and 2.6 estimate eq.(3.1) using a fixed effects

panel data model. In column FE1 we do not have any controls for demographics or the effect of

time. In FE2 we introduce demographics while FE3 includes quarter dummies as well. However,

FE4 is the most comprehensive specification with year-quarter time dummies that capture any

variation that may exist in all the time periods under consideration. Since we are using market

shares of all three household appliances, viz. clothes washers, dishwashers and refrigerators, we

have appliance dummies to control for the type of appliance. As mentioned before, the coefficients

that are of interest are the ones for the appliance type interacted with the average rebate amount.

The baseline is the case where there are no rebates. A positive coefficient for the interaction of

appliance type with average rebate amount would indicate a favourable effect on the ENERGY

STAR sales share of the appliance due to the rebate.

The results in Table 2.5 and Table 2.6 show that while utility rebates for clothes washers show

a positive and significant effect the effect is not the same for dishwashers and refrigerators. The

effect, while positive and significant for dishwashers in FE1, FE2 and FE3 loses its significance in

FE4. The impact of rebates is not significant for refrigerators. The FE3 specification indicates that

the effect is not robust for dishwashers and refrigerators as it is for clothes washers.

We choose the FE4 specification over FE2 and FE3 because it is the most comprehensive

specification. If we compare the results from Table 2.6 with those from Table 2.5 where we use

the simple average we notice that the results are very similar in terms of their effects as well as

significance. Results from our preferred specification, FE3 from Table 2.6 show that a US$1 increase

in utility rebates will lead to a 0.3% increase in the share of ENERGY STAR clothes washers but

18Random effect models are better suited to estimating models that have time-invariant independent variables.
They are also more efficient than the fixed effects.

19We use the xtoverid command (Schaffer and Stillman, 2006) in STATA.
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the effect is not significant and robust for dishwashers and refrigerators.

We should note, however, that the average weighted clothes washer rebate is around US$15.

Therefore, a US$15 increase leads to a 4.5% in the share of sales of ENERGY STAR clothes

washers. We can conclude that the rebate programs have had a positive and significant effect on

clothes washers but they have not made much impact for the other appliances.

If we consider other controls in explaining the sales of ENERGY STAR appliances we see that

there is a positive effect of average personal income. We expect wealthier people to buy ENERGY

STAR appliances since they are, on average, about US$350 more expensive than non-ENERGY

STAR models. Our result is similar to that in the literature of tax incentives on the sales of

hybrid cars, e.g. in Gallagher and Muehlegger (2008), which have shown that the effect of income

is positive. The effect of earnings in our regressions results is positive and significant. We also

look at the effect of education on the purchase of energy-efficient appliances. We find that the

higher is the fraction of people having a degree in a state the more likely they are to purchase

an ENERGY STAR clothes washer. This could be due a greater awareness of ENERGY STAR

products and appliances, or a greater concern for the environment. Note that these two effects,

become insignificant when we include time dummies. We expect the coefficient for the price of

electricity to be positive implying that a higher cost of running appliances would cause people to

switch to more energy-efficient ones. This is borne out in our specification. However, on including

quarter dummies, this coefficient becomes insignificant.

2.7 Policy Implications

We use estimates from our preferred specification, FE4 from Table 2.6, to examine the effect of

utility rebates. Since the coefficient for clothes washers rebates is robust over specifications FE2

to FE3 we only consider clothes washers and exclude dishwashers and refrigerators for calculating

the cost of the rebate programs. We first perform a counterfactual exercise in which we assume

that none of the states have a utility rebate in place, i.e. β2c = 0 in Eq.2.1. This gives us the

market share of ENERGY STAR clothes washers if no utility rebate had been offered, say ỹ. Since
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Table 2.5: Regression Models with Average Utility Rebates (2001 – 2006)

Fixed Effects

Variable FE1 FE2 FE3 FE4

Intercept -1.596a -48.100a -49.672a -.990a

(.032) (8.255) (9.556) (.020)

CW*Rebate .978a .335a .352a .245a

(.137) (.072) (.071) (.065)

DW*Rebate 1.571a .395b .437b -.379a

(.205) (.179) (.180) (.086)

RF*Rebate 1.049a .211c .205c .024
(.158) (.112) (.118) (.083)

DW dummy .860a 1.768a

(.058) (.546)

RF dummy .043 .499
(.037) (.360)

CW*Log Personal Income 3.848a 4.035a

(.729) (.832)

DW*Log Personal Income 3.864a 4.051a

(.727) (.831)

RF*Log Personal Income 3.859a 4.047a

(.728) (.831)

CW*Education 6.192a 5.784a

(1.318) (1.358)

DW*Education 2.546b 2.145c

(1.184) (1.228)

RF*Education 4.290a 4.034a

(1.175) (1.229)

CW*Log Electricity Price .441 -.002
(.465) (.598)

DW*Log Electricity Price .334 -.099
(.483) (.623)

RF*Log Electricity Price .469 -.087
(.463) (.595)

Quarter dummies*Appliance dummies Yes
Year-Quarter dummies*Appliance dummies Yes
State Fixed Effects Yes Yes Yes Yes

Observations 3599 3599 3599 3599
Groups 50 50 50 50
R2 .272 .543 .573 .922
F -statistic 270 362 601 12193

Significance levels : a : 1% b : 5% c : 10%, Standard errors clustered at the state level

Dependent variable is Log (Share of sales of ENERGY STAR Appliances)

Utility rebate amounts re-scaled, CW: Clothes Washers, RF: Refrigerators, DW: Dishwashers
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Table 2.6: Regression Models with Average Weighted Utility Rebates (2001 – 2006)

Fixed Effects

Variable FE1 FE2 FE3 FE4

Intercept -1.491a -49.067a -50.440a -.995a

(.029) (8.247) (9.568) (.017)

CW*Rebate 1.250a .331c .340c .308b

(.199) (.179) (.175) (.124)

DW*Rebate 2.132a .977a .989a -.504
(.583) (.161) (.181) (.402)

RF*Rebate 1.311a -.087 -.086 .206
(.447) (.277) (.237) (.143)

DW dummy .823a 1.950a

(.054) (.558)

RF dummy .004 .704c

(.035) (.371)

CW*Log Personal Income 3.927a 4.117a

(.729) (.833)

DW*Log Personal Income 3.932a 4.122a

(.728) (.832)

RF*Log Personal Income 3.930a 4.119a

(.728) (.832)

CW*Education 6.467a 6.082a

(1.342) (1.378)

DW*Education 2.595b 2.218c

(1.230) (1.277)

RF*Education 4.214a 3.933a

(1.190) (1.247)

CW*Log Electricity Price .449 .010
(.476) (.611)

DW*Log Electricity Price .357 -.072
(.490) (.632)

RF*Log Electricity Price .537 -.008
(.479) (.616)

Quarter dummies*Appliance dummies Yes
Year-Quarter dummies*Appliance dummies Yes
State Fixed Effects Yes Yes Yes Yes

Observations 3599 3599 3599 3599
Groups 50 50 50 50
R2 .242 .540 .569 .919
F -statistic 377 543 855 5222

Significance levels : a : 1% b : 5% c : 10%, Standard errors clustered at the state level

Dependent variable is Log (Share of sales of ENERGY STAR Appliances)

Utility rebate amounts re-scaled, CW: Clothes Washers, RF: Refrigerators, DW: Dishwashers
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the estimated coefficient of the effect of the utility rebate variable is positive, the market share for

ENERGY STAR clothes washers will be lower than the fitted values using the original estimating

equation, say ŷ. We use the ratio of these fitted values,
ỹ

ŷ
and multiply it with the actual market

share to obtain the counterfactual market share if there had been no rebate. The difference between

the counterfactual and the actual market shares is the effect of the utility rebates.

We have only yearly sales figures of clothes washers in every US state from 2001 to 2006.

However, we do have the quarterly sales figures for the overall US. Therefore, to get an approximate

value of the quarterly sales in each state we use the overall US quarterly sales figures over the entire

period. This will account for the seasonality in sales that may exist. We use these imputed values

to obtain the the increase in the units of ENERGY STAR clothes washers sold in each state, i, in

time t given by

IUSit = AUSit − CUSit where CUSit =
ỹ

ŷ
∗AMSit (2.2)

where IUSit is the increase in units sold of ENERGY STAR clothes washers, AUSit is the actual

imputed units sold, AMSit is the actual market share and CUSit is the counterfactual imputed

units sold.

The total carbon saving, TCSit, is

TCSit = IUSit ∗∆Energy Use ∗Average Life ∗ Carbon Emissions Factor (2.3)

where ∆Energy Use is the difference in the energy use between an average ENERGY STAR and

an average non-ENERGY STAR clothes washer. The ‘Average Life’ is the average lifetime of a

clothes washers which is typically 11 years (US Department of Energy, 2008b). Annual estimates

of the average energy used by ENERGY STAR and non-ENERGY STAR clothes washers have

been obtained from D&R International, Ltd. and are listed in Table 2.7. The figures indicate

the average energy consumed in a year under normal usage. We use the carbon emissions factor

obtained by Sanchez et al. (2008) to calculate the energy saving. Sanchez et al. (2008) provide the

methodology for estimating carbon saving. They first estimate the aggregate discounted energy

bill saving using annual average energy prices published by the US DOE. Using carbon emissions
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Table 2.7: Average Energy Use of Clothes Washers (in kWh/year)

Year non-ENERGY STAR ENERGY STAR

2001 854 290

2002 829 297

2003 829 297

2004 615 254

2005 529 243

2006 531 234

Source: D&R International Ltd.

factors for electricity from the EPA’s national average marginal carbon factor they transform the

energy saved into the amount of carbon equivalent saved. The EPA’s national average marginal

carbon factor for electricity is calculated from models required under the UN Framework Convention

on Climate Change and historical data from the Emissions and Generation Resource Integrated

Database (eGRID) published by the US EPA. Since electricity is generated from both natural gas

and oil the carbon factors are assumed to be constant at 13.65 kg C/GJ for natural gas and 18.72

kg C/GJ for oil through the period under consideration. The carbon emissions factor is assumed to

be 0.203 kg C/kWh.20 Therefore, total energy saving are in terms of kg carbon equivalent forgone.

We find that the energy saved leads to an equivalent carbon saving of around 78 thousand tonnes.

The total rebate outlay, Total Rebateit, in state i in time t is given by

Total Rebateit = Utility Rebateit ∗AUSit (2.4)

where Utility Rebateit is the average weighted rebate amount. This assumes that redemption rate

for rebates is 100%. However, according to Spencer (2002), the redemption rate of mail-in rebates

for typically high-value products having a high rebate value is around 40%. After accounting for

instant rebates we calculate the cost of carbon emissions forgone using both redemption rates to

get a range of the cost. A 100% redemption rate on mail-in rebates leads to a rebate spending of

US$33.21 million while assuming a 40% redemption rate reduces that figure to US$13.35 million.

20The carbon emissions factor has been obtained from the Cadmus Group.
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The cost of carbon emissions forgone, Total Cost, is

Total Cost =

∑
i,t

Total Rebateit∑
i,t

Total Carbon Savingit
(2.5)

Using the figures for the rebate outlay this translates to a cost of US$426 for every tonne of carbon

emissions forgone when the redemption rate is 100% while the cost falls to US$171 with the lower

redemption rate of 40%. If we compare the cost of reducing a tonne of carbon to the social cost of

carbon as estimated by Nordhaus (2007), which is US$17 per tonne, we find that utility companies

end up paying much higher for greenhouse gas reductions. However, our lower estimate of US$171

per tonne compares favourably with the larger estimate of the social cost of carbon (US$350 per

tonne) obtained by Stern (2007).

There may be concerns of a “rebound effect”. This could happen when the purchase of a high-

efficiency clothes washers results in higher usage and, therefore, eliminates the energy saving made

by switching from a standard efficiency machine. However, Davis (2008) uses household-level data

from a field trial to show that the gains from the energy saving are not offset by higher usage. The

field trial in Bern, Kansas (population approximately 200) was conducted to estimate the energy

and water savings of h-axis clothes washers by replacing the more inefficient v-axis washers of the

participating households (Tomlinson and Rizy, 1998). Davis (2008) estimates a demand function

for clothes washing and finds the price elasticity of utilization to be very low at -0.06. We can,

therefore, assume that the “rebound effect” is not significant in terms of estimating the energy

saving.

As mentioned before, one of the reasons why utilities have Demand Side Management programs,

like rebates, in place is to reduce peak demand. For utility companies in a state with very little

electricity supply, like California, the cost of buying peak power when demand exceeds supply is

very high. The other option is to start peaking plants that are usually natural gas and are very

expensive to start up and run. The cost, per megawatt hour, of the utility rebate programs comes

to around US$35. This is obtained by multiplying the cost per tonne (US$171) with the carbon
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Table 2.8: Costs of Electric Generation Alternatives (US$/MWh)

Type Base Case with Carbon Charge
US$25/tCO2

with same cost
of capital

Nuclear 84 66

Coal 62 83

Gas 65 74

Source: du2009update, original values are in cents/kWh.

emissions factor (0.203 kg C/kWh). This cost compares very favourably to the average on-peak

spot prices for electricity. Table A.8 shows the figures for on-peak as well as off-peak spot prices

at different pricing points. The mean of average on-peak (nominal) prices from 2003 to 2006 is

US$60 which is considerably higher than the cost of the rebate programs.21 The mean of the

minimum average on-peak spot prices over the four years, US$48, is also higher than the cost of the

rebate programs. We can, therefore, conclude that the rebate program for clothes washers has been

successful for utility providers that are looking to reduce the demand for electricity by providing

incentives to consumers for switching to more energy-efficient models.

Since utilities are also concerned about the costs involved to build and operate additional power

plants we can compare the costs of the rebate programs to that of building one. Du and Parsons

(2009) have calculated the cost of electric generation for the three major types of power plants,

viz. coal-fired, gas-fired and nuclear. Their calculations, in Table 2.8 are an updated version of the

figures published in Deutch et al. (2003). Du and Parsons (2009) find that the cost of constructing

and operating a nuclear power plant is highest, at US$84 per megawatt hour. Coal and gas-fired

power plants are more cost-effective at US$62 and US$65 per megawatt hour. However, if the social

cost of carbon is considered to be US$25 per tonne of CO2 emitted then the costs rise substantially

to US$83 and US$74 for coal- and gas-fired plants respectively. Having utility rebate programs in

place are, therefore, a cost-effective alternative to building and running additional power plants.

21The mean of average on-peak real prices from 2003 to 2006 is US$57.
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2.8 Conclusion

In this essay we have looked at the effectiveness of various financial incentives provided by utility

companies on the sales of ENERGY STAR appliances by utilizing the variation in timing and

size of the utility rebates across US states. The results indicate that these programs have had a

positive and significant impact on the market share of high efficiency clothes washers but not on

refrigerators and dishwashers. We find that an increase in a dollar value of rebate leads to a 0.3%

increase in the share of ENERGY STAR-qualified clothes washers. Since the average rebate for a

clothes washer is around US$15 this translates to a 4.5% increase in the share of energy-efficient

clothes washers. In terms of the impact of these rebates in terms of the cost of carbon emissions

forgone we find that utility rebates lead to a reduction of 78 thousand tonnes of carbon equivalent.

Using the amount spent by utility on providing rebates we find that, over the lifetime of a clothes

washer, this leads to a cost of US$171 for each tonne of carbon equivalent emissions forgone. The

cost-effectiveness of clothes washer rebate programs in terms of megawatt hour is US$35. Utilities

are, therefore, better-off providing incentives to their customers instead of having additional power

plants that are costlier to build and operate. This figure is consistent with the cost-effectiveness of

DSM initiatives that, according to various authors, range from between US$8.9 and US$253.7.
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Chapter 3

A Spatial Econometrics Approach to

Analysing Emissions Spillovers

3.1 Introduction

The very nature of pollution is such that it is very rarely confined to a particular area but, depending

on the substance and the medium into which it is released, spreads to neighbouring areas. This

spatial aspect of pollution is an important consideration when analysing the emissions of firms.

The presence of multiple polluting facilities is likely to cause the pollution of the respective plants

to be spatially correlated22, as noted by Gray and Shadbegian (2007). While the environmental

performance of a particular plant could be influenced by plant-specific, firm-specific or external

factors, they could also be affected by the environmental performance of neighbouring plants (Gray

and Shadbegian, 2007). This would lead to spatial dependence in emissions.

There are primarily two questions that this essay endeavours to answer. Firstly, is there any

spatial dependency in the emissions of manufacturing facilities? There are many reasons why

we would expect spatial dependence to exist. Gray and Shadbegian (2007) mention that the

presence of “demonstration effects” would lead to neighbouring plants having similar environmental

performance. This is caused by the pressure on a plant to improve on its environmental performance

by being in the presence of other better performing plants. This would lead to a positive spatial

autocorrelation in the emissions of plants. On the other hand, there could be plants that are

dirtier than the surrounding ones. This may be caused by free-riders whereby some plants find

22The formal definition of spatial autocorrelation is: Cor(yi, yj) = E(yiyj)− E(yi)E(yj), i 6= j, where the y’s are
the variable of interest and i and j refer to their respective location.
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it may escape attention by being in the midst of better performers as long as they are within

compliance. This is likely because the regulatory authorities are concerned about the aggregate

level of environmental exposure faced by the population (Antweiler, 2003). So the presence of some

plants that are more polluting than others may not be a cause for concern as long as the health of

the affected population is not compromised by having a maximum tolerated level of pollution.

Secondly, if there is any spatial dependency, what is the channel through which it manifests

itself? Is it more pronounced through a simple geographic distance metric? Or are the similarities

in the SIC codes more important? There is sufficient evidence to believe that spillovers exist and

that these spillovers are greater in magnitude when firms are closer. There could be techonological

spillovers so that firms within the same industry have similar equipment or similar pollution abate-

ment technology. In that case we would expect very strong spatial dependence in the emissions of

firms in the same sector.

To answer these questions I use data from the National Pollution Release Inventory of Canada

published by Environment Canada. This provides data on facility-level emissions. Using the

coordinates of the location of the facility, I can obtain the population in the surrounding area from

the Gridded Population of the World (version 3) dataset. I also use the US Environment Protection

Agency’s Risk-Screening Environmental Indicators (RSEI) database (Version 2.0 b2) to calculate

toxicity-weighted or health-indexed emissions.

I use various spatial econometric models to analyse the data. The spatial econometric models

are based on the parsimonious spatial autoregressive regression (SAR) model. I initially analyse

the data using the levels of toxic emissions. I also use the change in emission to study if there is any

spatial dependence. Using differences is econometrically superior to using levels since it accounts

for fixed effects. After using the two measures of closeness individually, I analyse the data using

them simultaneously. I find that, compared to OLS results, spatial dependencies exist and are

significant as indicated by the statistical significance of the spatial autoregressive parameters. My

results also indicate that the effect of the industry SIC distance is substantially stronger than that

of geographical distance.

Methodologically, this essay is closest to Gray and Shadbegian (2007) who use plant-level EPA
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and Census data from the US to analyse spatial effects that may affect air pollutant emissions and

regulatory compliance. In this essay I use a more comprehensive set of manufacturing facilities and

an SAR model with two weight matrices simultaneously to extract spatial dependencies affecting

air pollutants, total pollutants and air pollutants that are causes of ground level ozone, haze and

acid rain.

The rest of the essay is structured as follows. The next section describes the NPRI and popula-

tion data. Section 3.3 discusses the spatial autoregressive model I will use to measure the pollution

abatement spillovers. Spatial and non-spatial regression results and their interpretation are pro-

vided in section 3.4. The penultimate section in this chapter discusses the empirical results and

their possible causes while the last section concludes.

3.2 Data

3.2.1 National Pollutant Release Inventory

Emissions data is obtained from Environment Canada’s National Pollutant Release Inventory

(NPRI) that contains publicly available information on the releases and transfers of key pollutants

in various communities. The NPRI was established in 1992 and legislated under the Canadian

Environmental Protection Act, 1999 (CEPA 1999). Companies are required to report information

on releases and transfers of pollutants on an annual basis. However, there are certain reporting cri-

teria for reporting to the NPRI. Pollutants from mobile sources such as trucks and cars, households,

facilities that release pollutants on a smaller scale and certain sector activities, such as agriculture

and education and some mining activities, are not included in the NPRI but are reported under

a separate program. Reporting for each NPRI substance includes an indication of whether the

substance was manufactured, processed, or otherwise used and the nature of such activities and

uses during a year.

The NPRI is a comprehensive database and also reports the number of employees in each facility

as well as the geographic location in terms of latitude and longitude. The number of employees

can be used as a proxy for the size of the facility since sales and production data are not available.
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Table 3.1: Number of Facilities by SIC Codes

SIC Code SIC code Description Frequency Percentage

20 Food And Kindred Products 317 10.85
21 Tobacco Products 3 0.1
22 Textile Mill Products 21 0.72
23 Apparel And Other Finished Products Made From Fabrics And

Similar Materials
4 0.14

24 Lumber And Wood Products, Except Furniture 359 12.28
25 Furniture And Fixtures 62 2.12
26 Paper And Allied Products 172 5.88
27 Printing, Publishing, And Allied Industries 89 3.04
28 Chemicals And Allied Products 434 14.85
29 Petroleum Refining And Related Industries 55 1.88
30 Rubber And Miscellaneous Plastics Products 238 8.14
31 Leather And Leather Products 1 0.03
32 Stone, Clay, Glass, And Concrete Products 180 6.16
33 Primary Metal Industries 198 6.77
34 Fabricated Metal Products, Except Machinery And Transporta-

tion Equipment
282 9.65

35 Industrial And Commercial Machinery And Computer Equipment 67 2.29
36 Electronic And Other Electrical Equipment And Components,

Except Computer Equipment
66 2.26

37 Transportation Equipment 178 6.09
38 Measuring, Analysing, And Controlling Instruments; Photo-

graphic, Medical And Optical Goods; Watches And Clocks
5 0.17

39 Miscellaneous Manufacturing Industries 192 6.57

Total 2923 100

Geographic coordinates are essential to perform a spatial analysis of the data. I have considered

only manufacturing facilities. These are facilities with 2 or 3 as the first digit of their four-digit

SIC codes. Table 3.1 shows the breakdown of the facilities in my sample by their two digit SIC

codes. I have also considered all the provinces in Canada that have manufacturing facilities. The

numbers, by each province, are reported in Table 3.2. As expected, the provinces of Alberta, British

Columbia, Ontario and Québec make up the bulk of Canadian manufacturing facilities.

The NPRI is similar to the Toxics Release Inventory (TRI) of the United States Environmental

Protection Agency (US EPA). One of the advantages, according to Harrison and Hoberg (1994), of

using the NPRI over the TRI is that Canada has followed a policy of negotiations with polluters

when it comes to the regulation of toxic substances rather than enforcing the regulations. This con-

siderably lowers the presence of regulatory threat. A weak regulatory threat means that reductions
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could be attributed to other factors such as, for example, voluntary reductions or technological

adoption. Olewiler and Dawson (1998) also report that Canadian manufacturing industries are

considerably more polluting than their US counterparts which suggests that Canadian regulations

are somewhat more lenient than the US. This, similar to the presence of a lower regulatory threat,

is an advantage for studying the impact of voluntary pollution abatement activities since the ef-

fect of regulatory intervention, in the Canadian context, should not be very significant. Antweiler

(2003) has shown that while the effect of regulatory threat in Canada is statistically significant the

magnitude is very small and concludes that it is not a very effective instrument.

I use emissions data from a cross-section of facilities in all the provinces. Table 3.2 shows the

number of manufacturing facilities that are located in the respective provinces. Most of the facilities

are located in Ontario and Québec with a little more than 70% of all the manufacturing facilities

in those two provinces. The time period of the data ranges from 2003 to 2006. While I will be

using the average over the 2003 - 2005 period to estimate spatial regressions for emissions levels, I

will consider the 2003 - 2006 period for calculating spatial regressions for differences in emissions.

This is described in greater detail in the section on empirical strategy. The rationale for this time

period is that there were relatively small changes in the chemicals added to the NPRI Substance

List. In fact, there were no new chemicals added in 2004 and 2005 after the addition of, mainly,

Volatile Organic Compounds (VOCs) in 2003. The addition of new chemicals to the list was also

not very drastic in 2006 when only three Polycyclic Aromatic Hydrocarbons and 15 VOCs were

added. This relative lack of activity in adding chemicals to the NPRI list, compared to other years,

makes this time period especially conducive to studying the emission activities. There were also no

modifications to existing substances or to their reporting thresholds between 2003 and 2006 thus

ensuring that there would be no compatibility issues.

There are, however, some limitations to using the NPRI data.23 They include the fact that

all emissions are self-reported, not all pollutants of interest are reported and not all sources of

pollution are included. Since the emissions are self-reported there is an incentive for facilities to

under-report their emissions. However, companies that meet the reporting requirements and fail

23See Harrison and Antweiler (2003) for a more detailed discussion of these issues.
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Table 3.2: Number of Facilities by Provinces

Province Frequency Percentage

Alberta 243 8.31
British Columbia 305 10.43
Manitoba 94 3.22
New Brunswick 45 1.54
New Foundland and Labrador 8 0.27
Nova Scotia 53 1.81
Ontario 1481 50.67
Prince Edward Island 7 0.24
Québec 629 21.52
Saskatchewan 58 1.98

Total 2923 100

to report or under-report their emissions face penalties under CEPA 1999 so a risk for improper

reporting does exist.

There are very detailed reports of emissions by polluting facilities. The NPRI reports releases

to the air, water and land with emissions being broken down into on-site releases and as well as

transfers to off-sites and recycling. I only consider pollutants that were released on-site. Since

the majority of the emissions were released into the air I use only on-site air releases as well as

total on-site releases. This will facilitate the spatial analysis of any pollution abatement for the air

pollutants as well as overall emissions.

A number of chemical pollutants are reported to the NPRI. Emissions of different pollutants

cannot, ideally, be treated equally. For example, the health effects of being exposed to one pound

of (friable) asbestos is not the same as that of one pound of silver and its compounds. The US

EPA has assigned different toxicity scores to the various chemicals in its list to account for the

different health impacts. For example, one pound of (friable) asbestos is 10,000 times more toxic

than an equivalent amount (by mass) of silver and its compounds when ingested either orally or

by inhalation. Therefore, one of the issues concerns the aggregation of various pollutants released

in the production process. Instead of using just the total emissions or considering the release of

individual chemicals, many authors have used a weighted sum of emissions where the weights reflect

the toxicity of the chemicals (see, e.g., Hettige et al. (1992) and Horvath et al. (1995)).
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Toxicity scores are obtained from the US EPA’s Risk-Screening Environmental Indicators database

that provides a list of chemicals as well as their toxicity based on whether they are ingested orally

or inhaled. Since the NPRI provides details on the medium into which a particular pollutant was

emitted I can construct a toxicity-weighted emissions variable. I use the toxicity scores for inhala-

tion to weight the pollutants emitted into the atmosphere while the values for oral ingestion were

used to weight the pollutants emitted into water bodies or the ground.

The variable of interest is the emissions from facilities. To account for the volatility of emissions

I calculate the average emissions over three years. The data for emissions levels are averaged over

three years from 2003 to 2005 while the emissions data used for analysing differences is averaged

over the years 2003 to 2005 and also from 2004 to 2006. I consider three types of emissions to

investigate if the spatial dependence varies with the classes of emissions. The first type of emission

is a sum of the Criteria Air Contaminants (CACs) that consists of Total Particulate Matter (TPM),

sulphur oxides (SOx), nitrogen oxides (NOx), VOCs, carbon monoxide (CO) and ammonia. TPM

consists of PM10 which is Particulate Matter less than or equal to 10 microns and PM2.5 which

is Particulate Matter less than or equal to 2.5 microns. These CACs, along with some related

pollutants, are the causes of air pollution such as smog and acid rain. The second emission variable

is the toxicity score-weighted sum of pollutants emitted into the atmosphere while the third variable

of interest is the toxicity score-weighted sum of total emissions. As noted in Antweiler and Harrison

(2003), the on-site releases of chemicals in the NPRI follows a log-normal distribution. Therefore,

the dependent variable in all three cases is the logarithm of the variable of interest.

As mentioned previously, there are various factors that may affect the emissions of a particular

polluting facility. One factor may be the presence of a threat of government intervention to regulate

emissions. To measure actual threat I use the share of regulated substances as in Harrison and

Antweiler (2003). The list of regulated substances is compiled in the Canadian Environmental

Protection Act, 1999 (CEPA 1999) which is an important part of Canada’s federal legislation aimed

at preventing pollution and protecting the environment and human health. It has several lists that

are aimed to prescribe reporting requirements for new substances. Substances that are deemed

to be “toxic” under CEPA 1999 are recommended for addition to the List of Toxic Substances
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(Schedule 1) of the Act. As mentioned in Harrison and Antweiler (2003), chemicals in the Priority

Substances List (PSL) and not in CEPA Schedule 1 can be used to measure the regulatory threat.

The reason is that substances are first included in the PSL and then once a decision about the

toxicity is reached24 the substance is included in Schedule 1. However, the PSL has been reduced

substantially since many substances are now included in Schedule 1.

3.2.2 Population Data

Population data for Canada is taken from the Gridded Population of the World (GPW) produced

by the Center for International Earth Science Information Network (CIESIN) of the Earth Insti-

tute at Columbia University.25 The GPW has taken population data and transformed them into

quadrilateral cells at a resolution of 2.5 arc minutes or about 5 km at the equator. The area of the

cells depends on the latitude and Deichmann et al. (2001) calculate the cell size to vary from 21

km2 at the equator to about 15 km2 at 45◦. However, Antweiler (2003) reports that since Canada’s

population is concentrated mostly in a narrow band between the latitudes of 42◦ and 53◦ the change

in the size of the cells due to a change in latitude can be ignored.

The location of the facilities from the NPRI database is matched with the GPW data so that

each firm is placed in one of the quadrilateral cells. It is very unlikely that facilities are located at

the centre of a cell so I take a radius of 2 cells26 to calculate the population around a particular

manufacturing plant. Since the area around each facility is the same the population figures are

essentially equivalent to the population densities. While the advantage of using the GPW data

is the ability to construct radial areas to approximate the area covered by the emission, the dis-

advantage is that demographic and socioeconomic data from the Census cannot be matched with

those quadrilateral cells. However, there is enough anecdotal evidence that suggests that concerns

about “environmental justice” are not a major issue in Canada as it is in the US where research has

suggested that demographics do matter (See, e.g., Arora and Cason (1999) and Hamilton (1999)).

24The process, as described by Harrison and Antweiler (2003), is not as formal in practice and regulations are
introduced only if negotiations about voluntary controls fail.

25http://sedac.ciesin.columbia.edu/gpw/
26I have used various radii to calculate the population around a facility. Results, although not reported in the

essay, show that the estimates are not sensitive to the choice of radius in a particular empirical specification.
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Table 3.3: Summary Statistics

Variable Obs. Mean Std Dev Min Max

Log of CAC Emissions 2150 17.420 2.685 5.809 25.987
Log of HI Air Emissions 1426 18.941 3.952 1.194 29.972
Log of HI Total Emissions 1641 19.462 4.063 1.194 29.972
Fraction of CEPA-regulated CAC Emissions 2150 0.796 0.316 0 1
Fraction of CEPA-regulated HI Air Emissions 1426 0.627 0.442 0 1
Fraction of CEPA-regulated HI Total Emissions 1641 0.559 0.455 0 1
Fraction of PSL-regulated HI Air Emissions 1426 0.010 0.084 0 1
Fraction of PSL-regulated HI Total Emissions 1641 0.011 0.087 0 1
Log of Employees 2923 4.651 1.187 2.303 8.858
Log of Population 2919 10.344 1.996 2.197 13.473
∆ Log of CAC Emissions 1444 0.016 0.429 -4.615 4.344
∆ Log of HI Air Emissions 816 -0.110 1.092 -9.636 12.184
∆ Log of HI Total Emissions 907 -0.064 1.391 -12.053 16.613
∆ Fraction of CEPA-regulated CAC Emissions 1444 -0.003 0.057 -0.747 0.573
∆ Fraction of CEPA-regulated HI Air Emissions 816 -0.003 0.130 -0.997 1
∆ Fraction of CEPA-regulated HI Total Emissions 907 -0.001 0.138 -0.999 1
∆ Fraction of PSL-regulated HI Air Emissions 816 0.001 0.060 -0.956 0.982
∆ Fraction of PSL-regulated HI Total Emissions 907 -0.001 0.062 -1 0.999
∆ Log of Employees 1637 -0.016 0.212 -6.098 0.658
∆ Log of Population 1611 0.052 0.071 -0.229 0.461

I use the (natural) logarithm of the population figures for 1990 instead of the figure from

contemporaneous years. Arora and Cason (1999) note that using demographic characteristics prior

to the emissions release data will most likely be exogenous. We can expect that the population

figures from 2005 will be affected by the emissions from the corresponding year. However, we can

expect the population in 1990 to be exogenous to the emissions between 2003 and 2006. It is

possible though, as explained by Arora and Cason (1999), that this assumption does not hold and

that there may be some endogeneity bias if people are located in areas based on expectations of

how emissions will change after 1990. I also use GPW data from 1995 to calculate the change in

the population between 1990 and 1995 and use that in the difference regressions.
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3.3 Empirical Strategy

3.3.1 Standard Spatial Models

The spatial dependence of pollution activities may be captured by using spatial econometric meth-

ods. The basic assumption of spatial econometrics is that observations are not independent of

their location but depend on their neighbouring observations. There are two ways in which spatial

dependence can be incorporated in the standard linear regression model. If we need to analyse the

existence and strength of the spatial dependence then our variable of interest will have a spatially

lagged dependent variable. This is referred to as a spatial lag model. There is also a spatial error

model in which the spatial dependence is incorporated in the disturbance term.27 Since my concern

is the existence and strength of pollution emission spillovers I will restrict myself to the spatial lag

model, also known as a mixed regressive, spatial autoregressive model.

The spatial lag model can be written as

y = ρWy +Xβ + ε (3.1)

where y is the emissions (level or differenced) variable, ρ is the spatial autoregressive coefficient, W

is the exogenously given n×n spatial weight matrix, Wy is the spatially lagged emissions variable,

X is a matrix of independent (level or differenced) variables and ε is a vector of i.i.d. error terms.

The reduced form of Eq. (3.1) is y = (I − ρW )−1Xβ + (I − ρW )−1ε where I is an n × n identity

matrix. The spatial lag term Wy is, therefore, correlated with the error term. This implies that

estimating the equation by OLS will be biased and inconsistent. The standard procedure is to

use maximum likelihood methods for estimating the unknown parameters. The assumption for

the error terms is that they follow a joint normal density function. Under this assumption, the

log-likelihood function of the SAR model is:

ln L(β, σ, ρ; y,X) = −N
2

ln(2π)−N
2

ln(σ2)+ln |I − ρW |− 1

2σ2
(y−ρWy−Xβ)′(y−ρWy−Xβ) (3.2)

27See Anselin (1988) for the classic text on spatial econometrics. For more recently written introductions to this
field refer to Anselin and Bera (1998), Anselin (2001) and LeSage and Pace (2009).
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The calculation of the spatial Jacobian would complicate matters but Ord (1975) showed that it

can be simplified into a function consisting of the eigenvalues ωi of the spatial weight matrix as:

|I − ρW | =
N∏
i=1

(1− ρωi) ⇒ ln |I − ρW | =
N∑
i=1

(1− ρωi)

Given ρ, the maximum likelihood estimators of β and σ2 can be obtained from the first-order

conditions from maximizing the log-likelihood function Eq. (3.2). Substituting these values in

Eq. (3.2) will give us a concentrated log-likelihood function in ρ. Numerical optimization methods

can then be used to obtain a maximum likelihood estimate of ρ. The spatial econometrics toolbox

in MATLAB provided by LeSage (1999) has been used to evaluate all these estimates.

One of the critical steps in any spatial regression estimation is the construction of the weight

matrix, W . The elements of W give a notion of “distance” between each observation. This “dis-

tance” could be either geographic distance or how close one firm is to another with respect to the

SIC industry code. To give an example of the latter, one could think of firms with the same industry

classification code to be “closer” than firms with different industry classification codes. Geographic

distance can be calculated using the Cartesian formula or the more accurate Haversine formula28.

I use the Haversine formula to calculate the geographic distance between pairs of facilities.

The choice of the appropriate weight matrix to use, W , is also a crucial step. A common way to

choose W is to obtain the maximum likelihood values of the different weight matrix specifications

and choose the one with the maximum value of the likelihood function. While using the geographical

distance as a measure of closeness of the facilities I have used wij = d−1ij and wij = d−2ij as the

distance between facilities i and j. The diagonal elements, wii of W are, by convention, equal to

28Haversine formula:

R = earth’s radius (mean radius = 6,371km)

∆lat = lat2 − lat1

∆long = long2 − long1

a = sin2(
∆lat

2
) + cos(lat1).cos(lat2).sin2(

∆long

2
)

c = 2.atan2(
√
a,
√

1− a)

d = R.c

where the angles need to be expressed in radians.
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zero. Using the inverse squared distance specification lends itself to the familiar gravity model in

international trade.29 It also assigns more weight to nearer observations. The weight matrix is also

row-standardized with rows summing to one to ensure that the spatial autoregressive parameter

ρ lies between –1 and +1. This also ensures that the spatial parameter ρ is comparable between

models (Anselin and Bera, 1998). I have also used the SIC code to measure the “industrial distance”

between plants to see if plants in closer industry classifications have similar abatement activities.

Facilities that have the same 2-digit SIC codes have been assigned a distance of zero. For example,

βij = 0 for two facilities i and j that have an SIC code 20 (Food and Kindred Products). Facilities

that do not have the same 2-digit SIC codes but have the same 1-digit SIC code have been assigned

a distance of 1 while those with different SIC codes have been assigned a distance of 2. For example,

βij = 1 for a facility i that has an SIC code of, say, 20 and facility j that has an SIC code of, say, 26.

If the 1-digit SIC codes are different, say one facility belongs to SIC code 2 and the other facility

has an SIC code of 3 then βij = 2. The standard procedure of using the inverse of the SIC distance

is not applicable in this case since wij = β−1ij →∞ and wij = β−2ij →∞ when βij = 0. Therefore,

I have considered the elements of W to be wij = e−βij and wij = e−2βij where βij is the difference

between the 2-digit SIC code of facilities i and j. This exponential form will ensure that when two

plants have the same 2-digit SIC code, wij is defined and is equal to unity.

The wij terms should, ideally, be exogenous to the model. However, it may be argued that

the location decision of a firm is endogenous. Firms that have a high pollution intensity may be

located in non-urban areas while low pollution intensity facilities may be situated in a more urban

setting. There may also be zoning restrictions as a form of local regulation that may affect high

pollution intensity firms, as discussed in Antweiler (2003). However, using differenced variables

should mitigate this problem. By differencing the emission level variable we get the rate of change

of emission. This should enable us to deal with the endogeneity of the location decision.

In keeping with standard procedure, I first estimate models using OLS and use the results as a

base for comparing the spatial models. With regard to dependent variables, I use the level values

to analyse the spatial dependence in the environmental performance but then use the differenced

29Results using the inverse distance specification are provided in Appendix B.2.
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Table 3.4: LM Lag Statistic Tests for Spatial Dependence

Levels Differences

Dependent Variable WGEO WSIC WGEO WSIC

CAC Emissions 14.722 292.118 0.060 10.434
(0.000) (0.000) (0.807) (0.001)

Health-indexed Air Emissions 0.204 57.820 0.234 0.267
(0.652) (0.000) (0.628) (0.605)

Health-indexed Total Emissions 3.135 230.255 1.329 47.533
(0.077) (0.000) (0.249) (0.000)

p-Values are in parentheses. Critical χ2 values for the LM lag statistic tests are 2.71, 3.84 and 6.63 for significance

levels 10%, 5% and 1% respectively. WGEO and WSIC are weight matrices with wij = (geographical distanceij)
−2

and wij = e−2∗(SIC distance)ij as elements in the weight matrices respectively.

values to account for any endogeneity in terms of location. Comparing the results of the spatial

models with the OLS results provide an indication of how strong the spatial interactions may be. All

spatial and OLS regression models are estimated using the Econometrics Toolbox for MATLAB.30

3.3.2 Extension of Standard Spatial Models

The standard spatial model Eq. (3.1) can be modified to incorporate spatial regression models

with two or more weight matrices. In the previous section I have considered two channels through

which pollution spillovers may work, viz. the geographical distance and the SIC code “industry”

distance. They were, however, modelled separately. Modifying Eq. (3.1) to incorporate two spatial

weight matrices can be used to analyse separate influences in the same model. The extension of

the standard spatial model can then be written as

y = ρGEOWGEOy + ρSICWSICy +Xβ + ε (3.3)

where WGEO is used to capture the effect of geographic distance between neighbouring facilities

and WSIC captures the effect of “industry” distance. Compared to Eq. (3.1) the modified SAR

model Eq. (3.3) needs a slight modification to find the estimates. The log-likelihood becomes

30The Econometrics Toolbox for MATLAB can be obtained at www.spatial-econometrics.com.
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ln L(β, σ, ρGEO, ρSIC; y,X) = −N
2

ln(2π)− N

2
ln(σ2) + ln |I − ρGEOWGEOρSICWSIC|

− 1

2σ2
(y − ρGEOWGEOy − ρSICWSICy −Xβ)′ (y − ρGEOWGEOy − ρSICWSICy −Xβ) (3.4)

where the change in maximum likelihood estimation compared to the standard SAR model is the

optimization problem involving the two spatial autoregressive parameters ρGEO and ρSIC . The

MATLAB functions are obtained from the spatial econometrics toolbox.31

The specification with two weight matrices will be useful to test the strength and magnitude of

the spatial dependence in emission between facilities that are geographically closer and in the same

industry. The spatial dependency arising from the geographical distance is of a (geographically)

localized nature in the sense that the emissions of a facility may be affected by the emissions of

other facilities that are in its vicinity, irrespective of the industry the other facility belongs to.

The other kind of spatial dependency that arises from how close or far apart the facilities are with

respect to their respective industries occurs irrespective of geographical factors. While there is no

a priori reason to rank the strength and magnitude of the two kinds of spatial dependencies we

might suspect the latter effect to be stronger than the former.

3.4 Results

3.4.1 Standard Spatial Models

The regression results look at both on-site releases as well as changes in the releases to see if

there are any spatial dependencies in emissions. Each table considers a different emissions variable.

The first table, Table 3.5, reports the regression results of the aggregation of all the Criteria Air

Contaminants. Tables 3.6 and 3.7 contain the regression results of the health-indexed air and total

emissions respectively. The results of the estimation procedure for on-site emission levels are given

in columns (1), (2) and (3) of Tables 3.5, 3.6 and 3.7. The results for changes in emissions are

31The modified MATLAB code for the SAR model with two weight matrices was provided by Donald J. Lacombe.
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reported in columns (4), (5) and (6) in each table. The base regression, to which all the other results

are compared, is the OLS regression (labelled OLS in each table). Spatial regressions are indicated

by WGEO and WSIC using the geographic and industry distance weight matrices, respectively. The

simple SAR model with only one spatial weight matrix is considered initially. The elements of

WGEO are the inverse squared distance specification while WSIC is the SIC code industrial distance

specification described in the previous section. All OLS, WGEO and WSIC regressions have province

dummies to control for province fixed effects and the OLS and WGEO regressions also have two-digit

industry SIC dummies to control for industry fixed effects.

The spatial autoregressive coefficient ρ is the parameter of interest in measuring the presence

and strength of the effect of neighbouring facilities’ emissions and emission changes on the facility

under consideration. Most of the spatial regression results show that the spatial dependence in the

dependent variable is positive and significant though the strength of ρ depends on the emissions

variable as well as the weight matrix considered. While the spatial dependence for CAC emissions

is positive but not significant for the emissions variable when we use the geographical distance

WGEO as the weight matrix, the effect is positive and highly significant for the SIC distance matrix

WSIC. The value of ρ is also positive and very significant for CAC emission changes which suggests

that polluting plants that are closer together both in terms of geographical distance as well as

SIC codes tend to reduce their CAC emissions together. The magnitude of ρ is, however, lower for

changes in emissions when compared to emission levels. Results for health-indexed air emissions are

also similar except that ρ is surprisingly negative and significant when we use SIC distance as the

spatial weight matrix in the regression for emission differences. This negative spatial dependence

suggests that facilities that lower their health-indexed air emissions are surrounded by facilities that

increase theirs thus creating a checkerboard-type situation. However, results for health-indexed

total emissions show that spatial dependence is positive and significant for both emission levels and

changes in emissions. It is negative, albeit insignificant, for changes in emissions when the spatial

regression includes the SIC distance weight matrix WSIC.

Results from the spatial regressions show that the coefficients are not too different from the

OLS regressions. However, the coefficients from OLS results are less significant than those from
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Table 3.5: OLS and Spatial Regression Models for CAC Emissions

Emission Levels Emission Differences†

Variable OLS WGEO WSIC OLS WGEO WSIC

(1) (2) (3) (4) (5) (6)

Intercept 15.510a 13.862a 2.189 0.099 0.099 0.101
(0.473) (0.809) (1.384) (0.067) (0.066) (0.066)

Fraction of CEPA-regulated output -1.321a -1.270a -1.509a -2.108a -2.108a -2.109a

(0.153) (0.155) (0.148) (0.112) (0.112) (0.112)

Log of Employees 1.000a 0.991a 0.858a 0.521a 0.521a 0.526a

(0.042) (0.042) (0.039) (0.073) (0.073) (0.073)

Log of Population (1990) -0.174a -0.163a -0.150a 0.204 0.204 0.223
(0.025) (0.026) (0.023) (0.162) (0.162) (0.162)

ρ 0.087a 0.816a 0.001 0.469c

(0.024) (0.080) (0.037) (0.236)

Province dummies Yes Yes Yes Yes Yes Yes
SIC dummies Yes Yes No

Adjusted R2 0.432 0.434 0.346 0.169 0.169 0.169
Observations 2150 2150 2150 2003 2003 2003
Log-Likelihood -3798 -3891 -402 -401
Spatial Multiplier, 1/(1− ρ) 1.095 5.435 1.001 1.883

Significance at the 1%, 5% and 10% levels are denoted by a, b and c respectively.
The dependent variable is Log (CAC Air Emissions). Standard errors are in parentheses.
Specifications WGEO and WSIC are spatial regressions with wij = (geographical distanceij)

−2 and

wij = e−2∗(SIC distance)ij as elements in the weight matrices respectively.

†: For conserving space I have used the same variable names to report results from the difference specification. All

regressors in columns (4), (5) and (6) should be interpreted as being differences.

the spatial regressions. Including the spatially lagged emission variables in the regressions has the

effect of strengthening the effect of the other explanatory variables. However, this effect is not

very strong. The regressors across all the regression results tables are common, apart from the

fraction of PSL-regulated output in Table 3.5 since none of the CAC substances are present in

the PSL. Since the fraction of CEPA-regulated output and PSL-regulated output are a measure

of the actual regulation and perceived threat respectively we should expect the effect of these two

variables to be negative on the emission level. The higher the regulation or regulatory threat the

lower should be the emissions. This prediction holds for the CAC emissions across the OLS and

spatial specifications with the effect being slightly lower for the latter (as seen by the lower value)

compared to the OLS result. The effect can also be seen in the case of the health-indexed total
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Table 3.6: OLS and Spatial Regression Models for Health-Indexed Air Emissions

Emission Levels Emission Differences†

Variable OLS WGEO WSIC OLS WGEO WSIC

(1) (2) (3) (4) (5) (6)

Intercept 16.675a 16.447a 4.043 0.044 0.044 0.025
(0.973) (1.027) (2.263) (0.184) (0.183) (0.183)

Fraction of CEPA-regulated output -2.251a -2.248a -2.470a -3.944a -3.944a -3.948a

(0.222) (0.220) (0.201) (0.195) (0.194) (0.194)

Fraction of PSL-regulated output -4.951a -4.942a -5.128a -5.463a -5.463a -5.465a

(1.072) (1.060) (1.066) (0.529) (0.527) (0.526)

Log of Employees 1.077a 1.076a 0.980a 0.376c 0.376c 0.377c

(0.084) (0.084) (0.073) (0.193) (0.192) (0.191)

Log of Population (1990) -0.241a -0.239a -0.243a -0.726 -0.726 -0.716
(0.052) (0.052) (0.048) (0.459) (0.457) (0.457)

ρ 0.012a 0.726a -0.0003 -0.254a

(0.002) (0.130) (0.034) (0.019)

Province dummies Yes Yes Yes Yes Yes Yes
SIC dummies Yes Yes No

Adjusted R2 0.301 0.301 0.262 0.261 0.261 0.261
Observations 1426 1426 1426 1305 1305 1305
Log-Likelihood -3218 -3250 -1277 -1277
Spatial Multiplier, 1/(1− ρ) 1.012 3.650 1.000 0.798

Significance at the 1%, 5% and 10% levels are denoted by a, b and c respectively.
The dependent variable is Log (Health-Indexed Air Emissions). Standard errors are in parentheses.
Specifications WGEO and WSIC are spatial regressions with wij = (geographical distanceij)

−2 and

wij = e−2∗(SIC distance)ij as elements in the weight matrices respectively.

†: For conserving space I have used the same variable names to report results from the difference specification. All

regressors in columns (4), (5) and (6) should be interpreted as being differences.

and air emissions variables in Tables 3.6 and 3.7.

The change in actual regulation as well as regulatory threat should also have a negative effect

on the change in emissions. If the change in regulation or regulatory threat is positive we should

expect the the change in emissions to be negative. This is reflected in the negative coefficient for

the variables describing the fraction of CEPA-regulated and PSL-regulated outputs across the OLS

and spatial regressions for all the emissions variables under consideration. The effect is negative

and highly significant throughout.

The number of employees in a facility is taken as a proxy for the scale of operation so we expect

the effect on the emission variables to be positive. More employees in a facility reflect a bigger
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Table 3.7: OLS and Spatial Regression Models for Health-Indexed Total Emissions

Emission Levels Emission Differences†

Variable OLS WGEO WSIC OLS WGEO WSIC

(1) (2) (3) (4) (5) (6)

Intercept 17.586a 16.695a 0.951 -0.111 -0.111 -0.070
(0.899) (0.959) (4.346) (0.040) (0.213) (0.212)

Fraction of CEPA-regulated output -2.625a -2.614a -2.752a -4.495a -4.495a -4.486a

(0.200) (0.199) (0.156) (0.228) (0.228) (0.227)

Fraction of PSL-regulated output -7.534a -7.515a -7.510a -6.377a -6.375a -6.334a

(0.938) (0.928) (0.913) (0.600) (0.597) (0.593)

Log of Employees 0.976a 0.973a 0.903a 0.282 0.284 0.294
(0.076) (0.075) (0.057) (0.223) (0.223) (0.221)

Log of Population (1990) -0.209a -0.198a -0.225a -0.440 -0.443 -0.370
(0.047) (0.048) (0.041) (0.460) (0.515) (0.511)

ρ 0.044a 0.903a 0.012a 0.781a

(0.003) (0.222) (0.0003) (0.139)

Province dummies Yes Yes Yes Yes Yes Yes
SIC dummies Yes Yes No

Adjusted R2 0.370 0.370 0.289 0.240 0.240 0.243
Observations 1641 1641 1641 1516 1516 1516
Log-Likelihood -3664 -3701 -1769 -1761
Spatial Multiplier, 1/(1− ρ) 1.046 10.309 1.012 4.566

Significance at the 1%, 5% and 10% levels are denoted by a, b and c respectively.
The dependent variable is Log (Health-Indexed Total Emissions). Standard errors are in parentheses.
Specifications WGEO and WSIC are spatial regressions with wij = (geographical distanceij)

−2 and

wij = e−2∗(SIC distance)ij as elements in the weight matrices respectively.

†: For conserving space I have used the same variable names to report results from the difference specification. All

regressors in columns (4), (5) and (6) should be interpreted as being differences.

operating scale and therefore, more emissions. The results show that this holds in all specifications

with the elasticity being close to or greater than one in the level of emissions. Changes in the

number of employees also have the same effect on changes in emission as shown by the positive

coefficient in columns (4), (5) and (6) in the regression results tables. This means that if the

scale, as measured by the number of employees, increases the emission also increases. However, the

effect is not statistically significant when the dependent variables are the health-indexed emission

variables.

The effect of population has the expected negative effect on the emission of a facility. This

effect is also significant across all the specifications and emission variables. A higher population
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surrounding the polluting facility will have a greater environmental exposure while we can also

expect the presence of a strong consumer pressure group in more populated areas. This result is

similar to findings in related literature. We would expect changes in population density to have a

positive effect on pollution abatement activities or, in other words, a negative effect effect on changes

in a facility’s emission. My results indicate that this effect holds in the case of health-indexed air

emissions but is of the opposite sign for CAC emissions and health-indexed total emissions. In

almost all cases however, the effect is statistically insignificant.

After having analysed the existence and strength of spillovers in pollution levels as well as

abatement as shown by the positive and significant spatial lag parameter ρ we now turn to inter-

preting the spatial lag model. The effect of a change in any of the explanatory variables on the

change in emissions variable at a particular facility is the sum of the direct impact as well as the

induced impact and is referred to as the spatial multiplier. As shown in Kim et al. (2003), the

spatial multiplier is expressed as 1/(1−ρ) if there were a unit change in every location. This means

that a change in any of the explanatory variables in neighbouring facilities will have an effect on

the emissions of facility i. But how much will the effect be? To find that out the elasticity of the

emissions (evaluated at the mean) from a small change in the fraction of the regulated output we

use

εxk =
βk

(1− ρ)
x̄k

where x̄k is the mean value of xk. The elasticity of the emissions from a small change in the

neighbouring population or employees is

εxk =
βk

(1− ρ)

For example, the elasticity of CAC emission levels from a small change in the fraction of CEPA-

regulated output in column (3) of Table 3.5 is 3.535 while it is 0.273 and 2.125 for changes in

population and employees respectively. If we compare these elasticity values with those obtained

from the OLS regression we can see that they are significantly higher. We can, therefore, conclude

that spatial dependence has a significant effect on the emissions of facilities. The elasticities for all
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Table 3.8: Elasticity of Emission Variables

CAC HI Air HI Total

Variable WGEO WSIC WGEO WSIC WGEO WSIC

(1) (2) (3) (4) (5) (6)

Share of CEPA-regulated output -1.107 -3.527 -1.191 -1.728 -1.869 -3.209
Share of PSL-regulated output -0.063 -0.097 -0.100 -0.178
Log of Employees 1.085 4.663 1.089 0.712 1.018 9.309
Log of Population -0.179 -0.815 -0.242 -0.176 -0.207 -2.320

Note: The weight matrices WGEO and WSIC have wij = (geographical distanceij)
−2 and wij = e−2∗(SIC distance)ij

respectively as elements.

the significant variables are calculated in Table 3.8.

3.4.2 Extension of Standard Spatial Models

Results for the modified SAR model with two weight matrices, Eq. (3.3), are presented in Table

3.9. There are several observations to be made from comparing results of this specification with

the simple OLS and the standard SAR models. Firstly, the SIC distance parameter estimates

ρSIC for all the emission variables, except for difference health-indexed air emission, is positive

and significant. The geographical distance parameter estimates ρGEO, while positive throughout,

are not always significant. This differs from the simple SAR model in which it was positive and

significant for all the emission variables. We can, therefore, conclude that the SIC industry distance

may capture the spatial dependencies in pollution better than simply the geographical distance and

this effect persists even after including both those spatial dependencies in the modified SAR model.

Most of the ρSIC estimates are significant at the 99% level which shows that this specification is

superior to ordinary least squares. Secondly, the variation in the dependent variable is explained

to almost the same extent by both the OLS models and the modified spatial models and for both

emission levels and emission differences.

These results show that there is a much stronger spatial dependence that arises from similar

industrial facilities as compared to the spatial dependence that may arise from how far one facility

is, geographically, with respect to its neighbours. Facilities in similar industries would tend to have
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Table 3.9: Spatial Regression Models with Two Weight Matrices

CAC Air HI Air HI Total

Variable Level Diff.† Level Diff.† Level Diff.†

(1) (2) (3) (4) (5) (6)

Intercept 1.047a 0.101 3.813a 0.025 0.516 -0.071
(0.420) (0.066) (0.875) (0.183) (0.798) (0.212)

Fraction of CEPA-regulated output -1.454a -2.109a -2.467a -3.948a -2.752a -4.486a

(0.150) (0.112) (0.205) (0.194) (0.180) (0.227)

Fraction of PSL-regulated output -5.122a -5.465a -7.516a -6.334a

(1.07) (0.526) (0.934) (0.593)

Log of Employees 0.854a 0.526a 0.980a 0.377b 0.905a 0.296
(0.039) (0.073) (0.076) (0.191) (0.067) (0.221)

Log of Population (1990) -0.138a 0.224 -0.236a -0.716 -0.211c -0.375
(0.023) (0.162) (0.048) (0.457) (0.044) (0.511)

ρGEO 0.092a -0.002 0.026 0.0001 0.054b 0.010
(0.023) (0.027) (0.029) (0.028) (0.026) (0.027)

ρSIC 0.780a 0.478b 0.710a -0.254 0.866a 0.756a

(0.060) (0.236) (0.113) (0.375) (0.052) (0.145)

Province dummies Yes Yes Yes Yes Yes Yes

Adjusted R2 0.398 0.171 0.280 0.261 0.354 0.250
Observations 2150 2003 1426 1305 1641 1516
Log-Likelihood -9804 -5846 -6885 -4546 -7997 -5672

Significance at the 1%, 5% and 10% levels are denoted by a, b and c respectively.
The dependent variable is Log (Emissions variable). Standard errors are in parentheses.

†: For conserving space I have used the same variable names to report results from the difference specification. All

regressors in columns (2), (4) and (6) should be interpreted as being differences.

similar emissions due to technological similarities from using similar processes. The fact that there

are positive spatial autoregressive parameters ρGEO and ρSIC suggests that changes in emissions

by a particular facility is, on average, being positively influenced by its neighbours, in particular,

the “SIC industry” neighbours. So, for example, there is a reduction in the emissions of facility i

when facility j in a “close enough” industry code also reduces its emissions. This, however, goes

the other way as well. A positive spatial dependence implies that an increase in the emissions of

facility i when the emissions of facility j, in a “close enough” industry code, increase.
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3.5 Discussion of Results

The results in the previous section indicate the presence of strong and positive spatial dependence

in pollution emissions. While this holds for both emission levels as well as emission differences, the

latter is a more robust result because of the econometric superiority of using differences over levels.

Even after accounting for facility-specific and location-specific factors we observe a strong spatial

dependence.

The consistent theme in the results is that spillovers are more localized when geographic distance

is used. The spillovers are more global in scope when the industry distance metric is considered.

We can conclude this from analysing the magnitude of the spatial autoregressive parameter ρ which

is larger for ρSIC than it is for ρGEO when we use both the simple spatial autoregressive regressive

specification and the extended SAR model where both ρSIC and ρGEO are estimated simultaneously.

Griliches (1979) considered the issue of spillovers and posited various hypotheses for the reasons

that spillovers might exist, specifically in R&D. They may be the result of horizontal, technological

or vertical spillovers.32 However, he did not consider the importance of geography. The importance

of physical proximity has been recognized by recent researchers and is one of the cornerstones of

spatial econometrics.

My results indicate that while physical proximity between facilities is important, the effect

is overshadowed by the technological and horizontal spillovers that I capture using the industry

metric. The industry metric depends on the SIC code of facilities and it captures the spillovers

between firms that produce for the same market as well as firms that may be conducting similar

research. Technological similarities between two firms in the same SIC code should be much higher

than that of two firms that belong to different sectors within the manufacturing industry. These

technological spillovers maintain their significance when I consider emission changes. This points to

similar environmental performance between firms in the same sector and some form of peer effect.

This effect goes beyond the borders of Canadian provinces and, hence, against some of the findings

in the recent literature on spatial effects in environmental performance.

32Horizontal spillovers exist between firms in the same product market. Technological spillovers result from firms
conducting similar research. Vertical spillovers exist between firms that are suppliers or retailers.
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While geographical proximity cannot be discounted in my results, its importance is substantially

weaker and corroborates recent findings on spatial dependence in environmental performance. Gray

and Shadbegian (2007) find the environmental performance to be weakly spatially dependent when

they use a geographic measure. Geographic distance could be a measure of regulatory threat in the

sense that facilities that are closer to each other might be more affected by regulatory intervention

if their emissions are high. Antweiler (2003) finds that while this threat exists it is very small

in magnitude. There might be several reasons behind spatial dependence caused by geographical

proximity. Facilities in the same region may have a similar environmental performance due to the

presence of “demonstration effects” which is caused by facilities to be cleaner under peer pressure

from other cleaner firms. The positive spatial autoregressive parameter ρGEO indicates that there

is a possibility of the existence of “hot spots” where dirtier firms agglomerate. This is important

in terms of the effect on potential policy. Governments have looked at ways to induce emission

reductions, especially through the avenue of regulatory threat (Antweiler, 2003). The reasons

behind this are to reduce costs of implementing new regulations and monitoring emissions. A

positive spatial autoregressive parameter in the case of the SIC distance matrix indicates that firms

in similar industries tend to have a similar environmental performance and there can be a greater

focus by policy makers to target a particular industry rather than spread their resources on a wide

range of industries.

3.6 Conclusion

In this essay I have used the spatial lag model and its extension to capture the spatial dependency of

pollution emission levels and pollution emission changes between neighbouring facilities. Pollution

emission changes are measured by taking the difference in emissions of Criteria Air Contaminants,

health-indexed air emissions and health-indexed total emissions. I have weighted emissions with

their toxicity because not all substances have the same impact on human health. The emissions

data are from a comprehensive set of manufacturing plants located in Canada. Results show that

spatial dependence does exist in the emissions of manufacturing plants and is positive indicating that
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emission activities by neighbouring plants are, on average, similar. Using differences in emissions

accounts for plant-specific and firm-specific effects. It also ensures that province and industry-

specific factors are accounted for. Taking differences also accounts for the endogeneity that may

exist in the location of facilities. This is an improvement over the existing literature when looking

for spillovers in pollution emitted by manufacturing facilities.

I have also used the estimates from the spatial regressions to construct spatial multipliers to

interpret the implications of the spatial lag model. I show that the results are much stronger

when we incorporate spatial effects compared to non-spatial models. However, the strength of

the spatial dependence, as measured by the spatial dependence parameter ρ, is much stronger

when we consider emission levels as compared to emission differences. Since studying emission

differences is econometrically superior to looking at just emission levels we can conclude that spatial

dependencies in pollution abatement, even though it does exist, may not be very strong when we

consider geographical distance in the spatial weight matrix but appears to be much stronger when

the SIC industry spatial weight matrix is used. This shows quite clearly that using only geographical

distances for analysing spillovers in a setting where individual facilities are the units of observation

may be a very simplistic and insufficient way to capture linkages.
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Chapter 4

Playing Dirty or Going Clean?

Lobbying, Abatement and Firm

Heterogeneity

4.1 Introduction

Political lobbying is an integral part of the political scene. For example, in the US, campaign

contributions for candidates running for elections sees millions of dollars being spent, especially

during the Presidential race. Apart from these contributions, firms and other organizations hire

lobbying firms in Washington, DC to lobby the government on various issues, including the en-

vironment and natural resources. Annual lobbying on energy and natural resources issues have

been steadily increasing over the years and reached a high of over $400 million in 2009.33 While

the amounts spent on specific issues are, to the best of my knowledge, not currently available we

may assume that the lobbying amount was spent on gaining a favourable environmental policy and

lobby against environmentalists. In contrast, there is also some evidence presented by Maxwell

et al. (2000) that shows a sharp reduction in the amount of toxic emissions in seven main industries

in the United States over the period 1988-1992 while the dollar value of shipments has increased.

These are legal emissions and the reduction cannot be attributed to government regulations. This

points to a role of corporate environmentalism that has become more prominent as environmental

issues are being thrust more into the limelight. The most often-cited example in the literature on

corporate environmentalism is the one taken up by 3M. 3M set up the Pollution Prevention Pays

33Center for Responsive Politics, http://www.opensecrets.org/industries/indus.php?ind=E
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(3P) program in 1975 and the first year of results from 19 projects led to a reduction of 73,000

tonnes of air emissions and 2,800 tonnes of sludge.34

These observations form the motivation behind this essay. There is considerable evidence that

polluting firms lobby the government a lot. Most of the lobbying effort goes towards stopping

new regulations coming into place but sometimes companies can gain a competitive advantage by

lobbying for stricter regulations. A case in point is that of DuPont which, after having forestalling

CFC (Cholorofluorocarbon) regulation, changed its strategy and embraced the Montreal Protocol

because it had discovered feasible alternatives to CFCs. In this chapter, I will consider lobbying

against regulation. But there is also some evidence that some polluting firms have taken up

corporate environmentalism. Are we able to make predictions about the lobbying or abatement

decision of a firm by using some basic characteristics of the firm? I use three sources of firm

heterogeneity in a set-up that includes two non-cooperative firms in the analysis. The three sources

of heterogeneity are the marginal cost of production, the (unabated) emission intensity and their

marginal cost of abatement. Using this simple model I can make some testable predictions about

the decision of a firm to lobby or abate or do both. There are many possible combinations using the

three sources of heterogeneity (see Table 4.1) but I will focus on the ones that are most interesting.

The results of all the possible outcomes are also presented in Table 4.2 and Table 4.3.

There is a lot of anecdotal evidence of industry lobbying influencing environmental regulations

and there have been studies such as Ando (1999) and Cropper et al. (1992) that have found such

evidence in government regulatory agencies. While it may seem fairly obvious to see why firms may

want to lobby there are various reasons for firms to decide on voluntarily abating their emissions.

Firms might reduce emissions as purely a cost-saving measure. For example, in 2008, 3P prevented

more than 122 million pounds of pollution and saved nearly $91 million.35 The growth of green

consumerism has also been cited as a reason for the environmental consciousness of firms. Arora

and Cason (1996) and Khanna and Damon (1999) find evidence of firm participation in the 33/50

program being influenced by the amount of contact their final goods have with consumers. There

may also be pressure from investors, lobby groups, residents in the neighbourhood and employees

34http://solutions.3m.com/wps/portal/3M/en US/global/sustainability/s/milestones/
353M’s 3P, website accessed 20th August, 2009.
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who may all be affected by the pollution emitted by facilities. Evidence exists of investors having

used the Toxics Release Inventory (TRI) data in the US to pressurize firms to reduce emissions

(Hamilton, 1995; Konar and Cohen, 1997; Khanna et al., 1998). The effect of regulatory pressure

on firms’ emissions has also been analysed by Khanna and Damon (1999), Videras and Alberini

(2000) and Antweiler (2003).

The results are obtained using a simple model with only two firms. There are several sources

of firm-level heterogeneity and the various combinations of these characteristics contribute to the

richness of the model. The firms behave noncooperatively and there is perfect and complete infor-

mation. One crucial assumption I make throughout this analysis is the constancy of output. Once

the firms make an output decision based on their marginal cost structure it cannot be modified.

The firms cannot, therefore, make adjustments to their costs by changing the scale of their oper-

ations. The reason for this assumption is that firms usually find it difficult to change the scale of

their operation quickly. Therefore, I assume that the only way a firm can change its emissions is

through achieving the emissions standard. This, as well as lobbying, has no impact on the output

produced by the firm. The main feature of the model is the lobbying and abatement choice of the

firms that depend on the firm-level heterogeneity, specifically, which firm will lobby and which firm

will not or which firm will abate and which firm will not.

The role of the regulator is to take into account the lobbying revenue and damage from pollution

to set an environmental policy. The instrument of choice for the regulator is an emission intensity

standard. While a tax is de rigueur in a political economy framework it is not very realistic in

environmental policymaking. There is enough anecdotal evidence to suggest that governments

are not very keen on introducing a tax since they tend to be very unpopular with those affected.

Therefore, it is much more realistic to use a standard instead of a tax. While tariffs and taxes are

quite common in the trade literature because of their prevalence in the real world, environmental

taxes are not as visible. However, this has changed in recent years and some governments, especially

at the provincial level, have started to introduce “green” taxes.

The main feature of the model is that only one firm will end up lobbying the regulator. So

the other firm is free-riding on the lobbying activity of the first firm. Another feature is that
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while both firms may end up abating, for the firm that lobbies, lobbying and abatement become

complementary activities and not substitutes. This arises due to the static nature of the model.

For the firm that does not lobby, we can think of them abating more than the other firm and the

other firm abating less but being required to compensate the regulator for abating less.

The primary contribution of this essay is that it uses firm-level characteristics to make predic-

tions about the lobbying and abatement decision. The results are driven by cost considerations

with firms choosing abatement over lobbying if the effective marginal abatement cost is lower than

a threshold value. The effective marginal abatement cost is the marginal abatement cost as a

function of the output and a marginal abatement cost factor.

The rest of the essay is as follows. I set up the model in the next section. Section 4.3 looks

at lobbying and abatement decisions under various combinations of firm heterogeneity and makes

predictions about the lobbying and abatement choices faced by each individual firm while Section

4.4 concludes.

4.2 The Model

The set-up of the model is quite simple. There are three agents, viz. two firms (indexed by i = 1, 2)

and a regulator. The firms behave non-cooperatively. There is no informational asymmetry and the

firms have perfect and complete information. Heterogeneity in the firms is modelled using three

firm-level characteristics. The sources of firm heterogeneity are emission intensity (θi, i = 1, 2),

marginal cost (ci, i = 1, 2) and a cost factor of abatement (αi, i = 1, 2). There are various ways in

which the two firms could be heterogeneous. They can be different with respect to just one out of

the three, two out of the three or in all characteristics. Table 4.1 provides a list of all these possible

outcomes.

To begin with, I make certain assumptions about the characteristics that determine firm het-

erogeneity and relax some of these assumptions later. The firms have different marginal costs and

I assume that firm 1 has a lower marginal cost than firm 2.

Assumption 1 Firm 1 has a lower marginal cost than firm 2, i.e. c1 < c2.
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Table 4.1: Possible outcomes of Firm Heterogeneity

Heterogeneity in one
characteristic

Heterogeneity in two
characteristics

Heterogeneity in three
characteristics

c1 = c2 , θ1 = θ2 , α1 < α2 c1 = c2 , θ1 < θ2 , α1 < α2 c1 < c2 , θ1 < θ2 , α1 < α2

c1 = c2 , θ1 < θ2 , α1 = α2 c1 = c2 , θ1 < θ2 , α1 > α2 c1 < c2 , θ1 < θ2 , α1 > α2

c1 < c2 , θ1 = θ2 , α1 = α2 c1 < c2 , θ1 = θ2 , α1 < α2 c1 < c2 , θ1 > θ2 , α1 < α2

c1 < c2 , θ1 = θ2 , α1 > α2 c1 < c2 , θ1 > θ2 , α1 > α2

c1 < c2 , θ1 < θ2 , α1 = α2

c1 < c2 , θ1 > θ2 , α1 = α2

I also assume that one firm has a higher emission intensity than the other. Emission intensity

is denoted by θ and represents the amount of unabated pollution emitted from producing one unit

of output. The firm with a higher θ can, therefore, be referred to as the “dirty” firm while the firm

with a lower θ can be called “clean”. I assume that firm 1 is the clean firm and has an emission

intensity θ1 while firm 2 is the dirty firm and has an emission intensity θ2. By definition, therefore,

θ1 < θ2.

Assumption 2 Firm 1 has a lower emission intensity than firm 2, i.e. θ1 < θ2.

The above assumption means that the firm with the higher marginal cost is assumed to have

a higher emission intensity. Marginal costs are a reflection of the productivity of a firm and it is

reasonable to expect that a less productive firm also has a higher θ. Productivity and emission in-

tensity are, therefore, negatively correlated or, in other words, marginal cost and emission intensity

are positively correlated. This assumption will be relaxed later.

There are further costs, namely, lobbying or abatement costs or both. A firm can lobby or

abate or do both. If it decides to lobby it incurs the lobbying cost. It incurs the abatement cost if

it has to abate. I refer to abatement cost here as the cost incurred to meet a standard stipulated

by a regulator. The profit function of firm i is given by:
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πi = (p− ci)qi −


Li if only lobby,

Li + αi (θi −Θ) qi if lobby and abate,

α (θi −Θ) qi if only abate,

(4.1)

Li ≥ 0,

where p is the market price, ci is the marginal cost, Li is the lobbying expense, αi is a cost factor

associated with abatement, Θ is the emission intensity standard that has been decided upon by

the regulator and qi is the output of firm i. The lobbying expense is assumed to be a fixed dollar

amount and is non-negative, i.e. Li ≥ 0. I assume, for now, that the cost factor of abatement αi is

the same for both firms, i.e. α1 = α2.

Assumption 3 The cost factor of abatement αi is the same for both firms.

Demand for the product is linear and the firms engage in a Cournot duopoly game to decide

on the output. However, I assume that the abatement cost, if a firm has to abate, does not enter

the output decision. I make a further simplification and assume that a firm does not change its

output once it plays the Cournot output game. While the model is not built in a multi-stage game

framework it may be convenient to think of the output decision being made at Stage 0. Lobbying

and abatement decisions occur in Stage 1. The decisions and solution in Stage 1 have no bearing

on the outcome in Stage 0 which precludes the need to solve the game by backward induction.

Assumption 4 Neither firm is able to change its output decision once it has been made.

Is the assumption to fix a firm’s output restrictive? No. It is often difficult to change the

scale of a plant’s production quickly. So it is quite reasonable to assume that a firm is unable

to change the quantity it produces in response to a change in its cost structure. Given a linear

demand structure, p = a− b(q1 + q2), the profit maximizing output of firm i is obtained from the

standard Cournot model and is q∗i = a− ci
3b

. Since the marginal costs are not symmetric the firm

with a higher marginal cost, firm 2 in this case, will have a lower output than firm 1. It is also
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very straightforward to show that firm 1 will have a higher profit than firm 2. What about their

respective unabated emissions? While firm 1 has a lower emission intensity than firm 2 it also

produces more output than firm 2. So it is not obvious which firm has greater unabated emission.

It can be shown that if the difference in marginal costs is sufficiently small firm 2 will have a higher

unabated emission than firm 1. I assume, for simplicity, that this indeed is the case so that firm 2

has a higher unabated emission than firm 1.

Assumption 5 Firm 1 has a lower unabated emission than firm 2, i.e. θ1q1 < θ2q2.

I will, from now, concentrate on the cost part of the profit function that includes the lobbying

and abatement expenditure since (p− ci)qi will remain unchanged for both firms. Before analysing

the behaviour of firms in terms of their lobbying and abatement activities I need to introduce the

regulator and discuss its role.

The objective of the regulator is to consider the lobbying activities of the firms and balance it

against the damages caused by pollution to decide on the appropriate regulation. The stringency

of regulation depends on how the lobbying activities influence the regulator. The regulator sets an

emission intensity standard Θ that is applicable to both firms. The possibility of a firm garnering

a favour for itself by influencing the regulator independently is ignored. So, even if one firm is

successful in enforcing a weak regulation it will apply to the other firm too. The regulator’s welfare

function is determined by the lobbying amount it receives from the polluting firms and the damage

the pollution causes in its area. So the regulator has an objective function36 given by:

G = λ(L1 + L2)− (1− λ) [min {θ1,Θ} q1 + min {θ2,Θ} q2]2 , (4.2)

where λ is the weight assigned to lobbying and (1− λ) is the weight assigned to the damages from

pollution. The range of λ is [0, 1]. L1 and L2 are the lobbying expenditures of firms 1 and 2

respectively. Θ is the emission intensity standard, applicable to both firms, set by the regulator.

The outputs of the two firms are, respectively, q1 and q2. The term in square brackets denotes the

damage caused by pollution. It is a quadratic expression to signify that the effect of the damage

36The pollution damage can be transformed into monetary form by normalizing the “price” of pollution to one.
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becomes progressively worse with higher emissions. The pollution from firm i is the product of

emission intensity and output of firm i. The emission intensity is the lower of the emission intensity

chosen by the regulator Θ and the exogenously given original emission intensity of firm i. Θ is the

ex-post emission intensity only if the regulator chooses the standard such that it is below the firm’s

original θi. The weights assigned to lobbying and pollution will determine how the regulator sets

Θ. If λ = 1 the regulator only cares about lobbying revenue and when λ = 0 the concern for the

regulator is only the damage from pollution. We may also think of λ as a measure of lobbying

effectiveness. If λ is less than 1 the firms will not be able to lobby as effectively as when it is closer

to 1. It is clear from (4.2) that lobbying increases the regulator’s welfare while the damage from

pollution reduces it.

The objective of the regulator will be to balance the cost from pollution and benefit from

lobbying revenue by choosing an emission intensity standard so that the welfare is maximized.

However, for the purposes of this essay I will assume that the regulator is weak and has a minimum

amount of welfare it accepts on society’s behalf. Any further damages from pollution can be

compensated by the lobbying amount. This will lead to the situation where the welfare will remain

at that minimum level and the polluting firms will lobby the regulator to relax the standard in

return for more political contribution. Therefore, this model differs from the standard Grossman

and Helpman (1994) political economy model where the policymaker can capture rents from tariff

formation. The implicit assumption of a weak government, while presumably strong, is quite

realistic especially with regard to environmental policy. Environmental policy is still not a priority

for governments that believe other issue require more immediate intervention. Therefore, it is

realistic to believe that regulators accept damage from pollution as long as the welfare of society is

not seriously compromised. A recent book by Pielke Jr. (2010) illustrates the unsuccessful nature of

environmental policies with respect to reducing carbon dioxide emissions. He refers to this failure

as the “iron law” of climate politics: “When policies focused on economic growth confront policies

focused on emissions reduction, it is economic growth that will win out every time.”

Let us assume, therefore, that the regulator has a lower limit to the damage that pollution

can cause if it were to ignore lobbying. This implies that the regulator has an acceptable limit to
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the damage that society can accept from pollution. If the regulator were to set Θ in the absence

of lobbying such that damages would be minimized then that optimal value of Θ would be zero.

I ignore that possibility and assume that there is a minimum welfare loss that the regulator can

accept. Denote that limit by Ḡ which, by definition, is negative.37

Assumption 6 The regulator fixes a minimum welfare amount at Ḡ which sets the limit to how

much damage the society is willing to accept in the absence of any lobbying. The value of Ḡ is

negative.

If the regulator ignores lobbying by setting λ equal to 0, it will be able to find a value of the

emission intensity standard Θ such that Ḡ is attained. With the presence of lobbying, that value of

Θ can be weakened. While this would lead to higher damages from the weaker standard, the loss

would be compensated by the increased revenue received by the regulator from lobbying. Assume,

for now, that the emission intensity standard is binding on both firms and that the regulator assigns

positive weights to both lobbying and pollution damage. We can write the modified objective

function as:

Ḡ ≤ λ(L)− (1− λ) [Θq1 + Θq2]
2 , (4.3)

where L is the total lobbying the regulator receives. This weak inequality will hold with equality

since there is no incentive for firms to lobby more than necessary. We can then find the value of Θ

such that the difference between lobbying revenue and pollution damage is equal to Ḡ by equating

the two sides in (4.3) to get:

Θ∗ =

√
λL− Ḡ

(1− λ)Q2
, (4.4)

where Q = q1 + q2. Recall that Ḡ < 0 so the numerator is positive. We can see from this

expression that the emission intensity standard Θ∗ increases when lobbying amount L increases.

It also increases when the regulator assigns more weight λ to lobbying. In other words, increased

lobbying and more weight to lobbying by the regulator weakens the emission intensity standard.

These observations lead to the following proposition.

37Assume that the regulator ignores lobbying. Then the welfare depends on the pollution damage which is negative.
The regulator, therefore, has a minimum welfare amount in mind below which it is unwilling to go.
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Proposition 1 The emission intensity standard set by a regulator is weakened by an increase in

lobbying amount as well as by an increase in the weight assigned to lobbying. The standard is made

stronger if the government reduces the minimum welfare loss Ḡ.

To find out the effect that each firm’s lobbying has on Θ∗ we differentiate (4.4) with respect to

firm 1’s lobbying L1 and firm 2’s lobbying L2. The expressions are identical:

∂Θ∗

∂L1
=
∂Θ∗

∂L2
=

β

2Θ∗
> 0, (4.5)

where β = λ/(1− λ). The effect of lobbying on the standard Θ∗ is positive, i.e. it becomes weaker

and more favourable to firms. The reason that the effect of lobbying by both firms on the regulator’s

policy instrument is the same is because the source of the contribution is irrelevant to the regulator.

It treats a dollar equally regardless of whether it came from firm 1 or firm 2.

The next section analyses the lobbying and abatement choice of each of the two firms. In the

event that the two firms have unequal unabated emission intensities the emission standard set by

the regulator could be strict enough to be lower than the emission intensities of both firms. It

would then be binding for both firms. However, the emission standard could be not binding for the

firm with the lower θ and also not binding for either firm. I will, first, discuss the situation where

the emission standard is binding for both firms and then discuss, briefly, the other two cases.

4.3 Lobbying and Abatement

4.3.1 Binding Emission Standard

Now that we have found out the optimal Θ and the effect that each firm’s lobbying has on the

regulator’s emission intensity standard let us turn to the two firms and look at their lobbying

contribution choice. Can we say anything about which firm will lobby and which firm will not? For

that we need to return to the profit function (4.1). The FOC for profit maximization with respect
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to lobbying expenditure Li for firm i is:

− 1 + αiqi
∂Θ∗

∂Li
≤ 0 (4.6)

Li ≥ 0 with complementary slackness.

We can rearrange (4.6) and use (4.5) to get:

αiqi ≤
2Θ∗

β
(4.7)

Li ≥ 0 with complementary slackness.

The left-hand side of (4.7) is the marginal abatement cost that is also a function of the firm’s

output. A firm with a high output will also have a high abatement cost since the output in my

model is assumed to be fixed. A high abatement cost factor αi will also lead to a high abatement

cost. The condition (4.7) is a convenient way to look at the firm’s decision problem as to whether

it should lobby or abate. If the abatement cost is lower than the
2Θ∗

β
threshold it will be more

cost-effective to abate while it should put in at least some effort in lobbying when the condition

(4.7) holds with equality.

Since, by the set-up of the model, q1 > q2 and because
∂Θ∗

∂L1
=
∂Θ∗

∂L2
, (4.7) will hold with equality

for firm 1 and with a strict inequality for firm 2:

αq1 =
2Θ∗

β
, (4.8a)

and

αq2 <
2Θ∗

β
, (4.8b)

These conditions indicate that it is more cost-effective for firm 1 to lobby but not for firm 2.

Therefore, L1 > 0 for firm 1 and L2 = 0 since we end up with a corner solution for firm 2’s lobbying

effort. Firm 1 will lobby and firm 2 will not lobby. What is firm 1’s lobbying effort? That is

obtained by substituting Θ∗ from (4.4) into (4.8a):
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L1 =
Ḡ

λ
+ β

(αq1
2

)2
. (4.9)

In terms of abatement activity, both firms will have to abate since the emission intensity stan-

dard, by assumption, is binding for both of them. So the total abatement cost will be α(θi−Θ∗)qi

for firm i. The total abatement cost for firm 2 will be more than that of firm 1 provided that

θ1q1 < θ2q2. Otherwise, if the inequality is reversed, firm 1 will have a higher total abatement cost

than firm 2. We can write these results in the next proposition.

Proposition 2 Assuming that the emission standard is binding for both firms, the “clean” (with

respect to the emission intensity) firm will lobby the regulator to weaken the emission standard while

the “dirty” firm will not lobby. The total abatement cost of the “dirty” firm will be higher than that

of the “clean” firm.

The FOC conditions (4.8a) and (4.8b) and the slackness conditions are crucial for analysing the

lobbying decision of firms. Using these two conditions we can predict the conditions under which

a firm will lobby. These conditions will depend on the characteristics of the firm in terms of the

scale of production (reflected in the amount of output produced) and various cost parameters. The

firm whose FOC is not binding will not lobby while the firm whose FOC is binding and equal to

zero will lobby. Using this property let us now look at the firm characteristics that will determine

which firm lobbies.

There are three sources of firm heterogeneity in this model. The two firms can be different in

terms of their emission intensity θi, the output produced qi (caused by a difference in marginal cost

ci) and the cost factor of abatement αi. I have initially assumed that the marginal cost of firm 1

is lower than that of firm 2. If I reverse the inequality and assume that c1 > c2 the output of firm

1 will be lower than that of firm 2. Therefore, the equality in (4.8a) will be relaxed while equality

will be gained in (4.8b). The new conditions will be:

αq1 <
2Θ∗

β
, (4.10a)
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αq2 =
2Θ∗

β
. (4.10b)

since q1 < q2. So firm 2 will now lobby but not firm 1. The result we get here is that bigger

and dirtier firms will lobby. The lobbying amount is determined in the same way as before and is:

L2 =
Ḡ

λ
+ β

(αq2
2

)2
. (4.11)

In terms of the abatement activity, both firms will have to abate since the emission intensity

standard is binding for both of them. So the total abatement cost will be α(θi − Θ∗)qi for firm i.

The total abatement cost for firm 2 will be more than that of firm 1 since θ1q1 < θ2q2. Therefore,

the bigger and dirtier firm will have to lobby and abate. Reversing the assumption on marginal

costs gives us the following proposition.

Proposition 3 Assuming that the emission standard is binding for both firms, the bigger (in terms

of output) and dirtier (with respect to the emission intensity) firm will lobby the regulator to weaken

the emission standard while the smaller and cleaner firm will not engage in lobbying. The total

abatement cost of the dirtier firm will be higher than that of the cleaner firm.

Let us now relax the assumption that the marginal cost of abatement is the same for both

firms and assume that it is lower for the dirty firm, i.e. α1 > α2. This can be explained by the

observation that abatement is a “low-hanging fruit” for the dirtier firm. The firms are, in this case,

heterogeneous in all three characteristics. If we return to the FOC conditions for the two firms we

get the following conditions:

α1q1 =
2Θ∗

β
, (4.12a)

α2q2 <
2Θ∗

β
. (4.12b)

Since q1 > q2 (because c1 < c2) and α1 > α2 the effective marginal abatement cost will hold with

equality for firm 1 but with strict inequality for firm 2. We are then in a corner solution for firm

2 with respect to its lobbying effort and, as a result, L2 = 0. In terms of abatement effort, firm 2

will have to abate more since θ2 > θ1 > Θ∗ but the cost of abatement is ambiguous. Firm 1 will
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have a higher abatement cost compared to firm 2 if
α1q1
α2q2

>
θ2 −Θ∗

θ1 −Θ∗
while firm 2 will have a higher

total abatement cost if the inequality is reversed and both firms will have the same abatement

cost when it holds with equality. This ambiguity is quite straightforward to explain. Since the

marginal abatement cost of the larger firm (firm 1) is larger than that of the smaller firm (firm 2) it

works against it even though the smaller firm with the lower marginal abatement cost has a larger

emission intensity. Firm 1 will have a lower total abatement cost only if firm 2 has a sufficiently

high emission intensity θ2. We can write this result in the following proposition:

Proposition 4 Assume that the emission standard is binding for both firms and the marginal

abatement cost factor is negatively correlated with the emission intensity. The larger and cleaner

firm will lobby while the smaller and dirtier firm will not. The total abatement cost of the dirtier

firm will be higher than that of the cleaner firm only if its emission intensity is sufficiently high.

Otherwise, its total abatement cost will be less (or equal).

What about the situation when the marginal abatement cost factor and emission intensity are

positively correlated so that that the larger firm (firm 1) has a lower emission intensity as well as

a lower marginal abatement cost? We then have:

α1q1 ≤
2Θ∗

β
, (4.13a)

α2q2 ≤
2Θ∗

β
. (4.13b)

Since q1 > q2 and α1 < α2 we cannot say with certainty which FOC will hold with equality.

It will depend on the αiqi term. If α1q1 > α2q2 then firm 1 will lobby and firm 2 will not. What

can we say about their abatement expenses? Unfortunately, not much. Even if α1q1 > α2q2 the

result is ambiguous because θ1 < θ2. Firm 1 will have a higher abatement cost if
α1q1
α2q2

>
θ2 −Θ∗

θ1 −Θ∗
.

However, if we know that α1q1 < α2q2 firm 2 will have a higher abatement cost compared to firm

1 since
α1q1
α2q2

<
θ2 −Θ∗

θ1 −Θ∗
. In this case firm 1 will not lobby but firm 2 will.

Proposition 5 Assume that the emission standard is binding for both firms and the marginal

abatement cost is positively correlated with the emission intensity. The larger and cleaner firm will
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lobby while the smaller and dirtier firm will not if the marginal cost of abatement is sufficiently

high for the former. Otherwise, only the smaller and dirtier firm will lobby.

The assumption up to now has been that the larger firm has a lower emission intensity. However,

it may be the case that larger firms are the ones that are comparatively dirtier. So let us now

consider the situation where c1 < c2 which implies that firm 1 produces more than firm 2 and

θ1 > θ2 so that firm 1 is dirtier too. Given these assumptions there are two possible outcomes with

regard to the marginal cost of abatement. Firstly, the emission intensity and the marginal cost of

abatement can be positively correlated so that the firm with the higher emission intensity also has a

higher marginal cost of abatement. Secondly, if we assume that abatement is a “low-hanging fruit”

for the dirtier firm we have the situation where emission intensity and marginal cost of abatement

are inversely related.

Let us assume that the larger firm has a higher emission intensity and the emission intensity

and marginal cost of abatement are positively correlated. We have c1 < c2, θ1 > θ2 and α1 > α2.

The FOCs for lobbying can be rewritten as:

α1q1 =
2Θ∗

β
, (4.14a)

α2q2 <
2Θ∗

β
, (4.14b)

where the effective marginal abatement cost for firm 1 holds with equality but with inequality for

firm 2 because α1q1 > α2q2. Firm 1 will therefore lobby a strictly positive amount but firm 2 will

not engage in any lobbying activity. Using our assumptions, it is easy to prove that α1(θ1−Θ∗)q1 >

α2(θ2 −Θ∗)q2 so firm 1 will spend more on abatement activity than firm 2.

Proposition 6 Assume that the emission standard is binding for both firms, the larger firm is the

dirtier firm and the marginal abatement cost is positively correlated with the emission intensity. The

larger and dirtier firm will lobby while the smaller and cleaner firm will not. The total abatement

cost of the larger and dirtier firm will also be higher than that of the smaller but cleaner firm.

If we reverse the correlation between emission intensity and marginal cost of abatement the
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situation becomes less unambiguous. We now have c1 < c2, θ1 > θ2 and α1 < α2. The FOCs can

be rewritten as:

α1q1 ≤
2Θ∗

β
, (4.15a)

α2q2 ≤
2Θ∗

β
. (4.15b)

This case is similar to (4.13a) and (4.13b). Since q1 > q2 and α1 < α2 we cannot say with

certainty which firm’s effective marginal abatement cost will be lower than the threshold value.

It will depend on the αiqi term. If α1q1 > α2q2 then firm 1 will lobby and firm 2 will not. We

cannot say anything with certainty about their abatement expenses. If we know that α1q1 > α2q2

firm 1 will have a higher abatement cost compared to firm 2 since α1(θ1 −Θ∗)q1 > α2(θ2 −Θ∗)q2.

However, this is not certain when α1q1 < α2q2 because α1(θ1 −Θ∗)q1 could be greater than, equal

to or less than α2(θ2 −Θ∗)q2. In this case, firm 1 will lobby but not firm 2.

Proposition 7 Assume that the emission standard is binding for both firms, the larger firm is the

dirtier firm and the marginal abatement cost is negatively correlated with the emission intensity.

The larger and dirtier firm will lobby while the smaller and cleaner firm will not if the marginal

cost of abatement is sufficiently high for the former. Otherwise, only the smaller and cleaner firm

will lobby.

I have assumed till now that the marginal costs for the two firms are unequal. They are,

therefore, heterogeneous in terms of size. Suppose that assumption is modified and both firms have

the same marginal cost, i.e. c1 = c2 = c. The output produced will then be equal for both firms,

q1 = q2 = q. This assumption is very useful if we want to look at the lobbying and abatement

behaviour of two firms that are of the same size. Firm 2 is the dirtier firm but has a lower marginal

abatement cost so emission intensity and the marginal cost of abatement are negatively correlated.

This implies that θ1 < θ2 and α1 > α2. We get the following conditions:

α1q =
2Θ∗

β
, (4.16a)
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α2q <
2Θ∗

β
. (4.16b)

Therefore, using the same argument as in the preceding cases, firm 1 will lobby but firm 2 will

not. When it comes to abatement activity firm 1 will abate α1(θ1 − Θ∗)q and firm 2 will abate

α2(θ2−Θ∗)q. The difference in abatement expenditure will depend on α1(θ1−Θ∗) and α2(θ2−Θ∗).

If α1(θ1 − Θ∗) > α2(θ2 − Θ∗) then firm 1 will have a higher abatement expenditure than firm 2.

The abatement expenditures will be reversed if α1(θ1 − Θ∗) < α2(θ2 − Θ∗). These relations may

be simplified to ratios so that firm 1 will have a higher abatement expenditure than firm 2 if

α1

α2
>
θ2 −Θ∗

θ1 −Θ∗
. Firm 1 will have a higher abatement expenditure if its marginal cost abatement is

sufficiently higher than that of firm 2 compared to the ratio that they both have to reduce their

emission intensities by. If, on the other hand, firm 2 has to reduce its emission intensity by a

sufficiently large amount the total abatement cost it faces will exceed that of firm 1. There may

also exist a situation where the two ratios are equal in which case the abatement expenditures will

also be the same.

Proposition 8 Assume that two firms are of the same size and that the emission standard is

binding for both. If the emission intensity and marginal cost of abatement are negatively correlated

so that the firm with a higher emission intensity has a lower marginal cost of abatement, the clean

firm will lobby while the dirty firm will not. There is ambiguity in terms of their total abatement

expenditures.

The other interesting case where two firms are of the same size occurs when the emission

intensity and the marginal cost of abatement are positively correlated. This is opposite to the

previous discussion and therefore, in this case the firm with a higher emission intensity has a higher

marginal cost of abatement. Assuming that firm 1 is still the cleaner firm we have θ1 < θ2 and

α1 < α2. We can then derive the following conditions from the FOCs:

α1q <
2Θ∗

β
, (4.17a)

α2q =
2Θ∗

β
. (4.17b)
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Table 4.2: Lobbying and Abatement when Two Firms are of Equal Size

Heterogeneity
combinations

Complementary
Slackness

Lobbying Abatement
Expenditure

(1) θ1 = θ2 , α1 < α2
α1q <

2Θ∗

β
L1 = 0

Firm 1 < Firm 2

α2q =
2Θ∗

β
L2 > 0

(2) θ1 < θ2 , α1 = α2
α1q =

2Θ∗

β
L1 > 0

Firm 1 < Firm 2

α2q =
2Θ∗

β
L2 > 0

(3)§ θ1 < θ2 , α1 < α2
α1q <

2Θ∗

β
L1 = 0

Firm 1 < Firm 2

α2q =
2Θ∗

β
L2 > 0

(4)§ θ1 < θ2 , α1 > α2
α1q =

2Θ∗

β
L1 > 0

Firm 1 S Firm 2

α2q <
2Θ∗

β
L2 = 0

Note: § refers to cases that are discussed in the essay.

Therefore, the effective marginal abatement cost is lower for firm 1 than for firm 2. This implies

that there is an interior solution for firm 2 in terms of lobbying and a corner solution for firm 1.

Therefore, L2 > 0 and L1 = 0 for firm 2 and firm 1 respectively. Compared to the previous case

where emission intensity and marginal cost of abatement were inversely related there is no ambiguity

in terms of the total abatement expenditure. The abatement expenditure is α1(θ1 −Θ∗)q for firm

1 and α2(θ2 − Θ∗)q for firm 2. Since θ1 < θ2 and α1 < α2 we have α1(θ1 − Θ∗)q < α2(θ2 − Θ∗)q.

Firm 2 has a higher abatement cost compared to firm 1. This is because firm 2 has to abate more

to reach the new emission standard and also the cost of abating to that standard is higher.

Proposition 9 Assume that two firms are of the same size and that the emission standard is

binding for both. If the emission intensity and marginal cost of abatement are positively correlated

so that the firm with a higher emission intensity has a higher marginal cost of abatement, the clean

firm will lobby while the dirty firm will not. The dirtier firm will, unambiguously, have a higher
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total abatement cost.

Table 4.3: Lobbying and Abatement when Firm 1 is

Larger Than Firm 2

Heterogeneity

combinations

Complementary

Slackness

Lobbying Abatement

Expenditure

(1) θ1 = θ2 , α1 = α2

α1q1 =
2Θ∗

β
L1 > 0

Firm 1 > Firm 2

α2q2 <
2Θ∗

β
L2 = 0

(2) θ1 = θ2 , α1 < α2

α1q1 ≤
2Θ∗

β
L1 ≥ 0

Firm 1 S Firm 2

α2q2 ≤
2Θ∗

β
L2 ≥ 0

(3) θ1 = θ2 , α1 > α2

α1q1 =
2Θ∗

β
L1 > 0

Firm 1 > Firm 2

α2q2 <
2Θ∗

β
L2 = 0

(4)§ θ1 < θ2 , α1 = α2

α1q1 =
2Θ∗

β
L1 > 0

Firm 1 S Firm 2

α2q2 <
2Θ∗

β
L2 = 0

(5) θ1 > θ2 , α1 = α2

α1q1 =
2Θ∗

β
L1 > 0

Firm 1 > Firm 2

α2q2 <
2Θ∗

β
L2 = 0

(6) θ1 < θ2 , α1 < α2

α1q1 ≤
2Θ∗

β
L1 ≥ 0

Firm 1 S Firm 2

α2q2 ≤
2Θ∗

β
L2 ≥ 0

(7)§ θ1 < θ2 , α1 > α2

α1q1 =
2Θ∗

β
L1 > 0

Firm 1 S Firm 2

α2q2 <
2Θ∗

β
L2 = 0

Continued on Next Page. . .
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Table 4.3 – Continued

Heterogeneity

combinations

Complementary

Slackness

Lobbying Abatement

Expenditure

(8)§ θ1 > θ2 , α1 < α2

α1q1 ≤
2Θ∗

β
L1 ≥ 0

Firm 1 S Firm 2

α2q2 ≤
2Θ∗

β
L2 ≥ 0

(9)§ θ1 > θ2 , α1 > α2

α1q1 =
2Θ∗

β
L1 > 0

Firm 1 S Firm 2

α2q2 <
2Θ∗

β
L2 = 0

Note: § refers to cases that are discussed in the essay.

Using the results in Table 4.3 to illustrate the behaviour of lobbying activity is an useful exercise.

Let us assume that there is a positive correlation between the (unabated) emission intensity θ and

the marginal cost of abatement α which means that the dirtier firm has a higher marginal cost of

abatement. Given this assumption, we can study how lobbying activity changes for the two firms

when their relative size changes. If firm 1 is smaller than firm 2 we are in the situation where

c1 > c2, θ1 < θ2 and α1 < α2. This is similar to Case 9 in Table 4.3.38 Firm 1 will not lobby but

firm 2 will. As the relative size of firm 1 increases and we reach the point where the two firms are

equal in size firm 1 will still not lobby but firm 2 will keep lobbying. If firm 1 is larger than firm 2

both firms may or may not lobby. We see that for dirtier firms that also have a higher abatement

cost it is more effective for them to lobby and abate than to just abate. Their effective marginal

cost of abatement is too high which means that they need to lobby the government for a weaker

standard as well as abate to meet the resulting standard.

If, on the other hand, we assume that the dirtier firm has a lower marginal cost of abatement

38Case 9 in Table 4.3 refers to the situation where firm 1 is larger than firm 2. But if we switch the notation for
firm 1 and firm 2 we get the following conditions: c2 < c1, θ2 > θ1 and α2 > α1. It is, therefore, just a slight change
in notation and the result follows.
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so that the cost of abating is a low-hanging fruit, we see that as the relative size of the cleaner firm

increases we will get a situation where it will be the only firm that lobbies. This occurs once it

reaches and exceeds the size of the dirtier firm. This emphasizes the role that the effective marginal

cost of abatement plays in determining the lobbying and abatement choice of a firm. It does not

matter if a firm has a lower unabated emission intensity. If its size exceeds a limit then it will be

the only firm that lobbies even though the other firm has a higher unabated emission intensity. If

the effective marginal cost of abatement is sufficiently low, the dirtier firm will find abating to be

more cost-effective than lobbying.

4.3.2 Binding Emission Standard for only One Firm

I now discuss the situation where the emission standard is binding for one firm but not for the

other. It is quite clear that, if it is binding, it will be binding for the firm with the higher emission

intensity.39 In this situation Θ∗ will lie above θ1 but below θ2. The results, in terms of lobbying,

will not change because they do not depend on the new emission standard. The only difference from

the situation with the emission standard binding on both firms is that there will be no abatement

expenditure for firm 1 but it will be positive for firm 2. The lobbying decision as to which firm will

lobby and which firm will not is given by Table 4.2 and Table 4.3.

When the two firms are of equal size. two cases strike out as being interesting. The first arises

when firm 1 has a lower marginal cost of abatement. In this case firm 1 does not lobby but the

dirtier firm does. The dirtier firm also has to abate because there is a point beyond which it finds

abating to be more cost-effective than lobbying. We therefore have a situation in which the cleaner

firm is being passive while the dirtier firm is doing both lobbying and abatement.

The second interesting case occurs when the the cleaner firm has a higher marginal abatement

cost. The cleaner firm will lobby the regulator to weaken the emission standard while the dirtier

firm will abate instead of lobbying. The dirtier firm is free-riding on the lobbying efforts of the

cleaner firm. Abating turns out to be more expensive for the cleaner firm and so it ends up lobbying

the regulator. The dirtier firm finds abating to be more cost-effective.

39I am ruling out the case where both firms have the same emission intensity. Also, my assumption about firm 1
being the cleaner firm still holds.
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4.3.3 No Binding Emission Standard

There might also be a situation where the emission standard set by the regulator is sufficiently weak

and none of the firms are bound by it. This could happen if the weight assigned by the regulator

to lobbying effort by the firms is sufficiently high. In that case, we will have a situation where

firms will only lobby and not find it necessary to abate and the difference in emission intensity will

play no role. The lobbying effort will follow the same pattern as in Table 4.2 and Table 4.3 but we

need only focus on the differences in the marginal cost of abatement αi and the sizes of the firms

because those two factors alone will determine whether a firm lobbies or not.

For two firms of equal size the lobbying decision will depend on the marginal cost of abatement.

The firm with the higher value of αi will find it more cost-effective to lobby than the other firm

and, since the firms behave non-cooperatively, the other firm will free-ride and not need to lobby.

The factor that determines the lobbying choice depends crucially on the αiqi term. Since it

reflects the effective cost of abatement, by taking into account how much the firm has to abate over

all its production units as well as the marginal cost of abatement, the firm with the higher value

will find it more cost-effective to lobby than to engage in any abatement activity.

4.4 Conclusion

In this essay I have used firm heterogeneity to look at situations under which firms will lobby or

abate or do both. Starting with a simple model with two firms and using three sources of firm

heterogeneity, viz. emission intensity, marginal cost and cost factor of abatement, I have shown

that, under certain assumptions, the dirtier firm with a higher marginal cost of abatement will

lobby and abate while the cleaner firm with the lower marginal cost of abatement will find it more

effective to abate and not lobby. The model shows that, for small and clean firms, there is no

lobbying activity when the firm size is small. As it increases, relative to the dirtier firm, there is a

greater possibility of the firm engaging in lobbying activity. All these results depend crucially on

the effective marginal cost of abatement which takes into account the marginal cost of abatement

as well as the output of the firm. If it is sufficiently low, then the firm has no incentive to lobby the
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regulator. Because the firms are not symmetrical one of the two will have the incentive to lobby.

Using a simple model with two firms, I have been able to make a number of predictions. This

has been possible due to the sources of firm heterogeneity. The model also includes a few policy

variables that enrich the model. The crucial policy variable is the emission intensity standard which

is a much more widely used policy instrument than a green tax.
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Conclusion

In this thesis I explore three different issues in environmental economics. In the first essay my co-

author, Sumeet Gulati, and I analyse the effectiveness of a particular Demand Side Management

(DSM) initiative taken up by the electric utility industry. The DSM program that is of our interest

is the effectiveness of cash rebates offered to customers for purchasing energy efficient Energy Star

appliances in the United States. This issue is of particular relevance now because of concerns that

greenhouse gases (GHGs) are causing global climate change. Persuading people to switch to more

efficient household appliances would lead to some reduction in the emission of GHGs because they

would consume less energy. Less energy means less electricity having to be produced thus causing a

reduction in the burning of fossil fuels which cause GHGs to be produced. The US generates more

than 50% of its electricity from fossil fuels which means that using less electricity would cause less

utilization of fossil fuels. Reducing electricity consumption also leads to a reduction in the need

to build new power plants, leads to better grid reliability, better pollution control by utilities and

savings to consumers. Utility companies, therefore, started on an aggressive marketing of energy

efficient household appliances under the Energy Star label. They did this by providing rebates

to consumers if they bought these appliances. The average Energy Star model is much more

expensive than a standard model so customers were offered these incentives. Being energy-efficient,

these appliances also tend to have a lower operational cost compared to a standard model.

While there have been numerous reports on the penetration of these efficient appliances in the

household and corporate sector there has not been any study done, to the best of our knowledge,

on how effective these rebates were in persuading customers to purchase the Energy Star models.

We have analysed the effectiveness of the rebates program by using data from all the 50 US states

over a period of 6 years between 2001 and 2006 (both years inclusive). We have used various data
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sources to construct the dataset. The two main sources of data are a detailed dataset of all utility

rebates offered by utility companies and a dataset that provide details on the share of Energy

Star appliances sold in each state by quarter. The appliances we have considered are clothes

washers, dishwashers and refrigerators. We have also used some demographic variables that were

obtained from the Current Population Survey (CPS) and the US Bureau of Economic Analysis and

electricity prices from the US Department of Energy. To estimate the impact of these incentives

we use the variation in timing and size of the utility rebates across the US states. Our results show

that a dollar increase in the rebate leads to a 0.3% increase in the share of Energy Star-qualified

clothes washers while the effect of rebates is not significant for dishwashers and refrigerators. We

then use these estimates along with information on the average energy saved by using an Energy

Star appliance relative to a non-Energy Star appliance to provide a rough estimate on the cost

per tonne of carbon saved by the rebate program. The cost of saving a tonne of carbon through the

clothes washer rebate program is calculated to be approximately US$171. The corresponding cost

of a megawatt hour saved (approximately US$35), is lower than the estimated cost of building and

operating an additional power plant and the average on-peak spot price between 2001 and 2006.

We conclude that the Energy Star clothes washers rebate programs are a cost-effective way for

utilities to reduce energy demand.

An important feature of our research is the use of utility-level rebate programs that have been

aggregated up to the state level. This allows us to capture the effect of these DSM programs on

the market share of energy-efficient Energy Star appliances. However, this is also a limitation

of our analysis since we would, ideally, have preferred to use utility-level sales data to capture the

effect more precisely. It would be interesting to obtain more disaggregated sales data to have a

more accurate picture of rebate programs even though, on average, we would expect the effect to be

about the same. There have been relatively few papers that have an ex-post analysis of specific DSM

programs. Our aim was to take one particular aspect of DSM and analyse its cost-effectiveness.

The study of other DSM components should be the agenda for future research. There are many

supporters and a few opponents of DSM and it is important to resolve the argument about the

benefits of DSM.
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In my second essay I analyse the presence of spillovers in pollution by looking at emissions and

changes in emissions; that polluting facilities around other neighbouring facilities tend to have a

similar environmental performance. I use information about location of each facility and exploit the

variation in the emission levels and emission changes in a large sample of manufacturing facilities in

Canada by using a simple and parsimonious spatial autoregressive (SAR) model and an extension

of the SAR model that uses two spatial weight matrices instead of the traditional single spatial

weight matrix. The “distance” between facilities is measured by the geographical distance as well

as the closeness of a facility’s SIC code with that of its neighbours. Spatial dependencies may be

the result of both these factors and the extension of the SAR model takes into account both these

channels simultaneously. I find that, compared to OLS results, spatial dependencies exist and are

significant as indicated by the statistical significance of the spatial autoregressive parameters. My

results also indicate that the effect of the industry SIC distance is substantially stronger than that

of geographical distance.

There is much scope for further research in analysing environmental performance by using spatial

econometrics. I have used the simple SAR(1) model and its modification to study spillovers. Its

highly parsimonious and fully parameterized nature is an advantage but also an Achilles heel. The

limitations of the SAR model, as discussed by Pinkse and Slade (2010), include the fact that the

relationship may be non-linear, the error term and independent variables may be dependent and

that the entire spatial dependence structure can be represented by the the spatial lag parameter ρ.

Using different specifications would also serve as a test of robustness for the SAR model. There is

also a case of combining the geographic distances with industry measures of distance, like the SIC

codes, to compute a more sophisticated weight matrix that captures more aspects of “distance”

than just the physical distance. In this essay I have considered two separate weight matrices to

indicate the two separate channels through which spatial dependency may arise. The availability

of panel data, as is the case with most toxics release inventories, is also suited for using spatial

panel methods for further analysis. The disadvantage of using panel data is the change that might

occur over a period of time in terms of new substances added or old substances removed from the

list of reporting criteria as well as new facilities being asked to report. However, spatial panel
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econometrics is an area of active research and using these new methods would provide more robust

and innovative ways of looking at spatial dependencies in emissions or other variables of interest.

In the third essay I use firm-level characteristics to predict the lobbying and abatement decision

of firms in a model with two non-cooperating firms. There are three sources of firm heterogene-

ity, viz. the marginal cost of production, the emission intensity and the marginal cost factor of

abatement. The decision to lobby or abate or do both depends on the cost-effectiveness of lobbying

against that of abating. I find that a firm will abate and not lobby if its effective marginal abate-

ment cost, which depends on output, is lower than a threshold value. An interesting outcome is

that, under my assumption of perfect and complete information, the model predicts that in most

cases the firm with the lower effective marginal abatement cost will not lobby but will free-ride on

the lobbying effort of the other firm.

A variation of the current model would be to introduce an emission cap on the total pollution

emitted rather than a standard on the emission intensity. Apart from abatement activities all

other sources of firm heterogeneity are observable so it would be very interesting to apply the

model for testing the predictions. However, as noted by Antweiler (2003), it is very plausible that

there exists a high degree of negative correlation between abatement cost factor and the emission

intensity if pollution abatement is dependent on plant vintage. While there may be other issues in

the transition from theory to the empirical implementation, the model in this essay is an attractive

starting point in analysing the abatement and lobbying decisions of different kinds of firms. There

are some other avenues as well that I would like to explore in the future. There is the issue of

side payments that firms may make to one another as “bribes” to reduce their pollution if a total

emissions cap is in place. This could happen if the marginal cost of the dirty firm is sufficiently

high so that it finds it more profitable to encourage the other firm to lower its emissions.
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Appendix A

Appendix to Chapter 1

A.1 Clothes Washers

Clothes washers have been in the Energy Star program since 1997. There were no US man-

ufacturers whose washing machines satisfied the Energy Star standard when the program was

proposed in 1994 by the US Department of Energy (DOE). This announcement caused a sharp

division within the industry because the majority of the qualified products, being horizontal-axis

(h-axis) washers40, were being produced by European manufacturers. The first Energy Star qual-

ified model produced by one of the large US manufacturers was the Neptune model from Maytag.

It was released in the market in June 1997 and was, not surprisingly, an h-axis washer. However, its

price was nearly double that of a standard v-axis model. Prior to the introduction of the Neptune

market penetration for Energy Star qualified washers was less than one percent. Other US man-

ufacturers jumped on the bandwagon and more Energy Star qualified washers were introduced

and led to utility and regional efficiency groups offering rebates and incentive promotions on these

energy-efficient washers. The Energy Star Clothes Washers program has led to a significant

increase in innovation and technological advancement in the clothes washers industry.

Even within energy-efficient washers there is considerable variation in energy and water consump-

tion. The energy efficiency is indicated by the Modified Efficiency Factor (MEF) that replaced the

older Energy Factor (EF) rating in 2004. The MEF takes into account the projected dryer usage

40Horizontal-axis design is the industry term for front-loading washing machines while vertical-axis (v-axis) design
refers to top-loading machines. There are, however, some h-axis machines that are top-loading. The most well-known
models are produced by Staber Industries. New v-axis designs that use sprayers to wet the clothes from above can
also achieve substantial energy and water savings compared to conventional v-axis washers, but they may not clean
clothes as effectively, according to Consumer Reports.
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A.1. Clothes Washers

based on the remaining moisture content as well as the machine energy and water heating energy of

the washer.41 A washer that spins clothes drier will get a higher MEF rating than one that leaves

more moisture in the washed clothes. A higher MEF therefore signifies a more energy efficient

washer. There have been recommendations from utility and regional efficiency units to include

the amount of water used to calculate the Energy Star efficiency because some Energy Star

qualified washers use as much water as non-Energy Star qualified ones. Water Factor (WF)

measures the ratio of the quantity of water used in one cycle to the capacity of the washer. So, for

example, if a clothes washer uses 40 gallons of water per cycle and has a tub volume of 4.0 cubic

feet then the Water Factor for that particular machine would be 10.0. A washer that has a lower

WF is more efficient than one having a higher WF. Adding a maximum WF requirement would

ensure that Energy Star models save both water and energy. This prompted the DOE to add a

WF requirement to the existing Energy Star standard for washers January 1, 2007 onwards. The

current Energy Star standard, therefore, consists of both a minimum energy-efficiency standard

as well as a maximum water-efficiency standard of 1.72 MEF and 8.0 respectively. To be qualified

as Energy Star a clothes washer must have an MEF of 1.72 or above as well as a WF of 8.0 or

below. The evolution of the minimum Energy Star and Federal standards is shown in Table A.1.

The table shows that there has been a gradual improvement in the energy-efficiency of clothes

washers. The average EF in 2001 was 1.55 while the most energy-efficient washers had a range

from 2.5 to 3.5 EF. The evolution of standards for Energy Star qualified washers can be seen in

Table A.2. The average MEF for Energy Star qualified washers was 1.65 when the new MEF

standard of 1.26 was introduced in the beginning of 2001. It increased to 1.70 in 2003 and further

to 1.74 in 2004 before dropping very slightly to 1.73 in mid-2004 due to the introduction of new

models at the minimum Energy Star MEF level. But the average Energy Star washer showed

41As per the Energy Star website Frequently Asked Question on “What are Modified Energy Factor and Water
Factor on the ENERGY STAR qualified clothes washers list?”, MEF is the quotient of the capacity of the clothes
container, C, divided by the total clothes washer energy consumption per cycle, with such energy consumption
expressed as the sum of the machine electrical energy consumption, M, the hot water energy consumption, E, and
the energy required for removal of the remaining moisture in the wash load, D. The equation is

MEF =
C

M + E + D
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Table A.1: Evolution of EF/MEF Standards

Date Minimum Energy Star Standard Minimum Federal Standard

1997 EF≥2.5 EF≥1.18

January 1, 2001 MEF≥1.26 EF≥1.18

January 1, 2004 MEF≥1.42 MEF≥1.04

January 1, 2007 MEF≥1.72, WF ≤8.0 MEF≥1.26

July 1, 2009 MEF≥1.8, WF ≤7.5 MEF≥1.26

January 1, 2011 MEF≥2.0, WF ≤6.0 MEF≥1.26, WF≤9.5

Source: DOE

an improved efficiency in 2005 with the MEF increasing to 1.78.

Table A.2: Average MEF Levels of Clothes Washers

Year Average non-Energy Star Average Energy Star

2001 1.11 1.64

2002 1.13 1.90

2003 1.14 1.93

2004 1.15 1.77

2005 1.13 1.81

2006 1.14 2.05

Source: DOE

A.2 Dishwashers

The Energy Star standard for dishwashers has had a rather chequered history since the label

for dishwashers was announced in October, 1996. Even though it was introduced more than a

decade ago there have been very few modifications to the Energy Star standard. This resulted

in a market share of more than 90%, in 2006, for Energy Star-labelled dishwashers in spite of

the DOE’s policy to have the label only for appliances that are in the top 25% for energy efficiency

in the respective product category. It is for this reason that suggestions have been made to make

Energy Star label more coveted and the criteria to be changed more frequently to account for
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the improvements made in the energy efficiency of appliances.

There has been only one revision of the Energy Star standard since the first criteria level was

announced in 1996. The efficiency of dishwashers is measured in terms of the Efficiency Factor

(EF) and the minimum EF for a dishwasher to be considered Energy Star was 0.52. This EF

was 13% above the Federal standard. The next revision of the Energy Star standard was made

on January 1, 2001 when the minimum EF was raised to 0.58. At that time this was 26% above the

Federal standard that, incidentally, has not changed since May 14, 1994. A long overdue revision

of the Federal standard will take effect in 2010.

The infrequency with which the standards for dishwasher were changed is reflected in the way the

average efficiency of dishwashers has changed for both Energy Star as well non-Energy Star

models. Table A.3 shows the evolution of the average EF for both types of dishwashers. We can

see that the average EF for non-qualified models has not changed much and neither has that for

qualified models.

Table A.3: Average Modified Energy Factor Levels of Dishwashers

Year Average non-Energy Star Average Energy Star

2001 0.46 0.58

2002 0.46 0.58

2003 0.46 0.58

2004 0.49 0.64

2005 0.52 0.63

2006 0.48 0.63

Source: DOE

A.3 Refrigerators

The Energy Star label for refrigerators was, like that for dishwashers, also announced in

October, 1996. For refrigerators the Energy Star standard is set at a certain percentage below the

federal standard for maximum energy consumption in each product class. The National Appliance
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Table A.4: Average Efficiency of Refrigerators (Percent Better Standard)

Year Average non-Energy Star Average Energy Star

2001 0% 10%

2002 1% 10%

2003 1% 11%

2004 2% 16%

2005 2% 16%

2006 3% 16%

Source: DOE

Energy Conservation Act (NAECA) of 1987 enabled the US DOE to set federal standards for

the maximum energy consumption on household appliances. When the Energy Star label for

refrigerators was introduced the standard for one to be considered Energy Star was if it consumed

20% less energy than the 1993 federal standard in the same product category. Subsequent revisions

of the Energy Star specification led to the standard being set at 10% less energy consumption in

2001, 10% in 2003 and 15% less energy consumption in 2004. As can be seen from Table A.4 the

average Energy Star refrigerator is quite close to the Energy Star standard while the average

non-Energy Star refrigerator is also quite close to the minimum federal standard.

Table A.5: Average Energy Use of Dishwashers & Refrigerators (in kWh/year)

Dishwashers Refrigerators

Year non-Energy Star Energy Star non-Energy Star Energy Star

2001 700 555 540 450

2002 700 555 558 502

2003 574 455 558 502

2004 439 336 520 442

2005 413 341 520 442

2006 448 341 525 457

Source: D&R International Ltd.
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Table A.6: Random Effects Regression Models with Average Utility Rebates (2001
– 2006)

Variable RE1 RE2 RE3 RE4

Intercept -1.579a -3.392a -2.733a -.994a

(.045) (.530) (.336) (.029)

CW*Rebate .861a .580a .583a .265a

(.127) (.105) (.103) (.068)

DW*Rebate 1.248a 1.034a 1.043a -.333a

(.218) (.230) (.230) (.078)

RF*Rebate .848a .508b .476a .053
(.171) (.210) (.180) (.079)

CW*Log Personal Income .040 .041
(.040) (.040)

DW*Log Personal Income .057c .058c

(.031) (.031)

RF*Log Personal Income .049c .053b

(.027) (.024)

CW*Education 4.886a 4.814a

(.560) (.565)

DW*Education 1.106 1.043
(.736) (.748)

RF*Education 3.107a 3.192a

(.547) (.520)

CW*Log Electricity Price .616a .606a

(.158) (.163)

DW*Log Electricity Price .562a .561a

(.148) (.154)

RF*Log Electricity Price .637a .514a

(.101) (.096)

Appliance dummies Yes Yes
Quarter*Appliance dummies Yes
Year-Quarter*Appliance dummies Yes

Observations 3599 3599 3599 3599
Groups 50 50 50 50
R2 .267 .34 .383 .888
χ2-statistic 1375 2679 10946 8.8×105

Significance levels : a:1%, b:5%, c:10%, Standard errors clustered at the state level

Dependent variable is Log (Share of sales of Energy Star Appliances)

Utility rebate amounts re-scaled
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Table A.7: Random Effects Regression Models with Average Weighted Utility Re-
bates (2001 – 2006)

Variable RE1 RE2 RE3 RE4

Intercept -1.493a -4.217a -3.305a -.996a

(.049) (.591) (.348) (.027)

CW*Rebate 1.340a .690a .676a .325b

(.218) (.148) (.146) (.127)

DW*Rebate 2.329a 2.117a 2.077a -.467
(.643) (.613) (.591) (.388)

RF*Rebate 1.408a .774b .668c .225
(.478) (.341) (.343) (.148)

CW*Log Personal Income .083c .085b

(.043) (.042)

DW*Log Personal Income .088a .090a

(.029) (.029)

RF*Log Personal Income .084a .086a

(.028) (.025)

CW*Education 6.068a 6.003a

(.615) (.610)

DW*Education 2.249a 2.189a

(.667) (.669)

RF*Education 3.831a 3.873a

(.552) (.502)

CW*Log Electricity Price .572a .555a

(.175) (.179)

DW*Log Electricity Price .512a .501a

(.135) (.139)

RF*Log Electricity Price .662a .540a

(.107) (.099)

Appliance dummies Yes Yes
Quarter*Appliance dummies Yes
Year-Quarter*Appliance dummies Yes

Observations 3599 3599 3599 3599
Groups 50 50 50 50
R2 .240 .318 .361 .883
χ2-statistic 1801 3668 15814 2.9×105

Significance levels : a:1%, b:5%, c:10%, Standard errors clustered at the state level

Dependent variable is Log (Share of sales of Energy Star Appliances)

Utility rebate amounts re-scaled
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Table A.8: Peak Spot Prices for Major Pricing Points (in US$/MWh)

On-Peak Spot Prices Off-Peak Spot Prices

2003 2004 2005 2006 2003 2004 2005 2006

Northeast
Mass Hub 59.05 61.47 89.87 70.33 41.80 42.94 61.79 47.45
NY Zone G 61.73 61.74 92.46 76.53 42.12 42.86 63.70 50.54
NY Zone J 77.82 76.63 110.03 86.47 48.70 48.28 72.61 55.05
NY Zone A 51.36 52.49 76.04 59.34 35.78 36.82 53.26 42.20
PJM West 48.49 51.10 76.64 62.92 24.14 30.15 40.72 36.36

Southeast
VACAR 41.60 48.27 71.88 57.20 19.44 25.23 38.13 34.96
Southern 41.55 48.67 70.88 56.15 19.51 26.01 37.54 33.86
TVA 38.90 44.23 67.39 53.91 18.73 22.14 34.24 32.76
Florida 52.21 58.31 84.95 65.06 22.25 29.02 42.88 39.78
Entergy 41.47 45.76 69.95 56.65 18.39 23.04 38.02 34.06

Southeast
Cinergy 37.57 43.31 63.76 52.39 15.91 19.88 29.12 29.93
ECAR North 38.41 45.58 67.13 55.94 16.54 21.00 30.84 29.30
MAIN North 43.14 47.94 64.70 58.67 16.47 20.28 28.78 25.73
NI Hub 37.11 42.03 61.76 53.15 15.44 17.57 28.71 28.35
MAIN South 38.43 42.85 63.38 51.73 16.06 18.41 28.70 25.54
MAPP North 45.18 47.06 65.06 58.67 17.22 19.12 28.57 25.73
MAPP South 43.29 45.90 65.48 55.56 16.93 19.00 28.01 32.61

South Central
SPP North 41.66 45.19 67.44 56.23 18.48 20.55 34.82 33.91
ERCOT 46.49 47.32 70.95 58.74 30.51 31.45 47.95 39.09

Southwest
Four Corners 48.55 50.51 69.39 58.79 32.28 35.45 46.74 36.45
Palo Verde 49.10 50.09 67.39 57.85 32.84 35.44 47.10 36.91
Mead 50.65 51.91 70.18 59.79 33.75 37.43 49.02 38.44

Northwest
Mid- Columbia 40.73 44.54 62.95 49.52 34.04 39.27 50.21 37.23
COB 44.49 49.09 66.95 55.08 35.23 40.58 51.71 39.14

California
NP 15 49.13 54.46 72.49 60.81 35.76 41.35 51.35 39.17
SP 15 51.25 55.20 73.03 61.77 35.15 39.26 51.22 40.07

Source: Federal Energy Regulatory Commission
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B.1 Spatial Dependence Tests

Table B.1: LM Lag Statistic Tests for Spatial Dependence

Levels Differences

Dependent Variable W1 W2 W1 W2

CAC Emissions 14.722 292.118 0.060 10.434
(0.000) (0.000) (0.807) (0.001)

Health-indexed Air Emissions 0.204 57.82 0.234 0.267
(0.652) (0.000) (0.628) (0.605)

Health-indexed Total Emissions 3.135 230.255 1.329 47.533
(0.077) (0.000) (0.249) (0.000)

p-Values are in parentheses. Critical χ2 values for the LM lag statistic tests are 2.71, 3.84 and 6.63 for significance
levels 10%, 5% and 1% respectively. W1 and W2 are spatial weight matrices with wij = (geographical distanceij)

−1

and wij = e−1∗(SIC distance)ij as elements in the weight matrices respectively.
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B.2 Spatial Regression Results

Table B.2: Spatial Regression Models for CAC Emissions

Levels Differences†

Variable W1 W2 W1 W2
(1) (2) (3) (4)

Intercept 12.123a -0.282 0.099 0.101
(1.817) (1.362) (0.066) (0.066)

Fraction of CEPA-regulated output -1.276a -1.639a -2.107a -2.108a

(0.158) (0.153) (0.112) (0.112)

Log of Employees 0.99a 0.889a 0.520a 0.524a

(0.042) (0.04) (0.073) (0.073)

Log of Population (1990) -0.161a -0.177a 0.206 0.215
(0.028) (0.024) (0.162) (0.162)

ρ 0.187c 0.966a -0.021 0.480a

(0.081) (0.071) (0.094) (0.028)

Province dummies Yes Yes Yes Yes
SIC dummies Yes No

Adjusted R2 0.4343 0.3658 0.1679 0.1675
Observations 2150 2150 2003 2003
Log-Likelihood -3798 -3914 -408 -407
Spatial Multiplier, 1/(1− ρ) 1.230 29.412 0.979 1.923

Significance at the 1%, 5% and 10% levels are denoted by a, b and c respectively.
The dependent variable is Log (CAC Air Emissions). Standard errors are in parentheses. Specifications W1 and W2
are spatial regressions with wij = (geographical distanceij)

−1 and wij = e−1∗(SIC distance)ij as elements in the weight
matrices respectively.

†: For conserving space I have used the same variable names to report results from the difference specification. All

regressors in columns (3) and (4) should be interpreted as being differences.
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B.2. Spatial Regression Results

Table B.3: Spatial Regression Models for Health-Indexed Air Emissions

Levels Differences†

Variable W1 W2 W1 W2
(1) (2) (3) (4)

Intercept 15.131a 1.390 0.044 -0.011
(1.727) (3.154) (0.183) (0.183)

Fraction of CEPA-regulated output -2.238a -2.617a -3.944a -3.947a

(0.221) (0.207) (0.194) (0.194)

Fraction of PSL-regulated output -4.917a -5.436a -5.463a -5.464a

(1.06) (1.078) (0.527) (0.526)

Log of Employees 1.071a 1.041a 0.376c 0.378c

(0.084) (0.077) (0.192) (0.191)

Log of Population (1990) -0.229a -0.256a -0.726 -0.710
(0.054) (0.049) (0.458) (0.457)

ρ 0.080 0.867a -0.001 -0.763a

(0.065) (0.16) (0.088) (0.057)

Province dummies Yes Yes Yes Yes
SIC dummies Yes No

Adjusted R2 0.3014 0.2649 0.2571 0.2569
Observations 1426 1426 1305 1305
Log-Likelihood -3218 -3258 -1285 -1285
Spatial Multiplier, 1/(1− ρ) 1.087 7.519 0.999 0.567

Significance at the 1%, 5% and 10% levels are denoted by a, b and c respectively.
The dependent variable is Log (Health-Indexed Air Emissions). Standard errors are in parentheses. Specifications
W1 and W2 are spatial regressions with wij = (geographical distanceij)

−1 and wij = e−1∗(SIC distance)ij as elements
in the weight matrices respectively.

†: For conserving space I have used the same variable names to report results from the difference specification. All

regressors in columns (3) and (4) should be interpreted as being differences.
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B.2. Spatial Regression Results

Table B.4: Spatial Regression Models for Health-Indexed Total Emissions

Levels Differences†

Variable W1 W2 W1 W2
(1) (2) (3) (4)

Intercept 14.341a -0.154 -0.110 -0.059
(1.641) (1.202) (0.213) (0.213)

Fraction of CEPA-regulated output -2.601a -2.992a -4.495a -4.495a

(0.199) (0.183) (0.228) (0.227)

Fraction of PSL-regulated output -7.501a -8.012a -6.376a -6.366a

(0.927) (0.949) (0.597) (0.596)

Log of Employees 0.967a 1.003a 0.284 0.289
(0.075) (0.068) (0.223) (0.222)

Log of Population (1990) -0.184a -0.255a -0.439 -0.402
(0.049) (0.045) (0.514) (0.513)

ρ 0.162c 0.966a 0.052a 0.801a

(0.061) (0.045) (0.002) (0.196)

Province dummies Yes Yes Yes Yes
SIC dummies Yes No

Adjusted R2 0.3710 0.3158 0.2367 0.2377
Observations 1641 1641 1516 1516
Log-Likelihood -3663 -3723 -1776 -1774
Spatial Multiplier, 1/(1− ρ) 1.193 29.412 1.055 5.025

Significance at the 1%, 5% and 10% levels are denoted by a, b and c respectively.
The dependent variable is Log (Health-Indexed Total Emissions). Standard errors are in parentheses. Specifications
W1 and W2 are spatial regressions with wij = (geographical distanceij)

−1 and wij = e−1∗(SIC distance)ij as elements
in the weight matrices respectively.

†: For conserving space I have used the same variable names to report results from the difference specification. All

regressors in columns (3) and (4) should be interpreted as being differences.
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