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Abstract

Many previous studies in multiple sclerosis (MS) have focused on the relation-

ship between white matter lesion volume and clinical parameters, but few have

investigated the independent contribution of the spatial dispersion of lesions

to patient disability. In this thesis, we investigate whether a mathematical

measure of the 3D spatial dispersion of lesions can reveal clinical significance

that is independent of volume. Our hypothesis is that for any two given pa-

tients with similar lesion loads, the one with greater lesion dispersion would

tend to have a greater disability. We investigate four different approaches for

quantifying lesion dispersion and examine the ability of these lesion dispersion

measures to act as potential surrogate markers of disability. We propose one

connectedness-based measure (compactness), two region-based measures (ra-

tio of minimum bounding spheres and ratio of lesion convex hull to the brain

volume), two distance-based measures (Euclidean distance from a fixed point

and pair-wise Euclidean distances) and one measure based on network theory

(small-worldness). Our data include three sets of MRIs (n = 24, 174, 182) se-

lected from two MS clinical trials. We segment all white matter lesions in each

scan with a semi-automatic method to produce binary images of lesion vox-

els, quantify their spatial dispersion using the defined measures, then perform

a statistical analysis to compare the dispersion values to total lesion volume

and patient disability. We use linear and rank correlations to investigate the

relationships between dispersion, disability, and total lesion volume, and re-

gression analysis to investigate whether there is a potentially meaningful rela-

tionship between dispersion and disability, independent of volume. Our main

finding is that one distance based measure, Euclidean distance from a fixed
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Abstract

point, consistently correlates with disability score across all three datasets,

and has predictive value that is at least partly independent of lesion volume.

The results provide support for our hypothesis and suggest that a potentially

meaningful relationship exists between patient disability and measurements of

lesion dispersion. Finding such relationships can improve the understanding

of MS and potentially lead to the discovery of novel surrogate biomarkers for

clinical use in designing treatment trials and providing prognostic advice to

individual patients.
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Chapter 1

Introduction

1.1 Multiple sclerosis

Multiple sclerosis (MS) is a disease of the central nervous system (CNS). In

MS a chronic inflammatory reaction leads to loss of myelin sheaths around the

axons, slowing of nerve conduction and loss of axons. This disease is a common

cause of disability in young adults, and especially occurs in young women

[8]. There are four subtypes of MS: relapsing remitting (RRMS), secondary

progressive (SPMS), primary progressive (PPMS), and progressive relapsing

(PRMS). RRMS is defined by relapses and remissions and typically develops

into a phase of slowly progressing irreversible disability which is known as

SPMS. In PPMS patients, the disease is slowly progressive from the onset.

PRMS patients have a steady neurologic decline but also suffer additional

attacks. This is the least common of all subtypes [8].

A patient with MS can suffer almost any neurological symptom. The dis-

ability progression and symptom severity are available in the form of some

clinical measures like expanded disability status scale (EDSS) and multiple

sclerosis functional composite (MSFC). EDSS is the most common index for

physical disabilities in MS [31]. The score is based upon neurological test-

ing and examination of functional systems in patients, which are areas of the

central nervous system that control bodily functions. A higher EDSS value

indicates worse clinical status. The values range from 0, normal neurologi-

cal exam, to 10, death due to MS [3]. An MSFC score contains three main

components, each measuring one clinical dimension of MS; 1) quantitive mea-

sure of leg function and ambulation, 2) quantitive measure of arm and hand
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1.2. Magnetic resonance imaging and monitoring of MS lesions

function, 3) a measure of cognitive function that assesses auditory information

processing speed and ability, as well as calculation ability [13]. To compute

the MSFC score, the score for each component is first converted to a z-score

based on the pooled data set. The arm/hand component and the cognitive

component are both scaled so that higher scores indicate better performance,

but the leg function component is reversed. Consequently the formula for

combining the three components into an overall MSFC score is:

ZMSFC = (Zarm − Zleg + Zcog)/3 (1.1)

A lower MSFC score indicates more severe disability [13] relative to the mean

of the reference population.

1.2 Magnetic resonance imaging and

monitoring of MS lesions

Magnetic resonance imaging (MRI) is a sensitive imaging modality that can

be used for tracking and visualizing MS. MRI can detect areas of inflam-

mation (active lesions) and areas of permanent damage (chronic lesions) in

the brain. These images may also include “silent” damage (lesions detected

by MRI that do not result in symptoms). One of the MR-based measures

that are commonly used to diagnose and monitor MS in the clinical setting

is the extent of tissue disruption that is generally visible as brain white mat-

ter lesions on T1-weighted, T2-weighted and proton density-weighted (PD-

weighted) MRI scans [11, 34]. T2-weighted and PD-weighted scans typically

show the same lesions, whereas T1-weighted lesions are a subset of the T2-

weighted/PD-weighted lesions. In this thesis, we focus on lesions that are

visible on T2-weighted and PD-weighted scans.

2



1.3. Thesis motivation

1.3 Thesis motivation

Measurement of the total white matter lesion volume on MRI scans is a widely

used outcome measure for monitoring the pathological state and progression

of multiple sclerosis (MS) [24]. However, previous studies have shown that the

relationship between lesion volume and patient disability is generally weak,

especially in T2-weighted imaging studies [3]. Specifically, the cross-sectional

correlation between T2-weighted lesion volume and the Extended Disability

Status Scale (EDSS), which is the most frequently used clinical measure in MS

[31], typically ranges between 0.15 to 0.4 for Spearman rank correlation with

some studies reporting values as high as 0.6 [3]. In addition to having a limited

predictive value, the focus on global lesion volume has left other lesion variables

under-explored. In this thesis, we investigate whether mathematical measures

of the 3D spatial dispersion of lesion voxels can reveal clinical significance

that is independent of lesion volume. As we will describe in more detail in

Chapter 2, a number of studies have explored the contribution of lesion location

to MS disability, most commonly referred to as representing “distribution”

[5, 9], but there has been minimal work done to quantify the spatial extent

of MS lesions and its contribution to disability while controlling for volume

as a variable. We use the term “dispersion” rather than “distribution” to

define spatial extent in order to distinguish our work from studies on lesion

location. Our hypothesis is that for any two given patients with similar lesion

loads, the one with greater dispersion would tend to have greater disability

due to a greater global impact on the brain, thereby reducing its capacity to

adapt. Figure 1.1 presents a motivating example, and shows the projection

of all lesion voxels onto the largest transverse slice of the brain scans of two

patients in our data set. These patients have approximately the same total

lesion volume (∼3000 mm3), but different spatial dispersion. The EDSS value

for the patient with more distributed lesions is higher (6.5 vs. 3.5). Exploring

such relationships can improve the understanding of MS and potentially lead

to the discovery of novel surrogate biomarkers for clinical use.

3



1.4. Thesis contributions

Figure 1.1: White matter lesions, transverse view; left: a patient with a
total lesion volume of 3071 mm3 and EDSS of 3.5, right: a patient
with a total lesion volume of 2957 mm3 voxels and EDSS of 6.5.
This example illustrates our hypothesis that for any two given
patients with similar lesion loads, the one with greater dispersion
would tend to have greater disability.

1.4 Thesis contributions

We use a methodology that consists of two main steps to evaluate our hy-

pothesis and assess the relationship between brain lesion dispersion and the

disability in MS patients. In the first step we investigate different computa-

tional methods for measuring lesion dispersion. In the second step we perform

a statistical analysis to determine the strength of the relationship between

lesion dispersion and patient disability and compare the contribution of dis-

persion to that of lesion volume. We use three sets of T2-weighted and proton

density-weighted MRIs of 24, 178, and 182 patients selected from two MS

clinical trials. To the best of our knowledge, we are the first to study the

relationship between spatial lesion dispersion and MS disability.

1.4.1 Lesion dispersion measures

We investigate four different classes of measures for quantifying lesion dis-

persion. Each class of approaches focuses on a specific concept of spatial

dispersion. The first class explores the effect of connectedness between the le-

sion voxels without incorporating distances; we use one method, termed com-

pactness, from this class. The second class of methods includes region-based

4



1.4. Thesis contributions

measures that approximate the region impacted by the lesions. We select two

methods as representatives of this class; the ratio of volume of the minimum

bounding spheres of the lesion voxels to that of the brain, and the ratio of

the volume of the convex hull of the lesion voxels to the brain volume. The

third set of measures is distance-based. We propose two measures, one con-

sisting of three components and the other one consisting of four components,

for this class. One measure uses the variance, entropy and skewness of the

distribution of the Euclidean distances of the lesion voxels from a fixed refer-

ence point. The other method in this set uses the mean, variance, entropy and

skewness of a set of Euclidean distances, but computed as pair-wise distances

between the lesion voxels rather than from a fixed reference point. The last

approach, which is derived from network theory, considers the lesions as nodes

of a network and then uses the characteristics of the network to find a pattern

of lesion dispersion. In this approach, we compute a ratio of small distances

between lesion voxels to the large distances. We use a property of networks

called small-worldness as a key component of this measure.

1.4.2 Statistical analysis of the contribution of

dispersion measures to disability

After computing each measure for our patient samples, we perform a sta-

tistical analysis to determine the strength of its relationship to the clinical

status, and compare the contribution of dispersion to that of lesion volume.

We compute the p-values of both Pearson and Spearman correlations to in-

vestigate the statistical significance of relationships between lesion dispersion,

the clinical scale, and total lesion volume. In this thesis we make a general

assumption of linearity, therefore any discussion of correlation can be taken to

mean Pearson correlation unless otherwise specified, and the Spearman val-

ues are provided primarily for completeness. We also use regression analysis

to investigate whether there is a potentially meaningful relationship between

lesion dispersion and clinical score that is independent of total lesion volume.
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1.5. Thesis organization

Our main finding in this thesis is that one distance-based measure, Eu-

clidean distance from a fixed point, consistently has predictive value that is

at least partly independent of lesion volume for all three of our data sets. In

addition, a connected-based measure, compactness, has a potentially mean-

ingful correlation with cognitive impairment in the third data set. The results

provide support for our hypothesis that for any two given patients with similar

lesion loads, the one with greater dispersion would tend to have greater dis-

ability, but further investigation is required to determine why some dispersion

measures agree with clinical status better than others.

1.5 Thesis organization

The rest of the thesis is organized as follows. In Chapter 2 we present a sur-

vey of previous investigations on features of white matter lesions, specifically

volume and location, which have been used to monitor MS. In Chapter 3,

we describe the data sets used and the detailed methods and algorithms im-

plemented for calculating lesion dispersion and analyzing the results of these

calculations. In Chapter 4, we present our results. Finally, Chapter 5 discusses

an interpretation of the results, concludes the thesis and presents possible di-

rections for future work.
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Chapter 2

Related Work

In this chapter we review some of common proposed approaches for quantifying

lesion characteristics. The previous studies most relevant to this thesis are

studies on total lesion volume and lesion location. Lesion volume is used to

establish a baseline of clinical relevance for our proposed measures of lesion

dispersion. Many studies in MS lesions have focused on the correlation between

lesion volume in different locations of the brain and patient disability. Among

these studies, some have investigated lesion location using a lesion probability

map. This approach is mainly referred as investigating lesion distribution. In

contrast, our proposed dispersion measures aim to quantify the spread of the

lesions without particular regard for their location.

2.1 Total white matter lesion volume and

disability

The total volume of white matter lesions is one of the most used outcome

measurements for monitoring the progression of MS [24]. Very early studies like

that of Thompson et al. [29] failed to find any correlation between conventional

spin echo MRI lesion load and disability. Later on, several studies like those

of van Walderveen et al. [33] and Gass et al. [16] which used more accurate

measurement methods reported Spearman rank correlation coefficients of r =

0.23 − 0.33 for T2-weighted lesion volumes in mixed MS populations and as

high as r = 0.57 [12] for a homogenous cohort of relapsing-remitting patients.

Barkhof [3] also reported a selection of studies that have been presented over

7



2.1. Total white matter lesion volume and disability

the years looking at correlations between conventional T2-weighted lesion load

and EDSS. He observed that Spearman rank correlation coefficients varied

between 0.15 and 0.60 [3]. Later on, more studies reported that MRI-derived

total lesion load correlates weakly with disability as assessed, for example, by

EDSS [7].

In addition to T2-weighted lesion volume, there have been promising stud-

ies using T1-weighted lesion volume, which is believed to reflect more perma-

nent brain damage than T2-weighted scans, generally giving better correla-

tions with disability [7]. But T1-weighted lesion volume also has considerable

limitations. For example very few automated methods exist for segmenting

T1-weighted lesions and the correlation between T1-weighted lesion volume

and EDSS can be highly dependent on the intensity threshold used to define

the lesions. On the other hand, T2-weighted lesions tend to be much more

homogeneous [28].

Longitudinal correlations between changes in lesion volume and clinical

status have also been inconsistent across previous studies. In a study by

Khaleeli et al. [22], it has been shown that changes in lesion load did not

correlate significantly with the progression rate of MS. In their study, changes

in T2-weighted lesion load over first two years were studied in a cohort of 101

PPMS patients who were followed-up for 10 years. However some previous

studies like that of Fisniku et al. [14] claimed that over a longer time period,

changes in T2-weighted lesion load had a significant correlation with changes

in disability. In their study, Fisniku et al. [14] have shown that lesion volume

and its change at earlier time points were correlated with disability after 20

years.

A number of factors and mechanisms are known to negatively affect the

strength of the correlation between lesion load and disability, which include:

neuroplasticity and cortical reorganization which help the brain adapt to lo-

cal injury and contribute to functional recovery [4, 7]; in addition to focal

lesions, MS is known to cause global white matter and gray matter changes

8



2.2. Lesion location

that are not readily detectable on conventional MRI, but contribute to dis-

ability [4, 34]; pathological heterogeneity of lesions visualized on PD-weighted

and T2-weighted images (edema, demyelination, axonal loss, or gliosis have a

similar appearance on T2-weighted imaging) [34]; the fact that a proportion

of the lesions visualized on MRI may be clinically silent [34]; and finally, lim-

itations of the EDSS especially its nonlinearity and heavy weighting toward

ambulatory deficits [4]. There is evidence that taking cognitive impairment

into account may improve correlations with total lesion volume ([1, 15, 26, 27]

as reviewed in [7]). However, the Spearman rank correlations between lesion

volume and other clinical scores that include cognitive impairment like the

multiple sclerosis functional composite (MSFC) are still moderate, ranging

from -0.5 to -0.61 (p < 0.001) [14].

Despite inconsistencies in the findings, MRI lesion volume is considered

a well established secondary outcome measure in clinical trials of multiple

sclerosis. But the focus on global lesion volume has left other lesion variables

under-explored. Consequently, researchers have continued to seek alternatives

for quantifying the impact of lesions.

2.2 Lesion location

2.2.1 Contribution of lesion location to disability

To exploit the fact that the brain function is closely tied to structure, a num-

ber of studies have explored the contribution of lesion location to MS disabil-

ity. Gawne-Cain et al. [17] classified each lesion as either brainstem, cerebel-

lar, subcortical (lesion touching cerebral cortical grey matter), periventricular

(touching lateral or third ventricle), or discrete (within cerebral white matter).

Then they studied the regional lesion volume in MS and reported that EDSS

had a significant correlation with lesion volume in each separate anatomical

region, the strongest being with periventricular (r ≥ 0.5 for Spearman corre-

lation) and posterior fossa (brainstem and cerebellum) volumes (r ≥ 0.4 for

9



2.2. Lesion location

Spearman correlation) and the weakest with subcortical volumes (r < 0.4 for

Spearman correlation). Charil et al. [7] studied the relationship between the

site of lesions and type of disability by combining automatic lesion localization

with statistical techniques. They reported that in particular, part of the dis-

ability contained in the EDSS could be explained by lesions at restricted sites

in the white matter, especially within the internal capsule. They showed that

lesions at the grey-white junction particularly were implicated in cognitive

impairment.

Some studies investigated the particular relationship between sites of le-

sions and cognitive dysfunctions. Tiemann et al. [30] evaluated the signif-

icance of total lesion load for predicting general cognitive dysfunction and

tested for a correspondence between lesion topography and specific cognitive

deficit patterns. Periventricular lesions were significantly related to decreased

psychomotor speed, whereas equally distributed cerebral lesion load were not.

Their findings supported the idea that periventricular lesions had a determi-

nant impact on cognition in patients with MS.

2.2.2 Lesion distribution as defined by using lesion

probability map

A number of studies investigated lesion location using a lesion probability map

that is commonly referred to as representing “distribution”. The probability

map is produced by computing the probability of each voxel being lesional. In

general the probability is defined by the relative voxel intensity.

Vellinga et al. [34] investigated the correlations between spatial distribution

of lesions and disability (assessed by EDSS and MSFC scores) by using a voxel-

wise lesion probability map on T2-weighted lesion masks. They found that

lesion probability in the periventricular region correlated significantly (p <

0.001) with disability (r = 0.27 for Spearman correlation) and disease duration

(r = 0.28 for Spearman correlation), and was higher in progressive than in

relapsing disease. However, they found that lesion burden and location were

10



2.2. Lesion location

confounding variables in that lesion load influenced relations between disability

and lesion probability throughout the brain. In particular, when controlled

for lesion load, they found no significant relation between lesion location and

disability. In this thesis, we control for lesion volume when assessing the

contribution of lesion dispersion.

In addition, some studies have been done to evaluate the difference in lesion

distribution in groups of patients with specific types of MS. Perri et al. [25]

compared the spatial distribution, obtained by probability map, of lesions in

patients with PPMS and RRMS. They reported that differences in cerebral

pathologic involvement existed between PPMS and RRMS and contributed to

variations in clinical disability.

2.2.3 Longitudinal studies on lesion location

Since predicting the progression of MS has important clinical implications,

some researchers have studied the lesion location as a potential predictor for

the long term clinical outcome in patients. Bodini et al. [5] studied lesion lo-

cation and topographic distribution of lesions, again employing a lesion proba-

bility map to provide a voxel-wise, quantitative description of the topographic

distribution of brain lesions. This work investigated whether the location of

T2-weighted and T1-weighted lesions at baseline predicted progression over

10 years, performing a retrospective study in the cohort of 80 PPMS patients.

Their findings suggested that the location of T2-weighted brain lesions in the

motor and associative tracts was an important contributor to the progression

of disability in PPMS, and was independent of spinal cord involvement. Dal-

ton et al. [9] investigated associations between the spatial distribution of brain

lesions and clinical outcomes in a cohort of MS patients who were followed up

20 years after presenting with a clinically isolated syndrome suggestive of MS.

In this study, brain lesion probability maps of T1-weighted and T2-weighted

lesions were analyzed adjusting for age and gender using a multiple linear re-

gression model. This study demonstrated that lesion location characteristics
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2.2. Lesion location

were associated with disability after long-term follow-up. Lesions in certain

regions of the brain, in particular posterior structures rather than anterior

structures, were associated with greater disability as assessed by EDSS.

In summary, a review of previous work on exploring white matter lesion

properties on brain MRI of MS patients shows that measurement of the total

white matter lesion volume is a widely used outcome measure for monitoring

the pathological state and progression of MS. However, particularly in T2-

weighted imaging studies, the relationship between lesion volume and patient

disability is generally weak. Consequently, researchers have explored other

features of lesions, especially lesion location on T2-weighted scans, and have

established some promising biomarkers of disability in MS. These studies have

most commonly been done using a lesion probability map that is sometimes

referred to as representing “distribution”. But there has been minimal work

done to quantify the spatial extent of MS lesions and its contribution to dis-

ability while controlling for volume as a variable, which is the main goal in

this thesis. In addition, we are proposing measures for lesion dispersion that

are not emphasizing lesion location. As a result, our approach minimizes some

types of errors (e.g., false positives from multiple comparisons in voxel-based

studies and the errors involved in dividing the brain into regions such as the

uncertainty of region boundaries).
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Chapter 3

Materials and Methods

We use three sets of T2-weighted and proton density-weighted MRIs to perform

our experiments. The first data set is comprised of the MRIs of 24 MS patients,

collected from a single selected scanning site participating in an MS clinical

trial. The scans were acquired in the axial orientation on a Philips Achieva

3T scanner with a dual-echo sequence with TE1 = 15.0 ms, TE2 = 75.0 ms and

TR = 2700.0 ms. The original image dimensions are 256 × 256 × 50 with voxel

size 0.937 mm × 0.937 mm × 3.0 mm. For each patient, clinical status is avail-

able in the form of an EDSS score. The sample is a mix of 13 RRMS and 11

SPMS patients. The EDSS values are well-distributed in this data set which

is not typical in MS studies. Studies of large populations of MS patients have

revealed consistently a bimodal EDSS frequency distribution rather than a

Gaussian distribution [18], with a large percentage of patients clustered around

6–6.5 and 3–3.5 [35]. The clustered EDSS values can negatively affect the cor-

relation values in our study. We use the first data set to develop our dispersion

measures and test the potential of each dispersion measure. We assume that a

measure that does not show a positive result in this well-distributed data set

is unlikely to show a result in a more realistic patient sample. The second data

set is comprised of the MRIs of 174 randomly selected SPMS patients from

33 sites participating in another MS clinical trial. The scans were acquired

in the axial orientation using a dual-echo sequence with TE1 = 8.4 - 20.0 ms,

TE2 = 60.7 - 98.0 ms and TR = 2000.0 - 3400.0 ms. The original image dimen-

sions are 256 × 256 × 50 with voxel size 0.937 mm× 0.937 mm× 3.0 mm. This

patient sample is challenging for use in developing surrogate biomarkers us-

ing EDSS correlation because the EDSS values are highly clustered, which is
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Chapter 3. Materials and Methods

Table 3.1: Mean, standard deviation, ranges, and interquartile ranges
(IQR) of EDSS for the first two data sets, and MSFC scores in the
third data set

Dataset Clinical Score Number of Patients Mean SD Range IQR
1 EDSS 24 5 2.2 1.5–8 3.75
2 EDSS 174 5.4 1.3 2.5–8.5 2
3 MSFC 182 0.03 0.76 -4.7–1.2 0.91

typical of the SPMS population, with approximately half of the EDSS scores

in this data set having values of 6 or 6.5. The third data set is comprised

of the scans of 182 randomly selected SPMS patients enrolled in the same

clinical trial as the second data set. We use this third data set to investigate

the relationship between lesion dispersion and the MSFC, which includes a

cognitive component and is typically better distributed than the EDSS. The

second and third data sets overlap by about 50%, and we choose to use two

different patient samples for the EDSS and MSFC in order to avoid using the

same set of scans repeatedly. Table 3.1 shows the mean, standard deviation,

ranges, and interquartile ranges of EDSS in the first two data sets, and MSFC

scores in the third data set.

The white matter lesions are delineated on each T2-weighted/PD-weighted

pair using a semi-automatic method [23] to produce binary images in which

the lesion voxels have the value of 1. Briefly, the delineation procedure in-

cludes four main steps. In the first step, we use a multi-scale version of the

Non-parametric Non-uniform intensity Normalization (N3) method to correct

the MR intensity inhomogeneity. In the second step, we use the Brain Extrac-

tion Tool (BET) to remove all non-brain tissue. In the third step, two highly

experienced radiologists place seed points to mark the location and approxi-

mate extent of each T2w lesion. In the last step, we process the seed points by

a customized Parzen windows classifier to estimate the intensity distribution

of the lesions. We then reduce false positives by using connected component

and shape analyses.
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3.1. Lesion dispersion measures

Full details on the automatic segmentation of T2w lesions are provided in

[23]. The 3.0 mm slices of the binary images are divided into 1.0 mm slices to

remove the effect of voxel anisotropy in the lesion dispersion measurements,

resulting in images with dimensions of 256× 256× 150.

This study has been done in two main steps:

1. Calculating the lesions dispersion for each patient.

2. Analyzing the results to find whether there is a relationship between dis-

persion and patient status and which descriptor measures the strongest

independent contribution to disability.

3.1 Lesion dispersion measures

In this thesis, we investigate four different approaches to finding a descriptor

for lesion dispersion.

3.1.1 Connectedness-based approach

Compactness

We use a current method for calculating the compactness which was developed

by Bribiesca [6]. This measure depends in large part on the sum of the contact

surface areas of the face-connected voxels of 3D shapes. To quantify the con-

nectedness of shapes composed of cubic voxels, Bribiesca [6] mathematically

defines compactness as follows:

C =
n− A/6
n− ( 3

√
n)2

(3.1)

where A corresponds to the total area of the externally visible faces of the

solid and n is the total number of voxels. Intuitively, as a shape becomes less

compact, there are fewer connections between voxels, and A increases, causing

C to decrease.
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3.1. Lesion dispersion measures

Figure 3.1: Examples of different shapes with 27 voxels and their cor-
responding compactness [6]; (a) C = 1, (b) C = 0.555, (c) C =
0.444, (d) C = 0. As the number of connected faces decreases, so
does the compactness.

This measure is independent of the volume of the object and does not

change by changing the size of the object. The main advantages of compactness

are its ease of computation for voxel data and having a range between 0 and

1, thereby removing the need for any external normalization factor. Its main

limitation is that distances between voxels are not modelled. Figure 3.1 shows

an example of different shapes and their corresponding compactness and how

the compactness decreases when the number of connected faces decreases.

We use this measure to quantify how compacted the lesion voxels are,

regardless of their size or distances between lesions. From the point of studying

lesion dispersion, the assumption is that when lesions are more compacted or

the connectedness between lesions is high, they are less dispersed.

3.1.2 Region-based approach

In this approach we estimate the region impacted by computing the lesion

minimum bounding sphere for one measure and lesion convex hull for another.

The rationale for the measures in this approach is that using the lesions to form

a sphere or a convex hull defines a region that is more likely to be impacted

by the visible damage than the areas outside of the sphere or the convex hull.
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3.1. Lesion dispersion measures

Ratio of minimum bounding spheres

For each patient, we compute the smallest sphere that contains all of the lesion

voxels and the smallest sphere containing all of the brain voxels. Then we use

the volume ratio of the lesion sphere to the brain sphere as a measurement

of lesion dispersion. The volume of the brain sphere acts as a normalization

factor. The spherical shape is arbitrary chosen to test the feasibility of the

approach.

Ratio of convex hull volume to brain volume

The motivation for using this measure is to determine if a more accurate

regional representation of the lesions and brain would yield stronger results

than the ratio of minimum bounding spheres. The convex hull of a set of

points, S, is the unique convex polyhedron that contains S and all of whose

vertices are points from S. More details on properties of the convex hull and

different algorithms for computing the convex hull are provided in [10]. In

this study, we use a MATLAB function (convexHull) to calculate the convex

hull of lesion voxels. This function is based on the Quickhull algorithm which

is provided in [2]. Then we use the ratio of the convex hull volume to the

intradural volume (computed using a method based on [20]) as a measurement

of lesion dispersion. The intradural volume acts as a normalization factor in

this measurement.

3.1.3 Distance-based approach

Euclidean distance from a fixed reference point

To quantify lesion dispersion using a distribution of distances, we compute

the variance, histogram entropy and skewness of the 3D Euclidean distances

between the lesion voxels and a fixed reference point. The variance is computed

from the distances directly, whereas the entropy and skewness are computed

from a histogram of the distances. The variance of distances indicates how the
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3.1. Lesion dispersion measures

Figure 3.2: Different reference points used for dispersion measurement.
The lowest indicated point in the right image (the center point
on the largest slice projected onto the most inferior slice) yields
the strongest correlation to EDSS in the first data set.

lesions are distributed in terms of distance from the reference point. Skewness

measures the asymmetry of the distribution. A negative skew indicates that

the bulk of the values lie to the right of the mean and a positive skew shows

that the bulk of the values lie to the left of the mean. In our application,

negative skewness indicates that the distances tend to be larger than the mean

of the distances and positive skewness indicates that the distances tend to be

smaller than the mean. We use skewness to determine if asymmetry of the

distribution, as a characteristic of dispersion, has a relationship to clinical

disability. Entropy is a statistical measure of randomness that can be used

to measure the uncertainty of a random variable. In our application, smaller

entropy indicates clustered distance values and larger entropy shows that the

histogram of distance values has an evenly distributed model.

We have tested a number of different reference points for our measurement,

including the centroid of the brain, several extremal points, and points in-

between. Figure 3.2 illustrates different reference points. We observe that the

results are dependent on the location of the reference point, and that the centre

point of the brain defined on the largest slice, but projected onto the most

inferior slice, yields the strongest correlations to EDSS in the development

data set of 24 patients. This point is located near the brainstem which can be

thought of as the trunk of many branching nerve fibres, and has high relevance

for motor control. For the other data sets, we also use the same point as the

reference point.
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3.1. Lesion dispersion measures

In order to account for natural variations in brain size among different

patients, we apply principle component analysis (PCA) to the brain voxels to

compute the anterior-posterior, left-right and superior-inferior axes for each

patient. The maximum extent along each direction is then used to normalize

the lesion distances along the same direction. Mathematically speaking, we

use Equation 3.2 to compute the normalized distances:

dir =

√(
xi − xr
xb

)2

+

(
yi − yr
yb

)2

+

(
zi − zr
zb

)2

(3.2)

where (xi, yi, zi) and (xr, yr, zr) are the coordinates of the lesion voxel and

the reference point, expressed in the coordinate system defined by the PCA-

computed axes. xb, yb, and zb are the maximum brain extents in the anterior-

posterior, left-right and superior-inferior directions respectively.

Pair-wise Euclidean distances analysis

To have a distance-based measure that is independent of any reference points,

we compute the pair-wise Euclidean distances of lesion voxels in each patient.

For pair-wise distances, we also compute the variance, entropy and skewness of

the distribution. In addition, we compute the mean of the pair-wise distances,

which provides an approximation of how far lesion voxels are located from

each other. Similarly to the fixed-point method, the distances are normalized

to the brain extents of each patient.

3.1.4 Network-based approach

Small-worldness

Another approach that we propose for the topological study of lesion dispersion

is derived from network theory. We consider the lesions as nodes and demon-

strate that they can form a small-world network. By definition, a small-world

network has highly local clustered nodes but also long path lengths between
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3.1. Lesion dispersion measures

elements (clusters). By computing the small-worldness that captures the ratio

of small distances to the large distances between nodes, we obtain a measure

of dispersion.

To study lesion dispersion using network theory, first we define nodes and

edges and then form a lesion network in which every lesion area is represented

by a node.

1. We define a network in which every lesion area is represented by a node.

Due to computing limitations we cannot assign a node to each lesion

voxel. Therefore, for each patient, we divide the image into cubic regions

of 5 × 5 × 5 voxels. If there is a lesion voxel in a box, the center of

that box is considered as a node. The relationships between nodes are

represented by connecting edges. Each edge has a weight which indicates

the strength of the connection. Here we use the Euclidean distance

between two nodes as the weight of the connecting edge.

2. After defining the nodes, we build the minimum spanning tree (MST)

of the nodes. In graph theory, a tree is an undirected graph in which

one simple path connects any two nodes, which means all nodes are

connected in a tree but there are no cycles. A minimum spanning tree

is a tree that connects all the nodes together with the total weight (sum

of the weights of the edges) smaller than or equal to that of every other

possible tree. After computing the MST, we form an edge between every

pair of nodes that have an Euclidean distance smaller than a threshold.

We have chosen the threshold to maximize the number of networks that

fit the small-worldness model in the development data. We use 1/5 of the

mean of the maximum edge weights in the MSTs of all patients as the

threshold. Using this threshold, 18 networks of the 24 lesion networks

we defined for the patients in the first data set, can be considered as

smallworld networks.

After forming a lesion network for each patient, we use some concepts of

20



3.1. Lesion dispersion measures

network analysis to study lesion dispersion. Below, we introduce these con-

cepts including clustering coefficient, characteristic path length, and small-

worldness. The clustering coefficient captures the connectivity between lesion

voxels. The characteristic path length quantifies how far the lesion clusters

are from each other. The small-worldness that is computed using the cluster-

ing coefficient along with the path length, can be a measure for dispersion,

indicating how clustered the lesion voxels while considering how dispersed the

lesion clusters are.

Clustering coefficient: The clustering coefficient quantifies how clustered

the nodes are in a network. For each node i, the clustering coefficient, ci is:

ci =
2Ei

ki(ki − 1)
(3.3)

where Ei is the number of existing edges between the neighbors of i, and ki

is the number of neighbors of i. The clustering coefficient of the network,

c, is the mean of the clustering coefficients of all nodes in the network [19].

By definition, a higher clustering coefficient, indicates more locally clustered

nodes.

The typical definition of a clustering coefficient does not take into account

the distances between nodes. We hypothesize that distances may be infor-

mative, therefore we modify the clustering coefficient. In our modification

we want to incorporate the Euclidean distances between nodes in quantifying

how clustered the network is. For each node, we define cDi as the modified

clustering coefficient.

cDi =
Di

Dall
i

(3.4)

where Di is the sum of Euclidean distances between every connected pair of

neighbors of the node i, and Dall
i is the sum of the Euclidean distances between

all pairs of neighbors of node i, regardless whether they are directly connected

to each other or not. Dall
i is used for normalization since it represents the sum
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3.1. Lesion dispersion measures

of distances if the neighbors of nodes i were fully connected to each other.

Characteristic path length: The characteristic path length of the net-

work, L, is the mean of the minimum path length over all node pairs. The

minimum path length of two nodes is the minimum number of edges that need

to be traversed when going from one node to the other.

Small-worldness: To classify a network as small-world, we compare its clus-

tering coefficient and characteristic path length to those of a random network.

The random network is usually an Erdös-Rényi random network with the same

number of edges and nodes [21].

The clustering coefficient of an Erdös-Rényi random network can be ap-

proximated by the edge density. The edge density of a network is the ratio of

connections that exists to the number of potential connections of a network.

The mean of minimum path length can be approximated by Equation 3.5 [19].

Lrand =
ln(n)

ln(< k >)
(3.5)

where n is the network size, or number of nodes, and < k > is the expected

value of the degree, across the network.

To compare the clustering coefficients and minimum path lengths of a pa-

tient network with a random network, we define γp as the ratio of clustering

coefficients and λp as the ratio of path lengths of these two networks:

γp =
cp
crand

(3.6)

and

λp =
Lp

Lrand

(3.7)

According to the definition of small-worldness, if γp � 1 and λp ≥ 1, the

network can be classified as a small-world network. Consequently, a quantita-
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3.2. Statistical analysis of the contribution of dispersion to disability

tive metric of small-worldness is defined as,

S =
γp
λp
. (3.8)

If S > 1, the network is a small-world network [19].

By computing the modified clustering coefficient and characteristic path

length, we obtain small-worldness values for each patient. In our application,

a greater small-worldness indicates that lesion voxels are locally clustered and

also the distances between lesion clusters are bigger (i.e., the clusters are more

dispersed).

3.2 Statistical analysis of the contribution of

dispersion to disability

We analyze the results to investigate if there is a statistically significant rela-

tionship between lesion dispersion and disability and determine whether such

dispersion has the potential to provide information that is additional to and

independent from lesion volume. First, we compute Pearson and Spearman

correlations to investigate the relationships between lesion dispersion, disabil-

ity, and total lesion volume (normalized by intradural volume). The Pearson

method assumes a linear relationship, whereas the Spearman method is a rank

correlation that does not assume any particular type of relationship. The p-

values of both correlations are computed to test for statistical significance.

Since we have three variables, in the next step, we use regression analysis

to investigate whether there is a potentially meaningful relationship between

lesion dispersion and disability, independent of total lesion volume. Linear

regression analysis assumes that the dependent variable is a linear combina-

tion of the other variables, and it helps us understand how the typical value

of the dependent variable (disability) changes when either one of the indepen-
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3.2. Statistical analysis of the contribution of dispersion to disability

dent variables (lesion dispersion or total lesion volume) is varied, while the

other independent variable is held fixed [32]. We compute two multiple regres-

sions: one predicting disability using only volume as the predictive variable

and a second regression using both volume and dispersion as the predictive

variables. After constructing regression models, the statistical significance of

the estimated parameters is checked by an F-test of the overall fit.

In addition to studying the cross-sectional correlations in all three data

sets, we perform a longitudinal study on the third data set over a period

of two years to investigate the change in lesion dispersion across time and

its correlation with the change in MSFC. The longitudinal MSFC scores and

white matter lesions are provided for 182 patients of the third data set, and

therefore we are able to track the changes of lesion dispersion and clinical status

of the same patients after two years. We first compute the lesion dispersion

measures for the patients after two years, and do a cross-sectional correlation

study on obtained values, then we calculate the difference of these measures

and baseline measures and compute the correlation values between the changes

of lesion dispersion and changes of MSFC scores and normalized total lesion

volume.
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Chapter 4

Results

4.1 Total lesion volume normalized by

intradural volume

As discussed in Chapter 2, measurement of the total white matter lesion vol-

ume on magnetic resonance images is a widely used outcome measure for

monitoring the pathological state and progression of multiple sclerosis. To

establish a baseline of clinical significance, we first analyze the relationship

between total lesion volume, normalized by intradural volume to minimize the

influence of head size, and patient disability in each data sample. In the first

patient sample with 24 patients, this measure has a mean of 0.03, standard

deviation of 0.03, and range of 2.8× 10−4−0.14. Figure 4.1 shows the relation-

ship between total lesion volume and EDSS. Each point represents a patient

in this graph and the line is the best fit to the data given by the linear regres-

sion of EDSS on total lesion volume. The Pearson and Spearman correlations

between EDSS and volume are 0.47 (p = 0.02) and 0.44 (p = 0.02), which are

well within the range of published values [3]. The results indicate that the

EDSS has a significant linear relationship (p < 0.05) with volume.

In the second and larger patient sample with 174 patients, normalized total

lesion volume has a mean of 0.008, standard deviation of 0.009, and range of

1× 10−4− 0.078. The Pearson and Spearman correlation coefficients between

volume and EDSS are 0.14 (p = 0.05) and 0.13 (p = 0.08). The correlation

values are not as strong as the values for the smaller data set and only tend

toward statistical significance. The normalized total lesion volume in the third
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Figure 4.1: Relationship between total Lesion Volume (Normalized by
Intradural Volume) and EDSS in the first patient sample.

patient sample with 182 patients, has a mean of 1.4× 10−2, standard deviation

of 1.4× 10−2, and range of 1× 10−4 − 7× 10−2. The Pearson and Spearman

correlation coefficients between volume and MSFC are -0.25 (p = 5× 10−4)

and -0.39 (p = 3× 10−8) which show that there is a linear relationship between

total lesion volume and MSFC (p < 0.01). The correlation values are stronger

than the correlation values between total lesion volume in T2-weighted scans

and EDSS in the second patient sample. The correlation values in all the first

and third patient samples confirm that there is a linear relationship between

total lesion volume and clinical status score.

4.2 Connectedness-based approach

4.2.1 Compactness

To quantify the strength of the relationships between compactness, EDSS and

lesion volume, we calculate the correlations between compactness and clinical

status score, and compactness and total lesion volume, and the significance of
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4.2. Connectedness-based approach

adding compactness to the linear regression model of clinical status score on

total lesion volume. For the first patient sample, we compute the correlations

between compactness and EDSS (r= 0.45 for Pearson correlation, p = 0.02),

and compactness and total lesion volume (r = 0.71 for Pearson correlation,

p = 7.3× 10−5). Detailed results are provided in Table 4.1. The Pearson

correlation between EDSS and compactness is significant and comparable to

that between EDSS and volume (r = 0.45 vs. r = 0.47), and shows that pa-

tients with lower compactness (i.e., more disconnectedness) tend to have more

disability. However, the correlation between compactness and volume is high,

and statistically significant, which means that in terms of a linear relationship,

these two variables seem to be strongly dependent. Adding compactness to

the linear regression model of EDSS on volume is not statistically significant

(p = 0.51). Therefore, there does not seem to be a linear relationship between

compactness and EDSS that is independent of volume. In the second patient

sample, the Pearson correlation value between compactness and EDSS is 0.07

(p = 0.33), and the Pearson correlation value between compactness and total

lesion volume is 0.59 (p = 0.25). Table 4.2 contains the correlation values

for this data set. Again, it is not statistically significant to add compact-

ness to the linear regression model of EDSS on lesion volume. These results

from the larger patient sample also suggest that there is no linear relationship

between compactness and EDSS independent of total lesion volume. In the

third patient sample, we calculate the correlations between compactness and

MSFC (r = −0.27 for Pearson correlation, p = 1× 10−4), and compactness

and total lesion volume (r = 0.57 for Pearson correlation, p = 3× 10−17).

In this data set, adding compactness to the linear regression model of MSFC

on total lesion volume is statistically significant (p < 0.01). The correlation

values suggest that lesion compactness and MSFC are related, i.e. patients

with less lesion compactness, have lower MSFC which indicates worse disabil-

ity (Table 4.3). Interestingly, as shown in Table 4.6, compactness is strongly

correlated with the cognitive component of MSFC (r = −0.40 for Pearson
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correlation, p = 2× 10−8) independent of volume (p = 0.0001). However it

is not correlated to the leg function and hand function components of MSFC,

independent of volume (Table 4.4 and Table 4.5).

4.3 Region-based approach

4.3.1 Ratio of minimum bounding sphere (RMBS) and

ratio of convex hull (RCH) volume to the brain

volume

As shown in Table 4.1, in the first patient sample, the ratio of minimum

bounding spheres (RMBS) is not significantly correlated with EDSS (r = 0.33

for Pearson correlation, p = 0.10), but the ratio of lesion convex hull volume

over brain volume (RCH) is correlated with EDSS (r = 0.49 for Pearson

correlation, p = 0.01). Again, like compactness, the correlations between total

lesion volume and both RMBS and RCH are strong (for Pearson correlation

r = 0.42, p = 0.03 for RMBS and r = 0.77, p = 3× 10−6 for RCH). Adding

RCH to the linear model of regression of EDSS on total lesion volume is not

statistically significant (p = 0.29). As a result, even though the correlation

between RCH and EDSS is significant, adding RCH to the linear regression

model of EDSS on volume is not (p = 0.29), and we cannot conclude that

RCH is informative about MS disability independent of total lesion volume.

For the second patient sample, as shown in Table 4.2, RMBS and RCH are

not correlated with EDSS (for Pearson correlation r = 0.03, p = 0.65 for

RMBS, and r = 0.09, p = 0.22 for RCH) but are correlated with total lesion

volume (for Pearson correlation r = 0.31, p = 2× 10−5 and r = 0.76, p =

5× 10−35), and it is not statistically significant to add RMBS or RCH to the

linear regression of EDSS on total lesion volume (p = 0.97 for RMBS and

p = 0.87 for RCH). The results illustrate that there is no linear relationship

between RMBS or RCH and EDSS independent of total lesion volume. In
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the third patient sample, Pearson correlation coefficients do not show any

relationship between RMBS and MSFC (r = −0.05 , p = 0.42) and RCH

and MSFC (r = −0.13 , p = 0.07). But Spearman’s correlation coefficient

shows that there is a statistically significant relation between RCH and MSFC

(r = −0.21, p = 0.004). The correlation value of RMBS and RCH with total

lesion volume (for Pearson correlation r = 0.40, p = 2× 10−8 for RMBS and

r = 0.75, p = 1× 10−34 for RCH) also confirms the existence of a significant

relationship of RMBS and RCH to lesion volume. Adding RMBS or RCH to

the linear regression of MSFC on lesion volume is not significant (p = 0.12 for

RMBS and p = 0.34 for RCH) which means that neither RMBS nor RCH is

providing information about MS patient clinical status, in addition to what

total lesion volume is providing.

4.4 Distance-based approach

4.4.1 Euclidean distance (ED) from a fixed reference

point

Table 4.1 contains the correlation coefficients and p-values that relate EDSS

to the variance of Euclidean distance (VED), skewness and entropy of the

histogram of Euclidean distance (SHED and EHED) and total lesion volume

(V) for the first patient sample. The results show that the EDSS values are

significantly correlated with VED (r= 0.57 for Pearson correlation, p = 0.003)

and EHED (r = 0.54 for Pearson correlation, p = 0.006), with both correla-

tions being higher than the volume-EDSS correlation (r = 0.47 for Pearson

correlation, p = 0.02). In addition, V and VED are not correlated (r = 0.11

for Pearson correlation, p = 0.59) which means these variables are indepen-

dent for this data set. However, EHED is correlated with V (r = 0.44 for

Pearson correlation, p = 0.02). More interestingly, the p-values from the re-

gression analysis show that adding VED to the regression model of EDSS on V
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is statistically significant (p = 0.02), meaning that EDSS and VED are signif-

icantly related even after adjusting for V. The same observation can be made

for EHED since adding it to the regression model is statistically significant

(p < 0.05). The graph in Figure 4.2a illustrates the approximate linear rela-

tionship between EDSS and VED in the first patient sample and the diagram

in Figure 4.2b shows the relationship between EDSS, volume and VED values

using a range of colours (from dark blue, which corresponds to 1.5, to brown,

which corresponds to 8). The color of each point represents the EDSS score of

that patient. For improved visualization of the overall trends, we interpolate

the EDSS values and display them as a color grid in the background. Fig-

ure 4.2b shows that for the same volume range, EDSS generally increases with

lesion dispersion.
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Figure 4.2: Relationship between volume, variance of Euclidean dis-
tances from a fixed point (VED), and EDSS in the first patient
sample (24 patients); a) approximate linear relationship between
EDSS and VED. b) EDSS values are shown using a range of col-
ors (dark blue and brown correspond to 1.5 and 8, respectively).
For the same volume range, EDSS generally increases as VED
increases.
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4.4. Distance-based approach

The correlation values of EDSS with total lesion volume, VED, SHED, and

EHED for the second patient sample are provided in Table 4.2. The EDSS

values are significantly correlated with VED (r = 0.29 for Pearson correlation,

p = 9× 10−5) in this data set as well. On the other hand, VED and total

lesion volume are significantly correlated (r = 0.20 for Pearson correlation,

p = 0.007). However, adding VED to the linear regression model of EDSS on

total lesion volume is also statistically significant (p = 0.0001) which means

VED provides new information about the patients, clinical status in addition

to what total lesion volume provides. The results show that SHED values

are correlated with EDSS (r = −0.17 for Pearson correlation, p = 0.01) and

total lesion volume (r = −0.24 for Pearson correlation, p = 0.001) and it is

statistically significant to add SHED to the linear regression model of EDSS

on total lesion volume (p = 0.02). The EHED and EDSS values do not have

a significant correlation (r = 0.11 for Pearson correlation, p = 0.11). In third

patient sample, as shown in Table 4.3, the Pearson correlation values indicate

a linear relationship between VED and MSFC (r = −0.16, p = 0.03). In

addition, there is no linear relationship between VED and total lesion volume

(r = 0.09 for Pearson correlation, p = 0.18), and adding VED to the linear

regression model of MSFC on total lesion volume is statistically significant

(p = 0.02). The correlation values between VED, patient clinical status, and

total lesion volume in this data set are consistent with observations from the

two previous data sets. SHED and EHED do not have a correlation with

MSFC (for Pearson correlation r = 0.03, p = 0.06 for SHED and r = −0.12,

p = 0.10 for EHED) but they are correlated with total lesion volume (for

Pearson correlation r = −0.19, p = 0.009 for SHED and r = 0.26, p = 1× 10−4

for EHED). Examining the individual components of the MSFC, VED has a

significant correlation with the leg function component (r = −0.17 for Pearson

correlation, p = 0.01) and hand function component (r = −0.14 for Pearson

correlation, p = 0.04) of MSFC while it does not correlate with the cognitive

component (r = −0.01 for Pearson correlation, p = 0.87).
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4.4. Distance-based approach
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Figure 4.3: Relationship between volume, variance of Euclidean dis-
tances from a fixed point (VED), and EDSS in the second patient
sample (174 patients); a) approximate linear relationship between
EDSS and VED. b) EDSS values are shown using a range of col-
ors (dark blue and brown correspond to 2.5 and 8.5, respectively).
For the same volume range, EDSS generally increases as VED in-
creases.

4.4.2 Pair-wise Euclidean distances (PWED) analysis

Table 4.1 contains the correlation coefficients and p-values that relate EDSS

to the mean and variance of pair-wise Euclidean distances (MPWED and VP-

WED), skewness and entropy of the histogram of the pair-wise Euclidean dis-

tances (SHPWED and EHPWED) and total lesion volume (V) in first data

set. The EDSS values are correlated with MPWED (r = 0.47 for Pearson

correlation, p = 0.01) and EHPWED (r = −0.45 for Pearson correlation,

p = 0.02). The MPWED correlation is comparable to the volume-EDSS cor-

relation. However, volume is correlated to MPWED (r = 0.44 for Pearson

correlation, p = 0.02) and adding MPWED to the linear regression model of

EDSS on volume is not statistically significant (p = 0.08), which means this

variable is not independent of volume for this data set.
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4.5. Network-based approach

In the second patient sample, similar to the first sample, according to

Pearson correlation values, MPWED and EDSS are linearly correlated (r =

0.20 for Pearson correlation, p = 0.006). MPWED and total lesion volume are

correlated as well (r = 0.34 for Pearson correlation, p = 3× 10−36), but the p-

values from the regression analysis confirm that adding MPWED (p = 0.007)

or SHPWED (p = 0.003) provides increased predictive value. However the

EDSS-MPWED correlation is not as strong as the EDSS-VED correlation

(r = 0.29 for Pearson correlation, p = 9× 10−5). The correlation between

SHPWED and EDSS (r = −0.21 for Pearson correlation, p = 0.004) is stronger

than that between SHED and EDSS (r = −0.17 for Pearson correlation, p =

0.01). Similarly to SHED, SHPWED is also correlated with volume (r = −0.31

for Pearson correlation, p = 2× 10−5).

In the third patient sample, there is no significant correlation between MP-

WED and MSFC (r = −0.07 for Pearson correlation, p = 0.28), but VPWED

and MSFC are correlated (r = 0.17 for Pearson correlation, p = 0.01), and

adding VPWED to the linear regression model of MSFC on total lesion volume

is statistically significant (p = 0.01). However, in this data set MPWED val-

ues do not provide meaningful information about patient clinical status, unlike

the two previous data sets. The VPWED values yield predictive information

about patient clinical status scores, which shows that in general, pair-wise Eu-

clidean distances between lesion voxels hold some promise to describe patient

clinical status.

4.5 Network-based approach

4.5.1 Small-worldness

Table 4.1 shows the correlation values and p-values that relate EDSS scores

to normalized total lesion volume and small-worldness in the first data sam-

ple (24 patients). Small-worldness values are correlated with EDSS scores

(r = 0.49 for Pearson correlations, p = 0.01), but are also significantly corre-
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4.6. Longitudinal study

lated with normalized total lesion volume (r = 0.80 for Pearson correlations,

1× 10−6) and it is not statistically significant to add small-worldness to the

linear regression of EDSS on total lesion volume.

4.6 Longitudinal study

Table 4.7 contains the cross-sectional correlation values between MSFC, nor-

malized total lesion volume, and lesion dispersion measures of the 182 patients

after two years in the third data set which are in general the same as those of

the baseline data set (Table 4.3). Table 4.8 illustrates the correlation values

between the changes of MSFC scores and changes of total lesion volume and

lesion dispersion measures of 182 patients in third data set, over two years.

The changes in dispersion measures do not show any significant correlations

with the changes in MSFC.
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Table 4.1: The first sample of 24 patients (13 RRMS, 11 SPMS). Cor-
relation values between EDSS, total lesion volume and lesion dis-
persion.

Measures

correlation with EDSS correlation with V Significance of
adding the measure

to the linear
regression of E on V

Pearson Spearman Pearson Spearman

V r = 0.47 r = 0.44 - - -
p = 0.02 p = 0.02

C r = 0.45 r = 0.35 r = 0.71 r = 0.82 p = 0.45
p = 0.02 p = 0.08 p = 7.3× 10−5 p = 2× 10−6

RMBS r = 0.33 r = 0.37 r = 0.42 r = 0.66 p = 0.55
p = 0.10 p = 0.07 p = 0.03 p = 5× 10−4

RCH r = 0.49 r = 0.44 r = 0.77 r = 0.81 p = 0.29
p = 0.01 p = 0.02 p = 9× 10−6 p = 2× 10−6

VED r = 0.57 r = 0.57 r = 0.11 r = 0.25 p = 0.0004
p = 0.003 p = 0.003 p = 0.59 p = 0.23

SHED r = -0.48 r = −0.38 r = -0.42 r = −0.33 p = 0.06
p = 0.01 p = 0.06 p = 0.04 p = 0.11

EHED r = 0.54 r = 0.39 r = 0.44 r = 0.58 p = 0.02
p = 0.006 p = 0.05 p = 0.02 p = 0.02

MPWED r = 0.47 r = 0.52 r = 0.44 r = 0.50 p = 0.08
p = 0.01 p = 0.008 p = 0.02 p = 0.01

VPWED r = −0.28 r = −0.20 r = −0.32 r = -0.43 p = 0.57
p = 0.17 p = 0.33 p = 0.12 p = 0.03

SHPWED r = −0.29 r = −0.25 r = −0.31 r = -0.65 p = 0.50
p = 0.15 p = 0.22 p = 0.14 p = 7× 10−4

EHPWED r = -0.45 r = -0.40 r = -0.62 r = -0.75 p = 0.31
p = 0.02 p = 0.04 p = 0.001 p = 2× 10−5

S r = 0.49 r = 0.45 r = 0.80 r = 0.75 p = 0.18
p = 0.01 p = 0.02 p = 1× 10−6 p = 3× 10−6

E: EDSS, V: total lesion volume, C: compactness, RMBS: ratio of mini-
mum bounding spheres, RCH: ratio of lesion convex hull to brain volume,
VED, SHED, EHED: variance, skewness and entropy of the distribution of
Euclidean distances from a fixed point, MPWED, VPWED, SHPWED,
EHPWED: mean, variance, skewness and entropy of pair-wise Euclidean dis-
tances between lesion voxels, S: small-worldness.
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Table 4.2: The second patient sample of 174 SPMS patients. Correlation
values between EDSS, lesion volume and dispersion.

Measures

correlation with EDSS correlation with V Significance of
adding the measure

to the linear
regression of E on V

Pearson Spearman Pearson Spearman

V r = 0.14 r = 0.13 - - -
p = 0.05 p = 0.08

C r = 0.07 r = 0.08 r = 0.59 r = 0.64 p = 0.96
p = 0.33 p = 0.25 p = 8× 10−18 p = 1× 10−21

RMBS r = 0.03 r = -0.003 r = 0.31 r = 0.57 p = 0.97
p = 0.65 p = 0.96 p = 2× 10−5 p = 1× 10−12

RCH r = 0.09 r = 0.06 r = 0.76 r = 0.88 p = 0.87
p = 0.22 p = 0.36 p = 5× 10−35 p = 1× 10−36

VED r = 0.29 r = 0.28 r = 0.20 r = 0.27 p = 0.0001
p = 9× 10−5 p = 1× 10−4 p = 0.007 p = 2× 10−4

SHED r = -0.17 r = -0.15 r = -0.24 r = -0.22 p = 0.02
p = 0.01 p = 0.04 p = 0.001 p = 0.003

EHED r = 0.11 r = -0.02 r = 0.17 r = 0.20 p = 0.20
p = 0.11 p = 0.77 p = 0.01 p = 0.006

MPWED r = 0.20 r = 0.11 r = 0.34 r = 0.38 p = 0.007
p = 0.006 p = 0.12 p = 3× 10−36 p = 1× 10−7

VPWED r = 0.01 r = 0.01 r = -0.10 r = -0.13 p = 0.86
p = 0.85 p = 0.84 p = 0.17 p = 0.07

SHPWED r = -0.21 r = -0.12 r = -0.31 r = -0.45 p = 0.003
p = 0.004 p = 0.10 p = 2× 10−5 p = 4× 10−10

EHPWED r = -0.07 r = -0.04 r = -0.47 r = -0.55 p = 0.99
p = 0.34 p = 0.56 p = 4× 10−11 p = 2× 10−15

E: EDSS, V: total lesion volume, C: compactness, RMBS: ratio of mini-
mum bounding spheres, RCH: ratio of lesion convex hull to brain volume,
VED, SHED, EHED: variance, skewness and entropy of the distribution of
Euclidean distances from a fixed point, MPWED, VPWED, SHPWED,
EHPWED: mean, variance, skewness and entropy of pair-wise Euclidean dis-
tances between lesion voxels.
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Table 4.3: The third patient sample of 182 SPMS patients. Correlation
values between MSFC, total lesion volume and lesion dispersion.

Measures

correlation with MSFC correlation with V Significance of
adding the measure

to the linear
regression of M on V

Pearson Spearman Pearson Spearman

V r = -0.25 r = -0.39 - - -
p = 5× 10−4 p = 3× 10−8

C r = -0.27 r = -0.37 r = 0.57 r = 0.6 p = 0.007
p = 1× 10−4 p = 1× 10−7 p = 3× 10−17 p = 1× 10−20

RMBS r = -0.05 r = 0.01 r = 0.40 r = 0.64 p = 0.12
p = 0.42 p = 0.83 p = 2× 10−8 p = 1× 10−23

RCH r = -0.13 r = -0.21 r = 0.75 r = 0.84 p = 0.34
p = 0.07 p = 0.004 p = 1× 10−34 p = 1× 10−37

VED r = -0.16 r = -0.13 r = 0.09 r = 0.24 p = 0.02
p = 0.03 p = 0.06 p = 0.18 p = 9× 10−4

SHED r = 0.03 r = 0.01 r = -0.19 r = -0.20 p = 0.96
p = 0.65 p = 0.83 p = 0.009 p = 0.005

EHED r = -0.12 r = -0.09 r = 0.26 r = 0.29 p = 0.52
p = 0.10 p = 0.20 p = 3× 10−4 p = 6× 10−5

MPWED r = -0.07 r = -0.08 r = 0.35 r = 0.45 p = 0.97
p = 0.28 p = 0.24 p = 1× 10−6 p = 1× 10−10

VPWED r = 0.17 r = 0.16 r = -0.11 r = -0.14 p = 0.01
p = 0.01 p = 0.02 p = 0.13 p = 0.04

SHPWED r = 0.09 r = 0.17 r = -0.31 r = -0.46 p = 0.91
p = 0.19 p = 0.02 p = 1× 10−5 p = 5× 10−11

EHPWED r = 0.09 r = 0.10 r = -0.49 r = -0.58 p = 0.83
p = 0.21 p = 0.15 p = 1× 10−12 p = 6× 10−18

M: MSFC, V: total lesion volume, C: compactness, RMBS: ratio of min-
imum bounding spheres, RCH: ratio of lesion convex hull to brain volume,
VED, SHED, EHED: variance, skewness and entropy of the distribution of
Euclidean distances from a fixed point, MPWED, VPWED, SHPWED,
EHPWED: mean, variance, skewness and entropy of pair-wise Euclidean dis-
tances between lesion voxels.
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Table 4.4: The third patient sample of 182 SPMS patients. Correlation
values between the leg function component of MSFC, total lesion
volume and lesion dispersion.

Measures

Correlation with first component of MSFC
Significance of adding the

measure to the linear
regression of M1 on V

Pearson Spearman

V r = -0.24 r = -0.28 -
p = 0.001 p = 8× 10−5

C r = -0.23 r = -0.23 p = 0.05
p = 0.001 p = 0.001

RMBS r = -0.02 r = -0.14 p = 0.31
p = 0.76 p = 0.053

RCH r = -0.16 r = -0.17 p = 0.74
p = 0.03 p = 0.02

VED r = -0.17 r = -0.20 p = 0.01
p = 0.01 p = 0.005

SHED r = 0.06 r = 0.05 p = 0.99
p = 0.41 p = 0.49

EHED r = -0.12 r = -0.08 p = 0.53
p = 0.10 p = 0.24

MPWED r = -0.12 r = -0.12 p = 0.71
p = 0.09 p = 0.10

VPWED r = 0.07 r = 0.03 p = 0.63
p = 0.31 p = 0.66

SHPWED r = 0.13 r = 0.15 p = 0.55
p = 0.07 p = 0.04

EHPWED r = 0.12 r = 0.15 p = 0.99
p = 0.10 p = 0.04

M1: leg function component of MSFC, V: total lesion volume, C: compact-
ness, RMBS: ratio of minimum bounding spheres, RCH: ratio of lesion con-
vex hull to brain volume, VED, SHED, EHED: variance, skewness and
entropy of the distribution of Euclidean distances from a fixed point, MP-
WED, VPWED, SHPWED, EHPWED: mean, variance, skewness and
entropy of pair-wise Euclidean distances between lesion voxels.
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Table 4.5: The third patient sample of 182 SPMS patients. Correlation
values between the hand function component of MSFC, total lesion
volume and lesion dispersion.

Measures

Correlation with second component of MSFC
Significance of adding the

measure to the linear
regression of M2 on V

Pearson Spearman

V r = 0.03 r = -0.12 -
p = 0.62 p = 0.09

C r = 0.02 r = -0.09 p = 0.99
p = 0.77 p = 0.22

RMBS r = 0.03 r = -0.05 p = 0.92
p = 0.66 p = 0.47

RCH r = 0.01 r = -0.07 p = 0.95
p = 0.89 p = 0.29

VED r = -0.14 r = -0.06 p = 0.01
p = 0.04 p = 0.38

SHED r = 0.01 r = 0.05 p = 0.91
p = 0.82 p = 0.43

EHED r = -0.007 r = 0.01 p = 0.95
p = 0.92 p = 0.83

MPWED r = -0.02 r = -0.01 p = 0.71
p = 0.70 p = 0.80

VPWED r = 0.04 r = 0.01 p = 0.68
p = 0.57 p = 0.83

SHPWED r = -0.008 r = 0.09 p = 0.99
p = 0.91 p = 0.19

EHPWED r = 0.03 r = 0.07 p = 0.57
p = 0.65 p = 0.35

M2: arm/hand function component of MSFC, V: total lesion volume, C:
compactness, RMBS: ratio of minimum bounding spheres, RCH: ratio of
lesion convex hull to brain volume, VED, SHED, EHED: variance, skewness
and entropy of the distribution of Euclidean distances from a fixed point,
MPWED, VPWED, SHPWED, EHPWED: mean, variance, skewness
and entropy of pair-wise Euclidean distances between lesion voxels.
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Table 4.6: The third patient sample of 182 SPMS patients. Correlation
values between the cognitive component of MSFC, total lesion vol-
ume and lesion dispersion.

Measures

Correlation with third component of MSFC Significance of adding
the measure to the
linear regression of

M3 on V
Pearson Spearman

V r = -0.37 r = -0.39 -
p = 2× 10−7 p = 2× 10−8

C r = -0.40 r = -0.40 p = 0.0001
p = 2× 10−8 p = 1× 10−8

RMBS r = -0.12 r = -0.21 p = 0.96
p = 0.08 p = 0.004

RCH r = -0.15 r = -0.21 p = 0.003
p = 0.03 p = 0.003

VED r = -0.01 r = -0.08 p = 0.89
p = 0.87 p = 0.26

SHED r = 0.02 r = 0.01 p = 0.58
p = 0.74 p = 0.86

EHED r = -0.13 r = -0.11 p = 0.65
p = 0.06 p = 0.12

MPWED r = -0.02 r = -0.01 p = 0.05
p = 0.77 p = 0.83

VPWED r = 0.26 r = 0.29 p = 0.0001
p = 3× 10−4 p = 4× 10−5

SHPWED r = 0.09 r = 0.12 p = 0.89
p = 0.22 p = 0.10

EHPWED r = 0.06 r = 0.05 p = 0.02
p = 0.38 p = 0.47

M3: the cognitive component of MSFC, V: total lesion volume, C: com-
pactness, RMBS: ratio of minimum bounding spheres, RCH: ratio of lesion
convex hull to brain volume, VED, SHED, EHED: variance, skewness and
entropy of the distribution of Euclidean distances from a fixed point, MP-
WED, VPWED, SHPWED, EHPWED: mean, variance, skewness and
entropy of pair-wise Euclidean distances between lesion voxels.
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Table 4.7: The third patient sample of 182 SPMS patients after two
years. Correlation values between MSFC, total lesion volume and
lesion dispersion.

Measures

Correlation with MSFC correlation with V Significance of
adding the measure

to the linear
regression of M on V

Pearson Spearman Pearson Spearman

V r = -0.23 r = -0.29 - - -
p = 0.001 p = 7× 10−5

C r = -0.22 r = -0.29 r = 0.58 r = 0.64 p = 0.09
p = 0.002 p = 5× 10−5 p = 1× 10−17 p = 2× 10−24

RMBS r = -0.14 r = -0.16 r = 0.43 r = 0.60 p = 0.70
p = 0.05 p = 0.02 p = 1× 10−9 p = 1× 10−20

RCH r = -0.12 r = -0.11 r = 0.81 r = 0.86 p = 0.03
p = 0.09 p = 0.13 p = 9× 10−43 p = 1× 10−45

VED r = -0.13 r = -0.16 r = 0.16 r = 0.29 p = 0.18
p = 0.07 p = 0.02 p = 0.02 p = 6× 10−5

MPWED r = -0.15 r = -0.12 r = 0.32 r = 0.43 p = 0.24
p = 0.03 p = 0.10 p = 7× 10−6 p = 2× 10−7

VPWED r = 0.06 r = 0.05 r = -0.12 r = -0.15 p = 0.77
p = 0.37 p = 0.43 p = 0.08 p = 0.04

M: MSFC, V: total lesion volume, C: compactness, RMBS: ratio of min-
imum bounding spheres, RCH: ratio of lesion convex hull to brain volume,
VED, SHED, EHED: variance, skewness and entropy of the distribution of
Euclidean distances from a fixed point, MPWED, VPWED, SHPWED,
EHPWED: mean, variance, skewness and entropy of pair-wise Euclidean dis-
tances between lesion voxels.
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Table 4.8: The third patient sample of 182 SPMS patients. Correlation
values between difference of MSFC, difference of total lesion volume
and difference of lesion dispersion.

Measures

Correlation with MSFC correlation with V Significance of
adding the measure

to the linear
regression of M on V

Pearson Spearman Pearson Spearman

dV r = -0.12 r = -0.006 - - -
p = 0.09 p = 0.93

dC r = -0.10 r = -0.03 r = 0.39 r = 0.37 p = 0.47
p = 0.14 p = 0.66 p = 5× 10−8 p = 4× 10−7

dRMBS r = -0.02 r = 0.002 r = 0.05 r = 0.13 p = 0.96
p = 0.78 p = 0.97 p = 0.48 p = 0.07

dRCH r = 0.04 r = 0.03 r = 0.68 r = 0.75 p = 0.97
p = 0.54 p = 0.66 p = 5× 10−26 p = 2× 10−30

dVED r = -0.10 r = -0.08 r = 0.08 r = 0.11 p = 0.24
p = 0.18 p = 0.28 p = 0.24 p = 0.14

dMPWED r = 0.001 r = -0.02 r = -0.03 r = -0.08 p = 0.99
p = 0.98 p = 0.72 p = 0.68 p = 0.26

dVPWED r = 0.04 r = 0.05 r = -0.12 r = -0.23 p = 0.82
p = 0.51 p = 0.46 p = 0.08 p = 0.001

dM: difference of MSFC, dV: difference of total lesion volume, dC: difference
of compactness, dRMBS: difference of ratio of minimum bounding spheres,
dRCH: difference of ratio of lesion convex hull to brain volume, dVED,
dSHED, dEHED: difference of variance, skewness and entropy of the distri-
bution of Euclidean distances from a fixed point, dMPWED, dVPWED,
dSHPWED, dEHPWED: difference of mean, variance, skewness and en-
tropy of pair-wise Euclidean distances between lesion voxels.
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Chapter 5

Conclusions

5.1 Discussion

In this thesis, we computed the spatial dispersion of lesions in the MRI scans

of three sample groups of MS patients using different measures. The patient

clinical status was provided in the form of EDSS for the first and the second

data sets of 24 and 174 patients, and MSFC for the third data set of 182

patients. First, we developed methods for quantifying lesion dispersion in the

first data sample. We used one connectedness-based measure (compactness),

two region-based measures (ratio of minimum bounding spheres and ratio of

lesion convex hull to brain volume), two distance-based measures (Euclidean

distance from a fixed point, and pair-wise Euclidean distance), and one network

theory based (small-worldness) measure.

In the first patient set, we observed a significant correlation between the

connectedness-based measure (compactness) and EDSS (r = 0.45 for Pearson’s

correlation, p = 0.02). Also, compactness and total lesion volume correlate

strongly (r = 0.71 for Pearson’s correlation, p = 7× 10−5). When the lesion

load increases in the constant and limited space of the brain, it increases the

probability of lesions connecting, hence, increasing the compactness values.

In region-based measures, the convex hull ratio correlates significantly with

EDSS as well as total lesion volume. The fact that the lesion convex hull ap-

proximates the region impacted by lesions explains the significant correlation

between this measure and volume. The strong correlations between compact-

ness and volume and also between the convex hull ratio and volume explain

why these two measures do not make an independent contribution to EDSS.
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5.1. Discussion

Among distance-based measures, the variance of Euclidean distances from a

reference point correlates strongly with EDSS (r = 0.57 for Pearson’s correla-

tion, p = 0.003) while not correlating with volume (r = 0.11 for Pearson’s cor-

relation, p = 0.59). This indicates the potential of the variance for quantifying

the dispersion. The more dispersed lesion voxels yield a greater variance of dis-

tances. Finally, we observed a significant correlation between small-worldness

and EDSS and a significant correlation between small-worldness and volume

that may result from the definition of our lesion network. A greater lesion

load results in more connected nodes that increases the clustering coefficient

and hence increases small-worldness values.

In the next step, we used the connectedness-based, region-based, and

distance-based measures to compute lesion dispersion in the second data set

in which we selected patients randomly from a clinical trial. The statistical

analysis of the results on this data set partially confirms the results from the

first data set. The main difference is that the connectedness-based and the

region-based measures do not correlate with EDSS in this data set. In addi-

tion, the correlation values in the second patient samples are generally weaker

than those in the first data set. The difference between the distribution of

EDSS scores in the first and the second data sets may explain these observa-

tions. Unlike the well-distributed EDSS scores in the first data set, the EDSS

scores in the second data set are highly clustered with 43% of values being 6

or 6.5. The lack of correlation between connectedness-based or region-based

measures and EDSS indicates that these two approaches may not be applicable

for this type of patient population.

Finally, we computed the lesion dispersion in a third patient sample using

the same measures that we used in the second data set. In this data set, we

selected patients randomly from the same clinical trial used for the second

data set. The clinical status in the third data set was provided in the form of

MSFC scores. We tested this data set to investigate the effect of the clinical

status score on our findings from the first and second data sets. The results
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from the third data set generally confirms the observations from two other

data sets. There is no significant correlation between region-based measures

and MSFC. But the variance of Euclidean distances from a reference point

correlates with MSFC (r = −0.16 for Pearson’s correlation, p = 0.03), the

leg function component of MSFC (r = −0.17 for Pearson’s correlation, p =

0.01), and the hand function component of MSFC (r = −0.14 for Pearson’s

correlation, p = 0.04). There is a particularly notable result in the third

data set that was not found in the first two, and that is the compactness

correlates significantly with MSFC (r = −0.27 for Pearson’s correlation, p =

1× 10−4) and particularly with the cognitive component of MSFC (r = −0.40

for Pearson’s correlation, p = 2× 10−8). This observation suggests that the

compactness may potentially act as a biomarker for cognitive dysfunction.

Overall, we have found that one distance-based measure, variance of Eu-

clidean distances from a fixed point, consistently correlates with the disability

score across all three data sets. The variance is only one of three components

of the fixed point approach, which may raise the concern of a statistical chance

finding, resulting from multiple comparisons. If we apply Bonferroni correc-

tion to the third approach which have three related tests, we obtain a new

significance value of (0.05/3 = 0.016). The VED yielded a p-value of 0.0004 in

the first data set, a p-value of 0.0001 in the second data set, a p-value of 0.02 in

the third data set, and a p-value of 0.01 for the leg function and hand function

components of MSFC in the third data set. The p-values are well below the

corrected threshold in the first two data sets and below the threshold for the

physical components of MSFC in the third data set. This may indicate that

VED is particularly effective for predicting physical deficits.

5.2 Conclusions

To the best of our knowledge, we are the first to study the contribution of

spatial lesion dispersion to MS disability, independent of volume. Up to this
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point, we have found and observed that:

1. There exists a potentially meaningful correlation between patient disabil-

ity and measurements of lesion dispersion that we found by comparing

the lesion dispersion values to clinical status scores and total lesion vol-

ume.

2. Some distance-based measures are shown to provide new information

about the severity of MS that remains independent from and potentially

more sensitive than total lesion volume. In particular, VED seems to

the yield the strongest and most consistent results when considering all

three data set.

3. The distance factor plays a more important role for describing the lesion

dispersion in MS patients compared to other approaches, at least for

physical disabilities.

4. The lesion dispersion measure based on connectedness may potentially

be a biomarker for cognitive impairment in MS patients.

5.3 Future work

The results presented in this thesis provide support for our hypothesis that

for any two given patients with similar lesion loads, the one with greater

dispersion will tend to have greater disability. However, further investigation

will determine why some dispersion measures agree with clinical status better

than others.

To expand the study of the proposed hypothesis and investigate the exis-

tence of a relationship between lesion dispersion and disability, we may benefit

from investigating T1 black hole lesion dispersion.

We developed our measures with the preliminary data set of 24 patients,

and then used these techniques for measuring the dispersion in the other two
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data sets. Therefore, the current reference point that we use for computing the

variance of distances may be effective for physical disabilities, but potentially

less sensitive for cognitive ones. Varying the reference points for this measure

may improve the correlation values between this measure and the cognitive

component of MSFC in the third data set. In addition, the parameters we

used to form the lesion networks for measuring small-worldness are optimized

for the first data set. These parameters may not be the best for other data

sets.

We have found that our preliminary investigations for computing lesion

dispersion using a measure derived from network theory to be promising. The

main weak point of this approach is the strong correlation with volume. We will

do more investigation on this approach to improve the measures. We expect

incorporating diffusion tensor imaging to build a network and observing the

disruption of the network by the lesions will reveal some information about

lesion dispersion and its correlation with disability in MS patients.

In our statistical analysis, we only used the three variables of lesion disper-

sion, lesion volume, and disability. In order to improve the results of this work

we will use statistical analysis that controls for other clinically relevant factors

such as age, gender and disease duration. In addition, rather than trying to

select one optimal measure, we can explore combinations of measures to find

a potential composite biomarker for MS.
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