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Abstract

Let d ≥ 2 be an integer, let c ∈ Q̄(t) be a rational map, and let ft(z) := zd+t
z be a

family of rational maps indexed by t. For each t = λ ∈ Q̄, we let ĥfλ
(c(λ )) be the

canonical height of c(λ ) with respect to the rational map fλ ; also we let ĥf(c) be the

canonical height of c on the generic fiber of the above family of rational maps. We

prove that there exists a constant C depending only on c such that for each λ ∈ Q̄,∣∣∣ĥfλ
(c(λ ))− ĥf(c) ·h(λ )

∣∣∣≤C. In particular, we show that λ 7→ ĥfλ
(c(λ )) is a Weil

height on P1. This improves a result of Call and Silverman [4] for this family of

rational maps.
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Chapter 1

Introduction

Let X be a curve defined over Q̄, let V −→ X be an algebraic family of varieties

{Vλ}λ∈X , let Φ : V −→ V be an endomorphism with the property that there exists

d > 1, and there exists a divisor D of V such that Φ∗(D) = d ·D (the equality

takes place in Pic(V )). Then for all but finitely many λ ∈ X , there is a well-

defined canonical height ĥVλ ,Dλ ,Φλ
on the fiber above λ . Let P : X −→ V be an

arbitrary section; then for each λ ∈ X(Q̄), we denote by Pλ the corresponding point

on Vλ . Also, P can be viewed as an element of V (Q̄(X)) and thus we denote by

ĥV,D,Φ(P) the canonical height of P with respect to the action of Φ on the generic

fiber (V,D) of (V ,D). Extending a result of Silverman [17] for the variation of the

usual canonical height in algebraic families of abelian varieties, Call and Silverman

[4, Theorem 4.1] proved that

ĥVλ ,Dλ ,Φλ
(Pλ ) = ĥV,D,Φ(P) ·h(λ )+o(h(λ )), (1.1)
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where h(λ ) is a Weil height on X . In the special case V −→ P1 is an elliptic

surface, Tate [22] improved the error term of (1.1) to O(1) (where the implied

constant depends on P only, and it is independent of λ ). Working with families of

abelian varieties which admit good completions of their Néron models (for more

details, see [3]), Call proved general theorems regarding local canonical heights

which yield the result of Tate [22] as a corollary. Furthermore, Silverman [18][19,

20] proved that the difference of the main terms from (1.1) when V −→ P1 is an

elliptic surface, in addition to being bounded, varies quite regularly as a function of

λ , breaking up into a finite sum of well-behaved functions at finitely many places.

It is natural to ask whether there are other instances when the error term of (1.1)

can be improved to OP(1).

In [10], Ingram showed that when Φλ is an algebraic family of polynomials

acting on the affine line, then again the error term in (1.1) is O(1) (when the pa-

rameter space X is the projective line). More precisely, Ingram proved that for

an arbitrary parameter curve X , there exists D = D(f,P) ∈ Pic(X)⊗Q of degree

ĥf(P) such that ĥfλ
(Pλ ) = hD(λ )+O(1). This result is an analogue of Tate’s the-

orem [22] in the setting of arithmetic dynamics. Using this result and applying an

observation of Lang [11, Chap. 5, Prop. 5.4], the error term can be improved to

O(h(λ )1/2) and furthermore, in the special case where X = P1 the error term can

be replaced by O(1). In [9], Ghioca, Hsia and Tucker showed that the error term is

also uniformly bounded independent of λ ∈ X (an arbitrary projective curve) when

Φλ is an algebraic family of rational maps satisfying the properties:

(a) each Φλ is superattracting at infinity, i.e. if Φλ = Pλ

Qλ
for algebraic families

of polynomials Pλ ,Qλ ∈ Q̄[z], then deg(Pλ )≥ 2+deg(Qλ ); and

2



(b) the resultant of Pλ and Qλ is a nonzero constant.

The condition (a) is very mild for applications; on the other hand condition (b) is

restrictive. Essentially condition (b) asks that Φλ is a well-defined rational map of

the same degree as on the generic fiber, i.e., all fibers of Φ are good.

Our main result is to improve the error term of (1.1) to O(1) for the algebraic

family of rational maps ft(z) = zd+t
z where the parameter t varies on the projective

line. We denote by ĥfλ
the canonical height associated to fλ for each t = λ ∈ Q̄,

and we denote by ĥf the canonical height on the generic fiber (i.e., with respect to

the map ft(z) := zd+t
z ∈ Q̄(t)(z)).

Theorem 1.1. Let c ∈ Q̄(t) be a rational map, let d ≥ 2 be an integer, and let

{ft} be the algebraic family of rational maps given by ft(z) := zd+t
z . Then as t = λ

varies in Q̄ we have

ĥfλ
(c(λ )) = ĥf(c) ·h(λ )+O(1), (1.2)

where the constant in O(1) depends only on c, and it is independent of λ .

Alternatively, Theorem 1.1 yields that the function λ 7→ ĥfλ
(c(λ )) is a Weil

height on P1 associated to the divisor ĥf(c) ·∞ ∈ Pic(P1)⊗Q.

We note that on the fiber λ = 0, the corresponding rational map Φ0 has degree

d−1 rather than d (which is the generic degree in the family Φλ ). So, our result is

the first example of an algebraic family of rational maps (which are neither totally

ramified at infinity, nor Lattés maps, and also admit bad fibers) for which the error

term in (1.1) is O(1). In addition, we mention that the family ft(z) = zd+t
z for

t ∈ C is interesting also from the complex dynamics point of view. Devaney and
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Morabito [5] proved that the Julia sets {Jt}t∈C of the above maps converge to the

unit disk as t converges to 0 along the rays Arg(t) = (2k+1)π
d−1 for k = 0, . . . ,d− 1,

providing thus an example of a family of rational maps whose Julia sets have empty

interior, but, in the limit, converge to a set with nonempty interior.

A special case of our Theorem 1.1 is when the starting point c is constant; in

this case we can give a precise formula for the O(1)-constant appearing in (1.2).

Theorem 1.2. Let d ≥ 2 be an integer, let α be an algebraic number, let K =Q(α)

and let ` be the number of non-archimedean places | · |v of K satisfying |α|v /∈

{0,1}. If {ft} is the algebraic family of rational maps given by ft(z) := zd+t
z , then

∣∣∣ĥ fλ
(α)− ĥf(α) ·h(λ )

∣∣∣< 3d · (1+ `+2h(α)),

as t = λ varies in Q̄.

In particular, Theorem 1.2 yields an effective way for determining for any given

α ∈ Q̄ the set of parameters λ contained in a number field of bounded degree such

that α is preperiodic for fλ . Indeed, if α ∈ Q̄ then either α = 0 and then it is

preperiodic for all fλ , or α 6= 0 in which case generically α is not preperiodic and

ĥf(α) = 1
d (see Proposition 3.1). So, if α ∈ Q̄∗ is preperiodic for fλ then ĥfλ

(α) = 0

and thus, Theorem 1.2 yields that

h(λ )< 3d2 · (1+ `+2h(α)). (1.3)

For example, if α is a root of unity, then h(λ )< 3d2 for all parameters λ ∈Q such

that α is preperiodic for fλ .

Besides the intrinsic interest in studying the above problem, recently, a very
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interesting connection between the variation of the canonical height in algebraic

families and the problem of unlikely intersections in algebraic dynamics was dis-

covered (for a beautiful introduction to this area, please see the book of Zannier

[25]). Masser and Zannier [12, 13] proved that for the family of Lattés maps

fλ (z) =
(z2−λ )2

4z(z−1)(z−λ ) there exist at most finitely many λ ∈ Q̄ such that both 2 and

3 are preperiodic for fλ . Geometrically, their result says the following: given the

Legendre family of elliptic curves Eλ given by the equation y2 = x(x−1)(x−λ ),

there exist at most finitely many λ ∈ Q̄ such that Pλ :=
(

2,
√

2(2−λ )
)

and Qλ :=(
3,
√

6(3−λ )
)

are simultaneously torsion points for Eλ . Later Masser and Zan-

nier [14] extended their result by proving that for any two sections Pλ and Qλ on

any elliptic surface Eλ , if there exist infinitely many λ ∈C such that both Pλ and Qλ

are torsion for Eλ then the two sections are linearly dependent over Z. Their proof

uses the recent breakthrough results of Pila and Zannier [15]. Moreover, Masser

and Zannier exploit in a crucial way the existence of the analytic uniformization

map for elliptic curves. Motivated by a question of Zannier, Baker and DeMarco

[1] showed that for any a,b ∈ C, if there exist infinitely many λ ∈ C such that

both a and b are preperiodic for fλ (z) = zd +λ (where d ≥ 2), then ad = bd . Later

their result was generalized by Ghioca, Hsia and Tucker [8] to arbitrary families of

polynomials. The method of proof employed in both [1] and [8] uses an equidis-

tribution statement (see [2, Theorem 7.52] and [6, 7]) for points of small canonical

height on Berkovich spaces. Later, using the powerful results of Yuan and Zhang

[23, 24] on metrized line bundles, Ghioca, Hsia and Tucker [9] proved the first

results on unlikely intersections for families of rational maps and also for fami-

lies of endomorphisms of higher dimensional projective spaces. The difference

between the results of [1, 8, 9] and the results of [12–14] is that for arbitrary fam-
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ilies of polynomials there is no analytic uniformization map as in the case of the

elliptic curves. Instead one needs to employ a more careful analysis of the local

canonical heights associated to the family of rational maps. This led the authors of

[9] to prove the error term in (1.1) is O(1) for the rational maps satisfying condi-

tions (a)− (b) listed above. Essentially, in order to use the equidistribution results

of Baker-Rumely, Favre-Rivera-Letelier, and Yuan-Zhang, one needs to show that

certain metrics converge uniformly and in turn this relies on showing that the lo-

cal canonical heights associated to the corresponding family of rational maps vary

uniformly across the various fibers of the family; this leads to improving to O(1)

the error term in (1.1). It is of great interest to see whether the results on unlikely

intersections can be extended to more general families of rational maps beyond

families of Lattés maps [12–14], or of polynomials [1, 8], or of rational maps with

good fibers for all points in the parameter space [9]. On the other hand, a prelim-

inary step to ensure the strategy from [1, 8, 9] can be employed to proving new

results on unlikely intersections in arithmetic dynamics is to improve to O(1) the

error term from (1.1). For example, using the exact strategy employed in [9], the

results of our paper yield that if c1(t),c2(t) ∈ Q̄(t) have the property that there

exist infinitely many λ ∈ Q̄ such that both c1(λ ) and c2(λ ) are preperiodic under

the action of fλ (z) := zd+λ

z , then for each λ ∈ Q̄ we have that c1(λ ) is preperiodic

for fλ if and only if c2(λ ) is preperiodic for fλ . Furthermore, if in addition c1,c2

are constant, then the same argument as in [9] yields that for each λ ∈ Q̄, we have

ĥfλ
(c1) = ĥfλ

(c2). Finally, this condition should yield that c1 = c2; however find-

ing the exact relation between c1 and c2 is usually difficult (see the discussion from

[8, 9]).

In our proofs we use in an essential way the decomposition of the (canonical)
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height in a sum of local (canonical) heights. So, in order to prove Theorems 1.1

and 1.2 we show first (see Proposition 4.5) that for all but finitely many places

v, the contribution of the corresponding local height to d2 · ĥfλ
(c(λ )) matches the

v-adic contribution to the height for the second iterate f2
λ
(c(λ )). This allows us

to conclude that
∣∣∣ĥfλ

(c(λ ))− h(f2
λ
(c(λ )))
d2

∣∣∣ is uniformly bounded as λ varies. Then,

using that degλ (f2
λ
(c(λ ))) = ĥf(c) · d2, an application of the height machine fin-

ishes our proof. The main difficulty lies in proving that for each place v the cor-

responding local contribution to d2 · ĥfλ
(c(λ )) varies from the v-adic contribution

to h(f2
λ
(c(λ ))) by an amount bounded solely in terms of v and of c. In order to

derive our conclusion we first prove the statement for the special case when c is

constant. Actually, in this latter case we can prove (see Propositions 5.8 and 5.11)

that
∣∣∣ĥfλ

(c(λ ))− h(fλ (c(λ )))
d

∣∣∣ is uniformly bounded as λ varies. Then for the general

case of Proposition 4.5, we apply Propositions 5.8 and 5.11 to the first iterate of

c(λ ) under fλ . For our analysis, we split the proof into 3 cases:

(i) |λ |v is much larger than the absolute values of the coefficients of the polyno-

mials A(t) and B(t) defining c(t) := A(t)
B(t) .

(ii) |λ |v is bounded above and below by constants depending only on the abso-

lute values of the coefficients of A(t) and of B(t).

(iii) |λ |v is very small.

The cases (i)-(ii) are not very difficult and the same proof is likely to work for

more general families of rational maps (especially if ∞ is a superattracting point

for the rational maps fλ ; note that the case d = 2 for Theorems 1.1 and 1.2 requires

a different approach). However, case (iii) is much harder, and here we use in an
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essential way the general form of our family of maps. It is not surprising that this

is the hard case since λ = 0 is the only bad fiber of the family fλ . We do not know

whether the error term of O(1) can be obtained for the variation of the canonical

height in more general families of rational maps. It seems that each time λ is

close to a singularity of the family (i.e., λ is close v-adically to some λ0 for which

deg(Φλ0) is less than the generic degree in the family) would require a different

approach.

The plan of our paper is as follows. In the next section we set up the notation

for our paper. Then in Section 3 we compute the height ĥf(c) on the generic fiber of

our dynamical system. We continue in Section 4 with a series of reductions of our

main results; we reduce Theorem 1.1 to proving Proposition 4.5. We conclude by

proving Theorem 1.2 in Section 5, and then finishing the proof of Proposition 4.5

in Section 6.

8



Chapter 2

Notation

2.1 Generalities

For a rational function f (z), we denote by f n(z) its n-th iterate (for any n ≥ 0,

where f 0 is the identity map). We call a point P preperiodic if its orbit under f is

finite.

For each real number x, we denote log+ x := logmax{1,x}.

2.2 Good reduction for rational maps

Let K be a number field, let v be a nonarchimedean valuation on K, let ov be the

ring of v-adic integers of K, and let kv be the residue field at v. If A,B ∈ K[z] are

coprime polynomials, then ϕ(z) := A(z)/B(z) has good reduction (see [21]) at all

places v satisfying the properties:

(1) the coefficients of A and of B are in ov;

(2) the leading coefficients of A and of B are units in ov; and
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(3) the resultant of the polynomials A and B is a unit in ov.

Clearly, all but finitely many places v of K satisfy the above conditions (1)-(3).

In particular this yields that if we reduce modulo v the coefficients of both A and

B, then the induced rational map ϕ(z) := A(z)/B(z) is a well-defined rational map

defined over kv of same degree as ϕ .

2.3 Absolute values

We denote by ΩQ the set of all (inequivalent) absolute values of Q with the usual

normalization so that the product formula holds: ∏v∈ΩQ |x|v = 1 for each nonzero

x ∈Q. For each v ∈ΩQ, we fix an extension of | · |v to Q̄.

2.4 Heights

2.4.1 Number fields

Let K be a number field. For each n≥ 1, if P := [x0 : · · · : xn]∈ Pn(K) then the Weil

height of P is

h(P) :=
1

[K : Q]
· ∑

σ :K−→Q̄
∑

v∈ΩQ

logmax{|σ(x0)|v, · · · , |σ(xn)|v},

where the first summation runs over all embeddings σ : K −→ Q̄. The definition is

independent of the choice of coordinates xi representing P (by an application of the

product formula) and it is also independent of the particular choice of number field

K containing the coordinates xi (by the fact that each place v ∈ ΩQ is defectless,

as defined by [16]). In this paper we will be concerned mainly with the height of

points in P1; furthermore, if x ∈ Q̄, then we identify x with [x : 1] ∈ P1 and define
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its height accordingly. The basic properties for heights which we will use are: for

all x,y ∈ Q̄ we have

(1) h(x+ y)≤ h(x)+h(y)+ log(2),

(2) h(xy)≤ h(x)+h(y), and

(3) h(1/x) = h(x).

2.4.2 Function fields

We will also work with the height of rational functions (over Q̄). So, if L is any

field, then the Weil height of a rational function g ∈ L(t) is defined to be its degree.

2.5 Canonical heights

2.5.1 Number fields

Let K be a number field, and let f ∈ K(z) be a rational map of degree d ≥ 2.

Following [4] we define the canonical height of a point x ∈ P1(Q̄) as

ĥ f (x) = lim
n→∞

h( f n(x))
dn . (2.1)

As proved in [4], the difference |h(x)− ĥ f (x)| is uniformly bounded for all x ∈

P1(Q̄), the difference depending on f only. Also, ĥ f (x) = 0 if and only if x is a

preperiodic point for f . If x ∈ Q̄ then we view it embedded in P1 as [x : 1] and

denote by ĥ f (x) its canonical height under f constructed as above.
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2.5.2 Function fields

Let L be an arbitrary field, let f ∈ L(t)(z) be a rational function of degree d ≥ 2,

and let x ∈ L(t). Then the canonical height ĥ f (x) := ĥ f ([x : 1]) is defined the same

as in (2.1).

2.6 Canonical heights for points and rational maps as
they vary in algebraic families

2.6.1 Number fields

If λ ∈ Q̄∗, x = [A : B] ∈ P1(Q̄) and fλ (z) := zd+λ

z , then we can define ĥ fλ
(x) alter-

natively as follows. We let Aλ ,[A:B],0 := A and Bλ ,[A:B],0 := B, and for each n≥ 0 we

let

Aλ ,[A:B],n+1 := Ad
λ ,[A:B],n +λ ·Bd

λ ,[A:B],n and Bλ ,[A:B],n+1 := Aλ ,[A:B],n ·Bd−1
λ ,[A:B],n.

Then f n
λ
([A : B]) = [Aλ ,[A:B],n : Bλ ,[A:B],n] and so,

ĥ fλ
(x) = lim

n→∞

h([Aλ ,[A:B],n : Bλ ,[A:B],n])

dn .

Also, for each place v, we define the local canonical height of x = [A : B] with

respect to fλ as

ĥ fλ ,v(x) = lim
n→∞

logmax
{∣∣Aλ ,[A:B],n

∣∣
v ,
∣∣Bλ ,[A:B],n

∣∣
v

}
dn . (2.2)

If x ∈ Q̄ we view it embedded in P1(Q̄) as [x : 1] and compute its canonical

heights (both global and local) under fλ as above starting with Aλ ,x,0 := x and
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Bλ ,x,0 := 1.

For x = A/B with B 6= 0, we get that

Aλ ,[A:B],n = Aλ ,x,n ·Bdn
and Bλ ,[A:B],n = Bλ ,x,n ·Bdn

, (2.3)

for all n ≥ 0. If in addition A 6= 0, then Bλ ,[A:B],1 = A ·Bd−1 6= 0 and then for all

n≥ 0 we have

Aλ ,[A:B],n+1 = Aλ , fλ (x),n ·B
dn

λ ,[A:B],1 and Bλ ,[A:B],n+1 = Bλ , fλ (x),n ·B
dn

λ ,[A:B],1 (2.4)

and in general, if Bλ ,[A:B],k0 6= 0, then

Aλ ,[A:B],n+k0 = A
λ , f

k0
λ
(x),n
·Bdn

λ ,[A:B],k0
and Bλ ,[A:B],n+k0 = B

λ , f
k0
λ
(x),n
·Bdn

λ ,[A:B],k0
. (2.5)

We will be interested also in studying the variation of the canonical height of

a family of starting points parametrized by a rational map (in t) under the family

{ft(z)} of rational maps. As before, ft(z) := zd+t
z , and for each t = λ ∈ Q̄ we get

a map in the above family of rational maps. When we want to emphasize the fact

that each fλ (for λ ∈ Q̄∗) belongs to this family of rational maps (rather than being

a single rational map), we will use the boldface letter f instead of f . Also we let

c(t) := A(t)
B(t) where A,B∈K[t] are coprime polynomials defined over a number field

K. Again, for each t = λ ∈ Q̄ we get a point c(λ ) ∈ P1(Q̄).

We define Ac,n(t) ∈ K[t] and Bc,n(t) ∈ K[t] so that for each n ≥ 0 we have

fn
t (c(t)) = [Ac,n(t) : Bc,n(t)]. In particular, for each t = λ ∈ Q̄ we have fn

λ
(c(λ )) =

[Ac,n(λ ) : Bc,n(λ )].

We let Ac,0(t) := A(t) and Bc,0(t) := B(t). Our definition for Ac,n and Bc,n
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for n = 1 will depend on whether A(0) (or equivalently c(0)) equals 0 or not. If

A(0) 6= 0, then we define

Ac,1(t) := A(t)d + tB(t)d and Bc,1(t) := A(t)B(t)d−1, (2.6)

while if c(0) = 0, then

Ac,1(t) :=
A(t)d + tB(t)d

t
and Bc,1(t) :=

A(t)B(t)d−1

t
. (2.7)

Then for each positive integer n we let

Ac,n+1(t) := Ac,n(t)d + t ·Bc,n(t)d and Bc,n+1(t) := Ac,n(t) ·Bc,n(t)d−1. (2.8)

Whenever it is clear from the context, we will use An and Bn instead of Ac,n and

Bc,n respectively. For each t = λ ∈ Q̄, the canonical height of c(λ ) under the action

of fλ may be computed as follows:

ĥfλ
(c(λ )) = lim

n→∞

h([Ac,n(λ ) : Bc,n(λ )])

dn .

Also, for each place v, we define the local canonical height of c(λ ) at v as follows:

ĥfλ ,v(c(λ )) = lim
n→∞

logmax{|Ac,n(λ )|v , |Bc,n(λ )|v}
dn . (2.9)

The limit in (2.9) exists, as proven in Corollary 5.3 (for more details regarding local

canonical heights see [21, Chapter 5]).

The following is a simple observation based on (2.5): if λ ∈ Q̄ such that
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Bc,k0(λ ) 6= 0, then for each k0,n≥ 0 we have

Ac,n+k0(λ ) = Bc,k0(λ )
dn ·A

λ , f
k0
λ
(c(λ )),n and Bc,n+k0(λ ) = Bc,k0(λ )

dn ·B
λ , f

k0
λ
(c(λ )),n.

(2.10)

2.6.2 Function fields

We also compute the canonical height of c(t) on the generic fiber of the family of

rational maps f with respect to the action of ft(z) = zd+t
z ∈Q(t)(z) as follows

ĥf(c) := ĥft (c(t)) := lim
n→∞

h(fn
t (c(t)))
dn = lim

n→∞

degt(fn
t (c(t)))
dn .

15



Chapter 3

Canonical height on the generic

fiber

For each n ≥ 0, the map t −→ fn
t (c(t)) is a rational map; so, deg(fn

t (c(t))) will

always denote its degree. Similarly, letting f(z) := zd+t
z ∈Q(t)(z) and c(t) := A(t)

B(t)

for coprime polynomials A,B ∈ Q̄[t], then fn(c(t)) is a rational function for each

n≥ 0. In this section we compute ĥf(c). It is easier to split the proof into two cases

depending on whether c(0) = 0 (or equivalently A(0) = 0) or not.

Proposition 3.1. If c(0) 6= 0, then

ĥf(c) =
deg(ft(c(t)))

d
=

deg(f2
t (c(t)))
d2 .

Proof. According to (2.6) and (2.8) we have defined Ac,n(t) and Bc,n(t) in this

case. It is easy to prove that deg(An)> deg(Bn) for all positive integers n. Indeed,

if deg(A) > deg(B), then an easy induction yields that deg(An) > deg(Bn) for all

n≥ 0. If deg(A)≤ deg(B), then deg(A1) = 1+d ·deg(B)> d ·deg(B)≥ deg(B1).
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Again an easy induction finishes the proof that deg(An)> deg(Bn) for all n≥ 1.

In particular, we get that deg(An) = dn−1 ·deg(A1) for all n≥ 1. The following

claim will finish our proof.

Claim 3.2. For each n≥ 0, An and Bn are coprime.

Proof of Claim 3.2. The statement is true for n = 0 by definition. Assume now that

it holds for all n≤ N and we’ll show that AN+1 and BN+1 are coprime.

Assume there exists α ∈ Q̄ such that the polynomial t−α divides both AN+1(t)

and BN+1(t). First we claim that α 6= 0. Indeed, if t would divide AN+1, then it

would also divide AN and inductively we would get that t | A0(t) = A(t), which

is a contradiction since A(0) 6= 0. So, indeed α 6= 0. But then from the fact that

both AN+1(α) = 0 = BN+1(α) (and α 6= 0) we obtain from the recursive formula

defining {An}n and {Bn}n that also AN(α) = 0 and BN(α) = 0. However this con-

tradicts the assumption that AN and BN are coprime. Thus An and Bn are coprime

for all n≥ 0.

Using the definition of ĥf(c) we conclude the proof of Proposition 3.1.

If c(0) = 0 (or equivalently A(0) = 0) the proof is very similar, only that this

time we use (2.7) to define A1 and B1.

Proposition 3.3. If c(0) = 0, then

ĥf(c) =
deg(ft(c(t)))

d
=

deg(f2
t (c(t)))
d2 .

Proof. Since t | A(t) we obtain that A1,B1 ∈ Q̄[t]; moreover, they are coprime

because A and B are coprime. Indeed, t does not divide B(t) and so, because t

17



divides A(t) and d ≥ 2, we conclude that t does not divide A1(t). Now, if there

exists some α ∈ Q̄∗ such that both A1(α) = B1(α) = 0, then we obtain that also

both A(α) = B(α) = 0, which is a contradiction.

Using that A1 and B1 are coprime, and also that t - A1, the same reasoning as

in the proof of Claim 3.2 yields that An and Bn are coprime for each n≥ 1.

Also, arguing as in the proof of Proposition 3.1, we obtain that deg(An) >

deg(Bn) for all n≥ 1. Hence,

deg(fn
t (c(t))) = degt(An(t)) = dn−2 ·deg(f2

t (c(t))) = dn−1 ·deg(ft(c(t))),

as desired.
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Chapter 4

Reductions

With the above notation, Theorem 1.1 is equivalent with showing that

lim
n→∞

h([Ac,n(λ ) : Bc,n(λ )])

dn = ĥf(c) ·h(λ )+Oc(1). (4.1)

In all of our arguments we assume λ 6= 0, and also that A and B are not identi-

cally equal to 0 (where c = A/B with A,B ∈ Q̄[t] coprime). Obviously excluding

the case λ = 0 does not affect the validity of Theorem 1.1 (the quantity ĥf0(c(0))

can be absorbed into the O(1)-constant). In particular, if λ 6= 0 then the definition

of Ac,1 and Bc,1 (when c(0) = 0) makes sense (i.e. we are allowed to divide by λ ).

Also, if A or B equal 0 identically, then c(λ ) is preperiodic for fλ for all λ and then

again Theorem 1.1 holds trivially.

Proposition 4.1. Let λ ∈ Q̄∗. Then for all but finitely many v ∈ ΩQ, we have

logmax{|Ac,n(λ )|v, |Bc,n(λ )|v}= 0 for all n ∈ N.

Proof. First of all, for the sake of simplifying our notation (and noting that c and

λ are fixed in this Proposition), we let An := Ac,n(λ ) and Bn := Bc,n(λ ).
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From the definition of A1 and B1 we see that not both are equal to 0 (here

we use also the fact that λ 6= 0 which yields that if both A1 and B1 are equal to

0 then A(λ ) = B(λ ) = 0, contradicting the fact that A and B are coprime). Let

S be the set of all non-archimedean places v ∈ ΩQ such that |λ |v = 1 and also

max{|A1|v, |B1|v}= 1. Since not both A1 and B1 equal 0 (and also λ 6= 0), then all

but finitely many non-archimedean places v satisfy the above conditions.

Claim 4.2. If v ∈ S, then max{|An|v, |Bn|v}= 1 for all n ∈ N.

Proof of Claim 4.2. This claim follows easily by induction on n; the case n = 1

follows by the definition of S. Since

max{|An|v, |Bn|v}= 1

and |λ |v = 1 then max{|An+1|v, |Bn+1|v} ≤ 1. Now, if |An|v = |Bn|v = 1 then

|Bn+1|v = 1. On the other hand, if max{|An|v, |Bn|v}= 1 > min{|An|v, |Bn|v}, then

|An+1|v = 1 (because |λ |v = 1).

Claim 4.2 finishes the proof of Proposition 4.1.

We let K be the finite extension of Q obtained by adjoining the coefficients of

both A and B (we recall that c(t) = A(t)/B(t)). Then An(λ ) := Ac,n(λ ), Bn(λ ) :=

Bc,n(λ ) ∈ K(λ ) for each n and for each λ . Proposition 4.1 allows us to invert the

limit from the left-hand side of (4.1) with the following sum

h([An(λ ) : Bn(λ )])=
1

[K(λ ) : Q]
· ∑
σ :K(λ )−→Q̄

∑
v∈ΩQ

logmax{|σ(An(λ ))|v, |σ(Bn(λ ))|v},

because for all but finitely many places v, we have logmax{|σ(An(λ ))|v, |σ(Bn(λ ))|v}=
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0. Also we note that σ(Ac,n(λ )) = Acσ ,n(σ(λ )) and σ(Bc,n(λ )) = Bcσ ,n(σ(λ )),

where cσ is the polynomial whose coefficients are obtained by applying the homo-

morphism σ ∈Gal(Q̄/Q) to each coefficient of c. Using the definition of the local

canonical height from (2.9), we observe that (4.1) is equivalent with showing that

1
[K(λ ) : Q] ∑

v∈ΩQ

∑
σ :K(λ )−→Q̄

ĥfσ(λ ),v(c
σ (σ(λ ))) = ĥf(c)h(λ )+Oc(1). (4.2)

For each v ∈ ΩQ, and each n ≥ 0 we let Mc,n,v(λ ) := max{|Ac,n(λ )|v, |Bc,n(λ )|v}.

When c is fixed, we will use the notation Mn,v(λ ) := Mc,n,v(λ ); if λ is fixed then

we will use the notation Mn,v := Mn,v(λ ). If v is also fixed, we will use the notation

Mn := Mn,v.

Proposition 4.3. Let v ∈ΩQ be a non-archimedean place such that

(i) each coefficient of A and of B are v-adic integers;

(ii) the resultant of the polynomials A and B, and the leading coefficients of both

A and of B are v-adic units; and

(iii) if the constant coefficient a0 of A is nonzero, then a0 is a v-adic unit.

Then for each λ ∈ Q̄∗ we have logMc,n,v(λ )
dn =

logMc,1,v(λ )
d , for all n≥ 1.

Remarks 4.4. (1) Since we assumed A and B are nonzero, then conditions (i)-

(iii) are satisfied by all but finitely many places v ∈ΩQ.

(2) Conditions (i)-(ii) of Proposition 4.3 yield that c(t) = A(t)/B(t) has good

reduction at v. On the other hand, if A(t)/tB(t) has good reduction at v,

then condition (iii) must hold.

21



Proof. Let λ ∈ Q̄∗, let | · | := | · |v, let An := Ac,n(λ ), Bn := Bc,n(λ ), and Mn :=

max{|An|, |Bn|}.

Assume first that |λ | > 1. Using conditions (i)-(ii), then M0 = |λ |deg(c). If

c is nonconstant, then M0 > 1; furthermore, for each n ≥ 1 we have |An| > |Bn|

(because deg(Ac,n(t))> deg(Bc,n(t)) for n≥ 1), and so, Mn = Mdn−1

1 for all n≥ 1.

On the other hand, if c is constant, then |A1| = |λ | > |B1| = 1, and then again for

each n≥ 1 we have Mn = Mdn−1

1 . Hence Proposition 4.3 holds when |λ |> 1.

Assume |λ | ≤ 1. Then it is immediate that Mn ≤ 1 for all n ≥ 0. On the other

hand, because v is a place of good reduction for c, we get that M0 = 1. Then,

assuming that |λ |= 1 we obtain

|A1(λ )|= |A(λ )d +λB(λ )d | and |B1(λ )|= |A(λ )B(λ )d−1|.

Then Claim 4.2 yields that Mn = 1 for all n≥ 1, and so Proposition 4.3 holds when

|λ |= 1.

Assume now that |λ |< 1, then either |A(λ )|= 1 or |A(λ )|< 1. If the former

holds, then first of all we note that A(0) 6= 0 since otherwise |A(λ )| ≤ |λ | < 1.

An easy induction yields that |An| = 1 for all n ≥ 0 (since |Bn| ≤ 1 and |λ | < 1).

Therefore, Mn = 1 for all n≥ 0. Now if |A(λ )|< 1, using that |λ |< 1, we obtain

that a0 = 0. Indeed, if a0 were nonzero, then |a0| = 1 by our hypothesis (iii), and

thus |A(λ )|= |a0|= 1. So, indeed A(0) = 0, which yields that

A1 =
A(λ )d

λ
+B(λ )d . (4.3)

On the other hand, since v is a place of good reduction for c, and |A(λ )| < 1
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we conclude that |B(λ )| = 1. Thus (4.3) yields that |A1| = 1 because d ≥ 2 and

|A(λ )| ≤ |λ |< 1. Because for each n≥ 1 we have An+1 = Ad
n +λ ·Bd

n and |λ |< 1,

while |Bn| ≤ 1, an easy induction yields that |An|= 1 for all n≥ 1.

This concludes the proof of Proposition 4.3.

The following result is the key for our proof of Theorem 1.1.

Proposition 4.5. Let v ∈ ΩQ. There exists a positive real number Cv,c depending

only on v, and on the coefficients of A and of B (but independent of λ ) such that

∣∣∣∣ limn→∞

logmax{|Ac,n(λ )|v, |Bc,n(λ )|v}
dn − logmax{|Ac,2(λ )|v, |Bc,2(λ )|v}

d2

∣∣∣∣
≤Cv,c,

for all λ ∈ Q̄∗ such that c(λ ) 6= 0,∞.

Propositions 4.3 and 4.5 yield Theorem 1.1.

Proof of Theorem 1.1. First of all we deal with the case that either A or B is the

zero polynomial, i.e. c = 0 or c = ∞ identically. In both cases, we obtain that

Bc,n = 0 for all n ≥ 1, i.e., c is preperiodic for f being always mapped to ∞. Then

the conclusion of Theorem 1.1 holds trivially since ĥfλ
(c(λ )) = 0 = ĥf(c).

Secondly, assuming that both A and B are nonzero polynomials, we deal with

the values of λ excluded from the conclusion of Proposition 4.5. Since there are

finitely many λ ∈ Q̄ such that either λ = 0 or A(λ ) = 0 or B(λ ) = 0 we see that

the conclusion of Theorem 1.1 is not affected by these finitely many values of the

parameter λ ; the difference between ĥfλ
(c(λ )) and ĥf(c) ·h(λ ) can be absorbed in

O(1) for those finitely many values of λ . So, from now on we assume that λ ∈ Q̄∗

such that c(λ ) 6= 0,∞.
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For each σ ∈ Gal(Q̄/Q) let Scσ be the finite set of places v ∈ ΩQ such that

either v is archimedean, or v does not satisfy the hypothesis of Proposition 4.3 with

respect to cσ . Let S =
⋃

Scσ , and let C be the maximum of all constants Cv,cσ (from

Proposition 4.5) over all v ∈ S and all σ ∈ Gal(Q̄/Q). Thus from Propositions 4.3

and 4.5 we obtain for each λ ∈ Q̄∗ such that A(λ ),B(λ ) 6= 0 we have

∣∣∣∣h([Ac,2(λ ) : Bc,2(λ )])

d2 − ĥ fλ
(c(λ ))

∣∣∣∣
=

∣∣∣∣∣ 1
[K(λ ) : Q] ∑

σ

∑
v∈ΩQ

logmax{|Acσ ,2(σ(λ ))|v, |Bcσ ,2(σ(λ ))|v}
d2 − ĥfσ(λ ),v(c

σ (σ(λ )))

∣∣∣∣∣
≤ 1

[K(λ ) : Q] ∑
σ

∑
v∈S

∣∣∣∣ logmax{|Acσ ,2(σ(λ ))|v, |Bcσ ,2(σ(λ ))|v}
d2 − ĥfσ(λ ),v(c

σ (σ(λ )))

∣∣∣∣
≤C · |S|,

where the outer sum is over all embeddings σ : K(λ )−→ Q̄.

Finally, since the rational map t 7→ g2(t) := Ac,2(t)
Bc,2(t)

has degree d2 · ĥf(c) (see

Propositions 3.1 and 3.3), [11, Theorem 1.8] yields that there exists a constant C1

depending only on g2 (and hence only on the coefficients of c) such that for each

λ ∈ Q̄ we have:

∣∣∣∣h([Ac,2(λ ) : Bc,2(λ )])

d2 − ĥf(c) ·h(λ )
∣∣∣∣≤C1. (4.4)

Using inequality (4.4) together with the inequality

∣∣∣∣h([Ac,2(λ ) : Bc,2(λ )])

d2 − ĥfλ
(c(λ ))

∣∣∣∣≤C · |S|,

we conclude the proof of Theorem 1.1 (note that S depends only on c).
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Chapter 5

The case of constant starting

point

In this Section we complete the proof of Proposition 4.5 in the case c is a nonzero

constant, and then proceed to proving Theorem 1.2. We start with several useful

general results (not only for the case c is constant).

Proposition 5.1. Let m and M be positive real numbers, let d ≥ 2 and k0 ≥ 0 be

integers, and let {Nk}k≥0 be a sequence of positive real numbers. If

m≤ Nk+1

Nd
k
≤M

for each k ≥ k0, then

∣∣∣∣ limn→∞

logNk

dk − logNk0

dk0

∣∣∣∣≤ max{− log(m), log(M)}
dk0(d−1)

.
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Proof. We obtain that for each k ≥ k0 we have

∣∣∣∣ logNk+1

dk+1 − logNk

dk

∣∣∣∣≤ max{− log(m), log(M)}
dk+1 .

The conclusion follows by adding the above inequalities for all k ≥ k0.

We let | · |v be an absolute value on Q̄. As before, for each c(t) ∈ Q̄(t) and for

each t = λ ∈ Q̄ we let Mc,n,v(λ ) := max{|Ac,n(λ )|v, |Bc,n(λ )|v} for each n≥ 0.

Proposition 5.2. Consider λ ∈ Q̄∗ and | · |v an absolute value on Q̄. Let m≤ 1≤M

be positive real numbers. If m≤ |λ |v ≤M, then for each 1≤ n0 ≤ n we have

∣∣∣∣ logMn,v(λ )

dn − logMn0,v(λ )

dn0

∣∣∣∣≤ log(2M)− log(m)

dn0(d−1)

and therefore the sequence
{

logMn,v
dn

}
is Cauchy.

Corollary 5.3. Consider λ ∈ Q̄∗ and | · |v an absolute value on Q̄. Then for each

n0 ≥ 1 we have

∣∣∣∣ limn→∞

logMn,v(λ )

dn − logMn0,v(λ )

dn0

∣∣∣∣≤ log(2max{1, |λ |v})− log(min{1, |λ |v})
dn0(d−1)

.

Proof of Proposition 5.2. We let An :=Ac,n(λ ), Bn :=Bc,n(λ ) and Mn,v :=Mn,v(λ ).

Lemma 5.4. Let λ ∈ Q̄∗ and let | · |v be an absolute value on Q̄. If |λ |v ≤M, then

for each n≥ 1, we have Mn+1,v ≤ (M+1) ·Md
n,v.

Proof of Lemma 5.4. Since |λ |v ≤M, we have that for each n∈N, |An+1|v ≤ (M+
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1) ·Md
n,v and also |Bn+1|v ≤Md

n,v; so

Mn+1,v ≤ (M+1) ·Md
n,v, (5.1)

for each n≥ 1.

Because M ≥ 1, Lemma 5.4 yields that

Mn+1,v ≤ 2M ·Md
n,v. (5.2)

The following result will finish our proof.

Lemma 5.5. If λ ∈ Q̄∗ and | · |v is an absolute value on Q̄, then for each n≥ 1 we

have Mn+1,v ≥ min{|λ |v,1}
2max{|λ |v,1} ·M

d
n,v.

Proof of Lemma 5.5. We let ` := min{|λ |v,1} and L := max{|λ |v,1}. Now, if

(
2L
`

) 1
d

· |Bn|v ≥ |An|v ≥
(

`

2L

) 1
d

· |Bn|v,

then Mn+1,v ≥ |Bn+1|v ≥ (`/2L)(d−1)/d ·Md
n,v (note that ` < 2L). On the other hand,

if

either
∣∣∣∣An

Bn

∣∣∣∣
v
>

(
2L
`

) 1
d

or
∣∣∣∣An

Bn

∣∣∣∣
v
<

(
`

2L

) 1
d

then Mn+1,v ≥ |An+1|v > (`/2L) ·Md
n,v. Indeed, if |An/Bn|v > (2L/`)1/d > 1 then

|An+1|v > |An|dv ·
(

1−|λ |v ·
`

2L

)
≥Md

n,v ·
(

1− `

2

)
≥ `

2
·Md

n,v ≥
`

2L
·Md

n,v.
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Similarly, if |An/Bn|v < (`/2L)1/d < 1 then

|An+1|v > |Bn|dv ·
(
|λ |v−

`

2L

)
≥Md

n,v ·
(
`

L
− `

2L

)
=

`

2L
·Md

n,v.

In conclusion, we get `
2L ·M

d
n,v ≤Mn+1,v for all n.

Lemmas 5.4 and 5.5, and Proposition 5.1 finish the proof of Proposition 5.2.

The next result shows that Proposition 4.5 holds when c is a constant α , and

moreover |α|v is large compared to |λ |v. In addition, this result holds for d > 2;

the case d = 2 will be handled later in Lemma 5.12.

Proposition 5.6. Assume d ≥ 3. Let M ≥ 1 be a real number, let | · |v be an

absolute value on Q̄, let λ ,α ∈ Q̄, let An := Aλ ,α,n, Bn := Bλ ,α,n and Mn,v :=

max{|An|v, |Bn|v} for n≥ 0. Let n0 be a nonnegative integer. If |α|v≥ |λ |v/M≥ 2M

then for 0≤ n0 ≤ n we have

∣∣∣∣ logMn,v

dn − logMn0,v

dn0

∣∣∣∣≤ log(2)
dn0(d−1)

.

In particular, since we know that for each given λ , the limit limn→∞

logMn,v
dn

exists, we conclude that

∣∣∣∣ limn→∞

logMn,v

dn − logMn0,v

dn0

∣∣∣∣≤ log(2)
dn0(d−1)

.

Proof of Proposition 5.6. We prove by induction on n the following key result.

Lemma 5.7. For each n≥ 0 , we have |An|v ≥ |λ |vM · |Bn|v.
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Proof of Lemma 5.7. Set | · | := | · |v. The case n = 0 is obvious since A0 = α and

B0 = 1. Now assume |An| ≥ |λ |M · |Bn| and we prove the statement for n+1. Indeed,

using that |λ | ≥ 2M2 and d ≥ 3 we obtain

|An+1|−
|λ |
M
· |Bn+1|

≥ |An|d−|λ | · |Bn|d−
|λ |
M
· |An| · |Bn|d−1

= |An|d ·
(

1−|λ | · |Bn|d

|An|d
−|λ | · |Bn|d−1

|An|d−1

)
≥ |An|d ·

(
1−Md · |λ |1−d−Md−1|λ |2−d

)
≥ |An|d ·

(
1−M2−d ·21−d−M3−d ·22−d

)
≥ |An|d ·

(
1−2−2−2−1)

≥ 0,

as desired.

Lemma 5.7 yields that Mn,v = |An|v for each n (using that |λ |v/M ≥ 2M > 1).

Furthermore, Lemma 5.7 yields

∣∣Mn+1,v−Md
n,v

∣∣≤ |λ ·Bd
n |v ≤Md

n,v ·Md |λ |1−d
v ≤Md

n,v ·M2−d ·21−d ≤ 1
4
·Md

n,v,

because |λ |v ≥ 2M2, M ≥ 1 and d−1≥ 2. Thus for each n≥ 1 we have

3
4
≤ Mn+1,v

Md
n,v
≤ 5

4
. (5.3)

Then Proposition 5.1 yields the desired conclusion.

The next result yields the conclusion of Proposition 4.5 for when the starting
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point c is constant equal to α , and d is larger than 2.

Proposition 5.8. Assume d > 2. Let α,λ ∈ Q̄∗, let | · |v be an absolute value,

and for each n ≥ 0 let An := Aλ ,α,n, Bn := Bλ ,α,n and Mn,v := max{|An|v, |Bn|v}.

Consider L := max{|α|v,1/|α|v}. Then for all n0 ≥ 1 we have

∣∣∣∣ limn→∞

logMn,v

dn − logMn0,v

dn0

∣∣∣∣≤ (3d−2) log(2L).

Proof. We split our proof into three cases: |λ |v is large compared to |α|v; |λ |v

and |α|v are comparable, and lastly, |λ |v is very small. We start with the case

|λ |v� |α|v. Firstly, we note L = max
{
|α|v, |α|−1

v
}
≥ 1.

Lemma 5.9. If |λ |v > 8Ld then for integers 1≤ n0 ≤ n we have

∣∣∣∣ logMn,v

dn − logMn0,v

dn0

∣∣∣∣≤ log(2)
dn0(d−1)

. (5.4)

Proof of Lemma 5.9. Since |λ |v > 8Ld , then |α|d−1
v < |λ |v

2|α|v and therefore

| fλ (α)|v =
∣∣∣∣αd−1 +

λ

α

∣∣∣∣
v
>
|λ |v

2|α|v
≥ |λ |v

2L
≥ 4L.

This allows us to apply Proposition 5.6 coupled with (2.10) (with k0 = 1) and obtain

that for all 1≤ n0 ≤ n we have

∣∣∣∣ logMn,v

dn − logMn0,v

dn0

∣∣∣∣
=

1
d
·

∣∣∣∣∣ logmax
{
|Aλ , fλ (α),n−1|v, |Bλ , fλ (α),n−1|v

}
dn−1 −

logmax
{
|Aλ , fλ (α),n0−1|v, |Bλ , fλ (α),n0−1|v

}
dn0−1

∣∣∣∣∣
≤ 1

d
· log(2)

dn0−1(d−1)
,
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as desired.

Let R = 1
4dLd . If R ≤ |λ |v ≤ 8Ld , then Proposition 5.2 yields that for all 1 ≤

n0 ≤ n we have

∣∣∣∣ logMn,v

dn − logMn0,v

dn0

∣∣∣∣≤ 2d log(4L)
dn0(d−1)

≤ log(4L). (5.5)

So we are left to analyze the range |λ |v < R.

Lemma 5.10. If |λ |v < R, then
∣∣∣ logMn,v

dn − logMn0 ,v

dn0

∣∣∣ ≤ (3d− 2) log(2L) for all inte-

gers 0≤ n0 ≤ n.

Proof of Lemma 5.10. Firstly we note that since |λ |v < R < 1, Lemma 5.4 yields

that Mn+1,v ≤ 2 ·Md
n,v and arguing as in the proof of Proposition 5.1 we obtain that

for all 0≤ n0 ≤ n we have

logMn,v

dn − logMn0,v

dn0
≤ log(2)

dn0(d−1)
. (5.6)

Next, we will establish a lower bound for the main term from (5.6). Since

| f 0
λ
(α)|v = |α|v ≥

1
L
>

d
√

2R > d
√

2|λ |v,

we conclude that the smallest integer n1 (if it exists) satisfying | f n1
λ
(α)|v < d

√
2|λ |v

is positive. We will now derive a lower bound for n1 (if n1 exists) in terms of L.

We know that for all n ∈ {0, . . . ,n1− 1} we have | f n
λ
(α)|v ≥ d

√
2|λ |v. Hence,

for each 0≤ n≤ n1−1 we have

|An+1|v ≥ |An|dv ·
(

1− |λ |v
| f n

λ
(α)|dv

)
≥ |An|dv

2
. (5.7)
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On the other hand,
|λ |v
| f n

λ
(α)|v

≤
| f n

λ
(α)|d−1

v

2
. (5.8)

So, for each 0≤ n≤ n1−1 we have

| f n+1
λ

(α)|v ≥ | f n
λ
(α)|d−1

v − |λ |v
| f n

λ
(α)|v

≥
| f n

λ
(α)|d−1

v

2
. (5.9)

Therefore, repeated applications of (5.9) yield that for 0≤ n≤ n1 we have

| f n
λ
(α)|v ≥

|α|(d−1)n

v

2
(d−1)n−1

d−2

≥ 1

L(d−1)n ·2
(d−1)n−1

d−2

≥ 1
(2L)(d−1)n , (5.10)

because |λ |v ≥ 1/L and d−2≥ 1. So, if | f n1
λ
(α)|v < d

√
2|λ |v, then

1
(2L)(d−1)n1

< d
√

2|λ |v.

Using now the fact that log(2)< log(2L) ·(d−1)n1 and that d ≤ (d−1)2−1 (since

d ≥ 3) we obtain

log
(

1
|λ |v

)
< log(2L) · (d−1)n1+2. (5.11)

Moreover, inequality (5.10) yields that for each 0≤ n≤ n1−1, we have

|Bn+1|v = |Bn|dv · | f n
λ
(α)|v ≥ |Bn|dv ·

1
(2L)(d−1)n . (5.12)

Combining (5.7) and (5.12) we get Mn+1,v ≥
Md

n,v

(2L)(d−1)n , if 0≤ n≤ n1−1. So,

logMn+1,v

dn+1 ≥ logMn,v

dn − log(2L) ·
(

d−1
d

)n

. (5.13)
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Summing up (5.13) starting from n = n0 to N − 1 for some N ≤ n1, and using

inequality (5.6) we obtain that for 0≤ n0 ≤ n≤ n1 we have

∣∣∣∣ logMn,v

dn − logMn0,v

dn0

∣∣∣∣≤ d log(2L). (5.14)

Now, for n≥ n1, we use Lemma 5.5 and obtain

Mn+1,v ≥
min{|λ |v,1}

2max{|λ |v,1}
·Md

n,v =
|λ |v

2
·Md

n,v, (5.15)

because |λ |v < R < 1. Inequalities (5.6) and (5.15) yield that for all n ≥ n0 ≥ n1,

we have

∣∣∣∣ log(Mn,v)

dn − logMn0,v

dn0

∣∣∣∣≤ log
(

2
|λ |v

)
·

n−1

∑
n=n0

1
dn+1 <

2log
(

1
|λ |v

)
(d−1) ·dn1

. (5.16)

In establishing inequality (5.16) we also used the fact that |λ |v < R < 1/2 and

so, log(2/|λ |v) < 2log(1/|λ |v). Combining inequalities (5.11), (5.14) and (5.16)

yields that for all 0≤ n0 ≤ n we have

∣∣∣∣ logMn,v

dn − logMn0,v

dn0

∣∣∣∣
< d log(2L)+

2 · (d−1)n1+2 log(2L)
(d−1) ·dn1

< log(2L) · (d +2 · (d−1))

≤ (3d−2) log(2L),

as desired.

If on the other hand, we had that | f n
λ
(α)|v ≥ d

√
2|λ |v for all n ∈ N, we get that
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equation (5.14) holds for all n∈N. Hence, in this case too, the Lemma follows.

Lemmas 5.9 and 5.10 and inequality (5.5) finish our proof.

For d = 2 we need a separate argument for proving Proposition 4.5 when c is

constant.

Proposition 5.11. Let d = 2, α,λ ∈ Q̄∗, let | · |v be an absolute value, and for

each n ≥ 0 let An := Aλ ,α,n, Bn := Bλ ,α,n and Mn,v := max{|An|v, |Bn|v}. Let L :=

max{|α|v,1/|α|v}. Then for all 1≤ n0 ≤ n we have

∣∣∣∣ logMn,v

2n − logMn0,v

2n0

∣∣∣∣≤ 4log(2L).

In particular, since we know (by Corollary 5.3) that the limit limn→∞

logMn,v
2n

exists, we conclude that

∣∣∣∣ limn→∞

logMn,v

2n − logMn0,v

2n0

∣∣∣∣≤ 4log(2L).

Proof of Proposition 5.11. We employ the same strategy as for the proof of Propo-

sition 5.8, but there are several technical difficulties for this case. Essentially the

problem lies in the fact that ∞ is not a superattracting (fixed) point for fλ (z) = z2+λ

z .

So the main change is dealing with the case when |λ |v is large, but there are changes

also when dealing with the case when |λ |v is close to 0.

Lemma 5.12. Assume |λ |v > Q := (2L)4. Then for integers 1≤ n0 ≤ n we have

∣∣∣∣ logMn,v

2n − logMn0,v

2n0

∣∣∣∣< 5
2
.
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Proof of Lemma 5.12. Let k1 be the smallest positive integer (if it exists) such that

| f k1
λ
(α)|v <

√
2|λ |v. So, we know that | f n

λ
(α)|v ≥

√
2|λ |v if 1 ≤ n ≤ k1− 1. We

will show that k1 > log4

(
|λ |v
4L2

)
≥ 1 (note that |λ |v > Q = (2L)4).

Claim 5.13. For each positive integer n≤ log4

(
|λ |v
2L

)
we have | f n

λ
(α)|v ≥ |λ |v2nL .

Proof of Claim 5.13. The claim follows by induction on n; the case n = 1 holds

since |λ |v > (2L)4 and so,

| fλ (α)|v ≥
|λ |v
|α|v
−|α|v ≥

|λ |v
L
−L≥ |λ |v

2L
.

Now, assume for 1≤ n≤ log4

(
|λ |v
2L

)
we have | f n

λ
(α)|v ≥ |λ |v2nL . Then

| f n+1
λ

(α)|v ≥ | f n
λ
(α)|v−

|λ |v
| f n

λ
(α)|v

≥ |λ |v
2nL
−2nL≥ |λ |v

2n+1L
,

because |λ |v ≥ 4n ·2L since n≤ log4

(
|λ |v
2L

)
. This concludes our proof.

Claim 5.13 yields that for each 1≤ n≤ log4

(
|λ |v
4L2

)
< log4

(
|λ |v
2L

)
we have

| f n
λ
(α)|v ≥

|λ |v
2nL
≥ |λ |v√

|λ |v
4L2 ·L

>
√

2|λ |v.

Hence,

k1 > log4

(
|λ |v
4L2

)
. (5.17)

Now for each 1≤ n≤ k1−1 we have

|An|v
|Bn|v

= | f n
λ
(α)|v ≥

√
2|λ |v > 1, (5.18)
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because |λ |v > Q > 2 and so, Mn,v = |An|v. Furthermore,

| f k1
λ
(α)|v ≥ | f k1−1

λ
(α)|v−

|λ |v
| f k1−1

λ
(α)|v

≥
√

2|λ |v−
√
|λ |v

2
=

√
|λ |v

2
> 1.

Hence Mk1 = |Ak1 |v and therefore, for each 1≤ n≤ k1−1, using (5.18) we have

|Mn+1,v−M2
n,v| ≤ |λ |v · |Bn|2v ≤

|An|2v
2

=
M2

n,v

2
.

Hence M2
n,v
2 ≤Mn+1,v ≤

3M2
n,v

2 , and so

∣∣∣∣ logMn+1,v

2n+1 − logMn,v

2n

∣∣∣∣< log(2)
2n+1 , (5.19)

for 1≤ n≤ k1−1. The next result establishes a similar inequality to (5.19) which

is valid for all n ∈ N.

Claim 5.14. For each n≥ 1 we have 1
2|λ |v ≤

Mn+1,v
M2

n,v
≤ 2|λ |v.

Proof of Claim 5.14. The lower bound is an immediate consequence of Lemma 5.5

(note that |λ |v > Q > 1), while the upper bound follows from Lemma 5.4.

Using Claim 5.14 we obtain that for all n≥ 1 we have

∣∣∣∣ logMn+1,v

2n+1 − logMn,v

2n

∣∣∣∣≤ log(2|λ |v)
2n+1 . (5.20)

Using inequalities (5.17), (5.19) and (5.20) we obtain that for all 1 ≤ n0 ≤ n we
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have

∣∣∣∣ logMn,v

2n − logMn0,v

2n0

∣∣∣∣
≤

k1−1

∑
n=1

log(2)
2n+1 +

∞

∑
n=k1

log(2|λ |v)
2n+1

≤ log(2)
2

+
log(2|λ |v)

2k1

≤ log(2)
2

+
log(2|λ |v)√

|λ |v
4L2

≤ 1
2
+

log(2|λ |v)
4
√
|λ |v

(because |λ |v > (2L)4)

<
5
2

(because |λ |v > Q≥ 16), (5.21)

as desired.

If on the other hand for all n ∈N, we have that | f n
λ
(α)|v ≥

√
2|λ |v, we get that

equation (5.19) holds for all n∈N. Hence, in this case too the Lemma follows.

Let R = 1
4L2 . If R≤ |λ |v ≤ Q then for each n0 ≥ 1, Proposition 5.2 yields

∣∣∣∣ logMn,v

2n − logMn0,v

2n0

∣∣∣∣≤ log(2Q)− log(R)
2

<
7log(2L)

2
< 4log(2L). (5.22)

Next we deal with the case |λ |v is small.

Lemma 5.15. If |λ |v < R, then for all 1 ≤ n0 ≤ n, we have
∣∣∣ logMn,v

2n − logMn0 ,v

2n0

∣∣∣ ≤
3log(2L).

Proof of Lemma 5.15. The argument is similar to the proof of Lemma 5.12, only

that this time we do not know that | f n
λ
(α)|v > 1 (and therefore we do not know
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that |An|v > |Bn|v) because |λ |v is small. Also, the proof is similar to the proof of

Lemma 5.10, but there are several changes due to the fact that d = 2.

We note that since |λ |v < R < 1 then Lemma 5.4 yields

Mn+1 ≤ 2M2
n . (5.23)

Now, let n1 be the smallest integer (if it exists) such that | f n1
λ
(α)|v <

√
2|λ |v.

Note that | f 0
λ
(α)|v = |α|v ≥ 1

L ≥
√

2|λ |v because |λ |v < R = 1
4L2 . Hence (if n1

exists), we get that n1≥ 1. In particular, for each 0≤ n≤ n1−1 we have | f n
λ
(α)|v≥√

2|λ |v and this yields

|An+1| ≥ |An|2 ·
(

1− |λ |v
| f n

λ
(α)|2v

)
≥ |An|2

2
. (5.24)

On the other hand,
|λ |v
| f n

λ
(α)|v

≤
| f n

λ
(α)|v
2

. (5.25)

So, for each 0≤ n≤ n1−1 we have

| f n+1
λ

(α)|v ≥ | f n
λ
(α)|v−

|λ |v
| f n

λ
(α)|v

≥
| f n

λ
(α)|v
2

. (5.26)

Therefore, repeated applications of (5.26) yield for n≤ n1 that

| f n
λ
(α)|v ≥

|α|v
2n ≥

1
2nL

, (5.27)

because |α|v ≥ 1/L. So, for each n≥ 0 we have

|Bn+1|v = |Bn|2v · | f n
λ
(α)|v ≥ |Bn|2v ·

1
2nL

. (5.28)
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Combining (5.24) and (5.28) we get

Mn+1 ≥
M2

n

L ·2max{1,n} (5.29)

for all n≥ 0. Using (5.23) and (5.29) we obtain for 0≤ n≤ n1−1 that

∣∣∣∣ logMn+1

2n+1 − logMn

2n

∣∣∣∣≤ max{1,n} · log(2)+ log(L)
2n+1 . (5.30)

Summing up (5.30) starting from n = n0 to n = n1−1 we obtain that for 1≤ n0 ≤

n≤ n1 we have

∣∣∣∣ logMn

2n − logMn0

2n0

∣∣∣∣≤ n−1

∑
k=n0

k log(2)+ log(L)
2k+1 < log(2)+ log(L) = log(2L). (5.31)

Using inequality (5.27) for n = n1 yields 1
2n1 L ≤ | f

n1
λ
(α)|v <

√
2|λ |v, and so,

1
|λ |v

< 4n1 ·2L2. (5.32)

Now, for n≥ n1, we use Lemma 5.5 and obtain

Mn+1 ≥
min{|λ |v,1}

2max{|λ |v,1}
·M2

n =
|λ |v

2
·M2

n , (5.33)

because |λ | < R < 1. Inequality (5.33) coupled with inequality (5.23) yields that

for all n≥ n0 ≥ n1, we have

∣∣∣∣ log(Mn)

2n − logMn0

2n0

∣∣∣∣< log
(

2
|λ |v

)
·

n−1

∑
n=n0

1
2n+1 <

log
(

2
|λ |v

)
2n1

. (5.34)

Combining inequalities (5.32), (5.30) and (5.34) yields that for all 1 ≤ n0 ≤ n we
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have

∣∣∣∣ logMn

2n − logMn0

2n0

∣∣∣∣
< log(2L)+

(n1 +1) log(4)+2log(L)
2n1

< log(2L)+ log(4)+ log(L)

≤ 3log(2L), (5.35)

as desired.

Lemmas 5.12 and 5.15, and inequality (5.22) finish our proof.

Proof of Theorem 1.2. First we deal with the case α = 0. In this case, α = 0 is

preperiodic under the action of the family fλ and so, ĥfλ
(α) = 0 = h(α). From

now on, assume that α 6= 0. Secondly, if λ = 0 (and d ≥ 3) then ĥf0(α) = h(α)

(since f0(z) = zd−1) and thus

ĥf0(α)− ĥf(α) ·h(α) =
d−1

d
·h(α)≤ 6d ·h(α),

and so the conclusion of Theorem 1.2 holds. So, from now on we assume both α

and λ are nonzero.

Propositions 5.8 and 5.11 allow us to apply the same strategy as in the proof

of Theorem 1.1 only that this time it suffices to compare ĥ fλ
(α) and h([Aλ ,α,1 :

Bλ ,α,1]). As before, we let S be the set of places of Q containing the archi-

medean place and all the non-archimedean places v for which there exists some

σ ∈ Gal(Q̄/Q) such that |σ(α)|v 6= 1. Since α 6= 0, we have that S is finite; more-

over |S| ≤ 1+ `. So, applying Proposition 4.3 and Propositions 5.8 and 5.11 with
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n0 = 1 (see also (2.9)) we obtain

∣∣∣∣h([Aλ ,α,1 : Bλ ,α,1])

d
− ĥ fλ

(α)

∣∣∣∣
=

∣∣∣∣∣ 1
[K(λ ) : Q] ∑

σ

∑
v∈ΩQ

logmax{|Aσ(λ ),σ(α),1|v, |Bσ(λ ),σ(α),1|v}
d

− ĥfσ(λ ),v(σ(α))

∣∣∣∣∣
≤ 1

[K(λ ) : Q] ∑
σ

∑
v∈S

∣∣∣∣ logmax{|Aσ(λ ),σ(α),1|v, |Bσ(λ ),σ(α),1|v}
d

− ĥfσ(λ ),v(σ(α))

∣∣∣∣
≤ 3d−2

[K(λ ) : Q] ∑
σ :K(λ )−→Q̄

∑
v∈S

log
(
2max{|σ(α)|v, |σ(α)|−1

v }
)

≤ 3d−2
[K(λ ) : Q] ∑

σ :K(λ )−→Q̄
∑
v∈S

(
log(2)+ log+ |α|v + log+

∣∣∣∣ 1
α

∣∣∣∣
v

)
≤ (3d−2) ·

(
|S|+h(α)+h

(
1
α

))
≤ (3d−2) · (1+ `+2h(α)).

On the other hand, using that ĥf(α) = 1/d (by Proposition 3.1) and also using the

basic inequalities (1)-(3) for the Weil height from Subsection 2.4 we obtain

∣∣∣∣h([Aλ ,α,1 : Bλ ,α,1])

d
− ĥf(α) ·h(λ )

∣∣∣∣
=

∣∣∣∣∣∣
h
(

αd−1 + λ

α

)
d

− h(λ )
d

∣∣∣∣∣∣
≤ 1

d
·
(∣∣∣∣h(α

d−1 +
λ

α

)
−h
(

λ

α

)∣∣∣∣+ ∣∣∣∣h(λ

α

)
−h(λ )

∣∣∣∣)
≤ 1

d
· ((d−1)h(α)+ log(2)+h(α))

< h(α)+1.

This finishes the proof of Theorem 1.2.
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Remark 5.16. Theorem 1.2 yields an effective method for finding all λ ∈ Q̄ such

that a given point α ∈ Q̄ is preperiodic under the action of fλ .
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Chapter 6

Proof of our main result

So we are left to proving Proposition 4.5 in full generality. We fix a place v ∈ΩQ.

Before completing the proof of Proposition 4.5 we need one more result.

Proposition 6.1. Assume d > 2. Let α,λ ∈ Q̄, and let | · |v be an absolute value.

We let An := Aλ ,α,n, Bn := Bλ ,α,n and Mn,v := max{|An|v, |Bn|v}. If |α|v ≥ 2 and

|λ |v ≤ 1
2 then for each n0 ≥ 0 we have

∣∣∣∣ limn→∞

logMn,v

dn − logMn0,v

dn0

∣∣∣∣≤ log(2)
dn0(d−1)

.

Proof. First we claim that for each n≥ 0 we have | f n
λ
(α)|v ≥ 2. Indeed, for n = 0

we have |α|v ≥ 2 as desired. We assume | f n
λ
(α)|v ≥ 2 and since |λ |v ≤ 1/2 we get

that

| f n+1
λ

(α)|v ≥ | f n
λ
(α)|d−1

v − |λ |v
| f n

λ
(α)|v

≥ 4− 1
4
> 2.
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Hence Mn,v = |An|v and we obtain that

∣∣Mn+1,v−Md
n,v

∣∣≤ |λ |v · |Bn|dv ≤
Md

n,v

2 ·
∣∣∣An

Bn

∣∣∣d
v

=
Md

n,v

2| f n
λ
(α)|dv

≤
Md

n,v

16

because d ≥ 3. Thus Proposition 5.1 yields the desired conclusion.

The next result deals with the case d = 2 in Proposition 6.1.

Proposition 6.2. Assume d = 2. Let M ≥ 1 be a real number, let α,λ ∈ Q̄,

and let | · |v be an absolute value. We let An := Aλ ,α,n, Bn := Bλ ,α,n and Mn,v :=

max{|An|v, |Bn|v}. If |α|v ≥ 1
M·|λ |v ≥ 2M then for each 0≤ n0 ≤ n we have

∣∣∣∣ logMn,v

2n − logMn0,v

2n0

∣∣∣∣≤ 4log(2).

In particular, using Corollary 5.3 we obtain that for all n0 ≥ 0 we have

∣∣∣∣ limn→∞

logMn,v

2n − logMn0,v

2n0

∣∣∣∣≤ 4log(2).

Proof of Proposition 6.2. Since |λ |v ≤ 1
2M2 ≤ 1

2 , using Lemmas 5.4 and 5.5 we

obtain for all n≥ 0 that

∣∣∣∣ logMn+1,v

2n+1 − logMn,v

2n

∣∣∣∣≤ log
(

2
|λ |v

)
2n+1 . (6.1)

We need to improve the above bound and in order to do this we prove a sharper

inequality when n is small compared to 1
|λ |v . The strategy is similar to the one

employed in the proof of Lemma 5.12.
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First of all, since |λ |v < 1, Lemma 5.4 yields that for all n≥ 0 we have

logMn+1,v

2n+1 − logMn,v

2n ≤ log(2)
2n+1 . (6.2)

We will prove a lower bound for the main term from (6.2) when n0 and n are small

compared to 1
|λ |v . First we prove that | f n

λ
(α)|v is large when n is small.

Lemma 6.3. For each integer n≤ 3M2

4|λ |v , we have | f n
λ
(α)|v ≥ 3M

2 .

Proof of Lemma 6.3. We will prove the statement inductively. For n = 0, we know

that | f 0
λ
(α)|v = |α|v ≥ 2M. If now for some n ≥ 0 we have that | f n

λ
(α)|v ≥ 3M

2 ,

then | f n+1
λ

(α)|v ≥ | f n
λ
(α)|v− 2|λ |v

3M . Therefore, for all n≤ 3M2

4|λ |v we have

| f n
λ
(α)|v ≥ |α|v−

n ·2|λ |v
3M2 ≥ 3M

2
,

as desired.

In conclusion, if we let n1 be the smallest positive integer larger than 3M2

4|λ | we

know that for all 0≤ n≤ n1−1 we have | f n
λ
(α)|v ≥ 3

2 . In particular,

| f n1
λ
(α)|v ≥ | f n1−1

λ
(α)|v−

|λ |v
| f n1−1

λ
(α)|v

≥ 3
2
−

1
2
3
2

> 1.

Therefore, Mn = |An| for all 0≤ n≤ n1, and moreover for 0≤ n≤ n1−1 we have

Mn+1−M2
n = |An+1|v−|A2

n|v ≥−|λ |v · |Bn|2v =−M2
n ·

|λ |v
| f n

λ
(α)|2v

≥−4M2
n

9
, (6.3)

because |λ |v < 1 and | f n
λ
(α)|v ≥ 3

2 . Inequality (6.3) coupled with the argument
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from Proposition 5.1 yields that for all 0≤ n≤ n1−1 we have

logMn+1

2n+1 − logMn

2n >− log(2)
2n+1 . (6.4)

Using the definition of n1 and inequalities (6.1), (6.2) and (6.4), we conclude that

∣∣∣∣ logMn

2n − logMn0

2n0

∣∣∣∣
≤

n1−1

∑
n=0

log(2)
2n+1 +

∞

∑
n=n1

log
(

2
|λ |

)
2n+1

≤ log(2)+
log
( 8n1

3M2

)
2n1

≤ 4log(2),

for all 0≤ n0 ≤ n.

Finally, we will establish the equivalent of Proposition 5.6 for d = 2.

Proposition 6.4. Assume d = 2. Let M ≥ 1 be a real number, let α,λ ∈ Q̄,

and let | · |v be an absolute value. We let An := Aλ ,α,n, Bn := Bλ ,α,n and Mn,v :=

max{|An|v, |Bn|v}. If |α|v ≥ |λ |vM ≥ 8M, then for each 0≤ n0 ≤ n we have

∣∣∣∣ logMn,v

2n − logMn0,v

2n0

∣∣∣∣≤ 1+8M.

In particular, using Corollary 5.3 we obtain that for all n0 ≥ 0 we have

∣∣∣∣ limn→∞

logMn,v

2n − logMn0,v

2n0

∣∣∣∣≤ 1+8M.

Proof of Proposition 6.4. We know that |λ |v ≥ 8M2 > 1. Thus, Lemmas 5.4 and
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5.5 yield that for all n≥ 0 we have

∣∣∣∣ logMn+1,v

2n+1 − logMn,v

2n

∣∣∣∣≤ log(2|λ |v)
2n+1 . (6.5)

As in the proof of Proposition 6.2, we will find a sharper inequality for small n.

Arguing identically as in Claim 5.13, we obtain that for 0 ≤ n ≤ log4

(
|λ |v
2M

)
we

have

| f n
λ
(α)|v ≥

|λ |v
2nM

≥ 2n+1 ≥ 2. (6.6)

So, let n1 be the smallest integer larger than log4

(
|λ |v
2M2

)
−1. Since |λ |v ≥ 8M2, we

get that n1 ≥ 1. Also, by its definition, n1 ≤ log4

(
|λ |v
2M

)
; so, for each 0 ≤ n ≤ n1,

inequality (6.6) holds, and thus Mn,v = |An|v. Moreover, for 0≤ n≤ n1−1 we get

that

|Mn+1,v−M2
n,v|= ||An+1|v−|A2

n|v| ≤ |λ |v ·|Bn|2v =M2
n,v ·

|λ |v
| f n

λ
(α)|2v

≤M2
n,v ·
|λ |v
|λ |2v

4nM2

≤
M2

n,v

2
.

So, using Proposition 5.1 we obtain that for all 0≤ n≤ n1−1 we have

∣∣∣∣ logMn+1,v

2n+1 − logMn,v

2n

∣∣∣∣≤ log(2)
2n+1 . (6.7)
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Using the definition of n1 and inequalities (6.5) and (6.7) we conclude that

∣∣∣∣ logMn,v

2n − logMn0,v

2n0

∣∣∣∣
≤

n1−1

∑
n=0

log(2)
2n+1 +

∞

∑
n=n1

log(2|λ |v)
2n+1

≤ log(2)+
log(2|λ |v)

2n1

≤ log(2)+
2log(2|λ |v)√

|λ |v
2M2

≤ log(2)+4M · log(2|λ |v)√
|λ |v

< 1+8M (because |λ |v ≥ 8),

for all 0≤ n0 ≤ n.

Our next result completes the proof of Proposition 4.5 by considering the case

of nonconstant c(t) = A(t)
B(t) , where A,B ∈ Q̄[t] are nonzero coprime polynomials.

Proposition 6.5. Assume c(λ ) = A(λ )
B(λ ) ∈ Q̄(λ ) is nonconstant, and let | · |v be any

absolute value on Q̄. Consider λ0 ∈ Q̄∗ such that c(λ0) 6= 0,∞. For each n ≥ 0

we let An := Ac,n(λ0), Bn := Bc,n(λ0) and Mn,v := max{|An|v, |Bn|v}. Then there

exists a constant C depending only on v and on the coefficients of A and of B (but

independent of λ0) such that

∣∣∣∣ limn→∞

logMn,v

dn − logM2,v

d2

∣∣∣∣≤C. (6.8)

Proof. We let α := fλ0(c(λ0)). Since λ0 is fixed in our proof, so is α . On the other

hand, we will prove that the constant C appearing in (6.8) does not depend on α
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(nor on λ0).

We split our proof in three cases depending on |λ0|v. We first deal with the case

of large |λ0|v. As proven in Propositions 3.1 and 3.3, degt(Ac,1(t))−degt(Bc,1(t))≥

1. We let c1 and c2 be the leading coefficients of Ac,1(t) and Bc,1(t) respectively.

Then, there exists a positive real number Q depending on v and the coefficients of

A and B only, such that if |λ |v > Q then

|Ac,1(λ )|v
|Bc,1(λ )|v

≥ |λ |v · |c1|v
2|c2|v

≥ 8M,

where M := 2max{1, |c2/c1|v}. Our first step is to prove the following result.

Lemma 6.6. If |λ0|v > Q then

∣∣∣∣ limn→∞

logMn,v

dn − logM2,v

d2

∣∣∣∣≤ 1+16max
{

1,
∣∣∣ c2

c1

∣∣∣}
d

. (6.9)

Proof of Lemma 6.6. We recall that M := 2max{1, |c2/c1|v}. Since |λ0|v >Q, then

|α|v =
|Ac,1(λ0)|v
|Bc,1(λ0)|v

≥ |λ0|v/M ≥ 8M.

We apply the conclusion of Propositions 5.6 and 6.4 with n0 = 1 and we conclude

that

∣∣∣∣ limn→∞

logmax{|Aλ0,α,n|v, |Bλ0,α,n|v}
dn −

logmax{|Aλ0,α,1|v, |Bλ0,α,1|v}
d

∣∣∣∣≤ 1+8M.

On the other hand, using (2.10) with k0 = 1 (note that by our assumption, Bc,1(λ0)=
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A(λ0)B(λ0)
d−1 6= 0) we obtain

∣∣∣∣ limn→∞

logMn,v

dn − logM2,v

d2

∣∣∣∣
=

1
d
·
∣∣∣∣ limn→∞

logmax{|Aλ0,α,n|v, |Bλ0,α,n|v}
dn −

logmax{|Aλ0,α,1|v, |Bλ0,α,1|v}
d

∣∣∣∣
≤ 1+8M

d
,

as desired.

We will now deal with the case when |λ0|v is small. We will define another

quantity, R, which will depend only on v and on the coefficients of A and of B, and

we will assume that |λ0|v < R. The definition of R is technical since it depends

on whether c(0) equals 0, ∞ or neither. However, the quantity R will depend on

v and on the coefficients of A and of B only (and will not depend on λ0 nor on

α = fλ0(c(λ0))).

Assume c(0) 6= 0,∞ (i.e., A(0) 6= 0 and B(0) 6= 0). Let c3 := A(0) 6= 0 and

c4 := B(0) 6= 0 be the constant coefficients of A and respectively of B. Then there

exists a positive real number R depending on v and on the coefficients of A and of

B only, such that if |λ |v < R, then

|c3|v
2

< |A(λ )|v <
3|c3|v

2
and
|c4|v

2
< |B(λ )|v <

3|c4|v
2

.

Hence |c3|v
3|c4|v < |c(λ )|v <

3|c3|v
|c4|v . Then we can apply Propositions 5.8 and 5.11 with
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n0 = 2 (coupled with (2.10) for k0 = 0); we obtain that if |λ0|v < R then

∣∣∣∣ limn→∞

logMn,v

dn − logM2,v

d2

∣∣∣∣
=

∣∣∣∣ limn→∞

logmax{|Aλ0,c(λ0),n|v, |Bλ0,c(λ0),n|v}
dn −

logmax{|Aλ0,c(λ0),2|v, |Bλ0,c(λ0),2|v}
d2

∣∣∣∣
≤ (3d−2) log

(
2max{|c(λ0)|v, |c(λ0)|−1

v }
)

≤ (3d−2)
(

2+ log
(

max
{
|c3|v
|c4|v

,
|c4|v
|c3|v

}))
. (6.10)

Assume c(0) = ∞. Then A(0) 6= 0 but B(0) = 0; in particular deg(B)≥ 1 since

B is not identically equal to 0. We recall that c3 = A(0) is the constant coefficient

of A (we know c3 6= 0). Also, let c5 be the first nonzero coefficient of B. Then

there exists a positive real number R depending on v and on the coefficients of A

and of B only, such that if 0 < |λ |v < R then

|c3|v
2

< |A(λ )|v and |B(λ )|v < 2|c5|v · |λ |v,

and moreover

|c(λ )|v =
∣∣∣∣A(λ )

B(λ )

∣∣∣∣
v
>

1
M · |λ |v

≥ 2M,

where M = 4max{1, |c5/c3|v}. Then applying Propositions 6.1 and 6.2 with n0 = 2

(coupled with (2.10) for k0 = 0) we conclude that if |λ0|v < R then

∣∣∣∣ limn→∞

logMn,v

dn − logM2,v

d2

∣∣∣∣
=

∣∣∣∣ limn→∞

logmax{|Aλ0,c(λ0),n|v, |Bλ0,c(λ0),n|v}
dn −

logmax{|Aλ0,c(λ0),2|v, |Bλ0,c(λ0),2|v}
d2

∣∣∣∣
≤ 4log(2). (6.11)
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Assume c(0) = 0. Then A(0) = 0 but B(0) 6= 0; in particular deg(A)≥ 1 since

A is not identically equal to 0. So, the constant coefficient of B is nonzero, i.e.,

c4 = c5 = B(0) 6= 0 in this case. There are two cases: A′(0) = 0 or not. First,

assume c6 := A′(0) 6= 0. Then there exists a positive real number R depending on

v and on the coefficients of A and of B only such that if 0 < |λ |v < R then

|Ac,1(λ )|v =
∣∣∣∣A(λ )d

λ
+B(λ )d

∣∣∣∣
v
∈
(
|c4|dv

2
,
3|c4|dv

2

)
and

|Bc,1(λ )|v =
∣∣∣∣A(λ )B(λ )d−1

λ

∣∣∣∣
v
∈

(∣∣c6cd−1
4

∣∣
v

2
,
3
∣∣c6cd−1

4

∣∣
v

2

)
.

Hence |c4|v
3|c6|v ≤ |α|v ≤

3|c4|v
|c6|v (also note that we are using the fact that λ0 6= 0 and

so the above inequalities apply to our case). Hence using Propositions 5.8 and

5.11 with n0 = 1 (combined also with (2.10) for k0 = 1, which can be used since

Bc,1(λ0) = A(λ0)B(λ0)
d−1 6= 0) we obtain

∣∣∣∣ limn→∞

logMn,v

dn − logM2,v

d2

∣∣∣∣
=

1
d
·
∣∣∣∣ limn→∞

logmax{|Aλ0,α,n|v, |Bλ0,α,n|v}
dn −

logmax{|Aλ0,α,1|v, |Bλ0,α,1|v}
d

∣∣∣∣
≤ 3d−2

d
· log

(
2max

{
|α|v, |α|−1

v
})

≤ 3 ·
(

2+ log
(

max
{∣∣∣∣c4

c6

∣∣∣∣
v
,

∣∣∣∣c6

c4

∣∣∣∣
v

}))
. (6.12)

Next assume A(0) = A′(0) = 0. So, let c7 be the first nonzero coefficient of A.

Also, we recall that c4 = c5 = B(0) 6= 0 in this case. Then there exists a positive

real number R depending on v and on the coefficients of A and of B only such that
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if 0 < |λ |v < R then

|c4|dv
2

< |Ac,1(λ )|v and |Bc,1(λ )|v < 2
∣∣c7cd−1

4

∣∣
v · |λ |v,

and moreover ∣∣∣∣Ac,1(λ )

Bc,1(λ )

∣∣∣∣
v
>

1
M · |λ |v

≥ 8M,

where M := 4max
{

1, |c7|v
|c4|v

}
. Hence, if |λ0|v < R (using also that c(λ0) 6= 0,∞), we

obtain

|α|v ≥
1

M · |λ0|v
≥ 8M. (6.13)

Then Propositions 6.1 and 6.2 with n0 = 1 (combined with (2.10) for k0 = 1, which

can be used since Bc,1(λ0) 6= 0) yield

∣∣∣∣ limn→∞

logMn,v

dn − logM2,v

d2

∣∣∣∣
=

1
d
·
∣∣∣∣ limn→∞

logmax{|Aλ0,α,n|v, |Bλ0,α,n|v}
dn −

logmax{|Aλ0,α,1|v, |Bλ0,α,1|v}
d

∣∣∣∣
≤

1+32max
{

1, |c7|v
|c4|v

}
d

. (6.14)

On the other hand, Proposition 5.2 yields that if R≤ |λ0|v ≤ Q then

∣∣∣∣ limn→∞

logMn,v

dn − logM2,v

d2

∣∣∣∣≤ log(2Q)− log(R)
18

. (6.15)

Noting that R and Q depend on v and on the coefficients of A and of B only,

inequalities (6.9), (6.10), (6.11), (6.12), (6.14) and (6.15) yield the conclusion of

Proposition 4.5.
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