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Abstract

Backscatter Radio-Frequency Identification (RFID) systems are the most popu-

lar RFID systems deployed due to low cost and low complexity. However, they

pose many design challenges due to their querying-fading-signaling-fading struc-

ture, which experiences deeper fading than conventional one-way channels. Re-

cently, by simulations and measurements, researchers found that the multiple-

input-multiple-output (MIMO) setting can improve the performance of backscat-

ter RFID systems. These simulations and measurements were based on simple

signaling schemes and no rigorous mathematical analysis has been provided. In

this thesis, we explore querying, STC, and diversity combining schemes over the

three ends of the backscatter RFID systems and provide generalized performance

analysis and design criteria.

At the tag end, we show that the identical signaling scheme, which cannot

improve the bit error rate (BER) performance in conventional one-way channels,

can significantly improve the BER performance of backscatter RFID. We also an-

alytically study the performances of orthogonal STCs, with different sub-channel

fading assumptions, and show that the diversity order depends only on the number

of tag antennas. More interestingly, we show that the performance is more sen-

sitive to the channel condition of the forward link than that of the backscattering

link.

In previous literature, the understanding of the query end is that the designs of

query signals have no potential to improve the system performance. However, we

show that some well-designed query signals can improve the system performance

significantly. We propose a novel unitary query method in this thesis. Conven-

tional measures of the physical layer performance cannot be obtained analytically
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in backscatter RFID channels with employing our unitary query. We thus provide

a new performance measure to overcome the difficulty of conventional measures,

and show that why the unitary query has superior performance.

The multi-keyhole channel is another type of cascaded channel. The backscat-

ter RFID channel and the multi-keyhole channels look similar, but are essentially

different and there difference has not been clearly studied in previous literature.

In the final part of this thesis, by investigating general STCs and revealing a few

interesting properties of this channel in the multiple-input-single-output (MISO)

case, we show that the two channels achieves completely different diversity order

and BER performance.

iii



Preface

This thesis is written based on a collection of manuscripts. The majority of the

research, including literature survey, mathematical proofs, numerical simulations

and report writing, are conducted by the candidate, with suggestions from Prof. Z.

Jane Wang. The manuscripts are primarily drafted by the candidate, with helpful

revisions and comments from Prof. Z. Jane Wang. In the manuscript “On the

Performance of MIMO RFID Backscattering channels”, Prof. Weifeng Su and Mr.

Xun Chen helped on checking the mathematical derivations.

Chapter 2 is partially based on the following manuscripts:

• Chen He and Z. Jane Wang, “Closed-Form BER Analysis of Non-Coherent

FSK in MISO Double Rayleigh Fading/RFID Channel,” IEEE Communica-

tions Letters, pp. 848-850, Aug. 2011.

• Chen He, Xun Chen, Z. Jane Wang, and Weifeng Su, “On the Performance of

MIMO RFID Backscattering channels,” Eurasip Journal on Wireless Com-

munications and Networking, vol. 11, pp. 1-15, 2012.

Chapter 3 is based on:

• Chen He and Z. Jane Wang, “SER of Orthogonal Space-Time Block Codes

Over Rician and Nakagami-m RF Backscattering Channels,” IEEE Transac-

tions on Vehicular Technology, pp. 1-9, 2013.

• Chen He and Z. Jane Wang, “Gains by a Space-time-code Based Signaling

scheme for Multiple-antenna RFID Tags,” Proc. of the 23rd Canadian Con-

ference on Electrical and Computer Engineering, pp. 1-4, 2010.

• Chen He and Z. Jane Wang, “Impact of the Correlation Between Forward

and Backscatter channels on RFID System Performance,” Proc. of the 36th

iv



IEEE International Conference on Acoustics, Speech and Signal Processing,

pp. 1-4, 2011.

• Chen He and Z. Jane Wang, “Unitary Query for backscatter RFID,” in sub-

mitting to the IEEE Transactions on Wireless Communications.

And finally, Chapter 4 is partially based on the following manuscript:

• Chen He and Z. Jane Wang, “Analysis of General Space-time Codes in MISO

Multi-keyhole Channels,” submitted to the IEEE Transactions on Vehicular

Technology, 2013.

v



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background of RFID Technology . . . . . . . . . . . . . . . . . 1

1.2 RFID Components and Standards . . . . . . . . . . . . . . . . . 2

1.3 Backscatter RFID Principle: Reader Query and Tag Signaling . . 3

1.4 Motivations for MIMO Backscatter RFID . . . . . . . . . . . . . 5

1.4.1 Comparison with the Multi-keyhole Channel . . . . . . . 7

1.5 Fading Assumptions . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Thesis Contribution and Organization . . . . . . . . . . . . . . . 9

vi



2 Backscatter RFID Systems with Uniform Query and Identical Sig-
naling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Mathematical Description of the MIMO Backscatter RFID . . . . 12

2.2 Uniform Query and Identical Signaling for MIMO Backscatter RFID 14

2.2.1 Uniform Query at the Reader Transmitter End . . . . . . . 14

2.2.2 Identical Signaling at the Tag End . . . . . . . . . . . . . 17

2.3 BER Performance under Uniform Query and Identical Signaling . 18

2.3.1 Non-coherent Case . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Coherent Case . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.3 Correlated Forward and Backscatter Links . . . . . . . . . 26

2.4 Diversity Order and Performance Bottleneck . . . . . . . . . . . . 27

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Backscatter RFID Systems with Space-time Coding and Unitary Query 30
3.1 Space-time Coding with Uniform Query . . . . . . . . . . . . . . 31

3.1.1 A Conditional Moment Generating Function Approach for

Orthogonal Space-time Block Codes (OSTBCs) . . . . . . 32

3.1.2 Diversity Order, Performance Bottleneck and Impact of the

Sub-channel Quality . . . . . . . . . . . . . . . . . . . . 37

3.1.3 PEP Lower Bound for General Space-time Codes and Max-

imum Achievable Diversity Order . . . . . . . . . . . . . 46

3.2 Space-time Coding with Unitary Query . . . . . . . . . . . . . . 52

3.2.1 New Measure for PEP Performance . . . . . . . . . . . . 53

3.2.2 Examples and Simulations . . . . . . . . . . . . . . . . . 62

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Analysis of General Space-time Codes in MISO Multi-keyhole Chan-
nels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.1 Multi-keyhole Channels . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Independent and Identical Transmission Antennas . . . . . . . . 69

4.2.1 Distribution of the Code Words Distance . . . . . . . . . 71

4.2.2 Convergence to the Rayleigh Channel . . . . . . . . . . . 75

4.3 Spatial Correlated Transmission Antennas . . . . . . . . . . . . . 78

vii



4.3.1 Case 1: M ≤ L . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.2 Case 2: M > L . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.3 Examples and Simulations . . . . . . . . . . . . . . . . . 85

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Summary and Future Work . . . . . . . . . . . . . . . . . . . . . . . 91
5.1 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.1 Explore the Time Diversity Brought by the Unitary Query 93

5.2.2 Non-Coherent Schemes for the Unitary Query . . . . . . . 94

5.2.3 General Query for the Backscatter RFID . . . . . . . . . . 94

5.2.4 Optimal Query Antenna Selection . . . . . . . . . . . . . 95

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
A.1 Chapter 2 Derivations . . . . . . . . . . . . . . . . . . . . . . . . 105

A.2 Chapter 3 Derivations . . . . . . . . . . . . . . . . . . . . . . . . 109

A.2.1 Derivations for Rician Fading . . . . . . . . . . . . . . . 109

A.2.2 Derivations for Nakagami-m Fading . . . . . . . . . . . . 113

viii



List of Tables

Table 1.1 RFID frequency bands. . . . . . . . . . . . . . . . . . . . . . 4

Table 2.1 Non-coherent case of the identical signaling scheme: Closed-

form BER expressions for the N×L backscatter RFID channel

(equation (2.27)). . . . . . . . . . . . . . . . . . . . . . . . . 23

Table 2.2 Coherent case of the identical signaling scheme: Moment Gen-

erating Functions GN,L(θ) for the N×L backscatter RFID chan-

nel (equation (2.31)). . . . . . . . . . . . . . . . . . . . . . . 25

Table 2.3 Comparisons between the backscatter RFID channel and the

Rayleigh Channel when both the channels employ the identi-

cal signaling scheme. . . . . . . . . . . . . . . . . . . . . . . 28

Table 3.1 Diversity order comparisons between different fading channels

when OSTBCs are employed. . . . . . . . . . . . . . . . . . . 42

Table 4.1 The effects of transmission correlations on the PEP performances

of the multi-keyhole and Rayleigh channels in the asymptoti-

cally high SNR regimes. . . . . . . . . . . . . . . . . . . . . . 89

Table 4.2 Performance comparisons between the backscatter RFID and

multi-keyhole channels for orthogonal space-time codes in the

MISO case. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

ix



List of Figures

Figure 1.1 RFID antennas to track vehicles coming into and leaving a

gated community . . . . . . . . . . . . . . . . . . . . . . . . 3

Figure 1.2 The RF reader transmits an unmodulated (query) signal to the

RF tag and the RF tag scatters a modulated signal back to the

reader, where Γ(t) is the reflection coefficient of the tag circuit

at time t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 1.3 An illustration of the multi-keyhole channel, i.e., exhibiting a

signaling-fading-fading structure. TXs are trying to communi-

cate with RXs. . . . . . . . . . . . . . . . . . . . . . . . . . 8

Figure 1.4 An illustration of the MIMO backscatter RFID channel, i.e.,

exhibiting a query-fading-signaling-fading structure. Tag an-

tennas are trying to communicate with RXs. . . . . . . . . . . 8

Figure 2.1 An illustration of the general M × L× N backscatter RFID

channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 2.2 BER performances (in (2.27) and (2.28)) of the MIMO backscat-

ter RFID channel using non-coherent identical signaling (BPSK

with EGC,). . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 2.3 BER performances (in (2.32) and (2.33)) of the MIMO backscat-

ter RFID channel using the coherent identical signaling (BPSK

with MRC) under perfect channel estimation. . . . . . . . . . 26

Figure 2.4 The BER performances of the identical signaling scheme, with

different link correlations. . . . . . . . . . . . . . . . . . . . 28

x



Figure 3.1 The SER performance of the backscatter RFID channel, the K

factors are K f = Kb = 0 dB. . . . . . . . . . . . . . . . . . . 38

Figure 3.2 The SER performances of the backscatter RFID channels, where

K f = Kb = 3 dB. . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 3.3 The SER performances of the backscatter RFID channel, with

m f = mb = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 3.4 The SER performances of the backscatter RFID channel, with

m f = mb = 1.5. . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 3.5 The SER performances of the backscatter RFID channel, with

m f = mb = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 3.6 Two receiving antennas are enough to capture most of the re-

ceiving side gain . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 3.7 The BER performance comparison between Alamouti’s coding

scheme and identical signaling scheme. . . . . . . . . . . . . 44

Figure 3.8 The performance of the backscatter RFID channel is much

more sensitive to the K factor of the forward link. . . . . . . . 45

Figure 3.9 Illustration of the reason that the performance of the backscat-

ter RFID channel is much more sensitive to the forward link. . 46

Figure 3.10 The performance of the backscatter RFID channel is much

more sensitive to the m parameters of the forward link. . . . . 47

Figure 3.11 PEP performance comparisons between the unitary query and

the uniform query for the 2×2×2 backscatter RFID channel.

The unitary query can bring a large gain for the 2×2×2 channel. 64

Figure 3.12 PEP performance comparisons between the unitary query and

the uniform query for the 2×2×1 backscatter RFID channel.

The unitary query can only bring a small gain for the 2×2×1

channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 4.1 The MISO multi-keyhole channel model. . . . . . . . . . . . 69

Figure 4.2 Simulated PDFs of the code words distances for the MISO

multi-keyhole channel and the MIMO single-keyhole channel. 76

Figure 4.3 Asymptotic and simulated PEPs in the MISO multi-keyhole

channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

xi



Figure 4.4 The PEP of the MISO multi-keyhole channel converges to that

of the MISO Rayleigh channel. . . . . . . . . . . . . . . . . . 78

Figure 4.5 The effect of transmission correlations on the MISO multi-

keyhole channel for the case that L < M. . . . . . . . . . . . . 87

Figure 4.6 The effect of transmission correlations on the MISO multi-

keyhole channel for the case that L≥M. . . . . . . . . . . . . 88

xii



List of Acronyms

BER bit error rate

CSI channel state information

DPSK differential phase-shift keying

EGC equal gain combining

EM electromagnetic

FSK frequency-shift keying

IFF identification friend or foe

IEC International Electrotechnical Commission

ISO International Organization for Standardization

ISM industrial, scientific, and medical

LOS line-of-sight

MGF moment-generating function

MIMO multiple-input-multiple-output

MISO multiple-input-single-output

MRC maximum ratio combining

NLOS non-line-of-sight

xiii



OOK on-off keying

OSTBC orthogonal space-time block code

PDF probability density function

PEP pairwise error probability

RF radio frequency

RFID Radio-Frequency Identification

SC selection combining

SER symbol error rate

SIMO single-input-multiple-output

SNR signal-to-noise ratio

STC space-time code

UHF ultra-high-frequency

xiv



Notation

In this thesis, unless otherwise specified, exp(·), Γ(·), and Q(·) mean the expo-

nential function, the Gamma function, and the Gaussian Q function, respectively;

P(·), EX(·), X |Y , ‖ · ‖F , ‖ · ‖, (·)T , (·)H , det(·), R(·), and trace(·) denote the the

probability of an event, the expectation over the density of X , the conditional ran-

dom variable of X given Y , the Frobenius norm of a matrix, the magnitude of a

complex number, the transpose, the conjugate transpose, the determinant, the rank,

and the trace of a matrix, respectively; A .
= B means that A is equal to B in the limit,

C�D means that C is much smaller than D, and X ∼Y means that X is identically

distributed with Y .
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Chapter 1

Introduction

1.1 Background of RFID Technology
Radio-Frequency Identification (RFID) is a wireless communication technology

that allows an object to be identified automatically and does not require line-of-

sight (LOS) transmission [1]. This technology has a long history and is evolved

from several early prototypes. The earliest ones include identification identifica-

tion friend or foe (IFF) transponder developed in the United Kingdom, which was

routinely used by the allies during World War II to identify aircraft as friend or

foe [2, 3], and the landmark work in 1948 by Harry Stockman in [4] which first

described the backscattering principle. The first true ancestor [5] of the modern

RFID, however, was established in the 1970’s, known as Mario Cardullo’s de-

vice, as it was a passive radio transponder with memory. Although RFID has been

emerged for decades, it is in recent years that its practical applications and aca-

demic research have been proliferated significantly. The value of the RFID market

in 2012 was 7.46 billion US dollars versus 6.37 billion in 2011, and the RFID

world market is estimated to surpass 20 billion by 2014 [6].

RFID technology is used in many applications, such as inventory systems,

product tracking, access control, libraries, museums, sports, and some other in-

dustries. The value added by RFID technologies is often significant. For instance,

in access control applications, RFID tags are widely used in identification badges

[7]. These RFID tags can be placed on vehicles, and allow the RFID reader to read
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them in a distance, thus vehicles can enter controlled areas without having to stop.

Fig. 1.1 shows RFID antennas to track vehicles coming into and leaving a gated

community.

In libraries applications, RFID tags have been used to replace the barcodes on li-

brary items [8]. Since RFID tags can be read through an item, a book cover does

not need to be opened for scanning, and a stack of books can be read simultane-

ously. Book tags can also be read while books are in motion on a conveyor belt,

thus reduce processing time significantly.

In the healthcare industry applications, RFID technology is used to track patients/em-

ployees and facility assets [9, 10]. The active RFID technology is used to track

high-value and frequently moved items, and the passive technology can be used to

track smaller and lower cost items that only need room-level identification. In ad-

dition, some hospitals began implanting patients with RFID tags and using RFID

systems for workflow and inventory managements. The use of RFID techniques

to prevent mixups between sperm and ova in ‘in vitro fertilisation’ clinics is also

being considered [11].

1.2 RFID Components and Standards
An RFID system includes the hardware known as readers (also known as interroga-

tors) and tags (also known as labels), as well as RFID software or RFID middleware

[7]. An RFID tag is a small electronic device that is allowed to have a unique ID. It

transmits data over the air in response to interrogation by an RFID reader. The tags

can be categorized into passive, active, and semi-active tags. An active tag utilizes

its internal battery to continuously power its radio frequency (RF) communication

circuitry, while a passive RFID tag has no internal power supply and relies on RF

energy transferred from the reader to the tag. A semi-passive tag is powered by

both its internal battery and RF energy from the reader.

RFID has various standards set by a number of organizations, which include

the International Organization for Standardization (ISO), the International Elec-

trotechnical Commission (IEC), EPCglobal, and several others. RFID operates at

different frequent bands. At low-frequency and high-frequency bands, tags can be

used globally without a license. At the ultra-high-frequency (UHF) band, the stan-
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Figure 1.1: Radio-frequency identification antennas to track vehicles coming
into and leaving a gated community. Figure by Larry D. Moore, CC
BY-SA 3.0.

dards and regulations are different in different regions. In North America, UHF

RFID can be used unlicensed for 902 to 928 MHz, with restrictions for transmis-

sion power. In Europe, UHF RFID operates from 865 to 868 MHz, with readers

being required to monitor a channel before transmitting. This requirement has led

to some restrictions on performance. Each application for UHF in these countries

needs a site license, which needs to be applied for at the local authorities, and can

be revoked. Table 1.1 summarizes the frequency band, operation range and data

speed of different RFID standards [12].

1.3 Backscatter RFID Principle: Reader Query and Tag
Signaling

Most RFID applications deployed today use passive tags because they usually do

not require internal batteries and have longer life expectancy. For the passive tech-

nology, to transmit the energy from the RFID reader to the tag, there are two fun-

damental principles for design approaches: magnetic induction and electromag-

3



Table 1.1: RFID frequency bands.

Band Regulation Range Data Speed
120−150 kHz, LF Unregulated 10 cm Low
13.56 MHz, HF ISM band worldwide 10 cm to 1 m Low to moderate
433 MHz, UHF Short range devices 1 to 100 m Moderate
902 − 928 MHz
(North America)
868 − 870 MHz
(Europe), UHF

ISM band 1 to 12 m Moderate to high

2.45 and 5.8 GHz,
microwave

ISM band 1 to 2 m High

3.1 − 10.6 GHz,
microwave

Ultra wide band up to 200 m High

netic (EM) wave capture [1] [7]. The design based on magnetic induction is called

near field, and that based on EM wave capture is called far field. Both design

can transfer enough energy to power a remote tag. For near-field RFID systems,

a reader passes a large alternating current through a reading coil, resulting in an

alternating magnetic field in its locality. If a tag that incorporates a smaller coil

is in this field, an alternating voltage will appear across it so that the tag chip is

powered, while for far-field RFID systems, tags capture the EM waves propagating

from a dipole antenna attached to the reader. A smaller dipole antenna in the tag

receives the energy as an alternating potential difference which will result in an

accumulation of energy to power its circuit. The far-field approach is also referred

as backscattering [1]. In this thesis, we concentrate on the far-field approach. In

physics, backscattering is the reflection of waves, particles, or signals back to the

direction from which they came. A backscatter RFID signal modulation procedure

is shown in Fig.1.2. The RF reader transmitter first broadcasts an unmodulated

carrier signal, which is also called query signal, then the RF tag conveys infor-

mation (i.e. the ID of the tag) to the reader by simply reflecting the query signal

from the reader transmitter back to the reader receiver using load modulation [13]

[14]. The ID information of the RF tag depends on the reflection coefficient of the

tag antenna load which is changed by switching the RF tag antenna load between

different states [14].

4



( )t

Figure 1.2: The RF reader transmits an unmodulated (query) signal to the RF
tag and the RF tag scatters a modulated signal back to the reader, where
Γ(t) is the reflection coefficient of the tag circuit at time t.

1.4 Motivations for MIMO Backscatter RFID
At the physical layer, the backscatter channel, with a query-fading-signaling-fading

structure, is radically different from conventional one-way wireless channels. In

addition, real measurements in [13] and [14] showed that the backscatter RFID

channel could be modeled as a cascaded channel with a forward sub-channel and

a backscattering sub-channel, and both sub-channels can be Rayleigh, Rician or

Nakagami-m distributed, depending on the radio propagation environment. This

cascaded channel fades deeper than the conventional one-way channel and hence

can reduce the data transmission reliability and reading range, which are two im-

portant performance metrics in RFID systems.

To overcome the challenges posed by deeper fading in the backscatter channel,

researchers had to reconsider the design of backscatter RFID systems and many

efforts have been made on improving the system performance [13–32]. These ef-

forts include re-designing of tag circuits, antenna structures and tag modulations.

Among those efforts, using multiple antennas for both tags and readers appears to

be one of the practical and promising ways. Such multiple-input multiple-output

(MIMO) systems had a great success in conventional wireless communications

[33–37] and were found promising in RFID [14, 25–27, 30–32]. The MIMO sys-

tem for RF backscattering radio was first explored by Ingram et al. in [25] for the
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spatial multiplexing purpose. In [25] multiple reflection antennas were used by the

RF tags to reflect according to different data streams, and multiple reader receiving

antennas provided multi-stream detection capability. Simulations showed that the

range can be extended by a factor of four or more in the pure diversity configura-

tion and that backscatter link capacity can be increased by a factor of ten or more

in the spatial multiplexing configuration. Later, [26, 27] provided a closed form

probability density function of channel envelope for tags with multiple-antennas,

with consideration of spatial correlation between forward and backscattering links.

They showed that backscatter diversity can mitigate this fading by changing the

shape of the fading distribution which, along with the increased RF tag scattering

aperture, resulted up to a 10 dB gain at a bit error rate (BER) of 10−4. Simulations

demonstrated that the above gain led to increased backscatter radio communica-

tion reliability and up to a 78 percent range increase. The measurements of using

multiple antennas in the backscatter RFID channel were conducted in [14] and

[31]. In [14] the measurement was conducted at 5.8 GHz, an unlicensed industrial,

scientific, and medical (ISM) frequency band and in a non-line-of-sight (NLOS) en-

vironment. The measurements in [14] showed that gains are available for multiple-

antenna RF tags and the results matched well with the gains predicted using the

analytic fading distributions derived in [26] and [27], while [31] proposed a novel

measurement with a reduced number of measurement ports for MIMO backscatter

RFID channels. More recently, [32] described how to overcome the extra path loss

that RFID tags and RFID-enabled sensors experience at microwave frequencies as

compared to UHF frequencies. They showed that additional antenna gains can be

realized to mitigate or overcome extra path loss by using multiple antennas for nar-

rowband signals centered at 5.8 GHz. In [30], researchers described a developed

analog frontend for an RFID rapid prototyping system which allows for various

realtime experiments to investigate MIMO techniques.

Exploring MIMO diversity of backscatter RFID channels is a relative new re-

search area and all the above studies about the performance of MIMO backscatter

RFID channels are based on measurement experiments and Monte Carlo simu-

lations. However, no analytical studies have been provided yet in the literature,

except [38], where only line-of-sight propagation and OSTBC were considered,

and the result in [38] was developed in parallel and independent of our work in
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[39]. Additionally, only simple diversity mechanisms were considered, and the

general understanding of the role of query signals is that they only play the role

as the energy provider for tags (i.e., the reader transmitting antennas transmit the

same query signal from M antennas over T time slots, as explained later in Chapter

2). To our best knowledge, there has been no investigation on other possible roles

of query signals yet.

Therefore, to have a profound understanding of MIMO backscatter RFID chan-

nels, we need to have rigorous performance analysis studies beyond simulations to

guide us in the design process of the MIMO RFID systems. Also, to achieve the full

potential of MIMO settings for backscatter RFID systems, we need to explore all

possible performance improvement mechanisms at the three ends, i.e., considering

more complicated and generalized query schemes at the reader query end, investi-

gating coding (signaling) schemes at the tag end, and employing optimal diversity

combining schemes at the reader receiving end. The above are the motivations of

this dissertation.

1.4.1 Comparison with the Multi-keyhole Channel

There is another type of cascaded-like channel, the multi-keyhole channel, which

has a signaling-fading-fading structure, as shown in Fig. 1.3. Recall that the

backscatter RFID channel, on the other hand, has a query-fading-signaling-fading

structure. Therefore, these two channels are essentially different. The comparisons

of them are shown in Fig. 1.3 and Fig. 1.4. Another essential difference is that the

multi-keyhole channel is still a conventional one-way channel, with the only differ-

ence from the Rayleigh channel being that its channel gain has a more complicated

distribution. However, researchers sometimes are confused about the two types of

the channels - the multi-keyhole channel and the backscatter RFID channel. Most

recent research on the space-time code (STC) for the multi-keyhole channel gave

a performance analysis only for the orthogonal space-time block code (OSTBC)

[40]. This motivates us to make a further investigation on the performance of the

multi-keyhole channel and make a comparison with that of the backscatter RFID

channel.
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Keyhole 1

Keyhole L

Figure 1.3: An illustration of the multi-keyhole channel, i.e., exhibiting a
signaling-fading-fading structure. TXs are trying to communicate with
RXs.

Figure 1.4: An illustration of the MIMO backscatter RFID channel, i.e., ex-
hibiting a query-fading-signaling-fading structure. Tag antennas are try-
ing to communicate with RXs.

1.5 Fading Assumptions
The work in this thesis is based on the model from the real measurements in [13]

[14] of the backscatter RFID channel. More specifically, each sub-channel follows

i.i.d complex Gaussian distribution, and the fading is quasi-static: i.e., the channel

is constant over a long period of time and changes in an independent manner. This

quasi-static assumption is valid as long as the transmitter and the receiver is not

moving in high velocity, and it is one of the major assumptions for many wireless

communication systems including many RFID systems.
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1.6 Thesis Contribution and Organization
In this thesis, we investigate three main topics pertinent to MIMO backscatter RFID

channels:

• Performance analysis of the identical signaling scheme (at the tag end) with

the uniform query (at the reader query end) in backscatter RFID channels;

• Further exploration of diversity gains brought by the reader query end, the

tag end, and the reader receiving end in backscatter RFID channels. Deriva-

tion of generalized methods for performance analysis and design criteria for

space-time coded backscatter RFID systems with both the uniform query and

the proposed unitary query;

• Derivation of the PEP of space-time codes in MISO multi-keyhole chan-

nels and comparisons between the backscatter RFID channel and the multi-

keyhole channel.

More specifically, Chapter 2 will address the first topic. We consider a specific

diversity mechanism in the RFID system where the reader transmitter employs the

uniform query and the tag employs the identical signaling scheme. The identical

signaling scheme has been proved to be not useful for improving the BER per-

formance in conventional one-way point-to-point wireless channels. However, the

identical signaling scheme has been verified in [27] by Monte Carlo simulations

that for some antenna settings in RFID, its BER performance improvement can be

very significant, while for some other antenna settings, its improvement is insignif-

icant. Yet, no literature has given an explanation why it happens and what is the

underlying physical reason. To fill the gap, in Chapter 2, we will provide a rig-

orous mathematical analysis to reveal the performance behaviors of the identical

signaling scheme for backscatter RFID channels.

In Chapter 3, we will address the second topic. First, we consider the case

when the tags employ orthogonal space-time codes, meanwhile the reader trans-

mitter still employs the uniform query. For this case, we will provide a general

formulation for the performance analysis, and analytically study the symbol error

rate (SER) performances for Rician and Nakagami-m sub-channels by providing
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closed form SERs in asymptotic high signal-to-noise ratio (SNR) regimes. We will

also show a few interesting properties of the SER performance for this case, and

generalize the performance analysis to general space-time codes by providing a

pairwise error probability (PEP) performance upper bound. Secondly, we will pro-

pose a novel query method at the reader transmitter end, referred as the unitary

query. To our best knowledge, it is the first time that unitary query has been pro-

posed in RFID. In previous studies for MIMO backscatter RFID, only the uniform

query was considered, where the query signals played a role no more than an en-

ergy provider for the RFID tag and could not provide spatial diversity. In Chapter 3,

however, we will show that in quasi-static channels, the query signals can provide

time diversity through multiple reader transmitting antennas for some space-time

codes. We will propose a new performance measure, which is based on the ranks

of some random matrices, to overcome the difficulty that conventional measures

(i.e. PEP and diversity order) cannot be obtained analytically for the unitary query

with general space-time codes. Furthermore, we will analytically study the perfor-

mance of the proposed unitary query with general space-time codes via the new

performance measure.

In Chapter 4, we will address the third topic. We will consider general space-

time codes in the multi-keyhole channel, and prove that, for any pairs of code

words in a space-time code, the code words distance, as a random variable in fading

conditions, is identically distributed in MISO multi-keyhole channels and MIMO

single-keyhole channels. Therefore the PEPs for a pair of code words in these two

channel models share the same form and thus one can employ the design criteria in

MIMO single-keyhole channels to design the codes for MISO multi-keyhole chan-

nels. We will further investigate the case when spatial correlations are present in

transmission antennas and prove that, when the number of transmission antennas is

greater than that of keyholes, depending on how the correlation matrix beamforms

the code words difference matrix, the PEP can be either degraded or improved. The

results in this chapter will clearly demonstrate that the backscatter RFID channel

and the multi-keyhole channel have completely different performance behaviors.

Finally, in Chapter 5 we will summarize the results obtained in previous chap-

ters. We also provide a number of potential topics for future work on the grounds

of research presented in this dissertation.
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Chapter 2

Backscatter RFID Systems with
Uniform Query and Identical
Signaling

In Chapter 1, we gave a brief introduction on the backscattering principle and the

MIMO backscatter RFID channel. In this chapter, we first provide a full mod-

eling of this MIMO structure. We can see that this MIMO structure has fading

structure and signaling mechanism which are radically different from those in a

conventional one-way point-to-point wireless channel, resulting in deeper fading

and non-Gaussian statistical properties [27].

Then we consider diversity techniques for the backscatter RFID channel, and

start from the simplest case of space-time coding: the reader transmitters employ

the uniform query and the tag employs the identical signaling scheme. The identi-

cal signaling scheme has been proved to not be useful for improving the BER per-

formance in conventional one-way point-to-point wireless channels. However, the

identical signaling scheme has been verified in [27] by Monte Carlo simulations

that, for some antenna settings, the BER improvement by the identical signaling

scheme can be significant, while for some other antenna settings, the improve-

ment is small. Yet, no literature has been able to provide an explanation on these

observations and explain what is the underlying reason. In this chapter, we will

provide a rigorous mathematical analysis to reveal the underlying behavior of the
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identical signaling scheme for backscatter RFID channels, and answer the question

why the identical signaling scheme can sometimes improve the BER performance.

We will also show that there is a performance bottleneck of identical signaling in

backscatter RFID systems, and that is why the improvement by identical signaling

is mild in some antenna settings in the backscatter RFID. The reported results can

be useful for designing simple, effective MIMO backscatter RFID systems with

high performance.

2.1 Mathematical Description of the MIMO Backscatter
RFID

The backscatter RFID has three ends: the reader query end (i.e., the set of reader

transmitting antennas), the tag end (i.e., the set of tag antennas), and the reader

receiver end (i.e., the set of reader receiving antennas). These three ends can be

mathematically modeled by an M×L×N dyadic backscatter channel which con-

sists of M reader transmitter antennas, L RF tag antennas, and N reader receiver

antennas. As shown in Fig. 2.1, the forward channel h f
ml represents the propa-

gation path from the m-th reader transmitter to the l-th RF tag antenna, while the

backscatter channel hb
ln represents the path in which the carrier signal is reflected

by the l-th tag antenna to the n-th reader receiver. The forward and backscatter

links that terminate or originate at the same tag antenna can be correlated, as in-

dicated in Fig. 2.1, where ρ ln
ml denotes the link correlation coefficient between the

forward link h f
ml and the backscatter link hb

ln. The correlations between the links are

caused by the separations and the angular spreads of the antennas. In a quasi-static

wireless channel, this MIMO structure can be summarized by using the following

matrices: More specifically,

Q =


q1,1 · · · q1,M

...
. . .

...

qT,1 · · · qT,M

 (2.1)
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is the query matrix, representing the query signals sending from the M reader trans-

mitting antennas to the tag over T time slots.

H =


h f

1,1 · · · h f
1,L

...
. . .

...

h f
M,1 · · · h f

M,L

 (2.2)

is the channel gain matrix from the reader transmitter to the tag, representing the

forward sub-channels,

C =


c1,1 · · · c1,L

...
. . .

...

cT,1 · · · cT,L

 (2.3)

is the coding matrix, where the tag transmits coded or un-coded symbols from its

L antennas over T time slots, and

G =


hb

1,1 · · · hb
1,N

...
. . .

...

hb
L,1 · · · hb

L,N

 , (2.4)

is the channel gain matrix from the tag to the reader receiver, representing the

backscattering sub-channels. Finally the received signals at N reader receiving

antennas over T time slots, are represented by matrix R with size T ×N:

R = QH◦CG+W (2.5)

where ◦ means the Hadamard product, and the matrix W is with the same size as

that of R, representing the noise at the N reader receiving antennas over T time

slots. In this thesis, unless otherwise specified, both the forward and the backscat-

tering sub-channels are modeled as i.i.d complex Gaussian random variables with

zero mean and unity variance. In addition, in this thesis, it is assumed that the

noise matrix is with independent and identically distributed (i.i.d.) standard com-

plex Gaussian entries.
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When compared with the conventional one-way MIMO wireless channel:

R = CG+W, (2.6)

the backscatter structure in (2.5) not only has one more layer of fading structure

H but also one more signaling mechanism represented by the query matrix Q. In

addition, the backscatter principle makes the received signals not a simple series of

linear transformations of transmitted signals and channel gains, but actually there

involves a non-linear structure in the backscatter RFID channel, which is the result

from the Hadamard product in (2.5). Because it has such special and complicated

signaling and channel structures, we expect completely different performance be-

haviors of the MIMO backscatter RFID channel when compared with the one-way

channel. In this chapter, we concentrate on the simplest query scheme and tag-

signaling scheme, and show that, even for the simplest case, the MIMO backscatter

RFID channel has interesting properties. In the next chapter, we will investigate

MIMO backscatter RFID channels under more generalized query and signaling

cases.

2.2 Uniform Query and Identical Signaling for MIMO
Backscatter RFID

2.2.1 Uniform Query at the Reader Transmitter End

We consider the simplest case of query signals, where the M reader transmitting

antennas transmit the same query signal over T time slots, and the query matrix

with size T ×M is thus given by

Q =
1√
M


1 · · · 1
...

. . .
...

1 · · · 1

 . (2.7)

We name this query scheme as the uniform query. The term 1√
M

is to ensure that the

total transmission power from the reader transmitter end is fixed. In this case, since

the query signals from the reader query antennas are identical over T time slots, if
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the forward channels are independent Gaussian, the forward channel statistics are

invariant for any M, i.e., the M×L×N channel is equivalent to a 1×L×N channel

(or a L×N for short).

Note that at a given time slot t,

QtH◦CtG∼ (h f
1 , · · · ,h

f
L)◦ (ct,1, · · · ,ct,L)G (2.8)

= (ct,1, · · · ,ct,L)


h f

1
. . .

h f
L

G (2.9)

= (ct,1, · · · ,ct,L)


h f

1hb
1,1,h

f
2hb

2,1, · · · , h f
Lhb

L,1
...

. . .
...

h f
1hb

1,N ,h
f
2hb

2,N , · · · , h f
Lhb

L,N


T

(2.10)

where Qt and Ct are the t-th row of Q and C respectively. Therefore, in quasi-static

wireless channels, for the uniform query, we have

QH◦CG∼ CHuniform, (2.11)

and, referred to the model in (2.5), the received signals at N over T time slots have

an equivalent form as:

R = CHuniform +W, (2.12)

where

Huniform =


h f

1hb
1,1,h

f
2hb

2,1, · · · , h f
Lhb

L,1
...

. . .
...

h f
1hb

1,N ,h
f
2hb

2,N , · · · , h f
Lhb

L,N


T

(2.13)

is the equivalent overall channel matrix, in which the each (l,n) entry represents the

overall channel gain between the the reader query antennas, the l-th tag antenna,

and the n-th reader receiving antenna. When comparing Eqn. (2.5) and Eqn. (2.6),

we can see that this equivalent overall channel matrix transforms the backscatter
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Figure 2.1: An illustration of the general M×L×N backscatter RFID chan-
nel. h f

ml represents the forward link from the m-th reader transmitter
antenna to the l-th tag antenna and hb

ln represents the backscatter link
from the l-th tag antenna to the n-th reader receiver antenna. ρ ln

ml means
the correlation between the forward link h f

ml and the backscatter link
hb

ln. For the case that all the forward channels are independent with each
other, and are Rayleigh distributed, the M×L×N channel is equivalent
to a 1×L×N channel. In the following parts of this chapter, we refer
the later case as the L×N channel for short.

RFID channel with the uniform query into the form of the conventional one-way

wireless channel: the received signals are just a linear transformation of transmit-

ted signals by the equivalent overall channel matrix. However, we also note that

the equivalent overall channel matrix itself is non-Gaussian, and has statistically

dependent entries, even if all the sub-channels are independent.
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2.2.2 Identical Signaling at the Tag End

By the backscattering principle, when the query signals arrive at the tag antennas,

the antennas reflect a portion of energy from the query signals back to the reader,

in this way the information symbols of the tag which are represented by the reflec-

tion coefficients of the tag circuits, can be conveyed to the reader. The reflection

coefficient matrices (also referred as the tag signaling matrices) are given by [27]

S(t) =


Γ1(t)

. . .

ΓL(t)

 , (2.14)

for t = 1, · · · ,T . Here Γl(t) is the load reflection coefficient of the l-th tag an-

tennas at time t. In general the reflection coefficient matrices can have unequal

load reflection coefficients based on specific tag circuit designs, and they are ac-

tually corresponding to the coding matrix C. Therefore space-time codes can be

implemented via specifically designing the reflection coefficients in the tag circuit,

while at a given time slot t, if the reflection coefficients Γl(t)’s are designed to

be identical for all tag antennas, the tag signaling matrices S(t)’s take an identical

form:

S(t) = Γ(t)I. (2.15)

The above identical signaling scheme is the simplest space-time code. It has been

proved that the BER performance in conventional one-way wireless channels can-

not be improved by the identical signal scheme, while in [27], simulations showed

that in the backscatter RFID channel, for some antenna settings the identical sig-

naling scheme can improve the BER performance significantly, but for some other

antenna settings the improvement is minor. Yet, there has been no analytical expla-

nations on why this is the case. In this following section, we will analytically study

the BER performance for the backscatter RFID channel with the uniform query

and identical signaling scheme. We will use the equivalent overall channel model

for the uniform query that we’ve derived in (2.13).
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2.3 BER Performance under Uniform Query and
Identical Signaling

Under the identical signaling scheme, the tag employs the identical signaling ma-

trix in (2.15) in which each tag antenna transmits the same symbol at time t. From

the channel matrix in (2.13), the instantaneous signal-to-noise ratio (SNR) at the

n-th receiving antenna is given by

γn = γ̄|
L

∑
l=1

h f
l hb

l,n|2, (2.16)

where γ̄ means the average SNR. Each of these instantaneous SNRs follows the

following distribution [27]:

fγn(γn) =
2γ

(L−1)/2
n

(L−1)!γ̄(L+1)/2 KL−1

(
2
√

γn

γ̄

)
, (2.17)

where KL−1(·) denotes the modified Bessel function of the second kind. Using the

asymptotic approximations of the Bessel function [41], one can obtain the approx-

imation of the probability density function (PDF) for high SNR (e.g. as γ̄ → ∞)

as,

fγn(γn)
.
=

 −1
γ̄

ln
(

γn
γ̄

)
, if L = 1;

1
(L−1)γ̄ , if L > 1.

(2.18)

To derive the BER performance of the N × L MIMO backscatter RFID channel

where N > 1, since the N receiving branches at the reader are statistically indepen-

dent as even for independent sub-channels, we cannot use the above distribution

and its approximation to directly evaluate the performance of the MIMO channel

by applying a widely used method as in [42] and [43] which requires indepen-

dency of receiving branches. Alternatively, we consider evaluating the BER using

the conditional probability approach. We will see later, to analytically study the

BER performance, we first need to investigate the properties of GN,L(·), a function
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defined by a multi-variate integration. The function GN,L(·) is defined as:

GN,L( ¯̄γ) =
∫

∞

αL=0
· · ·
∫

∞

α1=0

1(
1+ ¯̄γ ∑

L
l=1 αl

)N exp

(
−

L

∑
l=1

αl

)
dα1 · · ·dαL. (2.19)

Here αl is the squared magnitude of the channel gain of the l−th receiving branch,

N and L are the index of the function GN,L( ¯̄γ), and we define ¯̄γ = gγ̄

sin2
θ

, where γ̄

is the average SNR and g is a constant which is modulation dependent. For the

coherent transmission case, the function GN,L( ¯̄γ) is the moment-generating func-

tion (MGF) of the MIMO backscatter RFID channel with L tag antennas and N

receiving antennas. For the non-coherent transmission case, the form of GN,L(·) is

required in deriving the BER performance. The function GN,L(·) defined in (2.19)

has the following recursive and asymptotic properties:

Proposition 1.

G1,L( ¯̄γ) =
e

1
¯̄γ

¯̄γ
EL

(
1
¯̄γ

)
.
=

{ ln( ¯̄γ)
¯̄γ , if L = 1;
1

(L−1) ¯̄γ , if L > 1.
(2.20)

Proposition 2.

GN,1( ¯̄γ) =
e

1
¯̄γ

¯̄γ
EN

(
1
¯̄γ

)
.
=

{ ln( ¯̄γ)
¯̄γ , if N = 1;
1

(L−1) ¯̄γ , if N > 1.
(2.21)

Proposition 3.

GN,L( ¯̄γ) =
1

(− ¯̄γ)N−1(N−1)!
G1,L( ¯̄γ)−

N−1

∑
k=1

(k−1)!
(− ¯̄γ)N−k(N−1)!

Gk,(L−1)( ¯̄γ). (2.22)

Proposition 4.

GN,L( ¯̄γ) .
=


1

(L−1)···(L−N) ¯̄γN , if N < L;
ln( ¯̄γ)

(N−1)! ¯̄γN , if N = L;
1

(N−1)···(N−L) ¯̄γL , if N > L.

(2.23)
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In the above propositions, EN(·) and EL(·) are the exponential integrals defined

as EN(x) =
∫

∞

t=1
exp(−tx)

tN dx and EL(x) =
∫

∞

t=1
exp(−tx)

tL dx [44], where N and L are pos-

itive integers. The proofs of these propositions can be found in the appendix. With

the above properties, we are now ready to derive the exact and asymptotic BER

performances and study how the MIMO RFID backscattering channel behaves.

2.3.1 Non-coherent Case

For non-coherent receivers, the carrier phase need not to be tracked, and this

makes signal detections easier and less complex, while comparing with the co-

herent receiver, the non-coherent sacrifices a few dB for BER performance. The

non-coherent receiver is usually preferred by low cost systems. One important

diversity combining technique for non-coherent receiver at is called non-coherent

equal gain combining (EGC), in which the received signal at each receiving branch

is weighted by the same factor, irrespective of the signal amplitude. Modula-

tion schemes that can incorporate with EGC include differential phase-shift key-

ing (DPSK), frequency-shift keying (FSK) and on-off keying (OOK). In this section

we analytically study the performance of the backscatter RFID channel that em-

ploys the uniform query at the reader query end, the identical signaling at tag end,

and non-coherent EGC at the reader receiving end.

Note that the channel gain at the n-th receiving branch of the reader is given by

hn =
L

∑
l=1

h f
l hb

l,n.

When fixing the forward channel gains h f
l ’s, the channel gain hn is a linear com-

bination of i.i.d. complex Gaussian random variables, hence the conditional distri-

bution of hn on h f
l ’s is a complex Gaussian distribution with variance

σ
2
l =

L

∑
l=1
|h f

l |2.

Therefore by fixing h f
l ’s, the N×L channel can be viewed as a single-input-multiple-

output (SIMO) channel in which each receiving branch is Rayleigh distributed and

has power (or variance) ∑
L
l=1 |h f

l |2. Consequently using the result of the SIMO
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Rayleigh channel [45], we can have the conditional (on h f
l ’s) BER for the N×L

backscatter RFID channel using non-coherent EGC as:

PN,L(γ̄|h f
l ) =

1

22N−1(N−1)!(1+gγ̄ ∑
L
l=1 |h f

l |2)N
(2.24)

×
N−1

∑
k=0

bk(N−1+ k)!

(
gγ̄ ∑

L
l=1 |h f

l |2

1+gγ̄(∑L
l=1 |h f

l |2)

)k

, (2.25)

where

bk =
1
k!

N−1−k

∑
n=0

(2N−1
n ),

and g is a constant which is modulation dependent [46]. Note that(
gγ̄ ∑

L
l=1 |h f

l |2

1+gγ̄ ∑
L
l=1 |h f

l |2

)k

=

(
1− 1

1+gγ̄ ∑
L
l=1 |h f

l |2

)k

=
k

∑
i=0

(−1)i
(

k
i

) 1

(1+gγ̄ ∑
L
l=1 |h f

l |2)i
,

hence we have

PN,L(γ̄|h f
l ) =

1
22N−1(N−1)!

N−1

∑
k=0

bk(N−1+ k)!
k

∑
i=0

(−1)i
(

k
i

) 1

(1+gγ̄ ∑
L
l=1 |h f

l |2)N+i
.

(2.26)

Averaging the conditional BER over αl’s (where |h f
l |2 = αl) yields the BER for the

N×L backscatter RFID channel as:

PN,L(γ̄) =
∫

∞

αL=0
· · ·
∫

∞

α1=0
PN,L(γ̄|αl)exp

(
−

L

∑
l=1

αl

)
dα1 · · ·αL

=
1

22N−1(N−1)!

N−1

∑
k=0

bk(N−1+ k)!
k

∑
i=0

(−1)i
(

k
i

)
G(N+i),L(γ̄). (2.27)

The closed-form of the above exact BER can be computed recursively using Propo-

sition 3 with the initial knowledge G1,L(γ̄) =
e

1
γ̄

γ̄
EL(γ̄) and GN,1(γ̄) =

e
1
γ̄

γ̄
EN(γ̄).
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Table 2.1 shows a few examples under some antenna settings.

While the closed-form BER can be obtained, it involves complicated recursive

forms and the behavior of the studied N×L backscatter RFID channel is not easy

to analyze, and we need to investigate an asymptotic form. Using Proposition 4,

we can obtain an asymptotic BER of (2.27) as:

PN,L(γ̄)
.
=



∑
N−1
k=0 bk(N−1+k)!
22N−1(N−1)! GN,L(gγ̄)

.
=

∑
N−1
k=0 bk(N−1+k)!

22N−1(N−1)!(L−1)···(L−N)(gγ̄)N , if N < L;
∑

N−1
k=0 bk(N−1+k)!
22N−1(N−1)! GN,L(γ̄)

.
=

∑
N−1
k=0 bk(N−1+k)! ln(gγ̄)

22N−1(N−1)!(N−1)!(gγ̄)N , if N = L;
1

22N−1(N−1)! ∑
N−1
k=0 bk(N−1+ k)!

×∑
k
i=0(−1)i

(
k
i
) 1
(N+i−1)···(N+i−L)(gγ̄)L , if N > L.

(2.28)

We can see that the above asymptotic BER form depends on the relation of the

values of L and N. Fig. 2.2 shows the BER performances of the N × L RFID

channels when employing the binary frequency-shift keying (FSK) with EGC. The

asymptotic diversity order da can be obtained as

da = lim
γ̄→∞

(
− logPN,L(γ̄)

log(γ̄)

)
= min(N,L). (2.29)

It means that the asymptotic diversity order of the N×L backscatter RFID channel

under non-coherent transmission schemes is determined by the smaller value of N

and L. For the case of L = N, compared with the case of L 6= N, it requires a higher

SNR to achieve the diversity order N, because of the logarithm function in the

numerator in (2.28) when N = L. This property means that even the diversity orders

are the same the BER performances of the settings with N = L+ 1 or L = N + 1

are remarkably better than the performance of the setting with N = L. The BER

performance improvements from N = L+ 1 to N = L+ 2, or from L = N + 1 to

L = N +2, is not significant.

2.3.2 Coherent Case

Comparing with non-coherent receiver, coherent receivers need estimating the phase

of the transmitted signals, and the hardware of the coherent receiver is usually more

expensive than that of the non-coherent receiver. However the coherent receiver
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Table 2.1: Non-coherent case of the identical signaling scheme: Closed-
form BER expressions for the N×L backscatter RFID channel (equation
(2.27)).

L = 1 L = 2

N = 1 e
1
gγ̄

E1(
1
gγ̄
)

2gγ̄
e

1
gγ̄

E2(
1
gγ̄
)

2gγ̄

N = 2
2e

1
gγ̄ E2(

1
gγ̄
)

gγ̄
+

2(−gγ̄+e
1
gγ̄ E1(

1
gγ̄
)+gγ̄)

gγ̄
+

(gγ̄)2−2gγ̄e
1
gγ̄ E1(

1
gγ̄
)+gγ̄−e

1
gγ̄ E1(

1
gγ̄
)

4(gγ̄)3

e
1
gγ̄ E1(

1
gγ̄
)−3(gγ̄)2+2(gγ̄)2e

1
gγ̄ E1(

1
gγ̄
)−gγ̄+4gγ̄e

1
gγ̄ E1(

1
gγ̄
)

4(gγ̄)3

usually yields better performance than non-coherent receiver. The diversity com-

bining techniques for coherent receivers include maximum ratio combining (MRC),

EGC and selection combining (SC), among which MRC achieves the best BER

performance. For MRC, the gain of each received signal is made proportional to

the signal level and inversely proportional to the mean square noise level in that

channel. In this section, we concentrate on MRC as it achieves the best BER per-

formance among all the coherent diversity combining schemes .

If we fix the forward gains h f
l ’s, the MIMO backscatter RFID channel can be

viewed as a SIMO Rayleigh channel in which the receiving branches are indepen-

dent and have power (or variance) ∑
L
l=1 |h f

l |2. Recall that the MGF for a Rayleigh

fading channel is given by [42]: (
1+

gγ̄

sin2
θ

)−1

,

therefore the conditional MGF of the N×L RFID backscatter channel is

MN,L

(
g, γ̄,θ |h f

l

)
=

(
1+

gγ̄ ∑
L
l=1 |h f

l |2
sin2

θ

)−N

. (2.30)

Integrating MN,L

(
g, γ̄,θ |h f

l

)
over αl’s (where αl = |h f

l |2) leads to the MGF for
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Figure 2.2: BER performances (in (2.27) and (2.28)) of the MIMO backscat-
ter RFID channel using non-coherent identical signaling (BPSK with
EGC,).

non-independent N receiving branches as:

MN,L(g,θ , γ̄) =
∫

∞

αL=0
· · ·
∫

∞

α1=0
MN,L(g,θ , γ̄|αl)exp

(
−

L

∑
l=1

αl

)
dα1 · · ·dαL

=
∫

∞

αL=0
· · ·
∫

∞

α1=0

(
1+

gγ̄ ∑
L
l=1 αl

sin2
θ

)−N

exp

(
−

L

∑
l=1

αi

)
dα1 · · ·dαL

= GN,L ( ¯̄γ) , (2.31)

where ¯̄γ = gγ̄

sin2
θ

and GN,L(·) is defined as in (2.19). Using the moment generating

approach in [42], the BER of the N×L backscatter RFID channel for the coherent
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Table 2.2: Coherent case of the identical signaling scheme: Moment Generat-
ing Functions GN,L(θ) for the N×L backscatter RFID channel (equation
(2.31)).

L = 1 L = 2

N = 1 e
sin2 θ

gγ̄
E1(

sin2 θ

gγ̄
)

gγ̄

e
sin2 θ

gγ̄ E2(
sin2 θ

gγ̄
)sin2

θ

gγ̄

N = 2
e

sin2 θ
gγ̄ E2(

sin2 θ

gγ̄
)sin2

θ

gγ̄

−γ̄ sin4
θ+e

sin2 θ
gγ̄ E1(

sin2 θ

gγ̄
)sin6

θ+γ̄e
sin2 θ

gγ̄ E1(
sin2 θ

gγ̄
)sin4

θ

(gγ̄)3

case can be expressed as:

PN,L(γ̄) =
1
π

∫
π/2

θ=0
GN,L( ¯̄γ)dθ . (2.32)

Since the closed form of GN,L( ¯̄γ) can be obtained recursively using Proposition

1 to Proposition 4, the BER PN,L(γ̄) can be computed through the single integration

in (2.32) respective to θ . To have more insights on how the BER of the N × L

backscatter RFID channel behaves, we also derive an asymptotic form of this BER

expression. Using Proposition 4, the asymptotic BER for (2.32) can be expressed

as:

PN,L(γ̄)
.
=


1
π

∫ π/2
θ=0

1
(L−1)···(L−N)(g ¯̄γ)N dθ = CN

(L−1)···(L−N)(gγ̄)N , if N < L;
1
π

∫ π/2
θ=0

ln(g ¯̄γ)
(N−1)!(g ¯̄γ)N dθ

.
= CN ln(gγ̄)

(N−1)!(gγ̄)N , if N = L;
1
π

∫ π/2
θ=0

1
(N−1)···(N−L)(g ¯̄γ)L dθ = CL

(N−1)···(N−L)(gγ̄)L , if N ≥ L,
(2.33)

where CN =
∫ π/2

θ=0 sin2N
θdθ = Γ(1/2+N)

2
√

πΓ(1+N)
and CL = Γ(1/2+L)

2
√

πΓ(1+L) . Here Γ(·) means

the Gamma function. Fig. 2.3 plots the BER curves of the N×L RFID channels

when employing BPSK with MRC at the reader receiver antennas. For the N×L

backscatter RFID channel under the coherent case, the asymptotic diversity order

can be given by

da = lim
γ̄→∞

(
− logPN,L(γ̄)

log(γ̄)

)
= min(N,L). (2.34)

As we can see that the asymptotic diversity order is still min(N,L) in the coherent

transmission case, and the BER behavior is similar to that of the non-coherent case.
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Figure 2.3: BER performances (in (2.32) and (2.33)) of the MIMO backscat-
ter RFID channel using the coherent identical signaling (BPSK with
MRC) under perfect channel estimation.

2.3.3 Correlated Forward and Backscatter Links

In previous sections, we assume that the sub-channels are independent. In real

propagation environments, the forward and backscattering channel might be cor-

related (e.g. co-located reader transmitting antenna and receiving antenna), which

introduces additional fading and therefore limits the diversity gain. In this section,

we study the MIMO backscatter RFID channel with sub-link correlation ρ by sim-

ulations. We use the antenna setups: 1×2×1 and 2×2×2 and simulate the chan-

nels under different values of the link correlation, i.e. ρe = {0,0.2,0.4,0.6,0.8,1}.
Here, ρe ≈ |ρ|2 means the link envelope correlation [26]. For the 1×2×1 channel,

we assume E(h f
11hb

11)/σ2 = E(h f
12hb

21)/σ2 = ρ . For the 2×2×2 channel, it is as-

sumed that E(h f
11hb

11)/σ2 = E(h f
12hb

21)/σ2 = E(h f
21hb

12)/σ2 = E(h f
22hb

22)/σ2 = ρ

and E(h f
mlh

b
ln)/σ2 = 0 for m 6= n. An extreme case is the fully correlated channels,
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i.e. ρe = 1, which can occur only if the reader transmitter and the reader receiver

are co-located and have the same antenna patterns [26]. Generally ρe < 1. To study

the effect of the link correlation on the BER performance, we simulate the chan-

nels with different link correlation coefficient ρ and show the results in Fig. 2.4.

We observe that for identical signaling scheme, the BER performance decreases as

ρe increase in middle and high SNR regimes. For the 1× 2× 1 channel, at BER

of 10−4, a 5 dB loss is observed from ρe = 0 to ρe = 1 for the identity signal-

ing scheme. For the 2× 2× 2 channel, the loss is 3 dB for the identical signaling

scheme.

2.4 Diversity Order and Performance Bottleneck
In conventional one-way wireless channels, the identical signaling scheme cannot

improve the BER performance, since sending same signals through L transmitting

antennas and combing the signals through N receiving branches will have a di-

versity of N, which means that the performance is invariant with the number of

transmitting antennas and is only determined by the number of receiving branches,

while for backscatter RFID channels, one interesting observation is that the di-

versity order under the identical signaling scheme, as shown in Eqn. (2.34), is

min(N,L), which means that the diversity order is determined by both parame-

ters N and L. Clearly for some antenna settings, having more tag antennas could

bring significant performance improvements. For example, the antenna setting

N = 3,L = 2 has diversity order of 2 and has much better performance than the set-

ting N = 3,L = 1 which has diversity order of 1, while the diversity min(N,L) also

implies that there is a performance bottleneck for the backscatter RFID channel:

if N−L > 1, solely increasing the number of receiving antennas N does not en-

hance the BER performance significantly; similarly if L−N > 1, solely increasing

the number of tag antennas L does not enhance the BER performance significantly

either. The diversity orders and performance bottlenecks for the backscatter RFID

channel and the one-way Rayleigh channel are summarized in Table 2.3.
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Table 2.3: Comparisons between the backscatter RFID channel and the
Rayleigh Channel when both the channels employ the identical signal-
ing scheme.

Channel Diversity Order Bottleneck
backscatter RFID channels min(L,N) increase N if N −

L > 1; or increase L
is L−N > 1

one-way Rayleigh channels N increase L
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Figure 2.4: The BER performances of the identical signaling scheme, with
different link correlations.

2.5 Conclusion
In this chapter, we provided a mathematical modeling of the MIMO backscatter

RFID channel and showed that this channel has fading structure and signaling

mechanism radically different from the conventional one-way point-to-point wire-
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less channel. Then we considered the simplest diversity method for the backscatter

RFID channel: the reader query antennas employ the uniform query and the tag

employs the identical signaling scheme. We derived an equivalent overall channel

matrix for the uniform query. By using the equivalent channel matrix, we showed

that the achievable diversity order of the backscatter RFID channel for the identical

signaling scheme is min(N,L), i.e. the minimum of the numbers of tag antennas

and reader receiving antennas. This diversity order can also be used to explain

why the identical signaling scheme, which has been proved to have no BER im-

provement in conventional one-way wireless channels, can improve the BER per-

formance in the backscatter RFID channel significantly for some antenna settings,

while the improvement can be minor for some other antenna settings. The analy-

sis in this chapter can help us to better design simple, effective MIMO backscatter

RFID systems with high performance.
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Chapter 3

Backscatter RFID Systems with
Space-time Coding and Unitary
Query

In Chapter 2, we investigated the performance of the case when the reader trans-

mitter employs uniform query, and the tag employs identical signaling scheme.

In this Chapter we consider more complicated cases. First, we consider the case

when the tag applies orthogonal space-time code, while the reader still applies

uniform query. For this case, we provide a general formulation for performance

analysis. This formulation is applicable to any sub-channels fading assumptions.

Using this formulation, we analytically study the SER performances for Rician and

Nakagami-m sub-channels, and derive asymptotic SERs in closed form. We also

generalize the performance analysis to general space-time code by providing a per-

formance upper bound that the backscatter structure may ever achieve. We find

that the diversity order achieves L for Rician fading and achieves Lmin(m f ,Nmb)

for Nakagami-m fading, where m f and mb are the m parameters of the forward

and backscattering links, respectively. Two receiving antennas (N = 2) can cap-

ture most of the receiving side gain regardless of the number of tag antennas L for

Rician fading, and this is also applicable to Nakagami-m fading if the two links

of the cascaded structure have similar channel conditions. More interestingly, we

show that the performance of the backscatter RFID channel is more sensitive to the
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channel condition (the K factor or the m parameter) of the forward link than that of

the backscattering link.

Second, at the reader query end, we propose a novel scheme called unitary

query. To our best knowledge, it is the first time that the unitary query has been

proposed in RFID. In previous literature for MIMO backscatter RFID channels,

only the uniform query was considered, and the understanding of query signals

was that they only play a role as an energy provider for the RFID tag and thus

cannot provide spatial diversity. In this chapter, however, we show that in quasi-

static channels, the query signals can provide time diversity via multiple reader

query antennas for some space-time codes, and hence improve the performance for

the backscatter RFID significantly. We also analytically study the performance of

the proposed unitary query. Due to the specific signaling and fading structure of the

backscatter RFID channel, the PEP and even the diversity order are not trackable

for the unitary query, we thus provide a new measure which can compare the PEP

performance of the unitary query with that of the uniform query.

3.1 Space-time Coding with Uniform Query
In Chapter 2, we analytically study the identical signaling scheme which results

from same reflection coefficients at each tag antenna load, while more complicated

signaling schemes can also be implemented by designing unequal load reflection

coefficients in the tag circuit. For example, the following reflection coefficients

matrix

S(t) =


Γ1(t)

. . .

ΓL(t)

 , (3.1)

can result in space-time codes at the tag end. If we want to implement Alamouti’s

code, the circuit design will follow the diagonal signaling matrix at time slots t = 1

and t = 2 as

S(1) =

(
c1

c2

)
, S(2) =

(
−c∗2

c∗1

)
. (3.2)

Suppose the tag is with 2 antennas and the RF tag ID is (c1,c2,c3,c4). At the ID

transmission layer, one way to implement the signaling scheme of (3.2) is to design
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the reflection coefficients of one antenna loading to be (c1,−c∗2,c3,−c∗4), and the

coefficients of the other antenna loading to be (c2,c∗1,c3,c∗4). In this design, the

power consumption is roughly doubled but no computational capability is required.

Nowadays design of RF backscatter circuit requires the power to be as low as 15.5

pJ/bit [21], which makes the implementation of space-time code possible.

3.1.1 A Conditional Moment Generating Function Approach for
Orthogonal Space-time Block Codes (OSTBCs)

OSTBC is an attractive MIMO coding scheme and provides a solution for relia-

bility of passive RFID systems at UHF [47] which allows good spacing between

antennas. MIMO channels with OSTBC can achieve different diversity orders for

different type of fading models: Full diversity of LN in i.i.d. Rayleigh fading [48]

[34], and min(L,N) for the keyhole channel with i.i.d. Rayleigh sub-channels.

In this section we study the performance of OSTBC when the sub-channels fol-

low Racian fading and Nakagami-m fading (i.e. for cases that h f
l ’s and hb

l,n’s are

Racian distributed and Nakagami-m distributed respectively). Rician fading is as-

sumed when LOS propagation dominates [49], while Nakagami-m fading, a more

suitable fading model for indoor ultra-wideband (UWB) channels [50], is also used

to model sub-channels for UWB backscattering radio [51]. Our results can be eas-

ily narrowed down to Rayleigh fading which is a special case of Rician fading and

Nakagami-m fading.

Due to the nested structure of the channel matrix in (2.13), it is difficulty to

evaluate the SER of RF backscattering channels using the approach that was used

for keyhole channels and other wireless channels: evaluating the distribution as-

sociated with the channel matrix first. Instead, we introduce a conditional MGF

approach which transforms the nested structure into a nice form, and in general

the approach can be used to find the SER with arbitrary fading assumption of sub-

channels h f
l ’s and hb

l,n’s.

We assume that the channel is with quasi-static fading and the channel state

information (CSI) is known at the reader. Because of the orthogonality property,

OSTBC can be transformed from the MIMO fading channel to the following M
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parallel SISO channels [35]:

y =
√
‖H‖2

Fx+ z, (3.3)

where ‖H‖F =
√

∑
N
n=1 ∑

L
l=1 |h f

l hb
l,n|2 is the Frobenius norm of H, x = (x1, ...,xM)T

represents the M incoming symbols and each element of z = (z1, ...,zM)T is com-

plex Gaussian distributed with zero-mean and unit-variance. y = (y1, ...,yM)T rep-

resents the received symbols and can be detected based on a simple maximum

likelihood method. Note that the channel gain was divided by L in [35] because

the transmission power should be normalized to unity. In real passive RFID signal

transmission, however, the transmission energy is from the reader and is propor-

tional to the number of tag antennas when the reader querying energy is fixed,

therefore (3.3) is a more appropriate modeling. Let Eb denote the average energy

per bit and Es denote the average energy per symbol, then Es = Eb log2 K where K

is the size of the signal constellation. The instantaneous SNR per symbol is there-

fore given by γ =
‖H‖2

F log2 K
R

Eb
N0

=
‖H‖2

F log2 K
R γ̄ = ‖H‖2

Fgγ̄ , where R = M/T means

the rate symbol rate and we define g = log2 K
R . For the Rician RF backscattering

channel, we assume that forward links h f
l and backscattering links hb

l,n are Rician

distributed with K factors K f and Kb respectively. The SER for OSTBC can be

calculated by averaging the density of ‖H‖2
F over Q(gγ̄‖H‖2

F):

POSTBC(γ̄) = EH

(
Q
(√

gγ̄‖H‖2
F

))
=

1
π

∫
π/2

θ=0
G( ¯̄γ)dθ . (3.4)

Here we employ the alternative representation of the Q function as in [42] and we

define ¯̄γ = gγ̄

sin2
θ

. G( ¯̄γ) = EH

(
exp
(
−gγ̄‖H‖2

F
sin2

θ

))
means the MGF of ‖H‖2

F .

To find G( ¯̄γ), one approach which has been used in finding the SER of keyhole

fading and other wireless channel is to find the PDF of ‖H‖2
F first. However, for

the structure in (2.13), evaluating the density of ‖H‖2
F is not tractable. Instead, we

define

‖H‖2
F =

L

∑
l=1
‖Hl‖2

F =
L

∑
l=1

N

∑
n=1

αlβl,n (3.5)
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as the squared Frobenius norm of the l-th column of H, where αl = |h f
l |2 and

βl,n = |hb
l,n|2. We can see that ‖Hl‖2

Fs’ are independent random variables, therefore

the MGF G( ¯̄γ) can be represented as a multiplication of the MGFs of ‖Hl‖2
Fs’:

G( ¯̄γ) =
L

∏
l=1

Gl( ¯̄γ). (3.6)

Note that if we fix αl , the random variable ‖Hl‖2
F = αl ∑

N
n=1 βl,n is exactly the

same as the gain of an N-branch SIMO system with MRC at the receiver, with N

branches hl,n = αlβl,n for n = 1, ...,N, and each branch has transmission power αl .

So we have the MGF Gl( ¯̄γ) as:

Gl( ¯̄γ) =
∫

∞

0

N

∏
n=1

Ghl,n|αl (
¯̄γ) fαl (αl)dαl, (3.7)

and therefore

G( ¯̄γ) =
L

∏
l=1

(∫
∞

0

N

∏
n=1

Ghl,n|αl (
¯̄γ) fαl (αl)dαl

)
, (3.8)

where fαl (αl) is the PDF of αl and Ghl,n|αl (
¯̄γ) is the MGF of conditional distribution

of hl,n on αl (the squared magnitude of the l-th forward channel gain). The nice

things for the form in (3.8) are: It involves only one scalar integral hence avoids

lots of numerical difficulties; The PDF fαl (αl) and the conditional MGF Ghl,n|αl (
¯̄γ)

for known fading models are given in existing literature. In this chapter we focus

on Rician fading and Nakagami-m fading.

Rician Fading

Here we evaluate the SER of OSTBC for the backscatter RFID channel with the

assumption that h f
l ’s and hb

l,n’s are Rician fading. For Rician fading, the PDF of αl

is:

fαl (αl) =(K f +1)e−K f−(K f +1)αl I0

(√
4K f (K f +1)αl

)
, (3.9)
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where we use K f to represent the K factor of the forward channels. Note that in

Rician fading, the MGF of βl,n = |hb
l,n|2 is given by [42]

Gβl,n(
¯̄γ) =

Kb +1
Kb +1+ ¯̄γ

exp
(
− Kb ¯̄γ

Kb +1+ ¯̄γ

)
. (3.10)

Therefore the conditional MGF Ghl,n|αl (
¯̄γ) can be given by multiplying the SNR of

(3.10) by αl:

Ghl,n|αl (
¯̄γ) =

Kb +1
Kb +1+ ¯̄γαl

exp
(
− Kb ¯̄γαl

Kb +1+ ¯̄γαl

)
, (3.11)

where Kb is the K factor of the backscattering channel. Substitute fαl (αl) and

Ghl,n|αl (
¯̄γ) into (3.8), the exact form of Gl( ¯̄γ) can be given as

Gl( ¯̄γ) =
∞

∑
m=0

∞

∑
i=0

D1Dm
2 Di

3
i!(m!)2

¯̄γ iK−N−i
1 K−m−i−1

2 e
K1K2

¯̄γ

×
(

K1K2

r

)N′ m+i

∑
j=0

(
m+i
j

)(
−K1K2

¯̄γ

)m+i− j

×Γ

(
j−N− i+1,

K1K2
¯̄γ

)
(3.12)

where K1 = Kb +1, K2 = K f +1, D1 = K2e−K f KN
1 , D2 = K f K2, and D3 = −NKb.

The above exact form is complicated and cannot provide a insight on how the

channel behaves, therefore we provide an asymptotic form which is still a good

approximation of the exact form but much more concise and can provide good

insight on how the channel behaves:

Gl( ¯̄γ) .
=

{
C f

1Cb
2

(
ln(γ̄)+C f b

4

)
γ̄−1, if N = 1;

C f
1Cb

3(N−2)!γ̄−1, if N > 1.
(3.13)
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Substituting (3.13) into (3.6) then into (3.4) can yield asymptotic expression of

SER for OSTBC:

POSTBC( ¯̄γ,N,L) .
=

 CL

(
C f

1Cb
2

)L(
(ln(γ̄)+C f b

4 )γ̄−1
)L

, if N = 1;

CL

(
C f

1Cb
3(N−2)!

)L
γ̄−L, if N > 1,

(3.14)

where C f
1 = K2e−K f , Cb

2 = K1e−Kb , Cb
3 = K2(−NKb)

−N+1
(

e−NKb−∑
N−2
j=0

(−NKb)
j

j!

)
,

C f b
4 = eK f − 1− ln(K1K2), and CL =

Γ( 1
2+L)

2
√

πΓ(1+L) . Since there are considerable vol-

umes of derivations involved to arrive the expressions of MGF and SER, to give

concise presentation, we put them into the Appendix for reference.

Nakagami-m Fading

For the Nakagami-m RF backscattering channel, we assume that forward links h f
l

and backscattering links hb
l,n are Nakagami-m distributed with the parameters m f

and mb respectively. Following the general approach given by in 3.1.1, a similar

procedure as Rician fading can be applied to analyze the error rate performance of

the Nakagami-m distributed channel. The PDF of αl is given by

fαl (αl) =
mm f

f

Γ(m f )
α

m f−1
l exp(−m f αl), (3.15)

and the MGF of βl,n in Nakagami-m fading is as

Gβl,n(
¯̄γ) =

(
1+

¯̄γ
mb

)−mb

, (3.16)

hence conditional MGF Ghl,n|αl (
¯̄γ) can be obtained by multiplying the SNR of

(3.16) by αl:

Ghl,n|αl (
¯̄γ) =

(
1+

¯̄γ
mb

αl

)−mb

. (3.17)
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Accordingly to Appendix B, we can have a closed form of Gl( ¯̄γ):

Gl( ¯̄γ) =
e

m f mb
¯̄γ

(
m f mb

¯̄γ

)Nmb

Γ(m f )

m f−1

∑
j=0

(
m f−1
j

)(m f mb

− ¯̄γ

)m f−1− j

×Γ

(
j−Nmb +1,

m f mb
¯̄γ

)
, (3.18)

for integer m f , and the asymptotic form as

Gl( ¯̄γ) .
=


m

mb
b m

m f
f

Γ(m f )
(ln ¯̄γ− lnmb− lnm f ) ¯̄γ−m f , if m f = mbN;

mb
f m

b
f

Γ(a−b)
Γ(a)

¯̄γ−b, if m f 6= mbN.
(3.19)

Therefore, we can have an asymptotic SER as:

POSTBC(γ̄,N,L)

.
=

 CLm f

(
m

m f
b m

m f
f

Γ(m f )
(ln γ̄− lnmb− lnm f )

)L

γ̄−Lm f if m f = mbN;

CLb

(
mb

f m
b
b

Γ(a−b)
Γ(a)

)L
γ̄−Lb if m f 6= mbN,

(3.20)

where a = max(m f ,Nmb), b = min(m f ,Nmb), CLm f =
Γ( 1

2+Lm f )

2
√

πΓ(1+Lm f )
, and CLb =

Γ( 1
2+Lb)

2
√

πΓ(1+Lb) . The exact and asymptotic forms are derived with the assumption that

m f is integer. We will see in simulations that the asymptotic form is also a good

approximation for non-integer m f .

3.1.2 Diversity Order, Performance Bottleneck and Impact of the
Sub-channel Quality

We perform Monte Carlo simulations to verify our analytical results. The simu-

lations are based on BPSK and the OSTBC used is Alamouti’s code [48]. Our

derived expressions also generalize the SER expression for tags using one antenna,

where no coding scheme is applied and MRC is applied at the receiver side. Thus

for L = 1, no coding scheme is used; for L = 2 Alamouti’s code is used. We can see

from Figs. 3.1, 3.2 for Rician fading and Figs. 3.3, 3.4, 3.5 for Nakagami-m fad-

ing that our exact and asymptotic expressions match well with simulation results.
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Figure 3.1: The SER performance of the backscatter RFID channel, the K
factors are K f = Kb = 0 dB. From the top to the bottom: (L = 1,N = 1),
(L = 1,N = 2), (L = 1,N = 3), (L = 2,N = 1), (L = 2,N = 2), (L =
2,N = 3).

Below we discuss two important properties of this backscatter RFID channel: the

diversity order and the effects of forward and backscattering links on the error rate

performance.

One important property in a MIMO channel is the diversity order. From the

asymptotic expression in (3.14), the diversity order for the MIMO RF backscatter-

ing channel under Rician fading is

da = lim
γ̄→∞

(
− logP(γ̄)

log(γ̄)

)
= L. (3.21)

It is interesting that the diversity order does not depend on the number of receiving

antennas, as also observed from Figs. 3.1 and 3.2, where it is clear that the slopes

of the SER curves only depend on L. However, for one receiving antenna (i.e.
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Figure 3.2: The SER performances of the backscatter RFID channels, where
K f =Kb = 3 dB. From the top to the bottom: (L= 1,N = 1), (L= 1,N =
2), (L = 1,N = 3), (L = 2,N = 1), (L = 2,N = 2), and (L = 2,N = 3).

N = 1), it requires higher SNR to achieve diversity order of L than for the case

N ≥ 2, because of the logarithm function associated with SNR in Eqn. (3.14),

and leads to a significant performance enhancement by increasing the number of

receiving antennas from one to two. From Eqn. (3.14), we plot Fig. 3.6 to show the

gains by increasing N. We can see that, for N ≥ 2, the performance enhancement

is not significant when using more receiving antennas. This is because, when N ≥
2, the SERs are only different by a coefficient Cb

3(N− 2)! which cannot provide

additional diversity gain. The above observations suggest a good trade-off between

performance and hardware complexity: In the MIMO RF backscattering channel

under Rician fading, since two receiving antennas can capture most performance

enhancement by the receiving antenna diversity, it is good to have two receiving

antennas regardless how many tag antennas the system has.

39



0 5 10 15 20 25 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR

S
E

R

 

 
Asymptotic
Simulation
Exact

Figure 3.3: The SER performances of the backscatter RFID channel, with
m f = mb = 1. From the top to the bottom: (L = 1,N = 1), (L = 1,N =
2), (L = 1,N = 3), (L = 2,N = 1), (L = 2,N = 2), (L = 2,N = 3).

For the Nakagami-m fading, the diversity order is

da = Lmin(m f ,Nmb). (3.22)

For the case that the channel condition of the forward link is not significantly better

than that of the backscattering link, i.e. m f ≤ Nmb, the diversity order is reduced

to

da = Lm f . (3.23)

This is consistent with the Rician fading case in the sense that the diversity order

is not related with the number of receiving antennas, as observed in Figs. 3.3, 3.4

and 3.5 where the slopes of the SER curves are determined by L. For the case

that the channel condition of the forward link is not significantly better than that
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Figure 3.4: The SER performances of the backscatter RFID channel, with
m f = mb = 1.5. From the top to the bottom: (L = 1,N = 1), (L = 1,N =
2), (L = 1,N = 3), (L = 2,N = 1), (L = 2,N = 2), (L = 2,N = 3).

of the backscattering link, the rule that two receiving antennas can capture most

performance enhancement by the receiving antenna diversity is also applicable in

Nakagami-m fading, as verified by checking the coefficients Γ(a−b)
Γ(a) in (3.20).

It is worth mentioning here that other types of cascaded channels generally

achieve different diversity orders. For instance, the diversity order of the Rayleigh-

Rayleigh keyhole channel is min(L,N) [52]. This is due to the different cascaded

structures of the channels, and we summarize the diversity gains in Table 3.1 for

comparison.

Performance Improvement by Employing OSTBC in Backscatter RFID
Channels

In Chapter 2 we found that the diversity order for identical signaling with uniform

query achieves (N,L). In this subsection, we investigate how much performance
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Figure 3.5: The SER performances of the backscatter RFID channel, with
m f = mb = 2. From the top to the bottom: (L = 1,N = 1), (L = 1,N =
2), (L = 1,N = 3), (L = 2,N = 1), (L = 2,N = 2), (L = 2,N = 3).

Table 3.1: Diversity order comparisons between different fading channels
when OSTBCs are employed.

Cascaded form Rician Nakagami-m
RF backscattering L Lmin(m f ,Nmb)

keyhole channel min(L,N) [53] min(Lm f ,Nmb) [54]
i.i.d cascaded channel LN [55]. LN min(m f ,mb)

enhancement can be brought by employing OSTBC instead of identical signaling.

Fig. 3.7 compares the BER performances of Alamouti’s coding scheme and the

identical signaling scheme in the N×L backscatter RFID channel, where the RF

tag is equipped with 2 antennas (i.e. L = 2) and the number of reader receiving

antennas varies from 1 to 3. A significant performance improvement (about 10

dB) is observed by Alamouti’s coding scheme for the setting N = 1. However,

for the settings N = 2 and N = 3, the improvements by Alamouti’s scheme are
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Figure 3.6: The asymptotic form in (3.14) shows that two receiving antennas
are enough to capture most of the receiving side gain: For N ≥ 2, the
receiving side gain is only brought by the coefficient (N− 2)!Cb

3 . We

plot (N−2)!Cb
3 |N=2

(N−2)!Cb
3 |N=3

and (N−2)!Cb
3 |N=3

(N−2)!Cb
3 |N=4

which are the gains by increasing the
number of receiving antennas from 2 to 3 and from 3 to 4, respectively,
to compare with the gain from N = 1 to N = 2, at SNR = 20 dB.

not significant (i.e., 3 dB for N = 2 and 1.5 dB for N = 3). This observation

can be explained by the derived asymptotic BER expressions in equations (2.34)

and (3.21): Our analysis for the OSTBC scheme implies that for Alamouti’s code

the achievable diversity gain is L (L = 2 in this example) for any N in the N×L

backscatter RFID channel. Consequently for the settings with N ≥ L, Alamouti’s

code yields the same diversity order as that of the identical signaling scheme in

the N × L backscatter RFID channel, and the BER performance improvement is

limited. In other words, when N ≥ L in a MIMO RFID system, OSTBC doesn’t

yield significant performance improvement over simpler signaling schemes.
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Figure 3.7: The BER performance comparison between Alamouti’s coding
scheme and identical signaling scheme. A significant BER improve-
ment by Alamouti’s code is observed for N = 1, while the improvement
is much smaller when N ≥ 2. These properties can be explained by our
analysis of the MIMO backscatter RFID channel under the OSTBC and
identical signaling schemes.

Impact of Forward and Backscattering Channel Conditions

Another interesting property of the MIMO RF backscattering channel is that its

performance is more sensitive to the channel condition of the forward link than to

that of the backscattering link when N ≥ 2.

For Rician fading, the following is observed from Fig. 3.8: with K f being fixed,

SER performances are almost remain the same when Kb changes. By contrast, with

Kb being fixed, SER performances change significantly when K f changes. This can

also be observed from the asymptotic expression we derived in (3.14): the effect of

forward channel is reflected by the coefficients C f
1 , and that of the backscattering
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Figure 3.8: The performance of the backscatter RFID channel is much more
sensitive to the K factor of the forward link. When K f = 0 dB is fixed,
the variations of Kb (0,3,5 dB) do not affect too much on the SER, by
contrast when Kb = 0 dB is fixed, the variations of K f (0,3,5 dB) change
the SER significantly. Here N = 3, L= 1, and no coding scheme is used.

channel is reflected by Cb
3 . A plot of the two coefficients is given in Fig. 3.9, which

is consistent with what we note in the SER curves.

Fig. 3.10 shows that similar observations are true for the channel with Nakagami-

m distributed forward and backscattering links. This can also be inferred from the

asymptotic form in (3.20), as m f can change SER significantly if m f < Nmb which

is highly likely to be true if we increase the number of receiving antennas N.

45



0 1 2 3 4 5
−8

−7

−6

−5

−4

−3

−2

−1

0

K factor in dB

C
oe

ffi
ci

en
ts

 in
 d

B

C3(Kb) for N=3

C3(Kb) for N=2

C1(Kf) for N=2,3

Figure 3.9: Illustration of the reason that the performance of the backscatter
RFID channel is much more sensitive to the forward link. The asymp-
totic form in (3.14) shows that the error rate performance is much more
sensitive to the channel condition of the forward links. C f

l and Cb
3 are the

coefficients in the asymptotic SER related with the forward links and the
backscattering links, respectively. Cb

3 is almost constant as the K factor
in the backscattering links increases, while C f

1 decreases significantly as
the K factor in the forward links increases.

3.1.3 PEP Lower Bound for General Space-time Codes and
Maximum Achievable Diversity Order

Although OSTBC is one of the most attractive MIMO schemes with a simple de-

coding process, we are still interested in the performance of general (non-orthogonal)

space-time codes because we would like to investigate the performance limit of

the backscatter RFID channel. The exact error-rate form of the backscatter RFID

channel for the non-orthogonal space-time code case is not trackable due to the

complexity of the channel matrix. In this section, instead of providing the exact
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Figure 3.10: The performance of the backscatter RFID channel is much more
sensitive to the m parameters of the forward link. With fixed m f = 1,
the variations of mb (1,1.5,2) do not affect SER much; while for fixed
mb = 1, the variations of m f (1,1.5,2) affect SER significantly. Here
N = 3 and L = 2.

form of the PEP, we provide a PEP bound lower bound for the non-orthogonal

code case. This bound helps us to understand the best performance this channel

can ever achieve.

Proposition 5. With the assumption of ideal channel state information, let the

probability of transmitting code word c and deciding in favor of e at the decoder

be P(c→ e). This probability is lower bounded by

P(c→ e)≥ POSTBC(λmaxγ̄,N,L), (3.24)

where λmax is the largest eigenvalue of D = (c− e)(c− e)H .
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This shows that the maximum achievable diversity order is L for the backscatter

RFID channel under Rician fading and is Lmin(m f ,Nmb) for Nakagami-m fading,

both with the maximum achievable coding gain as λ L
max.

Proof of Proposition 5. The conditional PEP on the channel gain H is

P(c→ e|H) =Q

(
γ̄

N

∑
n=0

HnDHH
n

)
(3.25)

where Hn’s are the column vectors of H. Since D is Hermitian, it has an eigende-

composition as

D = UVUH (3.26)

where U is a unitary matrix and V is a diagonal matrix whose elements are the

eigenvalues of D. Let the entries of V be replaced by the largest entries of V and

we name the new matrix as Vmax. It follows that

HnUVUHHH
n ≤HnUVmaxUHHH

n , (3.27)

because U(Vmax−V)UH is positive-semidefinite. The equality holds for OSTBC.

Since the Q function is monotone decreasing, we have

P(c→ e|H) =Q

(
γ̄

N

∑
n=0

HnDHH
n

)
(3.28)

≥Q

(
γ̄

N

∑
n=0

HnDmaxHH
n

)
(3.29)

=Q
(
λmaxγ̄‖H‖2

F
)

(3.30)

for all H, where Dmax = UVmaxUH . Taking the expectation of the above inequality,

we have

P(c→ e)≥ POSTBC(λmaxγ̄,N,L). (3.31)
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A tighter bound given in Proposition 6 can be obtained with the assumption

that the phases of forward channels and/or the phases of the backscattering are uni-

formly distributed over (−π,π] and are independent with their channel envelopes.

The assumption is true for the forward-backscattering structures of Rayleigh-Rician,

Rician-Rayleigh, Rayleigh-Rayleigh, Nakagami-Rayleigh, Rayleigh-Nakagami. It

is also applicable to the Nakagami-Nakagami structure if the phases of the sub-

channels are uniformly distributed.

Proposition 6. If the phases of forward channels and/or the phases of backscat-

tering channels are uniformly distributed, a tighter bound of PEP can be given

as

P(c→ e)≥ POSTBC(λavgγ̄,N,L), (3.32)

where λavg is the average of the eigenvalues of D.

This shows that in this case the coding gain can be further bounded by λ L
avg.

Proof of Proposition 6. We first rewrite the pair-wise code distance ∑
N
n=1 HnDHH

n

as

N

∑
n=1

HnDHH
n =

N

∑
n=1

(
L

∑
l=1

dl,l|hn,l|2 + ∑
l1 6=l2

dl1,l1dH
l2,l2hn,l1hH

n,l2

)
= Z +X (3.33)

where di, js’ are the entries of D and we define the real random variable X as

X = 2ℜ

{
∑

N
n=1 ∑l1<l2 dl1,l1dH

l2,l2hn,l1hH
n,l2

}
, and Z as Z = ∑

N
n=1 ∑

L
l=1 dl,l|hn,l|2, where

hn,l = h f
l hb

l,n represents the entries of H.

Case 1: The phases of forward channels are uniformly distributed

Our goal is to find EH
(
Q
(
∑

N
n=1 HnDHH

n
))

. Note that the l-th forward channel gain

h f
l can be written as h f

l = |h f
l |cosθl , where θl is the phase of h f

l and is uniformly

distributed over (−π,π]. We first fix |h f
l |’s (i.e. the magnitudes of the forward

links) and hb
l,n’s (i.e. the channel gains of the backscattering links). Note that right

now we only leave the phase of the channel gains of the forward links h f
l ’s to be free

to choose over the space in which |hb
l,n|’s, hb

l,n’s and |h f
l |’s are all fixed. Since θl is
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independent with hb
l,n and |h f

l |, it yields that the conditional distribution of X on hb
l,n

and |h f
l | is identical with the conditional distribution of −X on hb

l,n and |h f
l |. This

implies that the distribution of X is symmetric about zero, and therefore E(X) =

0. Since the Q function is convex for positive arguments, using the conditional

expectation and the fact the a convex function applied to the expected value of a

random variable is always less or equal to the expected value of the convex function

of the random variable, we have

P(c→ e) = EZ,X(Q(gγ̄(Z +X)))

= EZ(EX |Z(Q(gγ̄(Z +X))|Z))
> EZ(Q

(
EX |Z(gγ̄(Z +X |Z))

)
)

= EZ(Q(gγ̄Z)) (3.34)

or

EH

(
Q

(
gγ̄

N

∑
n=1

HnDHH
n

))
> EH

(
Q

(
gγ̄

N

∑
n=1

L

∑
l=1

dl,l|hn,l|2
))

. (3.35)

Note that EH
(
Q
(
gγ̄ ∑

N
n=1 ∑

L
l=1 dl,l|hn,l|2

))
= 1

π

∫
π

θ=0 ∏
L
l=1 G(dl,l ¯̄γ,N,1)dθ . It fol-

lows that the coding gain is bounded by ∏
L
l=1 dl,l and the diversity gain is bounded

by γ̄L. Now we claim that

EH

(
Q

(
gγ̄

N

∑
n=1

L

∑
l=1

dl,l|hn,l|2
))

> EH

(
Q

(
gγ̄

N

∑
n=1

L

∑
l=1

λavg|hn,l|2
))

= POST BC(λavgγ̄,N,L). (3.36)

The proof is given as follows: Since ||c− e||F = ∑
L
l=1 λl = Lλavg = trace(D) =

∑
L
l=1 dl,l ,

EH

(
Q

(
gγ̄

N

∑
n=1

L

∑
l=1

dl,l|hn,l|2
))

= EH (Q(gγ̄(W +Y ))) (3.37)
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where we define

W =
N

∑
n=1

L

∑
l=1

λavg|hn,l|2, (3.38)

and

Y =
N

∑
n=1

L

∑
l=1

(dl,l−λavg)|hn,l|2. (3.39)

Moreover, by symmetry, the conditional distribution of |hl,n|2’s on W are identical,

i.e. |hl,n|2|W (l = 1, · · · ,L) are identical (but not necessarily independent) r.v.s.

Therefore their conditional expectations on W must be the same, i.e.,

E|h1,n|2|W (|h1,n|2|W ) = E|h2,n|2|W (|h2,n|2|W ) = · · ·= E|hL,n|2|W (|hL,n|2|W ). (3.40)

It follows that

EY |W (Y |W ) =
N

∑
n=1

(
L

∑
l=1

(dl,l−λavg)

)
E|h1,n|2|W

(
|h1,n|2|W

)
= 0, (3.41)

since
(
∑

L
l=1(dl,l−λavg)

)
= 0. Therefore we have

EH (Q(gγ̄(W +Y ))) = EW
(
EY |W (Q(gγ̄(W +Y ))|W )

)
≥ EW (Q

(
EY |W (gγ̄(W +Y )|W )

)
)

= EW (Q(gγ̄W ))

= POST BC(λavg ¯̄γ,N,L). (3.42)

Again, this is followed by the fact the a convex function applied to the expected

value of a random variable is always less or equal to the expected value of the

convex function of the random variable.

For the case that the phases of the backscattering links are uniformly dis-

tributed, the proof is similar and we omit it here.
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3.2 Space-time Coding with Unitary Query
Recall that there are three ends in the backscatter RFID structure. In Section 3.1,

the potential of diversity gain is fully explored at the tag end, by applying space-

time codes. Now we explore the potential diversity at the reader query end. In

the previous literature [14, 26, 27], the understanding of the query end was that it

only played a role as an energy provider, and since there was no information to

be conveyed from the reader query end, query signals could not provide spatial

diversity for the tag. However, in this section we reconsider the query signals

and propose the unitary query the first time. We show that the proposed unitary

query can improve the PEP performance of STC significantly, by providing the tag

time diversity via employing multiple antennas at the reader query end. Due to

the difficulty of obtaining the asymptotic PEP and the even diversity order for the

proposed unitary query, we also provide a new measure for performance analysis.

With the new measure, we do not need to exactly calculate the PEP but can still

compare performances of different query and space-time coding schemes. Recall

that in Chapter 2, the channel model of the M× L×N backscatter RFID can be

characterized by

R = QH◦CG+W, (3.43)

where both the forward sub-channels (represented by H) and the backscattering

sub-channels (represented by G) are modeled as i.i.d. complex Gaussian random

variables with zero mean and unity variance.

In general, query signals can be designed followed by any arbitrary Q. For the

so-called unitary query, the query matrix Q satisfies

QQH = I. (3.44)

Since Q is unitary and the entries of H are i.i.d complex Gaussian, we have

QH∼ X =


x1,1 · · · x1,L

...
. . .

...

xT,1 · · · xT,L

 , (3.45)
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where xt,l’s are i.i.d complex Gaussian. The resulting matrix X is with size T ×L,

so the unitary query actually transforms the forward channel H, which is invariant

over the T time slots, into a channel X which varies over the T time slots. We

will show later that this variation over the T time slots is the fundamental reason

that the unitary query can bring additional time diversity and significant perfor-

mance improvement for some STCs in the backscatter RFID channel. Therefore

the backscatter RFID channel with the unitary query has an equivalent channel

model as

R = X◦CG+W. (3.46)

Now we define the code words difference matrix for code words C and C′ as,

∆ = C−C′ =


δ1,1 · · · δ1,T

...
. . .

...

δL,1 · · · δL,T

 . (3.47)

The PEP can be obtained by

PEP(γ̄) = EH,G

(
Q
(√

γ̄ZX

))
. (3.48)

where

ZX = ‖QH◦CG−QH◦C′G‖2
F

∼ ‖X◦∆G‖2
F (3.49)

is the random variable which represents the distance between the code words C
and C′.

3.2.1 New Measure for PEP Performance

Diversity order is a conventional measure of the PEP performance for space-time

codes. It has been used for performance analysis and is an important criteria for

code construction. In conventional wireless fading channels, which have a simpler

signaling and fading structure than that of the backscatter RFID channel, usually
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the asymptotic PEP and the diversity order can be obtained in closed form, based

on which the code design criteria can be derived accordingly. However, due to

the query-fading-signaling-fading structure given in (2.5) of the backscatter RFID

channel, the asymptotic PEP and diversity order for the general space-time code

cannot be obtained in analytical form. In this section, we provide a new measure

of the PEP performance in the backscatter RFID channel.

Recall the distance between two code words given in Eqn. (3.49). At each time

slot t, the distance is given by

Zt
X ∼ ‖(xt,1, · · · ,xt,L)◦ (δ1,t , · · · ,δL,t)G‖2

F

= ‖(xt,1, · · · ,xt,L)∆tG‖2
F

(3.50)

where ∆t is defined as

∆t ,


δ1,t

. . .

δL,t

 , (3.51)

then over the T time slots we have

ZX ∼
T

∑
t=1
‖(xt,1, · · · ,xt,L)∆tG‖2

F

=
T

∑
t=1
‖(xt,1, · · · ,xt,L)Et‖2

F , (3.52)

where Et is defined as

Et , ∆tG. (3.53)

We will see later that the ranks of the random matrices Et’s determine the perfor-

mance for the unitary query.

We use ZY to denote the distance between code words when the backscatter
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RFID channel employs the uniform query,

ZY ∼
T

∑
t=1
‖(y1, · · · ,yL)Et‖2

F

= ‖(y1, · · · ,yL)(E1, · · · ,ET )‖2
F . (3.54)

Note that inside a ‖ · ‖F operator, the columns of the matrix (E1, · · · ,ET ) are inter-

changeable, therefore we have

ZY = ‖(y1, · · · ,yL)(D1, · · · ,DN)‖2
F , (3.55)

where Dn’s are defined as

Dn , ∆Gn, (3.56)

and where Gn’s are defined as

Gn ,


hb

1,n
. . .

hb
L,n

 , (3.57)

for n = 1, · · · ,N. Also, we will see later that the rank of the random matrix

D , (D1, · · · ,DN) (3.58)

determines the performance for the uniform query.

Now we give the following two Lemmas about the ranks of the random matri-

ces Et’s and the rank of the random matrix D.

Lemma 1. For the matrices Et’s defined in (3.53), we have rank(Et) = min(N,L∗t )

with probability (w.p.) 1 for all t ∈ {1, · · · ,T}, where L∗t is the number of non-zero

elements of the t-th column of the code words difference matrix ∆.

Proof. Let g1, · · · ,gN denote the columns of G. We consider a set of scalars
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{a1, · · · ,aN}where an ∈C, for any linear combination of the set of vectors, {g1, · · · ,gN}

b =
L

∑
n=1

angn (3.59)

is a zero-mean complex Gaussian random vector with covariance matrix ∑
L
n=1 ‖an‖2I

Therefore

P(b = 0) = 0. (3.60)

When N ≤ L, (3.60) implies that

P(rank(G)< N) = 0, (3.61)

or

P(rank(G) = N) = 1. (3.62)

When N > L, by performing a linear combination of the rows of G and following

a procedure similar to the case that N ≤ L, we can obtain

P(rank(G) = L) = 1. (3.63)

Hence the matrix G is of full rank with probability 1, i.e.

P(rank(G) = min(N,L)) = 1. (3.64)

Now notice that ∆t is diagonal, therefore Et = ∆tG has L∗t non-zero rows. Because

G is full rank w.p. 1, we have

rank(Et) = min(L∗t ,N) (3.65)

w.p. 1.

Lemma 2. For the matrix D defined in (3.58), we have rank(D)=min(N×rank(∆),L)

with probability 1, where L is the number of non-zero columns of the code words
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difference matrix ∆.

Proof. Following similar steps to prove that G is of full rank w.p. 1, we can show

that

P(rank(Gn) = L) = 1, (3.66)

i.e., Gn is also of full rank w.p. 1. Since

Dn = ∆Gn, (3.67)

we have

P(rank(∆Gn) = rank(∆)) = 1, (3.68)

i.e. the rank of Dn is the same as the rank of ∆ w.p. 1.

Now let us consider the following two cases:

Case 1: N× rank(∆)≤ L

By Eqn. (3.68), clearly the columns of each of Dn’s span a subspace of dimension

rank(∆) in CL w.p. 1. Now consider a set of scalars ai, j’s, where i ∈ {1, · · · ,N},
and j ∈ {1, · · · ,T}. If for i ∈ {2, · · · ,N} and j ∈ {1, · · · ,T}, ai, j’s are not all zero,

it is not hard to verify that

P

(
T

∑
j=1

a1, jD1, j =
N

∑
i=2

T

∑
j=1

ai, jDi, j

)
= 0. (3.69)

This implies that the rows of all Dn’s span a subspace of dimension N× rank(∆) in

CL w.p. 1, i.e. the rank of the block matrix D is N× rank(∆) w.p. 1 in this case.

Case 2: N× rank(∆)> L

Following the similar procedure as in Case 1, it is easy to see that the dimension of

the subspace spanned by the rows of all Dn’s is L. i.e. the rank of the block matrix

D is L w.p. 1 in this case.

With the results from Case 1 and Case 2, we have Lemma 2 hold.

Now we introduce the following theorem on the new measure for the unitary

query and the uniform query.
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Theorem 1. In asymptotic high SNR regimes, the PEP performances of space-time

codes with the unitary query and the uniform query in the M×N×L backscatter

RFID channel given in (2.5) can be measured by

Runitary =
T

∑
t=1

min(N,L∗t ), (3.70)

and

Runi f orm = min(N× rank(∆),L), (3.71)

respectively, where L is the number of non-zero columns of the code words differ-

ence matrix ∆, and L∗t is the number of non-zero elements of the t-th column of the

code words difference matrix ∆. In other words if

Runitary > Runi f orm, (3.72)

we have

lim
γ̄→∞

PEPZX (γ̄)

PEPZY (γ̄)
→ 0; (3.73)

if

Runitary < Runi f orm, (3.74)

we have

lim
γ̄→∞

PEPZY (γ̄)

PEPZX (γ̄)
→ 0; (3.75)

and if

Runitary = Runi f orm, (3.76)
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we have

lim
γ̄→∞

PEPZX (γ̄)

PEPZY (γ̄)
= c > 0; (3.77)

where c is some positive constant.

Proof of Theorem 1. We consider singular value decompositions of Et’s and D, i.e.

Et = UtΛtVt , (3.78)

and

D = U∗Λ∗V∗. (3.79)

Note that, for the unitary query, for a realization of G the distance between code-

words can be given as

ZX |G =
T

∑
t=1
‖(xt,1, · · · ,xt,L)Et‖2

F

=
T

∑
t=1
‖(xt,1, · · · ,xt,L)UtΛtVt‖2

F

∼
T

∑
t=1
‖(xt,1, · · · ,xt,L)Λt‖2

F

=
T

∑
t=1

rank(Et)

∑
i=1

λt,i‖xt,i‖2, (3.80)

where λt,i’s (i = 1, · · · , rank(Et)) are the non-zero eigenvalues of Et . Given a real-

ization of G, the conditional PEP on G is given by

PEPZX |G(γ̄) = EZX |G

Q


√√√√

γ̄

T

∑
t=1

rank(Et)

∑
i=1

λt,i‖xt,i‖2




=
T

∏
t=1

rank(Et)

∏
i=1

1
1+λt,iγ̄

(3.81)
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Therefore the PEP for the unitary query can be obtained as

PEPZX (γ̄) = EG
(
PEPZX |G(γ̄)

)
= EG

(
T

∏
t=1

rank(Et)

∏
i=1

1
1+λt,iγ̄

)

= EG

(
T

∏
t=1

min(N,L∗t )

∏
i=1

1
1+λt,iγ̄

)
. (3.82)

The last step of the above derivation is obtained by using the result from Lemma 1

and the fact that 0 < 1
1+λt,i γ̄

< ∞.

Similarly, for the uniform query, for a realization of G, the distance between

codewords can be given by

ZY |G = ‖(y1, · · · ,yL)D‖2
F

= ‖(y1, · · · ,yL)U∗Λ∗V∗‖2
F

∼ ‖(y1, · · · ,yL)Λ
∗‖2

F

=
rank(D)

∑
i=1

λ
∗
i ‖(y1,i)‖2, (3.83)

where λ ∗i ’s are the eigenvalues of D. For a realization of G, the conditional PEP is

given by

PEPZY |G(γ̄) = EZY |G

Q


√√√√

γ̄

rank(D)

∑
i=1

λ ∗i ‖xi‖2




=
rank(D)

∏
i=1

1
1+λ ∗i γ̄

(3.84)
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Therefore the PEP for the uniform query is given by

PEPZY |G(γ̄) = EG

(
rank(D)

∏
i=1

1
1+λ ∗i γ̄

)

= EG

(
min(N×rank(∆),L)

∏
i=1

1
1+λ ∗i γ̄

)
. (3.85)

The last step of the above derivation is obtained by using the result from Lemma 2

and the fact that 0 < 1
1+λ ∗i γ̄

< ∞.

The expectations in (3.82) and (3.85) are quite difficulty to obtain for general

∆, as the distributions of λt,i’s and λ ∗i ’s are not traceable. We assume that

EG

(
T

∏
t=1

min(N,L∗t )

∏
i=1

1
λi,t

)
< ∞, (3.86)

EG

(
Runiform

∏
i=1

1
λ ∗i

)
< ∞, (3.87)

Using the assumption in (3.86) and by applying Dominated Convergence The-

orem (DCT) we have

lim
γ̄→∞

(
γ̄

Runitary×PEPZX (γ̄)
)
= EG

(
T

∏
t=1

min(N,L∗t )

∏
i=1

1
λi,t

)
, (3.88)

and similarly, using the assumption in (3.87) by applying DCT we have

lim
γ̄→∞

(
γ̄

Runiform×PEPZY (γ̄)
)
= EG

(
Runiform

∏
i=1

1
λ ∗i

)
. (3.89)

Case 1:Runitary > Runiform
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In this case,

lim
γ̄→∞

PEPZX (γ̄)

PEPZY (γ̄)
= lim

γ̄→∞

γ̄RuniformEG

(
∏

T
t=1 ∏

min(N,L∗t )
i=1

1
λi,t

)
γ̄RunitaryEG

(
∏

Runiform
i=1

1
λ ∗i

)
→ 0. (3.90)

Case 2:Runitary < Runiform

In this case,

lim
γ̄→∞

PEPZY (γ̄)

PEPZX (γ̄)
= lim

γ̄→∞

γ̄RunitaryEG

(
∏

Runiform
i=1

1
λ ∗i

)
γ̄RuniformEG

(
∏

T
t=1 ∏

min(N,L∗t )
i=1

1
λi,t

)
→ 0. (3.91)

Case 3: Runitary = Runiform

In this case, we have

lim
γ̄→∞

PEPZX (γ̄)

PEPZY (γ̄)
= lim

γ̄→∞

γ̄RuniformEG

(
∏

T
t=1 ∏

min(N,L∗t )
i=1

1
λi,t

)
γ̄RunitaryEG

(
∏

Runiform
i=1

1
λ ∗i

)
=

EG

(
∏

T
t=1 ∏

min(N,L∗t )
i=1

1
λi,t

)
EG

(
∏

Runiform
i=1

1
λ ∗i

) = c. (3.92)

3.2.2 Examples and Simulations

In this section, we give a few examples and provide corresponding simulation re-

sults for Theorem 1. Consider an M×L×N backscatter RFID channel, and the

following code words difference matrix:

∆ =

(
1 −2

1.5 2.5

)
. (3.93)
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Suppose M = 2, L = 2 and N = 2. Based on Theorem 1, the PEP performance for

the unitary query can be measured by

Runitary = min(2,2)+min(2,2) = 4, (3.94)

and the PEP performance for the uniform query can be measured by

Runi f orm = min(2×2,2) = 2. (3.95)

Therefore the PEP performance of the unitary query is expected to be much better

than that of the uniform query. Simulations confirm this as we can see in Fig.

3.11: there is a large PEP performance gain by employing the unitary query for the

2×2×2 backscatter RFID channel.

In addition, we consider the 2× 2× 1 backscatter RFID channel, based on

Theorem 1 we have

Runitary = min(1,2)+min(1,2) = 2, (3.96)

and

Runi f orm = min(1×2,2) = 2. (3.97)

In this case, the performance of the unitary is expected to be similar to that of the

uniform query, as we can see from the simulation results shown in Fig. 3.12.

3.3 Conclusion
In this chapter, we considered more complicated reader query and tag signaling

methods for the backscatter RFID channel. First, we investigated the case when

the tag employs orthogonal space-time codes, while the reader still employs the

uniform query. For this case, we provided a general formulation for performance

analysis which is applicable to any sub-channels fading assumptions and studied

the SER performances for Rician and Nakagami-m sub-channels. It was shown

that the diversity order achieves L for Rician fading and achieves Lmin(m f ,Nmb)

for Nakagami-m fading. Two receiving antennas (N = 2) can capture most of the
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Figure 3.11: PEP performance comparisons between the unitary query and
the uniform query for the 2× 2× 2 backscatter RFID channel. The
unitary query can bring a large gain for the 2×2×2 channel.

receiving side gain regardless the number of tag antennas. More interestingly, we

showed that the PEP performance in this case is more sensitive to the channel

condition (the K factor or the m parameter) of the forward link than that of the

backscattering link. Second, we proposed a novel reader query scheme called uni-

tary query at the reader query end, and showed that in quasi-static channels, the

unitary query can provide time diversity via multiple reader query antennas and

thus can improve the performance significantly. Due to the difficulty of calculating

the PEP and the diversity order directly for the unitary query, we suggested a new

performance measure based on the rank of some random matrices. To our best

knowledge, this was the first time that the unitary query was proposed in RFID.
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Figure 3.12: PEP performance comparisons between the unitary query and
the uniform query for the 2× 2× 1 backscatter RFID channel. The
unitary query can only bring a small gain for the 2×2×1 channel.
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Chapter 4

Analysis of General Space-time
Codes in MISO Multi-keyhole
Channels

In the previous two chapters, we investigated the performance and design of space-

time codes and reader query mechanism for the MIMO backscatter RFID channels.

Recall that the backscatter RFID channel has a special query-fading-signaling-

fading structure, which is a cascaded form. The multi-keyhole channel is another

type of cascaded channel, which also has two layers of fading, but with a signaling-

fading-fading structure. The multi-keyhole fading happens in propagation environ-

ments where each end has its own set of multipath components and is separated

from the other end by a screen with a number of keyholes of small size (smaller

than half a wavelength), as shown in Fig. 4.1 .

From the structures of these two types of cascaded channels, we can see that

they are indeed different. But these two channels look similar at the first impres-

sion, and researchers sometimes may get confused about the two types of channels.

Therefore one purpose of this chapter is to give a brief introduction of the multi-

keyhole channel model and analytically study the performance for general space-

time codes in the MISO case, which is not done yet in the literature. The other

purpose is that we want to make comparisons between the backscatter RFID chan-

nel and the multi-keyhole channel. We will show that the backscatter RFID chan-
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nel has completely different performance behavior from that of the multi-keyhole

channel.

4.1 Multi-keyhole Channels
In conventional non-backscatter wireless channels, if the scattering environment is

not-so-rich, it is demonstrated in [56] [57] that MIMO fading channels can experi-

ence keyhole conditions, where despite rich local scattering and independent trans-

mitting and receiving signals, the system only has a cascaded channel structure.

The early research for keyhole channels mainly concentrated on single-keyhole

channels [52, 58–63]. In particular, in [58], a closed-form expression of the ergodic

capacity for an uncorrelated single-keyhole channel was obtained. Later, [59] [60]

examined the capacity of single-keyhole channels in the presence of spatial cor-

relation. The space-time coding research for this channel included the analysis of

orthogonal space-time codes in [61], [52], and the analysis and design of general

space-time codes in [62] [63] investigated the symbol error rate of spatially corre-

lated single-keyhole channels with orthogonal space-time block coding and linear

precoding.

Later, researchers found that the single-keyhole channel is not often encoun-

tered in practice. Actually it was shown in [64] that the single-keyhole effect is

difficult to observe. To include these scenarios and expand the keyhole channel

model, a multi-keyhole channel model, which consists of a number of statistically

independent keyholes, was introduced in [65] [66]. Fig. 4.1 shows a multi-keyhole

channel. In this channel, each end has its own set of multi-path components and

is separated from the other end by a screen with a number of keyholes of size

smaller than half a wavelength. Some efforts have been taken to investigate the

multi-keyhole channel recently. [65] showed that the asymptotic outage capacity

of the multi-keyhole channel can be described by summing the capacities of indi-

vidual keyholes. In [67], the approximated PDF of the eigenvalues of the channel

correlation matrix was provided. In [68], a closed form of asymptotic diversity-

multiplexing tradeoff was derived. More recently, [69] studied the outage capacity,

[70, 71] investigated the ergodic mutual information for this channel, and [72–

74] studied beamforming schemes the multi-keyhole MIMO systems with channel
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state information (CSI) at the transmitter. The analysis of space-time codes (STC)

in multi-keyhole channels, however, is quite limited and only available for OST-

BCs [40]. In [40], analytical expressions of the SER of the OSTBC were derived

and using OSTBC as a pivot, it was shown that the achievable diversity order is

nT nSnR/max(nT ,nS,nR), where nT , nS and nR mean the number of transmission

antennas, the number of effective scatters and the number of receiving antennas,

respectively. Although the results in [40] are of great importance, it is only the re-

sult for orthogonal code, and many STC schemes that have excellent performances

are often not orthogonal ones [75–78]. This motivates us to investigate general

space-time codes under the multi-keyhole conditions. In this chapter, we focus

on communication systems that have multiple transmission antennas and one re-

ceiving antenna, i.e. multiple-input-single-output (MISO) systems, and provide a

performance analysis of general space-time codes for multi-keyhole channels. We

consider both the cases when the transmission antennas are spatially independent

and are spatially correlated. The major results of this Chapter are as follows:

1. We prove that for any pair of code words in a space-time code, the code

words distance in the MISO multi-keyhole channel (with M transmission

antennas and L keyholes) and that in the MIMO single-keyhole channel

(with M transmission antennas and L receiving antennas) are identically dis-

tributed. Therefore the two types of channels share the same form of PEP,

and one can employ the design criteria in MIMO single-keyhole to design

the codes for MISO multiple-keyhole. We further show that the PDF of the

code words distance asymptotically converges to that of the Rayleigh chan-

nel when M approaches infinity.

2. In the high SNR regime, when M ≤ L, the transmission correlations always

degrade the PEP performance; when M > L (the number of transmission

antennas greater than the number of keyholes), depending on how the corre-

lation matrix beamforms the code words difference matrix, the correlations

can either degrade or improve the PEP performance. Particularly we prove
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Keyhole 1

Keyhole 2

Keyhole L

Local sca ers Local sca ers

Figure 4.1: The MISO multi-keyhole channel model: each end has its own
set of multipath components and is separated from the other end by
a screen with a number of keyholes of small size (smaller than half a
wavelength).

that if there is an integer K, 1≤ K ≤M−L−1, such that

λ̄
L

(
M

∑
i=K+1

λ
−1
i
M

)L

<
Γ(M−L)Γ(M−K)

Γ(M)Γ(M−K−L)
, (4.1)

we can always find certain correlation matrices that can improve the PEP

performance. We also provide one form of such matrices.

4.2 Independent and Identical Transmission Antennas
In this section, we investigate the PEP performance of general space-time codes

when the transmission antennas are spatially independent. Consider a frequency

non-selective quasi-static fading channel with M transmitting antennas and one

receiving antenna that is shown in Fig. 4.1. In this MISO multi-keyhole channel,

the signal model is given by

R =

√
γ̄

M×L
HS+W, (4.2)

where the 1×T matrix R represents the received signal, S is the M×T transmitted

code words difference matrix, γ̄ is the average SNR, and W is the zero-mean ad-

ditive circularly symmetric complex Gaussian noise matrix with size 1×T , whose

elements have unit variance per dimension. We use hm,n’s (m= 1, ..,M, n= 1, ...,L)
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to represent the normalized channel gains from the M transmitting antennas to the

L keyholes, use gn’s (n = 1, ...,L) to represent the normalized channels from the L

keyholes to the single receiving antenna, and let hn , (h1,n,h2,n, · · · ,hM,n)
T . We

further assume that

• The entries of hn’s are independent complex Gaussian distributed with zero

mean and unit variance.

• gn’s are also Gaussian with zero mean and unit variance.

• The keyholes are statistical independent, i.e. the random vectors hn’s are

independent and the random variables gn are independent.

Consequently, the channel matrix, which is actually a vector in the MISO channel,

is given by

H =
L

∑
n=1

hngn. (4.3)

To decode the received code word R at the receiver side, the maximum likelihood

(ML) decoder is employed. We assume that the CSI is perfectly known at the

receiver and unknown at the transmitter.

PEP, the probability of transmitting code word c = (c1, ...,cT )
T over T time

slots and deciding in favor of another code word e = (e1, ...,eT )
T at the decoder,

generally serves as a design criterion for space-time codes. When signals transmit

over a fading channel with channel matrix H, the code words distance between c
and e is defined by the random variable ‖∆H‖F , where ∆ , c−e is the code words

difference, and ‖ · ‖F is the Frobenius norm. The PEP of a Gaussian noise channel

can be evaluated by averaging the density of ‖∆H‖F over the Q function as

P(c→ e|H) = Q

(√
γ̄

M×L
‖∆H‖2

F

)
. (4.4)

Using an alternative representation of the Q function, we have

P(c→ e|H) =
1
π

∫
∞

θ=0
exp
(
− γ̄

M×L
‖∆H‖2

F

2sin2
θ

)
dθ . (4.5)
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For the Gaussian noise channel, to find the PEP we need to investigate the distri-

bution of the code distance ‖∆H‖F .

4.2.1 Distribution of the Code Words Distance

For the MISO multi-keyhole channel, the squared code words distance is given by

‖∆H‖2
F = ‖∆

L

∑
n=1

hngn‖2
F

= trace

(
∆

L

∑
n1=1

hn1gn1

L

∑
n2=1

gH
n2

hH
n2

∆
H

)

= trace

(
∆

H
∆

L

∑
n1=1

hn1gn1

L

∑
n2=1

gH
n2

hH
n2

)
. (4.6)

Since ∆H∆ is a Hermitian matrix, it has an Eigendecomposition as ∆H∆ = UHVU,

and the squared code distance can be written as

‖∆H‖2
F = trace

(
UHVU

L

∑
n1=1

hn1gn1

L

∑
n2=1

gH
n2

hH
n2

)

= trace

(
V

L

∑
n1=1

Uhn1gn1

L

∑
n2=1

gH
n2

hH
n2

UH

)
. (4.7)

Note that

L

∑
n1=1

Uhn1gn1 =
L

∑
n1=1

αn1gn1 , (4.8)

where αn1 = Uhn1 is the unitary transformed vector of hn1 by the transformation

U. Given that hn1 is an i.i.d complex Gaussian random vector with zero mean and

unit variance, αn1 is also a complex Gaussian random vector with zero mean, unit
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variance i.i.d elements, and we have

‖∆H‖2
F = trace

(
V

L

∑
n1=1

αn1gn1

L

∑
n2=1

gH
n2

α
H
n2

)

= trace

(
L

∑
n1=1

gH
n α

H
n1

V
L

∑
n2=1

αn2gn2

)

= ‖V1/2
L

∑
n=1

αngn‖2
F

=
R(∆)

∑
i=1

λi‖
L

∑
n=1

αn,ign‖2, (4.9)

where λ1, ...,λR(∆) are the non-zero eigenvalues of ∆H∆, R(∆) is the rank of ∆H∆,

and αn,i is the i-th element of αn. To investigate the distribution of ∑
R(∆)
i=1 λi‖∑

L
n=1 αn,ign‖2,

we derive the following Lemma:

Lemma 3. Let X =∑
R(∆)
i=1 λi‖∑

L
n=1 αn,ign‖2 and Y =∑

R(∆)
i=1 λi ∑

L
n=1 ‖gn‖2‖βi‖2, where

λi’s are some constants, and αn,i’s, βi’s, and gn’s are all i.i.d complex Gaussian

r.v.s with zero mean and unit variance, then the random variables X and Y are

identically distributed as well.

Proof. For presentation simplicity, we define

Xi ,
L

∑
n=1

gnαn,i, Yi ,

√
L

∑
n=1
‖gn‖2βi, (4.10)

hence

X =
R(∆)

∑
i=1

λi‖Xi‖2, Y =
R(∆)

∑
i=1

λi‖Yi‖2. (4.11)

It is clear that the conditional random variable Xi|g1, ...,gL is complex Gaussian,

with mean

E(Xi|g1, ...,gL) =
L

∑
n=1

gnE(αn,i) = 0, (4.12)

72



and variance

E(‖Xi‖2|g1, ...,gL)−‖(E(Xi|g1, ...,gL))‖2

=
L

∑
n=1
‖gn‖2E(‖αn,i‖2)− ∑

n1 6=n2

gn1gH
n2
E(αn1,iα

H
n2,i)

=
L

∑
n=1
‖gn‖2. (4.13)

Further, it is easy to see that the the conditional random variable Yi|g1, ...,gL is

complex Gaussian, with zero mean as well. Therefore Xi|g1, ...,gL and Yi|g1, ...,gL

identically distributed. This implies that the conditional random variables

X |g1, ...,gL =
R(∆)

∑
i=1

λi‖Xi|g1, ...,gL‖2, (4.14)

and

Y |g1, ...,gL =
R(∆)

∑
i=1

λi‖Yi|g1, ...,gL‖2, (4.15)

are also identically distributed. Consequently, the marginal distribution of X is

same as that of Y .

Lemma 3 states that the squared code distance of the MISO multi-keyhole

channel has the same distribution as that of the random variable Y . It provides

a useful theory for studying the PEP of the MISO multi-keyhole channel, as Y is

in a simpler form than X . More fortunately, since the random variable Y is also the

squared code distance in the MIMO single-keyhole fading [62], we directly can

have the following result:

Theorem 2. For any pair of code words in a space-time code, the code words

distance ‖∆H‖F as a random variable, is identically distributed in the MISO multi-

keyhole channel (with M transmitting antennas and L keyholes) and the MIMO

single-keyhole channel(with M transmitting antennas and L receiving antennas).

Therefore, for any space-time code, the MISO multi-keyhole and MIMO single-
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keyhole channels have the same PEP. With Theorem 2 and the PEP result from [62],

in the high SNR regime, for distinct λi’s, the PEP of general STC for the MISO

multi-keyhole channel is given by

PI(c→ e) .
=

C1

(
∏

R(∆)
i=1 λi

)−1
γ̄−R(∆), if L > R(∆);

C1

(
∏

R(∆)
i=1 λi

)−1
(ln γ̄)γ̄−R(∆), if L = R(∆);

C3 ∑
R(∆)
i=1

lnλi
λ L

i
∏ j 6=i

λi
λi−λ j

γ̄−L, if L < R(∆).

(4.16)

For identical λi’s, i.e. λi = λ , the PEP is given by

PI(c→ e) .
=


C1λ−R(∆)γ̄−R(∆), if L > R(∆);

C1λ−R(∆)(ln γ̄)γ̄−R(∆), if L = R(∆);

C2λ−R(∆)γ̄−L.

where

C1 =
Γ(1

2 +R(∆))
2
√

πΓ(1+R(∆))
× LR(∆)Γ(L−R(∆))

Γ(L)
, (4.17)

C2 =
Γ(1

2 +L)
2
√

πΓ(1+L)
× LLΓ(R(∆)−L)

Γ(R(∆))
, (4.18)

and

C3 =
Γ(1

2 +L)
2
√

πΓ(1+L)
× (−1)L−1× 1

Γ(L)
. (4.19)

Since the MISO multi-keyhole channel and MIMO single-keyhole channel share

the same form of error probabilities except a normalization factor, we can follow

the design criterion of the MIMO single-keyhole channel that has been studied in

[62] to design the codes for the MISO multi-keyhole channel. For the case that

L ≥M, the determinant criterion also applies to the MISO multi-keyhole channel,

and STCs that have good performances for the Rayleigh fading channel will also

have good performances for the MISO multi-keyhole channel. For the case that
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L < M, the code design criterion should be based on minimizing the expression

(−1)L−1
R(∆)

∑
i=1

lnλi

λ L
i

∏
i6= j

λi

λi−λ j
. (4.20)

We consider a simulation example for Theorem 2. Fig. 4.2 shows the simu-

lation results of the PDFs of the code word distance ‖∆H‖F for the MISO multi-

keyhole channel and the MIMO single-keyhole channel. The simulation uses an

code words pair for which

∆
H

∆
=

 2.16 0.23−0.23i 0.84

0.23+0.23i 1.68 −0.23−0.23i

0.84 −0.23+0.23i 2.16

 , (4.21)

which has eigenvalues of λ1 = 1, λ2 = 2 and λ3 = 3. We assume that there are L= 2

keyholes in the channel. The PDFs are compared in Fig. 4.2, and we can observe

that the distributions are identical. The simulations results on PEP are shown in

Fig. 4.3 for this code words pair. We can see that the analytical result in equations

(4.16) matches the simulated result very well for high SNR.

Remark: It is worth mentioning here that Theorem 2 holds for any distribution

of gn’s as long as the entries of hn’s are i.i.d complex Gaussian with zero mean. In

some propagation cases, however, the distribution of the code words distance may

not be identical in the MISO multi-keyhole channel and the MIMO single-keyhole

channel in general. For example, if the entries of hn’s are Nakagami-m, Lemma 3

will not hold. In this chapter, we assume Rayleigh fading for the sub-channels.

4.2.2 Convergence to the Rayleigh Channel

It has been verified from different aspects that the multi-keyhole channel which

generalizes the Rayleigh channel and the single-keyhole channel becomes Rayleigh

when the number of keyholes grows to infinity [69, 71]. Particularly, in [71] it is

shown that for sufficiently large number of keyholes, the capacity of multi-keyhole

MIMO channels approaches that of MIMO Rayleigh fading channels. In this sec-

tion, instead, we exam the convergence of the multi-keyhole channel from the

space-time code point of view, i.e. the distribution of code words distance and
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Figure 4.2: Simulated PDFs of the code word distances for the MISO multi-
keyhole channel and the MIMO single-keyhole channel. We can see
that the two PDFs are identically distributed. In the simulation, 5×106

samples are used. Here M = 3 and L = 2 and the eigenvalues of ∆H∆ in
(4.21) are λ1 = 1, λ2 = 2 and λ3 = 3.

the PEP performance.

As L→ ∞, the PEP expression in MISO multi-keyhole channel will take the

first case of (4.16), where

C1 =
Γ(1

2 +R(∆))
2
√

π
× LR(∆)

(L−1)× ...× (L−R(∆))

=
Γ(1

2 +R(∆))
2
√

π

R(∆)

∏
i=1

L
L− i

→ Γ(1
2 +R(∆))
2
√

π
, (4.22)
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Figure 4.3: Asymptotic and simulated PEPs in the MISO multi-keyhole
channel for the code words pair for which ∆H∆ is defined in (4.21).
Here M = 3, L = 2, and the eigenvalues are λ1 = 1, λ2 = 2 and λ3 = 3.

and

P(c→ e) .
=

Γ(1
2 +R(∆))
2
√

π

(
R(∆)

∏
i=1

λi

)−1

γ̄
−M. (4.23)

We note that (4.23) is also the asymptotic PEP for the MISO Rayleigh channel, so

the MISO multi-keyhole channel converges to the MIMO Rayleigh channel in the

sense of PEP. This convergence can also be seen by investigating the distribution

of the code words distance: when L grows to infinity, the normalized squared code

words distance is given by

lim
L→∞

‖∆H‖2
F

L
= lim

L→∞

∑
L
n=1 ‖gn‖2

L

R(∆)

∑
i=1

λi‖βi‖2 d−→
R(∆)

∑
i=1

λi‖βi‖2, (4.24)
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Figure 4.4: The PEP of the MISO multi-keyhole channel converges to the
PEP of the MISO Rayleigh channel when the number of keyholes grows
from 1 to 28.

which has the same distribution as that of the squared code distance of the MISO

Rayleigh channel [33]. The convergence in the sense of PEP is illustrated in Fig.

4.4, where M = 3 and the number of keyholes increases from L = 1 to L = 28.

4.3 Spatial Correlated Transmission Antennas
In the last section, we investigated the PEP performance of general space-time

codes when the transmission antennas are spatially independent in the MISO multi-

keyhole channel. In reality, however, individual antennas could be correlated due

to insufficient antenna spacing and lack of scattering [79–82]. For Rayleigh fading

channels, it has been shown that in the asymptotically high SNR regime, the trans-

mission correlations always degrade the PEP performance, while in the asymptoti-

cally low SNR regime, the transmission correlations may either improve or degrade
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the PEP performance[82].

For the multi-keyhole channel, the effect of transmission correlations in the

multi-keyhole channel has been investigated in [40, 69, 71, 72]. In particular, the

effect of correlations on the space-time codes has been investigated in [40]. Using

majorization relations of the correlation matrices, [40] showed that for orthogonal

space-time codes, the correlations will always degrade the PEP performance. The

results in [40], however, is only valid for orthogonal codes. In this section, we

study the PEP performance of general space-time codes when the transmission

antennas are not independent. We will show that, very different from orthogonal

codes, when the number of transmission antennas is greater than the number of

keyholes, the PEP performance of general space-time codes can be improved by

the transmission correlations in multi-keyhole conditions, even in the high SNR

regime. This depends on how the correlation matrix beamforms ∆.

Consider the following multi-keyhole channel model,

H = A
1
2

L

∑
n=1

hngn. (4.25)

Clearly Ai, j is the correlation between the overall propagation path from TXi to RX

and that from TX j to RX, and A severs as the correlation matrix for transmission

antennas because

E(HHH) = E

(
A

1
2

L

∑
n=1

hngn

L

∑
n=1

gH
n hH

n A
H
2

)

= A
1
2

(
E

(
‖gn‖2

L

∑
n=1

hnhH
n

)
+E

(
∑
i6= j

gigH
j hihH

j

))
A

H
2

= A. (4.26)

Then the squared code distance becomes

‖∆A
1
2

L

∑
n=1

hngn‖2
F =

R(∆A)

∑
i=1

ρi‖
L

∑
n=1

gnαn,i‖2, (4.27)

where ρi’s are the eigenvalues of the matrix A
H
2 ∆H∆A

1
2 . Using the result from
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Lemma 3, we have

‖∆A
1
2

L

∑
n=1

hngn‖2
F ∼

R(∆A)

∑
i=1

ρi

L

∑
n=1
‖gn‖2‖βi‖2. (4.28)

Consequently the asymptotic PEP when the transmission antennas are correlated

can be obtained by replacing λi’s by ρi’s in Equations (4.16) and (4.17).

Although the asymptotic PEP for correlated transmission antennas has been

obtained, our main question in this section, how a correlation matrix affects the

PEP performance, is still not clearly answered. To investigate the effect of trans-

mission correlations on the PEP performance, we first present the following facts

and inferences about the correlation matrix A and the code difference matrix ∆:

1. trace(A) = M, or equivalently,

M

∑
i=1

νi = M, (4.29)

where νi’s are the eigenvalues of A. This is because the total transmission

power is fixed.

2. (
M

∏
i=1

νi

)(
M

∏
i=1

λi

)
=

M

∏
i=1

ρi. (4.30)

This is from the fact that det(A
H
2 ∆H∆A

1
2 ) = det(A)×det(∆H∆)

In this chapter, we assume that the code construction achieves full rank, i.e. R(∆) =

M. We now start to analysis the effect of correlations on the PEP performance. We

consider the cases that M ≤ L and M > L separately.

4.3.1 Case 1: M ≤ L

We first consider the case that the number of transmission antennas is the same as

or less than the number of keyholes: M ≤ L.
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Theorem 3. In the MISO multi-keyhole channel, when L≥M, the spatial correla-

tions between transmission antennas always degraded the PEP performance in the

high SNR regime.

Proof. If A is rank deficient, because we assume that ∆H∆ is full rank, we have

R(A
H
2 ∆

H
∆A

1
2 )< R(∆H

∆), (4.31)

from the PEP given in Equation (4.16), we can see that this will result in a reduction

of the diversity order, hence the PEP performance is degraded. If A is of full rank,

it means ∏
M
i=1 νi 6= 0. By the AM-GM inequality,

M

∏
i=1

νi ≤
(

∑
M
i=1 νi

M

)M

= 1, (4.32)

therefore

M

∏
i=1

ρi ≤
M

∏
i=1

λi. (4.33)

Note that the equality only holds when A is an identity matrix. Therefore the PEP

is always degraded by transmission correlations for the case that M ≤ L.

It is worth to mention here that when the number of keyholes is greater than or

equal to the number of transmission antennas, the correlation effect on the MISO

multi-keyhole channel is similar to that on the MISO Rayleigh channel, since for

MISO Rayleigh channel, the correlations always degrade the PEP performance in

the asymptotic high SNR regime as well [82]. One intuitive explanation is that

when the number of the keyholes is much larger than the number of transmission

antennas, the MISO multi-keyhole channel behaves more like a Rayleigh channel.

However, when M > L, the channel behaves more sophisticated and we will show

in the next section that the correlations sometimes can improve the PEP perfor-

mance.
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4.3.2 Case 2: M > L

To show how the transmission correlation matrix affects the PEP performance

when the number of transmission antennas is larger than the number of keyholes,

we first give the following Lemma:

Lemma 4. Let λi be real for i∈{1,2, ...,M} and λ̄ = ∑
M
i=1 λi
M . Let Xi, i∈{1,2, ...,M}

be a set of i.i.d random variables, Y be another random variable which is indepen-

dent with Xi’s, then we have

E

(
f

(
Y

M

∑
i=1

λ̄Xi

))
≤ E

(
f

(
Y

M

∑
i=1

λiXi

))
, (4.34)

where f (·) is a convex function. The equality sign holds when λi = λ̄ for all i ∈
{1,2, ...,M}.

Proof. To prove (4.34), we first prove that (4.34) holds for any fixed value of Y ,

i.e.

E

(
f

(
y

M

∑
i=1

λ̄Xi

))
≤ E

(
f

(
y

M

∑
i=1

λiXi

))
, (4.35)

where y is any possible value that the random variable Y can take. It is easy to see

that (4.35) implies (4.34).

For presentation simplicity, let

X = y
M

∑
i=1

λ̄Xi, (4.36)

W = y
M

∑
i=1

λiXi, (4.37)

and

Z = X−W. (4.38)

Based on the form of X , it is easy to see that the conditional random variables Xi|X ,
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i ∈ {1, ...,M}, are identically distributed, which implies

E(X1|X) = E(X2|X) = · · ·= E(XM|X). (4.39)

Therefore

E(Z|X) =
M

∑
i=1

λ̄E(Xi|X)−
M

∑
i=1

λiE(Xi|X)

= E(X1|X)

(
M

∑
i=1

λ̄ −
M

∑
i=1

λi

)
= 0. (4.40)

Since f (·) is convex, by Jensen’s inequality we have

E( f (X−Z)|X)≥ f (E((X−Z)|X))

= f (X−0) = f (X) (4.41)

Therefore

E( f (W )) = E(E( f (X−Z)|X))≥ E( f (X)), (4.42)

and consequently (4.34) holds.

Now we present the main result for the effect of correlations on the PEP per-

formance when M > L:

Theorem 4. In MISO multi-keyhole channel, for any pair of code words, if we can

find some integer K between 1 and M−L−1, i.e. 1≤ K ≤M−L−1 such that

λ̄
L

(
M

∑
i=K+1

λ
−1
i
M

)L

<
Γ(M−L)Γ(M−K)

Γ(M)Γ(M−K−L)
, (4.43)

then there always exist correlation matrices that can improve the PEP perfor-

mance in the asymptotic high SNR regimes. Here 0 ≤ λ1 ≤ λ2 ≤ ·· · ≤ λM are

the eigenvalues of ∆H∆ in ascending order, and λ̄ is their average.

Proof. Referring back to Equation (4.5) and the squared code words distance for

independent transmission antennas ‖∆H‖2
F ∼ ∑

M
i=1 λi ∑

L
n=1 ‖gn‖2‖βi‖2, using the
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result from Lemma 4, we have the PEP for independent transmission antennas

been bounded as follows in the high SNR regimes:

PI(c→ e)≥ Γ(1
2 +L)

2
√

πΓ(1+L)
× LLΓ(M−L)

Γ(M)
λ̄
−L

γ̄
−L. (4.44)

Suppose the Eigendecompostion of ∆H∆ is UVUH , we consider the following class

of correlation matrices for which A
1
2 has singular value decomposition as

A
1
2 = US

1
2 DH , (4.45)

where D is a unitary matrix and the diagonal matrix S with Si,i = νi satisfies the

power constraint: ∑
M
i=1 νi = M. It follows that

‖∆A
1
2

L

∑
n=1

hngn‖2
F = ‖∆US

1
2 D

H L

∑
n=1

hngn‖2
F

= ‖V 1
2 S

1
2 DH

L

∑
n=1

hngn‖2
F . (4.46)

From the derivation for the independent case in Equation (4.8), it is easy to see that

DH
∑

L
n=1 hngn and ∑

L
n=1 hngn are identically distributed. Therefore

‖∆A
1
2

L

∑
n=1

hngn‖2
F ∼

R(A)

∑
i=1

ρi

L

∑
n=1
‖gn‖2‖βi‖2, (4.47)

where

ρi = νiλi (4.48)

for all ρi’s. Now we can have a correlation matrix A such that

ν1 = ν2 = · · ·= νK = 0, (4.49)

and

νK+1, · · · ,νM > 0. (4.50)
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If we pose another constraint on νi such that the non-zero eigenvalues of A
H
2 ∆H∆A

1
2

are identical:

ρK+1 = ρK+2 = · · ·= ρM, (4.51)

we have

ρK+1 = ρK+2 = · · ·= ρM = M

(
M

∑
i=K+1

1
λi

)−1

. (4.52)

At the high SNR regime, the PEP respective to A
H
2 ∆H∆A

1
2 becomes

PA(c→ e) =
Γ(1

2 +L)
2
√

πΓ(1+L)
LLΓ(M−K−L)

Γ(M−K)
M−L

(
M

∑
i=K+1

1
λi

)L

γ̄
−L. (4.53)

Therefore PA(c→ e) < PI(c→ e) if (4.43) holds, i.e. the correlation matrix A
defined in (4.45) improves the PEP performance.

4.3.3 Examples and Simulations

In this section, we provide an example and perform Monte Carlo simulations for

Theorem 3 and Theorem 4.

Example We consider a certain pair of code words for which

∆
H

∆ =

 2 −0.95+0.029i −0.95−0.029i

−0.95−0.029i 2 −0.95+0.029i

−0.95+0.029i −0.95−0.029i 2

 , (4.54)

the eigenvalues are λ1 = 0.1, λ2 = 2.9 and λ3 = 3. Suppose L = 1, and we select

K = 1, it appears that

λ̄
L

(
M

∑
i=K+1

λ
−1
i
M

)L

= 2
(

1/2.9+1/3
3

)
= 0.45, (4.55)
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and

Γ(M−L)Γ(M−K)

Γ(M)Γ(M−K−L)
=

Γ(3−1)Γ(3−1)
Γ(3)Γ(3−1−1)

= 0.5. (4.56)

By Theorem 4, there exist some correlation matrices that can improve the PEP

performance. One of such matrices can be given by

A = ν1u1u1
H +ν2u2uH

2 +ν3u3uH
3 , (4.57)

where

ν1 = 0, (4.58)

ν2 =
M
(

∑
M
i=K+1

1
λi

)−1

λ2
= 1.525, (4.59)

ν3 =
M
(

∑
M
i=K+1

1
λi

)−1

λ3
= 1.475, (4.60)

and u1, u2, u3 are the eigenvectors of ∆H∆. The correlation matrix that can improve

the PEP is

A1 =

 1 −0.5−0.0144i −0.5+0.0144i

−0.5+0.0144i 1 −0.5−0.0144i

−0.5−0.0144i −0.5+0.0144i 1

 . (4.61)

In this example, we can see that the transmission correlations defined by A1 can

bring about 1.5 dB gains for the PEP performance, which is illustrated by the

square line in Fig. 4.5. We consider another correlation matrix A2 that has the

same eigenvectors as that of (4.61) but different eigenvalues: ν1 = 1.8, ν2 = 0.7

and ν3 = 0.5. For this correlation matrix A2, we can see that the transmission cor-

relations degrade the PEP performance, as illustrated by the PEP curve (marked by

circle) in Fig. 4.5. Further, with the same code words, but with different number of
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Figure 4.5: The effect of transmission correlations on the MISO multi-
keyhole channel for the case that L < M. This figure demonstrates the
example for Theorem 4: in the asymptotically high SNR regime, for
the case that L < M, the correlation matrix can either improve the PEP
or degraded the PEP, depending on how the correlation matrix beam-
forms the code words difference matrix. In this example, correlation
matrix A1 improves the PEP performance, while the correlation matrix
A2 degrades the PEP performance.

keyholes (L = 4), however, as shown in Fig. 4.6, we see that the PEP performance

is degraded by both A1 and A2 .

It is worth mentioning here that when the space-time code is orthogonal (i.e.

all the eigenvalues of ∆H∆ are identical), Theorem 4 will never be satisfied since

Lemma 4 implies that the transmission correlations always degrade the PEP per-

formance for orthogonal codes, this is consistent with the result in [40], where

majorization was used to show this property for orthogonal code in the MIMO

multi-keyhole channel. The effects of transmission correlations on the PEP perfor-
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Figure 4.6: The effect of transmission correlations on the MISO multi-
keyhole channel for the case that L ≥M. This figure demonstrates the
example for Theorem 3: in the asymptotically high SNR regime, for
the case that L ≥M, transmission correlations always degrade the PEP
performance. In this example, when L = 4, both A1 and A2 degrade the
PEP performance.

.

mance for the multi-keyhole and Rayleigh channels are compared in Table 4.1. We

can see that transmission correlations play different roles on the PEP performances

of the multi-keyhole channel and the Rayleigh channel.

In addition, we compare the OSTBC performance of the backscatter RFID

channel with that of the multi-keyhole channel in Table 4.2. Clearly these two

channels have entirely different performance behaviors.
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Table 4.1: The effects of transmission correlations on the PEP performances
of the multi-keyhole and Rayleigh channels in the asymptotically high
SNR regimes.

Type of STC Rayleigh Multi-keyhole
Orthogonal Always degrades [82] Always degrades [40]
Non-orthogonal Always degrades [82] M≤ L, always degrades (Our re-

sult, Theorem 3 in this chapter);
M > L, may either degrade or
improve (Our result, Theorem 4
in this chapter)

Table 4.2: Performance comparisons between the backscatter RFID and
multi-keyhole channels for orthogonal space-time codes in the MISO
case.

Backscatter RIFD
with uniform query

Backscatter RIFD
with unitary query

Multi-keyhole

Diversity Order or
the new measure in
Theorem 1

L (diversity order) ∑
T
t=1 min(1,L∗t )

(new measure)
min(M,L) (diver-
sity order)

4.4 Conclusion
In this chapter, we analytically studied the performance of STCs in multi-keyhole

channels, and revealed a few interesting properties of this channel. We proved

that, for any STC, the code words distances in the MISO multi-keyhole channel

(M transmitting antennas, L keyholes, and one receiving antenna) and the MIMO

single-keyhole channel (one keyhole, M transmitting antenna and L receiving an-

tennas) have identical distributions. We also considered the case when spatial

correlations are present between transmission antennas. We showed that, in the

asymptotically high SNR regimes, when M ≤ L, the transmission correlations al-

ways degrade the PEP performance; when M > L, depending on how the correla-

tion matrix beamforms the code words difference matrix ∆, the PEP performance

can either be degraded or improved. Particularly, we proved that if the eigenval-

ues of ∆ satisfy certain conditions, there always exist correlation matrices that can

improve the PEP. We provided one form of such correlation matrices. Our re-
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sults in this chapter also showed that the backscatter RFID channel, which has a

query-fading-signaling-fading structure, and the multi-keyhole channel, which has

a signaling-fading-fading structure, have completely different performance behav-

iors.
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Chapter 5

Summary and Future Work

In this chapter, we summarize the main results obtained in this dissertation and

suggest a number of future topics based on the research in this dissertation.

5.1 Summary of Results
In this dissertation, we have addressed a few main challenges that researchers en-

countered in the performance analysis and design of backscatter RFID channels.

These challenges come from the unique query-fading-signaling-fading structure of

the backscatter RFID channels. When compared with the signaling-fading struc-

ture of conventional point-to-point channel models, the performance analysis and

design of MIMO backscatter RFID channels face more challenges.

In Chapter 2, we first provided a mathematical modeling of this specific MIMO

structure which considered all aspects of the backscatter RFID channels at the

physical layer: the query signals, the forward channels, the tag signaling, and the

backscattering channels. This modeling shows that the backscatter RFID channel

has radically different fading structure and signaling mechanism when compared

with a conventional one-way point-to-point wireless channel. We then investigated

the simplest mechanism: the reader transmitters employ the uniform query and the

tag employs the identical signaling scheme. Different from the case of conven-

tional one-way point-to-point wireless channel, it was shown by simulations that

the identical signaling scheme can significantly improving the BER performance
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in RFID for some antenna settings. For the first time in the literature, in Chap-

ter 2, we gave a rigorous mathematical analysis to reveal the underlying structure

of the identical signaling scheme for backscatter RFID channels, and answered

the fundamental question why identical signaling can sometimes improve the BER

performance in RFID channels by showing that there is a bottleneck for backscatter

RFID channels. The results in Chapter 2 can be used to help the design of simple

but still effective backscatter RFID systems.

In Chapter 3, we considered more complicated cases. First, we considered the

case that the tags employ the orthogonal space-time code, while the reader still em-

ploys the uniform query. For this case, we provided a general formulation for SER

performance analysis, and this formulation is applicable to any sub-channel fad-

ing assumptions. Using this formulation, we analytically studied the SER perfor-

mances for Rician and Nakagami-m sub-channels, and derived asymptotic SERs in

closed form. We also generalized the PEP performance analysis to general space-

time codes by providing a PEP performance upper bound that the backscatter RFID

structure could ever achieve. For this case, we find that the diversity order is L for

Rician fading and is Lmin(m f ,Nmb) for Nakagami-m fading. We suggest that us-

ing two receiving antennas (N = 2) is recommended in practice since N = 2 can

capture most of the receiving side gain regardless of the number of tag antennas

L. We also suggest that more design attention should be given to the forward links

in RFID, because we found that the performance of the backscatter RFID chan-

nel is more sensitive to the channel condition (the K factor or the m parameter) of

the forward link than that of the backscattering link. Second, we considered the

case that the tags employ general space-time codes, while the reader employs the

proposed unitary query. We proved that the proposed unitary query can improve

the PEP performance of backscatter RFID systems significantly for some antenna

settings and some space-time codes. We analytically studied the performance of

the proposed unitary query with general space-time code. Different from the tra-

ditional uniform query in MIMO backscatter RFID, which cannot provide either

time or spatial diversity, for the first time in RFID, we showed that in quasi-static

channels, the unitary query can provide time diversity via multiple reader trans-

mitting antennas for some antenna settings and some space-time codes, and hence

improve the PEP performance significantly. Due to the query-fading-signaling-
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fading structure of the backscatter RFID channel, the PEP and the diversity order

are not analytically trackable for the unitary query with general space-time. We

therefore provided a new measure for the performance analysis, and the proposed

measure can compare the performance of the unitary query with that of the uniform

query, for any space-time codes. Based on the results in this chapter, we can deter-

mine for which antenna settings the unitary query at the reader transmitter end can

yield significant performance improvements. Such results could guide us to design

high performance RFID systems at lower cost.

In Chapter 4, we analytically studied the PEP performance of space-time codes

in multi-keyhole channels, which have a signaling-fading-fading structure. The

main motivation for this chapter is to answer the question whether there is any

performance behavior difference between the backscatter RFID and multi-keyhole

channels since both types of channels have cascaded forms, which look similar.

Particularly, we analytically studied the performance of general space-time codes

for multi-keyhole channels in the MISO case. We also considered the case when

spatial correlations are present between transmission antennas in multi-keyhole

channels. The results in this chapter clearly showed that the backscatter RFID

channel, which has a query-fading-signaling-fading structure, and the multi-keyhole

channel, which has a signaling-fading-fading structure, have completely different

performance behaviors.

5.2 Future Work
In this section, we suggest a few future research directions based on the contents

of this dissertation.

5.2.1 Explore the Time Diversity Brought by the Unitary Query

The fundamental reason that the unitary query proposed in this dissertation can

significantly improve the BER performance for some antenna settings is that it can

diversify the channel gains over time in a slow fading environment. Therefore,

there is a huge potential for performance improvements by exploring this time

diversity. An immediate idea is that simple repetition codes, which cannot help

too much in conventional slow faded non-backscatter channels, are expected to
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yield superior performances when employed together with the unitary query in

backscatter RFID channels. The joint design of unitary query and repetition code

can be very attractive for RFID systems, which often prefer less complex hardware

and lower cost. For example, suppose we have the following design requirements:

only have one antenna at each tag; a low BER is required; and a lower transmission

data rate is acceptable. For this case, a repetition code with factor 2 with a simple

2× 1× 1 channel can achieve a better performance (e.g., a measure of 2 based

on the proposed new measure) with the unitary query, but the uniform query can

never achieve a measure of 2 even if a large number of antennas are deployed

at the reader. There are many time diversity techniques that we can explore for

backscatter RFID systems with the unitary query at the reader transmitter end.

5.2.2 Non-Coherent Schemes for the Unitary Query

For coherent detections, channel estimation poses a large overhead for the backscat-

ter RFID channel when employing the unitary, as the channel has one more oper-

ational end. For the unitary query and general space-time coding, the reader has

to estimate the channel state information for MLN branches, and this will decrease

the system efficiency, which might be crucial for some RFID systems. Fortunately,

we can consider alternatively schemes based on non-coherent transmission and

detections [83] for the backscatter RFID with unitary query. As the fundamen-

tal reason for the superior performance of unitary query is that it diversifies the

forward fading over time slots by using multiple reader transmitting antennas, the

unitary query must also be able to bring similar performance enhancement for non-

coherent transmissions. Non-coherent transmissions and detections can not only

avoid the large overhead for channel estimation, but also requires low complexity

and low cost tags and readers.

5.2.3 General Query for the Backscatter RFID

In Chapter 3 we proposed unitary query and showed that there are significant per-

formance improvement for some antenna settings. However, sometimes with hard-

ware constraints, the unitary query may not be available. For instance, when T is

larger than the number of query antennas, the time diversity cannot be fully ex-
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ploited by the unitary matrix. Therefore it is necessary to give an analytical study

of the PEP performance for any arbitrary query matrix. With hardware constraints,

jointly design of space-time codes and query matrices can help to decide the trade-

off between the complexity of the hardware and the performance of the backscatter

RFID system. Intuitively, the performance measure for general query matrix can

be a linear combination of some form of the measure for the unitary query and that

of the uniform query, while this still need to be confirmed by mathematical proof

in future work.

5.2.4 Optimal Query Antenna Selection

We consider a query method for which if there exists a i ∈ {1, · · · ,M}, such that

‖h f
i,l‖ ≥ ‖h

f
m,l‖ for all m ∈ {1, · · · ,M} and for all l ∈ {1, · · ·L} over T time slots,

then the reader allows only the i-th query antenna (we call the i-th query antenna

the optimal query antenna) to send the query signals over the current T time slots,

otherwise the reader still employs unitary query. It can be shown that this optimal

query antenna selection method will yield even a better PEP performance than that

of the unitary query. With the assumption that the forward channels are i.i.d., the

probability that the optimal query antenna exists is given by

M
ML =

1
ML−1 . (5.1)

Except the case when L = 1, there is no guarantee that the optimal query antenna

exists. So the PEP that for the above query method is given by

PEPopt =
1

ML−1 PEP∗opt +
ML−1−1

ML−1 PEPunitary, (5.2)

and bounded by

1≥ PEPopt

PEPunitary
≥ ML−1−1

ML−1 , (5.3)

where PEPopt, PEP∗opt and PEPunitary are the PEP for the optimal query antenna se-

lection, the PEP when the optimal query antenna exists and the PEP for the unitary

query, respectively. It is expected that a few dB gains can be brought by the op-
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timal query antenna selection method, compared with the unitary query method.

The cost of this method is the overhead for the channel estimation, which is the

same as that of the unitary query in the coherent detection case.
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Appendix A

Derivations

A.1 Chapter 2 Derivations
Proof of Proposition 1. Let A = 1+ ¯̄γ ∑

L
l=2 αl , then

∫
∞

α1=0

exp(−α1)

A+ ¯̄γα1
dα1 =

∫
∞

α1=0

exp
(
−α1− A

¯̄γ

)
¯̄γ
(

α1 +
A
¯̄γ

) e
A
¯̄γ d
(

α1 +
A
¯̄γ

)

=
e

A
¯̄γ

¯̄γ

∫
∞

α ′1=
A
¯̄γ

exp(−α ′1)
α ′1

dα
′
1 =

e
A
¯̄γ

¯̄γ
E1

(
A
¯̄γ

)
. (A.1)

where α ′1 = α1 +
A
¯̄γ and E1(x) =

∫
∞

t=x e−t/tdt is a special function called the expo-

nential integral [44].
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Now we have

∫
∞

α2=0
· · ·
∫

∞

αL=0

e
1
¯̄γ

¯̄γ
E1

(
1+ ¯̄γ ∑
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¯̄γ
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=
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∫
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dt

=
e

1
¯̄γ

¯̄γ

∫
∞
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¯̄γ

tL dt =
e

1
¯̄γ

¯̄γ
EL

(
1
¯̄γ

)
.
=

{ ln( ¯̄γ)
¯̄γ , if L = 1;
1

(L−1) ¯̄γ , if L > 1.
(A.2)

The last step is obtained by the asymptotic property of the generalized exponential

integral EL(·) [44].

Proof of Proposition 2.

∫
∞

α=0

(
1

1+ ¯̄γα

)N

exp(−α)dα

=
∫

∞

x=1

exp
(
− x

¯̄γ
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(

1
γ

)(
1
¯̄γN

)
(

x
γ

)N
dx
¯̄γ

=
∫

∞

x′= 1
¯̄γ

1
x′N

exp(−x′)exp
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1
¯̄γ

)
1
¯̄γN dx′

=
EN

(
1
¯̄γ

)
¯̄γ

exp
(

1
¯̄γ

)
(A.3)

where x = 1+ ¯̄γα , and x′ = x
¯̄γ . The asymptotic expression is just like that in Propo-

sition 2.
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Proof for Proposition 3. Let A = 1+ ¯̄γ ∑
L
l=2 αl and

exp

(
−

L

∑
l=2

αl

)∫
∞

α1=0

1
(A+ ¯̄γα1)N exp(−α1)dα1

= exp
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¯̄γ

)
AN−1 ¯̄γ

exp
(

A
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1
¯̄γ

) EN

(
A
¯̄γ

)
AN−1 ¯̄γ

, (A.4)

where EN(z)=
∫

∞

t=1
e−zt

tN dt is the generalized exponential integral. Using the relation

that EN(z) = 1
N−1(e

−z− zEN−1(z)) [44] we can prove that

EN(z) =
(−1)N−1zN−1E1(z)

(N−1)!
+

N−1

∑
i=1

(−1)i−1(N−1− i)!zi−1e−z

(N−1)!
(A.5)

then

GN,L( ¯̄γ) =
∫

∞
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· · ·
∫
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i=1
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(N−1)! ¯̄γ i G(N−i),(L−1)( ¯̄γ)
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G1,L( ¯̄γ)−

N−1

∑
k=1

(k−1)!
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Gk,(L−1)( ¯̄γ). (A.6)

The last step is obtained by changing the index, i.e. k = N− i.
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Proof of Proposition 4. Case 1: N > L

We apply mathematical induction to prove this property. It is easy to show that

GN,1 is valid for (2.23), suppose for L = j the argument is valid and our goal is to

show for L = j+1 < N it is still valid. We have

GN,( j+1)( ¯̄γ) =
1

(− ¯̄γ)N−1(N−1)!
G1( j+1)( ¯̄γ)−

N−1

∑
k=1
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Gk j( ¯̄γ)

.
=− 1

(− ¯̄γ)N(N−1)!( j+1)
−

N−1

∑
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(− ¯̄γ)N−k(N−1)!

Gk j( ¯̄γ)

.
=− 1

(− ¯̄γ)N(N−1)!( j+1)
− (N−2)!

(− ¯̄γ)1(N−1)!
G(N−1) j( ¯̄γ)

.
=− 1

(− ¯̄γ)N(N−1)!( j+1)
+

(N−2)!
¯̄γ(N−1)!

× 1
(N−2) · · ·(N−1− j) ¯̄γ j

.
=− 1

(− ¯̄γ)N(N−1)!( j+1)
+

1
(N−1) · · ·(N−1− j) ¯̄γ j+1

.
=

1
(N−1) · · ·(N−1− j) ¯̄γ j+1 . (A.7)

Therefore (2.23) is valid for N > L.

Case 2: N = L

For N = 1 and L = 1 it is easy to show (2.23) is valid for N > L. Now we need to

show that (2.23) is still valid for N = L = j+1.

G( j+1),( j+1)( ¯̄γ) .
=

1
(− ¯̄γ) j j!

G1,( j+1)( ¯̄γ)−
j

∑
k=1

(k−1)!
(− ¯̄γ) j+1−k j!

Gk, j( ¯̄γ)

.
=− 1

(− ¯̄γ) j+1 j! j
−

j

∑
k=1

(k−1)!
(− ¯̄γ) j+1−k j!

Gk, j( ¯̄γ). (A.8)

Since for k < j, Gk, j( ¯̄γ) ∝
1
¯̄γk and for k = j Gk, j( ¯̄γ) ∝

ln( ¯̄γ)
¯̄γ j , we have

G( j+1),( j+1)( ¯̄γ) .
=− 1

(− ¯̄γ) j+1 j! j
− ( j−1)!

(− ¯̄γ) j+1− j j!
G j, j( ¯̄γ)

.
=

ln( ¯̄γ)
j! ¯̄γ j+1 . (A.9)

Case 3: N < L
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A similar approach as that of Case 1 can be obtained for this case, therefore we

omit the details here.

A.2 Chapter 3 Derivations

A.2.1 Derivations for Rician Fading

The PDF of the forward channel which follows the Rician distribution (normalized

channel energy) is

f (αl) = (K f +1)e−K f−(K f +1)αl
∞

∑
m=0

(K f (K f +1)αl)
m

(m!)2 (A.10)

where the equality is given by the Taylor expansion of the modified Bessel function

of the first kind (i.e. I0(·)). We can expand the conditional MGF G( ¯̄γ|αl) as

Gl( ¯̄γ|αl) =

(
− Kb +1

Kb +1+ ¯̄γαl

)N ∞

∑
i1=0

1
i!

(
NKbγ̄αl

Kb +1+ γ̄αl

)i

(A.11)

Therefore averaging Gl( ¯̄γ|αl) over the density of αl gives

Gl( ¯̄γ) =
∫

∞

αl=0
f (αl)G( ¯̄γ|αl)dαl

=
∫

∞

αl=0

(
Kb +1

Kb +1+ ¯̄γαl

)N ∞

∑
i=0

1
i!

(
− NKbγ̄αl

Kb +1+ ¯̄γαl

)i

× (K f +1)e−K f−(K f +1)αl
∞

∑
m=0

(K f (K f +1)αl)
m

(m!)2

=
∞

∑
m=0

∞

∑
i=0

D1Dm
2 Di

3
i!(m!)2

¯̄γ i
∫

∞

αl=0
α

m+i
l (K1 + ¯̄γαl)

−(N+i)

× exp(−K2αl)dαl

=
∞

∑
m=0

∞

∑
i=0

D1Dm
2 Di

3
i!(m!)2

¯̄γ iF( ¯̄γ,N′,m′) (A.12)
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where D1 = (K f +1)e−K f (Kb +1)N , D2 = K f (K f +1), K1 = Kb +1, K2 = K f +1

and D3 =−NKb. For presentation simplicity we define the function

F( ¯̄γ,N′,m′) =
∫

∞

αl=0
α

m+i
l (K1 + ¯̄γαl)

−(N+i)e−K2αl dαl

=
(m′−1)!K−N′

1 K−m′
2

(m′−1)!

×
∫

∞

y=0

(
1+

¯̄γ
K1K2

y
)−N′

e−yym′−1dy (A.13)

where we use change of variable to obtain the second line: y=K2αl , m′=m+ i+1,

N′=N+i where the function M(K1K2
¯̄γ ,N′,m′)= 1

(m′−1)!

∫
∞

y=0

(
1+

¯̄γ
K1K2

y
)−N′

e−yym′−1dy

was well studied in [52] and has a closed form of

M( ¯̄γ,N′,m′) =
e

K1K2
¯̄γ

(
K1K2

¯̄γ

)N′

(m′−1)!

m′−1

∑
j=0

(
m′−1
j

)
×
(
−K1K2

¯̄γ

)m′−1− j

Γ

(
j−N′+1,

K1K2
¯̄γ

)
(A.14)

where Γ(., .) is the incomplete gamma function. Substitute (A.14) back to (A.13)

and (A.12) we obtain (3.12).

Proof of the asymptotic form:

The asymptotic form can be obtained when only considering the terms associated

with the lower terms of m in the exact form. This is because the lower order of the

PDF of αl determines the asymptotic performance when SNR is large.

Case 1: N > 1

M( ¯̄γ,N′,m′) has an asymptotic form for large ¯̄γ [52]

M( ¯̄γ,N′,m′) .
=


ln
(

¯̄γ
K1K2

)
(m′−1)!

(
¯̄γ

K1K2

)m′ if m′ = N′;

(a−b−1)!

(a−1)!
(

¯̄γ
K1K2

)b if m′ 6= N′;
(A.15)

where a=max(m′,N′) and b=min(m′,N′). With m= 0 we have a=max(m′,N′)=
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N + i, b = min(m′,N′) = i+1 and

F( ¯̄γ,N′,m′) =(m′−1)!K−N′
1 K−m′

2 M( ¯̄γ,N′,m′)

.
=

(a−b−1)!

(a−1)!
(

¯̄γ
K1K2

)b (m
′−1)!K−N′

1 K−m′
2

=
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(N + i−1)!
(

¯̄γ
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)1+i i!K−N′
1 K−i−1′

2

=
(N−2)!

(N + i−1)! ¯̄γ i+1 i!K1−N
1 (A.16)

Substitute the asymptotic form of F( ¯̄γ,N′,m′) back to (A.12), we have the asymp-

totic form of Gl( ¯̄γ) as

Gl( ¯̄γ,m = 0) .
=

∞

∑
i=0

D1Di
3

i!
¯̄γ ii!

(N−2)!
(N + i−1)!
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1

=
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∑
i=0
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3
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(N + i−1)! ¯̄γ

K1−N
1 (A.17)

multiplying Gl( ¯̄γ,m = 0) by DN−1
3 KN

1
¯̄γ

(N−2)!D1
yields

DN−1
3 KN

1
¯̄γ

(N−2)!D1
Gl( ¯̄γ,m = 0) .

=
∑

∞
i=0 DN+i−1
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=
∞

∑
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3

j!
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∑
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j!
−
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3
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(A.18)

therefore,

Gl( ¯̄γ,m = 0) .
=

∑
∞
i=0 DN+i−1

3
(N + i−1)!

=
∞

∑
j=0

D j
3
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∑
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D j
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∑
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D j
3
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D1D−N+1

3 K1−N
1

¯̄γ−1. (A.19)

For m > 0, M( ¯̄γ,N′,m′) = o( ¯̄γ−b) ≤ o( ¯̄γ−2), the terms for m > 0 can be ignored
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since Gl( ¯̄γ,m = 0) = o( ¯̄γ−1)>> o( ¯̄γ−2) for large SNR. Therefore we have

Gl( ¯̄γ) .
=Gl( ¯̄γ,m = 0) .

=
∑

∞
i=0 DN+i−1

3
(N + i−1)!

=
∞

∑
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D j
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−
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∑
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3
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∑
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D j
3
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)
D1D−N+1

3 K1−N
1

¯̄γ−1. (A.20)

Case 2: N = 1

With m = 0 since m′ = N′, we have a = b = i+1 and

F( ¯̄γ,N′,m′) .
=

ln
(

¯̄γ
K1K2

)
(

¯̄γ
K1K2

)i+1 K−i−1
1 K−i−1

2 =
ln
(

¯̄γ
K1K2

)
( ¯̄γ)i+1 . (A.21)

substituting it back to Gl( ¯̄γ,m = 0) yields

Gl( ¯̄γ,m = 0) =
∞

∑
i=0

D1Di
3ri

i!
F( ¯̄γ,N′,m′)

.
=D1 ln( ¯̄γ) ¯̄γ−1

∞

∑
i=0

Di
3

i!

=D1eD3(ln ¯̄γ− ln(K1K2)) ¯̄γ−1. (A.22)

For m > 1, we have a = m+ i+1 and b = N + i = 1+ i and

Gl( ¯̄γ,m > 1) =
∞

∑
m=0

∞

∑
i=0

D1Dm
2 Di

3
i!(m!)2

¯̄γ iF( ¯̄γ,N′,m′) (A.23)

F( ¯̄γ,N′,m′) =(m+ i)!
(a−b−1)!

(a−1)!
(

¯̄γ
K1K2

)b K−b
1 K−a

2

=m!K−m
2

¯̄γ−i−1, (A.24)
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substitute it back to Gl( ¯̄γ,m > 1) we have

Gl( ¯̄γ,m > 1) .
=

∞

∑
m=1

∞

∑
i=0

D1Dm
2 Di

3
¯̄γ i

i!(m!)2 F( ¯̄γ,N′,m′)

=
∞

∑
m=1

¯̄γ−1K−m
2 D1Dm

2

∞

∑
i=0

Di
3

i!

=D1(eK f −1)eD3 ¯̄γ−1. (A.25)

Combining (A.22) and (A.25) yields

Gl( ¯̄γ) .
= D1eD3

(
ln( ¯̄γ)−1+ eK f − ln(K1K2)

)
¯̄γ−1. (A.26)

A.2.2 Derivations for Nakagami-m Fading

Let y = m f αl , the MGF can be written as

Gl( ¯̄γ) =
∫

∞

y=0

(
1+

¯̄γ
m f mb

y
)−mbN

×
mm f

f

Γ(m f )
ym f−1(m f )

−m f+1 exp(−y)d
(

y
m f

)
=
∫

∞

y=0

(
1+

¯̄γ
m f mb

y
)−mbN ym f−1 exp(−y)

Γ(m f )
dy, (A.27)

by using the result of (A.14), we obtain (3.18). The asymptotic form (3.19) can be

obtained by using (A.15).
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