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Abstract

Let K be an algebraically closed field, and let C be an irreducible plane curve,
defined over the algebraic closure of K(t), which is not defined over K. We
show that there exists a positive real number ¢ such that if P is any point on
the curve C whose Weil height is bounded above by c¢g, then the coordinates
of P belong to K.
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Chapter 1

Introduction

1.1 Generalities and preliminaries

Throughout our study in number theory, we would like to determine the
degree of complexity of numbers. The theory of heights provides us with
the tools to study numbers in this setting. In order to understand what a
height function is, we could consider the elementary exponential height on
the rationals. This type of height may be extended to finite extensions of
the rationals and even further to function fields over number fields. In the
work ahead, we consider heights for points on affine varieties. We denote
by k the algebraic closure of a field k. We assume that the reader has an
understanding of general valuation theory [4], Galois theory [1], and basic
algebraic geometry [1]. We will review valuation theory over function fields
K(t) and its finite extensions, as well as the basic definitions and properties
of the height function in this setting. Throughout our study, we will assume
the base field K to be algebraically closed.



1.2 Motivation

The main focus of study ahead regards that of plane curves. We define

k[X] = k[x1,. .., x,] for some field k and consider the following definition.

Definition 1.2.1. An affine variety V over a field k is the set of common zeros

of a collection of polynomials fi(X),..., fn(X).

If n =2 and m = 1, we define the variety V as a plane curve C =
{(z,y) € E2|f(x,y) = 0}. As long as the polynomial f(X,Y) € k[X,Y] is
non-constant, C is non-empty. The choice for the field k could be any field,
in particular the field of rational functions K (t) for some constant field K.
We would like to study whether or not there exists a positive lower bound
for the height of a point on a plane curve defined over the algebraic closure
of a function field K(t). For k = F,(t), Ghioca proved in [3] the following:

Theorem 1.2.2. Let X be an affine subvariety of A™ defined over F,(t).
Let Y be the Zariski closure of X(F,). There exists a positive constant C

depending only on X such that if P € X(F,(t)) and h(P) < C, then P €
Y (IFy(t)).

This theorem states that within the varieties over F,(¢) the only variaties
that contain many point of small height are the varieties defined over the
constant field IF,. So, it is natural to ask whether the above result can be
extended to function fields with constant fields, such as C(t) or Q(¢). In
order to do this, we define a new endomorphism to replace the role of the

Frobenius in the results of [3], and obtain the main theorem of this paper.

Theorem 1.2.3. Let K be an algebraically closed field and let C C A? be

an irreducible plane curve defined over K(t) and not over K. For (x,y) €
C(K(t)), there exists a real number co > 0 such that if h(z,y) < co, then

(x,y) € C(K).



1.3 Outline of study

We begin our study with valuation theory over function fields. We then define
the basic notion of heights over function fields and extend the definition to
finite extensions of the base field. We provide the reader with a brief overview
of the definitions and basic properties of heights over function fields, and then
move on to studying plane curves defined over m As our constant fields
are arbitrary, we examine what we refer to as the o-endomorphism on Klt]
and its interplay with heights over finite extensions of K(t). With the use of
a lemma of Derksen and Masser [2], we prove preliminary lemmas that then
lead to a proof of Theorem 1.2.3 over K (t).

Aiming to extend this result to curves C defined over K (t), we reduce our

proof to a curve C’ which is defined over K(t); C’ is the union of the Galois

conjugates of C over K (t). Using the fact that this curve C’ contains C, we

conclude that Theorem 1.2.3 holds for curves defined over K (t).



Chapter 2
Valuations

We assume the reader is familiar with general valuation theory. For our case
of interest, we take F = K(t), where K is algebraically closed and obtain

the following discrete valuations where v(K(t)*) = Z.

2.1 Valuations over K(t) and its extensions

Definition 2.1.1. Let f, g, € K]Jt], so that F' = ! € K(t). We define the place

g
at infinity as:

Voo(F) = deg g — deg f.
For any « € K, define the valuation associated to t — a € K[t] as:
Ui—a(F) = vi—a(f) — vi-alg)
with v;_o(f) = vi_o((t —@)if1) =d and (t — ) | fi.

Proposition 2.1.2. Ifv is a discrete valuation on a field F, then the subring
O, = {z € Flu(z) > 0} is a valuation ring with unique mazimal ideal
M, ={x € Flo(z) > 1}.



Proof. By definition, we have that O, is a ring. Now, we wish to show that
for any z € F, either z or 27! is in O,. If z ¢ O,, then v(z) < 0. So,
v(z™) = v(l) —v(z) = 0 —wv(x) > 0. Hence, 7' € O,, making O, a
valuation ring. Now, if z € O}, then we have that z,z7! € O,, which
happens if and only if v(x) = v(z~') = 0. Hence, M, consists of all non-unit
elements of O,, so that O,/ M, is a field, making M, the unique maximal
ideal of O,. O

From now on, we denote by k() the set of all valuations over K (t).

Claim 2.1.3. Modulo taking multiples, the valuations of Definition 2.1.1 are

the only valuations on K(t).

Proof. Let v be a discrete valuation of K (t) and let p be its place. We we
consider the two cases v(t) > 0 and v(t) < 0.

Suppose v(t) > 0. Then, we have that K[t] C O, and v(K(t)*) # {0}.
For J = K[t] N M, we have that J is a non-zero ideal of K[t|. Since 1 ¢ J,
we have that J # K[t]. As M, is maximal in O,, we have that .J is prime
in K[t]. Hence, J = (t — «) for some a € K.

If f(t) € K[t] is not divisible by t — «, then f(t) ¢ M, and v(f(¢)) = 0.

t
For ¢(t) non-zero in K (t), we may write g(t) = (t — a)ﬂgl (737 where § € Z,
2

91,92 € K[t], and t — a f g1,90. So, v(g(t)) = Po(t — a) = mu,_a(g(t))-
Hence, v ~ v;_q,.

Now, suppose that v(t) > 0. Then, n = v(t7!) > 0 for t~! € M,. Take
f € K[t] with deg (f) = d. Then,

d d
f(t) = Z ot = 17 Z o'
i=0 =0
d
=t ag it
i=0



where g(t) € M,. Since we have that oy # 0 € K, v(ay) = 0, so that
d

v(>] ag_it™%) = 0. Finally, we have that v ~ v, since

v(f (1)) = v(t?) = —dv(t™") = kvs(f(1)).

With this claim, we may consider the following familiar lemma.

Lemma 2.1.4. Forx € K(t)*, >, wv(z)=0.
vEQ ()

Proof. Let x € K(t) with x = 5, f,g € K[t]. By definiton of v;_, if P 1 fg,
then v;_o(z) = 0. Thus, the only valuations we need to consider are those
associated to t — a which divide f or g, as well as the infinite place. Letting
t—ay,...,t—ay, be all divisors of f and g, we have that f = (t—a;)" ... (t—
ap)’ and g = (t — ;)" ... (t — a,)™. The valuation of a polynomial at
t — a; corresponds to the order of vanishing at o; € K. So, we have that
deg (f) =>_ f; and deg(g) = >_ ;. Hence,

Z tha + Voo ()

UEQK<t)

—th o(7) + deg (g) — deg (f)

Now, we have that

deg (g) — deg (f) = > (vi — Bs)

i



and

2 2

t;} Ut—a(2) = 32 (Vt—a; (f) — Vt—a;(9)) = Z (B = i)

Combining these results,

2.2 Residue fields for valuations of K ()

K(t) and its finite extensions L are fields satisfying Proposition 2.1.2 [4].

Using the definitions from that proposition, we have the following:

Ov o ={r="1Lec K({)|f g€ K[t],t —atg ged(fg) =1}
Mvt—a - {iL': § € K(t)|f7g € K[t],t—Oé‘f,t—Oé'fg,ng(f,g) = 1}
and
O = {z = L|f,g € K[t], g # 0,deg (f) — deg (9) < 0}

Mo = {z=1|f.g € K], #0,deg(f) — deg ) < 0}

We define the residue field x, = O, /M, for each valuation v € Q.

Proposition 2.2.1. For F' = K(t) and place v € Qp, for t — a irreducible,
the residue field k., , is isomorphic to K[t]/(t — ) and koo = K.

Proof. Let us first consider the place v = v;_,, for @« € K. Consider the
canonical projection O,, ., — Ky, .. We now define the map ¢ : K[t] —

Ky,_, as the restriction of the canonical map. The kernel of ¢ is (t — «), so

we must show that ¢ is surjective.



Let x = /) € O,,_., where (t —a) t ¢g(t) and ged (f,g) = 1. Since

g(t)

t — « is irreducible, we must have that ged (t — a, g(t)) = 1. So, there exist
h(t),l(t) € K|[t] such that (t — «)h(t) + g(¢)l(t) = 1. Hence,

0, _ (= a)h(t)f(t)
= i)~ N + 9O O

We then have that ¢(x) = f(¢)I(t). So, since both f(t) and I(t) are
in K[t] this proves that ¢ is surjective giving us the desired isomorphism
Ko,_, = K[t]/(t — ).

Now, let v = v,,. First, we note that for any f(t) € O, f(t) may be
written in the form

bt + by t" -+ b

T = cn_ltlnfl Fot coo

Where n > 0 and b;,¢; € K. Next, consider the map ¢ : O, — K

where 1 (f(t)) := b,. The map 9 is a ring homomorphism since for f(t) =

nilz:1 and g(t) = mffﬂ we have:
Z Cjtj + tn Z ejtj + tm
j=1 Jj=1
W(FBg(E) =0 | o
2 Cjtj -+ tn Z ejtj + tm
Jj=1 J=1
n+m &
g:kbidjt
— =
N w n—1 ) m—1 )
Soeti 4+t | DD eitd + 1
j=1 J=1

= budy,
=(f(t) - (g(t))



and

Zn: bt <m§ 6jtj + tm) + i d;t (”_1 Cjtj + tn)
i=1 Jj= = =
V(f(t)+9() =v ml,l nil :
<Z ejti + tm> (Z citi + tn>
= =
(b, + )™ + mf)fl Byt*
_y i+j=k
m—1 n—-1
(Z ejti + tm) ( et + tn>
= =1
=b,+d,,
=P(f(t) +¥(g(t)).

Certainly, 1) is surjective and ker (¢)) is the set of all f where b, is zero,
i.e when the degree of the numerator is less than the denominator. Hence,
we have that ker (1)) = M, proving that k., = K as desired. O

Proposition 2.2.2. [If the field K is algebraically closed, then for vi_, €
QK ), Koo = K. Moreover, if L/K(t) is a finite extension with w|v, then
Ky = K.

Proof. We must prove that the extension k,,/k, is algebraic.

Given an algebraic extension L/K(t), consider some element z € L N
O,. Since L/K(t) is algebraic, x must be a root of some polynomial with
coefficients in K (t). That is, there exist ay,...,a, € K(t) where

™ + ap 12"+ 4 ag = 0.

Let v be a place of K(t) lying below w. Then, v corresponds to either

t— Q OF Vs



Suppose v = v;_,. Multiplying each a; by (t — o)~ ™™ %) we have that
each of the a; now belongs to O,. With a; = —i, at least one of the a; is

a unit modulo M, that is, ¢ — a does not divide fi or g;. Now, reducing
modulo M,,, we have:
a;t' + - +ay =0

where i is the largest index such that a; is a unit modulo M,,. As a remark, we
note that i # 0 since otherwise ag = 0 or ag = 0, modulo M, a contradiction.

Now, suppose that v = v,,. We still have that x satisfies an equation
AT+ 12" - +ag = 0 for a; € K(t). We want the a; in O, so as each
a; = é, with fi,g; € K[t], we will multiply each a; by ™ {des(gi)—deg(fo)}
Now we have that deg (f;) < deg(g;) for every i, so that vy (a;) € Z and at
least one is a unit. This yields a; € O. Reducing modulo M,,, we have
that

a;t + - +ay =0

Now in either case, we have that x is a root of an equation over k, since
each a; € O,/(M, NO,) = O,/M, = k,. Hence, k,/k, is algebraic.
In the first case v = vpy), with P(t) = t — a, and by Proposition 2.2.1,
ky = K[t]/(t — a) = K. But as k, is an extension of k,, we have that
Ko = K as well.

Similarly, by Proposition 2.2.1, k, = K, yielding that x,, = K concluding
the proof. n

10



Chapter 3

Heights

Now that we have defined the valuations over K (t), we may move to defining
heights.

Definition 3.0.3. For x € K(t), the local height of x at v € Qg is
hy(x) = —min {0,v(z)} = max {0, —v(x)}.

The (global) height of x is defined by h(z) := hgxw(x) = > hy(x).

UEQK(t)

We may also define a multi-dimensional height, which will be useful in

our study of plane curves. Let (z,y) € K(t)%. Then, define
Wa,y) = >0 max{hy(x), hy(y)}-
UGQK(t)

In the work ahead, we are concerned with the field K (), so we may extend
the height to a intermediate field K(t) C L C K(t), where L/K(t) is finite.
For any valuation v over K (t), v extends to a valuation w € Qp, [4]. We say
that w € Qp, lies above v if and only if O, embeds into O,,. If this is the case,
then we have that k, < k,, as well. So, we define f(w|v) = [ky : Ky]. But,

since our field K is algebraically closed, f(w|v) = 1, by Proposition 2.2.2.

11



Also, we define this valuation w € Qp, for € K(t) as w(x) = e(w|v)v(z),

where e(w|v) = w(u) for u a uniformizer of v in K (t) (That is, v(u) = 1).

We also have that the sum formula from Lemma 2.1.4 holds over L. The

general sum formula for extensions L/ K (t)is > n,w(z) = 0, where z € Lx
’U)EQL

and n,, = e(w|v) f(w|v) is the local degree. In our case though, f(w|v) =1 as
mentioned above, and e(w|v) has already been absorbed into the valuation
w(z) since w(r) = e(w|v)v(x). Thus, our local degrees n,, = 1 for every
we Qpand Y w(x)=0.

weN,

For x € L we define the local height of x at w € Qp as hy(r) =

1
———— max {—w(x),0} and the global height of x as h(x) = hy ().
ey e (). 0) global heig (@) = 3 ol

Similarly, we may extend the defintion to points (z,y) in A? with h,(z,y) =

m max {0, —w(z), —w(y)} and h(z,y) = ng h(x, 7).

Remark: In the proof of the following, Proposition 3.0.4, we use the fact
that the sum of all the ramification indices equals the degree of the extension,
i.e. Y e(wlv) = [M : L]. The proof of this fact can be found in [5].

wlv

Proposition 3.0.4. The definition of the height is well defined.

Proof. Let K(t) C L C M be a finite extension of fields. For x € L, v € Qy,

and w € €y we have:

1 1
2 nr ke ™ = 2 o k@

wlv wlv

1
— Z M ED) K<t)]e(w]v)v(x)

w|v

12



)
=z Ky 2

So, when considering the height and using the equality above, we have

)= S (@) = Y mmax{—v(x)ﬁ}

L veEQ], .
= v;% %; LKD) max {—w(z),0}
1
= weZQM LKD) max {—w(z),0}
= Z h ().
we s

Proposition 3.0.5. For any x € L/K(t) and n € Z, h(z") = nh(x).
Proof.




We conclude this section with a property of the two-dimensional height.
Proposition 3.0.6. For z,y € L/K(t), h(z,y) < h(z) + h(y).

Proof. Recalling that h(z,y) = > h,(z,y) = > max{h,(z), h,(y)}, we

vEQ], veQy,

note that max {h,(x), h,(y)} = hy,(x) + h,(y) if and only if h,(z) or h,(y)
equals 0. So, hy(z,y) < h,(z) + hy(y) for each place v € Qp, and taking the
sum over all places, we obtain the result h(z,y) < h(z)+h(y) as desired. O

14



Chapter 4
Curves in Affine Space

When working in A%, the varieties that are of interest to us are plane curves.
In practice, we consider polynomials f(X,Y) € K(¢)[X,Y] and are inter-
ested in the zero locus of this polynomial. For the equation f(X,Y) = 0,

the solutions of it will represent a curve C in A%, If we consider a subfield

L C K(t), weset C(L) ={(z,y) € Lx L: f(x,y) = 0}.

The main theorem for this paper is the following:

Theorem 4.0.7. Let C C A? be an irreducible plane curve defined over K (t)

and not over K. For (x,y) € C(K(t)), there exists a real number ¢y > 0 such
that if h(z,y) < co, then (x,y) € C(K).

4.1 The o-endomorphism

In [3], the key endomorphism was the Frobenius, which one applies to the

coefficients of the curve. Since we are now extending the result of Theorem

1.2.2 in A? to arbitrary base fields, we need a different endomorphism.
Define o : K[t] — K|[t], where o(K) = idi and o(t) = t™, for some fixed

m € N. The endomorphism ¢ then naturally extends to an endomorphism

15



K(t) — K(t). In fact, we claim the following regarding the extension of o.

Claim 4.1.1. 0 : K(t) — K(t) is an automorphism.

Proof. We know that o : K(t) — K(t) is an injective endomorphism of

fields, so we wish to show that o is surjective; that is, for every f € K(t),
there exists g € K (t) such that o(g) = f.

Let us start with an arbitrary algebraic element f € K(t). So, f satisfies
an equation a, f"+a,_1f" *+...+ay = 0 where P(X) = a, X" +a, X" '+
...+ ap is defined over K (t) and irreducible.

We claim that o : K (/™) — K(t) is a surjection, and in order to prove

m .
this all we need to show is that t has a pre-image in K (t'/™). For a; = Y ¢;;t!
=0

and € K(t), define t = o(f). Then,

U(ﬁ ciB7) = 3 o(ci; ) = i)cijg(ﬁ)j = q;
— =

J=0 J

We note that o(t'/™)" = o(t) = t™, so that o(t'/™) = (,t, for some
primitive m* root of unity (,, € K (which exists since K is algebraically
closed). Hence, we take 8 = ¢ 't!/™, which is indeed contained in K (t'/™),
Now that we know that o : K (t'/™) — K(t) is a surjection. If we define

b; =0 a;) for i =0,...,n, we claim that Q(X) = b, X" + -+ + by = 0 has

the same number of solutions as P(X).

0

We may consider a complete splitting of Q(X) over K(t) so that

bu X 4 -+ by = (X — a) + -+ (X — 2pn)"
Then, since b; = 0~ '(a;), we have that

an X" 4oty = (X = o(@)) - (X = o))

Hence, P(X) and Q(X) have the same number of roots over K(t). But

o maps a solution of Q(X) to a solution of P(X) and moreover, since

16



o : K(t) — K(t) is an endomorphism of fields, it must be injective. In

particular, f € K(t) has an image under o, implying that o : K(t) — K(¢)
is surjective.

[]

Alternatively, we note that ¢ induces an automorphism of K(t¢) since o
maps K to K identically, and then it sends one transcendental element of

K(t) (namely t) into a transcendental element (¢™) of K (). So essentially

o maps an algebraic function f(¢) € K(t) into f(¢™). This certainly means
that o is surjective (and thus an isomorphism) since o(g) = f, where g(t) =
fm).
Definition 4.1.2. We say that a non-constant polynomial f € K[t|[X,Y] is
reduced if the coefficients a; of f do not share a non-constant common factor
in Kt].

If fi,...,fr € KJt], we define the greatest common divisior (ged) of
fi,-.., fx as the unique monic polynomial of highest degree in K[t| which
divides all of the f;. We define two different types of heights of non-zero

elements of algebraic extensions L/K(t).

Definition 4.1.3. For a place w € Qp and f € L[X,Y] we have the local
height h,(f) = max; {h,(a;)} and the global height h(f) = > hy(f).

weN,
When considering the height of a point x € L/K(t), we would like a
connection between the height of x and the height of o(x). The following

observation, [2, Lemma 2.1], will be key in making this connection.

Lemma 4.1.4. Let L be a finite extension of K(t) and suppose that x € L

satisfies f(x) = 0, for f(X) = a,X™ + ...ag reduced and irreducible over
h
K(t). Then h(z) = Q
n
Remark: If the reader refers to [2, Lemma 2.1], she will notice a factor of

[L : K(t)]. This arises due to the height in [2] being a normalized height. For

17



our work, we do not need the normalized height and thus ignore the degree
factor.

From this result, we may derive the following corollary:

Corollary 4.1.5. For | € N, define T = t'/' and let L be a finite extension
of K(t). Suppose that v € L satisfies f(x) = 0, where f(X) € K(T)[X] is
h

reduced and irreducible over K(T). Then, h(x) = W
. eg

h
Proof. By Lemma 4.1.4, we have h(z) = hg ) = %)(%)

the height with respect to K(T'). But, we want the height h to be the usual

height that is with respect to K(t).
If y € K(T'), then we note

, where hg(r is

1

hiw(y) = K(T): K@) wes%m max {0, —w(y)}
and
hxr(y) = > max{0,—w(y)}.
wEQ K (T)

Combining these statements, we find

1 1

h=hiw = rem—rmi iy = S hic)-
ROTIK(T) - K@) 50— 77O

By applying Lemma 4.1.4, we obtain our desired result of

_ hra)(f)

") = T aeg ()

Claim 4.1.6. For x € K(t), h(o(z)) = mh(z).

Proof. Let o : K(t) — K(t) be as we have defined. Then, for z € K(t),

let f = a,X"+ ...+ ap be its minimal polynomial over L = |J (tl/mk).
k=0

Then, f is irreducible over L with a; € K(t'/ mki), for some k;. But then,

18



a; € K(tY/™"), for the maximum of the k;. We may clear denominators so
that we have a; € K[t'/™"] = K[T]. Thus,

0= 0(aps" 4+ apn_12™ ' 4 ... 4+ ap)
o(an)o(x)" + o(an_1)o(x)" "t + ...+ o(ag)

0(an)Y" + o(an 1 )Y" '+ ...+ o(ap), for Y =o(x).

If we consider the restriction of o as the map K (t1/™") — K (/™)
this map is surjective. To see this, we note that o(t/™" )" = o(t) = t™.
This yeilds o(/™") = ¢t/™"" for an m* 1-th root of unity ¢. So, we take
o(CHY/™Y) = Y™ proving surjectivity as desired. As K(tY/™) —
K(tY mkfl) is an endomorphism of fields, it must be injective. By this, it is
certainly true that o : L — L is an automorphism, which may be seen by

the following chain:
K(t) — K(tY/™) — K(tY/™") — ...

We now want to show that o(a,)Y™ + ...+ o(ag) = 0 is irreducible over

L. Supoose on the contrary that this is not the case. Then,
o(a,)Y"+ ...+ 0(ag) = (by,Y™+ ...+ bo)(cxY* + ...+ o) =0,

where each b; = o (b)), ¢; = o(c}), for some b}, ¢; € L since o is an automor-
phism. Then, o(f) = o(g)o(h), yielding o(f — gh) = 0. But once again,
using that o is injective, we have that f = gh over L, a contradiction of the

irreducibility of f over L.

Now that we have the irreducibility of o(a,)Y"™ + ...+ o(ag) , we may
apply Corollary 4.1.5 and obtain:
h(o(z)) = max deg; {o(a;)} _ m max deg; {a;} _ mh(f) -

mkn mkn mkn

Hence, we have that h(o(x)) = mh(x). Additionally, in order to apply
Corollary 4.1.5, we want that the ged(o(a;)) = 1. By assumption, we have
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that a; € K[T'] (which is a PID) for each ¢ and ged(a;) = 1. Hence, we know
that there exist 8; € K[T] so that

1= éﬁiai = U(i Bia;) = éU(ﬂi)U(az‘)-

Since o(f;) = ¢ for some ¢; € K[T], we have that ged(o(a;)) = 1, as
desired. O

Additionally, we have the following corollary which follows from Claim
4.1.6.

Corollary 4.1.7. For (z,y) € K(2) , h(o(x),0(y)) > %

h(z,y).

Proof. We have that:

h(o(x),0(y)) = max {h(o(z)), h(a(y))}
= max {mh(z), mh(y)}, by Claim 4.1.6

= mmax {h(x),h(y)}

m

(
5 00) 1)
?h(l’, y)

Vv

| \/

The last inequality follows by Proposition 3.0.6 since h(x,y) < h(x) +
h(y) < 2max {h(z), h(y)}. O

4.2 Curves over K (t)

After defining and studying characteristics of the o-endomorphism, we are
now ready to consider the proof of Theorem 1.2.3. In this section we prove

the following special case of Theorem 1.2.3.

Theorem 4.2.1. Let C C A? be an irreducible plane curve defined over K (t)
and not over K. For (x,y) € C(K(t)), there exists a real number co > 0 such
that if h(z,y) < co, then (x,y) € C(K).
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In order to prove Theorem 4.2.1, we begin with the following lemma.

Lemma 4.2.2. Let f € K[t|[X,Y] be a reduced polynomial of total degree
d. Let m € Z be such that m > 2h(f), if (z,y) € K(t)2 satisfies f(z,y) =0

then either h(x,y) > 4_1d or f(o(x),0(y)) = 0.

Proof. Suppose f(X,Y) = Z a;; XYV for i,j € NU{0}. We choose an inte-
ger m with respect to f so thlz;t m > 2h(f) and construct the o-endomorphism
from this particular m. For each i, we will define m;; = x'y’.

Assume f(o(z),0(y)) # 0. We wish to show that h(x,y) > 4_1d We
define the extension L = K(t,z,y,0(x),0(y)). We note that for a given
f(z,y) € KIH[X, Y], o(f(z,y)) = f(o(z),0(y)) € L. Define [L : K(¢)] = N
for some N € N.

If ¢ = f(o(x),0(y)) # 0, then, by the sum formula, >’ %w(f) = 0.
weN g,

Since f(x,y) = 0, we have:

525—0((f(l’ y)))
= f(o ~ o amy)
= ZCLUO_ T O' y — Z 0<aijmij)

1,J

— Z a;;o(mgj) — Z o(aij)o(mi;)

1,3
= Z ai; — o(ai;))o(mi;)
Claim 4.2.3. t™ — t|o(g) — g, for any g € K][t].

Proof of Claim. Let g = ) ¢;t*, so that o(g) = >_ ¢;t"™. Then, since t"™ —
i=0 i=0

N N N
tlt™t — ¢! for any [ € N and o(g) — g = > ¢it'™ — > ¢it! = > ("™ — ),
i=0 =0 i=0
we have that t™ — t|o(g) — g as desired. O
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aij — o(ag;)

€ K[t].
tm —t

So, from Claim 4.2.3, £ = (t™ —t) > bjo(my;), bij =
0,
Define the set S as follows:
S ={w € Qp : w lies above an irreducible factor in K[t] of t™ — t}.

As we are working over an algebraically closed field K, we may write the

polynomial t™ — ¢ in terms of m irreducible linear factors. For an m — 1%

root of unity ( € K, t"™ —t =t ][] (t— (). So, the places w € S lie above
Canl:l

— 1" root of unity in K or zero. We now consider a series of inequalities.

anm

For each w € S:

1 1 m
Nw(g) = Nw((t — 1) ; bijo(my;))
1 m
= o™ =) + w(%: bijo(mi;))]
1 1.
> w(t™ = 1) + & min {w(bgo(my;))}
1 1.
= Nw(t —O+ min {w(big) +w(o(mi;))}
> St — 1)+ wlbis) + wlo(mey), for some 1,7
I 1 .
= W™ =) + wlo(me,)), since w(bs) 2 0.

Now, for any valuation w € €,

1
Nw(g(mu)) =

22



I+J

> N min {w(o(x)),w(o(y)),0}

Since the degree of my; is at most d, we have:

1 d

~@(o(mey)) 2 & min{w(o(z)), w(o(y)), 0}-

1
Now, recalling that h,(z,y) = N min {w(z),w(y),0}, we have that

o) > ~dhu(o(2), o)) (42.1)
So,
—w(§) > —w(t™ —t) — dhy(o(x),0(y)) (4.2.2)

Next, taking £ = ) a;j0(m;;) and considering valuations w € Qp \ S,
2%

1 1
N (€)= Nw(;j aijo (miz))

> N nl'lzn {w(aijo(mi;))}

1
= —w(arjo(myy)), for some I, .J

N
= NU}(CL]J) + NU)(O’(TTL]J))
1
Now, recall that h,(f) = N min {w(a;;),0} for any w € Q. Since

w(ary) > min{w(ars),0}, we have:

1

’LU(CL[J) + NU)(O’(TTL[J))

min {w(a;;),0} + %w(a(mu))

min {w(ars),0} — dhy(o(x),0(y)), by 4.2.1

23



= —hy(f) — dhy(o(z), 0(y)).

Combining our results for all w € Qp:

1 1
> ww@) =z X wwtm—t)—d Y holo(x),0(y) = X hu(f).
weNy, N w(tmft)>0 N weNy, wEQL\S
Hence,

=Y Lw©> Y w6~ dh(o(e),0ly) ~ h(f) (423

weQy w(tm—t)>0

Then, by our results from Proposition 3.0.4:

S oo Y e ) = et — 1) =

w(tm,t)>0 N UEQK(t)

By Claim 4.1.6,

0> m — dh(o(x), o(y)) — h()
—m—d Y ho(@).a(y)) ~ h())

veEQ],

> m —d(h(o(z)) + h(o(y))) — h(f)
= m — d(mh(z) + mh(y)) — h(f)

> m — d(mh(z,y) + mh(z,y)) — h(f)
=m — 2dmh(z,y) — h(f)

hf)
2dm’

~—

This yields h(z,y) >

1

¥ But, as m > 2h(f), we have that
1

h(z,y) > > desired.



Now that we have proven the lemma, we may move to the proof of our

main theorem for curves defined over K (t).

Proof of Theorem 4.2.1. Let f(X,Y) = Y a;X'Y? = 0 be the irreducible
2%

polynomial which defines our curve C over K (t). As f(X,Y) is irreducible,
so is C. In order to make use of Lemma 4.2.2, we will consider f in its reduced
form and make sure that at least one of the coefficients a;; is non-constant so
that f is not defined over K. By Lemma 4.2.2, for (xg, ) € C and m such
that m > 2h(f), one of two cases must occur:

(1) h(xo,v0) > 4_1d

(2) flo(xo),0(y)) = 0 <= (o(x0),0(y0)) €C

Let us take the first m we find such that m > 2h(f) and assume that
(x0,Y0) € C(K). Our choice of m now determines our choice of o correspond-
ing to m. Also, denote by C? the zero locus of the curve f7(X,Y’), where
frXY) =3 o(ay) XYY

J

Claim 4.2.4. CNC? is finite.

Proof of Claim. Suppose on the contrary that C N C? is infinite. Then, we
must have that C is one of the irreducible components of C°.

So, f7 € 1d(C?) C (f) = Id(C), since C is an irreducible component of C?.
This implies that f|f?. Also, f and f? are of the same degree, so we must

have that there exists some a € K (t) such that f7 = af. Now, a = olai)

ij
for every i, 7. But since f is reduced, by the remark after Definition 4.1.2,

ged ({ai;}i;) = 1 € K. Hence, there exist b;; € K[t] such that Y a;;b; = 1.
Y]
Applying o, we have that o(> a;;b;;) =1 = > o(a;;)o(bij). It follows that
0]

b2 27‘7
ged ({o(ai;)}ij) = 1. By this, we must have that a € K; otherwise, we

have a contradiction of the a;; and o(a;;) being relatively prime. So, since
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a = M € K for every i,j, we have that dega;; = dego(a;;), so that
CLij
a;; € K. Which then implies that f is defined over K. Contradiction.

[
Similiarly, we define C? ™" as the zero locus of f7 (X, Y) = 3. 0~ (a;;) XY,
i3

It is worth noting that C? ' is not defined over K. If it were, C := o(C° ')
would be defineed over o(K) = K, a contradiction. We claim that CNC7 " is
finite. Suppose not, so that there exist infinitely many points (z,y) € K(t)
such that f(x,y) =0= f7 '(x,y). Then, by applying o, we have

(Z a;r'y’) =0 = O’(ZU Hay)r'y’)
ZU(%)U( z)'o(y )J—O—Z% (z)'o(y)?
irj
So, there are infinitely many points in K(t) that satisfy f(z,y) = 0 =
f7(z,y). This contradicts Claim 4.2.4, proving that C N C ' is finite.

Now, let {(z1,11),-..,(zx,yn)} € CNC7 ", be all the points which are
not defined over K. For each j, we define h; = h(x;,y;). Note that h; > 0

since the point is not defined over K. We let ¢y = min {4—1d, min; h; }, while if

N =0, i.e., all points in CNC? " are defined over K, then simply let ¢y = 1
For (zo,y0) € C(K(t)) such that h(xzg,yo) < co, we'll show (zg,y9) €
C(K). Indeed by Lemma 4.2.2, we have that (o(z¢),o(yo)) € C. This means
that (xg,yo) € C° " and so, (x0,%0) € C NC° . But h(xo,y0) < co < h; for
each i, and therefore (xg,yo) € C(K).
If N =0, then automatically (zo,) € C N C7 ' yields that (zo,y) €
C(K) since all those points in the intersection are defined over K.

O

Remark: Theorem 1.2.3 requires that the curve is not defined over K, so
we will now see why this assumption is needed. Suppose our curve is defined
by the polynomial f(X,Y) = Y? — X3 — 1, which is defined over the base
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field K, and let m > 3.

Now, suppose that we take (z,y) = (t,vVt3+1) = py € C(K(t)). For
p1 = (071 (x),07(y)), we have that

Thus, p; € C(K(t)). Similarly for p, = (c7"(z),07"(y)), we have

fle™(x),07"(y)) = ("

Hence, p, belongs to the curve C. Since ¢"(p,) = po, we may apply
n

2
Corollary 4.1.7 to see that h(p,) < (— h(po). If we let n go to infinity,
m
then h(p,) must go to zero since m > 3. Hence, for (z,y) € C and again
taking n to infinity, we have that h(p,) goes to 0. We cannot find a bound
co on the heights, and this shows that the conclusion of Theorem 1.2.3 can

fail if C is defined over K.
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4.3 Proof of the main theorem

Although we have been working with curves defined over K (t), we can extend

the result further to any curve defined over K(t). The fact that Theorem
1.2.3 is true over K(t) will be a key tool in the extension to K (t).

Let L/K be a function field of transcendence degree 1. We will take
an element v € L which is transcendental over K, so that L is finite over
K (u). Suppose we take a curve C defined over L, which is not necessarily

irreducible. We define a new curve C' = [J C7, where G is defined as the
T€EG

set {7 € Aut (L) : 7|g@) = idr}. From Galois theory, we know that for
finite extensions L/K (u), there exists some inseparable extension of degree
p™, m > 0 such that K(u) C K(u'/?™) C L, and L/K(u'/"") is separable.

We take t = u/?™ and obtain the following proposition.
Proposition 4.3.1. C' is defined and irreducible over K (t).

Proof. As all elements in G fix K(u), they must fix K(t) as well since any
p""-root of unity in characteristic p is 1. Thus, the only elements of L fixed
by all automorphisms in G are all the elements of K(t). So, C' is defined over
K (t) and is fixed by any automorphism of Gal (K (¢)*?/K (t)).

Now, we wish to show that C’ is irreducible over K (t). Suppose not: then
there must exist distinct irreducible curves C; and Cy defined over K (t) and

proper inside C’ such that C;,Co C C'. Since we have defined C' = J C7, we
TEG
must have

C1: U C”andClz U CY
gES YES2

for §1,Ss C G. Since C is defined over K(t), it follows that C; is fixed by
any a € G. Then, C; =C,“ = |J C.

TEG
But this means that C*> C C; for any o € §;. If we then vary « through

every element in G, it follows that C™ C C; for every 7 € G. Hence, |J C" =
TEG
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C' CCy. Thus, C; and C’ are equal; the same follows for Cs, proving that C’

is irreducible as claimed. O

Finally, we show that Theorem 1.2.3 holds for curves defined over K(t).
But first, as we will make use of the curve C’ above, we must verify that C’

is not defined over K.

Suppose that C’ were defined over K. Let 1), be the automorphism of K (t)

such that it is the identity on K and v, (t) = t+a. Recalling that C' = |J C7,
TEG

we must have that C¥ conincides one of the C7, for some 7 : L — L, fixing
K (u). Since there exist infinitely many « € K, by the pigeonhole principle
there must be distinct o, f € K such that

C¥e = 7 = C¥s

This means that C is fixed by 1., which is the automorphism of K (¢) such
that 1, is the identity on K and ¢p_o(t) =t +7, v = —a # 0. For the
curve C being defined by f(X,Y) = Y a;; X'Y7, the invariance of C under

1,
1, may be observed in the following.

Zwa(az])X Y7 = Z ¢ﬁ(a2]>X Y7
(Z Yalai) X'Y7) =1 (Z Up(ai) XY7)
27]
Z ai; X'Y7 =3 hgalay) XYY
(2%
Because C is fixed by such a map, it must be defined over the fixed field

for such an automorphism, which in the case of v, is K; but C has been

taken to not be defined over K. Contradiction.
Now, let C be a plane curve defined over K(t), and C' as in Proposition
4.3.1. By this proposition and Lemma 4.2.2 we know that there exists a real

number ¢y > 0 such that if (z,y) € C'(K(t)) and h(z,y) < ¢, then (z,y) €
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C'(K). So, let (z,y) € C(K(t)) with h(z,y) < ¢y. Since C(K(t)) C C'(K(t)),
we may conclude that (z,y) € C'(K). Thus, we must have that (z,y) € C(K)

as well.
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