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Abstract

Let K be an algebraically closed field, and let C be an irreducible plane curve,

defined over the algebraic closure of K(t), which is not defined over K. We

show that there exists a positive real number c0 such that if P is any point on

the curve C whose Weil height is bounded above by c0, then the coordinates

of P belong to K.
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Chapter 1

Introduction

1.1 Generalities and preliminaries

Throughout our study in number theory, we would like to determine the

degree of complexity of numbers. The theory of heights provides us with

the tools to study numbers in this setting. In order to understand what a

height function is, we could consider the elementary exponential height on

the rationals. This type of height may be extended to finite extensions of

the rationals and even further to function fields over number fields. In the

work ahead, we consider heights for points on affine varieties. We denote

by k the algebraic closure of a field k. We assume that the reader has an

understanding of general valuation theory [4], Galois theory [1], and basic

algebraic geometry [1]. We will review valuation theory over function fields

K(t) and its finite extensions, as well as the basic definitions and properties

of the height function in this setting. Throughout our study, we will assume

the base field K to be algebraically closed.
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1.2 Motivation

The main focus of study ahead regards that of plane curves. We define

k[X] = k[x1, . . . , xn] for some field k and consider the following definition.

Definition 1.2.1. An affine variety V over a field k is the set of common zeros

of a collection of polynomials f1(X), . . . , fm(X).

If n = 2 and m = 1, we define the variety V as a plane curve C =

{(x, y) ∈ k2|f(x, y) = 0}. As long as the polynomial f(X, Y ) ∈ k[X, Y ] is

non-constant, C is non-empty. The choice for the field k could be any field,

in particular the field of rational functions K(t) for some constant field K.

We would like to study whether or not there exists a positive lower bound

for the height of a point on a plane curve defined over the algebraic closure

of a function field K(t). For k = Fp(t), Ghioca proved in [3] the following:

Theorem 1.2.2. Let X be an affine subvariety of An defined over Fp(t).

Let Y be the Zariski closure of X(Fp). There exists a positive constant C

depending only on X such that if P ∈ X(Fp(t)) and h(P ) < C, then P ∈
Y (Fp(t)).

This theorem states that within the varieties over Fp(t) the only variaties

that contain many point of small height are the varieties defined over the

constant field Fp. So, it is natural to ask whether the above result can be

extended to function fields with constant fields, such as C(t) or Q(t). In

order to do this, we define a new endomorphism to replace the role of the

Frobenius in the results of [3], and obtain the main theorem of this paper.

Theorem 1.2.3. Let K be an algebraically closed field and let C ⊂ A2 be

an irreducible plane curve defined over K(t) and not over K. For (x, y) ∈
C(K(t)), there exists a real number c0 > 0 such that if h(x, y) < c0, then

(x, y) ∈ C(K).
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1.3 Outline of study

We begin our study with valuation theory over function fields. We then define

the basic notion of heights over function fields and extend the definition to

finite extensions of the base field. We provide the reader with a brief overview

of the definitions and basic properties of heights over function fields, and then

move on to studying plane curves defined over K(t). As our constant fields

are arbitrary, we examine what we refer to as the σ-endomorphism on K[t]

and its interplay with heights over finite extensions of K(t). With the use of

a lemma of Derksen and Masser [2], we prove preliminary lemmas that then

lead to a proof of Theorem 1.2.3 over K(t).

Aiming to extend this result to curves C defined over K(t), we reduce our

proof to a curve C ′ which is defined over K(t); C ′ is the union of the Galois

conjugates of C over K(t). Using the fact that this curve C ′ contains C, we

conclude that Theorem 1.2.3 holds for curves defined over K(t).
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Chapter 2

Valuations

We assume the reader is familiar with general valuation theory. For our case

of interest, we take F = K(t), where K is algebraically closed and obtain

the following discrete valuations where v(K(t)∗) = Z.

2.1 Valuations over K(t) and its extensions

Definition 2.1.1. Let f, g,∈ K[t], so that F =
f

g
∈ K(t). We define the place

at infinity as:

v∞(F ) = deg g − deg f .

For any α ∈ K, define the valuation associated to t− α ∈ K[t] as:

vt−α(F ) = vt−α(f)− vt−α(g)

with vt−α(f) = vt−α((t− α)df1) = d and (t− α) - f1.

Proposition 2.1.2. If v is a discrete valuation on a field F , then the subring

Ov = {x ∈ F|v(x) ≥ 0} is a valuation ring with unique maximal ideal

Mv = {x ∈ F|v(x) ≥ 1}.
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Proof. By definition, we have that Ov is a ring. Now, we wish to show that

for any x ∈ F , either x or x−1 is in Ov. If x /∈ Ov, then v(x) < 0. So,

v(x−1) = v(1) − v(x) = 0 − v(x) > 0. Hence, x−1 ∈ Ov, making Ov a

valuation ring. Now, if x ∈ O×v , then we have that x, x−1 ∈ Ov, which

happens if and only if v(x) = v(x−1) = 0. Hence,Mv consists of all non-unit

elements of Ov, so that Ov/Mv is a field, making Mv the unique maximal

ideal of Ov.

From now on, we denote by ΩK(t) the set of all valuations over K(t).

Claim 2.1.3. Modulo taking multiples, the valuations of Definition 2.1.1 are

the only valuations on K(t).

Proof. Let v be a discrete valuation of K(t) and let p be its place. We we

consider the two cases v(t) ≥ 0 and v(t) < 0.

Suppose v(t) ≥ 0. Then, we have that K[t] ⊆ Ov and v(K(t)∗) 6= {0}.
For J = K[t] ∩Mv, we have that J is a non-zero ideal of K[t]. Since 1 /∈ J ,

we have that J 6= K[t]. As Mv is maximal in Op, we have that J is prime

in K[t]. Hence, J = (t− α) for some α ∈ K.

If f(t) ∈ K[t] is not divisible by t− α, then f(t) /∈ Mv and v(f(t)) = 0.

For g(t) non-zero in K(t), we may write g(t) = (t− α)β
g1(t)

g2(t)
, where β ∈ Z,

g1, g2 ∈ K[t], and t − α - g1, g2. So, v(g(t)) = βv(t − α) = mvt−α(g(t)).

Hence, v ∼ vt−α.

Now, suppose that v(t) > 0. Then, n = v(t−1) > 0 for t−1 ∈ Mv. Take

f ∈ K[t] with deg (f) = d. Then,

f(t) =
d∑
i=0

αit
i = td

d∑
i=0

αix
i−d

= td
d∑
i=0

αd−it
−i

5



= td(αd +
d∑
i=1

αd−it
−i)

= td(αd + g(t)),

where g(t) ∈ Mv. Since we have that αd 6= 0 ∈ K, v(αd) = 0, so that

v(
d∑
i=0

αd−it
−i) = 0. Finally, we have that v ∼ v∞ since

v(f(t)) = v(td) = −dv(t−1) = kv∞(f(t)).

With this claim, we may consider the following familiar lemma.

Lemma 2.1.4. For x ∈ K(t)×,
∑

v∈ΩK(t)

v(x) = 0.

Proof. Let x ∈ K(t) with x = f
g
, f, g ∈ K[t]. By definiton of vt−α, if P - fg,

then vt−α(x) = 0. Thus, the only valuations we need to consider are those

associated to t− α which divide f or g, as well as the infinite place. Letting

t−α1, . . . , t−αn be all divisors of f and g, we have that f = (t−α1)β1 . . . (t−
αn)βn and g = (t − α1)γ1 . . . (t − αn)γn . The valuation of a polynomial at

t − αi corresponds to the order of vanishing at αi ∈ K. So, we have that

deg (f) =
∑
i

βi and deg (g) =
∑
i

γi. Hence,

∑
v∈ΩK(t)

v(x) =
∑
t−α

vt−α(x) + v∞(x)

=
∑
t−α

vt−α(x) + deg (g)− deg (f)

Now, we have that

deg (g)− deg (f) =
∑
i

(γi − βi)
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and ∑
t−α

vt−α(x) =
∑
i

(vt−αi(f)− vt−αi(g)) =
∑
i

(βi − γi).

Combining these results,∑
v∈ΩK(t)

v(x) =
∑
t−α

vt−α(x) + deg (g)− deg (f)

=
∑
i

(βi − γi) +
∑
i

(γi − βi)

= 0

2.2 Residue fields for valuations of K(t)

K(t) and its finite extensions L are fields satisfying Proposition 2.1.2 [4].

Using the definitions from that proposition, we have the following:

Ovt−α = {x = f
g
∈ K(t)|f, g ∈ K[t], t− α - g, gcd (f, g) = 1}

Mvt−α = {x = f
g
∈ K(t)|f, g ∈ K[t], t− α|f, t− α - g, gcd (f, g) = 1}

and

O∞ = {x = f
g
|f, g ∈ K[t], g 6= 0, deg (f)− deg (g) ≤ 0}

M∞ = {x = f
g
|f, g ∈ K[t], g 6= 0, deg (f)− deg (g) < 0}

We define the residue field κv = Ov/Mv for each valuation v ∈ ΩL.

Proposition 2.2.1. For F = K(t) and place v ∈ ΩF , for t− α irreducible,

the residue field κvt−α is isomorphic to K[t]/(t− α) and κ∞ ∼= K.

Proof. Let us first consider the place v = vt−α, for α ∈ K. Consider the

canonical projection Ovt−α −→ κvt−α . We now define the map φ : K[t] −→
κvt−α as the restriction of the canonical map. The kernel of φ is (t − α), so

we must show that φ is surjective.
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Let x =
f(t)

g(t)
∈ Ovt−α , where (t − α) - g(t) and gcd (f, g) = 1. Since

t − α is irreducible, we must have that gcd (t− α, g(t)) = 1. So, there exist

h(t), l(t) ∈ K[t] such that (t− α)h(t) + g(t)l(t) = 1. Hence,

x =
f(t)

g(t)
(t− α)h(t) + g(t)l(t) =

(t− α)h(t)f(t)

g(t)
+ f(t)l(t)

We then have that φ(x) = f(t)l(t). So, since both f(t) and l(t) are

in K[t] this proves that φ is surjective giving us the desired isomorphism

κvt−α
∼= K[t]/(t− α).

Now, let v = v∞. First, we note that for any f(t) ∈ O∞, f(t) may be

written in the form

f(t) =
bnt

n + bn−1t
n−1 + · · ·+ b0

tn + cn−1tn−1 + · · ·+ c0

Where n ≥ 0 and bi, ci ∈ K. Next, consider the map ψ : O∞ −→ K

where ψ(f(t)) := bn. The map ψ is a ring homomorphism since for f(t) =
n∑
i=1

bit
i

n−1∑
j=1

cjtj + tn
and g(t) =

m∑
i=1

dit
i

m−1∑
j=1

ejtj + tm
we have:

ψ(f(t)g(t)) = ψ


n∑
i=1

bit
i

n−1∑
j=1

cjtj + tn
·

m∑
i=1

dit
i

m−1∑
j=1

ejtj + tm



= ψ


n+m∑
i+j=k

bidjt
k(

n−1∑
j=1

cjtj + tn

)(
m−1∑
j=1

ejtj + tm

)


= bndm

= ψ(f(t)) · ψ(g(t))
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and

ψ(f(t) + g(t)) = ψ


n∑
i=1

bit
i

(
m−1∑
j=1

ejt
j + tm

)
+

m∑
i=1

dit
i

(
n−1∑
j=1

cjt
j + tn

)
(
m−1∑
j=1

ejtj + tm

)(
n−1∑
j=1

cjtj + tn

)


= ψ


(bn + dm)tn+m +

m+n−1∑
i+j=k

βkt
k(

m−1∑
j=1

ejtj + tm

)(
n−1∑
j=1

cjtj + tn

)


= bn + dm

= ψ(f(t)) + ψ(g(t)).

Certainly, ψ is surjective and ker (ψ) is the set of all f where bn is zero,

i.e when the degree of the numerator is less than the denominator. Hence,

we have that ker (ψ) =M∞, proving that κ∞ ∼= K as desired.

Proposition 2.2.2. If the field K is algebraically closed, then for vt−α ∈
ΩK(t), κvt−α = K. Moreover, if L/K(t) is a finite extension with w|v, then

κw = K.

Proof. We must prove that the extension κw/κv is algebraic.

Given an algebraic extension L/K(t), consider some element x ∈ L ∩
Ow. Since L/K(t) is algebraic, x must be a root of some polynomial with

coefficients in K(t). That is, there exist a1, . . . , an ∈ K(t) where

anx
n + an−1x

n−1 + · · ·+ a0 = 0.

Let v be a place of K(t) lying below w. Then, v corresponds to either

t− α or v∞.
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Suppose v = vt−α. Multiplying each ai by (t− α)−mini v(ai), we have that

each of the ai now belongs to Ov. With ai =
fi
gi

, at least one of the ai is

a unit modulo Mv, that is, t − α does not divide fi or gi. Now, reducing

modulo Mw, we have:

āix̄
i + · · ·+ ā0 = 0

where i is the largest index such that ai is a unit moduloMv. As a remark, we

note that i 6= 0 since otherwise ā0 = 0 or a0 = 0, moduloMv, a contradiction.

Now, suppose that v = v∞. We still have that x satisfies an equation

anx
n+an−1x

n−1+· · ·+a0 = 0 for ai ∈ K(t). We want the ai in O∞, so as each

ai =
fi
gi
, with fi, gi ∈ K[t], we will multiply each ai by tmini {deg(gi)−deg(fi)}.

Now we have that deg (fi) ≤ deg (gi) for every i, so that v∞(ai) ∈ Z and at

least one is a unit. This yields ai ∈ O∞. Reducing modulo Mw, we have

that

āix̄
i + · · ·+ ā0 = 0

Now in either case, we have that x is a root of an equation over κv since

each ai ∈ Ov/(Mw ∩ Ov) = Ov/Mv = κv. Hence, κw/κv is algebraic.

In the first case v = vP (t), with P (t) = t − α, and by Proposition 2.2.1,

κv = K[t]/(t − α) = K. But as κw is an extension of κv, we have that

κw = K as well.

Similarly, by Proposition 2.2.1, κ∞ = K, yielding that κw = K concluding

the proof.

10



Chapter 3

Heights

Now that we have defined the valuations over K(t), we may move to defining

heights.

Definition 3.0.3. For x ∈ K(t), the local height of x at v ∈ ΩK(t) is

hv(x) = −min {0, v(x)} = max {0,−v(x)}.

The (global) height of x is defined by h(x) := hK(t)(x) =
∑

v∈ΩK(t)

hv(x).

We may also define a multi-dimensional height, which will be useful in

our study of plane curves. Let (x, y) ∈ K(t)2. Then, define

h(x, y) =
∑

v∈ΩK(t)

max {hv(x), hv(y)}.

In the work ahead, we are concerned with the field K(t), so we may extend

the height to a intermediate field K(t) ⊂ L ⊂ K(t), where L/K(t) is finite.

For any valuation v over K(t), v extends to a valuation w ∈ ΩL [4]. We say

that w ∈ ΩL lies above v if and only if Ov embeds into Ow. If this is the case,

then we have that κv ↪→ κw as well. So, we define f(w|v) = [κw : κv]. But,

since our field K is algebraically closed, f(w|v) = 1, by Proposition 2.2.2.

11



Also, we define this valuation w ∈ ΩL for x ∈ K(t) as w(x) = e(w|v)v(x),

where e(w|v) = w(u) for u a uniformizer of v in K(t) (That is, v(u) = 1).

We also have that the sum formula from Lemma 2.1.4 holds over L. The

general sum formula for extensions L/K(t) is
∑
w∈ΩL

nww(x) = 0, where x ∈ L∗

and nw = e(w|v)f(w|v) is the local degree. In our case though, f(w|v) = 1 as

mentioned above, and e(w|v) has already been absorbed into the valuation

w(x) since w(x) = e(w|v)v(x). Thus, our local degrees nw = 1 for every

w ∈ ΩL and
∑
w∈ΩL

w(x) = 0.

For x ∈ L we define the local height of x at w ∈ ΩL as hw(x) =
1

[L : K(t)]
max {−w(x), 0} and the global height of x as h(x) =

∑
w∈ΩL

hw(x).

Similarly, we may extend the defintion to points (x, y) in A2 with hw(x, y) =
1

[L : K(t)]
max {0,−w(x),−w(y)} and h(x, y) =

∑
w∈ΩL

hw(x, y).

Remark : In the proof of the following, Proposition 3.0.4, we use the fact

that the sum of all the ramification indices equals the degree of the extension,

i.e.
∑
w|v
e(w|v) = [M : L]. The proof of this fact can be found in [5].

Proposition 3.0.4. The definition of the height is well defined.

Proof. Let K(t) ⊂ L ⊂M be a finite extension of fields. For x ∈ L, v ∈ ΩL,

and w ∈ ΩM we have:

∑
w|v

1

[M : K(t)]
w(x) =

∑
w|v

1

[M : K(t)]
w(x)

=
∑
w|v

1

[M : K(t)]
e(w|v)v(x)

12



=
v(x)

[M : K(t)]

∑
w|v

e(w|v)

=
v(x)

[M : K(t)]
[M : L]

=
v(x)

[L : K(t)]
.

So, when considering the height and using the equality above, we have

h(x) =
∑
v∈ΩL

hv(x) =
∑
v∈ΩL

1

[L : K(t)]
max {−v(x), 0}

=
∑
v∈ΩL

∑
w|v

1

[M : K(t)]
max {−w(x), 0}

=
∑
w∈ΩM

1

[M : K(t)]
max {−w(x), 0}

=
∑
w∈ΩM

hw(x).

Proposition 3.0.5. For any x ∈ L/K(t) and n ∈ Z, h(xn) = nh(x).

Proof.

h(xn) =
∑
w∈ΩL

1

[L : K(t)]
max {0,−w(xn)}

=
∑
w∈ΩL

1

[L : K(t)]
max {0,−nw(x)}

= n
∑
w∈ΩL

1

[L : K(t)]
max {0,−w(x)}

= nh(x).
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We conclude this section with a property of the two-dimensional height.

Proposition 3.0.6. For x, y ∈ L/K(t), h(x, y) ≤ h(x) + h(y).

Proof. Recalling that h(x, y) =
∑
v∈ΩL

hv(x, y) =
∑
v∈ΩL

max {hv(x), hv(y)}, we

note that max {hv(x), hv(y)} = hv(x) + hv(y) if and only if hv(x) or hv(y)

equals 0. So, hv(x, y) ≤ hv(x) + hv(y) for each place v ∈ ΩL, and taking the

sum over all places, we obtain the result h(x, y) ≤ h(x)+h(y) as desired.
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Chapter 4

Curves in Affine Space

When working in A2, the varieties that are of interest to us are plane curves.

In practice, we consider polynomials f(X, Y ) ∈ K(t)[X, Y ] and are inter-

ested in the zero locus of this polynomial. For the equation f(X, Y ) = 0,

the solutions of it will represent a curve C in A2. If we consider a subfield

L ⊂ K(t), we set C(L) = {(x, y) ∈ L× L : f(x, y) = 0}.

The main theorem for this paper is the following:

Theorem 4.0.7. Let C ⊂ A2 be an irreducible plane curve defined over K(t)

and not over K. For (x, y) ∈ C(K(t)), there exists a real number c0 > 0 such

that if h(x, y) < c0, then (x, y) ∈ C(K).

4.1 The σ-endomorphism

In [3], the key endomorphism was the Frobenius, which one applies to the

coefficients of the curve. Since we are now extending the result of Theorem

1.2.2 in A2 to arbitrary base fields, we need a different endomorphism.

Define σ : K[t] −→ K[t], where σ(K) = idK and σ(t) = tm, for some fixed

m ∈ N. The endomorphism σ then naturally extends to an endomorphism

15



K(t) −→ K(t). In fact, we claim the following regarding the extension of σ.

Claim 4.1.1. σ : K(t) −→ K(t) is an automorphism.

Proof. We know that σ : K(t) −→ K(t) is an injective endomorphism of

fields, so we wish to show that σ is surjective; that is, for every f ∈ K(t),

there exists g ∈ K(t) such that σ(g) = f .

Let us start with an arbitrary algebraic element f ∈ K(t). So, f satisfies

an equation anf
n+an−1f

n−1+. . .+a0 = 0 where P (X) = anX
n+an−1X

n−1+

. . .+ a0 is defined over K(t) and irreducible.

We claim that σ : K(t1/m) −→ K(t) is a surjection, and in order to prove

this all we need to show is that t has a pre-image in K(t1/m). For ai =
m∑
j=0

cijt
j

and β ∈ K(t), define t = σ(β). Then,

σ(
m∑
j=0

cijβ
j) =

m∑
j=0

σ(cijβ
j) =

m∑
j=0

cijσ(β)j = ai

We note that σ(t1/m)m = σ(t) = tm, so that σ(t1/m) = ζmt, for some

primitive mth root of unity ζm ∈ K (which exists since K is algebraically

closed). Hence, we take β = ζ−1
m t1/m, which is indeed contained in K(t1/m).

Now that we know that σ : K(t1/m) −→ K(t) is a surjection. If we define

bi = σ−1(ai) for i = 0, . . . , n, we claim that Q(X) = bnX
n + · · ·+ b0 = 0 has

the same number of solutions as P (X).

We may consider a complete splitting of Q(X) over K(t) so that

bnX
n + · · ·+ b0 = (X − x1)e1 · · · (X − xm)em

Then, since bi = σ−1(ai), we have that

anX
n + · · ·+ a0 = (X − σ(x1))e1 · · · (X − σ(xm))em

Hence, P (X) and Q(X) have the same number of roots over K(t). But

σ maps a solution of Q(X) to a solution of P (X) and moreover, since
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σ : K(t) −→ K(t) is an endomorphism of fields, it must be injective. In

particular, f ∈ K(t) has an image under σ, implying that σ : K(t) −→ K(t)

is surjective.

Alternatively, we note that σ induces an automorphism of K(t) since σ

maps K to K identically, and then it sends one transcendental element of

K(t) (namely t) into a transcendental element (tm) of K(t). So essentially

σ maps an algebraic function f(t) ∈ K(t) into f(tm). This certainly means

that σ is surjective (and thus an isomorphism) since σ(g) = f , where g(t) =

f(t1/m).

Definition 4.1.2. We say that a non-constant polynomial f ∈ K[t][X, Y ] is

reduced if the coefficients ai of f do not share a non-constant common factor

in K[t].

If f1, . . . , fk ∈ K[t], we define the greatest common divisior (gcd) of

f1, . . . , fk as the unique monic polynomial of highest degree in K[t] which

divides all of the fi. We define two different types of heights of non-zero

elements of algebraic extensions L/K(t).

Definition 4.1.3. For a place w ∈ ΩL and f ∈ L[X, Y ] we have the local

height hw(f) = maxi {hw(ai)} and the global height h(f) =
∑
w∈ΩL

hw(f).

When considering the height of a point x ∈ L/K(t), we would like a

connection between the height of x and the height of σ(x). The following

observation, [2, Lemma 2.1], will be key in making this connection.

Lemma 4.1.4. Let L be a finite extension of K(t) and suppose that x ∈ L
satisfies f(x) = 0, for f(X) = anX

n + . . . a0 reduced and irreducible over

K(t). Then h(x) =
h(f)

n
.

Remark: If the reader refers to [2, Lemma 2.1], she will notice a factor of

[L : K(t)]. This arises due to the height in [2] being a normalized height. For
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our work, we do not need the normalized height and thus ignore the degree

factor.

From this result, we may derive the following corollary:

Corollary 4.1.5. For l ∈ N, define T = t1/l and let L be a finite extension

of K(t). Suppose that x ∈ L satisfies f(x) = 0, where f(X) ∈ K(T )[X] is

reduced and irreducible over K(T). Then, h(x) =
h(f)

l · deg (f)

Proof. By Lemma 4.1.4, we have h(x) = hK(T ) =
hK(T )(f)

deg (f)
, where hK(T ) is

the height with respect to K(T ). But, we want the height h to be the usual

height that is with respect to K(t).

If y ∈ K(T ), then we note

hK(t)(y) =
1

[K(T ) : K(t)]

∑
w∈ΩK(T )

max {0,−w(y)}

and

hK(T )(y) =
∑

w∈ΩK(T )

max {0,−w(y)}.

Combining these statements, we find

h = hK(t) =
1

[K(T ) : K(t)]
hK(T ) =

1

l
hK(T ).

By applying Lemma 4.1.4, we obtain our desired result of

h(x) =
hK(T )(f)

l · deg (f)

Claim 4.1.6. For x ∈ K(t), h(σ(x)) = mh(x).

Proof. Let σ : K(t) −→ K(t) be as we have defined. Then, for x ∈ K(t),

let f = anX
n + . . . + a0 be its minimal polynomial over L =

∞⋃
k=0

K(t1/m
k
).

Then, f is irreducible over L with ai ∈ K(t1/m
ki ), for some ki. But then,
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ai ∈ K(t1/m
k
), for the maximum of the ki. We may clear denominators so

that we have ai ∈ K[t1/m
k
] = K[T ]. Thus,

0 = σ(anx
n + an−1x

n−1 + . . .+ a0)

= σ(an)σ(x)n + σ(an−1)σ(x)n−1 + . . .+ σ(a0)

= σ(an)Y n + σ(an−1)Y n−1 + . . .+ σ(a0), for Y = σ(x).

If we consider the restriction of σ as the map K(t1/m
k
) −→ K(t1/m

k−1
),

this map is surjective. To see this, we note that σ(t1/m
k
)m

k
= σ(t) = tm.

This yeilds σ(t1/m
k
) = ζt1/m

k−1
for an mk−1-th root of unity ζ. So, we take

σ(ζ−1t1/m
k
) = t1/m

k−1
, proving surjectivity as desired. As K(t1/m

k
) −→

K(t1/m
k−1

) is an endomorphism of fields, it must be injective. By this, it is

certainly true that σ : L −→ L is an automorphism, which may be seen by

the following chain:

K(t) −→ K(t1/m) −→ K(t1/m
2
) −→ · · ·

We now want to show that σ(an)Y n + . . .+ σ(a0) = 0 is irreducible over

L. Supoose on the contrary that this is not the case. Then,

σ(an)Y n + . . .+ σ(a0) = (bmY
m + . . .+ b0)(ckY

k + . . .+ c0) = 0,

where each bi = σ(b′i), ci = σ(c′i), for some b′i, c
′
i ∈ L since σ is an automor-

phism. Then, σ(f) = σ(g)σ(h), yielding σ(f − gh) = 0. But once again,

using that σ is injective, we have that f = gh over L, a contradiction of the

irreducibility of f over L.

Now that we have the irreducibility of σ(an)Y n + . . . + σ(a0) , we may

apply Corollary 4.1.5 and obtain:

h(σ(x)) =
max degi {σ(ai)}

mkn
=
mmax degi {ai}

mkn
=
mh(f)

mkn
= mh(x).

Hence, we have that h(σ(x)) = mh(x). Additionally, in order to apply

Corollary 4.1.5, we want that the gcd(σ(ai)) = 1. By assumption, we have
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that ai ∈ K[T ] (which is a PID) for each i and gcd(ai) = 1. Hence, we know

that there exist βi ∈ K[T ] so that

1 =
n∑
i=0

βiai = σ(
n∑
i=0

βiai) =
n∑
i=0

σ(βi)σ(ai).

Since σ(βi) = ci for some ci ∈ K[T ], we have that gcd(σ(ai)) = 1, as

desired.

Additionally, we have the following corollary which follows from Claim

4.1.6.

Corollary 4.1.7. For (x, y) ∈ K(t)
2
, h(σ(x), σ(y)) ≥ m

2
h(x, y).

Proof. We have that:

h(σ(x), σ(y)) ≥ max {h(σ(x)), h(σ(y))}

= max {mh(x),mh(y)}, by Claim 4.1.6

= mmax {h(x), h(y)}

≥ m

2
(h(x) + h(y))

≥ m

2
h(x, y)

The last inequality follows by Proposition 3.0.6 since h(x, y) ≤ h(x) +

h(y) ≤ 2 max {h(x), h(y)}.

4.2 Curves over K(t)

After defining and studying characteristics of the σ-endomorphism, we are

now ready to consider the proof of Theorem 1.2.3. In this section we prove

the following special case of Theorem 1.2.3.

Theorem 4.2.1. Let C ⊂ A2 be an irreducible plane curve defined over K(t)

and not over K. For (x, y) ∈ C(K(t)), there exists a real number c0 > 0 such

that if h(x, y) < c0, then (x, y) ∈ C(K).
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In order to prove Theorem 4.2.1, we begin with the following lemma.

Lemma 4.2.2. Let f ∈ K[t][X, Y ] be a reduced polynomial of total degree

d. Let m ∈ Z be such that m ≥ 2h(f), if (x, y) ∈ K(t)
2

satisfies f(x, y) = 0

then either h(x, y) ≥ 1

4d
or f(σ(x), σ(y)) = 0.

Proof. Suppose f(X, Y ) =
∑
i,j

aijX
iY j for i, j ∈ N∪ {0}. We choose an inte-

germ with respect to f so thatm ≥ 2h(f) and construct the σ-endomorphism

from this particular m. For each i, we will define mij = xiyj.

Assume f(σ(x), σ(y)) 6= 0. We wish to show that h(x, y) ≥ 1

4d
. We

define the extension L = K(t, x, y, σ(x), σ(y)). We note that for a given

f(x, y) ∈ K[t][X, Y ], σ(f(x, y)) = f(σ(x), σ(y)) ∈ L. Define [L : K(t)] = N

for some N ∈ N.

If ξ = f(σ(x), σ(y)) 6= 0, then, by the sum formula,
∑
w∈ΩL

1

N
w(ξ) = 0.

Since f(x, y) = 0, we have:

ξ = ξ − σ((f(x, y)))

= f(σ(x), σ(y))− σ(
∑
i,j

aijmij)

=
∑
i,j

aijσ(x)iσ(y)j −
∑
i,j

σ(aijmij)

=
∑
i,j

aijσ(mij)−
∑
i,j

σ(aij)σ(mij)

=
∑
i,j

(aij − σ(aij))σ(mij)

Claim 4.2.3. tm − t|σ(g)− g, for any g ∈ K[t].

Proof of Claim. Let g =
N∑
i=0

cit
i, so that σ(g) =

N∑
i=0

cit
im. Then, since tm −

t|tml − tl, for any l ∈ N and σ(g) − g =
N∑
i=0

cit
im −

N∑
i=0

cit
i =

N∑
i=0

ci(t
im − ti),

we have that tm − t|σ(g)− g as desired.
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So, from Claim 4.2.3, ξ = (tm − t)
∑
i,j

bijσ(mij), bij =
aij − σ(aij)

tm − t
∈ K[t].

Define the set S as follows:

S = {w ∈ ΩL : w lies above an irreducible factor in K[t] of tm − t}.

As we are working over an algebraically closed field K, we may write the

polynomial tm − t in terms of m irreducible linear factors. For an m− 1th

root of unity ζ ∈ K, tm − t = t
∏

ζm−1=1

(t− ζ). So, the places w ∈ S lie above

anm− 1th root of unity inK or zero. We now consider a series of inequalities.

For each w ∈ S:

1

N
w(ξ) =

1

N
w((tm − t)

∑
i,j

bijσ(mij))

=
1

N
[w(tm − t) + w(

∑
i,j

bijσ(mij))]

≥ 1

N
w(tm − t) +

1

N
min
i,j
{w(bijσ(mij))}

=
1

N
w(tm − t) +

1

N
min
i,j
{w(bij) + w(σ(mij))}

≥ 1

N
w(tm − t) +

1

N
w(bIJ) +

1

N
w(σ(mIJ)), for some I, J

≥ 1

N
w(tm − t) +

1

N
w(σ(mIJ)), since w(bIJ) ≥ 0.

Now, for any valuation w ∈ ΩL,

1

N
w(σ(mIJ)) =

1

N
w(σ(xI)σ(yJ))

=
1

N
(w(σ(xI) + w(σ(yJ)))

=
1

N
(Iσ(x) + Jσ(y))
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≥ I + J

N
min {w(σ(x)), w(σ(y)), 0}

Since the degree of mIJ is at most d, we have:

1

N
w(σ(mIJ)) ≥ d

N
min {w(σ(x)), w(σ(y)), 0}.

Now, recalling that hw(x, y) = − 1

N
min {w(x), w(y), 0}, we have that

1

N
w(σ(mIJ)) ≥ −dhw(σ(x), σ(y)). (4.2.1)

So,
1

N
w(ξ) ≥ 1

N
w(tm − t)− dhw(σ(x), σ(y)) (4.2.2)

Next, taking ξ =
∑
i,j

aijσ(mij) and considering valuations w ∈ ΩL \ S,

1

N
w(ξ) =

1

N
w(
∑
i,j

aijσ(mij))

≥ 1

N
min
i,j
{w(aijσ(mij))}

=
1

N
w(aIJσ(mIJ)), for some I, J

=
1

N
w(aIJ) +

1

N
w(σ(mIJ))

Now, recall that hw(f) = − 1

N
min {w(aij), 0} for any w ∈ ΩL. Since

w(aIJ) ≥ min {w(aIJ), 0}, we have:

1

N
w(ξ) ≥ 1

N
w(aIJ) +

1

N
w(σ(mIJ))

≥ 1

N
min {w(aIJ), 0}+

1

N
w(σ(mIJ))

≥ 1

N
min {w(aIJ), 0} − dhw(σ(x), σ(y)), by 4.2.1
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= −hw(f)− dhw(σ(x), σ(y)).

Combining our results for all w ∈ ΩL:

∑
w∈ΩL

1

N
w(ξ) ≥

∑
w(tm−t)>0

1

N
w(tm − t)− d

∑
w∈ΩL

hw(σ(x), σ(y))−
∑

w∈ΩL\S
hw(f).

Hence,

0 =
∑
w∈ΩL

1

N
w(ξ) ≥

∑
w(tm−t)>0

1

N
w(tm − t)− dh(σ(x), σ(y))− h(f) (4.2.3)

Then, by our results from Proposition 3.0.4:∑
w(tm−t)>0

1

N
w(tm − t) =

∑
v∈ΩK(t)

v(tm − t) = −v∞(tm − t) = m

By Claim 4.1.6,

0 ≥ m− dh(σ(x), σ(y))− h(f)

= m− d
∑
v∈ΩL

hv(σ(x), σ(y))− h(f)

≥ m− d(h(σ(x)) + h(σ(y)))− h(f)

= m− d(mh(x) +mh(y))− h(f)

≥ m− d(mh(x, y) +mh(x, y))− h(f)

= m− 2dmh(x, y)− h(f)

This yields h(x, y) ≥ 1

2d
− h(f)

2dm
. But, as m ≥ 2h(f), we have that

h(x, y) ≥ 1

4d
, as desired.
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Now that we have proven the lemma, we may move to the proof of our

main theorem for curves defined over K(t).

Proof of Theorem 4.2.1. Let f(X, Y ) =
∑
i,j

aijX
iY j = 0 be the irreducible

polynomial which defines our curve C over K(t). As f(X, Y ) is irreducible,

so is C. In order to make use of Lemma 4.2.2, we will consider f in its reduced

form and make sure that at least one of the coefficients aij is non-constant so

that f is not defined over K. By Lemma 4.2.2, for (x0, y0) ∈ C and m such

that m ≥ 2h(f), one of two cases must occur:

(1) h(x0, y0) ≥ 1

4d
(2) f(σ(x0), σ(y0)) = 0⇐⇒ (σ(x0), σ(y0)) ∈ C

Let us take the first m we find such that m ≥ 2h(f) and assume that

(x0, y0) 6∈ C(K). Our choice of m now determines our choice of σ correspond-

ing to m. Also, denote by Cσ the zero locus of the curve fσ(X, Y ), where

fσ(X, Y ) =
∑
i,j

σ(aij)X
iY j

Claim 4.2.4. C ∩ Cσ is finite.

Proof of Claim. Suppose on the contrary that C ∩ Cσ is infinite. Then, we

must have that C is one of the irreducible components of Cσ.

So, fσ ∈ Id(Cσ) ⊂ (f) = Id(C), since C is an irreducible component of Cσ.

This implies that f |fσ. Also, f and fσ are of the same degree, so we must

have that there exists some α ∈ K(t) such that fσ = αf . Now, α =
σ(aij)

aij
for every i, j. But since f is reduced, by the remark after Definition 4.1.2,

gcd ({aij}i,j) = 1 ∈ K. Hence, there exist bij ∈ K[t] such that
∑
i,j

aijbij = 1.

Applying σ, we have that σ(
∑
i,j

aijbij) = 1 =
∑
i,j

σ(aij)σ(bij). It follows that

gcd ({σ(aij)}i,j) = 1. By this, we must have that α ∈ K; otherwise, we

have a contradiction of the aij and σ(aij) being relatively prime. So, since
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α =
σ(aij)

aij
∈ K for every i, j, we have that deg aij = deg σ(aij), so that

aij ∈ K. Which then implies that f is defined over K. Contradiction.

Similiarly, we define Cσ−1
as the zero locus of fσ

−1
(X, Y ) =

∑
i,j

σ−1(aij)X
iY j.

It is worth noting that Cσ−1
is not defined over K. If it were, C := σ(Cσ−1

)

would be defineed over σ(K) = K, a contradiction. We claim that C∩Cσ−1
is

finite. Suppose not, so that there exist infinitely many points (x, y) ∈ K(t)

such that f(x, y) = 0 = fσ
−1

(x, y). Then, by applying σ, we have

σ(
∑
i,j

aijx
iyj) = 0 = σ(

∑
i,j

σ−1(aij)x
iyj)∑

i,j

σ(aij)σ(x)iσ(y)j = 0 =
∑
i,j

aijσ(x)iσ(y)j

So, there are infinitely many points in K(t) that satisfy f(x, y) = 0 =

fσ(x, y). This contradicts Claim 4.2.4, proving that C ∩ Cσ−1
is finite.

Now, let {(x1, y1), . . . , (xN , yN)} ⊂ C ∩ Cσ−1
, be all the points which are

not defined over K. For each j, we define hj = h(xj, yj). Note that hj > 0

since the point is not defined over K. We let c0 = min { 1
4d
,mini hi}, while if

N = 0, i.e., all points in C∩Cσ−1
are defined over K, then simply let c0 =

1

4d
.

For (x0, y0) ∈ C(K(t)) such that h(x0, y0) < c0, we’ll show (x0, y0) ∈
C(K). Indeed by Lemma 4.2.2, we have that (σ(x0), σ(y0)) ∈ C. This means

that (x0, y0) ∈ Cσ−1
and so, (x0, y0) ∈ C ∩ Cσ−1

. But h(x0, y0) < c0 ≤ hi for

each i, and therefore (x0, y0) ∈ C(K).

If N = 0, then automatically (x0, y0) ∈ C ∩ Cσ−1
yields that (x0, y0) ∈

C(K) since all those points in the intersection are defined over K.

Remark: Theorem 1.2.3 requires that the curve is not defined over K, so

we will now see why this assumption is needed. Suppose our curve is defined

by the polynomial f(X, Y ) = Y 2 − X3 − 1, which is defined over the base
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field K, and let m ≥ 3.

Now, suppose that we take (x, y) = (t,
√
t3 + 1) = p0 ∈ C(K(t)). For

p1 = (σ−1(x), σ−1(y)), we have that

f(σ−1(x), σ−1(y)) = (σ−1(
√
t3 − 1))2 − (σ−1(t))3 − 1

= σ−1((
√
t3 − 1)2 − t3 − 1)

= σ−1(0)

= 0.

Thus, p1 ∈ C(K(t)). Similarly for pn = (σ−n(x), σ−n(y)), we have

f(σ−n(x), σ−n(y)) = (σ−n(
√
t3 − 1))2 − (σ−n(t))3 − 1

= σ−n((
√
t3 − 1)2 − t3 − 1)

= σ−n(0)

= 0

Hence, pn belongs to the curve C. Since σn(pn) = p0, we may apply

Corollary 4.1.7 to see that h(pn) ≤
(

2

m

)n
h(p0). If we let n go to infinity,

then h(pn) must go to zero since m ≥ 3. Hence, for (x, y) ∈ C and again

taking n to infinity, we have that h(pn) goes to 0. We cannot find a bound

c0 on the heights, and this shows that the conclusion of Theorem 1.2.3 can

fail if C is defined over K.
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4.3 Proof of the main theorem

Although we have been working with curves defined over K(t), we can extend

the result further to any curve defined over K(t). The fact that Theorem

1.2.3 is true over K(t) will be a key tool in the extension to K(t).

Let L/K be a function field of transcendence degree 1. We will take

an element u ∈ L which is transcendental over K, so that L is finite over

K(u). Suppose we take a curve C defined over L, which is not necessarily

irreducible. We define a new curve C ′ =
⋃
τ∈G
Cτ , where G is defined as the

set {τ ∈ Aut (L) : τ |K(u) = idK(u)}. From Galois theory, we know that for

finite extensions L/K(u), there exists some inseparable extension of degree

pm,m ≥ 0 such that K(u) ⊆ K(u1/pm) ⊆ L, and L/K(u1/pm) is separable.

We take t = u1/pm and obtain the following proposition.

Proposition 4.3.1. C ′ is defined and irreducible over K(t).

Proof. As all elements in G fix K(u), they must fix K(t) as well since any

pnth-root of unity in characteristic p is 1. Thus, the only elements of L fixed

by all automorphisms in G are all the elements of K(t). So, C ′ is defined over

K(t) and is fixed by any automorphism of Gal (K(t)sep/K(t)).

Now, we wish to show that C ′ is irreducible over K(t). Suppose not: then

there must exist distinct irreducible curves C1 and C2 defined over K(t) and

proper inside C ′ such that C1, C2 ⊂ C ′. Since we have defined C ′ =
⋃
τ∈G
Cτ , we

must have

C1 =
⋃
σ∈S1
Cσ and C1 =

⋃
γ∈S2
Cγ

for S1,S2 ⊂ G. Since C1 is defined over K(t), it follows that C1 is fixed by

any α ∈ G. Then, C1 = C1
α =

⋃
τ∈G
Cασ.

But this means that Cασ ⊆ C1 for any σ ∈ S1. If we then vary α through

every element in G, it follows that Cτ ⊆ C1 for every τ ∈ G. Hence,
⋃
τ∈G
Cτ =
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C ′ ⊆ C1. Thus, C1 and C ′ are equal; the same follows for C2, proving that C ′

is irreducible as claimed.

Finally, we show that Theorem 1.2.3 holds for curves defined over K(t).

But first, as we will make use of the curve C ′ above, we must verify that C ′

is not defined over K.

Suppose that C ′ were defined overK. Let ψα be the automorphism ofK(t)

such that it is the identity on K and ψα(t) = t+α. Recalling that C ′ =
⋃
τ∈G
Cτ ,

we must have that Cψα conincides one of the Cτ , for some τ : L −→ L, fixing

K(u). Since there exist infinitely many α ∈ K, by the pigeonhole principle

there must be distinct α, β ∈ K such that

Cψα = Cτ = Cψβ

This means that C is fixed by ψγ, which is the automorphism of K(t) such

that ψγ is the identity on K and ψβ−α(t) = t + γ, γ = β − α 6= 0. For the

curve C being defined by f(X, Y ) =
∑
i,j

aijX
iY j, the invariance of C under

ψγ may be observed in the following.∑
i,j

ψα(aij)X
iY j =

∑
i,j

ψβ(aij)X
iY j

ψ−α(
∑
i,j

ψα(aij)X
iY j) = ψ−α(

∑
i,j

ψβ(aij)X
iY j)∑

i,j

aijX
iY j =

∑
i,j

ψβ−α(aij)X
iY j

Because C is fixed by such a map, it must be defined over the fixed field

for such an automorphism, which in the case of ψγ, is K; but C has been

taken to not be defined over K. Contradiction.

Now, let C be a plane curve defined over K(t), and C ′ as in Proposition

4.3.1. By this proposition and Lemma 4.2.2 we know that there exists a real

number c0 > 0 such that if (x, y) ∈ C ′(K(t)) and h(x, y) ≤ c0, then (x, y) ∈
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C ′(K). So, let (x, y) ∈ C(K(t)) with h(x, y) ≤ c0. Since C(K(t)) ⊆ C ′(K(t)),

we may conclude that (x, y) ∈ C ′(K). Thus, we must have that (x, y) ∈ C(K)

as well.
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