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Abstract

Sparse representation of signals has recently emerged as a major research area. It is

well-known that many natural signals can be sparsely represented using a properly

chosen dictionary (e.g. formed of wavelets bases). A dictionary could be com-

plete or overcomplete depending on whether the number of bases it contains is the

same or greater than the dimensionality of the given signal. Traditionally, the use

of predefined dictionaries has been prevalent in sparse analysis. However, a more

generalized approach is to learn the dictionary from the signal itself. Learnt dic-

tionaries are known to outperform predefined dictionaries in several applications.

This thesis explores the application of sparse representations of signals ob-

tained by learning overcomplete dictionaries for three applications: 1) classifica-

tion of images and videos, 2) measurement of similarity between two images, and

3) assessment of perceptual quality of an image.

This thesis first capitalizes on the natural discriminative ability of sparse rep-

resentations to develop efficient classification algorithms. The proposed algo-

rithms are employed in image-based face recognition and video-based human ac-

tion recognition. They are shown to perform better than the state-of-the-art.

The thesis then studies how to obtain a good measure of similarity between

two images. Despite the long history of image similarity evaluation, open issues

still exist. These include the need of developing generic similarity measures that

do not assume any prior knowledge of the task at hand or the data type. This thesis

develops a generic image similarity measure based on learning sparse representa-

tions. Successful application of the proposed measure to clustering, retrieval and

classification of different types of images is demonstrated.

The thesis then examines a highly promising approach to assess the perceptual
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quality of an image. This approach involves comparing the structural information

of a possibly distorted image with that in its reference image. The extraction of

the structural information that is important to our visual system is a challenging

task. A sparse representation-based image quality assessment approach is proposed

to address this issue. When compared with seven existing metrics, our method

performs the best in three databases and ranks among the top three in the remaining

three databases.
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Chapter 1

Introduction

“Begin at the beginning,” the King said, very gravely,“and go on till
you come to the end; then stop.”

— Lewis Carroll, Alice in Wonderland

1.1 Motivation

Sparse representation of signals has emerged as a major area of research in the

signal and image processing community. This is because sparse analysis allows us

to capture the essential information in a signal into a small number of components.

This is an elegant and efficient way to deal with high dimensional signals and is

useful in their processing, transmission and storage.

It is well known that many natural signals (e.g. image, video, music) can be

represented sparsely when decomposed using a set of properly chosen basis func-

tions. This set of bases is commonly known as a dictionary. A dictionary can be

complete or overcomplete depending on whether the number of bases it contains
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is the same or greater than the dimension of the given signal it represents. This

thesis concentrates on the overcomplete case. An overcomplete dictionary offers

greater flexibility in representing the essential structures in a signal which results

in higher sparsity in the transform domain. The sparse representations obtained

using an overcomplete dictionary are also shown to be robust to additive noise and

occlusion [1].

Traditionally, researchers have used predefined basis functions (e.g. sinusoids,

wavelets, curvelets) to create a dictionary. However, the success of a predefined

dictionary is limited by how suitable its bases functions are to the structures in

the given signal. A more generalized approach is to learn the dictionary from the

signal itself. This data-dependent approach alleviates the difficulty of selecting the

proper predefined dictionary which often requires multiple trials, experience and

even mathematical analysis.

Learnt dictionaries have been shown to outperform predefined dictionaries in

several signal processing tasks such as denoising, compression and reconstruction

[2, 3]. It is also known that overcomplete dictionaries when learnt with a sparsity

prior generate basis functions qualitatively similar to the receptive field of the sim-

ple cells in the Primary Visual Cortex (V1) [4, 5]. Motivated by the success of the

learnt dictionaries and their connection to the Human Visual System (HVS), this

thesis explores how useful such learnt dictionaries and their corresponding sparse

representations would be for applications that require compatibility with human

perception of vision. These applications are (i) classification of image and video

signals, (ii) measurement of similarity between two images, and (ii) assessment of

perceptual quality of an image.
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1.2 The theory of sparse representation

Sparse representation is a rapidly growing field of research lying at the intersection

of signal processing, applied mathematics and statistics. In this section, we briefly

discuss the major concepts of sparse representation related to our interest. For

more information on this topic, we request the reader to refer to the review paper

by Bruckstein et al. [3] and the references therein.

We begin with the basic assumption that a signal b can be represented in terms

of a linear superposition of m basis functions, φ1,φ2, ...,φm mixed together with

coefficients x1,x2, ...,xm.

b =
m

∑
i=1

xiφi (1.1)

For convenience, we adopt a matrix-vector notation, such that we have the follow-

ing linear system.

b = Φx (1.2)

where the signal b∈Rn, and the matrix Φ∈Rn×m has m basis vectors φ1,φ2, ...,φm

as its columns, and x ∈ Rm is the coefficient vector. When the majority of coef-

ficients in x are zero, it is said that b has a sparse representation with respect to

the dictionary Φ. In practice, however, it is unlikely to have the majority of coef-

ficients exactly equal to zero. It is more common to have a representation where a

few coefficients are significantly large while the rest are very small. Signals yield-

ing such representations are thus called compressible, as they are not truly sparse.

Nevertheless, the smaller coefficients can be safely ignored and set to zero in order

to secure a sparse representation in many practical situations.

It is well-known that many natural signals such as audio, still images and videos
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can be sparsely represented when decomposed using a properly chosen Φ. For ex-

ample, music signals are sparse in the Fourier (sinusoid) bases and many natural

images have sparse representation in the wavelets bases. Sparsity plays such an im-

portant role in signal representation, storage, transmission and reconstruction that

the primary objective of many signal processing problems is to obtain the sparse

representation of a given signal. This often comes down to solving Equation 1.2

such that x has as fewer non-zero components as possible.

1.2.1 Overcompleteness and the sparsest solution

Solving Equation 1.2 is easy when Φ is a known square, orthonormal matrix (i.e.

when n=m and 〈φi,φ j〉= 0, i 6= j and ‖φi‖= 1), such as the case in Fourier matrix.

Although solving such a system is easy, the resulting x may or may not be sparse. It

is well-known that smooth signals are sparsely representable in the Fourier domain

but signals with sharp edges require a large number of Fourier terms in order to be

approximated reliably (Gibbs phenomenon).

In practice, signals are often found to contain mixed structures that can not be

efficiently captured by using only sinusoids or only wavelets. This leads to the idea

of combining multiple bases to create an overcomplete dictionary - where the num-

ber of basis vectors (not necessarily orthogonal) is greater than the dimensionality

of the input signal. Note that, in the overcomplete case Φ is a rectangular matrix,

having more columns than rows (n < m) and a full-rank, overcomplete Φ makes

Equation 1.2 an underdetermined system having infinite number of solutions. To

narrow down the choice to one well-defined solution, additional constraints are re-

quired. A familiar way to do this is to introduce an objective function J(x) and
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define a general optimization problem, PJ , as follows.

(PJ) : min
x

J(x) subject to b = Φx (1.3)

J(·) is expected to be a well-behaved convex function so as to guarantee a unique

solution. The most common case is where J(x) is a measure of the energy of x

i.e. J2(x) = ‖x‖2
2. This generates a so-called minimum norm solution of the system,

which has the following closed form solution.

x = Φ
+b = Φ

T (ΦT
Φ)−1b (1.4)

However, we are interested in a different objective function, J0(x), that uses spar-

sity instead of energy. A straightforward measure of sparsity is provided by the `0

semi-norm, which counts the number of non-zero components in a vector. Let #i

be the number of non-zero components in x , then the `0 norm of x can be written

as

‖x‖0 = #i{i : xi 6= 0} (1.5)

We define J0(x) = ‖x‖0 to form the following optimization problem (P0).

(P0) : min
x
‖x‖0 subject to b = Φx (1.6)

Although Equation 1.6 does not look very complicated, the difficulty of solving

this equation is enormous. This is a classic case of combinatorial search: one needs

to form all possible combinations of columns chosen from the m columns of Φ,

generate corresponding subsystems of linear equations and verify if the subsystem
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is solvable, in each case. The complexity of combinatorial search is exponential

and it has been proved that solving (P0) (Equation 1.6), in general, is NP-hard [6].

Instead of working with the exact case b = Φx, the constraint is often relaxed

using a quadratic penalty function ‖b−Φx‖2
2 and the following error-tolerant ver-

sions of (P0) is solved.

(Pδ
0 ) : min

x
‖x‖0 subject to ‖b−Φx‖2

2 ≤ δ (1.7)

The most natural and intuitive interpretation of Equation 1.7 is to account for

the noise present in the real data. Theoretical studies have defined the conditions

at which the error-tolerant versions yield stable and fairly accurate solutions [7, 8].

1.2.2 Greedy algorithms

Although a straightforward approach to solving (P0) Equation 1.6 or (Pδ
0 ) Equa-

tion 1.7 seems futile, there exist greedy strategies that can work under certain con-

ditions. Instead of an exhaustive search, a greedy strategy, looks for a series of

locally optimal single-term updates. At each iteration, a greedy algorithm selects

only one column - the column of Φ that minimizes the residual error ||b−Φx||2.

A new column is added at each iteration so as to reduce the residual error further.

A pseudocode for the greedy strategy is presented in Algorithm 1.1.

A number of variants of this strategy exist in the literature [9–13]. Such al-

gorithms are more computationally efficient than the exhaustive search, but can

also fail badly in certain cases [14]. Nevertheless, greedy algorithms are exten-

sively used in many fields under different names; the popular ones are known as

the Matching Pursuit (MP) [9] and the Orthogonal Matching Pursuit (OMP) [12] in
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Algorithm 1.1 Greedy algorithm

Input: b, Φ Output: x

• Initialize:

– x = zero vector

– residual = b

• Loop until residual ≤ δ (or 0 for the exact case)

– Find φi ∈Φ with maximum inner product |〈b,φi〉|
– xi = 〈b,φi〉
– residual← ||b−Φx||2

the context of signal processing. For cases when a sufficiently sparse solution is

known to exist, the greedy algorithms can solve (P0) exactly [15].

1.2.3 Convex relaxation

Apart from the greedy strategy, another way of solving (P0) is to replace the highly

discontinuous `0 norm with its closest convex approximation i.e. the `1 norm.

(P1) : min
x
‖x‖1 subject to b = Φx (1.8)

Since the problem (P1) above is convex, it can be solved by standard opti-

mization tools like linear programming. This approach is known as the Basis Pur-

suit (BP) [16]. BP and its variants are more sophisticated compared to the greedy

algorithms, since they find the global solution of a well-posed optimization prob-

lem. The error-tolerant version of (P1) in Equation 1.8, known as the Basis Pursuit
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Denoising (BPDN) [17], is defined as

(Pδ
1 ) : min

x
‖x‖1 subject to ‖b−Φx‖2

2 ≤ δ (1.9)

There also exist other convex relaxation techniques such as FOCUSS [18] and

iterative shrinkage [3].

1.3 The idea of dictionary learning

It is now well-established that many natural signals, such as images, videos and

music signals, can be represented sparsely if decomposed using a properly chosen

dictionary. However, selecting the proper dictionary is not an easy task. It often

requires many trials, domain knowledge, previous experience and even mathemat-

ical analysis. A more generalized idea is to learn the basis elements in a dictionary

from the given data itself. This process of learning a dictionary also an interesting

connection to the HVS that indicates sparse representation to be a probable strategy

employed by the HVS (HVS is discussed in Appendix A).

1.3.1 Dictionary learning and the HVS

The visual cortex in the human brain has evolved over millions of years analyzing

visual information from natural scenes and environment. Given the limited physi-

cal resources of a human brain, it is only reasonable to believe that in the struggle

for existence, the cortex has discovered efficient coding techniques for represent-

ing natural images and scenes. In other words, the cortex employs certain strategies

that reduce the redundancy of an image such that relatively fewer neurons are active

at a particular time. This is indeed a sparse coding strategy.
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In the field of signal and image processing, sparsity in signal representation

has long been an important goal for many practical problems. For data storage,

transmission or reconstruction, having to deal with fewer coefficients is computa-

tionally more efficient and of course, more convenient. In the pursuit of efficient

(sparse) signal representation, many mathematical transforms and corresponding

basis functions have been designed.

In 1996, Olshausen and Field proposed a rather interesting viewpoint [4, 5].

Instead of using the existing mathematical transforms that could sparsely represent

the input signal, they proposed to design a set of basis elements from the input

itself i.e. to learn them from the input signal. They enforced (i) a sparsity prior

- an assumption that it is possible to describe the input using a small number of

basis elements and (ii) overcompleteness - the number of basis elements is greater

than the vector space spanned by the input. They showed that this strategy results

in a set of basis elements that are localized, oriented, and of bandpass nature, and

therefore resemble the properties of simple cells in V1 (see Section A.2.1).

Due to overcompleteness, the basis functions are non-orthogonal, and the input-

output relation deviates from being purely linear. The justification of deviating

from a strictly linear approach is to account for a weak form of nonlinearity exhib-

ited by the simple cells themselves [4].

1.3.2 Dictionary learning

The discovery by Olshausen and Field, promotes the idea of learning an overcom-

plete dictionary i.e. learning a set of overcomplete basis functions from the given

data [4, 5]. This idea apparently mitigates the difficulty of selecting the right basis

function that would lead to a sparse representation of a given signal. An overcom-
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plete dictionary can be formed i) by combining multiple orthogonal bases (such as

the Identity and Fourier matrices) or ii) by selecting one of the predefined over-

complete bases, such as curvelets or bandlets [19]. However, the success of an

overcomplete dictionary with predefined bases is often limited by how suitable its

basis functions are in representing the structure in the signal under consideration.

The dictionary learning approach, on the other hand, is more generalized as its

basis vectors could be adapted to fit the structures in the given data.

This promising idea however was not exploited to its full strength until recently,

primarily due to the computational difficulty in obtaining a sparse solution in the

overcomplete case. Earlier approaches to learning overcomplete dictionaries [1,

20] consider the dictionary as a probabilistic model of the observed data. These

methods have successfully shown that an overcomplete set of bases yield a better

approximation of the underlying statistical distribution of the data and can lead to

a more compact representation.

Thanks to the recent progress and the growing interest in the areas of sparse

optimization, dictionary learning has become an important topic of research in the

last few years. Several practical dictionary learning algorithms have now been

developed [21–25]. These methods have been shown to outperform prespecified

dictionaries like wavelets and produce state-of-the-art results in several real world

applications such as in image and video denoising [2] and color image restoration

[26].

The idea of fitting bases to a particular data distribution however is not new to

the signal processing community. The well-known Principal Component Analysis

(PCA) learns orthogonal bases from a particular data by finding the directions in

the data with the largest variance - the principal components. An extension of
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PCA, called the Independent Component Analysis (ICA), allows the learning of

nonorthogonal bases from the data. In both cases, however, the bases are complete

- the number of basis functions is equal to the dimension of the input. PCA assumes

a Gaussian distribution of the data and thus can fail badly when the real distribution

is non-Gaussian in nature. With ICA, the non-Gaussian distribution can be handled

better, but there are distributions which can not be modeled efficiently by PCA nor

ICA.

Let B be a matrix containing s number of training samples as its columns:

B = {bi}s
i=1, bi ∈Rn. The problem is to learn a dictionary Φ ∈Rn×m (n < m) such

that each bi has a sparse representation xi. This can be formally expressed as the

following optimization problem:

min
Φ,X

s

∑
i
‖xi‖0 subject to ‖B−ΦX‖2

F ≤ δ (1.10)

where X = {xi}s
i=1, xi ∈ Rm and ‖·‖F denotes the Frobenius matrix norm (the `2

norm of the vector obtained by concatenating the columns of the matrix into a

single vector).

Notice that, the problem is more ill-posed compared to Equation 1.7 or Equa-

tion 1.9 because of the two unknowns: Φ and X. Usually this is solved iteratively

by performing two steps at each iteration - keep Φ fixed and solve for X; next,

update Φ according to the new X. Various methods [21, 23, 2, 24, 27] have pro-

posed different ways of performing the sparse optimization and the corresponding

updates, each having its own merits and demerits.
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1.4 Applications of sparse representation

The earlier research effort in sparse representation is mainly concentrated on de-

veloping the theory of sparse representation as a new paradigm in signal process-

ing. Later sparse signal analysis found applications in those problems that involve

signal recovery, such as in denoising, compression, signal restoration and recon-

struction [3].

One of the more successful real-world applications is compressed sensing-

based dynamic magnetic resonance image reconstruction [28]. Applications of

sparse analysis have also been extended to remote sensing, audio signal process-

ing, geophysical data analysis, computational biology and other areas. An exten-

sive list of applications (and theoretical developments) involving sparse analysis is

maintained by Rice University, Texas [29].

Since the last few years the area of sparse representation has become one of the

most active areas in signal and image processing. Other than denoising, restoration

and inpainting, there are a number of tasks, such as encryption, watermarking,

scrambling and target detection, that can benefit from sparse analysis. Recently,

sparse representation has been used to address classification problems such as face

recognition [27], object recognition [30], texture classification [31], etc.

1.5 Objective

This thesis explores the application of sparse representations obtained by learning

overcomplete dictionaries for three types of application areas that require compat-

ibility with human visual perception. These applications involve

• Classification of image and video signals information relevant to human per-
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ception, such as the type of object, scene, activity or identity of a person,

needs to be extracted from given data.

• Measurement of similarity between two images is a fundamental issue and

of critical importance in many applications. This problem often demands

compatibility with human intuition.

• Assessment of perceptual quality of an image can be seen as a special case

of image similarity measurement where the goal is to quantify image degra-

dations as perceived by humans. While the general purpose image similarity

measures concentrate on achieving robustness against translation, rotation,

noise and other distortions, quality measures attempt to quantify those dis-

tortions.

1.6 Contributions

This main contributions of this thesis lie in extending and enriching the application

of sparse representations obtained by learning overcomplete dictionaries. Below,

we list the broad contributions of this thesis (the contributions are discussed in

Chapter 5 in detail).

• This thesis is one of the pioneering works that explore the application of

learning sparse representations for classification. We have proposed four

classification algorithms. These algorithms are applied to a variety of clas-

sification problems: face recognition, human action recognition, expression

recognition and biological species classification. The proposed algorithms

consistently perform better or at par with the state-of-the-art.
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• The application of learnt sparse representations have been extended to two

new areas: image similarity measurement and perceptual quality assessment

of an image.

• A sparse representation-based image similarity measure has been proposed.

This measure extends the current state-of-the-art in generic similarity mea-

sure based on the idea of data complexity. The proposed measure produces

successful results for image clustering, classification and retrieval.

• A new image quality assessment metric has been proposed. This metric

outperforms a number of well established quality metrics and performs better

or at par with the current state-of-the art.

1.7 Organization

The rest of this thesis is organized as follows:

Chapter 2 presents three classification algorithms developed under different

dictionary learning frameworks following the supervised classification paradigm.

This chapter concentrates on the problems of recognizing faces and human actions

in videos. The proposed algorithms are evaluates on benchmark datasets.

Chapter 3 proposes a generic similarity measure that is applicable to a variety

of problems and data. The generality and effectiveness of our measure is demon-

strated in the context of clustering, retrieval and classification. This chapter also

connects sparse representation with the ideas of compression-based distance and

Kolmogorov complexity.

Chapter 4 develops an image quality assessment method. The proposed method

is based on the idea of learning sparse representation of images. Our method is
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evaluated on six publicly available image quality evaluation datasets and is shown

to perform better or at par with the state-of-the-art.

Finally, Chapter 5 concludes the thesis, listing the contributions and future

work for each part separately.
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Chapter 2

Sparse Representation-based

Classification

In this chapter, we explore the effectiveness of sparse representation obtained by

learning overcomplete dictionaries in the context of classifying images and videos.

We investigate three dictionary learning frameworks. For each framework, we de-

velop one or more classification algorithms. These frameworks and algorithms are

fairly general and are applicable to a variety of classification problems. In this

chapter, we present results for two challenging problems: image-based face recog-

nition and video-based human action recognition. Additional results are provided

in the Appendix.

2.1 Background and motivation

The theory of sparse representation is developed primarily to address the problems

like signal denoising, reconstruction and compression. Recently, it has been shown

that sparse representation can also be useful in addressing classification problems.
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This is because sparse representation is naturally discriminative - it selects from

many basis vectors, only those that most compactly represent a signal [27].

The success of the sparse reconstruction-based classification algorithms largely

depends on the choice of the dictionary. As mentioned in Chapter 1, predefined dic-

tionaries such as curvelets, bandlets and variants of wavelets can be used. But the

success of these dictionaries depends on their suitability in capturing the structures

in the signal under consideration.

Another approach to building a dictionary is by concatenating the vectorized

training samples of all classes together [27]. This approach is successfully used in

face recognition. However, constructing such a dictionary requires a good number

of training samples to be available for each class. This may not always be the case

in practice.

A more generalized approach to designing a dictionary is to learn the dictionary

from a set of training data. Such a dictionary learning approach has been employed

in texture classification and segmentation [31]. A recent work proposes learning

a dictionary by jointly optimizing an energy formula containing both sparse re-

construction and class discrimination components [24]. This work reported pre-

liminary results on image segmentation. However, the joint optimization approach

proposed in [24] introduces further difficulty to the already complicated optimiza-

tion task.

A work on object recognition [30] moved from pixel domain to feature domain

and obtained sparse decomposition of the Scale Invariant Feature Transform (SIFT)

features [32]. This method creates a dictionary of SIFT features using sparse cod-

ing, but sticks to the traditional Support Vector Machine (SVM) for classification.

The area of sparse representation-based classification, though rapidly growing,
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is still at an early stage. Prior work on classification using sparse representation

has mainly dealt with images. Videos, being functions of space and time, pose a

bigger challenge. There also exist the need for developing more efficient and dis-

criminative classification frameworks. The work that we present in this chapter,

explores the usefulness of sparse representation obtained using learnt dictionar-

ies in the context of image-based face recognition and video-based human action

recognition.

2.2 Proposed approach

Our approach follows the supervised classification paradigm where the availability

of a labeled training dataset is assumed. Let us consider a labeled dataset of images

or videos having K different classes of data. Let the available training samples

per class be l. The training samples are represented as Vi j, i = 1,2, ...,K and

j = 1,2, ..., l.

In our approach, the first step is to extract suitable features from the available

training data. The dimensionality of those features is reduced if necessary. Over-

complete dictionaries are then learnt from the lower-dimensional features. When

a new query data is available, similar features are extracted from the query. The

classification algorithm uses these features to assign the query to the proper class.

2.2.1 Feature extraction

The first step is to extract proper features from the training data. For images, this

step can be as simple as randomly extracting raw patches from the images. Popular

feature extraction methods such as SIFT [32] can also be employed to extract a set

of meaningful features. In this work, we use randomly extracted image patches as
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features for the image-based classification task.

A common approach to obtaining a rich representation of a video sequence is to

extract a set of local, spatio-temporal features. We choose to extract the (a) Cuboid

[33] features and (b) the newly designed Local Motion Pattern (LMP) features [34]

from the training video sequences. The Cuboids method is chosen because of its

wide popularity in the field of action recognition. The LMP offers a fast technique

to extract spatio-temporal features from videos. LMP has been developed by the

author of this thesis. Both of the feature extraction methods can generate a good

number of features from a video, which is an important requirement for learning

the dictionary of features. A brief description of the Cuboid features is given below.

A description of the LMP features can be found in Appendix C.

In order to extract the Cuboid features, the key points in a video sequence

need to be detected. These key points are detected by applying separable linear

filters to the video sequence. A response function is computed by convolving the

video sequence with a 2D Gaussian filter (applied only in the spatial domain) and a

quadrature pair of 1D Gabor filters (applied in the temporal direction). The Gaus-

sian and the Gabor filter contain parameters to control the spatial and temporal

scales. The local maxima points of the response function are detected as the key

points. A small video patch is extracted around each of the key points and is con-

verted to a 1D feature vector. There are a number of ways to compute such a

feature vector from the video patch [33]. Among those, gradient-based descriptors

like Histogram of Gradients (HOG) and concatenated gradient vectors are the most

reliable ones [33]. For more details about the Cuboid features refer to the original

work [33].
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2.2.2 Dimensionality reduction

Assume that the number of feature vectors extracted from a training sample (image

or video) is s. Let each vector be d-dimensional i.e. di ∈ Rd . Then the set of

features can be denoted as D = {di}s
i=1, di ∈ Rd .

As d can be very large, these features are typically high-dimensional. This

high dimensionality seriously limits the speed and practical applicability of these

features. A natural solution is to reduce the dimensionality. The application of stan-

dard methods like PCA and Linear Discriminant Analysis (LDA), to obtain lower

dimensional representation, is well-known. Recently, Random Projection (RP) has

emerged as a powerful tool in dimensionality reduction [35]. Theoretical results

show that the projections on a random lower-dimensional subspace can preserve

the distances between vectors quite reliably. The advantages of RP are that it is

data-independent, simple and fast.

The original d-dimensional descriptors are projected onto an n dimensional

subspace (n << d) by premultiplying the descriptor matrix D ∈Rd×s by a random

matrix R ∈ Rn×d . In practice, any normally distributed R with zero mean and unit

variance serves the purpose (choices of non-Gaussian random matrices are also

available). The dimensionality reduction step is hence a simple matrix multiplica-

tion, given by

B = RD (2.1)

where the reduced data matrix B ∈Rn×s contains projections (not true projections,

because the vectors are not orthogonal) of D on some random n dimensional sub-

space.
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2.2.3 Dictionary learning

The next step is to learn the overcomplete dictionary (or dictionaries) of the features

and their corresponding sparse representation. We start with briefly describing the

dictionary learning algorithm employed in this work.

Consider a set of lower dimensional features B = {bi}s
i=1, bi ∈ Rn. We wish

to learn a dictionary Φ ∈ Rn×m (m > n) such that each vector bi ∈ B has a sparse

representation xi w.r.t. Φ. Each xi ∈Rm is a sparse vector i.e. xi contains k (k << n)

or fewer non-zero elements. This can be formally expressed as the Equation 1.10

or the following equivalent optimization problem.

min
Φ,X

‖B−ΦX‖2
F subject to ∀i ‖xi‖0 ≤ k (2.2)

where X = {xi}s
i=1, xi ∈ Rm.

To solve Equation 2.2, a recently developed dictionary learning algorithm,

known as the K-Singular Value Decomposition (K-SVD) [23] is used. K-SVD it-

eratively solves Equation 2.2 by performing two steps at every iteration: (i) sparse

coding and (ii) dictionary update. In the sparse coding step, Φ is kept fixed and X

is computed.

min
Φ
‖B−ΦX‖2

F subject to ∀i ‖xi‖0 ≤ k (2.3)

K-SVD uses the greedy algorithm OMP to solve the Equation 2.3 approximately.

In the dictionary update step, the atoms of the dictionary Φ are updated se-

quentially, allowing the relevant coefficients in X to change as well. Updating an

atom φi ∈ Φ involves computing a rank-one approximation of a residual matrix as
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follows.

Ei = B− Φ̃iX̃i (2.4)

where Φ̃i and X̃i are formed by removing the i-th column from Φ and the i-th row

from X. This rank-one approximation is computed by subjecting Ei to a Singular

Value Decomposition (SVD). For detailed description of K-SVD algorithm refer to

the original work [23, 2].

Recall that our dataset contains training samples from K different classes. For

each class, a set of feature vectors is extracted from each of the training sequences.

In order to construct a dictionary from these features, we consider the three dictio-

nary learning options listed below:

• shared dictionary - learning a single dictionary for all classes.

• class-specific dictionaries - learning K dictionaries, one for each class.

• concatenated dictionaries - a single dictionary formed by concatenating the

K class-specific dictionaries

Shared dictionary-based classification

In this framework, a single shared dictionary ΦS is learnt for all K classes, so that

multiple classes can share some common dictionary elements. Since the dictionary

is learnt only once, it saves on the computations. But in this case, a bigger dictio-

nary might be needed to accommodate the variations of all classes. The learning

process also has to be repeated whenever a new class is added to the system.

Let the matrix B contain all the features extracted from the training samples of

all classes, and let X contain their corresponding sparse representations w.r.t. the
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Algorithm 2.1 Classification using shared dictionary

• Learn a single shared dictionary ΦS as in (4.1).

• Compute the coefficient histograms h1,h2, ...,hK , one for each class using
(2.5).

• Find the sparse representation of the query features Q:

min
XQ

‖Q−ΦSXQ‖2
F subject to ‖xQi‖0 ≤ k

• Compute the histogram hQ pertaining to Q.

• Estimate query class:
îQ = argmax

i∈1,2,...K
hT

Qhi

shared dictionary ΦS. The sparse coefficients in a column vector xi ∈X indicate the

contribution of each of the dictionary atoms in approximating the feature bi ∈ B.

Thus the sparse coefficients corresponding to all the descriptors of a particular class

collectively demonstrate the contribution of the dictionary atoms to the represen-

tation of that class. Hence some statistics of these sparse coefficients (sometimes

called descriptors codes) will be able to characterize that class. A popular statisti-

cal representation is the histogram of coefficients. Let the J-th class have a sparse

decomposition XJ = {xJi}s
i=1 over ΦS. Then its histogram of coefficients hJ is

computed as follows.

hJ =
1
s

s

∑
i=1

xJi (2.5)

Given a query video sequence VQ, it is represented by a set of features Q =

{qi}r
i=1, ri ∈ Rn. The shared dictionary ΦS is used to determine the class of VQ.

The pseudocode for this shared dictionary-based classification algorithm that uses
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the class histograms is presented in Algorithm 2.1.

Class-specific dictionary-based classification

This framework learns K dictionaries, Φ1,Φ2, ...,ΦK , one for each class. One ad-

vantage of having class-specific dictionaries is that each class is modeled indepen-

dently of the others and hence painful repetition of the training process when a new

class of data is added to the system is no longer necessary. This also indicates the

possibility of parallel implementation.

The basic idea is that a dictionary tailored to represent one particular class

of action will have an efficient representation of this class and at the same time

will be less efficient in representing the actions belonging to a different class. The

efficiency here refers to the lower reconstruction error while sparsity is constant.

We exploit this inherent discriminative nature of the class-specific dictionaries and

develop the two following classification techniques:

1. Random Sample Reconstruction (RSR)

2. Error Feature Vector-based Clasification (EFVC)

Recall that the query data VQ is represented by a collection of features as Q =

{qi}r
i=1, ri ∈ Rn. A simple way to classify VQ is to find the K approximations of

Q given by each of the K learnt dictionaries and to compute their corresponding

reconstruction errors ei where i = 1,2, ...K.

ei =
∥∥Q−ΦiX̂Qi

∥∥2
2 (2.6)
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where

X̂Qi = argmin
XQi

‖Q−ΦiXQi‖2
F subject to ‖xQi‖0 ≤ k (2.7)

Here XQi = {xQi}r
i=1, xi ∈Rm is the sparse representation of Q w.r.t. the dictionary

Φi. Then the estimated class of VQ (denoted as îQ) is the class that yields the

smallest ei.

îQ = argmin
i∈[1,2,...,K]

ei (2.8)

This method discriminates on the basis of the reconstruction errors which has been

proved to be quite useful in texture classification [31, 24]. We will refer to this

method as the Simple Reconstruction method.

1. Random sample reconstruction (RSR)

In a complex problem like classification, a strong presence of outliers in Q is highly

probable due to noisy data, occlusion, errors in keypoint detection, etc. In the

presence of a large number of outliers, if all the features in Q are used for re-

construction, the resulting reconstruction error will hardly be a reliable means of

classification.

In order to build a robust classifier, we propose the idea of Random Sample

Reconstruction (RSR). This is motivated by the celebrated Random Sample Con-

sensus (RANSAC) algorithm [36]. The RANSAC algorithm finds the part of the data

that best fits a given model, whereas the proposed RSR solves an even more diffi-

cult problem - it finds both the best model (dictionary) among a number of probable

ones, and the part of the data that best fits the chosen model.

The basic assumption of the proposed RSR algorithm is that the best model

(dictionary)can be estimated by a small number of good data points i.e. in our
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case error-free feature vectors. Let r be the total number of features extracted from

the query. Let the number of error-free features i.e. good data points be g, where

g << r.

Let the probability of selecting one good feature be ω and the probability of

observing an outlier is (1−ω). If we perform λ trials and in each trial select g ran-

dom features, the probability of selecting at least one error-free set of g features is

1− (1−ωg)λ . We want to ensure that such a set can be selected with a probability

P . Therefore we have the following relationship.

1− (1−ω
g)λ = P (2.9)

For given values of P and ω , the value of λ that ensures the success of selecting

an error-free set of features is computed as

λ =
log(1−P)

log(1−ωg)
(2.10)

At every trial, a random subset of g features is selected. Let this subset be denoted

as Qg. The best model (dictionary) for Qg is estimated by the simple reconstruc-

tion method described in Section 2.2.3. The features that are not in Qg, are then

approximated by the estimated model. The features, for which the reconstruction

error is below a certain threshold, are called the inliers. Our algorithm eventually

selects the model that has the largest number of inliers. Note that, the number of

good data points g is unknown. So, for our experiments g is set to 1% of the total

number of available data points i.e. g = 0.01q. The values of ω and λ are up-

dated at each iteration. The proposed algorithm can determine the class only with
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Algorithm 2.2 Random Sample Reconstruction (RSR)

• Initialize: No. of inliers I0 = 0; total no. of data points = r; no. of good data
points, g = 0.01r; P = 0.99.

• Compute:

ω =
g+ I0

q

λ =
log(1−P)

log(1−ωg)

• Loop until λ = 0

– Form Qg ⊂Q by choosing g random data points

– Estimate the class of Qg using Equation 2.6 - Equation 2.8; let the
estimated class of Qg be ρ and the corresponding dictionary be Φρ .

– For every qi /∈Qg

∗ Compute:
εi =

∥∥qi−Φρ x̂gi

∥∥
2

x̂gi =
argmin

xgi

‖qi−Φρxgi‖2
F subject to ‖xgi‖0 ≤ k

∗ Count inliers: I←{i : εi ≤ Th} where Th = 0.3∗‖qi‖2 threshold.

– Update: If |I|> I0

∗ set I0← |I|
∗ estimate class: îQ← ρ

∗ update ω and λ

a certain probability P . A less conservative value of P can be used to achieve

faster convergence. Algorithm 2.2 presents the pseudocode for the proposed RSR

algorithm.

2. Error feature vector-based classification (EFVC)

The proposed RSR method approximates the query using each of the K class-

27



Algorithm 2.3 Error Feature Vector-based Clasification (EFVC)

• For each training sample Vi j, i = 1,2, ...,K and j = 1,2, ...,m

– Compute K reconstruction errors ε1,ε2, ...,εK using Equation 2.11

– Construct the error vector Ei j using Equation 2.12

• Given query Q, form EQ =
[
ε1

Q, ε2
Q, ... εK

Q

]T

• Estimate class:
îQ = argmin

i∈[1,2,..,K]

dist (EQ,Ei j)

where dist (EQ,Ei j)=
√

(EQ−Ei j)
T L(Eq−Ei j), and L is the Mahalanobis

distance matrix.

specific dictionaries and selects the dictionary that produces the minimum error. In

order to increase the discriminating power, we propose to use all the reconstruction

errors each training sample produces w.r.t. each dictionary, and use the correspond-

ing errors to construct an error feature vector. Let the matrix B ∈Rn×s contain the

s descriptors pertaining to a training sample Vi j. Given the class-specific dictio-

naries, Φ1,Φ2, ...,ΦK , B is approximated by each of the dictionaries to generate K

corresponding reconstruction errors ε1,ε2, ...,εK .

ε
i =

√
1
s

s

∑
i=1
‖bi−Φixi‖2

2 (2.11)

where i = 1,2, ...,K.

For each training sample, an error vector is constructed as follows:

Ei j =
[
ε

1
i j, ε

2
i j, ... ε

K
i j
]T

(2.12)

Each training sample Vi j, i = 1,2, ...,K, j = 1,2, ...,m is now represented as its
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corresponding error vector Ei j which serves as an input to a Nearest Neighbor (NN)

classifier. The Mahalanobis distance metric L used in our algorithm is learnt using

an optimization algorithm proposed in [37]. The pseudocode for the EFVC method

is provided in Algorithm 2.3.

Concatenated dictionary-based classification

The third option to construct a dictionary is by concatenating the class-specific

dictionaries together. A bigger dictionary ΦC is formed by concatenating K dictio-

naries together.

ΦC = [Φ1|Φ2|...|ΦK ] (2.13)

Let us assume that originally the query data belongs to the class ρ . If Q is ap-

proximated by ΦC, ideally, every q ∈ Q should use the atoms of Φρ only for its

representation. Although this condition is difficult to achieve in practice (due to

errors in Q and correlation among the class-specific dictionaries), we can still ex-

pect that the atoms of Φρ should be used more than any other dictionary atoms.

This results into a higher concentration of non-zero elements in the coefficients

corresponding to Φρ compared to other sub-dictionaries. The pseudocode for this

classification algorithm is presented in Algorithm 2.4.

Clearly, Q is block sparse; this is because the non-zero coefficients in X̂Q occur

in clusters. This encourages us to exploit block sparsity as an additional structure.

But, each block in ΦC is an overcomplete dictionary, which makes it difficult to use

block sparsity promoting algorithms like block-OMP [38]. We have used block-

OMP and observed that the experimental results are neither consistent nor very

accurate.
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Algorithm 2.4 Classification using the concatenated dictionary

• Form ΦC as in Equation 2.13

• Find the sparse representation of the query descriptors Q:

X̂Q = argmin
XQ

‖Q−ΦCXQ‖2
F subject to ‖xQi‖0 ≤ k

X̂Q = [XΦ1 |XΦ2 |...|XΦK ]

where XΦi is the coefficient matrix corresponding to Φi.

• Estimate class:
îQ = argmax

i∈[1,2,...,K]

‖XΦi‖0

2.3 Performance evaluation

This section presents a critical evaluation of the proposed sparse representation-

based classification algorithms in the context of two applications: image-based face

recognition and human action recognition in videos. Experiments are performed

on 1 facial image database and 2 human action databases under four settings:

• Shared dictionary with histogram correlation (Shared-hist)

• Class-specific dictionary using RSR (RSR)

• Class-specific dictionary using EFVC (Error vector-based)

• Concatenated dictionary (Concat)

2.3.1 Image-based face recognition

Face recognition experiments are performed on the AT&T face database. This

benchmark dataset contains 400 grayscale images of 40 individuals in 10 poses.

30



Figure 2.1: Sample images from the AT&T face database

The images were taken at different times, with varying illumination, facial expres-

sions and details. Each image is of dimension 92×112. Sample images from this

database are presented in Figure 2.1.

For feature extraction, 1000 random patches of size 24×24 are extracted from

each image. Each patch is converted to a vector of dimension 576. These high

dimensional patch vectors are projected onto a random 64-dimensional subspace

using RP. The shared dictionary ΦS ∈ R64×256 is learnt using k = 8 and 20 KSVD

iterations. Each of the class-specific dictionaries Φi ∈R64×128 where i∈ [1,2, ...,K]

is learnt with k = 8 and 20 KSVD iterations. The concatenated dictionary is

ΦC ∈ R64×5120. The shared-hist, RSR and error vector methods use k = 8 in the

classification stage and the concat method uses k = 2.

A training set is constructed by randomly selecting 7 images per class and the

rest is used for testing. The results shown in Table 2.1 are the mean accuracy com-

puted over 10 runs. At each run a new training set and a test set is constructed. The

approach in [27] is a state-of-the-art sparse representation-based face recognition

method. Table 2.1 shows that our proposed classification algorithms work (except

shared-hist) better than the state-of-the-art. The highest recognition accuracy of

96.5% is achieved by EFVC.
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Table 2.1: Comparison with state-of-the-art on the AT&T face dataset

Classification method Recognition accuracy (%)
Eigenface 92.6

ICA 93.8
Wright et al. [27] 94.3

Shared-hist 91.6
RSR 94.6

EFVC 96.5
Concat 95.4

2.3.2 Action recognition in videos

Recognizing human actions is a key component in many applications such as

human-computer interface, video surveillance, sports events, video indexing, etc.

In this section, we address the problem of human action recognition in videos. Two

publicly available human action databases are used in our experiments

• Weizmann action database [39]

• UCF Sports database [40]

Classification experiments are carried out separately with two different fea-

tures: Cuboids and LMP. In order to extract Cuboid features from an action se-

quence, the Cuboid feature extraction method is applied to the video at 2 spatial

and 3 temporal scales. Cuboids use the gradient based HOG descriptors in order to

convert the video patches (selected around the key points) into 1D vectors. Each

of the resulting Cuboid-HoG features is of dimension [1440×1].

To extract the LMP features, the feature extraction method are also is applied to

the video at 2 spatial and 3 temporal scales. Each of the resulting LMP feature is of

dimension [1728×1].
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Figure 2.2: Sample frames from the Weizmann action dataset: bend (w1),
jumping jack (w2), jump forward (w3), jump in place (w4), run (w5),
gallop sideways (w6), skip (w7), walk (w8), wave one hand (w9) and
wave both hands (w10).

Figure 2.3: Synthetic occlusion created by the author on the same dataset.

Figure 2.4: Sample frames from the Weizmann robustness dataset showing
occlusion, unusual scenarios and viewpoint variations.

The high dimensional features (Cuboids or LMP) are then projected onto a ran-

dom 128-dimensional space. The shared dictionary Φ ∈ R128×512 and the class-

specific dictionaries Φi ∈ R128×256, i ∈ [1,2, ...,K] are learnt using k = 12 and 20

K-SVD iterations. The shared-hist, RSR and error vector methods use k = 12 in

the classification stage and the concat method uses k = 2. Note that, the theory of

sparse representation and dictionary learning is in a developing stage; how to set

the parameters like the optimal dictionary size and the sparsity constraint are still

open issues.
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Figure 2.5: (a) LMP + Concat. (mean accuracy 98.9%) and (b) LMP + RSR
(mean accuracy 97.8%).

Weizmann action database

The Weizmann action database is a benchmark dataset. Since this database is fre-

quently used by researchers, it provides a good platform for comparing the pro-

posed approach with different action recognition approaches under similar experi-

mental setup. The database consists of 90 low-resolution (180×144, deinterlaced

50 fps) video sequences of 9 subjects, each performing 10 natural actions: bend,

jumping jack, jump forward, jump in place, run, gallop sideways, skip, walk, wave

one hand and wave both hands (see Figure 2.2). The database uses a fixed camera

setting and a simple background. No occlusion or viewpoint changes are present

originally. Variations in spatial and temporal scale are also minimal. We have

used the pre-aligned, background subtracted silhouettes provided with the original

database only for this dataset.

The performances of the proposed algorithms in conjunction with two different

features (Cuboids and LMP) are presented in Table 2.2. The lowest error rate is

achieved by the concatenated dictionary when used in combination with the LMP
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Table 2.2: Comparison with state-of-the-art on the Weizmann action dataset

Approach Recognition accuracy (%)
Scovanner et al. [41] 84.2

Niebles et al. [42] 90.0
Zhang et al. [43] 92.8

Thurau & Hlavac [44] 94.4
Junejo et al. [45] 95.3
Ali & Shah [46] 95.6

Gorelick et al. [39] 97.8
Cuboids-based results

Shared-hist 94.5
RSR 95.6

EFVC 91.1
Concat 95.6

LMP-based results
Shared-hist 95.6

RSR 97.8
EFVC 95.6

Concat 98.9

descriptors, and the resulting recognition accuracy is 98.9% (1 misclassification

out of 90). The confusion matrices corresponding to the two higher recognition

results achieved in our experiments are presented in Figure 2.5.

In Table 2.2, results of the proposed algorithms are also compared with a num-

ber of existing action recognition approach. All the methods that we have com-

pared with use the leave-one-out scheme to evaluate their respective algorithms.

The proposed concat method achieves the highest recognition accuracy.

Synthetic occlusion: We also test the robustness of our classification algorithms

against occlusion. Since the original dataset has no occlusion, we have selected a

set of 10 action sequences from the original dataset and artificially created occlu-

sion in all or some of the frames (see Figure 2.2, bottom row). All the four proposed
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Table 2.3: Results on the Weizmann action dataset: Performance under syn-
thetic occlusion using LMP descriptors.

Test sequence Ground truth Shared-hist RSR EFVC Concat
occluded by a pole bend bend bend bend bend
occluded by a bar jack jack jack jack jack
occluded by a pole jump jump jump jump jump

occluded feet pjump pjump pjump pjump pjump
occluded by a pole run run run run run
occluded by a pole side side side side side
occluded by a pole skip skip skip skip skip
occluded by a pole walk walk walk walk walk
occluded by a pole wave1 wave1 wave1 wave1 wave1
occluded by a pole wave2 wave2 wave2 wave2 wave2

classification algorithms achieve perfect accuracy under synthetic occlusion. The

results are presented in Table 2.3.

Real occlusion and viewpoint changes: There are 20 additional video sequences

known as the Weizmann Robustness dataset, where the subjects walking in a non-

uniform background create various difficult scenarios due to occlusion, clothing

changes, unusual walking style and viewpoint changes. Ten of the sequences ex-

hibit viewpoint changes and the rest contains occlusion (see Figure 2.4).

Our system is trained on the Weizmann action dataset. The video sequence

from the robustness dataset are presented as the queries. Table 2.4 presents the

results under occlusion and viewpoint changes. Our results are compared with the

only result reported on this database i.e. with the result of Gorelick et al. [39]. RSR

and Concat demonstrate 100% accuracy against real occlusion and other difficult

scenarios. Table 2.4 also shows that among others, the RSR algorithm exhibits

maximum robustness against viewpoint changes. It correctly recognizes all but

one sequence which shows extreme viewpoint change i.e. when the direction of
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Table 2.4: Results on the Robustness dataset: Performance under real occlu-
sion, viewpoint changes and other difficult scenarios using LMP descrip-
tors (trained on the Weizmann action dataset).

Performance under real occlusion
and other difficult scenarios

Test sequence Gorelick et al. [39] Shared-Hist RSR EFVC Concat
walking with a dog walk walk walk walk walk

swinging a bag walk walk walk walk walk
walking in a skirt walk walk walk walk walk

occluded legs walk walk walk skip walk
occluded by a pole walk walk walk walk walk

normal walk walk walk walk walk walk
carrying briefcase walk walk walk walk walk

knees up walk run walk skip walk
limping walk walk walk walk walk walk
sleepwalking walk walk walk walk walk

Performance under viewpoint changes with
the system only trained on subjects walking in 0◦

Test sequence Gorelick et al. [39] Shared-Hist RSR EFVC Concat
walking in 0◦ walk walk walk walk walk
walking in 9◦ walk walk walk walk walk
walking in 18◦ walk walk walk walk walk
walking in 27◦ walk walk walk walk walk
walking in 36◦ walk walk walk walk walk
walking in 45◦ walk walk walk walk walk
walking in 54◦ walk walk walk walk walk
walking in 63◦ walk skip walk side walk
walking in 72◦ walk skip walk skip skip
walking in 81◦ walk side skip side side

walking in the test sequence is almost orthogonal to that in the training sequences.

Recall that, the system is trained with the sequences from the Weizmann action

dataset where the subjects are walking parallel to the camera i.e. in 0◦.

The UCF sports dataset

The UCF Sports dataset [40] is considered to be one of the most challenging

datasets in the field of action recognition. This dataset contains 149 action se-

quences collected from various sports videos which are typically featured on broad-
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Figure 2.6: Sample frames from the UCF Sports dataset: diving (s1), golf
swinging (s2), kicking (s3), lifting (s4), horse riding (s5), running (s6),
skating (s7), swinging (s8) and walking (s9).

Figure 2.7: Results on the UCF sports dataset: (a) Cuboids + RSR (83.8%)
and (b) Cuboids + concat (80.9%).

cast television channels such as BBC and ESPN. The collection represents a natu-

ral pool of actions featured in a wide range of scenes and viewpoints. The dataset

also exhibits occlusion, cluttered background, variations in illumination, scale and

motion discontinuity. The 9 actions are: diving, golf swinging, kicking, lifting,

horse riding, running, skating, swinging and walking. Some of these sequences

also contain more than one subjects.

The recognition results and confusion matrices are presented in Table 2.5 and

Figure 2.7. The highest accuracy achieved in our experiments is 83.8% using

cuboid features in combination with the RSR algorithm. Table 2.5 also compares

our proposed algorithms with a number of existing ones. Apparently, our recogni-
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Table 2.5: Comparison with state-of-the-art on the UCF Sports dataset.

Approach Recognition accuracy (%)
Rodriguez et al. [40] 69.2
Yeffet & Wolf [51] 79.2

Zhu et al. [48] 84.3
Wang et al. [47] 85.6
Yao et al. [49] 86.6

Cuboids-based results
Shared-hist 76.5

RSR 83.8
EFVC 82.8

Concat 80.9
LMP-based results

Shared-hist 75.8
RSR 78.5

EFVC 77.1
Concat 77.8

tion rate is lower than those reported in some of the recent works [47–49]. How-

ever, unlike the methods such as [47, 48], we have not enlarged1 the training set.

We have also used a much smaller dictionary [128×512]. The methods that use

dense sampling with HOG3D descriptors [47, 48, 50] as features are computation-

ally more demanding compared to the features we have used. The result reported

in [49] is obtained using dense features, randomized trees and Hough transform-

based voting. This method is also computationally more intense compared to our

approach.

Both features and classifier contribute to the final recognition results. It is thus

difficult to asses the contribution of our proposed classification methods by com-

paring it with methods that use different features. In order to find out the real

1in [47] and [48], the datasets are enlarged by adding horizontally flipped version of each video.
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Table 2.6: Comparison of classification methods using the same features on
the UCF Sports dataset.

Feature Classification Dictionary size Accuracy (%)
cuboids-HOG vector quant (shared) dict + non-linear SVM 4000 72.2
cuboids-HOG sparse rep (shared) dict + linear SVM 512 79.6
cuboids-HOG class dict + RSR 256 83.8

contribution of our approach, we concentrate on the results that are obtained using

the same features. In Table 2.6, we compare our results with that the method [47]

that use the same features as ours. Our method shows significant improvement in

accuracy (more than 10%). This results also serve as a proof to that our sparse

representation-based approach outperforms vector quantization-based methods in

terms of accuracy and efficiency (note that, our method also uses smaller dictionar-

ies).

2.3.3 Discussion

In order to perform any of the proposed classification algorithms, the two steps that

require the bulk of computation are (i) the dictionary learning in the training stage

and (ii) the sparse coding step in the classification stage. The dictionaries can be

learnt offline as part of the training stage. The sparse coding however has to be

performed during the classification which is of more importance to us. Our im-

plementation uses an efficient sparse coding algorithm called the Batch-OMP [52].

Its computational complexity is O(mnk) per training signal, where the dictionary

dimension is m×n and s is the sparsity constraint and k << n [52].

To provide a practical idea of the run time, we provide the computation time for

each of the classification algorithms proposed in this chapter for the same dataset,

using the same training and test set. Shared-hist takes 0.03 sec, RSR takes 1.76 sec,
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EFVC takes 2.30 sec and Concat takes 0.17 sec to classify the same test data.

We have shown that the class-specific dictionaries (or their concatenation) pro-

duce better recognition results compared to the shared dictionary. We advocate

the use of class-specific dictionaries because along with superior results they also

offer scopes to save computation. While Concat works very well on the relatively

simpler Weizmann action database, RSR performs better on complex database like

the UCF sports database. The success of RSR is due to its robustness to outliers.

We have employed RP as the fastest possible dimensionality reduction process.

In this work the learnt dictionaries are overcomplete by a factor of 2 or 4. We have

observed that for a given feature dimension, increasing the overcompleteness factor

does not necessarily increase the accuracy; but it does raise the cost of computation

significantly. From our experiments we found that increasing the overcompleteness

factor beyond 4 does not improve the results much and in fact starts to fall for

overcompleteness factors greater than or equal to 6.

LMP is introduced as a fast, light-weight spatio-temporal motion descriptor. It

is interesting to notice that simple features like LMP can outperform sophisticated

features like Cuboids in the case of Wiezmann database.

2.4 Summary

In this chapter, we have proposed four sparse representation-based classification al-

gorithms: Shared-hist, RSR, EFVC and Concat. These algorithms have been shown

to perform at par or better than the state-of-the-art for two important applications:

image-based face recognition and video-based human action recognition. Another

important observation made in this chapter is that the sparse modeling approach

significantly outperforms (more than 10% improvement in accuracy) the traditional
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vector-quantization based dictionary construction.
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Chapter 3

Sparse Representation-based

Image Similarity Measurement

Many image and multimedia information processing systems rely on the availabil-

ity of a good image similarity measure. Despite the long history of image similar-

ity evaluation, open issues still exist. These include the need of developing generic

similarity measures which do not assume any prior knowledge of the application

or the data. In this chapter, we develop such a generic method for measuring image

similarity based on learning sparse representations. The proposed method encodes

the information content of one image using the information from the other image,

and use the sparsity of the representation as a measure of similarity between the

two images.

3.1 Background and motivation

Measuring the similarity between a pair of images is of critical importance to many

image processing systems involving retrieval, enhancement, copy detection, qual-
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ity assessment, clustering and classification. Given the long history of image simi-

larity evaluation, the volume of literature on this topic is large and diverse.

Widely used similarity measures such as the Euclidean distance, the Mean

Squared Error and other norm-based measures work well in specific cases, but

they are often criticized for not corresponding well with our visual perception of

similarity [53]. Another popular approach involves describing the visual content of

images by extracting a set of meaningful features. The similarity between two im-

ages is then computed in terms of the similarity between their features. However,

the success of this approach is limited by the availability, selection and extraction

of a good set of meaningful features and these demand specific knowledge of the

application and of the data.

Recently, there has been an interest in developing image similarity measures

using compression methods [54–58]. In this new line of research, two signals are

considered similar if one can be compressed significantly when the information of

the other is provided. The advantages of these methods are that they are parameter-

free (the only choice the user has to make is which compression algorithm to use),

and generic (they assume no prior knowledge of the application, and can be ap-

plied, without modification, to a variety of problems).

3.1.1 Compression-based similarity methods

The compression-based similarity methods rely on a new mathematical theory of

similarity which is in turn based on the idea of the Kolmogorov complexity [54, 55].

The work of Kolmogorov and others [59–61] on how to measure data complex-

ity has been influential in many areas of knowledge, across multiple disciplines.

The notion of complexity of a string is related to its randomness. For example,
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the binary string 1101010001 is considered more complex compared to the string

0101010101, because the latter contains a regularity (repeating pattern) and there-

fore is less random. Kolmogorov complexity formalizes this concept:

Given a finite object, such as a binary string Y , its Kolmogorov complexity K(Y )

is defined as the length of the shortest program that can effectively produce Y on a

universal computer, such as a Turing machine [62].

The Kolmogorov complexity (also known as the algorithmic entropy) is how-

ever a non-computable quantity in general. In practice, it is often approximated

by the length or the file size of the compressed data. Intuitively, the more a given

data can be compressed, the lower is its complexity and vice versa. Recently, Kol-

mogorv’s theory of complexity has been used to address the problem of similarity

measurement. Given two signals Y and Z, a distance metric, known as the Nor-

malized Information Distance (NID) is developed using K(Y ) and the conditional

Kolmogorov complexity K(Y |Z) [54, 55].

NID(Y,Z) =
max{K(Y |Z),K(Z|Y )}

max{K(Y ),K(Z)}
(3.1)

where the conditional Kolmogorov complexity K(Y |Z) is defined as the length of

the shortest program used by a universal computer to generate Y when Z is known.

Due to the non-computable nature of the Kolmogorov complexity, a practical

analog of the NID metric (defined in Equation 3.1) is proposed based on stan-

dard compression methods. This is called the Normalized Compression Distance

(NCD). Intuitively, NCD considers Y and Z to be similar if one can be significantly
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compressed when the information of the other is provided. It is defined as follows:

NCD(Y,Z) =
max{C(Y |Z),C(Z|Y )}

max{C(Y ),C(Z)}
(3.2)

where C(X) is the length or size of the compressed version of X . The conditional

compression C(Y |Z) is approximated as follows:

C(Y |Z) =C(Y Z)−C(Z) (3.3)

where C(Y Z) denotes the compressed length of the concatenation of Y and Z.

The NCD metric has been shown to be effective in clustering mitochondrial

genomes, languages and music [55]. Following the success of NCD, different ver-

sions of compression-based distance measures have been proposed; for example,

a Compression-based Dissimilarity Measure (CDM) is proposed in the context of

parameter-free data mining and is shown to be useful for anomaly detection, clus-

tering and classification of text, DNA and time-series data [63]. CDM is defined

as

CDM(Y,Z) =
C(Y Z)

C(Y )+C(Z)
(3.4)

Other applications of compression-based distances include symbolic music clus-

tering [64] and plagiarism detection [65]. The idea of compression, independent

from NCD, has also been used to design a pattern representation scheme for auto-

matic categorization of music, voice, genome, etc. [56]; but this method requires

encoding media data input into text.
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3.1.2 Compression-based image similarity

The compression-based similarity measures have been shown to be highly effective

in clustering and classifying discrete, uni-dimensional data such as text and protein

sequences [54, 55]; but their the successful application in the context of real-valued

higher dimensional data such as images has been scarce. We identify two major

reasons behind that.

• The success of the compression-based distances heavily depends on the avail-

ability of a normal compressor. A compressor is said to be normal only if

it satisfies certain conditions such as idempotency, monotonicity, symmetry,

etc. (please refer to [55] for details). The problem is that most state-of-

the-art image compressors (such as JPEG, JPEG2000) are not normal, and

normal compressors (such as the compressors of the Lempel-Ziv family) do

not work well on images [57].

• Another serious obstacle lies in evaluating and approximating the condi-

tional complexity terms such as C(Y |Z) in NCD in Equation 3.2. These con-

ditional terms are the key components in a compression-based measure. The

existing compression-based methods (whether or not they involve images)

either approximate the conditional compression C(Y |Z) by C(Y Z)−C(Z)

or use a simplified definition so as not to include any conditional term (as

in Equation 3.4). Direct evaluation of C(Y |Z) is usually bypassed mainly

to retain the simplicity of the compression-based measures since evaluat-

ing C(Y |Z) accurately requires delving into the complicated standards and

algorithms of data or image compression. This also makes the compression-

based methods difficult to improve upon.
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Clearly, the straightforward extension of the methods that work well on dis-

crete, one-dimensional data has not been very promising in the context of images.

In the pursuit of alternatives, a new image encoder has been proposed based on the

finite context model and preliminary results on a face database are provided [57].

Another recent approach, namely the CK-1 method, uses the MPEG1 video com-

pressor to measure image similarity [58]. This method takes advantage of the tem-

poral redundancy reduction step in video compression which performs inter-frame

block matching. In this approach, a two-frame video consisting of the images to be

compared is created. One frame is compressed with reference to the other frame

using a standard video compressor. The compressed file size of the video is used

to approximate the closeness between the pair of images. This method has been

shown to be useful in texture classification.

3.2 Proposed approach

A natural way of measuring the similarity between two given images is to quantify

how well each image can be represented using the information of the other. The

more similar the images, the better is the representation of one image in terms of

the other. Our method formalizes this intuitive idea of similarity using a sparse

representation-based approach. Given a pair of images, our method learns a dictio-

nary for each image and computes how sparsely can one image be approximated

using the dictionary extracted from the other, with a required precision.

3.2.1 Sparsity as a measure of data complexity

It is well-known that sparsity of representation plays a key role in achieving good

compression. For example, the superiority of JPEG2000 is mainly attributed to the
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capability of the wavelet transform toward representing an image more sparsely

than the DCT used in JPEG. Intuitively, the more sparse the representation of a

signal is, the fewer are the components needed to capture the signal’s information

content and the better it can be compressed.

Sparsity thus can be seen as a direct measure of the randomness or complexity

of the data. A natural image usually exhibits many repeated structures which can

be discovered through its decomposition over a set of properly chosen basis func-

tions. Due to the presence of redundancy, only a few basis functions are required

to capture the significant information content of such images, resulting in a sparse

representation. In the case where such structures are rare (e.g. in random Gaussian

noise), there is no way to represent the data using a small number of basis ele-

ments. This indicates that as the complexity of a signal increases, more and more

components are needed to represent the signal with a desired accuracy i.e. its spar-

sity decreases in the transform domain. This inherent connection between sparsity

and data complexity is exploited in our proposed distance measure.

3.2.2 Sparse representation-based distance measure

Let us consider an image Y ∈RN . A set of s random, possibly overlapping patches

(each of dimension
√

n×
√

n) is extracted from Y . Every patch is converted to a

vector of length n and the patches are concatenated to form a matrix BY ∈Rn×s. In

order to build a perceptually meaningful model for Y , we intend to learn an over-

complete dictionary ΦY ∈ Rn×m that has n atoms (n < m) using the local patches

in BY as input. However, greater difficulties arise with a set of overcomplete bases.

An overcomplete dictionary matrix creates an underdetermined system of linear

equations having an infinite number of solutions. Knowing that the natural signals
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are sparsely representable, often in such cases, we seek the sparsest solution.

Our objective is to learn ΦY such that each patch (column) bYi ∈ BY can be

closely approximated as a linear superposition of a small number of atoms in ΦY .

This is achieved by solving the following sparse optimization problem:

min
{ΦY ,xY }

∑
i
‖xYi‖p s.t. ∀i, ‖bYi−ΦY xYi‖2 ≤ δ (3.5)

where the vector xYi ∈ Rm is the sparse representation of the patch bYi ∈ Rn. The

sparse representation of BY w.r.t. ΦY is denoted as the matrix XY = [xY1 |xY2 |...|xYs ].

The value of p in the `p norm in Equation 3.5 is typically 0 or 1, and δ denotes the

reconstruction error controlled by the user. For the `0 case, we employ the K-SVD

algorithm [23] which provides a greedy approximate solution to Equation 3.5 .

Sparse representation-based complexity functions

We define two quantities that measure the compressibility of an image i.e. how

much can an image be compressed. These two quantities use (i) the dictionary

learnt from the image itself, and (ii) the dictionary extracted from the other image,

Z. We name these terms as the Sparse complexity and the Relative sparse complex-

ity, respectively.

Definition 1. Given an image Y , its Sparse Complexity Sδ (Y,ΦY ) is defined as the

sparsity of XY averaged over the number of columns in XY i.e.

Sδ (Y,ΦY ) =
1
s
‖XY‖p =

1
s

s

∑
i=1
‖xYi‖p (3.6)

Therefore, for p = 0, Sδ (Y,ΦY ) is the average number of non-zero coefficients
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required to reconstruct a column of BY using ΦY , up to a required precision δ .

Smaller value of Sδ (Y,ΦY ) indicates higher compressibility (i.e. lower complexity)

of Y .

Properties of Sδ (Y,ΦY ):

• Sδ (Y,ΦY )> 0 for non-empty Y , and is equal to 0 otherwise.

• Considering that Y is represented by XY and hence YY is represented by

[XY |XY ], we have Sδ (YY,ΦY ) = Sδ (Y,ΦY ). This property (idempotency)

follows from the averaging operation and indicates that the sparse complex-

ity function can compress the duplicate entries.

Given another image Z, the compression-based measures attempts to approx-

imate how much can the image Y be compressed when information about Z is

available. As discussed before, this conditional quantity is difficult to approximate

and this limits the success of these measures. We hence define a slightly different

complexity term that measures how much information about Y is contained in Z.

We name this term as the Relative Sparse Complexity, .

Let ΦZ ∈ Rn×m be the dictionary pertaining to the image Z and is learnt in the

same manner as ΦY (refer to Equation 3.5). The image Y can be approximated in

terms of the dictionary of Z as follows:

min
xY |Z

s

∑
i=1

∥∥xY |Zi

∥∥
p s.t.

∥∥bYi−ΦZxY |Zi

∥∥
2 ≤ δ (3.7)

where xY |Zi ∈ Rm is the sparse representation of bYi w.r.t. ΦY .

XY |Z = [xY |Z1 |xY |Z2 |...|xY |Zs ] is the sparse representation of BY w.r.t. ΦY .
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Definition 2. Given two images Y and Z, the Relative Sparse Complexity Sδ (Y,ΦZ)

is defined as the sparsity of XY |Z averaged over the number of columns in XY |Z .

Sδ (Y,ΦZ) =
1
s

∥∥XY |Z
∥∥

p =
1
s

s

∑
i=1

∥∥xY |Zi

∥∥
p (3.8)

Therefore, for p = 0, Sδ (Y,ΦZ) becomes the average number of non-zero coeffi-

cients required to reconstruct a column of BY using ΦZ , up to a required precision

δ . A smaller value of Sδ (Y,ΦZ) indicates that Y is efficiently represented by the

information extracted from Z i.e. Y and Z have higher similarity.

Properties of Sδ (Y,ΦZ):

• Sδ (Y,ΦZ)> 0 for non-empty Z, and 0 otherwise.

• Sδ (Y Z,ΦZ) = Sδ (ZY,ΦY ) (symmetry)

• Sδ (Y,ΦZ)> Sδ (Y,ΦY ) for Y 6= Z. This is because, in general, Y is expected

to be more efficiently (sparsely) approximated using ΦY - the dictionary

trained on itself, than ΦY - a dictionary trained on a different image.

The distance measure

Based on the two terms defined above, a sparse representation-based distance mea-

sure D is defined as follows:

D(Y,Z) =
Sδ (Y,ΦZ)+Sδ (Z,ΦY )

Sδ (Y,ΦY )+Sδ (Z,ΦZ)
−1 (3.9)
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The proposed form of D is much similar to that of the compression-based CK-1

distance measure [58]. From the property of the relative sparse complexity we have

Sδ (Y,ΦZ)> Sδ (Y,ΦX) and Sδ (Z,ΦY )> Sδ (Z,ΦY )

Hence,
Sδ (Y,ΦZ)+Sδ (Z,ΦY )

Sδ (Y,ΦY )+Sδ (Z,ΦZ)
> 1 for Y 6= Z.

Intuitively, D measures how efficient, on average, is it to approximate one im-

age Y using the information of Z extracted in the form of a dictionary of its domi-

nant local structures. The smaller the values of D the higher is similarity between

the two images.

Properties of D:

• Non-negativity: D is always non-negative, the lowest value of D is 0 when

Y = Z.

• Symmetry: Clearly, D is symmetric i.e. D(Y,Z) = D(Z,Y ). Symmetry is an

important property for a similarity or dissimilarity measure because many

algorithms (e.g. spectral clustering) rely on this property.

• Metricity: D does not follow the metric axiom of triangle inequality and

hence cannot be called a metric. It would have been mathematically con-

venient if D was a metric. However, many researchers have argued that

perceptual distances are typically non-metric in nature [66, 67].

Note that, we have used p = 0 to compute the complexity functions because
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our dictionary learning method uses greedy `0 approximation. If `1 optimization is

used to learn the dictionaries, it would be better to use p = 1 for the definitions.

3.3 Performance evaluation

In order to establish the generality of the proposed distance measure, we perform

experiments on a variety of applications. We first carry out experiments to evaluate

the compatibility of the proposed measure with the human perception of similarity.

This is followed by clustering, retrieval and classification experiments involving

larger datasets. The datasets that we choose contain real-world images from differ-

ent domains like biology, biometrics, medicine and natural textures.

3.3.1 Implementation details

Practically, there are 4 parameters to be set: the patch size (
√

n), the number of

patches to be extracted from each image (s), the number of dictionary elements (m)

and the reconstruction error (δ ). Unfortunately, there is no theoretical guidelines to

determine the values of these parameter, so we rely on previous work and empirical

methods. We have used the same parameter values for all experiments, unless

mentioned otherwise. Below, we describe how the parameter values are chosen for

this particular work.

Patch size (
√

n) and automatic scale selection: The patch size determines the

spatial scale at which an image is analyzed. For simplicity and speed, we analyze

each image at a single scale, but use a simple technique to automatically select

the (sub)optimal scale. A 2D LOG filter is applied to each image to detect the

local maxima points (keypoitns) at four different scales. The scale at which the

maximum number of keypoints are detected is chosen as the (sub)optimal scale
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for that image. The image is downsampled accordingly and a set of patches are

extracted. For example, if the scale is found to be 2, the image is downsampled by

a factor of 2 and then patches of size 8×8 i.e.
√

n = 8 are extracted. This particular

patch size is chosen in order to be consistent with most of the compression based

algorithms (e.g. JPEG1) which process 8×8 blocks. The automatic scale selection

is performed on all images for all datasets except for the VVT Wood dataset due to

the small dimensions (64×64) of the original images.

Number of patches (s): In order to train a dictionary, a large number of patches

need to be extracted. The color images are first converted to grayscale to achieve

color invariance. It is also important that the randomly extracted patches con-

tain important structural information of the image and do not come from the ho-

mogeneous regions of the image only. This is accomplished by selecting the

patches whose energy levels are above an empirically set threshold. A collection of

s = 3000 such patches are extracted from every image and is used to train its corre-

sponding dictionary. The input patches for dictionary learning have zero mean and

unit standard deviation which account for luminance and contrast invariance.

Overcompleteness (m/n): Since we intend to learn an overcomplete dictionary,

we must have m > n. The ratio m/n is called the overcompleteness factor. It has

been shown that for small overcompleteness factor, sparse representation is stable

in the presence of noise [68]. Thus we set m/n = 2, where n = 64.

Reconstruction error (ε): We used δ = 0.1 which means that the input vector is

reconstructed with at least 90% accuracy. Note that a lower reconstruction error can

produce a better dictionary, but requires more computation and more importantly,

may cause overfitting.
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(a) originial image (b) contrast change (c) luminance change

PSNR = ∞, VIF = 1 PSNR = 24.53, VIF = 1.50 PSNR = 15.97, VIF = 0.95

Proposed distance = 0 Proposed distance = 0.17 Proposed distance = 0.20

(d) white noise (e) lossy jpeg (f) unrelated image

PSNR = 31.95, VIF = 0.96 PSNR = 28.47, VIF = 0.92 PSNR = 13.21, VIF = 0.14

Proposed distance = 0.33 Proposed distance = 0.38 Proposed distance = 0.54

Figure 3.1: Comparison of the proposed distance measure with human per-
ception and the well-known perceptual similarity method VIF.

3.3.2 Correlation with human perception

It is important that the distance measure between images correlate with human

perception. We begin with measuring the similarities between a reference im-

age (Figure 3.1(a)) and its distorted versions (Figure 3.1(b)-(e)) as well as a com-

pletely unrelated image (Figure 3.1(f)). We also compare our results with PSNR

and the well-known Visual Information Fidelity (VIF) similarity measure [69] (val-

ues closer to zero indicates lower similarity). Figure 3.1 shows that our proposed

distance measure D , PSNR and VIF correlate well with human perception.

Next, we perform a simple clustering task where it is possible to evaluate the
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Figure 3.2: Hierarchical clustering result on the Heraldic Shields dataset
using the proposed sparse representation-based distance measure (al-
though color images are shown here the result is obtained using
grayscale images).

results manually. The Heraldic Shields dataset [58] (see Figure 3.2) contains 12

images (of various sizes) which are to be clustered into 6 pairs. All possible pair-

wise distances are computed using the proposed distance measure D . Hierarchical

clustering is performed using the average linkage method. The clustering result

shown in Figure 3.2 demonstrates that our measure has discovered all 6 basic pairs

of shields, and corresponds well with human intuition.

3.3.3 Clustering facial images

In this segment, we move towards more difficult clustering problems involving two

larger benchmark datasets:

AT&T face [70]: This dataset contains 400 facial images of 40 individuals in 10

poses. These images (dimension: 112×92) are taken at different times with vary-

ing illumination, facial expressions and details.

Yale face [71]: This dataset has 165 grayscale facial images of 15 individuals.

There are 11 images per subject, one per different condition: center light, with

glasses, happy, left light, no glasses, normal, right light, sad, sleepy, surprised, and

wink.
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Figure 3.3: (a) Sample images from the AT&T (first 3) and the Yale face
(last 3) databases; (b) Clustering accuracy for the AT&T face (Proposed:
81.6±2.4%, CK-1: 76.5±4.1%) and the Yale face (Proposed: 64.1±
3.9%, CK-1: 65.9±2.6%) databases.

For each dataset, an M×M similarity matrix is computed using (3.9), where

M is the number of elements in the dataset. This similarity matrix serves as the in-

put to a standard spectral clustering algorithm [72]. The accuracy of the clustering

results is measured using the Hungarian algorithm [73]. We compare our results

with the compression-based state-of-the-art CK-1 distance measure [58] using the

code provided by the authors. Due to the initialization process in spectral cluster-

ing, the accuracy varies slightly at each run. Figure 3.3 reports the mean clustering

accuracies along with the standard deviations as computed over 10 runs for the two

databases under consideration. The proposed measure outperforms CK-1 on the
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AT&T face dataset by 5.1% and its performance is 1.8% lower than CK-1 on the

Yale dataset. We also performed a hypothesis test for both datasets. While the per-

formance improvement for the AT&T dataset was found significant, our different

in accuracy on the Yale dataset is not statistically significant.

3.3.4 Texture retrieval

An image retrieval system, when provided with a query image, returns images from

a large dataset that are perceptually similar to the query. We perform standard

retrieval experiments on the following benchmark texture dataset.

Brodatz texture dataset [74]: This is a benchmark dataset that contains a variety

of natural textures like grass and cloth (see Figure 3.5). There are 111 different

texture classes. Each original texture image is divided into 9 subimages to create

the samples for that class.

For each query, the distances between the query and the remaining 998 images

in the dataset are computed, and the first K nearest images are retrieved. The

performance of a retrieval system is often measured in terms Precision and Recall

accuracy. Precision is defined as the ratio of correctly retrieved images to the total

number of images retrieved. Recall accuracy is defined as the ratio of the number

of correctly retrieved images to the number of images available for the query class.

Both precision and recall accuracy are expressed in terms of %. Our retrieval

results are compared with those obtained using the CK-1 method in Figure 3.4

where our method clearly outperforms CK-1.
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Figure 3.4: Shown are the image retrieval results in terms of precision (left)
and recall accuracy (right) obtained using the proposed method and
the compression-based state-of-the-art CK-1 method on the Brodatz
dataset.

3.3.5 Classification

Supervised classification experiments are performed on a diverse collection of im-

age datasets drawn from the sources across various disciplines such as biology,

medicine, forensics, etc. Sample images from each dataset are presented in Fig-

ure 3.5 and a brief description of each dataset is provided below:

UIUCTex [75]: This dataset features 25 texture classes with 40 samples each.

KTH Tips [76]: This dataset consists of textures of 10 different materials. The

images vary in illumination, pose and scale.

Camouflage [58]: This dataset consists of 80 images of 9 varieties of modern US

military camouflage. The images are created by photographing military t-shirts at

random orientations.

Nematodes [58]: Nematodes are wormlike animals with great commercial and

medical importance. Their species are often very difficult to distinguish from each

other. This dataset contains 50 images of 5 different species of nematodes.

Tire tracks [58]: This is a collection of tire imprints left on a paper. It has 48
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Figure 3.5: Sample images from the various datasets: (column wise, from
left) Brodatz,UIUC, KTH, Camouflage, Nematode, Tire tracks, and
Woods.

imprints of 3 different tires at varying directions.

VVT Wood [58]: This dataset contains 200 images of 40 types of wood defects

(such as dry knot and small knot, etc.). The task is to label an image as either

defective or sound.

The classification results for the above datasets using the proposed method

and the CK-1 are presented in Table 3.1. We test both methods using a leave-

one-out scheme in a 1-NN framework. Our method demonstrates much better or

comparable accuracy for all the datasets.

3.3.6 Discussion

Most compression-based methods use an off-the-shelf compressor (data, image or

video compressor) and treat the compressor as a black-box. This makes it diffi-

cult to understand which part of the compression algorithm actually estimates the

complexity of the data or measures the similarity. Consequently, the compression-

based methods are difficult to improve upon, unless one wants to delve into the
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Table 3.1: Classification accuracy on various datasets obtained using the pro-
posed distance measure and the state-of-the-art compression-based dis-
tance CK-1.

Dataset Classes Proposed (%) CK-1 [58] (%)
Brodatz 111 76.2 54.0

UIUCTex 25 51.6 51.0
KTH Tips 10 84.5 86.0

Camouflage 9 87.0 87.5
Nematodes 5 62.0 56.0
Tire tracks 3 79.2 79.2
VTT wood 2 85.2 80.5

details of the compression algorithms.

The proposed method takes a rather direct approach towards the approximation

of complexity, and it is easier to understand and improve. Our method can be easily

extended to measure the similarity between any type of signals including audio,

video and other type of images such as medical images.

The proposed method requires learning a dictionary for each image. The dic-

tionary learning process takes only a few seconds; for example, with the above-

mentioned parameter values, a MATLAB implementation takes ∼ 2 secs to learn

a dictionary per image (including the patch extraction process) on a standard PC

(intel quad @2.67GHz). This is as fast as any standard feature extraction process.

However, our method is still slower compared to the compression-based CK1 mea-

sure. This can be explained by the fact that the areas of dictionary learning and

sparse representation are still in the developing stage. In other words, unlike the

standard compression algorithms, the existing algorithms for learning dictionaries

or sparse representations are not yet fully optimized for speed or memory.

We have used a greedy algorithm (OMP) to solve the sparse optimization prob-
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lems in this work, primarily for speed and simplicity. Better results may be achieved

using `1 regularized algorithms but at a higher computational cost. The proposed

method is also not parameter-free, it requires a few parameters to be set by the user.

3.4 Summary

In this chapter, we developed a generic measure of similarity between two images.

Two images are considered similar if one can be compressed significantly when the

information of the other is known. Given a pair of images, X and Y , our proposed

method encodes the information content of X using the information from Y and

vice versa. The compactness (sparsity) of the representation of X w.r.t. the infor-

mation from Y is used as a measure of compressibility of X i.e. how much X can

be compressed. The more sparse the representation of an image, the better it can

be compressed and the more it is similar to the other image. The efficacy of the

proposed measure is demonstrated through the high accuracies achieved in image

clustering, retrieval and classification.
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Chapter 4

Sparse Representation-based

Perceptual Image Quality

Assessment

Image quality assessment can be considered as a special case of image similar-

ity measurement. A highly promising approach to assess the quality of an image

involves comparing the structural information in this image with that in its refer-

ence image. The extraction of the structural information that is perceptually im-

portant to our visual system is however a challenging task. In this chapter, we

develop a sparse representation-based approach to address this issue and propose a

new image quality assessment metric called the Sparse Representation-based Qual-

ity (SPARQ) index.
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4.1 Background and motivation

Digital images incur a variety of distortions during their acquisition, compression,

transmission, storage or reconstruction. Such processes often degrade the visual

quality of images. In order to monitor, control and improve the quality of images

produced at the various stages, it is important to automatically quantify the image

quality. Since the end-users of the majority of image-based applications are hu-

mans, this requires the understanding of human perception of image quality, to be

able to mimic it as closely as possible.

The Mean Squared Error (MSE) and the Peak Signal to Noise Ratio (PSNR)

have been traditionally used to measure the image quality degradations. These

metrics are mathematically convenient to use but they do not correlate well with

human perception of image quality [53]. A considerable amount of research ef-

fort has been put towards quantifying the quality of images as perceived by hu-

mans, and a number of objective image quality assessment algorithms that agree

with the subjective judgment of human beings have been developed. The objec-

tive quality assessment methods, depending on how much information about the

original undistorted image they use, are broadly classified into three categories:

no-reference, reduced-reference and full-reference. This work concentrates on the

full-reference quality estimation approach.

The earlier focus of full-reference image quality assessment research has been

on building a comprehensive and accurate model of the HVS and its psychophysi-

cal properties, such as the contrast sensitivity function. In this approach, the errors

between the distorted and the reference images are quantized and pooled according

to the HVS properties [77]. These methods require precise knowledge of the view-
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ing conditions and are computationally demanding. Despite this complexity, the

HVS modeling-based methods can only make linear or quasilinear approximations

of the highly non-linear HVS. Our current understanding of the HVS is also limited

in many aspects. Consequently, these methods do not yield highly superior results

than that produced by MSE or PSNR MSE or PSNR [78].

The interest in modern image quality estimation research has therefore shifted

to modeling the visual content of images based on certain significant properties of

the HVS. This visual fidelity-based approach is more attractive because of its prac-

ticality and mathematical foundation [79, 80]. The majority of these fidelity-based

methods attempt to quantify the perceptual quality either in terms of statistical in-

formation [81, 69] or in terms of structural information of the images [78, 82–86].

The statistical approaches hypothesize that the HVS has evolved over the years to

extract information from natural scenes and therefore, use natural scene statistics

to estimate the perceptual quality of images. The structural approaches on the other

hand operate on the basis of a rather important aspect of the HVS - its sensitivity

towards the image structures for developing cognitive understanding. In this ap-

proach, image quality is estimated in terms of the fidelity of structures between the

reference and the distorted images.

The image quality metric that is representative of the class of structural information-

based metrics is the Structural Similarity Index (SSIM) [82]. SSIM treats the non-

structural distortions (such as, luminance and contrast change) separately from the

structural distortions. The quality of a patch in the distorted image is measured by

comparing it with the corresponding patch in the original image in terms of three

components: luminance, contrast and structure. A global quality score is com-

puted by combining the effects of the three components over all image patches.
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SSIM achieved much success because of its simplicity, and its ability to tackle a

wide variety of distortions. Due to its pixel-domain implementation, SSIM is highly

sensitive to geometric distortions like scaling, translation, rotation and other mis-

alignments [77]. To improve the performance of SSIM, multiscale extension [83],

wavelet transform-based modification [86], gradient-domain implementation [84]

and various pooling strategies [85, 87] have been proposed.

The underlying assumption behind utilizing the structural information is that

the HVS uses the structures extracted from the viewing field for its cognitive under-

standing. Therefore, for an image to be considered of high-quality, all the struc-

tural information present in its reference image should be well preserved. From

this viewpoint, the efficient capture of the structural information of images is the

key to developing a successful image quality assessment algorithm. But extract-

ing or analyzing the structural information in a perceptually meaningful way is a

non-trivial task. A widely used mathematical tool for analyzing image structures

is the wavelet transform. Its basis elements, being spatially localized, oriented and

of bandpass in nature, resemble the receptive field of simple cells in the mam-

malian primary visual cortex (also known as V1 or the striate cortex) [4, 77]. The

wavelet transform however uses a set of predefined, data-independent basis func-

tions. Therefore its success is often limited by the degree as to how suitable the

basis functions are in capturing the structure of the signals under consideration.

We propose the use of a more generalized approach to analyzing image struc-

tures in the context of image quality assessment. This involves learning from the

training data a set of basis elements that could be adapted to represent the inherent

structures of the signal in question. These learnt basis elements are collectively

known as a dictionary. As each basis vector could be tailored to represent a sig-
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nificant part of the structures present in the given data, a learnt dictionary is more

efficient in capturing the structural information compared to a predefined sets of

bases. In the last few years, several practical dictionary learning algorithms have

been developed [23, 21]. It has been shown that the data-dependent, learnt dic-

tionaries, due to their superior ability to efficiently model the inherent structures

in the data, can outperform predefined dictionaries like wavelets in several image

processing tasks [23, 2, 26]. More importantly, as mentioned in Chapter 1, this

approach empowers us to build a cortex-like representation of an image.

In this chapter, we develop a full-reference image quality assessment metric

which we call the Sparse Representation-based Quality (SPARQ) index. This met-

ric relies on capturing the inherent structures of the reference image as a set of

basis vectors which collectively form an overcomplete dictionary. These vectors

are designed such that any structure (patch) in the image can have a sparse repre-

sentation w.r.t. the dictionary. To estimate the visual quality of the distorted image

the structures (patches) in this image are compared with those in the reference im-

age, in terms of the learnt dictionary. Since our method analyzes image structures

by building a cortex-like model of the stimuli, we expect the extracted structural in-

formation to be important to the HVS, and perceptually more meaningful compared

to the structural information used in existing methods.

To evaluate the efficacy of the proposed metric, we perform various experi-

ments on six publicly available, subject-rated image quality assessment datasets:

A57 [88], CSIQ [89], LIVE [90], MICT [91], TID [92] and WIQ [93]. The pro-

posed SPARQ index consistently exhibits high correlation with the subjective scores

and often outperforms its competitors.
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Figure 4.1: Overview of the proposed image quality assessment approach

4.2 Proposed approach

Our image quality assessment approach is divided into two phases:

• training phase - captures the inherent structures from the reference image by

learning an overcomplete dictionary.

• quality estimation phase - generates a quality score for a given distorted im-

age by comparing the structures in this image with the corresponding ones

in its reference image, in terms of the learnt dictionary.

Figure 4.1 presents an overview of the proposed approach and each step is de-

scribed below in detail.
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4.2.1 Training phase

The motivation of this step comes from the very process of image formation and

how an image is perceived by the HVS. The natural viewing field is highly struc-

tured and spatially correlated. The light rays that reflect off various structures in

the viewing field, get focused onto an array of photoreceptors present in the retina.

The visual information is then encoded in the form of complex statistical depen-

dencies among the photoreceptor activities [94]. The goal of the primary visual

cortex, as indicated in several seminal studies [4, 94], is to reduce these statisti-

cal dependencies in order to discover the intrinsic structures that gave rise to the

image.

A reasonable strategy towards mimicking this phenomena is to describe the

image in terms of a linear superposition of a small number of basis vectors. These

basis vectors form a subset of a larger, overcomplete set of basis vectors (dictio-

nary) that are adapted to the given image so as to best represent all structures in that

image [4, 94]. It has been shown that on employment of this strategy, the resulting

basis elements of the dictionary are qualitatively similar to the receptive field of

the cortical simple cells [4]. The importance of sparsity as an important prior, as

shown in [4], the sparsity is based on the observation that natural images contain

sparse structures and can be described by a small number of structural primitives

like lines, edges and corners [94, 95]. Due to overcompleteness, the basis vec-

tors are also non-orthogonal and the input-output relationship deviates from being

purely linear. The justification of deviating from a strictly linear approach is to

account for a weak form of nonlinearity exhibited by the simple cells themselves

[94].
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Dictionary learning: To design an overcomplete dictionary for the reference

image Ir ∈ RN , a large number of distinct, possibly overlapping patches of dimen-

sion
√

n×
√

n are extracted randomly from Ir. Ideally, one patch centered at every

pixel should be extracted; but in practice, extracting any large number of patches

is sufficient for learning a good dictionary. After extracting a large number of ran-

dom patches, the patches with low or no structural information are discarded (by

removing the patches whose variance is zero or close to zero after mean removal).

The remaining k patches are selected and each of the k image patches is converted

to a vector of length n. These patch vectors are concatenated to form a matrix

B ∈ Rn×s.

Using the patches as input, we intend to learn a dictionary Φ= {φi}m
i=1, φi ∈Rn.

We are interested in the overcomplete case where m > n i.e. when Φ has more

basis vectors than the dimensionality of the input. An overcomplete dictionary

offers greater flexibility in representing the essential structures in a signal. It is

also robust to additive noise, occlusion and small translation [1].

As discussed in Chapter 1, with overcompleteness however, greater difficulties

arise; because a full-rank, overcomplete Φ creates an underdetermined system of

linear equations having an infinite number of solutions. To narrow down the choice

to one well-defined solution, constraints (e.g. minimum norm) are required. We

enforce a constraint of sparsity in order to mimic the cortical model in [4]. Let

the sparse representation of B over the dictionary Φ be denoted by X = {xi}s
i=1,

xi ∈ Rm where any patch vector in B can be represented by a linear superposition

of no more than k1 dictionary columns where k1 << m. This is formally written as
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the following sparse optimization problem:

min
{Φ,X}

{
‖B−ΦX‖2

F

}
s. t. ∀i ‖xi‖0 ≤ k1 (4.1)

where ‖.‖F is the Frobenius norm (square root of the sum of the squared values of

all elements in a matrix) and ‖.‖0 is the `0 semi-norm that counts the number of

non-zero elements in a vector. To solve Equation 4.1, a popular learning algorithm,

known as the K-SVD [23] is employed. K-SVD iteratively solves Equation 4.1 by

performing two steps at each iteration: (i) sparse coding and (ii) dictionary update.

In the sparse coding step, Φ is kept fixed and the coefficients in X are computed by

the greedy algorithm OMP [12]:

min
X

{
‖B−ΦX‖2

F

}
subject to ‖x‖0 ≤ k1 (4.2)

In the dictionary update step, each basis vector φi ∈ Φ is updated sequentially,

allowing the corresponding coefficients in X to change as well.

4.2.2 The quality estimation phase

To estimate the quality of an image, we compare the local patches of this image

with the corresponding patches in its reference image. Instead of using all possible

image patches (as in SSIM and its variants), we intend to compare only a set of

carefully selected image patches. These selected patches are considered to be vi-

sually more important than others. Later (see Section 3.3 andFigure 4.4), we also

show that higher quality scores are obtained using the visually important patches

as opposed to the scores obtained using all image patches. A global measure of

quality is then computed by aggregating the scores obtained at the local level.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.2: (a) Reference image, (b) distorted image, (c) combined saliency
map using spectral residual method (d) combined local entropy map, (e)
visually important pixels in the reference image detected based on spec-
tral residual, (f) corresponding pixels in the distorted image detected
based on spectral residual, (g) visually important pixels in the refer-
ence image detected based on entropy, (h) corresponding pixels in the
distorted image based on entropy. (Note that the displayed images are
smaller than the original and human perception of important regions
may vary with image size. The image is best viewed in color.)

Detection of the visually important patches

It is well-known that not every pixel (or region) in an image receives the same level

of visual importance. Several studies have shown that a significant improvement in

the performance of quality metrics can be achieved by detecting the perceptually

important regions [96–98].

In order to detect the visually important regions in an image, any visual saliency

detection method can be used. In this work, we experiment with the following

salient patch detection methods:
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a) Itti-Koch saliency model [99]

b) Graph-based visual saliency [100]

c) Spectral residual [101]

d) Entropy-based method

The first three methods mentioned above are well known saliency detection

methods and the last one is a rather simple approach. Our experiments show that

the c) spectral residual and the d) entropy-based methods yield the best results for

our purpose (details in section 4.3.3). A brief description of each of the four salient

patch detection methods is provided below.

Itti-Koch saliency model: This classical method decomposes the input image

into a set of feature maps by extracting multiple low level features (such as inten-

sity, color and orientation) at different scales. These feature maps are normalized

and combined across scales to form conspicuity maps, one for each feature. These

conspicuity maps are then combined to create one saliency map of the image. For

details, please refer to the work of Itti et al. [99].

The Graph-based visual saliency (GBVS): This successful method uses the

computational power and the parallel nature of the graph algorithms to compute

saliency map of images. Like [99], GBVS also computes multiple feature maps

in order to find out the points that are unusual in its neighborhood using a graph-

based algorithm. The maps that identify unusual points are called the activation

maps. These activation maps are normalized and combined to create the saliency

map. Details can be found in the original reference [100].

The Spectral Residual approach: This is a state-of-the-art saliency detection
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method that can compute robust saliency map of natural images very fast. This

method analyzes the frequency spectrum of an input image obtained by the Fourier

transform. The method extracts the points of statistical singularities in the spectrum

which corresponds to the salient regions in the spatial domain. For details, please

refer to the original work [101].

Entropy-based visually important patch detection: A common hypothesis is

that the HVS is an efficient extractor of information, and therefore the image re-

gions that contain high information attract more visual attention [87, 85]. Based

on this hypothesis, we take an information theoretic approach towards detecting

the visually important patches. One way to quantify the local information content

of an image is by computing the Shannon’s entropy of each patch. The informa-

tion content or entropy of a discrete random variable z with probability distribution

Pz = {p1,p2, ...,pJ} is defined as

H (z) = H (Pz) =−
J

∑
j=1

pj log2pj (4.3)

Similarly, an image patch can also be analyzed as a random variable. Let us

consider an image patch z of dimension
√

n×
√

n where each pixel in z is assumed

to be independent and identically distributed. If z contains J distinct intensity val-

ues, its probability distribution, Pz, is given by Pz = {p1,p2, ...,pJ}, where J ≤ 28

for an 8-bit grayscale image; p j is the probability of the pixel intensity value j. The

probability pj is defined as pj = f j/n, where f j is the number of pixels (frequency)

with intensity value j occuring in the image patch z and n is the total number of

pixels in z. The entropy of every
√

n×
√

n patch (a patch around every pixel) in

the reference image Ir ∈ RN is computed as
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H (z) =−
J

∑
j=1

pj log2pj =−
1
n

J

∑
j=1

f j log2 ( f j/n) (4.4)

The larger the value of H, the higher is the information content of a patch.

Let us denote the saliency maps pertaining to Ir and Id by Mr and Md , com-

puted by one of the four saliency detection methods mentioned above. A combined

saliency map of the same size as Mr and Md is then created as max(Mr,Md) i.e.

by taking the maximum of the values of Mr and Md at each point. The locations

of the pixels in the combined map that have high saliency scores are found. These

points are used to select the corresponding q patches from Ir and Id as the visually

important patches (see Figure 4.2 for details). These patches upon extraction from

Ir and Id are vectorized and arranged in columns of the matrices Br ∈ Rn×q and

Bd ∈ Rn×q respectively.

Computation of the quality score

At this point, we have two sets of visually important patches: Br and Bd , extracted

from the same locations in the reference and the distorted images. The next step is

to compare these patches w.r.t. the dictionary Φ.

Let us consider any patch vector br ∈ Br from Ir and its corresponding patch

vector bd ∈ Bd from Id . The patches br and bd are decomposed using Φ to obtain

their respective sparse coefficient vectors xr and xd .

min
xr

{
‖br−Φxr‖2

2

}
subject to ‖xr‖0 ≤ k2 (4.5)

min
xd

{
‖bd−Φxd‖2

2

}
subject to ‖xd‖0 ≤ k2 (4.6)
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Note that, each of xr and xd contains only k2 non-zero elements. The locations

(indices) of these non-zero coefficients indicate those specific basis vectors in Φ

which actually contribute to the approximation of the input patch. These active

basis vectors are called the support of the input. The amplitudes of these non-zero

coefficients are the weights by which these support vectors are combined. The

support vectors and their weights together are indicative of the structural and non-

structural distortions (e.g. luminance or contrast change) between the two input

patches. Ideally, bd and br would have different sets of support vectors whenever

there exist any structural distortions between them. Otherwise, if the two patches

undergo purely non-structural distortions, the supports would remain the same but

their weights may change.

In order to quantify the perceptual quality of bd w.r.t. br, we compare their

sparse representations xd and xr. A simple but effective way to compare two vec-

tors is to compute their normalized correlation coefficient. A parameter α is com-

puted based on the correlation coefficient between xr and xd as follows:

α(br,bd) =

∣∣xT
r xd
∣∣+ c1

‖xr‖2 ‖xd‖2 + c1
(4.7)

where c1 is a small positive constant added to avoid instability when the denomina-

tor is close to zero. Clearly, 0<α ≤ 1. When xr and xd are orthogonal,
∣∣xT

r xd
∣∣= 0;

but due to the presence of c1, the parameter α is slightly greater than zero. Due

to normalization, α is unaffected by the lengths of xr and xd . Thus α is unable

to measure distortions that cause the length of xd to change. To account for these

types of distortions as well, we introduce another parameter. An important mea-

sure of similarity (or difference) between two vectors is their pointwise difference.
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Hence, we compute another quantity β which uses the length of the difference

vector (xr−xd).

β (br,bd) = 1− ‖xr−xd‖2 + c2

‖xr‖2 +‖xd‖2 + c2
(4.8)

where c2 is a small positive constant. It is easy to see that 0< β < 1, for non-empty

xr and xd .

We propose a function S (br,bd) that measures the perceptual quality of bd

w.r.t br as follows:

S (br,bd) = α(br,bd)β (br,bd) (4.9)

Let S (bi
r,bi

d) be the quality measure of bi
d- the ith salient patch in Id , w.r.t. bi

r -

the corresponding patch in Ir. The proposed global image quality SPARQ(Ir, Id) is

computed by averaging over all q visually important patches.

SPARQ(Ir, Id) =
1
q

q

∑
i=1

S(bi
r,b

i
d) (4.10)

Remarks:

• The SPARQ index (in Equation 4.10) is bounded: 0< SPARQ < 1; it is always

non-negative since each of its components is non-negative.

• The highest value of SPARQ is attained when Ir = Id .

• The index is not symmetric i.e. SPARQ(Ir, Id) 6= SPARQ(Id , Ir). This is be-

cause the dictionary Φ is trained on the reference image only. Symmetry

can be achieved by repeating the quality estimation stage with a dictionary

trained on the distorted image and averaging the resulting quality scores ob-

tained using the two dictionaries. Our experiments show that achieving sym-
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metry has little or no significance on the performance of the SPARQ index.

4.3 Experimental validation

This section presents a critical evaluation of the proposed image quality metric,

the SPARQ index, on the six publicly available image databases whose subjective

quality ratings are available. The images in these databases contain a variety of dis-

tortions such as compression artifacts, blurring, flicker noise, wireless transmission

artifacts, etc. First, we discuss how to set the parameter values required to com-

pute SPARQ index. Experiments are carried out to select the salient patch detection

method for which SPARQ performs the best. The performance of a quality metric is

evaluated by computing the correlation between its objective scores and the avail-

able subjective ratings. To compare the performance of SPARQ with state-of-the-

art, correlation scores of SPARQ are compared with those of the seven well-known

image quality metrics: PSNR, SSIM [82], PSNR with HVS properties (PHVS-M)

[102], Information Fidelity Criterion (IFC) [81], Visual Information Fidelity (VIF)

[69], Visual Signal to Noise Ratio (VSNR) [79] and Information Weighted Struc-

tural Similarity (IWSSIM) [85].

4.3.1 The databases

A brief description of each of the six datasets used in this work is provided below.

The Cornell-A57 dataset [79, 88] consists of 54 distorted images created from

3 original grayscale images. The images are subject to the following 6 types

of distortions: JPEG compression, JP2K compression, AWGN, Gaussian blur,

JPEG2000 compression with dynamic contrast-based quantization algorithm, and

uniform quantization of LH subbands of a 5-level discrete wavelet transform at all
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scales.

The CSIQ database [89] has 30 original images which were used to create 866

distorted images. The 6 distortion types (at four to five distortion levels) include

JPEG compression, JP2K compression, global contrast decrements, AWGN, and

Gaussian blurring.

The LIVE database [82, 90] contains 779 distorted images created from 29 orig-

inal color images. Each distorted image exhibits one of the five types of distortions:

JPEG2000 compression (JP2K), JPEG compression (JPEG), additive white gaus-

sian noise (AWGN), Gaussian blur and fastfading channel distortion of JPEG2000

compressed bitstreams.

The MICT-Toyoma database [91] contains 168 distorted images created from

14 reference images. The images exhibit 2 types of distortions: JPEG and JP2K

compression.

The TID database [92] is so far the largest subject-rated image dataset for qual-

ity evaluation. It has 1700 images generated from 25 reference images with 17

distortion types at four distortion levels. The distortion types are: AWGN, addi-

tive noise in color components, spatially correlated noise, masked noise, high fre-

quency noise, impulse noise, quantization noise, Gaussian blur, image denoising,

JPEG compression, JP2K compression, JPEG transmission errors, JP2K transmis-

sion errors, non-eccentricity pattern noise, local block-wise distortions of different

intensity, mean shift, and contrast change.

The WIQ database [93, 103] consists of 80 distorted images generated from 7

reference images. The images exhibit wireless imaging artifacts which are not con-

sidered in other datasets. Due to the complex nature of a wireless communication

channel, the images contain more than one artifacts.
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4.3.2 Evaluation methodology

The results of an objective image quality assessment metric is compared with the

subjective scores using a set of evaluation measures suggested by the VQEG [104].

These evaluation measures are - the Spearmans Rank Order Correlation Coefficient

(SROCC), the Kendall’s Rank Order Correlation Coefficient (KROCC), the Pearson

Linear Correlation Coefficient (CC), Mean Absolute Error (MAE) and Root Mean

Squared Error (RMS). The SROCC and KROCC are used to measure the prediction

monotonicity, while CC, MAE and RMS measure the prediction accuracy of the

objective scores. In order to compute CC, MAE and RMS, a five-parameter logistic

function (refer to Equation 4.11 and Equation 4.12) is fitted to the objective scores.

A particular objective score, S, is mapped to a new score, Q(S) using a non-linear

mapping function Q(·) which is defined as follows.

Q(S) = ϕ1logistic(ϕ2,(S−ϕ3))+Sϕ4 +ϕ5 (4.11)

logistic(σ ,S) =
1
2
− 1

1+ exp(σ ,S)
(4.12)

A MATLAB function called fminunc is used for fitting. The values of CC, MAE

and RMS are computed after performing the above non-linear mapping between the

subjective and objective scores. Note that, SROCC and KROCC are non-parametric

rank correlation metrics and are independent of any nonlinear mapping between

the subjective and the objective scores. A good image quality assessment metric

is expected to have high SROCC, KROCC and CC scores, and low MAE and RMS

values. For details of the evaluation methodology please see the original works

[69, 85, 104].
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4.3.3 Implementation details

Preprocessing

Before training and quality assessment, two preprocessing steps are executed: (1)

every color image in each dataset is converted to grayscale image, and (2) all im-

ages (reference and distorted) is downsampled by a factor F so as to account for

the viewing condition. The value of F is obtained by using the following empirical

formula [82].

F = max(1, round(g/256)) (4.13)

where g= min(#rows in Ire f ,#columns in Ire f ).

Training

In the training phase, there are 4 parameters to be set:

•
√

n : patch size

• s : number of patches to be extracted from a reference image for training the

dictionary

• m : number of basis vectors in the dictionary

• k1 : sparsity constraint

Unfortunately, there is no theoretical guidelines to determine the values of these

parameter, so we rely on previous work and empirical methods. A patch size of
√

n×
√

n = 11× 11 is used following the patch-size specification of SSIM [82].

A collection of as large as s = 3000 patches are extracted randomly from every

reference image to train its corresponding dictionary. We set the overcompleteness
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Figure 4.3: Comparison of the 4 visually important patch detection methods
in terms of computation time for the same pair of images (size 256×
256).

factor (m/n) to 2 which yields m = 242. It has been shown that for low overcom-

pleteness factor, sparse representations are stable in the presence of noise [68]. The

value of k1 is set to 12 which is approximately 10% of the dimensionality of the

input vectors.

Selecting the visually important regions

As mentioned before, 3 popular saliency methods (image signature [99], graph-

based visual saliency [100], spectral residual [101]) and a simple entropy-based

approach are considered to detect the visually important patches from images. In

order to investigate the effect of these methods on quality assessment, we em-

ployed each method within our framework and observe their performance on the
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Table 4.1: Performance comparison of the visually important patch detection
methods when used to compute SPARQ. The performances are evaluated
in terms of SROCC scores.

Patch selection method A57 CSIQ LIVE MICT TID WIQ
Random 0.875 0.904 0.870 0.766 0.674 0.778

Itti-Koch saliency [99] 0.926 0.941 0.915 0.848 0.805 0.800
Graph-based [100] 0.909 0.939 0.914 0.865 0.806 0.807

Spectral residual [101] 0.920 0.946 0.930 0.872 0.792 0.816
Entropy-based 0.943 0.950 0.933 0.870 0.774 0.851

six datasets.

Figure 4.3 compares the 4 patch selection methods in terms of computation

time. Table 4.1 compares them in terms of SROCC indicating their impact on

the quality assessment method. Each method uses the same number of q salient

patches (see Section 4.3.3 for how to determine the value of q). The result of

selecting random patches is also presented in Table 4.1. Random patch selection

result serves as a baseline.

It is clear from Table 4.1 that carefully selecting and using the visually impor-

tant patches for quality assessment improve the performance of the proposed qual-

ity metric. Another important observation is that the simple entropy-based method

performs better or at par with the well-known saliency methods in the context of

quality assessment.

Considering the performance (refer to Table 4.1) and speed (refer to Figure 4.3)

of the competing patch detection methods, we observe that the spectral residual

method and the entropy-based approach are the two better methods. From this

point, we will use the following notations of SPARQ depending on which patch

selection method it uses:
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Figure 4.4: Performance of the SPARQe index (correlation with subjective
scores measured in terms of SROCC) varies with the percentage of high-
entropy patches used in the quality estimation process.

• SPARQe - uses entropy for patch selection

• SPARQsr - uses spectral residual for patch selection.

Note that, other than the patch detection method all parameters remain the

same.

Quality estimation

In the quality estimation phase, we need to set the following parameters:

• c1,c2 : stabilizing constants in Equation 4.7 and Equation 4.8

• q : number of salient patches
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Figure 4.5: Effect of sparsity on the performances of SPARQe and SPARQsr

on TID and CSIQ datasets

• k2 : sparsity constraint

The constants are chosen to have very small positive values, c1 = 256 ∗ 0.01,

c2 = 0.01 so as to have minimal influence on the quality score. The value of q

is determined empirically. For each database, the number of salient patches, q, is

varied and the performance of SPARQ is measured in terms of the correlation be-

tween its scores and the subjective scores. This is presented in Figure 4.4 where

the Spearmans Rank Order Correlation Coefficient (SROCC) is plotted against q.

The value of q is varied from 2% to 100% of N where N is the total number of

patches (one around each pixel) in Ir or Id . In five out of the six datasets, the best

performance of the SPARQ index is observed when q= 0.15N i.e. 15% of N. Also
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Table 4.2: Performance comparison of various quality assessment metrics
over six datasets

SROCC-based comparison
Dataset PSNR SSIM PHVS-M IFC VIF VSNR IWSSIM SPARQe SPARQsr

A57 0.598 0.806 0.896 0.318 0.622 0.935 0.775 0.943 0.919
CSIQ 0.800 0.858 0.822 0.767 0.919 0.809 0.921 0.950 0.946
LIVE 0.875 0.947 0.922 0.926 0.963 0.912 0.956 0.933 0.930
MICT 0.613 0.875 0.848 0.835 0.907 0.860 0.920 0.870 0.871
TID 0.552 0.773 0.561 0.622 0.749 0.704 0.853 0.774 0.792
WIQ 0.626 0.758 0.757 0.716 0.692 0.656 0.786 0.851 0.816

PLCC-based comparison
Dataset PSNR SSIM PHVS-M IFC VIF VSNR IWSSIM SPARQe SPARQsr

A57 0.628 0.802 0.875 0.372 0.614 0.914 0.765 0.945 0.925
CSIQ 0.746 0.758 0.772 0.821 0.927 0.735 0.914 0.945 0.939
LIVE 0.860 0.941 0.917 0.853 0.944 0.917 0.951 0.930 0.928
MICT 0.632 0.705 0.839 0.833 0.902 0.855 0.802 0.873 0.872
TID 0.519 0.727 0.552 0.660 0.808 0.682 0.851 0.805 0.820
WIQ 0.639 0.640 0.749 0.705 0.730 0.763 0.660 0.836 0.801

RMS-based comparison
Dataset PSNR SSIM PHVS-M IFC VIF VSNR IWSSIM SPARQe SPARQsr

A57 0.191 0.147 0.119 0.223 0.194 0.099 0.105 0.080 0.093
CSIQ 0.175 0.171 0.167 0.150 0.098 0.178 0.150 0.086 0.090
LIVE 13.990 9.985 10.892 14.263 9.240 10.772 8.347 10.016 10.185
MICT 0.969 0.887 0.680 0.692 0.540 0.648 0.748 0.611 0.612
TID 1.147 0.921 1.119 1.008 0.790 0.981 0.689 0.796 0.768
WIQ 15.426 17.595 15.185 16.252 15.653 14.809 17.208 12.552 13.699

notice that, when all patches in Ir are used, the performance of the SPARQ index

degrades. This confirms our assumption that only the visually important areas are

useful for quality assessment. For all datasets, we use the same parameter values.

In order to determine the value of k2, it is varied from 2 to 12, and the changes

in SROCC scores are plotted in Figure 4.5 for SPARQe and SPARQsr. The results

are shown for the larger datasets available: the TID and CSIQ datasets. From

Figure 4.5, we see that k2 = 6 provides the best overall trade-off.

4.3.4 Performance comparison

Table 4.2 compares the performance of SPARQe and SPARQsr with the state-of-the-

art quality metrics in terms of SROCC, CC and RMS (KROCC and MAE are left out

for simplicity and because they reflect similar performance trends as SROCC and
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Table 4.3: Overall performance comparison of image quality assessment al-
gorithms

SROCC CC

Quality Direct Weighted Direct Weighted
metric avg. avg avg. avg
PSNR 0.677 0.685 0.670 0.655

SSIM [82] 0.836 0.835 0.762 0.778
PHVS-M [102] 0.801 0.722 0.784 0.704

IFC [81] 0.697 0.729 0.707 0.744
VIF [69] 0.809 0.839 0.821 0.865

VSNR [79] 0.813 0.783 0.811 0.758
IWSSIM [85] 0.868 0.891 0.824 0.879

SPARQe 0.887 0.858 0.889 0.871
SPARQsr 0.879 0.864 0.881 0.875

RMS, respectively). PSNR is used as a baseline method. For the implementation of

SSIM, PHVS-M, IFC, VIF, VSNR and IWSSIM we have used the original MATLAB

codes provided by the respective authors. The parameters of each of these methods

are set to their default values as suggested in the original references.

The best two results in Table 4.2 are written in bold for each dataset. As can be

seen in the comparison, no single metric performs the best on all datasets. Never-

theless, the performances of SPARQe and SPARQsr are consistently high over all

datasets.

In order to provide a bigger picture, the average SROCC and CC values are

computed over all six datasets in Table 4.3. The average values are computed for

two cases: in the first case the values are directly averaged and in the second case

the values are weighted by the size of the databases. The weight for a particular

database is the number of distorted images it contains, e.g. 779 for LIVE and 54 for

A57. In each case, the best two results are printed in boldface. The performance of
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the SPARQ index for separate distortion types is presented in Table 4.4.

Table 4.4: Performance of SPARQ Index for different distortion types

JPEG

Database SROCC KROCC CC MAE RMS

A57 0.983 0.944 0.971 0.054 0.061

CSIQ 0.971 0.850 0.986 0.039 0.051

LIVE 0.970 0.851 0.978 5.109 6.684

MICT 0.859 0.668 0.864 0.512 0.622

TID 0.919 0.730 0.943 0.399 0.565

JPEG 2000

Database SROCC KROCC CC MAE RMS

A57 0.983 0.944 0.955 0.060 0.066

CSIQ 0.979 0.883 0.985 0.041 0.054

LIVE 0.943 0.790 0.951 5.849 7.790

MICT 0.928 0.770 0.927 0.378 0.462

TID 0.966 0.840 0.973 0.360 0.447

AWGN

Database SROCC KROCC CC MAE RMS

A57 0.967 0.889 0.973 0.023 0.030

CSIQ 0.962 0.836 0.961 0.033 0.046

LIVE 0.975 0.866 0.980 4.380 5.515

TID 0.756 0.546 0.742 0.309 0.409

Gaussian Blur

Database SROCC KROCC CC MAE RMS

A57 0.916 0.778 0.953 0.045 0.060

CSIQ 0.978 0.873 0.981 0.042 0.055

LIVE 0.947 0.799 0.941 4.730 6.249

Continued on next page
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Table 4.4 – continued from previous page

Database SROCC KROCC CC MAE RMS

TID 0.947 0.803 0.941 0.297 0.397

Remarks:

• SPARQ clearly outperforms well-known quality metrics like SSIM, VSNR and

VIF.

• SPARQ achieves highest correlation score in 3 out of the 6 datasets.

• SPARQ is among the top two performers in 4 out of the 6 datasets but does

not perform very well on the LIVE dataset.

• Table 4.3 shows that on average, SPARQsr is slightly better than SPARQe.

• Overall, SPARQ is always among the top two performing metrics with IWSSIM

being its closest rival (see Table 4.3). However, it is important to note that

IWSSIM is a multi scale method, while SPARQ operates on a single scale.

• The WIQ dataset is the only dataset that contains more than one artifacts due

to the nature of wireless imaging. Notice that, SPARQ handles such complex

artifacts much better than any other metric. This indicates the potential of

SPARQ index to be used in complex practical systems where degradation of

images is likely to be caused by more than one factors.

• The high correlation scores of SPARQe presented in Table 4.4 show that

SPARQ is capable of handling different distortions.
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4.3.5 Computational complexity

In order to compute the SPARQ index, the two steps that require the bulk of com-

putation are (i) the dictionary learning step in the training phase and (ii) the sparse

coding step in the quality estimation phase. The computational load of the dic-

tionary learning step in turn is dominated by the sparse coding step performed as

part of the learning process. Hence, it is the sparse coding step that we should be

concerned with.

Our implementation uses an efficient sparse coding algorithm called the Batch-

OMP [52]. Its computational complexity is O(mnk) per training signal, where the

dictionary dimension is m×n and k is the sparsity constraint and s << n [52].

To give an idea of the computation time, a basic MATLAB implementation (on

a computer with Intel Q9400 processor at 2.66 GHz) takes on average 3.4 seconds

for the dictionary learning step using the parameter values specified in this paper.

The quality estimation step for SPARQe takes 1.7 sec and for SPARQsr it take 1.0

sec.

4.3.6 Limitations of SPARQ

Due to its dependence on sparse coding (Equation 4.2, Equation 4.5, Equation 4.6),

SPARQ is computationally demanding (still much less expensive compared to the

HVS-based models like MAD [105]). Nevertheless, considering the rapid growth

of the area, we are hopeful that faster sparse coding algorithms will be available

soon.

The present version of SPARQ index works on grayscale images and thus is

blind to the degradations in the color components. Like most of the existing image

quality assessment metrics, SPARQ relies on fidelity to quantify perceptual quality
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where fidelity is one of the several factors in determining the perceptual quality

[106].

4.4 Summary

In this chapter, we develop a new metric, the SPARQ index, that estimates the per-

ceptual quality of a distorted image with respect to a reference image. This metric

measures the structural delity between a reference image and its distorted versions.

The performance of the SPARQ index is shown to be consistently better or compa-

rable to the state-of-the-art quality metrics such as IWSSIM and VIF. The success of

SPARQ is attributed to a new framework proposed in this chapter. The framework

is designed to extract the perceptually meaningful structural information from im-

ages, by learning overcomplete dictionaries.
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Chapter 5

Conclusions

In this thesis, we have explored the usefulness of sparse representations ob-

tained by learning overcomplete dictionaries for (i) image and video classification,

(ii) image similarity measurement, and (ii) perceptual image quality assessment.

Each of these problems is critically important to modern information processing

systems and requires compatibility with human visual perception. We have ad-

dressed each problem separately from a perspective that aims to improve on their

respective state-of-the-art. We have been able to achieve encouraging results in

every case. This chapter clearly and concisely lists the contributions of our work

and the possible directions of future work.

5.1 Contributions

This section summarizes the contributions of this thesis, indicated separately for

each of three problems studied.
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Sparse representation-based classification

• This is one of the pioneering works that explore the usefulness of learning

sparse representations for classification. To the best of our knowledge, this

is also the first work to propose a sparse representation-based approach to

address the problem of human action recognition in videos.

• We have studied three dictionary learning frameworks: shared, class-specific

and concatenated.

– The usage of shared dictionaries learnt using vector quantization is

common. We have shown that shared dictionaries learnt using sparse

representations are more effective in classification. Our experiments

show that sparse representation-based approach improves the recogni-

tion accuracy by 7% on the UCF sports dataset.

– We have successfully employed the less-known class-specific frame-

work and shown that this framework yields superior classification ac-

curacy compared to the well-known shared dictionary framework on

all datasets.

– The concatenated framework is introduced in this thesis. This frame-

work also has been shown to produce better results compared to those

of the shared framework on all datasets.

• The proposed classification algorithms (Shared-hist, RSR, EFVC and Con-

cat) have been shown to consistently perform better or at par with the state-

of-the-art. Their robustness against partial occlusion, spatio-temporal scale

variations, moderate viewpoint changes also has been proved.
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• The proposed classification algorithms are fairly general and are applicable

to a wide variety of image and video-based classification problems. Chap-

ter 2 demonstrates successful applications of these algorithms for image-

based face recognition and video-based human action recognition. Addi-

tional results on video-based facial expression recognition and image-based

biological species classification are provided in the Appendix B. Our classi-

fication algorithms should also be applicable to other datatypes such as audio

signals.

• We have been shown in our experiments that sparse representation outper-

forms (more than 10% higher recognition accuracy on the UCF sports dataset,

refer to Table 2.6) the well-established vector quantization-based approach

to learning dictionaries for classification.

• We have also proposed a simple and effective method for detecting and com-

puting important motion patterns from videos. This method is called the

Local Motion Pattern (LMP) descriptor. LMP is 3-4 times faster (refer to

Table C.1) than state-of-the-art methods like Cuboids, and in general, is suit-

able for systems where speed is more important than accuracy. Nevertheless,

for simple video datasets we have shown that LMP can outperform Cuboids.

Sparse representation-based image similarity measurement

• A sparse representation-based approach for computing an image similarity

measure is introduced. The proposed measure is generic, in the sense that it

assumes no prior knowledge of the data or the application.

• For the first time, we have identified an important connection between sparse
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representation and the theoretical measure of data complexity, namely the

Kolmogorov complexity. We exploit this connection to extend the areas of

Kolmogorov complexity-based similarity measurement. We hope that the

connection identified in our work will stimulate interest in the area of simi-

larity measurement using Kolmogorov complexity and sparse representation.

• The previously developed Kolmogorov complexity-inspired similarity meth-

ods were not very successful in the context of measuring image similarity.

We have identified the issues with the previous approaches and proposed

a sparse representation-based approach to compute image similarity. The

proposed similarity measure has been shown to be successful in classify-

ing, clustering and retrieving a variety of image data, such as textures, faces,

biological species, etc.

Sparse representation-based perceptual image quality assessment

• We propose a new image quality metric - the Sparse Representation-based

Quality (SPARQ) index. This quality metric measures the structural fidelity

between the reference and the distorted image in order to quantify the visual

quality of the distorted image.

• The SPARQ index is shown to consistently perform better or yield compara-

ble results to the state-of-the-art. The success of SPARQ can be attributed to

the proposed framework that extracts structural information in an image by

using a model that mimics the response of the primary visual cortex to the

stimuli.

• The proposed quality metric SPARQ relies on a model that mimics the re-
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sponse of the primary visual cortex to visual stimuli. Hence, we expect that

the structural information our method extracts from images is perceptually

meaningful. This is an important advancement over the previous structural

fidelity-based quality assessment methods which rely on only certain hy-

pothesis regarding the operation of the HVS.

5.2 Future work

This thesis uses the K-SVD algorithm to learn dictionaries in all cases. This is

because K-SVD is fast, simple to implement, and the most popular. Nevertheless,

several improved dictionary learning methods have been proposed since the de-

velopment of K-SVD in the last couple of years. Although these algorithms are

not as simple as K-SVD, they can be employed to improve the accuracies at the

cost of additional computational load. Similarly, more sophisticated solvers e.g.

BP, FOCUSS can be employed to achieve better results but at the cost of higher

computation time.

There are also several issue with K-SVD that we would like to point out as the

possible directions of future work. Currently, no guideline is available on how to

optimize the parameters in K-SVD. Systematic studies are required to understand

the effect of each parameter on the dictionary learning process.

In general, using multiscale dictionaries can be a straightforward extension of

all of the proposed methods.

Below, we discuss the possible directions to future work specific to each chap-

ter.
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Sparse representation-based classification

In this work, we have used Cuboids and the newly developed LMP features to obtain

a rich representation of the action sequences. Features such as dense sampling,

HoG3D, STIP [107], etc. can also improve the recognition accuracy, but usually are

more expensive computationally. Similarly for image-based classification, features

like SIFT is expected to improve the recognition accuracy.

The proposed classification algorithms disregard the spatial and temporal ori-

entation of the extracted features. Incorporating the information regarding the lo-

cation of the features will result in improvement of the current results. This can

even help in detecting and recognizing the multiple actions in a single video.

Hierarchical dictionaries and discriminative dictionaries [24] can be useful for

classification. Also building hybrid dictionaries that use a combination of multiple

features is also worth studying.

Sparse representation-based image similarity measurement

Our work did not study speeding up the classification, retrieval or the clustering

processes. This is because our objective was to demonstrate the usefulness and

generality of the new distance measure. Further research can be done on how to

use the proposed measure more efficiently, especially when we need to classify or

cluster larger datasets. This will require the employment of sophisticated machine

learning techniques.

Applications can also be extended to problems such as multimedia copy detec-

tion and data mining.
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Sparse representation-based perceptual image quality assessment

The quality metric developed in this chapter, can be easily applied to other prob-

lems involving similarity measurement such as image clustering. Because of its

generic data-dependent approach, SPARQ is also suitable (may require minor mod-

ifications) for video signals.

The SPARQ index can be improved by combining it with various pooling strate-

gies and by learning multiscale dictionaries. Another possible future work includes

extending SPARQ to work for color images and videos.
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Appendix A

A Brief Overview of the Human

Visual System

The HVS is a part of our central nervous system and is responsible for sensing

and processing visual information from natural environment. It can be broadly

subdivided into two components: a pair of eyes that are responsible for capturing

the visual information and the visual pathways in the brain, which transmit and

process the visual signals [108]. The detailed anatomy and physiology of these

components are out of the scope of this thesis. Nonetheless, a brief overview,

particularly relevant to the interest of this work, is provided below.

A.1 Eyes

Figure A.1 presents a basic diagram of the HVS. As seen in the figure, our eyes

serve as the interface between the outside world and the rest of the visual sys-

tem. A human eye, often compared with a photographic camera, captures the light

and focusses the light rays on to the retina - a membrane at the back of the eye.
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Figure A.1: The human visual system (HVS) [image from wikipedia.org]

The retina contains multiple layers of neurons. The first layer contains a set of

light-sensitive neurons called the photoreceptor cells. There are two types of pho-

toreceptor cells: the rods and the cones. Rods are sensitive to low light and cones
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are sensitive to high light levels. The task of photoreceptors is to convert the optical

signal to a form that can be interpreted by the brain. The discretely (not uniformly)

sampled signal from the photoreceptors is transferred to the layers of horizontal

cells, bipolar cells, amacrine cells and ganglion cells. The ends of the ganglion

neurons are connected to the optic nerves which carry the preprocessed signal to

the brain.

A.2 Visual pathways

The two optic nerves, carrying the information from the ganglion cells, meet at the

optic chiasm (see Figure A.1), where the nerve fibers are rearranged. Half of the

fibers from each retina cross to the opposite side and join the temporal fibers of the

opposite retina to form the optic tracts. This means that the left retinal image is

processed in the right hemisphere of the brain and vice versa. The fibers of each

optic tract synapse in the lateral geniculate nucleus. The fibers then pass though

optic radiation to the primary visual cortex.

A.2.1 The primary visual cortex (V1)

The primary visual cortex (also known as striate cortex or V1) is located in the

occipital lobe at the back of the human brain and is responsible for performing

all high-level tasks associated with human vision and perception. A large variety

of neurons is present in V1. These cells often have selective sensitivity towards

certain information; for example, some cells are only sensitive to certain patterns,

some cells are sensitive to motion in a particular direction and some other cells are

tuned to sense only particular frequencies or color [108].

A class of neurons, called simple cells, is of particular importance to the re-
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Figure A.2: The receptive field of a simple cell in V1. Blue regions indicate
the inhibitory (OFF) regions and red regions mean excitatory (ON) re-
gions. [image from wikipedia.org]

searchers dealing with human vision. These cells are primarily responsible for

extracting information from oriented edges and gratings. The receptive field of a

simple cell is localized, oriented and frequency-selective. It has clear ON and OFF

(excitatory and inhibitory) regions (see Figure A.2), indicating that it responds to

only those visual stimuli that have a range of spatial frequencies and orientations

about its center values.
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Appendix B

Additional Applications

B.1 Facial expression recognition

The facial expression dataset [33] involves 2 individuals, each expressing 6 differ-

ent emotions under 2 lighting setups. The expressions are anger, disgust, fear, joy,

sadness and surprise. Expressions such as sadness and joy are quite distinct but

others are fairly similar, such as fear and surprise. Under each lighting setup, each

individual shows each of the 6 expressions 8 times. The subjects always start with

a neutral expression, show an emotion, and return to neutral (see Figure B.1 for

sample frames).

Figure B.1: Sample frames from the Facial expression dataset: anger (f1),
disgust (f2), fear (f3), joy (f4), sadness (f5) and surprise (f6).
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Table B.1: Concatenated dictionary-based classification results are compared
with the traditional BoW approach. For true comparison the same detec-
tor and descriptors are used both cases.

Condition Recognition accuracy (%)
Dollar et al. [33] Concat

same subject & lighting 97.9 100
same subject, different lighting 89.6 93.7
different subject, same lighting 75.0 91.7

different subject & lighting 69.8 72.9

Figure B.2: Results on the Facial Expression dataset: (a) different subject,
same illumination (91.7%) and (b) different subject, different illumina-
tion (72.9%)

Recognition results are provided in Table B.1 using the concatenated dictionary-

based classification algorithm (concat). In order to provide a true comparison with

the original work [33], we use the combination of cuboids and the concatenated

gradient vector to compute the feature vectors. Comparisons in Table B.1 show

that our sparse representation-based algorithm is better than the results reported in

[33]. Confusion matrices are presented in Figure B.2.
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Figure B.3: Sample images from the Nematodes datasets used.

Table B.2: Results on the Nematodes dataset.

Approach Recognition rate (%)
`1 optimization [27] 54.0

Compression based [58] 56.0
EFVC 64.0

B.2 Biological species classification

The Nematodes dataset [58] is a collection of 50 color images (converted to grayscale)

of 5 nematode species [58]. Nematodes are a diverse phylum of wormlike animals,

with great commercial and medical importance. Nematodes, because of their di-

versity, are known to be extremely difficult to be classify correctly. Images are

downsampled by a factor of 4 to be consistent with the image size and other param-

eters. We have adopted a leave-one-out scheme for the evaluation of this dataset to

allow direct comparisons to the results obtained by the original authors. The classi-

fication results obtained using the Error Feature Vector-based Clasification (EFVC)

algorithm are presented in Table B.2 . The results show 8% improvement over the

state-of-the-art.
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Appendix C

LMP Feature Extraction

We define a local motion pattern as a distinctive, scale-invariant region that con-

tains significant information about the local variations of the signal along both spa-

tial and temporal dimensions. It was noted in [33], that the extrema points are often

located at the regions having spatially distinguishing structure. Consequently, we

deduce that the local motion patterns should correspond to the temporal variations

in such spatially distinctive regions over a short period of time. Our purpose is to

detect the spatially distinctive points and then capture the temporal changes in the

neighborhood of those points.

Feature detection: Consider a video sequence V(x,y, t) consisting of f frames.

It is first partitioned into S segments: V= [V1,V2, ...,VS] (see Figure C.1) such that

each segment contains l = f/S consecutive frames. The number of frames in a seg-

ment, l, corresponds to the temporal resolution at which V is analyzed. The smaller

the value of l the finer is the resolution. At any given resolution l is required to be

large enough to accommodate small movements of the subject but not too large to

have any major changes.
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Figure C.1: Multiple temporal scales analysis of a video sequence partitioned
into 4 and 8 temporal segments for computation of the LMP descriptors.

In order to extract spatially distinguishing structures we employ a 2D keypoint

detector and locate keypoints at the first frame of every temporal segment. Say,

ρ keypoints are detected in the first frame of a segment Vi. We are interested in

observing how the temporal information around each of these ρ keypoints changes

over the remaining (l−1) frames. This can be handled by prealigning the subjects

(when translation is involved) in all the frames of Vi w.r.t. a reference point. Then,

fixing the coordinate values obtained for the keypoints in the first frame, small

video patches of dimension (η×η× l) are extracted around each of the ρ key

points, in every Vi, i = 1,2, ..S.

The prealignment of frames simplifies the process of patch extraction. Often,

such prealigned sequences are the output of the tracking procedures used to de-

tect the subject of interest. However it requires a good bounding box and may be

difficult in the cases of background clutter or partial occlusion. An alternative to

prealignment of the figures is to find the points corresponding to the keypoints de-

tected in the first frame in the next frames, for example, by SIFT feature matching

[32]. Note that, prealignment removes all information about a subject’s translation,

but translation does not contribute much to the recognition process anyway. This
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prealignment step is also adopted in [39] and [109].

The descriptor: Every keypoint is associated with a spatio-temporal cube of

size (η×η× l). Each cube captures the local space-time changes of the signal and

represents a significant motion pattern. The spatio-temporal cubes are extracted

in all temporal segments of V. In order to obtain a robust descriptor for each

spatio-temporal cube, we first perform 2D Gaussian blurring of each cube in the

spatial domain so as to ignore minor variations. This increases robustness of the

descriptor against noise and positional uncertainties that are likely to occur from

imperfect segmentation or improper alignment, if performed. But the cubes should

not be smoothed along the temporal direction so as not to ruin the small temporal

variations we are particularly interested in.

Let us denote a blurred cube as v ∈ Rη×η×l , which is basically a series of l

small patches. After removing the mean of v, the second (variance, M2), third

(skewness, M3) and fourth (kurtosis, M4) central moments are computed for each

pixel along the temporal direction. We define the moment matrix Mr, r = {2,3,4}

associated with v as follows:

Mr = [mi j] i, j = 1,2, ...η (C.1)

where

mi j =
1
l

l

∑
t=1

(vi jt)
r (C.2)

Here, vi jt is the pixel value at location {i, j} of the t-th patch. Each moment matrix

Mr, r = {2,3,4} is transformed to a vector mr ∈ Rη2
. The three moment vectors

corresponding to three values of r are concatenated on top of each other to form a
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Table C.1: Quantitative comparison between Cuboids and LMP

Cuboids LMP
video size 101×101×84 101×101×84

temporal scales 3 3
spatial scale 2 2

features extracted 438 474
run time (sec) 16.70 5.08

single vector m ∈ Rd where d = 3η2.

m =


m2

m3

m4

 (C.3)

The vector m is an LMP descriptor. A number of such descriptors that collectively

characterize a human action is extracted from each video sequence. The process

of computing the LMP descriptors is illustrated in Figure C.2. The advantages of

these proposed descriptors are as follows:

• Computational efficiency - Assume that the video frames are prealigned. The

order of computational complexity of detecting keypoints in an image, using

for example, the Harris interest point detector, is O (n), where n is the num-

ber of pixels in the image. For a video sequence divided into S no. of tem-

poral segments, keypoints have to be detected only in S no. of images. If we

consider T temporal scales (T ≥ 1), the complexity is O (nC)∼O (n), where

C = ∑
T
j=1 S j is a small constant and S j is the number of temporal segments

at scale j. Thus the order of complexity of extracting the spatio-temporal

cubes is equal to that of the 2D keypoint detector being used. Evidently the
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complexity of 2D extrema detection is much lower than the 3D extrema de-

tection used to find the 3D spatio-temporal keypoints in [107, 41, 33]. From

Table C.1, we can see that LMP is almost three times as fast as the cuboids.

• Flexibility - one can choose from a large pool of 2D keypoint detectors based

on the application, data type and quality. Descriptors can be computed for a

variety of data types such as silhouettes, blobs and plain grayscale images.

Background subtraction is not necessary.

• Scale invariance - temporal and spatial scale invariance is easy to achieve by

using a multiscale 2D keypoint detector and multiple temporal resolutions.

The demerit of this feature extraction method is the cost of prealignment of the

video frames or alternatively, tracking the keypoints in the consecutive frames.
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Figure C.2: (a) A temporal segment consisting of three consecutive video
frames. The 2D keypoints are identified in the first frame using im-
proved Harris keypoint detector. The positions of the same keypoints
are shown in the next two frames. (b) Patches are extracted around
each keypoint at each frame. Three space-time cubes associated with
the three keypoints (green, red, yellow) are shown. Each cube contains
patches extracted from the three frames. (c) Conversion of a cube to
an LMP descriptor: Gaussian blurring of the cube is followed by the
computation of the 2nd, 3rd and 4th central moments in the temporal
dimension and transformation of the three moment matrices into one
vector. (This image is best viewed in color.)
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