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Abstract

Oxygen is a critical component in living organisms and its concentration iretissu

an important parameter indicative of tissue metabolism, level of activity arithhea
condition. As a result, measuring oxygen concentration in the tissue istiaésen
in many clinical and research applications. Near Infrared SpectrgdddiRS)

is a non invasive method of measuring tissue oxygenation using diffusitoghof

in the tissue. NIRS as a safe, non invasive and low cost monitoring tegynolo
has been used in a wide range of applications including monitoring muscle and
brain oxygenation, brain computer interface and rehabilitation. The motivdio

this thesis has been to develop new signal processing methods and to ateestig
potential new applications for NIRS.

One major characteristic of NIRS is its sensitivity to movement of the target
tissue during the measurement. The effects of movements, known as motion ar-
tifacts, have limited clinical applications of NIRS in ambulant patients as well as
experimental applications of NIRS monitoring in areas such as exercigeacie
and sports medicine. In this thesis, we present a new method of reducieffettie
of motion artifacts on NIRS signal using Discrete Wavelet Transform (PWT

One of the areas of application which can significantly benefit from rteztuc
of motion artifacts is NIRS-based wearable sensors. In particular, atfatand
unexplored application of NIRS is providing a monitoring method for people with
bladder control problems, which occurs in a variety of conditions includpigal
cord injury and stroke. We investigate the application of NIRS for detection o
bladder filling to capacity using a wearable wireless monitoring sensor whith c
be used to warn the subject once the bladder content reaches an@dgeficent-
age of the full capacity.



NIRS can be used as a functional neuroimaging method to identify brain acti-
vations during practice of a motor/cognitive task. One important question in this
field is how the activated brain areas are interconnected. We thus intedtiga
use of phase information in NIRS channels to identify cortical connectiodsra

particular, show the applicability of this approach in identifying language ortw
in human infants.
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Chapter 1

Background

1.1 Introduction to Near Infrared Spectroscopy

Oxygen is a critical component in living organisms and its concentration iretissu
an important parameter indicative of tissue metabolism, level of activity arithhea
condition. As a result, measuring oxygen concentration in the tissue igiesgen
many clinical and research applications.

In 1977 Jobsis introduced the method of measuring local tissue oxygenation
non-invasively using near infrared light [7]. Absorption of the light lrlg tissue
is lower in this wavelength range (600-1000 nm) which results in maximum pen-
etration depth. Below this wavelength range, hemoglobin strongly absotis lig
and above this range, water is the major absorber. Figure 1.1 showsstirptan
spectra of light energy as a function of wavelength in the vicinity of NIR evav
lengths for important species in tissue. Within this range, light attenuatiorrsoccu
as a result of scattering and absorption by chromophores such asnatgd and
deoxygenated hemoglobin (Hb@nd HHb) which are important biological in-
dicators, lipid, water and cytochrome oxidase. This method of using NIR light
to measure chromophore concentration (or concentration changes)tissine is
known as Near Infrared Spectroscopy (NIRS). In practice, a lighttgource is
placed on the tissue surface to shine light into the tissue. A light detectofpalso
cated on the surface, but at a distance from the source detectswdijusflected
light from within the tissue and extracts information on the chromophore cence
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tration from the detected light intensity and phase. The intensity attenuatioa is du
to absorption by blood chromophores as well as scattering and can teslitelshe
changes in concentration of the chromophores.

The unique type of information provided by NIRS is quite different front tha
obtained with pulse oximetry or Photoplethysmogrophy (PPG), even thoegh th
basic principles are similar. NIRS and PPG are based on the same principle tha
NIR light can penetrate in the tissue and is mostly absorbed by hemoglobiaspec
However, PPG measures arterial oxygen saturation which is the pegeenita
hemoglobin in arteries that is bound to oxygen:

aHbO,

SpQ = aHbO, +aHHb

(1.1)

whereSpQ is the peripheral oxygen saturation, aatdbO, andaHHb are the ar-
terial HbG, and HHb concentrations, respectively. This fraction which is normally
close to 100%, is a centrally controlled parameter and only changes imsssfmo
critical conditions.

NIRS measures tissue oxygenation changes or in some cases, tissea oxyg
saturation which is the percentage of hemoglobin bound with oxygen in the tis-
sue. This parameter can change significantly in response to increasereask in
oxygen demand in the tissues. For example, it has been shown that unigder a
cremental inspiratory threshold loading study, the ptayed relatively constant
throughout the experiment(96%), while NIRS showed decrease in tissue oxy-
genation of a non active muscle and increase in oxygenation of the actsaenu
[8].

In general, NIRS can be employed in any application where hemodynamics
of a tissue is of importance. Because of its non-invasive nature and thaeun
type of information it provides about tissue hemodynamics, NIRS has begenpe
popular and has found a wide range of applications such as monitorindenmusc
brain oxygenation [9], brain computer interface [10], rehabilitation Hrid cancer
detection [12].

Brain functional studies are among the application areas in which NIRS is
promising. Due to neurovascular coupling, the neural activation whicbcisma-
panied by hemodynamic changes resulting from an increase in oxygemdema
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Figure 1.1: Absorption spectra of oxygenated and deoxygenated hemoglobin
(HbO, and HHb) and water from 600nm to 1000nm. The absorption
increases significantly below 600nm and above 1000nm.

can be detected using NIRS in superficial areas of the brain [13]. Thisoche
known as fNIRS, is widely used to detect activations in brain cortex inoresp

to different stimulations. The information recorded by functional Nearahefd
Spectroscopy (fNIRS) is very similar to that obtained by functional Magries-
onance Imaging (fMRI) and Positron Emission Tomography (PET). Hewev
fNIRS is less expensive, portable, non ionizing, non restraining aschiuer
temporal resolution. Also, the process of hemodynamic changes detectlifn is
ferent between fMRI and NIRS. In fMRI, magnetic properties of hemioiglare
used to detect changes in HHb [14]. Losing oxygen causes hemogloemtond
strate paramagnetic properties. In fNIRS, the difference in absorptiectra of
HbO, and HHb is the principle of detection. As a result, NIRS is sensitive to both
HbO, and HHb while fMRI is only sensitive to HHb. This is an important differ-
ence as the change in Hb@ response to stimulation is larger and more correlated
with Blood Oxygen-Level Dependent (BOLD) response than HHb.[15]
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1.2 Theory of NIRS

1.2.1 Modified Beer-Lambert Law

In order to derive chromophore concentrations, raw light intensityingacheed
to be converted to concentrations or concentration changes. The Bedert
law describes the attenuation of light when propagating in a non scatterihg, b
absorbing medium:

| = lpe Hel (1.2)

wherelg is the intensity of the light entering the mediulris the light intensity at
locationx = | with | in cm andy is the attenuation coefficient in crh. In presence
of multiple absorbants, this coefficient is related to the absorbants’ ctvatien
as

Ha = Zi&C (1.3)

wherec; andg; are the concentration and extinction coefficient ofitheabsorber

in molL=! and Lmoltcm1, respectively. In a highly scattering medium, such as
human tissue, this equation is no longer valid as absorption is not the only mech-
anism resulting in light intensity attenuation. The modified form of this equation
known as the Modified Beer-Lambert Law (MBLL) takes scattering intosabn
eration and explains the relationship between chromophores’ concemteattb
reflected optical density [16]:

I
OD= —Iogl— =eclB+G (1.4)
0

whereOD is the optical densitylg is the incident light intensityl, is the detected
light intensity,e andc are the same as described abdvis,the distance between
where the light enters the tissue and where the detected light exits the #ssue,
is a pathlength factor that accounts for increases in the photon pathlengtbcc
by tissue scattering, ar@ is a factor that accounts for the constant losses such as
those caused by measurement geometry [16].

A change in the concentration of the chromophore will result in a change in
the reflected light's intensity which is sensed at the detector. When coatientr
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changese and distancéremain constant. AssumirgjandG also remain constant,
we can rewrite equation 1.4 as

AOD = —log Ml _ encip (1.5)
Initial

where AOD = ODgjna — ODjnitiar IS the change in the optical densityj,a and
Iinitial @re the measured intensities before and after the change in the chromophor
concentration, andC is the change in concentrationis determined by the probes
geometry,e is the property of the chromophore aBds often referred to as the
Differential Pathlength Factor (DPF) and can be determined with very phtses
of light and has been tabulated for various tissues.

In order to consider the contribution of two or more chromophores, we toee
write equation 1.5 for 2 different chromophores and make measuremeantyat
than 1 wavelength. In this wa@dD changes at wavelengthwould be:

AOD* = (s,’_,\bozA [HbOy] + 58 [HHB] ) B L (1.6)
by measuring th&OD in 2 wavelengths, one can solve for changes of concentra-

tion in HbO, and HHb using

e m_gAl AOD*2
AHHb = —HbC: Bh HbO, g% (1.7)

M oA N oA
(SHHbgHbOZ - SHHbgHbOZ) L

S
AHDBO, = M A2 A2 A1 (1.8)
(SHHbsHbOZ - SHHbEHboz) L
The MBLL is sufficient in cases where only the measurement of changes f
a baseline is desired. This baseline is dependent on different fastarscé de-
tector coupling with the tissue, tissue parameters etc.). As a result, removing an
optode and replacing it in the exact same position on the tissue, will resultin dif

ferent baseline reading and therefore absolute reading valuestazemparable.
Therefore, if absolute values of chromophores or Tissue Oxygenatiex (TOI)
measurements are required, this model will not be adequate.
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1.2.2 Photon Diffusion in Tissue

A more robust model of light-tissue interaction is based on using diffusioa-eq
tion to describe light propagation in highly scattering living tissue. Assuming an
isotropic source, the light-tissue interaction can be described by theidiffegua-
tion [17]:

oP(r,t)

O-(D(r)Od(r,t)) — va(r)d(r,t) — ot = —v§(r,t) (2.9)

where®(r,t) is the photon fluence rate at positiorand time t inWcnt?,
S(r,t) is the source power per volume emitted radially outward/iontt, D(r) =
m is the photon diffusion coefficient;, is the reduced scattering coeffi-
cient, L, is the absorption coefficient andis the speed of the light in the medium.

The reduced scattering coefficient is related to scattering coefficien} as
(1—g)us and characterizes the amount of scattering in the tissue.

In order to characterize the diffusion of light in the tissue, differente@and

boundary conditions can be assumed. Here, we briefly look at 2 sim@s wéwsch
are relevant here.
For the case of a frequency modulated source

S(r,t) = Sue(r) + Sac(r) e (1.10)

whereS;c andS,¢ are the constant and time varying components of the source. In
this case, the time varying part of the solution would also have the same figque
as the source and will have the form of

Due(r,t) = U (r)e et (1.11)
assuming a homogeneous medium, the diffusion equation reduces to
(D2—K2)U(r) = —%sﬁc(r) (1.12)
wherek? = w. For a point source at positian=r in infinite space

Sac(r) = Sacd(r) (1.13)
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The general solutions to Equation 1.12 are of the f@ef andCe «". One
can then solve Equation 1.12 to get [17]

_ VSaic
AnDr

u(r) ek (1.14)

where k is a complex number with real part

/ 1/2
() e

and imaginary part

1/2
ki<v2|l§‘)1/z(<l+<\i>2>l/21) (1.16)

Hence, at locatiom on tissue surface, the light intensity would be frequency
modulated at the same frequency of the source with reduced amplitude hadea p
shift which are both functions gi; andD.

A more realistic boundary condition is a semi-infinite homogeneous medium.
In this case, an image source symmetric around the boundary can be saédfto
the boundary condition. In the limit where we are far enough from thecggtine
solution can be written as

—kp —kip
*giﬂ(%(lumzﬁ)) A8 ket (117)

U(p>ZZO) pz

which again indicates attenuation along with a phase shift at positigith
respect to the source. In case of a non modulated source, one wotie gxpo-
nential decrease in intensity only. The application of these formulationsiiirtgr
concentration values in different NIRS instruments will be discussed itdBet.4.

1.3 Applications of NIRS

The unique advantages of NIRS has led to its use in a variety of applicaltRS.
in general, is applicable in any situation where hemodynamic monitoring of a tissue
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is required.

One of the areas in which NIRS is well suited for are brain studies which in-
volve recording activities in different brain areas. In these studiagomascular
coupling results in increase in hemodynamics that lags the neural activahen.
change can be detected by fNIRS. The data is then converted to activairan
mathematical models incorporating the hemodynamic response function.R&fNI
studies, one would only be interested in measuring changes in chrompture
centration from a baseline and therefore, continuous wave fNIRSekethat mea-
sure concentration changes using MBLL are well suited for these apiptisa

fNIRS has been used for studying various brain disorders. Hock dtaae
examined Alzheimer’s patients during verbal fluency and other cognitsksta
finding decreases in HCand total hemoglobin (tHb) relative to the baseline in
the parietal lobe as compared to an increase in Hi@l tHb in healthy subjects
[1&,/19]. Schizophrenia patients have also been studied with fNIRS @nadestud-
ies. In one study, for example, "dysregulated” patterns of {a@d HHb change
were found using fNIRS in frontal regions of schizophrenic patientsoagpared
to healthy subjects during a mirror drawing task [20]. Also, it was showntkiga
typical pattern of right-lateralized activation during a continuous perfanadest
was absent in schizophrenic patients [21]. Depression is anotheitioonekam-
ined with NIRS. In a study by Matsuo, reduced frontal activation duringraal
fluency test in patients suffering from depression was found compareshtrols
[22]. These are only a few representative examples of applicationsIBS in
brain disease conditions. A more detailed review of such applications danie
elsewhere [23].

One of the attractive areas of application for NIRS is brain studies in infants
where use of other modalities such as fMRI or PET is either impractical gr ver
difficult. Also, the small head size and thin skull results in high quality and better
penetration into brain tissue. For example, unique features of fNIRS hde ma
it possible to assess newborn infant's brain response to differenudgeg and
language structures [24]. NIRS has also been used to study develgpoteanges
in the cerebral hemodynamic response to different stimulation types [R5, 26

One of the more recent developments in applications of NIRS has been the
study of bladder muscle hemodynamics during voiding to diagnose bladeer ob

8



CHAPTER 1. BACKGROUND

struction/dysfunction non-invasively [27]. It has been shown thdepas of HbQ
and HHb are different for normal and obstructed bladder reflectirigti@ns in de-
trusor muscle hemodynamics and oxygen supply and demand. This catigllyten
replace invasive methods currently in practice for urodynamics tests.

New applications for NIRS are constantly being developed and testedaValid
tion of such data in different fields has turned NIRS into a promising didgnos
tool.

1.4 NIRS Instrumentation

There is a wide variety of NIRS instruments currently in use, both commercial
([2€--33]) and custom-built ([34—38]). A detailed review of differeHRS devices
and measurement techniques can be found elsewhere [23, 39, 40].

In terms of operation basis, the NIRS devices can be divided into 3 casgor
Continuous Wave (CW), Time Domain (TD) and Frequency Domain (FD) devic
[41].

TD systems use very short light pulses which are scattered and atidmrbe
the tissue layers. The temporal distribution of photons as they leave theigssue
detected by the system. The shape of this distribution gives information #imout
tissue scattering and absorption. TD systems provide very accurate estgratio
tissue parameters (scattering coefficignand absorbing coefficiept,). However,
they are usually expensive, bulky and require extensive knowlefitie ystem
to work with and are not particularly suitable for practical clinical application

In FD systems, the light source is amplitude modulated at intermediate fre-
guencies (around 100MHz). As discussed in Section 1.2, the amplitudehasd
of the light at the detector is a function of reduced scattering coeffigieand ab-
sorption coefficientiy. Hence by measuring amplitude and phase of the modulated
light at the detector, the chromophore concentrations can be calculated.

CW systems are the most widely used NIRS devices in practice. They radiate
light continuously into the tissue and measure the amplitude decay of the réflecte
signal. In the simple basic form, these systems can not quantify baselirng-abso
tion and scattering. However, they can be made with inexpensive, widgiable
components. Even though CW systems are often used for measuring staw he
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dynamic signals [4£2], they can measure the fast neuronal signals oadam
conditions [43-45]. These devices usually incorporate the MBLL maatet$-
timating the absorption coefficient in the tissue. One of the major limitations of
using CW NIRS devices with single source-detector pair based on MBLLais th
they can only measure "changes” in tissue hemodynamics. In other viloedsh-
solute values of chromophores can not be measured. This means a dghauitt
be generated in order to observe the changes. This dynamic could béenemdif
forms including stimulation (brain studies), muscle activity (sports medicine; blad
der study), occlusion or drug administration. Even though some applicatiens
still feasible using measurement of changes from baseline only, this wilbutle
possibility of using NIRS in many other areas. Therefore, several mgthade
been proposed to alleviate this problem in CW systems. Most of these teelniqu
use a more realistic model for light-tissue interaction to estimate the tissue optical
parameters and hence, the concentration.

A sub class of CW devices use the diffusion model to estimate parameters
such as tissue oxygen saturation index. If we assume a hon modulated sourc
Section 1.2, the detected amplitude at posifomould be:

e kip
U(p,z=0) = A0p2

(1.18)

Therefore, if signals are recorded at multiple detectors with diffggeahe can
estimate the slope of pfU (p) and deriveu,, given some simplifying assumptions
on Us (see [43] for example). Such devices are also known as spatially egsolv
NIRS and are capable of measuring absolute values of tissue oxygeatigatur

Laser Diodes (LDs) and Light Emitting Diodes (LEDs) are the two commonly
used discrete wavelength light sources for NIRS. LDs have narrspestral width
than LEDs, however, LEDs are cheaper and do not have stability isuaser
diodes.

Common detectors used in NIRS instruments are silicon PIN photodiodes,
Avalanche Photodiode (APD)s amM T! (PM T!). Silicon photodiodes are in-
expensive detectors with high quantum efficiency, however, theyareeny sen-
sitive and are best for applications where detected light levels are higBsAre
more sensitive and they provide internal gain through internal avalanahli-

10
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cation, but they are more expensive. PMTs have very high gain-hdtidproduct
and are used when very high sensitivity is required.

Selection of source wavelengths in a NIRS device is an issue that camn affe
the signal quality and is an important topic of interest [17]. Traditionally, for
dual wavelength systems, wavelengths have been chosen in such aatvanéh
is above and the other one is below the isosbestic point. Isosbestic point is the
wavelength at which Hb®and HHb have equal absorption in the NIR window
(around 800 nm). However, it has been shown that some specific cdinhmaf
wavelengths may result in better separation of hila®d HHb and less cross talk
between chromophores as a result of solving Equation 1.3 [47]. Optiteatiea
of wavelengths has been a subject of study with cdual [48-50] and multlergth
NIRS configurations [51., 52].

1.5 Safety Considerations

NIRS is a relatively safe optical method as it uses non-ionizing radiatiorgns g
erally non-invasive and uses low power light radiation to examine the tisdwe. T
major safety concerns for the NIRS light power are damage to the eyekand s
tissue. In this particular wavelength range, tissue heating is the major protces
concern that can potentially lead to tissue damage. This process is morerof a ¢
cern for eye as the light is focused on the retina by the lens which carasetbe
potential hazards. There are many factors that affect the potentiahofdigcaus-
ing damage to the tissue including the source type (e.g. coherent vs herend),
source power, exposure time, wavelength and the beam spot sizeaféhemwer
limits for laser light sources can be found in guidelines such as IEC 60&2%
ANSI 2136 standards [53]. Similar guidelines for LED based deviceslefieed
separately in IEC 62471 [54]. The safety of LED based NIRS devicgsatte in
direct contact with the tissue have also been investigated in terms of tisdirghea
caused by the radiance as well as conducted heat from the semicarjdoctmn
[5E]. As a rough estimate, the average power level of the LED or ladesstthan

10 mW in adults is normally considered safe [56]. Most commercial devioes us
power levels of 0.5-1.5 mW which is safe even for application on hewboamigf
[57].

11
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1.6 Limitations of NIRS

Some limitations of NIRS that need to be considered in any application are re-
viewed in this section. More detailed review of the limitations of NIRS can be
found elsewhere [39, 58, 59].

1.6.1 Penetration Depth and Spatial Resolution

High scattering in the living tissue causes light to go through a banana sbhpe
ume before reaching the receiving optode on the tissue surface. Asllg the
signal detected at the detector reflects a combination of changes in hesnadgn

in the entire sampled volume. The mean penetration depth depends on the sourc
detector separation as well as the tissue scattering and absorptiontipopad

has been investigated using theoretical models for light propagation in [B&ue

As a rough estimate, the mean penetration depth or the depth of maximum sensi-
tivity of NIRS can be considered to be of order of half interoptode dist§hck

A more accurate equation for the penetration depth can be found in [60]evr,

it should be noted that the signal still contains interferences from otherday
This also limits the spatial resolution of the NIRS. In some studies, such as spor
medicine studies, this may not be an issue as the overall change in the muscle tis-
sue, for instance, is of interest. However, in fNIRS this spatial resolutiay be

a limitation as one can not precisely localize activation to very specific smail bra
areas. However, more general and superficial areas such ataderal prefrontal
cortex, superior parietal cortex, and language and primary sensoriaretas are
within detectable limits [£8].

1.6.2 Light Coupling

One of the challenges in NIRS is achieving good, stable optical contactbetive
tissue and the optodes to get sufficient light levels [58]. One of issuehiaving
a good coupling is the optode placement on the tissue. In fNIRS in partithikar,
introduces a challenge and different types of holders have beeagedpo address
this issue as a properly secured optode plays an important role in achéegouay
signal quality [61]. The specific requirements of an optode holder deperhe
subject populations and therefore, the type of the holder used in a stuatyuits

12
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for example, would be different from one used in infants’ study [57]tHe case

of fNIRS, the optode holder secures the optodes on the tissue to progioeda
coupling past the hair and reducing the effect of subject’s motion. A lafykair

can attenuate light and block the tissue from the source light [61]. Hairl&slic
also strongly absorb near infrared wavelengths [58]. In adultseastbe taken to
move the hair aside before placement of the optodes. Also, it has begested)

that holding the optodes a few millimeters away from the tissue can reduce the
effect of light obstruction by layers of hair and help in achieving a betiapling

[61].

1.6.3 Interferences

In NIRS, the hemodynamic changes correlated with activity of the tissuerunde
study are the parameters of interest. However, NIRS signal can berdoatad
with interferences with other sources of origin.

One major source of unwanted interference is motion. Movements of various
types result in distortion of the data stream broadly referred to as motioacartif
Motion can result in data distortion through different mechanisms. For eeamp
movement can cause changes in the local blood circulation. Decouplingiaies
and detector from tissue due to subject’'s motion is another common source of a
tifact. Such artifact is evident as non-physiological signal chandtem of large
magnitude, that commonly result from alterations in the apposition of the NIRS
light source and photo detector to the tissue with resulting alteration in pathlength
The distortion of motion artifact obscures trends in the data that may be mgleva
and can compromise meaningful analysis of NIRS monitoring data. Removal of
such artifact is often an essential pre-processing step for accunalisis of the
signal. Motion artifact removal is especially of interest in fNIRS as the lef/#ie
signal of interest is already low and care must be taken to extract as nfaoinan
tion as possible from the recorded data and exclude as few blocks siblpakie
to motion contamination. Common approaches along with the approach developed
in this thesis for this purpose are presented in Chapter 2 and Chapter 3.

Another source of interference in NIRS is the systemic interferencerd-igtl
shows the power spectrum of a typical fNIRS signal segment acquioed the

13
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Figure 1.2: Power spectrum of fNIRS data collected from forehead at rest.
The black arrows indicate systemic interferences at different fretgesn
in the fNIRS signal. The peaks around 1.1 Hz and 0.35 Hz are caused
by cardiac pulsation and respiration, respectively. The peak at 0.1 Hz
may be related to the heart rate variability and the Mayer waves.

forehead of a 30 year old healthy subject at rest condition using theinmestrt
described in Chapter 6. Two most common interferences are cardiatigmizad
respiration (shown with arrows in the figure). Cardiac pulsation (the pealind
1.1 Hz in Figure 1.2) results in a small diameter change in the blood vessels as a
result of expansion and contraction of the vessels. This will lead to fltiochsain
absorption of light due to changes in blood volume within the sampling volume.
This can be seen as a pulsation interference in the NIRS signal and is viteate
in HbO, compared to HHb. Respiratory interference is related to the respiratory
variations in arterial pulse pressure and is observed in frequendigedre0.1 and
0.4 Hz [62]. Heart rate variability component can also be observed @& love-
guencies (0.01-0.1 Hz) for longer recorded signals. Mayer wawealap another
source of interference around 0.1 Hz (see Figurz 1.2). These iatects are in
fact a rich source of information and contain valuable physiological médion
which can be relevant in many applications. However, in cases where tine ma
interest is only the changes in tissue oxygenation, it would be essentiahtvee
these interferences to avoid misinterpretation of the NIRS data.

A more detailed description of these systemic interferences can be found in
[62].
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1.7 Motivation for this Thesis

One factor that has limited experimental applications of NIRS is the sensitivity of
this method to movement of the tissue of interest during the measurement. This can
happen when, for example the subject moves spontaneously, with inwylomia-

cle contraction, with repositioning of area being monitored, or when the MRS
todes are not attached optimally to the tissue surface [40]. The effectsrehnent

have limited clinical applications of NIRS in ambulant patients as well as experi-
mental applications of NIRS monitoring in exercise science and sports medicine
Movements of various types result in distortion of the data stream brodélyed

to as motion artifact. Such artifact is evident as non-physiological sidraaiges,
often of large magnitude, that commonly result from alterations in the apposition
of the NIRS light source and photo detector to the tissue with resulting alteration
in pathlength. The distortion of motion artifact obscures trends in the data that
may be relevant, and can compromise meaningful analysis of NIRS monitoring
data. Hence, removal of such artifact is potentially of value and is ofterssen-

tial pre-processing step for accurate analysis of the signal. The impertdrhis
pre-processing step has resulted in introduction and developmenteoébmotion
artifact treatment methods in recent years [63—67]. Developing actieffeand ef-
ficient algorithm for removing or reducing motion artifacts in order to improee th
quality of NIRS signal has been one of the major motivations for this thesis.

One of the more recent applications of NIRS is in urology where the detruso
is being monitored by NIRS for hemodynamic changes. One potential and un-
explored application of NIRS is providing a monitoring method for people with
bladder control problems. Bladder control problem occurs in a varietpadi-
tions including spinal cord injury, Multiple Sclerosis (MS) and stroke. Fimcéed
patients the problems that result range from accidental leakage of yrote/t{in-
continence) or bed wetting at night (enuresis), through to an inability to etihety
bladder (urinary retention). Urinary retention has potentially seriousamurences,
particularly in patients with abnormal bladder function secondary to spimellio-
jury. In such cases, not being aware that the bladder is full can leadtkodvessure
developing in the urinary tract that risks serious damage to the kidnegi these
cases, a wearable non-invasive device that monitors the fullness datddeband
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provides and alarm once the volume of urine in the bladder has reachreesatp
threshold, would be beneficial. Individual patients would then, depgratirtheir
pathology, be able to empty their bladder voluntarily to avoid incontinenceniln ¢
dren with nocturnal enuresis, a problem that affects 20% of childrenfour years

of agel[683] , a device that wakes the patient with an alarm once the bleiddiy

but before incontinence occurs, has major advantages over cgystieims that
only detect accidental voiding. Enabling the subject to wake, senseitiihéh
bladder is full, and void voluntarily before leakage occurs, would leadtulic
tioning over time to waking in response to the bladder being full, and resolve the
enuresis. This is an example of an application area where motion artifacticu

is essential for long term monitoring purposes. Proper motion artifacttiedu
methods should be integrated into such a device to make it practical for clinical
applications.

The interaction between spatially separated cortical regions in the humian bra
plays an important role in performing a particular task. Functional imaging meth-
ods such as fNIRS can identify different cortical regions involved irsk.t&low-
ever, possible functional connections and interactions among activegad are
not directly reflected in such images without further processing. Thaseec-
tions, in addition to providing insight into brain’s architecture and functiony ma
enable one to predict certain brain disorders. As discussad in Chaptdras
been shown that functional connectivity may be able to identify broketicabr
networks in particular disease conditions. fNIRS appears to be a suitablerto
mapping brain functional connectivity specially in infants. This group tfestts
were of special interest to us as our collaborators have been workitigealevel-
opment of language system in infants. This research has had major impathin b
technical community [24, 69, 70] as well as general media [71]. Onetiguebat
was left unanswered was how this language network and its conneaiomnshd
develop with maturity. This question is of particular value as there is a growing
body of evidence on the brain areas involved in language processirapirates,
but less on the underlying connectivity. As a result, exploring methods ppmg
functional connectivity with fNIRS was another area of focus in this thasisat-
ment of motion artifacts is a required pre-processing step for reliablégdsam
connectivity analysis.
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One of the potential applications for NIRS is to monitor the effect of differen
types of stimulation on the brain. In particular, Transcranial Magnetic Stimualatio
(TMS) which magnetically stimulates the brain is one of the methods that has been
a subject of study using fNIRS. Due to the strong magnetic pulse creatdu by
TMS coil, monitoring the effect of TMS on brain is a challenging task for mést o
the common neuroimaging techniques. Being dependent on optical sigrid fo
functionality, fNIRS is relatively immune to this problem and is therefore a good
fit for monitoring the brain hemodynamics and neural activations duringtifme s
ulation. The most common approach in this case is to study the effect of TMS
on the hemodynamics of the stimulation target area or the areas closely related to
it. However, one interesting question is how TMS affects and modulates time bra
networks. This can be investigated either with concurrent TMS-NIRS to &bo
network and connectivity changes in a shorter time scale, or by doingectivity
analysis following TMS to study the lasting effect of TMS on a particular corti-
cal network. Resting State Functional Connectivity (RSFC) analysis @SS
provides a useful tool for monitoring this effect in a non expensiveeasy to use
manner. Because of the special needs and requirements of using NHRBWES,

a customizable and preferably an in house made fNIRS device is highhallesir

In particular, a custom made NIRS instrument with high enough sensitivity and
sampling rate can potentially measure the fast optical signal [72] which adloe/s

to look at the network changes in a concurrent TMS-NIRS study aridaeamore
"elastic” changes that occur in a shorter time scale [73].

Development of a motion artifact reduction method as a required pregsinge
step was the initial focus of this thesis which forms a signal processing foasis
the rest of the thesis. Development of a new approach for analyzitiggesate
functional connectivity for potential use in infants as well as in TMS stualiekin
particular for stroke patients to investigate changes in cortical networksponse
to TMS was the next major area of interest. In order to look at both shdrioegy
time scale changes in connectivity, we aimed at developing and testing a custom
made NIRS device appropriate for concurrent use with TMS. Our fibjgotive
was to use NIRS to develop a new wearable bladder monitoring sensatients
with bladder control problem which is an example of a device that can signific
benefit from our artifact removal technique due to the inherent probfemmotion
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which is a result of engagement in routine daily activities by the subjectimgear
the sensor.

1.8 Thesis Contributions

The major contributions of this thesis are summarized in this section. This thesis

¢ Introduces a novel method for removal of motion artifacts from fNIRS data
using the Discrete Wavelet Transform (DWT). This method was adopted as
one of the fNIRS motion artifact removal methods in HOMER2 NIRS pro-
cessing packagdean open source Matlab toolbox for analyzing fNIRS data
developed by MGH-Martinos Center for Biomedical Imaging and widely
used by fNIRS community. This method has been subject to independent
reviews and comparison with other methods using simulated [74] and exper-
imental NIRS data [75]. The article describing this method appeared in the
"Highlights of 2012” collection of the IORournal of Physiological Mea-
surement The articles featured in this collection "span some of the most
cutting-edge areas of biomedical physics, and collectively are a refiemitio
the most influential research published in PMEA in 2012”

e Introduces a method for identification of wavelet levels for optimum artifact
removal performance.

e Develops a novel method and apparatus for optically detecting changes in
bladder contents non-invasively with potential application for patients with
bladder control problem. This method is currently under review by the Uni-
versity of British Columbia University-Industry Liaison Office (UILO) for
potential intellectual property (IP) protection and technology licensing.

¢ Introduces a method of analyzing time-varying connectivity between corti-
cal regions in infants using fNIRS and Multivariate Autoregressive AiRY
modeling.

Iwww.nmr.mgh.harvard.edu/optics
2physiological Measurement Highlights of 2012 web page
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e Develops a new method for detecting and mapping language network in in-
fants using fNIRS and phase analysis on resting state hemodynamic changes
in different cortical regions.

e Describes the design, test and validation of a custom made TMS-compatible
fNIRS device for future use in TMS studies on stroke patients.

1.9 Thesis Outline

This chapter provided the background information on NIRS, its applicatfums
tentials and limitations. In Chapter 2 the state of the art research on the four majo
parts of the thesis, namely, motion artifact removal, NIRS in urology, cdivitgc
analysis with fNIRS and application of fNIRS with TMS is reviewed. In Chafte

we present a novel signal processing method to identify and remove motion a
facts from fNIRS data. We present simulation results and comparison wigh oth
common preprocessing methods used in fNIRS. Also, the method is applied to
NIRS data collected from infants in an fNIRS study to evaluate its perforeanc

In Chapter 4, we introduce a novel application for NIRS in the form ofcepr
of concept for a wireless wearable sensor to help individuals with biatydgunc-
tion determine when their bladder is full.

Chapter 5 is dedicated to investigation of the concept of cortical conitgctiv
using fNIRS. The first part of this chapter provides a preliminary studggus
MVAR while the latter provides a more elaborate method of connectivity analysis
using phase information of the resting state hemodynamic signals.

In Chapter 6 we describe a TMS compatible fNIRS experimental setupfor fu
ture use in evaluating the effect of TMS in stroke subjects. A custom maRsfN
device has several advantages for monitoring the TMS effect. In plarticlue
to special needs of NIRS devices used with TMS, being able to modify and ad
just NIRS system parameters such as power and sampling rate woulditeeldes
Additionally, a sensitive enough device with high sampling rate may be capable
of detecting fast optical signal in response to TMS which is currently eedible
with commercially available NIRS devices.

Finally, Chapter 7 summarizes the methods, results and findings presented in
this thesis and identifies some of the possible future directions.
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Chapter 2

Literature Review

In this chapter we review the work related to the 4 main topics of this thesis, which
are interference reduction in NIRS, applications of NIRS in urologyctional
connectivity analysis using fNIRS and applications of NIRS with TMS.

2.1 Interference Reduction in NIRS

Even though artifact removal can in general be beneficial in any NEiR&sédt and
setup, it has received more attention in fNIRS. The fNIRS data usualtaicmthe
weak and noisy hemodynamic data and motion artifacts can have significactimpa
on detecting the hemodynamic response. As a result, the works revieveedrhe
mostly focused on applications of artifact and interference removal metimod
fNIRS.

In general, there are 3 major approaches to identification and/or rembval o
interferences and motion artifacts from NIRS signal. One common method is to
use an auxiliary input signal whose output is highly correlated with the motion
artifacts. This could be from sources such as an accelerometer attiackiesl
optodes or an optical channel sampling from superficial layers of theetiskhis
signal is then used to remove the artifact caused by motion from the NIR&l.sign

Adaptive filtering is one of the methods commonly utilized with this approach
for fNIRS motion artifact removal. 1zzetoglu et al. used adaptive filteriniip &
reference channel from an accelerometer attached to the subjeat’'scheancel
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motion artifacts [76]. Accelerometer seems to be a good reference fptiasa
filtering of motion artifact as it is highly correlated with the motion. Other stud-
ies have also employed accelerometer reference for baseline corrf¥jcand
artifact removal [78].

Another common form of a reference signal is NIRS data from a reteren
channel. Robertson et al. applied adaptive filtering to fNIRS, using catéo
sources and detectors in each optode to detect and remove motion aréfjcts [
Essentially, the reference channel is selected such that it does redtgierdeep
into the tissue and hence, does not capture hemodynamic information from the
target tissue. Instead, it will mostly capture changes from superficiaidayhich
are correlated with motion.

Zhang et al. used a similar method with the scalp superficial optical measure-
ment as the reference signal for removing global interferences @sicardiac
pulsation and respiration) from deeper brain functional signals [79keHially,
these interferences will appear stronger in the superficial layersamdat as a
reference for removing them from the overall signal. Multidistance optmate
figuration for acquisition of a reference signal has also been used miirieal
mode decomposition and adaptive filtering to remove physiological intedfesen
from fNIRS signal [80].

This approach in general can be very effective as it incorporataset thea-
sure of motion timing and intensity. However, it requires an additional form of
recording such as accelerometer signal or extra optical channeinlpra refer-
ence signal. Therefore, a modified hardware/experimental setup isaepr this
approach and is therefore not applicable to the large amount of NIR Salketed
in past studies by many researchers in this field.

Another approach to motion artifacts removal is to identify motion contami-
nated blocks or segments of NIRS data and exclude them from calculattbe of
mean Hemodynamic Response Function (HRF). This is often used in fNIRS da
processing to improve quality of hemodynamic response detection whesgaver
ing blocks in a block design study [81]. The motion event in this case has to be
first identified with some criteria such as visual inspection of the NIRS signal
recording motion event times while conducting the experiment. For example iden-
tification of contaminated block by detecting rapid changes in total hemoglobin
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concentration in time domain has been reported [82, 83]. This is based garthe
eral assumption that hemodynamic changes are slow and any fast éhahge
signal is caused by motion. Even though this method is not uncommon in NIRS
studies, simulation studies suggest that this approach has no significaovéenpr
ment in recovering HRF compared to no correction for artifacts [74].

The last approach is using signal processing methods to identify ande@eov
duce the effect of motion artifacts from previously recorded NIRS diatather
words, one uses the temporal or spectral features of the artifacts tdidbam.

A number of methods have been suggested in the literature based on tlacppr
Cui et al. suggested using the negative correlation between ldbh@HHb to de-

tect motion artifacts [67]. Normally, the Hi@nd HHb changes, especially during
hemodynamic response to stimulation, are in opposite directions. In general, th
changes of the two are not highly correlated. Therefore, if a highlyetaied
change between the two species is detected, it can be attributed to the motion.

Scholkmann et al. used a moving standard deviation scheme to detect motion
artifacts and applied spline interpolation in the time interval of the motion to model
the artifact and subtract it from the signal [66]. This method was regpdotevork
well for several types of motion artifacts, however, parameters of theauetbed
to be properly adjusted for the type of motion artifact to be removed.

This approach has also been employed for reduction of global intedese
from fNIRS data. For example, Zhang et al. used eigenvector baagdlgjitering
to remove global interferences from NIRS signal to improve HRF detecfion [

In this method, global interferences are assumed to be responsible ftagbkne
period variations. Using the baseline information as a reference, the stimulatio
period data is processed such that the effect of global interferentiaiimized.

Application of Wiener filtering has also been suggested to reduce the effec
motion artiacts [76]. This method requires prior knowledge of the origin#REN
signal’'s power spectrum. Kalman filtering with appropriate model on noise and
data has been applied to both fNIRS and PPG [65, 84]. Application of Kalman
filtering requires prior assumption on distribution of noise which models the arti-
facts.

Wavelet decomposition is another promising approach for detection and re-
moval of interferences from fNIRS signal. Continuous Wavelet transfior ex-
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ample, has been used to detect blocks contaminated with motion artifacts using a
hard threshold on the wavelet transform amplitudes [85]. The scalelielt this
thresholding occurs were identified through Monte Carlo simulation on a train-
ing data set. Robertson et al. proposed a method based on the DWT along with
reference channels for source and detector optodes [63]. Thelevaoefficients
where shrunk only if they exceeded a threshold in the data channelllaaswie
reference channels. Wavelet transform has also been appliedrfovaéof global
interferences in fNIRS signal [36].

A detailed review and comparison of some of these methods can be found in
[74] and [75].

2.2 NIRS in Urology

The evolution of the NIRS as a means of monitoring the hemodynamics and oxy-
genation of the bladder is recent [87]. Important information can beekkrvith
NIRS that contribute to the evaluation of patients with symptoms of bladder dys-
function, and understanding is growing of the distinct patterns of changero-
mophore concentrations that occur in the context of disease. Wirel&S -
vices have been utilized to evaluate bladder function in health and dis§a$8[8

and NIRS is proving to be uniquely applicable to the study of bladder pajtseph
iology because of the anatomic and vascular characteristics of the timaurthe
bladder’s microcirculation must function to maintain perfusion as it fills and con
tracts to empty, and because of the negative effect of disorders asdetnuscle
hemodynamics and oxygenation on normal voiding function [89].

The earliest clinical application of NIRS in urology was reported by Stetaer
al. [27]. They observed that patterns of change in Bia@d HHb are different in
health and disease during bladder contraction and concluded thatveddities in
detrusor muscle hemodynamics may be related to symptoms of voiding dysfunc-
tion.

This method was evaluated by other researchers and urologists. Inya stud
by Yurt et al., NIRS performance in classifying male subjects with Lower Uri-
nary Tract Symptoms (LUTS) as bladder outlet obstructed or unobsirucie
compared with the gold standard uroflowmetry and urodynamic Pressure Flo
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Study (PFS) [90]. The NIRS method correctly identified 25 out of 29 obttd
patients and 21 out of 24 unobstructed cases resulting in a sensitivity286&61d
specificity of 87.5%.

Amelink et al. studied the application of NIRS for in vivo monitoring of blad-
der wall microvascular blood oxygen saturation [91]. Deterioration afdda mi-
crovasculature has been recognized as a cause of continuing biadd@sn loss
and NIRS can be used as a tool to measure the oxygenation of the blealter w
differentiate between bladders with loss of function and normal onesidicdise
however, the NIRS probe needs to be placed in the working channedtahdard
cystoscope [91]

Detrusor muscle oxygenation has also been monitored using NIRS during de
trusor overactivity contractions [92]. In their study, Vijaya et al. examibé
women with a mean age of 52 years. During involuntary contractions in the 23
subjects with detrusor overactivity, they observed a statistically significargase
in HHb at maximum detrusor pressure from the baseline [92] while no ehaag
observed for voluntary detrusor contraction.

One bladder-related symptom of concern not addressed by cun@stiNon-
itoring studies is the inability to sense when the bladder is full. This symptom
occurs in a number of conditions and for affected patients the problemsethat
sult range from accidental leakage of urine by day (incontinencegdmeetting
at night (enuresis), through to an inability to empty the bladder (urinamtiete.
While incontinence and enuresis are troublesome, can be embarrassinmgga-
tively affect a patient’s quality of life [93], urinary retention has potentiallyious
consequences, particularly in patients with abnormal bladder functimndargy
to spinal cord injury. In such cases, not being aware that the bladdell an
lead to back pressure developing in the urinary tract that risks seraouage to
the kidneys. Unrecognized, this situation increases morbidity and congituute
shortened life expectancy.

Monitoring bladder size, volume, and content non-invasively can be dsn
ing ultrasonic scanning, and is common in clinical practice. This technigue use
ultrasonic imaging to differentiate the urinary bladder from surroundingeisand
organs, produce volume information, and estimate urine level. The methesl giv
accurate results, but does not lend itself to monitoring in ambulant subjdusa
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use as it requires powerful computational resources and a compleilsgaon-
trol system. The requirements of gel application and control measurensent a
make most commercial ultrasonic scanners inappropriate for continuarable
monitoring, although some portable and wearable ultrasonic sensors éatebla
monitoring have been reported [68, 94].

Bioelectrical impedance analysis is another method proposed for determining
the volume of urine in the bladder. This technique is principally used for deter
mining extracellular and total body water, and several skin surface efiestrare
required on the abdomen at the level of the bladder for the changes tricelec
impedance used for detection of urine volume to be measurad [95].

2.3 Functional Brain Connectivity Using fNIRS

The interaction between different cortical areas is responsible fodowdion of
complex tasks. Studying this cortical connectivity helps in achieving a better u
derstanding and insight of the human’s brain architecture and can ptehékp

in diagnosing certain diseases and conditions affecting the brain corntyecti

Cortical connectivity can be divided into two main categories. Functional
connectivity is defined as temporal correlations between spatially remote-neu
physiological events [96]. In functional connectivity, some measurgaifstical
interdependence is used as a measure of connectivity. Effectivecirnity on
the other hand, involves identifying causal influences between corsigadirs. In
other words, it shows how the information flows between different cdrdiczas.
Cortical connectivity analysis is a recent subject of interest in fundtiomaging
which studies how the activated cortical networks interconnect andlic@de to
perform a particular sensorimotor/cognitive task.

Functional connections between cortical regions can reveal networisist-
ing of functionally connected cortical regions which are involved in tagiciic
activities. In some situations, task based neuroimaging may not be an gpf@op
diagnostic tool as the subjects may be unable to perform a task at all [8heC-
tivity mapping can be beneficial in such circumstances. Functional ctivitec
using fNIRS is specially important and relevant in cases where subjettsata
be transferred to scanner devices. Examples are patients in intensvendaror
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mental/language development studies in infants. fNIRS provides a goasti-sub
tute for fMRI based connectivity mapping and allows researchers or ielitsdo
perform same studies as the ones with fMRI on subjects with limited mobility.

Functional connectivity has been a subject of study in Electroencegagloy
(EEG) (98], fMRI [99] and more recently in fNIRS [97, 100] and diféat meth-
ods have been proposed for analyzing it. Cross correlation andagbsesence are
two widely used methods for detecting functional connectivity in fMRI [2102)].

In these methods a seed region is selected and the cross correlatioevoehisr
calculated between the seed region and time course from all other bras e
determine the direction of influence, Directed Coherence (DC) methoddwas b
proposed [1C3]. It decomposes coherence into components thaseepfeedfor-
ward and feedback components of the interaction between two time senital Pa
directed coherence and directed transfer function are also profossesiiral struc-

ture determination [104]. In practice, these methods rely on modeling the signal
with an MVAR model.

Another measure for analyzing cortical connectivity is the mutual information
between signals from different brain areas [105]. This method hasitrentage
that it is model free and is thus not limited to linear models.

In functional neuroimaging methods such as fMRI and fNIRS, one cowldhe
ine the task-specific functional connectivity which studies how connetidfer
in response to a task. Sun et al. for example, used coherence and gartia
herence to evaluate task-specific connectivity in subjects performingiti@oett
tasks where one of the tasks required more bimanual coordination [T0®@jir
results showed that even though there was no significant differenceain aoéiv-
ity between the two tasks, there was an increase in interhemispheric cornpectiv
between primary motor (M1) and Premotor area (PM) for the bimanual tagihwh
required higher degree of coordination.

A different type of connectivity from task-specific connectivity is theFRS
RSFC is based on the synchronization between spatially remote and differen
tical areas at rest which is an indication of functional connection betaifenent
brain networks. It was first demonstrated by Biswal et al. using BOMBAf by
detecting low frequency oscillations in the motor cortex at rest [101].

White et al. originally used fNIRS based RSFC analysis in five subjects to
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demonstrate the feasibility of using fNIRS as an alternative to fMRI for this typ
of connectivity analysis [97]. Through simultaneous imaging over motovesuel
cortices, they were able to derive robust correlation maps which weggement
with expected functional neural architecture.

fNIRS based connectivity has since been employed to study RSFC irediffer
brain networks. In a study by Zhang et al., 30 young adults were studiad in
resting state followed by localizer task measurement [106]. The localizents
used to identify the seed channel for connectivity analysis. Using ther@lzed
Linear Model (GLM) with seed channel as the independent variablg sti@ved a
significant RSFC between left inferior frontal cortex and superior teaipegions
which are associated with language.

Lu et al. investigated a similar approach to study sensorimotor and auditory
cortices [107]. They studied 29 adult subjects and computed the RSF¢aesd
based correlation analysis and showed that the resulting networks aresistent
with previous fMRI findings.

Duan et al. compared the results of RSFC with fNIRS using correlation with
seed Regions Of Interest (ROI) with those obtained from fMRI to evahedigity
of fNIRS based RSFC [108]. They used simultaneous fNIRS-fMRI ftata 21
subjects in resting state. There was high similarity in connectivity between the bi-
lateral primary motor ROI using the two methods, specially for lia@d BOLD
for all subjects. Also, group level sensorimotor connectivity maps stiaiveilar-
ity between the two methods and this similarity in group level was higher than in
individual level.

2.4 NIRS for Monitoring TMS

As described in Chapter 1, TMS is the method of magnetically stimulating the
brain. This method has found clinical and research applications sucbaamént

of psychiatric diseases and stroke rehabilitation. Using neuroimagingideesn

one can directly monitor the effect of the stimulation on brain activity and the in-
teraction among brain regions. The strong electromagnetic pulse prodydbd
TMS coil strongly interferes with other sensitive electronic devices in thiaityc

of the coil. This introduces a severe problem for other monitoring devigels s
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as EEG or Magnetoencephalography (MEG). Such modalities rely orsweaijt
electric activities for their performance which are swamped by the induged c
rents from TMS pulse. Optical methods such as NIRS, however, aegl lmasthe
changes in parameters of diffusive light and therefore are nottaffdry the TMS
electromagnetic pulse. Thus, NIRS seems to be an appropriate choitedgng

the effects of TMS on human brain. The short penetration depth of th& MR

this case seems to match the focal depth of the TMS coil which normally does not
exceed 3-4cm.

In simultaneous NIRS-TMS studies, the changes in cortical hemodynamics ei-
ther at the location targeted by TMS pulses or in other areas of the brammaare
itored during or after the stimulation. Hada et al. used a two channel desice b
neath the stimulation coil during a repetitive TMS recording [109]. Thegnlexi
decrements in tHb and HkQ-oncentrations and increment of HHb during and
after repetitive Transcranial Magnetic Stimulation (rTMS) at different dtion
rates and intensities. They also observed that concentration chamgesied for
up to 10s after stimulation.

Hanaoka et al. investigated the effects of low frequency rTMS overidine r
frontal lobe on the function of the left frontal lobe by NIRS [110]. Tradyserved
significant changes on hemodynamics during the poststimulation baselind perio
which was interpreted as demonstrating the activation and deactivation leftthe
frontal cortex during and after rTMS of the right frontal cortex.

In a similar study, Mochizuki et al. studied interhemispheric interactions be-
tween bilateral motor and sensory cortices using NIRS and rTMS [11hpy T
recorded hemoglobin concentration changes at the right prefronti@xcd®M,
primary hand motor area (M1) and primary sensory area (S1) duringatied
stimulation over the left PM, M1, and S1. They also recorded Motor Evoked
Potential (MEP) to TMS over the right M1 from the left first dorsal inteesus
muscle after the conditioning TMS over left S1. They reported that TM$ BWe
induced a significant Hbfodecrease at the contralateral PM and stimulation over
M1 elicited a significant Hb@decrease at the contralateral S1, and TMS over S1
significant HbQ decreases at the contralateral M1 and S1. They suggested that all
these indicate a mainly inhibitory interaction between bilateral PMs and bilateral
sensorimotor cortices in humans.
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Mochizuki et al. also used NIRS recordings in a separate study along with
TMS in 4 different conditions (3 intensities and sham stimulation) and similar to
other cases, detected significant changes in4#o@ HHb in all intensities [112].
They suggested that the increase of Hi@ncentration at 100% Active Motor
Threshold (AMT) under the active condition reflects an add-on elig¢cIMS to
the active baseline and that the decrease of HHb and tHb concentratidtisand
140% AMT under the resting condition are due to reduced baseline firintpe o
corticospinal tract neurons induced by a lasting inhibition provoked biglaeh
intensity TMS [112].

Eschweiler et al. utilized NIRS with rTMS on the left dorsolateral prefrbnta
cortex of patients suffering from major depression [113]. They oleskthat ab-
sence of a task-related increase of total hemoglobin concentration dintluéas
tion site before the first active rTMS significantly predicted the clinical sasp
to active rTMS [113]. They reported that clinical benefits of rTMS aredjcted
by low local hemodynamic responses and support the idea of activatjpendent
targeting of rTMS location.

Chiang et al. have also followed similar procedure to investigate the effect
of TMS using NIRS [114]. However, they mostly concentrated on finding o
how long the TMS effect lasts. More specifically, the aim of their study was to
measure the change of Hbh@nd HHb levels in the left motor cortex after 20 min
of 1 Hz TMS over the right motor cortex. Subjects carried out a finger tmthu
tapping task sequentially with six blocks of ten cycles (30 s on and 60 s@fig.
block was performed before TMS and five after TMS. The results stidls the
level of HbG in the unstimulated cortex increased after TMS over the contralateral
hemisphere and that the increase lasted 40 min after 1 Hz stimulation. HHb was
slightly decreased during the first 15 min after stimulation.

2.5 Summary and Conclusion

Artifact removal is a crucial pre-processing step for almost any NIRSi@ation

due to the high sensitivity of this method to motion. When a NIRS based sensor is
used for continuous monitoring, the issue of motion artifacts becomes a nibre se
ous problem. This specifically applies to NIRS instruments for continuous moni-
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toring of the bladder function which need to be worn by the subject at all #@meés
are hence affected by the subject’s day to day activities.

The problem of motion artifacts is not unique to wearable NIRS systems. When
NIRS is used for monitoring brain function, which is one of the most appealing
plications of this technology, motion artifacts can appear from a numberfef-dif
ent sources. In monitoring the effect of TMS for example, which is anteaiea of
interest[115, 116], several mechanisms can result in motion artifagtarticular,
the TMS pulse can result in activation of superficial scalp muscles whichaan-
tially cause motion artifacts in the NIRS signal [117]. Additionally, the motion and
vibrations resulting from TMS coil activation can result in slight shifts in det®
location which is reflected in the signal [73, 117]. In addition to these ssutbe
head movements, specially in longer stimulation sessions can contribute to motion
artifacts. This highlights the importance and necessity of developing paojifact
removal methods for use in combined TMS-NIRS studies.

Cortical connectivity analysis, another potential field of application of §JIR
is also susceptible to motion artifacts. Many of the connectivity analysis methods
rely on similarities and relations between signals in spatially remote channels to
detect connectivity [106, 107]. Spontaneous movements of the subjeich) ig a
common issue specially in infants and young children, results in highly ctedela
changes across all or a large number of channels that can influencee#isaired
connectivity. Being able to identify motion corrupted data segments allows the
removal or treatment of these data blocks to avoid detection of false dovityec
[108].

The advantages of NIRS over other neuroimaging methods has lead tata gre
interest in its use for monitoring and studying brain function. One area oEftte
for fNIRS in brain functional study is the influence of electrical and méagrstim-
ulation on brain hemodynamics. In particular, the intrinsic advantages o5NIR
make it a desirable choice for use with TMS. The most common approach is to
study the effect of TMS on the hemodynamics of the target area or the dosaly
related to it. However, one interesting question is how TMS affects and ntedula
the brain networks. This can be investigated either with concurrent TNRSN
or in an "offline” approach [11.8] where the lasting effect of TMS onaatigular
cortical network is investigated. RSFC using fNIRS provides a useflfdomon-
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itoring this effect in a non-expensive and easy to use manner. Maremitle the
availability of a NIRS instrument capable of measuring the fast optical signal,
can also look at the network changes in a concurrent TMS-NIRS shdig\aluate
more "elastic” changes that occur in a shorter time scale and require insitsime
with higher temporal resolution and sensitivity to measure [73].

In summary, development of a motion artifact reduction methods as a required
pre-processing step was the initial focus of this thesis which forms a gigregss-
ing basis for the rest of the thesis. Development of a new approachétyzing
resting state functional connectivity for potential use in infants as well a848
studies and in particular for stroke patients to investigate the changes iratortic
networks was the next major area of interest. In order to look at short tale s
changes in connectivity, a custom made NIRS device was developedsta tEi-
nally, a new NIRS based wearable bladder monitoring sensor was dedeidych
is an example of a device that can significantly benefit from the artifactvamo
methods due to the inherent problem of motion as a result of constant gégrin
the subject for bladder monitoring.
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Chapter 3

Wavelet Based Motion Artifact
Removal for Functional Near
Infrared Spectroscopy

NIRS has found usage in a wide range of applications as a powerfubtomioni-
toring tissue hemodynamics. In particular, fNIRS as a subset of NIRShéen a
subject of interest for brain studies due to its non invasive, non ressigaiature.
However, for fNIRS to work well, it is important to reduce its sensitivity to motion
artifacts. In this chapter, we introduce a new wavelet-based methodrfmvre

ing motion artifacts from fNIRS signals. Even though this method was originally
designed and tested on brain fNIRS data, it can in general be applied itea w
range of NIRS data collected from different tissue types. The mateeskpted

in this chapter was published in tipeoceedings of the international IEEE EMBS
conferencen 2010 [2],proceedings of SPIk 2011 [3] and the journal gihysio-
logical measuremerjt]. The method presented here was independently compared
with a number of other common methods of artifact removal using simulated and
experimental data [74, 75]. This method has also been used in HOMERZ NIR
processing packagdean open source MATLAB toolbox for analyzing fNIRS data
developed by MGH-Martinos Center for Biomedical Imaging and widely used

Iwww.nmr.mgh.harvard.edu/optics
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the fNIRS community.

3.1 Artifact Removal Using Discrete Wavelet Transform

A majority of motion artifacts appear in the form of abrupt changes in the ampli-
tude of the signal. The DWT can provide good localization in time or frequency
domain. Therefore, motion artifacts appear as isolated large coefficiehis dlis-
crete wavelet domain. This makes identification and removal of artifacty éasie
the wavelet domain.

A signaly(t) can be expanded using the DWT as

y(t) = Zvjokfpjok(t) +> Zijij(t) 3.1)
I=lo

where@y(t) = 2/2¢(2)t —K) is the scaling function anghj(t) = 2/2(2)t — k)
is the wavelet function [119]j andk are the dilation and translation parameters
respectively andp is the coarsest scale in the decompositigp andwj, are the
approximation and detail coefficients asdt) andg(t) are the mother wavelet and
scaling functions, respectively.

We assume that the observed signal is composed of the physiologicdligna
interest,f (t), plus an interference terra(t)

y(t) = () + () (32)

Using the Fast Wavelet Transform (FWT) algorithm [120], the waveatsiorm
of the observed signal can be written as

Wi = Zg(l—zk)vjﬂ(l) j=jo...0—1k=0...21—-1 (3.3

Vic = 3= 20 () (3.4)

whereg(n) andh(n) are the wavelet filter bank highpass and lowpass filters re-
spectively withv;(n) = y(n) and jo is the coarsest level [119§(n) is the sampled
version ofy(t) with n=0...N — 1 andN = 2’. This can be written in matrix form
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as
W = WY (3.5)

T T
whereY = | y(0) .. y(N=1) | . W= Ws 1 W 5 ... WoVo | is theN x

N DWT matrix andW = [ W3 1 W3 5 ... WgVp }T is the vector of wavelet
coefficients [121].W is the vector of wavelet coefficients at leviel.e. (Wj), =
wijk andVy is the scaling coefficient(.), indicates thekth element in the vector.
Writing Equation 3.2 in vector form and using discrete versiory,of ande and
applying the wavelet transform for one level we have

WY = W;f +W;je (3.6)

which gives the relationship between wavelet coefficients of the ohseigeal,
underlying physiological signal of interest and the noise term reptieggartifacts.

Distribution of wavelet coefficients can be described by a mixture of Gauss
[122, 123]. One Gaussian component describes coefficients ceatienend zero
and one describes those spread out at larger values. Here we ingogkeasaus-
sian distribution on wavelet coefficients. The hemodynamic signal is a smodth a
slowly varying signal compared to motion artifacts. Therefore, most oeleav
coefficients of the fNIRS signal are spread around zero with smallemas com-
pared to motion artifact coefficients. Our model is similar to the one descriped b
Antoniadis [122] with the assumption that only coefficients from normal distrib
tion with smaller variance in the mixture model belong to original signal. Hence,
the model is reduced to a single Gaussian distribution. The wavelet cogfficie
the observed signaj(n), can be therefore written as

Wik :ij+5jk 3.7)

wherewj ~ N(0,02). The mean of the distribution is zero because the wavelet
coefficientswjk are the outputs of a highpass filter. Thg coefficients appear
as a few large coefficients across the time course of each level. Foriaaty g
coefficient,wjy, if the probability of observing values larger thas is less than
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an arbitrary probabilitya, we can conclude that the coefficient does not belong to
the original signal and must have been due to artifacts and thus must besgtmo
This probability can be written as

pjk:2<1—¢<|\l\gk|>> (3.8)

where® is the Normal Cumulative Distribution Function (NCDF). We then pro-
pose to use the following thresholding scheme for the removal of the artifacts

. wix If pik>a
Wik = { e 1 Pik (3.9)
0 ifpx<a

o is the probability threshold which can function as a tuning parameter. In this
approach, we are basically treating artifacts as large outliers added teshecd
coefficientswij ~ N (0, 02). The parameterr indirectly determines how much the
artifact power should be reduced. For the limiting case ef 0, no thresholding
is applied and the signal coefficients are left intact at Igvel

The level selection for artifact removal is based on the degree of antifec
tamination at each level which is defined as total number of coefficientedixge
threshold in that particular level. Defilé= {wijx : pjx < a} andnj = 3y lw(Wjk)
wherel 4 (X) is the indicator function. Then artifact removal is conducted in levels
that fall in the 90th percentile dfn; }.

The variance of the distribution @fj can be estimated using Median Absolute
Deviation (MAD) [124]. MAD is a robust estimator of scale and is not sersiti
to outliers. In our application, artifacts behave like outliers added to the atigin
signal whose variance we would like to estimate. As a result, a limited number
of artifacts does not cause a problem in estimating the variance of origgmell s
coefficients,W;f. The estimate of standard deviation is related to MAD in each

subband by [124]
5 Median(|W|)
'™ 06745
whered; is the estimated standard deviation in sgatedW j is the set of wavelet

transform coefficients in the same level.

(3.10)
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Following thresholding, the signal can be reconstructed using

T
Wyo2
Y=W'W=[W_;,W]_,...WJ,V{] : (3.11)

where (W),
To avoid pseudo Gibbs phenomena near singularities or abrupt charbes
signal which is mostly attributed to the lack of shift invariance in traditional DWT,
we performed artifact removal on all possible circularly shifted versminthe
original signal and then undid the shifts and averaged the results [128%. is
known as Translation Invariant Wavelet Transform (TIWT) and witluee the
undesirable effects caused by shift-variance of DWT. This can lmedity stated

as

= ij.

M
I = Y Sa(T(S)) (3.12)
=1

h

where$, is the shift operator and is the operator representing DWT followed by
artifact removal and/ is the total number of shifts [125].

3.2 Simulation

We used simulated NIRS data for preliminary evaluation of this method. In sim-
ulation, we have access to the original artifact-free signal and canageahow
well our method can reconstruct the original signal. This usually is ndiples

in experimental data as the artifact-free signal is not available. We firsiagienu
the NIRS signal with an Autoregressive (AR) model of order 9 and thiehtlae
artifacts. It was observed that the AR model was sufficient to model thergke
behavior of a short duration fNIRS signal. The artifact was selectad &in ex-
perimental fNIRS signal and superimposed on the simulated fNIRS signal. All
simulations and Wavelet processings were performed in MATLAB (Matksjor
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Figure 3.1: Comparison of methods: plots from the top show the simulated
optical signal with artifact, the proposed method with TIWT, SURE
threshold and Median filtering respectively. The original artifact-free
signal is also shown for each method.

MA, USA) and using the Wavelab 850 toolbéx

We evaluated the performance of our method using DWT and TIWT along
with Median filtering and Stein’s Unbiased Risk Estimator (SURE) based wavele
denoising in removing the simulated artifact [126]. We wanted to verify if our
method offers any significant improvement over regular wavelet dempitiere-
fore SURE based wavelet denoising is chosen for comparison. Mettemm
is the procedure frequently used for removing impulsive noise from sigfide
length of the median filter is selected to be twice the duration of the artifact to
provide the best artifact suppression while having minimum filter length.

2www-stat.stanford.edu/ wavelab
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Figure 3.2: Comparison of the power spectrum of the original signal and the
processed signal using 4 methods for a typical simulated fNIRS signal.

3.2.1 Performance Evaluation

We compared the methods using Normalized Mean Squared Error (NMSEEN
is defined as

SN 1 (i (n) —§i(n))?
NMSE = 10 3.13
5 od0 She1Y2(n) (3.13)

wherey;(n) is the original signaly;Tn) is the artifact removed signal ands the
channel index. In order to take into account the random effect ofNHRS signal
and the artifacts, we applied each artifact removal algorithm on 100 reaiigaof
the AR signal with artifact and averaged the performance of each mefamdm-
etera is set to 0.05 for an average artifact removal.

We also use Magnitude Squared Coherence (MSC) as an additionalrsmeasu
which is defined as

_ Rg(D?

whereRy( f) is the cross power spectrum of signglandy, andRyy(f) andRy(f)
are the power spectrum densitieg/@idy as a function of frequency, respectively.
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Figure 3.3: Coherence between original signal and a) output of our method
with DWT, b) SURE method, ¢) Median filtering and d) our method
with TIWT

The coherence has a value between 0 and 1 and measures how couadsponds

to y at each frequency. In other words, it indicates how well the signalstrgpe
are matched in each frequency band. The frequency bands selectedlysis are
0.15 Hz wide. The power spectrum densities are calculated in each winabw a
then the window is shifted towards the next band. There is a 50% overtapdre
adjacent windows. The results are averaged over 100 trials.

3.2.2 Results

The results of NMSE analysis for simulated fNIRS are summarized in table 3.1.
Lower NMSE in the table indicates higher similarity to the original artifact-free
signal and hence, better performance in artifact removal. We used mples#

test to verify if the differences in the table are significant. The data is tested f
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Table 3.1: Normalized Mean Squared Error between processed signal and
original artifact-free signal

Method Median SURE DWT | TIWT
Filter | Threshold
Average
NMSE (dB) -8.95 -8.71 -9.97 | -10.98
Standard
Deviation (dB) 1.36 1.65 2.38 1.97

normality prior to the test. The difference between TIWT and other methods is
statistically significantj§ < 0.01). The difference between DWT and SURE is also
significant p < 0.05), however, difference between DWT and median filter is not
significant. Visual comparison of the results for median filter and DWT ilevbhat
DWT better preserves the shape of the signal in regions away fromcartfay.

3.1 demonstrates the result of applying median filter, wavelet SURE denasidg
the proposed method using TIWT to a sample of simulated fNIRS signal.

Fig. 3.2 shows the power spectrum of the signals in Fig. 3.1. The figure
suggests that median filtering significantly alters the power spectrum of the sig
nal, while the 3 wavelet based methods selectively reduce the power irefrey
ranges where the energy of artifact is mostly concentrated. The reEMS8®are
shown in Fig. 3.3. The figure shows high coherency between the orgigrall and
the artifact removed signal using our method with DWT and TIWT. It is ewtiden
that the coherency for median filtering results is very low for higher feegies
which is due to smoothing effect of Median filter.

3.3 Experiment

fNIRS is widely used in infant studies as the small skull size leads to a larger
volume being investigated by fNIRS and also because other functional ignagin
methods may not be readily applicable to infants. Functional studies in infants
have many applications in areas such as brain development in infantsgp2égh
perception [83], premature infant studies [128] and cognitive stu@ils How-
ever, motion artifact is a serious problem in infant fNIRS studies as thedsb
may move spontaneously.

To evaluate the performance of the method, we applied it to fNIRS data col-
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Figure 3.4: Experiment setup

lected from 3 infants (two 1 day old and one 2 day old infants, 1 male). The ex
periment was approved by the University of British Columbia board of etrics
consent form was signed by the infants’ parents. A 24 channel EJGB-fNIRS
device (Hitachi Medical Corporation, Tokyo, Japan) with 700nm arth&8lasers
and sampling rate of 10Hz was used for data collection. Artifact removabeg
formed on raw optical density data. Motion artifacts are a form of intenfere
in optical signal rather than a physiological interference. We attempt touvemo
them in the optical attenuation signal to avoid using artifact contaminated data in
calculation of HbQ and HHb.

During the study, fNIRS optodes placed on left and right temporal regiens
fixed by a gauze bandage. Optode placement is shown in Figure 3.5.tahéuo
ration of the processed fNIRS recording was 819.2 seconds andgh2dichan-
nels from each subject were included in the analysis. The infants wezetajoed
during the experiment to determine the time instant of movements. The video sig-
nal was then processed using Sum of Absolute Differences (SADeeeteach 2
consecutive frames to acquire a reference signal from which motiowvatserere
extracted for evaluation purposes [129].

A total of 29 motion events were recorded for 3 subjects (16, 7 and @fpr s
jects 1 to 3). Motion artifacts that take place at different time instants are inde-
pendent and may have different shape, duration or amplitude. Therefeerall
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Figure 3.5: Optodes placement. The red circles and blue squares indicate the
source lasers and detectors, respectively. The numbers betweeanghe d
indicate channel numbers.

artifact attenuation was calculated for the entire set of motion events. Tieaofa
artifact attenuation for each artifact is the median of attenuation acro$malhels.

3.3.1 Performance Evaluation

We used artifact power attenuation and NMSE as criteria to evaluate thar-perf
mance of our method. Artifact power attenuation is defined as

2

Ynean T (0)]
Ynean 91 (N)] ’

whereAn, is the artifact time interval for theth artifact in channel andy;(n) is
the original signal and is highpass filtered to yigftf (n). ¥P(n) is the highpass
filtered version of the processed signal. The purpose of highpasmfjlisrto re-
move the effect of low-frequency physiological variations to ensure#hauilated
energies only reflect the energy of the artifact and not that of theiqibgscal

3 = 10logio (3.15)

signal. This measure is basically the ratio of artifact energy before dedrat
moval in dB. The artifact interval is identified using the video referencesgignd

is selected such that it begins at the time instant the reference signal déxoate
baseline and ends when it reaches the baseline following the perturbediased

by motion. The baseline is assumed to be the stable signal level beforetand af
artifact.
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Figure 3.6: Two typical motion artifacts and results of applying the proposed
method (top) with the motion reference signal extracted from videotape

(bottom).

NMSE is defined as

3.3.2 Results

To evaluate the performance of the method, we first applied it to an artifzet-f
fNIRS signal of length 512 samples (corresponding to 51.2 secondsgialth
sence of motion artifacts which resulted in an NMSE of -13.80 dB, -17.54ndB a

NMSE = 10i0g;2 A
Y ngAq [Yi(N)

[yi(n) — $i(n)]?

Time(s) Time(s)
120
allO’
3
=~ 100
2
2
5 90t
=
5 80}
IS
= 70
sl i
. , \ , 60 . . . .
880 900 920 940 580 590 600 610
Time(s) Time(s)

43

_WZ

wherei is the channel index ang is the mean value of;(n).
calculated for the artifact-free segments of each channel. NMSE stawmlich
distortion has been introduced and complements the first criterion, whiclatedic
how much of the artifact power has been removed.

(3.16)

The NMSE is
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Figure 3.7: Artifact attenuation in 20 channels for 2 wavelengths for subjects
1 to 3 (top to bottom).

-14.84 dB for 3 subjects, respectively. We used Daubechies 5 (cislet for all
experiments and the value afwas setto 0.1. This is equivalent to treating coeffi-
cients whose probability of belonging to hemodynamic signal is less than %10 as
artifacts. Next, we evaluate the performance of the method in presenceiohmo
artifacts. Figure 3.6 shows two typical head motion artifacts in the fNIRS kigna
one in the form of a short abrupt impulsive noise and one in the form efiass

of slower variations in the signal and the filtered signal along with the motien ref
erence signal. The median &f, andNMSE across all channels for each subject
and for the 2 wavelengths are presented in Table 3.2. We consider thacehe
acceptable if it is within 5% of the signal’'s energy which translates to less than
-13dB in NMSE. The value of the NMSE in the table is calculated by excluding
the first and last 300 samples in each channel in calculating Equaticn 3n$. T
is to ensure the error represented in NMSE does not include errots edge ef-

fect. Different channels in our fNIRS setup are affected differenglyriotion and
therefore, the artifact attenuation is not the same for all channels. THi®wens

in Figure 3.7 where the performance of the method in terms of artifact attenua-
tion across different channels is shown for 2 wavelengths. The drtifeanuation
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Table 3.2: Median of NMSE and Attenuation in artifacts energy (in dB) for
proposed method

Subject 1 Subject 2 Subject 3
700nm| 830nm| 700nm| 830nm| 700nm| 830nm

NMSE -20.84 | -21.23 | -16.70| -16.97 | -18.05| -17.62
Attenuation| 15.65 | 15.40 | 18.77 | 15.03 | 18.66 | 22.81

ranges from 7.3 dB to 37.3 dB in subject 1, 6.0 dB to 39.2 dB for subjectd2 an
3.48 dB to 41.28 dB for subject 3 for both wavelengths combined. The meflian o
overall artifact attenuation over the total of 29 motion events is 18.29 dB&d@ 1

for 700nm and 830 nm channels.

As a comparison with regular wavelet denoising, we applied adaptivelgtave
denoising based on SURE (Stein’s Unbiased Risk Estimator) risk to the same tes
data [125]. We chose wavelet denoising levels in such a way that similarity be
tween processed and original signal is the same for SURE based dgraisiour
method. We then compare the artifact attenuation. The comparison is mads acro
all artifacts for the three subjects. The intensity and duration of eachdcarigfa
different and it is fair to assume that the results of attenuation for eacharitf
independent of other artifacts for the same subject. In this way, therpefce of
2 methods on 29 different artifacts are compared.

We chose the following metric for the similarity of the original and processed
signal [130]:

o= [ (e o [ty ) o

This metric indicates how far apart the power spectra of 2 signals arevaNeged

the similarity in every artifact-free segment of original and processedkignthe
two methods and averaged across each subject to derive 1 valuelicldgect.

Two typical artifacts were chosen to qualitatively demonstrate the differenc
between proposed method and regular wavelet denoising as shown e Bifu
The top two right panels show a case in which both proposed method amdktvav
shrinkage perform equally well in removing the artifact. The top two leftigfan
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Figure 3.8: Comparison of proposed method with wavelet denoising for 2
typical motion artifacts. Top 2 panels show the artifacts and results of
applying proposed method. Middle panels show the results of wavelet
denoising and the bottom panels are the motion reference signals ex-
tracted from videotape.

show the case were wavelet denoising is not capable of detecting andimgmo
the artifact while the proposed method has been able to attenuate the artifigct. T
is shown guantitatively in Figure 3.9. The attenuation is significantly diffefieant
the 2 methods (2 sample t-test@.01). The results suggest that the proposed
technique yields higher artifact attenuation for a given level of distortiotihén
signal.

The effect of varyingx from 0.01 to Q15 on NMSE and artifact power attenu-
ation for 3 subjects is shown in Figure 3.1.can be used as a tuning parameter
to achieve desired artifact attenuation in trade off with signal distortion. pEne
formance of the method is not the same for all subjects with similafowever,
changinga has the same effect on all subjects.

3.4 Discussion and Conclusion

In this chapter, we proposed a method for reducing motion artifacts in fSIRS
nals using the discrete wavelet transform. The method is based on the &ssump
that motion artifacts have different characteristics in terms of amplitude and du
ration from the original signal. This difference is better highlighted in wavele
domain due to the good localization property of the DWT.
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Figure 3.9: Comparison of proposed method with adaptive wavelet denoising
method (SURE based)

To estimate the fNIRS signal coefficient’s distribution with the proposed method
the entire time span of the signal should be available. Therefore, our mietlied
current form is not suitable for real time processing. A possible workad for
online processing is to estimate the variance based on available data amel upda
the estimate as more data becomes available. The effectiveness of this mibtion ar
fact removal method on improving accuracy of fNIRS activation maps isoyet
examined.

Artifact reduction can potentially distort the signal. It is important to be able
to control the level of signal distortion in practical applications. The vafub®
parametem in the proposed method can be set by the user to control NMSE in
trade off with the intensity of artifact attenuation to reach a balance betwsSEN
and artifact attenuation.

Evaluation of a motion artifact reduction method requires knowledge of motion
event times. Use of deliberate artifacts [76] or human observers [85bbaan
proposed for this purpose. Our method of extracting motion referencaldigm
video signal provides a non-subjective measure of motion for furtreduation of
the artifact attenuation method.

The capability of the method to reduce the artifacts in a clinical data set was
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Figure 3.10: Artifact power attenuation versus NMSE for 3 subjects

demonstrated. The method was also compared with regular wavelet deraoising
it was shown that for a given level of distortion, the proposed method iedgfer
artifact attenuation.

Our method was based on an additive model for interference causedimynmo
Assumption of additive noise model for motion artifact is not uncommon in the
literature. The Kalman filtering method used by Lee and Izzetoglu models motion
artifact as additive observation noise [65, 84]. Some methods basediaptive
filtering are also based on the assumption that motion artifact noise is additive
and can therefore be removed by subtracting the estimated noise fromnhé sig
[62, 76].

The attenuation in artifact power achieved by this method may change from
one subject to another due to differences in total number of motion evehtbein
intensity. This has also been reported in the form of variability in Signal toeNois
Ratio (SNR) across subjects in earlier works [63, 76]. There is alsabitty in
artifact attenuation in different channels. This can be explained by nthitaiglue
to the nature of the method, stronger artifacts are better isolated by waeslet tr
form and also can be better separated from the background fNIR&!.sifimere-
fore, this method works best for spike-like artifacts and artifacts with sigmifly
larger amplitudes and shorter duration compared to physiological changjes
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Figure 3.11: Correlation between original artifact intensity and artifact atten-
uation in different channels for 3 subjects.

fNIRS signal. This can explain the variability of artifact attenuation in Figuvz 3
Channels 1 and 2 for example, are located on the edge of the chevpmgttade
holder and are more likely to lose contact with the tissue due to head’s motion and
therefore yield higher attenuation in all subjects. Figure 3.11 shows thegblats
tifact attenuation versus original artifact energy for all channels int3tdgects.
Original artifact energy was normalized to the energy in a referenceessgpf the
signal. The reference segment for each subject was manually selectethst
it represents the baseline state of the signal. There is a significant tiondia-
tween artifact attenuation and original artifact energy£®9584 and R=0.9636
for 700nm and 830nm channels in subject £5&8337 and R=0.8327 for 700nm
and 830nm channels in subject 2 antEBR.9741 and R=0.9380 Subject 3). This
confirms that original artifact energy explains the variability in artifact atation.

Despite the fact that this method is designed and works best for spikertitke a
facts, it has been shown that the method could work well on more subtle dfpes
artifacts as well and in particular that it can be effective in reducing motiifacts
that are correlated with the evoked cerebral response [75].

The differences between our method and two other wavelet based mé&hods
NIRS motion artifact removal should be emphasized here. Sato et al $&6] al
continuous wavelet transform based approach to detect blocks coatathinith
motion artifacts using a hard threshold on the wavelet transform amplitude in a
subset of scales without attempting to remove them. These scales were identifie
through Monte Carlo simulation on a training data set. In the method of Robertson
et al., filtering is based on fixed threshold for each level as well as ailijiaif
optical motion reference signal [63]. Thresholding takes place only iSitpeal

49



CHAPTER 3. MOTION ARTIFACT REMOVAL

AUC, _, HbO AUC ratio HbO Within-subject SD HbO
T T T 1 | I B B B R 1
[ — 6 g — 10 ++ +
10 | —— T T 1 [ ——
T | —— — —T—— T
—_ | + — — 4 :‘: E‘ + +
= Il 2 | _
E T T I + - 4| 25 + _5_‘
AT B '
- 4008850 LY
== Q 1 T Tl
0 0 0 }
E 3 58,5 £E 3 S8 o & E 8 £8,.,5
o S5 E <‘ £ <I 8 ¢ H E <I £ <| 8 2% E <‘ £ <
0o TS MTO a0 0O T S MmwT O 2o 0TS MTO O
Zr20Xd4aonao Zr32o0Xaonad Zxrs0Xaona
AUCO_2 HbR AUC ratio HbR Within-subject SD HbR
'—[_'_\ 8IIIITI 1
r — 1 1T 1T T 1 1
6 1 1 4 —
= 6" —
 ———
=4 T — ) T s + + +
z ! S B I - T B
2 - - = 9 _éé - -
2 T * ?éé Toog ZQE'JF é%
Bagog P HasgHT S
0 0 ot—
= o c Q ~ = - c Q ~ = - c 9 N~
= ° g ® o O = 2 S ® o O = o & ©® @ O
S 2% E <I £ <| 8 S % E <I = <| 8 2% E <I = <l
0o T SO T O 8o 0o TS MTO 8o 0o TS MEO 8O
Zxr3o0oXaoona Zxr3o0oXaoona ZCXr30X¥Xaonaa

Figure 3.12:"Box plots of the AUG_», AUC ratio and within-subject SD
computed for all techniques and for both HbO (upper row) and HbR
(bottom row). The red line in the box plot indicates the median, while
the two extremities of the box plot represent the first and third quar-
tile. Red crosses indicate outliers. The lines above linking the differ-
ent techniques represent the significant statistical differeneedp if
the line is blue, p<.01 if the line is red).” [75] (Reprinted from Neu-
rolmage, Brigadoi S. et al., Motion artifacts in functional near-infrared
spectroscopy: A comparison of motion correction techniques applied
to real cognitive data. Page 6, Copyright 2013, with permission from
Elsevier Academic Press).

amplitude is larger than the threshold in its source or detector referenadssign
This is different from our method in that we do not have any refereigrebkand
wavelet coefficient shrinking is only based on the probability of havingréifact.
The wavelet level selection in our method is adaptive and changes withdgheede
of contamination in the signal.

The performance of some common fNIRS motion artifact removal methods,
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including the one introduced in this chapter, were compared using simuladed an
experimental data in two recent studizs [74, 75]. Using experimental RS
collected from 22 subjects, Brigadoi et al. compared the performanddéfefent
motion artifact reduction methods [75]. The methods compared in this study in-
cluded Kalman filtering [€5], Correlation-based Signal Improvement (CEB3],
Principal Component Analysis (PCA) [131], spline interpolatior [66], trigec-

tion and the wavelet based method introduced in this chapter and also ddscrib
in [4]. In this study, subjects participated in a color-naming of a non-colmdw
task during which the participants were asked to say aloud the name of thre colo
of the word that appeared on a computer screen [75]. In this particslaraano-

tion artifact is caused by the jaw motion as the subject performs the task. ®sing
criteria, the performances of the methods in recovering the hemodynamimsesp
were compared. The criteria used in this study were AUC for the mean HRF du
ing the first 2 seconds of stimulation (A4G), the ratio of the AUC between 2

to 4s to that during the first 2 seconds (AklG), mean of the standard deviation

of the hemodynamic response in each trial, between-subject stand#tateof

the hemodynamic response and the number of trials averaged for ebgegtso
compute HRF.

The summary of the results for three of the metrics in this study is reproduced in
Figure 3.12 [75F. According to this study, the proposed Wavelet method, CBSI,
Kalman and PCA97 showed lower values of AUC, with less variability. The
proposed method was found to be most effective in reducing ALC As for
the AUC ratio, CBSI and Kalman techniques had the highest AUC followed by
Wavelet. The proposed method along with P@A outperformed other methods
in reducing the within-subject standard deviation with the Wavelet technefue r
ducing standard deviation in 100% of the cases (see Figure 3.12). Irtubig s
the proposed Wavelet method was also shown to be the only method to be able to
recover all trials [75].

SReprinted from Neurolmage, Brigadoi S. et al., Motion artifacts in fiemal near-infrared spec-
troscopy: A comparison of motion correction techniques applied to ghittve data. Page 6,
Copyright 2013, with permission from Elsevier Academic Press
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Chapter 4

Non-Invasive Optical Monitoring
of Bladder Filling to Capacity
Using a Wireless NIRS Device

Lack of bladder fullness sensation is an issue that arises in differembgenic
conditions and in addition to influencing patients’ quality of life, can result it se
ous kidney damage. We describe a wireless wearable sensor prototypethod
for detecting bladder fullness using NIRS. The sensor has been testi#iand

in vivo to verify its feasibility and is shown to be capable of detecting chaimges
bladder content non-invasively. The work in this chapter was accéptedblica-
tion in thelEEE transactions in biomedical circuits and systeansl is also under
review by the University of British Columbia University-Industry LiaisonfiCé
(UILO) for potential IP protection and licensing.

4.1 Introduction

The importance of a wearable wireless device capable of monitoring bladder
tent to help individuals with bladder control problem was discussed int€hédp
In this chapter, we describe the development, evaluation and pilot testinglBfa
prototype for noninvasive optical monitoring of bladder filling to capacitingis
a compact wearable wireless system. We propose using this small, low-weight,
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inexpensive, wireless and easy to use device as a noninvasive methoai-
toring the point in time when the bladder becomes full, with lower computational
requirements and complexity compared to ultrasonic continuous measurgisient s
tems. Our method employs the properties of NIR light absorption of human tissue
and water to measure changes in water content in the field beneath a NIiR& de
Because the bladder rises out of the pelvis below the anterior abdomihasva
urine accumulates within the organ, this device can detect when a blagdeitya
previously defined by ultrasound is reached. When the bladder risethatdlR
light field as it fills, the water in the urine it contains results in high light absamptio
that generates an abrupt decrease in the light intensity sensed retortiiedNIRS
device. This event can be set to activate an alarm; potentially benefitingsatie
with any of the problems related to an inability to sense when their bladder is full.

4.2 Detection of Bladder Filling to Capacity Using NIRS

The major absorbing chromophores of physiologic interest in NIR wagéiemin-
dow, as described in Chapter 1 are Bb&nhd HHb, as indicated in Figure 1.1.
Water which is the main compound in urine (95% [132]), also has an absorptio
peak at 975nm and this peak can be used to detect urine content in tHerdad
differentiate between an empty bladder, one with low volume, and a full bladde

In NIRS, light in the NIR window is used to interrogate the tissue. A light
source (emitter optode) is placed on the skin surface, with a detectoivéece
optode) placed a few centimeters away. Changes in the light attenuation due to
absorption of the transmitted light by chromophores in the tissue ¢HHBb and
water) are detected by the receiver optode. The resulting changes optial
data are then converted to changes in chromophore concentration. A commo
model used for this purpose, as described in Chapter 1 is the MBLL [16]:

I
A= —Iogl— = (Zi&(A)c)BL+G (4.1)
0
WhereA, is the light intensity attenuation at wavelendth lg is the source inten-

sity, | is detected light intensity; (A ) is the extinction coefficient of chromophore
i at wavelengthA in Lmol~lcm™1, ¢ is theith chromophore concentration in
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molL~1, L is the interoptode distance in c,is the differential pathlength fac-

tor andG is an additive term to take fixed scattering losses into consideration. This
model is usually used in differential form to measure concentration ckangke
tissue. The effective depth of penetration in this method is approximately lealf th
inter-optode distance (sze Section 1.6.1 for a discussion).

Self contained wireless NIRS devices have been utilized for a wide range o
studies involving brain, muscle, and the bladder [87]. Such devicesthavad-
vantages of imposing less motion restriction, which means subjects can éngage
relatively more active physical pursuits, and suitability for longer term monitor
ing in ambulant patients [37]. Wireless NIRS devices often use LED as thee ligh
source. Although LED based NIRS systems have a broader spectmpaced
to laser-based NIRS devices, they have the advantages of being smalieigit,
inexpensive, compact and self-contained and can be applied directheakin
surface without need for the fiber-optic cables required for las¢ess

The hypothesis for our NIRS-based method for monitoring the level okurin
in the bladder and to detect bladder filling to capacity was that with an LED light
source using a wavelength close to the absorption peak of water at 9 Zbswifi;
contained NIRS device placed on the abdominal skin would detect watee)ur
when the bladder enlarged into the NIR field. Ultrasound data indicatesghat a
the bladder fills naturally the dome of the organ rises within the abdominal cavity
bringing the bladder and the urine it contains into the NIR light field [133E Wh-
ter contained in the bladder then absorbs light causing a decrease iteddigat
intensity. Here, we describe a prototype of such a device as a prodhofige.

While this method is similar in concept to the method presented for continuous
bladder monitoring using ultrasound [68], in our method it is the urine in the blad
der (rather than the anterior wall of the bladder) which triggers the alanmlevel
of bladder fullness that corresponds to the urine capacity that needgietécted
will depend upon the patients symptoms, and his/her underlying medical condi-
tion. In later development phases, this capacity value can be defined ifodurad
patients, and the fullness and position of the bladder beneath the abdokimal s
that this volume corresponds to can be assessed by ultrasound. TBalBNRe is
then positioned on the abdominal skin so that it alarms when the bladdeeseach
the size that corresponds to the capacity required for that patient.
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Figure 4.1: Sensor block diagram.

4.2.1 Electronics

The hardware consists of a 80x20 mm wireless NIRS device, that is worn by

the subject on the abdominal skin. The sensor can either operate offlisterp

ing the data on board or in real time via a link to a base Personal Computer (PC)
through a wireless USB dongle. The block diagram of the sensor is shrown
Figure 4.1. The sensor is made using commercially available components on a 2-
layer Printed Circuit Board (PCB) and is enclosed in a custom made 3-dionafig

(3D) printed enclosure as shown in Figure 4.2. The device weighs Basgrall
components except the source LED and the detector are mounted usidgrdtan
surface mounting technology. The source and detector are mounted forthe

side of the enclosure using adhesive glue and are wired to the main PCB.
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Figure 4.2: Sensor components (top) and device exterior view with extruded
source and detector (bottom)

All the signal controls, sampling and processing are performed by at16-b
low power microcontroller (MCU)(MSP430F2274 Texas Instruments, TXA)
running at 16 MHz.

The source LED is a 950 nm LED (OSRAM Opto Semiconductors, 55 nm
spectral half width, 16 mw nominal power) driven by a constant curdener,
that in turn is controlled by a hardware timer. Even though the absorptidngiea
water is at 975 nm, the 950 nm source output is still highly absorbed by astee
spectral bandwidth of the source covers 975nm wavelength. The kgbcr is
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a 5.22 mm silicon photodiode integrated with a Transimpedance Amplifier (TIA)
(OPT101, Texas Instruments). The responsivity of the detector is 0\W5aA950

nm and the TIA is set to provide a gain ok@0®® V/A and a bandwidth of 2.5
kHz. The amplifier’s output is filtered and sampled by 10 bit Analog to Digital
Converter (ADC) integrated on the MCU. Prior to sampling by ADC, the output
of the amplifier is filtered by an active twin T notch filter with center frequercy a
60Hz to remove interferences from AC power line coupling and ambient lightin
followed by a first order lowpass filter with$5 kHz.

The sensor is powered by a 3.7 v, 850 mAh lithium-ion polymer rechargeable
battery that provides up to 20 hours of continuous monitoring. The battdigge
is regulated down to 3.3 v through a low dropout linear regulator. The bagtery
recharged through a mini-USB connection.

In case of offline standalone operation the sensor can log data on thg 16 k
onboard flash memory storage. The data can be later downloaded intoa PC f
further analysis.

Two communication interfaces are supported: wired using USB 2.0 connectio
and wireless using wireless link and a wireless dongle connected to a PC.

The wireless link uses 868-915 MHz band for communication and transfers
data at 250 kbps. A wireless module based on Texas Instruments CCAdioL r
transceiver is used (A110L, Anaren Microwave Inc, NY, USA). THEU com-
municates with the module over the Serial Peripheral Interface (SPI)ti2&0a
kHz. The wireless link allows remote start and stop of data collection throGgh P
download of the logged data and real-time data streaming to the PC with a range
of up to 20m.

A triple axis accelerometer (ADXL345, Analog Devices Inc., MA, USA) is
used to detect motion to remove motion corrupted data segments. The accelerom-
eter shares the SPI bus with the wireless module.

The sensor is encapsulated in a custom made 3D printed enclosure [fiterow
polyjet resin). An extruded feature that houses source and deteotadgs higher
coupling with the tissue and also reduces the ambient light interferencei¢see 4.2).
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Figure 4.3: Timing of sampling.

4.2.2 Firmware

The firmware controls the source LED timing, data sampling process, logs data
and communicates with a PC for command reception or data transmission.

The scattering and attenuation of light in the tissue result in 6-7 orders 6f mag
nitude decrease in signal power. As a result, to have better SNR at thetodete
output, higher source optical power is desired to increase the numbéotds
that can reach the detector. However, to limit the total tissue exposure aiRrd min
mize the possibility of tissue thermal overheating, the power has to be kept within
a safe range. An average power limit of 2 mW can be considered safeaarmben
used as the limit for similar NIRS devices [57, 134]. This power level allis fa
within the safe radiation levels defined in IEC 62471. To achieve this powel le
while having high instantaneous power, a source-switching scheme is exdey
shown in Figure 4.3. We chose a 30 ms delay between the LED activation times.
We also empirically found 60 mW of instantaneous power to result in well de-
tectable light levels as the light exits the tissue for our interoptode distance of 3
cm. As a result, the source LED needs to be activated for a maximum gfi800
with instantaneous power of 60 mW which corresponds to a driving cuofedv0
mA (Figure 4.4) in order to keep the average power below 2 mW. This scheme a
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Figure 4.4: Snapshot of the LED driving current.

reduces the total power consumption.

To ensure accurate timing of LED driving pulses and ADC conversiondrgjg
the LED is driven directly by a hardware timer which is programmed to produce
pulses every 30 ms. A separate timer triggers ADC conversion for sampkng th
LED light level. The TIA bandwidth of 2.5 kHz results in an approximate rise
time of 140us for the LED pulses. Therefore, sufficient delay before sampling is
necessary to allow the transients at the detector output to settle. We udayg afde
600 us as shown in Figure 4.5, which shows the signal at the detector outpgt alon
with the sampling trigger signal.

The detector’s output signal is initially sampled at 83 kS/s and a total of 8
samples are recorded. These samples are then averaged and stdraffian ahis
sampling rate allows use of a low order antialiasing filter and collection of garitic
samples during the LED activation time. The next sampling cycle occurs in 30 ms
and follows the same pattern. This is equivalent to sampling the continuoualoptic
signal at 83 KS/s, low pass filtering it with a moving average filter of lengthd an
then down-sampling the result to approximately 33 Hz. The digital averagipg h
reduce the high frequency noise.

To prevent potential interference from ambient lighting, background leylel
is sampled as the baseline and subtracted from the detected light level.marie
therefore takes a sample from background light level g80after turning the
source LED off in each sampling cycle. This delay ensures all transievts h
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Figure 4.5: Detected signal at the detector for a source-detector separation of
3 cm (blue) with the sampling trigger signal (green). Eight samples are
recorded with the source active and One sample is taken with source off
which reflects the background lighting level.

settled and the background light level is being sampled properly.

The baseline corrected value is placed in a data packet along with a time stamp
and transmitted wirelessly to the PC. In case of offline operation, it is loggted o
the onboard flash memory.

The sensor operation can be controlled either by wireless commandshtaoug
PC or, for offline data collection, by user push button on the sensor.

4.2.3 PC Interface

A Graphical User Interface (GUI) based on MATLAB (Mathworks, MASA)

is developed for remote controlling the sensor, streaming data from ther serts
saving it to a file for long term monitoring, downloading data stored on theosens
memory and processing the signal in real time or offline (linear filtering, trend
removal, etc.). A snapshot of the GUI with a sample data set is shown in Fidiire
The top panel shows the real time trace of the signal or the loaded dathoom
panels contain controls for wireless operation and USB wired modes.
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Figure 4.6: PC user interface screen shot.

4.3 Performance Evaluation

The sensor’s dark noise was measured by readings obtained by plaeisgnsor
in a dark room with no light incident on the detector for one hour. The Rtezn
Square (RMS) value of the noise in this setup was calculated as:

Vo= [ 3 (] - R (42)

where x[n] is the signal read by the device in analog-digital conversits.u
This process was repeated for a couple of measurements to obtain an estitmate
prototype’s noise voltage. This value was calculated to be less thapv.70he
Noise Equivalent Power (NEP) was then calculated from dark noiseurezaents
using
= R(\;n)G (4.3)

whereR is the incident light equivalent power in VR(A) is the responsivity of
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the detector ah = 950 nm an A/WG is the TIA gain in V/A andv;, is the noise
voltage. The NEP is calculated to be approximately 180 pW. This defines the
detection sensitivity for a signal to noise ratio of unity and is the minimum light
level detectable by the sensor.

The long-term stability of the sensor was evaluated by continuous regastlin
data from a phantom using the sensor for 30 minutes after a warm up pérod
minute. The agueous phantom was prepared using method describe]inlh8
phantom scattering and attenuation parameters are chosen to be closetofthos
abdominal tissue (in particular, abdominal fat with attenuation coeffigigat 3
cm~! and reduced scattering coefficigrt= 3.3 cm! [136], see Section 4.6 for a
discussion). The phantom was made with 20% intra-lipid mixed with ink to obtain
desired optical parameters. The difference between the initial and &ading
normalized to the initial signal value was recorded as the drift. The deviessh
1.5% drift over the period of 30 minutes.

4.4 |n Vitro Evaluation

4.4.1 In Vitro Setup

To verify the capability of the sensor in detecting bladder level changedrim v

a simple setup as shown in Figure 4.7 was employed. The setup was made to
simulate the bladder, urine and the abdominal tissue during bladder filling and
voiding. A latex balloon was submerged in a phantom prepared as dekirithe
previous section in such a way that the balloon neck is attached to the top of the
container. The balloon can be filled with water from the top using a syringe. T
distance of balloon from the side-walls was 1.5 cm when full and 6 cm wimgiye

The sensor was placed on the side-wall of the cylindrical container ecwted

with medical adhesive tape (3M, MN, USA). The data was recorded wsble
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Figure 4.7: Schematic diagram of the in vitro setup for simulating bladder
filling and voiding (left) with a picture of the setup (right).

4.4.2 Results

Figure 4.8 shows a sample recorded data when the balloon is filled and emptied.
The intensity readings from the sensor were converted to attenuation as

A= —Iogll— (4.4)
0

An increase in the amount of water in the optical path results in decrease in
light intensity and therefore an increase in attenuatin As the balloon filling
begins arountl = 9s, the absorbance increases up to the point where the balloon is
filled aroundt = 10s. Similarly, when voiding starts, the absorption reduces until
the balloon is emptied.

The drop in the signal level between the end of the filling and the beginning of
voiding is caused by motion of the balloon at the end of filling cycle as the result
of ending water flow. The same occurs at the beginning of the voiding.
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Time (s)

Figure 4.8: In vitro recorded data when the balloon is filled and emptied.
Red, green, black and cyan lines indicate beginning of filling, end of
filling, beginning of voiding and end of voiding, respectively.

4.5 In Vivo Evaluation

45.1 Materials and Method

Pilot data on 1 subject has been collected in 6 independent trials with theedevic
during voiding to verify if the sensor is capable of differentiating betwedirahd
empty bladder. The sensor is placed 2 cm above the symphysis pubis Hwos
midline during voiding as shown in 4.9 and is secured using medical adhap&e
The absolute intensity reading from the detector is then converted to attenaetio
cording to Equation 4.4 and used for comparison between full and emptgeslad
Data was transmitted wirelessly to a PC for recording. For this proof of iprinc
ple test, the motion rejection feature of the sensor using the accelerometeotwas
used.

45.2 Results

Figure 4.10 shows a typical attenuation signal recorded at sourcetalesepa-
ration of 3 cm. The red (solid), green (dashed) and black (dotted) aklities
indicate permission to void, beginning of voiding and end of voiding, ressby
The signal shows a fall at the start of voiding and then plateaus ardusdafter
beginning of voiding. This is possibly due to the fact that as the voiding begin
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Figure 4.9: Sensor placement for in vivo device test.
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Figure 4.10: Attenuation detected during voiding with source-detector sep-
aration of 3 cm. The red (solid), green (dashed) and black (dotted)
vertical lines indicate permission to void, beginning and end of void-
ing, respectively.
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Figure 4.11: Comparison of detected light attenuation in full and empty blad-
ders.

the bladder dome is in the light path between the source and the detector. As the
bladder shrinks, the urine level in the light path reduces and light intensiheat
detector increases (decrease in attenuation). At a certain point (in $eiswoaund

15 s after voiding begins), even though the voiding continues, the blaslaer
longer visible to the sensor’s light and therefore no further changet@ceiel light
intensity is observed.

Figure 4.11 shows the light attenuation changes between full and empty blad-
der for 6 independent trials with urine volume ranging from 300 ml to 700 ml. A
significant difference in light absorbance is observed between pdep@st voiding
states as shown in the figure (paired t-tesD@1). The starting point or baseline
is variable among trials as a result of differences in light coupling, georredtry
However, there is a consistent difference between pre- and postgaidthe trials
as a result of the change in bladder content (mean of the differend22 @ith
standard error of mean of 0.0096).
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Figure 4.12: Water concentration in tissue changes during voiding using
Oxymon MK Il (Artinis BV, The Netherlands) as a general purpose
desktop reference spectrophotometer with an interoptode distance of 3
cm. The red (solid), green (dashed) and black (dotted) lines indicate
permission to void, beginning and end of of voiding, respectively.

Table 4.1: System level parameters of the sensor

Power consumption in standby 63 mW (19 mA @ 3.3V)
Active power consumption with radio transmission | 182 mW (55 mA @ 3.3 V)
Active power consumption without radio transmissioh22 mW (37 mA @ 3.3 V)

Range 20m
Light output power <2mw
Cost <40%

For comparison Figure 4.12 shows the concentration changes detediggl du
a separate voiding session when using a general purpose deskiepdaseed
reference spectrophotometer (Oxymon MK I, Artinis BV, The Nethedgrwith
971 nm laser for detection of water. The pattern of change in absorpt&imis
ilar to those obtained with our prototype, even though the 971 nm signal is more
sensitive to changes in water content.

Table 4.1 shows the overall system level parameters for the designed pro
type. Active power consumption with and without radio refer to the caseswh
the device is linked to a PC and when the device is operating independently.
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4.6 Discussion

We have developed a novel optical method for non-invasive monitoribtpdtier
capacity using a compact wireless NIRS prototype incorporating an LEDawith
wavelength of 950 nm and demonstrated the feasibility of using this devicedolac
on the abdominal skin to detect a signal change that indicates when the fdandtl
the urine it contains have left the monitoring field of the device. Our datasstipp
our hypothesis that when the bladder fills and enlarges, the urine withinatie b
der can be detected using NIRS with a light source close to the absorptikope
water at 975 nm. Further validation of our NIRS-based method to detect ame
individual’s bladder capacity reaches a pre-defined limit is requiredgalgth de-
velopment of appropriate decision making process for activating fillingredéard
comparison of the data obtained to results from 'gold standard’ ultrasdauic b
der scanning. Definition of the limit of bladder capacity will vary for eactigrda
depending on their clinical condition, but once defined and the landméitke o
bladder with this capacity established by ultrasound, the device alone shduld
fice for monitoring when the patient’s desired capacity is reached. Gly;rérere

is no alternative method and device for continuous bladder filling detectiarya
important clinical issue especially in patients with different types of urinargnn
tinence and patients with spinal cord injury.

Variations in fat layer thickness are a potential limitation during NIRS measure-
ments [137]. However, since the thickness of the fat layer remains carastdhe
bladder fills and empties, no effect on light attenuation relevant to the momjtorin
of bladder capacity is generated. In obese subjects light absorptiorsigyiéi-
cantly thicker fat layer can be anticipated. This would result in an oveealiehse
in signal level and also increase the distance of the sensor from theshladds
problem can be addressed to some extent by increasing the interoppadaties
which effectively increases penetration depth along with shorter anétjgiwer
LED pulses. However, if the fat layer is too thick, it could prevent sigficNIR
light from reaching the bladder for our system to function.

The output of the system has a drift as described in Section 4.3 . This drift
can mostly be attributed to slight temperature changes that result in a drift in the
LED'’s output intensity. Even though this drift is negligible in short term coraga
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to changes during bladder voiding for example, it can add up in long ternitonon

ing. To avoid this, the device can be set to restart filling monitoring after&acim

to prevent the error from accumulating over time. This process of res#tingde-

vice may also be required to account for the wide range of changes atutbs
optical signal values read by the device. As shown in Figure 4.11 andssisd in
Section 4.5.2, the parameter of interest is the change in signal attenuation. Ho
ever, the large variations in the initial values may be a potentially serious limitation
in using the device as a continuous monitoring system. The reason is that the de
vice needs to register the initial value in order to measure the changes ard if th
initial value is dependent on parameters such as coupling, determinatidixed a
threshold will be very hard. One approach to address this problentéstieg the
measurement every time the device is placed on the bladder, or when the idevic
repositioned. A better and more robust alternative approach is to usedaetat

can take into account the changes in coupling such as the multidistance methods
described in [138, 139].

Even though water has a high absorption peak at 975 nmytdb@® HHb still
contribute to absorption at this wavelength. This can be seen in Figured.6 an
Figure 4.10 where absorption of light by HHb and Hbk@sult in heart beat and
respiration systemic interference patterns appearing as small oscillatiahe on
signal. However, the contribution of the change in these chromophorezico
trations to the total signal attenuation during natural bladder filling compared to
that of water is relatively small [27]. Also the similarity in the data obtained from
our prototype and the reference spectrophotometer with wavelength&lafrf
and 906 nm suggests that 950 nm wavelength is sufficiently sensitivesfondi-
itoring function intended. However, if required, another pair of LED&ding
changes in Hb@and HHb could be added to the device and software incorporated
to remove the effect of hemoglobin from the total attenuation signal.

Similarly while motion induced artifact can be partially removed by the ac-
celerometer on the sensor, incorporation of a dual source monitoriegscivould
detect the coupling change or slow drifts caused by the small variationsposie
tion of the device which can occur during continuous monitoring. In sucherse
the first channel would be placed over the bladder, with the secondehacated
further from the bladder so as to differentiate motion/coupling-inducedgg®in
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the detected intensity from those caused by bladder water content shahige
changes caused by motion or changes in optical coupling will be highlgleted
between the two channels, while changes caused by alterations in blagdeitg
will only affect the channel located on the bladder.

The enclosure of our prototype was produced using a stereolithogbased
3D printer and due to limitations we had for the material, it was made using a
white color resin. This is not a recommendable option for a NIRS device. The
white color of the enclosure results in a dominantly scattering with low absorption
medium for the light exiting the tissue while ideally, the enclosure should alafiorb
photons leaving the tissue to closely simulate a semi-infinite boundary condition.
For this reason, it is desirable to have a dark enclosure. Therefere{teough our
results indicate the feasibility of this method and approach, this limitation needs to
be addressed in the future.

The performance of our prototype was initially evaluated using a liquid phan-
tom as described in Section 4.3 end Section 4.4. The values useg ord 11,
were from data measured at 1064 nm [136]. The valug,odt this wavelength
may be too high compared to that of the prototype’s source LED wavelength a
950 nm. This implies that the sensor’s performance is likely to be better than the
results of the in vitro test. Additionally, the use of a solid phantom is preferable
to a liquid phantom as it provides more stable properties and does noteaeguir
container which may affect the results as the light passes through it to tieac
phantom [140].

The PC connectivity, in addition to providing an alternative method for device
control as well as data processing and storing, can potentially be behiefitases
where remote monitoring of a subject’s bladder activity is of interest. In Wyina
Tract Infection (UTI), for example, which is a common condition in spinadco
injury patients, the frequency of voiding increases and access to thisnation
collected in normal daily life conditions by the clinician is important in treatment
of patients. In this case, the limited range of connection might limit the usage
of wireless link to indoors only. However, the same benefits could potentially b
offered by replacing the PC with a smart phone in the future.

For our device to reliably monitor ambulant subjects consistently and with
the level of accuracy required for detection of bladder capacity in tselqaatient
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groups, additional trials and development are required. In particulgrdtestial
effect of different body postures, positions and clinical conditioresiseo be eval-
uated. Some MRI studies have suggested that body position in youngtsulijes

not affect the shape and position of the bladder significantly [141]. fiéesls to

be verified on our population of interest whose physiological conditionsdiifer

from young subjects. Data will also need to be collected in cohorts wheagthe
range and diagnostic criteria match those of the patients for whom monitoring with
a device such as ours is considered of potential benefit.

4.7 Conclusion

We have designed and developed a compact wireless optical sensmypecfor
continuous non-invasive monitoring of the bladder in patients who areleiab
sense when their bladder is full. This is a significant clinical problem in iddals

with abnormal (neurogenic) bladder function, such as patients affégtedsS,
stroke and/or spinal cord injury, elderly patients with incontinence, aidreh

with persistent enuresis. The device is capable of differentiating betwieen the
bladder is empty or contains a small volume of urine and when it becomes full, by
using the absorption properties of water at a wavelength of 950 nm . Wéthau
device used as a sensor with an alarm, it is hence feasible to warn thet suligec

the volume of urine in his/her bladder reaches a pre-determined thredhible o
bladder capacity. This would potentially enable patients at risk for urireention

to protect themselves from renal damage, elderly subjects prone to irexceito
retain the ability to void voluntarily, and children with problematic enuresis to
become conditioned to when they need to wake to void. Further clinical studies
with this device are required to validate this method.
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Chapter 5

Cortical Connectivity Analysis
Using fNIRS

The interaction between spatially separated cortical regions plays an imigote

in performing a cognitive task. Functional imaging methods such as fNI&8aar
pable of detecting activated areas of the brain based on hemodynamiceshang
associated with increased neural activity. fNIRS as an inexpensi/ganable
equivalent to fMRI can help identify functional or effective connecsiamd inter-
actions among cortical areas in a particular task. In this chapter, we rigsemt
our preliminary method and results on detecting connections between lg@minge
in a speech study using fNIRS and MVAR modeling. We then describe dy-ana
sis method for mapping resting state cortical networks using phase syigztron
and present results of applying this analysis method to fNIRS data fronateto
map the language network. The preliminary material in the first part of thigteha
was published innternational IEEE EMBS Conferende 2011 [5]. The material

in the second part of this chapter has been submitted and is currentlyrexigsy
for consideration for publication.
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5.1 Functional Connectivity Using Multivariate
Autoregressive Modeling

MVAR modeling is a common approach to studying the interaction between brain
regions in fMRI [142] and EEG [143]. MVAR can establish a direct measf
functional relation between brain regions.

We used MVAR modeling to measure time varying connectivity between tem-
poral and frontal areas of neonates brain during a neurocogritighg gsing fNIRS.
Higher temporal resolution along with non-confining nature of fNIRS maikas
natural choice for study of functional connectivity and its temporal evaiuiio
infants. Study of connectivity and its changes on infant can contributétitar
understanding of the early learning process.

5.1.1 Materials and Method

MVAR Modeling for Time Varying Connectivity

An AR model for multichannel fNIRS signal can be written as [144]

Y(n):_ZplA(i)Y(n—i)+£(n) n=p...N (5.1)

whereY (n) = [y1(n) y2(n)...y (n)]T is theL channel fNIRS measurement at time
point n, p is the maximum lag andll is the total number of available samples.
A(i) = [aj(i)] is an LxL matrix in whichajk(i)'s are the AR coefficients describing
yj(n) in terms ofy(n—i). ajk(i) can give a measure of connection in terms of
causality between signals in different channels and shows how much ofergye
of signal in channej can be represented by signal in charket(n) is a normal
identically and independently distributed noise with zero mean. Equation 5.1 can
be rewritten as

Y =XA +E (5.2)

whereA = [AT(1) AT(2)...AT(p)]" isa (px L) x L matrix of MVAR coeffi-
cientsatlags1topy =[YT(nN) YT (n—1)...YT(p+1)]" is an (N-p)xL matrix,
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andX defined as

Yin-1) Y(n-2) Y(n—p)
 _ Y(n:—2) Y(n:—3) Y(n—:p— 1) (5.3)
Y(p) Y(-p-1) - Y(1)

is an (N-p)x (L xp) matrix.
The maximum likelihood estimator of A is [144]

A=(XTX)"IXTY (5.4)

In order to track possible changesdjy in the time course of the signal, one
can divide the signal into smaller segments and estilateeach segment:

A™= (X1 Xg)TIXE Y, (5.5)

in which Xs, andY, are formed by replacing(n) with Ys, (n):

Yo () = (5.6)

Y(n), mW<n<(m+1)W
0, else

in whichW is the sliding window width. In other words, we fit the AR model
to a small window of the signals. The window is then shifted one sample in the
forward direction and the model is fitted again to the data in the new window.

In order to summarize the effect of AR coefficients at different time lags be
tween 2 channels, we define a connectivity index as

Cjk(n) _ Zleé‘JkO)Z

= 57
Sker SE18iK(i)? 5-7)

wheredj(i)’s are the elements &&™. 5P, & (i)? represent the contribution
of signal in channek in minimizing the prediction error of AR model in channel
j. Larger value for this parameter means information in chakmeain be used to
better predict values in channgbiven the past values of both channels. This pa-
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rameter has also been referred to as Direct Causality (DC) in the litera#fig [
The denominator in Equation 5.7 is the sum of such effects from all other- cha
nels. Normalization ensures comparable values over different subjgets) is
evaluated for every time window as definec in Equation 5.6. We now define the
connectivity matrix a£(n) = [cjc(n)]. Each element of connectivity matr(n)
shows the causal effect of chankeadn channelj at time pointn.

fNIRS Experiment and Data

The purpose of this experiment is to study the changes in functional ctivitye
in neonates brain when exposed to two different types of audio stimuli. ¥he e
periment was originally designed to study the ability of neonates to learn simple
underlying structures in speech [24]. To establish the feasibility of our adeth
we applied it to 3 representative cases from the original stucly [24]. s€hexted
subjects were all female with ages 2,3 and 4 days, respectively. Inforomesgnt
was acquired from parents when the experiment was being condudtedstdy
design was approved by the ethics committee of the Azienda Ospedalieex$iniv
taria di Udine, Italy where the experiments were conducted [24]. Durie@ 225
minute long testing session, audio stimulus was administered to subjects while the
subjects were in the state of quiet rest or sleep. The audio stimuli consfsted o
consonant-vowel syllables organized into syllable pairs and were divide 2
major "grammar” groups named "ABB” and "ABC"” based on their syllablgs re
etition order. Each grammar was presented in blocks of 18 seconds lbngefd
by a silence of randomly varying duration (25-35 seconds). A total dflddks
for each stimulus was presented. Figure 5.1-a shows the experiment.desig

The hemodynamic changes associated with increased neural activity in re-
sponse to the 2 types of stimuli were monitored by an fNIRS device (24 ehann
Hitachi ETG-4000 machine with 695 and 830 nm lasers, interoptode distéi3ce
cm and sampling rate of 10 Hz). The optode placement and the locationmf cha
nels is shown in Figure 5.2. The tragus and the vertex were used as l&sdorar
optode positioning to ensure data is recorded from perisylvian and areaio
regions.

Earlier study using the same dataset indicated that neonates were cdpable o
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| ABB 1 Silence ABC1 Silence ABB 2 Silence ABB 3 Silence

18 sec 35 sec 18 sec 25 sec 18 sec 25 sec 18 sec 35sec [22 min]

(a) Experiment’s design

Wy

950 1000 1050 1100 1150 1200 1250 1300 1350
Time(s)

Connectivity index
o
(o)}

(b) Representative connectivity index

Figure 5.1: Experiment design and a representative connectivity index (be-
tween channels 2 and 5 for subject 3). Red and green lines denote the
beginning of the ABB and ABC blocks, while cyan and black indicate
the end of blocks.

discriminating between the grammars [24]. The discrimination was indicated by
significant increase in HbOn response to one type of stimulus in temporal and
frontal regions of neonates brain. The temporal region is known to sponsi-

ble for auditory processing in infants [146] while the frontal areas espansible

for computation of structure and higher order representations in infadtadults
[146]. Since the process of learning the grammar types involves 2 spatpHy s
arate areas of the brain, it is natural to assume a functional connectitityork
should be involved. The purpose of current pilot study was to use taedbected

in the same experiment and detect possible changes in such connectaesals

of exposure to stimuli using the proposed method.

Before applying functional connectivity analysis, raw optical data ctdtby
fNIRS device was converted to changes in Hb&hd HHb concentration using
MBLL [29]. The signals were highpass filtered to remove any overalbtiarthe
signals. A window of length 200 samples (20 seconds) was used to estimate AR
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Figure 5.2: Side view of fNIRS optode holder overlaid on schematic repre-
sentation of neonates head. The red and blue dots indicate the source
lasers and detectors, respectively. The numbers between the dots are th
channel numbers. The optodes are placed such that they sample data
from perisylvian and anterior brain regions.

coefficients in each step according to Equation 5.6.

Channels 1 to 6 on the left hemisphere were chosen to study the functional ¢
nectivity. This choice is based on the fact that the temporal region gepted by
channels 3 and 6) and frontal region (represented by channels@oasibly 1)
are the major areas involved in processing audio stimuli and processintusts)
respectively. Earlier studies have also shown that language functioft fetai-
spheric dominan: [24, 147]. Therefore, we limited our study to the left hameie
only. Also, only HbQ changes were analyzed for this study. It has been shown
that HbQ is more sensitive to regional cerebral blood flow changes [24, 148].

MVAR model is estimated for channels 1-6. We are interested in overall con-
nectivity difference between conditions (grammars), which means a funefio
C(n) must be employed to summarize the connectivity matrix in each block for the
conditions. We use simple averaging as

&= 3 culn) (5.8

to formCB = [81-3';] whereB; is theith block of condition B, where B is either
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type "ABB” or "ABC”. M is the total number of calculated matrices in the block.

The resulting connectivity matric€® are grand averaged to yield overall con-
nectivity matrix for each condition in every subject. Blocks involving motion arti-
facts are excluded from this procedure. Motion artifacts are identifiechbypges
larger than 0.5 mMol.mm/s in the concentration changes.

5.1.2 Results

Figure 5.1-b shows a representative connectivity index between elsa2mand 5
(cs2(n)). The duration of each stimulus is indicated by vertical lines. The figure
suggests that the connection between the 2 channels becomes strorgeheh
stimulus is being presented.

Figure 5.3 shows the connectivity matrix for the 3 test subjects. Self cennec
tions are not shown in the figure. Connections with strength of less thano15%
maximum strength in each subject are not shown in the connectivity netwtirk in
right panels of Figure 5.3. In order to differentiate conditions, ovemihectivity
matrix for condition "ABC” is subtracted from that of condition "ABB” to yield
the difference in average connectivity between the 2 conditions. Thisrelifte
matrix shows channels whose connectivity is stronger in one condition gethpa
to the other. This is important as there may be larger and more complicated net-
works involved in accomplishing a particular task while we are only interested in
connections which are stronger for the "ABB” grammar.

All three subjects demonstrate strong connectivity between temporalartelfr
areas. This is indicated by connection from channel 6 to 2 and 5 in suhjédb
2 in subject 2 and 2 to 6 in subject 3.

Also in subject 1, channel 6 shows strong connection with channels 3wivhic
turn has connection with channel 5 in temporal region. Possible explarcation
be that channel 6 is the lowest/first level of auditory processing, its bigpds
into channel 3. The next level of auditory processing, channel 3dbenects with
the frontal area, channel 5 for higher level structural procesdihis can also be
observed in subject 3.

The connectivity matrices provide an overall comparison of functiornaheo-
tions between temporal and frontal areas. Another interesting analysid b@to
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Figure 5.3: Connectivity matrices and networks for 3 test subjects. Connec-
tion strength is color coded. Only connection paths which are stronger
in condition "ABB” compared to condition "ABC” are shown. The rest
are set to zero. Figures on the right show a graphical representétion o
the connectivity network overlaid on a head model (lateral view).

79



CHAPTER 5. CORTICAL CONNECTIVITY ANALYSIS

o
>
o
>
o
Y

e ¢
o

o

@

°

ey

]

e
=

e

@
°
=

Connectivity index
o
w

Connectivity index
)
N
Connectivity index

e ¢
i

- o
o
o
N
o

I}
a
o
S

4 6 8 10 12 "o 5 10 15 ) 2 4 6
Block Block Block

(a) Subject 1 (b) Subject 2 (c) Subject 3

8 10

Figure 5.4: Temporal evolution of connection strength between temporal re-
gion and frontal region. For subjects 1 and 2, plots represent ctonec
from channel 6 to 2. For subjects 3, plot represents connection from
channel 2 to 6.r°=0.97,r2=0.87,r?=0.76 for subjects 1 to 3, respec-
tively.

investigate the temporal evolution of connectivity matri€8sacross the blocks.
The hypothesis is that this evolution should be associated with learning indnfan
and should therefore change as the subjects are exposed furthestonthieé We
studied this by investigating temporal evolution of connection strength between
representative temporal and frontal channels. Channels 6 and@ected as they
have strong temporal-frontal connection in all 3 subjects . Figure 5.4 skiosv
plots of connection strength vs block number. Each point corresporalsetage
connectivity strength within a stimulus block. All three subjects show an iserea

in connection strength in the time course of the experiment.

5.2 Analyzing Resting State Functional Connectivity in
The Human Language System Using Near Infrared
Spectroscopy

As discussed in Chapter 1, fNIRS can measure the neuronal activitgpomee to
a task or an environmental stimulation through neurovascular coupling @rfsup
cial areas of the brain. fNIRS has been used for functional studiagastable,
less expensive and less restraining alternative to fMRI in differenttdas&d brain
functional studies. One of the more recent areas of interest in bothSidifRI
fMRI is the study of interaction between different cortical areas thrahgir in-
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trinsic neuronal signaling [97, 101]. This intrinsic signaling appears irfdha

of slow varying spontaneous fluctuations in the BOLD signal in the absehce
stimulation. These fluctuations are correlated between brain areas thabaoen-
ically and functionally connected and have been used to map brain furctiona
networks such as sensorimotor, visual, and auditory as well as higtworke
such as language and attention [149, 150]. These networks are ofpgredfrom

the data collected at rest and are therefore referred to as Resting GtateoRal
Connectivity (RSFC) maps.

The RSFC analysis can potentially identify changes in intrinsic neural activity
as a result of disease in some neurological and psychiatric conditioasng€s in
connectivity strength in different brain networks have been obsenvednditions
such as autism [151], depression [152], Alzheimer disease [153htadtion-
deficit hyperactivity disorder [154].

Given the advantages of fNIRS, different brain networks have mvestigated
through RSFC using fNIRS. One of the most common methods for analyzing br
network connectivities using RSFC in fNIRS is cross correlation [148]crbss
correlation, an fNIRS channel is selected as the seed channel anortekations
of the signal in all other channels with the seed channel are calculatedbjdc-
tive is to find the cortical areas whose resting state fluctuations are similartto tha
of the seed channel. Cross correlation-based functional connedtastypeen in-
vestigated in conjunction with fNIRS to derive connectivity maps in diffebeain
networks [97, 107, 108]. One drawback of correlation based ativitg is that it
can be sensitive to detection of spurious connection as a result ofipeesicross
talk between channels, systemic interference or noise [155].

In this section, we have investigated the phase relation between fNIRS chan
nels and have used it as a measure of functional connectivity. Conmparedhods
based on signal amplitude such as cross correlation, phase is much lgfigesen
to noise and interferences. It also does not require the assumptiortiohatiy
for the signals. Phase synchronization is not equivalent to cohecerigxjuency
synchronization and is an independent characteristic of the interrelaijohs-
tween two processes [155]. To evaluate the feasibility of this analysis mé&ihod
detecting functional connectivity, we applied it to a study of processirgpeéch
vs. non-speech in newborn human infants. This type of comparison artidydar
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Figure 5.5: fNIRS experiment setup.

value for the question being asked as there is a growing body of evidentte
brain areas involved in language processing in neonates, but less wmdgdying
connectivity.

5.2.1 Material and Methods

fNIRS Data

The fNIRS data was collected from newborn infants at BC Children’pitals
Vancouver Canada, during a separate language perception sty [Aformed
consent was obtained from parents when the experiment was beingoteddThe
study design was approved by the ethics committee of the University of British
Columbia. The experiment design and setup are shown in Figure 5.5. A total o
19 subjects were used in the analysis out of which two subjects were exclud
due to severe artifacts in the signals and poor data quality resulting frordeopto
displacement during data collection. During the experiment, audio stimulus was
administered to subjects while the subjects were in state of quiet rest or sleep.
The audio stimuli consisted of blocks of sentences in Spanish and SilborGome
Silbo-Gomero is a whistled language that is a surrogate language of Spénish
uses whistles rather than speech, and was developed by shepherel<iangry
Islands to communicate across long distances. Spanish and Silbo-Gonrero we
selected as both are unfamiliar to the infants, while one is a spoken language a
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Figure 5.6: Optode placement on the head. Blue squares and red dots indicate
detectors and sources, respectively and the numbers indicate thethann
number.

the other is not. Each block was 15 seconds long followed by 25-35 deaiin

silence. A total of 8 blocks for each stimulus were presented in which dack b

consisted of continuous speech. The total experiment time was 22-25 minutes
The subjects’ brain hemodynamic response was monitored by a 24 channel

fNIRS device (Hitachi ETG-4000 machine with 695 and 830 nm lasers aivap

of 0.75 mW, interoptode distance of 3 cm and sampling rate of 10 Hz). Two

chevron shaped optode holders secured nine 1 mm fibers to the hesrd. \iidre

a total of 4 detector and 5 source fibers on each holder resulting in b&dieg

channels per holder. Figure 5.6 shows the placement of optodes onbjleetsu

head. Surface landmarks (ears or vertex) were used for the platefitba probe

holder over the infant’s perisylvian area of the scalp. Channels 11 2ma the

left hemisphere and 23 and 24 in the right hemisphere were ideally placed ab

the infant’s ear. A stretchy cap secured the holders on the infants. head

Data Analysis

In order to determine the phase relation between channels, we firsttegttae
phase of the signal in each channel using the Hilbert transform. Hillzergform
converts a real valued signal to a complex one, known as analytic signageaweal
part and phase correspond to the original signal and its derivee ptespectively
[157]. The Hilbert transform of signadn| in the frequency domain is defined as
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[157];
Y (&%) = —jsgn(w) (X (e/¥)) (5.9)

where X (€/%) is the Fourier transform ok[n] and sgnw) is the sign function
having value of 1 forw > 0 and -1 forw < 0. The analytic signal can then be
written as

Xa[N] = Xx[n] + jy[n] (5.10)

wherey[n| is the inverse Fourier transform ¥fel®).

We use the joint probability distribution of the phases across channels to de-
scribe their connectivity. A common model for probability distribution of phase
which is the circular analogue of the Gaussian distribution is the Von Mises distr
bution. The Von Mises probability density function (pdf) is defined as[158

f(0|u, k)= Zmol(K)eKCOS(QN) (5.11)
wheref is an angle defined in the intervat 7z, 1) andlo (k) is the modified Bessel
function of order 0. The parameteris the equivalent of the covariance for the
Gaussian distribution and is the expected value of the angle. The probability
density function of the signal phase in chanmatonditioned on that of channal
can therefore be written as:

1
f(On— Bl K) = =———efmcosbn—bh—k) 5.12
Kmn describes the intensity of phase correlation between signals in chanaats
n. In other words, it shows how much prior information@faffects distribution of
6mn. The first moment of the distribution given in Equation 5.11 can be calculated
as [153]

m —E[el®] — /" el¥f (6|, k)do (5.13)

) .
— |O(K) eJN

Using the first moment, one can estimate parametey numerically solving the
optimization problem
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1 N-1 2
argmin(]mly - 'N Z) el¥ ) = (5.14)
B 2
argKmin<:$Ei; — ;’i\lgej‘" > (5.15)

where N is the number of samples in the data segmengiaadhe measured phase
of the signal at time point Parametep can then be estimated using

= Z%Zej‘” (5.16)

A close relationship exists between parameters of the distribution and the phas
locking value (PLV) which is a common measure used in EEG signal progessin
to detect functional connectivity through synchronization betweenreianPLV
is related to the distribution through the magnitude of the first circular moment of
the phase distribution [159]

PLVinn = ‘E [e“em-"n)] ) - (5.17)

One advantage of using Von Mises distribution over phase locking for con
nectivity analysis is that once the parameters are estimated, one would kave th
distribution function and can re-sample from the distribution to determine the sig-
nificance levels. Also, the preferred phase difference is not availaBlEV.

To evaluate fNIRS functional connectivity, we first calculated the pliase
all fNIRS channels using the Hilbert transform as described earlierallid we
would be interested in phase relations between channels when subjents exe
posed to any type of stimulation to reveal intrinsic network activities. It was/ah
in an earlier study, however, that the infant brain produces no signifieaponse
in the language network to Silbo-Gomero stimuli [156]. We therefore used the
fNIRS data during Silbo-Gomero stimulation as an alternative to resting state. Th
BOLD spontaneous fluctuations are concentrated at frequencies tfiges0.1 Hz.
Therefore, the signals were first filtered with an infinite impulse respcasedass
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filter (IIR) between 0.02-0.08 Hz to extract spontaneous hemodynamigtiastiv
and reject other interferences. This frequency range is comparahles® used in
other studies investigating RSFC using fMRI and fNIRS [101, 108].

fNIRS data in general can be contaminated with motion artifacts as the result of
subjects’ spontaneous movements. These artifacts create interfereéheeaonm
of highly correlated phase changes in fNIRS channels, especially fialbpalose
channels. This interference results in very high phase correlationaandlxscure
underlying phase connections between channels. Even though filtéiting mo-
tion artifacts is possible, in order to minimize possibility of introducing any inter
dependence between channels, no artifact removal procedur@pleesialnstead,
the channels for all subjects were inspected visually and artifact conteedire:
gions within the Silbo-Gomero stimulation window were marked. An artifact free
segment of the data in each channel was then selected for the analysiseand
phase of the selected signal segments were then derived using the Halbsrt
form. Since the brain shows no response to this stimulation type, the stimulation
onsets were ignored and the segments were selected independent tohtha-s
tion onsets. The segments contained variable number of stimulation blocks and
their length ranged from 50s to 220s.

The channel with the highest activation in the grand average for theisBpan
stimulation task during the original study in the left hemisphere was selected as
the seed channel for the RSFC analysis. The joint phase distribution eédue
channel and all other channels was then estimated by calculating the piferse d
ence between the seed channel and other channels and then estigaating Limn
using Equation 5.15 and Equation 5.16. We used a simplex derivativeartreod
to solve Equation 5.15 and derixg, [160]. The analysis was performed in MAT-
LAB (Mathworks MA, USA) and the phase coupling estimation toolbox devedop
by Cadieu et al. was used for parts of the analysis [161]

The analysis was performed on HpGChanges only. Previous studies on the
application of fNIRS to detect language network activity and connectivdtyeh
shown that Hb@ is more sensitive to regional cerebral blood flow changes than
HHb with the equipment used here [24, 107, 148].

Ihttp://redwood.berkeley.edu/klab/pce.html
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To examine the validity and reliability of the connectivity information derived
with this method, we divided the subjects randomly into two groups and evaluated
the connections for each group, similar to the approach proposed /h jA@Ghen
compared the correlation of the connectivities between the groups.

Other studies have suggested that language network is left lateralizacriVe
fied this in the network derived using our method. The lateralization wadifjaen
using [106, 162]

1 M2 KL
M /2 ZL K| + KR

where M is the total number of channeJdL, is the value ofkjs in whichi is the

(5.18)

channel number arsiis the seed channel in the left hemisphergis the value of

the same parameter with the channel symmetricimcthe right hemisphere. The
significance level of the calculated lateralization index is then evaluatedlat-he
eralization index results in a number between -1 and 1 with more positive nember
indicating higher degrees of left lateralization.

As the final step, we defined 4 ROI, 2 inside the language network antiZieu
the network and evaluated the connection strengths in these areasti¢nlagr
channels 6 and 7 were selected inside the network, based on our prieiekige
that the physical area they cover is in the language network, and dednaed
12 outside the network with the optode configuration used in the curreng. stud
Channel 1 is over the frontal areas while channel 12 covers the tehagpesa The
choice of these channels as being outside the language area is justifiexfagtth
that they showed no significant activation in response to native langu&panish
[156].

5.2.2 Results

Figure 5.7 shows the Hbsignal from channels 7 and 9, the seed, for a typical
subject. Qualitatively, the histogram of the phase at different time pointsofibr
channels does not show a clear dominant phase range as shown & Eiiprand
Figure 5.7-c. However, the joint distribution histogram shown in Figuredshas

a sharp peak focused around the mean phase difference. This is/@enten
the Von Mises distribution function plot derived from estimated parameteicim e
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Figure 5.7: Filtered HbQ signal recorded from two channels with high de-
gree of connection (a) and the distribution of the phases for eachehann
(b and c) along with the joint phase distribution (d). The red curve in
histograms shows the estimated probability distribution.

case (shown in red). The estimated distribution parameters are also indictted
figure. In the case of phase histogram for individual channels (Eigut- b and c),
the values of estimatekl,, are much smaller than in the conditional distribution
(Figure 5.7-d). This indicates a high phase relationship between the twoelka
and is interpreted as connectivity.

Using the method described earlier, the group level resting state funatmmal
nectivity map with channel 9 chosen as the seed channel was derigésisirown
in Figure 5.8. The detected network includes the areas known to be desgocia
with language network including the superior temporal gyrus and Brauea.
The maps are also in agreement with those obtained for the language natwork
adults using correlation based fNIRS connectivity studies [106].

The connectivity maps resulting from the 2 random subgroups are simown
Figure 5.9. The maps for the two subgroup cover similar areas in both hesmésph
The correlation between individual connections in the two subgroupsisrsin
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Figure 5.8: Group level RSFC maps with channel 9 in the language area used
as the seed channel. Left and right panels correspond to left artd righ
hemispheres.

Table 5.1: Pairwise comparison between selected ROIs inside and outside
language network (Tukey’s test).

ChannelPaif 76 | 712 | 71 | 121

MeanAk -0.15 1.65 1.57 -0.09
CI(95%) | [-1.43 1.13]| [0.37 2.94]| [0.29 2.85]| [-1.37 1.20]

Figure 5.10 (Pearson correlation r=0.6 ).

Figure 5.11 shows the results of ROI connectivity analysis where theacenn
tion strength between the seed channel and 2 channels in the languagé anel
7) is compared with that with two channels outside the language system &tann
1 and 12). Analysis of variance indicates significant difference betvilee con-
nections (ANOVA p<0.01) inside and outside the language network. In particular,
channels 6 and 7 connections are not different while they are bothrtigdrethat
of channels 12 and 1 in the temporal and frontal areas, respectivelsult® of
multiple comparison test are shown in Table 5.1 (Tukey'’s test).

The results of the lateralization analysis are shown in Figure 5.12. The aver
age lateralization index is 0.172 and is significantly different from zera(ipde
t-test, p<0.001). Here, the lateralization index is also compared for all subjects
between the language network and a control case. The control nesvodated
by choosing channel 11 as the seed channel. There is a significanedde in lat-
eralization index between the language and control network (paireda<€sd1).
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Figure 5.9: The connectivity map for the 2 subgroups with channel 9 used as
the seed channel. The top and bottom panels are results of subgroups
1 and 2, respectively. Left and right panels correspond to left igd r
hemispheres.
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Figure 5.10: Correlation between connection strengths in the two subgroups.

90



CHAPTER 5. CORTICAL CONNECTIVITY ANALYSIS
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Figure 5.11: ROI connections comparison between language area (repre-
sented by channels 7 and 6) and outside language area (represented b
channels 1 and 12). The bars indicate the standard error of the mean.
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Figure 5.12: Lateralization index for the language network and comparison
with control network.

These results suggest left lateralization in the detected language network.

5.3 Discussion and Conclusion

In the first part of this chapter, we used MVAR modeling to identify changes
connection strength in cortical network involved in a speech percepticly stu
neonates. The hemodynamic changes associated with increased mtuityl a
were detected by fNIRS device. The purpose of this pilot study was tctdée
changes in functional connectivity in response to exposure to 2 diffeypes of
stimuli.

The cortical signals were modeled as a MVAR signal in which AR coefficients
represented connection strength at different lags. An overall ctionestrength
measure was defined and was evaluated for every block of the 2 stimukss typ
The grand average of blocks in the 3 test subjects indicated strongatmmse
from temporal to frontal areas. Connections were also observedlvoer level
audio processing areas to higher audio processing levels which in tuiatetethe
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connection to structural processing regions. It should be noted that#isinary
study has the important limitation of low number of subjects and therefore, the
statistical significance of the results could not be verified.

Another observation was the temporal increase in connection strengthédor
type of stimulus compared to the other across experiment blocks. This &pserh
associated with learning in the time course of experiment. The results of this pre
liminary study are functionally and neuroanatomicaly relevant which led usto th
next part of this chapter where a different type of connectivity wadyaed on a
larger dataset.

We evaluated use of phase synchronization to identify resting state fualction
connectivity in the language system in infants using fNIRS. We used jodtit-pr
ability distribution of phase between fNIRS channels with a seed channegin th
language area to estimate phase relations and identify the language system ne
work. Our results indicate the feasibility of this method in identifying the language
system. The connectivity maps are consistent with anatomical cortical cioomse
and are also comparable to those obtained from fMRI functional conitgctiud-
ies 163, 164]. The results indicate left hemisphere lateralization of theideyey
network.

Brain networks connectivity reveals information about underlying anatmic
areas involved in a particular task. In some disease conditions, changesiin
cal connections occurs [149]. Application of connectivity estimating method
fNIRS enables investigation of such changes in cases where use dfSM& pos-
sible, such as in infants and extends utilization of fNIRS in wider range atalin
applications.

Use of fNIRS for analysis of functional connectivity offers severdvantages
over more traditional fMRI based connectivity analysis. Collection of fMRla
from infants and young children under resting condition can be challgngm
contrary, fNIRS is easily applicable to even newborns. Also, in casesendub-
jects to be tested are immobilized and can not be transferred to an Magnetic Res
nance Imaging (MRI) scanner, portable fNIRS systems can replacé fiddRon-
nectivity analysis. One limitation compared to fMRI is the limited penetration
depth which means connectivity analysis will be limited to cerebral cortex.

Our results are comparable to similar studies in the literature. In particular
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Zhang et al. analyzed RSFC in the language system in adults using fNO®E [1
Their results indicated significant RSFC between left inferior frontalsanmkrior
temporal cortices which are associated with language systern [165]. thkig
Fransson et al. studied resting state networks in the infants brain [16@y T
observed similar networks in the bilateral temporal/inferior parietal cortextwh
encompasses primary auditory cortex [166].

The presence of motion artifacts has a significant effect on the comitecti
strength results using phase synchrony method presented here. The antifaxt
results in in-phase changes across affected channels which mayimestoitnger
phase correlation compared to those resulting from spontaneous akactnity.
Therefore, care must be taken to ensure segments being processedmdude
motion artifacts. Saturated channels or channels that have lost couplingue tis
due to displacement will also have similar effect.

Our fNIRS data was not collected during strict "resting” state. We used co
tinuous blocks of data in which subjects were listening to a non speech dunlio s
ulation. No significant activation compared to baseline was observed odatais
and was therefore used as the baseline [156]. Some fMRI studiesdikvesd a
similar approach for mapping RSFC. The study by Greicius et al on defende
network in Alzheimer’s disease patients for example, was performed dafimg
demand cognitive task [149, 167]. An alternative approach is to regreisthe
task evoked response from the data before performing RSFC an4lg8is [

The fNIRS signal is known to contain systemic interferences. This includes
interference from cardiac pulsation, respiration, cardiovascularegutation and
heart rate variability. The frequency band for connectivity analysid imeishosen
such that it includes the relevant variations caused by the neurovasoulaling
while rejecting the frequency bands containing these interferences.carbdec
interference in our study is around 2 Hz and the very low frequencyféntsrce
(heart rate variability, cardiovascular autoregulation) is around 0.01TH2 res-
piratory fluctuation is around 0.2 Hz. The frequency band we chosarfalysis
(0.02-0.08 Hz) reduces the effect of these interferences and dherebnnectivity
detection as a result of these interferences is less likely.

Bivariate methods in general can result in non existing spurious conngctio
when there is a propagation of information from one channel to othergsirige
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measure of connectivity will result in detection of connection between alipte
connection pairs, ie. direct or indirect. However, since we are onlyitgpto
find channels which belong to the same network, use of a bivariate meaisure
connectivity can be justified. Most methods for functional connectivity pivapp

in the literature based on fMRI or fNIRS also use seed based methods ishich
relying on the bivariate concept of finding coherence/correlation twhannels
with the seed channel [149, 167].

In summary, the results of this work suggest that the proposed method can
be used to reveal underlying connectivity patterns of cognitive funstiorthe
resting state through phase relations between hemodynamic changesrientliffe
brain regions. The results also indicate a left lateralization in the detectednketw
which suggests the language system may be left-lateralized already innmewbo
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Chapter 6

Design and Validation of a
Custom fNIRS Device for
Monitoring TMS

In this chapter, we describe the design and development of a custom-imade ¢
tinuous wave fNIRS instrument for monitoring the effect of TMS on the brain
activation and connectivity.

6.1 Background and Motivation

TMS is a method of stimulating brain using strong magnetic pulses that activate
cortical neurons through electromagnetic induction. TMS has been as@tdex-
perimental tool for neurophysiological and psychophysiological ssudie order

to better understand and investigate the effect of TMS on the brain, imreageo

ing techniques have been used concurrently with TMS. This allows stutlyéng
changes in hemodynamics and neural activity both in the target brain aveglla

as the areas closely related to it. However, the strong magnetic pulse eddolyc

the TMS coil introduces serious challenges for common neuroimaging temwmiq
The optical nature of the NIRS makes it immune to this type of interference and
makes it an appropriate tool for monitoring brain hemodynamics during cartu
TMS studies. This type of combined NIRS-TMS study allows one to not only-mon
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Figure 6.1: Block diagram of the overall fNIRS system.

itor the effect of TMS on the target area, but also to investigate corticatifinal
connectivity changes in response to stimulation. Such a change in catityecti
can occur in a short time scale that does not last long after the stimulationaor in
longer time scale that outlasts the duration of the stimulation.

This chapter describes a custom-made NIRS instrument for monitoring the ef-
fect of TMS on brain hemodynamics and neural activity. When combined with
the connectivity analysis method described in the previous chapter, thenestt
can be used for analyzing the effect of TMS on RSFC with potential apiglica
in stroke patients to study both short term and long term effects of TMSain br
networks.

6.2 Instrument Design

Figure 6.1 shows the overall system setup. It consists of two laseresyuteliv-

ery fibers, detecting fiber, a photo detector and a Data Acquisition (D}&gs.

Laser sources are amplitude modulated and the modulation signal is driveen by
Microcontroller Unit (MCU). The output of the laser sources are laedcimto

two fibers (source optodes). The light is delivered to the target tissaeghrthe
source optode. Another fiber collects the light from the tissue and delivés

a photo detector. The signal from the detector is amplified and sampled by a PC
through a DAQ system. A digital lock in amplification scheme is then implemented
on the PC to measure attenuation of the diffusively reflected light.
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6.2.1 Light Sources

The light source consists of 2 LDs at 780 nm and 830 nm (Sanyo Eletaipan).
LD’s emitted light is focused into an angled ferrule of a single mode fiber (5.6
um core and 125um cladding) using an appropriate lens. The diode, lens and
fiber ending are enclosed in a housing (Thorlabs Inc., NJ, USA). Adatan~C
connector is mounted on the free end of fibers for each diode. Thesctmris
attached to a coupler located on the front panel of the device. This alidemseal
access to the laser output. The laser diodes have integrated photodioidbs w
provide feedback to ensure constant power radiation.

The output power of the LD is controlled by a closed loop control mechanism
as shown in Figure 6.2. The maximum LD power is initially set and is then modu-
lated by the input signal. The maximum deliverable current to diodes is also limited
by the driver for the overcurrent protection of the LDs.

6.2.2 Source Modulation

Both of the source diodes are amplitude modulated to allow separation ofeshang
in amplitude due to attenuation at the two wavelengths. The sine wave modulating
frequencies are chosen as 1 kHz and 1.25 kHz. The frequencisslacted to be

high enough to avoid 1/f noise and low enough for the MCU and also foraifme s
pling rate (amount of data that needs to be stored) and also satisfy thé@wnd

for digital lock-in amplification. The higher frequency must not be a multiple of

Modulator

LD power <~ ) Laser Diode
> >+ ) >

setting \ NG Driver

LD

Photodiode |

Figure 6.2: Block diagram of the laser diode driver module.
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Figure 6.3: Direct digital synthesizer block diagram.

the lower frequency to avoid harmonic interference.

A Direct Digital Synthesis (DDS) scheme is implemented for driving the laser
drivers using a 16 bit MCU (MSP430, Texas Instruments, Texas, T#).block
diagram of the DDS is shown in figure Figure 6.3. The timer produces amiupter
at 100 kHz rate. The numerically controlled oscillator produces the valdieeof
two sign waves and is triggered by the timer. The values are written to a Digital
to Analog Converter (DAC). The output of DAC is filtered to reconstruetgme
waves.

6.2.3 Light Detection

A 1/8" flexible fiber optic light guide collects the light from the tissue and detive

it to the optical detector (Edmund Optics, NJ, USA). The detector is an APD mod
ule that includes the APD and the temperature compensated low noise high spee
transimpedance amplifier (C5460-01, Hamamatsu Photonics, Japan)mplie a
fier has an NEP of 0.02 pr(H z) with a gain of 18 V/W which provides good
sensitivity for the low light levels from the tissue. The analog output of th® AP
module is sampled at 200 kS/s by a DAQ module (NI USB-6210) controlled by a
PC. The results are read by a MATLAB script on a PC and processedlitime.

6.2.4 Digital Lock-in Amplification

A digital lock-in amplification scheme is used to detect the highly attenuated light
signal from the tissue and also separate the attenuation of the 780 nm @hpon
from that of 830 nm [1€9]. Digital lock in eliminates the need for high cost ioc
amplifiers and provide better stability and ability to measure lower frequerfsies.
detailed description of the method can be found elsewhere [169]. Hepeovigle
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a brief description of the method and its implementation details.
The modulated signal at the detector can be written as

A(n) = Adc+AacCOS<2T[ffn+ cp) (6.1)
S

whereAq. is the DC component of the detected sigigl; is the amplitude of the
modulated signalf, ¢, fsare the modulation frequency, signal phase and sampling
frequency respectively. To recover the amplitudg, a quadrature demodulation
scheme as shown in Figure 6.4 can be used. The resulting in-phasd §liadra-
ture (Q) components will then be

I :A(n)cos(ZnLn) (6.2)
:Adc005<27T:S n) + Agccos(4nfsn + (p) + %cos(cp)
and
Q=A(n)sin (27T:Sn) (6.3)
=Aq4cSin <2n]fsn> + %sin <4nfsn + (p> + A%Csin((p)

Both operations are performed on an integer number of periods. Fald, cy

S

cos(2zr=—n)

K

—(x}— LPF —| (.)

Aln) —— —— 4
]

ac

(X —— PF —— (.)

T

sin(2z L n)

s

Figure 6.4: In phase-quadrature demodulation scheme.
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Ns = % The amplitude and phase can be recovered from the in-phase amd-quad
ture components by lowpass filtering to eliminate the higher frequency comisone

and using

Aac= V16 + Qe (6.4)

Q= atantP (6.5)
ILp

wherel p andQyp are the results of lowpass filteringand Q, Aqc and ¢ are the
estimated amplitude and phase, respectively.

Since more than 1 modulating frequency is used in our modulation scheme,
then due to finite attenuation of filter at higher frequencies, some crosstalieéen
components will occur. To avoid this, one can choose the modulation fnetpse
fm such that they fall on the zeros of the filter [169]. For this purposeijnass a

simple moving average filter we will have

whereh[n] is the moving average lowpass filter aNglis the total number of sam-
ples collected. This filter has its zerosk;[ﬁ. So by choosing

fn= k> (6.7)

the filter response will have zeros at the multiples of modulating frequencies.

With fs=200 kHz,f; = 1000 Hz andf, = 1250 Hz, we havéls = 4000. Given
fNIRS overall sampling rate of 10Hks samples are read from the DAQ every 100
ms and amplitude of the two frequency components are calculated through

AL
It _ i co 7Tfl;10 co "ffsll ... co nfl(fl;lrl) Al2] 69
|f2 Ns CO% co 7-;221 ... CO Hfz(f'lls—l) :
AN
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and
AL
Q] 1 [sinZ0 sinZfid ... sin%’:f” A2 69)
sz _NS Sinanizo sinz’?:l sin%tls*l) : :
A[Ns|

wherelt,, Qs,, I1,, Qf, are the in-phase and quadrature component$;fand
f2, respectively. The amplitude of two wavelength components is derived fro

AlL=2,/Q% +13 (6.10)
Af
At =2,/QF, +17,

The optical density and concentration changes are calculated&&andA;%.

6.2.5 User Interface

The graphical user interface was prepared using MATLAB. The cotlectsNg
samples from the DAQ card every 100ms. The timing is controlled by a timer ob-
jectin MATLAB. The samples go through I/Q demodulation according to Eqnaiié
to Equation 6.5. The intensity values are then converted to Optical Density (OD
and then Beer-Lambert law converts OD to concentration changes 10 Hliod
HHb. For functional NIRS studies, the GUI also delivers the stimulations to the
subject and adds stimulation markers to the data.

6.3 Performance Evaluation

The system’s dark noise was measured by readings obtained by placihgyvibe

and receiver optode in a dark room with no light incident on the receptode.

The RMS value of the noise in this setup was calculated and repeated fopla co

of measurements to obtain an estimate of the prototypes noise voltage. This value
was calculated to be less than 0. The NEP was then calculated from dark noise
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measurements using
Vi

R(A)G
whereR is the incident light equivalent power in VR(A) is the responsivity of
the detector ah = 780 andA = 830 nm in A/W, G is the amplifier gain and,
is the noise voltage. With the overall gaiR(Q )G) of 1.5 x 10° V/W, the NEP is
approximately 0.34 pW.

The drift of the measurement was evaluated by continuous recordingtaf d
from a phantom using the device for 30 minutes after a warm up period ofdtenin

P = (6.11)

The aqueous phantom was prepared using the method described inr@hadpte
phantom scattering and attenuation parameters are chosen to be closetofthos
the adult head tissue (ie. the scalp and skull with= 0.4 cnmt andul = 20 cntt
[170], see Section 6.5 for a discussion). The phantom was made with 2686 in
lipid mixed with ink to obtain desired optical parameters. The difference betwee
the initial and final reading normalized to the initial signal value was recoaged
the drift. The device shows 0.1% drift over the period of 30 minutes.

6.4 \Validation

We evaluated the performance of the device through in vivo experimerits. T
experiments included arterial occlusion and isometric contraction of tharfare
muscle and the brain response to a motor task test. In all experiments, théecbllec
intensity data was converted to optical density and concentration chasiggshe
MBLL.

6.4.1 Methods

Forearm Muscle Arterial Occlusion Test

In this test, the hemodynamic response to an arterial occlusion in the foofarm

a healthy male subject was investigated. This is a common test for validation of
custom made NIRS instruments [171, 172]. Arterial occlusion was indincez
forearm by means of a pneumatic pressure cuff. The NIRS optodesphesred

on the arm and below the pressure cuff and monitored the oxygenatioa aftth
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tissue. The cuff was inflated up to 200mm Hg to block any blood in and out flow
from the muscle for 1.5 minute. The cuff was then released and the NIR&lieg
continued for another 2 minutes to monitor tissue oxygenation recovery.

Isometric Contraction

In this test, the Brachioradialis muscle in the forearm was monitored with the NIRS
optodes during an isometric contraction experiment. An isometric contraction in-
volves static contraction of a muscle without a change in muscle length. The sub
ject (same as in previous section) forcefully gripped an object for 86rsis fol-
lowed by one minute of recovery time.

Motor Task Test

Monitoring brain activation during a motor task is a common method used for
evaluating performance of custom made fNIRS instruments [172]. In thighes
fNIRS optodes were placed over the hand area in the left motor cortelogation

C3 according to international 10/20 system of a healthy 30 year old rigiteta
male subject [173]. The source and detector fibers were securegl aisinstom
made optode holder consisting of a 3D printed holder (Verowhite polyjat)res
tied with elastic band to the head. The source-detector separation was8sahto
The subject was asked to perform a task of opening and closing his disate of
approximately 3Hz for 30 seconds followed by 30 seconds of rest. Bhigtions

for beginning and ending of the resting/task periods were providedllisheough

a PC and the timings of the stimulation were recorded along with the fNIRS data.

6.4.2 Results

The result of the arterial occlusion test is shown in Figure 6.5. Black {satid
magenta (dotted) lines indicate time instants when cuff pressure reached maximu
value and when the cuff was released, respectively. As the total aotlosgins,

the amount of blood in the tissue remains constant. This is reflected by constan
hemoglobin (tHb) detected during the occlusion. However, oxygen is being c
sumed by the tissue and the Hbi® constantly converted to HHb. Therefore, HbO
decreases as HHb increases with almost equal changes in the two choresip
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Figure 6.5: Typical HbG, and HHb waveforms in the arterial occlusion test.
Black (solid) and magenta (dotted) lines indicate time instants when

cuff pressure reached maximum value and when the cuff was released,
respectively.

concentrations. The gradient of the chromophore changes in this cpsmpm-
tional to tissue’s local oxygen consumption. Once the cuff is releasedhtreges
are reversed. A hyperemic reaction can be observed where due tattheegula-
tion mechanisms, Hbfand HHb overshoot and undershoot beyond their original
value once the cuff is released. The two chromophores gradually retuheir
original values during the recovery period.

Figure 6.6 shows the hemodynamic changes in response to the isometric con-
traction. Black (solid) and magenta (dotted) lines indicate starting point and the
ending point of the contraction, respectively. The contraction results incaease
in blood flow into the muscle along with an increase in muscle oxygen consump-
tion. This can be seen in he figure as an increase in tHb and HHb along with
a decrease in HbO Once the object is released and the muscle is relaxed, the
changes are reversed (dotted vertical line). The level shifts at tlieriieg and the
end of contraction are the result of the grip motion.

The processing of the motor task fNIRS data was performed using HOMER2
toolbox for MATLAB [174]. Figure 6.7 shows the changes in total hemoiglob
concentration in response to the motor task over a period of approximately-5 min
utes. The tHb is associated with increased blood flow to the hand area irathe br
The red (solid) lines indicate the beginning of the motor task. In order to measu
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Figure 6.6: Isometric contraction results collected from Brachioradialis mus-
cle in the forearm. Black (solid) line and magenta (dotted) vertical lines
indicate beginning and end of contraction, respectively.
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Figure 6.7: Total hemoglobin changes in response to motor activity. The
fNIRS optodes were placed over the hand area in the left motor cortex
near location C3 according to international 10/20 system of a healthy

30 year old right handed male subject who was asked to perform a task
of opening and closing his fist.
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Figure 6.8: Block averaged hemodynamic response.

the hemodynamic response, the signal was block averaged over the stimgatio
blocks. Figure 6.8 shows the resulting block averaged traces op HBBb and
tHb with the stimulation starting time at zero. An increase in the Hb@d tHb
along with a decrease in HHb is observed which matches the typical hemoityna
response [1771,172].

6.5 Discussion and Conclusion

We described the development of a custom made fNIRS device for fuserénu
TMS experiments to monitor brain tissue hemodynamic changes. The instrument
performance was evaluated using in vivo tests commonly used in the literature
for evaluation of custom NIRS instruments. The results are comparabledo oth
studies [171, 172] suggesting the instrument is capable of detecting hearoity
changes in the tissue and in particular, in the brain and can be usedtfarflorain
studies involving TMS.

One of the tests we used to evaluate the performance of the custom degice wa
the occlusion test as described in Section 6.4.1. In an occlusion test, itestesp
that the blood flow to the tissue is fully blocked resulting in decrease inzHind
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increase in HHb while the tHb stays constant. In our test, however, aras&re

in tHb is observed as shown in Figure 6.5. This may be due to the fact that the
pressure cuff is inflated to 200 mmHg which in this case may have been imeiffic

to fully block the blood flow. As a result, blood can still reach the tissue andée

the increase in tHb.

The performance of the custom made device was evaluated using a ligaid pha
tom as described in Section 5.3. The optical parameters used in this cas&@may b
too high and not a good representation of the overall optical charaitterid an
adult head (e.g. compared to [175]). This limitation needs to be addresteal in
future for a better characterization of the device performance. Alsstatsd in
Chapter 4, a solid phantom is preferable and will be considered in thefutur

A custom made fNIRS device has multiple advantages for monitoring TMS
effect. The sensitivity and custom sampling rate of such a device allows it-to p
tentially measure the fast optical signal [176] which results from smallgdsim
scattering as a result of electrical activity of the neurons. ApplicatioNRE sys-
tems to monitor fast optical signal during TMS stimulation is new and promising
[73]. Additionally, custom devices facilitate temporal and spatial co-registr of
NIRS data with TMS stimulations.
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Chapter 7

Conclusion and Future Work

Since the first introduction of NIRS by Jobsis, a lot of research has tmeducted

to apply this promising non-invasive optical method in different clinical applic
tions. Further research and validation in different areas is still reqforedIRS

to be routinely adopted by clinicians. In this thesis, we attempted to address some
of the current issues in NIRS signal processing and applications.

7.1 Motion Artifact Removal from fNIRS

One particular issue of interest in NIRS is the sensitivity of the data to motion ar-
tifacts. In Chapter 3, we presented a novel method for removal of motidacis
from fNIRS data using the discrete wavelet transform. The method reliedeon th
differences between motion-induced patterns and those caused by yremod
changes to identify and remove artifacts in the wavelet domain. The method was
evaluated using simulated data as well as experimental data in terms of the amount
of distortion it introduced in the signal and the reduction in artifact intensity an
was shown to be effective in reduction of the motion artifacts. The balaece b
tween the amount of artifact reduction and distortion introduction in our meshod
controlled by the user through a tuning parameter.

Artifact reduction addresses an important issue in fNIRS signal psoags
The hemodynamic response is a weak signal whose detection requiragiage
over several blocks of stimulation. Often, contamination with motion artifact re-
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sults in some of the blocks being excluded from the analysis. In some sasés,

as in infant studies for example, it is not possible to collect many data bloaks a
many subjects do not make it to the end of the experiment as they may bectme res
less and bored. Therefore, it is important to be able to keep as many deka blo

as possible for the analysis. Our proposed method can be used asapessmg

step to reduce the intensity of such contaminations in order to allow keeping more
data blocks and improve the contrast to noise ratio in the detected hemodynamic
response.

The proposed method of artifact removal can be enhanced furthevénase
ways. One major improvement would be to extend the range of artifact tyaes th
can be detected by the method. Our method as described in Chapter 3 taifgets s
artifacts. However, artifacts resulting in change in baseline are notssiell with
this method. Such artifacts could potentially be detected in the wavelet domain
using the same principle, but they need to be processed differently.

Also, in some cases, only identification of artifacts or contaminated blocks is
required [24]. The method can be further developed to identify suctsdgtaents
and its performance needs to be evaluated in terms of specificity and ggnsitiv
Another major potential future direction is to extend the method for real time pro-
cessing of the data [177]. This can be of significance in wearable NéR&ss and
in particular, can be directly applied to the bladder sensor described pt€Zza
This requires using methods for estimating the data variance in real time ared as th
data is being captured.

The performance of this method relies largely on two major factors. One is the
capability of the Wavelet transform to map the signal to a space where motion ar
tifacts can be better distinguished from the fNIRS signal. The other is the thetho
used to identify the motion artifact coefficients in the wavelet domain. In omur cu
rent approach, we assumed a probability distribution for the waveleticeats
and simply gave the coefficients a score based on their probability of hetpng
to this distribution. Even though this approach was shown to work satisigctor
can be further improved. The problem of identifying the motion inducedicasit
can be considered a classification problem and therefore, well knlessification
methods can be adopted and applied. In particular, one could assuntmiifty
distribution for the motion artifacts coefficients, estimate the parameters of the dis
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tribution and use a Bayesian classifier to classify the coefficient as motianedd

or normal. The estimation of the parameters requires use of training data as an
added step. This procedure is expected to improve the performance ofttinedme

in terms of NMSE introduced in the signal as well as artifact attenuation.

Another alternative approach which is worth comparing to in the future is
changing the parameter estimation method for the wavelet coefficients. In our
current approach, the main parameter of the probability distribution of letave
coefficients (i.ed) was estimated with MAD using the entire data in each channel
which also included the motion artifacts. This was effective as MAD is natisen
tive to outliers which in our case, were the motion artifacts. However, if the motio
artifacts are frequent and their amplitudes are close to those of fNIR8&Isigan
they may no longer be considered outliers and the estimate of variance will then
be affected. As a result, the performance of the method will decreaseloifg
enough artifact-free segment of the data is available, then it can be udieddity
estimate the probability distribution of the fNIRS data coefficients and its param-
eters empirically. This is expected to yield better results as the distribution is no
longer affected by motion artifacts. The downside is that a training progigiss
the artifact free data would be involved which adds an extra step to thequroe

7.2 Wireless NIRS for Monitoring Bladder Contents

We reported design and development of a compact NIRS based wiredasahie
sensor for continuous non-invasive monitoring of the bladder with potexpjai-
cation for bladder incontinence patients in Chapter 4. This addresses ariantp
clinical problem in patients with abnormal bladder function. The device vedsde
in vitro and in vivo as a proof of concept and was shown to be capaldéfef-
entiating between empty and full bladder. The results supported the feadilbility
this device for the purpose of using it as a warning system that alerts bjects.
when their bladder reaches a pre-determined threshold of bladdaityaaich a
device, when fully developed as a wearable warning system, can helptpati¢h
urinary retention problem and protect them from renal damage by gidmty
warning and alarms for voiding their bladder. Currently, there is no alteena
method and device for continuous bladder filling detection, a very importiant ¢
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ical issue especially in patients with different types of urinary incontinemk
patients with spinal cord injury.

A major limitation of our work on this sensor presentec in Chapter 4 is the
lack of clinical data for validation. The purpose of our study at this stage t
introduce and verify our method through limited multiple trials to provide evidence
of effectiveness of diffuse optics in the form of a wearable sensootio target
application. This method and device need to be further validated in a clinici stu
with a larger number of subjects as the next step.

Some other technical challenges may limit the applicability of our proposed
method. As discussed in Chapter 4, the thickness of the fat layer may thféec
effectiveness of our proposed device. The fat layer can caudsepns by two
mechanisms: 1) by inducing extra attenuation (through both absorptiorcatid s
tering) and 2) by increasing the distance of the bladder from the tissteceur
One way to overcome the problem of increased distance is increasingrthe pe
tration depth by increasing the distance between source and detectowothis
require an increase in the power level or using a more sensitive det8ctibr.of
these solutions would also be effective in overcoming the second mechahism
is increased attenuation. Increasing the average power may not banshfeay
result in patients’ discomfort. However, we can increase the instantanever
and decrease the sampling rate to keep the average power and SNR th&game
with this scheme, the maximum practical limitation of the penetration depth for
this diffusive method is about 3cm.

Another solution could be a tight fixation which results in mechanically push-
ing the sensor deeper into the tissue. This can however, cause disctontbe
subject. Changing the wavelength (within the optical wavelengths) doeseaot
to be effective in improving the penetration depth. Increasing the wawéleleg
creases scattering, but attenuation due to absorption by water inceegsiis
cantly. Decreasing the wavelength on the other hand, increases attanionatio
absorption by Hb@and HHb as well as increased scattering.

The power consumption of the device is another issue that requiresrfurthe
improvement. With the current prototype, the battery life is 45 hours in standby
mode, 23 hours when logging onboard without radio transmission and urs ho
with radio transmission. Ideally, a wearable device needs to be rechasged
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times as possible and last at least a day without charging to be practical. The
power requirements of the prototype at this stage are not low enoughrtioyar,
since the amplifier and filter are the components consuming most of the standby
power, consumption can be significantly reduced by disabling these camizon
in standby mode and only activating them when required. Improving therpowe
consumption during radio transmission is another major future direction to make
this device suitable for real life patient monitoring.

The connectivity of this device to a PC has two main advantages. In oufr proo
of principle study, it was necessary for the investigator to be able to vissedy
the signal as the voiding was happening in order to be able to mark difiarents
(permission to void, start of voiding, end of voiding, potential motion artifacts
etc.). In general, it provides an alternative method for device contraledisas
data processing and storing. The PC connectivity also serves a fpttipgose of
being used in future developments for clinical remote monitoring. The frexyue
of bladder filling and voidings which are transferred to the PC can be detbto
an online database to be accessed by a clinician. These information aiegfgan
in some pathological conditions. For example in UTI which is a common condi-
tion in spinal cord injury patients, the frequency of voiding increasesaandss to
these information collected in normal daily life conditions by the clinician is im-
portant in treatment of patients. In such situations, the limited range of cthomec
might limit the usage of wireless link to indoors only. However, the same benefits
can be offered by replacing the PC with a smart phone which can prowilars
functionalities while being portable and mobile. Development of appropriate ap
plications and database for patient monitoring is a major future improvement for
this system.

The actual process of making decisions on bladder fullness and whégtertr
the alarm is an important step and the effectiveness of the proposeall ®ye-
tem depends on it. However, this was beyond the scope of our workrniessin
Chapter 4. The optimal decision making process which requires evaludtiba o
recordings on a case by case basis by a clinician who factors in pararsgthras
bladder size, anatomy, level of injury, etc. is part of the future work @mttethod.

The drift in the output of the device can potentially cause problems in long
term patient monitoring as the accumulated drift may be mistaken for bladder fill-
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ing. The most important cause of the drift as discussed in Chapter 4 is the sligh
temperature rise caused by LED operation. This rise leads to slight ch@hijgs

in the LED output intensity over time. This has been reported to be present in
other works on NIRS systems [171, 172]. This limitation needs to be addtess
for practical application of our method. The solution suggested in Chaptes4

to reset the device at voiding times (alarm) to prevent the error from adatingu

A better solution could be to use LEDs with photodetector integrated to congrol th
output power in a closed loop system. Such LEDs could be selected to dlsdeinc

2 more wavelengths for detection of Hp@nd HHb in order to estimate changes
from these chromophores as well. This could help minimize the contribution of
these chromophores to the detected signal and minimize the systemic integferenc
as discussed in Chapter 4.

Another major limitation of the method presented in Chapter 4 is the large vari-
ations in the initial value of optical attenuation which is caused by the sensitivity
of the device to unknown changes in attenuation caused by paramethrasuc
sensor geometry, coupling and tissue scattering. These parametefowagne
experiment to another or when the sensor is relocated on the tissueforagire
order to develop a fully practical and reliable system for continuous monitorin
of the bladder, it is necessary to address this issue so that a thresHaé&idér
capacity can be properly established and the measured attenuation cam-be c
pared to this threshold. Therefore, a more robust approach sudamalsidistance
method which is less sensitive to changes in coupling needs to be condidered
this method in the future [133, 139].

7.3 fNIRS Connectivity

In Chapter 5 we used fNIRS along with phase analysis to identify resting state
functional connectivity patterns in language system. Use of phase retationeen
hemodynamic changes in fNIRS data in resting state is a novel contributiois of th
work. The agreement between results presented with those obtained\iBa®
data in similar studies with different methods and different subject populstign
gests feasibility of the proposed approach.

As stated earlier, the data used in Chapter 5 was not collected in "strict’gestin
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state, meaning that the subjects where not in the ideal state of rest withtiicolaar
cognitive or sensorimotor task. It is not uncommon in the literature to use light
cognitive task as a substitute for resting state ([149, 167]). Our datehwvas
collected during stimulation with Silbo-Gomero language to which infants showed
no response, can be considered a very low demand task and thetieéoresults

are still valid. However, investigating the alternative approach of absodsteng

state data and comparing the results to those obtained in Chapter 5 would be of
interest. This requires collection of fNIRS data from infants without amjiqadar
stimulation. The results could confirm the degree of validity of the assumption of
resting state for our low cognitive stimulation condition.

An interesting question that can possibly be answered using this appsach
how brain networks develop with age. This is a relevant question in develoial
neuroscience [178] and fNIRS offers advantages that make it ideatuddies that
involve collecting data from young infants over other methods such as.fMRI
have already applied our phase-based fNIRS connectivity analysigeiatifying
language network in newborn infants. A future study on older subjectstuify
the same network and changes in the network during brain developmddt cou
reveal very valuable information. If fNIRS connectivity is validated adigiaal
method for evaluating brain network connectivity patterns, it can potentially b
used for example to identify brain network developmental problems in infamgs lo
before the symptoms can be observed.

One potential challenge in the use of the proposed method as described in
Chapter 5 for monitoring cortical network development is the choice of ted se
channel. The seed channel in our method was chosen as the chardeethedan-
guage network which showed high activation in language tasks. Toeeolanges
in the shape and location of the network with age are taken into accounteeds n
to precede the RSFC analysis with a localizer task to identify a proper seedeih

Another possible future direction is using NIRS based functional cdiwitgc
in a clinical study to validate its capability in discriminating between health and
disease in conditions such as stroke, depression or autism.

Using the joint probability distribution function of the phase results in estima-
tion of phase dependence between the two channels along with the gdgibase
difference. In the method presented in Chapter 5, only the first paramestersed.
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However, the second parameter could contain significant informationlashive
phase difference between Hp@nd HHb has been shown to convey information
that discriminates between different states as well as health and diseastdn p
ular conditions [179, 180]. Applying similar approach to connectivity witl ou
proposed method in the future can provide further connectivity information

As discussed in Chapter 5, Hb(s more sensitive to regional blood flow
changes and was therefore used for the connectivity analysis. tldovwsmmpar-
ison of the results with those obtained by HHb could be insightful as to whether
they detect similar networks and whether this difference is only attributed behig
noise level in HHb.

We discussed the issue of non existing spurious connections as a ffégult o
herent shortcoming of bivariate methods when there is a propagationoofniaf
tion from one channel to others. Even though this does not affect teetim of
networks as explained In Chapter 5, applying the same analysis using i&a-equ
lent multivariate method could reveal further information. A similar approah h
been applied to EEG and could be adopted to fNIRS similar to what was used in
Chapter 5.

7.4 Custom-made fNIRS Device for TMS Monitoring

In Chapter 5, we described the development and validation of a custom made
fNIRS system for monitoring the effect of the TMS on brain activation ama- ¢
nectivity. Even though commercial NIRS devices are available for dritdsges

of studies, developing custom made devices for specific purposes is ¢ojhrig
172, 181]. The functionality of the device was verified in Chapter 6 usirtg tes
which are well documented in the literature. In order to further validate thieele
and test the hypothesis that brain activation in the motor and visual cortices ¢
be detected by this device, we will be using it in the practice of a novel uralater
joystick based tracking task [182]. This task has been used by our cailalos for
different studies in the past research during fMRI. This past woskras us that
significant change in both brain function and behavior occur duringrietipe of
this task [183]. In addition, the availability of fMRI data during task perfoncea
makes comparison of the data from the device with those from fMRI easier.
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One major future improvement is integrating the TMS 3D stimulation localiz-
ing system into fNIRS optodes so that fNIRS monitoring location and TMS stimu-
lation location can both be registered on an anatomical MRI image. Currently, 3D
object trackers are used for co-registering TMS stimulation target witmatoen-
ical MRI image of the subject’s brain. A similar approach can be used to track
fNIRS probe on the head to ensure correct spatial relation betweendhe tw

rTMS has been shown to be effective in improving performance in motor skill
practice. Monitoring the accumulating effect of TMS on brain hemodynanains ¢
be beneficial in understanding the mechanism of effect of rTMS invaivedis
process. Moreover, comparison of neural activation while practicimgpt@r skill
task before and after rTMS stimulation session can help evaluate thedffébdS
on the brain in a qualitative manner. In particular, the fNIRS data collected in
this way can also be used in combination with the connectivity analysis method
described in Chapter 5 to evaluate brain connectivity changes followinght&
stimulation.

Investigating the effect of rTMS on the brain using the fast optical signal
recent subject of interest [73]. This type of optical signal has tharsdge of a
much higher temporal resolution compared to that of hemodynamic respmhise a
therefore capable of detecting rTMS-induced changes in a much stiortescale.
Even though the capabilities of the device described in Chapter 6 for detéasin
optical signal was not demonstrated in this thesis, this device could potengally b
used for this purpose using minimum changes. Validation and application of this
device in an rTMS study for detecting fast optical signal is in the scopeauof o
future studies.
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