High speed and energy efficient hardware architectures for LTE-advanced systems

by

Chinmaya Mahapatra

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE

in

The Faculty of Graduate and Postdoctoral Studies (Electrical & Computer Engineering)

THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver)

October 2013

© Chinmaya Mahapatra, 2013
Abstract

The explosive growth of internet traffic, fueled by an ever increasing availability of mobile wireless devices and demands of end users to be always connected, provides a challenge for cellular and broadband wireless access technologies. In this thesis, we present novel approaches of physical layer architectures Orthogonal Wavelet Division Multiple Access (OWDMA) & Fast Inverse Square Root based Matrix Inverse (FISRMI) that is shown to substantially improve bit error rate (BER), increase data rate, accommodating more number of users, low power consumption and cover dead zones effectively. The work presented in this thesis consists of basically two parts which provides solutions to different problems in the Long Term Evolution (LTE) networks.

In LTE-Advanced (LTE-A), heterogeneous networks (HetNet) concept using centralized coordinated multipoint (CoMP) transmitting Radio resources over optical fibers LTE-A Radio-Over-Fiber (ROF) has provided a feasible way of satisfying user demands. A OWDMA processor architecture is proposed and evaluated. To validate the architecture, circuit is designed and synthesized on a Xilinx vertex-6 Field Programmable Gate Array (FPGA). We compare our architecture with similar available architectures for resource utilization & timing and provide performance comparison with OFDMA for different quality metrics of communication systems. The OWDMA architecture is found to perform better than OFDMA for BER performance versus signal to noise ratio (SNR) in ROF media. It also
gives higher throughput and mitigates the bad effect of Peak to Average Power ratio (PAPR) and Inter carrier interference (ICI).

Secondly, a low complexity and high speed matrix inversion algorithm FISRMI using fast inverse square root based on QR-decomposition and systolic array was designed. Matrix operations are costliest computational module within multiple input multiple output (MIMO)-LTE receivers. The capital expenditure (CAPEX) is reduced by implementing a 4x4 matrix inverse in Xilinx Virtex-6 FPGA by optimizing the module for speed and power by pipelining. The results are compared with state of art techniques of Coordinate Rotation Digital Computer (CORDIC) based algorithms and the various Minimum Mean Squared Error channel matrices of size 4x4 and 8x8 are inverted at different bit precision on a BER plot.
Preface

Co-authorship statement

I hereby declare that I am the main contributor and first author of this manuscript, as well as the related papers published [1, 2] written in collaboration with Dr. Thanos Stouraitis, Prof. Victor C.M. Leung, Ashwin Ramakrishnan and Saad Mehboob at the University of British Columbia. These papers stemmed from portions of and findings in parts of Chapters 1–4 of this thesis. I also contributed as second author in [3] with Saad Mahboob where I helped in formulating the capacity equation for Massively Distributed Antenna Systems.

I also led the efforts in producing a journal manuscript from the research contributions documented in Chapters 3, co-authored with Dr. Thanos Stouraitis and Prof. Victor C.M. Leung, entitled, “An Orthogonal Wavelet Division Multiple Access Processor Architecture for LTE-Advanced Radio-over-Fiber Systems over Heterogeneous Networks”.

My primary responsibilities in our collaboration included identifying and formulating the research questions and proposed schemes, performing literature reviews to map out previous works, designing the test bed to support our research, preparing and submitting conference papers and journal manuscripts to peer-review our findings and results, and preparing this thesis manuscript. The contributions of Dr. Thanos Stouraitis and Prof. Victor C.M. Leung included refining the research problem formulation, assisting with resolving technicalities of the algorithms published in conferences and submitted to Journal and providing invaluable paper and manuscript edits, revisions and suggestions.
Table Of Contents

Abstract ... ii
Preface.. iv
Table Of Contents.. v
List Of Tables... ix
List Of Figures.. x
List Of Abbreviations .. xiii
Acknowledgements ... xviii
Dedication .. xix
1. Introduction ... 1
 1.1 Objectives & Motivations .. 1
 1.2 Technical Issues .. 2
 1.3 Research Contributions ... 4
 1.4 Outline Of The Thesis ... 6
2. Background ... 7
 2.1 Evolution Of Wireless Standard ... 7
 2.2 Long Term Evolution ... 9
 2.3 Protocol Architecture ... 10
 2.3.1 SAE Technology ... 11
 2.3.2 E-UTRAN Architecture ... 12
 2.4 LTE PHY Layer .. 13
 2.4.1 Channel Coding .. 14
 2.4.2 Physical Channel (PDSCH) Processing .. 16
 2.4.3 Scrambling .. 16
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.4</td>
<td>Modulation</td>
<td>16</td>
</tr>
<tr>
<td>2.4.5</td>
<td>Codebook Precoding</td>
<td>16</td>
</tr>
<tr>
<td>2.4.6</td>
<td>LTE Frame Structure</td>
<td>17</td>
</tr>
<tr>
<td>2.4.7</td>
<td>Resource Element Mapping</td>
<td>17</td>
</tr>
<tr>
<td>2.4.8</td>
<td>Cell-Specific Reference Signals</td>
<td>19</td>
</tr>
<tr>
<td>2.4.9</td>
<td>OFDMA</td>
<td>19</td>
</tr>
<tr>
<td>2.4.10</td>
<td>SC-FDMA</td>
<td>20</td>
</tr>
<tr>
<td>2.4.11</td>
<td>Downlink Physical Layer Procedures</td>
<td>21</td>
</tr>
<tr>
<td>2.4.12</td>
<td>Uplink Physical Layer Procedures</td>
<td>21</td>
</tr>
<tr>
<td>2.4.13</td>
<td>Receiver UE Processing</td>
<td>22</td>
</tr>
<tr>
<td>2.5</td>
<td>LTE Advanced: Proposed Key Areas For Improvement</td>
<td>23</td>
</tr>
<tr>
<td>2.6</td>
<td>LTE Advance Techniques</td>
<td>24</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Heterogeneous Networks</td>
<td>24</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Carrier Aggregation (CA)</td>
<td>25</td>
</tr>
<tr>
<td>2.6.3</td>
<td>Coordinated Multipoint (CoMP)</td>
<td>27</td>
</tr>
<tr>
<td>2.6.4</td>
<td>Enhanced MIMO</td>
<td>28</td>
</tr>
<tr>
<td>2.7</td>
<td>Cellular Architectures</td>
<td>29</td>
</tr>
<tr>
<td>2.7.1</td>
<td>Micro Base Station Architecture</td>
<td>29</td>
</tr>
<tr>
<td>2.7.2</td>
<td>Femtocell Architecture</td>
<td>31</td>
</tr>
<tr>
<td>2.7.3</td>
<td>Broadband Radio Over Fiber Distributed Antenna System Architecture</td>
<td>33</td>
</tr>
<tr>
<td>2.8</td>
<td>Wavelets in Wireless Communications</td>
<td>36</td>
</tr>
<tr>
<td>2.8.1</td>
<td>Flexibility Of Orthogonal Wavelet System</td>
<td>37</td>
</tr>
<tr>
<td>2.8.2</td>
<td>Wavelet Based Downlink Scheduling In LTE Systems</td>
<td>38</td>
</tr>
<tr>
<td>2.8.3</td>
<td>Wavelet Based PAPR Reduction In OFDMA Systems</td>
<td>38</td>
</tr>
<tr>
<td>2.8.4</td>
<td>Low Complexity In Wavelet Based System As Compared To OFDMA</td>
<td>39</td>
</tr>
<tr>
<td>2.8.5</td>
<td>Wavelet Based Multi Carrier Multiple Access Scheme For Cognitive Radio</td>
<td>39</td>
</tr>
<tr>
<td>2.9</td>
<td>Literature Review Of MIMO-LTE Matrix Inversion Algorithms</td>
<td>40</td>
</tr>
<tr>
<td>2.10</td>
<td>Summary</td>
<td>41</td>
</tr>
</tbody>
</table>
3. A Orthogonal Wavelet Division Multiple Access Processor Architecture For LTE-A Radio-Over-Fiber HetNet Systems

3.1 Overview Of OWDMA
3.2 Orthogonal Wavelet Division Multiplexing
 3.2.1 Formulation Of OWDM From The 9/7-Filter Using Lifting
 3.2.2 Sequential Output-Based Parallel Processing Architecture For OWDM
3.3 Proposed OWDMA Processor Architecture For LTE A-ROF Layer
 3.3.1 Scheduler
 3.3.2 Core Unit
 3.3.3 Control Unit
 3.3.4 Coefficient Generator Unit
3.4 Pipelining The Parallel Architecture For Low Power
3.5 Performance Results And Comparisons
 3.5.1 Synthesis Of Proposed Architecture & Resource Utilization
 3.5.2 Comparison With Various Architectures
3.6 Quality Metric Comparison In 4G LTE-Radio-Over-Fiber System
 3.6.1 Bit-Error-Rate Comparison
 3.6.2 Throughput Of OWDMA System
 3.6.3 Peak Average To Power Ratio
 3.6.4 Inter Carrier Interference
3.7 Summary

4. Fast Inverse Square Root Based Matrix Inverse For MIMO-LTE Systems

4.1 Matrix Inversion Using QR Decomposition And Systolic Array
 4.1.1 QR Decomposition Using Givens Rotation
 4.1.2 Fast Inverse Square Root
 4.1.3 Systolic Architecture
4.2 FPGA Implementation And Analysis
4.3 LTE MIMO MMSE Matrix Inversion BER
4.4 Summary .. 98

5. Conclusion .. 99
 5.1 Summary Of Contributions ... 99
 5.2 Future Directions .. 100
 5.3 Final Remarks ... 101

Bibliography .. 102

Appendix A ... 108

Appendix B ... 112
List Of Tables

Table 2.1: LTE specifications (© 2008 3GPP) ... 10
Table 3.1: Forward odd coefficients ... 58
Table 3.2: Forward even coefficients .. 59
Table 3.3: FPGA resource consumption summary for OWDMA 63
Table 3.4: Comparison between various 1-D architectures .. 65
Table 3.5: Resource utilization for OFDMA & OWDMA processors 66
Table 3.6: Simulation parameters .. 71
Table 3.7: Fiber parameters in optical link ... 76
Table 4.1: Comparisons of computational operations .. 94
Table 4.2: Resource estimation of 4x4 matrix inversion core 95
Table A.1: Test hardware requirements .. 110
Table A.2: Lab test equipment .. 110
Table A.3: Software tools .. 111
List Of Figures

Figure 2.1: Overview of present and future wireless communication systems [9], [10], [11] .. 8

Figure 2.2: SAE (system architecture evolution) and LTE network, from http://www.artizanetworks.com/lte_tut_sae_tec.html (© 2012 Artiza Networks, Inc.) .. 12

Figure 2.3: Radio interface protocol architecture around the physical layer [13] (© 2008 3GPP). ... 13

Figure 2.4: Overview of uplink physical channel processing [14] (©2008 3GPP) ... 15

Figure 2.5: Overview of downlink physical channel processing [14] (©2008 3GPP) ... 15

Figure 2.6: Radio frame structure for LTE [14] (©2008 3GPP) .. 17

Figure 2.7: Channel bandwidth parameter of LTE ... 17

Figure 2.8: Resource allocated per user in time and frequency [14] (©2008 3GPP) ... 18

Figure 2.9: OFDMA vs SC-FDMA [14] (©2008 3GPP). .. 20

Figure 2.10: Carrier aggregation [16] (©2011 3GPP) ... 26

Figure 2.11: Base station cooperation: intersite and intrasite CoMP. [17] (©2011 IEEE) ... 27

Figure 2.12: Femto cell architecture [5] (©2011 IEEE) .. 32

Figure 2.13: Broadband radio over fiber distributed antenna system architecture [5] (©2011 IEEE) ... 34
Figure 3.1: Signal to noise ratio versus bit error rate comparison for various orthogonal wavelet families. [51] (©2008 IEEE) ... 46

Figure 3.2: The core filter unit showing 9-tap and 7-tap FIR filter structure with input X[N]. ... 51

Figure 3.3: The top level Generic OWDMA processor implementation block diagram. ... 53

Figure 3.4: Timing diagram showing logical signals with clock ... 55

Figure 3.5: Symmetric boundary extension of input data ... 56

Figure 3.6: Control logic finite state machine implementation ... 57

Figure 3.7: Deployment diagram of 4G LTE-A ROF systems having centralized architecture. (a) Overview of centralized eNB architecture. (b) Transmitter unit. (c) Receiver unit. 69

Figure 3.8: Signal to noise ratio versus bit error rate comparison for OWDMA and OFDMA architectures in LTE A ROF systems. (a) Signal to noise ratio versus bit error rate comparison for rate-1/2 turbo-coded & uncoded QPSK-OWDMA and QPSK-OFDMA. (b) Signal to noise ratio versus bit error rate comparison for rate-1/2 turbo-coded & uncoded 16QAM-OWDMA and 16QAM-OFDMA. (c) Signal to noise ratio versus bit error rate comparison for rate-1/2 turbo-coded & uncoded 64QAM-OWDMA and 64QAM-OFDMA. (d) Signal to noise ratio (radio-over-fiber) versus bit error rate comparison for QPSK-OWDMA and QPSK-OFDMA at different fiber lengths. ... 75

Figure 3.9: Signal to noise ratio versus throughput (spectral efficiency) for OWDMA and OFDMA systems at different values of M 78

Figure 3.10: CCDF plot of PAPR in dB ... 80

Figure 3.11: Frequency offset model .. 80

Figure 3.12: ICI power of OWDM & OFDM systems .. 82
Figure 4.1: 2’s Complement signed form of floating point numbers with exponent and mantissa ... 87

Figure 4.2: Block diagram of hardware model ... 91

Figure 4.3: Systolic array architecture... 92

Figure 4.4: (a) 16-QAM MMSE decoder using CORDIC 16 & 20-bit and floating point based FISRMI algorithm. (b) 64-QAM MMSE decoder using CORDIC 16 & 20-bit and floating point based FISRMI algorithm. ... 97

Figure A.1: Test bed experimental setup... 109
List Of Abbreviations

3GPP 3rd Generation Partnership Project
ACK/NACK Acknowledge/Not Acknowledge
ADC Analog to Digital Converter
AMC Advanced Mezzanine Card
AMPS Advanced Mobile Phone System
ARQ Automatic Repeat request
AWGN Additive White Gaussian Noise
BER Bit Error Rate
BRAM Block Random Access Memory
CA Carrier Aggregation
CAPEX Capital Expenditure
CCDF Complementary Cumulative Distribution
CDMA Code Division Multiple Access
CLB Configuration Logic Block
CMOS Complementary Metal Oxide Semiconductor
CoMP Coordinated Multipoint
CORDIC Coordinate Rotation Digital Computer
CP Cyclic Prefix
CPRI Common Public Radio Interface
CPU Central Processing Unit
CQI Channel Quality Indications
CRC Cyclic redundancy Check
CWT Continuous Wavelet Transform
DAC Digital to Analog Converter
DAS Distributed Antenna Systems
DFT Discrete Fourier Transform
DLSCH Downlink Shared Channel
DSP Digital Signal Processing
DWT Discrete Wavelet Transform
E-UTRAN Evolved Universal Terrestrial Radio Access
eICIC Enhanced Inter Cell Interference Coordination
eNB evolved Node Base Station
EPA Extended Pedestrian A Model
ETACS European Total Access Communication
FDD Frequency Division Duplex
FFT Fast Fourier Transform
FISRMI Fast Inverse Square Root based Matrix Inverse
FM Frequency modulation
FPGA Field Programmable Gate Array
GPRS General Packet Radio Service
GSM Global System for Mobile Communications
HARQ Hybrid Automatic Repeat request
HeNB Heterogeneous Node Base station
HetNet Heterogeneous Networks
HSDPA High-speed Downlink Packet Access
HSPA High-speed Packet Access
HSUPA High-speed Uplink Packet Access
ICI Inter Carrier Interference
IEEE Institute of Electrical and Electronics Engineers
IFFT Inverse Fast Fourier Transform
IOB Input/Output Block
IP Internet Protocol
ISI Inter Symbol Interference
ISM Industrial, Scientific and Medical
ITU International Telecommunication Union
LTE Long Term Evolution
LTE-A Long Term Evolution- Advanced
MAC Medium Access Control
MAN Metro Area Networks
MIMO Multiple Input and Multiple Output
MMSE Minimum Mean Squared Error
NZDSF Non-Zero Dispersion Shifted Fiber
OBSAI Open Base Station Architecture Initiative
OFDMA Orthogonal Frequency Division Multiple Access
OPEX Operational Expenditure
OWDMA Orthogonal Wavelet Division Multiple Access
PAPR Peak to Average Power ratio
PCI Pre-coding Control Information
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDCCH</td>
<td>Physical Downlink Control Channel</td>
</tr>
<tr>
<td>PHICH</td>
<td>Physical Hybrid ARQ Indicator Channel</td>
</tr>
<tr>
<td>PHY</td>
<td>Physical</td>
</tr>
<tr>
<td>PMI</td>
<td>Pre-coding Matrix Indicator</td>
</tr>
<tr>
<td>PON</td>
<td>Passive Optical Network</td>
</tr>
<tr>
<td>PRB</td>
<td>Physical Resource Block</td>
</tr>
<tr>
<td>PUCCH</td>
<td>Physical Uplink Control Channel</td>
</tr>
<tr>
<td>QAM</td>
<td>Quadrature Amplitude Modulation</td>
</tr>
<tr>
<td>QMF</td>
<td>Quadrature Mirror Filter</td>
</tr>
<tr>
<td>QoS</td>
<td>Quality of Service</td>
</tr>
<tr>
<td>QPP</td>
<td>Quadrature Permutation Polynomial</td>
</tr>
<tr>
<td>QPSK</td>
<td>Quadrature Phase Shift Keying</td>
</tr>
<tr>
<td>RAU</td>
<td>Remote Antenna Unit</td>
</tr>
<tr>
<td>RE</td>
<td>Resource Element</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>RLC</td>
<td>Radio Link Control</td>
</tr>
<tr>
<td>ROF</td>
<td>Radio over Fiber</td>
</tr>
<tr>
<td>RRC</td>
<td>Radio Resource Control</td>
</tr>
<tr>
<td>RRM</td>
<td>Radio Resource Management</td>
</tr>
<tr>
<td>RS</td>
<td>Reference Signal</td>
</tr>
<tr>
<td>SAE</td>
<td>System architecture Evolution</td>
</tr>
<tr>
<td>SAP</td>
<td>Service Access Point</td>
</tr>
<tr>
<td>SBPP</td>
<td>Sequential output based parallel processing</td>
</tr>
<tr>
<td>SC-FDMA</td>
<td>Single Carrier- Frequency Division Multiple Access</td>
</tr>
</tbody>
</table>
SDR Software Defined Radio
SGR Squared Givens Rotation
SISO Single Input Single Output
SNR Signal to Noise Ratio
TDD Time-division Duplex
TDM Time Division Multiplexing
TTI Transmission Time Interval
UE User Equipment
UMTS Universal Mobile Telecommunications System
VLSI Very Large Scale Integration
WCDMA Wideband Code Division Multiple Access
WDM Wavelength Division Multiplexing
WiFi Wireless Fidelity
WiMAX Worldwide Interoperability for Microwave Access
WLAN Wireless Local Area network
Acknowledgements

I wish to extend my deepest thanks to my supervisor Professor Victor C.M. Leung, and my mentor Dr. Thanos Stouraitis for their continued help, support and inspiration. It would not have been possible to perform and complete this research and thesis without their mentorship and guidance. I also wish to thank Dr. Roberto Rosales, Dr. Hu Jin, Saad Mahboob & my fellow classmate Ashwin Ramakrishnan for providing me help, support and invaluable feedback during my research at UBC.

Research performed and documented in this thesis was supported by the Canadian Natural Sciences and Engineering Research Council (NSERC) through grant STPGP 396756.

I am thankful to IEEE, 3GPP, ITU, Artiza Networks for their permission to include figures and tables from their website in this thesis.
Dedication

I lovingly dedicate this thesis to my family and friends, to whom I am greatly indebted for moral support.
Chapter 1

Introduction

1.1 Objectives & Motivations

The diversity of applications used over the internet has resulted in a demand for increased speed (data rate) over the network and a need for accommodating more users per unit area. This demand has urged research communities to provide greener and more cost-efficient networks. Several research studies have been conducted over the last decade proposing cost-efficient broadband architectures.

This manuscript proposes two new techniques namely Orthogonal Wavelet division Multiple Access (OWDMA) and Fast Inverse Square root based Matrix inverse (FISRMI). OWDMA architecture provides physical (PHY) layer solution for Heterogeneous Networks (HetNet) implementation in Long Term Evolution – Advanced (LTE-A) networks and FISRMI provides an efficient way of calculating Matrix inverse for channel estimation in 4x4 & 8x8 Multiple Input and Multiple Output (MIMO) implementation proposed in LTE-A future releases.
1.2 Technical Issues

MIMO - Long Term Evolution (LTE) is the one of new technologies in wireless communications to improve bandwidth utilization efficiency. The access mode of multi-user MIMO LTE using a popular digital schemes Orthogonal Frequency Division Multiple Access (OFDMA) for downlink and Single-Carrier Frequency Division Multiple Access (SC-FDMA) for uplink which provides high data rate in wireless environments. Multiple access channels are achieved in OFDMA by assigning narrow sub-bands, each narrow sub-band has flat frequency response and frequency selective channel is converted into a lot of flat-fading sub-channels. This can achieve a higher MIMO spectral efficiency averaging interferences from neighboring cells and less affected to various kinds of impulse noise.

There are major hindrances in the present LTE schemes and technologies. Some of the key drawbacks are not able to cope up with growing user demands, not able to suffice very high data rate requirements, drainage of batteries at user side, call dropping in dead zones like tunnels & subways, use of OFDMA in downlink and SCFDMA in uplink, Peak to Average Power ratio (PAPR) and Inter Carrier Interference (ICI) problems in OFDMA, growing complexity of Fast Fourier Transform (FFT) size and error induced by Digital to Analog Converter (DAC) and Analog to Digital Converter (ADC) bit resolutions.

This gave way to LTE-A that proposes to mitigate the problems as mentioned above. HetNet implementation, Coordinated Multipoint (CoMP) architectures utilizing femto and pico cells are promising next generation cellular architectures. Moreover, next generation LTE systems using Radio signals over optical fibers are evolving towards centralized architectures as a promising solution to meet the ever increasing demand for high-speed
wireless connectivity. Centralized architectures, epitomized by micro base stations, femto & picocell base-station/access-point architectures and mesh networking solutions have promised to provide several benefits, including reduced power consumption, enhanced radio spectrum utilization capacity and diversity of next-generation wireless communication networks [4].

As radio spectrum is expensive and band-limited, in recent years, centralized LTE A – Radio Over Fiber (ROF) have attracted significant research interest. It focuses on the optimum construction and utilization of the hardware resources to cater an area of high traffic. A typical design uses optical fiber to move analog or digitized Radio Frequency (RF) between the central facility and the remote sites [5]. Choosing optical fiber over conventional coaxial cables enables the usage of the enormous bandwidth provided by the fiber as well as almost error-free transmission for short ranges in a metro area network (MAN). Software-defined radio (SDR) provides an efficient, cost-effective and easy-to-handle deployment architecture for the LTE A-ROF system. It follows a normal server/multi-client IT network and provides flexibility in architecture deployment. It also provides big savings for service providers towards the operational and infrastructure cost.

This manuscript specifically proposes a novel and efficient OWDMA architecture that has the potential of replacing OFDMA in downlink and SC-FDMA in uplink into a single, power efficient (green), high throughput achievable and channel variations adaptable structure. The manuscript also proposes a novel and new matrix inversion algorithm FISRMI that can provide better channel estimation aiding to better Bit Error Rate (BER) and better bit resolution owing to its floating point implementation.
1.3 Research Contributions

The novel schemes and architectures developed and documented here provide new promising contributions to LTE-A PHY (Layer 1). The core research contributions of my thesis are:

1. Developing a new OWDMA Processor Architecture for LTE-A Radio-over-Fiber in Heterogeneous Network implementation (chapter 3).
 - In the current LTE and Wi-Fi systems, OFDMA multiple access is the technology of choice [6]. OFDMA uses inverse fast Fourier transform (IFFT) at the transmitter and FFT at the receiver and allocates fixed resources to users for a given set of operating parameters. Despite its several advantages, the use of OFDMA increases the cost and utilization overhead of system resources. Moreover, it suffers from large implementation complexity, requiring a fixed allocation of resources to all the users regardless of the present traffic as well as a high PAPR [7].
 - The deployment in LTE-A future 3rd Generation Partnership Project (3GPP) rel 10 and above requires that its structure should be flexible enough to adapt to different values of transform size according to channel conditions in order to service uniformly the same number of users. The structure needs to accommodate both forward and inverse operations through a common control input. The architecture should be power efficient, be easily controllable through a single control, and should have input-output ports matching to other system sub-blocks that will satisfy the timing requirements of the whole system. Moreover, it is important for it to offer improved performance in
terms of spectral efficiency (throughput), quality of service (better BER at the same Signal to Noise Ratio (SNR)) and should fit well in Radio-over-Fiber systems. An OWDMA architecture is developed in this paper that has significantly better performance, is easy to deploy, and consumes fewer resources than any similar architecture available in the literature.

2. Developing a novel FISRMI floating point architecture for MIMO Minimum Mean Squared Error (MMSE) channel inversion & estimation (chapter 4).

- It has been proposed that future LTE-A systems will implement 4x4 and 8x8 multi-user MIMO in future releases to achieve the peak data rate of 1Gbps. Current fixed point implementations of matrix inverse consisting of 16-bit and 20-bit bit resolution are not enough to accurately estimate the channel in highly dispersive channels. The integrity of the data is important. MIMO decoders are also quite complex and put a heavy burden on the resources of the overall system and inverse operations in the receiver side uses a lot of resources.

- We in our thesis provide a QR decomposition and systolic array based matrix inverse algorithm. The novelty in our method is the use of fast inverse square root calculations that gets rid of the actual complex division and square root operations. Moreover, it is based on floating point which can aid in improving the BER error caused due to low resolutions in DAC’s and ADC’s.
1.4 Outline Of The Thesis

The major research issues and brief highlights of the novel solutions to those problems are explained in the Chapter 1. Chapter 2 briefly describes the LTE and LTE-A techniques and their implementation complexities in a nutshell. The OWDMA architecture, implementation and comparison with OFDMA is described in chapter 3. Matrix inversion architecture FISRMI for future MIMO – LTE is proposed in chapter 4. Finally, this manuscript shall conclude with a summary of findings and possible future directions in Chapter 5.
Chapter 2

Background

This chapter gives an overview of the LTE standard in a nutshell. It also describes the techniques & methodologies available in literature for LTE-A standard to be released in future and possible implementation structures that has motivated our research.

2.1 Evolution Of Wireless Standard

Wireless communication has grown tremendously over the past two decades. It was first conceptualized in Bell Labs that multiple transmitters can be used to cover more area and the frequency reuse technology was developed to increase system capacity & reach. The First generations (1G) of mobile systems were analog in nature that used Frequency modulation (FM). Advanced Mobile Phone System (AMPS) in United States and European Total Access Communication (ETACS) in Europe around early 1980's were the most popular 1G wireless communication systems. Second generation (2G) introduced around 1995 by communication standard development groups 3GPP were Global System for Mobile Communications (GSM) and Code Division Multiple Access (CDMA) 2000 that used digital mode of transmission. These were used mainly for voice communication. Wireless Local Area network (WLAN) (802.11) was introduced for high data rate requirements. 2G systems were not enough for the increasing demands of end users. After 10-15 years of specification development
International Telecommunication Union (ITU) released Universal Mobile Telecommunications System (UMTS) and Wideband Code Division Multiple Access (WCDMA) as the 3G (3rd generation) standard. It had improved data rate and internet applications like online gaming, real time data streaming were possible as well as gave emphasis on improving quality of service. Further improvements on 3G systems gave rise to High speed packet access (HSPA) that has data over packets for everything type of user application except voice which was still circuit switched. In the year 2008 3GPP released its version R8 that introduced a high data rate of 300 Mbps, all packet switching LTE standard of wireless communication. As wireless standards continue to improve and grow, future releases of LTE that is LTE-A will support even more users and data rate with much better quality of service. [8], [9], [10], [11].

Figure 2.1: Overview of present and future wireless communication systems [9], [10], [11]
2.2 Long Term Evolution

LTE is the project name of a new high performance radio interface for cellular mobile communication systems. It is the beginning of the 4th generation (4G) of radio technologies designed to increase the capacity and speed of mobile networks. In Release 8, LTE [6] was standardized by 3GPP as the successor of the UMTS. The downlink and uplink peak data rate was decided to be 100 Mbit/s and 50 Mbit/s, respectively, when operating in a 20MHz spectrum allocation. According to 3GPP, a set of following requirements was identified

- Reduced cost per bit
- Increased service provisioning – more services at lower cost with better user experience
- Flexibility of the use of existing and new frequency bands
- Open interfaces & Simplified architecture
- Decreasing power consumption in User Equipment

Although there are major step changes between LTE and its 3G predecessors, it is nevertheless looked upon as an evolution of the UMTS / 3GPP 3G standards. LTE replaces CDMA and spread spectrum techniques with OFDMA & SC-FDMA multiple access techniques in downlink and uplink respectively. In 3G networks like UMTS & High-speed Downlink Packet Access (HSDPA) there was radio network controller that has to control the base stations (NodeB’s), whereas in LTE the base station evolved to become evolved Node Base Station (eNB) where the resource control is determined by the efficiency of eNB’s. The complete data is packetized in LTE.
Table 2.1: LTE specifications (© 2008 3GPP)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>DETAILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak downlink speed 64QAM (Mbps)</td>
<td>100 (SISO), 172 (2x2 MIMO), 326 (4x4 MIMO)</td>
</tr>
<tr>
<td>Peak uplink speeds (Mbps)</td>
<td>50 (QPSK), 57 (16QAM), 86 (64QAM)</td>
</tr>
<tr>
<td>Data type</td>
<td>All packet switched data (voice and data). No circuit switched.</td>
</tr>
<tr>
<td>Channel bandwidths (MHz)</td>
<td>1.4, 3, 5, 10, 15, 20</td>
</tr>
<tr>
<td>Duplex schemes</td>
<td>Frequency Division Duplex (FDD) and Time-division Duplex (TDD)</td>
</tr>
<tr>
<td>Mobility</td>
<td>0 - 15 km/h (optimised), 15 - 120 km/h (high performance)</td>
</tr>
<tr>
<td>Latency</td>
<td>Idle to active less than 100ms Small packets ~10 ms</td>
</tr>
<tr>
<td>Spectral efficiency</td>
<td>Downlink: 3 - 4 times Rel 6 HSDPA</td>
</tr>
<tr>
<td></td>
<td>Uplink: 2 -3 x Rel 6 HSUPA</td>
</tr>
<tr>
<td>Access schemes</td>
<td>OFDMA (Downlink) SC-FDMA (Uplink)</td>
</tr>
<tr>
<td>Modulation types supported</td>
<td>QPSK, 16QAM, 64QAM (Uplink and downlink)</td>
</tr>
</tbody>
</table>

2.3 Protocol Architecture

Along with the radio access technology, there is a change in the core network architecture of the network in LTE. The architecture described in this specification covers the interface between the User Equipment (UE) and the network. The interface is composed of the Layer 1, 2 and 3. The 3GPP TS 36.200 series describes the Layer 1 (Physical Layer) specifications & Layers 2 and 3 are described in the 36.300 series [6].
2.3.1 SAE Technology

System Architecture Evolution (SAE) is the network architecture developed specifically for LTE networks [12]. It has been formed thinking of the future when LTE-A releases, so that minimal changes are required for the basic backbone. The main advantages and variations of SAE technology are described below.

1. Increased Data Rates

With increase in peak data rates in LTE, a new architecture was required to support higher data rates. So, SAE technology was developed to cater for the increase in data rates.

2. All Internet Protocol Architecture

Earlier technologies in 3G were using circuit switched data for voice transmission. SAE architecture adopted an all IP based structure which makes the handling of call management easier.

3. Reduced Latency

Since more number of interactions are required in LTE networks, so SAE has evolved to reduce the latency to as low as 10 ms.

4. Less CAPEX And OPEX

A key element for any operator is to reduce costs. It is therefore essential that any new design reduces both the capital expenditure (CAPEX) and the operational expenditure (OPEX). The new flat architecture used for SAE System Architecture Evolution means that only two node types are used. In addition to this a high level of automatic configuration is introduced and this reduces the set-up and commissioning time.
2.3.2 E-UTRAN Architecture

According to 3GPP TR 25.912 [13], the Evolved Universal Terrestrial Radio Access (E-UTRAN) consists of eNB, providing the evolved UTRAN U-plane and C-plane protocol terminations towards the UE. The eNBs are interconnected with each other by means of the X2 interfaces. It is assumed that there always exist an X2 interface between the eNBs that need to communicate with each other, e.g., for support of handover of UEs in LTE. The eNBs are also connected by means of the S1 interface to the EPC (Evolved Packet Core). The S1 interface supports a many-to-many relation between aGWs and eNBs.”
Fig. 2.3 shows the E-UTRA radio interface protocol architecture around the physical layer (Layer 1). The physical layer interfaces the Medium Access Control (MAC) sub-layer of Layer 2 and the Radio Resource Control (RRC) Layer of Layer 3. The circles between different layer/sub-layers indicate Service Access Points (SAPs). The physical layer offers a transport channel to MAC. The transport channel is characterized by how the information is transferred over the radio interface. MAC offers different logical channels to the Radio Link Control (RLC) sub-layer of Layer 2. A logical channel is characterized by the type of information transferred.

2.4 LTE PHY Layer

According to Overview of 3GPP [14], the multiple access scheme for the LTE physical layer is based on OFDMA with a Cyclic Prefix (CP) in the downlink and SC-FDMA with CP in the uplink.
OFDMA technique is particularly suited for frequency selective channel and high data rate. It transforms a wideband frequency selective channel into a set of parallel flat fading narrowband channels, thanks to CP. This ideally, allows the receiver to perform a low complex equalization process in frequency domain, i.e., 1 tap scalar equalization. The layer 1 techniques and channels are described as follows:

2.4.1 Channel Coding

The channel coding scheme for transport blocks in LTE is Turbo Coding with a coding rate of R=1/3, two 8-state constituent encoders and a contention-free quadratic permutation polynomial (QPP) turbo code internal interleaver. Trellis termination is used for the turbo coding. Before the turbo coding, transport blocks are segmented into byte aligned segments with a maximum information block size of 6144 bits. Error detection is supported by the use of 24 bit cyclic redundancy check (CRC).
Figure 2.4: Overview of uplink physical channel processing [14] (©2008 3GPP)

Figure 2.5: Overview of downlink physical channel processing [14] (©2008 3GPP)
2.4.2 Physical Channel (PDSCH) Processing

A physical channel corresponds to a set of time-frequency resources used for transmission of a particular transport channel. Each transport channel maps to a corresponding physical channel. The Physical Downlink Shared Channel (PDSCH) is the main physical channel used for unicast data transmission.

2.4.3 Scrambling

The transport channel encoded bits are scrambled by a bit-level scrambling sequence. The scrambling sequence depends on the physical layer cell identity to ensure interference randomization between cells.

2.4.4 Modulation

The modulation schemes supported in the downlink are Quadrature Phase Shift Keying (QPSK), 16 Quadrature Amplitude Modulation (QAM) and 64QAM, and in the uplink QPSK, 16QAM. The Broadcast channel uses only QPSK.

2.4.5 Codebook Precoding

The modulated symbols per layer are precoded using the codebooks specified in LTE standard [14]. For two antennas (layers), the Discrete Fourier Transform (DFT)-based codebook is used which allows for only two entries, while for four antennas (layers) 16 entries from the Householder matrix are used. The parameters Enable Pre-coding Matrix Indicator (PMI) feedback and Codebook index on the Model Parameters block allow selection of the codebook based on feedback from UE or initial user-specification.
2.4.6 LTE Frame Structure

One element that is shared by the LTE Downlink and Uplink is the generic frame structure. The LTE specifications define both FDD and TDD modes of operation. This generic frame structure is used with FDD. Alternative frame structures are defined for use with TDD. LTE frames are 10 msec in duration. They are divided into 10 subframes, each subframe being 1.0 msec long. Each subframe is further divided into two slots, each of 0.5 msec duration. Slots consist of either 6 or 7 ODFM symbols, depending on whether the normal or extended cyclic prefix is employed.

![Radio frame structure for LTE](image)

Figure 2.6: Radio frame structure for LTE [14] (©2008 3GPP)

2.4.7 Resource Element Mapping

The total number of available subcarriers depends on the overall transmission bandwidth of the system. The LTE specifications define parameters for system bandwidths from 1.25 MHz to 20 MHz as shown in Fig. 2.7.

<table>
<thead>
<tr>
<th>Channel bandwidth BWChannel [MHz]</th>
<th>1.4</th>
<th>3</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission bandwidth configuration NRB</td>
<td>6</td>
<td>15</td>
<td>25</td>
<td>50</td>
<td>75</td>
<td>100</td>
</tr>
</tbody>
</table>

Figure 2.7: Channel bandwidth parameter of LTE
A Physical Resource Block (PRB) is defined as consisting of 12 consecutive subcarriers for one slot (0.5 msec) in duration. A PRB is the smallest element of resource allocation assigned by the base station scheduler. The transmitted downlink signal consists of subcarriers equal to number of bandwidth for a duration of Nsymb OFDM symbols. It can be represented by a resource grid as depicted above. Each box within the grid represents a single subcarrier for one symbol period and is referred to as a resource element.

Figure 2.8: Resource allocated per user in time and frequency [14] (©2008 3GPP)

In the time domain, a guard interval may be added to each symbol to combat inter-OFDM-symbol-interference due to channel delay spread. In EUTRA, the guard interval is a cyclic prefix which is inserted prior to each OFDM symbol. In contrast to packet-oriented networks, LTE does not employ a PHY preamble to facilitate carrier offset estimate, channel estimation, timing synchronization etc. Instead, special reference signals are embedded in the PRBs. Reference signals are transmitted during the first and fifth OFDM symbols of each slot when the short CP is used and during the first and fourth OFDM symbols when the long CP is used.
2.4.8 Cell-Specific Reference Signals

In Rel-8, cell-specific Reference Signal (RS) are provided for 1, 2 or 4 antenna ports

- Pattern designed for effective channel estimation
- Sparse diamond pattern supports frequency-selective channels and high mobility with low overhead
- Up to 6 cell-specific frequency shifts are configurable
- Power-boosting may be applied on the Resource Element (RE) used for RS
- QPSK sequence with low PAPR

2.4.9 OFDMA

LTE uses OFDMA for the downlink – that is, from the base station to the terminal [14]. OFDMA meets the LTE requirement for spectrum flexibility and enables cost-efficient solutions for very wide carriers with high peak rates. OFDM uses a large number of narrow sub-carriers for multi-carrier transmission. The basic LTE downlink physical resource can be seen as a time-frequency grid. In the frequency domain, the spacing between the subcarriers, Δf, is 15kHz. In addition, the OFDM symbol duration time is $1/\Delta f +$ cyclic prefix. The cyclic prefix is used to maintain orthogonality between the sub-carriers even for a time-dispersive radio channel. One resource element carries QPSK, 16QAM or 64QAM. With 64QAM, each resource element carries six bits. The OFDMA symbols are grouped into resource blocks. The resource blocks have a total size of 180kHz in the frequency domain and 0.5ms in the time domain. Each 1ms Transmission Time Interval (TTI) consists of two slots (Tslot).
2.4.10 **SC-FDMA**

The LTE uplink transmission scheme for FDD and TDD mode is based on SC-FDMA [14]. This is to compensate for a drawback with normal OFDM, which has a very PAPR. High PAPR requires expensive and inefficient power amplifiers with high requirements on linearity, which increases the cost of the terminal and also drains the battery faster.

SC-FDMA solves this problem by grouping together the resource blocks in such a way that reduces the need for linearity, and so power consumption, in the power amplifier. A low PAPR also improves coverage and the cell-edge performance. Still, SC-FDMA signal processing has some similarities with OFDMA signal processing, so parameterization of downlink and uplink can be harmonized.

Figure 2.9: OFDMA vs SC-FDMA [14] (©2008 3GPP).
2.4.11 Downlink Physical Layer Procedures

During the cell search, the UE searches for a cell and determines the frame synchronization of that cell. Scheduling is done in the base station (eNodeB). The downlink physical control channel informs the users about their allocated time/frequency resources and the transmission formats to use. The scheduler evaluates different types of information, e.g. Quality of Service parameters, measurements from the UE, UE capabilities, buffer status.

Link adaptation is already known from HSDPA as Adaptive Modulation and Coding. Also in E-UTRA, modulation and coding for the shared data channel is not fixed, but it is adapted according to radio link quality. For this purpose, the UE regularly reports Channel Quality Indications (CQI) to the eNodeB.

Downlink Hybrid Automatic Repeat request (ARQ) is also known from HSDPA. It is a retransmission protocol. The UE can request retransmissions of incorrectly received data packets. Acknowledge/Not Acknowledge (ACK/NACK) information is transmitted in uplink, either on Physical Uplink Control Channel (PUCCH) or multiplexed within uplink data transmission.

2.4.12 Uplink Physical Layer Procedures

The random access may be used to request initial access, as part of handover, or to re-establish uplink synchronization. 3GPP defines a contention based and a non-contention based random access procedure.

Scheduling of uplink resources is done by eNodeB. The eNodeB assigns certain time/frequency resources to the UEs and informs UEs about transmission formats to use. Scheduling grants for the uplink are communicated to the UEs via the Physical Downlink
Control Channel (PDCCH) in the downlink. The scheduling decisions may be based on Quality of Service (QoS) parameters, UE buffer status, uplink channel quality measurements, UE capabilities, UE measurement gaps, etc. As uplink link adaptation methods, transmission power control, adaptive modulation and channel coding rate, as well as adaptive transmission bandwidth can be used.

Uplink timing control is needed to time align the transmissions from different UEs with the receiver window of the eNodeB. The eNodeB sends the appropriate timing-control commands to the UEs in the downlink, commanding them to adapt their respective transmit timing.

Uplink Hybrid ARQ protocol is already known from High-speed Uplink Packet Access (HSUPA). The eNodeB has the capability to request retransmissions of incorrectly received data packets. ACK/NACK information in downlink is sent on Physical Hybrid ARQ Indicator Channel (PHICH).

2.4.13 Receiver UE Processing

OFDM receiver - undoes the unequal cyclic prefix lengths per OFDM symbol in a slot and converts back to the time- and frequency-domain grid structure. MIMO receiver subsystem which includes Channel Estimation employs least-squares estimation using averaging over a subframe for noise reduction for the reference signals, and linear interpolation over the subcarriers for the data elements. This uses the cell-specific RS signals for the channel estimates. Codebook selection employs the MMSE criterion to calculate the codebook index per subframe [15]. When the Enable PMI Feedback parameter is on, this index is fed back to the transmitter for use at the next time step. Otherwise, the user-specified
codebook index is used for the duration of the simulation. The feedback granularity modeled is once for the whole subframe (wideband) and applied to the next transmission subframe. MIMO receiver employs a linear MMSE receiver to combat the interference from the multiple antenna transmissions. Soft-decision demodulation is employed per codeword to facilitate downstream turbo decoding.

2.5 LTE Advanced: Proposed Key Areas For Improvement

LTE-A is a standard in Mobile communication submitted to ITU-T in 2009. It was approved by ITU and was finalized by 3GPP in March 2011 [16]. It is an extension of LTE standard. There were some specific enhancements targeted for LTE-A over LTE. These are as follows:

1. **Data Rate And Spectral Efficiency**

 Increasing the peak data rate in Downlink to 3Gbps and Uplink 1.5Gbps. Higher spectral efficiency, from a maximum of 16bps/Hz in R8 to 30 bps/Hz in R10.

2. **Coverage Of Dead Zones And Interference Cancellation**

 With increase in cell phone users in last decade, congestion in cellular cell sites have increased. Due to the inefficient radio resource reuse technology being used causing interference between cells. It is getting difficult for the network operators to provide a good QoS to customers. Moreover places like subways, sub-urban routes, tunnels have less coverage and calls kept on getting dropped. These are called dead zones and vary from carrier to carrier. LTE-A enhancements over LTE are targeted to mitigate dead zones.
3. **Incorporating Legacy Systems**

Different types of users use the network in a different way and for different applications. Legacy systems like HSPA, HSDPA, GSM, CDMA, General Packet Radio Service (GPRS) and Wireless Fidelity (WiFi) needs to be accommodated. So LTE-A should have backward compatibility to all the systems.

4. **Radio Spectrum Sensing Capabilities (Intelligent Networks)**

In a few years from now, there will be an overlap of coverage between different radio technologies, by the same operator within the same area and the handset or device has to be intelligent enough to make the decision to use the Radio infrastructure. The device or handset will have many radios built in and the software stack will have to make the decision based not only on the received signal strength but the capacity limitations while moving seamlessly between one another to be able to use the best QoS for the type of service used. For example a browsing service will not be as data hungry as a video call or a YouTube video.

2.6 **LTE Advance Techniques**

2.6.1 **Heterogeneous Networks**

Since the radio link performance is fast approaching theoretical limits, the next performance and capacity jump will come from an evolution of network topology in LTE-A by using a mix of macro cells and small cells in a co-channel deployment. LTE-A HetNets will use a mix of macro, pico, femto and radio-over-Fiber Connected base stations, effectively bringing the network closer to the user. LTE-A HetNets will support Range Expansion and Resource Partitioning with an Enhanced Inter Cell Interference Coordination (eICIC) software upgrade to a LTE-R8 network. Range Expansion allows more user
terminals to benefit directly from low-power base stations. Adaptive inter-cell interference coordination uses Almost-Blank Subframes to provide smart resource allocation amongst interfering cells and improves inter-cell load balancing in heterogeneous networks. Advanced terminal receivers cancel interference of legacy overhead channels in Almost-Blank Subframes from interfering cells to enable full Range Expansion of low-power small cells.

2.6.2 Carrier Aggregation (CA)

CA is one of the key techniques in LTE-A to increase the system bandwidth thereby increasing peak data rates. Since backward compatibility with rel 8 & 9 is required, the CA is done with rel 8 & 9 carriers. In LTE-A aggregation is only allowed for five component carriers (i.e., 1.4 MHz/3 MHz/5 MHz/10 MHz/15 MHz/20 MHz) till 20 MHz adding upto a total of 100 MHz. There are three types of aggregations,

1. **Intra-Band Contiguous CA**

In this case, Contiguous bandwidth wider than 20 MHz is used. For example, wideband such as 3.5 GHz band would fit this model.

2. **Inter-Band Non-Contiguous CA**

Non-contiguous band over multiple bands is used here. Network with two spectrum bands (i.e., 2 GHz and 800 MHz) would fit this model. This scenario would have advantage on having higher throughput simply by two carriers as well as the improvement on stable transmission by two different spatial paths on different spectrum bands.
3. **Intra-Band Non-Contiguous CA**

Non-contiguous band in same band is used in this scenario. This model would fit operators in North America or Europe, who have fragmental spectrum in one band or share same cellular network.

![Carrier aggregation diagram](image)

Figure 2.10: Carrier aggregation [16] (©2011 3GPP)

Major Bottlenecks in implementation of CA:

- The major design challenge is on terminal side. Support of higher bandwidths and aggregation of carriers in different frequency bands increase complexity of transceiver circuits, including component design like wideband power amplifiers, highly efficient switches and tunable antenna elements.

- The additional functionality provided to PHY/MAC layer and the adaptations to the RRC layer need to be thoroughly tested.
2.6.3 Coordinated Multipoint (CoMP)

The signal strength is lost with increasing distance from base stations due to path loss fading, shadowing and multipaths interference. Implementation of frequency reuse in 3G and LTE was used to reduce the interference somewhat. But as the network grows in size and more number of subscribers are present, there is increasing interference in the cells.

In [17] network coordination has been presented as an approach to mitigate intercell interference and hence improve spectral efficiency. Fig. 2.11 shows the cooperation architecture for CoMP. The same spectrum resources are used in all sectors, leading to interference for terminals at the edge between the cells, where signals from multiple base stations are received with similar signal power in the downlink.

![Figure 2.11: Base station cooperation: intersite and intrasite CoMP. [17] (©2011 IEEE)](image)
There are two types of CoMP structure possible. One is a decentralized control based structure that involves multiple eNBs. The eNBs may be interconnected by the logical X2 interface. The other is a more centralized architecture with different remote antenna units (RAU). The eNBs are connected to the central processor via optical fiber links.

The cooperation techniques aim to avoid or exploit interference in order to improve the cell edge and average data rates. CoMP can be applied both in the uplink and downlink. All schemes come with the cost of increased demand on backhaul (high capacity and low latency), higher complexity, increased synchronization requirements, more channel estimation effort, more overhead, and so on.

2.6.4 Enhanced MIMO

LTE Rel.8 supported up to 4x4 MIMO multiplexing for downlink and nothing for uplink. LTE-A supports single user MIMO scheme up to 8x8 MIMO for downlink and 4x4 MIMO for uplink. With this technology, it achieves peak spectral efficiency of 30 bit/s/Hz for downlink and 15 bit/sec/Hz for uplink. In other words, single 20MHz bandwidth to achieve up to 600Mbps downlink speed. Multi-user MIMO is also used to increase peak data rate as well as the system capacity and cell edge user throughput. Various methods used in Multi-user MIMO like dedicated downlink beamforming, adaptive transmission power control, and multi cell simultaneous transmission help in increasing throughput of the system.
2.7 Cellular Architectures

2.7.1 Micro Base Station Architecture

Micro base stations are good at providing blanket coverage, especially with techniques such as beam-forming, which adaptively directs radio signals toward receivers. However, some areas will always present challenges: behind buildings and hills or inside buildings. Studies have shown that poor performance in homes or offices is one of the top reasons why people change cellular carriers. When cellular networks were first rolled out, people accepted the fact that performance was poor in indoor environments. However, as end users shift to using their mobile phone as their only voice device, demands for better coverage have increased.

The exterior wall of any building can significantly degrade a wireless signal coming from a macro base station. A common estimate of the amount of power lost through an exterior wall is on the order of 9–15 dB (decibels). Since every 3 dB reduction represents half of the power (based on the logarithmic decibel scale), 9–15 dB signal loss means that only one eighth to one thirty-second of the power from the outside makes it inside. Additional obstructions such as interior walls can easily degrade signal levels enough to result in dropped calls and significantly reduced data rates.

Another factor that comes into play is the higher frequency bands used for broadband wireless compared to traditional second-generation (2G) voice solutions. Typically the higher frequencies have even more difficulty penetrating exterior walls when operating at comparable power levels. In the face of these difficulties, the demand for bandwidth continues to increase. Users want to send and receive virtually any type of media from
virtually any location, so Worldwide Interoperability for Microwave Access (WiMAX) networks need to ensure high data rates over their entire coverage areas. The cost of delivering this coverage can be high if a network uses only macro base stations. The equipment and the backhaul to support it is particularly expensive due to high-performance, carrier-class features such as redundancy, hot-swap capability, high-power radios, and support for thousands of users.

Deploying many micro base stations is thus a costly way to solve coverage issues, and in some situations, even a single micro base station is too expensive. In developing countries where average revenue per user is around $10 or less, the cost of the micro base station becomes a barrier to a profitable business model. To solve the challenges of macro base stations, often micro base stations provide a suitable solution. Micro base stations [18] typically consist of a small rack-mounted device with a tower mounted radio. The radios typically connect to the rack via an optical cable using Open Base Station Architecture Initiative (OBSAI) or Common Public Radio Interface (CPRI) standards. These base stations do not have the carrier-class features of a macro base station and hence are significantly less expensive. Most of the deployments for these base stations are in developing countries or deployments using unlicensed spectrum, where access is otherwise nonexistent and customers are unwilling to pay high average revenue per users. Typically, each micro base station supports three sectors, with hundreds of users per sector. To reduce costs, the radio power is not as high as that of a macro base station.
2.7.2 Femtocell Architecture

With different cellular telecommunications systems there will need to be different ways of implementing the actual femtocell network architecture. However there are a number of common requirements for the femtocell network architecture regardless of the cellular system used. 3GPP worked with vendors, and operators to provide the optimum standard. The new standard developed a new interface and also standardized the elements within the femtocell network architecture.

3GPP HeNB Femtocell System Architecture

There are three main elements to the femtocell network architecture [19] as defined by 3GPP are Home NodeB (HeNB), HeNB Gateway (HeNB-GW) & Iu Interface. The Fig. 2.12 shows the femtocell architecture.

1. Home NodeB

The Home Node B is 3G UMTS terminology for the femtocell access point within the home, or other location. The HeNB will incorporate the capabilities of a standard Node B as well as the radio resource management functions found within a Radio Network Controller, RNC.
2. **HeNB Gateway (HeNB-GW)**

This is the entry point to the core network. The link into the core network is provided over Iu-cn and Iu-ps interface which are already used for links from Radio Network Controllers to the remaining core network.

The HNB-GW has the following functions:

- It provides authentication and certification to allow only data to and from authorized HeNBs
- The HeNB-GW aggregates traffic from a large number of HeNBs and provides an entry point into the operator core network.
- The HeNB-GW provides a mechanism to support enhanced features such as clock sync distribution, other IP based synchronization (e.g. IEEE1588)
3. **Iu Interface**

The Iu-h interface is used to provide the link or interface that connects the HeNB with the HeNB-GW. The Iu interface used here is a commercially available co-axial link. The Iu interface includes a new HeNB Application Protocol, HeNBAP that provides the high level of scalability required for the HeNB deployment that will occur in a rather ad-hoc fashion.

2.7.3 Broadband Radio Over Fiber Distributed Antenna System

Architecture

Fig. 2.13 shows the Broadband ROF Distributed Antenna System architecture comprise of three main components: distributed antenna system (access nodes), central processing facility and fiber connection medium linking the antenna sub-system and the central processing facility. The preceding sections elaborate in detail the each of the component.

1. **Distributed Antenna System**

In a typical Distributed Antenna Systems (DAS) system the access nodes provide a convenient means of delivering blanket coverage for a targeted area, while avoiding the time consuming and costly cell planning phases. All the processing for the access nodes is done at the central processing entity. The access nodes are merely a distributed set of antenna elements. Our architecture uses the fast and reliable fiber connection medium to/from the central processing entity. Therefore the DAS has the potential to scale from a few antenna elements, covering tens of square meters of space, to tens of antenna elements covering a few square kilometers of the targeted area.
Similar to traditional two-tier networks, the location arrangement of individual antenna elements in this massive DAS is quite arbitrary, providing ease of deployment. Due to the coordination capability of Broadband ROF Distributed Antenna System, however, a much more efficient interference management strategy than traditional femtocell networks can be achieved in the proposed system. For instance, UMTS LTE standard supports a cooperative mode of operation between macrocells, named CoMP transmission. However, due to the independent operation of femto- and picocells, and lack of interaction infrastructure in the second tier of the network, coordination of transmissions to/from HeNBs is not possible. On the other hand, Broadband ROF Distributed Antenna System facilitates
coordinated transmission/reception schemes not only at the macro level but also in the femto-
and pico cell tier.

2. Central Processing Facility

The central processing facility is the core of any DAS architecture. All the processing of the
signals/data are done at the central processing entity, which provides several operational
flexibility to enhance the system performance. The resource allocation decision making in
each femto- and picocell associated with any given antenna element will be made in harmony
with neighboring cells. Several studies [5] have indicated that availability of the high-end
central processing entity in the DAS architecture immensely improves the resource
utilization across the networks and a lower interference level, which yields better system
performance.

Furthermore, by centralizing the resource allocation significantly reduces the
signaling overhead associated with coordination transmission and reception of data, such as
through employing CoMP in the LTE context. In effect, Broadband ROF Distributed
Antenna System realizes a distributed architecture with centralized decision making
capabilities.

3. Fiber Connected Medium

We predominantly use fiber optic cables connecting the central processing entity to each
antenna element. The inexpensive optical fiber backbone network operational advantages
such as large bandwidth, immunity to electromagnetic interference, low power usage.

First, a mechanism for electrical-to-optical conversion and vice versa is in charge of
transforming the communicated signal over various sections of the Broadband ROF
Distributed Antenna System according to their medium requirements. This scheme is known
as RoF in the literature [20]. Unlike wireline network counterparts, such as the Ethernet, the conveyed signal will remain analog, as opposed to digital, over the fiber connection medium. Several proof-of-concept demonstrations, mainly focusing on WLAN over fiber communications, have been reported in the literature [21].

Second, the optical links will form a network that can utilize passive or active optical networking protocols. A passive optical network (PON) is a more cost-efficient implementation, which employs one pair of optical fibers for duplex transmissions between an antenna element and the central processing entity. In the simplest case, each access node employs different set of transmit and receive antennas connected via power and low-noise amplifiers to the respective fibers. The transmission/reception of signals from/to each antenna element is then controlled based on a time-division multiplexing (TDM) scheme. If there are multiple set of transmit/receive antennas at each access node & multiple antenna elements are fed via a shared pair of optical fibers, wavelength-division multiplexing (WDM) techniques can further be exploited [22].

2.8 Wavelets in Wireless Communications

The idea of using wavelet transform instead of Fourier was introduced a decade ago [23] [24]. However, such alternative methods have not been foreseen as of major interest and therefore have received little attention. With the current demand for high performance in wireless communication systems and limitations of Fourier based OFDM systems as highlighted in section 2.5, it is imperative to look for better alternatives.

Wavelet theory has been foreseen by several authors as a good platform on which to build multicarrier waveform bases [25], [26], and [27]. Wavelet packet bases therefore
appear to be a more logical choice for building orthogonal waveform sets usable in communication. In their review on the use of orthogonal transmultiplexers in communications [23], Akansu et al. emphasize the relation between filter banks and transmultiplexer theory and predict that wavelet packet modulation has a role to play in future communication systems. In this section, we will briefly describe the different studies based on wavelets which provide viable solutions to drawbacks of current wireless systems.

2.8.1 Flexibility Of Orthogonal Wavelet System

In OFDM, the discrete waveforms are the well-known M complex basis functions \(w[t] \) \(exp(j*2\pi*(m/M)*kT) \) limited in the time domain by the window function \(w[t] \). The corresponding sine-shaped waveforms are equally spaced in the frequency domain, each having a bandwidth of \(2\pi/M \) and are usually grouped in pairs of similar central frequency and modulated by a complex encoded symbol. Whereas wavelets produce orthogonal waveforms that are distributed both in time and frequency domain. Due to the wavelet transform containing not only frequency information but time information as well, it is now possible to effectively convey higher data rates within each subband where the only limit is the trade-off between the subband resolution in the time and frequency domain – ie the higher the frequency resolution, the lower the time resolution and vice versa. In wavelet multiplexing, the bandwidth, \(BW_k \), of each subband, k, can be calculated from the total bandwidth, \(BW \) [28]

\[
BW_k = \begin{cases}
 \frac{BW}{2^k}, & 1 \leq k \leq n \\
 \frac{BW}{2^n}, & k = n+1
\end{cases}
\]

(2.1)

Where \(n \) is the number of levels. The number of samples per subband, \(N_k \), can be calculated from the efficiency of the channel, \(N \)
From above, it is observed that the bit rate per subchannel depends on the number of levels of decomposition and that the larger the number of subchannels, the smaller the bandwidth of each channel and thus the lower the maximum possible bitrate through each channel. Because of this there is an inherent flexibility in the system which means that the signal can be optimized for a specific application and channel conditions.

2.8.2 Wavelet Based Downlink Scheduling In LTE Systems

A study and performance evaluation has been done to provide downlink scheduling in LTE cellular systems [29]. It proposes the use of wavelet transform in LTE cellular systems. Mathematical expressions have been derived to represent data rate in LTE downlink transmission based on Wavelet and Fourier Transforms. Furthermore, a comparison between these two systems is provided for QPSK, 16-QAM and 64-QAM modulation. Simulation results show that the proposed OWDM approach outperforms the traditional OFDM systems in BER versus SNR comparison. It also shows that the data rate can also be increased by the amount of Cyclic Prefix/Symbol Time%, as there is no need for a channel prefix in an OWDM-based system.

2.8.3 Wavelet Based PAPR Reduction In OFDMA Systems

Wavelet based pre-processing technique has been shown to reduce the PAPR problem of OFDMA systems [30]. A new technique has been introduced in [30] to increase orthogonality among data which is based on imposing the eigenvalue extraction features. The

\[N_k = \begin{cases}
\frac{N}{2^k}, & 1 \leq k \leq n \\
\frac{N}{2^n}, & k = n+1
\end{cases} \]
simulation showed upto 60% lower PAPR values as compared to conventional OFDMA systems even in condensed multipath channel. This was achieved by increased complexity at the transceiver structure.

2.8.4 Low Complexity In Wavelet Based System As Compared To OFDMA

There is no limitation in number of subcarriers in orthogonal Wavelet modulation unlike OFDM, where they are usually fixed at the time of design and is difficult to implement a FFT transform of a programmable size. In wavelets the transform size is exponentially dependent on the number of iteration of the algorithm [31]. So it is easy to configure them without increasing overall complexity in implementation. So this allows the change of transform on the fly.

2.8.5 Wavelet Based Multi Carrier Multiple Access Scheme For Cognitive Radio

The system exploits the multicarrier feature of wavelet transform and multiple access features of OFDMA. A modified algorithm is described for free channel assignment in Cognitive Radios. The simulation results show that BER performance is better compared to that of OFDMA system. The degradation in frequency and timing offset is similar to that of OFDMA [32].

Analyzing the approaches described above gives insight about the extensive research performed on the various solution approaches to problems of LTE OFDMA systems and provides proof that orthogonal wavelets are a better and viable alternative to the existing
wireless systems. Although the analysis and evaluations were done for BER, PAPR, Throughput, the above literature lacks in a unified system implementation, resource analysis and thorough performance evaluation for current LTE systems. Our major contribution in this thesis is to deal with these shortcomings in the present knowledge and present an overall system level solution.

2.9 Literature Review Of MIMO-LTE Matrix Inversion

Algorithms

For MIMO-LTE matrix inversion, the size of matrix is larger than 2x2 in fixed-point implementation. Fixed-point algorithm has poor stability but floating-point work well and computation time requires fewer cycles. Floating point approach gives better stability, accuracy and resolution to the decoded data resulting in better BER.

Methods for computing matrix inversion can be divided into two categories: iterative and direct. Iterative methods require an initial estimate of the solution and subsequent updates based on calculation of the previous estimate error. Normally, these iterative methods involve high-complexity sequential matrix computations and are not particularly suitable for real-time implementation. QRD is an attractive approach for matrix inversion due to its well-known numerical stability [33]. Several algorithms and architectures have been proposed for the computation of QRD-based matrix inversion; those which employ the Gram-Schmidt [34] and conventional Givens rotations algorithms are disadvantaged from an implementation perspective as they require high-complexity square-root operations. Whilst the shift-and-add processing nature of Coordinate Rotation Digital Computer (CORDIC)-based matrix inversion [35] offers low complexity hardware implementation, its inherent
latency can preclude it from high-performance applications. Squared Givens rotations (SGR) offer square-root free processing and a number of SGR-based matrix inversion architectures have been proposed [36], [37], [38]. These algorithms suffer from high level of computational complexity and are difficult to implement in real time systems.

2.10 Summary

Apart from the pros of LTE compared to previous 2G & 3G legacy networks, it has cons that lead to the development of LTE-A with the aim of resolving these issues. The major disadvantages are:

- Size of FFT in OFDM increase with order of modulation scheme like 1024-QAM.
- High PAPR and high Inter carrier interference in OFDM.
- Large MIMO required for high data rate but complexity of channel estimation and decoder increases exponentially.
- Downlink and uplink use separate architectures. SC-FDMA is used in uplink to reduce power consumption and high PAPR problem in OFDMA.
- Blackout of signal in tunnels and subways. Coverage not sufficient to provide optimum Quality of Service.
- Flexibility of resource allocation is not there according to user demands and channel conditions.

LTE-A systems use the existing OFDMA architecture in downlink. Moreover, implementation of heterogeneous networks requires adaptable architecture which OFDMA does not suffice. Coordinated multipoint architecture can help reduce the CAPEX and
latency in the system but it requires a centralized architecture for that purpose. Enhanced MIMO with multiple antennas needs better channel estimation strategies and good bit resolution of ADC’s and DAC’s. Thus in the following chapters we propose and prove by graphs and plots new algorithms to contribute towards the development of new LTE architecture.
Chapter 3

A Orthogonal Wavelet Division Multiple Access Processor Architecture For LTE-A Radio-Over-Fiber HetNet Systems

This chapter gives a detailed formulation of the OWDMA architecture. We develop the architecture, synthesize it and compare it with state of the art techniques.

3.1 Overview Of OWDMA

OWDMA has been proposed as a viable alternative to OFDMA in communication systems. Linfoot et al. [28], [39] demonstrated that OWDMA could be an effective alternative to OFDMA. But their work concentrated on digital video broadcast and results were only plotted for the BPSK modulation scheme. Raajan et al. [40] provided BER performance graphs for all the wavelets and modulation schemes, but no hardware architecture was provided for the proposed system. Similarly, Tao et al. [41] and Liew et al.
analyzed orthogonal wavelet division multiplexing for signaling over wideband linear time-varying channels but again did not provide any architecture for deployment. 1-D orthogonal wavelets have been used and elaborated [43] - [47] for image processing applications.

In the conference article [1], a sequential output-based parallel processing (SBPP) architecture for OWDM was proposed and evaluated for BER and PAPR. The deployment in LTE-A ROF future 3GPP rel 10 and above requires that its structure should be flexible enough to adapt to different values of transform size according to channel conditions in order to service uniformly the same number of users. The structure needs to accommodate both forward and inverse operations through a common control input. The architecture should be power efficient, be easily controllable through a single control, and should have input-output ports matching to other system sub-blocks that will satisfy the timing requirements of the whole system. Moreover, it is important for it to offer improved performance in terms of spectral efficiency (throughput), quality of service (better BER at the same SNR) and should fit well in Radio-over-Fiber systems. An OWDMA architecture is developed in this chapter that can achieve significantly better performance, is easy to deploy, and consumes fewer resources than any similar architecture available in the literature.

3.2 Orthogonal Wavelet Division Multiplexing

Fast fluctuations in the time domain or frequency-specific information in the time domain can only be revealed through a time/frequency analysis. The wavelet transform maps a time function into a two-dimensional function of ‘a’ (the scale) and ‘τ’ (the translation) of
the Wavelet function along the time axis [48], [49]. The continuous waveform transform (CWT) of a signal \(s(t) \) has been defined as

\[
\text{CWT}(a, \tau) = \frac{1}{\sqrt{a}} \int s(t) \psi(t - \tau/a) dt
\]

(3.1)

where \(t \) is the time, \(\psi(t) \) is the basic (or mother wavelet) and \(\psi((t - \tau)/a) \) is the translated baby wavelet [28] created by either stretching or compressing the mother wavelet.

3.2.1 Formulation Of OWDM From The 9/7- Filter Using Lifting

From the CWT, it is possible to construct the discrete wavelet transform (DWT) and the inverse DWT) from banks of matched high pass and low pass filters [50]. Single carrier systems tend to have high bit rates but low frequency resolution, whereas OFDM has many sublevels, each transferring at a low bit rate. Since the wavelet transform contains both time and frequency information, it is possible to effectively send different data rates in different sublevels, according to channel conditions. When considering the DWT, there are a number of mother wavelet families that need to be evaluated. It was realized that only three families of wavelet should be considered: Daubechies, Symlet, and Coiflet [51]. To replace OFDM systems in a multipath environment having carrier and symbol interference, the wavelets needs to be orthogonal and periodical. Realization using discrete structures is also important for purpose of implementation.
Figure 3.1: Signal to noise ratio versus bit error rate comparison for various orthogonal wavelet families. [51] (©2008 IEEE)

Fig. 3.1 presents a comparison of signal to noise ratio vs. bit error rates for the Symlet 1, Coiflet 2, and Daubechies 2 similar-order filters [51]. It can be seen that the least resilient wavelet family is the Symlet, followed by the Coiflet, then the Daubechies, which appear to be better suited for implementation.

The lifting scheme is used for the development of the architecture for a 9/7 Daubechies 1-D wavelet filter with two stages of lifting (N=2), i.e., predict1 and update1, followed by predict2 and update2 in a second stage, followed by scaling [31], [52]. The basic idea of the lifting scheme is first to compute a trivial wavelet (or lazy wavelet transform) by splitting the original 1-D signal into odd- and even-indexed subsequences and then modify their values using alternating prediction and updating steps. The lifting algorithm consists of the following three steps.
1. **Split Step**

The original signal, $X(n)$, is split into odd and even samples (lazy wavelet transform).

2. **Lifting Step**

This step is executed as N sub-steps (depending on the type of the filter), where the odd and even samples are filtered by the prediction and update filters.

3. **Scaling Step**

After N lifting steps, scaling coefficients K and $1/K$ are applied respectively on the odd and even samples in order to obtain the low-pass band and the high-pass sub-band.

OWDMA is a system, in which the wavelet domain is used to separate the sub-band components in the same way as OFDMA. The big difference between OFDMA and OWDMA is that in OFDMA the FFT performs sub-band decomposition with a specific number of sub-bands at well-defined intervals, while OWDMA may dynamically allocate the number of sub-bands and the bandwidth of each [53].

3.2.2 Sequential Output-Based Parallel Processing Architecture For OWDMA

The SBPP architecture [1] that forms the basis for our proposed OWDMA architecture is described next. The SBPP architecture is formed using a 9/7 bi-orthogonal filter using a 2-stage lifting scheme. The system is designed to perform a series of sequential operations – predict and update level 1, predict and update level 2, followed by scaling. The OWDM block consists of two predict & update blocks and two scaling blocks. In the transmitter, N complex symbols from the output of symbol mapper are fed to the input of the
OWDM modulator. The predict-and-update level 1 & 2 and the scaling operations are as follows.

1. **Predict & Update Level 1 & 2**

All odd and even symbols can be computed in parallel blocks, except for the 1st, (2L-1)th and 2Lth symbols, based on Eqn. (3.2)-(3.6). Here M is the level of predict & update and varies from 0 to 1. \(L_i=1,2,\ldots,N/2\) (N-size of OWDM) and \(a\) & \(b\) are the coefficients as derived in [54] when 9/7 biorthogonal lifting scheme is formulated from FIR (finite impulse response) filter banks and \(c = a \times b\). Input from the first predict and update block is fed to the next one, thus making the second block dependent on the first.

\[
X_{M+1}^{[1]} = X_{M}^{[1]} + 2 \cdot b_{M} \cdot X_{M}^{[2]} + 2 \cdot c_{M} \cdot (X_{M}^{[1]} + X_{M}^{[3]}) \quad (3.2)
\]

\[
X_{M+1}^{[2L_i]} = X_{M}^{[2L_i]} + a_{M} \cdot (X_{M}^{[2L_i-1]} + X_{M}^{[2L_i+1]}) \quad (3.3)
\]

\[
X_{M+1}^{[2L_i+1]} = X_{M}^{[2L_i+1]} + b_{M} \cdot (X_{M}^{[2L_i]} + X_{M}^{[2L_i+2]}) +\]
\[+c_{M} \cdot (X_{M}^{[2L_i-1]} + 2 \cdot X_{M}^{[2L_i+1]} + X_{M}^{[2L_i+3]}) \quad (3.4)
\]

\[
X_{M+1}^{[2L-1]} = X_{M}^{[2L-1]} + b_{M} \cdot (X_{M}^{[2L]} + X_{M}^{[2L-2]}) +\]
\[+c_{M} \cdot (X_{M}^{[2L-1]} + X_{M}^{[2L-3]}) \quad (3.5)
\]

\[
X_{M+1}^{[2L]} = X_{M}^{[2L]} + 2 \cdot a_{M} \cdot X_{M}^{[2L-1]} \quad (3.6)
\]

\[
a^0 = -1.5861, \quad a^1 = 0.8829, \quad b^0 = -0.05298, \quad b^1 = -0.44351, \quad c^0 = 0.08403, \quad c^1 = -0.3916
\]
2. Scaling

Finally, the output of the predict-and-update level 2 block is fed to the scaling block. Scaling coefficients $K (= 1.149604398)$ [52], [53] and $1/K$ are applied respectively to the odd and even samples in order to obtain the wavelet coefficients W_C.

$$W_C[2L_i] = X^{M+1}[2L_i] \times K$$ \hspace{1cm} (3.7)

$$W_C[2L_i + 1] = X^{M+1}[2L_i + 1] \times \left(\frac{1}{K} \right)$$ \hspace{1cm} (3.8)

3.3 Proposed OWDMA Processor Architecture For LTE A-ROF Layer 1

From the SBPP-OWDM scheme presented in the previous section, it is found that the final scaling and dilation coefficients are interdependent on predict and update outputs at each stage, thus there is a delay and it also affects throughput. The structure requires two update and predict blocks to be implemented. OWDMA scheme requires that the structure should be flexible enough to adapt to different values of N according to the channel conditions. The structure needs to accommodate both forward and inverse operations through a common control. The multiplicative coefficients for the filter need to be stored in a hardware friendly format that will reduce the number of multiplication operations. Thus a new OWDMA processor architecture have been developed that caters to all the requirements of a multiple access system mentioned above. Moreover parallelism is exploited in the
architecture along with pipelining to formulate an efficient, low power and resource friendly processor system.

Using Eqn. (3.2)-(3.8) predict and update block 1 and predict and update block 2 are combined together along with the scaling. In the forward operation, the wavelet coefficients for odd and even samples are calculated using Eqn. (3.9)-(3.10). The odd values are calculated using a structure implementing a 9-tap FIR (finite impulse response) filter and the even values are found out with a 7-tap FIR filter structure as shown in Fig. 3.2. Odd value wavelet coefficients 1st, 3rd, (n-3)rd & (n-1)st and even value wavelet coefficients 2nd, (n-2)nd & n th have adjusted input values fed using the symmetry property of the filter. The values of k before the first value ‘X[1]’ and after the last value ‘X[N]’ are replaced by their symmetric values by using x[k] = x[k+2i], where i takes the value –k+1 w.r.t to the inputs index k in the left side of the axis and it takes the value n-k at the right side of the axis. The FOc(j) & FEc(l) are forward odd and even filter coefficients respectively where j=1,2…9 and l=1,2….7.

\[
Y_{EVEN}[N] = FE_c(1)*X[N-3]+FE_c(2)*X[N-2]+FE_c(3)*X[N-1]+FE_c(4)*X[N] + FE_c(5)*X[N+1]+FE_c(6)*X[N+2]+FE_c(7)*X[N+3]; \{N = EVEN\}
\]

\[
Y_{ODD}[N] = FO_c(1)*X[N-4]+FO_c(2)*X[N-3]+FO_c(3)*X[N-2]+FO_c(4)*X[N-1]+FO_c(5)*X[N]+FO_c(6)*X[N+1]+FO_c(7)*X[N+2]+FO_c(8)*X[N+3]+FO_c(9)*X[N+4]; \{N = ODD\}
\]
In the inverse operation, the wavelet coefficients for odd and even samples are calculated using Eqn. (3.11)-(3.12). The odd values are calculated using a structure implementing a 7-tap FIR filter and the even values are found out with a 9-tap FIR filter structure. Odd value wavelet coefficients 1st, 3rd & n-1th and even value wavelet coefficients 2nd, 4th, n-2nd & nth have adjusted input values from symmetry in a similar way as described in previous paragraph for the forward operation. The boundary conditions are formulated using a state machine control logic implementation elaborated in control unit section. The IO\textsubscript{C}(l) & IE\textsubscript{C}(j) are inverse odd and even filter coefficients respectively where j=1,2…9 and l=1,2…7.
\[X_{\text{EVEN}}[N] = IE_c(1) \cdot Y[N-4] + IE_c(2) \cdot Y[N-3] + IE_c(3) \cdot Y[N-2] + \\
+ IE_c(4) \cdot Y[N-1] + IE_c(5) \cdot Y[N] + IE_c(6) \cdot Y[N+1] + \\
+ IE_c(7) \cdot Y[N+2] + IE_c(8) \cdot Y[N+3] + IE_c(9) \cdot Y[N+4]; \{N = \text{EVEN}\} \]

\[X_{\text{ODD}}[N] = IO_c(1) \cdot Y[N-3] + IO_c(2) \cdot Y[N-2] + IO_c(3) \cdot Y[N-1] + IO_c(4) \cdot Y[N] + \\
+ IO_c(5) \cdot Y[N+1] + IO_c(6) \cdot Y[N+2] + IO_c(7) \cdot Y[N+3]; \{N = \text{ODD}\} \]

The proposed OWDMA processor consists of a core unit to multiply filter coefficients with delayed input and accumulate with previous value and compute the wavelet coefficients. It has a control unit that controls which coefficients are to be applied at the complex multiplier input and has a coefficient generator unit that reads the appropriate coefficients from memory. The OWDMA unit acts as the slave to a master Scheduler unit that feeds it with clock, address and input data and variables. Fig. 3.3 shows the high level Very Large Scale Integration (VLSI) architecture of the OWDMA processor unit with the scheduler. The architecture is 2-parallel structure due to simultaneous calculation of odd and even data. The Scheduler and the three major units of the proposed system core unit, control unit and the coefficient generator unit are discussed below.
Figure 3.3: The top level Generic OWDMA processor implementation block diagram.
3.3.1 Scheduler

The proposed OWDMA processor can be interfaced with the scheduler according to the scheme presented Fig. 3.3. In this scheme the scheduler communicate with the OWDMA processor using a set of dedicated hand-shake signals. The scheduler acts as the master, sets the address of the processor and provide clock to it (CLK). First the scheduler requests the control unit block to initiate a new transform using the START signal. The controller unit sets the BUSY signal low if it is ready to start the process for the new transform or high if it is in the middle of an already continuing process. When the controller is ready it sends a data request (D_REQ) signal to the scheduler which then responds with the input data. If the controller correctly gets the input, it sends an acknowledgement (ACK) signal otherwise it sends NACK and the scheduler retransmits. Along with the data input it sends the information for the size of OWDM (N_OWDM) as well as the forward/inverse operation (FW/INV) signal. The OWDMA processor uses the RST signal to indicate the end of data when it completes the transform. At the same time it sets the BUSY signal low to indicate to the scheduler that it is ready to start a new transform.

3.3.2 Core Unit

The core unit consists of two FIR filter units. One is 9-tap and the other is a 7-tap as shown in Fig. 3.2. They both have CLK, CLK_EN, IN_EN, G1_EN, G2_EN, D_IN, and FW/INV as common inputs and Y_ODD & Y_EVEN as the odd and even filter output. The only difference is the inputted coefficients for the Multiply & Accumulate units inside the FIR filters. The FO_C (1…9), IE_C (1…9) are coefficients inputs for the 9-tap filter block and FE_C (1…7), IO_C (1…7) are coefficients inputs for the 7-tap filter block. These coefficients are
explained in more detail in the Section D. The CLK input counts from 0 to N+4 and then gets reset. The extra 5 clock cycles after the normal N-cycles are for flushing the output to 0. D_IN is the data input. IN_EN is enable signal for data input. G1_EN and G2_EN are enable signal for switches that switch input gates and are enabled by the control logic. FW/INV signal is for forward (a ‘0’) and inverse operation (a ‘1’). The outputs of both the filters are fed to a Parallel to serial converter block that down samples the data and rearranges the coefficients to give the final coefficients W_C. It has an OUT_EN (output enable) signal to start calculating the output W_C (the wavelet coefficients). Fig. 3.4 shows all the logic signals in a timing diagram.

Figure 3.4: Timing diagram showing logical signals with clock.
3.3.3 Control Unit

The control unit consists of two separate logic units for forward and inverse computation and is implemented using a finite state machine having 5 states S0, S1, S2, S3 and S4 respectively. It toggles on the positive CLK edge input and at each state the output controls IN_EN, G1_EN, G2_EN, OUT_EN, FW/INV_COEF_EN (0/1) and FW/INV. The FW/INV signal controls which control logic unit to be used (forward or inverse). G1_EN and G2_EN are gate control switches that switch input for the delay registers at the boundary conditions.

![Symmetric boundary extension of input data](image)

Figure 3.5: Symmetric boundary extension of input data

The input value has to be symmetrically extended at the boundaries to avoid distortion. ‘X[1]’ is the first input value and no previous value is available. Using the symmetric property of the lifting scheme [54] as shown in Fig. 5, the next input value ‘X[2]’ is extended to left of ‘X[1]’ and is used to perform the filter operation. Similarly, at the end of the row, the input value ‘X[N]’ is the last one. By copying the input value ‘X[N-1]’ to the right of ‘X[N]’ the boundary condition at the right end can be satisfied. The control logic is shown in Fig. 3.6. At the positive edge count value of 4, G1_EN is enabled for one clock.
cycle. G2_EN is enabled at \(n^{th} \) clock value. Output is calculated starting from \(5^{th} \) clock count to \((n+4)^{th} \) count and then everything resets back to state S0.

![Control logic finite state machine implementation](image)

3.3.4 Coefficient Generator Unit

The coefficient generator block is a memory block that contains the odd and even filter coefficients to be multiplied during forward/inverse operation with the filters. Providing the appropriate constant to the multiplier, implements the desired multiplication. The width of the multipliers is determined by the accuracy of the constants and the data path bit-width. The drawback of the above implementation is that the multipliers occupy a great amount of area and restrict the throughput of the processing unit. Using shift-add operations
to replace the multiplications with constants optimizes the above implementation. An improved processing block can be obtained that way.

Table 3.1: Forward odd coefficients

<table>
<thead>
<tr>
<th>INDEX</th>
<th>Q.15 FORMAT</th>
<th>BINARY FORMAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOc(1)</td>
<td>-1240</td>
<td>111101100101000</td>
</tr>
<tr>
<td>FOc (2)</td>
<td>781</td>
<td>0000001100001101</td>
</tr>
<tr>
<td>FOc (3)</td>
<td>9956</td>
<td>0010011011100100</td>
</tr>
<tr>
<td>FOc (4)</td>
<td>-16358</td>
<td>1100000000011010</td>
</tr>
<tr>
<td>FOc (5)</td>
<td>30031</td>
<td>0111010101001111</td>
</tr>
<tr>
<td>FOc (6)</td>
<td>-16358</td>
<td>1100000000011010</td>
</tr>
<tr>
<td>FOc (7)</td>
<td>9956</td>
<td>0010011011100100</td>
</tr>
<tr>
<td>FOc (8)</td>
<td>781</td>
<td>0000001100001101</td>
</tr>
<tr>
<td>FOc (9)</td>
<td>-1240</td>
<td>111101100101000</td>
</tr>
</tbody>
</table>

To perform shift and add operations, coefficients are converted in 2’s complement Q.15 format. That is they are shifted 15 bits to the left and converted to their respective 2’s complement binary value. The filter constants are quantized taking in account the number of bits with value ‘1’, in their positive representation. That’s because each ‘1’ yields a term to be summed. The sets of coefficients for the forward path, used to take the results are shown in Tables 3.1 and 3.2. Similarly the coefficients for the reverse path can be defined.
Table 3.2: Forward even coefficients

<table>
<thead>
<tr>
<th>INDEX</th>
<th>Q.15 FORMAT</th>
<th>BINARY FORMAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEc (1)</td>
<td>2115</td>
<td>0000100001000011</td>
</tr>
<tr>
<td>FEc (2)</td>
<td>-1333</td>
<td>1111101011001011</td>
</tr>
<tr>
<td>FEc (3)</td>
<td>-13700</td>
<td>1100101001111100</td>
</tr>
<tr>
<td>FEc (4)</td>
<td>25837</td>
<td>0110010011101101</td>
</tr>
<tr>
<td>FEc (5)</td>
<td>-13700</td>
<td>1100101001111100</td>
</tr>
<tr>
<td>FEc (6)</td>
<td>-1333</td>
<td>1111101011001011</td>
</tr>
<tr>
<td>FEc (7)</td>
<td>2115</td>
<td>0000100001000011</td>
</tr>
</tbody>
</table>

3.4 Pipelining The Parallel Architecture For Low Power

In the downlink and especially uplink of a LTE A-ROF network, power dissipation is a major drawback of the system. So, architecture with low-power utilization is very much beneficial. The extra power saved can be used to accommodate more number of users or increase the range of the system. In the proposed OWDMA Processor Architecture, pipelining the stages of the 9-tap and 7-tap filters along with the 2-stage parallel structure can help save in power budget. Pipelining reduces the effective critical path by introducing pipelining latches along the critical data path. The critical path (or the minimum time required for processing a new sample) is limited by 1 multiply and 8 add times in 9-tap filter structure and 1 multiply and 6 add times in 7-tap filter structure of OWDMA processor respectively as shown in Fig. 3.2. Thus, the “sample period” is given by Eqn. (3.13)-(3.14) where T_{sample} (9-tap) and T_{sample} (7-tap) are the sampling frequency of respective filters:
The pipelined implementation is done by introducing 14 & 10 additional latches in the feed-forward path of the 9-tap and 7-tap filter structure respectively, thereby reducing the critical path to $T_M + T_A$ for both the filters. In an M-level pipelined system, the number of delay elements in any path from input to output is $(M-1)$ greater than that in the same path in the original sequential circuit. Thus we apply 8-level pipelining to the 9-tap filter circuit and a 6-level pipelining to the 7-tap filter circuit respectively. When sample speed does not need to be increased, this can be used for lowering the power consumption in the RTL. The power dissipation (P_{CMOS}) in any circuit depends on the total capacitance C_{total} of the Complementary Metal Oxide Semiconductor (CMOS) logic, the supply voltage V_{CC} and the clock frequency f.

$$P_{CMOS} = C_{total} \cdot V_{CC}^2 \cdot f \cdot \frac{1}{f_{seq}}$$ (3.15)

We define another parameter here called the propagation delay (T_{pd}) of the circuit. From [55], we found that with increase in propagation/gate delay, leakage current decreases thereby reducing the static power consumption of the system. Propagation delay depends on the charging capacitance C_{charge} in a clock cycle and the difference $(V_{CC} - V_t)^2$ where V_t is the threshold voltage.
Here, applying pipelining reduces the capacitance to be charged/discharged in 1 clock period, while the inherent parallel processing increases the clock period for charging/discharging the original capacitance. For an M-level pipelined system (8 & 6 in our case), the capacitance to be charged/discharged in a single clock cycle is also reduced to 1/M of its original capacitance. In an L-parallel system (2 in our case), the clock period of the circuit is increased to LT _ pd. This implies that the supply voltage can be reduced to βVo (0<β<1). Hence, the power consumption, compared with the original system, is reduced by a factor β^2. The propagation delay of the L-parallel M-pipelined filter is obtained as

\[LT_{pd} = \frac{C_{charge}/M \cdot \beta V_{CC}}{k(\beta V_{CC} - V_t)^2} = \frac{L \cdot C_{charge} \cdot V_{CC}}{k(V_{CC} - V_t)^2} \]

(3.17)

Finally, we can obtain the following equations to compute β and power dissipated in OWDM circuit respectively

\[\beta^2 \cdot V_{CC} \cdot L \cdot M - \beta \cdot (V_{CC} - V_t)^2 + 2 \cdot V_{CC} \cdot V_t \cdot L \cdot M + V_t^2 \cdot L \cdot M = 0 \]

(3.18)

\[P_{OWDM} = \beta^2 \cdot P_{CMOS} \]

(3.19)
3.5 Performance Results And Comparisons

3.5.1 Synthesis Of Proposed Architecture & Resource Utilization

In order to evaluate the performance of the architecture, it is required to make use of certain metrics that characterize the architecture in terms of the hardware resources used and the computation time. In this paper, the hardware resources used for the filtering operation are measured by the number of multipliers, number of adders, and that used for the storage of data and filter coefficients are measured by the number of registers. The computation time, in general, is technology dependent. However, a metric that is technology independent and can be used to determine the computation time \(T\) is the number of clock cycles \(N_{CLK}\) elapsed between the first and the last samples inputted to the architecture. Assuming that clock period is \(T_c\), the total computation time can then be obtained as \(T = N_{CLK} \times T_c\).

To validate the circuit design based on the proposed architecture, the implementation is done on a test bed that includes one central processor with multiple distributed antenna nodes and multiple mobile stations. The test bed operates in the 2.4 GHz Industrial, Scientific and Medical (ISM) band for its license-exempt convenience. The central processor consists of RF front-ends with 20 MHz to 80 MHz bandwidth, a number of 125 MHz~250 MHz 14-bit ADCs/DACs mounted on latest Xilinx Virtex-6 digital signal processing/field programmable gate array (DSP/FPGA) processing unit to pre-process data samples. All the carry propagation adders of the architecture have a 16-bit word length and use a structure that combines the carry-skip and carry-select adders [56]. The FPGA inside the platforms are XC6VLX75T-2 which is capable of operating at a clock frequency of 650 MHz at supply.
voltage of $V_{CC}=2.5V$ and quiescent voltage $V_t=1.5V$. The resources utilized by the FPGA implementation in terms of the numbers of configuration logic block (CLB) slices, flip-flop slices, DSP 48’s, input/output blocks (IOBs) and block RAMs (BRAMs) are given in Table 3.3.

Table 3.3: FPGA resource consumption summary for OWDMA

<table>
<thead>
<tr>
<th>RESOURCE</th>
<th>USED</th>
<th>PERCENTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLB SLICES</td>
<td>959</td>
<td>6%</td>
</tr>
<tr>
<td>FLIP-FLOP SLICES</td>
<td>653</td>
<td>1%</td>
</tr>
<tr>
<td>DSP 48’S</td>
<td>32</td>
<td>11%</td>
</tr>
<tr>
<td>IOBs</td>
<td>180</td>
<td>75%</td>
</tr>
<tr>
<td>BRAMS</td>
<td>3</td>
<td>2%</td>
</tr>
</tbody>
</table>

The circuit implemented is found to perform well with a clock period as short as 7.036 ns (i.e., a maximum clock frequency of 142.13 MHz) for a transform size of $N=512$. By replacing the values of V_{CC}, V_t, L & M in (3.18) and (3.19), it can be found out that the power consumption on the chip on which the circuit is implemented is reduced by a factor of $(1/9)$. The new power usage is only 143 mW per antenna.

3.5.2 Comparison With Various Architectures

For the proposed OWDMA architecture to be well suited for systems deploying LTE-A ROFs demanding high speed and high throughput, it is compared with various 1-D Wavelet architectures as well as commercial OFDMA chips available. Computation time (T), CLB slices or area occupied on FPGA, maximum clock frequency and area/speed ratio are
some of the key performance metrics that are compared. Table 3.4 gives the comparison between different 1-D wavelet architectures present in literature. For even comparison N=512 is taken as the size of the input data in all architectures. It can be inferred from the table that although our proposed architecture consumes little bit more hardware resources as compared to Recursive architecture [43], Parallel FDWT [45], Pipelined [46] & Arch1D-II [47], it significantly performs better in terms of maximum clock frequency and computation time. It is also seen that the area to speed ratio is the second lowest for our architecture. Although the parallel FDWT implementations in [45] present a better area/speed ratio, high computation time features make them unsuitable for high-speed applications.

Current advanced 4G systems deploy OFDMA architecture. So it becomes imperative to compare our proposed OWDMA processor architecture with the state of the art implementation. The OFDMA core uses the Radix-4 and Radix-2 decompositions for computing the DFT [57], [58]. When using Radix-4 decomposition, the N-point FFT consists of $\log_4(N)$ stages, with each stage containing $N/4$ Radix-4 butterflies. Point sizes that are not a power of 4 needs an extra Radix-2 stage for combining data. An N-point FFT using Radix-2 decomposition has $\log_2(N)$ stages, with each stage containing $N/2$ Radix-2 butterflies. The comparison between the two architectures is depicted in Table 3.5. It can be seen that there is at least 90% improvement in the computation time when OWDMA core is used as opposed to OFDMA core for a 10% increase in DSP resources on FPGA. Whereas the total area occupied on FPGA remains comparable with the respective N-point’s computation. Furthermore, it has been shown in [28] that the OWDMA implementing wavelet transform has a complexity of $O(N)$ as opposed to the OFDMA containing FFT operations has well known complexity of $O(N\log_2N)$.
Table 3.4: Comparison between various 1-D architectures

<table>
<thead>
<tr>
<th>ARCHITECTURE</th>
<th>N (SIZE OF COMPUTATION)</th>
<th>NO. OF CLB SLICES</th>
<th>F(_\text{MAX}) (MHZ)</th>
<th>TIME (µS)</th>
<th>AREA/SPEED RATIO</th>
<th>FILTER TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECURSIVE ARCHITECTURE [40]</td>
<td>512</td>
<td>439</td>
<td>50</td>
<td>10.25</td>
<td>8.78</td>
<td>1-D (9/7)</td>
</tr>
<tr>
<td>SYMMERICALLY EXTENDED [41]</td>
<td>512</td>
<td>1279</td>
<td>44.1</td>
<td>8.36</td>
<td>29</td>
<td>1-D</td>
</tr>
<tr>
<td>PARALLEL FDWT [42]</td>
<td>512</td>
<td>850</td>
<td>171.8</td>
<td>2.98</td>
<td>4.95</td>
<td>1-D (9/7)</td>
</tr>
<tr>
<td>PIPELINED [43]</td>
<td>512</td>
<td>785</td>
<td>85.49</td>
<td>6</td>
<td>9.18</td>
<td>1-D</td>
</tr>
<tr>
<td>ARCH1D-II [44]</td>
<td>512</td>
<td>921</td>
<td>136</td>
<td>1.88</td>
<td>6.77</td>
<td>1-D (9/7)</td>
</tr>
<tr>
<td>PROPOSED OWDMA PROCESSOR</td>
<td>512</td>
<td>959</td>
<td>142.13</td>
<td>1.82</td>
<td>6.75</td>
<td>1-D (9/7)</td>
</tr>
</tbody>
</table>
Table 3.5: Resource utilization for OFDMA & OWDMA processors

<table>
<thead>
<tr>
<th>TECHNIQUE</th>
<th>ARCHITECTURE</th>
<th>N (SIZE OF COMPUTATION)</th>
<th>NO. OF CLB SLICES</th>
<th>NO. OF LUT SLICES</th>
<th>BRAM</th>
<th>DSP SLICES</th>
<th>TIME (µS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFDMA PROCESSING</td>
<td>R2</td>
<td>256</td>
<td>842</td>
<td>650</td>
<td>3</td>
<td>3</td>
<td>4.18</td>
</tr>
<tr>
<td></td>
<td>R2L</td>
<td>1K</td>
<td>1025</td>
<td>839</td>
<td>3</td>
<td>3</td>
<td>31.58</td>
</tr>
<tr>
<td></td>
<td>R2</td>
<td>1106</td>
<td>882</td>
<td>3</td>
<td>6</td>
<td>18.63</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R2L</td>
<td>2K</td>
<td>1137</td>
<td>882</td>
<td>5</td>
<td>3</td>
<td>66.74</td>
</tr>
<tr>
<td></td>
<td>R2</td>
<td>1082</td>
<td>952</td>
<td>5</td>
<td>6</td>
<td>39.41</td>
<td></td>
</tr>
<tr>
<td>PROPOSED OWDMA PROCESSING</td>
<td>PARALLEL & PIPELINED</td>
<td>256</td>
<td>614</td>
<td>355</td>
<td>3</td>
<td>32</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>PARALLEL & PIPELINED</td>
<td>1K</td>
<td>1338</td>
<td>1042</td>
<td>3</td>
<td>32</td>
<td>3.61</td>
</tr>
<tr>
<td></td>
<td>PARALLEL & PIPELINED</td>
<td>2K</td>
<td>1160</td>
<td>848</td>
<td>5</td>
<td>32</td>
<td>7.26</td>
</tr>
</tbody>
</table>
3.6 Quality Metric Comparison In 4G LTE-Radio-Over-Fiber System

In any communication system BER versus SNR and spectral efficiency (throughput) are standard QoS parameter which gives a measure of the performance of the system. That’s why proposed OWDMA architecture has been compared to the existing OFDMA architecture in a 4G LTE A-ROF system with respect to the above two QoS parameters. The Fig. 3.7(a) gives an overview of the proposed centralized CoMP system based on existing LTE backbone with fiber connectivity. It consists of a central processing unit (CPU) that contains the Xilinx FPGA and DSP’s for all the data processing for uplink and downlink. There are four separate processing modules inside the CPU model in the Fig. 3.7(a) for implementation purpose each having transmit (Tx) and receive (Rx) data processing capability. The four modules are connected to a 4x4 hub that in turn is connected to a RF switch capable of switching in Tx and Rx direction. The transmit & receive directions have an electrical to optical convertor (Laser Diode) to convert from electrical to optical signal to be transmitted via the fiber to a RAU located at different places in a cell site. The laser diode is modulated by the RF signal in the downlink path. The resulting intensity modulated an optical signal is then transmitted through the single mode fiber towards a photodiode. The received optical signal is converted to RF signal (Optical-to-Electrical convertor) by direct detection through a PIN photodetector. The signal is then amplified and radiated by the antenna. The optical fibers cover in practice many hundred meters-few kms, enough to cover a building or a small area. The RAU is a passive unit containing only optical to electrical
(a)
Figure 3.7: Deployment diagram of 4G LTE-A ROF systems having centralized architecture. (a) Overview of centralized eNB architecture. (b) Transmitter unit. (c) Receiver unit.
convertor & amplifier and a RF antenna at 2.4/5 GHz band to transmit or receive radio signals. The RAU’s are relatively close to the user equipment generally within few hundred meters. So, an ITU pedestrian multipath channel with Doppler frequency $f_d = 5\text{Hz}$ is chosen for simulations.

Fig. 3.7(b) and (c) shows the transmitter and receiver unit of the proposed architecture. In the first step of the transmitter processing, the user data is generated depending on the previous Acknowledgement (ACK) signal. If the previous user data Transport Block (TB) was not acknowledged, the stored TB is retransmitted using a Hybrid Automatic Repeat reQuest (HARQ) scheme. The data of each user is independently encoded using a turbo encoder [12]. The encoding process is followed by the data modulation, which maps the channel-encoded TB to complex modulation symbols. Depending on the CQI, a modulation scheme is selected for the corresponding Resource block. Modulation schemes used for downlink-shared channel (DL-SCH) here are QPSK, 16-QAM, and 64-QAM. The modulated transmit symbols are then mapped to a MIMO precoding matrix. The optimum precoding matrix is selected from a code book depending on the Pre-coding Control Information (PCI) that is fed back from the UE to the transmitter. Finally, the individual symbols to be transmitted are mapped to the resource elements. Downlink reference symbols and synchronization symbols are also inserted into the OFDM/OWDM time-frequency grid. The assignment of a set of resource blocks (RBs) to UEs is carried out by the scheduler based on the CQI reports from the UEs.

The receiver structure is shown in Fig. 3.7(c). Each UE receives the signal transmitted by the eNB and performs the reverse physical-layer processing of the transmitter. First, the receiver has to identify the RBs that carry its designated information. The estimation of the
channel is performed using the reference signals available in the resource grid. The channel
knowledge is also used for the demodulation and soft-decoding of the OFDM/OWDM signal.
In case of MIMO, a MMSE decoder is used. Finally, the UE performs HARQ combining and
channel decoding. In order to cut down processing time after end of every turbo iteration a
CRC check of the decoded block is performed and if correct, decoding is stopped.

Standard QoS parameters BER and throughput have been compared for OFDM and
OWDM architectures using the above system model. In addition, a performance evaluation
of radio over single mode fiber system using coded OFDM and OWDM and the relation of
fiber length with BER is discussed. Moreover, PAPR is a well-known demerit in OFDM
based systems. So, a comparison is also drawn between PAPR in the two systems.

3.6.1 Bit-Error-Rate Comparison

Figs. 3.8(a), 3.8(b) and 3.8(c) shows the simulation results for bit-error-rate versus
signal to noise ratio for OWDMA/OFDMA systems at different modulation formats. Table
3.6 shows the parameters used for the simulations. The plots are drawn for modulation

Table 3.6: Simulation parameters

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHANNEL BANDWIDTH</td>
<td>20 MHZ</td>
</tr>
<tr>
<td>MODULATION SCHEMES</td>
<td>QPSK, 16-QAM, 64-QAM</td>
</tr>
<tr>
<td>MULTIPLE ACCESS ARCHITECTURES</td>
<td>OWDMA/OFDMA</td>
</tr>
<tr>
<td>PARAMETER</td>
<td>VALUE</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>N (SIZE OF COMPUTATION)</td>
<td>1024</td>
</tr>
<tr>
<td>ERROR CONTROL CODE</td>
<td>RATE-1/2 TURBO CODES</td>
</tr>
<tr>
<td>CHANNEL MODEL</td>
<td>ITU EXTENDED PEDESTRIAN A MODEL (EPA) WITH F_d = 5HZ</td>
</tr>
</tbody>
</table>

schemes of QPSK, 16-QAM and 64-QAM for an ITU defined EPA with Doppler frequency f_d = 5Hz. The size of transform for both the architectures is taken as 1024 for a total of 50 resource blocks at 20MHz bandwidth. Comparisons are drawn taking both uncoded and rate-1/2 turbo coded OWDMA/OFDMA systems. We can infer from the graphs that OWDMA performs better than OFDMA for both coded and uncoded schemes. At QPSK modulation as in Fig. 3.8(a), OWDMA shows a performance improvement close to 1.5dB which increases to nearly 2.5dB for 64-QAM modulation as shown in Fig. 3.8(c). The gain in SNR can be used to either increase reach or accommodate more number of users.

The relation of optical fiber length in terms of performance (SNR of radio-over-fiber) with BER is shown in Fig. 3.8(d). Table VII defines the simulation parameters for the optical link. The SNR of radio-over-fiber is defined as the ratio of probe power (P_{FIBER}) of the fiber and the total noise in the ROF system. Total noise of the ROF system is the sum of Additive White Gaussian Noise (AWGN) plus the fiber nonlinearities and it passes through an ITU multipath fading channel (EPA channel) as defined in the previous case. The SNR of ROF is given by Eqn. (3.20), where, h is the radio channel coefficient and N_{AWGN} & N_{FIBER-NL} are the AWGN noise & degradation from fiber nonlinearities respectively.
We find that there is no significant degradation on the bit error rate performance until the fiber length becomes 12 km due to considerable modal dispersion. OWDMA shows slightly better performance as compared to OFDMA system. This means that for OWDM-ROF system used supports ensures high service availability over long distances up to 8 km which came in accordance with standard distances between the indoor (baseband) and outdoor (radio) units.
Figure 3.8: Signal to noise ratio versus bit error rate comparison for OWDMA and OFDMA architectures in LTE A ROF systems. (a) Signal to noise ratio versus bit error rate comparison for rate-1/2 turbo-coded & uncoded QPSK-OWDMA and QPSK-OFDMA. (b) Signal to noise ratio versus bit error rate comparison for rate-1/2 turbo-coded & uncoded 16QAM-OWDMA and 16QAM-OFDMA. (c) Signal to noise ratio versus bit error rate comparison for rate-1/2 turbo-coded & uncoded 64QAM-OWDMA and 64QAM-OFDMA. (d) Signal to noise ratio (radio-over-fiber) versus bit error rate comparison for QPSK-OWDMA and QPSK-OFDMA at different fiber lengths.
Table 3.7: Fiber parameters in optical link

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Fiber</td>
<td>Single Mode Non-Zero Dispersion Shifted Fiber (NZDSF)</td>
</tr>
<tr>
<td>Fiber Wavelength</td>
<td>1.55 μm</td>
</tr>
<tr>
<td>Fiber Dispersion</td>
<td>4 ps/nm-km</td>
</tr>
<tr>
<td>Fiber attenuation</td>
<td>0.21 dB/km</td>
</tr>
<tr>
<td>Frequency Spacing</td>
<td>50 GHz</td>
</tr>
<tr>
<td>Optical Probe Power</td>
<td>15 dBm</td>
</tr>
<tr>
<td>Span Length</td>
<td>1 km, 8 km & 12 km</td>
</tr>
</tbody>
</table>

3.6.2 Throughput Of OWDMA System

In this section we compare the throughput results of OWDMA systems as compared to OFDMA systems. In a fading system, the capacity of a MIMO system is given by [3]

\[C = B \times F \times \log_2 \left(1 + M \times \beta \times \text{SNR} \right) \] (3.21)

Here, SNR is the Signal to Noise Ratio, B the bandwidth occupied by the data subcarriers, \(\beta \) defines combined path-loss and lognormal shadowing at any RAU, M is the number of RAU’s and F is a correction factor. The transmission of an OFDM signal requires also the transmission of a CP to avoid inter-symbol interference and the reference symbols
for channel estimation. The correction factor F represents the loss due to cyclic prefix. In order to avoid any Inter Symbol Interference (ISI), the symbol time should be greater than the channel delay spread. The substreams should also be orthogonal to each other and thus OFDM is used. Assume the transmission of a sequence, $x[n] = \{x[0], x[1], \ldots, x[N-1]\}$, with the size of N, through a channel with L multipaths, $h[l] = \{h[0], h[1], \ldots, h[L-1]\}$. We assume that the channel consists of L distinct and resolvable paths and $v[n]$ is assumed to be AWGN. So, the discrete sampled received signal, $r[n]$, at the output of the channel can be written as

$$r[n] = \sum_{l=0}^{L-1} h[l] \ast x[n] + v[n]$$

(3.22)

It is well known that multiplication in the DFT domain corresponds to the circular convolution in the time domain. In order to achieve circular convolution using linear convolution, we must add a prefix that is the ‘cyclic prefix’ onto the transmitted signal. This cyclic prefix makes the linear convolution appear as a circular convolution, and represents a loss in the achievable data rate that becomes significant in the highly fading channels. But in the case of OWDM that uses wavelet transform, the operations involves shift and multiply operations with filter coefficients. The shift by two for subsequent pairs of rows produces a downsampling operation within the matrix transformation and also makes the matrix orthogonal and circulant [59]. Therefore, a cyclic prefix is not required in the case of OWDM. This gives a significant throughput advantage particularly in highly dispersive channels. The proof of this is given in Appendix B.
Fig. 3.9 shows the throughput [Mb/s] versus SNR in dB with values of M (RAU’s) ranging from 1-4 for OWDM and OFDM systems. Shannon’s limit for the capacity at different M is also drawn to show the upper bound. The red circles depict the throughput for OWDM/OFDM at a particular modulation scheme and SNR. It is found that for the OWDM system achieves better throughput at same channel conditions putting less burden on the overall resources in terms of modulation used at a given SNR. For instance, OWDM with QPSK provides 25% better throughput performance as compared to OFDM with 16-QAM between 12-14 dB SNR. Data Rate upto 760 Mb/s can be achieved using OWDM systems and the results are very close to Shannon’s limit. Thus, OWDM is not only a more efficient system than OFDM but an optimum system that performs close to Shannon’s limit.
3.6.3 Peak Average To Power Ratio

PAPR appears to be a main disadvantage of OFDM. In this chapter we show that PAPR performance in OWDMA is better than that of the OFDMA systems. PAPR depends on the bandwidth efficiency of the system. The problem of high PAPR is usually associated with OFDM because it is much easier to reach high bandwidth efficiency for OFDM. There exist a large number of publications in literature devoted to the PAPR problem in OFDM. But these publications almost claim only a slight improvement on the exiting architecture. But, the results of tests indicate OWDM is the ideal candidate to solve the existing PAPR issues and still deliver high bandwidth efficiency. Our PAPR simulation and analysis is carried out based on its complementary cumulative distribution (CCD). So, for a given $PAPR_0$ (dB), the percentage of combinations that guarantee ($PAPR > PAPR_0$) is a meaningful criterion for analysis purposes. In general, the PAPR of wavelet coefficients coming out is defined in Eqn. (3.23) as the ratio between the maximum instantaneous power and its average power, where $E[W_c(t)]^2$ is the average power of $W_c(t)$ (Wavelet Coefficients).

$$PAPR[dB] = 10 \cdot \log_{10} \left(\frac{\max |W_c(t)|^2}{E|W_c(t)|^2} \right)$$ \hspace{1cm} (3.23)

The PAPR performance metric we consider is the complementary cumulative distribution function (CCDF) which is plotted as in Fig. 3.10. The OWDMA system provides reduced PAPR of around 2 dB which is favorable for RF amplifier operation as compared to OFDMA systems.
3.6.4 Inter Carrier Interference

The main disadvantage of OFDM, however, is its susceptibility to small differences in frequency at the transmitter and receiver, normally referred to as frequency offset as shown in Fig. 3.11. This frequency offset can be caused by Doppler shift due to relative motion between the transmitter and receiver, or by differences between the frequencies of the local oscillators at the transmitter and receiver. In this section, the frequency offset is modeled as a multiplicative factor introduced in the channel, as shown in Figure

![Figure 3.11: Frequency offset model](image-url)

Figure 3.10: CCDF plot of PAPR in dB
The received signal is given by,

$$y(n) = x(n)e^{j2\pi n\varepsilon/N} + w(n)$$

(3.24)

Where ε is the normalized frequency offset, and is given by ΔfNT_s. Δf is the frequency difference between the transmitted and received carrier frequencies and T_s is the subcarrier symbol period. $w(n)$ is the AWGN introduced in the channel.

The effect of this frequency offset on the received symbol stream can be understood by considering the received symbol $Y(k)$ on the k^{th} sub-carrier is

$$Y(k) = X(k)S(0) + \sum_{l=0, l \neq k}^{N-1} X(l)S(l - k) + n_k$$

(3.25)

$$k = 0, 1, 2, \ldots, N-1$$

Where N is the total number of subcarriers, is the transmitted symbol (M-ary phase-shift keying, for example) for the k^{th} subcarrier, n_k is the FFT of and are the complex coefficients for the ICI components in the received signal. The ICI components are the interfering signals transmitted on sub-carriers other than the k^{th} sub-carrier. ICI power is calculated by Eqn. (3.26) where h is the impulse response, n is the up-sampling factor of data X and with M-ary modulation [60]

$$\sigma_{ICI}^2 = \sum_{k=0, k \neq j}^{M-1} \sum_{m=-\infty}^{\infty} |h_{jk}(n_k m)|^2$$

(3.26)
Fig. 3.12 shows the Inter Carrier Interference power generated with the increasing number of subcarriers in OWDM and OFDM systems. The interference power for OWDM system shows an exponential decrease whereas in the OFDM system it decreases linearly.

3.7 Summary

In this chapter, we have developed a flexible, hardware friendly and low-power OWDMA architecture design for deployment in ROF systems having LTE-A configuration. The key contribution of the paper is the architecture derived for a LTE A-ROF system with an interface of input and output ports that can replace the OFDMA block with ease giving added benefits.

We first derived the architecture based on previous 9/7 lifting scheme wavelet filters. The computation of the method is described using filters, controller and parallel-to-serial units. The scheduler is also implemented for easy interfacing of the sub-block with other blocks of the system. The architecture is validated on a centralized processor having Xilinx
virtex-6 FPGA’s at N=512. We compare our architecture with various other 1-D 9/7 wavelets available in literature as well with existing OFDMA implementations. We also compute the communication Quality parameters BER, throughput and PAPR for OWDMA and compare with existing OFDMA systems.

We found that our architecture runs at a speed of 142.13 MHz consuming only 143 mW of power. It is better in terms of resource consumption as compared to other similar 1-D 9/7 implementations. We also found to be significantly better than OFDMA systems in terms of resource utilization and BER, throughput and PAPR performance for ROF systems. Hence, it was shown that OWDMA systems are well suited for high data rate applications and also can accommodate more number of users.
Chapter 4

Fast Inverse Square Root Based

Matrix Inverse For MIMO-LTE

Systems

Most of the channel estimation process needs to invert a matrix which is either the channel state information or a nonlinear function of it. If increasing the number of transmitter and receiver antennas is to provide a higher data rate as described in section 2.7.4 Enhanced MIMO proposal in LTE-A. Consequently the dimension of matrix function increases and it requires more computations to invert the matrix in fewer times. Thus we require fast approaches to obtain matrix inverse. In this chapter, we will be presenting a floating point based matrix inversion technique using FISRMI based givens rotation and will optimize it for speed and power. We propose an approach explained in sections below that replaces the square root and division operation in matrix inverse by shift and multiply operations. Thus it reduces latency and increases speed as compared to other architectures.
4.1 Matrix Inversion Using QR Decomposition And

Systolic Array

The complexity of matrix inversion in hardware becomes prohibitive for real time applications and large values of n. In this report we present the results for inverting a matrix of size 4× 4. The same idea and a slight modification in hardware can be used for larger matrix sizes. In the hardware design, we are using QR decomposition and systolic arrays [61].

\[A = QR \] \hspace{2cm} (4.1)

Let A be n× p matrix of full rank p. The QR decomposition is decomposing matrix A to a triangular matrix Rp× p and an orthogonal matrix Q using plane rotations.

\[A^{-1} = (A^H A)^{-1} A^H = (R^H R)^{-1} R^H Q = R^{-1} Q^H \] \hspace{2cm} (4.2)

Here, H is the hermitian transpose of a matrix. Using systolic arrays by solving for the equation below which has an upper triangular matrix R, we can find inverse of matrix A.

\[
\begin{align*}
AA^{-1} &= I \\
Q^H QRA^{-1} &= Q^H I \\
RA^{-1} &= Q^H
\end{align*}
\] \hspace{2cm} (4.3)

4.1.1 QR Decomposition Using Givens Rotation

Let A be n× p matrix of full rank p. An orthogonal matrix triangularization (QR Decomposition) consists of determining an n×n orthogonal matrix Q with the p×p upper
triangular matrix R. One only has then to solve the triangular system $Rx = Py$, where P consists of the first p rows of Q.

\[
\begin{bmatrix}
1 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\
0 & \cdots & c & \cdots & s & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \ddots & \ddots & \vdots \\
0 & \cdots & -s & \cdots & c & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & \cdots & 0 & \cdots & 1
\end{bmatrix}
\]

(4.4)

With properly chosen $c = \cos(\varphi)$ and $s = \sin(\varphi)$ for some rotation angle φ can be used to zero the element A_{ki} (where k is the row and i is the column of A) to find a upper triangular matrix R. The elements can be zeroed column by column from the bottom up. Q is then the product of $g = 2 \left(2n - p - 1 \right)$ Givens matrices $Q = G_1 G_2 \ldots G_g$. The orthogonal matrix Q^H is formed from the concatenation of all the Givens matrices $Q^H = G_g G_{g-1} \ldots G_1$. Thus, we have $R = Q^H A = G_g G_{g-1} \ldots G_1 A = R$, and the QR decomposition is $A = QR$. To annihilate the bottom element of a 2×1 vector:

\[
\begin{pmatrix}
c \\
-s
\end{pmatrix}
\begin{pmatrix}
a \\
b
\end{pmatrix}
= \begin{pmatrix}
r \\
0
\end{pmatrix}
\]

(4.5)

\[
c = \frac{a}{\sqrt{a^2 + b^2}}, \quad s = \frac{b}{\sqrt{a^2 + b^2}}
\]
4.1.2 Fast Inverse Square Root

The operations in the givens rotation involve division and square roots which can be quite costly to be implemented in the hardware in terms of latency and hardware. Thus, instead of that we will use a fast inverse square root method that has only shift and addition operations. Since for our application of MIMO-OFDM systems, 32-bit is enough for representation. We will limit our approach for fast inverse square root to a floating point of 32-bits. Floating point numbers are stored in 2’s complement signed format in hardware as;

<table>
<thead>
<tr>
<th>s</th>
<th>E</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>bit 31</td>
<td>30 ← bits → 23</td>
<td>22 ← bits → 0</td>
</tr>
</tbody>
</table>

Figure 4.1: 2’s Complement signed form of floating point numbers with exponent and mantissa

Where s is a 1 bit sign (1 denotes negative), E is an 8 bit exponent, and M is a 23 bit mantissa. The exponent is biased by 127 to accommodate positive and negative exponents, and the mantissa does not store the leading 1, so think of M as a binary number with the decimal point to the left, thus M is a value in I = [0, 1). The represented value is

\[x = (-1)^s (1 + M) 2^E \] \hspace{1cm} (4.6)

These bits can be viewed as the floating point representation of a real number, or thinking only of bits, as an integer. Thus M will be considered a real number in I or as an integer, depending on context. M as a real number is M as an integer divided by \(2^{23}\). Let the exponent \(E_1 = E - 127\). Then \(x = (1 + M)2^{E_1}\), and the desired value .
\[y = \frac{1}{\sqrt{x}} = \frac{1}{\sqrt{1+M}} 2^{E_1} \]

(4.7)

For the general case we take a magic constant R, and analyze \(y_0 = R^{-(i>>1)} \), where the subtraction is as integers, \(i \) is the bit representation of \(x \), but we view \(y_0 \) as a real number. \(R \) is the integer representing a floating point value with bits

\[0 | R_1 | R_2 \]

(4.8)

i.e., \(R_1 \) in the exponent field and \(R_2 \) in the mantissa field. When we shift \(i \) right one bit, we may shift an exponent bit into the mantissa field, so we will analyze two cases.

1. **Exponent E Even**

 In this case, when we use \(i>>1 \), no bits from the exponent \(E \) are shifted into the mantissa \(M \), and \([E/2] = E/2 \). The true exponent \(e = E - 127 \) is odd, say \(e = 2d + 1 \), \(d \) an integer. The bits representing the initial guess give the new exponent. We require this to be positive. If it were negative the resulting sign bit would be 1, and the method fails to return a positive number. If this result is 0, then the mantissa part could not borrow from the exponent. The initial guess for inverse square root is then,

\[y_0 = \left(1 + R_2 - M/2\right) 2^{(R_1 - 64 - d) - 127} \]

(4.9)

2. **Exponent E Odd**

 With the previous case under our belt, we analyze the harder case. The difference is that the odd bit from the exponent \(E \) shifts into the high bit of the mantissa from the code \(i>>1 \). This adds 12 to the real value of the shifted mantissa, which becomes \([M/2] + 12 \), where the truncation is as integers and the addition is as real numbers. \(e = E - 127 = 2d \) is even. Similar
to above the new exponent is this must be positive as in the previous case. Now the initial guess is,

\[y_0 = \left(1 + R_2 - \left(\frac{M}{2} + 1/2\right)\right)2^{(R_1 - 63 - d) / 127} \quad (4.10) \]

To get a near accurate result Newton’s method of approximation is used [62], and the magic constant is used to compute a good initial guess. Given a fixed point value \(x > 0 \), we want to reduce the following cost function for optimized results,

\[f(y) = \frac{1}{y^2} - x \quad (4.11) \]

Then the value we seek is the positive root of \(f(x) \). Newton’s root finding method, given a suitable approximation \(y_n \) to the root, gives a better one \(y_{n+1} \) using,

\[y_{n+1} = y_n - \frac{f(y_n)}{f'(y_n)} \quad (4.12) \]

For the \(f(y) \) given, this simplifies to \(y_{n+1} = 1/2 * y_n(3 - x y_n^2) \), Where \(x \) is the initial guess.

4.1.3 Systolic Architecture

Use of systolic arrays for matrix triangularization is a well known concept [36]. Systolic array is a computing communication processing which has some advantage like as synchrony, modularity and regularity, spatial and temporal locality, pipelining etc. For
computation, it is simple and regular design, network and balancing computation with input and output.

Using Eqn. 4.3, we find that $RA^{-1} = Q^H$. We use two computing cells, The Boundary cells and the vectoring cells. Boundary cells move left to right in this architecture, it passes different values to the vectoring cell from R matrix. Vectoring cells has two computation nodes, one does division for diagonal elements of R with corresponding Q hermition matrix and the other is a multiply and accumulate node which multiplies the values in R and accumulates the added value. It finally subtracts and feeds the output to division node, which finally outputs the value. This cell moves from top to bottom in the architecture. This outputs the values in a back substitution manner.

The Fig. 4.2 below shows the block diagram for implementation in hardware. The process is a sequential process that reuses the available resources in the system. The fast inverse square root block is used once in every iteration, to give the output G that utilizes c and s computed simultaneously. G is used to calculate Q hermition and R matrix finally after 6 iterations. Each of c and s uses one multiplication block. G and Q computation requires a multiply and accumulate DSP 48 macro which can be used sequentially to optimize the resources.
After values of R and Q are calculated, elements of A^{-1} matrix are found using back substitution of the systolic array architecture in Fig. 4.3 as per Eqn. (4.13). The div block uses the fast inverse square root and a multiplier to do fast division. Boundary cell feeds the R values to vectoring cell which multiplies and accumulates the data followed by division to give the output back. All 4 values of inverse matrix of A are calculated in one block cycle. The final output is obtained in 4 block cycles. Here, i goes from 3...1 and L, j from 1...4.
4.2 FPGA Implementation And Analysis

The System Generator, a high level design tool from Xilinx is used to implement and test the matrix inversion design on the Virtex6-xc6vsx475t FPGA. Input is a 4 × 4 matrix of 32-bit floating point value and output is the inverse matrix. Table 4.1 shows the design statistics for a 4 × 4 matrix inversion core using our method with that of other methods like CORDIC based SGR and SDGR. Compared to other methods, we save a lot in computation.
time due to elimination of division & square roots with a slight increase in no. of additions and multiplications. We assumed 8 bits for mantissa, 23 bits for exponent of floating point numbers and one sign bit. For floating point operators (adder and multiplier) we have used the available operators of DSP 48 from Xilinx. All these operators are compatible with IEEE754 standard. On a state of the art Virtex6-xc6vsx475t FPGA running at 200 MHz, this matrix inversion architecture achieves a throughput of 0.29μs or 3.5M updates per second. These latencies can be decreased by adding more boundary or internal nodes to the design or decreasing the word length requirements. The design is easily extendable to other matrix sizes of n × p by changing the control unit. There is a tradeoff between number of cells (and hence area of the design) and throughput. For larger matrices, if throughput is less than required, we can increase number of cells and use a semi-parallel approach instead of the current folded model.

We optimize our design by pipelining the triangular section and the back substitution part of the design for Speed and Area respectively. We do timing and power analysis using the modelsim software and calculate delay and power required for entire operation with and without pipelining. Table 4.2 depicts the resources, delay and power for each of the processess compared to the SGR [36] and CORDIC [63] methods. We can find out that pipelining approach for speed increases the throughput to 4.4M per second and also reduces the power utilized. The trade-off is the increase in resources. Our method outperforms CORDIC and SGR in terms of throughput, resource utilization and latency.
Table 4.1: Comparisons of computational operations

<table>
<thead>
<tr>
<th>Operations</th>
<th>Our Method</th>
<th>CORDIC Based Squared Givens rotation [36][38]</th>
<th>CORDIC Based Square root and division-free Givens rotation [36][38]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplication</td>
<td>30</td>
<td>27</td>
<td>60</td>
</tr>
<tr>
<td>Addition</td>
<td>23</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Division</td>
<td>0</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Square Root</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>
Table 4.2: Resource estimation of 4x4 matrix inversion core

<table>
<thead>
<tr>
<th></th>
<th>OUR TECHNIQUE W/O PIPELINING</th>
<th>SPEED OPTIMIZED USING PIPELINING</th>
<th>AREA OPTIMIZED USING PIPELINING</th>
<th>CORDIC [63]</th>
<th>SGR [36][38]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slices</td>
<td>6219</td>
<td>8721</td>
<td>8922</td>
<td>16865</td>
<td>9117</td>
</tr>
<tr>
<td>DSP 48</td>
<td>39</td>
<td>38</td>
<td>37</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RAM</td>
<td>9</td>
<td>9</td>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IOB</td>
<td>62</td>
<td>127</td>
<td>127</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Latency</td>
<td>0.29μs</td>
<td>0.23μs</td>
<td>0.25μs</td>
<td>45.5 μs</td>
<td>8.1 μs</td>
</tr>
<tr>
<td>Throughput</td>
<td>3.5M</td>
<td>4.4M</td>
<td>4M</td>
<td>-</td>
<td>0.13M</td>
</tr>
<tr>
<td>Power</td>
<td>4.8W</td>
<td>4.4W</td>
<td>4.4W</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
4.3 LTE MIMO MMSE Matrix Inversion BER

In this manuscript, to show the effect of wordlength on the accuracy of matrix inversion and channel estimation, the 16 bit and 20 bit representations are evaluated for the inverse of large 4x4 and 8x8 matrices using 16-QAM and 64-QAM modulation. If we assume \(X(k) \) & \(R(k) \) as the transmitted and received sequences respectively, \(H(k) \) as the channel coefficients and \(N(k) \) as the additive white Gaussian noise of variance \(\sigma \), then \(R(k) \) is given by,

\[
R(k) = H(k)X(k) + N(k)
\]

(4.14)

Here \(X(k) \) and \(R(k) \) ∈ (M-QAM symbols) and are \(N_R \times 1 \) row vector. \(N_R \) is the number of receive antenna ∈ (4 or 8 in our case = \(N_T \) transmit antennas). \(H(k) \) is \(N_R \times N_T \) vector and \(N(k) \) ∈ \(\sigma^2 I_{N_T} \) vector. The \(X_{\text{est}}(k) \) is the estimated value of \(X(k) \) given by MMSE decoder as,

\[
X_{\text{est}}(k) = \left(H^H(k)H(k) + \sigma^2 I_{N_T} \right)^{-1} H^H(k)R(k)
\]

(4.15)

Fig. 4.4 (a) & (b) shows the comparison of BER versus SNR curves of MMSE decoders using the FISRMI and CORDIC 16-bit and 20-bit. Although the 16-bit and 20-bit provides enough precision for inversion of small matrices, the error increases substantially at higher SNRs. CORDIC saturates with increase in SNR. Hence the floating point FISRMI approach would be much better suited for use in future LTE systems using larger matrices.
Figure 4.4: (a) 16-QAM MMSE decoder using CORDIC 16 & 20-bit and floating point based FISRMI algorithm. (b) 64-QAM MMSE decoder using CORDIC 16 & 20-bit and floating point based FISRMI algorithm.
4.4 Summary

A matrix inversion core is designed and implemented on Xilinx Virtex6 FPGAs using fast inverse square root based QRD and Givens Rotation algorithms. The design runs with a clock rate of 200 MHz and achieves a throughput of 4.4M updates per second with optimization using pipelining. This design is easily extendable to other matrix sizes. We also compare BER versus SNR of FISRMI algorithm with CORDIC 16-bit and 20-bit method and demonstrated our method to be better for inversion of higher matrices.
Chapter 5

Conclusion

5.1 Summary Of Contributions

In this thesis, we have formulated, derived and evaluated OWDMA Architecture (Chapter 3). We started with basic wavelet transform and developed the methodology and optimized hardware structure. The architecture was evaluated for resources, efficiency, Throughput and bit error rate performance against the state of the art OFDMA multiple access scheme (Chapter 2). It gives superior performance in all the metrics. Apart from that it consumes less power, mitigates PAPR and ICI problem significantly compared to OFDMA. We think it is a novel concept since no such multiple access for wireless communication system exists in the literature and neither its hardware architecture been developed and synthesized & evaluated thoroughly.

In Chapter 4, we have developed a new FISRMI. The method is new in the way because all the matrix inverse present in the literature focuses on either CORDIC rotation, Householder matrix inverse, Gram-Schmidt based QR inverse & divide and conquer matrix inverse. Eliminating complex calculations of square root and division has never been done before. In addition, the floating point implementation approach gives better resolution and
accuracy to the receiver decoding. This saving in SNR can be used in many ways to improve the quality of service to end users.

5.2 Future Directions

Our OWDMA architecture was shown to be better in architecture and simulation (Chapter 3). However, the actual implementation on test bed is needed to verify our synthesis and simulation results. We simulated BER vs SNR for different fiber length at a single launch power and for single mode NZDSF fibers. We will need to evaluate more fibers lengths as well as different fiber levels. Multi-mode fibers also have to be tested against the single mode fibers at short lengths in presence of link noise.

The adaptability of our method has to be experimentally evaluated at different channel conditions and in different changing environments like office, urban, sub-urban and desert. Support to number of users in a busy area and in tunnels & subways have to be substantiated at those conditions. Downlink and uplink speeds and latency have to be measured as well. And the overall adaptability of the architecture to the rest of system has also to be seen and tested, so as to minimize the change in the existing architecture as much as possible. This will save on CAPEX of the overall LTE systems and on the consumer side.

Although, the floating point matrix inverse is a very promising method, but more tests are needed to evaluate the actual resources taken by the structure and how it can be beneficial. Trade-off is required between SNR savings and bit resolution to implement the system in actuality on a test-bed. If the matrix inverse block would be developed on DSP processor, then the sending and receiving data to and from the block has to be synchronized. One of the major problems while working with floating-point arithmetic is preventing overflows. While
performing arithmetic calculations, a result may not fit into the reserved bits and if this case is not handled carefully, it causes overflow and incorrect results. So, overflow prevention have to be taken care of while dealing in floating points.

5.3 Final Remarks

Overall the two algorithms described in the thesis has demonstrated a strong promise to solve some of the existing problems in LTE networks as well aid in the deployment of future LTE systems. By considering the further refinements suggested in Section 5.2, we believe the methods provided in this thesis will contribute and motivate efforts to reach the levels of seamless and effortless integration expected and required for an even wider-scale deployment of LTE-A networks.
Bibliography

Appendix A

Experimental Test Bed Setup

The experimental test bed setup described here includes one central processor with multiple distributed antenna nodes and multiple mobile stations. This setup simulates in real time. The test bed will operate in the 2.4 GHz ISM band for its license-exempt convenience. To achieve full flexibility to the design of the physical layer functions, MAC protocols and Radio Resource Management (RRM) algorithms, we will employ high-speed SDR platforms based on digital signal processors and FPGAs to realize the central access point and mobile stations. Each platform consists of RF front-ends with 20 MHz to 80 MHz bandwidth, a number of 125 MHz~250 MHz 14bit ADCs/DACs mounted on latest Xilinx Virtex-6 FPGA board to pre-process data samples, and a powerful DSP/FPGA processing unit that uses Xilinx Virtex-6 FPGAs. Zinwave 3000 DAS is used as the hub to create a 2x2/4x4 system. Single mode NZDSF optical fibers are used to connect the DAS to the Remote radio heads.

Test Bed Architecture

In order to reduce CAPEX the test bed is developed using generic “off-the-shelf” platforms like Micro-TCA and Advanced Mezzanine Card (AMC). On the other hand, legacy proprietary platforms have been used until 3G/3.5G network era. Micro-TCA platform is one of the powerful options dedicated to applying telecom equipment especially for the use in LTE eNB. Many component vendors are developing modules based on general purpose
Micro-TCA modules with powerful CPU, DSP, and FPGA, with high speed memory with GbE I/F on front side. The baseband function and network interface function are implemented on different modules. FPGAs are used for implementation of PHY/Baseband, Digital Signal Processors or Network processors for Lower layer protocols (HARQ/MAC/RLC), and CPUs or Network processors with operating system for upper layers which drive the whole system. The test bed lab setup is shown in Fig. A.1 below.

Figure A.1: Test bed experimental setup

Setup Components

The three tables below specify the Test hardware requirements, Lab equipments required and software tools needed for the test setup.
Table A.1: Test hardware requirements

<table>
<thead>
<tr>
<th>Product</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8x Perseus 6013 with ADAC 250</td>
<td>Lyrtech</td>
</tr>
<tr>
<td>4x Twin WiMAX RF Transceiver</td>
<td>Lyrtech</td>
</tr>
<tr>
<td>5x µTCA chasis</td>
<td>Vadatech</td>
</tr>
<tr>
<td>8x Mestor Breakout Box</td>
<td>Lyrtech</td>
</tr>
<tr>
<td>4x JTAG FPGA Pod</td>
<td>Xilinx</td>
</tr>
<tr>
<td>40x SMA-to-MMCX Cables</td>
<td>Lyrtech</td>
</tr>
<tr>
<td>8x USB to UART Cable</td>
<td>SiLabs</td>
</tr>
<tr>
<td>8x GPIO-32 Flat Ribbon Cable</td>
<td>Lyrtech</td>
</tr>
<tr>
<td>11x Power Adaptors</td>
<td>Cincon Technologies</td>
</tr>
<tr>
<td>8x Antennas 2.5GHz-2.7GHz</td>
<td>Lyrtech</td>
</tr>
<tr>
<td>8x Antennas 2.4GHz-2.48GHz</td>
<td>Lyrtech</td>
</tr>
<tr>
<td>Distributed Antenna System Hub</td>
<td>Zinwave</td>
</tr>
<tr>
<td>10x100 m Single Mode Fiber</td>
<td>Corning</td>
</tr>
<tr>
<td>4x Remote Antenna Units</td>
<td>Zinwave</td>
</tr>
</tbody>
</table>

Table A.2: Lab test equipment

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Manufacturer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector Signal Analyzer (4GHz)(VNA master)</td>
<td>Anritsu</td>
<td>MS2034A</td>
</tr>
<tr>
<td></td>
<td>Agilent</td>
<td>N9030A</td>
</tr>
<tr>
<td>RF Signal Generator (4GHz)</td>
<td>Agilent</td>
<td>8648D</td>
</tr>
<tr>
<td>BER Tester</td>
<td>Agilent</td>
<td>8613A</td>
</tr>
<tr>
<td>Real time Oscilloscope</td>
<td>Tektronix</td>
<td>DRO4054</td>
</tr>
<tr>
<td>Instrument</td>
<td>Manufacturer</td>
<td>Version</td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td>Pulse Generator (1Hz-150MHz)</td>
<td>Agilent</td>
<td>8110A</td>
</tr>
<tr>
<td>PSG Analog Signal Generator(250kHz-20GHz)</td>
<td>Agilent</td>
<td>E8257D</td>
</tr>
</tbody>
</table>

Table A.3: Software tools

<table>
<thead>
<tr>
<th>Software Development Tools</th>
<th>Vendor</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATLAB</td>
<td>Mathworks</td>
<td>R2009b</td>
</tr>
<tr>
<td>ISE Design Suite</td>
<td>Xilinx</td>
<td>12.1</td>
</tr>
<tr>
<td>Chip Scope Pro</td>
<td>Xilinx</td>
<td>12.1</td>
</tr>
<tr>
<td>iMPACT</td>
<td>Xilinx</td>
<td>12.1</td>
</tr>
<tr>
<td>Sysgen</td>
<td>Xilinx</td>
<td>12.1</td>
</tr>
<tr>
<td>Visual Studio</td>
<td>Microsoft</td>
<td>2010</td>
</tr>
<tr>
<td>Petalinux</td>
<td>PetaLogix</td>
<td>SDK v2.1</td>
</tr>
<tr>
<td>μCA Edition ADP software tools</td>
<td>Lyrtech</td>
<td>V5</td>
</tr>
<tr>
<td>Windows XP</td>
<td>Microsoft</td>
<td>SP3</td>
</tr>
</tbody>
</table>
Appendix B

Proof Of Not Requiring Cyclic Prefix

In OWDMA

From signal processing theory, it is well known that multiplication in the DFT domain corresponds to the circular convolution in the time domain, that is

\[
\text{FrequencyDomain} : R[k] = H[k]X[k] \\
\text{TimeDomain} : r[n] = h[n] \otimes x[n]
\]

(B.1)

Where \(\otimes \) indicates the circular convolution, \(H(k) \) and \(X(k) \) are channel coefficients and input respectively and \(R(k) \) is the convolved output signal. So, from Eqn. (B.1) it is implied that in order to achieve circular convolution using linear convolution, we must add a prefix called the ‘cyclic prefix’ onto the transmitted signal. This cyclic prefix makes the linear convolution appear as a circular convolution, and represents a loss in the achievable data rate that becomes significant in the highly dispersive channels.

OWDM uses wavelet transform that divides the input signal into high pass \((G[N]) \) and low pass \((F[N]) \) components respectively. If we assume \(A[N] \) and \(W_c[N] \) as the scaling and wavelet coefficients respectively, then we can write the scaling and wavelet coefficients in terms of high pass and low pass components.
\[A_j[k] = \sum_{n} A_{j-1}[n] \cdot F[n - 2k] \quad \text{(B.2)} \]

\[W_j[k] = \sum_{n} W_{j-1}[n] \cdot G[n - 2k] \quad \text{(B.3)} \]

These two high pass and low pass coefficients are related to each other and together form a Quadrature Mirror Filter (QMF). If U is the filter length then \(F[k] \) and \(G[K] \) are mirror images of each other as shown in Eqn. (B.4).

\[G[k] = (-1)^{\Delta} F[U - k] \quad \text{(B.4)} \]

Following Eqn. (B.1) - (B.3) and computing discrete wavelet transform on received signal \(r[n] \), we get

\[
\text{DWT}(r[n]) = \left[\sum_{n=0}^{M-1} r[n] \cdot F[n - 2k] \sum_{n=0}^{M-1} r[n] \cdot G[n - 2k] \right]^T \\
= \left[\sum_{n=0}^{M-1} \sum_{i=0}^{M-1} h[i] s[n - i] \cdot F[n - 2k] \sum_{n=0}^{M-1} \sum_{i=0}^{M-1} h[i] s[n - i] \cdot G[n - 2k] \right]^T \\
\]

Taking, \(n-i = i \), and \(2k-i = m \), we get

\[
\text{DWT}(r[n]) = \left[\sum_{i=0}^{M-1} h[i] \cdot \sum_{i=0}^{M-1} s[i] \cdot F[i - 2m] \sum_{i=0}^{M-1} h[i] \cdot \sum_{i=0}^{M-1} s[i] \cdot G[i - 2m] \right]^T \\
\]

\[\quad \text{(B.6)} \]
Where Δ_1 and Δ_2 are (left) circular convolution between the input sequence and the low-pass and high-pass filter coefficients, respectively. Therefore Eqn. (B.6) can be written as in Eqn. (B.7)

$$R_{\text{DWT}}[k] = \text{DWT}(s[n] * h[n]) = \begin{bmatrix} H^T F_k S & H^T G_k S \end{bmatrix}^T$$ \hspace{1cm} (B.7)

Here F_k and G_k are left circulant matrices. This proves that DWT achieves circular convolution in time domain by its inherent property and a cyclic prefix need not be added to make it appear circular.