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Abstract

The use of wireless body sensor networks (WBSNs) is gaining popularity in

monitoring and communicating information about a person’s health. In such

applications, the amount of data transmitted by the sensor node should be

minimized. This is because the energy available in these battery-powered

sensors is limited. In this thesis, we study the wireless transmission of

electroencephalogram (EEG) signals. We propose novel, energy-efficient

compressed sensing (CS) frameworks that take advantage of the inherent

structure present in EEG signals (both temporal and spatial correlations)

to efficiently compress these signals at the sensor node in WBSNs.

We first present a simple CS-based framework that is adapted to the EEG

WBSN setting. We optimize the sparsifying dictionary and demonstrate

that using a fixed sparse binary sensing matrix offers similar performances

to optimal matrices while requiring far fewer computations.

We then add an energy-efficient Independent Component Analysis (ICA)

preprocessing block to the simple CS framework to exploit the spatial cor-

relations among EEG channels. We show that the proposed framework pro-

vides significant energy savings as compared to the state-of-the-art method.

As well, for a fixed compression ratio, our system achieves similar normal-

ized mean square error performance as the state-of-the-art method, which
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is better than that achieved by the simple CS framework.

We further improve on the energy performance of the framework by

replacing the ICA preprocessing block by a simpler, correlations-based in-

terchannel redundancy module and by using entropy coding. On the energy

front, our proposed CS framework is up to 8 times more energy-efficient than

the typical wavelet compression method. We also show that our method

achieves a better reconstruction quality than the state-of-the art BSBL

method. We further demonstrate that our method is robust to measure-

ment noise and to packet loss, and that it is applicable to a wide range of

EEG signal types.

We finally apply our CS framework to compress EEG signals in the

context of a brain computer interface application and evaluate its impact

on the performance of the system. We show that interesting energy savings

can be realized at the cost of a mild decrease in classification accuracy.
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Chapter 1

Introduction

1.1 Telemedicine and Wireless Body Sensor

Networks

Healthcare consumes a large part of the gross domestic product (GDP) of

most countries, and the trend is going upward. In the last two decades,

health expenditures as a percentage of GDP have steadily increased from

8.8% to 10.1% worldwide. The trend is more obvious in high income coun-

tries, where the same metric has gone from 9.5% to 12.0% during that period

[6].

Most countries are also facing important increases in elderly population

(defined as the total population above 65 years old) and in chronic disease

patients. Between 1960 and 2012, the percentage of elderly population has

gone from 5.1% to 7.8%, and the trend is predicted to accelerate in the

decades to come [7, 45]. Chronic diseases are on the rise everywhere around

the world and take up a significant portion of healthcare budgets [46]. Their

impact can also be felt on the global economy (mainly due to productivity

losses). In Canada, 58% of all annual healthcare spending went to treat

chronic disease patients in 2010. It is estimated that Canada lost about 190
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billion dollars in 2010 due to chronic diseases ($68 billion in direct health

costs, and $122 billion in indirect costs) [44]. The financial impact of these

increases is predicted to accelerate in the years and decades to come.

On top of the financial burden created by the increasing number of el-

derly and chronic disease patients, traditional healthcare is suffering from

scalability issues. By definition, chronic disease patients require close moni-

toring of their condition over time, which puts significant pressure on health

infrastructure. Traditional healthcare cannot provide the scalability re-

quired, as it relies on a physical, one-to-one relationship between the care-

giver and the patient.

Cost-effective solutions are thus needed to mitigate these issues. One

possibility is to enable patients to participate in their own treatment by

giving them the technological tools necessary to monitor and remotely com-

municate their situation to caregivers. With recent advances in signal pro-

cessing and very-low-power wireless communications, wireless body sensor

networks (WBSNs) have gained popularity as a potential solution. The use

of various sensors located on the patient’s body allows WBSNs to measure

and communicate different physiological signals (e.g. heart and brain activ-

ity) [40].

Such a setup has the potential to be cost-effective both for the patients

and for the healthcare system as a whole. By giving the patients more

control over their treatment, the burden on medical staff and infrastructures

is reduced. The patients can also carry out most of their activities normally

and avoid trips to a physical health infrastructure. Moreover, WBSNs give

patients greater autonomy and ownership when it comes to taking care of
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their own health, which can lead to a better quality of life.

1.2 Electroencephalogram Signals

An important component of WBSNs is the study of the electrical brain activ-

ity. This is achieved via recording and analyzing the electroencephalogram

(EEG) signals, using a collection of non-invasive wireless sensors located on

a patient’s scalp. On top of being non-invasive, EEG signals provide high

temporal resolution, a desirable characteristic in many situations. This high

temporal resolution comes at the expense of a reduced spatial resolution

(determined by the number of sensors used).

EEG signals can be used to detect different medical conditions, such

as epileptic seizures [41]. The detection of seizures through the use of a

WBSN offers significant advantages. Because it is a relatively rare occur-

rence, seizure detection requires constant monitoring for an extended period

of time, which is resource-intensive when carried in a health institution. Us-

ing an EEG WBSN can circumvent this by providing the patients a way to

do the monitoring themselves and then consult a physician once the relevant

data has been gathered.

Another important application of EEG signals in WBSNs is the use of a

brain computer interface (BCI) that can detect the EEG patterns associated

with a mental task performed by a patient [13]. The patient could use

a mental task (such as attempting to move a finger or some arithmetic

task) to operate a wheel chair, switch a light off or communicate with a

caregiver. As the signals associated with the mental task are embedded in
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the patient’s EEG, if their presence is detected in the EEG signals, then

this information could be used to control the BCI. As will be seen later, one

of the main components required in the successful use of BCIs in WBSNs

is the development of advanced compression techniques that preserve the

relevant information (or features) in the EEG signals [9].

Other common uses of EEG signals include sleep pattern studies, and

the diagnosis and treatment of strokes, infections (e.g. encephalitis, cerebral

abscess), cerebral tumors and diseases (e.g. Alzheimer’s) (see e.g. [21, 32,

33, 59]).

In the above applications, it is preferable to have a system that is mini-

mally obtrusive and allows the patient to move and walk freely, hence why

WBSNs can be valuable.

1.3 EEG-Based Wireless Body Sensor Network

The setup for an EEG-based WBSN is as follows. EEG sensors are placed

on a person’s head, usually following an international convention (e.g. the

international 10-20 system). An EEG sensor is also referred to as an EEG

channel. The number of sensors (electrodes) depends on the application -

some systems require few sensors while others require a few hundreds. Every

sensor is wired to a single central microprocessor unit that would normally

have three main components: a buffer (to store the EEG data stream coming

from the different EEG channels; this buffer can be seen as memory), the

microprocessor itself (to carry out any computations needed before trans-

mission), and a low-power radio (to wirelessly transmit the data). The com-
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Figure 1.1: General block diagram for the EEG WBSN system

Table 1.1: EEG-Based WBSN Commercial Products

Device Release Nb of EEG Battery
Reference

Name Date Channels Life
Emotiv EPOC December 2009 14 12h [20]
Neurosky Mindwave March 2011 1 8h [43]
Interaxon Muse December 2013 4 5h [31]
Imec Not announced yet 8 22h [30]

bination of the EEG sensors and the microprocessor unit is what we refer to

as the sensor node. This sensor node is battery-powered. The sensor node

wirelessly transmits the EEG data to the server node placed in an adjacent

room or somewhere in the vicinity of the sensor node. The server node is

comprised of two main blocks: a low-power radio receiver (to receive the

transmitted EEG data) and a computing resource (to carry out any post-

transmission computations, storage, and any other desired operations). We

assume there is no constraint on the energy supply or the computational

power available from this server node. The complete system setup is shown

in Fig. 1.1.

EEG-based WBSN products have started to appear on the market in the

last decade or so. The best available commercial products are summarized

in Table 1.1.
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However, these products suffer from two major drawbacks. First, their

battery life is limited. With a battery life of at most 22 hours for the least

energy-hungry device, extended monitoring is not possible unless the patient

were to change the batteries every day. This is clearly inconvenient. Sec-

ond, the number of EEG channels is still small. With more EEG channels,

greater spatial resolution could be achieved, which could improve current

applications or even unlock new ones. Of course, the number of channels

is intrinsically linked to the battery situation - using more channels would

decrease the operating life time of the battery because of the additional sens-

ing and wireless transmission required. There is also a limit to the number

of data packets that the radio can transmit per unit of time, which may

restrict the maximum number of channels that can be used.

Therefore, solutions that can address these two drawbacks are desirable

and could lead to better, more practical commercial products available to

customers and patients.

1.4 Challenges and Constraints of EEG-Based

Wireless Body Sensor Networks

The energy available in the battery-powered sensor node in WBSNs is lim-

ited. This energy is needed for acquiring and digitizing the EEG samples,

for carrying out the computations at the sensor node, and for wirelessly

transmitting the data. Under current sensors technology, there is little that

can be done to minimize the sensing energy - that is, the raw data must

all be acquired and digitized. For computations carried out in the sensor

6



node, energy savings should therefore be realized by using algorithms that

are energy-efficient, i.e. have low computational complexity. To minimize

the amount of data to be transmitted by the sensor node, the acquired sig-

nals should be compressed before their transmission. A higher compression

ratio will minimize the energy required for transmission. In other words,

reducing the amount of computations and the number of bits transmitted is

therefore crucial if one is to minimize the overall energy consumption of the

system. There is thus a need to find compression solutions for EEG signals

that do not require much energy.

Traditionally, measurements are collected by the sensors at the Nyquist

rate. Then, compression algorithms are directly applied to the acquired

data, at the sensor node, prior to wirelessly transmitting the data to the

server node. The computational demand (and thus energy consumption) of

traditional compression algorithms is high at the sensor node. This is highly

undesirable for WBSNs.

1.5 Aim of the Thesis

The aim of this thesis is to find a compression framework suitable for an

EEG-based WBSN in the context of telemedicine. Based on the discussion

presented in previous sections, our goal is to find a solution that is energy-

efficient so that the system has a longer battery life.
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1.6 Existing EEG Compression Algorithms

There exists an important body of work related to the compression of EEG

signals. Broadly speaking, compression algorithms can be split into two

categories: lossless and lossy. Lossless algorithms give the ability to exactly

recover the original signal, at the expense of greater computational complex-

ity and lower compression ratios. Lossy algorithms, on the other hand, do

not allow for perfect recovery of the original signals. However, these algo-

rithms provide higher compression ratios and tend to be simpler. Given the

constraints mentioned in the previous section, in this work we focus on lossy

algorithms, as lossless algorithms are too complex in the WBSN setting. We

also require high compression ratios, which is only possible through the use

of lossy algorithms.

For the sake of completeness, let us still briefly go over the body of liter-

ature regarding lossless algorithms. To achieve losslessness, the algorithms

usually employ a lossy algorithm but also model the error so that perfect

recovery can be achieved. Since the 1990’s, many lossless EEG compression

algorithms have been proposed, with varying complexity and compression

performance (see for instance [4, 17, 38, 52–56, 61]).

In many practical cases, exact recovery is not necessary, and a small

reconstruction error is tolerable (the magnitude of this error depends on the

particular application). Lossy algorithms are an interesting solution in these

instances. Table 1.2 gives an overview of the main lossy EEG compression

algorithms in the literature.
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Table 1.2: EEG Lossy Compression Algorithms

Reference Year Brief Description

[16] 2004 Thresholding of Daubechies-8 wavelet packets coef-
ficients, followed by uniform quantization and run
length encoding

[26] 2009 Classified signature and envelope vector sets ap-
proach

[27] 2010 Thresholding of CDF 9/7 wavelet coefficients, fol-
lowed by uniform quantization and arithmetic en-
coding

[28] 2011 Thresholding of CDF 9/7 wavelet coefficients, fol-
lowed by uniform quantization and set partitioning
in hierarchical trees (SPIHT) encoding

[10] 2011 Thresholding of nearly-perfect reconstruction
cosine-modulated filter banks coefficients, followed
by dynamic uniform quantization and run length
encoding

[18] 2011 Clustering of EEG channels, followed by regular
and differential embedded zero-tree wavelet encod-
ing

1.7 Compressed Sensing

Recent research has demonstrated the use of compressed sensing (CS) as

an alternative compression scheme for physiological signals in the context of

WBSNs [36]. CS is a novel paradigm which allows sampling of the signals at

a sub-Nyquist rate. After acquiring the raw data, CS obtains a much smaller

number of samples by taking linear projections of the raw data. This is a

simple operation which can be done at a low energy cost. The reconstruction

of the data is computationally complex and is done at the server node [15].

In a nutshell, if a signal can be sparsely represented by some dictio-
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nary (i.e., if it can be well represented by a small number of transform

coefficients), then a small number of random linear projections (roughly

proportional to the information rate of the signal) is sufficient to recover the

signal exactly. To reconstruct the signal, we use greedy algorithms or an

optimization-based approach. The CS theory also extends to compressible

signals (where the signal has many very small coefficients in some dictio-

nary), although in this case the reconstruction is not exact [14]. Chapter 2

contains more details about CS and its underlying theory.

1.8 Motivation

CS is an interesting paradigm in the case of WBSN since it requires very

simple computations at the sensor node (non-adaptive random projections),

i.e. the node where the signals are acquired and compressed. The recon-

struction, which is computationally intensive, is shifted to the server node.

In WBSNs, we generally place no limitation on the energy consumption

(and computational power) of the server, whereas the sensor node is heavily

constrained both in terms of energy available and computational power. As

such, CS fully exploits the strengths of WBSNs.

1.9 Literature Review

The first study that applied CS to EEG compression used the multiple

measurements vectors (MMV) approach to jointly compress and reconstruct

the signals of the different EEG channels (i.e. all channels are reconstructed

simultaneously) [5]. The obtained results were good (high compression ratio
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for reasonable reconstruction error) but the experimental setup was such

that the EEG signals used were coming from repeated trials (asking the

patient to repeat the same task many times and recording one EEG channel

each time). This setup increases the coherence in the signals (asking someone

to carry out the same task is bound to result in EEG signals that are highly

coherent). This setting is of limited interest in telemedicine applications,

since in these applications the patient is usually not prompted to act in a

certain way or to repeat the same task multiple times.

Other works have looked at CS approaches to compress EEG signals. In

[50], the authors developed a scheme using Slepian functions. However, it

is necessary to know the Slepian coefficients prior to compression, which is

undesirable from a computational point of view. Another work used a finite

rate of innovation approach to compressively sample EEG signals [48]. The

major drawback of this method is the fact that the innovation rate must be

known, a task which can be difficult and impractical.

For telemedicine applications, the first study that addressed the poten-

tial of CS in EEG signal compression is found in [1] and [2]. This work

focused on surveying existing sparsifying dictionaries and reconstruction al-

gorithms, and testing different combinations of these elements to determine

which yielded the best results. The conclusion was that the applicability of

single-channel CS for EEG signals depends on the final application and the

tolerable reconstruction error. This work therefore did not look into novel

CS frameworks for WBSNs.

More recently, Independent Component Analysis (ICA) was appplied as

a preprocessing step before using CS for the compression of EEG signals
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of newborn babies [39]. The compression results obtained were superior to

other state-of-the-art methods that do not employ ICA preprocessing. This

system however consumes much energy at the sensor node and would not

be suitable for telemedicine applications. This is because the ICA algorithm

used is computationally intensive, and such an operation must be carried at

the sensor node.

1.10 Contributions of this Research

The above studies have resulted in some important questions: (i) What

energy savings can be realized through the use of CS for EEG WBSN

applications? (ii) Is it possible to exploit both the temporal correlations

(intra-correlations) and the spatial correlations (inter-correlations between

channels) to increase the compression performance of CS? (iii) How does CS

compare with other state-of-the-art compression algorithms for EEG com-

pression in WBSNs, for different types of EEG signals? (iv) What is the

impact of CS compression on the performance of a practical application that

uses EEG signals?

The main contributions of this thesis are:

• To propose novel CS frameworks that fully take advantage of the in-

herent structure present in EEG signals (both temporal and spatial

correlations) to improve the compression performance.

• To compare CS frameworks with other state-of-the-art compression

frameworks for EEG compression in WBSNs. It is also the first study
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where different types of EEG signals representing a variety of appli-

cations are used to test the performance of the proposed and existing

frameworks, thus providing a more robust answer to the usefulness

and validity of the systems.

• To apply a CS framework to compress signals in the context of a

BCI application and to evaluate its impact on the performance of the

system.

1.11 Notation

Before getting started, let us first briefly introduce the notation used through-

out this thesis:

• Regular letters (either lowercase or uppercase) represent scalar num-

bers and variables;

• Bold, lowercase letters represent column vectors;

• Bold, uppercase letters represent matrices;

• ‖ · ‖p corresponds to the `p norm of a vector, computed as follows:

‖x‖p =

N∑
i=0

|xi|p

where x is a vector of length N .

• (·)T corresponds to the transpose operation.
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1.12 Organization of the Thesis

This thesis is organized as follows. Chapter 2 gives an overview of the the-

ory underlying CS. Chapters 3-5 each present a different version of a CS

framework for EEG compression in the context of WBSNs. Chapter 3 in-

troduces a simple CS framework that provides the basis we will build upon

and improve in the next 2 chapters. Chapter 4 improves the reconstruc-

tion performance of the simple framework by using an energy-efficient ICA

preprocessing algorithm to exploit the interchannel correlations. Chapter 5

proposes the first complete, practical framework for an EEG-based WBSN

system. Chapter 6 applies the framework of Chapter 5 to a simple BCI

system to test the classification performance of such a system when EEG

signals are compressed. Finally, Chapter 7 concludes this thesis by summa-

rizing the contributions of this research and by offering possible extensions

of our work and paths to explore.
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Chapter 2

Compressed Sensing

This chapter briefly discusses the key theoretical concepts behind com-

pressed sensing (CS). There is a very large body of literature around the

theory of compressed sensing, and it is not our aim to cover it entirely.

Given that this thesis is focused on applying compressed sensing to a prac-

tical problem, we focus on the basics that will allow the reader to quickly

grasp how CS works. This chapter is organized as follows. Section 2.1 dis-

cusses what is meant by the sparsity of a signal. Section 2.2 explains the

acquisition and reconstruction framework for CS. Section 2.3 discusses the

necessary conditions on the measurement matrix so that reconstruction is

possible, and Section 2.4 extends the CS theory to compressible signals. Fi-

nally, Section 2.5 introduces an alternative formulation for the CS problem

and Section 2.6 clears up a few points about the two CS formulations.

2.1 Signal Sparsity

CS exploits the fact that most signals have a sparse representation in some

dictionary. Denoting this dictionary by the matrix ΨN×K = [ψ1,ψ2, . . . ,ψK ],

we can write an original one-dimensional signal f of length N as
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f = Ψc =
K∑
i=1

ciψi. (2.1)

When the K × 1 vector c has a large number of zero (or small, insignifi-

cant) coefficients, f can be obtained from c using few dictionary vectors ψi.

The number of nonzero elements of c is called the sparsity of f . If there

are S such elements, it is said that c is the S-sparse representation of f in

dictionary Ψ. Ψ is also called the synthesis operator.

2.2 Signal Acquisition and Reconstruction

The compressed sensing theory implies that instead of acquiring the N sam-

ples of the signal f and then compressing it, it is possible to only acquire

M samples, where M is slightly larger than S but is still much smaller than

N . As mentioned above, S is the smallest number of vector elements in

the dictionary Ψ that represent the signal f , so that all information in f is

captured.

This sampling paradigm - referred to as ‘analog CS’ - is the ultimate

goal of CS. However, it cannot yet be attained by present day sampling

technologies. At present, to represent f using M samples, all the N samples

are collected, discretized and then subsampled. The subsampling is carried

out using M linear projections of f . That is, CS subsamples f using an

M×N measurement matrix1 Φ, with M � N , thus creating a measurement

vector y of length M :

1also referred to as the sensing matrix
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yM×1 = Φf = ΦΨc. (2.2)

This system of equations is largely underdetermined. That is, given a

y vector, there is an infinite number of solutions for f (or equivalently, c).

However, since the signal we wish to recover (f) is sparse, the correct solu-

tion is often the sparsest solution. This corresponds to solving the following

l0 optimization problem:

min
c
‖c‖0 subject to y = ΦΨc. (2.3)

where the `0 pseudonorm ‖ · ‖0 is the number of non-zero elements in a

given vector. Unfortunately, this problem is NP hard, and as such it is not

tractable. Indeed, solving this problem requires an exhaustive search over

all subsets of columns of Φ, which is a combinatorial problem [14].

Fortunately, an `1 optimization problem, a more practical problem due

to its convexity, was shown to be equivalent under some conditions. It can

be rewritten as follows:

min
c
‖c‖1 subject to y = ΦΨc. (2.4)

Equation 2.4 is called the synthesis prior formulation for CS. This prob-

lem can be recast as a linear programming one, for which many practical

solvers exist. It has also been shown that perfect recovery can be achieved,

even when a small number of measurements (i.e. M � N) is used [19].

Perfect recovery is possible if the restricted isometry property (RIP) of ΦΨ
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is satisfied. The RIPp is defined as follows:

(1− δS)‖x‖2p ≤ ‖ΦΨx‖2p ≤ (1 + δS)‖x‖2p (2.5)

where δS < 1, x is any S-sparse vector and p is the chosen norm (typically

1 or 2). When p = 2, there is an intuitive geometric explanation of the RIP.

Indeed, the RIP means that S-sparse vectors are not in the null space of

ΦΨ and that S-sparse linear combinations of columns of ΦΨ behave close

to an orthonormal system [15].

2.3 Incoherent Measurements

The minimum acceptable value for M that allows the perfect reconstruction

of the signal f is not only linked to the degree of sparsity S of f in dictionary

Ψ but also to µ, the degree of coherence between Ψ and Φ. This coherence

measures the largest correlation between any element of Φ and Ψ and is

measured by

µ(Φ,Ψ) =
√
N · max

1≤l,j≤N
|〈φl,ψj〉|. (2.6)

The number of measurements M is given by

M ≥ C · µ2(Φ,Ψ) · S · logN (2.7)

where C is a positive constant [15]. Thus, the smaller the coherence, the

smaller the value of M can be. As such, it is important to select Ψ and Φ

so that they are maximally incoherent.
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Ideally, one should not need to know the sparsifying dictionary Ψ in order

to pick a measurement matrix Φ. Fortunately, some measurement matrices

can be shown to be maximally incoherent with any sparsifying dictionary

with overwhelming probability. Random matrices have this property. In-

deed, a matrix Φ generated by independent and identically distributed (IID)

Gaussian random variables or by IID Bernoulli random variables would dis-

play this property [14]. This means that a random measurement matrix that

is properly constructed can allow perfect reconstruction without having any

knowledge about the original signal.

2.4 Extension to Compressible Signals

CS can further be extended to compressible signals (signals that are not

purely sparse in a given dictionary but whose coefficients c decay with a

power law when arranged in descending order). This setting is more realistic

in practice, as real signals are rarely purely sparse but are often compressible.

This is indeed the case for EEG signals.

Suppose that we are interested in recovering the P largest coefficients

of the compressible signal f (where P � N). That is, we want to recover

the indices as well as the magnitudes of the P largest values of c. Suppose

that the number of collected measurements (M) is equal to P , i.e. only

P � N random projections of the signal are collected. If the indices (i.e.

the locations) of these P largest coefficients of the vector c are known, then

optimal performance could be achieved, i.e. it is possible to exactly recover

the magnitude of each of these P largest coefficients. This means that it is
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possible to reconstruct c (or equivalently f) with an accuracy corresponding

to its P largest coefficients. Now, it can be shown that CS can asymptotically

obtain the same accuracy as this optimal solution, as long as the number

of random projections is increased by a factor of O
(

log
(
N
P

))
[14]. This

result is spectacular, as it means that compressed sensing’s non-adaptive

sampling scheme performs as well as a purely adaptive scheme that knows

the locations of the P largest coefficients. In other words, CS is able to find

the P largest coefficients without any knowledge of the signal. The only cost

is a mild oversampling factor.

2.5 Analysis Prior Formulation

In section 2.2, we introduced the synthesis prior formulation for CS recon-

struction:

min
c
‖c‖1 subject to y = ΦΨc.

where f = Ψc. In this formulation, the objective was to solve for the

sparse coefficients c. This formulation is the most popular in the CS field

and has been studied extensively.

There is an alternative formulation, where the objective is to solve for f

such that Γf is sparse. This formulation is referred to as the analysis prior

formulation:

min
f
‖Γf‖1 subject to y = Φf . (2.8)

where the dictionary Γ is called the analysis operator. This formulation

has only started to be studied recently and its surrounding body of literature

20



is smaller than that of its synthesis counterpart.

The analysis and synthesis prior formulations are equivalent only when

the sparsifying dictionaries are orthogonal (i.e. Ψ = Γ−1). When the dictio-

naries are tight frames, then both the synthesis and analysis problems can

be solved, although they do not yield the same result. Two frames are said

to be tight if they satisfy a generalized version of Parseval’s theorem:

K∑
i=1

(g ·ψi)
2 = A‖g‖22

for all vectors g of length N , with 0 < A <∞. In this case, Ψ = ΓT .

In our work, we use the synthesis prior formulation. This is primarily

because the underlying theory is better known, many practical algorithms

can solve this problem and previous work has focused on finding good dic-

tionaries Ψ for EEG signals. On the other hand, there are few algorithms

that can solve the analysis problem (Eq. 2.8) and no previous work has at-

tempted to find a good analysis dictionary Γ for EEG signals. We note that

the analysis prior formulation may yield better results than the synthesis

prior formulation.
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2.6 A Cautionary Note on the Analysis and

Synthesis Operators

In sections 2.2 and 2.5, we introduced the notion of synthesis and analysis

operators, which were used in solving the CS problem:

Synthesis: f = Ψc

Analysis: ĉ = Γf (2.9)

where f is the original signal, c and ĉ are the coefficients in the transform

domain, Ψ is the synthesis operator and Γ is the analysis operator. Knowl-

edge of the synthesis and analysis operators allow us to solve the synthesis

and analysis prior problems, respectively.

When Ψ and Γ are tight frames (i.e. Ψ = ΓT ), Eq. 2.9 becomes:

Synthesis: f = Ψc

Analysis: c = ΨTf (2.10)

That is, the knowledge of either Ψ or Γ is enough to solve both the

synthesis and the analysis problems. However, if we do not have tight frames,

we must explicitly know Ψ and Γ to solve the respective problem.

In most practical instances, both the analysis and synthesis operators are

known. When only the analysis operator Γ is known, the synthesis operator

can be easily found if Γ is orthogonal or a tight frame. The case for when

only the synthesis operator is known is analogous.
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If only the analysis operator Γ is known and it is not orthogonal or

a tight frame, then we cannot solve the synthesis prior problem since the

synthesis operator Ψ is not known. However, if we only know the synthesis

operator Ψ, then the synthesis problem can be solved provided the specific

algorithm used in solving it does not require the knowledge of Γ.
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Chapter 3

A Simple Compressed

Sensing Framework for the

Compression of EEG Signals

3.1 Problem Description

As mentioned in the introduction, compressed sensing (CS) is an interesting

paradigm in the case of EEG-based WBSNs since the computational load

at the sensor node is very light - the only operation that is carried out is to

take non-adaptive random projections of the EEG signals. As such, CS has

the potential to offer an energy-efficient compression scheme in this context.

While a few studies have looked into CS for EEG-based systems (refer

to Section 1.9 in the introduction), most of them haven’t considered it from

a telemedicine perspective. Similarly, there has been little focus to optimize

the different CS building blocks for an EEG telemedicine application.

In this chapter, we propose a simple CS framework that is suitable for

a low-energy, power-efficient telemedicine application. To do so, we adapt

the typical CS scheme to reduce the load at the sensor node and use a
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Figure 3.1: Block diagrams of (a) the sensor node and (b) the server node
for the simple compressed sensing framework

state-of-the-art reconstruction strategy.

This chapter is organized as follows. Section 3.2 presents the different

building blocks of the framework. Section 3.3 shows the performance of the

system through different experiments. Section 3.4 discusses the obtained

results.

3.2 Methods

Below we present the different blocks that make up the system. We will

discuss the preprocessing, the compression, the wireless transmission and

the reconstruction. A block diagram of the proposed system is shown in

Fig. 3.1.
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3.2.1 Preprocessing

The EEG data is formed of C signals, where C represents the number of

channels (sensors). The signal from each channel is first divided into non-

overlapping line segments (epochs) of length N . In our experiments, N

corresponded to 512 samples for each channel. Note that our framework

operates on data from one epoch at a time. For C channels of EEG data,

after dividing the data into epochs a total of C sequences of N = 512 data

points each are obtained for each segment of time. These are represented

by f1,f2, . . . ,fC . This forms a matrix F . Each column of F contains one

of the channels: FN×C = [f1|f2| . . . |fC ].

3.2.2 Compression

To compress the EEG signals contained in one epoch, we take their linear

random projections. As mentioned in Section 2.3, the chosen measurement

matrix Φ must be maximally incoherent with the sparsifying dictionary.

With overwhelming probability, random matrices satisfy this requirement

irrespective of the dictionary used. The most often used matrices are ran-

dom matrices with IID entries formed by sampling a Gaussian distribu-

tion (N (0, 1/N)) or a Bernouilli distribution (with P (Φi,j = +1/
√
N) =

1/2, P (Φi,j = −1/
√
N) = 1/2). In fact, it can be proven that these two

types of matrices (Gaussian and Bernouilli) are optimal. Unfortunately,

these matrices are not suitable for WBSN applications. This is because gen-

erating a Gaussian random matrix requires a Gaussian random generator at

the sensor node (which cannot be efficiently implemented on simple sensor
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hardware). Moreover, using such a matrix would lead to C large matrix-

vector multiplications for each epoch (one for each of the C channels). As

these multiplication operations are energy-intensive, they should be avoided

in WBSN applications. They are also time consuming, and would therefore

prevent the system from operating in near realtime mode.

The use of a full Bernouilli matrix would reduce the challenges mentioned

above (it is easier to generate its random entries, and it also has simpler

multiplication operations) but this unfortunately would still require a high

number of computations.

Instead, we use what is known as sparse binary sensing. This was first

proposed in [23] and has since been applied to WBSNs ([36, 63]). These

matrices only contain d nonzero entries in each column, and the value of

these nonzero entries is 1. The optimal value of d (that is, the smallest

value for which reconstruction would be stable) is obtained experimentally

and is much smaller than M . While the theoretical guarantees are not

as strong as those for full random matrices, it has been shown that these

matrices perform well in many practical applications. There are significant

advantages to using such a matrix in WBSNs. The most important one is

that the matrix multiplication operation is very simple: in fact, it consists

of (Nd−M) simple additions for each channel.

We propose the use of the same sparse binary sensing matrix for each

channel (sensor) so that we can more easily generate and/or store the matrix

in memory at the sensor node. This setup also preserves the interchannel

correlations, a feature which will be exploited in later chapters. We will

test 2 different settings: the first uses a fixed sensing matrix (stored in the
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sensor node memory) for all epochs, and the second generates a new matrix

for each epoch.

We apply the M × N measurement matrix Φ to each EEG channel in

order to obtain the compressed measurements: YM×C = [y1|y2| . . . |yC ] =

[Φf1|Φf2| . . . |ΦfC ]

3.2.3 Wireless Transmission

The compressed measurements Y are then wirelessly transmitted from the

sensor node to the server node. Note that we make no attempt to model

the wireless channel and instead treat it as a black box.

3.2.4 Reconstruction

The final step is to reconstruct the original EEG signals from the compressed

measurements Y . The vast majority of reconstruction algorithms use a

dictionary in which the signals are sparse (or at least compressible).

Sparsifying Dictionary (Ψ)

As discussed previously, one of the main elements of compressed sensing

is the selection of a proper sparsifying dictionary Ψ. Different sparsifying

dictionaries were tested in [2] but there was no aim at optimizing the chosen

dictionaries to obtain the best performance possible (that is, to obtain the

dictionary in which EEG signals are the most sparse). Previous work has

shown that EEG signals are sparse in the Gabor domain [5].

The Gabor dictionary is a redundant dictionary which provides opti-

mal joint time-frequency resolution [22]. Gabor functions are sinusoidally-
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modulated Gaussian functions. The atoms in this dictionary are given by

gi(n;n0, f0, s) = K(n0, f0, s) · exp

(
−(n− n0)2

2s2

)
· sin

(
2π · f0(n− n0)

)

where n0 and f0 are the centers of the Gabor atom, s is the spread of

the atom, and K(n0, f0, s) is a normalizing constant.

We now require a discretization over the n0, f0 and s parameters - that

is, we need to determine how to increment these parameters. For s, the

chosen discretization is a dyadic scale (base 2). The time increment n0

is proportional to the spread, and the frequency increment f0 is inversely

proportional to the spread. The size of the dictionary depends on the length

of the EEG epoch considered in the time domain. To obtain the frequency

step and the time step, we rely on the following equations:

∆f0 =

√
8πα

sN

∆n0 = sN ×
√

2α

π

where N is the epoch length and α = 0.5ln(0.5(B+1/B)). B is the base

used (2 in our case).

These equations are based on the distance metric for Gabor atoms pro-

posed in [8]. We can show that selecting n0 and f0 in this manner provides

a dictionary with optimal distance between the atoms.
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Reconstruction Algorithm

There exists a multitude of reconstruction algorithms for reconstructing the

original signals. It is possible to use convex optimization to solve (2.4). It is

also possible to use a greedy algorithm, which looks at finding a suboptimal

solution to (2.3) by iteratively selecting the locally optimal solution, in the

hope of getting closer to the globally optimal solution. Such algorithms con-

verge to an acceptable solution faster than convex optimization algorithms.

This is however at the expense of requiring slightly more measurements.

In our framework, we use a convex optimization algorithm, the Basis

Pursuit Denoise algorithm implemented in the SPGL1 package [60]. Based

on our tests, this algorithm required fewer measurements (i.e. a smaller

value for M) than greedy algorithms to achieve an equivalent reconstruction

accuracy; this results in a higher compression as a smaller M can be used.

After performing the reconstruction on each channel data (i.e. on each

column of Y ), we obtain the N ×C matrix of reconstructed signals: Frec =

[f1|f2| . . . |fC ].

3.3 Results

3.3.1 Dataset

In order to assess the performance of the simple framework, we used the data

from Dataset 1 of the BCI Competition IV [12]. This dataset was recorded

from healthy subjects or generated artificially and contains the data of 7

patients. The recording was made using 59 EEG channels per subject at
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an initial sampling rate of 1000Hz. We resampled the data to 128Hz so

as to provide a realistic sampling frequency in the context of telemedicine.

Non-overlapping windows of length N = 512 were used in our experiments.

The experiments were carried using 100 randomly extracted windows.

3.3.2 Performance Metrics

To quantify the compression performance, we used the compression ratio

(CR), defined as follows:

CR =
N

M
(3.1)

To test the reconstruction quality, we used the normalized mean square

error (NMSE), defined as follows:

NMSE(x,y) =
‖x− y‖2

‖x− µx‖2
(3.2)

where x is the original vector, y is the reconstructed vector and µx is the

mean of x.

The NMSE measures the distance between 2 vectors. Of course, the

lower the NMSE, the better the reconstruction. Note that in our formula,

we normalize by the de-meaned original signal so that differences in means

between datasets do not bias the results.

3.3.3 Choice of the CS Measurement Matrix

As mentioned in section 3.2.2, we employ sparse binary sensing where the

measurement matrix Φ contains d nonzero entries in each column. There
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Figure 3.2: NMSE vs d for different compression ratios

are no theoretical guidelines for choosing the optimal value of d; we thus

determine it experimentally. To do so, we vary the value of d and carry out

the reconstruction for various compression ratios. The results are shown in

Fig. 3.2.

As seen from this figure, the NMSE saturates relatively fast, which is

a desirable property. Indeed, once the number of nonzero entries in each

column reaches 8, increasing its value does not yield better reconstruction.

As such, we select d = 8 in our implementation. Of course, in terms of

energy consumption, it is desirable to have the lowest value for d, since this

results in fewer random linear projections (and thus fewer computations)

at the sensor node. Looking at Fig. 3.2, we can see that we could use as

few as 4 nonzero entries per column for the measurement matrix. However,

because improvements (albeit small) are still possible for d > 4, we decided
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Figure 3.3: NMSE vs CR for different measurement matrices

to use d = 8 instead of 4 for our experiments.

We then set out to verify the performance of this sub-optimal mea-

surement matrix by comparing the reconstruction performance with that

obtained using an optimal random matrix (Gaussian or Bernouilli). We

study the reconstruction error for different compression ratios using 4 differ-

ent matrices: (1) an optimal Gaussian random matrix, in which each entry

is formed by sampling an IID Gaussian random variable, (2) an optimal

Bernouilli random matrix, in which each entry is formed by sampling an

IID Bernouilli random variable, (3) a sparse binary sensing matrix (with

d = 8) that is different for every epoch analyzed, and (4) a fixed sparse bi-

nary sensing matrix with (d = 8) i.e. the same matrix is used for all epochs.

The results are shown in Fig. 3.3.
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As seen from Fig. 3.3, although the theoretical guarantees for the sub-

optimal sparse binary sensing matrices are weaker than for the optimal

Gaussian and Bernouilli matrices, in practice their performance is statisti-

cally almost the same. We can thus safely assume that using a sub-optimal

measurement matrix yields near-optimal reconstruction results. Of equal

interest is that the fixed sparse binary sensing matrix does not result in

degradation in the reconstruction quality. Because the proofs rely on the

stochasticity of the matrices used, it is not possible to prove this result

theoretically. The use of fixed sparse binary measurement matrices has sig-

nificant advantages in the context of WBSNs since we can generate such a

matrix offline and then store it in memory at the sensor node. The 2 other

alternatives are 1) generating a new sparse binary sensing matrix at the

sensor node for each epoch, or 2) generating the matrix at the server node

and then wirelessly transmitting the positions of the nonzero entries to the

sensor node. Both alternatives are more energy-hungry and are thus less

desirable.

3.3.4 Reconstruction Performance

We then dive deeper into the reconstruction performance of the simple

framework when using a fixed binary sparse sensing matrix with d = 8.

The reconstruction performance for different compression ratios is shown in

Table 3.1. Fig. 3.4 shows an example of the original and reconstructed EEG

signals at different compression ratios so that one can empirically visualize

the impact of compression on the EEG signals.
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Table 3.1: Reconstruction Performance of the Simple Framework under Dif-
ferent Compression Ratios

CR Mean NMSE ± STD
8:1 0.386 ± 0.187
6:1 0.290 ± 0.162
5:1 0.239 ± 0.145
4:1 0.182 ± 0.117

3.5:1 0.152 ± 0.101
3:1 0.119 ± 0.083

2.5:1 0.090 ± 0.065
2:1 0.056 ± 0.042

3.4 Discussion

In this chapter, we adapted the standard, simple CS framework to reduce

the load at the sensor node. This was done by using a suitable measurement

matrix that requires a small amount of computations. We showed that using

such a matrix did not have an impact on the performance of the system as

compared to using theoretically optimal measurement matrices. We also

developed a sparsifying dictionary specific to EEG signals.

While this simple framework provides an interesting solution to the EEG-

based WBSN application, it suffers from one major drawback: it does not

exploit the spatial correlations (i.e. the correlations between EEG chan-

nels). It is quite likely that exploiting such correlations could improve the

reconstruction performance of the CS framework. This will be investigated

in the next 2 chapters.
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Figure 3.4: Original and reconstructed EEG signals (one channel) at differ-
ent compression ratios
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Chapter 4

Compressed Sensing and

Energy-Efficient Independent

Component Analysis

Preprocessing for the

Compression of EEG Signals

4.1 Problem Description

In this chapter, we improve the framework presented in the previous chap-

ter by adding a preprocessing step that exploits the interchannel correla-

tions. This is achieved through the use of Independent Component Analysis

(ICA). Therefore, instead of compressing the original EEG signals, the inde-

pendent components obtained after applying ICA to the original signals are

compressed and wirelessly transmitted. This chapter discusses the develop-

ment of an efficient ICA algorithm that requires low computational energy.

By using the CS scheme presented in the previous chapter along with the
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proposed ICA algorithm, it is shown that the proposed framework achieves

similar EEG compression results as those achieved by the state-of-the-art

method proposed in [39] but is more energy-efficient at the sensor node.

This chapter is organized as follows. Section 4.2 presents the different

building blocks of the proposed framework while Section 4.3 briefly intro-

duces the state-of-the-art framework. Section 4.4 compares the performance

of both frameworks through different experiments. Section 4.5 discusses the

obtained results.

4.2 Methods

The proposed framework for compressing EEG signals is similar to the one

presented in Chapter 3, with one addition: there is an ICA preprocessing

step applied prior to compression. Compressed sensing is thus applied to

the derived independent components directly. Instead of compressing the

EEG signals F as in the previous chapter, we compress S, the independent

components: Y = ΦS. After CS reconstruction, we reconstruct the EEG

signals from the independent components by using the ICA mixing matrix.

A block diagram of the proposed system is shown in Fig. 4.1.

Since most of the framework is the same as for the one presented in the

previous chapter, we will not go into the details of the framework again. We

refer the reader to Section 3.2 for a detailed explanation. Instead, we focus

on the energy-efficient ICA preprocessing step.
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Figure 4.1: Block diagrams of (a) the sensor node and (b) the server node
for the compressed sensing framework with ICA preprocessing

4.2.1 Energy-Efficient ICA

ICA has been around for close to two decades now and was proposed as

a solution to the blind source separation problem. The solution to the

problem is found by enforcing statistical independence of the source signals,

commonly through maximizing the non-Gaussianity of the signals or through

minimizing the mutual information of the signals [29]. ICA has also been

successfully applied to EEG signals (see, for example, the study conducted

by Makeig et al. [35]). The underlying basis as to why ICA works in the EEG

case is that the electrical scalp potential measured by an EEG electrode can

be seen as a mixture of a smaller number of ‘sources’ located in the brain

that give rise to these potentials.

The ICA problem can be formulated as F = AS, where F is a matrix
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containing the measured mixed signals (each column containing one mixed

signal), A is the mixing matrix, and S is a matrix containing the indepen-

dent components (one source per column). The task is to find A and S from

the observable measurements F . Note that in our case, the mixed signals

F correspond to the raw EEG signals.

FastICA (FICA) is a popular algorithm that can solve this problem [35].

Summarizing the FICA algorithm:

1. Preprocessing : Whiten (decorrelate) the mixed signals.

2. Iteration: In a deflationary manner (i.e. one at a time), estimate

each independent component (IC) by maximizing its non-Gaussianity

through a contrast function. Using Gram-Schmidt, orthogonalize the

found IC with respect to the previously found ICs, and normalize it.

Repeat this stage until the component converges.

However, this algorithm is computationally intensive and thus not suit-

able for WBSN applications. Acharyya et al. proposed an algorithm and an

energy-efficient architecture to calculate n-dimensional (nD) cross-products,

and mentioned that one potential application is FICA [3]. After identifying

n − 1 components with FICA, the nth component can simply be identified

by taking the cross-product of the first n−1 components since at that point,

the direction for maximal independence has already been determined. We

call this method xFICA. This allows the saving of one full iteration cycle,

which is not negligible.
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4.3 State-of-the-Art System

Besides comparing the proposed ICA-augmented framework with the simple

framework of Chapter 3, we also compare it with the state-of-the-art system

from the literature proposed in [39]. The block diagram of this system is the

same as for ours, although different components and algorithms are used.

Second Order Blind Identification (SOBI) is used as the ICA algorithm.

The measurement matrix Φ is the typical Gaussian random matrix. It is

mentioned that the sparsifying dictionary is a Gabor dictionary, and the

reconstruction algorithm used is iterative hard thresholding. However, due

to a lack of details about the parameters used for these last two elements,

we used our own Gabor dictionary in combination with Basis Pursuit.

4.4 Results

4.4.1 Data Used

We randomly selected 100 epochs of N = 512 samples each from dataset #

1 of BCI Competition IV [12]. We resampled the data to 128Hz and selected

12 channels in the sensorimotor area of the cortex out of the 59 channels

available. The selected channels were F1, FZ, F2, FC3, FC1, FCZ, FC2,

FC4, C3, C1, CZ and C2.

4.4.2 Reconstruction Performance

In this experiment, we wish to test the compression and reconstruction per-

formance of 1) the simple framework of Chapter 3, 2) the proposed method
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and 3) the method presented in [39]. We thus vary the number of indepen-

dent components retained as well as the number of measurements M and we

compute the reconstruction error, in terms of the NMSE, against the com-

pression ratio (again defined as CR = N/M). To keep the comparison fair,

we must include the mixing matrix entries in the total number of measure-

ments when ICA is used, and we must ensure that the same total number

of measurements is used for all methods (thus ensuring a constant compres-

sion ratio). To select I independent components, we first apply Principal

Component Analysis to the EEG data so as to only keep the I components

that account for the most variance in the original data.

The results are shown in Fig. 4.2. In Fig. 4.3, we show a slice from Fig.

4.2 by selecting a compression ratio of 3:1 and showing the reconstruction

error for each block when we vary the number of independent components.

As can be seen from Fig. 4.2, adding an ICA preprocessing step de-

creases the NMSE for a fixed compression ratio (or, alternatively, it allows

for an increase in the compression ratio for a fixed NMSE), with our method

and the state-of-the-art yielding similar results. In Fig. 4.3, we can see that

except for a few epochs for 8 ICs, using an ICA preprocessing step system-

atically yields better results than using CS alone. Of course, selecting fewer

independent components has advantages both in terms of compression ratio

and speed (since fewer sources need to be reconstructed). Our experiments

also suggest that even if we use a small number of ICs (e.g. 3 or 4), we

are still able to accurately represent the original signal. However, one must

be careful to keep enough ICs so that the variance of the data is preserved.

Indeed, in our experiments we observed that keeping less than 3 ICs made
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Figure 4.2: NMSE as a function of the compression ratio for regular CS,
state-of-the-art from [39], and the proposed method.

it impossible to reconstruct the original signal faithfully.

4.4.3 Energy Analysis

We now wish to compare the energy performance at the sensor node of the

state-of-the-art and proposed frameworks. We use the number of floating

point operations (FLOPS) as a measure analogous to energy consumption.

The number of FLOPS required is a measure of the dynamic power con-

sumption. Reducing that value has the effect of reducing the overall power

consumption. We look at the measurement matrices and the ICA algorithms

used in both methods.

Measurement Matrix We first compare the random Gaussian matrix

used in [39] and our binary sparse sensing matrix. The number of FLOPS
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(F) for both matrices is given by the following equations:

FGM = (2MN −M) · I

FSBM = (Nd−M) · I

where FGM is the FLOPS count for the Gaussian matrix, FSBM the FLOPS

count for the sparse binary matrix, N the epoch length (512), M the number

of measurements per IC, I the number of independent components retained

and d the number of nonzero elements in each column of Φ.

We compare them for different compression ratios and numbers of ICs.

The results are shown in Table 4.1. As can be seen, using a sparse binary
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Table 4.1: FLOPS Comparison for Measurement Matrices

CR Number of ICs 3 4 6 8

2
FLOPS (Gaussian Matrix) 3.11 · 106 3.09 · 106 3.07 · 106 3.04 · 106

FLOPS (Sparse Binary Matrix) 9.25 · 103 1.34 · 104 2.16 · 104 2.98 · 104

3
FLOPS (Gaussian Matrix) 2.06 · 106 2.05 · 106 2.02 · 106 2.00 · 106

FLOPS (Sparse Binary Matrix) 1.03 · 104 1.44 · 104 2.26 · 104 3.08 · 104

4
FLOPS (Gaussian Matrix) 1.53 · 106 1.52 · 106 1.50 · 106 1.47 · 106

FLOPS (Sparse Binary Matrix) 1.08 · 104 1.49 · 104 2.31 · 104 3.13 · 104

6
FLOPS (Gaussian Matrix) 1.01 · 106 9.98 · 105 9.70 · 105 9.49 · 105

FLOPS (Sparse Binary Matrix) 1.13 · 104 1.54 · 104 2.36 · 104 3.18 · 104

8
FLOPS (Gaussian Matrix) 7.49 · 105 7.37 · 105 7.12 · 105 6.87 · 105

FLOPS (Sparse Binary Matrix) 1.16 · 104 1.57 · 104 2.39 · 104 3.21 · 104

matrix offers significant advantages, as it is between 1 and 2 order of mag-

nitude more efficient than a random Gaussian matrix in terms of FLOPS.

ICA Algorithm We then compare the state-of-the-art ICA used in [39]

and xFICA. To do so, we modify the numerical complexity models of [34]

and then calculate the number of FLOPS (F) required for both algorithms:

FSOBI = DNC2/2 + 4C3/3 + (D − 1)C3/2

+ IOCSOBI · I2[4I(D − 1) + 17(D − 1) + 4I + 75]/2

FxFICA = NC2/2 + 4C3/3 + ICN

+ IOCxFICA · [2(I − 1)(I − 1 +N) + 5N(I − 1)2/2]

+ I + I(I − 1)3

where C is the number of channels (12), D the number of delay lags used

for SOBI (we used D = 100, as recommended by the authors of [11]), and

IOC{SOBI, xFICA} are the number of iterations for convergence (IOC) of each

algorithm, respectively. To find the number of (IOC) for both algorithms,
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Table 4.2: FLOPS Comparison Between xFICA and SOBI

Number of ICs 3 4 6 8

[39]
IOC (SOBI) 3.56 4.62 6.42 7.63

FLOPS (SOBI) 3.82 · 106 3.90 · 106 4.25 · 106 4.98 · 106

Proposed
IOC (xFICA) 22.36 38.26 77.74 118.68

FLOPS (xFICA) 0.218 · 106 0.623 · 106 2.97 · 106 8.40 · 106

% FLOPS Saved 94.29% 84.02% 30.28% -68.45%

we took the mean number of iterations over the 100 signals. The results are

shown in Table 4.2.

Table 4.2 demonstrates that when the number of ICs is six or less, our

proposed xFICA requires significantly less FLOPS than the ICA used in

[39]. As the number of ICs decreases, our method offers larger and larger

energy savings.

4.5 Discussion

This chapter addresses the problem of efficiently compressing EEG signals

in wireless body sensor network applications, where efficiency is measured in

terms of compression ratio, reconstruction accuracy, and energy consump-

tion. It proposes the use of compressed sensing after preprocessing the raw

data with an energy-efficient independent component analysis method. ICA

improves the reconstruction accuracy by exploiting the interchannel corre-

lations. It was demonstrated that our system provides significant energy

savings as compared to the state-of-the-art method, which also uses an ICA

preprocessing block. As well, for a fixed compression ratio, our system

achieves similar NMSE performance as the state-of-the-art method, which
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is much better than that achieved by CS only.

However, the approach suggested still suffers from two important draw-

backs. The first one is that the proposed approach only works for a small

number of EEG channels. Also, despite the fact that xFICA is more energy-

efficient than other ICA algorithms, the computational complexity incurred

at the sensor node is still too high for practical systems. In general, it is

questionable as to whether ICA is a practical strategy in the context of WB-

SNs. As such, in the next chapter we investigate another strategy to exploit

the interchannel correlations.
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Chapter 5

An Energy-Efficient,

Complete Compressed

Sensing Framework for the

Compression of EEG Signals

5.1 Problem Description

In this chapter, we build on the work of previous chapters and propose a

novel CS framework that takes advantage of the inherent structure present

in EEG signals (both temporal and spatial correlations) to improve the com-

pression performance. To the best of our knowledge, this is also the first

time that CS frameworks are compared with other state-of-the-art compres-

sion frameworks for EEG compression in WBSNs. It is also the first study

where different types of EEG signals representing a variety of applications

are used to test the performance of the proposed and existing frameworks,

thus providing a more robust answer to the usefulness and validity of the

systems.
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Figure 5.1: Block diagrams of (a) the sensor node and (b) the server node
for the proposed CS-based framework

This chapter is organized as follows. Sections 5.2 and 5.3 describe our

framework and briefly introduce the benchmarking frameworks, respectively.

Section 5.4 presents our results. Finally, section 5.5 provides a short analysis.

5.2 Methods

This section introduces the framework we developed to efficiently compress

EEG signals using low energy consumption. Below we present the different

blocks and algorithms that make up our proposed system. We will discuss

the preprocessing, the compression, the encoding, the wireless transmission,

the decoding and the reconstruction. A block diagram of the proposed

system is shown in Fig. 5.1.
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5.2.1 Preprocessing

As in the case of the simple framework of Chapter 3, the data is first epoched,

with N = 512. For every epoch, the data is written in matrix form as

FN×C = [f1|f2| . . . |fC ], where C is the number of channels and fi is the

EEG data from one channel.

The mean of each channel is then removed. The resulting matrix is

F̃ = [f̃1|f̃2| . . . |f̃C ]. The means will be added back in the reconstruction

phase. Removing the means leads to a higher compression ratio because

the interchannel redundancy removal module (as will be discussed later)

performs better on de-meaned EEG signals. It also reduces the total range

of the signals, making it easier to quantize and encode them.

5.2.2 Compression

To compress the de-meaned EEG signals contained in one epoch, we first

take their linear random projections and then apply an interchannel redun-

dancy removal module.

Measurement Matrix (Φ)

As for the simple framework of Chapter 3, we use a fixed sparse binary

sensing matrix Φ with d = 8 nonzero entries in each column. The same

matrix Φ is used for each channel. After applying the measurement matrix

to the de-meaned EEG signals, we obtain the compressed measurements:

YM×C = [y1|y2| . . . |yC ] = [Φf̃1|Φf̃2| . . . |Φf̃C ]
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Interchannel redundancy removal

Because all EEG channels collect information related to the same physiolog-

ical signal, there exist large interchannel correlations amongst them. Indeed,

channels that are spatially close to one another tend to have signals that

are highly correlated. Because we use the same measurement matrix for

each channel, the linear projections of the signals of these channels are also

correlated. To remove the redundancies inherent in the multi-channel EEG

acquisition, we compute the differences between the compressed values of

channel pairs (i.e. between yi,yj for some index pairs (i, j) that we care-

fully select). To select the best channel pairs (i.e. those that will lead to

the smallest differences), we run an algorithm that finds these pairs at the

server node. The server node transmits the channel pairs to the sensor node.

These pairs are then used to compute the differences for the next epoch. The

redundancy removal algorithm is summarized in Fig. 5.2.

The threshold T controls the minimum acceptable correlation between

channel pairs. That is, any channel pair whose correlation falls below T

will not be selected. If, for a certain value of T , C or more pairs have

correlations above T and these channel pairs are non-redundant (i.e. they

are all linearly independent), T is in fact meaningless. However, if this is

not the case, T determines the number of channel pairs i.e. the number of

differences to be taken. We selected T = 0.6, as this was the value that gave

us the best results experimentally. Also note that the selected channel pairs

are wirelessly sent to the sensor node in a ‘predictive’ manner - of course,

the server node does not know what the compressed values of the current
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1. Compute R, the matrix of correlation coefficients of the current epoch.
Each entry of R is calculated as follows:

Ri,j =
cov(yi,yj)

σ(yi)σ(yj)

where cov(a, b) is the covariance between a and b, and σ(a) is the stan-
dard deviation of a.

2. Subtract the identity matrix I from R (because the autocorrelations are
not meaningful).

3. Define a loop index k that will be used to track the number of differences
taken. Let k = 1.

4. Find Rmax, the maximum absolute value in matrix R − I. The row
and column indices (ik, jk) corresponding to Rmax correspond to the 2
channels used for the difference. Remove the channel pair (ik, jk) from
the correlation pool.

5. Check that the selected channel pair is not redundant (i.e. it is linearly
independent from the previously selected pairs when we look at it as a
system of equations). If it is redundant, discard the current pair. If it is
not, keep the current pair and increment k by 1.

6. Repeat steps 4 and 5 while k < C or while Rmax < T , where C is the
number of channels and T is a user-defined threshold.

7. If k < C, we have run out of good channel pairs and will thus need
to pick individual channels (not a difference) to complete our system of
equations. Choose a ‘pair’ (ik, 0) such that channel ik is the channel with
the smallest variance that is linearly independent from the previously
selected pairs. Increment k by 1. Repeat until k = C.

8. Wirelessly transmit the selected channel pairs (ik, jk) , k = 1 to C to the
sensor node. These pairs will be used to compute the differences in the
next epoch.

Figure 5.2: The interchannel redundancy removal algorithm.

epoch are before they are transmitted, and so the channel pairs are based

on the compressed values from previous epochs.

We observed experimentally that for a given dataset, the best channel
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pairs are mostly stable over time (i.e. the best pairs from one epoch to an-

other are fairly constant). As such, there is no need to repeatedly transmit

the best channel pairs. In practice, the best approach might be to period-

ically update the best channel pairs, in case there has been a shift in the

signals.

The sensor node is only responsible for calculating the differences, which

is computationally inexpensive. They are calculated for k = 1 to C as

follows:

ỹk = yik − sign(Rik,jk)yjk .

After this stage, we obtain a matrix ỸM×C = [ỹ1|ỹ2| . . . |ỹC ] whose

columns are the difference signals.

Fig. 5.3 shows the probability density functions (PDFs) of the original

measurement signals and of the difference signals, taken over 1000 random

windows of length 512 of the datasets described at the start of Section 5.4.

As can be seen, the pdf of the difference signals has the desirable property

of being narrower than that of the original measurements. This makes it

easier to encode the values (it requires fewer bits to do so), which results in

a higher compression ratio.

5.2.3 Encoding

After removing the interchannel redundancies, the signals are quantized and

an entropy coding scheme is applied. The output of the encoding module is

a stream of bits to be transmitted wirelessly.
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For quantization, the columns of Ỹ T are first stacked as a vector:

ỹMC×1 = vec(Ỹ T ) =

[ỹ1(1)ỹ2(1) . . . ỹC(1)ỹ1(2)ỹ2(2) . . . ỹC(2) . . . . . . ỹ1(M)ỹ2(M) . . . ỹC(M)]T .

This type of vectorization ensures that the compressed samples of a

single channel are interleaved i.e. that they do not all come in one burst.

After quantization, the resulting vector is ỹq = Q(ỹ) where Q is the scalar

quantization operator. Assuming that the original signals are represented

using 12 bits, we use a 15-bit quantization (to account for the increase in

signal range caused by taking the linear projections).

Entropy coding is then applied on ỹq as this further reduces the number

of bits required to represent the signals. As seen in Fig. 5.3, the distribution
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of the difference signals ỹ is definitely not uniform; in fact, it approximately

has the shape of a Gaussian. We exploit this fact to achieve greater com-

pression. Huffman encoding is known to perform well in such cases, so it

is chosen as the entropy coding strategy. The codebook is generated offline

using the information from Fig. 5.3 and is then stored in memory at the

sensor node. We thus obtain a vector ȳ = H(ỹq) where H is the Huffman

encoding operator. Note that for a fixed value for M , the length of ȳ varies

slightly from one epoch to another, depending on the encoding.

5.2.4 Wireless Transmission

After compression and encoding, the EEG signals are wirelessly transmitted

from the sensor node to the server node. As in [36], we assume that each

data packet has a size of 127 bytes, of which 13 bytes are the MAC overhead.

We simply form the data packets by splitting the vector ȳ in consecutive

segments of 114 bytes. Note that we make no further attempt to model the

wireless channel and that we do not study different modulation schemes for

transmission.

5.2.5 Decoding

Upon receiving the encoded compressed EEG signals ȳ (assuming that we

are dealing with a perfect channel), the server would first decode them.

This is a straightforward decoding operation: ỹq = H−1(ȳ) where H−1 is

the Huffman decoding operator. We then form an M × C matrix: Ỹq =

[ỹq1|ỹq2| . . . |ỹqC ].
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5.2.6 Reconstruction

The final step is to reconstruct the original EEG signals from the decoded

measurements Ỹq. Before applying the CS reconstruction algorithm, we

first reverse the effect of the interchannel redundancy module to obtain Yq,

the original compressed measurements (before their differences were taken).

Once this is done, we can do CS reconstruction. As in Chapter 3, the

sparsifying dictionary Ψ is a Gabor dictionary and the chosen reconstruction

algorithm is the Basis Pursuit Denoise algorithm implemented in the SPGL1

package.

Postprocessing

The final step is to add back the means of each EEG channel.

5.3 State-of-the-Art Systems

A brief overview of the state-of-the-art systems that will be used to compare

our results with is also given.

Given that the problem under investigation (EEG compression in a

WBSN setting) has only started to be studied recently, there is not a large

body of existing literature around it, and identifying a proper benchmark

is challenging. EEG compression has been studied quite extensively in the

last two decades but algorithms have not generally been designed for low en-

ergy consumption or for implementation on simple hardware. As such, some

frameworks can achieve high compression ratios, but they require too many

computations or some operations that are too complex given our target sen-
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sor hardware, making these frameworks prohibitive in WBSNs. Similarly,

WBSNs started to gain momentum in the last decade but few of them have

addressed their applications to EEG signals. As a result, there only exist

very few papers that have explicitly studied the problem of EEG compres-

sion for WBSNs. In order to identify state-of-the-art systems to compare

the performance of our proposed framework with, it is therefore necessary to

extrapolate the results of this previous research in order to identify schemes

that can offer good performance in the context we are interested in.

We use the following requirements for selecting state-of-the-art systems

to compare our system with:

• low energy consumption: the system must not have a high computa-

tional requirement at the sensor node in order to conserve energy;

• simple sensor hardware: the system must be simple enough to operate

using inexpensive hardware;

• high compression ratio: the achievable compression ratio must be high

enough to justify the extra computations carried at the sensor node

(as compared to wirelessly sending raw, uncompressed data).

Based on these requirements, we have selected 2 state-of-the-art compres-

sion methods to compare our proposed framework to. These are described

in some details below.

5.3.1 JPEG2000-Based Compression

The JPEG2000-based EEG compression scheme was proposed in [27]. Amongst

the non-CS methods, it is one of the simplest yet most effective compres-
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Figure 5.4: Block diagrams of (a) the sensor node and (b) the server node
for the JPEG2000-based framework

sion schemes. It is a simple wavelet compression algorithm adapted from

the JPEG2000 algorithm used for image compression. Its block diagram is

shown in Fig. 5.4.

The wavelet coefficients of the raw EEG signals are first computed using

the Cohen-Daubechies-Feauveau (CDF) 9/7 discrete wavelet transform. De-

pending on the desired compression ratio, a hard threshold is then applied so

that only the largest wavelet coefficients of the signal are kept. These large

coefficients are then encoded using arithmetic coding. At the server side, the

received signals are decoded and then reconstructed by taking the inverse

wavelet transform. In our implementation, we used a decomposition level of

7 for the wavelet transform. We determined this level experimentally, as it

gave the lowest reconstruction error; furthermore, using more levels did not

provide an improvement in reconstruction accuracy.

In contrast to CS schemes, this type of algorithm is adaptive in the
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sense that it relies on the exact knowledge of the signal to find its largest

coefficients. Also, the bulk of the computations is done at the sensor node.

We will discuss the implications of these later on.

5.3.2 BSBL CS Compression

Block-Sparse Bayesian Learning (BSBL) is a reconstruction method that

was proposed in [64] and then applied to EEG signals in [63]. Its block

diagram is shown in Fig. 5.5.

The main difference between the BSBL framework and our framework is

in how the reconstruction is carried. Whereas we assume that EEG signals

are sparse in a transform domain (Gabor frames in our case) and use that

information to reconstruct the original signals, the BSBL framework does

not rely on this assumption. BSBL was first proposed to reconstruct signals
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that have a block structure - that is, signals that have few blocks containing

nonzero entries, and the remainder of the blocks containing only zeros. It

was then experimentally shown that the BSBL scheme was effective in re-

constructing signals even if their block partition boundaries are unknown or

if they do not have any clear block structure. Raw EEG signals fall in this

last category.

To carry out the reconstruction, the BSBL framework uses a “sparsify-

ing” matrix Ψ which is an inverse discrete cosine transform (DCT) operator

(EEG signals are not sparse in the DCT basis but as mentioned previously,

BSBL does not rely on sparsity). We used the Bounded-Optimization vari-

ant of the BSBL family (BSBL-BO) with a block partition of 24. The

experiments we carried found this value to be the optimal partition size.

5.4 Results

We now introduce the experimental results. We start by presenting the

datasets used as well as defining the performance metrics selected. We then

carry out experiments to evaluate the energy consumption and reconstruc-

tion accuracy.

5.4.1 Datasets

In order to assess the performance of the different algorithms on a wide

range of EEG cases, we selected 3 different databases.

The first one is Dataset 1 of the BCI Competition IV [12]. This dataset

was recorded from healthy subjects or generated artificially and contains
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the data of 7 patients. The recording was made using 59 EEG channels per

subject at an initial sampling rate of 1000Hz.

The 2 other databases are from Physionet [24]. The first consists of

seizure data of 22 pediatric subjects. The recordings contain 21 EEG chan-

nels at a sampling rate of 256Hz [51]. The second database is a collection

of 108 polysomnographic recordings of different sleep disorders monitoring.

Each recording contains between 5 and 13 EEG channels sampled at 256Hz

[57].

For each dataset, we used a resolution of 12 bits for the original EEG

signals. Note that some files in these datasets contain dead channels (i.e.

channels where the output is always 0). We removed these channels from

our analyis, as they provide no useful information. We also resampled the

data to 128Hz so as to provide a realistic sampling frequency in the context

of telemedicine as well as ensure uniformity between the datasets. Non-

overlapping windows of length N = 512 were used in our experiments. The

experiments were carried using 100 randomly extracted windows from each

dataset.

5.4.2 Performance Metrics

To quantify the compression performance, we used the compression ratio

(CR), which is redefined here as follows:

CR =
b

b̂
(5.1)

where b is the total number of bits in the original (uncompressed signal)
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and b̂ is the total number of bits in the compressed signal.

To test the reconstruction quality, we used the NMSE metric, as defined

in Eq. 3.2.

5.4.3 Energy

We study the energy performance at the sensor node of the two CS schemes

(BSBL and the proposed framework) and the JPEG2000 scheme. As men-

tioned previously, energy consumption is paramount in WBSNs due to the

limited battery life at the sensor node. We also note that energy consump-

tion is only important at the sensor node. For the server node, we assume

an unlimited energy supply. We study the three broad classes of energy at

the sensor node: 1) sensing energy (energy required to acquire and digitize

the EEG samples), 2) computing energy (energy required to carry out the

computations at the sensors) and 3) transmission energy (energy required

to wirelessly transmit the data to the server).

After being acquired and digitized, the signals are compressed, encoded

and transmitted. The sensing energy is constant for all schemes since all

samples must first be acquired. It was also shown in [62] that the sensing

energy is small (about an order of magnitude smaller) compared to the other

two classes when using ultra-low-power sensors. As such, we can safely omit

it in our analysis. For a fixed compression ratio, the transmission energy

is the same for all schemes because the number of bits to be transmitted

would be the same. We thus focus our efforts on the computation energy,

which is mainly the energy required for compression and encoding.

We implemented the code in Embedded C and simulated it on a MICAZ

62



target platform using the AVRORA simulator ([58]). We evaluated the

performance based on the total cycle count, the run time and the energy

consumption. To estimate the transmission energy, we rely on the experi-

mental work done in [36], in which it was calculated that the transmission

of each packet requires 524.72 µJ. The results are presented in the top part

of Table 5.1. They refer to one epoch for one EEG channel so that the dif-

ference in the number of channels in the different datasets does not impact

the presented results.
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Table 5.1: Energy Consumption and Reconstruction Accuracy for all Frameworks

CR 8:1 6:1 5:1 4:1 3.5:1 3:1 2.5:1 2:1

Energy Consumption

Cycle Count
Proposed 502,200 507,690 512,448 519,402 524,526 531,480 542,757 557,477
BSBL 429,486 429,486 429,486 429,486 429,486 429,486 429,486 429,486
JPEG2000 4,908,731 4,908,367 4,908,055 4,907,535 4,907,171 4,906,703 4,905,975 4,904,831

Run Time
Proposed 68.11 ms 68.86 ms 69.50 ms 70.45 ms 71.14 ms 72.08 ms 73.61 ms 75.61 ms
BSBL 58.25 ms 58.25 ms 58.25 ms 58.25 ms 58.25 ms 58.25 ms 58.25 ms 58.25 ms
JPEG2000 665.8 ms 665.7 ms 665.7 ms 665.6 ms 665.6 ms 665.5 ms 665.4 ms 665.3 ms

Computation Energy
Proposed 1.55 mJ 1.56 mJ 1.58 mJ 1.60 mJ 1.61 mJ 1.64 mJ 1.67 mJ 1.72 mJ
BSBL 1.32 mJ 1.32 mJ 1.32 mJ 1.32 mJ 1.32 mJ 1.32 mJ 1.32 mJ 1.32 mJ
JPEG2000 15.11 mJ 15.11 mJ 15.11 mJ 15.11 mJ 15.11 mJ 15.11 mJ 15.10 mJ 15.10 mJ

Computation +
Transmission Energy

Proposed 1.99 mJ 2.15 mJ 2.29 mJ 2.48 mJ 2.62 mJ 2.82 mJ 3.08 mJ 3.49 mJ
BSBL 1.76 mJ 1.91 mJ 2.03 mJ 2.20 mJ 2.33 mJ 2.50 mJ 2.73 mJ 3.09 mJ
JPEG2000 15.55 mJ 15.70 mJ 15.82 mJ 15.99 mJ 16.12 mJ 16.29 mJ 16.51 mJ 16.87 mJ

Reconstruction Accuracy

Mean NMSE
(BCI Dataset)

Proposed 0.227 ± 0.147 0.145 ± 0.103 0.105 ± 0.077 0.065 ± 0.050 0.044 ± 0.036 0.025 ± 0.021 0.009 ± 0.009 0.001 ± 0.003
BSBL 0.455 ± 0.205 0.312 ± 0.191 0.239 ± 0.159 0.180 ± 0.120 0.148 ± 0.103 0.114 ± 0.083 0.086 ± 0.063 0.059 ± 0.048
JPEG2000 0.101 ± 0.079 0.079 ± 0.064 0.066 ± 0.055 0.053 ± 0.045 0.045 ± 0.040 0.037 ± 0.034 0.028 ± 0.026 0.018 ± 0.018

Mean NMSE
(Seizure Dataset)

Proposed 0.552 ± 0.160 0.388 ± 0.148 0.298 ± 0.130 0.202 ± 0.107 0.149 ± 0.084 0.101 ± 0.067 0.056 ± 0.047 0.021 ± 0.025
BSBL 0.607 ± 0.136 0.452 ± 0.144 0.371 ± 0.142 0.275 ± 0.127 0.234 ± 0.122 0.181 ± 0.106 0.140 ± 0.091 0.095 ± 0.070
JPEG2000 0.159 ± 0.108 0.119 ± 0.098 0.097 ± 0.090 0.074 ± 0.080 0.062 ± 0.073 0.050 ± 0.065 0.038 ± 0.055 0.025 ± 0.042

Mean NMSE
(Sleep Dataset)

Proposed 0.340 ± 0.148 0.192 ± 0.124 0.122 ± 0.101 0.062 ± 0.073 0.039 ± 0.057 0.022 ± 0.040 0.009 ± 0.020 0.003 ± 0.008
BSBL 0.472 ± 0.158 0.300 ± 0.154 0.211 ± 0.125 0.134 ± 0.109 0.096 ± 0.092 0.066 ± 0.082 0.040 ± 0.059 0.020 ± 0.040
JPEG2000 0.071 ± 0.061 0.043 ± 0.047 0.030 ± 0.040 0.018 ± 0.030 0.013 ± 0.025 0.009 ± 0.020 0.006 ± 0.014 0.003 ± 0.009
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As expected, the CS-based schemes significantly outperform JPEG2000

in every category. In fact, even if we use the highest compression ratio for

JPEG2000, it will never qualify from an energy perspective when compared

with CS. JPEG2000, being an adaptive scheme, relies on a high amount

of computations in order to efficiently compress the data while the random

projections of CS require a significantly smaller lower number of computa-

tions. It is also interesting to note that small gains (decrease in the number

of cycles, run time and energy consumption) are obtained by the proposed

framework when the compression ratio increases. This is due to a reduction

in redundancy removal and encoding computations. We note that BSBL is

slightly more energy-efficient than the proposed framework. However, as we

will see shortly that comes at the expense of a worse reconstruction accu-

racy. We will argue that the small increase in energy consumption is well

worth it in this case.

Another interesting consideration would be to look at the comparison be-

tween sending compressed and uncompressed data. Sending uncompressed

data requires 3.53 mJ of energy per channel (which is the energy required

for wireless transmission, as no computations are carried out prior to trans-

mission). We thus note that CS is more advantageous at any compression

ratio, whereas JPEG2000 always consumes more energy than even sending

uncompressed data.

5.4.4 Reconstruction Performance

We now look at the reconstruction performance of the three frameworks over

the three datasets. We look at both noiseless and noisy cases.
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Noiseless Case

For this experiment, we assume that the measurements are noise-free (that

is, the output of the entropy decoding block is the same as the output of the

interchannel redundancy removal module), and only look for the algorithms’

ability to accurately reconstruct the original signals at different compression

ratios. The reconstruction performance of the different frameworks over the

three datasets is shown at the bottom of Table 5.1.

In terms of the NMSE, the proposed framework systematically outper-

forms BSBL. As expected, the reconstruction accuracy of the JPEG2000

framework is generally better than that of the CS-based frameworks, es-

pecially at high compression ratios. This is not a surprise because the

JPEG2000 framework adaptively encodes the EEG signals, using full knowl-

edge about the structure of the signal when finding its largest coefficients. In

contrast, at the sensor nodes, the CS frameworks do not make any attempt

at comprehending the signal at play; instead, they nonadaptively take a sub-

set of linear random projections, and only rely on the signal structure on the

server side when carrying out the reconstruction. As such, it is obvious that

an adaptive algorithm will perform better than a nonadaptive one. However,

it is interesting to note that as the compression ratio decreases, the gap in

the reconstruction error quickly shrinks. At lower compression ratios, the

proposed framework can even outperform the adaptive JPEG2000 scheme.
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Noisy Case

We then show that CS-based schemes are more robust than JPEG2000 to

Gaussian noise and packet loss. Such studies have so far been omitted in

EEG-based WBSN studies.

Gaussian Noise For this experiment, we arbitrarily fix the compression

ratio to 2.5:1, and vary the signal-to-noise ratio (SNR) by adding Gaussian

noise with varying standard deviations. The results are shown in Fig. 5.6.

The JPEG2000 framework is the most affected by Gaussian noise, es-

pecially when the SNR is low. Comparing our framework with BSBL, we

notice that BSBL performs better at low SNRs, whereas our framework

performs better for SNRs higher than 13dB.
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Figure 5.7: Reconstruction performance under packet loss for a fixed CR
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Packet Loss We then test the impact of packet loss. Again, we select a

compression ratio of 2.5:1 and vary the percentage of packets lost through

a noisy channel. This is done by randomly choosing the lost packets which

then cannot be used to reconstruct the original signal. The results are shown

in Fig. 5.7.

The important thing to note about this figure is the relationship be-

tween reconstruction accuracy and packet loss. What we notice is that for

both CS-based methods, the slope of the line is much less steep than for the

JPEG2000 framework. This property is desirable since it leads to a more

graceful degradation in signal quality. In fact, we can see that as soon as

packet loss happens, JPEG2000 becomes worse than the proposed frame-

work. Similarly, when the percentage of packets lost go above 12%, BSBL
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performs better than JPEG2000. Knowing that in WBSN the packet loss

rate can be high, we can see that CS becomes an attractive solution even

from the perspective of reconstruction accuracy. It is also important to un-

derstand the possible implications of packet loss for the different frameworks.

Because JPEG2000 is adaptive and only sends the largest coefficients, we

run the risk of losing the largest coefficients, and we have no control over

that - it is simply a matter of luck as to which coefficients are affected. In

contrast, because the CS measurement operator takes nonadaptive random

projections, no resulting measurement bears more weight than another one.

In a way, this provides a safety net: even if we have a noisy channel with

a high packet loss rate, we know that in all cases the degradation in signal

quality will be proportional to the noise in the channel, and won’t depend

on the timing or location of these losses.

5.5 Discussion

In this chapter, we proposed a novel CS framework that exploits both the

temporal correlations and the spatial correlations to efficiently compress

EEG signals in WBSNs. On the energy front, our proposed CS framework is

between 5 and 8 times more energy-efficient than the JPEG2000 framework

in terms of sensor computations and wireless transmission. We also show

that our method achieves a better reconstruction quality than the state-of-

the art BSBL method which also uses CS. This was also the first study in

which a wide range of EEG signals are used to validate the performance of

different frameworks.
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We wish to reiterate the advantages of using a CS framework in the

context of WBSNs. Recall that the core purpose of WBSNs is to provide a

simple and practical tool for people to participate in their own treatment. As

such, energy consumption is paramount, and we also desire to have the sim-

plest sensors possible, for affordability. What this means is that operations

carried out at the sensor node must be as basic as possible. This is exactly

what CS does: the main operations at the sensor node consist of comput-

ing random projections, which happen to be simple additions when using

a sparse binary sensing matrix. The computational complexity is shifted

to the server node, which has a lot more computing power than the sensor

node. In that sense, a CS framework is an ideal solution that fully takes

advantage of the strengths and limitations of WBSNs.

Furthermore, CS provides a simple and universal encoding scheme since

the random measurement matrix Φ is incoherent with any sparsifying basis

Ψ with overwhelming probability. What this means is that if for some reason

we wish to change Ψ along the way, it does not require us to also change Φ.

Finally, CS measurements are robust to noise. The use of a larger number

of CS measurements will lead to a progressively better reconstruction. Sim-

ilarly, losing a few measurements (e.g. due to wireless channel interference)

leads to a progressive reconstruction degradation. This is in contrast with

a wavelet compression scheme, where losing one of the large coefficients can

have an important impact on the quality of the reconstruction.
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Chapter 6

A Compressed Sensing

Framework for BCI Systems

in WBSNs

6.1 Problem Description

Brain-Computer Interface (BCI) systems have received significant attention

in the last few decades. BCIs provide a direct pathway between the brain

and an external interface such as a computer or a prosthesis. Such devices

can prove to be life-changing for disabled people by allowing them a more

natural interaction with their environment despite their physical limitations.

One widely used brain signal in BCIs is the EEG. These signals are pop-

ular because they provide high time resolution, a necessary feature to build

a practical BCI [37]. A BCI would use the EEG signals to detect patterns

associated with a mental task performed by a person (such as attempting

to move a finger or visualizing some arithmetic task). The person would

use such a simple mental task to operate a wheel chair, switch a light off

or communicate with a caregiver, for instance. One popular mental task
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used in BCIs is what is called motor imagery, in which the user performs

an imagined motion (e.g. flexing the left or right hand). It has been shown

that motor imagery can be reliably identified when sensors (electrodes) are

located over the sensorimotor area of the cortex [47].

There are two main categories of motor imagery BCI systems: syn-

chronous and asynchronous (also called ‘self-paced’) systems. A synchronous

BCI provides a time window during which the BCI can be operated (i.e. the

system gives a cue to users to let them know when they can control it).

The user’s mental commands must be sent during that time interval spec-

ified by the system, and the brain output is ignored at all other times. In

contrast, a self-paced BCI allows a person to control a device or an object

whenever they wish. The system must figure out whether the user is trying

to control the interface (called ‘intentional control’) or not (called ‘idle’ or

‘no control’). This additional flexibility is of course desirable from a user

experience perspective but it comes at the cost of increased complexity. In

this work, we focus on synchronous BCIs.

In many cases, it is important to provide a BCI system that is mini-

mally obtrusive to users and that allows them to carry on their daily tasks

as normally as possible. This is when the concept of WBSN becomes inter-

esting. We have shown in the past chapters that a CS framework provides

an interesting solution in this setting.

In this chapter, we study a practical application of the framework devel-

oped in Chapter 5. We apply our framework to compress EEG signals that

are then (after decompression) used to control a BCI.

This chapter is organized as follows. Section 6.2 presents the different
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Figure 6.1: Block diagrams of (a) the sensor node and (b) the server node
for the proposed CS-based BCI framework

building blocks of the framework. Section 6.3 shows the performance of the

system through different experiments, and Section 6.4 discusses the obtained

results.

6.2 Methods

We now present our proposed framework, shown in Fig. 6.1. The operations

at the sensor node and the reconstruction part are exactly the same as for

those of Chapter 5. As such, we refer the reader to Section 5.2 for further

details. The only difference is that here we use an epoch length of N = 128.

This is done to ensure that the BCI system can make classification decisions

at a practical rate. We could also afford to reduce the value of d from 8 to

4.

After the reconstruction stage, we carry out machine learning steps to

build the BCI. The features are extracted based on the synchronous cues
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given by the system. For each cue, we extract the window that starts 0.5s

after the cue and of length 2s. This window has been shown to work well

when working with motor imagery EEG data. We then use Common Spa-

tial Patterns (CSP), after first having bandpass filtered the selected data

between 8Hz and 35Hz. CSP is a well-known algorithm which looks for fea-

tures that maximize the variance with respect to one class while minimizing

it with respect to the other one [49]. We extract the log-variance of the

CSPs to use as our features. The feature selection method we selected is

simple: we select the 2m CSPs that best discriminate between classes (based

on their eigenvalues). We used m = 3. The selected features are then fed to

a Linear Discriminant Analysis (LDA) classifier. LDA is a simple classifier

that is fast and that works well for BCIs [9].

6.3 Results

6.3.1 Data Used

We used 2 publicly available motor imagery datasets to test the performance

of our proposed method:

• BCI Competition IV, dataset # 1 [12]: This data was recorded from

healthy subjects (subjects a, b, f and g) or generated artificially (sub-

jects c, d and e). The initial recording was made using 59 EEG chan-

nels per subject at a sampling rate of 1000Hz. The subjects performed

a motor imagery task (imagining a left hand movement, a right hand

movement or a foot movement). Only 2 of the 3 classes were selected

for each subject. For each subject, there are 200 cues (100 for each
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Table 6.1: Classification Performance for BCI Competition IV, dataset # 1

CR 1:1 2:1 3:1 4:1 6:1 8:1
Subject ‘a’ 70.0 63.2 68.4 61.9 55.1 56.3
Subject ‘b’ 56.2 57.9 54.4 51.0 50.1 56.1
Subject ‘c’ 64.6 52.6 53.2 56.5 56.5 52.1
Subject ‘d’ 81.0 75.1 70.6 58.9 55.1 57.4
Subject ‘e’ 87.3 87.5 86.0 77.9 72.1 64.6
Subject ‘f ’ 72.5 72.1 69.2 62.2 63.6 55.4
Subject ‘g’ 82.3 84.0 82.7 80.2 73.4 73.7

Mean ± STD 73.4± 10.9 70.3± 13.1 69.2± 12.5 64.1± 10.9 60.8± 9.0 59.3± 7.4

class). Out of the original 59 channels we selected 12 channels in the

sensorimotor area of the cortex: F1, FZ, F2, FC3, FC1, FCZ, FC2,

FC4, C3, C1, CZ, C2. We also resampled the data to 256Hz.

• BCI Competition IV, dataset # 2a [42]: This data was recorded from

9 subjects performing a motor imagery task (imagining one of 4 move-

ments: left hand, right hand, both feet, tongue). We only look at left

and right hands (2 classes). For each subject, there are 72 instances of

each class, for a total of 144 cues. There is a total of 22 EEG channels,

and the sampling rate is 250Hz.

6.3.2 Compression and Classification Performance

We first look at the classification performance when the system is subjected

to different compression ratios. We tested 6 different compression ratios:

1:1 (uncompressed - this is the baseline), 2:1 (50% compression), 3:1 (67%

compression), 4:1 (75% compression), 6:1 (83% compression) and 8:1 (87.5%

compression). To obtain the classification performance, we used 10-fold

cross-validation. The results are shown in Tables 6.1 and 6.2.
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Table 6.2: Classification Performance for BCI Competition IV, dataset #
2a

CR 1:1 2:1 3:1 4:1 6:1 8:1
Subject ‘A01’ 83.0 80.2 75.9 72.3 73.2 66.2
Subject ‘A02’ 59.4 56.2 50.6 55.0 53.9 51.2
Subject ‘A03’ 94.6 93.4 92.0 90.5 87.8 91.5
Subject ‘A04’ 67.3 69.2 56.2 67.5 65.5 61.9
Subject ‘A05’ 62.7 59.2 62.9 50.8 52.9 51.5
Subject ‘A06’ 64.6 64.0 57.6 59.2 58.4 55.6
Subject ‘A07’ 73.3 75.4 67.3 59.7 54.3 53.9
Subject ‘A08’ 96.2 95.8 95.4 91.2 90.6 92.6
Subject ‘A09’ 74.2 73.8 72.7 68.2 66.5 69.7

Mean ± STD 75.0± 13.5 74.1± 13.9 70.1± 15.6 68.3± 14.4 67.0± 14.3 66.0± 16.1

As expected, there is a degradation in performance when the CR is

greater than 1:1, i.e. when the data is compressed. However, we would

argue that this degradation in performance is not significant.

6.3.3 Energy Analysis

We now turn our attention to the energy consumption of the proposed frame-

work, as compared to that of sending uncompressed data. As mentioned

previously, it is very important to use as little energy as possible at the sen-

sor node since it is battery-powered. We place no constraint on the energy

supply of the server node, as we assume it is wired.

The energy analysis is carried out in a manner analogous to that of

Section 5.4.3. The results are presented in Table 6.3. They are normalized

over one epoch for one EEG channel so that the difference in the number of

channels in each dataset does not impact the presented results.

As can be seen from the results, interesting energy savings can be real-

ized when using our proposed framework. This is especially true when the
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Table 6.3: Energy Consumption Under Different Compression Ratios

CR
Computation Transmission Total Energy

Energy Energy Energy Savings
1:1 0 mJ 0.884 mJ 0.884 mJ -
2:1 0.296 mJ 0.442 mJ 0.738 mJ 16.5 %
3:1 0.259 mJ 0.295 mJ 0.553 mJ 37.4 %
4:1 0.242 mJ 0.221 mJ 0.463 mJ 47.6 %
6:1 0.227 mJ 0.147 mJ 0.374 mJ 57.7 %
8:1 0.222 mJ 0.111 mJ 0.333 mJ 62.3 %

number of channels increases and when the sampling rate is high since the

total absolute energy consumption of the system is compounded by these 2

factors.

6.4 Discussion

In this chapter, we applied our CS framework to efficiently compress EEG

signals in WBSNs, in the context of a BCI application. By providing a

simple, nonadaptive compression scheme at the sensor node, CS offers an

energy-efficient solution to compress EEG signals in WBSNs. We verified

the performance of the proposed compression framework by testing the clas-

sification performance of the BCI systems under different compression levels

and by looking at the overall energy consumption of the sensor node. Our

results showed that a CS framework leads to important energy savings at

the cost of a lower classification accuracy.

Using a compressed sensing framework for WBSN-based BCI systems

involves some relatively obvious tradeoffs. On the one hand, as the com-

pression ratio increases, the classification accuracy decreases. However, at
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the same time the total energy consumption also decreases. It is thus a de-

sign choice to determine the appropriate compression ratio. We note that in

WBSNs, energy consumption is an important consideration, which prompts

us to say that in some situations, compression may be necessary.

We also note that using more sophisticated machine learning techniques

could have improved the overall accuracy of our BCI system. Similarly,

we could have optimized the parameters for each subject to obtain better

classification performance. However, our aim was to obtain a simple system

that worked well on the average case. In fact, we were only interested in

the comparative performance of the BCI system under different compression

ratios.
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Chapter 7

Summary and Conclusions

7.1 Main Results

In this thesis, we proposed novel, energy-efficient CS frameworks that take

advantage of the inherent structure present in EEG signals (both temporal

and spatial correlations) to efficiently compress these signals in WBSNs.

In Chapter 3, we presented a simple CS-based framework that would

become the basis for the bulk of the work in this thesis. We optimized the

Gabor sparsifying dictionary and demonstrated that using a fixed sparse

binary sensing matrix offered similar performances to optimal matrices while

requiring far fewer computations. This framework has the advantage of

being simple but does not exploit the spatial correlations between EEG

channels.

In Chapter 4, we added an energy-efficient ICA preprocessing block to

the simple CS framework to exploit the spatial correlations among EEG

channels. We showed that the proposed framework provides significant en-

ergy savings as compared to the state-of-the-art method in [39]. As well, for

a fixed compression ratio, our system achieves similar NMSE performance

as the state-of-the-art method, which is much better than that achieved by

the simple CS framework.
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In Chapter 5, we proposed a complete, novel CS framework that exploits

both the temporal correlations and the spatial correlations. On the energy

front, our proposed CS framework is up to 8 times more energy-efficient

than the JPEG2000 framework in terms of sensor computations and wireless

transmission. The reconstruction accuracy of the JPEG2000 framework is

generally better than that of the proposed framework but as the compression

ratio decreases, the gap in the reconstruction error quickly shrinks. At

lower compression ratios, the proposed framework can even outperform the

JPEG2000 scheme. We also showed that our method achieves a better

reconstruction quality than the state-of-the art BSBL method. This was

the first study that compared CS frameworks with other state-of-the-art

compression frameworks for EEG compression in WBSNs. It was also the

first study where different types of EEG signals representing a variety of

applications were used to test the performance of the proposed and existing

frameworks, thus providing a more robust answer to the usefulness and

validity of the systems.

Finally, in Chapter 6, we applied the framework of Chapter 5 to compress

EEG signals in the context of a BCI application and evaluated its impact

on the performance of the system.

7.2 Future Work

There are many possible directions for extending the work presented in this

thesis. It would be interesting to implement the CS framework in hardware

and test its reconstruction and energy performances in practice, under real-
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life conditions (instead of relying on simulations and assumptions).

It would also be interesting to look at CS reconstruction algorithms

that can directly exploit the spatial correlations by jointly reconstructing

the channels. Along the same lines, it may be useful to look at the anal-

ysis prior formulation for the CS reconstruction problem, as it could yield

an improvement in reconstruction accuracy. These two approaches have

been gaining momentum recently and have the potential to improve our CS

framework.

Another avenue would be to use dictionary learning techniques to find

adaptive dictionaries in which EEG signals are sparser than in our fixed

optimized Gabor dictionary. We also see potential in combining a dictio-

nary learning approach with an improved reconstruction algorithm to build

a structured sparsifying dictionary, whose structure can then be exploited

by the reconstruction algorithm to achieve reconstruction using fewer mea-

surements.

It might also be worth looking for an optimal quantization and encoding

strategy for CS measurements under a sparse binary sensing matrix. While

this problem has been investigated for more traditional CS matrices (see e.g.

[25]), it has not been explored for sparse binary sensing matrices.

Finally, on top of BCIs, other end-user systems (e.g. a seizure detection

system) that use the developed compression framework could be developed

and investigated.
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