
Characterizing the JavaScript Errors

that Occur in Production Web

Applications

An Empirical Study

by

Frolin S. Ocariza, Jr.

B.A.Sc., The University of Toronto, 2010

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

The Faculty of Graduate Studies

(Electrical and Computer Engineering)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

April 2012

© Frolin S. Ocariza, Jr. 2012

Abstract

Client-side JavaScript is being widely used in popular web applications

to improve functionality, increase responsiveness, and decrease load times.

However, it is challenging to build reliable applications using JavaScript.

This work presents an empirical characterization of the error messages printed

by JavaScript code in web applications, and attempts to understand their

root causes.

We find that JavaScript errors occur in production web applications, and

that the errors fall into a small number of categories. In addition, we find

that certain types of web applications are more prone to JavaScript errors

than others. We further find that both non-deterministic and deterministic

errors occur in the applications, and that the speed of testing plays an

important role in exposing errors. Finally, we study the correlations among

the static and dynamic properties of the application and the frequency of

errors in it in order to understand the root causes of the errors.

ii

Preface

This thesis is an extension of an empirical study of JavaScript errors in

production web applications conducted by myself in collaboration with Pro-

fessor Karthik Pattabiraman and Benjamin Zorn. The results of this study

were published as a conference paper on November 2011 in the Interna-

tional Symposium on Software Reliability Engineering (ISSRE) [22]. I was

responsible for devising the experiments, creating test cases, running the ex-

periments, evaluating and analyzing the results, and writing the manuscript.

My collaborators were responsible for guiding me with the creation of the

experimental methodology and the analysis of the results, as well as editing

and writing portions of the manuscript.

F.S. Ocariza Jr, K. Pattabiraman, and B. Zorn. JavaScript Errors in

the Wild: An Empirical Study. In Software Reliability Engineering (ISSRE),

2011 IEEE 22nd International Symposium on, pages 100-109. IEEE, 2011.

iii

Table of Contents

Abstract . ii

Preface . iii

Table of Contents . iv

List of Tables . vii

List of Figures . viii

Acknowledgements . ix

Dedication . x

1 Introduction . 1

1.1 Objectives . 2

1.2 Pros and Cons . 5

1.3 Thesis Contributions . 6

1.4 Thesis Organization . 8

2 Background and Related Work 9

2.1 JavaScript Background . 9

iv

Table of Contents

2.2 Related Work . 11

3 Experimental Methodology 14

3.1 Research Questions . 14

3.2 Web Applications . 15

3.3 Overview of Experiment - Popular Websites 16

3.4 Overview of Experiment - Interactive Web Applications . . . 20

3.5 Tools and Datasets . 21

4 Results . 25

4.1 Distribution of Error Categories 25

4.2 Effect of Testing Mode . 32

4.3 Occurrence of Non-deterministic Errors 33

4.4 Correlation with Static and Dynamic Characteristics 35

4.5 Inter-Category Correlations 40

4.6 JavaScript Framework . 41

4.7 Web Application Type . 43

4.8 Interactive Web Applications 44

5 Implications . 51

5.1 Implications for Programmers 53

5.2 Implications for Testers . 54

5.3 Implications for Tool Developers 55

5.4 Threats to Validity . 56

6 Conclusions and Future Work 58

6.1 Future Work . 59

v

Table of Contents

Bibliography . 60

Appendix

Appendix A: Error Data for Popular Websites 66

vi

List of Tables

3.1 Website Static Characteristics (50 Alexa Websites) 17

3.2 Static Characteristics of Interactive Web Applications 18

3.3 Number of Test Cases for Interactive Web Applications . . . 21

4.1 Popular Websites Error Data (Totals) 26

4.2 Frequency of Errors in CNN 31

4.3 Correlations with Static Web Application Characteristics . . 35

4.4 Correlations with Dynamic Web Application Characteristics . 36

4.5 Average Number of Errors Per Framework 42

4.6 Web Application Type Comparison - Popular Websites 43

4.7 Web Application Type Comparison - Interactive Web Appli-

cations . 46

4.8 Interactive Web Application Error Data 49

5.1 Research Question Answers 52

A.1 Website Error Data (50 Alexa Websites) 67

vii

List of Figures

1.1 JavaScript Error from ifeng.com 4

3.1 JavaScript Error Message Screenshot 21

4.1 Percent Distribution of Error Categories 30

viii

Acknowledgements

First of all, I would like to thank my advisor Karthik Pattabiraman for his

unwavering support. The months I spent as a Master student were some

of the most intellectually and professionally rewarding I have ever had, and

much of it is attributable to Karthik constantly motivating me to think

more critically and get my ideas across more effectively. His exemplary

supervision allowed me to learn a lot and paved the way for me to begin my

professional engineering career.

Many thanks also go to Ali and my colleagues in CSRG for their help

and critiques. I particularly would like to thank my lab mates who always

managed to make me laugh and made this entire experience enjoyable.

None of this would have been possible if it had not been for the un-

conditional love accorded to me by my family and friends. I would like to

thank my dad Frolin, my mom Jeannette, my siblings Linnette and Jeno,

my cousin Mikky, and all my relatives for always encouraging me to do my

best. I would also like to thank my dearest friends Kylo, Paul, and Erwin,

who constantly inspire me to keep going and are like my little brothers.

Finally, I thank the members of CMPC for their prayers and support.

Last but not least, I would like to thank God for giving me the chance to

pursue this wonderful profession, and for guiding me throughout the process.

ix

Dedication

To my friends and family

x

Chapter 1

Introduction

Modern web applications, or Web 2.0 applications, retrieve information

asynchronously without reloading the page or navigating to a new one. They

are hence much more interactive than traditional web applications. This in-

teractivity is accomplished through the use of JavaScript in the client, which

allows for the creation, modification, and deletion of nodes in the applica-

tion’s Document Object Model (DOM). Today, as many as 97 of the top

100 most visited websites use client-side JavaScript1, and each consists of

thousands of lines of JavaScript code. Therefore, in this thesis, the words

website and web application are used interchangeably.

JavaScript is weakly typed, and allows the creation and execution of new

code at runtime. It is widely believed that these factors make it prone to

programming errors. Further, web browsers are typically tolerant of errors

in JavaScript code, although they differ in their handling of the errors. For

example, web browsers do not stop executing a web application when it

throws an exception; rather they continue to execute (other parts of the

application) in response to user events and web browser notifications. This

leads to subtle bugs that are difficult to find during testing [19].

1
From www.alexa.com, April 2011.

1

1.1. Objectives

With the above issues in mind, it is important to ask: are JavaScript

errors prevalent in today’s web applications and if so, what are the most

important steps that must be taken to improve the reliability of client-side

JavaScript in such applications? Providing an answer to this question is

the overarching goal of this thesis. We approach the first part of this ques-

tion by conducting an empirical study that not only shows the presence of

JavaScript errors in web applications – in particular, JavaScript errors that

lead to exceptions in the code – but also characterizes these errors to help

further our understanding of them. We approach the second part of the

question by studying the error characteristics obtained from our results and

providing suggestions based on our results’ implications on web application

programmers, testers, and static analysis tool developers. By gaining this

understanding and exposing common problems, we can help in carving out

the precise steps that must be taken to ensure the reliable design of current

as well as future web applications.

1.1 Objectives

The main goal of this work is to empirically study the errors in JavaScript-

based web applications and to identify common error categories in these

applications. We also seek to understand the sources of these errors, by

studying their correlation with the application’s static and dynamic charac-

teristics, such as the number of calls to the eval construct. Another goal is

to formulate design guidelines and principles to help developers and testers

improve their web applications’ reliability.

2

1.1. Objectives

Although JavaScript was designed in 1995 by Brendan Eich and was

part of the Netscape 2.0 browser, it became popular only in the last five

years with the advent of applications such as Gmail and Google Docs. As a

result, there have been few academic papers on JavaScript, and fewer still

on empirical studies of the behaviour of JavaScript-based Web 2.0 applica-

tions. Recent work has studied the performance and runtime behaviour of

JavaScript [27, 29], and the security and privacy of JavaScript-based web-

sites [11, 33]. However, to our knowledge, there has been no study on char-

acterizing errors encountered in JavaScript-based web applications.

An error in a JavaScript-based web application can have severe conse-

quences, including loss of its functionality. For example, one of the errors we

found in our study prevented the header and navigational items of ifeng.com

from displaying in one of its pages. Instead, these items were replaced by

a warning at the top of the page indicating that an error has occurred (see

Figure 1.1). While this particular error may be caught by traditional testing

techniques, there may be much more subtle errors that are not2. Therefore,

it is important to study the reliability of JavaScript code in the wild, in

order to understand the errors that occur in them. This is the goal of our

study.

We base our study on error messages printed to the JavaScript console

by web applications executing in the wild. Whenever the JavaScript code

throws an exception, an error message is printed to the JavaScript console3.

We use Firebug4, an add-on to the Firefox web browser, to capture the

2
Indeed, most errors do not result in such explicit warnings/alerts.

3
This console is hidden from the user, but can be enabled on demand.

4
http://getfirebug.com

3

1.1. Objectives

Figure 1.1: A JavaScript error in the website ifeng.com causing the page
header to disappear and be replaced by an error message

messages. Although the focus of this study is on JavaScript errors that lead

to exceptions, note that other types of errors are possible. For instance, the

JavaScript code may set the property of an element in the page – such as the

element’s colour or size – to an incorrect value because of a semantic error

made by the programmer; this is still considered an error, even though an

exception may not necessarily take place. Hence, the results of this study

serve as a conservative estimate of web applications’ reliability, as the errors

considered in this study are only a subset of all the errors that are actually

in the web applications.

Our evaluation set consists of fifty websites from the Alexa top 100 most

visited websites, as well as a group of ten interactive web applications, both

of which we interact with in a “normal” manner. To avoid confusion, the

former set of fifty web applications will be referred to as “popular websites”,

while the latter set will be referred to as “interactive web applications”. We

analyze the error messages, categorize them and determine if they are non-

deterministic, i.e., occur only in a subset of the executions. We also correlate

the web application’s characteristics with the types and frequencies of error

messages to understand their relationship.

4

1.2. Pros and Cons

1.2 Pros and Cons

In this study, we assume that an error message corresponds to an actual

error, i.e., a software defect. Although this assumption may not hold for

every error message, we believe that an error message is an indication of

a potential problem in the application. For instance, when an exception is

thrown at a certain line in the JavaScript code, subsequent lines in the code

may not get executed, leading to unexpected failures. Further, a benign error

message may have a serious, unforeseen consequence after a code update.

However, we do not consider the consequences of errors in this study.

Static analysis is an alternative technique to using error messages for

identifying errors, and has been successfully applied to large code bases such

as the Linux Kernel [5]. However, error messages have several advantages

over static analysis. First, console messages represent errors in real settings

after the web application has been released to the public, and hence these

errors likely escaped traditional testing methods. Further, the messages

capture erroneous interactions between the web application and the DOM,

which static analysis tools are likely to miss, as they do not typically model

the DOM. In the extreme case, some static analyzers such as JSLint5 and

Closure Compiler6 only analyze the code’s syntax, disregarding semantics,

and hence exhibit false positives and false negatives. Finally, JavaScript is

a challenging language to analyze statically, and hence many such analyzers

confine themselves to a “sane” subset of the language [9, 10]. However,

as recent studies have shown [29], many web applications do not confine

5
www.jslint.com

6
code.google.com/closure/compiler/

5

1.3. Thesis Contributions

themselves to this subset.

1.3 Thesis Contributions

This thesis presents three main contributions. They are:

• We develop a systematic methodology to execute web applications

in multiple testing modes, and categorize their error messages. The

methodology has been implemented using both existing tools, as well

as tools we have developed and made open-source7.

• We run the tools on 50 of the top 100 most visited websites as well as

ten interactive web applications to study the characteristics of their

errors. An interactive web application is one in which most of the user

events such as clicks and mouse movements trigger the execution of

JavaScript code (in contrast, user events in less interactive web appli-

cations are dominated by URL navigation, and most of the JavaScript

code is executed at load time). For the fifty popular websites, we fur-

ther correlate the messages with the static and dynamic characteristics

of these websites. We make all our experimental data freely available

for reproducibility.

• We consider the implications of the findings for web application pro-

grammers, testers and tool developers. In a sense, this thesis is a

“call to arms” for improving the reliability of JavaScript-based Web

2.0 applications.

7
http://ece.ubc.ca/�frolino/projects/jser/

6

1.3. Thesis Contributions

The main results from the study are as follows:

• JavaScript errors occur in web applications: Even production

web applications that are mature and well-engineered exhibit errors

(average of 4 distinct error messages per web application).

• Errors fall into well-defined categories: About 93% of the errors

fall into one of four categories: Permission Denied (52%), Undefined

Symbol (28%), Null Exception (9%), and Syntax Errors (4%).

• Effect of testing mode: The frequencies of errors depend on the

speed of interaction with the web application (i.e., fast, medium or

slow).

• Presence of non-deterministic errors: About 72% of the errors

are non-deterministic (i.e., vary across executions).

• Correlation with static and dynamic characteristics: Error fre-

quencies are positively correlated with some of the static and dynamic

characteristics of the applications such as Alexa rank, the number

of domains containing JavaScript, the number of function calls, the

number of property deletions, and the number of object inheritance

overridings, but not with others such as the size of the code or the

number of dynamic eval calls.

• Effect of interactivity: JavaScript errors in interactive web applica-

tions have characteristics similar to the errors found in popular web-

sites. However, the presence of non-deterministic errors and permis-

7

1.4. Thesis Organization

sion denied errors is less pronounced due to fewer advertisements and

the way interactive web applications are designed.

1.4 Thesis Organization

This chapter serves to establish the motivation and the overarching goal

of the thesis. In Chapter 2, background information on web application

reliability – particularly with respect to the use of client-side JavaScript

– is provided, as well as related work. Chapter 3 describes in detail the

experimental methodology used to collect JavaScript errors from the two

evaluation sets (production websites and interactive web applications), and

provides an overview of the tools used to perform this evaluation. Chap-

ter 4 gives a detailed discussion of the results acquired from this study, and

Chapter 5 discusses the implications these results have on web application

programmers, testers, and tool developers. Finally, Chapter 6 concludes and

presents future research directions.

8

Chapter 2

Background on Web

Application Reliability and

Previous Work

This chapter provides background information on the use of JavaScript in

Web 2.0 applications. It highlights some of the inherent characteristics of

the JavaScript language that could have direct implications on the reliability

of the web application. In addition, we present prior work that has been

conducted on the reliability, security, and performance of web applications.

2.1 JavaScript Background

JavaScript has gained prominence as the de-facto client-side programming

language of the Web. In many respects, JavaScript is similar to languages

such as C and Java. However, it differs from them in important ways. For

example, JavaScript is dynamically typed, and allows code to be created

and executed at runtime (e.g., through the eval construct). Therefore, it is

believed to be prone to programming errors [19].

9

2.1. JavaScript Background

A web application8 consists of three main components in the client side.

First, there is the HTML code, which forms the basic building block of its

webpages. Second, there are cascading style sheets (CSS), which are used to

control the layout of elements in a webpage. Finally, there is the JavaScript

code, which is either embedded in the webpages, or is imported as separate

files. Unlike CSS and HTML, JavaScript is used for the web application’s

core functionality, and not only for display of elements. As a result, errors

in JavaScript can have substantial impact, and may even be exploited by

attackers [33].

Typical web applications are structured as a set of event handlers that

are triggered by specific actions on the webpage, or by the loading of the

page. For example, an ‘on click’ event handler will be executed whenever

a certain element in the webpage is clicked, if the developer has specified a

handler for the element. In addition, handlers may be triggered by the expi-

ration of timers and the receipt of asynchronous messages from the server.

Because of this structure, a JavaScript-based web application may continue

execution even if one of the handlers throws an exception, as the other han-

dlers continue to be fired (however, the code in the handler following the line

that throws the exception does not execute). As a result, the application

may throw multiple exceptions in a single execution.

JavaScript code may be loaded in the web browser either by statically

including it in the web page, or by dynamically creating it at runtime (e.g.,

through eval). In both cases, the code must be parsed before it is executed,

and errors in this process would manifest as syntax errors.

8
We use the term web application to mean Web 2.0 application henceforth.

10

2.2. Related Work

JavaScript is weakly typed, which means that there is no constraint

on the types of objects that a JavaScript variable can refer to. Therefore,

before invoking a method on an object or accessing its field, programmers

need to ensure that the object has a member function or field by that name.

Otherwise the code will throw an Undefined Symbol exception.

JavaScript code typically interacts with the elements of the webpage

through a data structure called the Document Object Model (DOM). The

DOM is an internal representation of the webpage within the web browser

and is a tree-like structure. The JavaScript code often makes certain as-

sumptions about the DOM, which, if violated, can lead to its failure. For

example, an event handler may assume that the DOM contains a certain

element and attempt to access the element. A Null Exception is thrown if

the element is not present.

Finally, web browsers enforce the Same-Origin Policy (SOP), which en-

sures that JavaScript code from one domain cannot access methods or prop-

erties from another domain. Violations of the SOP result in a Permission

Denied exception.

2.2 Related Work

In this section, we present prior work related to the performance, security,

and reliability of web applications, both on the server-side and the client-

side.

Server-Side Reliability: There have been several studies analyzing

the causes of errors that occur at the server-side of web applications and

11

2.2. Related Work

their ensuing reliability [8, 25, 30]. Other studies have examined the end-to-

end availability of internet applications [12, 23]. Our study differs in that

we focus on errors in JavaScript code, which executes on the client (i.e., web

browsers). Further, server-side applications are written in languages such as

C or Java, and hence have different failure modes compared to JavaScript

applications.

Client-Side Reliability: Dynamic analysis techniques have been pro-

posed to detect client-side errors in web applications. Examples are user

behaviour analysis [14], robustness testing [24], invariant-based testing [17],

and web fault taxonomy creation [16]. Static analysis techniques have also

been used to find errors in web applications [9, 10, 34]. Record and re-

play tools such as Mugshot [18] and WaRR [1] aid in the reproduction of

client-side errors. However, unlike our work, these papers do not conduct

an empirical study of JavaScript errors in web applications.

Performance: Recent work has studied the performance and paral-

lelism of JavaScript programs. For instance, Richards et al. [29] conduct an

empirical study of dynamic JavaScript behaviour based on collected traces;

similar work was done by Ratanaworabhan et al. [27] with their JSMeter

tool. Fortuna et al. [7] perform a limit study on the parallelism available in

JavaScript code. However, none of these papers investigate the reliability of

web applications.

Security: Empirical studies on the security [9, 31, 33] and privacy [11]

of web applications focus on the Alexa top websites and popular widgets.

These papers also differ from our study in that they do not study web

applications’ errors, which may or may not lead to security vulnerabilities.

12

2.2. Related Work

Empirical Studies of Software Errors: Finally, empirical studies of

errors in open-source applications [4, 15], internet services, smart phones

[6] and routers [32] have provided valuable insights regarding the nature of

software errors. These studies illustrate the value of performing empirical

studies on reliability in the real world. However, these studies, do not con-

sider JavaScript errors, which are very different from errors in traditional

applications.

To the best of our knowledge, ours is the first study to expose the relia-

bility issues with client-side JavaScript in web applications, and the first to

characterize client-side JavaScript errors. In addition, we accomplish this

by performing an empirical study of the JavaScript errors that occur in both

popular websites and interactive web applications.

13

Chapter 3

Experimental Methodology

In this chapter, we list the research questions in our experiments. We then

describe the web applications used in our evaluation. Finally, we explain how

we generate test suites, capture JavaScript errors in the web applications,

and study their characteristics.

3.1 Research Questions

In conducting our experiments, we seek to answer the following questions:

Question 1: Are JavaScript errors prevalent in web applications, and

if so, do these errors share common characteristics across web applications?

Question 2: Does the speed of interaction affect the frequency of

JavaScript errors? An interaction refers to clicks, mouseouts, mouseovers

and other events triggered by the user when visiting a web application. The

speed of interaction refers to how quickly a user performs these interactions.

Question 3: Do non-deterministic JavaScript errors occur in web ap-

plications? An error is considered non-deterministic if its frequency differs

from one execution to another.

Question 4: Are there any correlations between a web application’s

static and dynamic characteristics and the number of errors in that web

14

3.2. Web Applications

application?

Question 5: Are there inter-category correlations among the different

error categories in web applications?

Question 6: Is the number of errors in a web application affected by

the frameworks used in its construction?

Question 7: Are certain web application types more prone to error than

other types?

Question 8: Are there differences in the characteristics of errors that

occur in interactive web applications compared to errors that appear in the

popular websites?

3.2 Web Applications

For our evaluation of the popular websites, we chose fifty web applications

from the Alexa Top 100 (see Table 3.1) (as of January 7, 2011). Further, we

ensured that the chosen web applications formed a representative set with

sufficient variety. For example, the Alexa Top 100 has many country-specific

Google based websites; since these websites have similar characteristics, only

the main Google website was chosen. We also excluded adult websites and

sites containing no JavaScript code from the study. The chosen websites

often contain several kilobytes of JavaScript code (minimum of 506 bytes,

maximum of 1.56 megabytes, and average of 315 kilobytes), and some span

multiple domains (up to 18, average is 6). Table 3.1 provides more details

on the websites’ characteristics.

The ten interactive web applications were chosen from the JavaScript-

15

3.3. Overview of Experiment - Popular Websites

based web applications listed in the Open Directory Project9. These applica-

tions were chosen based on two criteria: (1) popularity, which was measured

based on Alexa rank, and (2) size of JavaScript code, measured in kilobytes.

The listed web applications were given scores based on these criteria, and the

applications with the highest score were chosen. With this scoring scheme,

more popular web applications were preferred over less popular web appli-

cations, and applications with a mix of JavaScript code sizes were chosen.

To ensure that there is sufficient variety in the web applications we have

chosen, we first came up with five interactive web application categories,

and chose two web applications from each category. Table 3.2 shows the

static characteristics and categories of these web applications.

3.3 Overview of Experiment - Popular Websites

In this section, we describe the steps in our experiment involving the fifty

popular web applications from the Alexa Top 100. The tools used in the

experiment are described in Section 3.5.

Our experiment consists of the following steps.

Step 1: Create test cases for each web application. A test case

represents an “interaction” with a web application, which may consist of

one or more events, depending on the context of use of the web application.

For example, opening a webpage involves only a single click, so a test case

emulating this interaction would consist only of one event (i.e., clicking the

link). In contrast, using a search engine would consist of two events, namely

9
http://www.dmoz.org/Computers/Internet/On the Web/Web Applications/

16

3.3. Overview of Experiment - Popular Websites

Table 3.1: Website Static Characteristics. This table lists the fifty web-
sites taken from the Alexa Top 100. Note that the extensions for the web
applications are .com unless specified otherwise.

Bytes of Total Number of

Web Application Alexa JavaScript Number of Domains with

Rank Code Domains JavaScript

Google 1 164089 1 1

YouTube 3 420894 2 1

Yahoo 4 504503 4 3

Baidu 6 12759 1 1

QQ 9 210324 7 6

MSN 11 122143 7 5

Amazon 13 225149 3 2

Sina.com.cn 16 512392 18 17

WordPress 19 151959 8 7

Ebay 20 263615 3 2

LinkedIn 22 289599 6 5

Bing 23 28678 1 1

Microsoft 24 276465 9 9

Yandex.ru 25 221566 3 2

163 28 438689 12 11

mail.ru 30 201063 3 2

PayPal 31 258071 2 1

FC2 32 91775 6 5

Flickr 36 8736 3 1

IMDb 37 380061 7 6

Apple 38 416295 2 1

BBC 43 557137 11 11

Sohu 44 224148 12 12

Go 45 83512 6 6

Soso 46 40439 2 1

Youku 50 298149 6 5

AOL 51 301306 6 5

CNN 54 892169 11 11

MediaFire 59 485692 3 2

ESPN 61 628953 9 8

MySpace 62 720027 8 6

MegaUpload 63 139857 3 2

Mozilla 64 138855 2 1

4shared 66 233052 5 4

Adobe 67 591191 4 3

About 68 147027 2 2

LiveJournal 74 343701 7 6

Tumblr 75 247224 4 3

GoDaddy 77 317264 4 2

CNET 78 987612 13 12

YieldManager 82 164512 1 1

Sogou 83 8436 1 1

Zedo 84 96504 4 4

Ifeng 85 101255 11 10

ThePirateBay.org 86 506 2 1

ImageShack.us 88 425050 10 10

Livedoor 91 143131 3 3

Weather 94 1637291 8 8

NYTimes 95 762306 12 11

Netflix 97 208821 2 2

17

3.3. Overview of Experiment - Popular Websites

Table 3.2: Static Characteristics of Interactive Web Applications. Note that
the extensions for the web applications are .com unless specified otherwise.

KB of

Web Application Alexa JavaScript Category

Rank Code

aceproject 33104 476 Project Management

smartsheet 9485 62 Project Management

photobucket 154 264 Image Sharing

kodakgallery 7115 256 Image Sharing

dropbox 234 157 Storage

ziddu 784 173 Storage

dailymotion 103 142 Video Sharing

blip.tv 3742 122 Video Sharing

sfgames 158 12 Games

(jsgames.sourceforge.net)

jssgames 3339 284 Games

(javascriptsource.com/games)

typing the keyword and clicking the search button. Fifteen test cases are

created for each web application using the Selenium tool (see Section 3.5);

this group of fifteen test cases makes up one test suite. We created the test

cases based on normal interactions with the web application i.e., no attempts

were made to break the web applications to cause them to produce errors.

On average, each test case consisted of 2.66 events and each test suite visited

29.46 webpages in our experiment.

Step 2: Replay the test suites corresponding to each web appli-

cation multiple times. Each test suite is replayed in three testing modes

— fast, medium, and slow — representing the speed of interaction (i.e., the

speed at which events in the test suite are replayed in sequence), to answer

Question 2. Note that the testing modes are consistent across all the web

applications in the study. In slow mode, there is a delay of 1000 ms between

each event (i.e., a delay of 1000 ms beyond the delay already present be-

18

3.3. Overview of Experiment - Popular Websites

tween each event due to processing); in medium mode, 500 ms; and in fast

mode, 0 ms (or rather, negligible delay). To determine if JavaScript errors

are non-deterministic (Question 3), each test suite is replayed three times in

each of the three testing modes. Thus, each test suite is executed a total of

nine times in our experiment. We use the Selenium tool to replay the test

suites (Section 3.5). JavaScript errors that occur during a test suite’s replay

are typically displayed on a console. For each run of the test suite, the error

messages are redirected to a file (called an error file).

Step 3: Parse the error files to collect error statistics.We have

written a parser (see Section 3.5) to parse the error files and count the

number of distinct errors. Figure 3.1 shows the three attributes of a message.

Two error messages are considered distinct if any one of their three attributes

are different, namely (1) their text descriptions, (2) the JavaScript files that

triggered the errors, or (3) the lines of code that triggered the errors. Note

that it may be possible for identical error messages to represent different

errors due to JavaScript minification in web pages; thus, the number of

errors we report is a conservative estimate of the actual number of errors.

For each distinct error, the parser counts the actual number of times the

error occurred in each test suite run (because an error may occur multiple

times in a run).

For each distinct error, the parser determines if the error is non-deterministic

by comparing its frequencies in each run. An error is considered non-

deterministic in a given testing mode if its frequency differs across the three

runs of that testing mode (because this indicates that the error was trig-

gered in some executions but not in others). We count an error as non-

19

3.4. Overview of Experiment - Interactive Web Applications

deterministic if it is non-deterministic in any of the three testing modes.

Finally, the parser classifies each distinct error message into five mutually

exclusive categories and counts the number of errors in each category. The

error categories were determined based on an initial pilot study of five ap-

plications.

3.4 Overview of Experiment - Interactive Web

Applications

The experimental methodology used to test the ten interactive web appli-

cations was similar to the methodology described in Section 3.3. The main

difference is that the events were not recorded using the Selenium IDE, but

were set up using the Selenium WebDriver API in Java (see Section 3.5).

This does not affect the way the test cases are executed, as the Selenium

IDE itself uses the WebDriver API to replay its test cases.

In addition, in this experiment, we try to attain as much coverage of

the interactive web applications as possible, as we wish in the future to

perform a more in-depth analysis of the JavaScript errors that occur in

these applications. Hence, the number of test cases differs for each web

application, depending on the number of possible user events. The number

of test cases created for each web application is shown in Table 3.3.

20

3.5. Tools and Datasets

Table 3.3: Number of Test Cases for Interactive Web Applications.

Web Application Test Cases

aceproject 21

smartsheet 17

photobucket 26

kodakgallery 15

dropbox 9

ziddu 4

dailymotion 23

blip.tv 7

sfgames 10

jssgames 20

Figure 3.1: A screenshot of a JavaScript error message as shown in the
Firebug console. The message consists of (1) the text description, (2) the
line where the error occurred, and (3) the JavaScript file containing the
erroneous line. We assume that two error messages containing identical
values for each attribute map to the same error.

3.5 Tools and Datasets

For this experiment, the Firefox v. 3.6.13 web browser is used under the

Mac OS/X Snow Leopard (10.6.6) platform. The machine used for the

experiments was a 2.66 GHz Intel Core 2 Duo, with 4 GB of RAM.

The Selenium10 IDE (v. 1.0.10) is used to create test cases and group the

test cases together into test suites. Selenium is an extension to the Firefox

web browser that captures and records user interaction with a webpage and

converts these interactions into events for later replay. Examples of events

10
http://seleniumhq.org/

21

3.5. Tools and Datasets

are clicks, mouseouts, mouseovers, and dropdown selections.

To create the test suites, we interact with each web site in reasonable

ways to exercise its behaviour. The Selenium IDE’s recorder runs in the

background and records this interaction to create the test case. In some

cases, Selenium commands need to be entered manually due to limitations

of the Selenium IDE. For example, the Selenium recorder currently does

not support the recording of mouseout and mouseover events; therefore,

commands for these events are added manually to the test case. Fifteen test

cases for a given web application together constitute the test suite for the

web application.

For the ten interactive web applications, the test cases were created by

writing a Java program that uses the Selenium WebDriver API11 (v. 2.9).

This API provides means to open and interact with web applications using a

specified browser (in this case, Firefox). The Selenium IDE uses this API to

run its test cases; we determined after running the test on the fifty popular

websites that WebDriver provides a more automated way to conduct the

experiment.

Once a test suite is created, Selenium can replay it at a speed that can

be set by the user. The replay speed is adjusted using a slider that ranges

from “Slow” to “Fast”. In our experiments, the testing modes correspond to

three replay speeds — fast, medium, and slow. Selenium replays the fifteen

test cases in a test suite at the chosen speed, for each application. Each

test suite is run three times in each testing mode. The testing modes are

identical across all the web applications.

11
http://seleniumhq.org/projects/webdriver/

22

3.5. Tools and Datasets

The Firebug 1.6.1 debugger is used to capture JavaScript errors during

replay. Although Firebug can capture other errors such as those in CSS and

XML, we modify its settings to capture only JavaScript errors, which are

this study’s focus.

A Firebug extension called ConsoleExport12 is used to export the error

messages to an error file. The error files are parsed to collect error statistics,

as described in Section 3.3.

To help us answer Question 4, we collect each web application’s static

characteristics using two Firefox extensions: Web Developer13 and Phoenix14.

We use Web Developer to determine the JavaScript code size in the web ap-

plication, and we use Phoenix to count the number of domains and the

number of domains with JavaScript. The static characteristics are based on

the initial loading of each website’s homepage.

For the dynamic characteristics data, we use the traces collected by

Richards et al. [29]. We downloaded the traces from the authors’ website15.

However, for our dynamic analysis, we only considered the web applications

studied by Richards et al.; only 29 of the 50 applications overlap between

the studies.

The dynamic characteristics considered in our study from Richards et

al. are (1) number of function calls, (2) number of calls to eval, (3) prop-

erties deleted, and (4) object inheritance over-riding. The first two are

self-explanatory. Properties deleted refers to the number of object fields,

12
http://www.softwareishard.com/blog/consoleexport/

13
http://chrispederick.com/work/web-developer/

14
https://addons.mozilla.org/en-us/firefox/addon/phoenix/

15
http://sss.cs.purdue.edu/projects/dynJavaScript/

23

3.5. Tools and Datasets

object methods, or DOM elements that are deleted dynamically. Object

inheritance overriding refers to the number of times a method belonging to

a parent object is overriden by a child object. In other words, this metric

measures the amount of polymorphism present in the application.

Finally, for Question 6, the frameworks were determined using the Li-

brary Detector16 plugin available for Firefox.

16
https://addons.mozilla.org/en-US/firefox/addon/library-detector/

24

Chapter 4

Results

The sections in this chapter parallel the research questions in Section 3.1.

For each result, (1) we state our observation (Observation), (2) refer to the

data from which we made this observation (Data), and (3) explain how

we arrived at this observation and its possible causes (Explanation). We

compiled our results data in a spreadsheet available online17.

The results presented in Section 4.1 through Section 4.7 pertain to the

experiment on the fifty popular websites taken from Alexa. In Section 4.8,

we present results from the experiment on the interactive web applications.

4.1 Distribution of Error Categories

Table 4.1 presents the total number of distinct errors encountered across

all nine runs of the popular websites’ test suites; the appendix contains an

expanded view of this table, showing the number of distinct errors for each

of the popular websites. We make the following observations based on the

table.

17
http://ece.ubc.ca/�frolino/projects/jser/

25

4
.1
.

D
is
t
r
ib
u
t
io
n
o
f
E
r
r
o
r
C
a
t
e
g
o
r
ie
s

Table 4.1: Popular Websites Error Data (Totals). The web

applications included in the totals pertain to the fifty web ap-

plications from Alexa. The error frequency columns refer to

the total number of distinct errors across all nine runs (slow-

mode-only data in parentheses). The appendix contains an

expanded view of the table showing the number of distinct

errors that occurred in each of the fifty popular websites.

Total Errors in each category Total Non

Permission Null Undefined Syntax Misc- JavaScript -Deterministic

Denied Exception Symbol Errors -ellaneous Errors Errors

101 (81) 18 (15) 55 (46) 8 (8) 12 (12) 194 (162) 139 (100)

26

4.1. Distribution of Error Categories

Observation 1: JavaScript errors occur in production web applications,

with an average of around 4 distinct error messages per web application.

Data: JavaScript Errors column in Table 4.1

Explanation: Table 4.1 (along with the expanded table in the ap-

pendix) shows that one or more JavaScript errors occurred in 49 of the 50

web applications in our experiment (Google was the only exception, perhaps

due to its simplicity). The maximum distinct error count was 16 (CNET).

On average, 3.88 distinct errors occurred in each application, with a stan-

dard deviation of 3.02.

Observation 2: Errors predominantly fall into four distinct categories,

which are described below.

Data: Permission Denied, Null Exception, Undefined Symbol, and Syn-

tax Error columns in Table 4.1

Explanation: The error messages were found to belong to the following

categories: As explained in Section 3.3, we determined these based on the

results of a pilot study.

Permission Denied - These errors occur when JavaScript code from one

domain attempts to access an object or variable belonging to a different

domain, thereby violating the same-origin policy (SOP). In our study, these

errors are often caused by advertisements from domains attempting to access

the Location.toString method in the domain of the web application. For

example, the error message “Permission denied for http://view.atdmt.com

to call method Location.toString on http://www.imdb.com.” appeared in

the IMDb application. In this case, the view.atdmt.com is the domain used

to serve advertisements in the IMDb application, and is attempting to call

27

4.1. Distribution of Error Categories

a function in the IMDb domain, which violates the SOP.

Null Exception - These errors occur when a null value is used to access

properties or methods. In our study, this error often arises due to missing

or mistyped DOM elements. For example, the error message “C is null” was

encountered in the Yahoo application. Subsequent analysis revealed that the

error was caused by a typographical error in the value of the “id” attribute

of a div element in the DOM. The incorrect id caused the getElementById

method to return a null value, which, in this case, was assigned to the

variable “C”. The variable “C” was later used to update the class name of

the div element, causing a null exception to be thrown.

Undefined Symbol - These errors occur when the JavaScript code (1) calls

a function that has not been defined, (2) refers to a method or property that

does not belong to a particular object, or (3) uses a variable that has either

not been declared or assigned a value. An example of this error occurs

in Amazon, where the error message “gbEnableTwisterJS is not defined”

occurred. We found that the variable “gbEnableTwisterJS” was used as a

condition for an if statement, but that the variable had not been defined

in the code. Further investigation revealed that prior versions of the code

did in fact include the statement “gbEnableTwisterJS = 0”, defining the

gbEnableTwisterJS variable. This finding suggests that gbEnableTwisterJS

was initially defined in the code, but was later removed. However, not all

references to gbEnableTwisterJS were removed from the code, thus leading

to the error.

Syntax Errors – These errors occur due to syntactic violations in JavaScript

code. Examples include missing end brackets, missing semi-colons, and un-

28

4.1. Distribution of Error Categories

terminated string literals. An example of a syntax error is “missing ; before

statement” in mail.ru. Syntax errors can occur either in static JavaScript

code or in dynamic code created at runtime. However, all eight syntax errors

found in our study came from static code, with six occurring in the main

application, and two occurring in advertisements.

Miscellaneous Errors – Errors that occur in only a single web applica-

tion and do not fall under the above categories are categorized as “Miscel-

laneous” errors. For example, an “uncaught exception” error occurred in

the LinkedIn application, but did not occur in other applications, and is

therefore classified under the “Miscellaneous” category.

Distribution of errors: Figure 4.1, which is based on Table 4.1 data,

shows the distribution of error categories across all applications. Based on

the data from Table 4.1, permission denied errors make up 52.1% of all

errors; null exception errors make up 9.3%; undefined symbol errors make

up 28.4%; and syntax errors make up 4.1%. Together these encompass 93%

of the errors. The remaining errors are in the Miscellaneous category. As

mentioned, permission denied errors are mostly caused by advertisements.

We find that advertisements are present in over 30 of the 50 web applications,

and hence the dominance of this category.

29

4.1. Distribution of Error Categories

Figure 4.1: Percent distribution of each error category

30

4
.1
.

D
is
t
r
ib
u
t
io
n
o
f
E
r
r
o
r
C
a
t
e
g
o
r
ie
s

Table 4.2: Actual number of occurrences of errors in CNN across different runs (long error messages have been
shortened to save space).

Fast Mode Medium Mode Slow Mode

Error Message Run 1 Run 2 Run 3 Average Run 1 Run 2 Run 3 Average Run 1 Run 2 Run 3 Average

Permission Denied

for view.atdmt.com

to call method Loca-

tion.toString on mar-

quee.blogs.cnn.com

4 4 4 4.00 1 3 3 2.33 2 2 3 2.33

Permission Denied

for view.atdmt.com

to call method Lo-

cation.toString on

www.cnn.com

20 17 20 19.00 22 22 16 20.00 25 20 16 20.33

Permission Denied

for ad.doubleclick.net

to call method Lo-

cation.toString on

www.cnn.com

8 16 13 12.33 3 6 4 4.33 7 12 11 10.00

targetWindow.cnnad

showAd is not a

function

0 2 5 2.33 0 0 0 0.00 0 0 0 0.00

window.parent. CSI-

Manager is undefined

0 0 0 0.00 0 0 0 0.00 1 1 0 0.67

31

4.2. Effect of Testing Mode

4.2 Effect of Testing Mode

In the previous section, we studied the number of distinct error messages.

In this section, we analyze the actual number of occurrences of the error

messages in order to understand the effect of testing mode. We focus on one

application — CNN.com — to illustrate the trends we observe across all

web applications. Table 4.2 shows the occurrences of a subset of the error

message that occurred in CNN for each testing mode. Similar trends hold

for the other applications studied.

Observation 3: The occurrence of an error message depends on testing

mode (i.e., the speed of interaction).

Data: Table 4.2 (Average columns)

Explanation: Looking at the “Average” columns in Table 4.2, it be-

comes apparent that some error messages occur only in one mode. For

example, the error “targetWindow.cnnad showAd is not a function” occurs

in fast mode, but does not occur in the other two modes. Similarly, the

error “window.parent.CSIManager is undefined” occurs in slow mode, but

not in other modes.

Further, the tables show that some errors are more frequent in one mode

compared to others. For example, the error message “Permission Denied

for ad.doubleclick.net to call method Location.toString on www.cnn.com”

occurs an average of 12.33 times and 10.00 times in fast and slow mode,

respectively, but only occurs an average of 4.33 times in medium mode.

32

4.3. Occurrence of Non-deterministic Errors

4.3 Occurrence of Non-deterministic Errors

In this section, we study the occurrence of non-deterministic errors in web

applications. Recall that a non-deterministic error is one whose frequency

varies across multiple executions of the web application in the same testing

mode. In other words, a non-deterministic error occurs different number of

times in each execution of the application.

Observation 4: Non-deterministic errors occur in many web applica-

tions, and are exposed by all three testing modes.

Data: Table 4.1, Table 4.2

Explanation: Table 4.2 shows the actual number of occurrences of sev-

eral errors in different runs of the CNN application. From this data, it

can be seen that for a given testing mode, the number of actual occur-

rences of some errors vary across different executions. These are classified

as non-deterministic errors. For example, the error “Permission Denied for

view.atdmt.com to call method Location.toString on www.cnn.com” in CNN

(second row) in slow mode, occurs 25 times in the first run, 20 times in the

second run, and 16 times in the third run.

Non-deterministic errors are caused by different factors in each of the

modes. Non-deterministic errors in the fast and medium modes are typically

caused by transitioning among pages (i.e., navigating to a new webpage) in

the middle of accessing a member of the “parent” or “window” objects.

During the transition, the value of the “parent” and/or “window” object

changes because the values of these objects are dependent on the page being

visited. As a result, if the transition happens while a member of these objects

33

4.3. Occurrence of Non-deterministic Errors

is being accessed by JavaScript code in the previous page, the objects will

be undefined during the transition, leading to the error. Such errors occur

in the event handler of the old page only if the transition happens during

execution of the specific line of code that uses “parent ” or “window”, and

are hence non-deterministic in nature. These page transition errors may

lead to undesirable consequences; for example, if a document is in the midst

of being saved, transitioning to a new page will cause the save to abort in

the event of an error.

In contrast, most of the non-deterministic errors in slow mode are caused

by advertisements, mainly due to permission denied errors. In some runs,

the advertisement appears in a given page, but in other runs, a different ad-

vertisement may appear, explaining the non-deterministic behaviour. This

behaviour is not as prominent in fast and medium modes because in these

modes, the test suites are transitioning between pages so quickly that the

erroneous JavaScript code is not triggered, and hence they do not throw

exceptions.

Summary: When all distinct errors across all web applications are con-

sidered, fast mode exposes a total of 82 non-deterministic errors, medium

mode exposes 90, and slow mode exposes 100 (not shown in the table).

Thus, counter-intuitively, slow mode actually exposes the maximum num-

ber of non-deterministic errors across the three modes. This is also reflected

in Table 4.1, in which the numbers of distinct errors exposed by slow mode

are shown within parentheses. As shown in the table, slow mode exposes

a total of 162 distinct errors, which corresponds to about 83% of the total

errors.

34

4.4. Correlation with Static and Dynamic Characteristics

Table 4.3: Spearman coefficients between error categories and static web
application characteristics. Correlations at the 0.05 level are marked with
*, while those at the 0.01 level are marked with **.

Correlations

Error Category Alexa

Rank

JavaScript

Size

(Bytes)

Domains Domains

with

JavaScript

Permission Denied 0.222 0.166 0.465** 0.450**

Null Exception 0.213 0.401** 0.334* 0.312*

Undefined Symbol 0.374** 0.246 0.152 0.200

Syntax Error 0.339* 0.305* 0.420** 0.435**

All Errors 0.375** 0.273 0.397** 0.396**

Observation 5: Non-deterministic errors are more prominent than de-

terministic errors in web applications, and constitute 72% of the total dis-

tinct errors.

Data: JavaScript Errors, Table 4.1

Explanation: From Table 4.1, the total number of distinct errors found

across all web applications is 194. Of these 194 errors, 139 are non-deterministic

in one or more of the three testing modes.

4.4 Correlation with Static and Dynamic

Characteristics

In this section, we study the correlation of JavaScript errors with the static

and dynamic characteristics of the web applications. We use the Spearman

rank correlation coefficient because it is non-parametric and hence does not

require the data to be normally distributed [13]. Table 4.3 shows the Spear-

man coefficients between the error categories and static characteristics of the

web application. Table 4.4 shows the Spearman coefficients of the JavaScript

error categories with the application’s dynamic characteristics. The higher

35

4.4. Correlation with Static and Dynamic Characteristics

Table 4.4: Spearman coefficients between error categories and dynamic web
application characteristics. Correlations at the 0.05 level are marked with
*, while those at the 0.01 level are marked with **.

Correlations

Error Function Eval Properties Inheritance

Category Calls Calls Deleted Overriding

Permission Denied 0.159 0.126 0.056 -0.070

Null Exception 0.426* 0.195 0.448* 0.269

Undefined Symbol 0.074 0.200 0.033 0.490**

Total 0.308 0.257 0.128 0.186

the magnitude of the coefficient, the higher the correlation (a positive cor-

relation means one value increases as the other increases, while a negative

correlation means the opposite).

As mentioned in Section 3.5, dynamic characteristics data were available

for only 29 of the 50 applications. Of these 29 web applications, only two

incurred syntax errors. As a result, we do not report the values for this cat-

egory. Further, we study the correlations with four dynamic characteristics

in their study.

Note: As always, it is important to remember that correlation does not

imply causation. However, correlations can still provide explanations as to

the possible causes of the JavaScript errors, which can be verified through

additional investigation. Although we have performed a detailed study on

the potential causes of null exception errors through manual analysis (see

Observation 10), we have not done so for other error categories. We leave a

detailed investigation of causation to future work.

Significance: We now report the significant trends in the correlation

coefficients. For most observations, we report the correlations for which p

< 0.05 (i.e., significant at the 0.05 level). We call such correlations signifi-

36

4.4. Correlation with Static and Dynamic Characteristics

cant.

Observation 6: There is a significant correlation between the total

number of JavaScript errors and the number of domains with and without

JavaScript code.

Data: Table 4.3

Explanation: Table 4.3 indicates that JavaScript errors have a 0.397

correlation with the total number of domains, and a 0.396 correlation with

the number of domains with JavaScript, suggesting that applications using

more domains have more errors. Further, permission denied errors have a

0.465 correlation with the total number of domains, and a 0.450 correlation

with the number of domains with JavaScript. A possible reason for this

behavior is that permission denied errors occur when JavaScript code from

one domain tries to access resources from another domain. Thus, the more

domains there are (with or without JavaScript), the higher the chances of

different domains trying to access resources from one another.

Observation 7: There is no significant correlation between the total

number of distinct JavaScript errors and the JavaScript code size (i.e., num-

ber of bytes of JavaScript).

Data: Table 4.3

Explanation: The Spearman rank correlation coefficient between the

total number of distinct JavaScript errors and the JavaScript code size (in

bytes) is 0.273, which is not significant at the 0.05 level. Thus, smaller code

sizes will not necessarily lead to fewer errors. We use the code size instead

of the number of lines of JavaScript code, because many web applications

minify JavaScript by packing it in a single line, thus making the number of

37

4.4. Correlation with Static and Dynamic Characteristics

lines an unreliable metric for correlation.

Observation 8: There is a significant correlation between the total

number of distinct JavaScript errors and the Alexa rank of the web appli-

cation.

Data: Table 4.3

Explanation: The Spearman rank correlation coefficient between the

total number of distinct JavaScript errors and the Alexa rank is 0.375, sug-

gesting that less popular applications may have higher number of errors

(and vice versa). This result may stem from the fact that more popular web

applications are likely to have undergone a more rigorous development and

testing process than less popular web applications, since they are used by

more people and therefore have a larger user base.

Observation 9: There is a significant correlation between the total

number of distinct null exception errors and the number of functions called

dynamically by the web application.

Data: Table 4.4

Explanation: As shown in Table 4.4, the Spearman rank correlation

coefficient between the total number of distinct null exception errors per

web application and the number of functions called at runtime is 0.426.

This significant correlation can be explained by the fact that null exception

errors are often caused by failed accesses to the DOM of the web application

(e.g., undefined DOM element ids causing a variable to be null after a call to

getElementById). This is also supported by the next observation. Because

DOM manipulation is one of the most common usages of JavaScript [2],

an increase in the number of functions called at runtime would increase the

38

4.4. Correlation with Static and Dynamic Characteristics

number of DOM accesses, thereby increasing the likelihood of null exception

errors.

Observation 10: There is significant correlation between the number of

null exception errors and the average number of element/property deletions

in the JavaScript code.

Data: Table 4.4

Explanation: The correlation coefficient between the number of null

exception errors and the average number of property and element deletions

is 0.448, which is significant at the 0.05 level. We believe this behaviour is

also due to the relationship between null exception errors and DOM accesses

(fourteen of the eighteen null exception errors in our study were due to DOM

accesses, based on our manual analysis of the code). Specifically, if a DOM

element is deleted and the JavaScript code tries to subsequently access that

element, the resulting value will be null, thus resulting in a null exception.

Observation 11: There is significant correlation between the number

of undefined symbol errors and the average number of object inheritance

overridings in the code.

Data: Table 4.4

Explanation: The Spearman coefficient between the number of unde-

fined symbol errors and the average number of object inheritance overridings

is 0.490, which is significant at the 0.05 level. If we assume that object inher-

itance overridings are representative of the amount of polymorphism in the

application, then this number reflects the fact that programmers are more

likely to be confused about the identity of objects when the code has a lot

of polymorphism, and hence are more likely to make mistakes in accessing

39

4.5. Inter-Category Correlations

member functions or fields. For example, if an object B inherits from object

A, and object B has a method called b() which object A does not have,

then, a call to A.b() would lead to an undefined symbol error.

Observation 12: There is no significant correlation between the total

number of distinct JavaScript errors and the number of calls to the eval

construct.

Data: Table 4.4

Explanation: The correlation coefficient between the total number of

distinct JavaScript errors and the number of eval calls is 0.257. Prior studies

[28, 33] have suggested that calls to eval can compromise the reliability and

security of the web application. However, we do not find evidence for the

claim that they can compromise the reliability of the application, perhaps

because eval is used primarily for JSON and other idiomatic purposes that

are less prone to errors [29].

4.5 Inter-Category Correlations

In this section, we present the inter-category correlations we found in our

study, namely those among different categories of errors identified in Sec-

tion 4.1.

Observation 13: The correlations of each non-miscellaneous error cate-

gory (permission denied, null exception, and undefined symbol) with syntax

errors are significant.

Data: Table 4.1

Explanation: After calculating the Spearman rank correlation coef-

40

4.6. JavaScript Framework

ficients, the correlations between total syntax errors and total permission

denied, null exception, and undefined symbol errors are 0.378, 0.635, and

0.409, respectively, all of which are significant. This result suggests that

syntax errors often lead to errors belonging to other categories (except mis-

cellaneous). The expanded version of Table 4.1 in the appendix supports

this observation – all web applications with a syntax error had one or more

errors in the other categories as well.

Observation 14: There is a significant correlation between the number

of non-deterministic null exception errors and the number of non-deterministic

undefined symbol errors.

Data: Table 4.1

Explanation: We found the Spearman rank correlation coefficient be-

tween non-deterministic null exception errors and non-deterministic unde-

fined symbol errors to be 0.560, suggesting that there is a significant correla-

tion between these two error categories when it comes to non-deterministic

errors. This behaviour requires further investigation.

4.6 JavaScript Framework

Table 4.5 shows the classification of applications by framework used in

its construction. Applications using multiple frameworks are classified as

“Mixed”, while those using no frameworks are classified as “None”. Frame-

works encompassing fewer than three websites are not shown as they may

not be significant. As can be seen from the table, the majority of web appli-

cations in the study were constructed using one or more frameworks, with

41

4.6. JavaScript Framework

Table 4.5: Average number of distinct errors for each framework
JavaScript Average Number of

Framework Errors sites

jQuery 4.04 26

Yahoo UI 3.67 6

Prototype 3.00 3

Mixed 5.25 4

None 2.10 10

jQuery being the most popular.

Observation 15: Web applications using multiple JavaScript frame-

works have a higher number of JavaScript errors compared to those using

only a single framework.

Data: Table 4.5

Explanation: Web applications using multiple JavaScript frameworks

had an average of 5.25 errors — higher than the average for applications

using only a single framework. It has been suggested that using multiple

frameworks can increase the loading time of web applications, as it forces the

client to download more JavaScript code [26]. Our result suggests that mul-

tiple frameworks also make the application more error-prone, perhaps due

to inconsistencies between the frameworks, and the difficulty of maintaining

the code.

Observation 16: Web applications using no frameworks have a lower

number of JavaScript errors compared to those using at least one framework.

Data: Table 4.5

Explanation: The average number of errors for web applications using

no frameworks is 2.10, which is lower than the average for web applications

using at least one framework. The reason for this behaviour may be that

frameworks abstract away details of the JavaScript code, making it more

42

4.7. Web Application Type

Table 4.6: Average number of distinct errors for each web application type
(popular websites)

Website Average Average Number of

type Errors Non-deterministic errors sites

Search Engine 2.17 1.50 6

Media Download 4.25 3.50 8

News 5.35 4.00 17

Blogs 2.00 2.00 3

Shopping 4.67 3.33 3

Social Networking 3.50 3.00 2

Business 2.64 1.09 11

difficult for programmers to map back errors to source code. It is also

possible that the library functions used in the frameworks are themselves

responsible for the errors, in which case the corresponding error message

would point to the file containing the framework.

4.7 Web Application Type

We categorized the fifty websites in our study based on the category of con-

tent they serve. The categories are roughly based on the the categorizations

provided in CyberPatrol18. Table 4.6 shows the number of websites in each

category, the average number of errors in each category, and the average

number of non-deterministic errors.

Observation 17: For the fifty popular websites, news websites have

the highest average number of errors and non-deterministic errors across all

application types.

Data: Table 4.6

Explanation: On average, news websites have 5.35 errors, which is

higher than any other web application type. This is also true for non-

18
www.cyberpatrol.com/research/sitereview.asp

43

4.8. Interactive Web Applications

deterministic errors. Although this behaviour requires further investigation,

we believe that the prominence of errors in news websites has to do with

the overall structure of these kinds of websites. News websites tend to be

very dynamic in structure, containing advertisements and flashing content,

and allows many interactive features such as polls. In other words, news

websites look “busier” compared to other website types and hence are more

likely to exhibit errors [3].

4.8 Interactive Web Applications

In this section, we examine the errors that occur in interactive web applica-

tions and compare the results to those gathered from the prior experiment

on the 50 popular websites. A web application is considered interactive if the

majority of user events – e.g., clicks, mousedowns, etc. – trigger JavaScript

code to execute. The 50 popular websites studied earlier, in contrast, pri-

marily triggered page transitions from one URL to another via anchor tags,

and the execution of JavaScript code was limited mostly to page loads.

The ten interactive web applications have also been categorized accord-

ing to their classifications in the Open Directory Project. Table 3.2 shows

the categories to which each web application belongs, and Table 4.7 shows

the number of errors found in each category.

Note that in this section, we focus on the observed differences between

errors in interactive web applications and popular websites. We do not

conduct correlational studies on the interactive web applications because

the number of interactive web applications considered is relatively small

44

4.8. Interactive Web Applications

compared to the popular websites.

Observation 18: Non-deterministic errors still comprise the majority

of errors in interactive web applications, but are not as prominent as the

non-deterministic errors found in the popular websites

Data: JavaScript Errors, Table 4.8

Explanation: For the interactive web applications, 56% of the errors are

non-deterministic, thereby forming the majority of the errors in the tested

web applications. In contrast, non-deterministic errors comprise 72% of all

the errors found in the fifty popular websites. There are two explanations

for this result. First, the interactive web applications tested contained few

advertisements; as mentioned in Section 4.3, advertisements play a big role in

introducing non-deterministic errors – particularly permission denied errors

– in slow mode. Second, page transitions, which caused many of the non-

deterministic errors in fast and medium modes for the fifty popular websites,

are uncommon in the interactive web applications. This is because for the

interactive web applications, most interactions rely on the JavaScript code

to alter the appearance of the page – for instance, to show dialogue boxes

or change the style of certain elements – instead of transitioning to another

page.

Observation 19: For the interactive web applications, game applica-

tions have the highest number of errors and non-deterministic errors com-

pared to other interactive web application types, and project management

applications have the fewest.

Data: Table 4.7

Explanation: According to Table 4.7, a total of 35 errors (12 of which

45

4.8. Interactive Web Applications

Table 4.7: Number of distinct errors for each web application type (inter-
active web applications). Each type is represented by two web applications.

Interactive Web Number of Number of Avg. Number of

Application Type Errors Non-deterministic errors Errors

Per Test Case

Project Management 2 0 0.053

Image Sharing 9 8 0.220

Storage 8 7 0.615

Video Sharing 9 6 0.300

Games 35 12 1.167

are non-deterministic) appeared in the game applications studied; this num-

ber is higher than the total number of errors that appeared in any of the

other interactive web application types. In contrast, the web application

type with the fewest errors was project management applications, with only

2 errors (none of which are non-deterministic). When the results are nor-

malized based on the total number of test cases for each web application

type, these results still hold, with an average of 1.167 errors appearing per

test case in game applications, and an average of 0.053 errors appearing per

test case in project management applications. Note that the prominence

of JavaScript errors in game applications may have resulted primarily from

the inordinately large number of errors found in jssgames, which displayed a

total of 32 errors (the other 3 game application errors come from sfgames).

On the other hand, project management applications displayed very few

errors. One possible explanation is that project management applications

generally involve tasks that are monotonous and well-defined (e.g., create a

new file, open a new file, add new data to the file, save the file, etc.). In

contrast, the video sharing and image sharing applications studied contained

many distinct features (e.g., for image sharing applications – editing photos,

46

4.8. Interactive Web Applications

creating a photo album, etc.), thereby complicating their development.

Observation 20: The JavaScript errors in interactive web applications

comprise mostly of null exception, undefined symbol, and syntax errors, with

very few permission denied errors.

Data: JavaScript Errors, Table 4.8

Explanation: Table 4.8 shows that null exception, undefined symbol,

and syntax errors are more prevalent than permission denied errors in in-

teractive web applications. This starkly contrasts the observation with the

popular websites, where most of the JavaScript errors found were permission

denied errors.

Null exception, undefined symbol, and syntax errors can be viewed as

functionality-based errors in the sense that these exceptions generally occur

as a result of errors within the core implementation of the JavaScript code.

In contrast, permission denied errors are mostly caused by third-party ad-

vertisements as explained in Section 4.1, and are hence not generally caused

by the core implementation of the application’s JavaScript code.

This distinction is important because it provides potential explanations

for the prevalence of functionality-based errors over permission denied er-

rors. First, few permission denied errors are observed because the interactive

web applications contained very few advertisements compared to the popu-

lar websites. Second, functionality-based errors are abundant in interactive

web applications compared to the popular websites because the core func-

tionality of the interactive web application is spread out over many user

events, and is therefore encompassing of the entire application. In contrast,

the popular websites’ core JavaScript functionality is limited mostly to load

47

4.8. Interactive Web Applications

time processing (e.g., to render certain parts of the page), effectively pro-

viding fewer opportunities for functionality-based errors.

In some cases, the effects of functionality-based errors can be particularly

difficult to predict. For instance, the error found in smartsheet originated

from its “Accounts Management” module, but also subsequently caused a

failure in its “Help” module. As we discuss in Chapter 5, this brings to light

the importance of extensive testing in interactive web applications.

48

4
.8
.

In
t
e
r
a
c
t
iv
e
W
e
b
A
p
p
lic

a
t
io
n
s

Table 4.8: Interactive Web Application Error Data. The

error frequency columns refer to the total number of distinct

errors across all nine runs (slow-mode-only data in parenthe-

ses).

Errors in each category Total Non

Web Application Permission Null Undefined Syntax Misc- JavaScript -Deterministic

Denied Exception Symbol Errors -ellaneous Errors Errors

aceproject 0 (0) 0 (0) 0 (0) 0 (0) 1 (1) 1 (1) 0 (0)

smartsheet 0 (0) 1 (1) 0 (0) 0 (0) 0 (0) 1 (1) 0 (0)

photobucket 0 (0) 0 (0) 1 (1) 0 (0) 2 (0) 3 (1) 2 (0)

kodakgallery 0 (0) 2 (2) 1 (1) 3 (2) 0 (0) 6 (5) 6 (5)

dropbox 0 (0) 1 (1) 0 (0) 0 (0) 0 (0) 1 (1) 0 (0)

ziddu 2 (0) 1 (1) 1 (1) 3 (0) 0 (0) 7 (2) 7 (1)

dailymotion 1 (1) 2 (1) 0 (0) 3 (2) 1 (0) 7 (4) 6 (1)

Continued on next page49

4
.8
.

In
t
e
r
a
c
t
iv
e
W
e
b
A
p
p
lic

a
t
io
n
s

Table 4.8 – continued from previous page

Errors in each category Total Non

Web Application Permission Null Undefined Syntax Misc- JavaScript -Deterministic

Denied Exception Symbol Errors -ellaneous Errors Errors

bliptv 0 (0) 0 (0) 0 (0) 2 (2) 0 (0) 2 (2) 2 (2)

sfgames 0 (0) 0 (0) 3 (3) 0 (0) 0 (0) 3 (3) 0 (0)

jssgames 0 (0) 0 (0) 29 (29) 3 (3) 0 (0) 32 (32) 12 (9)

Total 3 (1) 7 (6) 35 (35) 14 (9) 4 (1) 63 (52) 35 (18)

50

Chapter 5

Implications

Table 5.1 presents a summary of the answers to the research questions posed

in Chapter 3, based on our gathered results. A surprising result of this study

is the relatively high frequency of errors in highly popular, production web

applications, especially because our test cases constitute normal interactions

with them. This may be because many of the errors occur due to the interac-

tion of the JavaScript code with the webpage’s DOM, and because they are

non-deterministic. Hence, the errors are difficult to find during development

and testing using current practices (e.g., unit testing).

While it may be argued that errors do not really matter as users con-

tinue to use web applications extensively, our experiments unearthed many

instances of errors impairing a web application’s key functionality. Further,

we have shown that there is a correlation between the Alexa rank of a web

application and the average number of errors in it (Observation 8). Finally,

the rapid pace at which applications are being migrated to the web, and the

fact that some of the errors we uncover are fairly straightforward to fix (e.g.,

syntax errors) suggests that not enough effort is being expended in making

web applications reliable, perhaps due to the lack of established tools and

practices in this domain. Therefore, there needs to be a concerted effort on

51

Chapter 5. Implications

Table 5.1: Summary of Research Question Answers. The research questions
are listed in Section 3.1.

Research Question Answer
Q1: Are JavaScript errors prevalent
in web applications, and if so, do
these errors share common charac-
teristics across web applications?

An average of 4 JavaScript errors
occur in each web application, and
these errors fall into well-defined
categories.

Q2: Does the speed of interaction
affect the frequency of JavaScript
errors?

Errors vary by speed of interaction
(i.e., testing mode). Some errors ap-
pear in one testing mode, but not in
others.

Q3: Do non-deterministic
JavaScript errors occur in web
applications?

The majority of JavaScript errors
(over 70%) are non-deterministic.

Q4: Are there any correlations
between a web application’s static
and dynamic characteristics and the
number of errors in that web appli-
cation?

JavaScript errors are correlated
with characteristics such as the
number of domains (with or with-
out JavaScript) and Alexa rank, but
not with others such as the number
of eval calls and the code size.

Q5: Are there inter-category cor-
relations among the different error
categories in web applications?

Syntax errors have significant cor-
relations with the other three error
categories. Non-deterministic null
exception and undefined symbol er-
rors are correlated.

Q6: Is the number of errors in a web
application affected by the frame-
works used in its construction?

Web applications using multiple
frameworks have a high number of
JavaScript errors.

Q7: Are certain web application
types more prone to error than other
types?

News websites have the highest av-
erage number of errors among all
website types.

Q8: Are there differences in the
characteristics of errors that occur
in interactive web applications com-
pared to errors that appear in the
popular websites?

Interactive web applications dis-
play error trends similar to popu-
lar websites, but non-deterministic
errors are not as prominent and
functionality-based errors are abun-
dant.

52

5.1. Implications for Programmers

the part of programmers, testers and tool developers (of static and dynamic

analysis tools) to improve the reliability of JavaScript web applications.

5.1 Implications for Programmers

For programmers, our observations could act as guidelines that help them

write more reliable JavaScript code. For instance, Observation 11, which

states that object inheritance overriding correlates with undefined symbol

errors, suggests that inheritance in JavaScript is best avoided unless abso-

lutely essential. Methods such as namespacing and reuse of methods across

objects have been suggested as alternatives to inheritance in JavaScript [20].

In addition, Observation 6 suggests that using fewer domains may result in

fewer errors. Finally, Observation 15 suggests that mixing of JavaScript

frameworks should be avoided.

An interesting implication of our results is that often errors arise from

code over which the programmer may not have direct control. For example,

we find that many errors are caused by advertisements, and from unwanted

interactions with the DOM (which may or may not be under the program-

mer’s control). These observations lead us to posit that web applications

must be tolerant of errors that arise in other components in order to be

reliable. Further, the application should have consistency checks and other

mechanisms to ensure that errors are caught early and not allowed to prop-

agate.

53

5.2. Implications for Testers

5.2 Implications for Testers

One of the most significant implications of our results is that testing should

be done at multiple speeds (i.e., testing modes). Each testing mode exposes

different kinds of errors (Observation 3); thus, testing in only one mode

would catch only a subset of the errors.

We have also shown in our results that non-deterministic errors are

prominent in web applications (Observations 4 and 5). Thus, it is important

to develop testing schemes that specifically attempt to catch these kinds of

errors. In our results, for example, we found that several non-deterministic

errors were caused by advertisements, particularly in slow mode (see Obser-

vation 4). This observation calls for the need for more extensive integration

testing, in which the JavaScript code is tested after the advertisements have

been integrated. This may even be offered as a service by advertisement

serving applications such as Google AdSense.

Integration testing can be particularly useful for interactive web applica-

tions as well. In our study, we found that interactive web applications often

contain many distinct features, and are therefore often given a modular de-

sign. Without extensive integration testing, the danger is that an error in a

certain module may lead to errors or failures in another seemingly unrelated

module. For example, the null exception found in smartsheet originated

from the module that takes care of showing the Accounts Management dia-

logue box. As it turns out, this error subsequently causes the “Help” module

(which shows the “Help” dialogue) to be rendered unusable. In the worst

case, features which the programmer may perceive to be non-critical may

54

5.3. Implications for Tool Developers

contain errors that could break other, more critical features. This brings to

light the need for more thorough integration testing in interactive web appli-

cations, especially since JavaScript errors in such applications are dominated

by functionality-based errors (Observation 20) that could affect particular

modules in the application.

5.3 Implications for Tool Developers

The dependence of the appearance of errors on testing mode (Observation

3) means that more emphasis should be placed on the speed of interaction

when testing JavaScript code. Such tests could be simplified if JavaScript

testing tools are developed to automatically perform tests in different test-

ing speeds. Further, dynamic tools should execute the web application in

realistic settings, with advertisements and other third-party code.

Our observations also suggest the need for advanced static analysis tools.

Simple syntactic checks no longer suffice, as the execution of JavaScript code

depends not only on the semantic correctness of individual event handlers,

but also on the order in which events are triggered and the current state of

the DOM. For example, Observation 10 suggests that the number of element

or property deletions correlates with the number of null exception errors.

Static analyzers of JavaScript code should therefore consider the DOM in

their analysis.

Indeed, based on our observation from this study that JavaScript er-

rors typically arise from improperly set up DOM accesses or updates in the

JavaScript code, we have developed a tool called AutoFLox [21]. This tool

55

5.4. Threats to Validity

performs automatic fault localization of DOM-related JavaScript errors, and

uses a form of backward slicing to pinpoint precisely which DOM access in

the code is causing an exception to be thrown. It uses both dynamic analysis

and static analysis to achieve its goal.

5.4 Threats to Validity

An internal threat to the validity of our results is that the number of web

applications considered in our study is limited. In addition, we restricted

our study of the popular websites to the 100 most visited websites according

to Alexa, and the study of interactive web applications had a preference for

choosing web applications based on popularity. It is possible that some of

our observations may not hold for websites that are not as popular.

Fewer interactive web applications are considered in our study (10) com-

pared to the number of popular websites (50). There is a possibility that

trends in the interactive web applications may alter if more interactive

web applications are considered; however, we do not expect any signifi-

cant changes in the trends because of the general design characteristics of

such applications. For instance, it is unlikely that permission denied er-

rors will suddenly dominate the distribution of errors because third-party

advertisements are not commonly used in interactive web applications.

An external threat to validity is that we performed our study on only one

browser (Firefox). We believe the Firefox browser is a fitting choice to carry

out our empirical study because of its popular usage. However, future work

may have to consider the behaviour of web applications in other browsers.

56

5.4. Threats to Validity

Our results represent a snapshot of web applications at a specific point in

time during which the experiments were performed, and may hence change

over time. This is also an internal threat to validity of the results.

In our study, we assume that all the JavaScript error messages are actual

bugs. JavaScript bug reports may be used to confirm the nature of these

error messages; unfortunately, such bug reports are often not available even

for popular web applications such as the ones we studied. As such, we

consider this a potential construct threat to our results’ validity.

The study by Richards et al. [29] is based on Safari, not Firefox, and

they use different test suites for the web applications in their study. Further,

their study precedes ours by at least two years; as a result, some of their

data may be outdated.

Finally, it is possible that our results may be an underestimation of the

number of JavaScript errors present in the web applications. One reason is

that our test suites for the popular websites have limited coverage, contain-

ing only 15 test cases consisting of approximately 3 events each. In addition,

JavaScript minification is used in some web applications, causing some dis-

tinct error messages to be labeled as being the same. Nonetheless, the fact

that our results still show a considerably large number of errors despite be-

ing conservative goes to show that web applications truly are prone to these

JavaScript errors.

57

Chapter 6

Conclusions and Future

Work

We have performed an empirical study of JavaScript error messages in both

popular websites from the Alexa top 100 and interactive web applications.

Our results show that JavaScript errors in the popular websites: (1) occur in

these web applications, (2) fall into well-defined categories, (3) depend on the

speed of testing, (4) are often non-deterministic in nature, and (5) exhibit

correlations with static and dynamic characteristics of the application. In

addition, our results show that while JavaScript errors in interactive web

applications follow similar trends, they differ from the popular websites in

terms of the increased prominence of functionality-based errors, and the

smaller percentage of non-deterministic errors.

By characterizing the nature of JavaScript errors, we were able to expose

the prevalence of such errors in today’s web applications. Consequently, we

have taken an important step in helping improve the reliability of Web 2.0

applications by providing meaningful suggestions based on the error charac-

teristics we have observed. As we have shown, these observations have direct

implications on web application programmers, testers, and tool developers,

58

6.1. Future Work

all of whom play important roles in the development and maintenance of

web applications.

6.1 Future Work

Future work will focus on expanding the range of web applications considered

in the study. Instead of considering only fifty popular websites, we plan to

perform a similar experiment on the Alexa Top 1000. The results from

such a study will be compared with the results of this thesis to see if our

observations hold for a wider range of web applications.

The study presented in this thesis can be considered a breadth study that

aims to characterize JavaScript errors based on aggregated results collected

over many web applications. To complement this study, we also plan to

conduct a depth study in which we attempt to identify the root causes

of the errors discovered, thereby giving us a fuller understanding of the

observations presented.

Finally, as mentioned in Chapter 1, the overarching goal of this work is to

identify key characteristics of JavaScript errors that happen in today’s web

applications to pinpoint the most important actions that could help improve

the reliability of such applications. Hence, it is also our goal to create

schemes or tools – developed based on the results from this thesis – that

would simplify the process of programming and testing client-side JavaScript

for reliability. One such project currently in development is AutoFLox [21],

which is an automatic fault localizer for client-side JavaScript.

59

Bibliography

[1] S. Andrica and G. Candea. WaRR: High Fidelity Web Application

Recording and Replaying. In IEEE Intl. Conference on Dependable

Systems and Networks, 2011.

[2] H. Bidgoli. The Internet Encyclopedia. John Wiley & Sons Inc, 2004.

[3] M. Butkiewicz, H.V. Madhyastha, and V. Sekar. Understanding website

complexity: Measurements, metrics, and implications. In Proceedings

of the 2011 ACM SIGCOMM conference on Internet measurement con-

ference, pages 313–328. ACM, 2011.

[4] Subhachandra Chandra and Peter M. Chen. Whither generic recov-

ery from application faults? a fault study using open-source software.

In Intl. Conference on Dependable Systems and Networks (formerly

FTCS-30 and DCCA-8), DSN ’00, pages 97–106, 2000.

[5] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Daw-

son Engler. An empirical study of operating systems errors. In ACM

Symposium on Operating Systems Principles, SOSP ’01, pages 73–88,

2001.

[6] M. Cinque, D. Cotroneo, Z. Kalbarczyk, and RK Iyer. How Do Mo-

60

Bibliography

bile Phones Fail? A Failure Data Analysis of Symbian OS Smart

Phones. In Dependable Systems and Networks, 2007. DSN’07. 37th

Annual IEEE/IFIP Intl. Conference on, pages 585–594, 2007.

[7] E. Fortuna, O. Anderson, L. Ceze, and S. Eggers. A limit study of

JavaScript parallelism. In IEEE Intl. Symposium on Workload Char-

acterization (IISWC), pages 1–10, 2010.

[8] Katerina Goseva-Popstojanova, Sunil Mazimdar, and Ajay Deep Singh.

Empirical study of session-based workload and reliability for web

servers. In 15th Intl. Symposium on Software Reliability Engineering,

pages 403–414, 2004.

[9] Salvatore Guarnieri and Benjamin Livshits. Gatekeeper: mostly static

enforcement of security and reliability policies for JavaScript code. In

Conference on USENIX Security Symposium, SSYM’09, pages 151–168,

2009.

[10] Arjun Guha, Shriram Krishnamurthi, and Trevor Jim. Using static

analysis for AJAX intrusion detection. In Intl. Conference on World

Wide Web, pages 561–570, 2009.

[11] Dongseok Jang, Ranjit Jhala, Sorin Lerner, and Hovav Shacham. An

empirical study of privacy-violating information flows in JavaScript web

applications. In ACM Conference on Computer and Communications

Security, pages 270–283, 2010.

[12] M. Kalyanakrishnan, R.K. Iyer, and J.U. Patel. Reliability of inter-

61

Bibliography

net hosts: a case study from the end user’s perspective. Computer

Networks, 31(1-2):47–57, 1999.

[13] S.H. Kan. Metrics and models in software quality engineering. Addison-

Wesley Longman Publishing Co., Inc. Boston, MA, USA, 2002.

[14] W. Li, M.J. Harrold, and C. Gorg. Detecting user-visible failures

in AJAX web applications by analyzing users’ interaction behaviors.

In IEEE/ACM Conference on Automated Software Engineering, pages

155–158, 2010.

[15] Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu, Yuanyuan Zhou, and

Chengxiang Zhai. Have things changed now?: an empirical study of

bug characteristics in modern open source software. In 1st workshop on

Architectural and system support for improving software dependability,

ASID ’06, pages 25–33, 2006.

[16] A. Marchetto, F. Ricca, and P. Tonella. Empirical Validation of a

Web Fault Taxonomy and its usage for Fault Seeding. In IEEE Intl.

Workshop on Web Site Evolution-Volume 00, pages 31–38, 2007.

[17] A. Mesbah and A. van Deursen. Invariant-based automatic testing of

AJAX user interfaces. In Intl. Conference on Software Engineering,

pages 210–220, 2009.

[18] J. Mickens, J. Elson, and J. Howell. Mugshot: deterministic capture

and replay for JavaScript applications. In 7th USENIX Conference on

Networked Systems Design and Implementation, pages 11–11, 2010.

62

Bibliography

[19] T. Mikkonen and A. Taivalsaari. Using JavaScript as a Real Program-

ming Language. Sun Microsystems Laboratories Technical Report, 168,

2007.

[20] Robert Nyman. JavaScript namespacing—an alternative to JavaScript

inheritance, October 2008.

[21] F.S. Ocariza Jr, K. Pattabiraman, and A. Mesbah. Autoflox: An auto-

matic fault-localizer for client-side javascript. In Proceedings of the 5th

IEEE International Conference on Software Testing, Verification and

Validation (ICST). IEEE, 2012.

[22] F.S. Ocariza Jr, K. Pattabiraman, and B. Zorn. Javascript errors in the

wild: An empirical study. In Software Reliability Engineering (ISSRE),

2011 IEEE 22nd International Symposium on, pages 100–109. IEEE,

2011.

[23] Venkata N. Padmanabhan, Sriram Ramabhadran, Sharad Agarwal, and

Jitendra Padhye. A study of end-to-end web access failures. In 2006

ACM CoNEXT conference, CoNEXT ’06, pages 15:1–15:13, 2006.

[24] K. Pattabiraman and B. Zorn. DoDOM: Leveraging DOM Invariants

for Web 2.0 Application Robustness Testing. In IEEE Intl. Symposium

on Software Reliability Engineering (ISSRE), pages 191–200, 2010.

[25] S. Pertet and P. Narasimhan. Causes of failure in web applications.

Parallel Data Laboratory, Carnegie Mellon University, CMU-PDL-05-

109, 2005.

63

Bibliography

[26] Pingdom. JavaScript framework usage among top websites, Jun. 2008.

[27] P. Ratanaworabhan, B. Livshits, D. Simmons, and B. Zorn. JSMeter:

Measuring JavaScript behavior in the wild. Usenix Conference on Web

Application Development (WebApps), 2010.

[28] Gregor Richards, Christian Hammer, Brian Burg, and Jan Vitek. The

eval that men do: A large-scale study of the use of eval in javascript

applications. In European Conference on Object-Oriented Programming

(ECOOP), 2011.

[29] Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. An

analysis of the dynamic behavior of JavaScript programs. In ACM Con-

ference on Programming Language Design and Implementation, PLDI

’10, pages 1–12, 2010.

[30] Jeff Tian, Sunita Rudraraju, and Zhao Li. Evaluating web software

reliability based on workload and failure data extracted from server

logs. IEEE Trans. Softw. Eng., 30:754–769, 2004.

[31] J. Weinberger, P. Saxena, D. Akhawe, M. Finifter, R. Shin, and

D. Song. An Empirical Analysis of XSS Sanitization in Web Application

Frameworks. Technical Report EECS-2011-11, UC Berkeley, 2011.

[32] Z. Yin, M. Caesar, and Y. Zhou. Towards understanding bugs in open

source router software. ACM SIGCOMM Computer Communication

Review, 40(3):34–40, 2010.

[33] Chuan Yue and Haining Wang. Characterizing insecure JavaScript

64

practices on the web. In Intl. Conference on World Wide Web (WWW),

pages 961–970, 2009.

[34] Yunhui Zheng, Tao Bao, and Xiangyu Zhang. Statically locating web

application bugs caused by asynchronous calls. In Intl. Conference on

the World-Wide Web (WWW), pages 805–814, 2011.

65

Appendix A: Error Data for

Popular Websites

The table in the following page shows the number of distinct errors that

occurred in each of the fifty popular websites we studied. This table is an

expanded view of Table 4.1.

66

A
p
p
e
n
d
ix

A
:
E
r
r
o
r
D
a
t
a
fo
r
P
o
p
u
la
r
W
e
b
s
it
e
s

Table A.1: Popular Websites Error Data. The web applica-

tions pertain to the fifty web applications from Alexa. The

error frequency columns refer to the total number of distinct

errors across all nine runs (slow-mode-only data in parenthe-

ses).

Errors in each category Total Non

Web Application Permission Null Undefined Syntax Misc- JavaScript -Deterministic

Denied Exception Symbol Errors -ellaneous Errors Errors

Google 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

YouTube 2 (2) 2 (2) 0 (0) 0 (0) 0 (0) 4 (4) 4 (4)

Yahoo 1 (0) 1 (1) 1 (1) 0 (0) 1 (1) 4 (3) 3 (2)

Baidu 1 (1) 0 (0) 0 (0) 0 (0) 0 (0) 1 (1) 0 (0)

QQ 0 (0) 1 (1) 0 (0) 0 (0) 0 (0) 1 (1) 1 (1)

MSN 4 (3) 0 (0) 1 (1) 0 (0) 0 (0) 5 (4) 4 (3)

Continued on next page67

A
p
p
e
n
d
ix

A
:
E
r
r
o
r
D
a
t
a
fo
r
P
o
p
u
la
r
W
e
b
s
it
e
s

Table A.1 – continued from previous page

Errors in each category Total Non

Web Application Permission Null Undefined Syntax Misc- JavaScript -Deterministic

Denied Exception Symbol Errors -ellaneous Errors Errors

Amazon 0 (0) 1 (1) 1 (1) 0 (0) 0 (0) 2 (2) 0 (0)

Sina.com.cn 4 (4) 0 (0) 2 (2) 0 (0) 0 (0) 6 (6) 5 (5)

WordPress 0 (0) 0 (0) 1 (1) 0 (0) 0 (0) 1 (1) 1 (1)

Ebay 1 (1) 0 (0) 0 (0) 0 (0) 0 (0) 1 (1) 0 (0)

LinkedIn 0 (0) 0 (0) 0 (0) 0 (0) 2 (2) 2 (2) 2 (2)

Bing 3 (3) 0 (0) 0 (0) 0 (0) 0 (0) 3 (3) 2 (2)

Microsoft 1 (1) 0 (0) 0 (0) 2 (2) 0 (0) 3 (3) 1 (1)

Yandex.ru 0 (0) 0 (0) 1 (1) 0 (0) 0 (0) 1 (1) 0 (0)

163 2 (2) 0 (0) 1 (1) 0 (0) 1 (1) 4 (4) 2 (2)

mail.ru 0 (0) 1 (0) 0 (0) 1 (1) 0 (0) 2 (1) 1 (0)

PayPal 0 (0) 0 (0) 2 (2) 1 (1) 0 (0) 3 (3) 0 (0)

Continued on next page68

A
p
p
e
n
d
ix

A
:
E
r
r
o
r
D
a
t
a
fo
r
P
o
p
u
la
r
W
e
b
s
it
e
s

Table A.1 – continued from previous page

Errors in each category Total Non

Web Application Permission Null Undefined Syntax Misc- JavaScript -Deterministic

Denied Exception Symbol Errors -ellaneous Errors Errors

FC2 2 (1) 0 (0) 0 (0) 0 (0) 0 (0) 2 (1) 2 (1)

Flickr 7 (4) 0 (0) 0 (0) 0 (0) 0 (0) 7 (4) 7 (3)

IMDb 4 (2) 0 (0) 0 (0) 0 (0) 0 (0) 4 (2) 4 (2)

Apple 0 (0) 2 (0) 1 (1) 0 (0) 1 (1) 4 (2) 3 (1)

BBC 0 (0) 0 (0) 1 (1) 0 (0) 0 (0) 1 (1) 0 (0)

Sohu 2 (2) 0 (0) 1 (1) 1 (1) 0 (0) 4 (4) 3 (3)

Go 4 (3) 0 (0) 0 (0) 0 (0) 0 (0) 4 (3) 4 (3)

Soso 1 (1) 0 (0) 0 (0) 0 (0) 3 (3) 4 (4) 0 (0)

Youku 0 (0) 0 (0) 1 (1) 0 (0) 0 (0) 1 (1) 1 (1)

AOL 1 (1) 1 (1) 1 (1) 0 (0) 0 (0) 3 (3) 2 (2)

CNN 4 (4) 0 (0) 5 (3) 0 (0) 0 (0) 9 (7) 9 (7)

Continued on next page69

A
p
p
e
n
d
ix

A
:
E
r
r
o
r
D
a
t
a
fo
r
P
o
p
u
la
r
W
e
b
s
it
e
s

Table A.1 – continued from previous page

Errors in each category Total Non

Web Application Permission Null Undefined Syntax Misc- JavaScript -Deterministic

Denied Exception Symbol Errors -ellaneous Errors Errors

MediaFire 0 (0) 0 (0) 1 (1) 0 (0) 0 (0) 1 (1) 0 (0)

ESPN 3 (2) 0 (0) 2 (1) 0 (0) 0 (0) 5 (3) 5 (3)

MySpace 4 (3) 0 (0) 1 (1) 0 (0) 0 (0) 5 (4) 4 (3)

MegaUpload 6 (6) 0 (0) 0 (0) 0 (0) 0 (0) 6 (6) 6 (6)

Mozilla 0 (0) 0 (0) 1 (1) 0 (0) 0 (0) 1 (1) 0 (0)

4shared 2 (2) 0 (0) 2 (2) 0 (0) 1 (1) 5 (5) 2 (2)

Adobe 0 (0) 0 (0) 3 (3) 0 (0) 2 (2) 5 (5) 0 (0)

About 3 (1) 0 (0) 2 (2) 1 (1) 0 (0) 6 (4) 5 (3)

LiveJournal 4 (3) 0 (0) 0 (0) 0 (0) 0 (0) 4 (3) 4 (3)

Tumblr 0 (0) 1 (1) 0 (0) 0 (0) 0 (0) 1 (1) 1 (1)

GoDaddy 0 (0) 0 (0) 1 (1) 0 (0) 0 (0) 1 (1) 0 (0)

Continued on next page70

A
p
p
e
n
d
ix

A
:
E
r
r
o
r
D
a
t
a
fo
r
P
o
p
u
la
r
W
e
b
s
it
e
s

Table A.1 – continued from previous page

Errors in each category Total Non

Web Application Permission Null Undefined Syntax Misc- JavaScript -Deterministic

Denied Exception Symbol Errors -ellaneous Errors Errors

CNET 12 (8) 3 (3) 0 (0) 1 (1) 0 (0) 16 (12) 11 (7)

YieldManager 0 (0) 0 (0) 1 (1) 0 (0) 0 (0) 1 (1) 0 (0)

Sogou 0 (0) 0 (0) 3 (3) 0 (0) 0 (0) 3 (3) 0 (0)

Zedo 1 (1) 0 (0) 1 (1) 0 (0) 0 (0) 2 (2) 0 (0)

Ifeng 2 (2) 3 (3) 3 (3) 1 (1) 0 (0) 9 (9) 8 (4)

ThePirateBay.org 2 (2) 0 (0) 0 (0) 0 (0) 0 (0) 2 (2) 2 (2)

ImageShack.us 6 (5) 1 (1) 1 (1) 0 (0) 0 (0) 8 (7) 6 (5)

Livedoor 2 (1) 0 (0) 2 (2) 0 (0) 0 (0) 4 (3) 4 (2)

Weather 4 (4) 0 (0) 1 (1) 0 (0) 0 (0) 5 (5) 4 (4)

NYTimes 6 (6) 1 (1) 0 (0) 0 (0) 0 (0) 7 (7) 6 (6)

Netflix 0 (0) 0 (0) 10 (4) 0 (0) 1 (1) 11 (5) 10 (3)

Continued on next page71

A
p
p
e
n
d
ix

A
:
E
r
r
o
r
D
a
t
a
fo
r
P
o
p
u
la
r
W
e
b
s
it
e
s

Table A.1 – continued from previous page

Errors in each category Total Non

Web Application Permission Null Undefined Syntax Misc- JavaScript -Deterministic

Denied Exception Symbol Errors -ellaneous Errors Errors

Total 101 (81) 18 (15) 55 (46) 8 (8) 12 (12) 194 (162) 139 (100)

72

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Dedication
	Introduction
	Objectives
	Pros and Cons
	Thesis Contributions
	Thesis Organization

	Background and Related Work
	JavaScript Background
	Related Work

	Experimental Methodology
	Research Questions
	Web Applications
	Overview of Experiment - Popular Websites
	Overview of Experiment - Interactive Web Applications
	Tools and Datasets

	Results
	Distribution of Error Categories
	Effect of Testing Mode
	Occurrence of Non-deterministic Errors
	Correlation with Static and Dynamic Characteristics
	Inter-Category Correlations
	JavaScript Framework
	Web Application Type
	Interactive Web Applications

	Implications
	Implications for Programmers
	Implications for Testers
	Implications for Tool Developers
	Threats to Validity

	Conclusions and Future Work
	Future Work

	Bibliography
	Appendix A: Error Data for Popular Websites

