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Abstract

In the first chapter of this thesis, I propose a nonlinear filtering method to estimate latent
processes based on the Taylor series approximations. The filter extends conventional methods
such as the extended Kalman filter or the unscented Kalman filter and provides a tractable
way to estimate filters of any order. I apply the filter to different models and demonstrate
that this method is a good approach for the estimation of unobservable states as well as for
parameter inference. I also find that filters with Taylor approximations can be as accurate as
conventional Monte Carlo filters and computationally more efficient. Through this chapter I
show that filters with Taylor approximations are a good approach for a number of problems in
finance and economics that involve nonlinear dynamic modeling.

In the second chapter, I investigate the recently documented, large time-series variation in
the empirical market Sharpe ratio. I revisit the empirical evidence and ask whether estimates of
Sharpe ratio volatility may be biased due to the limitations of the standard ordinary least squares
(OLS) methods used in estimation. Based on simulated data from a standard calibration of the
long-run risks model, I find that OLS methods used in prior literature produce Sharpe ratio
volatility five times larger than its true variability. The difference arises due to measurement
error. To address this issue, I propose the use of filtering techniques that account for the Sharpe
ratio’s time variation. I find that these techniques produce Sharpe ratio volatility estimates of
less than 15% on a quarterly basis, which match more closely the predictions of standard asset
pricing models.
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Chapter 1

Introduction

One of the most important research topics in financial economics is the impact of noisy information
on investment decisions. As a result, the use of latent variables in economic models has become
crucial, since those variables capture unobserved changes in the economic environment. Therefore,
developing statistical methods for estimating latent variables from information observed with
noise is of utmost importance. A standard approach for estimating these variables is the use of
filtering methods. Filtering, in general, refers to an extraction process, and statistical filtering
refers to an algorithm for extracting a latent state variable from noisy measurements. In this
thesis I develop a statistical technique for estimating unobserved state variables and explore the
use of filtering methods in asset pricing.

In the first chapter of this thesis, "Filtering via Taylor Series Approximations," I propose a
nonlinear filtering method to estimate latent processes based on Taylor series approximations.
The method can be applied to both state and parameter inferences and generalizes conventional
methods such as the extended Kalman filter (EKF) or the unscented Kalman filter (UKF). My
findings show that filters with Taylor approximations can be as accurate as standard particle
filters for state estimation. Based on different empirical applications, I provide evidence that
my filtering method is a good approach for econometric inference of dynamic models. The
estimation technique I propose can be applied to a number of empirical and theoretical problems
that involve calculating conditional expectations based on noisy information.

The second chapter of this thesis, "On the Volatility of the Market Sharpe Ratio," is based
on recent literature that empirically documents large time-series variation in the market Sharpe
ratio, which has spurred theoretical explanations for this phenomenon. I revisit the empirical
evidence and ask whether estimates of Sharpe ratio volatility might be biased due to limitations
of the standard ordinary least squares (OLS) methods used in estimation. Based on simulated
data from a standard calibration of the long-run risks model, I find that OLS methods used
in the literature produce Sharpe ratio volatility five times larger than its true variability. The
difference arises due to measurement error. To address this issue I propose the use of filtering
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techniques that account for the Sharpe ratio’s time variation. I find that these techniques
produce Sharpe ratio volatility estimates that match more closely the predictions of standard
asset pricing models. Additionally, my results have practical implications for portfolio allocation,
where upward-biased estimates of Sharpe ratio volatility imply excessive portfolio rebalancing.
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Chapter 2

Filtering via Taylor Series
Approximations

2.1 Introduction

Filtering is a statistical tool that recovers unobservable state variables using measurements
that are observed with noise.1 Kalman (1960) proposed a well known solution to the linear
filtering problem, the Kalman filter, that computes the estimates of the state of a system, given
the set of observations available. It has been applied to problems in economics and finance in
which agents make decisions based on noisy information. Generalizations of the Kalman filter,
commonly referred to as nonlinear filters, allow state variables to have a nonlinear relation with
measurements or previous states. The problem is that the solution to the filtering problem is
known analytically only in a limited number of settings, such as the linear, and alternative
solutions are required.

In this chapter, I propose a nonlinear filtering method to estimate unobserved state variables
which is based on an efficient calculation of Taylor approximations. The method can be applied
to both state and parameter inferences and generalizes conventional methods such as the EKF
or the UKF. My findings show that filters with Taylor approximations can be as accurate as
standard particle filters for state estimation. The importance of the filter with Taylor series
is that it overcomes a number of difficulties previously documented in the filtering literature
(Fernández-Villaverde and Rubio-Ramírez, 2007; Fernández-Villaverde, Rubio-Ramírez, and
Santos, 2006). First, it allows for arbitrary nonlinearities in the data-generating process. Second,
the filtering calculations are as efficient as the standard Kalman filter because only function
evaluations are required to calculate the recursions. Third, the order of approximation of the

1This technique has been the subject of considerable research during the past decades due to its numerous
applications in science and engineering, such as satellite navigation systems, tumor identification and weather
forecasting.
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filter can be chosen exogenously by the researcher. Fourth, in addition to state estimation, the
filter with Taylor series can be applied for inference purposes since a quasi-likelihood function is
obtained in the filtering recursions and quasi-likelihood methods can be applied (Bollerslev and
Wooldridge, 1992; White, 1982). In addition, the quasi-likelihood functions of the filter with
Taylor series are continuous with respect to the parameter values, and conventional methods
for numerical optimization can be applied to conduct statistical inference. Lastly, the filter
is flexible enough to include several nonlinear observation equations to improve the state and
parameter estimation.

The filter approximates all the densities involved in the state estimation process with Gaussian
distributions. The theoretical foundation for these approximations is that any probability density
function can be approximated as closely as desired by the sum of Gaussian density functions (Ito
and Xiong, 2000; Maz’ya and Schmidt, 1996), where the first and second moments are necessary
to characterize the whole distribution. In addition, the filter can be combined with Monte Carlo
simulations to handle a more general class of models that involve discrete state variables via the
Rao-Blackwellised particle filter (Doucet, De Freitas, Murphy, and Russell, 2000).

I test the proposed filter in a number of nonlinear models that involve latent variables
previously studied in the finance, economics and filtering literature. The first application is the
stochastic volatility model (Andersen, Bollerslev, Diebold, and Ebens, 2001; Andersen, Bollerslev,
Diebold, and Labys, 2003; Andersen and Sørensen, 1996; Broto and Ruiz, 2004). I start by
studying the performance of the filter with simulated data. The filter with Taylor series generates
volatility estimates as accurate as those of the particle filters and at least four times faster. I also
find that quasi-maximum likelihood methods are a good approach for parameter estimation. My
simulation exercises suggest that the filtering method with Taylor series approximations is an
alternative approach for both state and parameter inference. Finally, I estimate the parameters,
for different orders of approximation, of an endowment process with stochastic volatility using a
series of US data for monthly consumption growth. For higher approximation orders, I found
evidence of stochastic volatility comparable with the recent findings by Bidder and Smith (2011)
and Ludvigson (2012) which suggest that the stochastic volatility model is a good representation
for consumption growth, as posited in the long-run risks literature (Bansal and Yaron, 2004).

In the second application, I analyze a nonlinear latent vector autoregressive (VAR) process
studied in Brandt and Kang (2004) and recently used by Boguth, Carlson, Fisher, and Simutin
(2011) in the conditional asset pricing literature. In this setup, the conditional mean and
volatility of stock returns are modeled as a two-dimensional latent VAR process. This approach
has several advantages: It guarantees positive risk premia and volatilities, eliminates the reliance
of arbitrary conditioning variables for the construction of conditional moments, and allows the
study of the contemporaneous and intertemporal relationships between expected returns and
risk. In this case, by including an additional observation equation I find that the filters based on
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Taylor series generate estimates of expected returns and volatilities as accurately as the particle
filters do.

The last application is a stochastic general equilibrium model, which is particularly interesting
as it shows that perturbation techniques that have been previously used to solve general
equilibrium models (Judd, 1998; Schmitt-Grohe and Uribe, 2004) can be directly combined
with nonlinear filtering for state and parameter estimation. Moreover, the filter with Taylor
approximations may be another feasible approach for parameter inference of these models since
a quasi-likelihood function can be constructed instead of Monte Carlo simulation methods.

As a robustness check, I test the filter in a high-dimensional multivariate stochastic volatility
model and a standard highly nonlinear model from the filtering literature. I find that the filter
with Taylor series provides accurate state estimates that are comparable with those obtained with
particle filters. More importantly, I confirm that the filter with Taylor series is computationally
more efficient than standard particle filters.

2.1.1 Related Literature

A number of applications involve nonlinear VAR processes. These nonlinearities complicate
the filtering process as well as the parameter inference procedures because the Kalman filter is
no longer an optimal solution. To resolve this issue, different lines of research have emerged.
One strand of research is based on deterministic filtering and uses deterministic recursions to
compute the mean and variance of the state variables given the observed information. Two
widely used algorithms have been successfully applied: the EKF (Jazwinski, 1970) and the UKF
(Julier and Uhlmann, 1997). These approaches rely on first- and second-order approximations of
the functions that characterize the nonlinear data-generating process. However, if nonlinearities
are significant enough, these filters do not provide efficient estimates, and a number of biases
arise.2 A recent extension of this approach is the Smolyak Kalman filter, proposed by Winschel
and Krätzig (2010), which extends the UKF by applying the Smolyak quadratures to construct
the filtering recursions. This chapter extends these approaches by allowing an arbitrary order
of approximation. The filter is based on the efficient Taylor series expansions recently used in
Savits (2006) and Garlappi and Skoulakis (2010) in two manners: first, for the computation of
higher order derivatives of functions and second, for the computation of higher order moments of
normally distributed random variables. The filters with Taylor series approximations proposed
in this paper fall into the deterministic filtering literature and extend the current techniques for
nonlinear filtering.

The second line of research for nonlinear filtering is based on Monte Carlo techniques.
These filtering techniques, also called particle filtering techniques, are based on Monte Carlo

2Fernández-Villaverde and Rubio-Ramírez (2007) uncover significant biases that arise from first- and second-
order approximations to the functions that characterize the system.
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simulation with sequential importance sampling. The overall goal is to directly implement
optimal Bayesian estimation by recursively approximating the complete posterior state density
through Monte Carlo methods (Gordon, Salmond, and Smith, 1993; Pitt and Shephard, 1999).
Different extensions of the particle filter have been proposed in the filtering literature, such as
the Rao-Blackwellised particle filter (Doucet, De Freitas, Murphy, and Russell, 2000) and the
unscented particle filter (Van Der Merwe, Doucet, De Freitas, and Wan, 2001). The current
approach to evaluating the likelihood of a nonlinear state-space model is dominated by particle
filters; its extensions are described in Doucet, de Freitas, Gordon, and Smith (2001). Particle
filters are often an alternative to the EKF or UKF and have the advantage that, with sufficient
samples, they approach the Bayesian optimal estimate, improving the accuracy of the EKF
or UKF. However, when the simulated sample is not sufficiently large, particle filters might
suffer from sample impoverishment. In this paper, I show that the filter with Taylor series can
provide state estimates as accurate as those obtained by standard particle filters by including
additional observation equations, such as the squared or cubed observation equations of a
standard model. By adding observation equations to the model, we can also achieve a better
parameter identification.

Tanizaki and Mariano (1996) are the first to suggest using Taylor series approximations to
resolve the filtering problem as well as the biases that arise while taking first- and second-order
approximations. However, they propose the use of Monte Carlo simulations to avoid numerical
integration. Instead, I apply Taylor series approximations in filtering and use the efficient
recursions of Savits (2006) to estimate the derivatives of a function with several variables as an
argument.

The rest of this chapter is structured as follows: Section 2.2 outlines the general filtering
problem, Section 2.3 presents the filtering techniques with Taylor series and Section 2.4 describes
the quasi-maximum likelihood approach for parameter estimation in filtering. Section 2.5
presents three different applications and describes the data, results and empirical findings;
Section 2.6 provides a set of robustness checks and Section 2.7 concludes the chapter.

2.2 Nonlinear Filtering
State-space models are mathematical tools commonly used to represent dynamic systems that
involve unobserved state variables.3 A state-space representation is characterized by a set of
measurements and a state transition, usually obtained from a theoretical model. The state
transition reflects the time evolution of the state variables, whereas the state measurement
relates the unobserved state vector and the observed variables. Let xt denote an N -dimensional
vector that represents the state of the system at time t and yt be a p-dimensional vector of
observables. It is generally assumed that the states of the system follow a first-order Markov

3See Hamilton (1994) and Kim and Nelson (1999) for a standard introduction to state-space models.
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process, and the observations are assumed to be conditionally independent given the states.
The state-space model is characterized by the state transition and state measurement densities,
denoted by p(xt|xt−1) and p(yt|xt), respectively.

A number of applications characterize the state transition and measurement densities through
the transition and measurement equations, which are expressed as follows:

Observation Equation: yt = h (xt) + vt, (2.1)

Transition Equation: xt+1 = g (xt) + εt+1, (2.2)

where vt and εt are p-dimensional and N -dimensional distributed noise vectors with variance–
covariance matrices R and Q, respectively. In this case, Eq. (2.1) represents the observation
equation, while Eq. (2.2) represents the transition equation. Intuitively the function h defines
the measurement based on the current state and the function g characterizes the current state
from the previous state. The mappings h : RN −→ Rp and g : RN −→ RN are assumed to be
continuous and smooth.

To complete the specification of the model, it is assumed that the initial state of the system, x0,
has a known prior distribution, denoted by p(x0). The filtering problem is to find the distribution
of the state vector, xt, given the set of observations available, y1,..., yt. The posterior density
of the states conditional on the history of observations, denoted by p(x0, x1, ..., xt|y1, ..., yt),
constitutes the complete solution to the filtering problem. For tractability purposes, the
mathematical object that is usually analyzed is the marginal distribution, or marginal density
of the state conditional on the set of observations available, which is denoted by p(xt|y1, ..., yt).
If h and g are linear, then Eqs. (2.1) and (2.2) define a linear filtering problem; moreover, if vt
and εt are normally distributed, then the filtering problem has a well-known solution given by
the Kalman filter (Kalman, 1960). In the linear case, the conditional density, p(xt|y1, ..., yt), is
Gaussian with mean and variance constructed recursively based on the set of observations and
the state-space representation. If either of the mappings h or g is nonlinear, then the filtering
problem is nonlinear and no standard solution exists.

2.3 Filtering Based on Taylor Series Expansions
A number of solutions have been proposed to solve the nonlinear filtering problem.4 If the
nonlinear models can be expressed in a state-space setting, then the Kalman filter may be
useful by calculating linearizations at each time step, so that the standard filter recursions
can be applied. This approach is known as the extended Kalman filter (EKF).5 The EKF
reverts to optimal Kalman filters when the problems become linear. As a result, the EKF can

4An extensive review of nonlinear filtering from a theoretical and empirical perspective is provided by Crisan
and Rozovskii (2011).

5See Appendix A.4 for a detailed explanation of the EKF.
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yield approximate minimum-variance "try at your own risk" category. Indeed, Anderson and
Moore (1979) caution that the EKF "can be satisfactory on occasions." Moreover, Julier and
Uhlmann (1997) document a number of biases generated by the EKF, and as a result propose
an improvement which is the unscented Kalman filter (UKF).6

The UKF relies on the idea that approximating the moments of a transformed random variable
is simpler than approximating the density function itself. The unscented filter approximates the
first two moments needed for the Kalman update. The approximation is based on quadrature
techniques where the number of grid points is taken to be 2d+ 1, where d is the dimension of
the integrands to be analyzed. As shown by Julier and Uhlmann (1997), this approximation
is comparable to a second-order Taylor approximation of the state and observation equations.
Winschel and Krätzig (2010) find that the UKF is an attempt to solve the curse of dimensionality
generated by the number of integrands in the filtering recursions; however, the filter generates
another curse in terms of approximation errors. As the dimension of the problem increases, the
number of points used by the UKF rises linearly. Unfortunately, the accuracy of the numerical
integration decreases with the dimensionality and nonlinearity of the integrands. Therefore,
this curse of approximation errors has an effect in state and parameter estimation. The UKF
is therefore restricted to tractable nonlinearities (such as a low-order polynomial) and a small
number of states.

To overcome this issue, I propose the use of higher Taylor series expansions for nonlinear
filtering. This technique assumes that the nonlinear functions that define the state-space have a
Taylor series expansion. In order to calculate the moments involved in the filtering recursions,
the filter uses the moment calculations of a Taylor series with a level of approximation previously
chosen by the researcher. The moments of the Taylor series expansion are then used in the
standard Kalman filter recursions. This approach extends the EKF and UKF to any order of
approximation, and its computational efficiency is comparable to that of the standard Kalman
filter. The use of Gaussian distributions to approximate filters is the basis of deterministic
filtering algorithms. These techniques have been analyzed by Ito and Xiong (2000) in the
filtering literature. Additionally, the filters with Taylor series can be applied for parameter
inference via quasi-maximum likelihood methods, first introduced by White (1982) and analyzed
in Bollerslev and Wooldridge (1992).

The following sections present the filtering method based on Taylor approximations. I first
introduce the use of Gaussian densities in nonlinear filtering and explain how the standard
Kalman filter is applied to estimate the first two moments of the unobserved state variables.
The Kalman filter makes use of means, variances and covariances of nonlinear transformations
of normally distributed random vectors. I show how to estimate these moments with Taylor
series approximations and present theoretical results that help estimating them efficiently. At

6See Appendix A.5 for a detailed explanation of the UKF.
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the end of the section, I summarize the results in a general algorithm, and, finally, I discuss how
to apply the filters with Taylor approximations to a more general class of state variables via
standard Rao-Blackwellisation methods.

2.3.1 Gaussian Densities for Filtering

This section introduces Gaussian densities for nonlinear filtering and describes how the mean
and variance of the unobserved state variables are approximated with the standard Kalman
filter. This approximation requires calculating expected values of nonlinear transformations of
normally distributed random vectors which may not have a closed form. I describe how the
Taylor series can be applied to estimate these expected values, and finally, I discuss how the
EKF and the UKF are particular cases of these approximations.

The notation N (z;µ,Σ) is shorthand for the density of a multivariate normal distri-
bution with argument z, mean µ, and covariance Σ. Let xt|t ≡ E [xt |y1,..., yt ] and Pt|t ≡
V ar [xt |y1,..., yt ] . I assume that the initial state density is normal with mean x0 and covariance
matrix P0. I also assume that the densities involved in each of the filtering steps are normal.
In this case, the conditional density of the state variable xt, denoted by p (xt |y1, ..., yt ), is
characterized by its first and second conditional moments; that is,

p (xt |y1, ..., yt ) ≡ N
(
xt;xt|t , Pt|t

)
.

Moreover, the conditional density of xt+1 is also Gaussian,

p (xt+1 |y1, ..., yt ) ≡ N
(
xt+1;xt+1|t , Pt+1|t

)
,

with conditional moments obtained from the transition equation represented by Eq. (2.2),

xt+1|t = E [g (xt) |y1, ..., yt ] , (2.3)

Pt+1|t = V ar [g (xt) |y1, ..., yt ] +Q. (2.4)

Similarly, the measurement density, defined by the observation equation in (2.1) is Gaussian,

p (yt+1 |y1, ..., yt ) ≡ N
(
yt+1; yt+1|t , P

yy
t+1|t

)
,

with mean
yt+1|t = E [h (xt+1) |y1, ..., yt ] (2.5)

and variance–covariance matrix

P yyt+1|t = V ar [h (xt+1) |y1, ..., yt ] +R, (2.6)

where R is the covariance matrix of the measurement shocks. Moreover, the conditional
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covariance between the measurements and states is represented by

P xyt+1|t = Cov [xt+1, h (xt+1) |y1, ..., yt ] . (2.7)

By assuming that the conditional densities are Gaussian, the conditional moments can be
obtained recursively by applying the standard Kalman filter,7 represented by the following set
of equations:8

p (xt+1 |y1, ..., yt+1 ) = N
(
xt+1;xt+1|t+1 , Pt+1|t+1

)
, (2.8)

Kt+1 = P xyt+1|t

(
P yyt+1|t

)−1
,

xt+1|t+1 = xt+1|t +Kt+1
(
yt+1 − yt+1|t

)
,

Pt+1|t+1 = Pt+1|t −Kt+1P
yy
t+1|tK

>
t+1.

Equations (2.8) are based on the calculations of the moments of Eqs. (2.3) - (2.7),
which are expected values of nonlinear transformations of random variables which may
not have a closed form. A natural approach consists of replacing the observation and
transition equations with their Taylor series expansions, using its mean vector as the center
of expansion of the series. Consequently, the moments of the observation and transition
equations involved are calculated with the expected values of the Taylor approximations. In
this setup, the EKF corresponds to a first-order approximation, while the UKF coincides
with the second-order approximation of the functions that define the state-space model. As a
result, the numerical integration problem is solved by calculating the derivatives of the observa-
tion and transition equations as well as the cross moments of normally distributed random vectors.

The next section provides the basic setup for estimating the moments of Gaussian random
vectors using Taylor approximations. A brief overview of the multivariate version of the Taylor
series is presented first, followed by an explanation of how these approximations are used to
estimate the moments of possibly nonlinear transformations of normally distributed random
vectors.

2.3.2 Taylor Series Approximations

Let y = f (x) denote a smooth function, where f : RN −→ R, and let µ denote an N -dimensional
constant vector.9 Let q = (q1, ..., qN ) denote a vector of nonnegative integers, |q| =

∑N
n=1 qn,

q! =
∏N
n=1 (qn!) , and fq(µ) denote the partial derivative of order q of the function f(µ) evaluated

at µ; i.e.,

fq (µ) = ∂q1+...+qN f

∂xq1
1 ...∂x

qN
N

(µ) . (2.9)

7A formal proof of this result can be found in Theorem 2 of Kalman (1960).
8For a detailed description of the standard Kalman filter, please see Appendix A.3.
9I will follow the convenient tensor notation from Savits (2006) and Garlappi and Skoulakis (2010).
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Theorem 2.3.1 Let U ⊂ RN be an open subset, x ∈ U, µ ∈ RN , so that tx + (1− t)µ ∈ U for
all t ∈ [0, 1] . Assume f : U −→ R is (M + 1) times continuously differentiable. Then, there is a
λ ∈ [0, 1] , so that

f (x) =
∑

{q:|q|≤M}

1
q!fq (µ)

N∏
n=1

(xn − µn)qn +
∑

|q|=M+1

1
q!fq (ζ)

N∏
n=1

(xn − µn)qn , (2.10)

where ζ = λx + (1− λ)µ.

Theorem 2.3.1 is the preamble to the Taylor series approximations. It shows that f (x) can be
rewritten as the sum of a polynomial, where the coefficients are determined by the derivatives
of the function evaluated at the point µ, and a term that includes its derivatives of order M + 1
evaluated at a point ζ. The polynomial is defined as the M -th order Taylor approximation to
the function f (x), and the second term is known as the remainder.

Definition The generic M -th order Taylor approximation of f centered at µ, denoted by f̂ , is
defined as

f̂(x) =
∑

{q:|q|≤M}

1
q!fq (µ)

N∏
n=1

(xn − µn)qn , (2.11)

for x ∈ U.

Now, suppose that x ∼ N (µ,Σ) and that we are interested in calculating the expected value of
f (x). A natural approach is to replace the function f with its M -th order Taylor approximation
and estimate the expected value of this approximation. Thus, from Eq. (2.11) we have

E [f (x)] '
∑

{q:|q|≤M}

1
q!fq (µ)E

[
N∏
n=1

(xn − µn)qn
]
. (2.12)

Intuitively, Eq. (2.12), provides an approximation for the expected value of a transformation of a
normally distributed random vector which is based on two separate elements: the derivatives of
the function f evaluated at µ and the cross moments of a normally distributed random vector.10

In most of the applications, the derivatives of the function f have an analytical expression and
can be calculated explicitly. However, the filtering recursions in (2.8) not only involve calculating
the expected value of a transformation, they require the calculation of variances and covariances
of this transformation with state variables.

The following sections describe how to calculate the cross moments in Eq. (2.12) based
on the results of Savits (2006). It is also shown how to apply the Taylor approximations for

10 Conditions under which
∑

|q|=M+1

1
q!E
[
fq (ζ)

N∏
n=1

(xn − µn)qn

]
−→ 0 as M → ∞, can be found in Jiming

(2010) and Garlappi and Skoulakis (2011).

11



the estimation of variances and covariances. Propositions 2.3.3 and 2.3.4 as well as Lemma
2.3.5 provide the basis for calculating variance–covariance matrices efficiently using Taylor
approximations. Finally, all the results are summarized in the nonlinear filter based on Taylor
approximations which is presented in Algorithm 2.3.6.

2.3.3 Calculation of the Moments of a Multivariate Normal Distribution

Let Z = (z1, z2, ..., zN ) denote a multivariate normal random vector with zero-mean vector and
covariance matrix Σ, where the component i, j denotes the covariance between the random
variables zi and zj . LetMΣ

q be the q ≡ (q1, ..., qN ) moment, where q1, ..., qN are nonnegative
integers; i.e.,MΣ

q = E[zq1
1 ...z

qN
N ]. Then, from Theorem 5.1 in Savits (2006), we have the following

recursive relation between the multivariate moments of Z.

Proposition 2.3.2 Set MΣ
(0,...,0) = 1; then, for all q = (q1, ..., qN ) ≥ 0N and 1 ≤ j ≤ N, we

have

MΣ
q+ej ≡ E

[
zq1

1 ...z
qj+1
j ...zzNN

]
=

N∑
k=1

ΣjkqkMΣ
q−ek , (2.13)

where ej is the N-dimensional unit vector with j-th component equal to 1 and all the other
components equal to zero.

Proof See Savits (2006).

Proposition 2.3.2 provides a recursive method to estimate the cross moments of a normally
distributed random vector based on the variance–covariance matrix only. This result is the basis
for the filtering methods via Taylor approximations, because the calculation of moments and
derivatives can be separated in a tractable form.

To calculate the second moments involved in the Kalman filter recursions in Eqs. (2.4) and
(2.6), I approximate the product of a transformed random variable with its Taylor series around
the mean vector µ. The choice of the mean vector, µ, as a center of expansion of the Taylor
series is convenient for three reasons: First, all the calculations that involve derivatives are
independent of the expectation operator; second, the cross moments are independent of the
mean vector; and third, E[

∏N
n=1 (xn − µn)qn ] = 0, for all vectors q such that

∑N
n=1 qn is an odd

number. In any case, the results will be valid if the center of expansion is any constant vector.
If the problem involves the calculation of conditional expectations, then the results will still be
valid. The only requirement is for the center of expansion to be measurable with respect to the
current information set.

We know that the variance and covariance of any set of random variables involve calculating
expectations of the product of random variables. For example, the variance of f (x) requires the
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calculation of E
[
f2 (x)

]
and E [f (x)] . As described previously, the expectation of f2 (x) can be

approximated with its Taylor series; i.e.,

E
[
f2 (x)

]
≈

∑
{q:|q|≤M}

1
q!
(
f2
)

q
(µ)MΣ

q , (2.14)

where
(
f2)

q (µ) denotes the partial derivative of order q of the function f2 evaluated at µ.
Finally, the variance is obtained as the difference between the estimate of the second moment of
the function and the squared value of the estimate of the first moment; that is,

V ar [f (x)] = E
[
f2 (x)

]
− E2 [f (x)] .

The same method can be applied to estimate the covariance of two transformed random
vectors. The idea is to approximate the expected value of the product of two functions with their
derivatives evaluated in the vector of means and the cross moments of a normally distributed
random vector. Following Eq. (2.12) , we have

E [f1 (x) · f2 (x)] ≈
∑

{q:|q|≤M}

1
q! (f1 · f2)q (µ)MΣ

q , (2.15)

and the covariances involved in the calculation of the covariance matrix of the observation vector,
can be obtained as

cov [f1 (x) , f2 (x)] = E [f1 (x) · f2 (x)]− E [f1 (x)] · E [f2 (x)] .

Clearly, from Eqs. (2.14) and (2.15) , we learn that variances and covariances could be
estimated with the derivatives of the square and the product of functions which may result in
cumbersome calculations. However, Propositions 2.3.3 and 2.3.4 provide a tractable recursive
scheme to compute the derivatives of these functions based on the derivatives of the functions
f , f1 and f2. This is obtained via the Faà di Bruno formula for the derivative of a composite
function and its extensions to the multivariate case recently proposed in Savits (2006) and
applied in Garlappi and Skoulakis (2010, 2011).11

Proposition 2.3.3 Let f : RN −→ R be an (M + 1)- times continuously differentiable function.
Then the derivatives of φ (x) = f (x)2 can be obtained from the following vector recursion:

φ0 (x) = f (x)2 (2.16)

φq+ej (x) =
∑

{`∈NN0 :0N≤`≤q}
2×

(
q
`

)
fq+ej−` (x) f` (x) .

Proof See Appendix A.2
11A brief overview of the fundamentals of these recursions and the main results of Savits (2006) are presented

in Appendix A.1.
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Proposition 2.3.4 Let f1, f2 : RN −→ R be (M+1)- times continuously differentiable functions.
Let γ (x) = f1 (x) · f2 (x), then the derivatives of γ (x) , are given by

γ0 (x) = f1 (x) f2 (x) (2.17)

γq+ej (x) =
∑

{`∈NN0 : 0N≤`≤q}

(
q
`

)
f1,q+ej−` (x) f2,` (x) ,

+
∑

{`∈NN0 : 0N≤`≤q}

(
q
`

)
f2,q+ej−` (x) f1,` (x) .

Proof See Appendix A.2

Although the use of Taylor series for the calculation of covariances is quite convenient, if either
f1(x) or f2(x) is linear then we can estimate these covariances in a simpler way. Stein’s Lemma
provides an expression for the covariance between a normally distributed random vector and its
nonlinear transformation. Indeed, Stein’s Lemma can be applied to calculate the covariance
matrix involved in the Kalman filter step of Equation (2.7).

Lemma 2.3.5 (Stein’s Lemma). Suppose that X ≡ (x1, ..., xN ) ∼ N (µ,Σ). For any function
f (x1, ..., xN ) such that ∂f /∂xi exists almost everywhere and E

∣∣∣ ∂∂xi f (X)
∣∣∣ < ∞, i = 1, ..., N.

Let ∇f (X) =
(
∂f
∂x1

, . . . , ∂f∂xn

)>
. Then the following identity holds:

cov (X, f (X)) = Σ× E [∇f (X)] . (2.18)

Specifically,

cov (x1, f (x1, ..., xN )) =
N∑
i=1

cov (x1, xi)× E
[
∂

∂xi
f (x1, ..., xN )

]
. (2.19)

If f is a vector function, then ∇f (X) is replaced by the transpose of the Jacobian matrix of
f , Jf defined by

Jf = ∂ (f1, f2, ..., fp)
∂ (x1, x2, ..., xn) =


∂f1
∂x1

· · · ∂f1
∂xn... . . . ...

∂f1
∂x1

· · · ∂fp
∂xn

 .
Proof See Appendix A.2.

Stein’s Lemma involves calculating the expectation of a vector of partial derivatives. If
the function f is a polynomial of order less or equal to three, then this expectation is a linear
function of the mean vector µ and the variance–covariance matrix, Σ. If the function f is not a
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polynomial of order less than or equal to three, it is necessary to obtain the Taylor series of each
of the components of the vector of partial derivatives. Fortunately, the Taylor approximations
of these components are obtained directly from the Taylor series of the function f ; that is,

∂f

∂xi
'

∑
{q:0<|q|≤M}

qi
q!fq (µ)× (xi − µi)qi−1 ×

N∏
n=1
n6=i

(xn − µn)qn . (2.20)

Now, taking the expectation of Eq. (2.20) yields to

E
[
∂f

∂xi

]
≈

∑
{q:0<|q|≤M}

qi
q!fq (µ)E

(xi − µi)qi−1 ×
N∏
n=1
n 6=i

(xn − µn)qn

 .
As in Eq. (2.12), calculating the covariance in Eq. (2.18) can be separated in two steps: first
the calculation of the derivatives of the vector ∂f

∂x ; and, second, estimating the cross moments of
a normally distributed random vector. Following the notation of Proposition 2.3.2, we have that
the moments required to calculate this covariance are written as

MΣ
q−ei = E

(xi − µi)qi−1 ×
N∏
n=1
n6=i

(xn − µn)qn

 .
Therefore, the expectation of each of the partial derivatives is written as

E
[
∂f

∂xi

]
≈

∑
{q:0<|q|≤M}

qi
q!fq (µ)MΣ

q−ei . (2.21)

Algorithm 2.3.6 summarizes the filtering method with Taylor series approximations. The
main inputs to perform the filtering recursions are the derivatives of the functions that define
the observation and transition equations of a state-space model and the cross moments of a
multivariate normal distribution. Moreover, the algorithm coincides with the EKF and the UKF
when the first-and second-order approximations are considered, respectively.

Algorithm 2.3.6 The process is initialized with the unconditional moments of xt:

x0|0 = E [x0] ,

P0|0 = V ar [x0] .
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For t = 0, ..., T

• Calculate the derivatives of orders less than or equal to M of each of the components of the
vector function g (x) , gi (x) , i = 1, ..., n, and evaluate them at the point xt|t .

• Based on Propositions 2.3.3 and 2.3.4, calculate the derivatives of orders less than or equal to
M of functions of the form gi (x) gj (x) , i, j = 1, ...n, and evaluate them at the point xt|t .

• Based on Proposition 2.3.2, calculate all the cross moments,MPt|t
q , with |q| ≤M of a normally

distributed random vector with a mean vector of zero and variance–covariance matrix Pt|t .

• Calculate E [g (xt) |y1, ..., yt ] and V ar [g (xt) |y1, ..., yt ] according to Eqs. (2.14) and (2.15).

Time Update

• Estimate xt+1|t and Pt+1|t as

xt+1|t = E [g (xt) |y1, ..., yt ] ,

Pt+1|t = V ar [g (xt) |y1, ..., yt ] +Q.

• Calculate the derivatives of orders less than or equal to M of each of the components of the
vector function h (x) , hi (x) , i = 1, ..., p, and evaluate at the point xt+1|t .

• Based on Propositions 2.3.3 and 2.3.4, calculate the derivatives of orders less than or equal to
M of functions of the form hi (x)hj (x), i, j = 1, ...n, and evaluate them at the point xt+1|t .

• Calculate all the cross moments,MPt+1|t
q , with |q| ≤M of a normally distributed random vector

with a mean vector of zero and variance–covariance matrix Pt+1|t according to Proposition
2.3.2.

• Calculate E [h (xt+1) |y1, ..., yt ], E [∇h (xt+1) |y1, ..., yt ] and V ar [h (xt+1) |y1, ..., yt ], according
to Eqs. (2.14), (2.15) and (2.21).
Measurement Update

• Estimate yt+1|t and P yyt+1|t as

yt+1|t = E [h (xt+1) |y1, ..., yt ] ,

P yyt+1|t = V ar [h (xt+1) |y1, ..., yt ] +R,

P xyt+1|t = Pt+1|tE [∇h (xt+1) |y1, ..., yt ] .

Kalman Filter Update

• Estimate xt+1|t+1 and Pt+1|t+1 according to the Kalman update:

Kt+1 = P xyt+1|t

(
P yyt+1|t

)−1
,

xt+1|t+1 = xt+1|t +Kt+1
(
yt+1 − yt+1|t

)
,

Pt+1|t+1 = Pt+1|t −Kt+1P
yy
t+1|tK

>
t+1.
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From the previous sections, we learned that the filter with Taylor approximations can be
applied to a general class of models. However, all these models assume that the state variables
are continuous. If a subset of the state variables is discrete, such as the unobserved state
variables in a discrete Markov switching model, then the filter with Taylor series approximations
cannot be applied directly.

Next section discusses how to apply standard Rao-Blackwelisation methods12 to the filtering
techniques with Taylor approximations. These methods allow including a subset of potentially
discrete state variables in a general state-space representation. The approach is done via the
Rao-Blackwellised particle filter (Doucet, De Freitas, Murphy, and Russell, 2000). As a result,
hybrid filters are obtained where one part of the calculations is performed with the filters based
on Taylor approximations and the other part relies on Monte Carlo simulation methods.

2.3.4 Rao-Blackwellisation for Filtering with Taylor Series Approximations

Rao-Blackwellised particle filtering was introduced by Doucet, De Freitas, Murphy,
and Russell (2000); the basic idea is to reduce the number of variables that must
be sampled by identifying variables that have an analytical expression for their
density function or can be analyzed in a tractable way. A general overview of
the Rao-Blackwellised particle filter can be found in Crisan and Rozovskii (2011).

Suppose that we are interested in analyzing the conditional density of a random vector x
that can be written as two different vectors, z and u; i.e., x = [z, u]> . We can think of z as the
continuous random variable and u a discrete random vector. The conditional density of x can
be written as

p (x) = p (z, u) = p (z |u) p (u) . (2.22)

If p (z |u) admits a closed-form expression, then to approximate the probability density function
of p (x) we need to approximate only the unknown density, p (u) . In this case, we reduce the
number of variables that need to be analyzed. In general, Rao-Blackwellised particle filtering
allows to jointly analyze discrete and continuous state variables and reduces the number of
variables that must be sampled by taking advantage of the analytical structure of the problem.

Suppose that the state vector xt can be written as xt = (zt, ut)> , where zt ∈ RN and ut is
an unobserved Markov process with known transition probability density and has the following
state-space representation:

yt = h(xt, ut) + vt, vt ∼ N (0, R (ut)) , (2.23)

xt+1 = g(xt, ut+1) + εt+1, εt ∼ N (0, Q (ut)) , (2.24)
12See Casella and Robert (1996) for a general reference of this topic.
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where R (ut) and Q (ut) have the appropriate dimensions. In this case, we can think of ut as a
discrete or continuous state variable that determines a switching state-space model. To solve
the filtering problem, we need to estimate a conditional density of the form:

p (z1, ...zt, u1, ..., ut |y1, ..., yt ) = p (u1, ..., ut |y1, ..., yt ) p (z1, ...zt |y1, ..., yt, u1, ..., ut ) . (2.25)

Conditional upon (u1, ..., ut) , we have a nonlinear state-space model of the form of Eqs. (2.1)
and (2.2). Therefore, to obtain filtered estimates of zt, we first condition upon (u1, ..., ut) , and
obtain E (zt |y1, ..., yt, u1, ..., ut ) with the filters based on Taylor approximations as presented in
the previous sections. It follows that to fully estimate the unobserved state variables, it remains
to approximate the conditional density of u1, ..., ut with other filtering approximations such as
the particle filter.13 As a result, we obtain hybrid filters where one part of the calculations is
performed analytically and the other part uses Monte Carlo methods or another filter.

The state-space model in Eqs. (2.23) and (2.24) is general enough and can be applied to a
number of models such as the partially observed Gaussian models and the Markov switching
stochastic volatility models. However, all of these models rely on a set of fixed parameter values
that need to be estimated. In section 2.4, I present the quasi-maximum likelihood method for
parameter inference of state-space models defined in Section 2.2.

2.4 Quasi-Maximum Likelihood Parameter Estimation
Although the focus of the previous sections has been in state estimation, filters based on
Gaussian densities, as described in Section 2.3.1 can also be applied for parameter inference
of state-space models. White (1982) introduced econometric methods for misspecified models,
known as quasi-maximum likelihood (QML) methods. The general idea is to replace the true
likelihood function with a Gaussian density and obtain parameter estimates as if the true
likelihood function is Gaussian. The parameter estimates are known as QML estimates and can
be obtained via standard numerical optimization methods. Moreover, White (1982) shows that
QML parameter estimates are statistically consistent. In addition, Gallant and White (1988)
provide regularity conditions under which robust standard errors exist.

For dynamic models, such as the state-space models defined in Section 2.2, Bollerslev and
Wooldridge (1992) show that by replacing the true likelihood function with the likelihood
function constructed with means and covariances obtained from the filtering Eqs. (2.8), QML
parameter estimates can be obtained.14

13Appendix A.6 provides a general introduction to Particle Filters.
14For recent applications of these methods in nonlinear state-space representations, see Christoffersen, Jacobs,

Karoui, and Mimouni (2012), van Binsbergen and Koijen (2011), Campbell, Sunderam, and Viceira (2011) and
Calvet, Fisher, and Wu (2013).
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2.4.1 Quasi-Likelihood Function

Let L (θ) denote the quasi log-likelihood function of a dynamic model evaluated at the vector of
parameter values θ; then the function L is constructed as follows:

For each t = 1, ..., T , the conditional mean, yt+1|t , and conditional covariance, P yyt+1|t , are
calculated recursively through Eqs. (2.8). The quasi log-likelihood function is calculated by
assuming that yt+1, is normally distributed with mean yt+1|t and covariance matrix P yyt+1|t ; that
is,

lt (θ) = −p2 ln (2π)− 1
2 ln

∣∣∣P yyt+1|t

∣∣∣− 1
2
(
yt+1 − yt+1|t

)> (
P yyt+1|t

)−1 (
yt+1 − yt+1|t

)
. (2.26)

Finally, the QML parameter estimates, denoted by θQML, are obtained by choosing the vector
of parameters θ that maximizes the quasi-likelihood function; that is,

θQML ≡ arg max
θ
L (θ) ,

where
L (θ) = ΣT

t=1lt (θ) . (2.27)

Bollerslev and Wooldridge (1992) show that the QML function, (2.27), is well defined.
Moreover, they show that the true but unknown vector of parameters is the global maximizer of
(2.27) if the following conditions hold:

E [vt+1 |y1, ..., yt ] = 0,

V ar [vt+1 |y1, ...yt ] = R,

which means that if the first and second moments are well specified, then the global maximizer of
the QML function will be the true but unknown vector of parameter values. Finally, asymptotic
standard errors can be estimated as in Gallant and White (1988). They show that under certain
regularity conditions, the covariance matrix of the QML estimator has a closed-form expression
as shown in Appendix A.7.

2.5 Applications
In this section, I test the filter with Taylor series in three different nonlinear models. The first
model is the standard stochastic volatility model as in Andersen and Sørensen (1996). The
second model is the risk-return representation analyzed by Brandt and Kang (2004) in the
predictability literature, and the third model is a simple version of the dynamic stochastic
general equilibrium model studied by Schmitt-Grohe and Uribe (2004). I implement the filter
with Taylor series for different approximation orders in simulated and real data. I conduct two
sets of exercises. The first set consists of pure filtering exercises that test the accuracy of the

19



Taylor series for state estimation by using different approximation orders. The second set of
exercises analyze the precision of the parameter estimates by comparing the true values with
their sample counterparts. Finally, I compare the results with those obtained from standard
methodologies such as the EKF, the UKF and the particle filter.

2.5.1 Stochastic Volatility Models

The standard stationary stochastic volatility15 model in discrete time is represented by

yt = ηt · σt (2.28)

ln σ2
t = d+ φ ln σ2

t−1 + εt, εt ∼ N
(
0, σ2

ε

)
,

where yt is the value of a time series observation at time t and σt is the corresponding volatility,
d is a scale parameter for the volatility process and ηt is a white noise process with unit variance
that represents the innovations in the level or returns. The disturbance of the volatility equation
εt, is assumed to be a Gaussian white noise process; in addition, |φ| is considered as a measure
of persistence of shocks to the volatility. The variance of the log-volatility process, σ2

ε , measures
the uncertainty of future volatility.

The log-normality specification for the volatility is consistent with Andersen, Bollerslev,
Diebold, and Ebens (2001) and Andersen, Bollerslev, Diebold, and Labys (2003) which show
that the log-volatility process can be well approximated by a normal distribution, and with
Taylor (2008), who proposes to model the logarithm of volatility as an AR(1) process. When
φ is close to one and σ2

ε is close to zero, then the evolution of volatility over time is very smooth;
however, in the limit, if φ = 1 and σ2

ε = 0, the volatility is constant over time, and consequently,
the returns are homoscedastic. As noted by Broto and Ruiz (2004), if σ2

ε = 0 the model cannot
be identified.

State-Space Representation and Implementation

An alternative representation of Eq. (2.28) is obtained by using the demeaned log-volatility,
st ≡ ln σ2

t − ln σ2, and ηt as state variables. In this case, the re-parameterized stochastic volatility
process is

yt = σ exp
(
st
2

)
ηt (2.29)

st = φst−1 + εt, εt ∼ N
(
0, σ2

ε

)
. (2.30)

In terms of the state-space representation in (2.1) and (2.2), the state variables are given by
the vector xt = [st, ηt]>, Eq.(2.29) is the observation equation, where h (xt) ≡ h (st, ηt) =

15See Ghysels, Harvey, and Renault (1996) and Shephard (2005) for a comprehensive review.
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σ exp (st/2) ηt, and the random noise, vt, as well as its variance, R, are equal to zero.16 Finally,
the law of motion is given by two equations. Eq. (2.30) represents the first equation, while
the second consists of only one element, a random shock. Overall, the transition equations are
represented by [

st

ηt

]
=

[
φ 0
0 0

] [
st−1

ηt−1

]
+
[
εt

ηt

]
,

[
εt

ηt

]
∼ N (0, Q) (2.31)

Q =
[
σ2
ε ρσε

ρσε 1

]
,

where ρ ≡ corr (st, ηt) . This representation allows capturing the correlation coefficient in a
tractable way; since standard state-space representations assume that the shocks between the
observation and transition equations are uncorrelated. Moreover, all the moments involved in
the filtering recursions exist and have a closed-form expression which allows testing the accuracy
of the Taylor series for both filtering and parameter estimation.

Lastly, from Eq. (2.31) we learn that the function that characterizes the transition equation
is linear in the state vector, i.e., g (xt) ≡ Φ · xt, where

Φ =
[
φ 0
0 0

]
.

According to Section 2.3.2 and Eqs. (2.5)– (2.7), the moments that need to be approximated
by the Taylor series are

yt+1|t = E [yt+1 |Yt ]

= E [σ exp (st+1) ηt+1 |Yt ]

and

P yyt+1|t = var [yt+1 |Yt ]

= E
[
σ2 exp (2st+1) η2

t+1 |Yt
]
− y2

t+1|t .

Finally, for the Kalman update, we need to estimate the covariance matrix between the
observation and transition equations, given by

P xyt+1|t = Pt+1|t × E
[
σ exp (st+1) ηt+1 |Yt
σ exp (st+1) |Yt

]
,

16This is a unique feature of the Gaussian filters; most of the Monte Carlo filters, such as the particle filter,
require that all the variance–covariances involved in the transition and measurement equations should be positive
definite.
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where the last equality comes from applying Lemma 2.3.5.17

Improved State Identification

A conventional approach to improve state and parameter identification in the stochastic volatility
literature18 is to model the squared value of the observation equation in addition to the
observation equation (2.29).19 As a result, the stochastic volatility model can be represented
with the following vector of observables:

yt =
[
σ exp

(
st
2
)
ηt

σ2 exp (st) η2
t

]
, (2.32)

and Eq. (2.31) as the transition equation. The nonlinear function is given by h (xt) ≡ h (st, ηt) =[
σ exp (st/2) ηt, σ2 exp (st) η2

t

]>
. A standard approach consists of log-linearizing the second

component of Eq. (2.32)20 and performing the state and parameter inference on that version of
the model. The main advantage is that the standard model becomes linear and the standard
Kalman filter can be applied. However, the major disadvantage of log-linearizing the squared
equation is that the correlation coefficient, ρ, cannot be identified.21 The advantage of including
the squared value of the original observation equation as an observable in Eq. (2.32) is that the
information provided by the dynamics of the squared observation can be incorporated directly
in the estimation process. Moreover, there is no need log-linearizations, and any information
about the correlation coefficient can be incorporated directly in the estimation process.

The first and second moments of Eq. (2.32), can be calculated using Propositions 2.3.3 and
2.3.4 as well as covariance obtained from Stein’s Lemma. Finally, I test the accuracy of the
Taylor series approximations, by comparing the filtered series of different approximation orders
with the one obtained with the closed-form expressions of the moments. 22

Monte Carlo Simulation Results

In this section I conduct a Monte Carlo study to test the accuracy of the filters with Taylor
approximations for both filtering and parameter inference. For the pure filtering exercise, I first
simulate a time series of 500 observations of returns (yt) and log-volatilities st according to Eqs.
(2.29) and (2.31), assuming parameter values φ = 0.98, σε = 0.1414, σ = 1 and ρ = −0.5. These
parameter values have been used in Broto and Ruiz (2004), as well as in empirical applications
of daily returns.

17LemmaA.8.1 in Appendix A.8 provides closed-form expressions for the expected values, variances and
covariances involved in the Kalman filter recursions of the stochastic volatility model.

18See Koopman and Sandmann (1998) and Broto and Ruiz (2004) for details.
19I used the squared of the observation equation as a new observable. However, the cubed or the fourth power

could be included as well.
20See Ruiz (1994) for details.
21Harvey and Shephard (1996) show that the information about the correlation can be recovered from the signs

of the innovations.
22 See Appendix A.8 for details
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For each simulated series, I calculate the filtered values for the level yt, as well as for the
log-volatility st, with the filtering techniques based on Taylor approximations with up to a
twelfth approximation order using the true parameter values. I denote by TKF-M the filter
constructed with M − th order Taylor series approximation, M = 2, 3, ..., 12. For comparison
purposes, I also filter the same simulated series with the EKF, the UKF,23 the particle filter
with 1000 particles and the filter that uses the closed–form expressions of the moments. I will
refer to this filter as the Gaussian filter.24 Finally, I calculate the mean squared error (MSE)
between the simulated series and its filtered counterpart. The experiment is repeated 500 times
with a random re-initialization for each run.

Table 2.1 contains means and standard deviations of the MSE of the log-volatility process
as well as the MSE of the level of the series. For this model specification, the minimum MSE
for both the log-volatility and the observable is obtained with the particle filter, on average,
followed by the filters with Taylor approximations of fourth and fifth order. This result is not
surprising since the particle filter provides unbiased estimates for both unobserved states and
their joint densities. It is worth noting that the statistics of the MSE obtained with the filters
of order eight and higher converge to the statistics of the Gaussian filter. Although the UKF is
commonly known as a second-order filter, my simulation results show evidence that the MSE
results of the second-order filter are slightly smaller than those of the UKF.

As noted from Table 2.1, the particle filter provides the most accurate state estimates.
However, to improve the state estimation, I filter the simulated series including the squared
value of the first observation equation as a second observation equation and using the true
parameter values. The results are shown in Table 2.2. In this case, the filters of order eight or
higher provide more accurate state estimates than the particle filter, on average. However, there
is not much improvement for the MSE of the observable, yt, which is slightly smaller than the
one calculated from the model specification with one equation.

Figures 2.1a–2.1d compare the state estimates of the log-volatility process generated from
a single run using different filters. Although the tests are conducted using all the orders of
approximation, I only report the eighth order. Figure 2.1a compares the true state with the
state estimate and a 95% confidence interval. The true state is represented by a dot, the mean
of the filter obtained with Taylor series is given as a dashed line and the solid lines give the 95%
confidence interval, constructed as the interval between the 2.5 and 97.5 percentile points. The
actual value of the state is within the 95% probability region on approximately 94% of occasions.
Figure 2.1b compares the true state with the filter that applies two observation equations. In
this case, the actual state is usually very close to the state estimate; on a couple of occasions, the

23The UKF parameters were set to α = 1, β = 0 and κ = 2; which are optimal for the scalar case.
24 Ito and Xiong (2000) propose the name of Gaussian filter for the filtering methods that use Gaussian densities

to approximate the probability density functions involved in the filtering recursions in Eq.(2.8).
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actual state is just outside these percentile estimates and the performance is obviously superior
to the filter that uses one equation only.

Figure 2.1c compares the actual states with the filtered estimates using the true parameter
values. Clearly, the filter that uses two observation equations outperforms the filter that uses
only one observation equation. Finally, Figure 2.1d shows the filtered series along with the
results of the particle filter. Clearly, both filtered series are very close to the actual state.
However, the CPU time used by the particle filter is more than ten times that used to estimate
the series with Taylor approximations. To test for the efficiency of the filtering algorithm, I
recorded the CPU time needed to estimate the log-volatility filtered series for each order of
approximation along with the EKF, the UKF and the particle filter. The results are displayed
in Table 2.3. Model 1 represents the model with one observation equation and Model 2, the
model with two observation equations. In this case, the filtered series based on Taylor series
approximations are calculated at least four times faster than the ones obtained with the particle
filter. The filters that use the exact moments, take on average 0.03 and 0.04 seconds to calculate
the filtered series, as compared to the 17.87 seconds it takes the particle filter to estimate the
same series. The improvement in CPU time as well as the precision of the filtered estimates
shows a notable strength of the filters that apply Taylor series with respect to standard particle
filters.

As with most nonlinear models it is difficult, if not impossible, to prove that the parameters
of a state-space model are uniquely identified. In order to analyze the uniqueness of the QML
estimates, I implemented the following procedure. For a fixed vector of parameter values, a path
of noisy returns is simulated and a quasi-likelihood function is constructed using the simulated
path. An initial identification exercise is performed by calculating the quasi-likelihood function
of a fifth order of approximation in the set of parameters used for the simulation and changing
independently each parameter φ, σε, σ and ρ. These plots are known as quasi-likelihood contours
and are shown in Figure 2.2. The dashed lines represent the unknown parameter values that
are used to simulate the data. If the parameter is well identified, then the quasi-likelihood
function should achieve a maximum parameter value that is close enough to the one used to
simulate the data. For comparison I show the quasi-likelihood functions of the EKF, the UKF
and the Gaussian filter. The concavity of the quasi-likelihood function with respect to each
parameter evidence that all the parameters are well identified. For this specific exercise, φ is well
identified by all the filters. However, σε, σ and ρ are only identified properly by the fifth-order
and Gaussian filters. For these parameters, the quasi-likelihood function of the EKF and UKF
provide biased parameter values, since the maximum value is far from its true value. Moreover,
Figure 2.2c shows a constant value for the quasi-likelihood function of σ, showing that the EKF
is not able to identify it.

A second alternative to analyze the finite sample properties of the QML estimator is via
Monte Carlo simulations. In particular, I estimate the model from 250 independent samples of
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T = 500 using QML estimation methods. For each simulation, I construct QML functions of
orders three, five, seven and nine. I optimize the function numerically and obtain parameter
estimates. As a starting point for the parameter estimates, I chose the true parameter value used
to simulate the data.25 I conduct the same exercise with the EKF, the UKF and the Gaussian
filter and present the results in Table 2.4. The table shows the true parameter values in the
first row as well as the sample mean and standard deviation of the corresponding parameter
estimates in parentheses. Clearly, the average estimates are all close to the true parameter
values, suggesting that the QML estimates via Taylor series are relatively unbiased while the
average estimate of σ under the EKF, the UKF and the third-order approximations are biased.
Moreover, the standard deviations of the QML estimates of the ninth-order approximation are
high and coincide with the standard errors of the third-order approximation. This may be
caused by the small sample bias as well as the effect of numerical errors.

Consumption Growth Model: Estimation

From the Monte Carlo simulation exercises, we learned that the filter with Taylor approximations
is a good approach for parameter estimation of the standard stochastic volatility model. However,
the results may differ in historical data in which there is substantial evidence of stochastic
volatility. As a robustness check, I perform a parameter estimation exercise with real consumption
growth data and estimate a stochastic volatility model with different approximation orders.

A number of models, including Tallarini (2000) and Barillas, Hansen, and Sargent (2009),
assume that the log-consumption growth, denoted by ∆ ln(Ct+1), follows a random walk with
drift µc and standard deviation, σ,

∆ ln(Ct+1)− µc = σηt+1,

ηt+1 ∼ N (0, 1) .

However, there is substantial evidence of time variation in the conditional standard deviation
of many macroeconomic series (Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry, 2012;
Clark, 2009; Fernández-Villaverde and Rubio-Ramírez, 2007; Justiniano and Primiceri, 2008;
McConnell and Perez-Quiros, 2000; Stock and Watson, 2002).

As a result, Bidder and Smith (2011) propose an alternate endowment process that features
stochastic volatility in log-consumption growth that is consistent with (2.29). The model is

25This point is used merely for convenience. However, as a robustness check, I conducted a similar estimation
exercise that uses random vectors as starting points for the numerical optimization procedure. In all the cases,
the vector of parameter values is fully identified and the average estimates are similar to the ones obtained with
the true parameter value as initial point.
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represented as follows:

∆ ln(Ct+1)− µc = σ exp
(
st+1

2

)
ηt+1, ηt ∼ N (0, 1)

st+1 = φst + εt+1, εt+1 ∼ N
(
0, σ2

ε

)
,

where st represents the log-volatility processes.

I analyze the performance of the filtering technique by implementing the stochastic volatility
model in (2.29) and (2.30) with consumption growth data. I use the monthly series from the
Federal Reserve Bank of Philadelphia to construct the real consumption per capita from January
1959 to March 2012. I construct the monthly log-consumption growth data using the real-time
data of real personal consumption expenditures in nondurables and services from the Real-Time
Data Set for Macroeconomists from the Federal Reserve Bank of Philadelphia. This real-time
data set of macroeconomic variables was created to update and verify the accuracy of forecasting
models of macro variables and provides snapshots of the macroeconomic data available at any
given date in the past.26 Summary statistics of the time series of monthly consumption growth
are shown in Table 2.5.

Quasi-likelihood parameter estimation is performed to the data with the filters of orders
three, five, seven and nine, along with the estimates obtained with the EKF, the UKF and
the Gaussian filters. The choice of the starting point used for the numerical optimization is as
follows. First, I simulated 100 random vectors from the parameter space. Each simulated vector
was used as an initial point for the numerical maximization of the quasi-likelihood function
constructed with the monthly consumption growth data. Finally, the initial point used to
estimate the parameter values is the average of the parameter estimates obtained from the
previous procedure.

The results are shown in Table 2.6. In this case, all the parameters are identified. The
parameter estimates using the quasi-likelihood function constructed with an order of three
or higher have similar values; however, the adjusted standard errors change as the order of
approximation changes, mainly caused by numerical errors of the second derivative of the
quasi-likelihood function. In general, the magnitude of the standard errors decreases as the
order of approximation increases. Overall, the parameter estimates are consistent with Bansal
and Yaron (2004), Bidder and Smith (2011) and Ludvigson (2012), with a slightly lower growth
rate and higher variance, most likely due to the longer data series, which include the recession
starting in the last quarter of 2007.

2.5.2 Risk and Return Model

Brandt and Kang (2004) introduce a nonlinear representation for the return dynamics that
26See Croushore and Stark (2001) for details.
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allows for positive risk premium in the context of a latent vector autoregressive (VAR) process.
Let yt be the continuously compounded excess returns with time-series dynamics represented by

yt = µt−1 + σt−1εt with εt ∼ N (0, 1) , (2.33)

where µt−1 and σt−1 represent the conditional volatility of the excess returns. It is assumed that
the conditional mean and volatility are unobservable and that they follow a first-order VAR
process in logs: [

lnµt
ln σt

]
= d+A

[
lnµt−1

ln σt−1

]
+ ηt with ηt ∼ N (0,Σ) , (2.34)

where

d =
[
d1

d2

]
, A =

[
a11 a12

a21 a22

]
and

Σ =
[
b11 b12

b21 b22

]
with b12 = b21 = ρ

√
b11b22. (2.35)

The first equation of the VAR in (2.34) describes the dynamics of the logarithm of the conditional
mean, and it captures the permanent and temporary components as shown in Fama and French
(1988b) and Lamoureux and Zhou (1996), in which the stock prices are governed by a random
walk and a stationary random process, respectively. The second equation of the VAR describes
the dynamics of the logarithm of the conditional volatility and includes the standard stochastic
volatility model. Setting a21 = 0 is the stochastic volatility model estimated by Andersen and
Sørensen (1996), Kim, Shephard, and Chib (1998), Jacquier, Polson, and Rossi (2004) and
Jacquier, Johannes, and Polson (2007). The latent VAR approach in Eqs. (2.34)−(2.35) allows us
to study the contemporaneous and intertemporal relationships between expected returns and risk
without relying on predictors. The contemporaneous relationship between the conditional mean
and volatility is captured by the correlation coefficient ρ, while the intertemporal relationships
between expected returns and volatilities are captured by the coefficient matrix A.

Following Hamilton (1994), if the VAR is stationary, the unconditional moments for the
mean and volatility are given by

E
[

lnµt
ln σt

]
= (I −A)−1 d

and

vec
(
cov

[
µt

σt

])
= (I − (A⊗A))−1 vec (Σ)

where ⊗ represents the Kronecker product.

The return dynamics presented in Eq. (2.34) has two key elements: the transition matrix
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A and the correlation coefficient ρ. The diagonal elements of A capture the persistence of the
conditional moments, and the off-diagonal elements reflect the intertemporal feedback between
the conditional volatility and the conditional mean. A general correlation structure can be
incorporated by allowing the conditional mean and volatility to be correlated with the return
innovations, denoted by Corr [εt, ηt] = [ρµ, ρσ]> . Different models can be specified by setting
these correlations to zero. The assumptions about the correlation between the return innovations
and the conditional moment innovations serve to capture and potentially distinguish two popular
explanations of asymmetric volatility. Asymmetric volatility refers to the empirical finding that
increases in volatility tend to be associated more often with large negative returns than with
equally large positive returns. The two popular explanations of asymmetric volatility are the
leverage effect and the volatility feedback effect. The leverage effect states that when the value of
a firm drops given a large negative return, the leverage of the firm and the associated probability
of bankruptcy increase, causing the equity claims to become riskier. The volatility feedback
effect attributes the asymmetric volatility to the equilibrium response of the conditional mean
to changes in volatility.

State-Space Representation and Implementation

The representation given in Eqs. (2.33) and (2.34) defines a state-space model, in which the first
equation is the nonlinear measurement equation and the second equation is a linear transition
equation. To make inferences about expected returns, volatilities and the parameters of the
VAR based on the observed returns, a nonlinear filtering problem needs to be solved. The
solution to the nonlinear filtering problem generates estimates of expected log-returns and
log-volatilities, E [lnµt, ln σt |y1, ..., yt ], as well as variances V ar [lnµt, ln σt |y1, ..., yt ] . As in the
stochastic volatility model, parameter inference can be performed with QML methods.

A simpler representation of the state-space model can be obtained by redefining the state
variables in demeaned terms; that is,mt = lnµt−lnµ and vt = ln σt−ln σ, so that µt = µ exp (mt)
and σt = σ exp (vt) , where µ = exp (E [lnµt]) and σ = exp (E [ln σt]) . Finally, by rewriting Eqs.
(2.33) and (2.34) in terms of new state variables, the state-space becomes standard in the
sense that all the state variables are observed at time t. Let xt = [x1t, x2t, x3t, x4t, x5t]> =
[mt−1, vt−1, εt,mt, vt]> ; then equations (2.33) and (2.34) can be rewritten as:

yt = µ exp (x1t) + σ exp (x2t)x3t, (2.36)

and
xt = Ãxt−1 + Γwt with wt ∼ N (0,Σ) , (2.37)
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where

Ã =



0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 a11 a12

0 0 0 a21 a22


, Γ =



0 0 0
0 0 0
1 0 0
0 1 0
0 0 1


and

Σ =


1 ρµ

√
b11 ρσ

√
b22

ρµ
√
b11 b11 ρ

√
b11b22

ρσ
√
b22 ρ

√
b11b22 b22

 ,
where Corr [εt, ηt] = [ρµ, ρσ]> . Clearly, h (xt) = µ exp (x1t) + σ exp (x2t)x3t and, as in the
stochastic volatility model, the random noise of the observation equation, vt, is identically zero.
As a result the variance of the observation equation is zero (R ≡ 0) .27 The transition equation
is linear; i.e., g (xt) = Ãxt.

The filtering and parameter estimation problem can be solved using the results of Section
2.3.2. In this case, the first and second moments that need to be calculated are

yt+1|t = E [yt+1 |Yt ] = µE [exp (x1t+1) |Yt ] + σE [exp (x2t+1)x3t+1 |Yt ] , (2.38)

and
P yyt+1|t = V ar [yt+1 |Yt ] = E

[
y2
t+1 |Yt

]
− y2

t+1|t . (2.39)

The covariance term involved in the Kalman gain is calculated as

P xyt+1|t = cov


x1t, yt+1 |Yt
x2t, yt+1 |Yt
x3t, yt+1 |Yt

 = Pt+1|t × E


µ exp (x1t) |Yt

σ exp (x2t)x3t |Yt
σ exp (x2t) |Yt

 , (2.40)

by applying Lemma 2.3.5. Closed-form expressions for the moments of Eqs. (2.38) - (2.40) can
be obtained from Proposition A.8.1 in Appendix A.8.

Improved State Identification

As in the stochastic volatility example and following Brandt and Kang (2004), state identification
can be improved by including additional observation equations to the filtering problem. An

27The main purpose of this representation is to allow for a general correlation structure between the shocks of
the observation equation and transition equations, which in standard state-space representations are assumed to
be zero.
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alternative is to include the squared value of Eq. (2.36), and the vector of observables becomes

yt =
[

µ exp (x1t) + σ exp (x2t)x3t

(µ exp (x1t) + σ exp (x2t)x3t)2

]
(2.41)

with Eq. (2.37) as the transition equation of the state-space representation. Other equations
that can be included are the third observation equation, given by the cube of Eq.(2.36) or the
product of the current observed return with its lagged value. By including an extra observation
equation in Eq. (2.41), we need to estimate its mean and all its covariances to have estimates of
yt+1|t , P

yy
t+1|t and P xyt+1|t , which can be done via the Taylor series.

Monte Carlo Simulation Results

Accuracy in state estimation is one of the most important features of any filtering technique.
To test the accuracy of the filters with Taylor approximations in the model represented in Eqs.
(2.36)-(2.37), I use Monte Carlo simulations. First, using the parameter estimates of Brandt and
Kang (2004) for Model A, I simulate a random path of returns and calculate the filtered series
of both log-expected returns and log-volatilities using different orders of approximation and the
true parameter values. The pure filtered series of log-expected returns and log-volatilities are
almost constant, showing an average correlation of 0.05%. To improve the state estimation, I
filter the same series using the vector of observation equations (2.41). The results of a random
simulation are shown in Figure 2.3. The filtered log-returns are shown in the top left (Figure
2.3a) while the filtered log-volatilities are displayed in the top right (Figure 2.3b). In both
cases, the filtered series based on one observation equation provide almost constant estimates.
However, the filtered series based on two observation equations provide a much more accurate
estimate. The average correlation coefficient between the true states and the filtered series is
above 90%. As a robustness check, I include the filtered series from a model that has the cubed
observation equation. As shown in Figures 2.3a and 2.3b, the difference between the model with
two observation equations and the model with three observation equations is indistinguishable.

To test the accuracy of the filter with respect to the particle filter, based on a simulated
series, I estimate the filtered series of the model with two observation equations using the true
parameter values and contrast the estimates with the ones obtained with the particle filter. As
shown in Figures 2.3a and 2.3b, both methods provide similar values for the filtered log-expected
returns and log-volatilities.

To get a sense of the accuracy of the Taylor approximations, I simulated a random path of
T = 792 using the parameter estimates by Brandt and Kang (2004). Using this simulation, I
calculated the value of the quasi-log likelihood function of the model in Eqs. (2.36) and (2.37)
in the true vector of parameter values for up to fifteen orders of approximation. For comparison
purposes, I include the quasi-likelihood function obtained with the UKF and the one constructed
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with the exact moments. Figure 2.4 shows the results. The figure contains in the x-axis the
different orders of approximation, while the y-axis contains the values of the quasi-likelihood
function. In this case, a Taylor series approximation of order six, is necessary to get an estimate
of the likelihood function close enough to the one estimated with the exact moments.

As with the stochastic volatility model, it is a challenge to prove that the parameters of the
model are well identified. As an identification exercise and assuming ρµ = ρσ = 0, I simulate a
sample path of stock returns with T = 5000 using the parameter estimates from Brandt and
Kang (2004). The quasi-likelihood function is constructed with a degree of approximation of
M = 6. The function is evaluated numerically at the true parameter values, by varying one
parameter at a time and keeping the remaining fixed. The plot of the parameter value versus
the likelihood function is known as the likelihood contour. If the parameter is well identified,
then the plot will have a concave shape and the maximum is achieved at the true parameter
value. If the shape of this function is constant or a straight line, then there is evidence of
misidentification. The results are shown in Figure 2.5; the dashed lines represent the unknown
parameter values used to generate the data. The concavity of the quasi-likelihood contours
is evidence that all the parameters are well identified and the maxima are achieved at values
close enough to the ones used to simulate the data. It is worth mentioning that the number
of observations, T , is important. By using a smaller number of observations, the correlation
coefficients may not be identified.

To provide more evidence of the accuracy of QML estimates, I study four different assumptions
about the correlation structure between return innovations and the conditional mean and
volatility innovations. Model A assumes that these innovations are uncorrelated; in Models B
and C, the return innovations are allowed to be correlated either with the conditional mean or
the conditional volatility innovations, respectively; and lastly, Model D is unrestricted. For each
model, I simulate 500 independent samples of T = 792 monthly returns using the parameter
values obtained of Brandt and Kang (2004) and I obtain the QML parameter estimates for
different orders of approximation.28 I report the results only for M = 6, since Figure (2.4) shows
that an order of M = 6 is necessary to obtain an accurate likelihood.

Table 2.7 presents the results for the four models. For each model, I show the parameter
values used to simulate the data as well as the sample mean and standard deviation of the QML
estimates. Overall, the parameter estimates show evidence of consistency. However, the small
number of simulations does not provide an accurate assessment of the asymptotic unbiasedness.
In general, the standard deviations for b11, b22, µ and σ are relatively small compared to the
overall standard deviations of the other parameters. The correlation coefficients, ρ and ρµ,

28As in the stochastic volatility model, the starting point for the estimation exercise was the true vector of
parameter values. As a robustness check, I estimated numerically the models using random vectors as starting
points and obtained similar results.
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in general, are not identified.29 A common approach to correct this issue is to add another
observation equation, such as the squared value of returns, or to include a set of predictors in
the dynamics of the mean and volatility of returns (Brandt and Kang, 2004; Lundblad, 2007).

Market Excess Returns: Estimation

I study monthly returns on the value weighted CRSP index in excess of the one month Treasury
bill rate from January 1946 through December 2011 (792 observations). The short rate is the
yield of a one-month Treasury bill. Table 2.8 presents summary statistics of the data and Figure
2.7 plots the time series of the market portfolio (top) and the short rate (bottom).

Parameter Estimates

The model in Eqs. (2.36)-(2.37) is estimated with QML methods using as starting point of
the numerical optimization the parameter estimates of Brandt and Kang (2004). Table 2.9
displays the results of the four models. Clearly, the contemporaneous correlation between the
conditional mean and volatility, ρ, is negative and statistically significant for all the models. As
a result, I strongly reject the hypothesis of the lack of contemporaneous relationship between
the conditional mean and the conditional volatility. In addition, the correlations between
the return innovations and the mean and volatility innovations (ρµ and ρσ) are negative and
significant. These results are consistent with French, Schwert, and Stambaugh (1987), Campbell
and Hentschel (1992a) and Brandt and Kang (2004). The parameter estimates for the transition
matrix (a11, a12, a21, a22), are robust under the four specifications. However, the estimates of
the standard deviation of the conditional mean and volatility (b11 and b22) differ between the
specifications in models A and B and the ones of models C and D.

2.5.3 A Dynamic Stochastic General Equilibrium Model

In this section I show how filtering with Taylor series facilitates quasi-likelihood-based inference
in dynamic equilibrium models. I describe how to use the filter with Taylor series to estimate
the structural parameters of the model, those characterizing preferences and technology, based
on macroeconomic variables measured with noise. Flury and Shephard (2011) suggest that
particle filters are the only feasible approach to estimating parameters of dynamic stochastic
general equilibrium (DSGE) models. I show that filtering techniques based on Taylor series are
an alternative approach for state and parameter estimation in a DSGE model without relying
on Monte Carlo filters. Finally, I illustrate the technique with a very simple real business cycle
model.

Likelihood-based inference is a useful tool to take dynamic equilibrium models to the
data (An and Schorfheide, 2007). However, most dynamic equilibrium models do not

29The lack of identification of correlation coefficients is a common problem in the standard filtering applications;
see Hamilton (1994) for details.
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imply a likelihood function that can be evaluated analytically or numerically. To cir-
cumvent this problem, the literature has used the approximated likelihood derived from
a linearized version of the model, instead of the exact likelihood. But linearization de-
pends on the accurate approximation of the solution of the model by a linear relation.
This assumption is arguable. First, the impact of linearization is more problematic than
it appears. Fernández-Villaverde, Rubio-Ramírez, and Santos (2006) prove that second-order
approximation errors in the solution of the model have first-order effects on the likelihood
function. Moreover, the error in the approximated likelihood gets compounded with the size of
the sample. Period by period, small errors in the policy function accumulate at the same rate at
which the sample size grows. Therefore, the likelihood implied by the linearized model diverges
from the likelihood implied by the exact model. Fernández-Villaverde and Rubio-Ramírez (2007)
document how those insights are quantitatively relevant to real-life applications.

Filters based on Taylor approximations are an alternative approach for filtering and parameter
estimation of DSGE models, as they integrate higher order approximations for solutions of
DSGE models, such as perturbations, with QML methods. In this section I introduce a simple
model that illustrates this method. Based on Monte Carlo simulations, I illustrate the accuracy
of the filter in both state and parameter estimation.

The Model

In this setup, it is assumed that there is a representative household maximizing its lifetime
utility given by

E0

[ ∞∑
t=0

βt
C1−γ
t

1− γ

]
, β ∈ (0, 1) , γ > 0, (2.42)

where Ct is consumption at time t, β is the subjective discount factor and γ is the risk aversion
parameter.

In this economy, there is a production sector, where the date t output flow Yt, is related to
date t level of the capital stock, Kt, via

Yt = AtK
α
t , (2.43)

where At is an exogenous technological shock, given by a first-order autoregressive process; that
is,

lnAt+1 = ρ lnAt + εt+1, εt ∼ N
(
0, σ2

A

)
. (2.44)

The stock of capital in the date t is related to the date t investment flow It and the capital
depreciation rate δ via the standard capital accumulation equation,

Kt+1 = (1− δ)Kt + It.
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The aggregate resource constraint is
Ct = It + Yt.

The central planner’s problem consists of choosing Ct and Kt that maximize the expected utility
of the form

max
{Ct,Kt+1}∞t=0

E0

[ ∞∑
t=0

βt
C1−γ
t

1− γ

]
, β ∈ (0, 1) , γ > 0 (2.45)

subject to
Kt+1 + Ct ≤ AtKα

t + (1− δ)Kt

and (2.43) , for t = 0, 1, ...; K0, A0 given.

Characterizing the Solution

The first-order condition implied by (2.43), (2.44) and (2.45) yields to the following Euler
equation,

C−γt = βEt
[
C−γt+1

(
1− δ + αAt+1K

α−1
t+1

)]
, (2.46)

while

Kt+1 = AtK
α
t + (1− δ)Kt − Ct, (2.47)

lnAt+1 = ρ lnAt + εt+1, (2.48)

are the constraints implied by the model. Equations (2.46)−(2.48) fully characterize the solution
of the optimization problem faced by the central planner.

The solution to the system in (2.46) consists of finding policy functions π and φ such that

Ct = π (Kt, At, χ)[
Kt+1

logAt+1

]
=

[
φ (Kt, At, χ)

log (At)

]
+ χ

[
0
σA

]
εt+1,

where χ is a perturbation parameter. As χ→ 0, the dynamic system in (2.46)− (2.48) converges
to a point known as the non-stochastic steady state. However, the system of functional equations
implied by the equilibrium conditions does not have, in general, an analytic solution. An
approximate solution for the policy functions can be obtained via perturbation methods.30

The main objective of these methods is to estimate values of the derivatives of π and φ at the
non-stochastic steady state. For analytical convenience, the system is written in terms of the

30See Judd (1998) and DeJong and Dave (2011) for a detailed explanation of perturbation methods in Economics.
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log-deviations of the non-stochastic steady state. Let

ĉt = ln (Ct/Css)

k̂t = ln (Kt/Kss)

ât = ln (At) ,

where Css and Kss are the non-stochastic steady state values for Ct and Kt, given by:

Css = (Kss)α − δKss, (2.49)

Kss =
[

αβ

1− β (1− δ)

] 1
1−α

. (2.50)

The general idea of perturbation methods is to provide a Taylor expansion of the policy
functions that characterize the equilibrium of the economy in terms of the state variables of the
model and a perturbation parameter, χ. In this case, I construct a second-order approximation
for ĉt and k̂t+1 of the form

k̂t+1 = φkk̂t + φaât + 1
2
(
φkkk̂

2
t + 2φakâtk̂t + φaaâ

2
t

)
+ 1

2φχχχ
2, (2.51)

ĉt = πkk̂t + πaât + 1
2
(
πkkk̂

2
t + 2πakâtk̂t + πaaâ

2
t

)
+ 1

2πχχχ
2,

and
ât+1 = ρât + εt+1, (2.52)

where φk, φa, φkk, φak, φaa, φχχ, πk, πa, πkk, πak, πaa and πχχ denote the first- and second-order
derivatives of the functions φ and π, respectively.31 These derivatives are calculated numerically
as in Schmitt-Grohe and Uribe (2004).32

State-Space Representation and Implementation

Following Flury and Shephard (2011), I assume that the econometrician observes only the
detrended real gross domestic product per capita, ĜDP t,

ĜDP t = ŷt + vy,t, vy,t ∼ N
(
0, σ2

y

)
, (2.53)

where vy,t represents the measurement error. Now, from Eq. (2.43) we know that the log-GDP
implied by the model is

ŷt = αk̂t + ât.

31For simplicity, I apply second-order approximations to solve the model. However, the following results can be
generalized to the perturbation of any order.

32I thank Stephanie Schmitt-Grohe and Martin Uribe for making their code available.
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Additionally, I assume that k̂t and ât are the unobservable state variables and the econometrician
wants to make inference of the state variables as well as the parameters based solely on the
ĜDP t observations available. Consequently, a nonlinear filtering problem has to be solved.

In this case, Eqs. (2.51)− (2.53) define a state-space model of the form:

ĜDP t = αk̂t + ât + vy,t, vy,t ∼ N
(
0, σ2

y

)
, (2.54)

k̂t+1 = φkk̂t + φaât + 1
2
(
φkkk̂

2
t + 2φakâtk̂t + φaaâ

2
t

)
+ 1

2φχχχ
2,

ât+1 = ρât + εt+1, εt ∼ N
(
0, σ2

A

)
.

The state variables of the filtering problem are represented by the vector xt =
[
k̂t, ât

]>
. The

observation equation is linear; i.e., h (xt) ≡ h
(
k̂t, ât

)
= αk̂ + ât with a random noise, vy,t,

with variance R ≡ σ2
y . The transition equation is characterized by the nonlinear mapping g (xt)

represented by the vector:

g (xt) ≡ g
(
k̂t, ât

)
=

 φkk̂t + φaât + 1
2

(
φkkk̂

2
t + 2φakâtk̂t + φaaâ

2
t

)
+ 1

2φχχχ
2

ρât

 . (2.55)

The first component of the vector in Eq. (2.55) is a quadratic function of the state variables,
while the second component of g (xt) is a linear function of ât only. Finally, the variance that
characterizes the shock of the transition equation is defined by σ2

A; i.e., Q ≡ σ2
A.

As the observation and transition equations of the model are polynomials, their expected
values will coincide with the expected values calculated with the Taylor series expansions, as long
as the order of the polynomial is smaller than the order of the Taylor approximation. According
to Section 2.3.2 and Eqs. (2.5)− (2.7), the mean vector of state variables,

xt+1|t =
[
E
[
k̂t+1 |Yt

]
E [ât+1 |Yt ]

]>
(2.56)

is computed by applying the second-order Taylor series approximations of Eq. (2.55). Now,
since the transition equation is quadratic, its variance requires fourth-order polynomials; as a
result, the variance of the transition equation is calculated exactly with a fourth-order Taylor
series, as

Pt+1|t =

 V art
[
k̂t+1 |Yt

]
covt

[
k̂t+1, ât+1 |Yt

]
covt

[
k̂t+1, ât+1 |Yt

]
V art [ât+1 |Yt ] + σ2

A

 , (2.57)

where each of the components can be calculated using the results from Section 2.3.2. The
observation equation is linear in the state variables; therefore, Eqs. (2.5)− (2.6) are given by

yt+1|t = E [yt+1 |Yt ] = [α, 1] · xt+1|t (2.58)
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and
P yyt+1|t = [α, 1] · Pt+1|t · [α, 1]> + σ2

y . (2.59)

Now, from Lemma 2.3.5 the covariance between the observation and transition equation is

P xyt+1|t = Pt+1|t · [α, 1]> . (2.60)

Improved State and Parameter Identification

For inference purposes, a second observation equation can be included. A natural observable to
include is consumption per capita, which is measured with noise,

C̃t = ĉt + vc,t, vc,t ∼ N
(
0, σ2

c

)
, (2.61)

where
ĉt = πkk̂t + πaât + 1

2
(
πkkk̂

2
t + 2πakâtk̂t + πaaâ

2
t

)
+ 1

2πχχχ
2.

In this case, the state-space model becomes

ĜDP t = αk̂t + ât + vy,t, vy,t ∼ N
(
0, σ2

y

)
, (2.62)

C̃t = πkk̂t + πaât + 1
2
(
πkkk̂

2
t + 2πakâtk̂t + πaaâ

2
t

)
+ 1

2πχχχ
2 + vc,t, vc,t ∼ N

(
0, σ2

c

)
,

k̂t+1 = φkk̂t + φaât + 1
2
(
φkkk̂

2
t + 2φakâtk̂t + φaaâ

2
t

)
+ 1

2φχχχ
2,

ât+1 = ρât + εt+1, εt ∼ N
(
0, σ2

A

)
.

Clearly, the state-space in Eq. (2.62) is nonlinear in both the state and observation equations.
In this case, the filters with Taylor expansions can be applied for both state and parameter
estimation. For parameter estimation, we can obtain more information and achieve better
identification from the second observation equation. In this case, the parameters β or γ affect
explicitly the consumption decision and can be inferred from the new observable.

Estimation

For parameter estimation, the task for the econometrician is to construct a quasi-likelihood
function and carry out inference on θ ≡ (α, β, δ, η, ρ, σA, σy, σc) . However, the construction of
the quasi-likelihood requires slightly more numerical work than the previous exercises. The
quasi-likelihood function L (θ) is constructed as follows. Given a vector of parameter values θ, I
calculate the non-stochastic steady state of the system, Css and Kss, based on Eqs. (2.49)–(2.50).
Given these values, I solve the model in (2.51) using perturbation methods. As a result, I obtain
values for the derivatives of the policy functions φ and π. Finally, I calculate the moments
(2.56)− (2.60) and obtain the value of the quasi-likelihood function at θ, using Algorithm (2.3.6).
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Monte Carlo Simulation Results

In this section, I test the filter using Monte Carlo methods. First, I simulate a sample path
of size T = 500 using the parameter values of Table 2.10. Then, using an order of M = 4,33 I
estimated the filtered series of k̂t and ât using two state-space models and the true parameter
values. The first representation is in Eqs. (2.54) and the second in Eqs. (2.62). The results are
shown in figure 2.8. We learn in this case, that the filtered series under both models provide
similar results; indeed, the correlation coefficient between both series is above 90%. To assess
the accuracy of both filters, I repeat the same exercise 500 times and keep track of the MSEs
of the state variables and their simulated counterparts, as well as for the simulated GDP and
consumption series. The results are displayed in Tables 2.11 and 2.12. Clearly, in this example,
the addition of a second observation equation does not improve the identification of the state
variables, since the average MSEs are higher in the second state-space representation.

For parameter estimation the results are different. As in the previous models, basic identifi-
cation exercises are performed. Sample paths of log-investment (k̂t) and random shocks (ât) are
simulated with T = 500 using the parameters of Table 2.10. As in the filtering exercise, the
degree of approximation of the quasi-likelihood function is M = 4. For each simulation, the
likelihood function of each of the state-space representations is evaluated numerically in the true
vector of parameter values except the one shown on the x-axis. The results are shown in Figure
2.9. The two figures on the left represent the quasi-likelihood function of the first state-space
representation, while the other figures were calculated with the second.

We learn from these exercises that the quasi-likelihood functions are continuous with respect
to the parameter values. This is an important advantage with respect to particle filters, since
standard numerical optimization methods can be applied for statistical inference. In addition, I
analyze the identification of the subjective discount factor, β, and the capital share, α. Flury
and Shephard (2011) present evidence of misidentification of these parameter values. However,
by adding a second observation equation, we learn that we can identify both parameter values,
as the quasi-likelihood function presents a concave shape. Moreover, the maximum is achieved
in a point very close to the true parameter value, which is represented by the vertical dotted
lines.

Finally, to provide more evidence of the accuracy of QML estimates, I simulate 100 inde-
pendent samples of T = 100 monthly returns with the parameters of Table 2.10. Based on the
second-order approximations of Schmitt-Grohe and Uribe (2004), I construct a quasi-likelihood
function for each of the two state-space representations with an order of approximation ofM = 4.
For each simulated series I maximize these quasi-likelihood functions using the true vector of

33The choice of M = 4 is due to the second-order approximation used to solve the policy function and the fact
that these filtering recursions involved first and second moments.

38



parameter values as starting point and obtain parameter estimates.34 The results are shown in
Table 2.13. The average estimate and the standard deviation of the estimates constructed with
the simulated series is reported in the table. In general, the standard deviation of the parameter
estimates of the second model is smaller than the standard deviation of the first set of parameter
estimates. Therefore, I confirm that including consumption as a second observation equation
helps to better identify the set of parameter values. Although the number of observations is
relatively small, in almost all cases the true parameter value differs from the average estimate by
less than two sample standard deviations. Finally, in the second model, the standard deviation
of the correlation coefficient estimates is relatively high. This finding is consistent with the
results of Flury and Shephard (2011), that show that the correlation coefficient estimates are not
well identified. Estimating the DSGE model is done in a spirit of demonstrating the workings
and capabilities of the Kalman filter with Taylor series rather than gaining any new insight on
model parameters.

2.6 Robustness Checks
In this section I discuss robustness checks for the filtering method with Taylor series approxima-
tions. In the first robustness check, I test the filter in one state-space representation commonly
used in the nonlinear filtering literature to illustrate the operation of the filter when systems are
highly nonlinear. As a second robustness check, I study the effect of dimensionality in the filter,
by studying a multivariate stochastic volatility model recently studied in Chib, Nardari, and
Shephard (2006) and Chib, Omori, and Asai (2009).

2.6.1 Highly Nonlinear Systems

The first example is a benchmark commonly used in the nonlinear filtering literature and
corresponds to the univariate nonstationary growth model from Gordon, Salmond, and Smith
(1993). The following nonlinear model is considered:

xt = 0.5xt−1 + 25xt−1(
1 + x2

t−1
) + 8 cos (1.2 (t− 1)) + wt, (2.63)

and
yt = x2

t

20 + vt, (2.64)

where wt and vt are zero-mean Gaussian white noise with variances 10 and 1, respectively.
34As a robustness check, the quasi-likelihood function was maximized numerically using different initial points

randomly chosen from the parameter space. Although the numerical results are similar to the ones obtained using
the true value as initial point, the correlation coefficient (ρ) is not well identified in a few of cases, as the estimate
is a corner solution. As documented by Rytchkov (2012), this issue can be corrected by including additional
observation equations or increasing the sample size.
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State-Space Representation and Implementation

Eqs. (2.63) and (2.64) define a state-space model with state variable xt. Both, the observation
and transition equations are clearly nonlinear. The observation equation is quadratic in xt; i.e.,
h (xt) = x2

t
20 , with a random noise vt with variance R ≡ 10. The transition equation is nonlinear

as well, defined by the function

g (x) = 0.5x+ 25x
(1 + x2) , (2.65)

with variance Q ≡ 1. The deterministic function in Eq. (2.63) is measurable at time t and is
incorporated in the filtering exercise as a known constant at the beginning of each time step.

To apply the Taylor series approximation, it is necessary to obtain the Taylor series expansion
of the functions h and g. However, a major complication occurs with the Taylor series of g,
since its Taylor series does not converge uniformly in the entire domain. As a result, Eq. (2.12)
does not hold. An alternative approach consists of applying Lemma 2.6.1; and obtain a power
series functions x/

(
1 + x2) , x/(1 + x2)2 and x2/(1 + x2)2 in terms of λ−1−x2

λ . With this new
representation, we can estimate the mean, variance and covariance necessary for the filtering
recursions.

Lemma 2.6.1 Let x ∈ R, |x| <
√

2λ− 1 where λ > 1
2 ; then

x

(1 + x2) =
∞∑
j=0

x

λ

(
λ− 1− x2

λ

)j
, (2.66)

x2

(1 + x2) =
∞∑
j=0

x2

λ

(
λ− 1− x2

λ

)j
(2.67)

and
x2

(1 + x2)2 =
∞∑
j=0

j

(
x

λ

)2
(
λ− 1− x2

λ

)j−1

. (2.68)

Proof See Appendix A.2.

From Lemma 2.6.1, we learn that to estimate the mean and variance of Eq. (2.65) we need
to estimate moments of the form

E

x
λ

(
λ− 1− x2

λ

)j , j = 0, 1, 2, ...M

E

x2

λ

(
λ− 1− x2

λ

)j , j = 0, 1, 2, ...M
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and

E

(x
λ

)2
(
λ− 1− x2

λ

)j−1
 , j = 1, 2, ...M

These moments can be calculated directly from the results of the first section for an order
of M = 20. Once the moments are calculated, λ has to be large enough to guarantee that the
estimation results converge.

Monte Carlo Simulation Results

Following Gordon, Salmond, and Smith (1993), I assume that the initial state is x0 = 0.1 and
simulate a realization of Eq. (2.63) of 50 time steps. The filters are initialized with a prior
distribution N (0, 2) . Figure 2.10a compares the filter with Taylor series approximations with
the true state estimates. The true state is represented by a star, the mean of the filter with
Taylor series is given as a solid line and the dashed lines give the 95% probability interval.35

In this case, none of the simulations exceeded the 95% intervals. Figure 2.10b compares the
same simulated series with the results obtained from the filter with Taylor series as well as the
ones obtained with the particle filter constructed with 1000 particles. The solid line gives the
filtered series based on the Taylor approximations, while the dashed line shows the estimate of
the particle filter. For this specific case, the correlation coefficient between the filtered series is
above 90%.

2.6.2 Multivariate Stochastic Volatility Models

As a robustness check to high-dimensional systems, I consider a multivariate stochastic volatility
model.36 Consider a p × 1 vector of asset log-returns yt = (y1t, ..., ypt)> with a constant
mean vector µ = (µ1, ..., µp)> and stochastic time-varying variance covariance matrix Vt. More
specifically, the vector yt is specified as

yt |ht ∼ N (µ, Vt) , t = 1, ..., n, (2.69)

where ht is a scalar or a vector stochastic process. The variance matrix Vt is a function of ht. In
this case, the latent variables ht are modeled as an autoregressive process of order one. It is
also assumed that the variance–covariance matrix can be decomposed by Vt = DΣ2

tD
>, where

the matrix D is a lower unity triangular matrix. This is the Cholesky decomposition with a
diagonal matrix Σ2

t that is time-varying according to the stochastic process ht. In this case both
the variances and correlations implied by Vt are time-varying. The resulting multivariate SV

35This interval is constructed using the 2.5 and 97.5 percentiles of the normal distribution.
36See Chib, Omori, and Asai (2009) and Asai, McAleer, and Yu (2006) for comprehensive reviews of multivariate

stochastic volatility models.
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model based on this decomposition is given by

yt = µ+DΣtεt, εt ∼ N (0, I) , (2.70)

ht+1 = γ + Φht + ηt, ηt ∼ N (0,Ση) ,

where Σt = exp
(

1
2diag (ht)

)
and D can be regarded as a nonsingular load matrix. The model

is a special case of the class of multivariate SV models that was originally proposed by Harvey,
Ruiz, and Shephard (1994) and Shephard (1996) and further extended by Chib, Nardari, and
Shephard (2006).

State-Space Representation and Implementation

For easiness of exposition, I assume that yt is a two-dimensional vector of demeaned returns.37

As a result, the representation is of the form

[
y1t

y2t

]
=
[
D11 0
D21 D22

] exp
(
h1t
2

)
ε1t

exp
(
h2t
2

)
ε2t

 , [
ε1t

ε2t

]
∼ N (0, I2) , (2.71)

where [
h1t+1

h2t+1

]
=
[

Φ11 0
0 Φ22

] [
h1t

h2t

]
+
[
η1t

η2t

]
,

[
η1t

η2t

]
∼ N (0,Ση) . (2.72)

For simplification purposes, I represent the system in Eqs. (2.71) and (2.72) in terms of the
vector of state variables, xt = [x1t, x2t, x3t, x4t, x5t, x6t]> = [h1t, η1t, ε1t, h2t, η2t, ε2t] . Therefore,
the observation equations become[

y1t

y2t

]
=
[
D11 0
D21 D22

] [
exp

(x1t
2
)
x3t

exp
(x4t

2
)
x6t

]
. (2.73)

The four-dimensional vector of state variables evolves according to the following:

x1t

x2t

x3t

x4t

x5t

x6t


=



Φ11 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 Φ22 1 0
0 0 0 0 0 0
0 0 0 0 0 0





x1t−1

x2t−1

x3t−1

x4t−1

x5t−1

x6t−1


+ Γ


η1t

ε1t

η2t

ε2t

 ,

η1t

ε1t

η2t

ε2t

 ∼ N (0, Q) , (2.74)

where
37An observational equivalent model is obtained by setting γ = 0 and D as a lower triangular matrix with

nonzero values on its leading diagonal.
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Q =


σ11 0 σ12 0
0 1 0 0
σ12 0 σ22 0
0 0 0 1


and

Γ> =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

Clearly, from Eq. (2.74), we learn that the system has a linear transition equation; i.e.,
g(xt) = Φ · xt, with covariance matrix Q. In this case, the noise vector of the observation
equation is assumed to be identically zero; therefore, the covariance of the observation matrix
is zero (i.e., R ≡ 0). However, this representation is flexible enough and can be extended to a
more general correlation structure between the innovations of the state and transition equations.
The vector of observation equations, h (xt) = [h1 (xt) , h2 (xt)]> , is represented by Eqs. (2.73).
Although, the moments involved in the filtering recursions have closed-form expressions, the
Taylor approximations can be implemented.

As in the one-dimensional case, by modeling the product of the observation Eqs. (2.73),
we can perform better moment identification. As a result, I include three more observation
equations to the vector of observables:

y3t = y2
1t = D2

11e
2x1tx2

3t, (2.75)

y4t = y2
2t = (D21e

x1tx3t +D22e
x2tx4t)2 ,

y5t = y1t · y2t = D11
(
D21e

2x1tx2
3t +D22e

x1t+x2tx3tx4t
)
.

The first two equations in 2.75 follow from the one-dimensional case. Moreover, I include
the third observation equation for robustness. The overall system has five nonlinear observation
equations, given by Eqs. (2.73) and (2.75), and six state variables that satisfy the law of
motion in Eq. (2.74). The filtering exercise is performed with an order of approximation
M = 8. However, closed-form expressions for means and covariances can be calculated directly
by applying the results shown in Appendix 2.3.2.

Monte Carlo Simulation Results

To test the quality of the approximation, I simulate a random path of log-volatilities and shocks
with T = 100, using the parameters from Jungbacker and Koopman (2006) presented in Table
2.14. The results are shown in Figures 2.11a and 2.11b. We learn from this implementation
that the filter with Taylor series provides similar estimates to the particle filter. Surprisingly,
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the filter with Taylor series provides results as accurate as the standard particle filter. For this
random simulation, the correlation between the filtered series with Taylor expansions and the
ones with particle filters is above 90%.

2.7 Concluding Remarks
In this chapter, I propose a nonlinear filter based on Taylor series approximations, which is based
on efficient calculation of derivatives and can be applied for state and parameter estimation.
My results suggest that filtering methods via the Taylor series filter are superior to conventional
methods such as the EKF or the UKF. I also find that the filter with Taylor approximations is
as accurate as the standard particle filter and at least twenty times faster than conventional
Monte Carlo filters.

I test the filter in a number of models such as univariate and multivariate stochastic volatility
models, a risk-return model, a dynamic stochastic general equilibrium model and a highly
nonlinear filter. My findings suggest that the filter with Taylor approximations provides accurate
results for both state and parameter estimation. The filter provides accurate estimates in high-
dimensional and nonlinear systems. The time efficiency is comparable to the low-dimensional
case, in which some applications are at least twenty times faster than standard particle filters.

I also find that by adding more observation equations to the state-space model, such as
the squared value of the current observation equation, the unobserved states can be better
identified. With this augmented state-space model, the filtered estimates are comparable with
those obtained via standard particle filters. The filter with Taylor series can be applied for
inference purposes since a quasi-likelihood function is obtained with the filtering recursions. In
all the examples in this chapter, I find continuous quasi-likelihood functions with respect to the
parameter values and conventional methods for numerical optimization can be applied for their
estimation. The efficiency of the state estimation can be used for parameter estimation.

Finally, the filter with Taylor series approximations can be applied to a more general class of
models by combining its analytical tractability with Monte Carlo methods, via Rao-Blackwellised
filters. By combining these techniques, the density of the filter with Taylor approximations can
provide accurate estimates of the true density of the filter, up to a normalization constant.

Although the filters provide accurate results for a number problems, some care should
be taken in the modeling and implementation. Some limitations arise when the function to
be approximated is non-differentiable or the Taylor series approximations are not uniformly
convergent. One approach to circumvent this issue is by taking the Taylor series in another
center of expansion or by changing the scale of the state variables. The results can be extended
to non-differentiable functions, as long as the function can be approximated with a power series.
Another shortcoming is that significant work has to be done to include the correct observation
equation within the estimation process.
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2.8 Figures and Tables
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(a) Stochastic Volatility Model 1
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(b) Stochastic Volatility Model 2
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(c) Stochastic Volatility Models 1 and 2
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(d) Stochastic Volatility Model 2:
Comparison

Figure 2.1. Stochastic Volatility Model: Filter Performance.
This figure compares a simulated time series of 500 observations for the standard stochastic volatility
model with its filtered values. The filtered estimates in the two figures on top were calculated using a
fifth-order of approximation and an infinite order of approximation (Gaussian filters). The parameter
values used for the simulation as well as for the filtered estimates are φ = 0.98, σε = 0.1414, σ = 1 and
ρ = −0.5.
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(a) Stochastic Volatility Model: φ

0 0.05 0.1 0.15 0.2 0.25 0.3
−1100

−1050

−1000

−950

−900

−850

−800

−750

−700

σε

 

 

EKF
UKF
Fifth−Order
Gaussian

(b) Stochastic Volatility Model: σε
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(c) Stochastic Volatility Model: σ
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(d) Stochastic Volatility Model: ρ

Figure 2.2. Stochastic Volatility Model: Quasi-Likelihood Contours
This figure plots the quasi-likelihood function of a standard stochastic volatility model for different sets
of parameter vectors. The plots show the quasi-log-likelihood function of the data for different values of
φ (top left), σε (top right), σ (bottom right) and ρ (bottom left). The vertical dashed lines represent the
parameter values that were used to simulate the data.
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(a) Different Observation Equations:
log-Expected Returns
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(b) Different Observation Equations:
log-Volatility
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(c) Risk-Return Model: log-Expected
Returns
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(d) Risk-Return Model: log-Volatility

Figure 2.3. Risk-Return Model: Filter Performance
This figure plots the filtered series of a random draw of T = 100 returns simulated from the model by
Brandt and Kang (2004). The parameters used for the simulation are a11 = 0.8589, a21 = −0.0531,
a12 = 0.1081, a22 = 0.9237,b11 = 0.0076,b22 = 0.0554 and ρ = −0.6345.
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Figure 2.4. Risk-Return Model: Order of Approximation
This figure plots the quasi-likelihood function of a random simulation of the model by Brandt and Kang
(2004) evaluated with the parameter values a11 = 0.8589, a21 = −0.0531, a12 = 0.1081, a22 = 0.9237,
b11 = 0.0076, b22 = 0.0554 and ρ = −0.6345. The plot displays the values of the quasi-likelihood function
for different orders of approximation, M = 1, 2, ..., 15 (asterisks). The continuous lines represent the
quasi-likelihood functions constructed with the UKF and the Gaussian filters.
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(a) Risk-Return Model: a11
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(d) Risk-Return Model: a22

Figure 2.5. Risk-Return Model: Quasi-Likelihood Contours
This figure plots the quasi-likelihood function of a random draw of T = 5000 returns simulated from
the model by Brandt and Kang (2004). The parameters used for the simulation are a11 = 0.8589,
a21 = −0.0531, a12 = 0.1081, a22 = 0.9237, b11 = 0.0076, b22 = 0.0554 and ρ = −0.6345.
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(a) Risk-Return Model: b11
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(b) Risk-Return Model: b22
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(c) Risk-Return Model: ρ

Figure 2.6. Risk-Return Model: Quasi-Likelihood Contours (Cont.)
This figure plots the quasi-likelihood function of a random draw of T = 5000 returns simulated from
the model by Brandt and Kang (2004). The parameters used for the simulation are a11 = 0.8589,
a21 = −0.0531, a12 = 0.1081, a22 = 0.9237, b11 = 0.0076, b22 = 0.0554 and ρ = −0.6345.
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(b) Short Rate

Figure 2.7. Risk-Return Model: Data
This figure plots the monthly returns on the value weighted CRSP index as well as the short rate from
January 1946 through December 2011.
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Figure 2.8. DSGE Model: Filter Performance
This figure plots the filtered estimates of the state variables evaluated in a simulated sample path of size
T = 500 with the parameter values β = 0.95, δ = 0.15, α = 0.30, ρ = 0.90,γ = 3,σy = 0.30 and σε = 0.2.
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(c) QL function α: Model 1
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Figure 2.9. DSGE Model: Quasi-Likelihood Contours
This figure plots the quasi-likelihood function evaluated at a sample path of size T = 500 with parameter
values β = 0.95, δ = 0.15, α = 0.30, ρ = 0.90,γ = 3,σy = 0.30 and σε = 0.2.
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Figure 2.10. Nonlinear Model: Filter Performance
This figure plots the filtered series of the nonlinear model by Gordon, Salmond, and Smith (1993).
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(a) Filter Performance: first log-volatility process (h1,t)
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(b) Filter Performance: second log-volatility process (h2,t)

Figure 2.11. Multivariate Stochastic Volatility Model: Filter Performance
This figure plots the filtered series of the multivariate version of the stochastic volatility model by Chib,
Nardari, and Shephard (2006).
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Table 2.1. Stochastic Volatility Model (One Observation Equation):
Simulation Results

Filtering Method MSE (log σ2
t ) MSE (yt)

Average Std. Dev. Average Std. Dev.

EKF 0.3450 0.1529 1.3100 0.4688

UKF 0.3430 0.1406 1.3122 0.4626

TKF (2) 0.3321 0.1289 1.3108 0.4630

TKF (3) 0.3321 0.1289 1.3108 0.4630

TKF (4) 0.3366 0.1400 1.3111 0.4630

TKF (5) 0.3366 0.1400 1.3111 0.4630

TKF (6) 0.3412 0.1436 1.3111 0.4630

TKF (7) 0.3412 0.1436 1.3111 0.4630

TKF (8) 0.3424 0.1444 1.3111 0.4630

TKF (9) 0.3424 0.1444 1.3111 0.4630

TKF (10) 0.3426 0.1445 1.3111 0.4630

TKF (11) 0.3426 0.1445 1.3111 0.4630

TKF (12) 0.3426 0.1445 1.3111 0.4630

Gaussian Filter 0.3426 0.1445 1.3111 0.4630

Particle Filter 0.1691 0.0416 0.7439 0.2597

Monte Carlo simulation results. This table presents the mean and variance of the MSEs between
the simulated and the filtered values of the log-volatility (log σ2

t ) process and the observable (yt) of the
standard stochastic volatility model:

yt = ηt · σt
log σ2

t = (1− φ) log σ2 + φ log σ2
t−1 + εt, εt ∼ N

(
0, σ2

ε

)
,

The results are based on 500 independent samples of T = 500 simulated from the model with the
parameters φ = 0.98, σε = 0.1414, σ = 1 and ρ = −0.5 .
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Table 2.2. Stochastic Volatility Model (Two Observation Equations):
Simulation Results

Filtering Method MSE (log σ2
t ) MSE (yt)

Average Std. Dev. Average Std. Dev.

EKF 0.3649 0.1654 1.2693 0.4077

UKF 0.2675 0.1022 1.3073 0.4651

TKF (2) 0.6084 0.4301 1.3314 0.5509

TKF (3) 0.6084 0.4301 1.3314 0.5509

TKF (4) 0.4047 0.3116 1.3120 0.4718

TKF (5) 0.4047 0.3116 1.3120 0.4718

TKF (6) 0.1805 0.0450 1.3073 0.4647

TKF (7) 0.1805 0.0450 1.3073 0.4647

TKF (8) 0.1658 0.0376 1.3073 0.4647

TKF (9) 0.1658 0.0376 1.3073 0.4647

TKF (10) 0.1636 0.0367 1.3073 0.4647

TKF (11) 0.1636 0.0367 1.3073 0.4647

TKF (12) 0.1632 0.0365 1.3073 0.4647

Gaussian Filter 0.1632 0.0365 1.3073 0.4647

Particle Filter 0.1691 0.0416 0.7439 0.2597

Monte Carlo simulation results. This table presents the mean and variance of the MSEs between
the simulated and the filtered values of the log-volatility (log σ2

t ) process and the observables (y1,t, y2,t)
of the standard stochastic volatility model:

y1,t = ηt · σt
y2,t = η2

t · σ2
t

log σ2
t = (1− φ) log σ2 + φ log σ2

t−1 + εt, εt ∼ N
(
0, σ2

ε

)
,

The results are based on 500 independent samples of T = 500 simulated from the model with the
parameters φ = 0.98, σε = 0.1414, σ = 1 and ρ = −0.5 .
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Table 2.3. Stochastic Volatility Model: CPU Time

Filtering Method Model 1 Model 2

Average Std. Dev. Average Std. Dev.

EKF 0.0292 0.0049 0.0827 0.0126

UKF 0.0848 0.0076 0.1110 0.0075

TKF (2) 0.1664 0.0152 0.3234 0.0221

TKF (3) 0.2577 0.0246 0.4306 0.0342

TKF (4) 0.3804 0.0209 0.5483 0.0292

TKF (5) 0.6027 0.0785 0.7828 0.1000

TKF (6) 0.8498 0.0650 1.0252 0.0650

TKF (7) 1.1805 0.0519 1.3624 0.0534

TKF (8) 1.6703 0.1242 1.8646 0.1449

TKF (9) 2.6574 0.2697 2.9169 0.3152

TKF (10) 3.1050 0.2253 3.3022 0.2256

TKF (11) 3.5978 0.0939 3.7845 0.0983

TKF (12) 4.4738 0.0819 4.6712 0.0888

Gaussian Filter 0.0318 0.0028 0.0412 0.0037

Particle Filter 17.8776 0.2131 17.8776 0.2131

CPU time. This table presents the CPU time that a standard computer takes in seconds to compute
the filtered values of the log-volatility (log σ2

t ) process. The second and third columns contain the mean
and standard deviation of the CPU time in seconds for a model with one observable. The fourth and
fifth column are the mean and standard deviation of the CPU time in seconds for a model with two
observables. The results are based on 500 independent samples of T = 500 simulated from the model
with the parameters φ = 0.98, σε = 0.1414, σ = 1 and ρ = −0.5 .

58



Table 2.4. Stochastic Volatility Model: Quasi-Maximum Likelihood
Estimation Results

Filtering Method
Parameters

φ σε σ ρ
0.9800 0.1414 1.0000 -0.5000

EKF 0.9348 0.1491 1.2402 -0.3598
(0.1454) (0.0701) (0.4162) (0.4479)

UKF 0.9287 0.1614 1.2926 -0.4383
(0.1258) (0.1050) (0.4539) (0.4656)

TKF (3) 0.9241 0.1601 1.2926 -0.4805
(0.1698) (0.1012) (0.4277) (0.4663)

TKF (5) 0.9292 0.1753 0.966 -0.4663
(0.2085) (0.1030) (0.3975) (0.4353)

TKF (7) 0.9564 0.1781 0.8502 -0.4852
(0.0693) (0.1035) (0.4103) (0.4091)

TKF (9) 0.9405 0.1907 0.8358 -0.4418
(0.1629) (0.1013) (0.5483) (0.3999)

Gaussian Filter 0.9550 0.1542 0.9147 -0.5393
(0.0820) (0.0899) (0.4263) (0.3840)

Finite sample properties of the QML estimator. This table presents the sample mean and
standard deviation in parentheses of the QML estimates of the model:

yt = ηt · σt
log σ2

t = (1− φ) log σ2 + φ log σ2
t−1 + εt, εt ∼ N

(
0, σ2

ε

)
,

The results are based on 250 independent samples of T = 500 simulated from the model with parameters
in the first row.
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Table 2.5. Stochastic Volatility Model: Descriptive Statistics

Monthly Consumption Growth

Mean 0.0013
Std. Dev. 0.0036
Max 0.0140
Min -0.0191
Median 0.0014
Skewness -0.4148
Kurtosis 5.6120
Autocorrelation
1-month -0.1869
6-month 0.0688
12-month -0.0242
24-month -0.0955

Descriptive statistics. This table presents descriptive statistics of monthly log-consumption growth
on the monthly real consumption series per capita for nondurables and services from January 1959 to
March 2012. The series was obtained from the Real-Time Data Set for Macroeconomists from the Federal
Reserve Bank of Philadelphia.
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Table 2.6. Stochastic Volatility Model: Parameter Estimates

Filtering Method
Parameters

φ σε σ ρ µC

EKF 0.9575 0.2997 0.1591 0.9991 0.0014
(0.0862) (0.8654) (0.2196) (2.5046) (0.0002)

UKF 0.9623 0.0198 0.0035 0.9983 0.0012
(0.0616) (0.0508) (0.0012) (0.0004) (0.0027)

TKF (3) 0.9623 0.0221 0.0035 0.8923 0.0012
(0.0287) (0.0218) (0.0007) (0.0005) (0.0012)

TKF (5) 0.9626 0.0266 0.0035 0.7436 0.0012
(0.0724) (0.0465) (0.0006) (0.0007) (0.0014)

TKF (7) 0.9627 0.0216 0.0035 0.9179 0.0012
(0.0203) (0.0332) (0.0006) (0.0045) (0.0018)

TKF (9) 0.9627 0.0228 0.0035 0.8683 0.0012
(0.0446) (0.0297) (0.0005) (0.0003) (0.0011)

TKF (11) 0.9626 0.0336 0.0035 0.5867 0.0012
(0.0204) (0.0146) (0.0002) (0.0008) (0.0002)

Gaussian Filter 0.9626 0.0353 0.0035 0.5574 0.0012
(0.0205) (0.0160) (0.0001) (0.0006) (0.0002)

Estimation results. This table presents the QML estimates of the model

∆ ln(Ct+1)− µc = σ exp
(st

2

)
· ηt+1

st+1 = φst + εt+1, εt ∼ N
(
0, σ2

ε

)
,

The estimates are for monthly real consumption growth on the monthly series from the Federal Reserve
Bank of Philadelphia from January 1959 to March 2012. Each row contains the estimates under
the filtering techniques based on different orders of approximation. Standard errors are reported in
parentheses.
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Table 2.7. Risk-Return Model: Quasi-Maximum Likelihood Estimation
Results

Parameters

Model A Model B

True Average Std. True Average Std.
Value Dev. Value Dev.

a11 0.8589 0.9111 0.1158 0.8313 0.8277 0.2100
a21 -0.0529 -0.0099 0.0983 -0.0211 -0.0377 0.2350
a12 0.1084 0.3474 0.3015 0.1168 0.3771 0.3617
a22 0.9226 0.8792 0.1273 0.9110 0.8181 0.2125
b11 0.0076 0.0033 0.0070 0.0064 0.0031 0.0081
b22 0.0553 0.0347 0.0375 0.0561 0.0812 0.0112
ρ -0.6336 0.1687 0.8037 -0.4577 -0.0018 0.5760
µ 0.0067 0.0067 0.0016 0.0065 0.0067 0.0015
σ 0.0418 0.0523 0.0046 0.0385 0.0524 0.0045
ρµ - - - -0.0866 0.1154 0.7475
ρσ - - - - - -

Parameters
Model C Model D

True Average Std. True Average Std.
Value Dev. Value Dev.

a11 0.8658 0.7841 0.2581 0.8677 0.8037 0.2501
a21 -0.0885 -0.0259 0.2425 -0.1292 -0.1065 0.2374
a12 0.0861 0.3229 0.2872 0.0947 0.3121 0.3052
a22 0.8973 0.8727 0.1687 0.9086 0.8540 0.1880
b11 0.0060 0.0065 0.0078 0.0047 0.0044 0.0069
b22 0.0614 0.0104 0.0268 0.0591 0.0338 0.0755
ρ -0.5584 -0.0211 0.5872 -0.5621 0.0036 0.6259
µ 0.0062 0.0063 0.0014 0.0062 0.0063 0.0014
σ 0.0382 0.0506 0.0035 0.0382 0.0508 0.0034
ρµ - - - -0.0517 0.1438 0.7477
ρσ -0.2541 -0.6629 0.3716 -0.2430 -0.5841 0.4675

Estimation results. This table describes the sampling distribution of the QML estimates of the model:

yt = µ exp (x1t) + σ exp (x2t)x3t,

xt = Ãxt−1 + Γwt with wt ∼ N (0,Σ) ,

where

Ã =


0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 a11 a12
0 0 0 a21 a22

 , Γ =


0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

 and Σ =

 1 ρµ
√
b11 ρσ

√
b22

ρµ
√
b11 b11 ρ

√
b11b22

ρσ
√
b22 ρ

√
b11b22 b22

 .
The results are based on 500 independent samples of T = 792 returns simulated from the model with the
parameters displayed in the first column.
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Table 2.8. Risk-Return Model: Descriptive Statistics

Market Index Short rate

Mean 0.0083 0.0036
Std. dev. 0.0435 0.0025

Max 0.1532 0.0134
Min -0.2554 0.0000

Median 0.0127 0.0034
Skewness -0.7680 0.9463
Kurtosis 5.6443 4.2273

Autocorrelation
1-month 0.0908 0.9684
6-month -0.0556 0.8907

12-month 0.0348 0.8080
24-month -0.0008 0.6327

Descriptive statistics. This table presents descriptive statistics of monthly log-returns on the value-
weighted CRSP index and the short rate from January 1946 to December 2011. The short rate is the
yield on a one-month Treasury bill.
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Table 2.9. Risk-Return Model: Parameter Estimates

Parameters
Model A Model B

Estimate Std. Error Estimate Std. Error

a11 0.9436 0.0662 0.9586 0.0161
a21 -0.0778 0.1146 -0.0285 0.0065
a12 0.3799 0.1171 0.3054 0.0253
a22 0.7317 0.1298 0.8750 0.0001
b11 0.1684 0.0296 0.1739 0.0015
b22 0.0002 0.0316 0.0024 0.0015
ρ -0.1306 0.0091 -0.9000 0.0014
µ 0.0047 0.0165 0.0047 0.0012
σ 0.0434 0.0070 0.0437 0.0002
ρµ - - -0.6642 0.0170
ρσ - - - -
L 1366.23 1373.35

Parameters
Model C Model D

Estimate Std. Error Estimate Std. Error

a11 0.9999 0.0355 0.9927 0.0859
a21 -0.0202 0.0232 -0.0135 0.0000
a12 0.2873 0.0261 0.6779 0.0067
a22 0.8576 0.0495 0.8523 0.0464
b11 0.0474 0.0762 0.0615 0.0074
b22 0.0054 0.0019 0.0053 0.0277
ρ -0.8999 0.0133 -0.8897 0.0034
µ 0.0046 0.0011 0.0047 0.0035
σ 0.0440 0.0211 0.0436 0.0002
ρµ - - -0.1902 0.0135
ρσ -0.9000 0.0002 -0.8942 0.0203
L 1388.43 1395.5

Estimation results. This table describes presents the QML estimates of the model:

yt = µ exp (x1t) + σ exp (x2t)x3t,

xt = Ãxt−1 + Γwt with wt ∼ N (0,Σ) ,

where

Ã =


0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 a11 a12
0 0 0 a21 a22

 , Γ =


0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

 and Σ =

 1 ρµ
√
b11 ρσ

√
b22

ρµ
√
b11 b11 ρ

√
b11b22

ρσ
√
b22 ρ

√
b11b22 b22

 .
The estimates are for quarterly returns on the value-weighted CRSP index in excess of the one-month
Treasury bill from the January 1953 to December 2011.
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Table 2.10. DSGE Model: Parameter Values

Parameter β δ α ρ γ σy σA σc

Value 0.95 0.15 0.30 0.90 3.00 0.10 0.10 0.15

Parameter values. This table contains the parameter values used to analyze the dynamic stochastic
general equilibrium model. The parameters are indicated in the first row. The values, used for simulating
the series, are given in the second row.

Table 2.11. DSGE Model (One Equation): Simulation Results

State-Space Model 1

MSE(k̂t) MSE (ât) MSE (ĜDP t)

Average 0.0855 0.0133 0.0582
Std. Dev. 0.0284 0.0026 0.0039

State estimation results. This table presents the mean and variance of the MSEs between the
simulated and the filtered values of the log-investment (k̂t), the random shocks (ât) and the observable
detrended gross domestic product per capita (ĜDP t). The state-space representation implied by the
DSGE model is

ĜDP t = αk̂t + ât + vy,t, vy,t ∼ N
(
0, σ2

y

)
,

k̂t+1 = φkk̂t + φaât + 1
2

(
φkkk̂

2
t + 2φakâtk̂t + φaaâ

2
t

)
+ 1

2φχχχ
2,

ât+1 = ρât + εt+1.

The results are based on 500 independent samples of T = 500 simulated from the model with parameters
shown in Table 2.10 and a perturbation parameter χ = 0.10.
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Table 2.12. DSGE Model (Two Equations): Simulation Results

State-Space Model 2

MSE(k̂t) MSE (ât) MSE (ĜDP t) MSE (Ĉt)

Average 0.1108 0.0185 0.0722 0.0433
Std. Dev. 0.1471 0.0159 0.0291 0.0423

State estimation results. This table presents the mean and variance of the MSEs between the
simulated and the filtered values of the log-investment (k̂t), the random shocks (ât), the observables are
the detrended gross domestic product per capita (ĜDP t) and consumption per capita (Ĉt). The
state-space representation implied by the DSGE model is

ĜDP t = αk̂t + ât + vy,t, vy,t ∼ N
(
0, σ2

y

)
,

C̃t = πkk̂t + πaât + 1
2

(
πkkk̂

2
t + 2πakâtk̂t + πaaâ

2
t

)
+ 1

2πχχχ
2 + vc,t, vc,t ∼ N

(
0, σ2

c

)
k̂t+1 = φkk̂t + φaât + 1

2

(
φkkk̂

2
t + 2φakâtk̂t + φaaâ

2
t

)
+ 1

2φχχχ
2,

ât+1 = ρât + εt+1.

The results are based on 500 independent samples of T = 500 simulated from the model with parameters
shown in Table 2.10 and a perturbation parameter χ = 0.10.
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Table 2.13. DSGE Model: Estimation Results

Parameter True Value Model 1 Model 2

Average Std. Dev. Average Std. Dev

β 0.9500 0.8946 0.0937 0.9835 0.0207
δ 0.1500 0.1965 0.0803 0.1146 0.0307
α 0.3000 0.3990 0.2475 0.4529 0.1203
ρ 0.9000 0.7319 0.1207 0.6687 0.1070
γ 3.0000 5.1245 3.1691 2.3750 1.2033
σy 0.1000 0.0686 0.0410 0.0904 0.0376
σA 0.1000 0.1018 0.0289 0.1226 0.0298
σc 0.1500 - - 0.1631 0.0210

Estimation results. This table describes the sampling distribution of the Quasi-maximum likelihood
of the model:

ĜDP t = αk̂t + ât + vy,t, vy,t ∼ N
(
0, σ2

y

)
,

C̃t = πkk̂t + πaât + 1
2

(
πkkk̂

2
t + 2πakâtk̂t + πaaâ

2
t

)
+ 1

2πχχχ
2 + vc,t, vc,t ∼ N

(
0, σ2

c

)
k̂t+1 = φkk̂t + φaât + 1

2

(
φkkk̂

2
t + 2φakâtk̂t + φaaâ

2
t

)
+ 1

2φχχχ
2,

ât+1 = ρât + εt+1.

Model 1 corresponds to the state-space model with the first observation equation only, while Model 2 is
the model with two observation equations. The parameters β, δ, α, ρ, γ,σy,σA and σC are used as an
input to solve a DSGE model with second-order approximations as in Schmitt-Grohe and Uribe (2004).
The coefficients πk, πa, πkk, πak,πaa,πσσ,φk, φa, φkk, φak,φaa and φχχ, are the numerical values of these
approximations. Finally, the perturbation parameter is χ = 0.10.

Table 2.14. Multivariate Stochastic Volatility Model: Parameter Values

Parameter Φ11 Φ22 Σ11 Σ21 Σ22 D11 D21 D22

Value 0.9639 0.9128 0.0415 0.0349 0.1165 0.6077 -0.5095 0.3694

Parameter values. This table displays the parameter values of the multivariate stochastic volatility
model with time-varying variances and correlations. The coefficients are indicated in the first row. The
true parameter values, used for simulating the series, are given in the second row.
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Chapter 3

On the Volatility of the Market
Sharpe Ratio

3.1 Introduction

The Sharpe ratio measures the excess return of an investment relative to its standard deviation.
Most leading consumption-based asset pricing theories imply a relatively stable market Sharpe
ratio. However, empirical evidence suggests that there is more variability in the Sharpe ratio
than standard models account for. Recently, Lettau and Ludvigson (2010) suggest that the
finance literature should address this "Sharpe ratio variability puzzle." They document that
the empirical standard deviation of the estimated Sharpe ratio is about 47% per quarter. In
contrast, a quarterly calibration of the standard Campbell and Cochrane (1999) model produces
a substantially lower volatility of 9%. In turn, Chien, Cole, and Lustig (2012) suggest that
passive investors’ infrequent rebalancing explains the high variability of market Sharpe ratios.

In this chapter, I examine whether estimates of the variability of the Sharpe ratio might
be biased due to limitations of the empirical methodology used in estimation. In particular, I
show that measurement error in estimated Sharpe ratios may help to explain the Sharpe ratio
volatility puzzle. To do this, I simulate data from a standard calibration of the Bansal and
Yaron (2004) long-run risks (LRR) model. Following practice common in the literature, I then
estimate Sharpe ratios using ordinary least squares (OLS) methods to infer the variability of
the model-generated Sharpe ratios. OLS methods lead to estimates of Sharpe ratio volatility of
approximately 18%, even though the true variability of the model-implied Sharpe ratio is only
3%. The difference in estimates is due to measurement error induced by the standard Sharpe
ratio estimation methodology.

Once I have documented the difference between the Sharpe ratio’s estimated and true
volatility, I study whether improved empirical methodologies might better account for the true
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variability of the Sharpe ratio. In particular, I implement filtering methods, which are statistical
tools that recover unobservable state variables using measurements that are observed with
noise. These techniques are flexible enough to allow the econometrician to perform statistical
inference based on time-varying information observed with measurement error. Moreover, the
modeling representation is general enough to include time varying information as well as flexible
correlation structures and errors in variables.38

I use two different exercises to show the limitations of OLS methods. First, I run a controlled
experiment in which I have full information of the data–generating process of stock returns, state
variable dynamics and parameter values. I use simulated data from the LRR model as calibrated
by Bansal and Yaron (2004) to estimate conditional means, variances and Sharpe ratios. The
use of artificial data from a fully specified economy is important because it allows the economic
reasons that drive the variation in Sharpe ratios to be isolated. Moreover, information about
model specification and state-variable dynamics is incorporated within the filtering estimation
procedure. Furthermore, the tractability of the LRR model allows data to be simulated with
relative ease.

I then implement two econometric techniques: I run standard OLS regressions and then
I apply filtering techniques. I compare both sets of results with the closed-form expressions
implied by the LRR model as a benchmark. My results show that the Sharpe ratios based on
standard OLS methods are more volatile than the estimates obtained with filtering techniques.
Moreover, the volatility estimates obtained via filtering differ from the true value by less than
1%, which is a significant improvement over OLS estimates. The main driver of this result is
the use of conditioning information within the estimation process.

There are a number of reasons why a filtering approach can improve upon predictive
regressions to estimate expected returns and conditional volatilities. First, filtering explicitly
acknowledges that both expected returns and volatilities are time varying. Filtering techniques
aggregate the entire history of realized returns parsimoniously; in contrast, predictive regressions
use lagged predictors to form estimates of expected returns and volatilities. Instead of adding
lags to a vector autorregressive (VAR) model, which would increase the number of parameters to
be estimated, a latent variable approach such as filtering incorporates the information contained
in the history of observed returns. Moreover, filtering techniques are flexible enough to be used
with large information sets without relying on additional instruments that may be misspecified
(Ferson, Sarkissian, and Simin, 2003). Finally, filtering is more robust to structural breaks than
are OLS techniques (Rytchkov, 2012), since it is insensitive to robust shifts in relations over the
long run. For example, in the predictability literature, a substantial shift in the dividend-price
ratio destroys its forecasting power.39 Also, robustness to structural breaks makes the filtering

38See Hamilton (1994); Kim and Nelson (1999) and Doucet, de Freitas, Gordon, and Smith (2001) for an
introduction to filtering methods. Crisan and Rozovskii (2011) provide a more recent literature review in nonlinear
filtering methods.

39See Lettau and Van Nieuwerburgh (2008) for a detailed explanation.
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approach more valuable from an ex-ante point of view, when it is unclear whether structural
breaks will occur.

The standard method used in the literature to estimate Sharpe ratios is to use fitted
moments from first-stage predictive regressions as proxies for the unobserved conditional mean
and volatility. Such a technique has some important drawbacks. First, the dynamics of the
conditional mean and volatility are determined by the joint conditional distribution of the
first-stage predictors. Thus, with any model misspecification, such as omitted variables, the
dynamics of the fitted moments would not necessarily correspond to the dynamics of the true
moments. In addition, even if the predictive models for the conditional mean and volatility are
well specified, the effect of errors in variables, which are induced by the first-stage regressions, is
not trivial to quantify in a VAR model.

Simulating data of stock returns by means of theoretical models is a powerful tool because
the economic reasons that drive the simulated time-series variation are fully identified. However,
theoretical models are abstractions, and by definition misspecified. An alternative form of
analyzing stock returns is via reduced form models, which are statistical representations that do
not impose any economic structure and thus aim to better describe historical data. To infer
Sharpe ratios and their variability from the data, I conduct a second exercise based on the
reduced form model by Brandt and Kang (2004). In this model, expected returns and volatilities
are estimated as latent variables and identified from the history of returns. The main advantage
of this approach is that it does not rely on prespecified predictors and is not subject to errors
in variables or model misspecification. I apply the filtering techniques described in Chapter 2
to estimate the parameters of the model and to extract estimates of conditional moments of
returns as well as conditional Sharpe ratios. As a result, my estimate for quarterly Sharpe ratio
volatility using the reduced form model is in the order of 5% to 10%, whereas my estimate for
the quarterly Sharpe ratio volatility using the OLS methods is 42%.

Consistent with the results of the simulation exercise, I find that conditioning information
drives the results above. Reduced form models do not rely on predetermined conditioning
variables to estimate conditional moments: The state variables are identified from the history of
returns. Standard OLS techniques generate fitted moments from a set of predictive regressions
as proxies for the unobservable conditional mean and volatility. The fitted moments depend
on the joint distribution of these predictors. Consequently, any model misspecification would
generate fitted moments that do not correspond to the true dynamics of the conditional mean
and volatility, and thus, the dynamics of the Sharpe ratio.

My findings have important implications in an asset management context since the Sharpe
ratio is a commonly used measure of performance evaluation. For investors willing to allocate
their wealth between the market portfolio and the risk-free instrument, the market Sharpe
ratio becomes a natural benchmark of their investments. If this ratio is highly volatile, the
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variation needs to be taken into account for hedging and rebalancing purposes. Indeed, Lustig
and Verdelhan (2012) report that accounting for time variation in Sharpe ratios may lead to
optimal trading strategies that differ markedly from buy-and-hold strategies.

Furthermore, a mean-variance investor would have an obvious interest in understanding the
volatility of Sharpe ratios. For example, in a partial equilibrium setting,40 the Sharpe ratio
determines the fraction of wealth that an agent invests in the market portfolio. I show that if an
investor uses OLS methods to determine this fraction, then the portfolio weights would exhibit
extremely volatile behavior over time, which may result in high rebalancing costs. I also show
that if an investor applies filtering techniques to estimate the fraction of wealth invested in the
market portfolio, then these costs will be substantially lower. Even further, for a representative
agent with habit formation preferences, the Sharpe ratio indicates the timing and magnitude
of fluctuations of risk aversion (Campbell and Cochrane, 1999; Constantinides, 1990). Thus,
the time variation in the market Sharpe ratio may provide information about the fundamental
economics underlying the asset prices.

3.1.1 Related Literature

A number of studies analyze the predictable variation of the mean and volatility of stock returns
from an empirical point of view.41 However, only a few papers have investigated the time
variation observed in equity Sharpe ratios. Lettau and Ludvigson (2010) measure the conditional
Sharpe ratio of U.S. equities by forecasting stock market returns and realized volatility using
different predictors. They obtain highly counter-cyclical and volatile Sharpe ratios and show
that neither the external habit model of Campbell and Cochrane (1999) nor the LRR model
Bansal and Yaron (2004) deliver Sharpe ratios volatile enough to match the data. Using a
latent VAR process, Brandt and Kang (2004) also find a highly counter-cyclical Sharpe ratio.
Ludvigson and Ng (2007) document the same result using a large number of predictors in a
dynamic factor analysis.

Tang and Whitelaw (2011) document predictable variation in stock market Sharpe ratios.
Based on a predetermined set of financial variables, the conditional mean and volatility of
equity returns are constructed and combined to estimate the conditional Sharpe ratios. Tang
and Whitelaw (2011) find that conditional Sharpe ratios show substantial time variation that
coincides with the phases of the business cycle. Lustig and Verdelhan (2012) provide evidence
that Sharpe ratios are higher in recessions than in expansions in the United States and other
OECD countries. They also find that the changes in expected returns during business-cycle
expansion and contractions are not explained by changes in near-term dividend growth rates.
These papers focus on the counter-cyclical behavior of Sharpe ratios. My paper focuses on

40Some examples are Merton (1969, 1971).
41See Lettau and Ludvigson (2010) for a comprehensive survey.
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the conditional volatility of market Sharpe ratios and finds that the volatility estimates are
substantially smaller than the evidence previously documented.

My paper is also related to Brandt and Kang (2004); Pástor and Stambaugh (2009); van
Binsbergen and Koijen (2010) and Rytchkov (2012), who analyze return predictability using
state-space models.42 I contribute to the literature by focusing on the dynamic behavior of the
market Sharpe ratio and by showing that standard OLS methods as applied in the literature
generate measurement error which impacts estimates of Sharpe ratio volatility. Moreover, I also
show that filtering techniques are a good approach for estimating the ratio’s true volatility. I
also find that filtering techniques are better able to capture the dynamic behavior of market
Sharpe ratios.

The remainder of this chapter is organized as follows. Section 3.2 provides a theoretical
framework to interpret Sharpe ratios. Section 3.3 introduces the LRR model and its implications
for empirical moments. Section 3.4 describes the simulation exercise as well as the estimation
methodologies for expected returns, volatilities and Sharpe ratios. In section 3.5, an analysis of
historical Sharpe ratios based on reduced form models is described and the empirical results
are shown. Section 3.6 presents asset allocation implications. Finally, concluding remarks are
presented in section 3.7.

3.2 Sharpe Ratios in Asset Pricing
The conditional Sharpe ratio of any asset at time t, denoted by SRt, is defined as the ratio of
the conditional mean excess return to its conditional standard deviation; that is,

SRt = Et [Rt+1 −Rft+1]
σt [Rt+1 −Rft+1] , (3.1)

where Rt and Rft denote the gross asset return of an asset and the one-period risk-free interest
rate, respectively, and the conditional expectations are based on the information available at
time t.

Harrison and Kreps (1979) show that the absence of arbitrage implies the existence of a
stochastic discount factor (SDF) or pricing kernel, denoted by Mt, that prices all assets in
the economy.43 An implication of no arbitrage is that the expectation of the product of the
stochastic discount factor and the gross asset return of any asset must be equal to one; that is,

Et [Mt+1Rt+1] = 1. (3.2)
42In an early work in this body of literature, Conrad and Kaul (1988) use the Kalman filter to extract expected

returns, but only from the history of realized returns. Other studies that relate latent variables with predictability
include Ang and Piazzesi (2003); Lamoureux and Zhou (1996) and Dangl and Halling (2012).

43A detailed explanation is shown in Appendix B.1.
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An implication of (3.2) is that the conditional Sharpe ratio is proportional to the risk-free
rate, the volatility of the pricing kernel and the correlation between the pricing kernel and the
return; that is,

SRt = −Rft+1σt [Mt+1]Corrt [Rt+1,Mt+1] , (3.3)

where σt and Corrt are the standard deviation and correlation, conditional on information at
time t, respectively. The conditional Sharpe ratio of any asset in the economy is time varying
as long as the risk-free rate varies or the pricing kernel is conditionally heteroskedastic -that
is, σt [Mt+1] changes over time- or if the correlation between the stock market return and the
SDF is time varying. In this paper, I focus on the conditional Sharpe ratio of the aggregate
stock market, which is defined as the instrument that pays the aggregate dividend every period.
However, the analysis can be extended to the Sharpe ratios of any traded asset.

The next section presents the LRR model of Bansal and Yaron (2004), with a particular
focus on the implications for expected returns, volatilities and Sharpe ratios of the aggregate
stock market. This model explains stock price variation as a response to persistent fluctuations
in the mean and volatility of aggregate consumption growth by a representative agent with a
high elasticity of intertemporal substitution. The tractability of the LRR model allows data
to be simulated with relative ease. It provides analytical expressions for expected returns,
volatilities and Sharpe ratios for the market portfolio, conditional on the Campbell and Shiller
(1988) log-linearizations. Later in the paper I briefly present other asset pricing models and
their implications for market Sharpe ratios.

3.3 The Long-Run Risks Model
Bansal and Yaron (2004) and Bansal, Kiku, and Yaron (2012a) (BY and BKY hereafter) propose
the following stochastic processes for the log-consumption and log-dividend growth, denoted by
∆ct+1 and ∆dt+1, respectively:

∆ct+1 = µc + xt + σtηt+1

xt+1 = ρxt + ϕeσtet+1

σ2
t+1 = σ2 + v

(
σ2
t − σ2

)
+ σwwt+1 (3.4)

∆dt+1 = µd + φxt + ϕσtut+1 + πσtηt+1

wt+1, et+1, ut+1, ηt+1 ∼ i.i.d. N (0, 1) ,

where, xt is a persistently varying component of the expected consumption growth rate and σ2
t

is the conditional variance of consumption growth, which is time varying and highly persistent,
with unconditional mean σ2. The variance process can take negative values, but it will happen
with small probability if its conditional mean is high enough with respect to its variance.
Dividends are correlated with consumption since the growth rate, ∆dt+1, shares the same
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persistent predictable component scaled by a parameter φ, and the conditional volatility of
dividend growth is proportional to the conditional volatility of consumption growth.

BY solve the LRR model using analytical approximations. They assume a representative
agent with Epstein-Zin utility with time discount factor δ, coefficient of relative risk aversion γ,
and elasticity of intertemporal substitution ψ. The log of the stochastic discount factor, mt+1,
for this economy is given by

mt+1 = θ ln δ − θ

ψ
∆ct+1 + (θ − 1) ra,t+1, (3.5)

where θ = (1− γ) / (1− ψ) and ra,t+1 is the return on the consumption claim, or equivalently,
the return on aggregate wealth. BY use the Campbell and Shiller (1988) log-linearizations
to obtain analytical approximations for the returns on the consumption and dividend claims.
Further details on the model and derivations are explained in Appendix B.2.

3.3.1 Implications for Expected Returns, Volatilities and Conditional
Sharpe Ratios

Under the long-run risks framework, the equity premium is an affine function of the volatility of
consumption growth alone:

Et [rm,t+1 − rf,t+1] = E0 + E1σ
2
t . (3.6)

The model also implies that the conditional variance of the market return is an affine function
of σ2

t :
V art (rm,t+1) = D0 +D1σ

2
t . (3.7)

The coefficients E0, E1, D0 and D1 are known functions of the underlying time-series and
preference parameters. The general expressions and details about their derivation are shown in
Appendix B.2.4.

The covariance between the observed market excess return, rm,t+1, and the innovation to
the volatility process, wt+1 is given by

covt (rm,t+1, wt+1) = κ1,mA2,mσw. (3.8)

One of the appealing properties of the long-run risk model, is that A2,m < 0, for standard
calibrations, implying that the LRR model is able to reproduce the negative feedback effect.44

Another implication of Eq. (3.8) , is that the conditional correlation between excess returns and
44Campbell and Hentschel (1992b), Glosten, Jagannathan, and Runkle (1993), and Brandt and Kang (2004),

among others document the volatility feedback effect; that is, return innovations are negatively correlated with
innovations in market volatility.
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the innovations to consumption risk is time varying because the conditional variance of stock
returns is time varying.

Following Bansal, Kiku, and Yaron (2012b), the cumulative log-return over K time periods
is just a sum of K one-period returns,45

K∑
k=1

(rm,t+k − rf,t+k) .

The conditional moments are given by

Et

[
K∑
k=1

rm,t+k − rf,t+k

]
= E0,K + E1,Kσ

2
t , (3.9)

and

V art

[
K∑
k=1

rm,t+k − rf,t+k

]
= D0,K + D1,Kσ

2
t , (3.10)

where E0,K , E1,K , D0,K , and D1,K are known functions of the preference parameters and the
number of periods, K, used for time aggregation. If the time unit is the month, then evaluating
Eqs. (3.9) and (3.10) provides an expression for annual estimates.

The conditional Sharpe ratio of an investment over K time periods is given by the ratio of
the conditional mean returns divided by its conditional standard deviation, and is represented
by

SRt,t+K =
E0,K + D0,K

2 +
(
E1,K + D1,K

2

)
σ2
t√

D0,K + D1,Kσ2
t

. (3.11)

Eq. (3.11) implies that the only source of variation in the conditional Sharpe ratio under the
LRR framework is the volatility of consumption growth. Moreover, the conditional Sharpe ratio
is stochastic unless σ2

t is deterministic. Furthermore, under the standard calibrations by BY,
the conditional Sharpe ratio is strictly increasing in the volatility of consumption growth. This
implies that the long-run risk framework predicts counter-cyclical Sharpe ratios; that is, for bad
times (high values of the volatility of consumption growth) the Sharpe ratios are high and for
good times, (low values of volatility of consumption growth) the conditional Sharpe ratios are
low, consistent with the habit formation model of Campbell and Cochrane (1999).

Moreover, Eqs. (3.9) , (3.10) and (3.11) characterize the expected return, volatility and
Sharpe ratios of a buy and hold strategy over K time units. These equations define the term

45Time aggregation is an important mechanism for parameter and state inference. Bansal, Kiku, and Yaron
(2012b) explicitly consider time aggregation of variables. They find that time aggregation can affect parameter
values and they provide evidence that ignoring time aggregation leads to false rejection of the LRR model. Earlier
papers that account for time aggregation in estimation in asset pricing context include Hansen and Sargent (1983)
and Heaton (1995).
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structure of risk premia, volatility, and Sharpe ratios of the market portfolio. Moreover, by
evaluating Eqs. (3.9) and (3.10) in the unconditional value of the volatility of consumption
growth, σ2, we obtain expressions for the unconditional moments of cumulative returns. Similar
expressions can be obtained for the cumulative return moments of the risk-free instrument and
market portfolio. Details about the derivations are described in Appendix B.3.

3.4 Sharpe Ratios Simulated from Structural Models
In this section, I conduct a simulation study in the spirit of Beeler and Campbell (2012). The
objective is to simulate equity returns from the LRR model at a monthly frequency, and then
time aggregate them to obtain annual estimates of returns, volatilities and Sharpe ratios. I
explain the simulation exercise as follows.

First, I generate four sets of independent standard normal random variables and use them
to construct monthly series for consumption, dividends and state variables using the state-space
model in Eq. (3.4).46 Next, I construct annual consumption and dividend growth by adding
twelve monthly consumption and dividend levels, respectively, and then take the growth rate
of the sum. The log market returns and risk-free rates are the sum of monthly values, while
the log price-dividend ratios use prices measured from the last period of the year. As the
price-dividend ratio in the data is divided by the previous year’s dividends, the price-dividend
ratio in the model is multiplied by the dividend in that month and divided by the dividends
over the previous year.

As in BY, BKY and Beeler and Campbell (2012), negative realizations of the conditional
variance are censored and replaced with a small positive number.47 I also retain sample paths
along which the volatility process goes negative and is censored.48 Since the volatility is highly
persistent, it is quite likely to have negative values for the conditional variance; indeed, Beeler
and Campbell (2012) report that under the BK calibration less than 1% of the volatility
simulations are negative for a sample of 100,000 simulations. Each simulation is initialized from
the steady-state values and run for a "burn-in" period of ten years.

3.4.1 Predictive Regressions

The conditional moments of market returns as well as the Sharpe ratio are unobservable. A
common approach that has been applied in the empirical literature to circumvent this issue is
to project excess stock returns series on a predetermined set of conditioning variables, such as
economic or financial indicators observed by the econometrician.

46The frequency is consistent with the parameters calibrated by BY and BKY, which are provided in monthly
terms.

47The number is (10−14) and is consistent with the simulation exercise of Beeler and Campbell (2012).
48An alternative approach is to replace negative realizations with their absolute values, as in Johnson and Lee

(2012).
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Empirical studies differ in the conditioning information used in projection of excess returns.
Among the most commonly used predictor variables are the price-dividend ratios (Campbell,
1991; Fama and French, 1988a; Hodrick, 1992), short-term interest rates (Ang and Bekaert, 2007;
Campbell, 1991; Fama and Schwert, 1977; Hodrick, 1992), term spreads and default spreads
(Fama and French, 1988a), book market ratios (Lewellen, 1999; Vuolteenaho, 2000), proxies
for consumption-wealth ratio (Lettau and Ludvigson, 2001a,b), and latent factors obtained
from large data sets (Ludvigson and Ng, 2007).49 Expected returns are calculated by regressing
realized returns on the set of predictors and taking the fitted values as estimates.

Conditional volatility may also be measured by a projection onto predetermined conditioning
variables, taking the fitted value from this projection as a measure of conditional variance or
conditional standard deviation. This type of modeling is commonly used; for example French,
Schwert, and Stambaugh (1987) use a time-series model of realized variance to model the
conditional variance.

Within the set of techniques to measure conditional volatility by a projection onto prede-
termined conditioning variables, three approaches are common. One is to take the squared
residuals from a regression of excess returns onto a predetermined set of conditioning variables
and regress them on to the same set of conditioning variables, using the fitted values from this
regression as a measure of conditional variance.50 Alternatively, volatility can be estimated
using high-frequency return data, commonly referred to as realized volatility. This is an ex-post
measure that consists of adding up the squared high-frequency returns over the period of interest.
The realized volatility is then projected onto time t information variables to obtain a consistent
estimate of the conditional variance of returns.51 The third approach estimates conditional
volatility of excess stock market returns by specifying a parametric form for the conditional
volatility, such as the GARCH type of models, or stochastic volatility.52 The volatility estimates
are then obtained from the history of observed returns. For this part of the paper, I focus on the
second type of methodology to calculate conditional volatilities of stock returns by projecting
the sum of squared monthly returns on a set of predictors.

As for the conditional Sharpe ratio, a standard measure is the ratio of the estimated expected
excess return to the estimated volatility, both obtained from separate projections. This approach
has been taken by Kandel and Stambaugh (1990), Tang and Whitelaw (2011) and Lettau and
Ludvigson (2010), among others.

49Goyal and Welch (2008); Lettau and Ludvigson (2010) provide a comprehensive review of predictive variables
commonly used in the literature.

50Campbell (1987) and Breen, Glosten, and Jagannathan (1989) apply these methods in the predictability
literature.

51This approach is taken by French, Schwert, and Stambaugh (1987), Schwert (1989), Whitelaw (1994), Ghysels,
Santa-Clara, and Valkanov (2006), Ludvigson and Ng (2007), Lettau and Ludvigson (2010) and Tang and
Whitelaw (2011).

52French, Schwert, and Stambaugh (1987), Bollerslev, Engle, and Wooldridge (1988) and Glosten, Jagannathan,
and Runkle (1993) have applied this approach in the predictability literature.
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I model the conditional moments of annual returns as follows:

Et [Rt+1 −Rf,t+1] = Xtβµ, (3.12)

V art [Rt+1 −Rf,t+1] = Xtβλ, (3.13)

where Xt is the set of predictor variables observed at time t and Rt+1 − Rf,t+1 is the annual
excess return on the market. I assume that the predictor variables available at time t are the
price-to-dividend ratio, the current excess returns and the risk-free rate, constructed in an
annual basis.

The regression equations that correspond to (3.12) and (3.13) are

Rt+1 −Rf,t+1 = Xtβµ + εµ,t+1, (3.14)

vt+1 = Xtβλ + ελ,t+1, (3.15)

where Rt−Rf,t is the annual excess return on the market portfolio and vt is the realized variance
for year t. The annual excess return is calculated as the sum of the monthly excess log-returns,
while the realized variance is the sum of the squared monthly excess log-returns. Both sums are
calculated within the same year.

Based on the information available at time t and the parameter estimates from (3.12) and
(3.13), the conditional Sharpe ratio is calculated as follows:

ŜRt =
Xtβ̂µ + Xtβ̂λ

2√
Xtβ̂λ

, (3.16)

where β̂µ and β̂λ denote the OLS estimates for βµ and βλ respectively.53

Figure 3.1 shows the results of a simulated path of annual returns. Each simulation has 100
annual observations of returns. Panel A shows the time series of expected returns calculated from
an OLS regression, Panel B shows the conditional variance estimated from an OLS regression
and Panel C contains the conditional Sharpe ratio estimates using the fitted values from the
conditional mean and conditional volatility from panels A and B. Finally, Panel D displays the
time series of annual Sharpe ratios implied by the BY model. These are obtained by evaluating
Eq. (3.11) in K = 12.

For this specific simulation, the standard deviation of the Sharpe ratio estimates is 3% while
the standard deviation of the model Sharpe ratio is 17%. Moreover, the correlation coefficient
between the Sharpe ratio estimates based on OLS methods and the Sharpe ratio implied by the
model is 7.9%.

53This definition of Sharpe ratio includes the Jensen’s adjustment due to log-returns. However, my results are
robust if the Sharpe ratio is defined as the ratio of expected returns to conditional volatility.

78



The use of artificial data from a fully specified economy is important because it allows the
economic reasons that drive the variation in Sharpe ratios to be isolated. In the first case,
the variation in the Sharpe ratio is driven by the volatility of consumption growth. In the
second case, the volatility of the Sharpe ratio is driven by consumption risk and measurement
error caused by the OLS estimation method. In order to verify the robustness of my results, I
repeated the previous exercise 100,000 times via Monte Carlo simulations with sample periods
of length 100 years. Table 3.2 reports the median moments implied by the simulations of the BY
calibrations of the LRR calibrations. I look at the empirical first and second moments and at
the empirical Sharpe ratios constructed via OLS methods and compare them with the median
first and second moments as well as the Sharpe ratios implied by the model.

From Table 3.2, we learn that the level of expected returns and volatilities implied by the LRR
model are well captured by OLS techniques. Indeed, the difference between expected returns
and the LRR model counterpart is almost indistinguishable. As for the volatility estimates, OLS
techniques do a good job in matching the mean level as well as standard deviation. However,
there are some differences worth noting. The standard deviation of the risk premia calculated
with OLS techniques is 3.01%, while the standard deviation implied by the model is 0.87%.
That is, the standard deviation estimated via OLS methods is more than three times the true
standard deviation. Moreover, the median of the correlation coefficient between the risk premia
and its OLS estimate is 0.52%. A more serious discrepancy is observed in the estimates of the
conditional Sharpe ratio. The model implies a median annual Sharpe ratio of 33.33% while the
estimates obtained with projection techniques is 26.45%; the standard deviation of the Sharpe
ratio calculated regressions is 15.82%, while, the value implied by the model is 3.53%. The
correlation between the true Sharpe ratios implied by the model and its OLS estimates is 0.39%.

We learn from this simulation exercise that the use of fitted moments as proxies for the
unobserved conditional mean and volatility of stock returns has some obvious drawbacks. First,
the dynamics of the conditional mean and volatility are determined by the joint conditional
distribution of the first-stage predictors. Thus, with any model misspecification the dynamics of
the fitted moments would not need to correspond to the dynamics of the true moments. Even
when the predictive models for the conditional mean and volatility are well specified, the effect of
errors in variables, which are induced by the first stage-regressions, is not trivial to quantify and
has an important effect in the Sharpe ratio volatility estimates. Moreover, OLS methods do not
account for time-varying observations or time-varying information sets; therefore OLS methods
are not robust to structural changes. In that sense, an econometric technique that accounts for
such deficiencies may be a good approach for Sharpe ratio estimation and its dynamic behavior.
Filtering techniques are able to overcome these issues.
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3.4.2 Filtering and Estimation

Let yt+1 = rm,t+1 − rf,t+1 be the continuously compounded monthly excess return. The
time-series dynamics of yt+1 is represented by

yt+1 = µt + λtεt+1 with εt+1 ∼ N (0, 1) , (3.17)

where µt and λt represent the expected return and conditional volatility. Under the LRR model,
these are given by

µt = E0 + E1σ
2
t , (3.18)

and
λ2
t = D0 +D1σ

2
t . (3.19)

According to Eq. (3.4) , the evolution of σ2
t is represented by

σ2
t+1 = σ2 + v

(
σ2
t − σ2

)
+ σwwt+1, (3.20)

wt+1 ∼ i.i.d. N (0, 1) ,

and the covariance between the observed market excess return, yt+1, and the innovation to the
volatility process, wt+1 is given in Eq. (3.8).

Filtering

Eqs. (3.17) through (3.20) make up a state-space model. In the terminology of state-space
models, Eq. (3.17) is the measurement or observation equation and Eq. (3.20) is the transition
or state equation. I assume that σ2

t is a latent variable; therefore, both the conditional mean
and volatility of market returns are unobservable. I also assume that I am able to observe the
full history of realized returns. To draw inferences about the dynamic behavior of σ2

t as well as
the conditional distribution of excess returns, we need to solve a filtering problem.

The solution to the filtering is the distribution of the latent variable σ2
t conditional on the

history of observed returns. From Eqs. (3.9) through (3.11), we learn that expected returns,
volatilities and conditional Sharpe ratios can be estimated based on this conditional distribution,
for any holding period. Unfortunately, the filtering problem generated by the LRR model is
not standard because of the nonlinearities in the measurement equation as well as the non-zero
covariance between the observation and transition equations. As a result, the standard Kalman
filter (designed for linear Gaussian state-space models) cannot be used directly in the estimation
of the model. I instead rely on nonlinear filtering methods to estimate the distribution of σ2

t ,
conditional moments of market excess returns and market Sharpe ratios.
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Particle Filters

I estimate the latent process σ2
t , conditional moments and Sharpe ratios via particle filters. The

particle filter is a nonlinear filter which works through Monte Carlo methods. The conditional
distribution of the state variables is replaced by an empirical distribution drawn by simulation.
This method does not require the explicit computation of Jacobians and Hessians, and captures
the conditional distribution of the state variable accurately up to a prespecified accuracy level
that depends on the number of simulations chosen by the researcher. To implement the particle
filter, it is necessary to specify the state-space model.54 A brief description of the particle filter
and its implementation is given in Appendix A.6.

I test the accuracy of the filtered estimates as follows. First, I simulate a path of annual excess
returns according to the calibrations by BY. Given the simulated excess returns, I numerically
construct the conditional distribution of the volatility of consumption growth, σ2

t , using Eqs.
(3.17) to (3.20) as well as the original calibrations by BY. Once, the conditional distribution of
the volatility of consumption growth is obtained, I estimate risk premia, conditional variances
and Sharpe ratios according to Eqs. (3.9) to (3.11). Figure 3.2 shows a sample simulation of
the volatility of consumption growth, conditional moments and Sharpe ratios along with their
filtered counterparts. In panel A, I show a path for the volatility of consumption growth; panels
B and C show the simulated expected returns and their volatility; panel D shows the simulated
annual Sharpe ratio with its filtered estimates. For this specific simulation, the correlation
coefficient between the simulated volatility of consumption growth and its filtered value is 60%.
As for the expected returns, volatilities and Sharpe ratios, the simulated values have a correlation
coefficient above 64% with their filtered counterparts.

A common concern is that filtering is thought of as a smoothing technique, and therefore, if
the state variable to be filtered is too volatile, a filtering technique will reduce such volatility and
the unconditional moments of interest may not reflect the true state variable dynamics. However,
filtering techniques are robust enough to provide accurate estimates even if the true state
variable to be filtered is volatile. This is due to the fact that filtered estimates are conditional
expectations of the state variables. To evaluate the unconditional moments, it is necessary to
account for this fact; thus, I calculate the unconditional mean and variance of the state variables
according to the properties of the law of iterated expectations.55

To verify the robustness of my results, the simulation exercise was repeated 1,500 times. For
each simulation, I obtain time series of expected returns, volatilities and Sharpe ratios as well as
their filtered counterparts. I then calculate the unconditional means, variances and correlations

54 Doucet, de Freitas, Gordon, and Smith (2001) and Crisan and Rozovskii (2011) describe in detail the
properties of the filter and its practical implementation, and van Binsbergen, Fernandez-Villaverde, Koijen, and
Rubio-Ramirez (2012) apply the method to estimate a dynamic stochastic general equilibrium model with a
particular focus on the term structure of interest rates.

55The unconditional variance estimate comes from the following identity, which relates conditional and
unconditional variances: V ar[X] = V ar[E[X|Y ]] + E[V ar[X|Y ]].
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between the simulated and filtered series. The results are reported in Table 3.3. In general, the
filters do a good job of capturing the unconditional moments of expected returns, volatilities
and Sharpe ratios. Overall, the moments estimated via filtering methods are precise match the
true values in at least two decimal places.

We learn from these simulation exercises that filtering techniques are better able to capture the
dynamic behavior of the conditional moments and Sharpe ratios than OLS methods. Nonetheless,
these filtered estimates rely on a number of assumptions: the state-space model is well specified;
realized returns are a noisy measure of expected returns and the volatility of consumption
growth is the only unobservable state variable of the system. However, the researcher has full
knowledge of its dynamics as well as the functional forms of expected returns and variances.
Finally, I assume that the econometrician has full knowledge of the parameter values and the
only problem that she faces is the estimation of conditional moments based on the time series
of observed returns. By using OLS methods, we approximate expected returns and variances
with a linear projection on a set of exogenous predictors and can potentially face a number of
well-known econometric problems, such as omitted variables or misspecification. For clarity of
exposition, I collect all parameters that define the state-space model into a single parameter
vector θ. Each parameter vector characterizes a model; hence, conditional distributions and
filtered state variables. As a result, an estimation problem needs to be solved and will be
explained in detail as follows.

Estimation

The previous results were obtained by assuming that the set of parameter values is known.
This assumption is quite unrealistic, because in reality the researcher is uncertain about the
true parameter values. A natural way to approach this issue is by estimating the vector of
parameters from the observed data. A common technique for nonlinear dynamic models is
QML estimation,56 as described in Chapter 2. Details about its implementation are described
in Appendix B.4. I conduct a simulation exercise to better identify the effect of parameter
estimation within the filtering exercise. First, I simulate a time series of excess returns from the
LRR model, and then I estimate the parameter values via QML estimation methods using the
state-space representation implied by the LRR model. The parameter estimates are then used
in the filtering estimation procedure.

A sample simulation is illustrated in Figure 3.3. Panels 3.3a to 3.3c compare conditional
Sharpe ratio estimates with their true values. Panel 3.3a shows the empirical estimate obtained
via OLS methods, Panel 3.3b displays Sharpe ratio estimates calculated with filtering methods
by assuming that the true parameter values are known and Panel 3.3c contains the filtered
Sharpe ratios using the parameter estimates obtained via QML methods.

56Some examples are Campbell, Sunderam, and Viceira (2012); van Binsbergen and Koijen (2011) and Calvet,
Fisher, and Wu (2013).
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For this specific simulation, the time-series average of the model-implied Sharpe ratio is
33%, while the average Sharpe ratio estimates obtained with filtering techniques are 34% and
36%, where the first is obtained by assuming that the true parameter values are known and the
second is obtained with the parameter estimates from observed returns. Finally, the average
Sharpe ratio obtained with OLS methods is 25%. An explanation for this difference is the
model misspecification that is generated from running OLS regressions for expected returns and
volatility calculations on a set of predetermined variables. The volatility estimates obtained via
filtering methods are 5% and 6%. My results are similar to the estimates obtained from the
true simulated data, which is 4%. In contrast, OLS methods deliver a Sharpe ratio volatility
estimate of 15%. This exercise illustrates the effect of parameter estimation on the volatility of
Sharpe ratios. I show evidence that filtering methods deliver Sharpe ratio volatility estimates
consistent with the true model implied values, even if parameter values have to be estimated.

3.4.3 Other Models

Recent consumption-based asset pricing models have made substantial progress in explaining
many asset pricing puzzles across various markets. Even though such models are not often used
to study Sharpe ratios or their volatility, they do make theoretical predictions about their values.
In standard asset pricing models, the market Sharpe ratio is constant (Breeden, 1979; Lintner,
1965; Lucas, 1978; Sharpe, 1964) or has negligible variation (Mehra and Prescott, 1985; Weil,
1989). Habit formation preferences can help to capture the counter-cyclicality of the risk premia
(Abel, 1990; Campbell and Cochrane, 1999; Constantinides, 1990) as well as other features of
macro-economic outcomes over the business cycle (Jermann, 2010). Bansal and Yaron (2004)
combine the preferences of Epstein and Zin (1989) with stochastic volatility of consumption
growth and generate time variation in the conditional volatility of the SDF.

Other studies have found different channels for time variation in risk premia, such as differ-
ences in risk aversion (Bhamra and Uppal, 2010; Chan and Kogan, 2002; Gomes and Michaelides,
2008); rare disasters (Barro, 2006, 2009; Rietz, 1988; Wachter, 2012); incomplete markets
(Constantinides and Duffie, 1996; Gârleanu and Panageas, 2011); participation constraints,
(Basak and Cuoco, 1998; Chien, Cole, and Lustig, 2012; Guvenen, 2009); investment shocks
(Papanikolaou, 2011) and heterogeneity in the frequency of shocks to fundamentals (Calvet
and Fisher, 2007). A brief summary of the aforementioned models and their asset pricing
implications are shown in Table 3.4.

The asset pricing implications of the models shown in Table 3.4 provide a general idea of
the model-implied variability of Sharpe ratios. Indeed, this variability could be used as a metric
to better assess the performance of a model. For example, an asset pricing model with constant
Sharpe ratios would fail in explaining the observed variation in empirical Sharpe ratios. On the
other hand, a model that predicts highly volatile Sharpe ratios may exceed the true variability
observed in the data. Therefore, the variance of Sharpe ratios can be used as a metric to better
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assess theoretical asset pricing models. This metric would be in the spirit of the entropy measure
recently proposed by Backus, Chernov, and Zin (2012) and studied in Martin (2012).

As a robustness check of the variability generated by OLS methods to calculate Sharpe
ratios, I performed a second simulation exercise based on the external habit formation model by
Campbell and Cochrane (1999). A brief description of the model and a brief overview of the
results are presented below.

3.4.4 External Habit Formation Model

In the external habit formation model of Campbell and Cochrane (1999), the consumption
dynamics are the same as in the standard Lucas model; that is, consumption growth rates are
assumed to be independent and identically distributed. Furthermore, the agent is assumed to
have external habit formation preferences. The habit level is assumed to be a slow-moving and
heteroscedastic process. The heteroscedasticity of the habit process, the sensitivity function, can
be chosen so that the real interest rate in the model is constant or linear in the habit. Further
details can be found in Appendix B.5.

I use the same calibrated monthly parameters as those in Campbell and Cochrane (1999) to
simulate returns from the model and compute annual expected returns, volatilities and Sharpe
ratios using standard OLS techniques. I compare these results with the numerical values implied
by the model. Consistent with my previous results, I find that the Sharpe ratios based on
standard OLS methods are at least twice more volatile than the model-implied variability. The
results are plotted in Figure 3.4. Panel A displays the Sharpe ratio estimates based on OLS
methods, while Panel B displays the values of the true Sharpe ratios. Clearly, the Sharpe
ratio estimates based on OLS methods are more volatile than the values implied by the habit
formation model.

3.5 Sharpe Ratios Estimated from Reduced Form Models
The use of data simulated by means of theoretical models helps to better identify the economic
reasons that drive the time-series variation. An alternative form of analyzing returns is via
reduced form models, which are statistical models that do not impose any economic structure.
These models aim to better describe historical data. Moreover, they do not rely on arbitrary
predictors and are not subject to the effects of errors in variables or misspecification.

In this section, I introduce the nonlinear latent VAR representation proposed in Brandt and
Kang (2004), in which the first and second conditional moments are considered latent variables
identified from the history of returns. In this setup, the Sharpe ratio and its dynamics are
obtained endogenously as the ratio of the conditional moments of excess returns. The framework
is general enough and can be extended to a setup that includes flexible correlation structures
and exogenous predictors.
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3.5.1 Brandt and Kang (2004)

Let yt be the continuously compounded excess returns with time-series dynamics represented by

yt = µt−1 + λt−1εt with εt ∼ N (0, 1) (3.21)

where µt−1and λt−1 represent the conditional volatility of the excess returns. In addition, it
is assumed that the conditional mean and volatility are unobservable and that they follow a
first-order VAR process in logs:[

lnµt
lnλt

]
= d+A

[
lnµt−1

lnλt−1

]
+ ηt with ηt ≡

[
η1t

η2t

]
∼ N (0,Σ) , (3.22)

where

d =
[
d1

d2

]
, A =

[
a11 a12

a21 a22

]
and

Σ =
[
b11 b12

b21 b22

]
with b12 = b21 = ρ

√
b11b22. (3.23)

Following Hamilton (1994), if the VAR is stationary, the unconditional moments for the mean
and volatility are given by

E
[

lnµt
lnλt

]
= (I −A)−1 d (3.24)

and

vec
(
cov

[
lnµt
lnλt

])
= (I − (A⊗A))−1 vec (Σ) (3.25)

where ⊗ represents the Kronecker product.

The key elements of the return dynamics presented Eq. (3.22) are the transition matrix
A and the correlation coefficient ρ. The diagonal elements of A capture the persistence of the
conditional moments, and the off-diagonal elements reflect the intertemporal feedback between
the conditional volatility and the conditional mean. The correlation coefficient ρ captures
the contemporaneous correlation between the innovations to the conditional moments. This
parameter is of considerable importance since it captures the risk-return trade-off.57

57Most asset pricing models predict a positive relationship between the market’s risk premium and conditional
volatility (Merton, 1973). However, the empirical evidence on the sign of the risk-return relation is inconclusive.
Indeed, some studies find a positive relation (Ghysels, Santa-Clara, and Valkanov, 2005; Ludvigson and Ng, 2007;
Lundblad, 2007; Pastor, Sinha, and Swaminathan, 2008; Scruggs, 1998), but others find a negative relation (Brandt
and Kang, 2004; Campbell, 1987; Glosten, Jagannathan, and Runkle, 1993; Harvey, 2001; Lettau and Ludvigson,
2010). Others have shown through theoretical studies that the intertemporal mean-variance relationship may not
be positive or negative (Ang and Liu, 2007; Whitelaw, 2000).
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The model in Eq. (3.22) generalizes the permanent and temporary components of Fama and
French (1988b) and the standard stochastic volatility model. The equation for the conditional
mean is

lnµt = d1 + a11 lnµt−1 + a12 lnλt−1 + η1t, where η1t ∼ N (0, b11) . (3.26)

If a12 = 0, the dynamics of the conditional mean is similar to the temporary component as in
Lamoureux and Zhou (1996). Now, the equation that describes the conditional volatility is

lnλt = d2 + a21 lnµt−1 + a22 lnλt−1 + η2t, where η2t ∼ N (0, b22) , (3.27)

and corresponds to the standard stochastic volatility model; in particular if a21 = 0, Eq. (3.27) is
the standard stochastic volatility model as in Andersen and Sørensen (1996) and Kim, Shephard,
and Chib (1998). Finally, we learn from Eq. (3.25) that the unconditional variance is determined
by the variance–covariance matrix Σ and the matrix A. For identification purposes, I assume
four different specifications for the transition matrix A. First, in model A, I consider the case in
which the conditional mean and volatility evolve as in Eqs. (3.26) and (3.27) . Models B and C
consider a12 = 0 and a21 = 0, respectively, allowing for the model of permanent and temporary
component in the first case, and the standard stochastic volatility model in the second case.
Finally, model D considers the case in which a12 = a21 = 0.

An interesting property is the nonnegativity of expected returns and volatilities. This
nonnegativity of the conditional mean guarantees a positive risk premium, as suggested in
Merton (1980), and has been used by Bekaert and Harvey (1995) and Jacquier, Johannes, and
Polson (2007), among others. The log-normality specification for the volatility is consistent
with Andersen, Bollerslev, Diebold, and Ebens (2001) and Andersen, Bollerslev, Diebold, and
Labys (2003), which show that the log-volatility process can be well approximated by a normal
distribution.

3.5.2 Implied Sharpe Ratio

The latent VAR implies a conditional Sharpe ratio of the form

SRt = µt + λ2
t /2

λt
, (3.28)

where µt and λt are the conditional mean and volatility of stock returns.58 It follows that the
Sharpe ratio is stochastic if the innovations that affect both the numerator and denominator
in Eq. (3.28) are stochastic and do not cancel each other out. Moreover, the Sharpe ratio is
time-varying due to the mean reversion of the two conditional moments. The distribution of the
Sharpe ratio corresponds to the sum of two correlated log-normal distributions, which is not
standard.

58The squared term in the numerator comes from a Jensen’s adjustment for log-returns.
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3.5.3 The Data

I study quarterly returns on the value-weighted index market portfolio from CRSP. Excess
returns are calculated by subtracting the quarterly yield on a three-month T-bill from the
corresponding stock return. I use this yield instead of the monthly yield due to the idiosyncratic
variation documented in Duffee (1996). The predictors are the CRSP dividend-price ratio (d-p),
calculated as the log-ratio of the CRSP dividends to the price level of the CRSP value-weighted
stock index; the relative bill rate (RREL), which is the difference between the three-month
treasury bill and its four-quarter moving average; the term spread (TRM), the difference between
the ten-year treasury bond yield and the three-month treasury bill; the default spread (DEF ),
the difference between the BAA corporate bond rate and the AAA corporate bond rate and the
consumption-wealth ratio proxy (cay).59 The RREL, TRM and DEF are obtained from the
Federal Reserve statistical release. Data on the dividend-price ratio is taken from CRSP and
the time series of cay is taken from Sidney Ludvigson’s website.60 All data are quarterly from
the period April 1953 to December 2011.

3.5.4 Parameter Estimates

The model in Eqs. (3.21) and (3.22) is nonlinear since the first equation is nonlinear in the
state-variables. The parameters are estimated via QML methods and are shown in Table 3.5.
The first column corresponds to the estimates of model A, the second column shows the estimates
for model B, and the third and fourth columns contain the parameter estimates for models C
and D, respectively. Given the frequency of returns, expected returns are persistent since the
estimates for a11 range from 0.6727 to 0.7204.61 The conditional volatility is more persistent
than the conditional mean, for all model specifications.

The parameter estimates of the models A through D show evidence of a strong and negative
risk-return trade-off, measured by the correlation between the innovations to the conditional
mean and the volatility of excess returns. The estimates range from -0.1760 to -0.7995, for
both the constrained and unconstrained representations, and are statistically significant. This
finding is consistent with the negative risk-return relationship found in Brandt and Kang (2004),
Campbell and Hentschel (1992b) and Campbell (1987). The negative sign of the correlation
coefficient between the conditional mean and the volatility of returns amplifies the variability of
the Sharpe ratio, whereas a positive correlation between expected returns and volatility makes
Sharpe ratios less variable than its mean or even constant.

59These predictors are used in the predictability literature. See Goyal and Welch (2008) and Lettau and
Ludvigson (2010) for details.

60I thank Sidney Ludvigson for making the time series data for cay available. This variable is calculated in a
quarterly basis.

61These values correspond to a monthly persistence of roughly 0.87 to 0.89.
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The estimates show that there is more variation in the mean than in the conditional volatility,
since the conditional variance of the innovations to the conditional mean, b11, differs substantially
from that of the innovation to the conditional volatility, b22. The off-diagonal elements of the
transition matrix A are significant. However, the values for a21 are similar across models, while
the values for a12 differ. The differences in signs of a12 and a21 are consistent with the results
of Whitelaw (1994) and Brandt and Kang (2004), which state that the cross-autocorrelations
between the conditional mean and volatility offset each other through time.

3.5.5 Expected Returns, Volatilities and Sharpe Ratios

Given the parameter estimates in Table 3.5, I estimate expected returns, volatilities and Sharpe
ratios via particle filtering. The left column of Figure 3.5 presents the filtered estimates of
quarterly expected returns (first row), volatility (second row) and Sharpe ratios (third row).
Each plot also shows in vertical bars the NBER recession dates. It is clear that the conditional
mean, volatility and Sharpe ratio are time varying. The quarterly mean has a standard deviation
of less than 1% and it varies from 1% in the third quarter of 1974 to 3% in the last quarter
of 2003. The quarterly volatility has a standard deviation of 2% and ranges from 7.3% to
11.6%. Expected returns revert more quickly to their unconditional mean than do conditional
volatilities, and this is consistent with the estimates of a11 and a22.

Quarterly Sharpe ratios are displayed in the last row of the first column. The Sharpe ratio
rises from the peak to the trough of the recession dates in the sample, and is consistent with
the empirical results documented by Lustig and Verdelhan (2012); Tang and Whitelaw (2011)
and Lettau and Ludvigson (2010). This countercyclical variation of the Sharpe ratio is also
consistent with the habit formation models (Campbell and Cochrane, 1999; Constantinides,
1990). Intuitively, at the peak of the business cycle, consumers enjoy consumption levels far
above their habits. As a result, a low Sharpe ratio, or low reward per unit of risk, is required for
a consumer to invest in the stock index at the peak of the cycle, in contrast to the trough of a
cycle, where consumption levels are closer to those of the habits, which makes consumers more
relative risk averse. For an investor willing to invest in the trough of the cycle, the rewards per
unit of risk or Sharpe ratios should be substantially high.

OLS estimates

I calculate expected returns, volatilities and Sharpe ratios based on OLS techniques for compari-
son purposes. Table 3.6 presents the estimates from OLS regressions of quarterly realized excess
returns and excess log-returns from the first quarter of 1953 to the last quarter of 2011. The
results are generally consistent with those reported in the predictability literature. There is no
substantial difference between the regression estimates obtained by using excess returns and
excess log-returns. At a one-quarter horizon, cay and RREL show a consistent predictive power
for excess returns. Indeed, cay alone explains 3% of next quarter’s total variability. Adding the

88



lagged value of excess returns, cay, d−p, RREL and TRM explains 8% of the quarter’s variation
in the next quarter’s excess return. The R−squared of 8% for log-returns is lower than the
values reported in previous studies, but the sample, which includes the 2007-2008 financial crisis,
may account for this result. The results for the volatility equation are presented in Table 3.7.
In this representation, the lagged volatility, d− p, TRM and DEF are significant. The positive
serial correlation in realized volatility reflects the autoregressive conditional heteroskedasticity of
quarterly returns. The lagged value of volatility alone explains 37% of next the quarter’s excess
return volatility. Lagged volatility values, cay, d− p, RREL, and TRM explain altogether 41%.
Finally, the high R−squared value of 43% in the full volatility equation reflects that realized
volatility is much more predictable than excess returns.

Empirical moments of expected returns, volatilities and Sharpe ratios are displayed in
Table 3.8. The first set of estimates is calculated based on OLS regressions of quarterly
realized log-returns for the CRSP value-weighted index on lagged explanatory variables. The
second set of estimates is based on the reduced form model by Brandt and Kang (2004),
in which the conditional mean and volatility of stock returns are treated as latent variables.
This representation guarantees positive values for expected returns and volatilities. As in the
simulation exercises described in section 4, I find differences worth noting among the estimates.
First, expected returns and volatilities calculated via OLS have a quarterly standard deviation
of 2%, while the standard deviation of the filtered estimates is 1%. Filtered volatilities are
higher, on average, than the ones obtained with OLS methods and more autocorrelated. The
autocorrelation of expected returns obtained with OLS methods is 81%, in contrast with the
one estimated from the filtered series, which is less than 59%. This is not surprising, since
the regressors used for its estimation are highly persistent. The autocorrelation of the filtered
estimates is consistent with the estimated value of a11.

As for the Sharpe ratio estimates, there are major differences worth noting. First, the average
quarterly Sharpe ratio estimated via filtering is 26% while the OLS estimate is 30%. As for the
standard deviation estimates, the difference is quite substantial. For the OLS estimates, the
standard deviation is 42%, which is similar to the 45% reported by Lettau and Ludvigson (2010),
while the standard deviation of the filtered Sharpe ratio ranges from 5%. An explanation of this
difference is the use of standard OLS techniques for its estimation. Reduced form representations
do not rely on predetermined conditioning variables to estimate conditional moments; the state
variables are identified from the history of returns whereas standard OLS methods generate
fitted moments from a set of predictive regressions as proxies for the unobservable conditional
mean and volatility. The fitted moments depend on the joint distribution of the predictors;
therefore, any model misspecification generates fitted moments that do not correspond to the
true dynamics of the conditional mean and volatility, and as a result, the Sharpe ratio dynamics.
Another important issue is that the ratio of the fitted moments does not adjust for the correlation
between expected returns and volatility of stock returns, whereas filtering techniques do.
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Alternative Reduced Forms

For comparison purposes, I also analyze an unconstrained version of the representation of Brandt
and Kang (2004). The excess returns have time-series dynamics of the form

yt = µt−1 + λt−1εt with εt ∼ N (0, 1) , (3.29)

where µt−1and λt−1 represent the conditional volatility of the excess returns. In addition, it is
assumed that the conditional mean and the log-volatility are unobservable and that they follow
a first-order VAR process of the form[

µt

lnλt

]
= d+A

[
µt−1

lnλt−1

]
+ ηt with ηt ∼ N (0,Σ) , (3.30)

where d, A and Σ are defined as in Eq. (3.23) . The main difference between the model
representation by Brandt and Kang (2004) and Eqs. (3.29) and (3.30) is that expected returns
can potentially be negative, as in Lamoureux and Zhou (1996). As in the previous model, I
consider four model specifications for the matrix A. The covariance matrix, Σ, has the same
structure as Eq. (3.23). The sign of the correlation coefficient between the conditional mean
and the volatility of excess returns has the same sign as the correlation between the conditional
mean and the log-volatility.62

QML estimates of the model with an unconstrained risk premia are shown in Table 3.9.
Under all model specifications, the parameter estimates, are similar to the estimates of the first
model. An important difference is that the estimates of the off-diagonal elements a12 and a21 are
negative, although a12 is not statistically significant. The right column of Figure 3.5 displays the
filtered estimates of conditional moments and Sharpe ratios for the model with an unconstrained
risk premia. The main difference between the constrained and unconstrained representations is
that expected returns can take negative values; indeed, expected return estimates took negative
values for six quarters of the whole sample. Qualitatively, both latent VAR models show similar
dynamic behavior; in fact, the correlation coefficient between the implied Sharpe ratio estimates
is 70%.

Exogenous Predictors

The main advantage of the latent VAR approach by Brandt and Kang (2004) is that it allows
the study of the dynamics of the conditional mean, volatility and Sharpe ratios without relying
on exogenous predictors. At the same time, useful information is potentially discarded, since any
correlation structure between predictors and conditional moments is ignored. As a robustness

62From Stein’s lemma, we have that the conditional covariance between excess returns and the conditional
volatility is covt−1 (µt, λt) = Et [λt] · covt−1 (µt, lnλt) . Thus, the sign of the correlation coefficient between the
conditional mean and the volatility of stock returns is the same as the conditional correlation of the conditional
mean and the log-volatility of returns.
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check, I estimate an extended version of the model in which each moment is a function of the
same exogenous predictors used in the predictive regressions ( cay, d− p, RREL, and TRM).
The model specification is given by

yt = µt−1 + λt−1εt with εt ∼ N (0, 1), (3.31)

where [
lnµt
ln σt

]
= d+A

[
lnµt−1

ln σt−1

]
+ Cxt−1 + ηt, with ηt ∼ N (0,Σ) , (3.32)

where xt denotes the de-meaned vector of predictors observed at date t.

Table 3.10 reports the parameter estimates of the extended model D and also replicates for
comparison the results of model D. The estimates of A and Σ are similar across the two models.
When I add the exogenous predictors, all the parameter estimates of the base model decrease in
magnitude, which means that the exogenous predictors help explain some of the variation in
the moments that was left unexplained. Finally, the correlation between the innovations to the
mean and volatility decreases in magnitude from -0.7995 to -0.4523, both significant.

In the mean equation of the extended model, the coefficients of cay, d− p, TRM (c11, c12

and c14) are positive and the coefficients of RREL and DEF (c13 and c15) are negative. In the
volatility equation, all coefficients are negative, except for one, DEF . The signs of the coefficients
are all consistent with the results of the predictive regressions. However, it is important to note
that these results are not directly comparable to standard predictive regressions, since these
coefficients correspond to regressions with the conditional moments as dependent variables.

Comparison

Empirical moments of the different Sharpe ratio estimates are displayed in Table 3.11. The first,
second and third sets of Sharpe ratio estimates are based on the latent VAR approach from
the model representation by Brandt and Kang (2004). The first representation is based on Eqs.
(3.21) and (3.22), while the second representation guarantees a positive volatility only and is
based on Eqs. (3.29) and (3.30). The third representation is an extended version of the first
model in which the conditional moments are positive functions of exogenous predictors and is
represented in Eqs. (3.31) and (3.32). Finally, the last set of Sharpe ratio estimates is based on
the conditional moments calculated from OLS regressions of log-returns on lagged explanatory
variables.

The results from Table 3.11 show that the average quarterly Sharpe ratios under the first
two models are 25% and 26%, respectively. The third model implies a quarterly Sharpe ratio of
31%, while the estimates obtained from OLS methods have a quarterly Sharpe ratio of 30%. The
difference is caused by the set of exogenous predictors included within the estimation procedure.
The first set of results represents the Sharpe ratio estimates based on the set of observed returns,
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while the third and fourth correspond to Sharpe ratio estimates using the history of returns
and the set of exogenous predictors. The parameter estimates used in the filtering calculations
depend on the data used in the estimation process. In the first two models, the parameter and
filtered estimates depend on the time series of excess returns, while the last two models depend
on the same series of returns as well as on the set of exogenous predictors.

As for the Sharpe ratio volatility implied by the models, there are some differences worth
noting. The first two models imply a volatility of 5% and 10%, respectively. The difference is
due to the model representation. The first model considers a positive risk premia and the second
does not. Since the second model allows for negative Sharpe ratios, there is more variability. As
for the third representation, the variability is 25%, which is mainly driven by the inclusion of
a set of exogenous predictors that affect the conditional mean and volatility of excess returns.
None of these representations deliver a Sharpe ratio volatility of 42% as OLS methods do. The
main driver of this difference is the use of conditioning information within the estimation process.
In the first two cases, the model representations as well as the history of returns determine the
variability of the Sharpe ratio. In contrast, the set of exogenous predictors that are included in
the estimation process of the third model and fourth model determines a higher variability of
the Sharpe ratio estimates.

3.6 Implications for Portfolio Choice
In this section, I discuss a standard model from the portfolio-choice literature and its relation to
the market Sharpe ratio.

3.6.1 Portfolio Optimization: One Risky Asset

I consider an investor with mean-variance preferences that optimizes the tradeoff between the
mean and the variance of portfolio returns. Two assets are available to an investor at time t.
One is risk free, with return Rf,t+1 from time t to time t+ 1, and the other is risky. The risky
asset has simple return Rt+1 from time t to time t + 1 with conditional mean Et [Rt+1] and
conditional variance σ2

t . The investor allocates a share αt of her portfolio into the risky asset.
Then the portfolio return is

Rp,t+1 = Rf,t+1 + αt (Rt+1 −Rf,t+1) .

The mean portfolio return is Et [Rp,t+1] = Rf,t+1 + αt (Et [Rt+1]−Rf,t+1) , while the variance
of the portfolio is σ2

pt = α2
tσ

2
t . If the investor has mean-variance preferences, then she trades

off between the mean and variance in a linear fashion. In other words, she maximizes a linear
combination of mean and variance with a positive weight on mean and a negative weight on
variance,

max
αt

(
Et [Rp,t+1]− γ

2σ
2
pt

)
.
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The solution to this optimization problem is

αt = Et [Rt+1]−Rf,t+1
γσ2

t

. (3.33)

The optimal weight for the stock index coincides with the myopic demand and can be interpreted
as the product of the relative risk tolerance63 and the market Sharpe ratio normalized by the
volatility of the market returns; that is,

αt = SRt
γσt

. (3.34)

We learn from Eq. (3.34) that for investors with mean-variance preferences, the optimal allocation
in the market portfolio is determined by three elements: the Sharpe ratio of the market portfolio,
the conditional volatility of the market portfolio and the risk aversion parameter. Moreover, the
variability of portfolio weights is determined by the variability of Sharpe ratios and the standard
deviation of the market portfolio.

Campbell and Viceira (2002) derive a similar expression by assuming an investor with power
utility and that the return on an investor’s portfolio is lognormal, with the slight difference that
the optimal weight in Eq. (3.33) is adjusted by half the variance of the risky asset; that is,

αt = Et [rt+1]− rf,t+1 + σ2
t /2

γσ2
t

. (3.35)

Now I implement the model following the standard plug-in approach; that is, I solve the
optimization problem assuming that the mean and variance of returns are known. Once the
problem is solved, I replace the moments with their estimates obtained via regression or filtering
techniques. For simplicity, I assume that the investor ignores estimation risk while making an
investment decision.

Figure 3.6 shows the optimal allocations in Eq. (3.35) using OLS and filtering methods to
estimate conditional moments assuming a risk aversion parameter γ = 5. Clearly, the portfolio
weights constructed via OLS methods are more volatile than the ones obtained with the filtered
moments. Indeed, the average portfolio weight under the OLS model specification is 1.27 with a
standard deviation of 2.13, in contrast to the portfolio weight computed with filtering methods,
which is on average 56% with a standard deviation of 12%. Finally, the correlation between the
two weights is 15%. These results have practical implications for portfolio allocation, especially
for an investor who faces proportional costs by trading the optimal portfolio of an investor with
mean-variance preferences.64 As the optimal weight is proportional to the market Sharpe ratio,
the percentage of wealth traded in each period will depend upon the volatility of the market

63 This term is the inverse of the relative risk aversion.
64This fact was noted by De Miguel, Garlappi, and Uppal (2009) for performance evaluation.
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Sharpe ratio. It is clear that upward-biased estimates of the Sharpe ratio volatility would imply
excessive portfolio rebalancing, and therefore more transaction costs.

3.7 Concluding Remarks

In this chapter I examine whether estimates of the variability of the Sharpe ratio may be biased
due to limitations of the empirical methodology used in its estimation. I provide evidence that
measurement error in estimated Sharpe ratios helps to explain the Sharpe ratio volatility puzzle.
I further show that this measurement error is caused by the use of standard OLS methods to
estimate the ratio. The empirical question I address is important because many studies have
used the results implied by OLS methods to calibrate the volatility of the market Sharpe ratio.

Based on simulated data from standard asset pricing models, I document that OLS methods
produce Sharpe ratio volatility that is larger than the ratio’s true variability. Using the OLS
approach may also provide conditional moment estimates that do not necessarily correspond to
their true values.

Once I have documented the upward bias in the Sharpe ratio’s variability generated by OLS
methods, I consider if using improved empirical methodologies may better reflect the ratio’s
true variability. To accomplish this goal, I propose filtering methods as a way to better assess
this variation. These techniques explicitly allow for the estimation of time-varying moments by
aggregating the entire history of realized returns in a parsimonious way. Moreover, filtering is
flexible enough to be used with large information sets without relying on exogenous predictors,
while being robust to structural breaks. I also show that filtering techniques better reflect the
true variation of Sharpe ratios even when parameter values need to be estimated.

Motivated by the simulation results, I use real data on excess stock returns to compare the
Sharpe ratio volatility estimates produced by OLS and filtering methods. I find that filtering
methods deliver Sharpe ratio variability estimates that are much smaller than the Sharpe
ratio variability estimates implied from OLS methods. The difference in results from the two
methodologies arises due to the use of conditioning information within the filtering estimation
process.

My findings have significant implications for asset pricing. For example, in a portfolio
allocation setting, the optimal portfolio weight is proportional to the market Sharpe ratio.
Thus, upward biased estimates of the Sharpe ratio volatility would imply excessive portfolio
rebalancing, and therefore more transaction costs.
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3.8 Figures and Tables
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(a) Expected Returns (OLS)
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(b) Conditional Volatility (OLS)
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(c) Conditional Sharpe Ratios (OLS)
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Bansal−Yaron

(d) Conditional Sharpe Ratios (BY)

Figure 3.1. Comparison OLS Estimates versus Simulated Values: Long-Run
Risk Model

This figure shows the results of a simulated path of annual returns using the calibration by Bansal and
Yaron (2004). Each simulation has 100 annual observations of returns. Fitted values for the conditional
mean and variance were constructed using predictor variables. Panel A shows a random path of annual
returns with the fitted OLS values. Panel B shows the realized variance constructed with realized returns
along with its OLS fitted values in dotted lines. Panel C contains the conditional Sharpe ratio estimates
based on the OLS fitted values of the conditional mean and conditional volatility; Panel D contains the
Sharpe ratios implied by the model.
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Consumption Growth: BY
Consumption Growth: Filtered

(a) Consumption Growth
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Annual Risk Premia: BY
Annual Risk Premia: Filtered

(b) Risk Premia
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Annual Volatility: BY
Annual Volatility: Filtered

(c) Conditional Volatility
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Annual Sharpe Ratio: BY
Annual Sharpe Ratio: Filtered

(d) Conditional Sharpe Ratio

Figure 3.2. Comparison Simulations versus Filtered values: Long-Run Risks
Model

This figure shows the results of a simulated path of the volatility of consumption growth using the
calibration by Bansal and Yaron (2004). Each simulation has 100 annual return observations. Panel
A shows a random path of monthly returns of the volatility of consumption growth. The dotted line
represents the filtered values of σ2

t . Panel B shows the simulated risk premia along with its filtered
values in dotted lines. Panel C contains the simulated standard deviation of the risk premia as well as its
filtered values. Panel D contains the simulated conditional Sharpe ratio along with its filtered values.
The dashed lines are assumed to be unobservable to the econometrician, while the continuous lines are
the filtered values.
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(a) OLS Fitted Values
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(b) Filtered Values (known parameter
values)
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BY
Filtered with Parameter Estimation

(c) Filtered Values (unknown parameter
values)

Figure 3.3. Comparison OLS versus Filtered Estimates
This figure shows the results of a simulated path of the volatility of consumption growth using the
calibration by Bansal and Yaron (2004). Each simulation has 100 annual return observations. Panel A
contains the conditional Sharpe ratio estimates based on the OLS fitted values. Panel B contains the
filtered Sharpe ratio estimates implied by the long-run risks model; the dotted lines represent the annual
Sharpe ratio implied by the model which are assumed to be unobservable to the econometrician; Panel
C contains the filtered Sharpe ratio estimates implied by the long-run risks model based on parameter
estimates obtained via QML. The dotted lines represent the annual Sharpe ratio implied by the model,
which are assumed to be unobservable to the econometrician. The simulations were performed with the
calibrated parameter values from Bansal and Yaron (2004).
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(a) OLS
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External Habit Formation Model

(b) External Habit Formation

Figure 3.4. Comparison OLS Estimates versus Simulated Values: Habit
Formation Model

This figure shows the results of a simulated path of the volatility of consumption growth using the
calibration by Campbell and Cochrane (1999). Each simulation has 100 annual return observations.
Panel A contains the conditional Sharpe ratio estimates based on the OLS fitted values; Panel B contains
the filtered Sharpe ratio estimates implied by the external habit formation model. The simulations were
performed with the calibrated parameter values from Campbell and Cochrane (1999).
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Figure 3.5. Expected Returns, Volatility and Sharpe Ratio Estimates.
This figure shows the conditional mean, volatility and Sharpe ratio estimates. The figures show the
quarterly estimates of the conditional mean, µt, conditional volatility, σt and Sharpe ratio, SRt, obtained
via filtering techniques. The left column corresponds to the model with a positive risk premia and the
right column contains the filtered estimates of the model with an unconstrained risk premia. The vertical
bars represent the NBER recession dates.
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Figure 3.6. Portfolio Weights
This figure shows the portfolio weights estimates based on the conditional mean, volatility and Sharpe
ratio. The figure shows the time series of optimal weights, wt = (µt + σ2

t /2)/(γσ2
t ), where γ represents

the risk aversion parameter, and µt and σt are the quarterly estimates of the conditional mean and
conditional volatility respectively. The figure shows the optimal weights based on OLS techniques (blue)
and the model based on nonlinear latent variables, assuming a positive risk premium (red) and γ = 5.
The vertical bars represent the NBER recession dates.
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Table 3.1. Long-Run Risks Parameters

Endowment Process Parameters Symbol BY Calibration

Mean Consumption Growth µc 0.0015
LRR Persistence ρ 0.979
LRR Volatility Multiple ϕe 0.044
Mean Dividend Growth µd 0.0015
Dividend Leverage φ 3
Dividend Volatility Multiple ϕ 4.5
Dividend Consumption Exposure π 0
Baseline Volatility σ 0.0078
Volatility of Volatility σw 0.0000023
Persistence of Volatility ν 0.987

Preference Parameters Symbol BY Calibration

Risk Aversion γ 10
EIS ψ 1.5
Time Discount Factor δ 0.998

Endowment Process:

∆ct+1 = µc + xt + σtηt+1

xt+1 = ρxt + ϕeσtet+1

σ2
t+1 = σ2 + v

(
σ2
t − σ2

)
+ σwwt+1

∆dt+1 = µd + φxt + ϕσtut+1 + πσtηt+1

wt+1, et+1, ut+1, ηt+1 ∼ i.i.d. N (0, 1) .

Parameter values. This table displays the model parameters for Bansal and Yaron (2004) (BY).
The endowment process is described above. All parameters are given in monthly terms. The standard
deviation of the long-run innovations is equal to the volatility of consumption growth times the long-run
volatility multiple, and the standard deviation of dividend growth innovations is equal to the volatility of
consumption growth times the volatility multiple for dividend growth. Dividend consumption exposure is
the magnitude of the impact of the one-period consumption shock on dividend growth. Dividend leverage
is the exposure of dividend growth to long-run risks.
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Table 3.2. Long-Run Risks Moment Comparison: OLS

Moment OLS Regressions Model

Expected Returns 0.0417 0.0417
Standard Deviation 0.0301 0.0087

Correlation 0.0052

Volatility 0.1653 0.1641
Standard Deviation 0.0092 0.0167

Correlation 0.0434

Conditional Sharpe Ratio 0.2645 0.3333
Standard Deviation 0.1582 0.0353

Correlation 0.0039

Simulation results. This table displays moments calculated for the Bansal and Yaron (2004) model
from annual data-sets. Columns 1 and 2 display the results using years as time interval. The moment
displayed is the median from 100,000 finite sample simulations of length 100 years. The returns on equity
and the risk-free rate are aggregated to a yearly level by adding the log-returns within the year.
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Table 3.3. Long-Run Risks Moment Comparison: Filtering

Moment Filtering Model

Expected Returns 0.0418 0.0417
Standard Deviation 0.0080 0.0087

Correlation 0.5721

Volatility 0.1645 0.1650
Standard Deviation 0.0168 0.0167

Correlation 0.5651

Conditional Sharpe Ratio 0.3341 0.3333
Standard Deviation 0.0322 0.0353

Correlation 0.5694

Simulation results. This table displays moments calculated for the Bansal and Yaron (2004) model.
Columns 2 to 5 display the results using years as time interval. The moment displayed is the median
from 1500 finite sample simulations of length 100 years. The returns on equity and the risk-free rate are
aggregated to a yearly level by adding the log-returns within the year.
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Table 3.4. Asset Pricing Models

Preferences Time-Varying

CRRA Recursive Habit Equity Premium Volatility Sharpe Ratios

Lucas (1978) X
Breeden (1979) X

Mehra and Prescott (1985) X X X X
Rietz (1988) X X X X
Weil (1989) X X X X

Constantinides (1990) X
Abel (1990) X X X

Campbell and Cochrane (1999) X X X X
Chan and Kogan (2002) X X X X

Menzly, Santos, and Veronesi (2004) X X X X
Bansal and Yaron (2004) X X X X

Barro (2006) X
Calvet and Fisher (2007) X X X X

Barro (2009) X
Jermann (2010) * X X X

Papanikolaou (2011) X X X X
Wachter (2012) X X X X

Chien, Cole, and Lustig (2012) X X X X

Asset pricing models. This table compares features of asset pricing models which have been used to price the aggregate stock market: Lucas (1978),
Breeden (1979), Mehra and Prescott (1985), Rietz (1988), Weil (1989), Constantinides (1990), Abel (1990), Campbell and Cochrane (1999), Chan and
Kogan (2002), Menzly, Santos, and Veronesi (2004), Bansal and Yaron (2004), Barro (2006), Calvet and Fisher (2007), Barro (2009), Jermann (2010),
Papanikolaou (2011), Wachter (2012),Chien, Cole, and Lustig (2012). The comparison table is divided into two panels. The first panel focuses on the
features of the model (preferences, endowment and technology), while the second focuses on the pricing implications of the various models.
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Table 3.5. Quasi-Maximum Likelihood Parameter Estimates

Positive Risk Premia

Parameters Model A Model B Model C Model D
Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E.

a11 0.6727 0.0066 0.7029 0.0041 0.7204 0.0834 0.7079 0.1211
a21 -0.0894 0.0279 -0.1521 0.0184 - - - -
a12 0.3215 0.0011 - - -0.4948 0.0938 - -
a22 0.8310 0.0025 0.7400 0.0114 0.9182 0.1798 0.8730 0.1142
b11 0.2897 0.0063 0.1350 0.0194 0.0944 0.5390 0.1924 0.1674
b22 0.0020 0.0070 0.0001 0.0054 0.0055 0.1111 0.0072 0.8430
ρ -0.3073 0.0009 -0.1760 0.0004 -0.7989 0.2773 -0.7995 0.0029
µ 0.0131 0.0000 0.0131 0.0159 0.0131 0.0675 0.0131 0.1065
σ 0.0857 0.0000 0.0857 0.0005 0.0857 0.0166 0.0857 0.5172

L 245.37 245.32 244.93 244.69

Estimation results. This table presents the QML estimates of the models of the form

yt = µ(St−1) + λ(St−1)εt,

and

St = ASt−1 + ηt with ηt ∼ N (0,Σ) ,

where

A =
[
a11 a12
a21 a22

]
,Σ =

[
b11 ρ

√
b11b22

ρ
√
b11b22 b22

]
.

µ(St) = µ exp(S1t) and σ(St) = σ exp(S2t). The estimates are for quarterly returns on the value-weighted
CRSP index in excess of the three-month Treasury bill from the second quarter of 1953 to the fourth
quarter of 2011. Standard errors are reported in the column next to the parameter estimate.
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Table 3.6. Regressions on Quarterly Data

No. Constant Lag Cay d-p RREL TRM DEF R2

Panel A: Excess Returns: 1953:2 - 2011:4
1953:2 - 2011:4

1 0.01 0.07 0.01
(2.76) (1.18)

2 0.02 0.79 0.03
(2.92) (2.57)

3 0.01 0.08 0.80 0.03
(2.81) (1.28) (2.71)

4 0.14 0.76 0.02 0.04
(1.84) (2.30) (1.61)

5 0.13 0.08 0.67 0.02 -1.46 0.07
(1.86) (1.31) (2.16) (1.64) (-2.64)

6 0.16 0.06 0.61 0.03 -1.29 0.84 0.08
(2.12) (0.99) (1.99) (1.96) (-2.20) (1.59)

7 0.16 0.06 0.61 0.03 -1.30 0.84 -0.07 0.08
(1.87) (0.99) (1.99) (1.83) (-2.30) (1.59) (-0.05)

Panel B:Log Excess Returns:
1953:2 - 2011:4

1 0.01 0.08 0.01
(2.14) (1.31)

2 0.01 0.82 0.03
(2.34) (2.65)

3 0.01 0.09 0.83 0.03
(2.18) (1.41) (2.81)

4 0.15 0.78 0.03 0.04
(1.96) (2.35) (1.77)

5 0.15 0.09 0.70 0.03 -1.37 0.07
(2.00) (1.43) (2.23) (1.81) (-2.38)

6 0.17 0.07 0.65 0.03 -1.21 0.79 0.08
(2.25) (1.14) (2.07) (2.11) (-1.99) (1.49)

7 0.18 0.07 0.63 0.03 -1.26 0.83 -0.38 0.08
(2.07) (1.14) (2.01) (2.04) (-2.17) (1.56) (-0.28)

OLS estimation results. This table reports estimates from OLS regressions of quarterly realized
returns and log-returns for the CRSP VW index on lagged explanatory variables for the second quarter
of 1953 to the fourth quarter of 2011. The conditioning variables are lagged realized volatility (Lag);
the consumption, wealth, income ratio (cay); log dividend-price ratio (d − p); the relative bill rate
(RREL); the term spread, the difference between the ten-year Treasury bond yield and the three-month
Treasury bond yield (TRM); the Baa-Aaa default spread (DEF ). The t-stats were constructed with
heteroscedasticity-consistent standard errors.
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Table 3.7. Regressions on Quarterly Data

No Constant Lag Cay d-p RREL TRM DEF R2

Panel C: Realized Volatility of Excess Returns:
1953:2 - 2011:4

1 0.03 0.61 0.37
(5.16) (7.39)

2 0.07 -0.32 0.02
(16.76) (-2.02)

3 0.03 0.60 -0.23 0.38
(5.35) (7.54) (-2.76)

4 -0.08 -0.28 -0.03 0.12
(-2.16) (-1.69) (-3.90)

5 -0.05 0.54 -0.23 -0.02 -0.27 0.41
(-2.74) (6.84) (-2.58) (-3.97) (-1.00)

6 -0.06 0.54 -0.22 -0.02 -0.28 -0.07 0.41
(-3.02) (6.84) (-2.48) (-4.39) (-1.06) (-0.51)

7 -0.10 0.46 -0.16 -0.02 -0.18 -0.19 1.34 0.43
(-3.64) (5.33) (-1.71) (-4.57) (-0.75) (-1.28) (2.83)

Panel D: Realized Volatility of Log Excess Returns:
1953:2 - 2011:4

1 0.03 0.61 0.36
(5.15) (7.38)

2 0.07 -0.32 0.02
(16.7) (-2.01)

3 0.03 0.60 -0.23 0.37
(5.34) (7.53) (-2.75)

4 -0.08 -0.28 -0.03 0.12
(-2.18) (-1.68) (-3.92)

5 -0.05 0.54 -0.23 -0.02 -0.27 0.41
(-2.76) (6.83) (-2.57) (-3.99) (-0.99)

6 -0.06 0.54 -0.22 -0.02 -0.28 -0.07 0.41
(-3.04) (6.83) (-2.46) (-4.41) (-1.05) (-0.48)

7 -0.10 0.46 -0.16 -0.02 -0.17 -0.19 1.34 0.42
(-3.65) (5.32) (-1.71) (-4.58) (-0.73) (-1.24) (2.81)

OLS estimation results. This table reports estimates from OLS regressions of quarterly realized
volatility of returns and log-returns for the CRSP VW index on lagged explanatory variables for the
second quarter of 1953 to the fourth quarter of 2011. The conditioning variables are lagged realized
volatility (Lag); the consumption, wealth, income ratio (cay); log dividend-price ratio (d − p); the
relative bill rate (RREL); the term spread, the difference between the ten-year Treasury bond yield and
the three-month Treasury bond yield (TRM); the Baa-Aaa default spread (DEF ). The t-stats were
constructed with heteroscedasticity-consistent standard errors.
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Table 3.8. Summary Statistics of Expected Returns, Volatilities and Sharpe
Ratio Estimates

Mean Std. Dev. Min. Max. A.C.(1)

OLS Methods
µt 0.01 0.02 -0.04 0.07 0.80
σt 0.07 0.02 0.02 0.22 0.79
SRt 0.30 0.42 -0.61 1.84 0.81

Brandt and Kang (2004)
µt 0.02 0.01 0.01 0.03 0.59
σt 0.09 0.01 0.07 0.12 0.85
SRt 0.25 0.05 0.14 0.41 0.61

Moment comparison. This table reports descriptive statistics of the estimates of expected returns,
volatilities and Sharpe ratios. The first set of conditional moments are estimated from OLS regressions
of quarterly realized log-returns for the CRSP VW index on lagged explanatory variables for the first
quarter of 1953 to the last quarter of 2011. The second set of estimates are based on the reduced form
model by Brandt and Kang (2004) in which the conditional mean and volatility of stock returns are
treated as latent variables.
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Table 3.9. Quasi-Maximum Likelihood Parameter Estimates

Positive Risk Premia

Parameters Model A Model B Model C Model D
Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E.

a11 0.5276 0.0498 0.5532 0.0002 0.5090 0.0440 0.5282 0.0026
a21 -0.4967 0.0206 -0.4154 0.0001 - - - -
a12 -0.0165 0.1388 - - -0.0247 0.3278 - -
a22 0.8426 0.1521 0.8551 0.0000 0.8859 0.9465 0.8221 0.0068
b11 0.0002 0.0014 0.0004 0.0012 0.0001 0.0029 0.0004 0.0020
b22 0.0088 0.0091 0.0048 0.0013 0.0091 0.1097 0.0132 0.1982
ρ -0.7994 0.0409 -0.7491 0.0002 -0.7999 0.2009 -0.7678 0.0012
µ 0.0131 0.0259 0.0131 0.0300 0.0131 0.0013 0.0131 0.1253
σ 0.0857 0.0045 0.0857 0.0036 0.0857 0.0001 0.0857 0.0106

L 246.12 245.72 246.01 245.52

Estimation results. This table presents the QML estimates of the models of the form:

yt = µ(St−1) + λ(St−1)εt,

and

St = ASt−1 + ηt with ηt ∼ N (0,Σ) ,

where

A =
[
a11 a12
a21 a22

]
,Σ =

[
b11 ρ

√
b11b22

ρ
√
b11b22 b22

]
,

µ(St) = µ+ S1t and σ(St) = σ exp(S2t).

The estimates are for quarterly returns on the value-weighted CRSP index in excess of the three-month
Treasury bill from the second quarter of 1953 to the fourth quarter of 2011. Standard errors are reported
in parentheses.
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Table 3.10. Quasi-Maximum Likelihood Parameter Estimates: Model with
Predictors

Parameters Model D Extended Model D
Estimate Std. Error Estimate Std. Error

a11 0.7079 0.1211 0.5135 0.3421
a21 - - - -
a12 - - - -
a22 0.8730 0.1142 0.7649 0.1381
b11 0.1924 0.1674 0.0049 0.5434
b22 0.0072 0.8430 0.0006 0.0690
ρ -0.7995 0.0029 -0.4523 0.0882
µ 0.0131 0.1065 0.0131 0.0021
σ 0.0857 0.5172 0.0857 0.0009
c11 - - 7.7812 2.6462
c12 - - 1.0911 0.8892
c13 - - -38.8899 1.5632
c14 - - 0.4021 0.7437
c15 - - -39.1056 0.1624
c21 - - -1.3562 1.7051
c22 - - -0.1460 0.0644
c23 - - -0.1245 5.6614
c24 - - -5.4407 1.4016
c25 - - 10.7989 0.4681

L 244.69 263.46

Estimation results. This table presents the QML estimates of the model of the form:

yt = µ(St−1) + λ(St−1)εt,

and

St = Cxt +ASt−1 + ηt with ηt ∼ N (0,Σ) ,

where

C =
[
c11 c12 c13 c14 c15
c21 c22 c23 c24 c25

]
, A =

[
a11 a12
a21 a22

]
,Σ =

[
b11 ρ

√
b11b22

ρ
√
b11b22 b22

]
,

µ(St) = µ exp(S1t) and σ(St) = σ exp(S2t).

The vector of conditioning variables xt contains the de-meaned consumption, wealth, income ratio (cay);
log dividend-price ratio (d− p); the relative bill rate (RREL); the term spread, the difference between
the ten-year Treasury bond yield and the three-month Treasury bond yield (TRM); and the Baa-Aaa
default spread (DEF ). Heteroscedasticity-consistent standard errors are reported. The estimates are for
quarterly returns on the value-weighted CRSP index in excess of the three-month Treasury bill from the
second quarter of 1953 to the fourth quarter of 2011.
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Table 3.11. Summary Statistics of Sharpe Ratio Estimates

Mean Std. Dev. Min. Max. A.C.(1)

BK 0.25 0.05 0.14 0.41 0.61

BK (Unconstrained) 0.26 0.10 -0.05 0.49 0.71

BK (Extended) 0.31 0.25 0.07 1.58 0.88

OLS Methods 0.30 0.42 -0.61 1.84 0.81

Moment comparison. This table reports descriptive statistics of the estimates of Sharpe ratios based
on quarterly realized log-returns for the CRSP VW index for the first quarter of 1953 to the last quarter
of 2011. The first, second and third sets of Sharpe ratio estimates are based on the reduced form model by
Brandt and Kang (2004) (BK) in which the conditional mean and volatility of stock returns are treated
as latent variables. The first representation guarantees positive values for the conditional mean and
volatility, while the second representation guarantees a positive volatility only. The third representation
is an extended version in which the conditional moments are positive functions of exogenous predictors.
Finally, the last set of Sharpe ratio estimates is based on the conditional moments estimated from OLS
regressions of log-returns on lagged explanatory variables.
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Chapter 4

Conclusion

In this thesis, I investigate filtering methods and some applications of asset pricing. Chapter 2
extends the nonlinear filtering literature by proposing a new filtering method based on efficient
Taylor approximations. The filter can be applied to estimate latent variables and for parameter
inference. I find that the filtering methods that are based on Taylor approximations generate
state estimates that are as accurate as the estimates obtained with Monte Carlo filters, while
being computationally more efficient.

The filter can be applied in finance and economics where stochastic volatility has become the
standard paradigm. I test the filter in three models, namely, in the standard stochastic volatility
model (Ghysels, Harvey, and Renault, 1996), in a model of risk and returns (Brandt and Kang,
2004) and in a dynamic stochastic general equilibrium model (Flury and Shephard, 2011). In all
these applications, I find that the filter generates accurate state estimates at least five times
faster than standard particle filters. I also show how these filters, along with perturbation
methods, can be applied to estimate dynamic stochastic general equilibrium models. Finally, by
conducting a set of robustness checks I also find that the Taylor series filter is accurate in highly
nonlinear and highly dimensional state-space models.

Filtering methods can be naturally applied in finance, where investors and managers take
important decisions based on noisy information. These findings are significant, since a more
efficient use of filtering methods in finance can help agents to take more informed decisions as
well as enable them to identify underlying risks in the economy.

Chapter 3 investigates the dynamic behavior of the market Sharpe ratio. I have examined
estimates of the Sharpe ratio volatility and question whether they are biased due to limitations of
the empirical methodology used to estimate them. I show that measurement error in estimated
Sharpe ratios explains the high time-series variation documented in the empirical literature
(Lettau and Ludvigson, 2010). I also show that filtering methods are a better approach to assess
the Sharpe ratio’s time variation.
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My findings have significant implications for portfolio allocation, especially for investors who
face proportional costs by trading the mean-variance optimal portfolio. As the optimal weight
is proportional to the market Sharpe ratio, the percentage of wealth traded in each period will
depend upon the volatility of the market Sharpe ratio. It is clear that upward-biased estimates
of the Sharpe ratio volatility would imply excessive portfolio rebalancing, and therefore more
transaction costs.

4.1 Limitations
Both chapters have room for improvement. In the first chapter, we learned that although the
nonlinear filters with Taylor approximations provide accurate results for a number of problems,
some care should be taken in their modeling and implementation. For the modeling part, a
significant amount of work has to be done to select observation equations that generate accurate
state and parameter estimates. Moreover, the filter may diverge when the functions that define
the observation equation or transition equation of the state-space models are not differentiable
or the Taylor series approximations are not uniformly convergent.

Likewise, in the essay on the volatility of the market Sharpe ratio, filtering is just one
technique that provides a correct estimate of the volatility of the market Sharpe ratio. There
may be other techniques that could provide accurate measures of the market Sharpe ratio
variability, such as the mixed data sampling (MIDAS) regression models (Ghysels, Santa-Clara,
and Valkanov, 2005, 2006) and related econometric methods that are based on data sampled at
different frequencies.

Lastly, the CRSP index is a proxy for a market portfolio that is unobservable. The
measurement error generated by this proxy generates some additional variation that I am unable
to explicitly account for in the current setup. By identifying this source of variation, we would
be able to know to what extent the Sharpe ratio variability is generated by the estimation
methodology, the measurement error of the market portfolio or any source of risk.

4.2 Future Work
The filtering techniques developed in Chapter 2 have the flexibility to extend to non-differentiable
functions or non-Gaussian errors. This can be done by using a basis of orthogonal polynomials
(such as the Chebyshev, Hermite, Legendre or Laguerre polynomials) to approximate nonlinear
functions, instead of using the Taylor series. As a result, more general state-space models can
be analyzed through this filtering setup.
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In addition to the study of non-differentiable functions, there are a number of extensions
that I plan to follow based on this setup, such as optimal selection of observation equations;
the addition of extra centers of expansions to conduct better state and parameter estimation;
the use of Bayesian techniques for parameter estimation and finally, the application of these
techniques in Markov switching models.

As for Chapter 3, a number of extensions can be done. The most natural application
consists of formally studying the implications of filtering in optimal portfolio allocation and
predictability, such as in Section 3.6. A large body of empirical work has found evidence of
predictability of returns in equity and across other financial markets. 65 Such predictability has
important implications for the asset allocation of investors. The empirical evidence suggests
that long-term investors should take into account the predictability in strategic asset allocation
(Campbell and Viceira, 2002). In particular, one strand of the literature advocates, in principle,
the countercyclical market timing of the portfolio equity share, using predictive variables for
expected returns. In the standard portfolio allocation setup, rebalancing to a fixed strategic
equity share ignores the time variation in the equity risk premium. If such variation is real
and persists in a similar way to the historical asset return data, a fixed strategic equity weight
would not be optimal. The rebalancing of the equity share should therefore be modified so as to
incorporate predictability within the asset allocation setup. Filtering techniques are the natural
approach to incorporate such predictability.

Another natural extension of Chapter 3 is based on the analysis of the cross-section of the
equity Sharpe ratios which can vary significantly by the characteristics of the firm or the portfolio.
We learn from Chapter 3 that the Sharpe ratio of any asset is unobservable. However, filtering
techniques are the natural econometric techniques to be applied for inference purposes. Another
important extension is related to the data-based performance measures for asset pricing models.
Backus, Chernov, and Zin (2012) introduce entropy as a measure for capturing the dispersion
and time-series dependence of a model-implied pricing kernel. This measure is linearly related to
the volatility of the market Sharpe ratio. In this extension I intend to empirically quantify the
entropy of asset pricing models via filtering methods and to relate it to model-implied measures,
such as the market Sharpe ratio and its volatility.

Even 40 years after the discovery of filtering techniques, we still have the capacity for
theoretical and empirical applications. Given that, in most cases, investors and econometricians
only have partial information, I posit that filtering techniques are a powerful tool that should
be used to analyze dynamic models.

65 More recently, the evidence on predictability has grown and become inconclusive (Boudoukh, Richardson,
and Whitelaw, 2008; Campbell and Shiller, 1988; Fama and French, 1989; Goyal and Welch, 2008; Hodrick, 1992;
Keim and Stambaugh, 1986; Lewellen, 2004; Stambaugh, 1999; Valkanov, 2003).
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Appendix A

Appendix to Chapter 2

A.1 Efficient Calculation of Derivatives of Composite
Functions

The efficient calculation of partial derivatives described in Chapter 2 relies on the Taylor
expansion of a function of the form f (x) = h (g (x)) , where h : R −→ R, g : RN −→ R,
and x = (x1, x2, ..., xN ) denotes an N -dimensional vector.66 The generic M -th order Taylor
expansion of f centered at a constant point 0N is defined as

f̂ (x) =
∑

{q:|q|≤M}

1
q!fq (0N )

N∏
n=1

xqnn , (A.1)

where q = (q1, ..., qN ) is a vector of nonnegative integers, |q| =
∑N
n=1 qn,q! =

∏N
n=1 (qn!) , and

fq (0N ) denotes the partial derivative of order q of the function f (x) evaluated at 0N ; i.e.,

fq (0N ) = ∂q1+...+qN f

∂xq1
1 ...∂x

qN
1

(0N ) . (A.2)

To compute such derivatives, Savits (2006) relies on the recursive formula of Faà di Bruno
(1855, 1857). To present the formula, I will introduce some notation. Let N0 denote the set of
nonnegative integers and let q = (q1, ..., qN ) , where qn ∈ N0, n = 1, . . . , N . We write ` ≤ q if
`n ≤ qn, for n = 1, . . . , N, and denote (

q
`

)
= q!
`! (q − `)! .

Let gq (x) denote the partial derivative of order q of the function g (x), and hn (w) denote the
n-th derivative of the function h (w) with respect to the one-dimensional variable w. According
to the multivariate version of Faà di Bruno’s formula, the partial derivative of order q of the

66For simplicity I consider the case in which f (x) is one-dimensional; however, the formulas can be extended
directly to a multi-dimensional case by applying the results for the one-dimensional case to each of the components.
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composite function f (x) = h (g (x)) ; i.e., fq (x) can be expressed as

fq (x) =
|q|∑
n=1

hn (g (x))αq,n (x) , (A.3)

where αq,n (x) are homogeneous polynomials of degree n in the partial derivatives of g, g` (x),
` ≤ q. To compute the generic derivative of f, it is sufficient to determine the polynomials
αq,n (x) . These can be computed efficiently by relying on the recursive relationship proved in
Theorem 3.1 of Savits (2006).

Theorem A.1.1 For q ≥ 0N , 1 ≤ j ≤ N, and 1 ≤ n ≤ |q|+ 1, we have

αq+ej,n (x) =
∑

{`∈NN0 : 0N≤`≤q;|`|≥n−1}

(
q
`

)
gq+ej−` (x)α`,n−1 (x) , (A.4)

where ej is the unit vector with j-th component equal to 1 and we set

α`,0 (x) =
{

1 if ` = 0,
0 if ` 6= 0,

Proof See Savits (2006).
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A.2 Proofs
Lemma A.2.1 Let Z ∼ N

(
µ, σ2) and let f , any continuously differentiable function such that

f ′ exists almost everywhere and E |f ′ (Z)| <∞; then

cov (Z, f (Z)) = E [(Z − µ) f (Z)] = σ2E
[
f ′ (Z)

]
.

Proof

E [(Z − µ) f (Z)] =
∞∫
−∞

(z − µ) f (z) e
− (z−µ)2

2σ2
√

2πσ2
dz

= −σ2f (z) e
− (z−µ)2

2σ2
√

2πσ2

∣∣∣∣∣ ∞−∞ + σ2
∞∫
−∞

f ′ (z) e
− (z−µ)2

2σ2
√

2πσ2
dz

= σ2E
[
f ′ (Z)

]
.

Proof of Lemma 2.3.5. Let Z = (Z1, ..., ZN ) , where Zi are i.i.d. N (0, 1) random variables.
From the previous lemma, we know that for any g (X) , differentiable almost everywhere,
cov [Zi, g (Z)] = E [∂g /∂zi ] , therefore

cov [Z, g (Z)] = E [∇g (Z)] . (A.5)

Now, the random vector X can be written as X = Σ1/2Z+µ, and f (Z) = g
(
Σ1/2Z+µ

)
. Hence,

the left side of (2.18) is

cov [X, f (X)] = cov
[
Σ1/2Z+µ, g

(
Σ1/2Z+µ

)]
= Σ1/2cov

[
Z, g

(
Σ1/2Z+µ

)]
= ΣE [∇f (X)] .

Proof of Proposition 2.3.3. Let h (y) = y2; then h0 (y) = y2; h1 (y) = 2y and h2 (y) = 2.
Now, by applying Theorem A.1.1 to f (x) = h (g (x)), where h (·) is defined as before, we have

fq (x) = h1 (g (x))αq,1 (x) + h2 (g (x))αq,2 (x)

= 2g (x)αq,1 (x) + 2αq,2 (x) .
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Now, from Eq. (A.4) applied to n = 1, 2, we have

αq+ej ,1 (x) =
∑

{`∈NN0 : 0N≤`≤q;|`|≥0}

(
q
`

)
gq+ej−` (x)α`,0 (x)

= gq+ej (x)

αq+ej ,2 (x) =
∑

{`∈NN0 : 0N≤`≤q;|`|≥1}

(
q
`

)
gq+ej−` (x)α`,1 (x) ..

Finally, we have

fq+ej (x) = 2g (x)αq+ej,1 (x) + 2αq+ej,2 (x)

= 2g (x) gq+ej (x) + 2
∑

{`∈NN0 : 0N≤`≤q;|`|≥1}

(
q
`

)
gq+ej−` (x) g`,1 (x)

=
∑

{`∈NN0 : 0N≤`≤q}

(
q
`

)
2 · gq+ej−` (x) g` (x) ,

as required.

Proof of Proposition 2.3.4 This proof is a direct consequence from the following algebraic
identity: (

g1g2
)

(x) =
(
g1 + g2)2 − (g1)2 − (g2)2

2 (x) .

Hence, (
g1g2

)
q+ej

(x) =
((
g1 + g2)2 − (g1)2 − (g2)2

2

)
q+ej

(x) .
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By applying Lemma to the function
(
g1 (x) + g2 (x)

)2, we have

(
g1 + g2

)2

q+ej
(x) =

∑
{`∈NN0 : 0N≤`≤q}

(
q
`

)
2 ·
(
g1 + g2

)
q+ej−`

(x)
(
g1 + g2

)
`
(x) (A.6)

=
∑

{`∈NN0 : 0N≤`≤q}

(
q
`

)
2 ·
(
g1

q+ej−` (x) g1
` (x) + g2

q+ej−` (x) g2
` (x)

)

+
∑

{`∈NN0 : 0N≤`≤q}

(
q
`

)
2 ·
(
g1

q+ej−` (x) g2
` (x) + g2

q+ej−` (x) g1
` (x)

)

=
(
g1
)2

q+ej
(x) +

(
g2
)2

q+ej
(x)

+
∑

{`∈NN0 : 0N≤`≤q}

(
q
`

)
2 ·
(
g1

q+ej−` (x) g2
` (x) + g2

q+ej−` (x) g1
` (x)

)
.

By subtracting
(
g1)2

q+ej
(x) and

(
g2)2

q+ej
(x) and dividing by two Eq. (A.6) we get the desired

result.

Proof of Lemma 2.6.1.
Let λ > 1

2 ; then

1
1 + x2 = 1/λ

1
λ + x2

λ

= 1/λ
1 + 1

λ + x2

λ − 1
= 1
λ

∞∑
j=0

(
λ− 1− x2

λ

)j
(A.7)

and this equality is true, as long as ∣∣∣∣∣λ− 1− x2

λ

∣∣∣∣∣ < 1

or
|x| <

√
2λ− 1.

Finally, multiplying both sides of Eq. (A.7) by x and x2 yields to Eq. (2.66) and Eq. (2.67)
respectively. Now, to obtain Eq. (2.68) we take the derivative with respect to x of both sides of
Eq. (A.7) ,

−2x
(1 + x2)2 = 1

λ

∞∑
j=0

j
−2x
λ

(
λ− 1− x2

λ

)j−1

,

multiplying both sides of the last equation by −x/2, yields to the desired result.
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A.3 Standard Kalman Filter
The state-space representation of a linear model is given by

yt = Hxt + vt (A.8)

xt = Fxt−1 + wt,

where vt ∼ N (0, R) and wt ∼ N (0, Q). The first equation is the observation equation and
represents the true measurement of the state variable xt, and H represents the model that maps
the true state-space into the observed space; vt is the measurement noise. The second equation
represents the evolution of the state variable.

In systems like (A.8) where the state variables are normally distributed and the measurement
equations are linear, the standard Kalman filter yields efficient state estimates in a minimum-
variance criteria. The estimates can be obtained using the Kalman filter update and prediction
rules. Following, Kalman (1960), the optimal estimate of x̂t+1|t+1. (in an minimum-variance
sense) is given by updating the prediction equation with the current measurement.

A prediction state is given by

x̂t+1|t = Fx̂t|t (A.9)

Pt+1|t = FPt|tF
> +Q.

The update rule is given by

Kt+1 = Pt+1|tH
>
[
P yyt+1|t

]−1
(A.10)

P yyt+1|t = HPt+1|tH
> +R

x̂t+1|t+1 = x̂t+1|t +Kt+1
(
yt+1 −Hx̂t+1|t

)
Pt+1|t+1 = (I −Kt+1H)Pt+1|t
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A.4 The Extended Kalman Filter
A well known approximation to non linear filtering is the extended Kalman filter (EKF), which
relies on a first-order Taylor expansion of the measurement and transition equations around the
predicted value of the state variable at time xt+1|t . The measurement equation is written as
follows

yt+1 = h
(
xt+1|t

)
+Ht+1

(
xt+1 − xt+1|t

)
+ vt+1, (A.11)

where
Ht+1 = ∂h

∂xt+1

∣∣∣∣
xt+1=xt+1|t

(A.12)

denotes the Jacobian matrix of the nonlinear function g computed at xt+1|t . The transition
equation is linearized as in (A.12) and is written as

xt+1 = g
(
xt|t

)
+Gt

(
xt − xt|t

)
+ εt+1, (A.13)

where
Gt = ∂g

∂xt

∣∣∣∣
xt=xt|t

.

The covariance matrices P xyt+1|t and P yyt+1|t are then computed as

P xyt+1|t = P xxt+1|tHt+1, (A.14)

P yyt+1|t = Ht+1P
xx
t+1|tH

>
t+1 +R (A.15)

and
P xxt+1|t = GtP

xx
t|t Gt +Q.

The estimate of the state vector is then updated using the standard Kalman filter recursions.
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A.5 The Unscented Kalman Filter
The unscented Kalman filter, UKF hereafter, uses the exact nonlinear functions in the observation
and transition equations to approximate the moments of the state variables. Unlike the EKF,
the UKF does not rely on linearizations. The UKF approximates the conditional distribution
of the state variables using the unscented transformation, Julier and Uhlmann (1997), which
is a method for computing statistics of nonlinear transformations of random variables. Julier
and Uhlmann (2004) prove that this approximation is accurate to the third order for Gaussian
random variables and up to a second order for non-Gaussian states. Moreover, the UKF does
not rely on the calculation of Jacobians or Hessian matrices and its efficiency is comparable to
the EKF as noted by van Binsbergen and Koijen (2011) and Christoffersen, Jacobs, Karoui, and
Mimouni (2012).

Let x denote a random vector with mean µx and covariance matrix P xx. Consider a nonlinear
transformation y = h (x). The basic idea behind the scaled transformation is to generate a set
of points, denoted as sigma points, with first and second moments denoted by µx and P xx,

respectively, and apply the nonlinear transformation to each sigma point. More precisely, the
N -dimensional random vector is approximated by a set of 2N + 1 weighted points given by

X0 = µx, (A.16)

Xi = µx +
(√

(N + ξ)P xx
)
i
, for i = 1, . . . , N (A.17)

Xi = µx −
(√

(N + ξ)P xx
)
i
, for i = N + 1, . . . , 2N (A.18)

with weights

Wm
0 = ξ

(N + ξ) ,

W c
0 = ξ

(N + ξ) +
(
1− ρ2 + θ

)
Wm
i = W c

i = 1
2 (N + ξ) , for i = 1, ..., N,

where ξ = ρ2 (N + λ)−N, and where
(√

(N + ξ)P xx
)
i
is the i-th column of the matrix square

root of (N + ξ)P xx, ρ is a positive scaling parameter that minimizes higher order effects and can
be chosen to be arbitrarily small, λ is a positive parameter that guarantees positive-definiteness
of the covariance matrix, θ is a nonnegative parameter that can be used to capture higher
order moments of the distribution of the state variable. Julier and Uhlmann (1997) propose
to use θ = 2 for Gaussian distributions. Once the sigma points are computed, the nonlinear
transformation is applied to each of the sigma points defined in (A.16)− (A.18) :

Yi = h (Xi) , for i = 0, ..., n.
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The UKF relies on the unscented transformation to approximate the covariance matrices Pt+1|t ,

P xyt+1|t , P
yy
t+1|t . An augmented state vector is defined by including the state and measurement

noises. This yields to a Na = 2p+N -dimensional vector

X at =


xt

εt

vt

 ,
and the unscented transformation is applied to X at . The process for computing the UKF is
summarized as follows:

1. Compute 2Na + 1 sigma points of the augmented state-space:

X a
t|t

= xt|t , (A.19)

X a
t|t

= xt|t +
(√

(Na + ξ)P at|t
)
i
, for i = 1, . . . , Na

X a
t|t

= xt|t −
(√

(Na + ξ)P at|t
)
i
, for i = Na + 1, . . . , 2Na

2. Prediction step:

X x
t+1|t

= g
(
X x
t|t

)
+ X ε

t+1|t

xt+1|t =
2Na+1∑
i=1

Wm
i X xi,t+1|t

Pt+1|t =
2Na+1∑
i=1

W c
i

[
X x
i,t+1|t

− xt+1|t
] [
X x
i,t+1|t

− xt+1|t
]>

Yi,t+1|t = h
(
X xi,t+1|t

)
+ X εi,t+1|t

yt+1|t =
2Na+1∑
i=1

Wm
i Yi,t+1|t

3. Measurement update:

P xyt+1|t =
2Na+1∑
i=1

W c
i

[
X x
i,t+1|t

− xt+1|t
] [
Yx
i,t+1|t

− yt+1|t
]>
,

P xyt+1|t =
2Na+1∑
i=1

W c
i

[
Yx
i,t+1|t

− yt+1|t
] [
Yx
i,t+1|t

− yt+1|t
]>
.

The estimate of the state vector is updated through the standard Kalman filter recursions. The
algorithm is initialized by setting the initial value to the unconditional mean and variance of
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the state vector.

x0|0 = E [xt]

P0|0 = var [xt]

xa0|0 =
[
x0|0 0 0

]>

and

P a0|0 =


P0|0 0 0

0 Q 0
0 0 R

 .
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A.6 The Particle Filter
This appendix provides a general introduction to particle filters following Johannes and Polson
(2009). As mentioned in Chapter 2 the solution to the filtering problem is the conditional
distribution of the state variable, xt, given the observed data, y1, ..., yt. To estimate the density,
it is necessary to follow a two-step procedure of prediction and updating. The prediction step
combines the current filtering distribution with the state transition,

p (xt+1 |y1, ..., yt ) =
∫
p (xt+1 |xt ) p (xt |y1, ..., yt ) dxt, (A.20)

providing a forecast of next period’s state. Now, given a new observation, yt+1, the predictive

views are updated by Bayes’ rule

p (xt+1 |y1, ..., yt+1 ) = p (yt+1 |xt+1 ) p (xt+1 |y1, ..., yt )
p (y1, ..., yt+1) (A.21)

∝ p (yt+1 |xt+1 ) p (xt+1 |y1, ..., yt ) ,

where ∝ represents that the denominator of Eq.(A.21) is a normalizing constant that does not
depend on xt+1. The main complication is that the density p (xt |y1, ..., yt ) is known analytically
only in a few cases, such as the linear model with normally distributed errors. In this case, the
standard Kalman filter can be applied to generate the first and second moments of the posterior
distribution. In nonlinear and non-normal models, the density p (xt |y1, ..., yt ) is a function of
the observables, y1, ..., yt that has no analytical tractability. Therefore, Monte Carlo methods
are a feasible way to estimate p (xt |y1, ..., yt ) .

A.6.1 Implementation

A particle filter is a discrete approximation, denoted by pN (xt |y1, ..., yt ) , to the conditional
density p (xt |y1, ..., yt ) . The density is generally written as

{
π

(i)
t , x

(i)
t

}N
i=1

, where the weights

add up to one,
∑N
i=1 π

(i)
t = 1, and the support of this density is denoted by x(i)

t . The generic
particle approximation is given by

pN (xt |y1, ..., yt ) =
N∑
i=1

π
(i)
t δ

(
xt − x(i)

t−1

)
, (A.22)

where δ (·) denotes the Dirac delta function.

Intuitively, a particle filter is a discrete approximation to p (xt |y1, ..., yt ) that consists of
states or particles, denoted by

{
x

(i)
t

}N
i=1

, and weights associated to those particles
{
π

(i)
t

}N
i=1

.

This approximation can be thought as a random histogram, where the states define the support
and the weights are the “probabilities”associated with each state.
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Let pN (xt+1 |y1, ..., yt ) and pN (xt+1 |y1, ..., yt+1 ) denote the discrete approximation to the
conditional densities, p (xt+1 |y1, ..., yt ) and p (xt+1 |y1, ..., yt+1 ) , respectively. Suppose that the
conditional densities, p (xt+1 |xt ) and p (yt+1 |xt+1 ) are known, then by substituting (A.22) in
(A.20), and due to the properties of the Dirac delta function, we have that the integral becomes
a sum, that is

pN (xt+1 |y1, ..., yt ) =
∫
p (xt+1 |xt ) pN (xt |y1, ..., yt ) dxt (A.23)

=
N∑
i=1

p
(
xt+1

∣∣∣x(i)
t

)
π

(i)
t .

Finally, substituting (A.23) in Eq.(A.21) yields to

pN (xt+1 |y1, ..., yt+1 ) ∝ p (yt+1 |xt+1 )
N∑
i=1

p
(
xt+1

∣∣∣x(i)
t

)
π

(i)
t . (A.24)

Given the discrete approximation to the conditional density function, pN (xt |y1, ..., yt ) , the
main challenge of particle filtering is to generate a sample from pN (xt+1 |y1, ..., yt+1 ) recursively,
after receiving a new observation, yt+1.

The particle approximation can be transformed into an equally weighted random sample
from the density, pN (xt |y1, ..., yt ) , by sampling with replacement from the discrete distribution,{
π

(i)
t , x

(i)
t

}N
i=1

. This procedure is known as resampling and produces a new sample with uniformly

distributed weights, i.e. π(i)
t = 1/N. Resampling can be done in different ways, but the simplest

is the multinomial sampling (Casella and Robert, 2004).

A.6.2 Sampling Importance Resampling

One of the most popular and most general particle filtering algorithm is known as the sampling
importance resampling (SIR) algorithm. The algorithm relies on two steps:

Algorithm A.6.1 Given samples from p (xt |y1, ..., yt ) ,

1. Draw x
(i)
t+1 ∼ p

(
xt+1

∣∣∣x(i)
t

)
for i = 1, ..., N,

2. Draw z(i) ∼MultN

({
w

(i)
t+1

}N
i=1

)
for i = 1, ..., N and set x(i)

t+1 = x
z(i)
t+1

where MultN denotes an N−component multinomial distribution and the importance
weights are given by

w
(i)
t+1 =

p
(
yt+1

∣∣∣x(i)
t+1

)
N∑
i=1

p
(
yt+1

∣∣∣x(i)
t+1

) .
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Prior to resampling, each particle had weight w(i)
t+1. After resampling, the weights are equal,

by the definition of resampling. The intuition of the algorithm is as follows: in the first step, the
algorithm simulates new particles from the distribution, p

(
xt+1

∣∣∣x(i)
t

)
. Upon observing yt+1, the

resampling step selects the particles that were most likely, in terms of the conditional likelihood,
p
(
yt+1

∣∣∣x(i)
t+1

)
, to have generated yt+1.

From Chapter 2, we learn that a number of applications characterize the state transition
and measurement densities through a state-space model representation of the form:

yt = h (xt) + vt, vt ∼ N (0, R) ,

xt+1 = g (xt) + εt+1, εt+1 ∼ N (0, Q) .

In this case, SIR algorithm becomes:

Algorithm A.6.2 Given samples from p (xt |y1, ..., yt ) , denoted by x(i)
t for i = 1, ..., N,

1. Draw x
(i)
t+1 ∼∼ N

(
g
(
x

(i)
t

)
, Q
)
for i = 1, ..., N,

2. Draw z(i) ∼MultN

({
w

(i)
t+1

}N
i=1

)
for i = 1, ..., N and set x(i)

t+1 = x
z(i)
t+1

where MultN denotes an N−component multinomial distribution and the importance
weights are given by

w
(i)
t+1 =

exp
(
−1

2

(
yt+1 − h

(
x

(i)
t+1

))>
R−1

(
yt+1 − h

(
x

(i)
t+1

)))
N∑
i=1

exp
(
−1

2

(
yt+1 − h

(
x

(i)
t+1

))>
R−1

(
yt+1 − h

(
x

(i)
t+1

))) .

The theoretical justification for these algorithms is the weighted bootstrap algorithm or SIR
algorithm, which was designed to simulate posterior distributions, of the form L (x) p (x) , where
L (·) denotes the likelihood function and p (·) the prior. The algorithm first draws an independent
sample x(i) ∼ p (x) for i = 1, ..., N, and then computes the normalized importance weights
w(i) = L(x(i))∑N

i=1 L(x(i)) . The sample drawn from the discrete distribution
{
x(i), w(i)

}N
i=1

tends in

distribution to a sample from the product density L (x) p (x) as N increases. 67

67See Casella and Robert (2004) for a detailed explanation.
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A.7 Quasi-Maximum Likelihood Standard Errors
Gallant and White (1988) show that under certain regularity conditions, a heteroskedasticity and
autocorrelation consistent covariance matrix of the quasi-maximum likelihood (QML) estimator
θQML can be obtained using the formula

Cov
(
θQML

)
= A−1

T

(
θQML

)
BTA

−1
T

(
θQML

)
,

where AT
(
θQML

)
is the Hessian of the log-likelihood function,

AT
(
θQML

)
= ∂2

∂θ∂θ>
L (θ) ,

and BT is a consistent estimator of the covariance matrix of the first derivative of the QML
function (2.26). Newey and West (1987) proposed an estimator for BT given by

BT =
T∑
t=1

stst
> +

L∑
t=1

T∑
r=t+1

(
1− t

L+ 1

) [
sts
>
t−r + st−rs

>
t

]
,

where
st = ∂

∂θ
lt (θ) ,

and L represents the number of sample autocovariances to include in the estimation of the
variance–covariance matrix. Newey and West (1994) provide a non-parametric method for
automatically selecting L as a function of the number of observations.
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A.8 Calculation of Moments
Definition Let X = (x1, x2, x3, ..., xN )> be a normally distributed vector with mean vector
µ and variance covariance matrix Σ; then the moment-generating function of X, denoted by
MX(t), is given by

MX(t) = E[exp(X>t)] = exp(µ>t+ t>Σt
2 ),

where t is an N -dimensional real vector.

Lemma A.8.1 Let X = (x1, x2, x3, ..., xN )> be normally distributed with moment-generating
function MX(t); then

∂q1+...+qNMX(t)
∂tq1

1 ...∂t
qN
N

= E[xq1
1 ...x

qN
N exp(X>t)].

Proposition A.8.2 Let X = (x1, x2, x3)> be a normally distributed random vector with mean
vector µ and variance covariance matrix, Σ; then

E(exp(x1)x2) = exp(µ1 + σ2
1

2 )(σ1,2 + µ2)

cov(exp(x1), x2) = exp(µ1 + σ2
1

2 )σ1,2

cov(exp(x1), exp(x2)) = exp(µ1 + µ2 + σ2
1 + σ2

2
2 )(exp(σ1,2)− 1)

E(exp(x1) · x2 · x3) = exp(µ1 + σ2
1

2 )[(µ2 + σ1,2)(µ3 + σ1,3) + σ2,3]

cov(exp(x1) · x2, x3) = exp(µ1 + σ2
1

2 )[σ1,3(µ2 + σ1,2) + σ2,3].

Proof The proof follows directly from applying Lemma A.8.1.
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Appendix B

Appendix to Chapter 3

B.1 Sharpe Ratios in Asset Pricing
Harrison and Kreps (1979) show that the absence of arbitrage implies the existence of a stochastic
discount factor (SDF) or pricing kernel, denoted by Mt, that prices all assets in the economy.68

More specifically, the conditional expectation of the product of the stochastic discount factor
and the gross asset return (Rt) must be equal to one; that is,

Et [Mt+1Rt+1] = 1, (B.1)

where the conditional expectation is based on the information available at time t. Since Eq.
(B.1) holds for any asset in the economy, it must hold for the one-period risk-free interest
rate (Rft+1) ; consequently, the risk-free rate can be written as the inverse of the conditional
expectation of the stochastic discount factor,

Rf,t+1 = 1
Et [Mt+1] . (B.2)

Another implication of Eq. (B.1) is that the expected risk premium on any asset is given by the
negative of the product of the risk-free rate and the conditional covariance of the stochastic
discount factor with the gross return; that is,

Et [Rt+1 −Rft+1] = −Rft+1Covt (Rt+1,Mt+1) . (B.3)

The conditional Sharpe ratio of an asset at time t, denoted by SRt, is defined as the ratio of the
conditional mean excess return to the conditional standard deviation of its return; that is,

SRt = Et [Rt+1 −Rft+1]
σt [Rt+1 −Rft+1] . (B.4)

68See Back (2010) for a detailed and concise explanation.
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Then, the conditional Sharpe ratio is proportional to the risk-free rate, the volatility of the
pricing kernel and the correlation between the pricing kernel and the return; that is,

Et [Rt+1 −Rft+1]
σt [Rt+1 −Rft+1] = −Rft+1σt [Mt+1]Corrt [Rt+1,Mt+1] , (B.5)

where σt and Corrt are the standard deviation and correlation; respectively, both conditional on
information at time t. The conditional Sharpe ratio of any asset in the economy is time varying
as long as the risk-free rate varies or the pricing kernel is conditionally heteroskedastic; that
is, if σt [Mt+1] changes over time or if the correlation between the stock market return and the
stochastic discount factor is time varying.

Now, the maximum of the right-hand side of Eq. (B.5) over all returns defines a lower bound
for the standard deviation of any stochastic discount factor depending on the risk-free rate.
Since the correlation coefficient is between -1 and 1, we have

Et [Rt+1]−Rft+1
σt [Rt+1 −Rft+1] ≤ Rft+1σt [Mt+1] ≡ SRmax

t , for all assets. (B.6)

Eq. (B.6) implies the Hansen and Jagannathan (1991) bound, which is an upper bound to the
absolute value of the conditional Sharpe ratios of any asset in the economy, given a specific
discount factor. The maximum Sharpe ratio, SRmax

t , is achieved if there exists an asset in the
economy which is perfectly negatively correlated with Mt+1. In general, the Sharpe ratios of all
the assets in the economy are bounded by the right-hand side of Eq. (B.6) but when markets
are complete there exists an asset that achieves the upper bound, and the inequality becomes
an equality.69 Moreover, a very volatile SDF is necessary to understand high Sharpe ratios. The
conditional variance of the SDF can be thought of as the variance of the investor’s marginal
utility of consumption in the next period.70 Therefore, from Eq. (B.5) we learn that each
model has an implication for the dynamic behavior of the market Sharpe ratio, since each model
implies a functional form for the SDF.

The use of log-returns is a common practice in the empirical literature. A standard approxi-
mation of the Sharpe ratio based on continuously compounded returns is given by

SRt =
Et[rt+1]− rf,t+1 + σ2

t [rt+1]
2

σt [rt+1] , (B.7)

where rt+1 denotes the continuously compounded return of an asset, rf,t+1 denotes the continu-
ously compounded risk-free rate and σt [rt+1] denotes the standard deviation of the return of an
asset. The numerator in Eq. (B.7) includes the Jensen adjustment for log-returns.71

69A detailed discussion of this result is shown in Lettau and Uhlig (2002).
70Hansen and Jagannathan (1991) provide a comprehensive analysis of this bound, allowing for many risky

assets and no risk-free asset, and derive implications of the positivity of the stochastic discount factor.
71The difference between Eqs. (B.6) and (B.7) is almost negligible for short return horizons, as reported by
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B.2 The Solution to the Long-Run Risks Model
This section provides solutions for the consumption and dividend claim for the Bansal, Kiku,
and Yaron (2012a) endowment process,

∆ct+1 = µc + xt + σtηt+1

xt+1 = ρxt + ϕeσtet+1

σ2
t+1 = σ2 + v

(
σ2
t − σ2

)
+ σwwt+1 (B.8)

∆dt+1 = µd + φxt + ϕσtut+1 + πσtηt+1

wt+1, et+1, ut+1, ηt+1 ∼ i.i.d. N (0, 1) .

The Euler equation for this economy is

Et
[
exp

(
θ ln δ − θ

ψ
∆ct+1 + (θ − 1) ra,t+1 + ri,t+1

)]
= 1, (B.9)

where ra,t+1 is the log-return on the consumption claim and ri,t+1 is the log-return on any
asset. All returns are given by the approximation from Campbell and Shiller (1988), ri,t+1 =
κ0,i + κ1,izi,t+1 − zi,t + ∆di,t+1.

Let Y >t =
[
1, xt, σ2

t

]
denote a vector of state variables and the log price-consumption ratio

be given by zt = A>Yt, where A denotes a vector of coefficients A> = [A0, A1, A2] . In general,
for any other asset i, define the coefficients in the same manner: A>i = [A0,i, A1,i, A2,i] . This
section calculates the price of the consumption claim as well as the dividend claim zt,m = A>mYt.

The coefficients that characterize zt and zt,m are obtained by the method of undetermined
coefficients and by the fact that the Euler equation must hold for all values of Y >t .

The risk premium on any asset is

Et [ri,t+1 − rf,t] + 1
2V art [ri,t+1] = −Covt (mt+1, ri,t+1) (B.10)

=
∑

j=n,e,w
λjβi,jσ

2
j,t,

where βi,j is the beta and σ2
j,t the volatility of the jth risk source, and the λj represents the

price of each risk source.

Brandt and Kang (2004). Nielsen and Vassalou (2004) analyze the difference between discrete and continuously
compounded versions of Sharpe ratios and propose this adjustment for performance evaluation. Campbell and
Viceira (2002) discuss in detail this approximation in a portfolio optimization framework.
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B.2.1 Consumption Claim

The risk premium for the consumption claim is

Et [ra,t+1 − rf,t] + 1
2V art [ra,t+1] = λnβa,nσ

2
t + λeβa,eσ

2
t + λwβa,wσ

2
w, (B.11)

where βa,n = 1, βa,e = κ1A1ϕe and βa,w = κ1A2. The conditional variance of the consumption
claim is equal to

V art [ra,t+1] =
(
β2
a,n + β2

a,e

)
σ2
t + β2

a,wσ
2
w. (B.12)

The coefficients A′ for the log price-consumption ratio zt are

A0 =
ln δ + µc

(
1− 1

ψ

)
+ κ0 + βa,wσ

2 (1− v) + 1
2θβ

2
a,wσ

2
w

(1− κ1) ,

A1 =
1− 1

ψ

1− κ1ρ
, (B.13)

A2 =
θ
2

[(
1− 1

ψ

)2
+ β2

a,e

]
(1− κ1v1) .

B.2.2 Dividend Claim

The innovation to the market return, denoted by rm,t+1 − Et (rm,t+1) , is

rm,t+1 − Et (rm,t+1) = ϕσtut+1 + βm,ησtηt+1 + βm,eσtet+1 + βm,wσwwt+1, (B.14)

where βm,η = π, βm,e = κ1,mA1,mϕe and βm,w = κ1,mA2,m, which implies that the risk premium
on the dividend claim is

Et [rm,t+1 − rf,t] + 1
2V art [rm,t+1] = ληβm,ησ

2
t + λeβm,eσ

2
t + λwβm,wσ

2
w. (B.15)

Finally, the coefficients A′m for the log price-dividend ratio are as follows

A0,m =

 θ ln δ + µc
(
θ − θ

ψ − 1
)
− λwσ2 (1− v) + (θ − 1) [κ0 +A0 (κ1 − 1)]

κ0,m + βm,wσ
2 (1− v) + µd + 1

2 [βm,w − λw]2 σ2
w


(1− κ1,m) ,

A1,m =
φ− 1

ψ

1− κ1,mρ
, (B.16)

A2,m =
(1− θ)A2 (1− κ1v1) + 1

2

[
(π − λn)2 + [βm,e − λe]2 + ϕ2

]
(1− κ1,mv) .
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B.2.3 Risk-Free Interest Rate

The risk-free rate is derived from the Euler equation applied to the risk-less asset:

rf,t+1 = − logEt [exp (mt+1)]

= −θ ln δ + θ

ψ
Et [∆ct+1] + (1− θ)Et [ra,t+1] (B.17)

−1
2V art

[
θ

ψ
∆ct+1 + (1− θ) ra,t+1

]
.

By subtracting (1− θ) rf,t+1 from both sides of Eq. (B.17) and if θ 6= 0, then we can divide by
θ, yielding to an expression for the risk-free rate

rf,t+1 = − ln δ + 1
ψ
Et [∆ct+1] + (1− θ)

θ
Et [ra,t+1 − rf,t+1]− 1

2θV art (mt+1) , (B.18)

where

Et [∆ct+1] = µc + xt

Et [ra,t+1 − rf,t+1] =

λnβa,n + λeβa,e −

(
β2
a,n + β2

a,e

)
2

σ2
t +

(
λwβa,w −

β2
a,w

2

)
σ2
w.

V art (mt+1) =
(
λ2
η + λ2

e

)
σ2
t + λ2

wσ
2
w,

as a result
rf,t+1 = A0,f +A1,fxt +A2,fσ

2
t , (B.19)

where

A0,f = − ln δ + µc
ψ

+ (1− θ)
θ

(
λwβa,w −

β2
a,w

2

)
σ2
w −

λ2
wσ

2
w

2θ ,

A1,f = 1
ψ
,

A2,f = (1− θ)
θ

λnβa,n + λeβa,e −

(
β2
a,n + β2

a,e

)
2

−
(
λ2
η + λ2

e

)
2θ .

B.2.4 Return on the Market Portfolio

Recall that the rate of return on the market portfolio is

rm,t+1 = κ0,m + κ1,mzm,t+1 − zm,t + ∆dt+1, (B.20)
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where the dynamics are characterized by the following equations

zm,t = A0,m +A1,mxt +A2,mσ
2
t (B.21)

xt+1 = ρxt + ϕeσtet+1

σ2
t+1 = σ2 + v

(
σ2
t − σ2

)
+ σwwt+1,

∆dt+1 = µd + φxt + ϕσtut+1 + πσtηt+1.

Now, since each of the components of the market return follows a normal distribution, then the
market return has a normal distribution with conditional mean

Et [rm,t+1] = κ0,m + κ1,mEt [zm,t+1]− zm,t + Et [∆dt+1]

= κ0,m + κ1,m
(
A0,m +A1,mρxt +A2,m

(
σ2 + v

(
σ2
t − σ2

)))
−A0,m −A1,mxt −A2,mσ

2
t + µd + φxt

= κ0,m + (κ1,m − 1)A0,m + κ1,mA2,m (1− v)σ2 + µd

+ [A1,m (κ1,mρ− 1) + φ]xt +A2,m (κ1,mv − 1)σ2
t

= B0 +B1xt +B2σ
2
t , (B.22)

where

B0 = κ0,m + (κ1,m − 1)A0,m + κ1,mA2,m (1− v)σ2 + µd

B1 = φ−A1,m (1− κ1,mρ) = 1
ψ
,

B2 = A2,m (κ1,mv − 1) .

Now, the variance of the market portfolio is given by

V art [rm,t+1] = κ2
1,mV art [zm,t+1] + V art [∆dt+1]

= κ2
1,m

(
A2

1,mϕ
2
eσ

2
t +A2

2,mσ
2
w

)
+
(
ϕ2 + π2

)
σ2
t

= D0 +D1σ
2
t ,

where D0 = (κ1,mA2,mσw)2 and D1 = κ2
1,mA

2
1,mϕ

2
e + ϕ2 + π2.

146



B.2.5 Linearization Parameters

For any asset, the linearization parameters are determined endogenously by the following system
of equations as discussed in Bansal, Kiku, and Yaron (2012a) and Beeler and Campbell (2012):

zi = A0,i (zi) +A2,i (zi)σ2,

κ1,i = exp (zi)
1 + exp (zi)

, (B.23)

κ0,i = ln (1 + exp (zi))− κ1,izi.

The solution is determined numerically by iteration until reaching a fixed point of zi. The
dependence of A0,i and A2,i on the linearization parameters has been discussed in previous
sections.
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B.3 Excess Returns Conditional Moments Implied by the
Long-Run Risks Model

B.3.1 Expected Returns

The expected excess returns for period k are defined as

rm,t+k+1 − rf,t+k+1, k = 0, 1, 2, ...

Now, the conditional excess risk premium for any period has a closed-form expression given by

Et [rm,t+k+1 − rf,t+k+1] = E0,k+1 + E1,k+1σ
2
t , (B.24)

where

E0,k+1 = E0 + E1
(
1− vk

)
σ2,

E1,k+1 = E1v
k, k = 0, 1, 2, ...,

E0 = B0 −A0,f ,

E1 = B2 −A2,f .

B.3.2 Variance of Excess Returns

Now, for any time period k, the conditional variance of the future excess returns is given by

V art [rm,t+k+1 − rf,t+k+1] , for k = 0, 1, 2, ...

Its closed-form expression is given by

V art [rm,t+k+1 − rf,t+k+1] = D0,k+1 +D1,k+1σ
2
t , (B.25)

where

D0,k+1 = D0 +D1
(
1− vk

)
σ2 + E2

1σ
2
w

1− v2k

1− v2

D1,k+1 = vkD1,

D0 = (κ1,mA2,mσm)2 ,

D1 = (κ1,mA1,mϕe)2 + ϕ2 + π2.
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Autocovariance of Excess Returns

Now, let 0 ≤ k < p. Then the autocovariance of excess returns is

covt (rm,t+k+1 − rf,t+k+1,rm,t+p+1 − rf,t+p+1) = E2
1σ

2
wv

p−k
(

1− v2k

1− v2

)
+E1κ1,mA2,mσ

2
wv

p−k−1.

B.3.3 Aggregate Excess Returns

Now, the expected excess returns during K periods are given by the sum of the one-period
excess returns,

K∑
k=1

(rm,t+k − rf,t+k) .

Its conditional mean is

Et

[
K∑
k=1

rm,t+k − rf,t+k

]
= E0,K + E1,Kσ

2
t ,

where

E0,K = KE0 + E1σ
2

K −
(
1− vK

)
(1− v)

 ,
E1,K = E1

(
1− vK

)
(1− v) .

B.3.4 Variance of Aggregate Excess Returns

The conditional variance is

V art

[
K∑
k=1

rm,t+k − rf,t+k

]
= D0,K + D1,Kσ

2
t .

149



where

D0,K = KD0 +KD1σ
2 −D1σ

2

(
1− vK

)
(1− v)

+ E2
1σ

2
w

1− v2

K −
(
1− v2K

)
(1− v2)


+2
[
K − 1− vK

1− v

] E2
1σ

2
w

(1−v2)

[
v

1−v

]
+E1κ1,mA2,mσ

2
w

[
1

1−v

] 
− 2E2

1σ
2
w

(1− v2)
v3
(
1− vK−1

) (
1− vK

)
(1− v)2 (1 + v)

,

D1,K =

(
1− vK

)
(1− v) D1.
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B.4 Quasi-Maximum Likelihood Estimation
Since the measurement equation considered in each of the models is nonlinear, one possibility
is to rely on Taylor series approximations to obtain extended forms of the Kalman filter. The
transition and measurement equations analyzed in the previous section are expressed as follows:

yt = µ (xt−1) + λ (xt−1) εt, (B.26)

xt = Axt−1 + ηt, (B.27)

where εt follows a standard normal distribution and ηt is a d-dimensional noise vector with
variance–covariance matrix Σ. The deterministic functions µ (xt) and λ (xt) define the conditional
mean and volatility of excess returns and are characterized by each of the models.

I use Gaussian approximations to filter the mean and covariance of the states and measurement
series. More specifically, the linearity of the state vector implies that the first and second
conditional moments of the state vectors are

xt+1|t = Axt|t , (B.28)

Pt+1|t = APt|tA
> + Σ, (B.29)

where xt+1|t and Pt+1|t are the time t predicted values of the conditional mean and covariance
matrix of the state vector, respectively. These moments allow us to generate a predicted mean
yt+1|t and covariance matrix P yyt+1|t of the measurement series, given by

yt+1|t = E [µ (xt) + λ (xt) εt+1 |yt, yt−1..., y0 ] , (B.30)

P yyt+1|t = V ar [µ (xt) + λ (xt) εt+1 |yt, yt−1, ..., y0 ] .

Finally, the covariance between the observed and unobserved variables, P xyt+1|t , is

P xyt+1|t = Cov [xt+1, µ (xt) + λ (xt) εt+1 |yt, yt−1, ..., y0 ] . (B.31)

Using these conditional moments, we apply the Kalman update, represented by the following
set of recursive equations to obtained values for the conditional mean St+1|t+1 and covariance
Pt+1|t+1 :

Kt+1 = P xyt+1|t

(
P yyt+1|t

)−1
, (B.32)

xt+1|t+1 = xt+1|t +Kt+1
(
yt+1 − yt+1|t

)
,

Pt+1|t+1 = Pt+1|t −Kt+1P
yy
t+1|tK

>
t+1.
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The first attempt to estimate the moments in Eqs. (B.30) through (B.32) uses closed-form
expression, if available. An alternative way to solve the problem is to use Taylor series expansions
of µ (xt) and λ (xt) around xt+1|t , for an arbitrary number of terms. Properties of this method
as well as a detailed explanation can be found in Chapter 2 of this work.
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B.5 External Habit Formation Model
This section presents the model by Campbell and Cochrane (1999) in discrete time and its
extension in Wachter (2005). A representative investor is assumed to have state-dependent
preferences. More specifically, an investor has utility over consumption relative to a reference
point Xt and maximizes

E
[ ∞∑
t=0

δt
(Ct −Xt)1−γ − 1

1− γ

]
, (B.33)

where δ > 0 is the time preference parameter and γ > 0 is the curvature parameter.

Each investor is concerned with her consumption relative to that of others. Habit Xt is
defined through surplus consumption St, where

St ≡
Ct −Xt

Ct
. (B.34)

One can interpret St as a business cycle indicator. In economic booms, consumption substantially
exceeds the external habit and the surplus, St, is large; and in recessions consumption barely
exceeds the external habit, and the external habit is relatively small.

It is assumed that st = logSt follows the process

st+1 = (1− φ) s+ φst + λ (st) (∆ct+1 − Et [∆ct+1]) , (B.35)

where s is the unconditional mean of st, φ is the persistence and λ (st) is the sensitivity of the
changes in consumption. The unconditional mean and the sensitivity function are defined in
terms of primitive parameters. It is assumed that aggregate consumption growth is log-normal
with independent and identically distributed innovations; that is,

∆ct+1 = g + vt+1, (B.36)

where ct = logCt and vt+1 ∼ N
(
0, σ2

v

)
is an i.i.d. sequence. The process for st is heteroscedastic

and perfectly conditionally correlated with innovations in consumption growth. The sensitivity
function λ (st) is specified so that the real risk-free rate is linear, and for st ≈ s, xt is a
deterministic function of past consumption. Consequently, we have

λ (st) =
{

1/S
√

1− 2 (st − s)− 1, if st ≤ smax

0 otherwise,
(B.37)

S = σv

√
γ

1− φ− b/γ , (B.38)
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where b is a preference parameter that determines the behavior of the risk-free rate and
smax = s+ 1

2

(
1− S2)

. In Campbell and Cochrane (1999), b is chosen to be zero and produce a
constant real risk-free rate, while Wachter (2005) shows that values of b > 0, imply a risk-free
rate that is linear in st.

B.5.1 Stochastic Discount Factor

Since the habit is external, the investor’s inter-temporal marginal rate of substitution is given by

Mt+1 = δ

(
St+1
St

)−γ (Ct+1
Ct

)−γ
. (B.39)

Moreover, any asset return Rt+1 must satisfy

Et [Mt+1Rt+1] = 1. (B.40)

B.5.2 Risk-Free Rate and Maximum Sharpe Ratio

Let Rf,t+1 denote the one-period risk-free return between t and t+ 1, and rf,t+1 = ln (Rf,t+1) ;
as a result, from Eqs. (B.39) and (B.40) imply that

rf,t+1 = − ln (Et [Mt+1]) (B.41)

= − ln (δ) + γg + γ (1− φ) (s− st)−
γ2σ2

v

2 (1 + λ (st))2

= − ln (δ) + γg − γ (1− φ)− b
2 + b (s− st) ,

where the last equality comes from substituting the definition of λ (st) . This definition implies
a risk-free rate linear in st.

Conditional on the information at time t, the one-period stochastic discount factor, defined
in Eq. (B.39) is the exponential of a normally distributed random variable that has variance
γ2 [1 + λ (St)]2 σ2. As a result, the Hansen-Jagannathan bound implies that√

exp
(
γ2 [1 + λ (St)]2 σ2

)
− 1

is an upper bound on the Sharpe ratio of any portfolio. If λ is a decreasing function of St, then
the upper bound on Sharpe ratios will be counter-cyclical: higher in recessions than in booms.

B.5.3 Price-Dividend Ratio

The aggregate market is represented as the claim to the future consumption stream. If Pt
denotes the ex-dividend price of this claim, then Eq. (B.40) implies that in equilibrium Pt
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satisfies
Et
[
Mt+1

(
Pt+1 + Ct+1

Pt

)]
= 1, (B.42)

which can be rewritten as

Et
[
Mt+1

(
1 + Pt+1

Ct+1

)
Ct+1
Ct

]
= Pt
Ct
.

Since Ct is the dividend paid by the aggregate market, Pt/Ct is the price-dividend ratio. The
price-dividend ratio can be computed numerically using numerical methods; Wachter (2005)
provides an efficient method for its computation.

Returns on the aggregate market are defined as

Rmt+1 =
(
Pt+1/Ct+1 + 1

Pt/Ct

)
Ct+1
Ct

.

The main difficulty lies in solving the model (B.42) for the price-dividend ratio as a function
of st. Once the price-dividend ratio is calculated numerically, Monte Carlo simulations can be
performed to obtain accurate estimates of expected returns, volatilities and Sharpe ratios for
different holding periods. Details about the simulations are explained in Wachter (2005).
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