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Abstract

Weak gravitational lensing provides a means to measuretaknhass in the Uni-
verse. The incoming light from distant galaxies is distdrbg the inhomogeneity
of the dark matter distribution along the line of sight. Tlwrelations of shape
in an observed galaxy population can be used to probe thernass density
fluctuations in the Universe. Studies of correlations betwgalaxy shapes have
been the basis of weak lensing research. In this thesis vestigate various non-
conventional weak lensing statistics that are complenngmbethe traditional two-
point shear correlation functions. The goal is to constthenmatter densit@2m
and normalization of matter power spectrum parameters. These higher order
statistics have long been advocated as a powerful tool takbmeeasured degen-
eracies between cosmological parameters. Using rayagamulations, which
incorporate important survey features such as a realisfithddependent redshift
distribution, we find that joint two- and three-point coatbn function analysis is
a much stronger probe of cosmology than the two-point aisaftsne.

We apply the higher order statistics technique to the 166 déthe Canada-
France-Hawaii-Telescope Legacy Survey (CFHTLS) and shelinpinary results
from the joint two- and three-point likelihood analysis. \Weal the possibili-
ties that lie in the projected mass probability distribatfonction to discriminate
models with different values of the matter density paramelie the process we
develop a hybrid data set based on the simulations and theT Céit$ data for
systematics testing and covariance matrix estimations.e@ar analysis includes
all non-Gaussian terms, finding that the coupling betwesmaovariance and shot
noise is a non-negligible contribution.



Preface

The work on testing of the numerical simulations presemntechapter 5, is a sub-
mitted article, titled as “Gravitational Lensing Simutats | : Covariance Matrices
and Halo Catalogues”, with Sanaz Vafaei as a co-author (tsiDeraps et al.
[2012]). Sanaz Vafaei performed the weak lensing tests ersitihulations. This
work has been carried out in collaboration with Dr. LudovanwVaerbeke and
Joachim Harnois-Deraps.

The work presented in chapter 6 is published under the tBledking the
Degeneracy: Optimal Use of Three-point Weak Lensing Siedis with Sanaz
Vafaei as the primary authcr (Vafaei e: al. [2010]). Co-auttare Dr. Tingting Lu,
Dr. Ludovic van Waerbeke, Dr. Elisabetta Semboloni, Dr. heehe Heymans,
and Dr. Uei-Li Pen.

Numerical Simulations developed in collaboration with Dingting Lu, and
explained in chapter 6 were used in the publication of Seorhat al. [2011b]
for covariance matrix calculations. Sanaz Vafaei is a dbxa@uof this work for
providing the numerical simulations.

The Canada-France-Hawaii-Telescope Lensing Survey (CEHS) data was
used in the analysis presented in chapier 7. This work has teeied out in
collaboration with Dr. Ludovic van Waerbeke, Dr. Elisabe®emboloni and the
CFHTLenS collaboration. The results will be included in thdblication in prepa-
ration with Sanaz Vafaei as the first author.

The work presented in chapier 8 has been carried out in cofiibn with Dr.
Ludovic van Waerbeke and Dr. Patrick Valageas and Dr. Dipakshi. The
publication of this work is in preparation with Sanaz Vafasithe first author.

Finally, the clone catalogues produced by Sanaz Vafaegritbesl in chapter



9 will be used in numerous scientific publications of the CEEAS collaboration
for covariance matrix estimation and systematics tests.
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Chapter 1

Introduction

Cosmology is the branch of astronomy concerned with theystfidhe Universe

as a whole, of its content, origin, evolution and fate. Astnmical observations
can probe luminous objects such as stars and galaxies, &eddbae so exten-
sively over the past decades. This has unleashed many wteg@ad unexplained
phenomena. Galaxies seem to rotate faster than predictédtelgravitational ef-

fects exerted by luminous matter only. Another classic exars the accelerated
expansion of the Universe discovered by observations ddrsgpae type la. Cos-
mologists have attributed these effects to the so-calledrdatter and dark energy.
These cosmic components, whose nature is still unknowruarently the basis of
many cosmological studies. According to the standard moflebsmology sup-

ported by observations (Komatsu e: al. [2011]), dark mattet dark energy are
largely dominant and only a small fraction of the Universagists of baryonic

matter.

One way to study the dark matter is to observe large portibtiseosky, com-
piling extensive surveys of galaxies to map the distributiblight across the Uni-
verse. With the aid of theoretical models, it is possiblentieii the properties of
the matter density field underlying the distribution of géts, which contains dark
matter as well. This method relies on assumptions that liekatmount of luminous
matter (galaxies) to dark matter. Another popular tool fadging the dark matter
distribution is known as gravitational lensing. Just likeaptical lens, which de-
flects the incoming light from a source to an observer, gativihal lenses deflect



the light emitted by distant galaxies as it passes by themaltheir large masses.
The phenomenon of light deflection in the vicinity of strongungtational fields
was predicted by Einstein’s general theory of relativitgd anbsequently observed,
first during a solar eclipse, then in the case of bright qaaad later in a number
of other astrophysical contexts. Any massive object thest bhetween the source
and the observer can act as a gravitational lens. Examptbessé objects include,
stars, galaxies, and clusters of galaxies. In additionyhele matter distribution
in the Universe, known as the large-scale structure (LS8&)sis responsible for
lensing effects. The lensing scenario caused by the largle-structure is referred
to as the cosmic shear.

In the weak lensing regime, the light coming from a distariaxyg which is
characterised by a certain shape, will pass through the-segle structure of the
Universe on its journey to the observer, thus being contislyodeflected by mas-
sive objects along the way. As a result, the observer seemthry with a distorted
shape (shear), which could be a more elongated or compresseckbspect to the
original shape. Figure 1.1 shows the schematics of disttgtaffecting the source
galaxies (on the left) and resulting in the observed gatatea the right) due to
the presence of a gravitational lens in between the sourmtthe observer. One
can see that the resulting image perceived by the observent iglentical to the
original source galaxy due to the many deflections along tne w

The weak lensing reconstruction technique aims at studihiege distorted
images and finding a link back to the structure of the graweital lens that caused
the distortion, which generally consists of both luminond dark (hence invisible)
matter. This method is a very powerful probe of the dark malitetribution in the
Universe, since it is independent of the nature and dyndrsiate of the matter in
the lens, and only depends on its mass. Evidently, it is iiptssto tell by how
much the shape of the original galaxy is distorted, since weat have access
to its intrinsic shape. However, this can be overcome by ey a sufficiently
large sample of galaxies, as statistical properties of thi@ions can lead to an
estimate of the matter distribution causing the distogion

In practice, lensers study the correlation between anyobgialaxies separated
by a certain angular separation on the sky. In the (reasenpabsumption that the
original orientations of the source galaxies are compjat@hdom, the light from
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Figure 1.1: A given distribution of source galaxies (left) becomes ati®d
(right) due to their light passing through a gravitatioreaid (centre) on
the way to the observer.

two galaxies passing though the same gravitational lenseslilt in a correlation
in their observed distorted shapes, since the deflectioreigezl by the same in-
tervening massive body. The correlation between everygiabserved galaxies
as a function of their separation is measured in terms of dhealled two-point

correlation function. Combined with the knowledge of thdstaft distribution of

the source galaxies (i.e. knowledge of their distances fuejnthe two-point cor-
relation function can be related to the properties of thetenatensity along the
observer’s line of sight. We refer to statistics involvirige ttwo-point correlation
function as two-point statistics throughout this thesis.

In cosmology, the properties of the Universe are expresséetins of a num-
ber of cosmological parameters. When studying the darkemdistribution in the
Universe, we are usually interested in parameters thaesghe amount of matter,
relative to other cosmic components and the level of itsginess” on different
scales in the Universe. With the aid of weak lensing two-paimrelation functions
we can estimate these parameters. This is the fundameagabihind cosmolog-
ical parameter estimation. Like any other probe of cosmplbagt is sensitive to
these parameters, however, the two-point statistics geoaidegenerate estimate



of the matter density and its clumpiness, as the two paramate related to each
other. The left panel of figure 1.2 shows the schematics efdbgeneracy which
implies that the combination of the two parameters acceipyatiis analysis is not
unique. ldeally we wish to obtain the tightest possible t@msts on the parame-
ters (i.e. to estimate both of them with the highest prenijsits it possible to break
this degeneracy by combining separate observational glhese dependence on
the parameters are different from each other, as shown irighepanel of figure
1.z. This is interesting because the weak lensing constraimthe “clumpiness”
parameter can be combined with those from cosmic microwaekdround studies
in order to break the degeneracy between this parameterthedparameters, such
as neutrino mass. Also tighter contraints on the matteriggeinghe Universe, can
be used to rule out some of the dark matter candidates. Dangeiis believed
to be the reason behind the accelerated expansion of thetdaiv With the aid
redshift information of the galaxies, one can study the@iah of matter density,
which is directly related to the dark energy component ofhéserse.

The goal of this thesis is to explore methods, beyond thepwiot correlation
function, that provide improved (i.e. tighter) constraion the desired cosmolog-
ical parameters when combined with the two- point stasstior this purpose we
explore two main avenues in the field of weak gravitationakieg: higher order
statistics; and Probability Distribution Function (PDRtsstics. Other probes of
cosmology, such as galaxy surveys have already implemdiigber order statis-
tics in their analysis. Below we list the various angles thisis sets to explore:

3-point statistics of simulations: Instead of looking at pairs of galaxies, we
focus on the correlation function between groups of thrdexigs. We refer to
calculations involving three-point correlation functirhereafter as “three-point
statistics”. Figure 1.3 shows the schematics of corrajagimapes of three galaxies
rather than two. With the aid of numerical simulations, wevstthat there is
a great improvement on the cosmological parameter estinstivhen the three-
point statistics are included in the analysis.

2+3-point statistics analysis of CFHTLenS datain the next stage, we apply
the three-point statistics to study the state of the art weaking data set of the
Canada-France-Hawaii Telescope Lensing Survey. This woekents the first
cosmological constraints ever obtained from the combmnatif two- and three-
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Figure 1.2: (Left) The schematics of constraints in the parameter spHoe
banana shaped contour shows that there is a degeneracyehahgdwo
parameters of interest; the matter density and its clunsginéRight)
The allowed region in parameter space shrinks when diffquerbes
of cosmology are combined together, resulting in the smgley area
(i.e. tighter constraints on the parameters).

point statistics applied to ground-based observations.

Numerical simulation testing: As part of testing the methods, we take advan-
tage of a large set of numerical simulations. As part of thiskwwe tested the
accuracy and sanity of these simulations carefully andnsktely. The resulting
data set is in agreement with all the weak lensing theoteireglictions and proves
to be extremely useful in many areas of weak lensing studies.

Statistics of 2D matter distribution: The shapes of galaxies become distorted
due to the presence of matter along the path between thenhambserver. It is
in principle possible to reconstruct the 2D projected mmatistribution along the
way by means of the observed distortions. We explore theghitity distribution
function of the simulated 2D matter distribution to infeetbosmological parame-
ters underlying such distribution. This method is devetbpe complementary to
the two- and three-point statistics.

Statistics of emptiest regions on the skyThe 2D projected matter distribu-



Figure 1.3: The configuration for two-point (black) and three-pointyeor-
relation functions.

tion is highly clustered and has portions that are empteen tithers. We conduct a
study of such areas and build a technique to infer the coggitalbmatter parame-
ters from the least dense regions.

Clone of CFHTLenS production: As part of the development of the simula-
tions, we combine them with the data to produce simulatedvegesing catalogues
that can be used both for method testing and also for asgesgitematics effects
present in the data. These replicas of the data are refarrasl ‘tClone”. We use
these clones for the analysis of all statistical studiesufhout this thesis.

The structure of the thesis is illustrated in the flowcharfigure 1.4. The
blue boxes refer to the background information. This inekudhapters 2, 3 and
4. In chapter 2 we review the relevant cosmological framé&w®he expert reader
might skip this chapter. In chapter 3 we review the theoryraf/igational lensing.
Chapter 4 reviews a number of statistics to study gravitatidensing that have
been proposed in the literature and that are used in ongtidiges. We also apply
these statistics to carefully test the numerical simufetiove discuss in chapter 5.



Chapter 5 is the publication of the work on the 2+3-pointistiagl analysis of
numerical simulations as a path-finder to chapter 7, wherditldings are applied
to the data. Original work is shown in orange boxes, wherergt®mxes show the
simulation and data that are used for all the studies. Inteh&pwe explore other
means to improve constraints on the cosmological parasttatinvolve studying
the full probability distribution function of the 2D projed matter along the line
of sight. Also in chapter 9 we combine the simulations anddidita to generate a
clone of the data set for likelihood analysis of the 2+3-pgiatistics. Finally, in
chapter 10, we summarize the results and discuss the futeanei@s of the work.
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Chapter 2

Cosmology

Cosmology is the science of the physical Universe and itggrt@s as a whole. In
this thesis, we aim to study the matter distribution of thevrse through weak
gravitational lensing analysis. The theory of weak lenssnigased on fundamental
theories of cosmology. This chapter explains the modemdreork of cosmology,
known as the standard model.

The standard model aims to explain the overall shape anctsteuof the Uni-
verse and describe its time evolution. In the following med, we explain the
general concepts of the standard model for the homogeneniverse. We will
discuss the extension of the model to the inhomogeneousetsay which cap-
tures non-linear structure formations. The results disediwill be used later in
this thesis as we explain the observations and the thealrgtiedictions of weak
gravitational lensing due to effects of such large-scaléenanhomogeneities.

As part of this chapter we also review the definition of cossgalal parameters
and the matter power spectrum which will appear throughbist thesis. Weak
gravitational lensing studies aim to estimate the mattevgospectrum through
the observation of galaxy shapes.

More detailed explanation of topics of this chapter can hmébin many cos-
mology textbooks and reviews (e.q. Peebles [1930]1. PedhR33], Peacock
[1999] anc Dodelsor [2003]). The purpose of this chapten {grovide the reader
with an outline of the basic concepts of cosmology, and tmahice useful defini-
tions which will be used later. The cosmology expert readay skip this chapter



entirely.

2.1 The Standard Model of Cosmology

Gravitational lensing studies the distortions of galaxgms due to light deflec-
tions caused by the gravitational field of the matter distidn in the Universe.
The simplest assumption to make, about how the matter in theetse is dis-
tributed, is that the matter in the universe is homogeneodsisotropic at very
large scales. This is called the Cosmological Principleer&hare several sources
of evidence that support this theory. For example, the cosmcrowave back-
ground (CMB) radiation, the remnant heat from the Big Barag & temperature
which is highly uniform over the entire sky. This fact streyngupports the notion
that the gas which emitted this radiation long ago was veifpumly distributed.

According to the theory of General Relativity [Einstein, 16§ matter dis-
tribution directly influences four-dimensional space tim& metric which de-
scribes the four dimensional distance between two everdashiomogeneous and
isotropic space-time was suggested by Roberison [1935N\atkk - [1933], nowa-
days known as the Robertson-Walker metric:

ds? = cAdt? — a?(t) |dx? + fg(x)(d6% +sirf 6d¢?)| . (2.1)

Herex is the radial comoving coordinate (see equation 2.3 for #imition), and
6 and¢ the angular coordinatesk (X ) is the comoving angular diameter distance,
which is a function of the space curvatufe

K3 sin(K%)(), for (K > 0), Sphere;
fk(X) =1 x, for (K = 0) Flat; (2.2)
(—K)‘% sinh((—K)%x), for (K < 0), Hyperboloid
Angular diameter distancéc (x) ties the comoving transverse separation to the
angular size. In equaticn 2.4(t) is the scale factor, which describes the global

expansion or contraction of the Universe. In an expandingdsse the scale factor
increases with time. So if a photon was emitted at tigwith wavelengthAe, it
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will be observed at a later tintg by a comoving observer at wavelengihwhich
will be longer than the emitted wavelength. The comovindadiise x between
the emitting source and the observer is constant (Comousigretes stretch with
expansion.) Also light travels on a “null” geodesic (for i@dight rays d? = 0
and dp? =0, so @& = 0), so the metric becomesit = —ady. Thus

1
X = " cdt = constant (2.3)
te a
hence " 3 (t)
0 o alo
— == =1+2z 2.4
dte Ae a(te) ( )

wherea(ty) = 1. So redshiftzis defined as the relative change in wavelength due
to expansion (contraction) of the Universe (see [Van Waertaed Mellier, 20C3]

for a review on deflections of light bundles as they pass tiliaihe large-scale
structure of the Universe.).

Einstein developed a mathematical relation between thearatspace-time
and the eneray and pressure at that point, known as the “fegldations [Ein-
stein, 1916]. Using Robertson-Walker metric (equatior) thlcombination with
Einstein’s field equations, one obtains two relations betwthe scale factaa(t),
curvatureK and angular diameter distanég(x) and the energy densiy(t) and
pressurep(t) content of the Universe for a perfect homogeneous and siotfiaid
as

-\ 2

a 8nG 3K A

() =%r %5 (29
. 4nG (3p N

Here the dots represent time derivatives &nig known as the cosmological con-
stant, representing the vacuum energy component in theetssiv Equations 2.5
and 2.6 are known as the Friedmann equations and can be arhio the con-

tinuity equation: ,
8w - %2
The above equaticn 2.7 is an expression of the conservatiemeogy, in the sense

2.7)
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Matter | w=0 p=0 pmOdas aldt?/3
Radiation| w=1/3 | p=p,c?/3 | pOa™* a2

Vacuum | w=—1 | p=—ppc? | p = const aDexp(M%pt)

Table 2.1: Equation of state, functional behaviour of the density acales
factor for different cosmological ingredients.

that the energy change in a fixed comoving volume is competdst the pressure
times the volume change. This equation can be interpretddeasosmological
version of the first law of thermodynamics, resembling thialzatic equation.

When combined with the equation of stafe=¢ wpc?), equatior. 2.7 indicates
how the density of each energy component of the Universevesatith time. Note
thatw here is the equation of state parameter. The Friedmanniengsie2.5 and
2.€) can be solved for components with different choicesarfstant values of
w. For constantv we havep 0 a—31*W) . Table 2.1 shows the equation of state
and density contribution of various components that cbuate to the total energy
budget of the Universe. Since the density of different congmbs has different
scale factor dependence, they each dominate the totalyeoktige Universe over
the other components at different cosmological epochs.

Note that the pressure-less matter dengity= pp + Pcom consists of contribu-
tions from baryonic mattep, and cold dark mattepcpum. Also pr is the radiation
contribution from CMB photons and relativistic cosmic bgakund neutrinos with
w = 1/3. Another kind of species is the cosmological constant withassigned
energy density opp andw = —1, which acts as an repulsive force.

We can parameterize the expansion of the Universe by intinguhe Hubble
parameter such that = a/a, which denotes the relative expansion rate. The Hub-
ble constant is the present value of the Hubble parametétewiasHy = 10Ch
km s~ Mpc~1, where the observational uncertainty is hiddem.inThe most re-
cent value ofh as measured by WMAP7 resufiskomatsu et zl. [2071.1] is 0.710
+ 0.025. The critical densitpgi; is the total pm + pr + pa) energy density of the

Lhttp://lambda.gsfc.nasa.gov/product/map/curreraipar
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Universe today (at = to), which is required for flat curvaturgk = 0):

3c?H3
Perit = Pco = g nGO = (9.2+1.8) x 10 2’kg m 3. (2.8)

The relative density of each of the components can be wrétefractions of the
critical density such tha®y = px/pco0. Qx is the density parameter. So the Fried-
mann equation 2.5 can be written in terms of the density petens as

HO\? Q@ Qm 1-Qm—-Qn—O;
—) =i Q 2.9
< Ho > at + as + a2 i (2:9)

and for curvaturek:

Ho \ 2
K:<?> (Qm—+Qr+Qp —1). (2.10)

Note thatQ, can be neglected, since it has a small contribution to tta ¢otergy
budget of the Universe today. So for a flat curvature Univetmecondition Q. +
Qp = 1) applies.

One of the main focuses of cosmological observations oweptst decade
has been to measure the cosmological density parametdrs toghest precision
possible. Different probes have measured most of the paeasngithin reasonably
small errors and have shown the concordance oNBBM model.

One of the main goals of this thesis also is to use weak gtarit lensing
observables to constrain a subset of cosmological parasnételuding the matter
density paramete®y,. Future chapters will explain the procedure further.

2.2 Cosmological Distances

The comoving distancg as shown in equation 2.3, is the fundamental distance
measure in cosmology. This distance remains constant batiweo comoving
observers. For a radial photon on the null geodedic= —ady one gets g =
—cda/(Ha?) 2. The comoving distance as a function of the density paramsetan

2Note that the minus sign comes from the fact that the distaneeasured backwards in time,
from the observer to the source, whereas the cosmic timeases towards the observer.
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then be written as

Deom(z1,22) = X(21,22) = Hi /a(m da[aQn+a%(1— Qm—Qa) +a'Qx].
0 Ja(z)
(2.11)
Whenz — o, x;, is called the horizon and marks the largest comoving distanc
such that the source and observer are in causal contact.ofizemsize increases
with time, so that structures that are larger than the horeioa given time will
enter the horizon at later times.
The transverse comoving separation, used to estimate theving volumes
is then
Dtrans= fk (X)9> (2-12)

where@ is the angular size antk (x) is the comoving angular diameter distance
as shown in equaticn 2.2.

Another measure of cosmological distance is the angulanetier distance
Dang = 6L/03, which relates the physical size of an objédt at redshiftz to
its apparent angular size on the sk§ as seen by observer at redslzift

Dang(z1,22) = a(2) fk (X (21, 22))- (2.13)

The angular diameter distance is very important in graeital lensing (see sec-
tion 3.2 for the lens equation). For tMeCDM cosmology, the maximunDang
occurs az= 1.5 and then decreases again at higher redshifts.

2.3 Large Scale Structure

As explained in previous parts the Universe is homogenendssatropic at large

scales, so the Friedmann-Robertson-Walker (FRW) cosmidleee sections 2.1)
is sufficient to describe the overall dynamics of the Uniger®n smaller scales
however, the Universe is highly clustered (scales belowHendred Mpc.) These
clumps of matter (today’s galaxies and cluster and filametwt originated from

very small density perturbations due to gravitationaldbdities in the nearly uni-

form matter distribution of the early Universe. In this sestwe will describe the

basics of structure formation and evolution in the Universe
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2.3.1 Linear Perturbation Theory

The density contrasi is defined as

pxa)—p (2.14)

ox.2) p(a)

wherep is the average density for the FRW-Universe (FriedmanneRsbn-Walker
Universe, homogeneous and isotropic) at a given scalerfacémdx is the comov-
ing spatial position. In the regime of weak gravitationatgutial, and for small
adiabatic perturbation®) < 1, one can use linear Newtonian perturbation theory
to describe the structure evolution. The relation betwhergtavitational potential
and its corresponding density contrast is given by the Boisgjuation,

B 3H3Qm

2
TPp= =28, (2.15)

where the differentiation is with respect to the comovingrdinates. A general
form of the solutiond can be written a®(x,a) = &, (a)A(X) + d_(a)A_(X).
The decaying modé_(a) is a fast vanishing function, so it can be neglected for
late times.The growing mod&, (a) has the form

_3
2

5Qm da /2 1
5+(a):2—;‘5/0 dal {1+Qm<g—1>+§2/\(a’2—1)] . (2.16)

whereT is the dimensionless time variabte= Hgt. This equation is normalized
such that for the Einstein-de-Sitter Univeidg(a) = a for a > agq. The value of
3eq ~ 3.27°Q,,th~2, and represents the scale factor at the time the transigen b
tween radiation domination to matter domination occurieforeag  the growing
moded, scales ag?. The growth factor is then defined as

5 (a)

Di(a)= 5 (a=1)

(2.17)
whered, (a=1) is the linear density contrast extrapolated to the pregeotte

When only baryonic matter is considered, based on obsengtf CMB fluc-
tuations at the time of recombination~ 1000), the baryon density perturbations
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were on the order of I®. They could have only grown by a factor ofd~ 10°
afterwards, leading to perturbations of the order@tday. Observations show
perturbations of much larger amplitude than that, implytimgt baryon-only mat-
ter cannot explain the current structures. This is one ofsthengest arguments
for the existence of some non-baryonic, weakly interacthragter in the Universe,
now called Dark Matter.

2.3.2 Growth Suppression

For density perturbations, there exists a critical scdled¢he Jeans length. This is
the minimum length at which a self-gravitating instabilityercomes the opposing
pressure gradient. On lengths smaller than the Jean'dleihngt opposing pressure
stops the density perturbations from growing. Before maittdiation equality, the
Jean’s length was of the size of the horizon, hence no steistmaller than the
horizon could grow. A perturbation with a comoving wavelémng > dy,, however
could grow, and at some later point in time, when the horizets darger, enter
the horizon at scale fact@enter If the entrance occurs before matter-radiation
equality, the perturbation gets suppressed compared &athe scale perturbation
that enters the horizon after equality by a fac@agnter/aeq)z. The size of the
horizon at the time of matter-radiation equality definesarabteristic length scale
for large scale structureh(aeq = 12(Qmh?)~1 Mpc . In the matter domination
era however, this scale decreases to zero, and so struciusdssizes start to
grow. In order to compare perturbations of all scales, onsticunsider the Fourier
counterparts of the density contragt, wherek is the comoving wave-vector. The
transfer function is then defined [Eisenstein and Hu, 1998] a

X(@a=1) &-o(a)
&(a@) &—o(a=1)’

wherek = 0 represents an arbitrarily large scale. The scale fagtof the initial
density fluctuations(a;) has to be chosen such that at this time no scales of
interest have entered the horizon, so thas independent od;. The fitting formula

Te= (2.18)
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given in Bardeen et al., 1986] is

Dl

In(1+ 2.34q)

=231

1+3.89q+ (16.19)% + (5.46q)° + (6.719)* (2.19)
whereq= k/("'h)Mpc—t andr is called the shape parameter, originally se®ch.
In 1994 ([Peacock and Dodcds. 1994]) showed that the fittingpfiba 2.19 is also
valid for a small baryon contribution to the overall mattethie shape parametér
is set to

= Qmh exp(—2Qyp). (2.20)

So an increase in baryon density shifts the transfer fund¢tiesmaller scales with-
out changing its shape. This approach of including the bacymatter contribu-
tion is only an approximation, since the acoustic osclagiin the baryon-photon
plasma before decoupling have not been taken into account.

2.3.3 Matter Power Spectrum andog

The matter density contrast is described as a random field, so it can only be
studied via its statistical properties. A random field carfully described by its
moments. In the case of Gaussian random field the first two mtsnaee sufficient

to completely describe the field. We assume such Gaussidomafields to repre-
sent the initial inhomogeneities in the early Universe. dgy as the perturbations
grow linearly they remain Gaussian. Most cosmological issidnd experiments
focus on examining the power spectrum of the matter, whi¢hdadourier trans-
form of the second order moments. The power spectrum of theityidluctuations

Ps is defined as

(5(k,a)0(K,a)") = (2m)38p (k— K )Ps(k, ), (2.21)

where &p is the Dirac delta function and the angle brackets represes¢mble
averages. For a given scale factar,the power spectrum depends only on the
modulus of the wave-vectdt. We will show later that cosmic shear data can
directly provide a projected version of the power spectrdimensity fluctuations.
The power spectrurRs(k,a) for some later time can be calculated from the initial
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one as 5 )
_D2@TRK)

Ps(k,a) = D2 (a) (2.22)

For the initial power spectrumg (k) = P(k, &), one can assume a simple and scale-
free power lavR, (k) O k", with the spectral inder. The origin of the initial density
fluctuations is assumed to be quantum fluctuations at theclPkaale, which are
then inflated to macroscopic fluctuations. The normaliratb the power spec-
trum is fixed by the parameterg, which is defined as the variance of the density
fluctuations in spheres of radiusn8' Mpc. Observationally, for the variance of
galaxy counts, one getsy ~ 1, hence the choice of radius size. However, the mea-
surements obig with different methods do not agree completely. Below ave fe
examples of such methods:

e Normalization by cosmic microwave background anisotrep&q. Banday
et al. [1997]. The fluctuations in the temperature of the aviave back-
ground can be translated into the amplitude of the powertapac These
measurements are done on large angular scales, so such @dneetralid
for large physical scales (sméll only. The other contamination arises from
the fact that CMB fluctuations measure the amplitude of botttes and ten-
sor perturbation modes, where the density fluctuationdtiegun growth
only originates from scalar modesgg is partially degenerate with (the
re-ionization optical depth) and,.

e Normalization by the local variance of the galaxy countg.(Bardeen et al.
[1986], Davis and Peebes [1983], White et al. [1987] andsEa[1984]).
This method is based on the idea that galaxies are unbiaseerdrof the
underlying dark matter fluctuations. However, there arettamties on how
galaxies trace dark matter and so values different thary amé expected
for og. So if we can measure the local variance of galaxy countsirwith
a fixed volume, as well as setting an expression for the bigscam fix
the normalization of the density power spectrum. This fixetlime has
been conventionally chosen to be a sphere with radiusofpc, since the
galaxy number r.m.s. was shown to be 1. on such a scale.
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e Normalization by the local abundance of galaxy clusterg. (&8Vhite et al.
[1993]). Assuming that galaxy clusters form as a result ok adaatter den-
sity perturbations, we can use the spatial cluster numbesityeto deter-
mine the amplitude of the power spectrum. The point of thishme is
that the cluster normalization can only determine the anmidi of the power
spectrum at scales of order of B0*Mpc, which is the typical dark mat-
ter fluctuation scale for galaxy clusters to collapse. Whealidg with
gravitational lensing by large scale structure, the soatesiivity is around
kal ~ 12(Qoh?)Mpc, which makes the galaxy cluster normalization method
favourable. The main problem with this method however,earisom the
mass calibration, which uses the X-ray mass-temperatiagome which is
poorly known.

In summary,os represents the variance of the density fluctuations and ean b

thought of as an indicator for the level of clumpiness in thater distribution in
the Universe. Along with the matter density paramébdgy, og is the other cos-
mological parameter that this thesis aims to provide caitg on, using cosmic
shear measurements. Cosmic shear, like many other cosicallpgobes, is de-
generate for some cosmological parameter combinations. idéda in this thesis
is to explore how the non-conventional cosmic shear stgisielp break the de-
generacies within the cosmic shear capabilities and alsorimhination with other
cosmological probes. Better estimationafandQ, allows for the alleviation of
the residual parameter degeneracies Komatsu &t al. [2B808]ticeable example is
the mass of neutrino obtained by CMB measurements, whickgerterate witlog
parameter (Tereno et al. [2009]; Dunkleyv et al. [2009] ).€epeindent constraints
on gg parameter by cosmic shear measurements can constrainutrenoanass
indirectly.

2.3.4 Matter Bi-spectrum

In the highly non-linear regime via gravitational collaps@®n-Gaussian features
in the matter field arise. To inspect the deviations from Giaumsty, the inclusion
of higher order statistics is inevitable. The Fourier tfams of the third order
moment is referred to as the bispectrum. Even if the inibalditions are Gaussian,

19



the non-linear dynamics leads to development of non-Ganisgs in the density
field. The density contrast was defined previously in equi?id 4, where is the
matter density, witlp > 0. Since the average density contra®t= 0 andd > —1,
this implies that in the highly non-linear regim@?), the probability distribution
of the density contrasd, will be far from Gaussian. Weak gravitational lensing
effects arise from the total matter distribution, so thehkigorder lensing statistics
can be used to probe the non-Gaussianity. The three-pairglation function is
the lowest-order statistic that can be used to detect nars€sanity. The Fourier
space counterpart of it is called the bispectrum and is difise

(5(k1)0(k2) S (ks)) = (211)38p (K1 + Ko + ka) By (ke ko, Ka), (2.23)

wheredp is the Dirac delta function. Isotropy implies thgk;, ko, ks) is solely a
function of the wavenumbelg, ko andks.

2.3.5 Non-linear Evolution

By simple observations, one can see various small-scaletstes that are formed
at later cosmic times, such as galaxies and clusters ofigalaXo describe these
phenomena linear perturbation theory is no longer sufficiand non-linear ap-
proaches are needed. Non-linear perturbations are seefsrifing structures
such as galaxies and clusters. In order to include suchtgffethe theoretical pre-
dictions, large numerical simulations are performed. Esofulation realization
starts with a Gaussian random field, which then evolves \ihirtitial power spec-
trum over time. The resulting dark matter structures, appgat later times in the
simulation, are then used to find a fitting formula for the tioear power spec-
trum. Two popular choices of such fitting formulae are cutyewidely used in
cosmological studies: Peacock and Dodds [Peacock and D'b@@ks] and Halofit
[Smith eta.; 20C3].

Figure 2.1 shows the linear and non linear matter power gpactalculated
with thesmi t h2. ¢ code developed by Martin Kilbinger, basedloal of i t . f
of Smith et al. [2003]. We used the following cosmologicalgraeters: Qn, =
0.279,Qp = 0.721,03 = 0.817,I = 0.25 andn = 0.96. The redshift distribution
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Figure 2.1: Matter power spectrurs.

is based on Brainerd et al. [1996]:

p(z)dz= ﬁ <%>2exp— (%)de, (2.24)

with the free parameter8 andz,, which were chosen to beSLand 10, respec-
tively. ' denotes the Eulerian gamma function (different from thegyaspectrum
shape parameter). One can see that the two nonlinear faeratdarelatively sim-
ilar. However, the linear power spectrum fails to repregbatnon linear effects
of the power spectrum and hence it is very important to ineltlte non-linear
corrections.

The aim of this chapter was to provide the reader with a basiadation in
cosmology, as will be needed to follow the future chaptefsgmtheoretical predic-
tions are used against numerical simulations and as megmedicing likelihood
estimations for the cosmological parameters.
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Chapter 3

Gravitational Lensing and
Cosmic Shear

In this chapter we explain the basics of gravitational legsn general and the
weak lensing branch of it in particular. We discuss the th@blensing along with

the lens equations and the lensing shear and convergeniod, witi be extensively

used in the later chapters. We introduce the slyesd convergence and show

their relationship. Later when producing simulations wd fellow the process

explained in this chapter to construct the convergence bedranaps. We also
show the link between the convergence and matter powerrapedtich is the main

building block of relating lensing measurements with colemical parameters.
Throughout this chapter, the bold symbols represent v&ctehile the non-bold

symbols represent scalars.

3.1 The Deflection Angled and Thin Lens
Approximation

In 1915, Einstein predicted a shift in the position of staeamthe Sun due to the
deflection of light caused by the Sun’s gravitational fieldd &n 1920, measure-
ments during a solar eclipse confirmed the predictions. Zdmmwards, it was
realized that for certain lens configurations, large enaleftections can occur and
produce multiple images of background sources. Conseguent979, the first
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double image of the lensed quasar 0957+561 was discoveneck then gravita-
tional lensing has become a major research area in the astical field.

Deflection angle is the most basic parameter in gravitatiteresing, which
guantifies the light deflection due to a tidal fiedbf a certain matter distribution.
In a simple case of a point mass, the Schwarzchild radiBs+s2GM /c?. The path
of a light ray coming from a distant source, passing the poass at a distande>>
Rs will be bent due to the gravitational potential of the poirdsa. The distance
¢ has to be much smaller than the distance between the soenseahd observer.
The path of the light can then be approximated by piecewisdgsit lines. The
deflection angle is much smaller than unity and can be wréten

.~ 4GM
a= i 3.1
In the case of an extended distribution of point massesassuming that the
impact parameter is much larger than the Schwarzchild sadine can write the
deflection angle as the sum of individual deflections. Carsiccoordinate system
wherers is along the direction between the lens and the observerrrand) rep-
resents the plane perpendicular to this direction. So tieali®n angle at position

éis

a6 — 5 i-¢
&) - C2z.m<e )

_ /dz /drpf@y; ;’2

Here p represents the continuous mass distribution. Note §het now a two-
dimensional quantity. By defining the surface mass derygi§) = fdrgp(f', rs),
the deflection angle can be written as

o 4G [ oo E-E
a(6) ="z [ (3.2)

The above expression is valid as long as the extension oéfifsedlong the path of
light is significantly smaller than the distance betweenrewulens and observer.
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This condition is called the thin lens approximation, andsitvell satisfied for
lensing by galaxies and clusters, but fails in the case otdsenic shear, which is
lensing caused by the whole span of large-scale structarg dhe line of sight.

3.2 The Lens Equation

The lens equation relates the position of the images andahee by the geo-
metrical configuration of the lensing system, as shown inréii#11.. LetDq be

the distance between the lens (deflector) and obsdduehe distance between the
source and observer, amjs the distance between the lens and source. The lens
and source planes are perpendicular to the line of sightyextiimg the observer to
the lens. The source is located at distancom this optical axis and the impact
parameter i€. One can establish the following relation with the aid of shwilar
triangles theorem

n= %E —Dys@ (&). (3.3)
d

Converting distances to angles vja= Dsf8 and & = D40, and defining the re-
duced deflection angle (8) = Dgs/Ds- @ (Dy0) results in the simple form of the
lens equation:

B=6-a(0). (3.4)

So the lens equation relates the source posifyrtp the observed position($).
The deflection angler depends on the mass distribution of the deflector.

3.3 Convergence and Shear

In this section we explain the definitions for the lensingwagence and shear, as
these terms will be extensively used throughout this thesis
The critical surface mass density is defined as:
2 Ds

One can then define the dimensionless surface mass density(Dq)/ S ¢, @lso
called convergence. The valuerotlistinguishes between different lensing regimes.
A lens system wittk > 1 is called a “strong” lens ankl < 1 represents a “weak”
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Figure 3.1: The basic lensing configuration for a source, located aaiist
Ds and a mass concentration at distailzge The optical axis connects
the observer and the center of the mass concentration asidsxio the
source plane. The source plane is perpendicular to theabbias at
the source distance. The cross section of optical axis Wihptanes
are chosen to be the origins of the coordinate systems orlahepd
denotes the deflection ang|B,is the angular position of the source in
absence of the deflector plane afids the angle by which, the source
is observed. All the angles are two-dimensional vectoydrhere as
projected angles for simplicity.
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lensing system. Using the definition of critical surface sndensity in equation
3.5, one can rewrite equation 3.2 as

06
601

awy:%/&yay) (3.6)

The deflection angle is the gradient of the so-called defilegibtential,a = Oy,
which is: v
wwyzﬁ/&yqumw—ew 3.7)

This potential satisfies the 2-D Poisson equation
2y = 2. (3.8)
For the lens equaticn 3.4, the Jacobian of the mapping canitiemas

B

N i
56 =M =8 (3.9

0606

The Jacobian maps the intrinsic position to the observeitiposThe shear is then
defined as

1
Y= E(dldltl,l —020:)), Yo = 01024). (3.10)
For convergenc& one can write

1

K= z(dlalll.l—l-dzazw). (3.11)
The Jacobian matrix, parameterized with convergence agat stan be written
as
. 1—K—
A 9B _ K=Wn v . (3.12)
06, Vo 1-K+n

As seen in equations 3.10 and 3.11, sheand convergencg are interrelated
through the gravitational potential. In order to obtain thect relation between
shear and convergence one rewrites these equations ireFspaéice:

R(O)= (B +B)D(0) (3.13)
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1

Vi(8) = —é(ei —3d(L); (3.14)

B(8) = 350 0). (3.15)

Here/ is the two dimensional wave vector, conjugate®o The linear relation
between the transformed componekitgh andy can be written as

P 2,2
W) ez T (3.16)
y2 20107

R = 0725 — 63), (201£2)] ( Q ) (3.17)

We take advantage of equations 3.16 and 3.17 later in thgstivéhen convert-
ing simulated convergence maps into shear maps. Also thieibasis of mass
reconstruction using lensing. We can quantitatively retct the surface mass
distribution of a cluster lens using the method of Kaiser Saodires [19€3], which
is based on the procedure above. Figure 3.2a shows a santple simulated-
maps that are used in other parts of this thesis. A wholessefiguchd-maps from
the source redshift to the observer are used to gengrataps by integration over
the source-lens geometry (See figure 3.2b). These mapsearéutmed into shear
maps by using the formalism above. The resulting shear naphé particular
K-maps shown are presented in figure 3.3a and 3.3b.

In analogy to equation 2.21 the power spectra of the conmemand shear are:

(R(9)k*(8)) = (2m)*3p(s— )P« (9), (3.18)

(V(8)V' () = (2m)*Ep(s—S)Py(s), (3.19)

and from equations 3.13, 3.14 &énd 3.15 we obtainRhat P,.
Based on Liouville’s theorerh, the surface brightness is conserved by gravita-
tional lensing, so the observed intenditgt a position@ is related to the intensity

L iouville's theorem states that, an object at redshiftith radiation surface brightness, as
measured by an observer at rest, has observed surfacenesght= ie(1+2)~*.
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Figure 3.2:(a) The simulated-map. (b) The simulate@-map at redshift
z=1.0. The maps span 3.6n each side.
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(b)

Figure 3.3:(a) The simulateds and (b)y,-maps atz=1.0. The maps span
3.5’ on each side.

29



Qs

Source Convergence only Convergence + Shear

Figure 3.4: The effect of shear and magnification on the image of a circula
object. Convergence causes magnification and shear sisdtod object
into an elliptical shape (shear).

in the source plané&® as: 1(8) = 15(B(0)). Assuming that the angular extent of
the source is smaller than the scale on which the lens piepaithange, one can
linearize this relation in the vicinity of the image positi@g to

1(8) =15(B(680) +A(B0)(8 — 69)), (3.20)

which maps a circular source to an elliptical image. The eogence is the diago-
nal part of the Jacobian, so it isotropically magnifies thegey whereas the shear
y is the trace-free part and distorts the image. Figure 3.4skghematically the
effects of shear and magnification on a circular source.

3.4 Weak Gravitational Lensing Measurements

The regime in whictk < 1 and|y| < 1 is referred to as the weak lensing regime.
There, the level of distortion of the distant source galsiganuch smaller than the
typical intrinsic ellipticities of those galaxies. Thiswgy it is impossible to tell
whether an individual source is affected by it or not. By obsgy a large number
of galaxies, however, one can statistically detect the wakadar. In practice, in
order to measure the shape of galaxies, most of which aredathsmall, we rely
on the brightness distribution of the image on the Chargadp{al Device (CCD).
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First the centre of the isolated brightness distributioloéaited by:

5 [¢0al(0)6

Jd*6a[1(8)]

whereq is a weight function. Next the second-moment tensor of tighbress
distribution is calculated as

(3.21)

_ Jd6a(I(8))(6 —8)(6 —6)

Q J,j=1,2. (3.22)

! Jd*6aill (6)]

The complex ellipticitye is then defined as:
e — Q11— Q22+ 2iQ12 (3.23)

Qu1+ Qo2+ 2(QuuQe2— QBy)7

The intrinsic ellipticity of the source® is the related to the observed ellipticity

g% as:
e°—g .
g5 — {196 forlgl < 1 (3.24)
1—g0* "
g forfg >1
Hereg is the reduced shear, defined as
y
= . 3.25
9= (3.25)

For the case of weak lensing where< 1 and|y| < 1, theng ~ y, so we have

= e+, (3.26)
which states that the observed ellipticity is the sum of titarisic ellipticity and
the distortions caused by gravitational lensing. This mal@assumption on value
of €°. The upper limit ofe® is equal to unity by construction. One can simply
assume that the intrinsic orientation of source galaxiearidom, due to statistical
isotropy of the large scale structure. Then the expectat#ne of the intrinsic
ellipticity (%) = 0 for a large enough sample. Therefore, the observed eltipti
can be taken as a very noisy, but unbiased estimator of ttze she
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(%) =y. (3.27)

This is the idea behind the data processing which produeedata set used in our
analysis in future chapters.

3.5 Cosmic Shear

Cosmic shear is the weak gravitational lensing of highhgtigalaxies due to
the matter distribution inhomogenities of the large-scitacture in the Universe.
Cosmic shear was first detected by Van Waerbeke et al. [2B@@3er et al. [20C0],
Wittman et al. [2000] and Bacon et &l. [2000] in 2000. Thefighndles passing
through the large-scale structure of the Universe getdétpand as a result the
shape and size of the observed galaxies are altered. Thesrtife statistics of such
distortions can be directly linked back to the statisticqalgerties of the large-scale
structure (Gurin [1967], Blandford et el. [1991], Miraldadad=[19€1] and Kaiser
[1992]). Cosmic shear involves the investigation of theeation between the dis-
torted shapes of the galaxies and the underlying cosmalbgioperties responsi-
ble for the amount of distortion. The main challenge heréas these distortions
are very weak and hence difficult to measure. Also, unlikeotidénary weak lens-
ing discussed before, the light deflection does not occursingle lens plane any
longer, but throughout the full 3-D matter distribution. iFmplies that a modi-
fied prescription of weak lensing optics is needed. In otherds, the difference
between cosmic shear and general weak lensing is that thietid approximation
is no longer valid, since the light emitted by backgroundrses gets continuously
distorted by the matter distribution along the line of sigbhe then has to calculate
the detailed path of the distorted light. Here we skip thaitkd derivation of light
bundle propagation through the 3-D matter distributione Téader is referred to
Bartelmann and Schneider [2001] for more details. The ewmimh there is that,
although the thin lens approximation is no longer valid isecaf cosmic shear,
one can still consider a stack of multiple lens planes tonstract the large-scale
structure lensing effect. So for sources at a single redghin the lowest-order
approximation, the 3-D matter distribution can be congdess an effective sur-
face mass densities as ordinary weak lensing. Thigs can be obtained by line
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of sight integration of the density contrast weighted by geometrical factors en-
tering the lens equation. In order to calculate the effectirface mass density, we
need to relate to the fractional density contradt Recall equation 2..5 and the
3-D Poisson equaticn 3.8, to obtain the effective convargers

K(6.X) = 3H5Qm /X gy XD T X —x) 8(fk(X)6.X')
2¢z Jo fic (X) a(x’)

As can be seen above, the convergekdas proportional to matter density param-
eterQn, since lensing is sensitive iy [ 0Q,, not just the density contrast itself.
From now on we drop the phrase “effective” from the namingsianplicity. Note
that for cosmic shear analysis we always mean the effeatimeergence due to the
full large-scale structure along the line of sight. Whengbarce galaxies follow
a redshift distribution withp,(z)dz = py (x)dx, the effective surface mass density
becomes

(3.28)

2 Xh
K(0) :/prx(X)K(97X): 3HZOC§2'" /XX ng(X)fK(X)W7 (3.29)
i X / fK(X/_X)
9(x) = [ dx'px(X") (3.30)

X fk(X')
which is the source redshift weighted lens efficiency fa%?rfor a density fluc-
tuation at distancg . xn is the comoving horizon distance, obtained wiaen 0.

3.6 Link Between Matter and Convergence Power
Spectra

It is very important to find the relationship between mattet aonvergence power
spectra. Weak lensing observations provide an estimateeafdnvergence power
spectrum. In order to provide cosmological interpretafimm the weak lensing
signal, the relationship between the convergence powetrsipe and the underly-
ing matter power spectrum must be established. This is thie Ipodding block of

all lensing predictions, and the basis of the lensing measeant interpretations.
By observing the shapes of the galaxies, one can use thedeabservables to
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estimate the lensing statistics through various methotie l&nsing statistics are
related to the convergence power spectrum, which in turnbeafinked to the
matter power spectrum and its cosmological dependences.assumed that the
density fieldd is a random field realization. Cosmologists are trying to fimel
properties of this random field, not a specific realizationt.ofThe second order
statistical properties of the density field can be describerms of the power
spectrum. Limber’s equation (Limber [1953]) is the basisedditing the properties
of the random field to its power spectrum. For théhomogeneous and isotropic)
3D random field, one can write the 2D projections as

6(8) = [ dxa(x)a( 1k (X)8.) (3:3)

which are also homogenous and isotropic random fields. gi$hare the weight
functions. The correlation function is then

Ci2 = (01(¢1)92(92)) = C12(|1 — ¢5)), (3.32)

which only depends on the modulus of the separat@pnbetween the two points.
Considering the Fourier transform ©f,, one can obtaif;», which is the conver-
gence power spectrum and depends linearlyPgik) (Kaiser [1992] and Kaiser
[1998]). We have

Pult) = [ ax EHEL ey (s x). (339

when the large scale structuredrare much smaller than the effective rardge of
the projection. Heré is the Fourier transform of the variabe and is related t®
by s=2m/0 = 2.16x 10* (8/arcmin)™%. The 2D power-spectrum at angular scale
1/¢ can be found from the 3D power at length sc&€x)(1/¢), integrated ovey.
Comparing equation 3.28 and 3.33, we see k{#) is a projection ofd with the

weightsay (X) = d2(X) = (3/2)(Ho/¢)?Qmg(X) fi (X) /a(X)- So we obtain

P (0)

_OHZQE P (X) ¢
=" dxa2<x>P5<fK<x>’X>' (3:34)
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The advantage here is that by use of weak lensing obseryatdesan measure
P«, which can be used to constrain the 3D power spectnn the next chapter
we explain how the various cosmic shear statistics areegblat the convergence
power spectruni’y.

In section 2.3.5 we showed the matter power spectrum forirteard and non-
linear regimes. Here, using equation 3.34, we show the cgexee power spec-
trum for the same cosmological parameters in figure 3.5. Gmesee that the
nonlinear effects kick in at = 100 and larger. These scales correspond to angular
sizes on the sky of the size of 100 arcminutes and below. Taetéxrn off point
depends on the redshift distribution and cosmological hoOe the other hand,
the weak lensing sensitivity peaks at about 10 arcminuteth@rsky, which cor-
responds to structure size, of arounth Mpc—1, since that is the scale of galaxy
clusters. This scale however, falls in the non-linear regohthe power spectrum.
This means that the scales probed by weak lensing are withindn-linear part of
the power spectrum. We can obtain constraints on these pégesrby comparing
the lensing signal with the non-linear predictions. The-lioear scales correspond
to galaxy clusters and measurements of their abundanasyaebbust measure of
the power near this scale for a given matter denSity The point to emphasize
here is that one needs to apply the nonlinear correctionset@anvergence and
matter power spectrum before correct interpretation afitfnmeasurements can
be made.
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Figure 3.5: The linear and nonlinear convergence power spectum
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Chapter 4

Cosmic Shear Statistics

In chaptel 3 the connection between cosmology and cosmar stes discussed.
Cosmic shear is a direct measure of the projected matterrpgpeetrum which
depends itself on the cosmological model. Shear in the weradirig regime can
only be measured statistically, by averaging over a largabar of galaxies. In
this chapter we explain the various statistics of cosmiashehich have been
established, studied and widely used over the past few yéals then discuss
the standard estimators of the shear statistics that acktasmeasure the shear
from observed galaxy ellipticities. For more details on tibygic of weak lensing
statistics, se=2 Schneider e al. [2002a]. We start withwtepoint statistics and
then move on to higher moments. The inhomogeneities thatecthe shear are
isotropic (no preferred direction). This results in cossthiear acting as an isotropic
random field, with all the first moments equal to zero. The $oaithis thesis is to
explore the cosmic shear estimators beyond the standargdimb statistics into
the three-points and other alternative methods, such ag tis¢ full shape of the
probability distribution function. Three-point statisti can be used to measure
the non-Gaussianity of the large-scale structure. Alsodnsidering alternative
non-conventional cosmic shear estimators one can in ptetireak the existing
degeneracies between cosmological parameters when oodgdimt statistics are
considered. Here we first set the foundation using the twotstatistics and then
extend the discussion to higher orders.

As explained earlier, shear is a two-component quantitygggn 3.10). We

37



Yr

Yt

X
Figure 4.1: The -y orientation with respect to each other.

can then construct four two-point correlation functionghvdifferent combinations
of the shear components. The coordinate system used to geserthe shear ele-
ments is chosen to be the direction of the ve@aonnecting the pair of galaxies.
One defines the tangential and cross-components of the wiitbanrespect to that
direction

=—0(ye ??) = —y1cos 2 — ysin 2p; (4.1)

= —0(ye 2?) = y1sin2p — yrcos 2. 4.2)

Here ¢ is the polar angle of the connecting vectar Figure 4.1 shows the tan-
gential and cross-components of the shear. Note that thedmponents have 45
angle separation. Also figure 4.2 shows the range of botptielty components
and how they relate to the orientation of an ellipse.

4.1 Two-point Correlation Function

The two-point shear correlation functiods andé_ are defined as
§+(0) = & £ &, (4.3)

where
&t = (K(F)u (9 +0)), (4.4)
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and
Err = <Vr(79)yr(79+9)>- (4-5)

Since the shear caused by the large scale structure is a koemgs and
isotropic random field, equations 4.3 only depends on the giizhe connecting
vector8. The other two correlation functions that contain mixedn®iof y andy
vanish due to parity symmetry. In parallel one can write theedation function
for convergence as the following:

¢k = <K(’9)K(79 + 6)> (4-6)

The Fourier transform of the convergence two-point coti@bafunction is defined
as the convergence power spectrBmsince the convergence field can be consid-
ered as a homogeneous and isotropic random field. Usingieqifafi4 one can
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write equation 4.3 in Fourier space as in Kaiser [11992] amdl fin

() = o= [ dssPu(5)(s6), @7

§.(0)= o [ dsPe(9)2(s0), (4.8)

whereJ, is the Bessel function of the first kind of order The above equations
indicate how the two-point correlation functions are retato the convergence
power spectrum and hence the cosmology. Later in chaptertakeeadvantage of
these relations and test the sanity of the simulations agtiiroretical predictions
based on the input cosmology of the simulations.

4.2 Top-hat Variance

In addition to the two-point correlation function, one camsider two-point esti-
mators inside of an aperture. One choice of the apertureaninsl of the shape of
a “top-hat” within which the shear dispersion can be cated#&aiser [1922]. The
mean shear inside an aperture of radiusan be written as

76) :%/; P9y(9). (4.9)

perture

The dispersion of the square of the absolute mean sheamis the

.00 2
1720 = o [ essets) (252 (4.10)

which shows the connection to cosmology thro&gghNote thatit4(s8) = (23(15(9559))
andl?,(s) is the top-hat filter function (Blandford et al. [1991]). Edion/4.10
is used to make theoretical predictions.

In practice the top-hat variance is calculated throughgmations of the two-
point correlation function§, andé_, whereé are in turn measured by correlating
the shear values of pairs of galaxies in the data set, as simoeguation 4.4 and

4.5. In order to estimate the top-hat variarigé?(6)) from the 2-point correlation
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functions, the following integration has to be calculated

o) = [ e )s.(

-0
= [ De s

)

). (4.11)

| B O

HereS, andS_ are well defined functions given in Schneider et al. [2002tje
blue line in figure 4.3 shows the filter response function & tbp-hat filter in
comparison to other filters, which we will discuss in theduling section.

4.3 Aperture Mass Variance

Another aperture based statistic is the dispersion of $eccaberture mass [Schnei-
der et al., 1998]. The aperture mass is defined as

Maol0) = [ dPU(9)K(9), (4.12)

aperture

wherex is the convergence atl(3 ) is the compensated filter, i.¢09 d39uU(9) =
0. The choice ol () is arbitrary as long as the function chosen is compensated.
One can also expreds,, in terms of the tangential shear:

Map(6) = [ 9QM)u(9), (4.13)

aperture

with the condition thaQ(9) = % f(;? dppU(p) —U(I). Note that the tangential
shear component at each point is taken with respect to theeceihthe aperture.
The dispersion oM, can be calculated as follows:

MZ(0)) = [ ROU(®) [ c6U(0)(K(6)K())
s
_ / Pe'U (8 / 26U (0) / (gn;éS'(e-ﬁ)PK(s)

2n/0°° dssP, (9) (/09 deaU(a)Jo(se)>2. (4.14)

The form of the compensated filteris general as long as it satisfies the con-
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dition above. However, several popular choices have witdesn used in weak
lensing studies. One of these is the functional form useddmwmé&der et ell. [1998]:

9 3\ /1 9?2
This has correspondinQ(3):
2
Q) -5 (2) (1-2). 10

The dispersion olMgp then simplifies to

0o 2
<|v|§p(9)>:%T /0 dssPK(s)<2‘z‘l46()329)> . (4.17)

Note here thal,(s8) = 24J4(s8)/(s8)? andI?(s6) is the aperture mass filter func-
tion. The green line in figure 4.3 shows the filter responsetfan of the aperture
mass filter used here.

Another choice of aperture function form was suggested by Waerbeke
[1998] and later Crittenden et al. [2002], which hereaftélt lae referred to as
the compensated Gaussian filter (not to be confused withpgbduae mass filter
we explained above). For this choice of filter fordh,3) is

92 92 92
Up(d) = 5112 (1— 4n92> exp<—ﬁ> ) (4.18)

with the corresponding shear filte($) as

92 92
Qo(9) = Wexp(—ﬁ> : (4.19)

This choice leads tdy(s6) = (Sig)zexp(—(%)z). The filter response of the com-
pensated Gaussian filter is shown in cyan (light blue) in &2L8 The disadvantage
of the compensated filter is its broad support, although Hae a strong fall off
for 3 > 0. The advantage, however, is the convenience of analytioepties of
this filter, which is the reason we compute the higher ordatissics on the data

42



using the compensated Gaussian filter in the future chapter 7

In practice one can estima(M§p> from the shear correlation in the data. The
relationship between the two-point shear correlation fions and the aperture
statistic is as follows:

26
ME(6) = [ e () (4.20)
where T, are simple well defined functions which depend on the chofcthe
compensated filter function. For the standard aperture filtesthe form of T,
can be found in Schneider et &l. [2002b], whereas for the emisgied Gaussian
filter the functional form is shown in Jarvis et al. [2003].dammary all two-point
statistics can be estimated from the two-point shear airosl function. This is
very useful, because each of the two-point statistics daéeikto the convergence
power spectrum which, in turn is related to the matter poyecsum and hence
cosmological parameters of the Universe.

Like all the other two-point statistics discussed above,aperture mass vari-
ance is also a linear function of the convergence power gpact Each of the
two-point statistics is a unique filtered version of the @mmgence power spectrum.
The filter functions for each case are plotted in figure 4.3.

4.4 E-and B-modes of the Shear

The relations between shear, convergence and gravithfotantial leads to the
following (Kaiser [1995] and Schneider et al. [2002a]):

Ok = (Oatoe) _ (4.21)
021 — 01Y>

The vectoru can be considered as the potentiakofHowever the noise and
the systematic measurement errors from the data, introawcel (non-gradient)
component ta which is referred to as the “B-mode”. Also the intrinsic allgent
of source galaxies [Brown et al., 2002], source clusterihgataxies and higher
order lensing (lens-lens coupling) can cause non-gradgeents [Schneider et al.,
20023]. In analogy to the electromagnetic field and in ordeeparate the gradient
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Figure 4.3: The filter response for various functions involved in theslag
statistics. The red Iine showsg(x) for &, the black linels(x) for &_,
the green line(224)2 for regular aperture map 44 the dark blue

Ilne (2J1( )) for top-hat, and finally the cyan (light blue) line shows

(% exp(—i))2 for the compensated Gaussian filter, which is a form of
aperture filter.

and curl parts ofi, new quantitiexc® andk® are defined such that:

?kE=10-u; (4.22)

%kB = O x u=diup — douy. (4.23)

Also the E- and B-mode potentials are defined by the Poissoatieq

[2@EB — 2kEB, (4.24)
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where the E- and B-modes can be combined into complex qigsnfiatr simplicity
of calculations:

W= ygE+iygh; (4.25)

K = KE+ikB. (4.26)

So the complex sheagr= %(611— 022) Y + 10124, with respect to the new po-
tential can be written as

. 1 . 1
ytiy = 5(01141'E — 02oF) — O1oY® + (012" + 5(511418 —0y®)]. (4.27)

The convergence power spectrum can also be decomposed-iattdB-modes,
P« = PE+ P2, such that the following relationships hold:

(R(9K*(8)) = (A)y*(8)) = (2m)?p(s— &) (Pe(s) — PE(9)), (4.28)

wherePE andPE are the spectral power densitiesktfandk® from equation 4.26.
Then, in analogy to equation 4.3, we obtain the correlatimttions

1 /=
&= 5 | dssh(69)(RE(S) +PE(S). (4.29)
1/ E B
&= | dssly(65)(PE(9 — FE(s). (4.30
mJo
which can be inverted to give
PEB_ 11 / dO6(E, (6)J0(S0) = £_(6)3a(sH)). (4.31)
0
Also following Schneider et al. [2002b], one can define
1 E
fee— 5 | GsPE(9)%H(09). (4.32)
TJo

These authors showed that in the absence of B-mdgess &, . In chapter 5 we
test the simulations by calculating the quangie and comparing to the predic-
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tions fromé_, which is an indicator of simulations being free of B-modes.

In practice we use the aperture mass statistics to study &-Bamodes of
the shear separately. Another form of the aperture magstgsit in analogy to
equatior: 4.33, can be written for the cross-component airghe

ML(6)= [ dSQOIK (). (439
aperture

where0 is the radius of the aperture. We can then write the dispemsguations

in terms of E- and B-mode power spectra as

o 2
Mo, (0) = 5 [ asPE=(e) (K (4.3
This implies that the measurement of these two aperturedigms leads directly
to estimation of E- and B-mode contributions to the overallver spectrum. In
absence of B-mode$M?) is expected to vanish. In practice we arrive at the mea-
surement of(Mgm(e» through the correlation functions, so the aperture disper-
sion can be expressed as

M. (0)) = s [ 000 [me’m (%) LE (6T (%) ] (4.35)

Although the true source of the B-mode contributions is motpletely known,
it is believed to have several possible explanations. Risgss of its nature, B-
mode measurement is an important part of weak lensing asalyse aim of all
data reduction and shape measurement pipelines is to réaeicesidual system-
atics in the data as much as possible, to eliminate theiribatibn to the B-mode
measurements. Although in most cases there are still leftBvmodes in the data,
it is useful as a guideline to either remove the points witjhkr B-modes from
the analysis, or to consider increasing the error estimaatie E-modes to better
accommodate the existence of B-modes in the data (Van WeeHdie . [2002]).
Figure 4.4 shows the orientation of shear for E- and B-modhs.top row shows
the E-modes when the centre consists of a mass distribuééh dr void (right),
while the bottom row pictures the curl orientations of thenBde.
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Figure 4.4: The schematics of E- and B-modes. Top row shows the E-mode
in the presence of a massive centre (left) or a void (rightje Bottom
row shows the orientation of the B-modes.

45 Windowed Second and Third Moments

Another means of estimating the two- and three-point siizdisf top-hat and com-
pensated filters is to apply the filter function to the recarcted convergence map
directly. Shear componenig andy are related to the convergengdiy equation
3.17. There is a large area of weak lensing research whidiview perfecting the
methods of mass reconstruction, given that the shear framiglanoisy and po-
tentially mixed with systematics, and also that there apsga the positions due
to masking effects. However, assuming one obtains a masastuacted conver-
gence map, one can apply the corresponding filte? ) to the maps directly and
measure the variance and third moment of the convergenténvtiite filter aper-
ture. In this process the convergence map is convolved Wélsihape of the filter
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function. The calculation speed can be improved if the clutiam routine is sub-
stituted by multiplications of the Fourier counterpartdoth the convergence map
and the filter function. We employ this approach in the follagvsection of the
thesis: (1) in chapter 5 for computing the windowed two- dnéé-point statistics
to test the sanity of the simulations against the theodgtialictions; (2) in chap-
ter € for computation of the covariance matrices as well bthalstatistics; (3) in
chapter 7 for calculations of covariance matrices from thmukations; and (4) in
chapter 3 to measure the PDF statistics and the relatediaogarmatrices. We
will later explain each of the cases extensively, howevar, doal of this chapter
is to introduce the various lensing statistics and themtieh to the matter power
spectrum.

4.6 Theoretical Predictions

Throughout this thesis we repeatedly compare the measuotswithe simulations
and data, to the theoretical prediction. This section lyrietblains how these pre-
diction are generated. The forward process proceeds asviollA certain choice
of cosmological parameters lead to a certain value of endeggity p, as seen
in section 2.1. Then density is related to the density contradtas in equation
2.14. The solution to the Poisson equation 2.15, involve®wigg moded, and a
decaying modé_, as shown in equaticn 2.16, which depend on the cosmological
parameters. We compute the growth fadior (see equation 2.17) frod,. The
transfer functionly is then calculated through 2.18 via the fitting formula of &qu
tion 2.19 [Bardeen et al., 1886], known as the BBKS formulae BBKS formula
does not take into account the effects of baryonic matteansalternative option
is to use the Eisenstein & Hu formula [Eisenstein and Hu, 198%&gardless of
the choice, by obtaining the desired transfer function amvth factor, one can
calculate the matter power spectri@nas in equation 2.22. To include the effects
of non-linear structure formation at lower redshift, one tmapply corrections to
thePs. The two common options are P& D (Peacock and Dodds |1996abwfit
(Smith et al. [2003]) approach, which we discussed prelyousegardless of the
choice, we arrive at the matter power spectiggmwhich is related to the conver-
gence power spectruf®, via Limber's equation 3.34. We showed earlier in this
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chapter how the convergence power spectrum is related toofdioe weak lensing
shear statistics. This is the basis of all the theoreticadiotions used in this thesis.
For chapte” 5 we include the transfer function calculatiohthe canb software
(Seliak and Zaldarriaga [1996], Lewis et al. [2000]) ratthemn fitting formulae for
greater accuracy.
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Chapter 5

Numerical Simulations

Gravity is a non-linear process, hence the predictions finear theory of large
scale structures are only valid on the largest scales, oedhl&est times, where
most of the matter fluid was still in the linear regime. In tloatext of the detec-
tion of weak lensing, however, photon trajectories are imgla broad dynamical
range, and are mostly sensitive to galactic scale strugturkeere the matter fields
are highly non-linear. Although higher order perturbattbeory can be used to
describe the underlying densities, the accuracy of theutalons are limited by
the complex dynamics. We thus need to rely on N-body sinmaniatin order to
generate non-linear densities, and to extract from themlinear weak-lensing
maps via a ray-tracing algorithm. Two sets of simulationsenesed in this thesis:

e Set I: This set was developed in collaboration with Tingting(UofT) who
ran the N-body simulations. As part of this thesis we exiaigitested the
quality of these simulations. These simulated maps were instihe publi-
cation Vafaei et el. [202.0] on optimal survey design for eigbrder lensing
statistics, which covers work presented here in chanten @rder to avoid
repetition, the details of this set are left to be explainethe next chapter
as part of the published article. This set was also used irbSkemi et a'.
[2011b] to calculate the covariance matrices for the firgr @pace-based
cosmological parameter constraint using three-pointetation functions.
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e Set II: Following the work with set I, we further realized tlgeeat need
of having a simultaneously large and accurate set of siionkatavailable
for weak lensing studies. Stable covariance matrices awe tcomputed
over many samples. Also the accuracy of the simulations&sffile likeli-
hood analysis directly. The production of a large set of &tnans can be
computationally expensive and time consuming. The siriaratwere run
by our collaborator Joachim Harnois-Deraps on clustersaaa@ian Insti-
tute of Theoretical Astrophysics (CITA). We tested evegpstf the process
and certain adjustments to the simulation box size and gepmere ap-
plied. Various interpolation schemes;y conversion methods, etc., were
also tested. Given that the simulations were built for thakudensing stud-
ies, we tested their sanity with various lensing two-poiatistics, explained
in sectior 4.1, chapter 4 and compared with theoreticaligtieds described
in section 4.5.

The final set proved to be a great accomplishment for the CF¥ELcollab-
oration, as it will be used for covariance matrix calculati®f various scientific
projects within the collaboration. These simulations dse ased for systematics
testing. We generated the clone of the CFHTLenS, (simuldéta set resembling
the data in all aspects except shear) based on this set, wilidbe explained in
more detail in chapter 9.

In this chapter, we explain the details of simulation geti@naand show the
results of accuracy testing of the set against theoretiedigtions. The cosmo-
logical parameters used in this set were based in WMAP7 (Ksumet al. [2011])
results, as listed in table 5.1.1.

5.1 Numerical Method

Dark matter particle numerical simulations are widely usedleak lensing studies.
They can be used to test the fundamental assumptions adopteaking analyt-
ical predictions, or to examine the systematics effectd¢palork out an optimal
analysis strategy. They can also be used in covariancexneatdulations where no
analytical model exists, such as higher order statistias fthobe the complicated
non-linear effects. In that case a large number of reatimatare required, with an
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accuracy that extends below the arcminute scale. In thigoseave describe some
of the considerations one must keep in mind when performileg salculations.

In an ideal world, one would simulate the complete past lggrie that con-
nects the observer to the light sources, for a given opemigipaand pixel reso-
lution. Unfortunately, for sources that extend to redsbffa few, this cannot be
simulated all at once, since the far end of the cosmologickime is at an earlier
time than the near end. This is, however, the only way one aagtetrthe largest
radial modes of a survey. Luckily, these radial modes coutei very little to the
weak lensing signal [Limber, 1953]. The coherence scald¢iseofargest structures
which contribute to the signal rarely extend over more théawatimes the size of
large clusters, so simulation box sizes of the order of a femdheds oh~*Mpc
generally suffice to model the relevant structures. Thewsalaied boxes can then
be stacked so as to create a pencil-shaped volume, or aftsight (LOS), inside
of which photons are propagated.

One can use a different simulation for each redshift box, e dy White
and Hu [2000], but this is CPU-consuming, since a single L@®Ives running
between 10 and 40 N-body simulations. For covariance matgasurements,
we need hundreds of these high precision LOS, hence we optdébef common
work around, which consists in treating different redstiéhsity dumps of a single
simulation as different sub-volumes of the same past lighec Because the large-
scale structures evolve across redshift slices, therésexisystematic correlation
between the lenses. This correlation, however, can be rizadrby randomly ro-
tating the boxes and shifting the origin. This procedureved! us to reduce the
number of simulations required for our measurements byaat ken order of mag-
nitude.

The next stage consists in calculating the photon geodesite large-scale
structures, and to compute the cumulative deformationieedjalong each trajec-
tory. The most accurate calculations are performed by céingpthese geodesics
in three dimensions, along their trajectory, starting fiti observer’s camera and
progressing towards higher redshifts [Vale and White, 2008uch ray-tracing
methods provide one of the most reliable estimates of theutative shear, con-
vergence and deflection angle measured at each pixel of genar's camera,
but needs to be calculated at run time, or one is requiredbte she full density
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contrasts in memory. Cosmological codes which performtraging calculations

at run time [Kiessling et al . 2011] typically run much slawand analyses that
use the full three-dimensional densitics (Vale and Whif#®{2 and Hilbert et .

[2009]) have a large memory footprint, two limiting factdm the task at hand
here.

However, it was shown by Vale and White [2003] that diffemsiin lensing
maps obtained from the mid-plane “tiling” technique is l#san 01%, with in-
distinguishable effects on the two- and three-point fuomgi This tiling approach
consist in collapsing the cosmological sub-volumes in&rtmid-planes, creating
two dimensional slabs (or tiles) and calculating the geicdesn these thin lenses.
Typically, all tiles have the same comoving dimension, dr&ast light cone is
interpolated onto a set of pixels, whose sizes correspottitetangular resolution
of the simulated telescope. In the weak lensing regimegth@gectories are close
to straight lines, so that Born’s approximation is very aatel (Schneider et al.
[1998]; Vale and Whiie [2003]). Here we opt for a line-of{signtegration along
the unperturbed photon paths.

5.1.1 N-Body Simulations

The N-body simulations are produceddybep3m an improved version d??VFAST
(Merz et a'. [2005]) that is bothpi andopennp parallel, memory local and also
allows for particle-particle (pp) interaction at the suiddgevel. 1024 particles
are placed on a 2048yrid and their initial grid displacements and velocities ar
calculated from the Zel'dovich approximaticn (Zel’'Dovif1970]; Shandarin and
Zel'dovich [1989]) with a transfer function obtained froBAMVB (Seljak and Zal-
darriaga [19€6]). The following cosmological parametews @sed as simulation
input, and in theoretical predictionsQp = 0.721,Qn, = 0.279,Q, = 0.046, R =
0.96,05 =0.817 and h =0.701.

This work is meant to outperform the dynamical range of mesiweak lens-
ing simulations: we need sub-arcminute precision and a 6téldew of a few
degrees per side. We designed our LOS such that each pixehhaggening angle
of 0.21 arcmin on each side, with Npix = 1G2dixels in total, for a total opening
angle of 3.58 per side.
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In order to reduce the wasted cosmological volume that taltside the past
light cone, we produced two sets of simulations, followiheg strategy of White
and Hu [2000], which used 6 box sizesze 1. It would be computationally too
expensive to run that many distinct volumes, but we find thatdizes offer a good
trade off. High redshiftZ > 1.0) volumes are produced from simulations with a
comoving side ol = 231.1h~Mpc, while the low redshift ones ale = 147.0
h~IMpc per side. These volumes are chosen such that the boesddrine past
light cone intersect with the edges of the smaller box eyaattt = 1 (in the given
cosmology). The cone then enters the larger volume, andsnisdtoundary at =
2.0 (see figure 5.1). Some of the outer ray bundles eventleglle the simulated
volume at larger redshifts larger than 2.0, in which case nferee the periodicity
of the simulations. This situation applies only to the lastrlenses, hence the total
amount of repeated structures is very small. This is evehdusuppressed by the
lensing kernel, which favors redshifts closerzte 1, 1.5, and by the fact such high
redshifts have fewer galaxies to start with.

z =3 z =2 z =1 z =0

231.1 Mpc/h 147 Mpc/ h

Figure 5.1: Geometry of the lines-of-sight. The global simulated vodum
consists of two adjacent rectangular prisms, collapsedsasi@s of thin
lenses. As explained in the text, high redshift lenses hiegleeh comov-
ing volume, but the same number of grid cells, or pixels; thismieant
to reduce the volume that falls outside of the past light cortee ob-
server sits az = 0, from where we shoot the rays= 1 is the junction
between the small (lowes)} and large (higher simulation boxes; the
past light cone escapes the simulated volume beyea@, and we ex-
ploit the periodicity of the boundary condition to populéte edges of
the most remote lenses and halo catalogues; we store lem$dmios
up toz=3.
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With these choices of cosmological parameters and sinoulailumes, the
particle’s mass in the large box € 231.1h~Mpc) and small boxl{ = 147.0
h~IMpc) are 1.275% 10° and 3.2837x 1% M., respectively.

The initial redshifts are selected such as to optimize duthrtin time and the
accuracy of the N-body code. These are chosen to; be40.0 and 200.0 for
the large and small box respectively. The reason for chgodifierent starting
redshifts resides in the fact that the smaller box is prolsimgller scales, hence
it needs to start earlier, when the linear regime is validchEsimulation is then
evolved withcubep3m At each of the lens redshifts tabulatec in 5.1.1, the dark
matter particles are placed onto ahdjid = 2048 grid. That grid is then collapsed
in three different ways along each of the 3 Cartesian axesjuging triplets of
slabs. These lens redshifts, are found by slicing into cubes our simulated vol-
ume, starting and ending at= 0.0 andz = 3.0, respectively, and solving for the
redshift at the centre of the comoving box.

5.2 Discrete Convergence Equation

As mentioned previously, we approximate that the photojedtaries as straight
lines, such that the integral of 328 can be performed piygbikel. We convert
the integral ovel into a discrete sum at the lens locatign&,). The infinitesimal
element ok becomes W/ngsiq, wherengiqg = 2048 and. = 147.0 or 231.1hMpc,
depending on the redshift of the lens. Under the single sogpleme approximation,
we can thus write the convergence figldis (Munshi et al. [2008])

20 %
=L S ot zxa) (1- 5 Jar, )
whered,p(X) is the 2-D density contrast field. The shear components caoie
veniently computed from, following the procedure of Kaiser and Squiras [1993]
which was explained in section 3.3. We emphasize that thedrdwansforms are
non-local operations and must therefore be calculated eriulh periodic, sim-
ulated slab, before the interpolation onto the lenses. lsrdperation, we work
under a flat sky approximation, which allows us to performRbarier transforms
in the traditional plane wave basis. We then zoom into theszeection of the light
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Slice | z Zs Xi Xs

1 0.025| 0.0494| 73.5000 | 147.0
2 0.075| 0.9999 | 220.5000 | 294.0
3 0.126| 0.1515| 367.5000 | 441.0
4 0.178| 0.2045| 514.5000 | 588.0
5 0.232| 0.2589| 661.5000 | 735.0
6 0.287| 0.3149| 808.5000 | 882.0
7 0.344| 0.3727| 955.5000 | 1029.0
8 0.402 | 0.4324| 1102.5000| 1176.0
9 0.463 | 0.4942| 1249.5000| 1323.0
10 | 0.526| 0.5583| 1396.5000| 1470.0
11 | 0.591| 0.6249| 1543.5000| 1617.0
12 | 0.659| 0.6941| 1690.5000| 1764.0
13 | 0.730| 0.7664| 1837.5000| 1911.0
14 | 0.804| 0.8418| 1984.5000 2058.0
15 | 0.881| 0.9206| 2131.5000| 2205.0
16 | 0.961| 1.0033| 2278.5000| 2352.0
17 | 1.071| 1.1416| 2467.5506| 2583.1
18 | 1.215| 1.2915| 2698.6519| 2814.2
19 | 1.371| 0.4545| 2929.7531| 3045.3
20 | 1.542| 1.6326| 3160.8543| 3276.4
21 | 1.728| 1.8280| 3391.9556| 3507.5
22 | 1.933| 2.0433| 3623.0569| 3738.6
23 | 2.159| 2.2817| 3854.1580| 3969.7
24 | 2.411| 2.5467| 4085.2593| 4200.8
25 | 2.691| 2.8429| 4316.3605| 4431.9
26 | 3.004| 3.1757| 4547.4618| 4663.0

Table 5.1: Redshifts of the lenses. The projections foz > 1.0 are produced
with L=231.1h~tMpc simulations, while those for lowerare obtained
from L = 147.0h~*Mpc/h, as described in the text. The table lists the
corresponding source redshift and the comoving distararesvery lens

and source plane for each simulation box.
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cone and the simulation slab and interpolate the region @& grid.

5.3 Testl: Power Spectra

In this section, we quantify the accuracy of the weak lensingulations. We first

measure the matter density power spectrum of the simulaied tdimensional

density fields, i.e. before the collapse and pixel interfimia and compare to the
non-linear theoretical predictions GAMB (Seliak and Zaldarriaga [1996], Lewis
et al. 2000]). We then estimate the convergence power ipaaif the simulated

lines of sight, compare to non-linear predictions, andaettihe effective resolution
of the simulated fields.

5.3.1 Matter Power Spectrum B

The power spectrum of matter denskyk) is a fast and informative test of the
quality of the simulations. It probes the growth of struetiat all scales available
within the simulations, and comparison with reliable tletimal models informs
us of the accuracy and the resolution limit. For a given aessity fieldd(x),
the power spectrum can be calculated from its Fourier toanstk) as described
previously by equation 2.21.

In our simulations, the grid is discrete, so are the Fouriedes, and the vol-
ume average turns into an angle average. We extract the mp&etrum for our
185 simulations at two redshifte= 0.961 andz= 0.025, and present the results in
figure 5.2. The error bars are the Heviations from the mean. We observe from
this figure that the simulations seem to model well the simest at least down to
= 20.0hW/Mpc, which corresponds to a comoving length of about B1tkpc.

In the linear theory of structure formation, different Feamodes of the matter
density grow independently, such that the error bars on tveep spectrum are
well described by Gaussian statistics. For non-linearescdlowever, the phases
of different Fourier modes start to couple together (Maikand Whit= [19€9],
Coles and Chiang [2000] and Chiang et al. [2002]), hencevtloepoint function
no longer contains all the information about the fields. ldigbrder statistics, i.e.
bispectrum and trispectrum, are then needed in order toowepthe calculations,
but simulations do provide the most accurate estimatesjdad convergence is
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Figure 5.2: Power spectrum of 185 N-Body simulations, at redshifts.86Q
(bottom curve) and 025 (top curve). The solid and dashed lines are the
non-linear predictions, with and without the Gaussianffiltehe error
bars shown here are the standard deviation over our samphisgob-
serve a slight overestimate of power in the simulationsdates smaller
thank = 3.0h/Mpc.

achieved.
The power spectrum covariance matrix is defined as

C(kK) = (P(K)P(K))(P(K)P(K)), (5.2)

whereP(k) refers to the best estimate of the mean krid are the wave-vectors.
The amount of correlation between different scales is beitialized with the
cross-correlation coefficient matrix, which is obtaineshftC(k, k') via
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Figure 5.3: The correlation coefficient matrix of the density power speq,
measured from of 185 N-Body simulations, at redshift 861. Modes
atk ~ 0.5 h/Mpc, corresponding t6@ ~ 18, are more than 40% corre-

lated.

g p— (5.3)
C(k,k)C(K,K)
and is shown foz = 0.961 in figure 5.3. We see that it is almost diagonal at large
scales (lowek), while measurements become correlated as we progressdtowa
smaller scales (highdd). This effect occurs at even larger scales for smaller red-
shifts, since the fields had more time to grow non-linearcstmes. Atk =~ 0.5
h/Mpc, for instance, the Fourier modes are intrinsically enttrat 40% correlated.

This corresponds to an angle &k 18’ on the sky, and ~ 1200.
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5.3.2 Convergence Power Spectrum P

In order to quantify the resolution of our lensing maps, weasuee the angular
power spectrum of the field, and compare the results with the non-linear predic-
tions fromCAMB (Seliak and Zaldarriaga [199€]; Lewis el al. [2000]). Thevpo
spectrum of the convergence fi&kd0) is defined as

(K(£2)K (£2)) = (2m)*3p (€1 + £2)P(f), (5.4)

where/ is the Fourier component corresponding to the real spac®rvécand
again, the angle brackets refer to angle averages. Thergemae power spectrum,
estimated from our simulations, is shown in figure 5.4, wiieecerror bars are the
1o standard deviation. A note to the reader tRat¢) andCy (¢) have been used
interchangeably to represent the convergence power speéy. It is presented
in the dimensionless form, i.e/(¢+1)/(2m)Cx(¢), which has the advantage of
showing clearly which angles are probing the linear regidiménsionless power
much less than unity) and which ones probe non-linear strest We observe
that modes witl{ < 1000 have power less than 0.1, which is a good indicator that
linear theory still holds, and that these multipoles arsoeably well described by
Gaussian statistics.

When compared to the non-linear theoretical model, we firmdigmreement in
the linear regime, while the theoretical predictions dlighnderestimate the power
for £ > 1000, consistent with the observations of Hilbert et alOkEJO The strong
drop atl ~ 30,000 is caused by limitations in the resolution, which cquoegls to
an angle of about.@'.

As mentioned earlier, the smallest angles of weak lensirgemfations are
probing the non-linear regime of the underlying densitydfi@ind it is known that
the statistics describing the uncertainty in the weak lepgiower spectrum are
non-Gaussiar (Doré et gl. [2009]). Although most of theadlepes from Gaussian-
ity are currently lost in the observation noise, future iegssurveys are expected
to bring this noise down, such that non-Gaussian statigtitsplay an increas-
ingly important role. The non-linear dynamics effectivelyrrelate the error bars
on small scales, an effect that can be visualized from thesetorrelation coeffi-
cient matrix of the angular power spectrum, shown in figus2 Bs expected, we
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Figure 5.4: Convergence power spectrum, measured from 185 N-Body simu-

lations, where the source plane is a Dirac delta functiooguatz = 3.

The solid line is the non-linear prediction (based@ivB [Lewis et al.,
2000] withhal of i t modifications from [Smith et al., 2003]), and the
error bars are thed standard deviation over our sampling. We observe
a slight over-estimate of power in the simulations for 1000 com-
pared to non-linear predictions (solid line), which is algsible in the
smallest scales of the three dimensional dark matter popectizim

(i.e. figure 5.2). The linear predictions are representethbydashed
line.
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Figure 5.5: The correlation coefficient matrix of the convergence posperc-
trum, measured from 185 LOS. As for most calculations in¢hizpter,
the source plane is placed at a redshifz ef 3.004.

observe that all the multipoles with> 1000 are more than 40% correlated, while
lower multipoles, probing mostly larger scales, are muek [rrelated.

5.4 Test Il: Two-point Functions

The two-point functions of the lensing field provide a wedaftinformation about
many cosmological parameters, and precise measuremetite t#nsing power
spectrum. Different statistical estimators and filteringhiniques are sensitive to
different scales, systematics and secondary effects,@ametglly correlate scales in
a unigue way [Vafaei et al., 2010]. Hence the optimal apgrdac measurements
involving cosmic shear and convergence really dependsenalibervation and the
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parameters investigated.

To mimic the shear and convergence detection from a galaxgguve Pois-
son sample each of the maps with 1000 random points and construct mock
catalogues. The object positions are assigned randomhinntihe area of 12.84
ded from which the shear and convergence values are extracted.

In this section we show a series of plots for nine selectedhiéicslices, rang-
ing from low to medium to high redshifts. Each plot contaigsuits from some
particular lensing statistic compared to theoretical jtézhs, as explained in sec-
tion 4.6. We follow these plots with the correlation coe#iti matrix for two of
the redshift choices to indicate the level of correlatiobwsn the scales for that
particular statistic. The shear and convergence statiatie listed in order of ap-
pearance below:

e Shear Two-point Correlation Function: The shear two-point correlation
function (see section 4.1) is a strong indicator of cosmiastsignal. In
the absence of lensing the two-point shear correlationtiomaverages to
zero, hence a positive signal indicates a detection of aoshear. Here we
compute the tangential and rotated shear correlationifursecbn the noise-
free simulations (equations 4.4 end 4.5). Figure 5.6 sh&gwand figure: 5.8
shows theé,, measurement in comparison to the theoretical predictions f
9 selected redshift slices. The error bars representdhgetiation between
185 lines of sight for a single 12.84 degqap. The agreement between
the simulations and the theoretical predictions is welhimithe error bars,
which allows us to conclude that the signal is well resohetdeast down
to one arcmin. We next show, in figure 5.7, the cross-coroglatoefficient
matrices related to th&§ measurements, for source redshifts of 3.0 (top) and
1.0 (bottom). These show that the error bars are at least s0félated for
the highest redshift, and up to 80% for lower redshift sosiwrdeéigure 5.9
shows theg,; counterpart, which also shows strong correlation.

e The Shear E/B Decomposition We previously defined the E/B decompo-
sition in section 4.4. These statistics are widely belietedbe the most
robust check of systematics [Crittenden €t al., 2002]. Fmrsimulations,
we checked that th&sg is consistent with zero, while thgg measurements
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are shown in figurz2 5.10. Again, we observe a good agreemdémtivé the-
oretical predictions. These error bars are also correlayet least 50%, and
even stronger for bins closer to the diagonal, as seen irelfadr. forz=1.0
andz=3.0.

Convergence Two-point Correlation Function Following the procedure
of the shear fields, we calculate the two-paint k correlation function and
power-spectrum from the convergence mock catalogues.tiegish6 shows
the definition of the two-point convergence correlationction &, .. In fig-
ure 5.12, we present the measured two-point convergencelation func-
tion along with the theoretical prediction, as a functioseparation anglé.
The agreement extends well below the arcminute scale, edghifts. The
cross-correlation coefficient matrices correspondindhésé measurements
are presented in figu-e 5.13.

Window Integrated Shear Correlation Function (Top-hat): Section 4.2
explained the link between the integration of correlationctions with cer-
tain filters to the matter power spectrum. One advantageeotoih+-hat filter
is that it probes scales as large as the field of view. We coenpar mea-
surements from the simulations with non-linear predicionfigure 5.14, as
a function of the opening angle of the top-hat filter. We finddjagreement
at all redshifts, although lower redshifts exhibit a smadsb The cross-
correlation matrices are presented in figure 5.15 and shatvtkiere is a
strong correlation between most measurements.

Window Integrated Shear Correlation Function (Aperture): In section
4.= we discussed the aperture mass filter statistics inlsletdére we show
the results of computing the aperture mass variance throoigblation func-
tions on the simulated mock catalogues that originated foomnumerical
simulations. We present in figure 5.16 our measuremen([MQj) from the
simulations, as a function of smoothing scélle Here the choice of aper-
ture filter Schneider et al., 1998] is taken as the compedstiter and not
the compensated Gaussian. We observe that for redshisr [Hran one,
the agreement extends down to an arcminute, whereas lodahifts suffer
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from a lack of variance at angles of a few arcminutes. Thisaissed by
limitations in the resolution due to strong zooming from #iulation grid

onto the pixel map. This effect is also expected from thehapvariance,
but appears at much smaller angles. We recall that an apertass is con-
structed with a compensated filter, which has a strong dagniaiih hence
for an opening anglé, it is really sensitive to smaller scales0/5. The

cross-correlation coefficient matrices are presented imd §.17.

Window Statistics on Convergence Maps (Top-hat and Apertue Mass)
Aside from the mock galaxy catalogues, we test the accuratyeosimu-
lations on the maps directly. We smooth thenaps with filters identical
to those used before (top-hat and aperture) and calculateattiance and
third moment of the convergence field on the smoothed mapstioB&.5
explains this process in more detail. We present the secamdemts ofk in
figures 5.13 and 5.220, comparing with the predictions, feraperture and
top-hat filters, respectively. The third moment for apertand top-hat filters
follow in figures 5.22 and 5.24. Also the correlation coeéfiti matrices for
two selected redshift slices for the second moment top+hdperture are
shown in figures 5.19 and 5.21, while figure 5.23 and 5.25 dstrate the
correlation coefficient matrices for the third moment case.
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black line shows the theoretical prediction for the inpwgroology of the simulations.
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Figure 5.18: The (k?) estimate for convergenee-maps smoothed with aperture mass filter.
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Figure 5.22: The (k®) estimate for convergenae-maps smoothed with the aperture mass filter.
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Figure 5.23: The cross-correlation coefficient matrix of the third momnein
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plane atz ~ 3.0 (top) andz ~ 1.0 (bottom).

83



5.5 Conclusion

We have generated a set of 185 high-resolution N-body stioogfrom which we
constructed past light cones with a ray-tracing algoritfifme weak lensing signal
that is extracted is well resolved from a few degrees dowretovb an arcminute.
We have measured non-Gaussian error bars on a variety ofleresikg estimators,
including 2-point correlation and mass aperture functidrieese error bars are es-
sential for a correct estimate of cosmological parametehéch so far has relied
on assumptions that are less accurate. With the next gamreddtiensing surveys,
non-Gaussian error bars are expected to deviate signlficioin Gaussian pre-
scriptions, therefore technigues such as those preseatednill be required. For
each estimator, we find excellent agreement between the ofeaur measure-
ments and non-linear predictions, which testifies to thdityuaf the simulations.
We have also measured and presented the correlation ceeffioatrices for these
weak lensing estimators, and showed that the error barebketdifferent angular
measurements are at least 50% correlated, with regions 8@%ocorrelated, as
the two angles get similar in size.
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Figure 5.24: The (k®) estimate for convergenee maps smoothed with a top-hat filter.
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atz~ 3.0 (top) andz ~ 1.0 (bottom).
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Chapter 6

Optimal Survey Design for Weak
Lensing Three-point Statistics

6.1 Motivation

Weak gravitational lensing by large scale structure is gumitool to probe the
matter distribution of the Universe regardless of its dyitainstate. When com-
bined with redshift information weak lensing can be used@®hbe for dark energy
evolution as the expansion of the Universe affects the mlasgecing at different
redshifts. Dark energy constraints from weak lensing relyaocurate measure-
ments of the dark matter power spectrum amplitude. The twintgosmic shear
statistics offer a powerful technique to measure the mattemalization parame-
ter og and the mass density paramefyy, combined (see for example the earlier
results from CFHTLS by Beniamin et al. [2007] end Fu et al0gJ0and also from
COSMOS survey by Schrabback et al. [2010]). One of the inambrgoals for
better determination of the cosmological parameters isnforove the individual
measurement ofig and Qp,. Better estimation obg and Q, allows for allevia-
tion of the residual parameter degeneracies [Komatsu,e2@09]. A noticeable
example is the neutrino mass [Tereno et al., 2009].

Bernardeau et al. [1997] and van Waerbeke =1 al. [1999] adeddor three-
point shear statistics as a powerful estimator to break dgemnkeracy betweeog
and Qn,. In particular, a certain ratio of two- and three-point istats, called
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“skewness”, was shown to be independenvgf

At the time our work in this chapter was carried out, thereshanly been three
detections of the three-point shear statistics reportech fthe VIRMOS survey
(Bernardeau et al. [2003] and Pen €t al. [22003]) and from thEDGurvey [Jarvis
et al., 2005]. Unfortunately, for these surveys, the sigoaloise ratio remains
low and there were no reliable forecasts of three-poinissiizg which took into
account realistic galaxy number counts and shape noise lhasveon-Gaussian
contributions in the cosmic variance. Therefore, the priiation of the mea-
surement was not well-established. ' In Van Waerbheke et @0113] the authors
concluded that the three-point statistics of the lensiggaliis greatly enhanced at
small angular scales because of the non-linear gravittiuastering, but they did
not provide an estimate of the signal-to-noise ratio fofedént survey depths. In
van Waerbeke et al. [1999] it was shown that the skewnessafdhvergence can
be measured from mass maps reconstructed from the sheammerbas individual
galaxies. However, a realistic population of source gakaxias not considered,
and the simulations were limited to second order pertushatieory. Kilbinger
and Schneider [2005] showed that one can learn additiof@iniation by com-
bining the two- and three-point statistics, but again regithrealistic source galaxy
distribution nor different survey strategies were congde Takada and Jain [2004]
also showed that combining the power spectrum and bispadtrmography infor-
mation enhances the accuracy of cosmological parametaragistns.

In this chapter we investigate the optimal use of three{&tatistics in a weak
lensing analysis of large scale structure, consideringre¢wew aspects that have
been neglected in previous works:

e A realistic noise contribution using ray-tracing simubats calibrated on ex-
isting surveys is included.

e Realistic forecasting for the two- and three-point statstor different sur-
vey strategies is provided.

e For afixed observing time, wide-shallow and narrow-deegiesgiies are con-
sidered. The impact of the survey’s depth on both the galaxyber den-
sity and the source redshift distribution is quantified.v@ys with different
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characteristics are affected differently by cosmic varegrwith wider sur-
veys probing a much larger number of modes than narrow ssinkégre we
carefully investigate this aspect by comparing the peréoroe of various
simulated surveys which use a realistic source distributio

The source distribution has been derived using galaxy aayas a function
of redshift, as measured in real data for a fixed limiting nitagie.

The full likelihood analysis with covariance matrices aoenputed from a
large set of ray-tracing simulations. It is therefore areegion of previous
works which used Fisher matrices to gauge the performanaeak lensing
surveys (e.g. Amara and Réfrégier [2007]).

Following Zhang et zl. [2003] a comparison of different sitiniray filters is
included.

A range of most optimal smoothing scales are found by ingattig the
various contributions of noise and signal to the full cosade matrix.

The best survey strategy for detecting the skewness of theeogences; as
a means of breaking the degeneracy betw@grandog is studied. The idea
first emerged in Bernardeau e al. [1997] and van Waerbele[2889], but
its feasibility never quantified.

The efficiency of combining the two- and three-point statssis quantified.

Two- and three-point statistics forecasts for the comdI&@EHTLS survey
and the KiDS survey are calculated.

This chapter is organised as follows. In sectior 6.2, we sariz@ the back-

ground theory of the two- and three-point statistics of thievergence field, where

notations and definitions are also introduced. The detdithe method are de-
scribed in section 6.3. Optimal survey strategies are showgection 6.4, and

sectior 6.5 shows the predictions of two- and three-poirgsuements of the sim-
ulated complete CFHTLS-Wide survey area and depth. ThemingpKilo Degree
Survey geometry is also discussed here as an example of¢beaag achievable
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on the measurement of the two- and three-point statistitteeinear future. Finally,
in sectior 6.3, the conclusions of this study are stated.

6.2 Theory Background

Following Miralda-Escude [1991] and Kaisear [1992] we calitevhe convergence
K at a given sky positio® as

3HE @
KO) = 520n [ w(@3(X.0)dx. (6.1)
2¢C 0
wherey is the angular comoving distand®y, is the mass density parameter at the
present dayg is the matter density contrast aaz) for a given redshiftzis given

by

o = (2@ [ na) 1~ X0 b 62)

Herew(z) depends on the cosmological parameters and the galaxyesdisrc
tribution functionn(z). The convergence maps are obtained from ray-tracing sim-
ulations, as described in Section 6.3.1.

Note that this analysis employs the convergence feldhich is proportional
to the projected mass density. The convergence can be edtom the shear data
y = (n1, 2) either by appropriate weighting with an aperture filter, mnf mass
reconstruction with e.g. a top-hat or Gaussian filter. Tloeeg the conclusions
of this study apply to the convergence and the shear withistindtion. We are
interested in the measurement(af), (k3) and the skewnes (k) defined as

K3
S = <<K—2>>2 (6.3)

Skewness is essentially a measure of the clustering of tiss distribution, as
defined ir Bernardeau et al. [1997]. According to pertudratheory,S; provides
a measurement @, independent of the normalization of power spectragnFor
this reason, the skewness of the convergence appears asattvactive probe of
cosmology and a useful technique to break degeneraciesgpotioer cosmological
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parameters.

6.3 Analysis Method

6.3.1 Ray-tracing Simulations

This analysis is based on a set of simulakethaps (referred to as Set | in chapter
5). The set consists of 60 lines of sight, each containingedi@hift slices from
z=0.020 toz= 3.131. These are generated from 22 independent N-body sim-
ulations by randomization. As a result, the different linésight are not totally
independent on large scales. However they can still be deresi approximately
independent on scales smaller than 1

The Multiple Lens-Plane ray-tracing approximation methas used to gen-
erate the lensing convergence map: the dark matter distiibin the Universe is
approximated by a series of mass sheets. The N-body siwngasire on a grid
of 172& points with 858 particles, and the box size is 120Mpc. The mass
density in the simulation box is projected to the mid-plaha series of character-
istic redshifts. The output redshifts are picked so thatcthesecutive time slices
can represent the continuous evolution of the large scaletste. The three or-
thogonal axes of the box arey, andz. For every output redshift, we make three
projection sheets, parallel to thg, yz andxz planes. We choose one projection
sheet out of the three of one N-body simulation in a randonemas well as ran-
domly shifting the sheet transverse to the projection diwac This technique is
employed to avoid creating periodicity in the projectionayR are shot through
these mass sheets. We calculaten every sheet and project them along lines of
sight after the random shift and rotation.

The maps are on 1024.024 grid with spacing of 0.21 arcmin. Thus the total
area is about 12.84 défpr each line of sight. We use the cosmological paramaters
values based on WMAP3 resul's [Spergel et al., 200REppm with Q, = 0.24,

Qp = 0.76 andog = 0.74. Figure 6.1 shows a schematic of the different redshift
slices which were combined for each line of sight.

The N-body simulations are generated by @uBEPMcode, which is the suc-
cessor oPMFAST [Merz et al., 2005].CUBEPMis MPI parallelized particle-mesh

91



Resolution: 0.21’ /pixel

Figure 6.1: A schematic of the simulated convergence maps at diffegstit r
shift slices.The maps are on a 182id with 0.21 arcmin per pixel.
The redshift ranges frorz=0.020 toz=3.131.

(PM) code, and has particle-particle force implement atguidh scales. It is fur-
ther parallelized by shared-memoBpenMP on each node. The simulation vol-
ume (which is also called simulation box) is cubically deposed inton® sub-
volumes, and the calculation of each sub-volume is perfdrareone node of the
cluster. The total number of nodes used in simulation®isith n = 3 here. The
code can be run on up to 1000 nodes. The simulations are rumec8unnyvale
cluster of CITA.

For each of the redshift slices the average), (k%) and S; are measured
and the signal is compared with a theoretical model. Thegwiot cosmological
predictions are based on the Peacock and Dadds [Peacockaaiuts, X1 9S6] non-
linear fit, whereas the three-point shear statistics ptiedis use the bispectrum
non-linear fit derived in Scoccimarro [1998] and implemelrfte lensing studies in
Van Waerbeke et al. [2001b]. The excellent agreement betweemeasured and
the predicted signal can be seen in ficure 6.2, where thesdeulow, intermediate
and high redshift slices are shown. The agreement in alsdaseithin 1-0 error-
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Figure 6.2: Agreement between the measurements and the theoretical pre

dictions for three individual redshift slices. The low rhifsslice is at
z=0.186, the medium slice at 0.668 and the high redshift giae2.690.
The blue lines show the measurements on the simulated 1éngaita,
and the pink lines show the theoretical prediction for th@mesa&osmo-
logical model at the same redshift. The measurements inpeaodl are
made from data smoothed with a top-hat filter. The error bepsesent
the cosmic variance over 60 lines of sight.

bar.

6.3.2 Galaxy Number Density and Redshift Distribution

In this paper we compare different survey strategies witlying source redshift
distribution that is dependent on the survey depth. We i@bbthe redshift dis-
tribution from existing optical surveys with photometriedshift information and
populate the ray-tracing slices accordingly. The focus heron ground based
surveys, but the result can be straightforwardly extendespace data with an ap-
propriate scaling of the shot noise (which directly depeodghe galaxy shape
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Mim O B ) Zmed
225 0.76 6.85 1.05 0.68
23.0 071 530 1.14 0.72
235 0.81 315 119 0.80
240 0.80 272 1.26 0.84
245 096 1.70 1.07 0091
250 0.85 1.90 1.26 0.96
255 1.46 1.30 0.75 1.02
26.0 1.71 1.27 0.68 1.04

Table 6.1: The best fit values oft, 3 andz, corresponding to equation (5.4)
for severali-band limiting magnitudes. These parameters were used to
generate theoretical models for Section 6.4 to determiaddst survey
strategy. The last column contains the median redghififor each mag-
nitude cut.

noise and number density).

The galaxy number density and redshift distribution as &tion of limiting
magnitude are estimated from the CFHTLS-Deep survey @aialin thei-band
llbert et al. [2006]. To model the galaxy redshift distrilout n(z) for surveys of
different magnitude limitm;,, the method described 'n Heymans et al. [2006b]
and van Waerbeke et al. [2006] was employed, modeiizgn;n ) as

B

2 (452) <zo<rfmm>>aex'° ‘(ﬁﬂ (6.4)

The best parametric fit to equaticn (6.4) for limiting magd#i =24.5 cor-
responds tax=0.96,3=1.70 andz=1.07. Figure 6.3 shows the histogram of the
normalized galaxy redshift distribution from the CFHTL®&p survey catalogue
[lIbert et al., 2006] atm;,, =24.5 and the best fit(z) from equation(6.4). Table
6.1 summarizes the values af 3, zy and the median redshift,eq for the other
magnitude cuts used in this paper. Equat on (6.4) yieldsiéstie source redshift

n(z, Mim ) =

distribution for a given survey’s depth [van Waerbeke ¢120006]. Thus, the theo-
retical predictions built based on the appropriate formafation (6.4) match the
K-maps weighted by the galaxy number density derived fromQREITLS-deep
catalogues.
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Figure 6.3: Fit to the normalized galaxy number density from the CFHTLS-
Deep survey catalogue llbert et el. [2006]. The black linevwshthe
histogram of the galaxy number density and the dark blueisribe
fitted curve. The limiting magnitude;,, =24.5 with the fitting formula
given by equation (6.4). Hera, B andz, are 0.96, 1.70 and 1.07,
respectively.

6.3.3 Statistical Noise

The source of shot-noise in weak lensing studies dependseanttinsic ellipticity
characterized by the r.ma. and by the number density of galaxiag It was
shown in van Waerbeka [2C00] that the noise in a smoothedecgexce map can
simply be derived from the intrinsic ellipticity noise argbtgalaxy number density.
In particular, it was shown that the noise in a pixelated smedx map is simply
given by a smoothed uncorrelated Gaussian noise with om.#. ng denotes the
number density of galaxies aWd(#) the 2-dimensional smoothing function, then
the correlation function of the convergence noise is

(ka(O)kn(0)) = % L JECRS IOl (6.5)

2 ©°ng

wherek,(6) is the convergence noise map alid¢) is the Fourier transform of the

smoothing windowV(6). O is the pixel size, s@zng is the average number of
galaxies per pixel. Note that the simulateemaps are pixelized by construction
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and then smoothed with smoothing filters.

The galaxy ellipticity r.m.s. measured on CFHTLS-deep i@@ = (0521 +
0522) = 0.44. For the purpose of this paper we will assume thats constant as
a function of redshift and galaxy type. The convergenceenw@iance per pixel
(before smoothing withV) is therefore given by

O =———>5—. (6.6)

Note that the noise model considered here implicitly assusoeirce galaxies are
distributed randomly in each redshift slice. By constmgtithis choice ignores
any potential effect caused by source clustering, whichi@an to be a source
of contamination for three-point statistics (BernardetH08B] and Forero-Romero
et al. 2007]).

6.3.4 Smoothing Filters

Convergence statistics can be measured from smoathmdps (which can be ob-
tained from smoothed shear maps from the data). Varioustgtatcan be built by
using different smoothing filters. Following the widely apted choice the top-
hat, and two types of compensated (the total area under thieviiindow is equal
to zero) filters were considered. The two compensated filiteesl were the ones
introduced ir Schneider et al. [1998] (hereby referred tthasaperture filter) and
in van Waerbeke [1998] (which is hereby referred to as thepmmsated Gaussian
(cB)). They are defined as in equations 4.15 and 4.18 regpklcti

Figure 6.4 shows the excellent agreement between the aaiywy simulation
and the predictions for different smoothing filters. The maments are based
on a realistic redshift distribution corresponding to augm based survey with
limiting magnitudemy, = 24.5 with ng=22 galaxies per arcmin The error bars
reflect the statistical noise and cosmic variance for 84 2led survey. From
equations 4.15 and 4.18, the smoothing scale for the twosfittie related af.g =
eap/z\@, therefore the maximum smoothing scale chosen for the ensgted
Gaussian filter is 25 arcminutes, compared to 84 arcminatethé top-hat and
aperture filters.
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Figure 6.4: The agreement between the measurements and the theoretical

predictions based on the fitted galaxy population. The bhasIshow

the measurements on the simulated 12.84 diegia, and the pink lines
show the theoretical prediction for the same cosmologicadleh and

the full redshift distribution. The measurements in eachepare per-
formed on smoothed data, with top-hat, aperture mass angexsated
Gaussian filters in order. The errorbars include both cosmi@ance

and statistical noise resulting frong= 22 galaxies per arcmin
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6.3.5 Estimate of the Covariance Matrix

Cosmological parameter forecasting requires the estiofdte covariance matrix.
Semi analytical methods are available in the literaturdf®ader et 1. [200:2a] and
Joachimi et £1.[2008]), but rely on the assumption of Garsstatistics. An exten-
sion to the non-linear angular scales has been recentlyagede (Semboloni et al.
[2007], Eifler et al. [20C8] and Pielorz et ¢l. [2010]), howethe three-point statis-
tics and source redshift distribution and shape noise distigasurveys were not
considered. In this work the full covariance mat@xwas estimated directly from
the ray-tracing simulation as 'n Semboloni et al. [2007] &iiter et al. [2008],
by taking into account the realistic characteristics oflag surveys described in
the previous sections. For each survey strategy, the totariance matrix was
calculated as follows. For each noise-fredine of sight, the redshift slices were
combined and weighted according to equation 6.1 with theesponding redshift
distribution and galaxy number density. A noise map was twated following
the method described in Section 6.3.3. Finally, the two- thnele-point statistics
were measured over 20 smoothing scales. The covariance oitne statisticx
measured at two smoothing scalgsnd6; is defined as

C(8,6;) = (x(6) — u(8))(x(6)) — u(6;))), (6.7)

wherex is here eitherk?), (k) or S; and u is the average calculated from the
entire simulation set.

It was shown by Hartlap et al. [2007] that the inverse of theac@ance matrix
estimated from a finite number of ray-tracing simulationbissed. The authors
derived a simple formula to correct for this effect whichates the number of
scalesp used in the two- (or three-) point statistics and the nunmbefr lines-of-
sight. The covariance matrix simply has to be replacedb@, wherea* when
the mean is determined from the data, is given by

(n—1)
(n—1)—p-1

Hartlap et al. [2007] showed that this correction is applieaonly whenn — 2

a* = (6.8)

exceeds the number of scalpsotherwise the covariance mati&is not invert-
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ible. In this papen = 60 simulations were used, and the statistics were measured
over p = 20 angular scales for the top-hat and aperture filterspadl4 for the
compensated Gaussian filter. The values bfor these filters were then35 and
1.28, respectively. For joint likelihood calculations thénfocovariance matrices
were rescaled by * = 3.28 for top-hat and aperture filters and = 1.97 for the
compensated Gaussian filter.

Because of the limited area covered by the simulations ibispossible to
compute the covariance matrices for very large surveystukately, the angular
scales where the non-linear effects are important (tylpidess than half a degree
for the two- and three- point statistics) are much smallantthe 12.84 déefield-
of-view of a simulation field. Those are also the scales wilgedensing signal
is best measured. Therefore the covariance matrices caoniyguted in the non-
linear regime from the different realizations, and simmgaaled according to the
survey size for surveys exceeding the simulation box. Thasm@ments for a
larger survey is simply obtained from dividing the measuwrgta from the 12.84
ded case, by the ratio of the survey areas. This is an excellgmogmation
for angular scales much smaller than the simulation boxclviaias the case in
our study since the largest scale used to measure theistatigts 84 arcminutes,
which is much smaller than the dimension 053x 3.5° of the simulation box.
In order to verify that the rescaling is a valid approach, fllowing procedure
was performed. A selection of six elements of the covariamegrix Cjj were
chosen. For each case, the element of the covariance matsixemputed on the
full 12.84 ded (A) simulation and smaller fraction of i8g). The termAﬁO shows
the ratio of the original simulation size to sub-sectionstoEachCj; element is
then computed on various sub-sections of the simulatiod. fighe dependence of
covariance matrix elements on the survey area is found tehdynlinear. Figure
6.5 illustrates the scaling applied to some elements of wte &ind three-point
statistic covariance matrices. The dotted lines show fifiefy = mx+ b) to the
covariance matrix elements measurements as a functiomadysarea. As it can
be seen the behaviour of the covariance measurements édff@iinear function.
This is the basis of the rescaling of the covariance matrtkédarger survey areas
as needed in this work.

In order to verify that the covariance matrix computed usegtracing simu-
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Figure 6.5: The C; elements of the covariance matrix as a function of the
ratio of the originalk-map simulation area (12.84 d@gver the survey
area. The solid colored lines are t@g elements from the simulated
maps and the black dotted lines are the straight line fit tb eathem.
The left figure shows th€;; of (k2) and the right one is the same for
(k3). Here the covariance matrix contains only the cosmic vagan
contribution. The scales are as follows1 is 0.42’;i=5is 1.26’;i=10
is 4.20";i=15 is 31.5" and=20 is 84.0’. This shows that the change in
the covariance matrix of the cosmic variance is inversegpprtional
to the survey area. Hence this result was used to rescalevaegance
matrices in the likelihood calculation to the desired syraeea.

lations converges to the one computed in the Gaussian apmatien for large an-
gular scales, the following procedure was performed: Gansgalizations of the
field k were generated and then the covariance matrix was caldutatee same
way as the ray-tracing simulations. Efstathiou et al. [198% Salman [1996]
described a simple way to generate cosmological Gaussias fi¢ convolving
white-noise with a filter whose transfer function is giventbg square root of the
power spectrum. The power spectrum was directly computad the sample of
ray-tracing simulations, so that the resulting Gaussidddieave the same cosmol-
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Figure 6.6: The ratio of non-Gaussian to Gaussian error estimated for co
vergencek two- and three-point statistics. On large scales the non-
Gaussian errors estimated from the ray-tracing simulatcmmverge to
the Gaussian limit. The results for the top-hat and compgedsaaus-
sian filters are shown in the left and right columns, respelsti

ogy. Using this method, 60 lines of sight were generated lamddvariance matrix
of the Gaussian fields was computed as described by equét&hn (Figure 6.6
shows the ratio of the non-Gaussian to Gaussian errorglfeesquare root of the
diagonal elements of the covariance matrix) for the two- #nele-point statistics
of the top-hat and compensated Gaussian filters. It can Inetlsaefor large scales
the ratio converges to unity as expected. At small scalasr#tio is larger than
the unity due to the non-linear evolution of matter fluctoas. Moreover, for a
given angular scale, the ratio between non-Gaussian angs@auerrors is larger
when one uses the compensated Gaussian filter than wherpthattéilter is used.
The reason lies in the fact that for a given characteristadesdhe compensated
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Gaussian filter peaks at smaller scales than the top-hat filiee ratio between
non-Gaussian and Gaussian covariance depends on theavedsdift of the sur-
vey and for this test a distribution characterized by anayeredshifz ~ 1.4 was
used. The ratio would have been much higher if a much shatlewe/ey was
chosen.

6.4 Survey Design and Observing Strategy

6.4.1 Optimal Smoothing Scale

The covariance matrix contains three terms (Schneider [2G023]) :

C= Css+ Cns+ Cnn (6-9)

whereCgsis the pure signal (i.e. noise free) cosmic variari¢g, is the pure noise
covariance an s is the cross-correlation term. The goal in this section ideo
termine at which angular scale the measurement of the twibthare-point shear
statistics has a better signal-to-noise ratio. For thippse the covariance matrix
was separated into the three terms introduced above andatheiitudes for dif-
ferent filters were explored. Practicaliss can be calculated from the noise-free
ray-tracing realizations, since it only contains the caswairiance between differ-
ent simulations. The ter@,, can be calculated from noise-only maps, generated
by weighted Gaussian noise realizatios. This term contstisigstical noise only.
Among the three parts of the covariance matfx; C,n, andCys, the mixed term
Chsis the most computationally expensive to calculate. Theaeés that the noise
contribution to the covariance matrix converges more stdhén the cosmic vari-
ance contribution, and in practice, it is necessary to edérthe noise from more
than 60 noise realizations. For the two-point statistiesdtare analytical formulae
in Schneider et al' [2002a], but there is currently no edaiviafor the three-point
statistic and the skewness of the convergence. In ordespeat the three different
terms, the covariance matrix was calculated as follows.eBoh noise realization,

a C was calculated, which was relatively noisy because it wasiobd from one
noise pattern. Then the average®fvas taken over ten noise realizations. The
covariance matrix thus obtained was specialized for a givase statistical prop-
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erty, and the whole calculation was repeated each time teereing conditions
affecting the noise were changdds, was calculated separately over ten thousand
realizations. The averadessandC,, were used to determine the cross teCm.
Because of the averaging process one obtains a covariaridg wigich has a rel-
atively small noise making invertible. To illustrate the contribution of each of
these parts the diagonal elements of thg Cnhn, Cns andC were extracted as the
noise term for each smoothing scale.

Figure 6.7 shows the relative contribution of differentterin the covariance
matrix. The noise-to-signal ratio for the individual conmgats of the covariance
matrix are shown. The blue (long dashed) line is the sigigglad which is the
result of cosmic variance only. The noise-noise term is shaith the black (short
dashed) line. The mixed term was derived fr@m Css— Cn and is shown in red
(dash-dotted) line and the green (solid) line shows thé maige over signal ratio.
As expected the finding was that small scales were dominatetiakistical noise
and the large scales by cosmic variance, where the signalidihterestingly, the
mixed noise term is non-negligible for the two- and thre@paetatistics, so the
future high precision surveys will have to take it into aacebuThe mixed noise
term is strongly dominant for the skewness.

In agreement with Zhang et al. [2003] a range of optimal aagsitales (be-
tween one arcminute and half a degree) was found for whictothénoise affect-
ing the two-point shear statistics is minimal. This is als®¢ase for the three-point
statistics.

6.4.2 Wide and Shallow Versus Deep and Narrow

Many of the future lensing surveys will have a limited obsegvtime and a full
sky coverage will not be possible. The question will ariseethier a deep and
narrow survey performs better than a large and shallow gur¥éerefore, it is
important to quantify what is the optimal balance betweanesusize and depth,
given a fixed observing time. Itis expected that very shaaweys would provide
a poor weak lensing measurement due to the small lensingeeffic for nearby
sources, and deep-narrow surveys will be limited by cosraitamce. The trade-
off between those radically different survey designs nudtide a proper estimate
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Figure 6.7: The noise-to-signal ratio for the cosmic variance only inebl
(long dashed) line, statistical noise only in black (shashed) line,
the mixed term in red (dash-dotted) line and the total naisgreen
(solid). The(k?), (k) andS; measurements were calculated for a simu-
lated 12.84 degdata smoothed with top-hat, aperture and compensated
Gaussian filter (from top to bottom).

of the amplitude of the lensing signal and shot noise as immatf survey depth.

The relation between limiting magnitude and survey area fioxed observing
time was derived from the algorithm developec in Bernst8®0[l]. The galaxy
number density was obtained by selecting galaxies whosalsig-noise detection
level was larger than 7 and which are also well resolved faknensing studies
following the criteria given in Section 6.3.2. Table 6.2 wisathe survey area and
limiting magnitude for each case investigated here.

The likelihood of a model given the data can be written as

L =exp —%(d—m)T*C‘l*(d—m) , (6.10)
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Area(ded) 1400 1150 900 514 257 115 45 20

Miim 225 230 235 240 245 250 255 26.0
ng/arcmin® 2 5 9 14 22 28 37 45
GF 1.8 4.0 50 25 24 15 13 *-

Table 6.2: The area and-band limiting magnitude and the corresponding
galaxy number density of different surveys with the samephisg time.
The gain factor GF is the ratio between tfg, 10 width of the two-
point statistics contours over that of the two- and threiepstatistics
joint contour. {) Due to the truncated likelihoodalcontours the GF is
not calculated for the deepest survey.

whered is the measurement on the simulations (data)rarsthe theoretical model
for the same measured statistics. The theoretical mode¢ipriedictions for two-
or three-point statistics, with varyin@,, and gg parameters. All the other cos-
mological parameters are kept constant to those valueseddithulations. Also
the dependence of the covariance matrix on the choice of @oginal parame-
ters is ignored here, due to limitations of the simulationused hereC~1 is the
inverse covariance matrix over all lines of sight. As ddsaxliin the previous sec-
tion the covariance matrix was computed directly by usirgdimulations and its
inverse had been re-calibrated using equatior (6.8). KeéHbod contours were
performed in theQ, — og parameter spaceQ, was varied between 0.1 and 1.0,
with 0.05 intervals, andig values were between 0.50 and 1.50, with 0.05 intervals.

Figure 6.8 shows the pink (dark grey) contours f&f) and cyan (light grey)
for (k3) likelihood for top-hat filter. The filled contours show thénjo(k?) — (k3)
likelihood. The(k?) and (k3) contours become more degenerate for deep and
narrow surveys, whereas for wide and shallower surveypiears clearly that the
(k?) and(k?3) likelihood contours have a different orientation in g — og plane,
which explains why the joint analysis works better for widel ahallow surveys.
One can see indeed that the individual two- and three-ptatisics contours for
the wide and shallow surveys become large again due to a laoige, but the joint
analysis remains competitive. This could be attributechtolarger sensitivity of
the three-point statistics to non-linear effects for sivalsurveys as a consequence

105



of the projection of mass along the line-of-sight (i.e. ilesd angular scale probes
more non-linear scales for shallow rather than deep suyvdyar the joint two-
and three-point statistics analysis, the medium depthessrin;,, =23.5 or 24.0)
appear optimal. It is clear that for a fixed observing timer, @msults favor the
medium shallow-wide surveys. The gain factor GF is definethagatio of the
10 error width of the(k?) contours over that of jointk?) — (k3) measurements
which quantifies the improvement when the joint statist&xonsidered. This
value is calculated from the likelihood contours which urd# the full noise terms
and correlation between vaious smoothing scales are wflécthe contour size.
It is also common to quote the figure of merit, in order to juttgoptimal survey
design. The figure of merit is defined as the inverse of thegraaned by the t-
likelihood contour. So tighter constraints result in smationtour area and hence,
larger figure of merit. The relationship between the figureefit (FoM) and gain
factor (GF) used in this work, can be consideredrsM O GF 2. The values of
the GF corresponding to the likelihood contours of figure &®& shown in table
6.z.

Unfortunately, the skewness of the convergence, defineguat®sn (6.3), does
not appear to yield as powerful constraints as the combiwed and three-point
statistics. Figurz 6.9 shows the error contours uSkigr three choices of limiting
magnitude and survey area. The observing time here was fikefor the previous
analysis. As expected, the dependenc@gis very weak, but one can see that the
width of the contours along th@, axis is much larger than th@,, constraints
one gets from the joint analysis shown in Figure 6.8. Follmphe same trend as
joint (k?) — (k3) likelihood results shown in figure 6.8, the medium depth sysv
lead to the most optimal skewness measurement. The canstfai the shallower
surveys (i.enj, =22.5 and 23.0) are not shown here. Those surveys give poor
cosmological constraints, as the mixégs term of the covariance at the scales of
interest becomes large. Overall, the skewness does noaaimpiee as attractive a
statistic to break theg-Qn, degeneracy as previously advocaled (Bernardeau et al.
[1997] and van Waerbeke et al. [1999]). Measuring the skew/io@ the current
and near future lensing surveys will be very challengingl iais clear that a large
fraction of the sky is needed in order to bring the noise doutions to a low
enough level for precision cosmology.
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Figure 6.8: The likelihood analysis for various survey depths and avats
fixed observing time fotk?), (k) smoothed with the top-hat filter. The
observing time is equal for all cases, while the survey arehdepth
vary. Table: 6.2 shows the values fog,, with the corresponding survey
areas. The pink (dark grey) contours indicates ig2o and 3 errors
for the (k?) statistics and the cyan (light grey) contours are the same fo
the (k3). The covariance matrix contains both the cosmic variande an
the statistical noise. Here the joint likelihood shown itefil contours
is calculated by taking into the account the?) — (k3) correlations at
different scales.
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Figure 6.9: The likelihood analysis for various survey depths and andgts
fixed observing time for skewne& smoothed with the top-hat filter.
The observing time is equal for all cases, while the surveya and
depth vary. Tabla 6.2 shows the values g, with the corresponding
survey areas. The covariance matrix contains both the cogmiance
and the statistical noise. The skewness measurements tarebfor
shallower surveys.

The reason why the skewness is hard to measure lies in ththéddhe varia-
tion of the skewness amplitude for differeRf, models is largely absorbed by the
cosmic variance of this estimator. This is not the case fetwo- and three-point
statistics taken separately. Figure 6.10 shows the cosgrakietween various pre-
dicted cosmological models and the measurements from thelaions. (k?),
(k3) andS; were measured for survey area of 12.84%defylimiting magnitude
of 24.5 over the 60 lines of sight. The blue line shows the meakdata points;
the errorbars contain both cosmic variance and statistioisle. The pink (solid)
line is the fiducial model®,=0.24,QA=0.76 andog=0.74). The black (dotted),
green (dashed) and red (dash-dotted) lines are modelsheitaimerg = 0.75 and
values ofQ,, = 0.20,0.40 and 080 respectively, while the purple (dash-dot-dotted)
line corresponds to a model with,, = 0.30 butog = 0.50. The plot shows that
the measurement d@k?) and (k%) are much more sensitive to tli,, og param-
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Figure 6.10: The comparison between the measured valuggdf (k3) and
Ss and different cosmological models over a survey area of1@eff .
The blue line shows the measured data points, and the pild)(koe
is the fiducial model. The black (dotted), green (dashedyadddash-
dotted) lines are models with the samg= 0.75 and values o2, =
0.20,0.40 and 080, respectively, while the purple (dash-dot-dotted)
line corresponds to a model wif®, = 0.30 butag = 0.50. The plots
show that the measurement @) and (k) are much more sensitive
to theQn,, os parameters than the skewn&sThis is why we cannot
currently constrain th€,, — gg plane with skewness measurements.

eters than the skewneSsg, therefore their ability to separate various cosmological
models is stronger.
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6.5 Canada-France-Hawaii Legacy Survey Three-point
Statistics Predictions

The Canada-France-Hawaii Telescope Legacy Survey coverdelf in four seper-
ate patches [Fu etal., 2008]. Measurements of the two-poBric shear statistics
have been published using the first year (Hoekstra et al €]2 B=mboloni et al.
[2006] and Benjamin et al. [2007]) and third year data redd&si et al. 2008] in
addition to studies of galactic scale dark matter heloskiétast a.., 20C7]. At the
time our work on this project was carried out, the full CFHTd&a had not yet
been released. The goal of this work was to predict the egdentprovement for
cosmological parameter constraints, using a combinatiaw@ and three-point
lensing statistics on the completed CFHTLS-wide survey.lffis purpose, a mock
CFHTLS-wide survey type of 170 dégvas generated using a limiting magnitude
of mim = 24.5 (i-band) withny=22 galaxies per arcminznes=0.91 ando,=0.44
and the potential contamination by residual systematicsigreored.

Figure 6.11 shows th@, and og error contours from a joint measurement of
(k?) and (k) for the three filters used in this study. It is clear that thehat filter
leads to a more significant degeneracy breaking betwkgmand og, which can
be understood by the fact that this filter preserves moddswatvelengths larger
than the smoothing size, while the aperture filters are nuditee to large scale
variations. The joint two- and three-point analysis of thmpleted CFHTLS-Wide
will constrainQ, andog to 17% and 10%, respectively. This corresponds to a gain
factor (GF) of~ 2.5 (for Qn) and~ 2.1 (for og) improvement on the two-point
analysis alone when the top-hat filter is used. It is intérgsto compare figure
6.11. to a generalizeg? approach which can serve to quantify the performance of
the different filters. The generalized is defined as

5 — VdT+C 1xd, (6.12)

whereC is the covariance matrix of the statistics under considaratThis ap-
proach takes the correlation between scales, as well as levisls of each fileter
into account. The results for a B2 ded survey and limiting magnitudeny,, =
24.5 are shown in table €.3, and they indicate that for two-psiatistics the dif-
ferent filters are equivalent. The top-hat filter outperfertine aperture filters for
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the three-point statistics. It is a direct illustration tthap-hat preserves small and
large scale modes, and it is therefore more sensitive tdinear effects. This in-
validates the fact that the compensated Gaussian filtee istst efficient measure
of the skewness of the convergence [Zhang et al., 2003]. ddmon lies in the fact
that for a fair comparison the maximum smoothing scale fonpensated Gaus-
sian filter may not exceed a third of top-hat and aperture #mrap radii. This
can be seen by looking at the equations which define the sHape &lters (see
Sectior 6.3.4).

SIN (k%) (k) S
Top-hat 6.19 2.68 5.45
Aperture 6.05 161 217

compensated Gaussian 6.93 1.88 3.24

Table 6.3: The generalizeg? results for top-hat, aperture and compensated
Gaussian filters. The full covariance matrix is that of the8#2ded
maps. The datd is from thek-maps smoothed with top-hat, aperture
and compensated Gaussian filters. The correlation betweestales are
contained in the signal-to-noise ratio. For example, aigfothe mea-
surements with top-hat filter result in a larger signal, thes highly cor-
related, unlike the aperture filter measurements, whiclke kaver signal
with less correlation between the measurement scales.

The joint (k?) — (k3) likelihood analysis with top-hat, aperture and compen-
sated Gaussian filters proved to be promising, whereas thengss which is in
principle a very interesting statistic inferred very wealsmological constraints
even for the current largest weak lensing survey at 178.dEgure 6.12 shows
skewness likelihood contours obtained using both top-hdtcampensated Gaus-
sian filter for CFHTLS-like survey confirming what stated ebabout the poor
efficiency of the skewness.

One of the forthcoming weak lensing surveys is the Kllo Ded@arvey (KIDS
area of 1500 deégat my, =23.5). We performed for the KIDS survey the same anal-
ysis as for the CFHTLS-Wide to forecast the accuracy of #ediliood constraints
using two- and three-point shear statistics. Moreovercfonparison the calcula-
tions were repeated for a survey with the same observingrigeded for the KiDS
survey but different total area and depth. The results ksitalvhich survey design
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Figure 6.11: The cosmological constraints 6hy,-0g plane obtained with dif-
ferent smoothing filters. The contours show &) and (k3) joint
likelihood forecast based on CFHTLS completed area. Theegwarea
is 170 ded and the limiting magnitude is 24.5 with the full redshift
distribution. Here the pink (dark grey) contours show tké) and the
cyan (light grey) contours show th&?) constraints. The filled con-
tours correspond to theol 20 and 35 errors for the joint likelihood.
The fiducial model used is ACDM with Qp, = 0.24 andog = 0.74.
The degeneracy direction of the?) and (k3) likelihood is different
(especially when the maps are smoothed with compensatesisfaau
filter) so their joint likelihood results in a tighter coritnts on the pa-
rameters. The joint likelihood here is calculated by takimg account
the cross-correlations betweér?) and(k®) at all scales.
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Figure 6.12: The skewnes$; likelihood analysis for the CFHTLS-wide pre-
dictions. The smoothing filters top-hat and compensateds§iani
are used. The aperture filter does not provide any constoairthe
Qmn — ag plane for the given survey characteristics. The covariance
matrix contains both the cosmic variance and the statistimae.

would be the most optimal to infer constraints using thetjowo- and and three-
point shear statistics. The expected likelihood contoarstlie complete KIDS

survey are shown in the panel 6.13a, whereas panel 6.13ksghevsame results
when a deepemgim=24.5) and narrower (area=450 degurvey given the same
observing time was considered. As expected from Figurehg&hallower KIDS

gives better results for the joint likelihood, but the skeaswould be slightly bet-
ter measured from the deepean;f,=24.5) survey.

6.6 Conclusion and Discussion

We studied how useful the measurement of the two- and thoad-ghear statistics
can be to derive cosmological constraints under reali&tdenving conditions. One
of the limitations of the previous work on this topic was thgcdnnection between
the source redshift distribution and the survey depth uedesideration. Here,
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Figure 6.13: The comparison between a KiDS-like survey at two limiting
magnitudes. The right panels show the likelihood contofiig®) and
(k3) smoothed with the top-hat filter. The left panels are the sless
contours. The survey area for the panel (a) is 1506 dsgs planned
for the KiDS survey withm;»=23.5. In panel (b) the observing time is
kept the same and the survey area if adjusted to 450fdegym =24.5.
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a set of ray-tracing simulations was populated with sousdexges that follow a
redshift distribution and galaxy number density calibdaftem real data.

We then investigated how well the parametggandQ,, can be measured with
different smoothing filters for different survey depths.r Bdixed observing time,
the results of the study favoured the medium depth and widtley over shallower
and wider or deeper and narrower surveys. There is an opsumnaty depth versus
size for which the source density (survey depth) and cosariance (survey area)
are balanced, which turns out to be a large and shallow Su@EHTLS survey
proves to be promising for the measurements of two- and 4bog@ statistics.
Also our results can be applied to surveys covering a largetitm of the sky
with no limitation on the observing time (e.g.PanSTARRS BB&T) by a simply
rescaling the covariance matrices. They can also be exdandspace data if the
amplitude of ellipticity noise and galaxy number counts aigisted according to
space observations (this is particularly relevant for aewidld space imager like
that of JDEM).

We find that the lensing statistics are best measured atssoatereen 1 to 30
arcminutes, where the contribution of statistical noisgsnaic variance and the
mixed term are minimal. We also find that the different smunagHilters give sim-
ilar results although the top-hat appears to include mordaes@nd is therefore
slightly better than the others. Combiniiig?) and (k3) is promising to achieve
cosmological constraints in th@,, — og parameter space. On the contrary the
skewness of the convergence does not appear capable oirlgy¢ladx degeneracy
betweenogs andQm as initially expected (Bernardeau e: al. [1997] and van Waer
beke et al. [1999]). The reason is that the cosmic variancg @ comparable to
the difference in lensing signal amplitude for the diffareasmological models of
interest. Only very large surveys will be able to measuresk@svness accurately.

We forecasted the cosmological constraints for the CFHWic completed
survey finding that the combination of two- and three-paimictions on the CFHTLS
will greatly enhance the measurementigfandQ,. A similar calculation showed
the potential precision achievable with the future KiDSveyr

This study has some limitations which will be investigateduture work. One
of them is the fact that the source galaxies are clustereutée tdimensional space
which overlap with lens redshift distribution (a problenokm as the source clus-
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tering problem, Bernardeau [1998]). This effect leads thange in the skewness
of the convergence (by as much as 25%), and its impact on the-ffoint statis-
tics has not been evaluated yet. A recent study also showvitedtf@ impact on the
two-point statistics, although at a moderate level (FeRomero et 1. [2007]).
Another limitation is the potential impact of intrinsic gliment on three-point
statistics. This is particularly relevant for shallow seys such as PanSTARRS
or KiDS (Semboaloni et al. [2008]). This effect should be taketo the account
as well. We would be able to investigate these two compboatiwith ray-tracing
simulations which include galaxies in dark matter halois ¢lan be realized by the
use of semi analytical models such as the ones described@énd-Bomero et al.
[2007].
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Chapter 7

CFHTLenS results

In this chapter we first provide an overview of the CFHTLS datd the CFHTLenS
collaboration. We then explain the object selection anaguare for the three-
point statistics studies performed on this data set aneptéise results of the joint
2- and 3-point statistics cosmological parameter comggaiThis is the first ever
ground-based weak lensing higher order statistics canstra

7.1 CFHTLS Data

The Canada-France-Hawaii Telescope is a 3.6 meter telesocgied at the top of
Mauna Kea in Hawaii. The telescope is operated by the NdtResearch Council
(NRC) of Canada, the Institut National des Science de I'grsvof the Centre
National de la Recherche Scientifigue (CNRS) of France, hadJniversity of
Hawaii. The legacy survey started in 2003 with weak graigitet! lensing studies
as one of the major science goals. The wide component of theysconsist of 160
ded of optical data acquired by Megacam during 450 nights (23004) over the
span of five years. MegaCam is the wide -ield imaging camefdegaprime and
is a 340 Megapixel camera (20484612 pixels) with 0.187 arcsec resolution per
pixel. Thus the field of view covered by MegaCam is roughly §°d@he data were
collected in five bandsauf, ¢, r’, i’ andZ) down to the limiting magnitude of 24.5
in i’ band. Figure 7.1 shows the Megacam filter set transmissioeviry band.

Thttp:/www.cfht.hawaii.edu/Instruments/Imaging/Megen/specsinformation.html
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MegaCam filter set and average CCD quantum efficiency ‘
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Figure 7.1: MegaCam filter set transmission and average CCD quantum effi-
ciency. See footnote for credits.

Also table 7.1 lists the mean bandwidth of each of the fiver§ilt# this particular
camera. The wide data are collected from four selected faidbe sky, W1 (72
pointing), W2 (25 pointings), W3 (49 pointings) and W4 (25rimgs). Figure
7.2 shows the location of CFHTLS wide and deep fields on thé skie width of
the survey allows for a very large number of galaxies. Itigi@l to have as many
galaxies as possible in the sample since the shape dis®iten only be studied
statistically. The observations of the CFHTLS are publialgilable through the
Canadian Astronomy Data Centre (CADE)The CFHTLS-wide component is
optimal for weak lensing studies for the following reasorihe survey covers
a wide area, enabling observation of many galaxies. Sin@kwansing studies
are statistical in nature, a larger sample is very desiraflso many parts of the
survey overlap with pre-existing surveys, for which spestopic redshifts have
been estimated. This allows for well-calibrated photoroetdshift estimates of
such a large sample of galaxies. Accurate redshift estanate crucial to the
interpretation of the weak lensing measurements. The géairihe survey was at

2http://www.cfht.hawaii.edu/Science/CFHTLS/
Shttp://www1.cadc-ccda. hia-iha.nre-cnre.ge.ca/cadc/
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0 < 0.8 arcsec in theband filter, which allows for shape measurements of many
resolved galaxies. Thieband seeing was the best compared to other filters. The
first generation of cosmic shear results from the CFHTLS sideey can be found

in Hoekstra et al. [2006], Benjamin et el. [2007] and Fu ef2008] and the deep
component in Semboloni et al. [2006].

7.2 CFHTLenS Collaboration

Canada France Hawaii Telescope Lensing Survey (CFHTLen&)worldwide
collaboration of many faculty, postdocs and graduate stisdd he science nodes
include institutions in Canada, France, The Netherlangsm@ny, Italy, Scotland,
England, Spain, China and Japan (see the collaborationite hsr more details).
The collaboration was formed in 2009 (PI: Dr. Ludovic van Vie&e and Dr.
Catherine Heymans), with the main goal of better underatgnaind reducing the
systematics effects of the CFHTLS data. In the process, EF¢TCenS team re-
reduced the CFHTLS data and produced scientific catalogutpéndent from
the previous releases. The earlier releases suffered &situal systematics, such
as strong B-modes at large scales, strong galaxy-star-copssation residuals in
nearly half of the fields and large field-to-field variance.

The image stacking, masking and photometric redshift edgtim, along with
shape measurements have been done by the collaboratioriheitoal of con-
trolling and understanding the systematics in the data.oker three years many
systematics tests have been performed by the team to ipatsthe effects of re-
duction steps on the systematics and to verify the sanitfiefiata set. The weak
lensing shear is about a 1% change in the galaxy shape anbrsdusn system-
atics can lead to very biased interpretations of the data.

The data reduction pipeline is based onThELI pipeline (Erben et al. [2005]
and Erben et al' [2009F which is publicly available. In summary, the photomet-
ric redshifts were measured with the publicly availaBi&Z (Bayesian Photometric
Redshifts) code (Benitez [2000]), as explained in Hildebit et al. [2011]. This
method combines the spectral redshift minimization with magnitude/redshift

“http://www.cfhtlens.org/
Shttp://ww.astro.uni-bonn.de/ theli/
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Table 7.1: MegaCam filter characteristics.

Filter u g r’ i’ v4
Central wavelength (nm) 374 487 625 770 n/a
Wavelength range (nm) at 50 %337-411| 414-559| 564—-685| 698-843| 823-...
Bandwidth (nm) 74 145 121 145 n/a
Mean transmission (%) 69.7 84.6 81.4 89.4 90.2
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priors. The accuracy of the photometric redshifts was teatminst the spectro-
scopic redshifts from the VIMOS VLT Deep Survey (VVDS) whioterlaps 20 of
the CFHTLenS fields. As part of the process, each galaxy igrees$ a parameter
ODDS which describes the accuracy of the photometric redsHifinasion for that
galaxy. We use this parameter to eliminate low accuracyhigdsrom the data.

The galaxy shapes were carefully measured by the Bayesjaoagh called
thel ensf i t method [Miller et al., 2007] which assumes a theoreticahgakur-
face brightness profile, convolved with the modeled PSFntP®pread Function)
and Bayesian priors on the noise to calculate likelihoodr@as estimation. Each
galaxy is then assignedveei ght value based on the accuracy of the shape mea-
surement. The details of the systematics tests will follawHeymans and van
Waerbeke et al. in prep.

For every 1 degof data a list of measured ellipticities, best photometeid-r
shift estimates and coordinates is provided along with nmaose parameters such
aswei ght , ODDS, magnitudes and mask flags. We then apply selections to these
parameters to trim the catalogue into a cleaner catalogueuioanalyses, which
will follow in the next section. The choice of selection cig$mportant since it is
desirable to have as many objects in the catalogues as [gossibout sacrificing
the integrity of the data. In section 7.3.1 we explain thea@n criteria used in
our 2+3-point statistics study.

7.2.1 Masking

Every CFHTLenS field suffers from bright stars as well as odstronomical fea-
tures that must be eliminated from the analysis. Some exasvgdlsuch features
include the extended halos around the very bright starstéflar diffraction spikes
and tracks of asteroids and satellites. In order to remowie shjects from the cat-
alogues, various shapes of masks have to be laid on the irnoathatsthe objects
within those regions can be excluded from the shear catakogén automated
masking routine developed by Erben et al. [2009] was appbietie CFHTLenS
images. Although automatic masking is very beneficial fahslarge surveys, it
has some shortcoming as well.

As a contribution to the collaboration and the data proogssection, along
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with other PhD students in the team, we checked the autonmads#ts generated
for each of the fields by eye. As a result of eyeballing the iesagve found some
satellite/asteroid trails that were left unmasked, thabifattended to, would have
been detected as very elongated galaxies by the objecttidaetecutines. These
false detections will then result in extreme shear valuelshemce bias the average
shear measurements. Also the automatic scripts are owabecvative in remov-
ing the stellar halos. There are many background faint gedahat lie within a
stellar halo which are useful for the lensing studies. Adarpd before we are
interested in a large sample of galaxies, so a careful oagenvof the automat-
ically masked stellar halos could rescue many of these {mifeixies and enlarge
the sample in the catalogues.

As an example we show parts of tiep3p1 field. Figure 7.3 shows a faint
asteroid trail that was missed in the automated masking. Wi box is what
was manually placed around the trail to mask it out. Figud=shows the result
of the automated masking, the green lines contour the stafsgheir diffraction
spikes, while the red lines mask out the asteroid trails. €amesee the over plotted
magenta ellipses that are the result of the object detestifiwareSExt r act or
[Bertin and Arnouts, 199£] This shows that if the asteroid trails were not masked
out they would have been picked up as very elongated objec?E we show the
stellar halo for which the mask (the white lines) was adjisteboth minimize the
masked area and also include the very long diffraction spike

7.2.2 The Clone

As yet another contribution to the CFHTLenS collaborativa,developed a pipeline
to generate the Clone of the CFHTLenS data. The Clone is ettalogues that
represent the real data in all aspects, except that the shkas are taken from
noise-free simulations in order to assist the systemagits aind the study of vari-
ous aspects in the catalogues such as masking biases. Watgeseven full sets
of clones that are available to all members of the collalmmebr the purposes of
covariance matrix calculations. Chagter 9 is dedicateckpda@ing the details of
the clone production.

Shttp://www.astromatic.net/software/sextractor
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Figure 7.3: A faint asteroid/satellite trail that was missed by the sated
masking (green). A manual mask (white) was added to the image

Figure 7.4: The asteroid/satellite trails (bright straight white Bhecan be
picked up as highly sheared objects by the object detectiftware
SExt r at or . The magenta ellipses show the detected objects.
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Figure 7.5: An example of stellar diffraction spikes bleeding on the CCD
which have to be masked manually (white). Also the mask orhitjle
contrast stellar halo must be adjusted. Masks shown in gresiow
and red colors are generated automatically. White masktharaddi-
tional manual masking.

7.3 CFHTLenS 2+3-point Statistics

The t\No-point(M§p> statistics have proved to be a powerful tool to study the powe
spectrum and Gaussian fluctuations in the Universe. Sﬂlvftﬁg) is the variance
of the field inside the aperture it is unable to measure any@aunssianities of the
field, for which higher order statistics such(a&.a?p> are required. The density con-
trast shown in equaticn 2.14 by construction has a minimunonevaf -1. However
when structures grow, it can increase indefinitely leadintatge values. One can
see that when considering non-linear structure formattmmatter density distri-
bution is far from a Gaussian, so it is sensible to seek higtaar statistics to probe
the non-Gaussian features. It has also been suggestedaf@ean et al. [1997];
van Waerbeke et al. [1999]; Van Waerbeke et al. [2001a].ikgler and Schneicer
[2005]; Takada and Jain [2C04]) that the higher order stesisvhen combined
with the standard two-point statistics can improve the aegical constraints of
the two-point statistics alone. Furthermore with the aichwferical simulations
we demonstrated in Vafaei et el. [2010] (see charter 5) tgeedeof this improve-
ment for various filter choices.

125



Previously several studies have been performed that detdot non-Gaussian
signal in the weak lensing field (Bernardeau et al. [2002inBadeau et al. [2003];
Pen et al. [2003] on the VIRMOS-DESCART survey and Jarvis. ¢2804] on the
CTIO survey). None of the mentioned detections however teatbsmological
parameter estimations. This is understandable, giverthlibahree-point signal is
much weaker and nosier than the two-point one. Also thera mvarall 16-20%
inaccuracy in the theoretical predictions of the threaxpfiinctions which affects
the parameter estimatioris (Van Waerbeke et al. [22001albSkemi et a'. [20114a]).
Systematic effects such as the non uniform point spreadiumof the telescope
alter the shape of the observed galax es (Hevmans et al6d2C®assey et al.
[2007]; Kitching et al. [2009]; Semboloni et al. [2009]), ihignoring the intrinsic
alignment of the source galaxies due to the local dark mdiséribution, can arise
biases to the estimatiors (Crittenden et al. [2001]; Hiaatd Seliak [2004]).

Recently Semboloni et a. [2011b] used the Hubble Spacesdate COSMOS
survey to measure the two- and three-point statistics ofctsmic shear. The
results are the first space-based higher order statistidnaddition they provided
remarkable cosmological constraints. Here we follow theesprocedure with the
choice of compensated filter of van Waerbeke [1998] andeuittn et el. [2002],
which we previously (in chapter 4) referred to as the comatsGaussian filter.
This choice compared to the Schneider et al. [1998] filtes, the advantage of
ease of calculations of the three-point correlation fuorctiT he following sections
describe the galaxy selection criteria, redshift distidny theoretical predictions,
covariance matrices and the preliminary results of thditiked analysis of the
three point measurements on the CFHTLenS data set.

7.3.1 Galaxy Selection and Redshift Distribution

We choose all thé-band catalogues of W1-4 fields. The sub fields in each case

are combined to make a large mosaic catalogue. The followinig) are made to
exclude objects witloDDS < 0.7;best zphot < 0.1;wei ght < 0; andVask

< 2in the analysis. We cut out objects with redshifts less thhanbecause it was
shown by Erben et al. [2009] that these objects contain thledsit levels of cross
contamination between the redshift bins. We also chosexigalavith non zero
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weights. The mask flag represents the level of masking. AlRieqal in section

7.2.1., the student members of the CFHTLenS collaboratiofoymeed a manual
mask check on the images. Some of the stellar halos werergatigely masked

by the automated routine. By choosing objects with mask flag, we take a

less conservative approach and consider the objects wilibse masks as valid
members of our sample.

The number of subfields withband data for each mosaic is: W1 (63 out of 72
subfields); W2 (all 25 subfields); W3 (all 49 fields); and W4 (20 of 25 fields).
This results in a total area of 157 demther than 171 dég We included the
i-band data only, while the investigation on preference betvi— andy— band
sub-fields was in progress by the systematics team. Thertotaber of galaxies
in each of the mosaic fields, after the basic cuts is: W1:2863 W2:705,772;
W3:1,730,225; and W4:626,185. This is a total of 5,426, 1&&xdes in our analy-
sis, which leads tag = 9.6 per arcmif. The assumption is that the whole area of
the mosaics are filled with galaxies and ignore the area lesttal masking. This
assumption clearly underestimates the galaxy number tgiethsit in turn causes
an over estimation of the noise, which is preferable to idenstimation. A more
careful approach would be to verify the fraction of the mosaka that is covered
by masks when the masking criterionrdisk < 2 is chosen.

The source galaxy redshift distribution plays an importafe in interpreting
the measured weak lensing signal. Various weak lensinigtitatrelate to the con-
vergence power spectrum, as explained in chapter 4, whichrinin combination
with the source galaxy redshift distribution, are relatedhte matter power spec-
trum (See equation 3.34). For the purpose of the theorgirealiction the redshift
probability distribution function needs to be calculat®tle include the weight of
each galaxy in the distribution, since their contributiorthe correlation function
is proportional to the weight. We use the function suggestie®Brainerd et &l.
[1996)] to fit the total redshift distribution:

a B
n(z) = % (%) exp [— (%) ] ) (7.1)
a
wr (42)
Here a, 3 andz, are free parameters. The best fit values for the free parame-
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Field atlo BElo Zot+1lo

W1 | 0.786+ 0.007 | 3.378+ 0.0231| 1.064+ 0.002
W2 | 0.494+ 0.757 | 3.3794+4.497 | 1.059+ 0.411
W3 | 1.738+ 0.245| 1.786+ 0.122 | 0.632+ 0.036
W4 | 1.759+ 0.220 | 2.016+ 0.1458| 0.683+ 0.034
All | 2.231+ 0.002| 1.346+0.001 | 0.420+ 0.0003

Table 7.2: Redshift distribution fitting parameters based on equaidl
along with the standard deviation for each parameter.

ters, along with &r standard deviation for all cases, are shown in tablz 7.2= Fig
ures 7.6a7.6c show the redshift distribution for each of the CFHTL &ifeover-
plotted with the fitting function. For all the four fields combd, the total redshift
distribution of the entire survey (after the galaxy selmttmentioned in earlier)
is shown in figure: 7.7. Although individual fields seem to hiess agreement
between the redshift distribution and best fit curve, thaltmdshift distribution
when all the four fields are combined, matches the fitting fdamvell. As shown
in van Waerbeke et al. [2006], the Poisson noise limit on dashift distribution
is only valid for smaller surveys. So the slight disagreenmenindividual fields is
not a concern for CFHTLenS sized survey. The fitting paranaters are listed
in table 7.2.

We also need an accurate redshift distribution to genehgtedvariance ma-
trices. We treat the simulations as samples of data and dentpe covariance
between the measurements on the simulations. In order todpesent the actual
data, the simulated slices have to be stacked according teattme redshift distri-
bution as the data set. For this purpose, we divide the déatogae into redshift
bins such that the simulated slice withis the center of the bin. The width of each
bin is the span of two adjacent source plargthat contain thag, slice. We then
sum the number of galaxies in each bin and divide by the to&a af the mosaic
in arcmir? per redshift slice. As before, the area lost to masking isrigd. Figure
7.& shows the resulting distribution for the simulated mafe stack the redshift
slices accordingly and then add the noise map generate@uthe way as in chap-
ter'6. The two- and three-point statistics are calculatetherresulting map using
various smoothing filters.
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Figure 7.6: The weighted normalized histogram of the redshift distidou

for each of the CFHTLenS fields. The galaxy selection is apiio the

catalogues. The red line is the fitting formula with the valoéthe free
parameters listed for each field in taale 7.2.

7.3.2 Three-point Correlation Function and Theoretical Predictions
Combining equations 4.17 ahd 3.34 one can write the follgwin

3HZQ
2\ 0=<m
(Mgp) = 27T< a2

2XH
) [
0

g*(x)
a2(x)
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Figure 7.7: Galaxy redshift distribution for all the CFHTLenS mosaicsre
bined after the selection criterion was applied to the ogiats. The red
line is the fitting formula based on equation 7.1.

Wi XHd I / fK(X_X/)
a(x) = , X ps(X)W-

wherefk (x) is the comoving angular distangejs the radial comoving coordinate,
and xy is the radial comoving coordinate of the horizon. One cantBatthe
aperture variancél\/lgp> depends both the matter power spectrum and the redshift
distribution of the source galaxigs(x). Herel(s6) is chosen to be the filter
profile of the compensated Gaussian filter as explained iati&mni4.13.

Schneider et al. [1998] found a similar relation for the dnmoment of the

compensated filter statistics to be

(7.3)

M3 = (%) 5 ol dzslp( X ) 1(6:6)

x5 PP (125X ) 1(220)1 (Is1 + 2] Fa(s,). (7.4)
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Figure 7.8: The weighted simulation map distribution per redshifteslic re-
sample the redshift distribution of the data. The blackdishow the
simulation box width and the red impulse lines show the riétdshthe
lens plane that was used as the projected map.

HereF,(s1,s) is the coupling between the two models of density fluctuatidrs
term can be calculated using the fitting formula suggeste&dnccimarro and
Couchman [2001] who used N-body simulations to calibratetlie bispectrum
calculations to 15% accuracy. Using the same fitting forrMala Waerbeke et al.
[200143] built the third order lensing predictions which weshown to be within
10—15 % of the simulations. The predictions used here are baséeowork of
Van Waerbeke et al. [20C1a], modified for the compensateds€&a filter. The
non-linear correction to the linear power spectrum is baseBeacock and Dodds
[1996], and the transfer function was calculated based emebipe of Eisenstein
and Hu [1998]. We varie@, between 0.1 and 1.0 ara} between 0.4 and 1.4 in
steps of 0.05. The rest of the cosmological parameters ae fiased on WMAP7
(Komatsu et &l. [202.1]) results, which are the ones usedamtimerical simula-
tions as well.

The relation in equation 7.4 shows how matter power specandithird mo-
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ment of aperture mass are related. Similar to the two-paatisics approach, in
practice we estimate the third moment of the aperture massgh calculations
of the correlation function. The difference is that this d¢inve consider correla-
tions between the shear components of triplet galaxiegratlan pairs. For this
work we consider only the equilateral triangles, using timed-point correlation
function @pcf ) code which was developed by Elisabetta Semboloni and first a
plied to the COSMOS data n Semboloni et al. [2011b]. Thisecisdbuilt based
on the formalism of Zhang and Pen [2005] and Jarvis et al.4P@fr both two-
and three-point correlation function measurements. Nprikagteral triangles will
be included in the future steps of this project.

7.3.3 Covariance Matrix

The covariance matri€ can be split into three components as suggested by Schnei-
der et al. [200Za]. We showed the components previouslyaptehr 6 equation 6.9.
Here we compute the full term by adding noise to the noise-free simulated con-
vergencek maps, so that all three terms will be included in the final cievee
matrix. In order to add noise to the maps, we follow the recipean Waerbeke
[2000], also applied in Vafaei et al. [2010]. The Gaussiardoan noise maps are
generated and then scaled by a factor shov:/n in 6.6 which defmo; (the shear
variance) ng (the galaxy number density) ai@l(the pixel size of the map).

For ellipticity variance we computs/ o2 + 02, where each of the, are the
weighted variances of each of the shear components. Thelbvalue iso? = 0.38
for the four fields combined.

The covariance is defined as

C(xi,xj) = ((X(%) = (%)) (X (X)) = k(X)) (7.5)

where the angle brackets represent the ensemble averadexni the measured
statistic at a given scalg with mean ofu(x; ) over all simulation realizations (185).
We use 18 scales, for the single statistics case which leads18x 18 covariance

matrix. For the joint statistics when 2- and 3-point measwaets are combined,
36 scales are used: 18 for 2-point; and another 18 for 3-gtatistics. The scales
are the following: 0.42, 0.63, 0.84, 1.05, 1.26, 1.47, 12890, 3.15, 4.2, 6.3, 8.40,
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10.5, 21.0, 29.4, 42.0, 50.4 and 58.8 arcmins. The correfdicior (*) introduced
by Hartlap et al. [2007] to remove the bias induced by havitigméed number of
samples is

* (n_ 1)

a* = m (7.6)

In the case of single statistics, the number of scalesl8 and number of real-
ization n =185, which is the total number of independent simulatiorizatons
we have. For these values, we find = 1.115 and for the case of the joint likeli-
hood, wherep =36, we finda*=1.25. We multiply each covariance matrix by the
correspondingx* factor for the likelihood analysis.

In order to display the level of correlation between the gaiats, we compute
the correlation coefficienp(x;,X;), defined as

C(Xi>xj)
VC(Xi,%)C (X}, X))

p(%,Xj) = (7.7)

Figure 7.9a shows the correlation coefficient for the nfise-2-point statistics
of the compensated Gaussian filter. In figure 7.9b we showdtrelation coeffi-
cient of the 3-point statistics for the same filter. Note #gath pixel is a smoothing
scale: 0.42, 0.63, 0.84, 1.05, 1.26, 1.47, 1.89, 2.10, 3.256.3, 8.40, 10.5, 21.0,
29.4, 42.0, 50.4 and 58.8 arcmins. The apparent sharpticemsetween 13th and
14th pixel is due to the jump in the smoothing scale from 10 Z1t.0 arcmins. This
apparent sharp transition is visible in the following ctaten coefficient matrices,
since the choice of smoothing scales is not uniform. Theore&sthat as found in
sectior 6.4, smoothing scales in the range of 1 to 10 arcnains the lowest noise
to signal ratio and hence desirable for our analysis.

When noise is added to the simulations, the level of coimgldbetween the
scales changes. In figures 7.H¥al0c¢ we show the noisy correlation coefficient
results for the two-point statistics of top-hat, apertund aompensated Gaussian
filters in order. Firstly one can compare the off diagonateiation of these filters.
It can be seen top-hat filter has the most correlated scadesn8ly, when compar-
ing figure 7.9a to 7.10c, one can see the effects of noise addbe simulations,
which decreases the correlations between the scales f@-ploint compensated
Gaussian measurements.
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Figure 7.9: The correlation coefficient matrix for the noise-free 2- &id
points statistics. The compensated Gaussian filter was hesedwith
18 scales. The noise-free simulated maps are stacked augdocthe
CFHTLenS data redshift distribution.
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Figure 7.10: The correlation coefficient matrix for the noisy 2- pointtista

tics for various filter choices. The number of scales is 18e mbisy
simulated maps are stacked according to the CFHTLenS déghife

distribution.

7.3.4 Likelihood Analysis

We use the standard likelihood analysis to infer cosmoldgiarameter constraints
from the measured data. The likelihood function we use feere i

1
L =exp —E(d—m)T*C‘l*(d—m) , (7.8)
whered represents the datan is the theoretical model an@~! is the inverse
covariance matrix over all simulated 185 lines of sight. \§e (8 scales of mea-

surement here. In Vafaei et al. [2010] we also showed thatcamerescale the
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covariance matrix for the 2- and 3-point statistics to adfosthe desired survey
size, as the elements of the covariance matrix scale withrde Here we rescale
the simulated maps (each 12.84 f)eig 12.5 times larger, which leads to 160 deg
The theoretical models are generated based on the recifsredgpreviously in
section 4.5 with variabl€,, and ag, while all other cosmological parameters are
kept constant to those of the WMAF7 (Komatsu et al. [2011[jes

Figures 7.11a and 7.11b show the results of the EE and BB coemi® of the
two-point statistics for the top-hat and aperture filtersj &.12a shows the two-
point statistics measured with compensated Gaussian fiigure 7.120 shows
the EEE, EEB, EBB and BBB components of the three-pointséiedi with com-
pensated Gaussian filter. In these figures a subset of 18 kimgaicales are cho-
sen to keep the plots less busy. This is justified due to highideof correlation
between the smoothing scales as shown previously. Théhidae contours pre-
sented later contain the full 18 smoothing scale measuresn&he error-bars are
1o deviations from 185 noisy simulations weighted accordmthe same redshift
distribution. The theoretical predictions are shown aslblmes. For pure cosmic
shear signal, all combinations containing B-modes musshaimhe B-modes can
be used to quantify the amplitude of the potential residysiesnatics in the data.

We present the results of the likelihood analysis of the pwot statistics of the
CFHTLenS data in figura 7.13«.13¢c. The contours differ slightly from those
shown in figure: 6.5. The main reason lies in the fact that thexganumber den-
sity in Vafaei et al. [2010] was assumed to be 22 per arértina survey of 24.5
limiting magnitude. With the selection cuts we applied te tDFHTLenS data,
this number has dropped considerably to 9.6 galaxies perviarc The difference
appears in the noise map generation and hence affects thefsike likelihood
contours. Also the median redshifts for the two analysesddferent (0.9 there
and 0.7 here).

When two- and three-point statistics are combined, the Jikelihood results
in much improved constraints. Figure 7.14b shows the pietiny results of the
joint likelihood analysis of the CFHTLenS data. This ressilin agreement with
the predictions cf Vafaei et a. [2C10] and Semboloni e1201[11], stating that the
joint two- and three-point statistics leads to much tighitezlihood contours than
either statistic alone. Figure 7.14b shows the differemcthé size of the likeli-
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Figure 7.11: CFHTLenS 2-point measurements with top-hat (top) and aper-
ture (bottom) filter. The errorbars are the deviations from 185 noisy
simulations. Blue lines are the EE modes, red lines are thenBées
and the black lines are the theoretical predictions.
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hood contours if the correction factor* is not applied to the covariance matrix.
Semboloni et el. [2011b] also showed the results of thraéetstatistics when non-
equilateral triangles are considered, which showed ingr@nts over the equilat-
eral combinations. As the next stage of this project we witlus on quantifying
the effects of systematics, such as the residual PSF,simgalaxy alignment and
source clustering which have not yet been included in thikwbut have been
shown to have considerable effects on the three-poinsttati Also it is impor-
tant to quantify the accuracy of the three-point statistie=oretical predictions
further and to include baryonic matter effects on the powecsum, since it was
shown by Semboloni et al. [201.1a] that these contributidfexctithe non-linear
matter power spectrum considerably. Addition of redstufhography is a natu-
ral step forward for the higher order statistics. This inesl analysing the lensing
statistics in several redshift bins. It has been shown bghloa et al. [2011] that
inclusion of redshift tomography improves the constraonsntrinsic alignments
and hence cosmological parameters estimations.

141



Chapter 8

PDF Statistics

In this chapter we explain another means of incorporatiegriformation embed-

ded in the weak lensing data. Here we use the simulationsideddn chapter 5 as
a path finder for this method. This chapter is divided into sgotions; which we

call k-PDF andk-min. In summary we use the Probability Distribution Fuonti

(PDF) and the minimum value of the convergerc® constrain the cosmological
parameters, and show, with the aid of the simulations, tiesd methods prove to
have promising potentials as complementary weak lensitign&wrs to the stan-

dard two-point statistics for future surveys. We also itigede whether there is
extra information to be extracted from the PDF, which is ricgaady contained in

the combination of two- and three-point statistics.

8.1 Convergence Probability Distribution Function
Method: k-PDF

The idea of using the full PDF information, instead of othemments such as the
two- and three-point statistics, has been originally idtreed by van Waerbeke
[2000]; Jain and Van Waerbe:ke [20000]. The PDF is the norredltzistogram gen-
erated from the convergence maps. The exact shape of the &hds on the
cosmological parameters that affect the matter distobutind consequently the
projected mass in the Universe. Hence the overall shapeed®F can be used
to constrain a subset of the cosmological parameters. Asrshofigure 8.1, dif-
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Figure 8.1: The measured noise-free PDF over 800 bins, over plotted with
theoretical predictions for various cosmological paranebnfigura-
tions. The errorbars represent the standard deviationdeet i85 lines
of sight for a survey of the size 12.84 degvhich is the simulated
map size. The top-hat smoothing scale here is 4 arcminutgsalhn
the sources are at redsluftl.

ferent values of cosmological paramet&g and gg affect the shape of the PDF.
This figure shows the noise-free convergence PDF measurtétt @imulations in
comparison to theoretical predictions formed based orouarvalues of),, and
og. More details on the measurements, analysis and thedneteziels will follow

in this chapter.

8.1.1 Binning and Sampling

We use 185 noise-free convergence maps at redshift 1.0. feapHs smoothed
with the top-hat smoothing filter of a certain smoothing edal, 2, 4 or 8 arcmin-
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utes). Previously in Vafaei et al. [2010] we found theseescéd carry the highest
signal-to-noise ratio for combined sampling variance amat si0ise for the two-
and three-point statistics. After smoothing, a rim of theesof the smoothing
scale is removed from each map to eliminate the edge effeetdalsmoothing.
This means that for larger smoothing scales, the effectiga af the simulated
map is smaller. We then bin the convergence maps into 80Cabid€alculate the
histogram. The fine binning is chosen so that the profile ottmergence distri-
bution is collected accurately. Each histogram is then atimed to calculate the
PDF. Figure 8.2 shows the PDF pfover 185 lines of sight. We choose 800 bins
between—0.7 and-+0.7, with the bin width 0.00175 ir. The limits are chosen
sufficiently wide to accommodate the fact that the width ef BDF changes with
the smoothing scale. The same figure shows the effects oihgatlye smoothing
scale. We can see that the larger the smoothing scale, thewvarthe width of
the PDF becomes. The reason is that larger smoothing windask out a larger
region of the map (that could contain extreme valueg)db an average value.

We also know that the variance pfdecreases as function of smoothing scale.
This means that a higher smoothing scale corresponds ta kowariance, which
in turn means narrowet-PDF. It can also be seen that the PDF starts with nega-
tive values ofk. This is because convergenkeby definition, is the dimensionless
surface mass density. The density contéasas previously introduced in chapter
2 equatior 2.14, can have the minimum value-df.0 when the local density is
0, which represents the emptiest regions of the line of sighe average over
the entire sky is zero. Since the convergence is the projentess, a negative con-
vergence region is emptier than elsewhere in the Universghwields a negative
minimum of convergence value. From figure 8.2 one can seetlieashape of
the convergence PDF is also very distinct, starting withg@atiee value and then
increasing to the maximum and then decreasing at higheesaltk, which cor-
respond to the most massive parts of the (projected) skytallsrge halos and
clusters of galaxies along the line of sight. These higlegions are also relatively
rare, hence the lower PDF amplitude.
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Figure 8.2: The PDF of noise-free convergence maps averaged over 5 lin
of sight. Each map is smoothed with a top-hat filter and eahifi the

plot represents a certain smoothing scale. Each PDF islasdduby
binning the data into 800 equally sized bins betwged.7 ink.

8.1.2 Noise Addition

Motivated by the mass reconstruction routines (Kaiser andr&s [1993]), Schnei-
der [1995] pointed out the importance of understanding tisenproperties in the
mass maps in order to study the mass distribution from lenseitz and Schnei-
der [1995] and Sauires and Kaisar [1996] identified someenpisperties in the

mass maps through the numerical simulations. Later Lonnbaad Bertin [1998]
derived the first analytical estimate of the total recordrd cluster mass vari-

ance, taking into account the noise correlations. Interglstvan Waerbeke [2000]

found that the mass map can be considered as the sum of tlmgleignal and a

2D Gaussian random noise map. Assuming that the elligtciéire uncorrelated
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between the different source:s, van Waeroeke [2000] detivedactor by which
the Gaussian noise map is scaled:

o | O 8.1)
| 2mg@2° '

Hereo, = 0.44 is the intrinsic ellipticity variance? = 0.21 is the pixel size of the
map in arcmins andg = 12 arcmirr? is the galaxy number density for a typical
ground-based survey of limiting magnitude 24.5. The fa2tsrdue to conversion
between the two component ellipticity to convergence. Tésumption of uncor-
related intrinsic ellipticities of the source galaxies dachallenged, and hence
further studies need to be performed to establish the nomeegies in the mass
maps more realistically. For the purposes of this projeetcansider this assump-
tion to be valid and find that the resulting PDF, although se@due to noise, can
still be used to constrain cosmological parameters. F@aitrshows the noise-free,
noisy and noise-only PDFs from 185 realizations binned i [@0s. One can see
the effects of noise, broadening the noise-free PDF. Theotltmy scale here is
chosen to be 2 arcmin. As can be seen in figure 8.4, the choittee &fmoothing
scale affects the noisy PDF as well. Every line is an average i85 lines of sight,
which is a sum of smoothed convergence and smoothed Gaussgmaps. The
resulting shape of the PDF depends on the smoothing scaléhariitter function
in addition to the cosmological parameters.

The first, second and third moments of the noise-free, naislyrmise-only
maps, averaged over the 185 lines of sight, from all four ghing scales are sum-
marized in table 8.1. These values are used to generateaibietical predictions.

8.1.3 Covariance Matrix

We compute the covariance matrix for the 800-bin measur&sn@ihe covariance
matrices are calculated based on

C(ni,nj) = ((x(ni) — p(m)) (x(n) — u(nj))), (8.2)
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LYT

Scale (arcmin)  (x) Oy (x2) O (x3) O3

Noisefreek 1 -4.43E-06| 1.63E-03| 2.19E-04| 2.80E-05| 7.10E-06 | 2.42E-06
Noise 1 3.17E-05| 4.42E-04| 2.48E-03| 1.95E-05| 1.75E-08 | 1.38E-06
Noisy K 1 2.72E-05 | 1.69E-03| 2.19E-04| 2.93E-05| 7.00E-06 | 2.91E-06
Noisefreek 2 -3.5E-06 | 1.64E-03| 1.45E-04| 2.24E-05| 3.02E-06 | 1.28E-06
Noise 2 2.59E-05 | 4.44E-04| 6.32E-04| 8.78E-06| -5.27E-09| 3.78E-07
Noisy K 2 2.24E-05| 1.70E-03| 1.45E-04| 2.34E-05| 2.99E-06 | 1.38E-06
Noisefreek 4 -3.50E-06| 1.67E-03| 8.70E-05| 1.67E-05| 1.00E-06 | 5.45E-07
Noise 4 1.72E-05 | 4.49E-04| 1.59E-04| 4.97E-06| -2.45E-09| 8.60E-08
Noisy K 4 1.37E-05 | 1.73E-03| 8.72E-05| 1.77E-05| 9.94E-07 | 5.71E-07
Noisefreek 8 -2.65E-06| 1.74E-03| 4.89E-05| 1.23E-05| 2.69E-07 | 1.99E-07
Noise 8 1.20E-05 | 4.64E-04| 4.02E-05| 2.71E-06| 8.13E-10| 2.41E-08
Noisy K 8 9.40E-06 | 1.80E-03| 4.89E-05| 1.32E-05| 2.70E-07 | 2.11E-07

Table 8.1: The moments of the noise-free, noisy and noise-only siredlataps. The standard deviations are calculated
over 185 samples.
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Figure 8.3: The noise-free, noisy and noise-only PDFs for top-hat simogt
scale of 2 arcmin. This plots shows how the PDF of noise-kree
convolved with the Gaussian noise to produce the nei®\DF.

wherex is the PDF of noisy data at a certain biny, andu(n;) is the average PDF
calculated from the entire simulation set for that paracidinn;. The size of these
matrices is trimmed to avoid any full zero rows and columnghim covariances.
The resulting matrices are of the following dimension: 186186 (noise-free),
160 x 160 (noise-only) and 24& 248 (noisy). In order to display the level of
correlation between the data points, we compute the ctiorleoefficient, defined

as.
C(ni,n;j)

\/C(ni,ni)C(nj,nj)'
The correlation coefficient matrices for noise-free, n@sg noise-only cases are
illustrated in figures 8.5a - 8.5c¢.

p(ni,n;j) (8.3)
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Figure 8.4: The PDF of noisy convergence maps averaged over 185 lines of
sight. Each pair of convergence and noise map is smoothécavidp-
hat filter and each line in the plot represents a certain snapiscale.
Each PDF is calculated by binning the data into 800 equatiydsbins
betweent 0.7 ink.

For the purposes of likelihood calculations, the inversihefcovariance matrix
is required. Such large matrices are unstable to inveregimey are generated by
185 samples with 800 data points. As shown by Hartlap et @07[P a covariance
matrix of sizep calculated fromn samples has to firstly, satisty—2 > p and
secondly be rescaled ly* to remove the bias due to limited number of samples:

*

a =

(n—1)
— (8.4)

(h—1)—p-1

Throughout this chapter, for the covariance matrix catiuts we used = 185
as the total number of realizations. Table 8.3 shows theegatfia™* for various
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Figure 8.5: The correlation coefficient matrix for the noise-free, yo#nd
noise-only binned measurements. The number of bins is 80alffo
these cases. Here the matrices are trimmed to void full zBvs and
columns. The smoothing scale used is 2 arcmin with top-Hat.fil

150



number of data points used in the analysis (as in table 8.8J.tHe likelihood
analysis, we multiply the covariance matrix &y, so that, the bias induced by the
limited number of samples is removed.

Figure!8.5 shows the data points, sampled for the case ofr@irrop-hat
smoothing scale for both noise-free and noisy PDFs ovdtgulowith the fully
binned measurements. It is important to note that althougtthwose the sam-
pling to be 10 points evenly spaced over the limits of PDF thimber changes
(decreases) depending on the smoothing scale, to accorntertbdavariation in the
width of the data. The actual number of sampled data for aktsa@f our analysis
is shown in table 8 2. The choice of 10 scales was made in todexep the bias
factora* close to unity, while sampling from the whole range of the PBfutrure
step to this work is to fine tune the sampling such that it aastthe features of the
PDF, such as the location of the peak and the tails more effigieAlso, figures
8.7a--8.7¢ show the sub-sample correlation coefficientixatr each of the noise
combinations. The correlation coefficient matrices arevddrfrom covariances
that are calculated for a survey of size 12.84%d@imulation map size). We use
these covariance matrices later in section 8.1.5 for tkeditikod analysis purposes.

8.1.4 Theoretical Predictions

We opened this chapter with figure 8.1 to show how differesinuaogical pa-
rameters affect the shape of the convergence PDF smoothied aicmin top-hat
function. One can see that for the same valueQgy, larger og values lead to a
broader PDF, meaning that a clumpier Universe contains ithiegied mass of a
wider range. On the other hand, for a given valueogf smaller values of2m
lead to a very limited range of projected mass. Various stifliave been per-
formed to calculate the theoretical prediction for the RIDF of k (Munshi and
Coles [2000], Munshi and Jain [2001] and Valageas [20008reHve employ the
method of Valageas [2000], who derived the theoretical iptieths for the full
PDF ofk from the generating functions which are cumulants of varimwments
of the distribution. This approach is widely used in stattsstanc Valageas [2000]
showed its applications for calculating the convergenc€.Rbter Bernardeau and
Valageas [2000] extended the method to obtain theHIRIDF for the aperture mass
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Figure 8.6: The noise-free and noisy sampled PDFs over-plotted with the
fully binned measurement on the simulated maps. The neseafase
has four sampled scales and the noisy case has five scalentbetd
the likelihood analysis. The smoothing scale here is 2 aramith top-
hat filter, and the error-bars are the standard deviatioculzied be-
tween 185 lines of sight.

filter.

In the presence of noise, the noise-free PDF is convolveld tiveé pure Gaus-
sian noise, appropriately scaled to the survey conditidrise theoretical predic-
tions for the noisy PDF are then different from those of thisedree case and have
to be computed separately. In figure 8.8, we observe thetgftéwarious cosmo-
logical parameter values on the noisy PDF. Although thectffare much more
subtle than in the noise-free case, there is still a distincbetween the models
and hence the noisy PDF can be used in the likelihood analysis

For the noise-free case, we have a parameter spa@Qgndh the range of 0.1
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Figure 8.7: The correlation coefficient matrix for the noise-free, yo@sd
noise-only binned measurements. The number of bins isreliffein
each case, since the original covariances were trimmedditi@a to
sampling. The trimming is done so that the covariance méariree of
all zero rows or columns. The smoothing scale used here isriar
with top-hat filter.
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Figure 8.8: The measured noisy PDF over 800 bins, over-plotted with the-
oretical predictions for various cosmological parametfigurations.
The error-bars represent the standard deviation betwegriiés of
sight. The top-hat smoothing scale here is 4 arcmin.

to 1.0 andog in the range of 0.4 to 1.4 with 0.1 spacing in both cases. Hadd

to 10 nodes of2m and 11 nodes in theag side on the likelihood plane. For noisy
predictions, we have a finer sampling of the likelihood pJamiéh Qm in the range

of 0.1 to 1.0 andug in the range of 0.2 to 1.4, with 0.05 spacing. This leads to 19
nodes inQm and 25 nodes in thag side. Throughout our likelihood analysis, the
grid is interpolated to 1/5 finer scale for smoother likebdacontours.

8.1.5 Likelihood Analysis Results

We use the standard likelihood definition:

& = exp —%(d—m)T*C*l*(d—m) , (8.5)
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Table 8.2: The number of scales for each PDF run, with originally 10 data
points chosen out of 800 bins.

Scale | p(Noisefreg | p(NOISY) | Vmin,Vmax Av
1 arcmin 5 7 +0.6 |1.5x10°3
2 arcmin 4 5 +0.4 |[1.0x10°3
4 arcmin 4 5 +0.2 |[50x10%
8 arcmin 5 6 +0.1 |25x10°%

p| 4 5 6 7
a* | 1.028] 1.034| 1.039] 1.045

Table 8.3: The covariance matrix bias factar for different numbers of data
p based on equaticn 8.4 The number of sampl@s all calculations is
185.

whered represents the data amais the theoretical modelC~! is the inverse
covariance matrix over all 185 lines of sight. The ddthere is the mean of the
sampled PDF on the noisy, smoothed simulations. The cov@imatrix is com-
puted over 185 simulation realizations. In this analysisgmere the cosmological
parameter dependence of the covariance matrix, since tofrSeulations consist
of one particular cosmology. For the future work, one coulgrinciple generate
a whole set of simulations for each point in cosmologicabpseter space. This
approach, although ideal, is exteremly costly. Figures-89d show the likeli-
hood constraints from the noise-free measurements, whéneanoisy results are
presented in figures 8.10a—8.10d. Each panel presentsaincamoothing scale.
The number of scales used in each case can be found irn table 8.2

One might argue that the constraints from the realisticynaisalysis are not
sufficiently limiting for the cosmological parameter esdiion studies. Note that
the analysis is performed for a survey of size 12.84d&gr a survey 12.5 times
large (i.e. 160 ded), we rescale the covariance matrix and find the constraints
shown in figures 8.113—8.11d. This shows great promis&fBDF methods, as
an alternative weak lensing estimator for future surveys.
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Figure 8.9: The likelihood results for the 4 smoothing scales of therfolke-
free k-PDF analysis for a survey size of 12.84 8eg

8.2 Convergence Minimum Value Method:k-min

The idea here, is very similar to the previous section, ihweause the information
embedded in the shape of the convergence PDF to learn manetabaosmolog-

ical parameters. The only difference here, is that the fogws a particular part
of the PDF, which the minimum non-zero value. Although weuon one point
pf the PDF and seemingly discard all other information, ¢hisice has its own ad-
vantages. One is that the cosmological dependence of thenmimconvergence
is purely goemtrical as can be seen from equations 6.1 andF&@the empti-
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Figure 8.10: The likelihood results for the 4 smoothing scales of therfalby
k-PDF analysis for a survey size of 12.84 éleg

est line of sight,d = —1, so the lensing configuration is the only contribution to
the systematics. The constraints obtained from this mettdmbugh weaker than
full PDF, can be used to isolate systematic effects and tees#s cross checks of
the mass recosntruction methods. Also, although the vdlaeroin is related to
the full reconstructed PDF, when convolved with noise, #esgivity to extended
positive tail of the distribution is reduced. As explainezfdye the PDF ok starts
off as a negative value, which is the point of our focus in thisthod. The min-
imum K corresponds to the emptiest parts of the line of sight, wkiergs exist.
As mentioned earlier, convergence is a projection alongetshift, so emptiness
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Figure 8.11: The likelihood results for the 4 smoothing scales of therfalby
k-PDF analysis for a survey that is 12.5 times larger thanithalated
maps with area of 160 dégvhich is close to the effective area of the
CFHTLenS survey.

is relative and an emptier line of sight means that no darkenhtlos, cluster of
galaxies or any other massive object lies in between.

8.2.1 Noise-free and Noisy

In figure 8.12 we show thg-min value measured over all the simulated noise-free
maps. Each color band represents a different smoothing ss&ld. As can be
seen, larger smoothing scales lead to larger valuesroin, meaning that the very
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Figure 8.12: Values ofk-min over the 185 noise-free simulated maps. Each
color band represents a particular smoothing scale.

empty regions get erased by smoothing.
Noise is added to the maps, exactly the same way as in theDHIrRethod.
The difference is that, here, we take the minimum value oféiselting map. Fig-
ure 8.13 shows the-min values as a function of smoothing scale, and ther error-
bars represent the standard deviation between 185 linagtdf Ve overplot the
theoretical predictions for various cosmological paranebmbinations to illus-
trate the fact thak-min is sensitive to the cosmology and can be used in priacipl
to constrain cosmological parameters. The theoreticaleghre extracted by tak-
ing the minimum values from the full PDF predictions. In atlords, full con-
vergence PDF must be predicted and the minimum non-zere \dlit has to be
extracted. In figure 8.2.4, one can see how the noise-free @iggl K-min values
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Figure 8.13: The noise-free simulateki-min values as a function of smooth-
ing scale. The error-bars represent the variance betweet8th lines
of sight. The minimum noise-free values predicted by different cos-
mological parameters are shown for comparison.

compare to each other as a function of smoothing scale. Tinergietrend is that,
the smaller smoothing scales lead to more negative valuesih, which means
emptier regions do not get washed out by smoothing in absaefnuaise. Also one
can see that the convolution with Gaussian noise drives thenmuam k to more
negative values, falsely implying emptier regions tharditsealt is then essential
to have a good understanding of the noise properties in dielaga in order to be
able to separate these effects.
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Figure 8.14: The k-min as a function of smoothing scale for noise-free and
noisy case in comparison. The error-bars represent thdasthevia-
tion between the 185 lines of sight.

8.2.2 Results: All Scales

We calculate the noise-free and noisy covariances from gra@gbthing scales: 1,
2; 4; and 8 arcminutes, among the 185 simulated lines of .slgbie, the number
of data points isp =4 (corresponding to four smoothing scales) and number of
samples is 185. This results in the covariance matrix bietefa* =1.028, which
is applied to the covariance matrix. We also compute theetaiion coefficient
from equatior 8.3 for each noise case. Figures 8.15a andh 8Hd&ws the noise-
free and noisy correlation coefficient matrices for thenin analysis when the
top-hat filter is used.

We also compare the results of the likelihood analysis, ¢ lnoise-free and
noisy k-min estimates. Figure 8.16 displays the results from theerfiee case.
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Figure 8.15: The noise-free and noisy correlation coefficient matridethe
k-min analysis. The measurements are the minimum smoakhed
value with 4 smoothing scales and over 185 lines of sight feina

gle redshift slice ar=1.
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Figure 8.16: The likelihood results for the noise-free minimum conveicge
K measurements over 4 smoothing scales for a survey size &} 12.

ded.

When the noise effects are considered, it can be seen frome f&ali” that the
constraints become weaker, to the point that, for a survdlesize of the simu-
lation maps used here (12.84 dig-min is not a suited estimator. However, by
rescaling the covariance matrix for a survey, 12.5 timaglafarea 160 d&y, we
obtain promising constraints as shown in figure 8.18. Thiateresting because
the systematic dependence of an estimator suatrmén is different from those
affecting the higher order statistics. The reason is khatin is mainly geometry
dependent. This presents an advantage for combixingn measurements with
other weak lensing estimators, to obtain tighter cosmobigionstraints. An im-
midiate future step of this work is to verify the validity did rescaling process
for the full PDF as we did previously for the two- and threenpetatistics. This
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Figure 8.17: The likelihood results for the noisy minimum convergence
measurements over 4 smoothing scales for a survey size8% 2d.
A survey this small is unable to provide any significant cokmgical
constraints.

is beyond the scope of this thesis as the goal here was torexple convergence
PDF method as a path finder, and further investigations gréresl.

8.3 Practical Approach for the Future

In order to implement the PDF statistics in real data, onelsiée perform mass
reconstruction on the shear catalogues. The details ofsalhllenging procedure
are beyond the scope of this thesis. However, there areypbéiititure steps one
can take to improve the current work. First, we would consmber smoothing
filters to find the optimal function. One could also combine #moothing scales
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Figure 8.18: The likelihood results for the noisy minimum convergernce
measurements over 4 smoothing scales for a survey size afeih0

for the full PDF to take advantage of the joint likelihoodsvieen the scales. The
purpose of this work was to explore the possibilities of ralstive weak lensing

estimators. However, to fullfil the potentials of the PDF hwoat, we will extend

the analysis to include broad redshift distribution, to raimealistic survey con-
ditions better. Besides, in this work, the choice of sampliere has been very
limited. One can consider non-even sampling, such that e features of the
PDF, (minimum, peak position, etc) are included in the samgpbrocess. All of

these action items are set to be taken up in the near futuheamkt stage of this
project. The technique will then be applied to the recomrstd mass maps from
the CFHTLenS data.
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Chapter 9

The Clone

The following sections explain the purpose, production fanchat of the “Clone”,

which was generated as part of my contribution to the CFHH_eallaboration.

The clone files are made available to the CFHTLenS membetbégourposes of
covariance matrix calculations and systematics testing.

9.1 Purpose

Chapter 7 explained the CFHTLenS data in detail. The shapgghotometric
redshifts of all the galaxies are included in the catalodgoessarious scientific
applications. For most weak lensing analysis estimatiotogriance matrices is
an essential part of the process. In the linear and Gaussgame, one can derive
the terms of the covariance matrix analytically. This caneace however, does
not exist, when considering the full non-linear and non-€s&n terms. The best
way to obtain realistic covariance estimation, is to havayrsamples of the data
and calculate the covariance between them. In case of astioal data, this is
not possible, since we only observe one sky. The survey anede divided up
into patches to get around this issue, however measureraelager scales will
not be possible. One great solution is to use the numericallations to generate
mock catalogues that mimic the noise amplitude, maskindshié distribution
and overall geometry of the survey. The simulated data k& used to test the
pipelines and the integrity of the systematics tests.
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Qm Qp Og h Ns Qp
0.279] 0.721] 0.817| 0.701| 0.96| 0.04

Table 9.1: Cosmological parameters of the input simulations.

For these purposes, we generated the clone of the CFHTLdagStdat re-
sembles the data catalogues in many aspects, such as tkg gataber density;
position; and redshift distribution, with added simulatexise-free and noisy shear
information for each galaxy.

9.2 Introduction

The Clone is a hybrid of data and simulations. It is partlyegated from 185 dif-
ferent dark matter particle simulations. The cosmologizahmeters of the simu-
lations are listed in table ¢.1 based on WMAP7 parameteresgalEach simulation
is completely independent of the others with different atbiomized initial con-
ditions. Itis important to use independent simulationstitam realistic covariance
matrices. Each simulation line-of-sight has 26 redshiftesl with source redshift
from 0.050 to 3.17. The clone serves as copies of the real datale 9.2 shows
the particular simulations line of sight chosen for eacimeloun. Each CFHTLenS
subfield is cloned 7 times. Figur2s 9.3. 9.4, 9.5 and 9.6 shewotientation of
subfields in each CFHTLenS mosaic. Each color patch showsup @f fields that
are cloned using the same line of sight. Each simulation mmepramodates up to
9 CFHTLenS fields as the size of simulation maps is 20R#24 with pixel size
of 0.21 arcminutes and each CFHTLenS subfield covers 4. ddwe data for mos
fields have been taken irband. The fields denoted with, have onlyy-band data
available. Fields with+ have bothi- andy-band data. For these fields the same
line-of-sight of simulations are used for both bands.

9.3 Clone Production Foundation

For every galaxy in the data files witlx,y) position and redshifg, we find the
corresponding location on the line-of-sight map. For thatipular position on
the simulations, the values of noise-free reduced sheéinédein equation 3.25)
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are quoted as the simulated clone. There are few more tedhsteps along the
way that will be explained in the following sections. Thepsténclude: format
conversion; pixel size difference; sky deprojection; ahelas assignment.

The original data is il dac binary format. The first step is to extract the
galaxy identification numbercs (world coordinates) and best redshift estimate
of each galaxy in the input catalogue and convert them to fasoiat. Each input
catalogue contains the pixel position of the galaxies a$, Wwelvever the origin,
(0,0), is chosen to be at the bottom left corner of each subfidhe pixel co-
ordinates of the data run from 1 to 21,000 pixels with pixelotation on 0.186
arcseconds. We need to use the global pixel coordinate teecem the relative
positions of the fields with respect to each other. This coatéd system has to
be properly converted fromcs coordinates to match up with the simulation pixel
size.

Another issue to deal with is the fact that the sky is not flatnég, a simple
wes to (x,y) coordinate transformation is not sufficient to encompasstiivature
of the sky at high declinations. The effects of high decloratdistortion have to
be taken into account, since the simulations are generatfidtanaps. The non-
equatorial field (W3) is more affected by these distortions tb high declination.
For this purpose we convert the s coordinates to globglx,y) pixel coordinates
usingsky2xy software, which is part of\CSTool s software package! This
routine takes the world coordinate information from thederaof the mask fits
images for each mosaic field and generates the correspofxlipg coordinate
which runs for the whole mosaic. There is a great advantagigisrstep already,
and that is the continuous pixel values for the whole moskiés enables cloning
of 9 neighboring fields by using the,y) coordinates.

Mask images have the lower pixel resolution than the da&lame, 0.01666
arcminutes per pixel (instead of 0.186 arcseconds), sathdting pixel resolution
of the (x,y) coordinate is the same as the mask images. Although thisssieeie
a significant drop in pixel resolution from the original inmata, it does not cause
any problems in clone generation. The reason is that thelaiiom pixel size is
0.21 arc minutes, which is more than 12 times larger thanrbjegted global pixel

Lhttp://tdc-www.harvard.edu/westools/sky2xy/
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coordinate resolution. When using the clone, scales less@21 arcminutes fall
below the resolution of the simulations and hence, not dabép

9.4 Shear Assignment

With proper pixel coordinates assigned as explained alwogdocate each galaxy
in three dimensions on the simulated line of sight. We take thy, z) coordinates
of the galaxies in a group of subfields (to a maximum of 9) asvshim colored
patches in figures €.3. 9.4, 9.5 end 9.6. The first step, is datfie corresponding
simulation redshift slice to the galaxy’s best photometddshift estimate from
the catalogue. The simulations have 26 redshift slicesclwhie generated by
collapsing the simulations boxes as they evolve over tinfe dvolved boxes are
adjacent, so there is no gap between them. If the galaxy&hifds within a given
simulation box, the corresponding source redshift is asslgo the galaxy. Figure
9.1 shows the simulation boxes and lens and source planésxi€afalling within
a simulation box are assigned the reduced shear values fi@eentral collapsed
slice inside of that box. The next step is to find the (X,y) fiosion that particular
redshift slice map.

9.5 Rejected Galaxies

For any galaxy with best estimated photometric redshifsidetthe redshift range
of the simulations, a shear value of 99 is assigned. Thesaigalwill be taken
out of the catalogues before using. The simulated reddhufissare chosen so that
the galaxy’s redshift lies between the previous sourcehiéidsnd the assigned
one. So for galaxy at redshift_1 < 7y < zs the simulated slice & is taken. To
obtain a more accurate shear value than the discrete shaetsn interpolate the
shear between the two maps that encompass the galaxy. gliheach simulation
box is rotated and moved before the central collapse, evanyetgence map is
the geometric weighted sum of all the denigimaps from the source to redshift
zero. So the interpolation is a valid approach to find a mongiigoous distribution
of the simulated shear values. For this purpose, the clonwics the lower and
upper shear values for each galaxy that correspond to thenaps that encompass
the galaxy redshift at a particular location. The upper easuwhat is used as the
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simulated value, and the lower value is added for the casateifpolation. For
galaxies between the observer and the first slice=at0.0494 there is no lower
shear values, so these galaxies are assigned shear valk@soobe taken out of
the catalogue as well.

9.6 Noise Addition

In order to have the most realistic shear values comparedtfy tkasonable levels
of noise should be added to the simulated shear. The obseoi®dellipticity of a
galaxy is a combination of its intrinsic reduced shear anan@omized ellipticity
term caused by random intrinsic ellipticity of the galaxy.

We randomize the orientation of the input galaxy’s ellipyido destroy the
lensing signal. The ellipticity dispersion is then caltethas,/0Z + 0d2. We
the two real and imaginary components of this randomizeptieity to the cor-
responding simulated reduced shear components as shoveitzra8d Schneider
[1997]:

eobs _ e+ g
1+ges

(9.1)

The resulting simulated observed ellipticity resemblesahserved ellipticity from
the data statistically. Hergis the reduced shear, definedyd$l — k) ande’® is the
randomized ellipticity of the galaxy.

9.7 Redshift PDF Re-sampling

Each photometric redshift estimate of the catalogue is #s¢ ¥mlue from a prob-
ability distribution Rz) as a function of redshift. For every galaxy, a 40 bin PDF
is given in the catalogues. The bins start fram0.01 toz =2.00 with bin size
z=0.05. We use this PDF of redshifts to re-sample a new redghlifie for any
given galaxy. We re-sample the redshift of all individualeg@es from the same
PDF that the best redshift came from.For a localized PDFR,agfsampled redshift
is most likely very close to the best value in the cataloguewéler, if the PDF is
very wide, the probability of finding a different value fordhift is much higher.
The goal is to have 10 re-sampled values of the redshift wysfuthere are any
biases due to the redshift estimates in the catalogues.
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We follow the recipe of Monte Carlo re-sampling as explaiimechapter 6.5 of
Wall and Jenkins [2003]. Figu-e 9.2 shows the shape of thet IRPF for 6 sample
galaxies and the PDF of 1000 re-sampled redshifts, fromhvhizare chosen to
be in the clone catalogue. The black lines are the PDF frond#te catalogue.
The red crosses are the result of 1000 re-samples of the P&3R be seen that the
distribution of these 1000 values follows the original PDésely. Also we chose
a range of PDF distributions to demonstrate different kewdlestimated redshift
accuracy for different galaxies. For the 10 re-sampledhifid&alues, we generate
10 different clones by random sampling the simulatigyy) plane. These clones
of clone can be used to test redshift estimate biases in tatogaes. So far, two
generations of clone have been released to the CFHTLengboedtion and with
added number of simulations, new generations will be géeera
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Field | Clone 1| Clone 2| Clone 3| Clone 4| Clone 5| Clone 6| Clone 7
W1-1 10 100 101 102 103 104 105
W1-2 106 107 108 109 11 110 111
W1-3 112 113 114 115 116 117 118
W1-4 119 12 120 121 122 123 124
W1-5 125 126 127 128 129 13 130
W1-6 131 132 133 134 135 136 137
W1-7 138 139 14 140 141 142 143
W1-8 144 145 146 147 148 149 15
W1-9 150 151 152 153 154 155 156
W2-1 157 159 16 160 161 162 163
W2-2 164 165 166 167 168 169 17
W2-3 170 171 172 173 175 176 177
W2-4 178 179 18 180 181 185 186
W3-1 187 188 189 19 190 191 192
W3-2 193 194 195 196 197 198 199
W3-3 20 21 22 23 24 25 26
W3-4 27 28 29 30 31 32 33
W3-5 34 35 36 37 38 39 40
W3-6 41 42 43 44 45 46 47
W3-7 48 49 50 51 52 53 54
W3-8 55 56 57 58 59 60 61
W3-9 62 63 64 65 66 67 68
W4-1 69 70 71 72 73 74 75
W4-2 76 77 78 79 80 81 82
W4-3 83 84 85 86 87 88 89
W4-4 90 91 92 93 94 95 96

Table 9.2: Particular line of sights used for each clone run.

Missing Fields

1-9

158

174

182

183

184 | 200

Leftover Fields

97

98

99

Table 9.3: Particular line of sights used for each clone run.
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Figure 9.1: Lens and source redshift slices within simulation boxesifédrdnt redshifts. The simulation boxes are
collapsed at the lens plane. Galaxies within each simuldttax are assigned shear values of the central collapsed
map.
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Figure 9.2: The PDF and 1000 re-sampled redshifts for 6 galaxy membe¥ ofLnil i-band data. For the clone
catalogue 10 re-sampled redshifts are used for each galaxy.
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Figure 9.3: Orientation of all W1 subfields. Fields with in the naming have only thegband data. Other fields have
only thei-band data and fields with have both- andy-band data.
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Figure 9.4: Orientation of all W2 subfields. Fields with in the naming have only thgband data. Other fields have
only thei-band data and fields with have both- andy-band data.
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only thei-band data and fields with have both- andy-band data.
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Chapter 10

Conclusion and Future Work

In this thesis we studied three alternative weak lensingnesbrs that are com-
plimentary to the standard two-point statistics. Chaptartrbduced the topic of
gravitational lensing and the motivation for seeking al&tive estimators. Chap-
ter 2 briefly reviewed the standard model of cosmology andrmaters describing
this model. In chapter 3, we explained the gravitationasileg phenomenon with
the focus on cosmic shear and the relationship between maattelensing power
spectra. In chapter 4, various second and third order coshaar statistics were
introduced. These quantities were then used in the follgwirapter 5, as we tested
the accuracy and integrity of the numerical simulationsettgped for the purposes
of weak lensing studies. We examined 185 lines of sight & daatter simulations
and showed that they follow the theoretical predictiony wbosely.

The simulations were also implemented to make forecastifgrer-order
statistics for upcoming surveys. Using the simulations,sivewed that combin-
ing the two- and three-point statistics improves cosmalalgbarameter constraints
considerably. We also demonstrated an optimal survey dés# will enhance the
higher order weak lensing signal. We presented these saauthapter 6.

In chapter 7, we applied the higher order statistical tegnes to the observed
data. We used 160 dégf the CFHTLS data that were collected at the Canada
France Hawaii Telescope. The cosmic shear catalogues lesre darefully re-
duced and tested for various systematics effects by the CERS collaboration.

We measured both two- and three-point statistics throutiimatons of corre-
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lation functions. We computed the joint likelihood and skeovthat the cosmolog-
ical constraints can be indeed significantly improved whigihdr order statistics
are included. These preliminary results are the first 2+iBtmatistics based cos-
mological constraints from a ground-based survey.

Employing numerical simulations, we explored another aeasf complemen-
tary statistics that can be derived from weak lensing datahapter 8 we showed
that the projected reconstructed mass maps, can also béausedstrain cosmo-
logical parameters. We added realistic noise to the simon&tto mimic the data
and measured the probability distribution function of thejgcted mass. In addi-
tion, we explored the emptiest parts of the simulated Usivéhat correspond to
the voids. We showed that such empty regions could also e tosgistinguish
between cosmological parameters.

This work was performed as a proof of concept. In the futurglaa to extend
this work by combining the projected mass maps to represengalaxy redshift
distribution. We would then be able to quantify the strerafttinis approach in con-
straining cosmological parameters in comparison to twd-taree-point statistics.
We plan to implement the method developed on the mass mapsaged from the
CFHTLenS data.

Finally in chaptei 9 we presented the clone of the CFHTLen§, aehich was
produced as part of this thesis, for the purpose of covagianatrix estimations
and systematics testing of various scientific projectsiwithe collaboration.

Future weak lensing surveys such as DES (Dark Energy S1)néipS (Kilo
Degree Surve#), JIDEM (Joint Dark Energy Mission and Euclid are planned to
be in operation in the next decade. These surveys will cowen &rger areas of
the sky. The contributions of the CFHTLenS collaboratioa directly applica-
ble to future surveys and will enhance their data qualityr @ark on numerical
simulations can be extended to test the systematics of theseys and provide
forecasts for optimal survey strategies. Future data sifitsesult in larger mass
maps of the dark matter distribution. So it will be much mazadible to include

Ihttp://www.darkenergysurvey.org/
2http://www.astro-wise.org/projects/KIDS/index.shtml
Shttp://jdem.gdfc.nasa.gov
4http://sci.esa.int/science-e/www/area/index.cfmedai=102
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the PDF statistics in the upcoming weak lensing analysiso Alhe studies using
higher-order statistics can be applied to such large sart@yurther improve the
cosmological constraints.
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