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Abstract

Weak gravitational lensing provides a means to measure the total mass in the Uni-

verse. The incoming light from distant galaxies is disturbed by the inhomogeneity

of the dark matter distribution along the line of sight. The correlations of shape

in an observed galaxy population can be used to probe the total mass density

fluctuations in the Universe. Studies of correlations between galaxy shapes have

been the basis of weak lensing research. In this thesis we investigate various non-

conventional weak lensing statistics that are complementary to the traditional two-

point shear correlation functions. The goal is to constrainthe matter densityΩm
and normalization of matter power spectrumσ8 parameters. These higher order

statistics have long been advocated as a powerful tool to break measured degen-

eracies between cosmological parameters. Using ray-tracing simulations, which

incorporate important survey features such as a realistic depth-dependent redshift

distribution, we find that joint two- and three-point correlation function analysis is

a much stronger probe of cosmology than the two-point analysis alone.

We apply the higher order statistics technique to the 160 deg2 of the Canada-

France-Hawaii-Telescope Legacy Survey (CFHTLS) and show preliminary results

from the joint two- and three-point likelihood analysis. Wereveal the possibili-

ties that lie in the projected mass probability distribution function to discriminate

models with different values of the matter density parameter. In the process we

develop a hybrid data set based on the simulations and the CFHTLenS data for

systematics testing and covariance matrix estimations. Our error analysis includes

all non-Gaussian terms, finding that the coupling between cosmic variance and shot

noise is a non-negligible contribution.
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Preface

The work on testing of the numerical simulations presented in chapter 5, is a sub-

mitted article, titled as “Gravitational Lensing Simulations I : Covariance Matrices

and Halo Catalogues”, with Sanaz Vafaei as a co-author (Harnois-Deraps et al.

[2012]). Sanaz Vafaei performed the weak lensing tests on the simulations. This

work has been carried out in collaboration with Dr. Ludovic van Waerbeke and

Joachim Harnois-Deraps.

The work presented in chapter 6 is published under the title “Breaking the

Degeneracy: Optimal Use of Three-point Weak Lensing Statistics”, with Sanaz

Vafaei as the primary author (Vafaei et al. [2010]). Co-authors are Dr. Tingting Lu,

Dr. Ludovic van Waerbeke, Dr. Elisabetta Semboloni, Dr. Catherine Heymans,

and Dr. Uei-Li Pen.

Numerical Simulations developed in collaboration with Dr.Tingting Lu, and

explained in chapter 6 were used in the publication of Semboloni et al. [2011b]

for covariance matrix calculations. Sanaz Vafaei is a co-author of this work for

providing the numerical simulations.

The Canada-France-Hawaii-Telescope Lensing Survey (CFHTLenS) data was

used in the analysis presented in chapter 7. This work has been carried out in

collaboration with Dr. Ludovic van Waerbeke, Dr. Elisabetta Semboloni and the

CFHTLenS collaboration. The results will be included in thepublication in prepa-

ration with Sanaz Vafaei as the first author.

The work presented in chapter 8 has been carried out in collaboration with Dr.

Ludovic van Waerbeke and Dr. Patrick Valageas and Dr. Dipak Munshi. The

publication of this work is in preparation with Sanaz Vafaeias the first author.

Finally, the clone catalogues produced by Sanaz Vafaei, described in chapter
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9 will be used in numerous scientific publications of the CFHTLenS collaboration

for covariance matrix estimation and systematics tests.
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Chapter 1

Introduction

Cosmology is the branch of astronomy concerned with the study of the Universe

as a whole, of its content, origin, evolution and fate. Astronomical observations

can probe luminous objects such as stars and galaxies, and have done so exten-

sively over the past decades. This has unleashed many unexpected and unexplained

phenomena. Galaxies seem to rotate faster than predicted bythe gravitational ef-

fects exerted by luminous matter only. Another classic example is the accelerated

expansion of the Universe discovered by observations of supernovae type Ia. Cos-

mologists have attributed these effects to the so-called dark matter and dark energy.

These cosmic components, whose nature is still unknown, arecurrently the basis of

many cosmological studies. According to the standard modelof cosmology sup-

ported by observations (Komatsu et al. [2011]), dark matterand dark energy are

largely dominant and only a small fraction of the Universe consists of baryonic

matter.

One way to study the dark matter is to observe large portions of the sky, com-

piling extensive surveys of galaxies to map the distribution of light across the Uni-

verse. With the aid of theoretical models, it is possible to infer the properties of

the matter density field underlying the distribution of galaxies, which contains dark

matter as well. This method relies on assumptions that link the amount of luminous

matter (galaxies) to dark matter. Another popular tool for studying the dark matter

distribution is known as gravitational lensing. Just like an optical lens, which de-

flects the incoming light from a source to an observer, gravitational lenses deflect
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the light emitted by distant galaxies as it passes by them, due to their large masses.

The phenomenon of light deflection in the vicinity of strong gravitational fields

was predicted by Einstein’s general theory of relativity and subsequently observed,

first during a solar eclipse, then in the case of bright quasars and later in a number

of other astrophysical contexts. Any massive object that lies between the source

and the observer can act as a gravitational lens. Examples ofthese objects include,

stars, galaxies, and clusters of galaxies. In addition, thewhole matter distribution

in the Universe, known as the large-scale structure (LSS) isalso responsible for

lensing effects. The lensing scenario caused by the large-scale structure is referred

to as the cosmic shear.

In the weak lensing regime, the light coming from a distant galaxy, which is

characterised by a certain shape, will pass through the large-scale structure of the

Universe on its journey to the observer, thus being continuously deflected by mas-

sive objects along the way. As a result, the observer sees thegalaxy with a distorted

shape (shear), which could be a more elongated or compressedwith respect to the

original shape. Figure 1.1 shows the schematics of distortions affecting the source

galaxies (on the left) and resulting in the observed galaxies (on the right) due to

the presence of a gravitational lens in between the sources and the observer. One

can see that the resulting image perceived by the observer isnot identical to the

original source galaxy due to the many deflections along the way.

The weak lensing reconstruction technique aims at studyingthese distorted

images and finding a link back to the structure of the gravitational lens that caused

the distortion, which generally consists of both luminous and dark (hence invisible)

matter. This method is a very powerful probe of the dark matter distribution in the

Universe, since it is independent of the nature and dynamical state of the matter in

the lens, and only depends on its mass. Evidently, it is impossible to tell by how

much the shape of the original galaxy is distorted, since we do not have access

to its intrinsic shape. However, this can be overcome by employing a sufficiently

large sample of galaxies, as statistical properties of the distortions can lead to an

estimate of the matter distribution causing the distortions.

In practice, lensers study the correlation between any pairof galaxies separated

by a certain angular separation on the sky. In the (reasonable) assumption that the

original orientations of the source galaxies are completely random, the light from
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Figure 1.1: A given distribution of source galaxies (left) becomes distorted
(right) due to their light passing through a gravitational lens (centre) on
the way to the observer.

two galaxies passing though the same gravitational lens will result in a correlation

in their observed distorted shapes, since the deflection is exerted by the same in-

tervening massive body. The correlation between every pairof observed galaxies

as a function of their separation is measured in terms of the so-called two-point

correlation function. Combined with the knowledge of the redshift distribution of

the source galaxies (i.e. knowledge of their distances fromus), the two-point cor-

relation function can be related to the properties of the matter density along the

observer’s line of sight. We refer to statistics involving the two-point correlation

function as two-point statistics throughout this thesis.

In cosmology, the properties of the Universe are expressed in terms of a num-

ber of cosmological parameters. When studying the dark matter distribution in the

Universe, we are usually interested in parameters that express the amount of matter,

relative to other cosmic components and the level of its “clumpiness” on different

scales in the Universe. With the aid of weak lensing two-point correlation functions

we can estimate these parameters. This is the fundamental idea behind cosmolog-

ical parameter estimation. Like any other probe of cosmology that is sensitive to

these parameters, however, the two-point statistics provide a degenerate estimate
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of the matter density and its clumpiness, as the two parameters are related to each

other. The left panel of figure 1.2 shows the schematics of this degeneracy which

implies that the combination of the two parameters acceptedby this analysis is not

unique. Ideally we wish to obtain the tightest possible constraints on the parame-

ters (i.e. to estimate both of them with the highest precision). Is it possible to break

this degeneracy by combining separate observational clueswhose dependence on

the parameters are different from each other, as shown in theright panel of figure

1.2. This is interesting because the weak lensing constraints on the “clumpiness”

parameter can be combined with those from cosmic microwave background studies

in order to break the degeneracy between this parameter and other parameters, such

as neutrino mass. Also tighter contraints on the matter density in the Universe, can

be used to rule out some of the dark matter candidates. Dark energy is believed

to be the reason behind the accelerated expansion of the Universe. With the aid

redshift information of the galaxies, one can study the evolution of matter density,

which is directly related to the dark energy component of theUniverse.

The goal of this thesis is to explore methods, beyond the two-point correlation

function, that provide improved (i.e. tighter) constraints on the desired cosmolog-

ical parameters when combined with the two- point statistics. For this purpose we

explore two main avenues in the field of weak gravitational lensing: higher order

statistics; and Probability Distribution Function (PDF) statistics. Other probes of

cosmology, such as galaxy surveys have already implementedhigher order statis-

tics in their analysis. Below we list the various angles thisthesis sets to explore:

3-point statistics of simulations: Instead of looking at pairs of galaxies, we

focus on the correlation function between groups of three galaxies. We refer to

calculations involving three-point correlation functions, hereafter as “three-point

statistics”. Figure 1.3 shows the schematics of correlating shapes of three galaxies

rather than two. With the aid of numerical simulations, we show that there is

a great improvement on the cosmological parameter estimations when the three-

point statistics are included in the analysis.

2+3-point statistics analysis of CFHTLenS data:In the next stage, we apply

the three-point statistics to study the state of the art weaklensing data set of the

Canada-France-Hawaii Telescope Lensing Survey. This workpresents the first

cosmological constraints ever obtained from the combination of two- and three-
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Figure 1.2: (Left) The schematics of constraints in the parameter space. The
banana shaped contour shows that there is a degeneracy between the two
parameters of interest; the matter density and its clumpiness. (Right)
The allowed region in parameter space shrinks when different probes
of cosmology are combined together, resulting in the smaller grey area
(i.e. tighter constraints on the parameters).

point statistics applied to ground-based observations.

Numerical simulation testing: As part of testing the methods, we take advan-

tage of a large set of numerical simulations. As part of this work, we tested the

accuracy and sanity of these simulations carefully and extensively. The resulting

data set is in agreement with all the weak lensing theoretical predictions and proves

to be extremely useful in many areas of weak lensing studies.

Statistics of 2D matter distribution: The shapes of galaxies become distorted

due to the presence of matter along the path between them and the observer. It is

in principle possible to reconstruct the 2D projected matter distribution along the

way by means of the observed distortions. We explore the probability distribution

function of the simulated 2D matter distribution to infer the cosmological parame-

ters underlying such distribution. This method is developed as complementary to

the two- and three-point statistics.

Statistics of emptiest regions on the sky:The 2D projected matter distribu-
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Figure 1.3: The configuration for two-point (black) and three-point (red) cor-
relation functions.

tion is highly clustered and has portions that are emptier than others. We conduct a

study of such areas and build a technique to infer the cosmological matter parame-

ters from the least dense regions.

Clone of CFHTLenS production: As part of the development of the simula-

tions, we combine them with the data to produce simulated weak lensing catalogues

that can be used both for method testing and also for assessing systematics effects

present in the data. These replicas of the data are referred to as “Clone”. We use

these clones for the analysis of all statistical studies throughout this thesis.

The structure of the thesis is illustrated in the flowchart infigure 1.4. The

blue boxes refer to the background information. This includes chapters 2, 3 and

4. In chapter 2 we review the relevant cosmological framework. The expert reader

might skip this chapter. In chapter 3 we review the theory of gravitational lensing.

Chapter 4 reviews a number of statistics to study gravitational lensing that have

been proposed in the literature and that are used in ongoing studies. We also apply

these statistics to carefully test the numerical simulations we discuss in chapter 5.

6



Chapter 6 is the publication of the work on the 2+3-point statistical analysis of

numerical simulations as a path-finder to chapter 7, where the findings are applied

to the data. Original work is shown in orange boxes, where green boxes show the

simulation and data that are used for all the studies. In chapter 8 we explore other

means to improve constraints on the cosmological parameters that involve studying

the full probability distribution function of the 2D projected matter along the line

of sight. Also in chapter 9 we combine the simulations and thedata to generate a

clone of the data set for likelihood analysis of the 2+3-point statistics. Finally, in

chapter 10, we summarize the results and discuss the future avenues of the work.
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Figure 1.4: The overall structure of this thesis. Blue boxes represent the re-
view chapters. Green boxes show the original work developedfor this
thesis, including analysis, and orange boxes are the descriptions of the
simulation and data used in this work. The grey boxes represent other
branches of cosmology and gravitational lensing which are not directly
related to this work.
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Chapter 2

Cosmology

Cosmology is the science of the physical Universe and its properties as a whole. In

this thesis, we aim to study the matter distribution of the Universe through weak

gravitational lensing analysis. The theory of weak lensingis based on fundamental

theories of cosmology. This chapter explains the modern framework of cosmology,

known as the standard model.

The standard model aims to explain the overall shape and structure of the Uni-

verse and describe its time evolution. In the following sections, we explain the

general concepts of the standard model for the homogeneous Universe. We will

discuss the extension of the model to the inhomogeneous Universe, which cap-

tures non-linear structure formations. The results discussed will be used later in

this thesis as we explain the observations and the theoretical predictions of weak

gravitational lensing due to effects of such large-scale matter inhomogeneities.

As part of this chapter we also review the definition of cosmological parameters

and the matter power spectrum which will appear throughout this thesis. Weak

gravitational lensing studies aim to estimate the matter power spectrum through

the observation of galaxy shapes.

More detailed explanation of topics of this chapter can be found in many cos-

mology textbooks and reviews (e.g. Peebles [1980], Peebles[1993], Peacock

[1999] and Dodelson [2003]). The purpose of this chapter is to provide the reader

with an outline of the basic concepts of cosmology, and to introduce useful defini-

tions which will be used later. The cosmology expert reader may skip this chapter

9



entirely.

2.1 The Standard Model of Cosmology

Gravitational lensing studies the distortions of galaxy shapes due to light deflec-

tions caused by the gravitational field of the matter distribution in the Universe.

The simplest assumption to make, about how the matter in the Universe is dis-

tributed, is that the matter in the universe is homogeneous and isotropic at very

large scales. This is called the Cosmological Principle. There are several sources

of evidence that support this theory. For example, the cosmic microwave back-

ground (CMB) radiation, the remnant heat from the Big Bang, has a temperature

which is highly uniform over the entire sky. This fact strongly supports the notion

that the gas which emitted this radiation long ago was very uniformly distributed.

According to the theory of General Relativity [Einstein, 1916], matter dis-

tribution directly influences four-dimensional space time. A metric which de-

scribes the four dimensional distance between two events ina homogeneous and

isotropic space-time was suggested by Robertson [1935] andWalker [1936], nowa-

days known as the Robertson-Walker metric:

ds2 = c2dt2−a2(t)

[

dχ2 + f 2
K(χ)(dθ2 +sin2θdϕ2)

]

. (2.1)

Hereχ is the radial comoving coordinate (see equation 2.3 for the definition), and

θ andϕ the angular coordinates.fK(χ) is the comoving angular diameter distance,

which is a function of the space curvatureK:

fK(χ) =



















K− 1
2 sin(K

1
2 χ), for (K > 0), Sphere;

χ , for (K = 0) Flat;

(−K)−
1
2 sinh((−K)

1
2 χ), for (K < 0), Hyperboloid.

(2.2)

Angular diameter distancefK(χ) ties the comoving transverse separation to the

angular size. In equation 2.1,a(t) is the scale factor, which describes the global

expansion or contraction of the Universe. In an expanding Universe the scale factor

increases with time. So if a photon was emitted at timete with wavelengthλe, it
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will be observed at a later timet0 by a comoving observer at wavelengthλ0 which

will be longer than the emitted wavelength. The comoving distanceχ between

the emitting source and the observer is constant (Comoving distances stretch with

expansion.) Also light travels on a “null” geodesic (for radial light rays dθ2 = 0

and dϕ2 = 0, so ds2 = 0), so the metric becomescdt = −adχ . Thus

χ =
∫ t0

te

cdt
a

= constant, (2.3)

hence
dt0
dte

=
λ0

λe
=

a(t0)
a(te)

≡ 1+ z, (2.4)

wherea(t0) ≡ 1. So redshiftz is defined as the relative change in wavelength due

to expansion (contraction) of the Universe (see [Van Waerbeke and Mellier, 2003]

for a review on deflections of light bundles as they pass through the large-scale

structure of the Universe.).

Einstein developed a mathematical relation between the metric of space-time

and the energy and pressure at that point, known as the “field”equations [Ein-

stein, 1916]. Using Robertson-Walker metric (equation 2.1) in combination with

Einstein’s field equations, one obtains two relations between the scale factora(t),

curvatureK and angular diameter distancefK(χ) and the energy densityρ(t) and

pressurep(t) content of the Universe for a perfect homogeneous and isotropic fluid

as
(

ȧ
a

)2

=
8πG

3
ρ − 3Kc2

a2 +
Λ
3

; (2.5)

ä = −4πG
3

(

3p
c2 + ρ

)

+
Λ
3

a. (2.6)

Here the dots represent time derivatives andΛ is known as the cosmological con-

stant, representing the vacuum energy component in the Universe. Equations 2.5

and 2.6 are known as the Friedmann equations and can be combined into the con-

tinuity equation:
d
dt

(ρa3c2) = −p
da3

dt
. (2.7)

The above equation 2.7 is an expression of the conservation of energy, in the sense
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Matter w = 0 p = 0 ρm ∝ a−3 a ∝ t2/3

Radiation w = 1/3 p = ρrc2/3 ρ ∝ a−4 a ∝ t1/2

Vacuum w = −1 p = −ρΛc2 ρ = const a ∝ exp
(
√

8πG
3 ρt

)

Table 2.1: Equation of state, functional behaviour of the density and scale
factor for different cosmological ingredients.

that the energy change in a fixed comoving volume is compensated by the pressure

times the volume change. This equation can be interpreted asthe cosmological

version of the first law of thermodynamics, resembling the adiabatic equation.

When combined with the equation of state (p = wρc2), equation 2.7 indicates

how the density of each energy component of the Universe evolves with time. Note

that w here is the equation of state parameter. The Friedmann equations (2.5 and

2.6) can be solved for components with different choices of constant values of

w. For constantw we haveρ ∝ a−3(1+w). Table 2.1 shows the equation of state

and density contribution of various components that contribute to the total energy

budget of the Universe. Since the density of different components has different

scale factor dependence, they each dominate the total energy of the Universe over

the other components at different cosmological epochs.

Note that the pressure-less matter densityρm = ρb+ρCDM consists of contribu-

tions from baryonic matterρb and cold dark matterρCDM. Also ρr is the radiation

contribution from CMB photons and relativistic cosmic background neutrinos with

w = 1/3. Another kind of species is the cosmological constant withthe assigned

energy density ofρΛ andw = −1, which acts as an repulsive force.

We can parameterize the expansion of the Universe by introducing the Hubble

parameter such thatH ≡ ȧ/a, which denotes the relative expansion rate. The Hub-

ble constant is the present value of the Hubble parameter, written asH0 = 100h

km s−1 Mpc−1, where the observational uncertainty is hidden inh. The most re-

cent value ofh as measured by WMAP7 results1 Komatsu et al. [2011] is 0.710

± 0.025. The critical densityρcrit is the total (ρm + ρr + ρΛ) energy density of the

1http://lambda.gsfc.nasa.gov/product/map/current/params/
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Universe today (att = t0), which is required for flat curvature(K = 0):

ρcrit = ρc,0 ≡
3c2H2

0

8πG
= (9.2±1.8)×10−27kg m−3. (2.8)

The relative density of each of the components can be writtenas fractions of the

critical density such thatΩx = ρx/ρc,0. Ωx is the density parameter. So the Fried-

mann equation 2.5 can be written in terms of the density parameters as

(

H(t)
H0

)2

=
Ωr

a4 +
Ωm

a3 +
1−Ωm−ΩΛ −Ωr

a2 + ΩΛ, (2.9)

and for curvatureK:

K =

(

H0

c

)2

(Ωm + Ωr + ΩΛ −1). (2.10)

Note thatΩr can be neglected, since it has a small contribution to the total energy

budget of the Universe today. So for a flat curvature Universe, the condition (Ωm+

ΩΛ = 1) applies.

One of the main focuses of cosmological observations over the past decade

has been to measure the cosmological density parameters to the highest precision

possible. Different probes have measured most of the parameters within reasonably

small errors and have shown the concordance of theΛCDM model.

One of the main goals of this thesis also is to use weak gravitational lensing

observables to constrain a subset of cosmological parameters, including the matter

density parameterΩm. Future chapters will explain the procedure further.

2.2 Cosmological Distances

The comoving distanceχ as shown in equation 2.3, is the fundamental distance

measure in cosmology. This distance remains constant between two comoving

observers. For a radial photon on the null geodesiccdt = −adχ one gets dχ =

−cda/(Ha2) 2. The comoving distance as a function of the density parameters can

2Note that the minus sign comes from the fact that the distanceis measured backwards in time,
from the observer to the source, whereas the cosmic time increases towards the observer.
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then be written as

Dcom(z1,z2) ≡ χ(z1,z2) =
c

H0

∫ a(z1)

a(z2)
da
[

aΩm + a2(1−Ωm−ΩΛ)+ a4ΩΛ
]

.

(2.11)

When z → ∞, χh is called the horizon and marks the largest comoving distance

such that the source and observer are in causal contact. The horizon size increases

with time, so that structures that are larger than the horizon at a given time will

enter the horizon at later times.

The transverse comoving separation, used to estimate the comoving volumes

is then

Dtrans= fK(χ)θ , (2.12)

whereθ is the angular size andfK(χ) is the comoving angular diameter distance

as shown in equation 2.2.

Another measure of cosmological distance is the angular diameter distance

Dang = δL/δϑ , which relates the physical size of an objectδL at redshiftz2 to

its apparent angular size on the skyδϑ as seen by observer at redshiftz1:

Dang(z1,z2) = a(z2) fK(χ(z1,z2)). (2.13)

The angular diameter distance is very important in gravitational lensing (see sec-

tion 3.2 for the lens equation). For theΛCDM cosmology, the maximumDang

occurs atz ≈ 1.5 and then decreases again at higher redshifts.

2.3 Large Scale Structure

As explained in previous parts the Universe is homogeneous and isotropic at large

scales, so the Friedmann-Robertson-Walker (FRW) cosmology (see sections 2.1)

is sufficient to describe the overall dynamics of the Universe. On smaller scales

however, the Universe is highly clustered (scales below fewhundred Mpc.) These

clumps of matter (today’s galaxies and cluster and filamentsetc.) originated from

very small density perturbations due to gravitational instabilities in the nearly uni-

form matter distribution of the early Universe. In this section we will describe the

basics of structure formation and evolution in the Universe.
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2.3.1 Linear Perturbation Theory

The density contrastδ is defined as

δ (xxx,a) ≡ ρ(xxx,a)− ρ̄
ρ̄(a)

, (2.14)

whereρ̄ is the average density for the FRW-Universe (Friedmann-Robertson-Walker

Universe, homogeneous and isotropic) at a given scale factor a, andxxx is the comov-

ing spatial position. In the regime of weak gravitational potential, and for small

adiabatic perturbations,δ ≪ 1, one can use linear Newtonian perturbation theory

to describe the structure evolution. The relation between the gravitational potential

and its corresponding density contrast is given by the Poisson equation,

∇2φ =
3H2

0Ωm

2a
δ , (2.15)

where the differentiation is with respect to the comoving coordinates. A general

form of the solutionδ can be written asδ (xxx,a) = δ+(a)△+(xxx) + δ−(a)△−(xxx).

The decaying modeδ−(a) is a fast vanishing function, so it can be neglected for

late times.The growing modeδ+(a) has the form

δ+(a) =
5Ωm

2a
da
dτ

∫ a

0
da′
[

1+ Ωm

(

1
a′

−1

)

+ ΩΛ
(

a′2−1
)

]− 3
2

, (2.16)

whereτ is the dimensionless time variableτ = H0t. This equation is normalized

such that for the Einstein-de-Sitter Universeδ+(a) = a for a > aeq. The value of

aeq ≈ 3.2−5Ω−1
m h−2, and represents the scale factor at the time the transition be-

tween radiation domination to matter domination occurred.Beforeaeq the growing

modeδ+ scales asa2. The growth factor is then defined as

D+(a) =
δ+(a)

δ+(a = 1)
, (2.17)

whereδ+(a = 1) is the linear density contrast extrapolated to the present epoch.

When only baryonic matter is considered, based on observations of CMB fluc-

tuations at the time of recombination (z ≈ 1000), the baryon density perturbations
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were on the order of 10−5. They could have only grown by a factor of 1/a ≈ 103

afterwards, leading to perturbations of the order 10−2 today. Observations show

perturbations of much larger amplitude than that, implyingthat baryon-only mat-

ter cannot explain the current structures. This is one of thestrongest arguments

for the existence of some non-baryonic, weakly interactingmatter in the Universe,

now called Dark Matter.

2.3.2 Growth Suppression

For density perturbations, there exists a critical scale called the Jeans length. This is

the minimum length at which a self-gravitating instabilityovercomes the opposing

pressure gradient. On lengths smaller than the Jean’s length, the opposing pressure

stops the density perturbations from growing. Before matter-radiation equality, the

Jean’s length was of the size of the horizon, hence no structure smaller than the

horizon could grow. A perturbation with a comoving wavelength λ > dh, however

could grow, and at some later point in time, when the horizon gets larger, enter

the horizon at scale factoraenter. If the entrance occurs before matter-radiation

equality, the perturbation gets suppressed compared to thesame scale perturbation

that enters the horizon after equality by a factor(aenter/aeq)
2. The size of the

horizon at the time of matter-radiation equality defines a characteristic length scale

for large scale structure,dh(aeq = 12(Ωmh2)−1 Mpc . In the matter domination

era however, this scale decreases to zero, and so structuresof all sizes start to

grow. In order to compare perturbations of all scales, one must consider the Fourier

counterparts of the density contrast,δkkk, wherekkk is the comoving wave-vector. The

transfer function is then defined [Eisenstein and Hu, 1998] as

Tk =
δk(a = 1)

δk(ai)

δk=0(ai)

δk=0(a = 1)
, (2.18)

wherek = 0 represents an arbitrarily large scale. The scale factorai of the initial

density fluctuationsδk(ai) has to be chosen such that at this time no scales of

interest have entered the horizon, so thatTk is independent ofai. The fitting formula
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given in [Bardeen et al., 1986] is

Tk =
ln(1+2.34q)

2.34q

[

1+3.89q+(16.1q)2 +(5.46q)3 +(6.71q)4
]− 1

4

(2.19)

whereq≡ k/(Γh)Mpc−1 andΓ is called the shape parameter, originally set toΩmh.

In 1994 ([Peacock and Dodds, 1994]) showed that the fitting formula 2.19 is also

valid for a small baryon contribution to the overall matter if the shape parameterΓ
is set to

Γ = Ωmh exp(−2Ωb). (2.20)

So an increase in baryon density shifts the transfer function to smaller scales with-

out changing its shape. This approach of including the baryonic matter contribu-

tion is only an approximation, since the acoustic oscillations in the baryon-photon

plasma before decoupling have not been taken into account.

2.3.3 Matter Power Spectrum andσ8

The matter density contrastδ is described as a random field, so it can only be

studied via its statistical properties. A random field can befully described by its

moments. In the case of Gaussian random field the first two moments are sufficient

to completely describe the field. We assume such Gaussian random fields to repre-

sent the initial inhomogeneities in the early Universe. As long as the perturbations

grow linearly they remain Gaussian. Most cosmological studies and experiments

focus on examining the power spectrum of the matter, which isthe Fourier trans-

form of the second order moments. The power spectrum of the density fluctuations

Pδ is defined as

〈δ̂ (kkk,a)δ̂ (kkk′′′,a)
∗〉 = (2π)3δD(kkk− kkk′′′)Pδ (k,a), (2.21)

whereδD is the Dirac delta function and the angle brackets representensemble

averages. For a given scale factor,a, the power spectrum depends only on the

modulus of the wave-vectork. We will show later that cosmic shear data can

directly provide a projected version of the power spectrum of density fluctuations.

The power spectrumPδ (k,a) for some later time can be calculated from the initial
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one as

Pδ (k,a) =
D2

+(a)T 2
k Pi(k)

D2
+(a)

. (2.22)

For the initial power spectrumPi(k)≡ P(k,ai), one can assume a simple and scale-

free power lawPi(k) ∝ kn, with the spectral indexn. The origin of the initial density

fluctuations is assumed to be quantum fluctuations at the Planck scale, which are

then inflated to macroscopic fluctuations. The normalization of the power spec-

trum is fixed by the parameterσ8, which is defined as the variance of the density

fluctuations in spheres of radius 8h−1 Mpc. Observationally, for the variance of

galaxy counts, one getsσ8 ≈ 1, hence the choice of radius size. However, the mea-

surements ofσ8 with different methods do not agree completely. Below are few

examples of such methods:

• Normalization by cosmic microwave background anisotropies, e.g. Banday

et al. [1997]. The fluctuations in the temperature of the microwave back-

ground can be translated into the amplitude of the power spectrum. These

measurements are done on large angular scales, so such a method is valid

for large physical scales (smallk) only. The other contamination arises from

the fact that CMB fluctuations measure the amplitude of both scalar and ten-

sor perturbation modes, where the density fluctuations resulting in growth

only originates from scalar modes.σ8 is partially degenerate withτ (the

re-ionization optical depth) andΩm.

• Normalization by the local variance of the galaxy counts (e.g. Bardeen et al.

[1986], Davis and Peebles [1983], White et al. [1987] and Kaiser [1984]).

This method is based on the idea that galaxies are unbiased tracers of the

underlying dark matter fluctuations. However, there are uncertainties on how

galaxies trace dark matter and so values different than unity are expected

for σ8. So if we can measure the local variance of galaxy counts within

a fixed volume, as well as setting an expression for the bias, we can fix

the normalization of the density power spectrum. This fixed volume has

been conventionally chosen to be a sphere with radius of 8h−1Mpc, since the

galaxy number r.m.s. was shown to be 1. on such a scale.
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• Normalization by the local abundance of galaxy clusters (e.g. White et al.

[1993]). Assuming that galaxy clusters form as a result of dark matter den-

sity perturbations, we can use the spatial cluster number density to deter-

mine the amplitude of the power spectrum. The point of this method is

that the cluster normalization can only determine the amplitude of the power

spectrum at scales of order of 10h−1Mpc, which is the typical dark mat-

ter fluctuation scale for galaxy clusters to collapse. When dealing with

gravitational lensing by large scale structure, the scale sensitivity is around

k−1
0 ∼ 12(Ω0h2)Mpc, which makes the galaxy cluster normalization method

favourable. The main problem with this method however, arises from the

mass calibration, which uses the X-ray mass-temperature relation, which is

poorly known.

In summary,σ8 represents the variance of the density fluctuations and can be

thought of as an indicator for the level of clumpiness in the matter distribution in

the Universe. Along with the matter density parameterΩm, σ8 is the other cos-

mological parameter that this thesis aims to provide constraints on, using cosmic

shear measurements. Cosmic shear, like many other cosmological probes, is de-

generate for some cosmological parameter combinations. The idea in this thesis

is to explore how the non-conventional cosmic shear statistics help break the de-

generacies within the cosmic shear capabilities and also incombination with other

cosmological probes. Better estimation ofσ8 andΩm allows for the alleviation of

the residual parameter degeneracies Komatsu et al. [2009].A noticeable example is

the mass of neutrino obtained by CMB measurements, which is degenerate withσ8

parameter (Tereno et al. [2009]; Dunkley et al. [2009] ). Independent constraints

on σ8 parameter by cosmic shear measurements can constrain the neutrino mass

indirectly.

2.3.4 Matter Bi-spectrum

In the highly non-linear regime via gravitational collapse, non-Gaussian features

in the matter field arise. To inspect the deviations from Gaussianity, the inclusion

of higher order statistics is inevitable. The Fourier transform of the third order

moment is referred to as the bispectrum. Even if the initial conditions are Gaussian,
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the non-linear dynamics leads to development of non-Gaussianities in the density

field. The density contrast was defined previously in equation 2.14, whereρ is the

matter density, withρ ≥ 0. Since the average density contrast〈δ 〉= 0 andδ ≥−1,

this implies that in the highly non-linear regime,〈δ 2〉, the probability distribution

of the density contrastδ , will be far from Gaussian. Weak gravitational lensing

effects arise from the total matter distribution, so the higher order lensing statistics

can be used to probe the non-Gaussianity. The three-point correlation function is

the lowest-order statistic that can be used to detect non-Gaussianity. The Fourier

space counterpart of it is called the bispectrum and is defined as

〈δ̂ (kkk1)δ̂ (kkk2)δ̂ (kkk3)〉 = (2π)3δD(kkk1 + kkk2 + kkk3)Bδ (k1,k2,k3), (2.23)

whereδD is the Dirac delta function. Isotropy implies thatB(k1,k2,k3) is solely a

function of the wavenumberskkk111, kkk222 andkkk333.

2.3.5 Non-linear Evolution

By simple observations, one can see various small-scale structures that are formed

at later cosmic times, such as galaxies and clusters of galaxies. To describe these

phenomena linear perturbation theory is no longer sufficient, and non-linear ap-

proaches are needed. Non-linear perturbations are seeds for forming structures

such as galaxies and clusters. In order to include such effects in the theoretical pre-

dictions, large numerical simulations are performed. Eachsimulation realization

starts with a Gaussian random field, which then evolves with the initial power spec-

trum over time. The resulting dark matter structures, appearing at later times in the

simulation, are then used to find a fitting formula for the non-linear power spec-

trum. Two popular choices of such fitting formulae are currently widely used in

cosmological studies: Peacock and Dodds [Peacock and Dodds, 1996] and Halofit

[Smith et al., 2003].

Figure 2.1 shows the linear and non linear matter power spectrum calculated

with thesmith2.c code developed by Martin Kilbinger, based onhalofit.f

of Smith et al. [2003]. We used the following cosmological parameters:Ωm =

0.279,ΩΛ = 0.721,σ8 = 0.817,Γ = 0.25 andn = 0.96. The redshift distribution
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Figure 2.1: Matter power spectrumPδ .

is based on Brainerd et al. [1996]:

p(z)dz =
β

z0Γ(3/β )

(

z
z0

)2

exp−
(

z
z0

)β
dz, (2.24)

with the free parametersβ andz0, which were chosen to be 1.5 and 1.0, respec-

tively. Γ denotes the Eulerian gamma function (different from the power spectrum

shape parameter). One can see that the two nonlinear formulae are relatively sim-

ilar. However, the linear power spectrum fails to representthe non linear effects

of the power spectrum and hence it is very important to include the non-linear

corrections.

The aim of this chapter was to provide the reader with a basic foundation in

cosmology, as will be needed to follow the future chapters, when theoretical predic-

tions are used against numerical simulations and as means ofproducing likelihood

estimations for the cosmological parameters.
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Chapter 3

Gravitational Lensing and

Cosmic Shear

In this chapter we explain the basics of gravitational lensing in general and the

weak lensing branch of it in particular. We discuss the theory of lensing along with

the lens equations and the lensing shear and convergence, which will be extensively

used in the later chapters. We introduce the shearγ and convergenceκ and show

their relationship. Later when producing simulations we will follow the process

explained in this chapter to construct the convergence and shear maps. We also

show the link between the convergence and matter power spectra, which is the main

building block of relating lensing measurements with cosmological parameters.

Throughout this chapter, the bold symbols represent vectors, while the non-bold

symbols represent scalars.

3.1 The Deflection Angleα̂ and Thin Lens
Approximation

In 1915, Einstein predicted a shift in the position of stars near the Sun due to the

deflection of light caused by the Sun’s gravitational field, and in 1920, measure-

ments during a solar eclipse confirmed the predictions. Soonafterwards, it was

realized that for certain lens configurations, large enoughdeflections can occur and

produce multiple images of background sources. Consequently in 1979, the first
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double image of the lensed quasar 0957+561 was discovered. Since then gravita-

tional lensing has become a major research area in the astronomical field.

Deflection angle is the most basic parameter in gravitational lensing, which

quantifies the light deflection due to a tidal fieldφ of a certain matter distribution.

In a simple case of a point mass, the Schwarzchild radius isRs= 2GM/c2. The path

of a light ray coming from a distant source, passing the pointmass at a distanceξ ≫
Rs will be bent due to the gravitational potential of the point mass. The distance

ξ has to be much smaller than the distance between the source, lens and observer.

The path of the light can then be approximated by piecewise straight lines. The

deflection angle is much smaller than unity and can be writtenas

α̂ =
4GM
c2ξ

. (3.1)

In the case of an extended distribution of point massesmi, assuming that the

impact parameter is much larger than the Schwarzchild radius, one can write the

deflection angle as the sum of individual deflections. Consider a coordinate system

wherer3 is along the direction between the lens and the observer, and(r1,r2) rep-

resents the plane perpendicular to this direction. So the deflection angle at position

ξξξ is

α̂αα(ξξξ ) =
4G
c2 Σimi(ξξξ ′′′

,r3)
ξξξ −ξξξ ′′′

|ξξξ −ξξξ ′′′|2

=
4G
c2

∫

d2ξ ′
∫

dr3ρ(ξξξ ′′′
,r3)

ξξξ −ξξξ ′′′

|ξξξ −ξξξ ′′′|2
.

Here ρ represents the continuous mass distribution. Note thatξξξ is now a two-

dimensional quantity. By defining the surface mass density∑(ξξξ ) =
∫

dr3ρ(ξξξ ′′′
,r3),

the deflection angle can be written as

α̂αα(ξξξ ) =
4G
c2

∫

d2ξ ′Σ(ξξξ ′′′
)

ξξξ −ξξξ ′′′

|ξξξ −ξξξ ′′′|2
. (3.2)

The above expression is valid as long as the extension of the lens along the path of

light is significantly smaller than the distance between source, lens and observer.
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This condition is called the thin lens approximation, and itis well satisfied for

lensing by galaxies and clusters, but fails in the case of thecosmic shear, which is

lensing caused by the whole span of large-scale structure along the line of sight.

3.2 The Lens Equation

The lens equation relates the position of the images and the source by the geo-

metrical configuration of the lensing system, as shown in figure 3.1. LetDd be

the distance between the lens (deflector) and observer,Ds the distance between the

source and observer, andDds the distance between the lens and source. The lens

and source planes are perpendicular to the line of sight, connecting the observer to

the lens. The source is located at distanceηηη from this optical axis and the impact

parameter isξξξ . One can establish the following relation with the aid of thesimilar

triangles theorem

ηηη =
Ds

Dd
ξξξ −Ddsα̂αα(ξξξ ). (3.3)

Converting distances to angles viaηηη = Dsβββ andξξξ = Ddθθθ , and defining the re-

duced deflection angleααα(θθθ ) ≡ Dds/Ds · α̂αα(Ddθθθ ) results in the simple form of the

lens equation:

βββ = θθθ −ααα(θθθ ). (3.4)

So the lens equation relates the source position,βββ , to the observed position(s)θθθ .

The deflection angleααα depends on the mass distribution of the deflector.

3.3 Convergence and Shear

In this section we explain the definitions for the lensing convergence and shear, as

these terms will be extensively used throughout this thesis.

The critical surface mass density is defined as:

Σcr ≡
c2

4πG
Ds

DdDds
. (3.5)

One can then define the dimensionless surface mass densityκ ≡ ∑(Dd)/∑cr, also

called convergence. The value ofκ distinguishes between different lensing regimes.

A lens system withκ ≥ 1 is called a “strong” lens andκ ≪ 1 represents a “weak”
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Ds

Dd

Dds

θ

β

α̂

η

ξ

Observer

Lens plane

Source plane

Figure 3.1: The basic lensing configuration for a source, located at distance
Ds and a mass concentration at distanceDd. The optical axis connects
the observer and the center of the mass concentration and extends to the
source plane. The source plane is perpendicular to the optical axis at
the source distance. The cross section of optical axis with the planes
are chosen to be the origins of the coordinate systems on the planes.α̂
denotes the deflection angle,βββ is the angular position of the source in
absence of the deflector plane andθθθ is the angle by which, the source
is observed. All the angles are two-dimensional vectors, drawn here as
projected angles for simplicity.
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lensing system. Using the definition of critical surface mass density in equation

3.5, one can rewrite equation 3.2 as

ααα(θθθ ) =
1
π

∫

d2θ ′κ(θθθ ′′′)
θθθ −θθθ ′′′

|θθθ −θθθ ′′′|2
. (3.6)

The deflection angle is the gradient of the so-called deflection potential,ααα = ∇ψ ,

which is:

ψψψ(θθθ ) =
1
π

∫

d2θ ′κ(θθθ ′′′) ln |θθθ −θθθ ′′′|. (3.7)

This potential satisfies the 2-D Poisson equation

∇2ψ = 2κ . (3.8)

For the lens equation 3.4, the Jacobian of the mapping can be written as

∂βi

∂θ j
≡ Aij = δij −

∂ 2ψ
∂θi∂θj

. (3.9)

The Jacobian maps the intrinsic position to the observed position. The shear is then

defined as

γ1 ≡
1
2
(∂1∂1ψ −∂2∂2ψ), γ2 ≡ ∂1∂2ψ . (3.10)

For convergenceκ one can write

κ ≡ 1
2
(∂1∂1ψ + ∂2∂2ψ). (3.11)

The Jacobian matrix, parameterized with convergence and shear, can be written

as

A =
∂βi

∂θi
=

(

1−κ − γ1 γ2

γ2 1−κ + γ1

)

. (3.12)

As seen in equations 3.10 and 3.11, shearγ and convergenceκ are interrelated

through the gravitational potential. In order to obtain thedirect relation between

shear and convergence one rewrites these equations in Fourier space:

κ̂(ℓℓℓ) = −1
2
(ℓ2

1 + ℓ2
1)ψ̂(ℓℓℓ); (3.13)
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γ̂1(ℓℓℓ) = −1
2
(ℓ2

1− ℓ2
1)ψ̂(ℓℓℓ); (3.14)

γ̂2(ℓℓℓ) = −ℓ2
1ℓ

2
2ψ̂(ℓℓℓ). (3.15)

Here ℓ is the two dimensional wave vector, conjugate toθθθ . The linear relation

between the transformed componentsκ̂, γ̂1 andγ̂2 can be written as

(

γ̂1

γ̂2

)

= ℓ−2

(

ℓ1
2− ℓ2

2

2ℓ1ℓ2

)

κ̂ , (3.16)

κ̂ = ℓ−2[(ℓ2
1− ℓ2

2),(2ℓ1ℓ2)]

(

γ̂1

γ̂2

)

. (3.17)

We take advantage of equations 3.16 and 3.17 later in this thesis when convert-

ing simulated convergence maps into shear maps. Also this isthe basis of mass

reconstruction using lensing. We can quantitatively reconstruct the surface mass

distribution of a cluster lens using the method of Kaiser andSquires [1993], which

is based on the procedure above. Figure 3.2a shows a sample ofthe simulatedδ -

maps that are used in other parts of this thesis. A whole series of suchδ -maps from

the source redshift to the observer are used to generateκ-maps by integration over

the source-lens geometry (See figure 3.2b). These maps are then turned into shear

maps by using the formalism above. The resulting shear maps for the particular

κ-maps shown are presented in figure 3.3a and 3.3b.

In analogy to equation 2.21 the power spectra of the convergence and shear are:

〈κ̂(sss)κ̂∗(sss′′′)〉 = (2π)2δD(sss− sss′′′)Pκ(s), (3.18)

〈γ̂(sss)γ̂∗(sss′′′)〉 = (2π)2δD(sss− sss′′′)Pγ(s), (3.19)

and from equations 3.13, 3.14 and 3.15 we obtain thatPκ = Pγ .

Based on Liouville’s theorem1, the surface brightness is conserved by gravita-

tional lensing, so the observed intensityI at a positionθθθ is related to the intensity

1Liouville’s theorem states that, an object at redshiftz with radiation surface brightnessie, as
measured by an observer at rest, has observed surface brightnessio = ie(1+ z)−4.
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Figure 3.2: (a) The simulatedδ -map. (b) The simulatedκ-map at redshift
z=1.0. The maps span 3.5◦ on each side.
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Figure 3.3: (a) The simulatedγ1 and (b)γ2-maps atz=1.0. The maps span
3.5◦ on each side.
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Figure 3.4: The effect of shear and magnification on the image of a circular
object. Convergence causes magnification and shear stretches the object
into an elliptical shape (shear).

in the source planeIs as: I(θθθ ) = Is(βββ (θθθ )). Assuming that the angular extent of

the source is smaller than the scale on which the lens properties change, one can

linearize this relation in the vicinity of the image position θθθ 000 to

I(θθθ ) = Is(βββ (θθθ 000)+ A(θθθ000)(θθθ −θθθ000)), (3.20)

which maps a circular source to an elliptical image. The convergence is the diago-

nal part of the Jacobian, so it isotropically magnifies the image, whereas the shear

γ is the trace-free part and distorts the image. Figure 3.4 shows schematically the

effects of shear and magnification on a circular source.

3.4 Weak Gravitational Lensing Measurements

The regime in whichκ ≪ 1 and|γ | ≪ 1 is referred to as the weak lensing regime.

There, the level of distortion of the distant source galaxies is much smaller than the

typical intrinsic ellipticities of those galaxies. This iswhy it is impossible to tell

whether an individual source is affected by it or not. By observing a large number

of galaxies, however, one can statistically detect the weakshear. In practice, in

order to measure the shape of galaxies, most of which are faint and small, we rely

on the brightness distribution of the image on the Charged Coupled Device (CCD).
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First the centre of the isolated brightness distribution islocated by:

θ̄θθ ≡
∫

d2θqI [I(θθθ )]θθθ
∫

d2θqI [I(θθθ )]
, (3.21)

whereqI is a weight function. Next the second-moment tensor of the brightness

distribution is calculated as

Qi j ≡
∫

d2θqI [I(θθθ )](θi − θ̄i)(θ j − θ̄ j)
∫

d2θqI [I(θθθ )]
, i, j = 1,2. (3.22)

The complex ellipticityε is then defined as:

ε ≡ Q11−Q22+2iQ12

Q11+ Q22+2(Q11Q22−Q2
12)

1
2

. (3.23)

The intrinsic ellipticity of the sourceεs is the related to the observed ellipticity

εo as:

εs =







εo−g
1−g∗εo for |g| ≤ 1;
1−εo∗g
εo∗−g∗ for |g| > 1.

(3.24)

Hereg is the reduced shear, defined as

g ≡ γ
1−κ

. (3.25)

For the case of weak lensing whereκ ≪ 1 and|γ | ≪ 1, theng ≈ γ , so we have

εo ≈ εs+ γ , (3.26)

which states that the observed ellipticity is the sum of the intrinsic ellipticity and

the distortions caused by gravitational lensing. This makes no assumption on value

of εo. The upper limit ofεo is equal to unity by construction. One can simply

assume that the intrinsic orientation of source galaxies israndom, due to statistical

isotropy of the large scale structure. Then the expectationvalue of the intrinsic

ellipticity 〈εs〉 = 0 for a large enough sample. Therefore, the observed ellipticity

can be taken as a very noisy, but unbiased estimator of the shear
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〈εo〉 = γ . (3.27)

This is the idea behind the data processing which produced the data set used in our

analysis in future chapters.

3.5 Cosmic Shear

Cosmic shear is the weak gravitational lensing of high-redshift galaxies due to

the matter distribution inhomogenities of the large-scalestructure in the Universe.

Cosmic shear was first detected by Van Waerbeke et al. [2000],Kaiser et al. [2000],

Wittman et al. [2000] and Bacon et al. [2000] in 2000. The light bundles passing

through the large-scale structure of the Universe get distorted, and as a result the

shape and size of the observed galaxies are altered. Therefore, the statistics of such

distortions can be directly linked back to the statistical properties of the large-scale

structure (Gunn [1967], Blandford et al. [1991], Miralda-Escude [1991] and Kaiser

[1992]). Cosmic shear involves the investigation of the correlation between the dis-

torted shapes of the galaxies and the underlying cosmological properties responsi-

ble for the amount of distortion. The main challenge here is that these distortions

are very weak and hence difficult to measure. Also, unlike theordinary weak lens-

ing discussed before, the light deflection does not occur in asingle lens plane any

longer, but throughout the full 3-D matter distribution. This implies that a modi-

fied prescription of weak lensing optics is needed. In other words, the difference

between cosmic shear and general weak lensing is that the thin lens approximation

is no longer valid, since the light emitted by background sources gets continuously

distorted by the matter distribution along the line of sight. One then has to calculate

the detailed path of the distorted light. Here we skip the detailed derivation of light

bundle propagation through the 3-D matter distribution. The reader is referred to

Bartelmann and Schneider [2001] for more details. The conclusion there is that,

although the thin lens approximation is no longer valid in case of cosmic shear,

one can still consider a stack of multiple lens planes to reconstruct the large-scale

structure lensing effect. So for sources at a single redshift zs in the lowest-order

approximation, the 3-D matter distribution can be considered as an effective sur-

face mass densityκeff as ordinary weak lensing. Thisκeff can be obtained by line
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of sight integration of the density contrastδ , weighted by geometrical factors en-

tering the lens equation. In order to calculate the effective surface mass density, we

need to relateκ to the fractional density contrastδ . Recall equation 2.15 and the

3-D Poisson equation 3.8, to obtain the effective convergence as

κ(θθθ ,χ) =
3H2

0Ωm

2c2

∫ χ

0
dχ ′ fK(χ ′) fK(χ − χ ′)

fK(χ)

δ ( fK(χ ′)θθθ ,χ ′)
a(χ ′)

. (3.28)

As can be seen above, the convergenceκ is proportional to matter density param-

eterΩm since lensing is sensitive to∆ρ ∝ δΩm, not just the density contrast itself.

From now on we drop the phrase “effective” from the naming forsimplicity. Note

that for cosmic shear analysis we always mean the effective convergence due to the

full large-scale structure along the line of sight. When thesource galaxies follow

a redshift distribution withpz(z)dz = pχ(χ)dχ , the effective surface mass density

becomes

κ(θθθ) =

∫

dχ pχ(χ)κ(θθθ ,χ) =
3H2

0Ωm

2c2

∫ χh

χ
dχg(χ) fK(χ)

δ ( fK(χ)θθθ ,χ)

a(χ)
, (3.29)

with

g(χ) =

∫ χh

χ
dχ ′pχ(χ ′)

fK(χ ′− χ)

fK(χ ′)
, (3.30)

which is the source redshift weighted lens efficiency factorDds
Ds

for a density fluc-

tuation at distanceχ . χh is the comoving horizon distance, obtained whena → 0.

3.6 Link Between Matter and Convergence Power
Spectra

It is very important to find the relationship between matter and convergence power

spectra. Weak lensing observations provide an estimate of the convergence power

spectrum. In order to provide cosmological interpretationfrom the weak lensing

signal, the relationship between the convergence power spectrum and the underly-

ing matter power spectrum must be established. This is the main building block of

all lensing predictions, and the basis of the lensing measurement interpretations.

By observing the shapes of the galaxies, one can use the lensing observables to
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estimate the lensing statistics through various methods. The lensing statistics are

related to the convergence power spectrum, which in turn canbe linked to the

matter power spectrum and its cosmological dependences. Itis assumed that the

density fieldδ is a random field realization. Cosmologists are trying to findthe

properties of this random field, not a specific realization ofit. The second order

statistical properties of the density field can be describedin terms of the power

spectrum. Limber’s equation (Limber [1953]) is the basis ofrelating the properties

of the random field to its power spectrum. For theδ (homogeneous and isotropic)

3D random field, one can write the 2D projections as

gi(θθθ ) =

∫

dχqi(χ)δ ( fK(χ)θθθ ,χ), (3.31)

which are also homogenous and isotropic random fields. Theqis are the weight

functions. The correlation function is then

C12 = 〈g1(ϕ1)g2(ϕ2)〉 ≡C12(|ϕϕϕ1−ϕϕϕ2|), (3.32)

which only depends on the modulus of the separation (ϕϕϕ) between the two points.

Considering the Fourier transform ofC12, one can obtainP12, which is the conver-

gence power spectrum and depends linearly onPδ (k) (Kaiser [1992] and Kaiser

[1998]). We have

P12(ℓ) =

∫

dχ
q1(χ)q2(χ)

f 2
K(χ)

Pδ

(

ℓ

fK(χ)
,χ
)

, (3.33)

when the large scale structure inδ are much smaller than the effective range∆χ of

the projection. Hereℓ is the Fourier transform of the variableθ , and is related toθ
by s = 2π/θ = 2.16×104 (θ/arcmin)−1. The 2D power-spectrum at angular scale

1/ℓ can be found from the 3D power at length scalefK(χ)(1/ℓ), integrated overχ .

Comparing equation 3.28 and 3.33, we see thatκ(θθθ) is a projection ofδ with the

weightsq1(χ) = q2(χ) = (3/2)(H0/c)2Ωmg(χ) fK(χ)/a(χ). So we obtain

Pκ(ℓ) =
9H4

0Ω2
m

4c2

∫ χh

0
dχ

g2(χ)

a2(χ)
Pδ

(

ℓ

fK(χ)
,χ
)

. (3.34)
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The advantage here is that by use of weak lensing observables, we can measure

Pκ , which can be used to constrain the 3D power spectrumPδ . In the next chapter

we explain how the various cosmic shear statistics are related to the convergence

power spectrumPκ .

In section 2.3.5 we showed the matter power spectrum for the linear and non-

linear regimes. Here, using equation 3.34, we show the convergence power spec-

trum for the same cosmological parameters in figure 3.5. One can see that the

nonlinear effects kick in atℓ = 100 and larger. These scales correspond to angular

sizes on the sky of the size of 100 arcminutes and below. The exact turn off point

depends on the redshift distribution and cosmological model. On the other hand,

the weak lensing sensitivity peaks at about 10 arcminutes onthe sky, which cor-

responds to structure size, of around 1h Mpc−1, since that is the scale of galaxy

clusters. This scale however, falls in the non-linear regime of the power spectrum.

This means that the scales probed by weak lensing are within the non-linear part of

the power spectrum. We can obtain constraints on these parameters by comparing

the lensing signal with the non-linear predictions. The non-linear scales correspond

to galaxy clusters and measurements of their abundance yields a robust measure of

the power near this scale for a given matter densityΩm. The point to emphasize

here is that one needs to apply the nonlinear corrections to the convergence and

matter power spectrum before correct interpretation of lensing measurements can

be made.
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Figure 3.5: The linear and nonlinear convergence power spectrumPκ .
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Chapter 4

Cosmic Shear Statistics

In chapter 3 the connection between cosmology and cosmic shear was discussed.

Cosmic shear is a direct measure of the projected matter power spectrum which

depends itself on the cosmological model. Shear in the weak lensing regime can

only be measured statistically, by averaging over a large number of galaxies. In

this chapter we explain the various statistics of cosmic shear, which have been

established, studied and widely used over the past few years. We then discuss

the standard estimators of the shear statistics that are used to measure the shear

from observed galaxy ellipticities. For more details on thetopic of weak lensing

statistics, see Schneider et al. [2002a]. We start with the two-point statistics and

then move on to higher moments. The inhomogeneities that cause the shear are

isotropic (no preferred direction). This results in cosmicshear acting as an isotropic

random field, with all the first moments equal to zero. The focus of this thesis is to

explore the cosmic shear estimators beyond the standard two-point statistics into

the three-points and other alternative methods, such as using the full shape of the

probability distribution function. Three-point statistics can be used to measure

the non-Gaussianity of the large-scale structure. Also by considering alternative

non-conventional cosmic shear estimators one can in principle break the existing

degeneracies between cosmological parameters when only two-point statistics are

considered. Here we first set the foundation using the two-point statistics and then

extend the discussion to higher orders.

As explained earlier, shear is a two-component quantity (equation 3.10). We
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Figure 4.1: Theγt-γr orientation with respect to each other.

can then construct four two-point correlation functions with different combinations

of the shear components. The coordinate system used to decompose the shear ele-

ments is chosen to be the direction of the vectorθ connecting the pair of galaxies.

One defines the tangential and cross-components of the shearwith respect to that

direction

γt = −ℜ(γe−2iϕ) = −γ1cos2ϕ − γ2sin2ϕ ; (4.1)

γr = −ℑ(γe−2iϕ ) = γ1 sin2ϕ − γ2cos2ϕ . (4.2)

Hereϕ is the polar angle of the connecting vectorθ . Figure 4.1 shows the tan-

gential and cross-components of the shear. Note that the twocomponents have 45◦

angle separation. Also figure 4.2 shows the range of both ellipticity components

and how they relate to the orientation of an ellipse.

4.1 Two-point Correlation Function

The two-point shear correlation functionsξ+ andξ− are defined as

ξ±(θ) ≡ ξtt ±ξrr, (4.3)

where

ξtt = 〈γt(ϑ)γt(ϑ + θ)〉, (4.4)
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Figure 4.2: The ellipse orientation for a range of shear componentγ1 andγ2

values.

and

ξrr = 〈γr(ϑ)γr(ϑ + θ)〉. (4.5)

Since the shear caused by the large scale structure is a homogeneous and

isotropic random field, equations 4.3 only depends on the size of the connecting

vectorθ . The other two correlation functions that contain mixed terms ofγt andγr

vanish due to parity symmetry. In parallel one can write the correlation function

for convergenceκ as the following:

ξκκ = 〈κ(ϑ)κ(ϑ + θ)〉. (4.6)

The Fourier transform of the convergence two-point correlation function is defined

as the convergence power spectrumPκ , since the convergence field can be consid-

ered as a homogeneous and isotropic random field. Using equation 3.14 one can
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write equation 4.3 in Fourier space as in Kaiser [1992] and find

ξ(+,κ)(θ) =
1

2π

∫ ∞

0
dssPκ(s)J0(sθ), (4.7)

ξ−(θ) =
1

2π

∫ ∞

0
dssPκ(s)J4(sθ), (4.8)

whereJν is the Bessel function of the first kind of orderν . The above equations

indicate how the two-point correlation functions are related to the convergenceκ
power spectrum and hence the cosmology. Later in chapter 5 wetake advantage of

these relations and test the sanity of the simulations against theoretical predictions

based on the input cosmology of the simulations.

4.2 Top-hat Variance

In addition to the two-point correlation function, one can consider two-point esti-

mators inside of an aperture. One choice of the aperture window is of the shape of

a “top-hat” within which the shear dispersion can be calculated Kaiser [1992]. The

mean shear inside an aperture of radiusθ can be written as

γ̄(θ) =
1

πθ2

∫

aperture
d2ϑγ(ϑ). (4.9)

The dispersion of the square of the absolute mean shear is then

〈|γ̄ |2(θ)〉 =
1

2π

∫ ∞

0
dssPκ(s)

(

2J1(sθ)

sθ

)2

, (4.10)

which shows the connection to cosmology throughPκ . Note thatITH(sθ)=
(

2J1(sθ )
(sθ )

)

andI2
TH(sθ) is the top-hat filter function (Blandford et al. [1991]). Equation 4.10

is used to make theoretical predictions.

In practice the top-hat variance is calculated through integrations of the two-

point correlation functionsξ+ andξ−, whereξ± are in turn measured by correlating

the shear values of pairs of galaxies in the data set, as shownin equation 4.4 and

4.5. In order to estimate the top-hat variance〈|γ̄ |2(θ)〉 from the 2-point correlation
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functions, the following integration has to be calculated

〈|γ̄ |2(θ)〉 =

∫ θ

0

dϑ
θ2 ξ+(ϑ)S+(

ϑ
θ

);

=

∫ θ

0

dϑ
θ2 ξ−(ϑ)S−(

ϑ
θ

). (4.11)

HereS+ andS− are well defined functions given in Schneider et al. [2002b].The

blue line in figure 4.3 shows the filter response function of the top-hat filter in

comparison to other filters, which we will discuss in the following section.

4.3 Aperture Mass Variance

Another aperture based statistic is the dispersion of so called aperture mass [Schnei-

der et al., 1998]. The aperture mass is defined as

Map(θ) =

∫

aperture
d2ϑU(ϑ)κ(ϑ), (4.12)

whereκ is the convergence andU(ϑ) is the compensated filter, i.e.
∫ θ

0 dϑϑU(ϑ)=

0. The choice ofU(ϑ) is arbitrary as long as the function chosen is compensated.

One can also expressMap in terms of the tangential shear:

Map(θ) =

∫

aperture
d2ϑQ(ϑ)γt (ϑ), (4.13)

with the condition thatQ(ϑ) = 2
ϑ 2

∫ ϑ
0 dρρU(ρ)−U(ϑ). Note that the tangential

shear component at each point is taken with respect to the centre of the aperture.

The dispersion ofMap can be calculated as follows:

〈M2
ap(θ)〉 =

∫

d2θ ′U(θ ′)
∫

d2θU(θ)〈κ(θ ′)κ(θ)〉

=
∫

d2θ ′U(θ ′)
∫

d2θU(θ)
∫

d2s
(2π)2 eis·(θ ′−ϑ )Pκ(s)

= 2π
∫ ∞

0
dssPκ(s)

(

∫ θ

0
dϑϑU(ϑ)J0(sϑ)

)2

. (4.14)

The form of the compensated filterU is general as long as it satisfies the con-
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dition above. However, several popular choices have widelybeen used in weak

lensing studies. One of these is the functional form used by Schneider et al. [1998]:

Uθ (ϑ) =
9

πθ2

(

1− ϑ
θ2

)(

1
3
− ϑ2

θ2

)

. (4.15)

This has correspondingQ(ϑ):

Qθ (ϑ) =
6

πθ2

(

ϑ
θ2

)(

1− ϑ2

θ2

)

. (4.16)

The dispersion ofMap then simplifies to

〈M2
ap(θ)〉 =

1
2π

∫ ∞

0
dssPκ(s)

(

24J4(sθ)

(sθ)2

)2

. (4.17)

Note here thatIℓ(sθ) = 24J4(sθ)/(sθ)2 andI2
ℓ (sθ) is the aperture mass filter func-

tion. The green line in figure 4.3 shows the filter response function of the aperture

mass filter used here.

Another choice of aperture function form was suggested by van Waerbeke

[1998] and later Crittenden et al. [2002], which hereafter will be referred to as

the compensated Gaussian filter (not to be confused with the aperture mass filter

we explained above). For this choice of filter form,U(ϑ) is

Uθ (ϑ) =
ϑ2

2πθ2

(

1− ϑ2

4πθ2

)

exp

(

− ϑ2

2θ2

)

, (4.18)

with the corresponding shear filterQ(ϑ) as

Qθ (ϑ) =
ϑ2

4πθ2 exp

(

− ϑ2

2θ2

)

. (4.19)

This choice leads toIℓ(sθ) = (sθ )2

2 exp
(

− (sθ )2

2

)

. The filter response of the com-

pensated Gaussian filter is shown in cyan (light blue) in figure 4.3 The disadvantage

of the compensated filter is its broad support, although theyhave a strong fall off

for ϑ ≫ θ . The advantage, however, is the convenience of analytic properties of

this filter, which is the reason we compute the higher order statistics on the data
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using the compensated Gaussian filter in the future chapter 7.

In practice one can estimate〈M2
ap〉 from the shear correlation in the data. The

relationship between the two-point shear correlation functions and the aperture

statistic is as follows:

〈M2
ap〉(θ) =

∫ 2θ

0

dϑϑ
θ2 ξ±(ϑ)T±

(

ϑ
θ

)

, (4.20)

whereT± are simple well defined functions which depend on the choice of the

compensated filter function. For the standard aperture massfilter the form ofT±
can be found in Schneider et al. [2002b], whereas for the compensated Gaussian

filter the functional form is shown in Jarvis et al. [2003]. Insummary all two-point

statistics can be estimated from the two-point shear correlation function. This is

very useful, because each of the two-point statistics are related to the convergence

power spectrum which, in turn is related to the matter power spectrum and hence

cosmological parameters of the Universe.

Like all the other two-point statistics discussed above, the aperture mass vari-

ance is also a linear function of the convergence power spectrum. Each of the

two-point statistics is a unique filtered version of the convergence power spectrum.

The filter functions for each case are plotted in figure 4.3.

4.4 E- and B-modes of the Shear

The relations between shear, convergence and gravitational potential leads to the

following (Kaiser [1995] and Schneider et al. [2002a]):

∇κ =

(

∂1γ1 + ∂2γ2

∂2γ1−∂1γ2

)

≡ u. (4.21)

The vectoru can be considered as the potential ofκ . However the noise and

the systematic measurement errors from the data, introducea curl (non-gradient)

component tou which is referred to as the “B-mode”. Also the intrinsic alignment

of source galaxies [Brown et al., 2002], source clustering of galaxies and higher

order lensing (lens-lens coupling) can cause non-gradientterms [Schneider et al.,

2002a]. In analogy to the electromagnetic field and in order to separate the gradient
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Figure 4.3: The filter response for various functions involved in the lensing
statistics. The red line showsJ0(x) for ξ+, the black lineJ4(x) for ξ−,
the green line(24J4(x)

x2 )2 for regular aperture map Map, the dark blue

line (2J1(x)
x )2 for top-hat, and finally the cyan (light blue) line shows

( x2

2 exp(− x2

2 ))2 for the compensated Gaussian filter, which is a form of
aperture filter.

and curl parts ofu, new quantitiesκE andκB are defined such that:

∇2κE = ∇ ·u; (4.22)

∇2κB = ∇×u ≡ ∂1u2−∂2u1. (4.23)

Also the E- and B-mode potentials are defined by the Poisson equation

∇2ψE,B = 2κE,B, (4.24)
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where the E- and B-modes can be combined into complex quantities for simplicity

of calculations:

ψ ≡ ψE + iψB; (4.25)

κ ≡ κE + iκB. (4.26)

So the complex shearγ = 1
2(∂11− ∂22)ψ + i∂12ψ , with respect to the new po-

tential can be written as

γ1 + iγ2 =
1
2
(∂11ψE−∂22ψE)−∂12ψB + i[∂12ψE +

1
2
(∂11ψB −∂22ψB)]. (4.27)

The convergence power spectrum can also be decomposed into E- and B-modes,

Pκ = PE
κ + PB

κ , such that the following relationships hold:

〈κ̂(s)κ̂∗(s′)〉 = 〈γ̂(s)γ̂∗(s′)〉 = (2π)2δD(s−s′)(PE
κ (s)−PB

κ (s)), (4.28)

wherePE
κ andPB

κ are the spectral power densities ofκE andκB from equation 4.26.

Then, in analogy to equation 4.3, we obtain the correlation functions

ξ+ =
1

2π

∫ ∞

0
dssJ0(θs)(PE

κ (s)+ PB
κ (s)), (4.29)

ξ− =
1

2π

∫ ∞

0
dssJ4(θs)(PE

κ (s)−PB
κ (s)), (4.30)

which can be inverted to give

PE,B
κ = π

∫ ∞

0
dθθ(ξ+(θ)J0(sθ)±ξ−(θ)J4(sθ)). (4.31)

Also following Schneider et al. [2002b], one can define

ξEE =
1

2π

∫ ∞

0
dssPE

κ (s)J0(θs). (4.32)

These authors showed that in the absence of B-modes,ξEE = ξ+. In chapter 5 we

test the simulations by calculating the quantityξEE and comparing to the predic-
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tions fromξ+, which is an indicator of simulations being free of B-modes.

In practice we use the aperture mass statistics to study E- and B-modes of

the shear separately. Another form of the aperture mass statistics, in analogy to

equation 4.33, can be written for the cross-component of shear γr:

M⊥(θ) =

∫

aperture
d2ϑQ(ϑ)γr(ϑ), (4.33)

whereθ is the radius of the aperture. We can then write the dispersion equations

in terms of E- and B-mode power spectra as

〈M2
ap,⊥(θ)〉 =

1
2π

∫ ∞

0
dssPE,B

κ (s)

(

24J4(sθ)

(sθ)2

)2

. (4.34)

This implies that the measurement of these two aperture dispersions leads directly

to estimation of E- and B-mode contributions to the overall power spectrum. In

absence of B-modes,〈M2
⊥〉 is expected to vanish. In practice we arrive at the mea-

surement of〈M2
ap,⊥(θ)〉 through the correlation functions, so the aperture disper-

sion can be expressed as

〈M2
ap,⊥(θ)〉 =

1
2θ2

∫ 2π

0
dθ ′θ ′

[

ξ+(θ ′)T+

(

θ ′

θ

)

±ξ−(θ ′)T−

(

θ ′

θ

)]

. (4.35)

Although the true source of the B-mode contributions is not completely known,

it is believed to have several possible explanations. Regardless of its nature, B-

mode measurement is an important part of weak lensing analysis. The aim of all

data reduction and shape measurement pipelines is to reducethe residual system-

atics in the data as much as possible, to eliminate their contribution to the B-mode

measurements. Although in most cases there are still left over B-modes in the data,

it is useful as a guideline to either remove the points with higher B-modes from

the analysis, or to consider increasing the error estimatedon the E-modes to better

accommodate the existence of B-modes in the data (Van Waerbeke et al. [2002]).

Figure 4.4 shows the orientation of shear for E- and B-modes.The top row shows

the E-modes when the centre consists of a mass distribution (left) or void (right),

while the bottom row pictures the curl orientations of the B-mode.
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Figure 4.4: The schematics of E- and B-modes. Top row shows the E-mode
in the presence of a massive centre (left) or a void (right). The bottom
row shows the orientation of the B-modes.

4.5 Windowed Second and Third Moments

Another means of estimating the two- and three-point statistics of top-hat and com-

pensated filters is to apply the filter function to the reconstructed convergence map

directly. Shear componentsγ1 andγ2 are related to the convergenceκ by equation

3.17. There is a large area of weak lensing research which involves perfecting the

methods of mass reconstruction, given that the shear from data is noisy and po-

tentially mixed with systematics, and also that there are gaps in the positions due

to masking effects. However, assuming one obtains a mass reconstructed conver-

gence map, one can apply the corresponding filterU(ϑ) to the maps directly and

measure the variance and third moment of the convergence within the filter aper-

ture. In this process the convergence map is convolved with the shape of the filter
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function. The calculation speed can be improved if the convolution routine is sub-

stituted by multiplications of the Fourier counterparts ofboth the convergence map

and the filter function. We employ this approach in the following section of the

thesis: (1) in chapter 5 for computing the windowed two- and three-point statistics

to test the sanity of the simulations against the theoretical predictions; (2) in chap-

ter 6 for computation of the covariance matrices as well as all the statistics; (3) in

chapter 7 for calculations of covariance matrices from the simulations; and (4) in

chapter 8 to measure the PDF statistics and the related covariance matrices. We

will later explain each of the cases extensively, however, the goal of this chapter

is to introduce the various lensing statistics and their relation to the matter power

spectrum.

4.6 Theoretical Predictions

Throughout this thesis we repeatedly compare the measurements of the simulations

and data, to the theoretical prediction. This section briefly explains how these pre-

diction are generated. The forward process proceeds as follows. A certain choice

of cosmological parameters lead to a certain value of energydensityρ , as seen

in section 2.1. Then densityρ is related to the density contrastδ as in equation

2.14. The solution to the Poisson equation 2.15, involves a growing modeδ+ and a

decaying modeδ−, as shown in equation 2.16, which depend on the cosmological

parameters. We compute the growth factorD+ (see equation 2.17) fromδ+. The

transfer functionTk is then calculated through 2.18 via the fitting formula of equa-

tion 2.19 [Bardeen et al., 1986], known as the BBKS formula. The BBKS formula

does not take into account the effects of baryonic matter, soan alternative option

is to use the Eisenstein & Hu formula [Eisenstein and Hu, 1998]. Regardless of

the choice, by obtaining the desired transfer function and growth factor, one can

calculate the matter power spectrumPδ as in equation 2.22. To include the effects

of non-linear structure formation at lower redshift, one has to apply corrections to

thePδ . The two common options are P& D (Peacock and Dodds [1996]) orHalofit

(Smith et al. [2003]) approach, which we discussed previously. Regardless of the

choice, we arrive at the matter power spectrumPδ , which is related to the conver-

gence power spectrumPκ via Limber’s equation 3.34. We showed earlier in this
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chapter how the convergence power spectrum is related to each of the weak lensing

shear statistics. This is the basis of all the theoretical predictions used in this thesis.

For chapter 5 we include the transfer function calculationsof thecamb software

(Seljak and Zaldarriaga [1996], Lewis et al. [2000]) ratherthan fitting formulae for

greater accuracy.
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Chapter 5

Numerical Simulations

Gravity is a non-linear process, hence the predictions fromlinear theory of large

scale structures are only valid on the largest scales, or theearliest times, where

most of the matter fluid was still in the linear regime. In the context of the detec-

tion of weak lensing, however, photon trajectories are probing a broad dynamical

range, and are mostly sensitive to galactic scale structures, where the matter fields

are highly non-linear. Although higher order perturbationtheory can be used to

describe the underlying densities, the accuracy of the calculations are limited by

the complex dynamics. We thus need to rely on N-body simulations in order to

generate non-linear densities, and to extract from them non-linear weak-lensing

maps via a ray-tracing algorithm. Two sets of simulations were used in this thesis:

• Set I: This set was developed in collaboration with TingtingLu (UofT) who

ran the N-body simulations. As part of this thesis we extensively tested the

quality of these simulations. These simulated maps were used in the publi-

cation Vafaei et al. [2010] on optimal survey design for higher-order lensing

statistics, which covers work presented here in chapter 6. In order to avoid

repetition, the details of this set are left to be explained in the next chapter

as part of the published article. This set was also used in Semboloni et al.

[2011b] to calculate the covariance matrices for the first ever space-based

cosmological parameter constraint using three-point correlation functions.
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• Set II: Following the work with set I, we further realized thegreat need

of having a simultaneously large and accurate set of simulations available

for weak lensing studies. Stable covariance matrices have to be computed

over many samples. Also the accuracy of the simulations affects the likeli-

hood analysis directly. The production of a large set of simulations can be

computationally expensive and time consuming. The simulations were run

by our collaborator Joachim Harnois-Deraps on clusters at Canadian Insti-

tute of Theoretical Astrophysics (CITA). We tested every step of the process

and certain adjustments to the simulation box size and geometry were ap-

plied. Various interpolation schemes,κ-γ conversion methods, etc., were

also tested. Given that the simulations were built for the weak lensing stud-

ies, we tested their sanity with various lensing two-point statistics, explained

in section 4.1, chapter 4 and compared with theoretical predictions described

in section 4.6.

The final set proved to be a great accomplishment for the CFHTLenS collab-

oration, as it will be used for covariance matrix calculations of various scientific

projects within the collaboration. These simulations are also used for systematics

testing. We generated the clone of the CFHTLenS, (simulateddata set resembling

the data in all aspects except shear) based on this set, whichwill be explained in

more detail in chapter 9.

In this chapter, we explain the details of simulation generation and show the

results of accuracy testing of the set against theoretical predictions. The cosmo-

logical parameters used in this set were based in WMAP7 (Komatsu et al. [2011])

results, as listed in table 5.1.1.

5.1 Numerical Method

Dark matter particle numerical simulations are widely usedin weak lensing studies.

They can be used to test the fundamental assumptions adoptedin making analyt-

ical predictions, or to examine the systematics effects, all to work out an optimal

analysis strategy. They can also be used in covariance matrix calculations where no

analytical model exists, such as higher order statistics that probe the complicated

non-linear effects. In that case a large number of realizations are required, with an
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accuracy that extends below the arcminute scale. In this section, we describe some

of the considerations one must keep in mind when performing such calculations.

In an ideal world, one would simulate the complete past lightcone that con-

nects the observer to the light sources, for a given opening angle and pixel reso-

lution. Unfortunately, for sources that extend to redshiftof a few, this cannot be

simulated all at once, since the far end of the cosmological volume is at an earlier

time than the near end. This is, however, the only way one can model the largest

radial modes of a survey. Luckily, these radial modes contribute very little to the

weak lensing signal [Limber, 1953]. The coherence scales ofthe largest structures

which contribute to the signal rarely extend over more than afew times the size of

large clusters, so simulation box sizes of the order of a few hundreds ofh−1Mpc

generally suffice to model the relevant structures. These simulated boxes can then

be stacked so as to create a pencil-shaped volume, or a line-of-sight (LOS), inside

of which photons are propagated.

One can use a different simulation for each redshift box, as done by White

and Hu [2000], but this is CPU-consuming, since a single LOS involves running

between 10 and 40 N-body simulations. For covariance matrixmeasurements,

we need hundreds of these high precision LOS, hence we opted for the common

work around, which consists in treating different redshiftdensity dumps of a single

simulation as different sub-volumes of the same past light cone. Because the large-

scale structures evolve across redshift slices, there exists a systematic correlation

between the lenses. This correlation, however, can be minimized by randomly ro-

tating the boxes and shifting the origin. This procedure allows us to reduce the

number of simulations required for our measurements by at least an order of mag-

nitude.

The next stage consists in calculating the photon geodesicsin the large-scale

structures, and to compute the cumulative deformation acquired along each trajec-

tory. The most accurate calculations are performed by computing these geodesics

in three dimensions, along their trajectory, starting fromthe observer’s camera and

progressing towards higher redshifts [Vale and White, 2003]. Such ray-tracing

methods provide one of the most reliable estimates of the cumulative shear, con-

vergence and deflection angle measured at each pixel of the observer’s camera,

but needs to be calculated at run time, or one is required to store the full density
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contrasts in memory. Cosmological codes which perform ray-tracing calculations

at run time [Kiessling et al., 2011] typically run much slower, and analyses that

use the full three-dimensional densities (Vale and White [2003] and Hilbert et al.

[2009]) have a large memory footprint, two limiting factorsfor the task at hand

here.

However, it was shown by Vale and White [2003] that differences in lensing

maps obtained from the mid-plane “tiling” technique is lessthan 0.1%, with in-

distinguishable effects on the two- and three-point functions. This tiling approach

consist in collapsing the cosmological sub-volumes into their mid-planes, creating

two dimensional slabs (or tiles) and calculating the geodesics on these thin lenses.

Typically, all tiles have the same comoving dimension, and the past light cone is

interpolated onto a set of pixels, whose sizes correspond tothe angular resolution

of the simulated telescope. In the weak lensing regime, these trajectories are close

to straight lines, so that Born’s approximation is very accurate (Schneider et al.

[1998]; Vale and White [2003]). Here we opt for a line-of-sight integration along

the unperturbed photon paths.

5.1.1 N-Body Simulations

The N-body simulations are produced bycubep3m, an improved version ofPMFAST

(Merz et al. [2005]) that is bothmpi andopenmp parallel, memory local and also

allows for particle-particle (pp) interaction at the sub-grid level. 10243 particles

are placed on a 20483 grid and their initial grid displacements and velocities are

calculated from the Zel’dovich approximation (Zel’Dovich[1970]; Shandarin and

Zel’dovich [1989]) with a transfer function obtained fromCAMB (Seljak and Zal-

darriaga [1996]). The following cosmological parameters are used as simulation

input, and in theoretical predictions :ΩΛ = 0.721,Ωm = 0.279,Ωb = 0.046, ns =

0.96,σ8 = 0.817 and h = 0.701.

This work is meant to outperform the dynamical range of previous weak lens-

ing simulations: we need sub-arcminute precision and a fieldof view of a few

degrees per side. We designed our LOS such that each pixel hasan opening angle

of 0.21 arcmin on each side, with Npix = 10242 pixels in total, for a total opening

angle of 3.58◦ per side.
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In order to reduce the wasted cosmological volume that fallsoutside the past

light cone, we produced two sets of simulations, following the strategy of White

and Hu [2000], which used 6 box sizes toz = 1. It would be computationally too

expensive to run that many distinct volumes, but we find that two sizes offer a good

trade off. High redshift (z > 1.0) volumes are produced from simulations with a

comoving side ofL = 231.1h−1Mpc, while the low redshift ones areL = 147.0

h−1Mpc per side. These volumes are chosen such that the boundaries of the past

light cone intersect with the edges of the smaller box exactly at z = 1 (in the given

cosmology). The cone then enters the larger volume, and meets its boundary atz =

2.0 (see figure 5.1). Some of the outer ray bundles eventuallyleave the simulated

volume at larger redshifts larger than 2.0, in which case we enforce the periodicity

of the simulations. This situation applies only to the last four lenses, hence the total

amount of repeated structures is very small. This is even further suppressed by the

lensing kernel, which favors redshifts closer toz = 1, 1.5, and by the fact such high

redshifts have fewer galaxies to start with.

z = 3 ... z = 2 ... z = 1 ... z = 0

147 Mpc/h231.1 Mpc/h

Figure 5.1: Geometry of the lines-of-sight. The global simulated volume
consists of two adjacent rectangular prisms, collapsed as aseries of thin
lenses. As explained in the text, high redshift lenses have higher comov-
ing volume, but the same number of grid cells, or pixels; thisis meant
to reduce the volume that falls outside of the past light cone. The ob-
server sits atz = 0, from where we shoot the rays;z = 1 is the junction
between the small (lower-z) and large (higher-z) simulation boxes; the
past light cone escapes the simulated volume beyondz = 2, and we ex-
ploit the periodicity of the boundary condition to populatethe edges of
the most remote lenses and halo catalogues; we store lenses and halos
up toz = 3.
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With these choices of cosmological parameters and simulation volumes, the

particle’s mass in the large box (L = 231.1h−1Mpc) and small box (L = 147.0

h−1Mpc) are 1.2759× 109 and 3.2837× 108 M⊙, respectively.

The initial redshifts are selected such as to optimize both the run time and the

accuracy of the N-body code. These are chosen to be zi = 40.0 and 200.0 for

the large and small box respectively. The reason for choosing different starting

redshifts resides in the fact that the smaller box is probingsmaller scales, hence

it needs to start earlier, when the linear regime is valid. Each simulation is then

evolved withcubep3m. At each of the lens redshifts tabulated in 5.1.1, the dark

matter particles are placed onto an N3 grid = 20483 grid. That grid is then collapsed

in three different ways along each of the 3 Cartesian axes, producing triplets of

slabs. These lens redshifts, zℓ, are found by slicing into cubes our simulated vol-

ume, starting and ending atz = 0.0 andz = 3.0, respectively, and solving for the

redshift at the centre of the comoving box.

5.2 Discrete Convergence Equation

As mentioned previously, we approximate that the photon trajectories as straight

lines, such that the integral of 3.28 can be performed pixel by pixel. We convert

the integral overχ into a discrete sum at the lens locationsχ(zℓ). The infinitesimal

element dχ becomes dL/ngrid, wherengrid = 2048 andL = 147.0 or 231.1h−1Mpc,

depending on the redshift of the lens. Under the single source plane approximation,

we can thus write the convergence fieldκ as (Munshi et al. [2008])

κ(xxx) =
3H2

0Ωm

2c2

zs

∑
zℓ

δ2D(xxx)(1+ zℓ)χ(zℓ)

(

1− χ(zℓ)

χ(zs)

)

dχ , (5.1)

whereδ2D(x) is the 2-D density contrast field. The shear components can becon-

veniently computed fromκ , following the procedure of Kaiser and Squires [1993]

which was explained in section 3.3. We emphasize that the Fourier transforms are

non-local operations and must therefore be calculated on the full, periodic, sim-

ulated slab, before the interpolation onto the lenses. For this operation, we work

under a flat sky approximation, which allows us to perform theFourier transforms

in the traditional plane wave basis. We then zoom into the cross-section of the light
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Slice zℓ zs χl χs

1 0.025 0.0494 73.5000 147.0
2 0.075 0.9999 220.5000 294.0
3 0.126 0.1515 367.5000 441.0
4 0.178 0.2045 514.5000 588.0
5 0.232 0.2589 661.5000 735.0
6 0.287 0.3149 808.5000 882.0
7 0.344 0.3727 955.5000 1029.0
8 0.402 0.4324 1102.5000 1176.0
9 0.463 0.4942 1249.5000 1323.0
10 0.526 0.5583 1396.5000 1470.0
11 0.591 0.6249 1543.5000 1617.0
12 0.659 0.6941 1690.5000 1764.0
13 0.730 0.7664 1837.5000 1911.0
14 0.804 0.8418 1984.5000 2058.0
15 0.881 0.9206 2131.5000 2205.0
16 0.961 1.0033 2278.5000 2352.0
17 1.071 1.1416 2467.5506 2583.1
18 1.215 1.2915 2698.6519 2814.2
19 1.371 0.4545 2929.7531 3045.3
20 1.542 1.6326 3160.8543 3276.4
21 1.728 1.8280 3391.9556 3507.5
22 1.933 2.0433 3623.0569 3738.6
23 2.159 2.2817 3854.1580 3969.7
24 2.411 2.5467 4085.2593 4200.8
25 2.691 2.8429 4316.3605 4431.9
26 3.004 3.1757 4547.4618 4663.0

Table 5.1: Redshifts of the lenseszℓ. The projections forz > 1.0 are produced
with L=231.1h−1Mpc simulations, while those for lowerz are obtained
from L = 147.0h−1Mpc/h, as described in the text. The table lists the
corresponding source redshift and the comoving distances for every lens
and source plane for each simulation box.
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cone and the simulation slab and interpolate the region to a 10242 grid.

5.3 Test I: Power Spectra

In this section, we quantify the accuracy of the weak lensingsimulations. We first

measure the matter density power spectrum of the simulated three dimensional

density fields, i.e. before the collapse and pixel interpolation, and compare to the

non-linear theoretical predictions ofCAMB (Seljak and Zaldarriaga [1996], Lewis

et al. [2000]). We then estimate the convergence power spectrum of the simulated

lines of sight, compare to non-linear predictions, and extract the effective resolution

of the simulated fields.

5.3.1 Matter Power Spectrum Pδ

The power spectrum of matter densityP(k) is a fast and informative test of the

quality of the simulations. It probes the growth of structures at all scales available

within the simulations, and comparison with reliable theoretical models informs

us of the accuracy and the resolution limit. For a given over-density fieldδ (xxx),

the power spectrum can be calculated from its Fourier transform (kkk) as described

previously by equation 2.21.

In our simulations, the grid is discrete, so are the Fourier modes, and the vol-

ume average turns into an angle average. We extract the powerspectrum for our

185 simulations at two redshifts,z = 0.961 andz = 0.025, and present the results in

figure 5.2. The error bars are the 1σ deviations from the mean. We observe from

this figure that the simulations seem to model well the structures at least down tok

= 20.0h/Mpc, which corresponds to a comoving length of about 315h−1kpc.

In the linear theory of structure formation, different Fourier modes of the matter

density grow independently, such that the error bars on the power spectrum are

well described by Gaussian statistics. For non-linear scales, however, the phases

of different Fourier modes start to couple together (Meiksin and White [1999],

Coles and Chiang [2000] and Chiang et al. [2002]), hence the two-point function

no longer contains all the information about the fields. Higher order statistics, i.e.

bispectrum and trispectrum, are then needed in order to improve the calculations,

but simulations do provide the most accurate estimates, provided convergence is
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Figure 5.2: Power spectrum of 185 N-Body simulations, at redshifts of 0.961
(bottom curve) and 0.025 (top curve). The solid and dashed lines are the
non-linear predictions, with and without the Gaussian filter. The error
bars shown here are the standard deviation over our sampling. We ob-
serve a slight overestimate of power in the simulations for scales smaller
thank = 3.0h/Mpc.

achieved.

The power spectrum covariance matrix is defined as

C(k,k′) = 〈P(k)P̄(k)〉〈P(k′)P̄(k′)〉, (5.2)

whereP̄(k) refers to the best estimate of the mean andk,k′ are the wave-vectors.

The amount of correlation between different scales is better visualized with the

cross-correlation coefficient matrix, which is obtained fromC(k,k′) via
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Figure 5.3: The correlation coefficient matrix of the density power spectrum,
measured from of 185 N-Body simulations, at redshift of 0.961. Modes
at k ∼ 0.5 h/Mpc, corresponding toθ ∼ 18′, are more than 40% corre-
lated.

ρ(k,k′) =
C(k,k′)

√

C(k,k)C(k′,k′)
, (5.3)

and is shown forz = 0.961 in figure 5.3. We see that it is almost diagonal at larger

scales (lowerk), while measurements become correlated as we progress towards

smaller scales (higherk). This effect occurs at even larger scales for smaller red-

shifts, since the fields had more time to grow non-linear structures. Atk ≈ 0.5

h/Mpc, for instance, the Fourier modes are intrinsically more that 40% correlated.

This corresponds to an angle ofθ ≈ 18’ on the sky, andℓ ≈ 1200.
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5.3.2 Convergence Power Spectrum Pκ

In order to quantify the resolution of our lensing maps, we measure the angular

power spectrum of theκ field, and compare the results with the non-linear predic-

tions fromCAMB (Seljak and Zaldarriaga [1996]; Lewis et al. [2000]). The power

spectrum of the convergence fieldκ(θ) is defined as

〈κ(ℓℓℓ111)κ(ℓℓℓ222)〉 = (2π)2δD(ℓℓℓ111 + ℓℓℓ222)Pκ(ℓ1), (5.4)

whereℓℓℓ is the Fourier component corresponding to the real space vector θθθ and

again, the angle brackets refer to angle averages. The convergence power spectrum,

estimated from our simulations, is shown in figure 5.4, wherethe error bars are the

1σ standard deviation. A note to the reader thatPκ(ℓ) andCκ(ℓ) have been used

interchangeably to represent the convergence power spectrum Pκ . It is presented

in the dimensionless form, i.e.ℓ(ℓ + 1)/(2π)Cκ (ℓ), which has the advantage of

showing clearly which angles are probing the linear regime (dimensionless power

much less than unity) and which ones probe non-linear structures. We observe

that modes withℓ < 1000 have power less than 0.1, which is a good indicator that

linear theory still holds, and that these multipoles are reasonably well described by

Gaussian statistics.

When compared to the non-linear theoretical model, we find good agreement in

the linear regime, while the theoretical predictions slightly underestimate the power

for ℓ > 1000, consistent with the observations of Hilbert et al. [2009]. The strong

drop atℓ ∼ 30,000 is caused by limitations in the resolution, which corresponds to

an angle of about 0.7′.

As mentioned earlier, the smallest angles of weak lensing observations are

probing the non-linear regime of the underlying density field, and it is known that

the statistics describing the uncertainty in the weak lensing power spectrum are

non-Gaussian (Doré et al. [2009]). Although most of the departures from Gaussian-

ity are currently lost in the observation noise, future lensing surveys are expected

to bring this noise down, such that non-Gaussian statisticswill play an increas-

ingly important role. The non-linear dynamics effectivelycorrelate the error bars

on small scales, an effect that can be visualized from the cross-correlation coeffi-

cient matrix of the angular power spectrum, shown in figure 5.5. As expected, we
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lations, where the source plane is a Dirac delta function placed atz = 3.
The solid line is the non-linear prediction (based onCAMB [Lewis et al.,
2000] withhalofit modifications from [Smith et al., 2003]), and the
error bars are the 1σ standard deviation over our sampling. We observe
a slight over-estimate of power in the simulations forℓ > 1000 com-
pared to non-linear predictions (solid line), which is alsovisible in the
smallest scales of the three dimensional dark matter power spectrum
(i.e. figure 5.2). The linear predictions are represented bythe dashed
line.

61



10
3

10
4

10
3

10
4

ℓ

ℓ

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.5: The correlation coefficient matrix of the convergence powerspec-
trum, measured from 185 LOS. As for most calculations in thischapter,
the source plane is placed at a redshift ofz = 3.004.

observe that all the multipoles withℓ > 1000 are more than 40% correlated, while

lower multipoles, probing mostly larger scales, are much less correlated.

5.4 Test II: Two-point Functions

The two-point functions of the lensing field provide a wealthof information about

many cosmological parameters, and precise measurements ofthe lensing power

spectrum. Different statistical estimators and filtering techniques are sensitive to

different scales, systematics and secondary effects, and generally correlate scales in

a unique way [Vafaei et al., 2010]. Hence the optimal approach for measurements

involving cosmic shear and convergence really depends on the observation and the
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parameters investigated.

To mimic the shear and convergence detection from a galaxy survey, we Pois-

son sample each of the maps with 100,000 random points and construct mock

catalogues. The object positions are assigned randomly within the area of 12.84

deg2 from which the shear and convergence values are extracted.

In this section we show a series of plots for nine selected redshift slices, rang-

ing from low to medium to high redshifts. Each plot contains results from some

particular lensing statistic compared to theoretical predictions, as explained in sec-

tion 4.6. We follow these plots with the correlation coefficient matrix for two of

the redshift choices to indicate the level of correlation between the scales for that

particular statistic. The shear and convergence statistics are listed in order of ap-

pearance below:

• Shear Two-point Correlation Function: The shear two-point correlation

function (see section 4.1) is a strong indicator of cosmic shear signal. In

the absence of lensing the two-point shear correlation function averages to

zero, hence a positive signal indicates a detection of cosmic shear. Here we

compute the tangential and rotated shear correlation functions on the noise-

free simulations (equations 4.4 and 4.5). Figure 5.6 showsξtt, and figure 5.8

shows theξrr measurement in comparison to the theoretical predictions for

9 selected redshift slices. The error bars represent the 1σ deviation between

185 lines of sight for a single 12.84 deg2 map. The agreement between

the simulations and the theoretical predictions is well within the error bars,

which allows us to conclude that the signal is well resolved,at least down

to one arcmin. We next show, in figure 5.7, the cross-correlation coefficient

matrices related to theξtt measurements, for source redshifts of 3.0 (top) and

1.0 (bottom). These show that the error bars are at least 50% correlated for

the highest redshift, and up to 80% for lower redshift sources. Figure 5.9

shows theξrr counterpart, which also shows strong correlation.

• The Shear E/B Decomposition: We previously defined the E/B decompo-

sition in section 4.4. These statistics are widely believedto be the most

robust check of systematics [Crittenden et al., 2002]. For our simulations,

we checked that theξBB is consistent with zero, while theξEE measurements
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are shown in figure 5.10. Again, we observe a good agreement with the the-

oretical predictions. These error bars are also correlatedby at least 50%, and

even stronger for bins closer to the diagonal, as seen in figure 5.11 forz=1.0

andz=3.0.

• Convergence Two-point Correlation Function: Following the procedure

of the shear fields, we calculate the two-pointκ −κ correlation function and

power-spectrum from the convergence mock catalogues. Equation 4.6 shows

the definition of the two-point convergence correlation function ξκκ . In fig-

ure 5.12, we present the measured two-point convergence correlation func-

tion along with the theoretical prediction, as a function ofseparation angleθ .

The agreement extends well below the arcminute scale, at allredshifts. The

cross-correlation coefficient matrices corresponding to these measurements

are presented in figure 5.13.

• Window Integrated Shear Correlation Function (Top-hat): Section 4.2

explained the link between the integration of correlation functions with cer-

tain filters to the matter power spectrum. One advantage of the top-hat filter

is that it probes scales as large as the field of view. We compare our mea-

surements from the simulations with non-linear predictions in figure 5.14, as

a function of the opening angle of the top-hat filter. We find good agreement

at all redshifts, although lower redshifts exhibit a small bias. The cross-

correlation matrices are presented in figure 5.15 and show that there is a

strong correlation between most measurements.

• Window Integrated Shear Correlation Function (Aperture) : In section

4.3 we discussed the aperture mass filter statistics in details. Here we show

the results of computing the aperture mass variance throughcorrelation func-

tions on the simulated mock catalogues that originated fromour numerical

simulations. We present in figure 5.16 our measurements of〈M2
ap〉 from the

simulations, as a function of smoothing scaleθ . Here the choice of aper-

ture filter [Schneider et al., 1998] is taken as the compensated filter and not

the compensated Gaussian. We observe that for redshifts larger than one,

the agreement extends down to an arcminute, whereas lower redshifts suffer
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from a lack of variance at angles of a few arcminutes. This is caused by

limitations in the resolution due to strong zooming from thesimulation grid

onto the pixel map. This effect is also expected from the top-hat variance,

but appears at much smaller angles. We recall that an aperture mass is con-

structed with a compensated filter, which has a strong damping tail, hence

for an opening angleθ , it is really sensitive to smaller scales∼ θ/5. The

cross-correlation coefficient matrices are presented in figure 5.17.

• Window Statistics on Convergence Maps (Top-hat and Aperture Mass):

Aside from the mock galaxy catalogues, we test the accuracy of the simu-

lations on the maps directly. We smooth theκ-maps with filters identical

to those used before (top-hat and aperture) and calculate the variance and

third moment of the convergence field on the smoothed maps. Section 4.5

explains this process in more detail. We present the second moments ofκ in

figures 5.18 and 5.20, comparing with the predictions, for the aperture and

top-hat filters, respectively. The third moment for aperture and top-hat filters

follow in figures 5.22 and 5.24. Also the correlation coefficient matrices for

two selected redshift slices for the second moment top-hat and aperture are

shown in figures 5.19 and 5.21, while figure 5.23 and 5.25 demonstrate the

correlation coefficient matrices for the third moment case.
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Figure 5.6: The blue line shows the measurement of the shear correlationfunction ξtt component from 185 simulated
lines of sight. The error bars represent the variance between the lines of sight for a single 12.84 deg2 map. The
black line shows the theoretical prediction for the input cosmology of the simulations.
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Figure 5.7: Cross-correlation coefficient matrix of theξtt two-point function,
with the source plane atz ∼ 3.0 (top) andz ∼ 1.0 (bottom).
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Figure 5.8: The shear correlation functionξrr component.
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Figure 5.9: Cross-correlation coefficient matrix of theξrr two-point function,
with the source plane atz ∼ 3.0 (top) andz ∼ 1.0 (bottom).
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Figure 5.10: TheξEE measured from shear maps. Error bars are 1σ deviation from 185 lines of sight for a single 12.84
deg2 map.
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Figure 5.11: The cross-correlation coefficient matrix of theξEE two-point
function, with the source plane atz ∼ 3.0 (top) andz ∼ 1.0 (bottom).
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Figure 5.12: The convergence correlation functionξκκ . The error bars are the 1σ standard deviation in the sampling
of our 185 realizations for a single 12.84 deg2 map.
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Figure 5.13: The cross-correlation coefficient matrix of the convergence two-
point functionξκκ , with the source plane atz ∼ 3.0 (top) andz ∼ 1.0
(bottom).
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Figure 5.14: top-hat variance,〈|γ̄ |2〉 measured from shear mock catalogues through the integratedcorrelation function.
The calculations are done based on integrating the correlation function with top-hat related functions.
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Figure 5.15: The cross-correlation coefficient matrix of the top-hat variance,
with the source plane atz ∼ 3.0 (top) andz ∼ 1.0 (bottom).
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Figure 5.16: The integrated correlation function〈M2
ap〉 measured from shear catalogues. The choice of filter is that of

Schneider et al. [1998].
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Figure 5.17: Cross-correlation coefficient matrix of the aperture mass vari-
ance, with the source plane atz ∼ 3.0 (top) andz ∼ 1.0 (bottom).
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Figure 5.18: The〈κ2〉 estimate for convergenceκ-maps smoothed with aperture mass filter.
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Figure 5.19: The cross-correlation coefficient matrix of the second moment
of convergence maps smoothed with the aperture filter, with the source
plane atz ∼ 3.0 (top) andz ∼ 1.0 (bottom).
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Figure 5.20: The〈κ2〉 estimate for convergenceκ-maps smoothed with a top-hat filter.
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Figure 5.21: The cross-correlation coefficient matrix of the second moment
of convergence maps smoothed with a top-hat filter, with the source
plane atz ∼ 3.0 (top) andz ∼ 1.0 (bottom).
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Figure 5.22: The〈κ3〉 estimate for convergenceκ-maps smoothed with the aperture mass filter.

82



10
0

10
1

10
0

10
1

θ(arcmin)

θ
(a

r
cm

in
)

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

10
0

10
1

10
0

10
1

θ(arcmin)

θ
(a

r
cm

in
)

 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 5.23: The cross-correlation coefficient matrix of the third moment of
convergence maps smoothed with the aperture filter, with thesource
plane atz ∼ 3.0 (top) andz ∼ 1.0 (bottom).
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5.5 Conclusion

We have generated a set of 185 high-resolution N-body simulations from which we

constructed past light cones with a ray-tracing algorithm.The weak lensing signal

that is extracted is well resolved from a few degrees down to below an arcminute.

We have measured non-Gaussian error bars on a variety of weaklensing estimators,

including 2-point correlation and mass aperture functions. These error bars are es-

sential for a correct estimate of cosmological parameters,which so far has relied

on assumptions that are less accurate. With the next generation of lensing surveys,

non-Gaussian error bars are expected to deviate significantly from Gaussian pre-

scriptions, therefore techniques such as those presented here will be required. For

each estimator, we find excellent agreement between the meanof our measure-

ments and non-linear predictions, which testifies to the quality of the simulations.

We have also measured and presented the correlation coefficient matrices for these

weak lensing estimators, and showed that the error bars between different angular

measurements are at least 50% correlated, with regions up to90% correlated, as

the two angles get similar in size.
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Figure 5.24: The〈κ3〉 estimate for convergenceκ- maps smoothed with a top-hat filter.
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Figure 5.25: The cross-correlation coefficient matrix of the third moment of
convergence maps smoothed with top-hat filter, with the source plane
at z ∼ 3.0 (top) andz ∼ 1.0 (bottom).
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Chapter 6

Optimal Survey Design for Weak

Lensing Three-point Statistics

6.1 Motivation

Weak gravitational lensing by large scale structure is a unique tool to probe the

matter distribution of the Universe regardless of its dynamical state. When com-

bined with redshift information weak lensing can be used as aprobe for dark energy

evolution as the expansion of the Universe affects the mass clustering at different

redshifts. Dark energy constraints from weak lensing rely on accurate measure-

ments of the dark matter power spectrum amplitude. The two-point cosmic shear

statistics offer a powerful technique to measure the matternormalization parame-

ter σ8 and the mass density parameterΩm combined (see for example the earlier

results from CFHTLS by Benjamin et al. [2007] and Fu et al. [2008] and also from

COSMOS survey by Schrabback et al. [2010]). One of the important goals for

better determination of the cosmological parameters is to improve the individual

measurement ofσ8 andΩm. Better estimation ofσ8 andΩm allows for allevia-

tion of the residual parameter degeneracies [Komatsu et al., 2009]. A noticeable

example is the neutrino mass [Tereno et al., 2009].

Bernardeau et al. [1997] and van Waerbeke et al. [1999] advocated for three-

point shear statistics as a powerful estimator to break the degeneracy betweenσ8

and Ωm. In particular, a certain ratio of two- and three-point statistics, called
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“skewness”, was shown to be independent ofσ8.

At the time our work in this chapter was carried out, there have only been three

detections of the three-point shear statistics reported from the VIRMOS survey

(Bernardeau et al. [2003] and Pen et al. [2003]) and from the CTIO survey [Jarvis

et al., 2005]. Unfortunately, for these surveys, the signal-to-noise ratio remains

low and there were no reliable forecasts of three-point statistics which took into

account realistic galaxy number counts and shape noise as well as non-Gaussian

contributions in the cosmic variance. Therefore, the interpretation of the mea-

surement was not well-established. In Van Waerbeke et al. [2001b] the authors

concluded that the three-point statistics of the lensing signal is greatly enhanced at

small angular scales because of the non-linear gravitational clustering, but they did

not provide an estimate of the signal-to-noise ratio for different survey depths. In

van Waerbeke et al. [1999] it was shown that the skewness of the convergence can

be measured from mass maps reconstructed from the shear measured on individual

galaxies. However, a realistic population of source galaxies was not considered,

and the simulations were limited to second order perturbation theory. Kilbinger

and Schneider [2005] showed that one can learn additional information by com-

bining the two- and three-point statistics, but again neither a realistic source galaxy

distribution nor different survey strategies were considered. Takada and Jain [2004]

also showed that combining the power spectrum and bispectrum tomography infor-

mation enhances the accuracy of cosmological parameter estimations.

In this chapter we investigate the optimal use of three-point statistics in a weak

lensing analysis of large scale structure, considering several new aspects that have

been neglected in previous works:

• A realistic noise contribution using ray-tracing simulations calibrated on ex-

isting surveys is included.

• Realistic forecasting for the two- and three-point statistics for different sur-

vey strategies is provided.

• For a fixed observing time, wide-shallow and narrow-deep strategies are con-

sidered. The impact of the survey’s depth on both the galaxy number den-

sity and the source redshift distribution is quantified. Surveys with different
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characteristics are affected differently by cosmic variance, with wider sur-

veys probing a much larger number of modes than narrow surveys. Here we

carefully investigate this aspect by comparing the performance of various

simulated surveys which use a realistic source distribution.

• The source distribution has been derived using galaxy counting as a function

of redshift, as measured in real data for a fixed limiting magnitude.

• The full likelihood analysis with covariance matrices are computed from a

large set of ray-tracing simulations. It is therefore an extension of previous

works which used Fisher matrices to gauge the performance ofweak lensing

surveys (e.g. Amara and Réfrégier [2007]).

• Following Zhang et al. [2003] a comparison of different smoothing filters is

included.

• A range of most optimal smoothing scales are found by investigating the

various contributions of noise and signal to the full covariance matrix.

• The best survey strategy for detecting the skewness of the convergenceS3 as

a means of breaking the degeneracy betweenΩm andσ8 is studied. The idea

first emerged in Bernardeau et al. [1997] and van Waerbeke et al. [1999], but

its feasibility never quantified.

• The efficiency of combining the two- and three-point statistics is quantified.

• Two- and three-point statistics forecasts for the completed CFHTLS survey

and the KiDS survey are calculated.

This chapter is organised as follows. In section 6.2, we summarize the back-

ground theory of the two- and three-point statistics of the convergence field, where

notations and definitions are also introduced. The details of the method are de-

scribed in section 6.3. Optimal survey strategies are shownin section 6.4, and

section 6.5 shows the predictions of two- and three-point measurements of the sim-

ulated complete CFHTLS-Wide survey area and depth. The upcoming Kilo Degree

Survey geometry is also discussed here as an example of the accuracy achievable
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on the measurement of the two- and three-point statistics inthe near future. Finally,

in section 6.6, the conclusions of this study are stated.

6.2 Theory Background

Following Miralda-Escude [1991] and Kaiser [1992] we can write the convergence

κ at a given sky positionθ as

κ(θ) =
3
2

H2
0

c2 Ωm

∫ ∞

0
ω(z)δ (χ ,θ)dχ , (6.1)

whereχ is the angular comoving distance,Ωm is the mass density parameter at the

present day,δ is the matter density contrast andω(z) for a given redshiftz is given

by

ω(z) = (1+ z)χ(z)
∫ ∞

z
n(zs)

[

1− χ(z)
χ(zs)

]

dzs. (6.2)

Hereω(z) depends on the cosmological parameters and the galaxy source dis-

tribution functionn(zs). The convergence maps are obtained from ray-tracing sim-

ulations, as described in Section 6.3.1.

Note that this analysis employs the convergence fieldκ , which is proportional

to the projected mass density. The convergence can be obtained from the shear data

γ = (γ1,γ2) either by appropriate weighting with an aperture filter, or from mass

reconstruction with e.g. a top-hat or Gaussian filter. Therefore, the conclusions

of this study apply to the convergence and the shear without distinction. We are

interested in the measurement of〈κ2〉, 〈κ3〉 and the skewnessS3(κ) defined as

S3 =
〈κ3〉
〈κ2〉2 . (6.3)

Skewness is essentially a measure of the clustering of the mass distribution, as

defined in Bernardeau et al. [1997]. According to perturbation theory,S3 provides

a measurement ofΩm independent of the normalization of power spectrumσ8. For

this reason, the skewness of the convergence appears as a very attractive probe of

cosmology and a useful technique to break degeneracies among other cosmological
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parameters.

6.3 Analysis Method

6.3.1 Ray-tracing Simulations

This analysis is based on a set of simulatedκ-maps (referred to as Set I in chapter

5). The set consists of 60 lines of sight, each containing 40 redshift slices from

z = 0.020 to z = 3.131. These are generated from 22 independent N-body sim-

ulations by randomization. As a result, the different linesof sight are not totally

independent on large scales. However they can still be considered approximately

independent on scales smaller than 1◦.

The Multiple Lens-Plane ray-tracing approximation methodwas used to gen-

erate the lensing convergence map: the dark matter distribution in the Universe is

approximated by a series of mass sheets. The N-body simulations are on a grid

of 17283 points with 8563 particles, and the box size is 120h−1Mpc. The mass

density in the simulation box is projected to the mid-plane at a series of character-

istic redshifts. The output redshifts are picked so that theconsecutive time slices

can represent the continuous evolution of the large scale structure. The three or-

thogonal axes of the box arex, y, andz. For every output redshift, we make three

projection sheets, parallel to thexy, yz andxz planes. We choose one projection

sheet out of the three of one N-body simulation in a random order, as well as ran-

domly shifting the sheet transverse to the projection direction. This technique is

employed to avoid creating periodicity in the projection. Rays are shot through

these mass sheets. We calculateκ on every sheet and project them along lines of

sight after the random shift and rotation.

The maps are on 1024×1024 grid with spacing of 0.21 arcmin. Thus the total

area is about 12.84 deg2 for each line of sight. We use the cosmological paramaters

values based on WMAP3 results [Spergel et al., 2007] :ΛCDM with Ωm = 0.24,

ΩΛ = 0.76 andσ8 = 0.74. Figure 6.1 shows a schematic of the different redshift

slices which were combined for each line of sight.

The N-body simulations are generated by theCUBEPM code, which is the suc-

cessor ofPMFAST [Merz et al., 2005].CUBEPM is MPI parallelized particle-mesh
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Figure 6.1: A schematic of the simulated convergence maps at different red-
shift slices.The maps are on a 10242 grid with 0.21 arcmin per pixel.
The redshift ranges fromz=0.020 toz=3.131.

(PM) code, and has particle-particle force implement at sub-grid scales. It is fur-

ther parallelized by shared-memoryOpenMP on each node. The simulation vol-

ume (which is also called simulation box) is cubically decomposed inton3 sub-

volumes, and the calculation of each sub-volume is performed on one node of the

cluster. The total number of nodes used in simulation isn3 with n = 3 here. The

code can be run on up to 1000 nodes. The simulations are run on the Sunnyvale

cluster of CITA.

For each of the redshift slices the average〈κ2〉, 〈κ3〉 and S3 are measured

and the signal is compared with a theoretical model. The two-point cosmological

predictions are based on the Peacock and Dodds [Peacock and Dodds, 1996] non-

linear fit, whereas the three-point shear statistics predictions use the bispectrum

non-linear fit derived in Scoccimarro [1998] and implemented for lensing studies in

Van Waerbeke et al. [2001b]. The excellent agreement between the measured and

the predicted signal can be seen in figure 6.2, where the results for low, intermediate

and high redshift slices are shown. The agreement in all cases is within 1-σ error-
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Figure 6.2: Agreement between the measurements and the theoretical pre-
dictions for three individual redshift slices. The low redshift slice is at
z=0.186, the medium slice at 0.668 and the high redshift sliceis at 2.690.
The blue lines show the measurements on the simulated 12.84 deg2 data,
and the pink lines show the theoretical prediction for the same cosmo-
logical model at the same redshift. The measurements in eachpanel are
made from data smoothed with a top-hat filter. The error bars represent
the cosmic variance over 60 lines of sight.

bar.

6.3.2 Galaxy Number Density and Redshift Distribution

In this paper we compare different survey strategies with varying source redshift

distribution that is dependent on the survey depth. We calibrate the redshift dis-

tribution from existing optical surveys with photometric redshift information and

populate the ray-tracing slices accordingly. The focus here is on ground based

surveys, but the result can be straightforwardly extended to space data with an ap-

propriate scaling of the shot noise (which directly dependson the galaxy shape
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mlim α β z0 zmed

22.5 0.76 6.85 1.05 0.68
23.0 0.71 5.30 1.14 0.72
23.5 0.81 3.15 1.19 0.80
24.0 0.80 2.72 1.26 0.84
24.5 0.96 1.70 1.07 0.91
25.0 0.85 1.90 1.26 0.96
25.5 1.46 1.30 0.75 1.02
26.0 1.71 1.27 0.68 1.04

Table 6.1: The best fit values ofα , β andz0 corresponding to equation (6.4)
for severali-band limiting magnitudes. These parameters were used to
generate theoretical models for Section 6.4 to determine the best survey
strategy. The last column contains the median redshiftzmed for each mag-
nitude cut.

noise and number density).

The galaxy number density and redshift distribution as a function of limiting

magnitude are estimated from the CFHTLS-Deep survey catalogue in thei-band

Ilbert et al. [2006]. To model the galaxy redshift distribution n(z) for surveys of

different magnitude limitmlim , the method described in Heymans et al. [2006b]

and van Waerbeke et al. [2006] was employed, modelingn(z,mlim) as

n(z,mlim) =
β

z0Γ
(

1+α
β

)

(

z
z0(mlim)

)α
exp

[

−
(

z
z0(mlim)

)β
]

. (6.4)

The best parametric fit to equation (6.4) for limiting magnitude i =24.5 cor-

responds toα=0.96,β=1.70 andz0=1.07. Figure 6.3 shows the histogram of the

normalized galaxy redshift distribution from the CFHTLS-Deep survey catalogue

[Ilbert et al., 2006] atmlim =24.5 and the best fitn(z) from equation (6.4). Table

6.1 summarizes the values ofα , β , z0 and the median redshiftzmed for the other

magnitude cuts used in this paper. Equation (6.4) yields a realistic source redshift

distribution for a given survey’s depth [van Waerbeke et al., 2006]. Thus, the theo-

retical predictions built based on the appropriate form of equation (6.4) match the

κ-maps weighted by the galaxy number density derived from theCFHTLS-deep

catalogues.
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Figure 6.3: Fit to the normalized galaxy number density from the CFHTLS-
Deep survey catalogue Ilbert et al. [2006]. The black line shows the
histogram of the galaxy number density and the dark blue lineis the
fitted curve. The limiting magnitudemlim =24.5 with the fitting formula
given by equation (6.4). Hereα , β and z0 are 0.96, 1.70 and 1.07,
respectively.

6.3.3 Statistical Noise

The source of shot-noise in weak lensing studies depends on the intrinsic ellipticity

characterized by the r.m.s.σε and by the number density of galaxiesng. It was

shown in van Waerbeke [2000] that the noise in a smoothed convergence map can

simply be derived from the intrinsic ellipticity noise and the galaxy number density.

In particular, it was shown that the noise in a pixelated smoothedκ map is simply

given by a smoothed uncorrelated Gaussian noise with r.m.s.σε . If ng denotes the

number density of galaxies andW (θ) the 2-dimensional smoothing function, then

the correlation function of the convergence noise is

〈κn(θ)κn(θ
′)〉 =

σ2
ε

2
1

Θ2ng

∫

dℓeiℓ·(θ−θ
′) ∣
∣W̃ (ℓ)

∣

∣

2
, (6.5)

whereκn(θ) is the convergence noise map andW̃ (ℓ) is the Fourier transform of the

smoothing windowW (θ). Θ is the pixel size, soΘ2ng is the average number of

galaxies per pixel. Note that the simulatedκ-maps are pixelized by construction
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and then smoothed with smoothing filters.

The galaxy ellipticity r.m.s. measured on CFHTLS-deep datais σ2
ε = (σ2

ε1
+

σ2
ε2

) = 0.44. For the purpose of this paper we will assume thatσε is constant as

a function of redshift and galaxy type. The convergence noise variance per pixel

(before smoothing withW ) is therefore given by

σ2
κ =

σ2
ε

2
1

Θ2ng
. (6.6)

Note that the noise model considered here implicitly assumes source galaxies are

distributed randomly in each redshift slice. By construction, this choice ignores

any potential effect caused by source clustering, which is known to be a source

of contamination for three-point statistics (Bernardeau [1998] and Forero-Romero

et al. [2007]).

6.3.4 Smoothing Filters

Convergence statistics can be measured from smoothedκ-maps (which can be ob-

tained from smoothed shear maps from the data). Various statistics can be built by

using different smoothing filters. Following the widely accepted choice the top-

hat, and two types of compensated (the total area under the filter window is equal

to zero) filters were considered. The two compensated filtersused were the ones

introduced in Schneider et al. [1998] (hereby referred to asthe aperture filter) and

in van Waerbeke [1998] (which is hereby referred to as the compensated Gaussian

(cG)). They are defined as in equations 4.15 and 4.18 respectively.

Figure 6.4 shows the excellent agreement between the ray-tracing simulation

and the predictions for different smoothing filters. The measurements are based

on a realistic redshift distribution corresponding to a ground based survey with

limiting magnitudemlim = 24.5 with ng=22 galaxies per arcmin2. The error bars

reflect the statistical noise and cosmic variance for a 12.84 deg2 survey. From

equations 4.15 and 4.18, the smoothing scale for the two filters are related asθcG =

θap/2
√

2, therefore the maximum smoothing scale chosen for the compensated

Gaussian filter is 25 arcminutes, compared to 84 arcminutes for the top-hat and

aperture filters.

96



Figure 6.4: The agreement between the measurements and the theoretical
predictions based on the fitted galaxy population. The blue lines show
the measurements on the simulated 12.84 deg2 data, and the pink lines
show the theoretical prediction for the same cosmological model and
the full redshift distribution. The measurements in each panel are per-
formed on smoothed data, with top-hat, aperture mass and compensated
Gaussian filters in order. The errorbars include both cosmicvariance
and statistical noise resulting fromng= 22 galaxies per arcmin2.

97



6.3.5 Estimate of the Covariance Matrix

Cosmological parameter forecasting requires the estimateof the covariance matrix.

Semi analytical methods are available in the literature (Schneider et al. [2002a] and

Joachimi et al. [2008]), but rely on the assumption of Gaussian statistics. An exten-

sion to the non-linear angular scales has been recently developed (Semboloni et al.

[2007], Eifler et al. [2008] and Pielorz et al. [2010]), however the three-point statis-

tics and source redshift distribution and shape noise of realistic surveys were not

considered. In this work the full covariance matrixC was estimated directly from

the ray-tracing simulation as in Semboloni et al. [2007] andEifler et al. [2008],

by taking into account the realistic characteristics of lensing surveys described in

the previous sections. For each survey strategy, the total covariance matrix was

calculated as follows. For each noise-freeκ line of sight, the redshift slices were

combined and weighted according to equation 6.1 with the corresponding redshift

distribution and galaxy number density. A noise map was thenadded following

the method described in Section 6.3.3. Finally, the two- andthree-point statistics

were measured over 20 smoothing scales. The covariance matrix of the statisticx

measured at two smoothing scalesθi andθ j is defined as

C(θi,θ j) ≡ 〈(x(θi)−µ(θi))(x(θ j)−µ(θ j))〉, (6.7)

wherex is here either〈κ2〉, 〈κ3〉 or S3 and µ is the average calculated from the

entire simulation set.

It was shown by Hartlap et al. [2007] that the inverse of the covariance matrix

estimated from a finite number of ray-tracing simulations isbiased. The authors

derived a simple formula to correct for this effect which relates the number of

scalesp used in the two- (or three-) point statistics and the numbern of lines-of-

sight. The covariance matrix simply has to be replaced byα∗C, whereα∗ when

the mean is determined from the data, is given by

α∗ =
(n−1)

(n−1)− p−1
. (6.8)

Hartlap et al. [2007] showed that this correction is applicable only whenn − 2

exceeds the number of scalesp, otherwise the covariance matrixC is not invert-
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ible. In this papern = 60 simulations were used, and the statistics were measured

over p = 20 angular scales for the top-hat and aperture filters andp = 14 for the

compensated Gaussian filter. The values ofα∗ for these filters were then 1.55 and

1.28, respectively. For joint likelihood calculations the joint covariance matrices

were rescaled byα∗ = 3.28 for top-hat and aperture filters andα∗ = 1.97 for the

compensated Gaussian filter.

Because of the limited area covered by the simulations it is not possible to

compute the covariance matrices for very large surveys. Fortunately, the angular

scales where the non-linear effects are important (typically less than half a degree

for the two- and three- point statistics) are much smaller than the 12.84 deg2 field-

of-view of a simulation field. Those are also the scales wherethe lensing signal

is best measured. Therefore the covariance matrices can be computed in the non-

linear regime from the different realizations, and simply rescaled according to the

survey size for surveys exceeding the simulation box. The measurements for a

larger survey is simply obtained from dividing the measurements from the 12.84

deg2 case, by the ratio of the survey areas. This is an excellent approximation

for angular scales much smaller than the simulation box, which was the case in

our study since the largest scale used to measure the statistics was 84 arcminutes,

which is much smaller than the dimension of 3.5◦ × 3.5◦ of the simulation box.

In order to verify that the rescaling is a valid approach, thefollowing procedure

was performed. A selection of six elements of the covariancematrix Cij were

chosen. For each case, the element of the covariance matrix was computed on the

full 12.84 deg2 (A) simulation and smaller fraction of it (A0). The term A
A0

shows

the ratio of the original simulation size to sub-sections ofit. EachCij element is

then computed on various sub-sections of the simulation field. The dependence of

covariance matrix elements on the survey area is found to be nearly linear. Figure

6.5 illustrates the scaling applied to some elements of the two- and three-point

statistic covariance matrices. The dotted lines show linear fit (y = mx + b) to the

covariance matrix elements measurements as a function of survey area. As it can

be seen the behaviour of the covariance measurements follows the linear function.

This is the basis of the rescaling of the covariance matrix tothe larger survey areas

as needed in this work.

In order to verify that the covariance matrix computed usingray-tracing simu-
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Figure 6.5: The Cij elements of the covariance matrix as a function of the
ratio of the originalκ-map simulation area (12.84 deg2) over the survey
area. The solid colored lines are theCij elements from the simulated
maps and the black dotted lines are the straight line fit to each of them.
The left figure shows theCij of 〈κ2〉 and the right one is the same for
〈κ3〉. Here the covariance matrix contains only the cosmic variance
contribution. The scales are as follows:i=1 is 0.42’; i=5 is 1.26’; i=10
is 4.20’; i=15 is 31.5’ andi=20 is 84.0’. This shows that the change in
the covariance matrix of the cosmic variance is inversely proportional
to the survey area. Hence this result was used to rescale the covariance
matrices in the likelihood calculation to the desired survey area.

lations converges to the one computed in the Gaussian approximation for large an-

gular scales, the following procedure was performed: Gaussian realizations of the

field κ were generated and then the covariance matrix was calculated in the same

way as the ray-tracing simulations. Efstathiou et al. [1985] and Salmon [1996]

described a simple way to generate cosmological Gaussian fields by convolving

white-noise with a filter whose transfer function is given bythe square root of the

power spectrum. The power spectrum was directly computed from the sample of

ray-tracing simulations, so that the resulting Gaussian fields have the same cosmol-
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Figure 6.6: The ratio of non-Gaussian to Gaussian error estimated for con-
vergenceκ two- and three-point statistics. On large scales the non-
Gaussian errors estimated from the ray-tracing simulations converge to
the Gaussian limit. The results for the top-hat and compensated Gaus-
sian filters are shown in the left and right columns, respectively.

ogy. Using this method, 60 lines of sight were generated and the covariance matrix

of the Gaussian fields was computed as described by equation (6.8). Figure 6.6

shows the ratio of the non-Gaussian to Gaussian errors (i.e.the square root of the

diagonal elements of the covariance matrix) for the two- andthree-point statistics

of the top-hat and compensated Gaussian filters. It can be seen that for large scales

the ratio converges to unity as expected. At small scales this ratio is larger than

the unity due to the non-linear evolution of matter fluctuations. Moreover, for a

given angular scale, the ratio between non-Gaussian and Gaussian errors is larger

when one uses the compensated Gaussian filter than when the top-hat filter is used.

The reason lies in the fact that for a given characteristic scale, the compensated
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Gaussian filter peaks at smaller scales than the top-hat filter. The ratio between

non-Gaussian and Gaussian covariance depends on the average redshift of the sur-

vey and for this test a distribution characterized by an average redshiftz ∼ 1.4 was

used. The ratio would have been much higher if a much shallower survey was

chosen.

6.4 Survey Design and Observing Strategy

6.4.1 Optimal Smoothing Scale

The covariance matrix contains three terms (Schneider et al. [2002a]) :

C = Css+Cns+Cnn (6.9)

whereCss is the pure signal (i.e. noise free) cosmic variance,Cnn is the pure noise

covariance andCns is the cross-correlation term. The goal in this section is tode-

termine at which angular scale the measurement of the two- and three-point shear

statistics has a better signal-to-noise ratio. For this purpose the covariance matrix

was separated into the three terms introduced above and their amplitudes for dif-

ferent filters were explored. PracticallyCss can be calculated from the noise-free

ray-tracing realizations, since it only contains the cosmic variance between differ-

ent simulations. The termCnn can be calculated from noise-only maps, generated

by weighted Gaussian noise realizatios. This term containsstatistical noise only.

Among the three parts of the covariance matrix:Css, Cnn, andCns, the mixed term

Cns is the most computationally expensive to calculate. The reason is that the noise

contribution to the covariance matrix converges more slowly than the cosmic vari-

ance contribution, and in practice, it is necessary to estimate the noise from more

than 60 noise realizations. For the two-point statistics there are analytical formulae

in Schneider et al. [2002a], but there is currently no equivalent for the three-point

statistic and the skewness of the convergence. In order to inspect the three different

terms, the covariance matrix was calculated as follows. Foreach noise realization,

a C was calculated, which was relatively noisy because it was obtained from one

noise pattern. Then the average ofC was taken over ten noise realizations. The

covariance matrix thus obtained was specialized for a givennoise statistical prop-
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erty, and the whole calculation was repeated each time the observing conditions

affecting the noise were changed.Cnn was calculated separately over ten thousand

realizations. The averageCss andCnn were used to determine the cross termCns.

Because of the averaging process one obtains a covariance matrix which has a rel-

atively small noise makingC invertible. To illustrate the contribution of each of

these parts the diagonal elements of theCss, Cnn, Cns andC were extracted as the

noise term for each smoothing scale.

Figure 6.7 shows the relative contribution of different terms in the covariance

matrix. The noise-to-signal ratio for the individual components of the covariance

matrix are shown. The blue (long dashed) line is the signal-signal which is the

result of cosmic variance only. The noise-noise term is shown with the black (short

dashed) line. The mixed term was derived fromC−Css−Cnn and is shown in red

(dash-dotted) line and the green (solid) line shows the total noise over signal ratio.

As expected the finding was that small scales were dominated by statistical noise

and the large scales by cosmic variance, where the signal is low. Interestingly, the

mixed noise term is non-negligible for the two- and three-point statistics, so the

future high precision surveys will have to take it into account. The mixed noise

term is strongly dominant for the skewness.

In agreement with Zhang et al. [2003] a range of optimal angular scales (be-

tween one arcminute and half a degree) was found for which thetotal noise affect-

ing the two-point shear statistics is minimal. This is also the case for the three-point

statistics.

6.4.2 Wide and Shallow Versus Deep and Narrow

Many of the future lensing surveys will have a limited observing time and a full

sky coverage will not be possible. The question will arise whether a deep and

narrow survey performs better than a large and shallow survey. Therefore, it is

important to quantify what is the optimal balance between survey size and depth,

given a fixed observing time. It is expected that very shallowsurveys would provide

a poor weak lensing measurement due to the small lensing efficiency for nearby

sources, and deep-narrow surveys will be limited by cosmic variance. The trade-

off between those radically different survey designs must include a proper estimate
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Figure 6.7: The noise-to-signal ratio for the cosmic variance only in blue
(long dashed) line, statistical noise only in black (short dashed) line,
the mixed term in red (dash-dotted) line and the total noise in green
(solid). The〈κ2〉, 〈κ3〉 andS3 measurements were calculated for a simu-
lated 12.84 deg2 data smoothed with top-hat, aperture and compensated
Gaussian filter (from top to bottom).

of the amplitude of the lensing signal and shot noise as function of survey depth.

The relation between limiting magnitude and survey area fora fixed observing

time was derived from the algorithm developed in Bernstein [2001]. The galaxy

number density was obtained by selecting galaxies whose signal-to-noise detection

level was larger than 7 and which are also well resolved for weak lensing studies

following the criteria given in Section 6.3.2. Table 6.2 shows the survey area and

limiting magnitude for each case investigated here.

The likelihood of a model given the data can be written as

L = exp

[

−1
2
(d −m)T ∗C−1∗ (d −m)

]

, (6.10)
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Area(deg2) 1400 1150 900 514 257 115 45 20
mlim 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0
ng/arcmin2 2 5 9 14 22 28 37 45
GF 1.8 4.0 5.0 2.5 2.4 1.5 1.3 –⋆

Table 6.2: The area andi-band limiting magnitude and the corresponding
galaxy number density of different surveys with the same observing time.
The gain factor GF is the ratio between theΩm 1σ width of the two-
point statistics contours over that of the two- and three-point statistics
joint contour. (⋆) Due to the truncated likelihood 1σ contours the GF is
not calculated for the deepest survey.

whered is the measurement on the simulations (data) andm is the theoretical model

for the same measured statistics. The theoretical model is the predictions for two-

or three-point statistics, with varyingΩm andσ8 parameters. All the other cos-

mological parameters are kept constant to those values of the simulations. Also

the dependence of the covariance matrix on the choice of cosmological parame-

ters is ignored here, due to limitations of the simulation set used here.C−1 is the

inverse covariance matrix over all lines of sight. As described in the previous sec-

tion the covariance matrix was computed directly by using the simulations and its

inverse had been re-calibrated using equation (6.8). The likelihood contours were

performed in theΩm−σ8 parameter space.Ωm was varied between 0.1 and 1.0,

with 0.05 intervals, andσ8 values were between 0.50 and 1.50, with 0.05 intervals.

Figure 6.8 shows the pink (dark grey) contours for〈κ2〉 and cyan (light grey)

for 〈κ3〉 likelihood for top-hat filter. The filled contours show the joint 〈κ2〉−〈κ3〉
likelihood. The〈κ2〉 and 〈κ3〉 contours become more degenerate for deep and

narrow surveys, whereas for wide and shallower surveys it appears clearly that the

〈κ2〉 and〈κ3〉 likelihood contours have a different orientation in theΩm−σ8 plane,

which explains why the joint analysis works better for wide and shallow surveys.

One can see indeed that the individual two- and three-point statistics contours for

the wide and shallow surveys become large again due to a larger noise, but the joint

analysis remains competitive. This could be attributed to the larger sensitivity of

the three-point statistics to non-linear effects for shallow surveys as a consequence
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of the projection of mass along the line-of-sight (i.e. identical angular scale probes

more non-linear scales for shallow rather than deep surveys). For the joint two-

and three-point statistics analysis, the medium depth surveys (mlim =23.5 or 24.0)

appear optimal. It is clear that for a fixed observing time, our results favor the

medium shallow-wide surveys. The gain factor GF is defined asthe ratio of the

1σ error width of the〈κ2〉 contours over that of joint〈κ2〉− 〈κ3〉 measurements

which quantifies the improvement when the joint statistics is considered. This

value is calculated from the likelihood contours which include the full noise terms

and correlation between vaious smoothing scales are reflected in the contour size.

It is also common to quote the figure of merit, in order to judgethe optimal survey

design. The figure of merit is defined as the inverse of the areaspanned by the 1-σ
likelihood contour. So tighter constraints result in smaller contour area and hence,

larger figure of merit. The relationship between the figure ofmerit (FoM) and gain

factor (GF) used in this work, can be considered as:FoM ∝ GF−2. The values of

the GF corresponding to the likelihood contours of figure 6.8are shown in table

6.2.

Unfortunately, the skewness of the convergence, defined in equation (6.3), does

not appear to yield as powerful constraints as the combined two- and three-point

statistics. Figure 6.9 shows the error contours usingS3 for three choices of limiting

magnitude and survey area. The observing time here was fixed,like for the previous

analysis. As expected, the dependence onσ8 is very weak, but one can see that the

width of the contours along theΩm axis is much larger than theΩm constraints

one gets from the joint analysis shown in Figure 6.8. Following the same trend as

joint 〈κ2〉− 〈κ3〉 likelihood results shown in figure 6.8, the medium depth surveys

lead to the most optimal skewness measurement. The constraints for the shallower

surveys (i.e.mlim =22.5 and 23.0) are not shown here. Those surveys give poor

cosmological constraints, as the mixedCns term of the covariance at the scales of

interest becomes large. Overall, the skewness does not appear to be as attractive a

statistic to break theσ8-Ωm degeneracy as previously advocated (Bernardeau et al.

[1997] and van Waerbeke et al. [1999]). Measuring the skewness on the current

and near future lensing surveys will be very challenging, and it is clear that a large

fraction of the sky is needed in order to bring the noise contributions to a low

enough level for precision cosmology.
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Figure 6.8: The likelihood analysis for various survey depths and areaswith
fixed observing time for〈κ2〉, 〈κ3〉 smoothed with the top-hat filter. The
observing time is equal for all cases, while the survey area and depth
vary. Table 6.2 shows the values formlim with the corresponding survey
areas. The pink (dark grey) contours indicates the 1σ , 2σ and 3σ errors
for the〈κ2〉 statistics and the cyan (light grey) contours are the same for
the〈κ3〉. The covariance matrix contains both the cosmic variance and
the statistical noise. Here the joint likelihood shown in filled contours
is calculated by taking into the account the〈κ2〉− 〈κ3〉 correlations at
different scales.
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Figure 6.9: The likelihood analysis for various survey depths and areaswith
fixed observing time for skewnessS3 smoothed with the top-hat filter.
The observing time is equal for all cases, while the survey area and
depth vary. Table 6.2 shows the values formlim with the corresponding
survey areas. The covariance matrix contains both the cosmic variance
and the statistical noise. The skewness measurements are optimal for
shallower surveys.

The reason why the skewness is hard to measure lies in the factthat the varia-

tion of the skewness amplitude for differentΩm models is largely absorbed by the

cosmic variance of this estimator. This is not the case for the two- and three-point

statistics taken separately. Figure 6.10 shows the comparison between various pre-

dicted cosmological models and the measurements from the simulations. 〈κ2〉,
〈κ3〉 andS3 were measured for survey area of 12.84 deg2 of limiting magnitude

of 24.5 over the 60 lines of sight. The blue line shows the measured data points;

the errorbars contain both cosmic variance and statisticalnoise. The pink (solid)

line is the fiducial model (Ωm=0.24,ΩΛ=0.76 andσ8=0.74). The black (dotted),

green (dashed) and red (dash-dotted) lines are models with the sameσ8 = 0.75 and

values ofΩm = 0.20,0.40 and 0.80 respectively, while the purple (dash-dot-dotted)

line corresponds to a model withΩm = 0.30 butσ8 = 0.50. The plot shows that

the measurement of〈κ2〉 and〈κ3〉 are much more sensitive to theΩm, σ8 param-
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Figure 6.10: The comparison between the measured values of〈κ2〉, 〈κ3〉 and
S3 and different cosmological models over a survey area of 12.84 deg2.
The blue line shows the measured data points, and the pink (solid) line
is the fiducial model. The black (dotted), green (dashed) andred (dash-
dotted) lines are models with the sameσ8 = 0.75 and values ofΩm =
0.20,0.40 and 0.80, respectively, while the purple (dash-dot-dotted)
line corresponds to a model withΩm = 0.30 butσ8 = 0.50. The plots
show that the measurement of〈κ2〉 and〈κ3〉 are much more sensitive
to theΩm, σ8 parameters than the skewnessS3. This is why we cannot
currently constrain theΩm−σ8 plane with skewness measurements.

eters than the skewnessS3, therefore their ability to separate various cosmological

models is stronger.
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6.5 Canada-France-Hawaii Legacy Survey Three-point
Statistics Predictions

The Canada-France-Hawaii Telescope Legacy Survey covers 170 deg2 in four seper-

ate patches [Fu et al., 2008]. Measurements of the two-pointcosmic shear statistics

have been published using the first year (Hoekstra et al. [2006], Semboloni et al.

[2006] and Benjamin et al. [2007]) and third year data release [Fu et al., 2008] in

addition to studies of galactic scale dark matter halos [Parker et al., 2007]. At the

time our work on this project was carried out, the full CFHTLSdata had not yet

been released. The goal of this work was to predict the expected improvement for

cosmological parameter constraints, using a combination of two- and three-point

lensing statistics on the completed CFHTLS-wide survey. For this purpose, a mock

CFHTLS-wide survey type of 170 deg2 was generated using a limiting magnitude

of mlim = 24.5 (i-band) withng=22 galaxies per arcmin2, zmed=0.91 andσε=0.44

and the potential contamination by residual systematics was ignored.

Figure 6.11 shows theΩm andσ8 error contours from a joint measurement of

〈κ2〉 and〈κ3〉 for the three filters used in this study. It is clear that the top-hat filter

leads to a more significant degeneracy breaking betweenΩm andσ8, which can

be understood by the fact that this filter preserves modes with wavelengths larger

than the smoothing size, while the aperture filters are not sensitive to large scale

variations. The joint two- and three-point analysis of the completed CFHTLS-Wide

will constrainΩm andσ8 to 17% and 10%, respectively. This corresponds to a gain

factor (GF) of∼ 2.5 (for Ωm) and∼ 2.1 (for σ8) improvement on the two-point

analysis alone when the top-hat filter is used. It is interesting to compare figure

6.11 to a generalizedχ2 approach which can serve to quantify the performance of

the different filters. The generalizedχ2 is defined as

S
N

=
√

dT ∗C−1∗d, (6.11)

whereC is the covariance matrix of the statistics under consideration. This ap-

proach takes the correlation between scales, as well as noise levels of each fileter

into account. The results for a 12.84 deg2 survey and limiting magnitudemlim =

24.5 are shown in table 6.3, and they indicate that for two-pointstatistics the dif-

ferent filters are equivalent. The top-hat filter outperforms the aperture filters for
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the three-point statistics. It is a direct illustration that top-hat preserves small and

large scale modes, and it is therefore more sensitive to non-linear effects. This in-

validates the fact that the compensated Gaussian filter is the most efficient measure

of the skewness of the convergence [Zhang et al., 2003]. The reason lies in the fact

that for a fair comparison the maximum smoothing scale for compensated Gaus-

sian filter may not exceed a third of top-hat and aperture smoothing radii. This

can be seen by looking at the equations which define the shape of the filters (see

Section 6.3.4).

S/N 〈κ2〉 〈κ3〉 S3

Top-hat 6.19 2.68 5.45
Aperture 6.05 1.61 2.17
compensated Gaussian 6.93 1.88 3.24

Table 6.3: The generalizedχ2 results for top-hat, aperture and compensated
Gaussian filters. The full covariance matrix is that of the 12.84 deg2

maps. The datad is from theκ-maps smoothed with top-hat, aperture
and compensated Gaussian filters. The correlation between the scales are
contained in the signal-to-noise ratio. For example, although the mea-
surements with top-hat filter result in a larger signal, theyare highly cor-
related, unlike the aperture filter measurements, which have lower signal
with less correlation between the measurement scales.

The joint 〈κ2〉− 〈κ3〉 likelihood analysis with top-hat, aperture and compen-

sated Gaussian filters proved to be promising, whereas the skewness which is in

principle a very interesting statistic inferred very weak cosmological constraints

even for the current largest weak lensing survey at 170 deg2. Figure 6.12 shows

skewness likelihood contours obtained using both top-hat and compensated Gaus-

sian filter for CFHTLS-like survey confirming what stated above about the poor

efficiency of the skewness.

One of the forthcoming weak lensing surveys is the KIlo Degree Survey (KIDS

area of 1500 deg2 atmlim=23.5). We performed for the KIDS survey the same anal-

ysis as for the CFHTLS-Wide to forecast the accuracy of the likelihood constraints

using two- and three-point shear statistics. Moreover, forcomparison the calcula-

tions were repeated for a survey with the same observing timeneeded for the KiDS

survey but different total area and depth. The results establish which survey design
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Figure 6.11: The cosmological constraints onΩm-σ8 plane obtained with dif-
ferent smoothing filters. The contours show the〈κ2〉 and 〈κ3〉 joint
likelihood forecast based on CFHTLS completed area. The survey area
is 170 deg2 and the limiting magnitude is 24.5 with the full redshift
distribution. Here the pink (dark grey) contours show the〈κ2〉 and the
cyan (light grey) contours show the〈κ3〉 constraints. The filled con-
tours correspond to the 1σ , 2σ and 3σ errors for the joint likelihood.
The fiducial model used is aΛCDM with Ωm = 0.24 andσ8 = 0.74.
The degeneracy direction of the〈κ2〉 and〈κ3〉 likelihood is different
(especially when the maps are smoothed with compensated Gaussian
filter) so their joint likelihood results in a tighter constraints on the pa-
rameters. The joint likelihood here is calculated by takinginto account
the cross-correlations between〈κ2〉 and〈κ3〉 at all scales.
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Figure 6.12: The skewnessS3 likelihood analysis for the CFHTLS-wide pre-
dictions. The smoothing filters top-hat and compensated Gaussian
are used. The aperture filter does not provide any constrainton the
Ωm −σ8 plane for the given survey characteristics. The covariance
matrix contains both the cosmic variance and the statistical noise.

would be the most optimal to infer constraints using the joint two- and and three-

point shear statistics. The expected likelihood contours for the complete KIDS

survey are shown in the panel 6.13a, whereas panel 6.13b shows the same results

when a deeper (mlim=24.5) and narrower (area=450 deg2) survey given the same

observing time was considered. As expected from Figure 6.8 the shallower KIDS

gives better results for the joint likelihood, but the skewness would be slightly bet-

ter measured from the deeper (mlim=24.5) survey.

6.6 Conclusion and Discussion

We studied how useful the measurement of the two- and three-point shear statistics

can be to derive cosmological constraints under realistic observing conditions. One

of the limitations of the previous work on this topic was the disconnection between

the source redshift distribution and the survey depth underconsideration. Here,
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(a)

(b)

Figure 6.13: The comparison between a KiDS-like survey at two limiting
magnitudes. The right panels show the likelihood contours of 〈κ2〉 and
〈κ3〉 smoothed with the top-hat filter. The left panels are the skewness
contours. The survey area for the panel (a) is 1500 deg2 as is planned
for the KiDS survey withmlim=23.5. In panel (b) the observing time is
kept the same and the survey area if adjusted to 450 deg2 for mlim=24.5.
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a set of ray-tracing simulations was populated with source galaxies that follow a

redshift distribution and galaxy number density calibrated from real data.

We then investigated how well the parametersσ8 andΩm can be measured with

different smoothing filters for different survey depths. For a fixed observing time,

the results of the study favoured the medium depth and width survey over shallower

and wider or deeper and narrower surveys. There is an optimalsurvey depth versus

size for which the source density (survey depth) and cosmic variance (survey area)

are balanced, which turns out to be a large and shallow survey. CFHTLS survey

proves to be promising for the measurements of two- and three-point statistics.

Also our results can be applied to surveys covering a large fraction of the sky

with no limitation on the observing time (e.g.PanSTARRS andLSST) by a simply

rescaling the covariance matrices. They can also be extended to space data if the

amplitude of ellipticity noise and galaxy number counts areadjusted according to

space observations (this is particularly relevant for a wide field space imager like

that of JDEM).

We find that the lensing statistics are best measured at scales between 1 to 30

arcminutes, where the contribution of statistical noise, cosmic variance and the

mixed term are minimal. We also find that the different smoothing filters give sim-

ilar results although the top-hat appears to include more modes and is therefore

slightly better than the others. Combining〈κ2〉 and〈κ3〉 is promising to achieve

cosmological constraints in theΩm − σ8 parameter space. On the contrary the

skewness of the convergence does not appear capable of breaking the degeneracy

betweenσ8 andΩm as initially expected (Bernardeau et al. [1997] and van Waer-

beke et al. [1999]). The reason is that the cosmic variance onS3 is comparable to

the difference in lensing signal amplitude for the different cosmological models of

interest. Only very large surveys will be able to measure theskewness accurately.

We forecasted the cosmological constraints for the CFHTLS-wide completed

survey finding that the combination of two- and three-point functions on the CFHTLS

will greatly enhance the measurement ofσ8 andΩm. A similar calculation showed

the potential precision achievable with the future KiDS survey.

This study has some limitations which will be investigated in future work. One

of them is the fact that the source galaxies are clustered in three dimensional space

which overlap with lens redshift distribution (a problem known as the source clus-
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tering problem, Bernardeau [1998]). This effect leads to a change in the skewness

of the convergence (by as much as 25%), and its impact on the three-point statis-

tics has not been evaluated yet. A recent study also showed potential impact on the

two-point statistics, although at a moderate level (Forero-Romero et al. [2007]).

Another limitation is the potential impact of intrinsic alignment on three-point

statistics. This is particularly relevant for shallow surveys such as PanSTARRS

or KiDS (Semboloni et al. [2008]). This effect should be taken into the account

as well. We would be able to investigate these two complications with ray-tracing

simulations which include galaxies in dark matter halos; this can be realized by the

use of semi analytical models such as the ones described in Forero-Romero et al.

[2007].
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Chapter 7

CFHTLenS results

In this chapter we first provide an overview of the CFHTLS dataand the CFHTLenS

collaboration. We then explain the object selection and procedure for the three-

point statistics studies performed on this data set and present the results of the joint

2- and 3-point statistics cosmological parameter constraints. This is the first ever

ground-based weak lensing higher order statistics constraint.

7.1 CFHTLS Data

The Canada-France-Hawaii Telescope is a 3.6 meter telescope located at the top of

Mauna Kea in Hawaii. The telescope is operated by the National Research Council

(NRC) of Canada, the Institut National des Science de l’Univers of the Centre

National de la Recherche Scientifique (CNRS) of France, and the University of

Hawaii. The legacy survey started in 2003 with weak gravitational lensing studies

as one of the major science goals. The wide component of the survey consist of 160

deg2 of optical data acquired by Megacam during 450 nights (2300 hours) over the

span of five years. MegaCam is the wide -ield imaging camera onMegaprime and

is a 340 Megapixel camera (2048× 4612 pixels) with 0.187 arcsec resolution per

pixel. Thus the field of view covered by MegaCam is roughly 1 deg2. The data were

collected in five bands (u∗, g′, r′, i′ andz′) down to the limiting magnitude of 24.5

in i′ band. Figure 7.1 shows the Megacam filter set transmission for every band1.

1http://www.cfht.hawaii.edu/Instruments/Imaging/Megacam/specsinformation.html
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Figure 7.1: MegaCam filter set transmission and average CCD quantum effi-
ciency. See footnote for credits.

Also table 7.1 lists the mean bandwidth of each of the five filters of this particular

camera. The wide data are collected from four selected fieldson the sky, W1 (72

pointing), W2 (25 pointings), W3 (49 pointings) and W4 (25 pointings). Figure

7.2 shows the location of CFHTLS wide and deep fields on the sky2. The width of

the survey allows for a very large number of galaxies. It is crucial to have as many

galaxies as possible in the sample since the shape distortions can only be studied

statistically. The observations of the CFHTLS are publiclyavailable through the

Canadian Astronomy Data Centre (CADC)3. The CFHTLS-wide component is

optimal for weak lensing studies for the following reasons.The survey covers

a wide area, enabling observation of many galaxies. Since weak lensing studies

are statistical in nature, a larger sample is very desirable. Also many parts of the

survey overlap with pre-existing surveys, for which spectroscopic redshifts have

been estimated. This allows for well-calibrated photometric redshift estimates of

such a large sample of galaxies. Accurate redshift estimates are crucial to the

interpretation of the weak lensing measurements. The seeing for the survey was at

2http://www.cfht.hawaii.edu/Science/CFHTLS/
3http://www1.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/cadc/
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θ ≤ 0.8 arcsec in thei-band filter, which allows for shape measurements of many

resolved galaxies. Thei-band seeing was the best compared to other filters. The

first generation of cosmic shear results from the CFHTLS widesurvey can be found

in Hoekstra et al. [2006], Benjamin et al. [2007] and Fu et al.[2008] and the deep

component in Semboloni et al. [2006].

7.2 CFHTLenS Collaboration

Canada France Hawaii Telescope Lensing Survey (CFHTLenS) is a worldwide

collaboration of many faculty, postdocs and graduate students. The science nodes

include institutions in Canada, France, The Netherlands, Germany, Italy, Scotland,

England, Spain, China and Japan (see the collaboration website 4 for more details).

The collaboration was formed in 2009 (PI: Dr. Ludovic van Waerbeke and Dr.

Catherine Heymans), with the main goal of better understanding and reducing the

systematics effects of the CFHTLS data. In the process, the CFHTLenS team re-

reduced the CFHTLS data and produced scientific catalogues independent from

the previous releases. The earlier releases suffered from residual systematics, such

as strong B-modes at large scales, strong galaxy-star cross-correlation residuals in

nearly half of the fields and large field-to-field variance.

The image stacking, masking and photometric redshift estimation, along with

shape measurements have been done by the collaboration withthe goal of con-

trolling and understanding the systematics in the data. Forover three years many

systematics tests have been performed by the team to investigate the effects of re-

duction steps on the systematics and to verify the sanity of the data set. The weak

lensing shear is about a 1% change in the galaxy shape and small hidden system-

atics can lead to very biased interpretations of the data.

The data reduction pipeline is based on theTHELI pipeline (Erben et al. [2005]

and Erben et al. [2009])5 which is publicly available. In summary, the photomet-

ric redshifts were measured with the publicly availableBPZ (Bayesian Photometric

Redshifts) code (Benı́tez [2000]), as explained in Hildebrandt et al. [2011]. This

method combines the spectral redshiftχ2 minimization with magnitude/redshift

4http://www.cfhtlens.org/
5http://www.astro.uni-bonn.de/ theli/
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Table 7.1: MegaCam filter characteristics.
Filter u∗ g′ r′ i′ z′

Central wavelength (nm) 374 487 625 770 n/a
Wavelength range (nm) at 50 %337–411 414–559 564–685 698–843 823-...

Bandwidth (nm) 74 145 121 145 n/a
Mean transmission (%) 69.7 84.6 81.4 89.4 90.2
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Figure 7.2: Position of CFHTLS wide (blue squares) and deep (small red squares) fields on the sky.
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priors. The accuracy of the photometric redshifts was tested against the spectro-

scopic redshifts from the VIMOS VLT Deep Survey (VVDS) whichoverlaps 20 of

the CFHTLenS fields. As part of the process, each galaxy is assigned a parameter

ODDS which describes the accuracy of the photometric redshift estimation for that

galaxy. We use this parameter to eliminate low accuracy redshifts from the data.

The galaxy shapes were carefully measured by the Bayesian approach called

thelensfitmethod [Miller et al., 2007] which assumes a theoretical galaxy sur-

face brightness profile, convolved with the modeled PSF (Point Spread Function)

and Bayesian priors on the noise to calculate likelihood on shear estimation. Each

galaxy is then assigned aweight value based on the accuracy of the shape mea-

surement. The details of the systematics tests will follow in Heymans and van

Waerbeke et al. in prep.

For every 1 deg2 of data a list of measured ellipticities, best photometric red-

shift estimates and coordinates is provided along with manymore parameters such

asweight, ODDS, magnitudes and mask flags. We then apply selections to these

parameters to trim the catalogue into a cleaner catalogue for our analyses, which

will follow in the next section. The choice of selection cutsis important since it is

desirable to have as many objects in the catalogues as possible without sacrificing

the integrity of the data. In section 7.3.1 we explain the selection criteria used in

our 2+3-point statistics study.

7.2.1 Masking

Every CFHTLenS field suffers from bright stars as well as other astronomical fea-

tures that must be eliminated from the analysis. Some examples of such features

include the extended halos around the very bright stars, thestellar diffraction spikes

and tracks of asteroids and satellites. In order to remove such objects from the cat-

alogues, various shapes of masks have to be laid on the image so that the objects

within those regions can be excluded from the shear catalogues. An automated

masking routine developed by Erben et al. [2009] was appliedto the CFHTLenS

images. Although automatic masking is very beneficial for such large surveys, it

has some shortcoming as well.

As a contribution to the collaboration and the data processing section, along
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with other PhD students in the team, we checked the automatedmasks generated

for each of the fields by eye. As a result of eyeballing the images, we found some

satellite/asteroid trails that were left unmasked, that ifnot attended to, would have

been detected as very elongated galaxies by the object detection routines. These

false detections will then result in extreme shear values and hence bias the average

shear measurements. Also the automatic scripts are overly conservative in remov-

ing the stellar halos. There are many background faint galaxies that lie within a

stellar halo which are useful for the lensing studies. As explained before we are

interested in a large sample of galaxies, so a careful observation of the automat-

ically masked stellar halos could rescue many of these faintgalaxies and enlarge

the sample in the catalogues.

As an example we show parts of theW1p3p1 field. Figure 7.3 shows a faint

asteroid trail that was missed in the automated masking. Thewhite box is what

was manually placed around the trail to mask it out. Figure 7.4 shows the result

of the automated masking, the green lines contour the stars and their diffraction

spikes, while the red lines mask out the asteroid trails. Onecan see the over plotted

magenta ellipses that are the result of the object detectionsoftwareSExtractor

[Bertin and Arnouts, 1996]6. This shows that if the asteroid trails were not masked

out they would have been picked up as very elongated objects.In 7.5 we show the

stellar halo for which the mask (the white lines) was adjusted to both minimize the

masked area and also include the very long diffraction spikes.

7.2.2 The Clone

As yet another contribution to the CFHTLenS collaboration,we developed a pipeline

to generate the Clone of the CFHTLenS data. The Clone is sets of catalogues that

represent the real data in all aspects, except that the shearvalues are taken from

noise-free simulations in order to assist the systematics tests and the study of vari-

ous aspects in the catalogues such as masking biases. We generate seven full sets

of clones that are available to all members of the collaboration for the purposes of

covariance matrix calculations. Chapter 9 is dedicated to explaining the details of

the clone production.

6http://www.astromatic.net/software/sextractor
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Figure 7.3: A faint asteroid/satellite trail that was missed by the automated
masking (green). A manual mask (white) was added to the image.

Figure 7.4: The asteroid/satellite trails (bright straight white lines) can be
picked up as highly sheared objects by the object detection software
SExtrator. The magenta ellipses show the detected objects.
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Figure 7.5: An example of stellar diffraction spikes bleeding on the CCD
which have to be masked manually (white). Also the mask on thehigh
contrast stellar halo must be adjusted. Masks shown in green, yellow
and red colors are generated automatically. White masks arethe addi-
tional manual masking.

7.3 CFHTLenS 2+3-point Statistics

The two-point〈M2
ap〉 statistics have proved to be a powerful tool to study the power

spectrum and Gaussian fluctuations in the Universe. Since〈M2
ap〉 is the variance

of the field inside the aperture it is unable to measure any non-Gaussianities of the

field, for which higher order statistics such as〈M3
ap〉 are required. The density con-

trast shown in equation 2.14 by construction has a minimum value of -1. However

when structures grow, it can increase indefinitely leading to large values. One can

see that when considering non-linear structure formation,the matter density distri-

bution is far from a Gaussian, so it is sensible to seek higherorder statistics to probe

the non-Gaussian features. It has also been suggested (Bernardeau et al. [1997];

van Waerbeke et al. [1999]; Van Waerbeke et al. [2001a], Kilbinger and Schneider

[2005]; Takada and Jain [2004]) that the higher order statistics when combined

with the standard two-point statistics can improve the cosmological constraints of

the two-point statistics alone. Furthermore with the aid ofnumerical simulations

we demonstrated in Vafaei et al. [2010] (see chapter 5) the degree of this improve-

ment for various filter choices.
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Previously several studies have been performed that detected the non-Gaussian

signal in the weak lensing field (Bernardeau et al. [2002]; Bernardeau et al. [2003];

Pen et al. [2003] on the VIRMOS-DESCART survey and Jarvis et al. [2004] on the

CTIO survey). None of the mentioned detections however leadto cosmological

parameter estimations. This is understandable, given thatthe three-point signal is

much weaker and nosier than the two-point one. Also there is an overall 10−20%

inaccuracy in the theoretical predictions of the three-point functions which affects

the parameter estimations (Van Waerbeke et al. [2001a]; Semboloni et al. [2011a]).

Systematic effects such as the non uniform point spread function of the telescope

alter the shape of the observed galaxies (Heymans et al. [2006a]; Massey et al.

[2007]; Kitching et al. [2009]; Semboloni et al. [2009]), while ignoring the intrinsic

alignment of the source galaxies due to the local dark matterdistribution, can arise

biases to the estimations (Crittenden et al. [2001]; Hirataand Seljak [2004]).

Recently Semboloni et al. [2011b] used the Hubble Space Telescope COSMOS

survey to measure the two- and three-point statistics of thecosmic shear. The

results are the first space-based higher order statistic, and in addition they provided

remarkable cosmological constraints. Here we follow the same procedure with the

choice of compensated filter of van Waerbeke [1998] and Crittenden et al. [2002],

which we previously (in chapter 4) referred to as the compensated Gaussian filter.

This choice compared to the Schneider et al. [1998] filter, has the advantage of

ease of calculations of the three-point correlation function. The following sections

describe the galaxy selection criteria, redshift distribution, theoretical predictions,

covariance matrices and the preliminary results of the likelihood analysis of the

three point measurements on the CFHTLenS data set.

7.3.1 Galaxy Selection and Redshift Distribution

We choose all thei-band catalogues of W1-4 fields. The sub fields in each case

are combined to make a large mosaic catalogue. The followingcuts are made to

exclude objects withODDS ≤ 0.7;bestzphot ≤ 0.1;weight ≤ 0; andMask

≤ 2 in the analysis. We cut out objects with redshifts less than0.1, because it was

shown by Erben et al. [2009] that these objects contain the highest levels of cross

contamination between the redshift bins. We also chose galaxies with non zero
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weights. The mask flag represents the level of masking. As explained in section

7.2.1, the student members of the CFHTLenS collaboration performed a manual

mask check on the images. Some of the stellar halos were conservatively masked

by the automated routine. By choosing objects with mask flag≤ 2, we take a

less conservative approach and consider the objects withinthose masks as valid

members of our sample.

The number of subfields withi-band data for each mosaic is: W1 (63 out of 72

subfields); W2 (all 25 subfields); W3 (all 49 fields); and W4 (20out of 25 fields).

This results in a total area of 157 deg2 rather than 171 deg2. We included the

i-band data only, while the investigation on preference betweeni− andy− band

sub-fields was in progress by the systematics team. The totalnumber of galaxies

in each of the mosaic fields, after the basic cuts is: W1:2,363,977; W2:705,772;

W3:1,730,225; and W4:626,185. This is a total of 5,426,168 galaxies in our analy-

sis, which leads tong = 9.6 per arcmin2. The assumption is that the whole area of

the mosaics are filled with galaxies and ignore the area lost due to masking. This

assumption clearly underestimates the galaxy number density that in turn causes

an over estimation of the noise, which is preferable to its under estimation. A more

careful approach would be to verify the fraction of the mosaic area that is covered

by masks when the masking criterion ofmask ≤ 2 is chosen.

The source galaxy redshift distribution plays an importantrole in interpreting

the measured weak lensing signal. Various weak lensing statistics relate to the con-

vergence power spectrum, as explained in chapter 4, which inturn, in combination

with the source galaxy redshift distribution, are related to the matter power spec-

trum (See equation 3.34). For the purpose of the theoreticalprediction the redshift

probability distribution function needs to be calculated.We include the weight of

each galaxy in the distribution, since their contribution to the correlation function

is proportional to the weight. We use the function suggestedby Brainerd et al.

[1996] to fit the total redshift distribution:

n(z) =
β

z0Γ
(

1+α
β

)

(

z
z0

)α
exp

[

−
(

z
z0

)β
]

. (7.1)

Here α , β and z0 are free parameters. The best fit values for the free parame-
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Field α ±1σ β ±1σ z0±1σ
W1 0.786± 0.007 3.378± 0.0231 1.064± 0.002
W2 0.494± 0.757 3.379± 4.497 1.059± 0.411
W3 1.738± 0.245 1.786± 0.122 0.632± 0.036
W4 1.759± 0.220 2.016± 0.1458 0.683± 0.034
All 2.231± 0.002 1.346±0.001 0.420± 0.0003

Table 7.2: Redshift distribution fitting parameters based on equation7.1,
along with the standard deviation for each parameter.

ters, along with 1σ standard deviation for all cases, are shown in table 7.2. Fig-

ures 7.6a−7.6d show the redshift distribution for each of the CFHTLS fields over-

plotted with the fitting function. For all the four fields combined, the total redshift

distribution of the entire survey (after the galaxy selection mentioned in earlier)

is shown in figure 7.7. Although individual fields seem to haveless agreement

between the redshift distribution and best fit curve, the total redshift distribution

when all the four fields are combined, matches the fitting formula well. As shown

in van Waerbeke et al. [2006], the Poisson noise limit on the redshift distribution

is only valid for smaller surveys. So the slight disagreement on individual fields is

not a concern for CFHTLenS sized survey. The fitting parameter errors are listed

in table 7.2.

We also need an accurate redshift distribution to generate the covariance ma-

trices. We treat the simulations as samples of data and compute the covariance

between the measurements on the simulations. In order to best represent the actual

data, the simulated slices have to be stacked according to the same redshift distri-

bution as the data set. For this purpose, we divide the data catalogue into redshift

bins such that the simulated slice withzℓ is the center of the bin. The width of each

bin is the span of two adjacent source planeszs that contain thatzℓ slice. We then

sum the number of galaxies in each bin and divide by the total area of the mosaic

in arcmin2 per redshift slice. As before, the area lost to masking is ignored. Figure

7.8 shows the resulting distribution for the simulated maps. We stack the redshift

slices accordingly and then add the noise map generated the same way as in chap-

ter 6. The two- and three-point statistics are calculated onthe resulting map using

various smoothing filters.
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Figure 7.6: The weighted normalized histogram of the redshift distribution
for each of the CFHTLenS fields. The galaxy selection is applied to the
catalogues. The red line is the fitting formula with the values of the free
parameters listed for each field in table 7.2.

7.3.2 Three-point Correlation Function and Theoretical Predictions

Combining equations 4.17 and 3.34 one can write the following:

〈M2
ap〉 = 2π

(

3H2
0Ωm

2c2

)2∫ χH

0
dχ

g2(χ)

a2(χ)

∫ ∞

0
sdsP

(

s
fK(χ)

,χ
)

[I(sθ)]2, (7.2)
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Figure 7.7: Galaxy redshift distribution for all the CFHTLenS mosaics com-
bined after the selection criterion was applied to the catalogues. The red
line is the fitting formula based on equation 7.1.

with

g(χ) =

∫ χH

χ
dχ ′ps(χ ′)

fK(χ − χ ′)
fK(χ ′)

. (7.3)

wherefK(χ) is the comoving angular distance,χ is the radial comoving coordinate,

and χH is the radial comoving coordinate of the horizon. One can seethat the

aperture variance〈M2
ap〉 depends both the matter power spectrum and the redshift

distribution of the source galaxiesps(χ). Here I(sθ) is chosen to be the filter

profile of the compensated Gaussian filter as explained in equation 4.18.

Schneider et al. [1998] found a similar relation for the third moment of the

compensated filter statistics to be

〈M3
ap〉 =

(

9H3
0 Ωm

2c3

)2 Ωm
2π
∫ χH

χ dχ g3(χ)
a3(χ) fK(χ)

∫ ∞
0 d2s1P

(

s1
fK (χ) ,χ

)

I(s1θ)

×∫ ∞
0 d2s2P

(

s2
fK(χ) ,χ

)

I(s2θ)I(|s1 + s2|)F2(s1,s2). (7.4)
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Figure 7.8: The weighted simulation map distribution per redshift slice to re-
sample the redshift distribution of the data. The black lines show the
simulation box width and the red impulse lines show the redshift of the
lens plane that was used as the projected map.

HereF2(s1,s2) is the coupling between the two models of density fluctuation. This

term can be calculated using the fitting formula suggested byScoccimarro and

Couchman [2001] who used N-body simulations to calibrate for the bispectrum

calculations to 15% accuracy. Using the same fitting formulaVan Waerbeke et al.

[2001a] built the third order lensing predictions which were shown to be within

10−15 % of the simulations. The predictions used here are based on the work of

Van Waerbeke et al. [2001a], modified for the compensated Gaussian filter. The

non-linear correction to the linear power spectrum is basedon Peacock and Dodds

[1996], and the transfer function was calculated based on the recipe of Eisenstein

and Hu [1998]. We variedΩm between 0.1 and 1.0 andσ8 between 0.4 and 1.4 in

steps of 0.05. The rest of the cosmological parameters are fixed based on WMAP7

(Komatsu et al. [2011]) results, which are the ones used in the numerical simula-

tions as well.

The relation in equation 7.4 shows how matter power spectrumand third mo-

131



ment of aperture mass are related. Similar to the two-point statistics approach, in

practice we estimate the third moment of the aperture mass through calculations

of the correlation function. The difference is that this time we consider correla-

tions between the shear components of triplet galaxies rather than pairs. For this

work we consider only the equilateral triangles, using the three-point correlation

function (3pcf) code which was developed by Elisabetta Semboloni and first ap-

plied to the COSMOS data in Semboloni et al. [2011b]. This code is built based

on the formalism of Zhang and Pen [2005] and Jarvis et al. [2004] for both two-

and three-point correlation function measurements. Non-equilateral triangles will

be included in the future steps of this project.

7.3.3 Covariance Matrix

The covariance matrixC can be split into three components as suggested by Schnei-

der et al. [2002a]. We showed the components previously in chapter 6 equation 6.9.

Here we compute the fullC term by adding noise to the noise-free simulated con-

vergenceκ maps, so that all three terms will be included in the final covariance

matrix. In order to add noise to the maps, we follow the recipeof van Waerbeke

[2000], also applied in Vafaei et al. [2010]. The Gaussian random noise maps are

generated and then scaled by a factor shown in 6.6 which depends onσε (the shear

variance),ng (the galaxy number density) andΘ (the pixel size of the map).

For ellipticity variance we compute
√

σ2
ε1

+ σ2
ε2

, where each of theσεi are the

weighted variances of each of the shear components.The overall value isσ2
ε = 0.38

for the four fields combined.

The covariance is defined as

C(xi,x j) ≡ 〈(X(xi)−µ(xi))(X(x j)−µ(x j))〉, (7.5)

where the angle brackets represent the ensemble average andX(xi) is the measured

statistic at a given scalexi with mean ofµ(xi) over all simulation realizations (185).

We use 18 scales, for the single statistics case which leads to an 18× 18 covariance

matrix. For the joint statistics when 2- and 3-point measurements are combined,

36 scales are used: 18 for 2-point; and another 18 for 3-pointstatistics. The scales

are the following: 0.42, 0.63, 0.84, 1.05, 1.26, 1.47, 1.89,2.10, 3.15, 4.2, 6.3, 8.40,
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10.5, 21.0, 29.4, 42.0, 50.4 and 58.8 arcmins. The correction factor (α∗) introduced

by Hartlap et al. [2007] to remove the bias induced by having alimited number of

samples is

α∗ =
(n−1)

(n−1)− p−1
. (7.6)

In the case of single statistics, the number of scalesp =18 and number of real-

ization n =185, which is the total number of independent simulation realizations

we have. For these values, we findα∗ = 1.115 and for the case of the joint likeli-

hood, wherep =36, we findα∗=1.25. We multiply each covariance matrix by the

correspondingα∗ factor for the likelihood analysis.

In order to display the level of correlation between the datapoints, we compute

the correlation coefficientρ(xi,x j), defined as

ρ(xi,x j) =
C(xi,x j)

√

C(xi,xi)C(x j,x j)
. (7.7)

Figure 7.9a shows the correlation coefficient for the noise-free 2-point statistics

of the compensated Gaussian filter. In figure 7.9b we show the correlation coeffi-

cient of the 3-point statistics for the same filter. Note thateach pixel is a smoothing

scale: 0.42, 0.63, 0.84, 1.05, 1.26, 1.47, 1.89, 2.10, 3.15,4.2, 6.3, 8.40, 10.5, 21.0,

29.4, 42.0, 50.4 and 58.8 arcmins. The apparent sharp transition between 13th and

14th pixel is due to the jump in the smoothing scale from 10.5 to 21.0 arcmins. This

apparent sharp transition is visible in the following correlation coefficient matrices,

since the choice of smoothing scales is not uniform. The reason is that as found in

section 6.4, smoothing scales in the range of 1 to 10 arcmins have the lowest noise

to signal ratio and hence desirable for our analysis.

When noise is added to the simulations, the level of correlation between the

scales changes. In figures 7.10a−7.10c we show the noisy correlation coefficient

results for the two-point statistics of top-hat, aperture and compensated Gaussian

filters in order. Firstly one can compare the off diagonal correlation of these filters.

It can be seen top-hat filter has the most correlated scales. Secondly, when compar-

ing figure 7.9a to 7.10c, one can see the effects of noise addedto the simulations,

which decreases the correlations between the scales for the2-point compensated

Gaussian measurements.
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Figure 7.9: The correlation coefficient matrix for the noise-free 2- and3-
points statistics. The compensated Gaussian filter was usedhere with
18 scales. The noise-free simulated maps are stacked according to the
CFHTLenS data redshift distribution.
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Figure 7.10: The correlation coefficient matrix for the noisy 2- point statis-
tics for various filter choices. The number of scales is 18. The noisy
simulated maps are stacked according to the CFHTLenS data redshift
distribution.

7.3.4 Likelihood Analysis

We use the standard likelihood analysis to infer cosmological parameter constraints

from the measured data. The likelihood function we use here is

L = exp

[

−1
2
(d −m)T ∗C−1∗ (d −m)

]

, (7.8)

whered represents the data,m is the theoretical model andC−1 is the inverse

covariance matrix over all simulated 185 lines of sight. We use 18 scales of mea-

surement here. In Vafaei et al. [2010] we also showed that onecan rescale the
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covariance matrix for the 2- and 3-point statistics to adjust for the desired survey

size, as the elements of the covariance matrix scale with thearea. Here we rescale

the simulated maps (each 12.84 deg2) to 12.5 times larger, which leads to 160 deg2.

The theoretical models are generated based on the recipe explained previously in

section 4.6 with variableΩm andσ8, while all other cosmological parameters are

kept constant to those of the WMAP7 (Komatsu et al. [2011]) values.

Figures 7.11a and 7.11b show the results of the EE and BB components of the

two-point statistics for the top-hat and aperture filters, and 7.12a shows the two-

point statistics measured with compensated Gaussian filter. Figure 7.12b shows

the EEE, EEB, EBB and BBB components of the three-point statistics with com-

pensated Gaussian filter. In these figures a subset of 18 smoothing scales are cho-

sen to keep the plots less busy. This is justified due to high levels of correlation

between the smoothing scales as shown previously. The likelihood contours pre-

sented later contain the full 18 smoothing scale measurements. The error-bars are

1σ deviations from 185 noisy simulations weighted according to the same redshift

distribution. The theoretical predictions are shown as black lines. For pure cosmic

shear signal, all combinations containing B-modes must vanish. The B-modes can

be used to quantify the amplitude of the potential residual systematics in the data.

We present the results of the likelihood analysis of the two-point statistics of the

CFHTLenS data in figure 7.13a−7.13c. The contours differ slightly from those

shown in figure 6.5. The main reason lies in the fact that the galaxy number den-

sity in Vafaei et al. [2010] was assumed to be 22 per arcmin2 for a survey of 24.5

limiting magnitude. With the selection cuts we applied to the CFHTLenS data,

this number has dropped considerably to 9.6 galaxies per arcmin2. The difference

appears in the noise map generation and hence affects the size of the likelihood

contours. Also the median redshifts for the two analyses aredifferent (0.9 there

and 0.7 here).

When two- and three-point statistics are combined, the joint likelihood results

in much improved constraints. Figure 7.14b shows the preliminary results of the

joint likelihood analysis of the CFHTLenS data. This resultis in agreement with

the predictions of Vafaei et al. [2010] and Semboloni et al. [2011b], stating that the

joint two- and three-point statistics leads to much tighterlikelihood contours than

either statistic alone. Figure 7.14b shows the difference in the size of the likeli-
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(a) 2-points top-hat

(b) 2-points Aperture

Figure 7.11: CFHTLenS 2-point measurements with top-hat (top) and aper-
ture (bottom) filter. The errorbars are the 1σ deviations from 185 noisy
simulations. Blue lines are the EE modes, red lines are the BBmodes
and the black lines are the theoretical predictions.
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(a) 2-points Compensated Gaussian

(b) 3-points Compensated Gaussian

Figure 7.12: CFHTLenS 2-point (top) and 3-point (bottom) measurements
with compensated Gaussian filter. The two-point error-barsare the
1σ deviations from 185 noisy simulations. The three-point error-bars
contain the shape noise only, estimated from 10,000 noise realizations.
The colored lines show E-mode (blue), EBB (magenta), EBB (green),
BB and BBB (red), and the theoretical model is shown in black.
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(a) CFHTLenS top-hat 2-points (b) CFHTLenS Aperture 2-points

(c) CFHTLenS Compensated Gaussian 2-points

Figure 7.13: The 2-point likelihood analysis of the CFHTLenS data with
three filter choices.
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(a) CFHTLenS 2+3-points

(b) CFHTLenS 2+3-points withoutα∗ correction

Figure 7.14: The 2+3-point joint likelihood analysis of the CFHTLenS data
with three filter choices. Top panel shows the likelihood constraints,
when the correction coefficient is applied, while the bottompanel
shows the case otherwise. The grey contour shows the case 2-point
statistics only.
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hood contours if the correction factorα∗ is not applied to the covariance matrix.

Semboloni et al. [2011b] also showed the results of three-point statistics when non-

equilateral triangles are considered, which showed improvements over the equilat-

eral combinations. As the next stage of this project we will focus on quantifying

the effects of systematics, such as the residual PSF, intrinsic galaxy alignment and

source clustering which have not yet been included in this work, but have been

shown to have considerable effects on the three-point statistics. Also it is impor-

tant to quantify the accuracy of the three-point statisticstheoretical predictions

further and to include baryonic matter effects on the power spectrum, since it was

shown by Semboloni et al. [2011a] that these contributions affect the non-linear

matter power spectrum considerably. Addition of redshift tomography is a natu-

ral step forward for the higher order statistics. This involves analysing the lensing

statistics in several redshift bins. It has been shown by Joachimi et al. [2011] that

inclusion of redshift tomography improves the constraintson intrinsic alignments

and hence cosmological parameters estimations.
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Chapter 8

PDF Statistics

In this chapter we explain another means of incorporating the information embed-

ded in the weak lensing data. Here we use the simulations described in chapter 5 as

a path finder for this method. This chapter is divided into twosections; which we

call κ-PDF andκ-min. In summary we use the Probability Distribution Function

(PDF) and the minimum value of the convergenceκ to constrain the cosmological

parameters, and show, with the aid of the simulations, that these methods prove to

have promising potentials as complementary weak lensing estimators to the stan-

dard two-point statistics for future surveys. We also investigate whether there is

extra information to be extracted from the PDF, which is not already contained in

the combination of two- and three-point statistics.

8.1 Convergence Probability Distribution Function
Method: κ-PDF

The idea of using the full PDF information, instead of other moments such as the

two- and three-point statistics, has been originally introduced by van Waerbeke

[2000]; Jain and Van Waerbeke [2000].The PDF is the normalized histogram gen-

erated from the convergence maps. The exact shape of the PDF depends on the

cosmological parameters that affect the matter distribution and consequently the

projected mass in the Universe. Hence the overall shape of the PDF can be used

to constrain a subset of the cosmological parameters. As shown in figure 8.1, dif-
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Figure 8.1: The measured noise-free PDF over 800 bins, over plotted with
theoretical predictions for various cosmological parameter configura-
tions. The errorbars represent the standard deviation between 185 lines
of sight for a survey of the size 12.84 deg2, which is the simulated
map size. The top-hat smoothing scale here is 4 arcminutes and all
the sources are at redshiftz=1.

ferent values of cosmological parametersΩm andσ8 affect the shape of the PDF.

This figure shows the noise-free convergence PDF measured onthe simulations in

comparison to theoretical predictions formed based on various values ofΩm and

σ8. More details on the measurements, analysis and theoretical models will follow

in this chapter.

8.1.1 Binning and Sampling

We use 185 noise-free convergence maps at redshift 1.0. Eachmap is smoothed

with the top-hat smoothing filter of a certain smoothing scale (1, 2, 4 or 8 arcmin-
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utes). Previously in Vafaei et al. [2010] we found these scales to carry the highest

signal-to-noise ratio for combined sampling variance and shot noise for the two-

and three-point statistics. After smoothing, a rim of the size of the smoothing

scale is removed from each map to eliminate the edge effects due to smoothing.

This means that for larger smoothing scales, the effective area of the simulated

map is smaller. We then bin the convergence maps into 800 binsand calculate the

histogram. The fine binning is chosen so that the profile of theconvergence distri-

bution is collected accurately. Each histogram is then normalized to calculate the

PDF. Figure 8.2 shows the PDF ofκ over 185 lines of sight. We choose 800 bins

between−0.7 and+0.7, with the bin width 0.00175 inκ . The limits are chosen

sufficiently wide to accommodate the fact that the width of the PDF changes with

the smoothing scale. The same figure shows the effects of varying the smoothing

scale. We can see that the larger the smoothing scale, the narrower the width of

the PDF becomes. The reason is that larger smoothing windowswash out a larger

region of the map (that could contain extreme values ofκ) to an average value.

We also know that the variance ofκ decreases as function of smoothing scale.

This means that a higher smoothing scale corresponds to lower κ variance, which

in turn means narrowerκ-PDF. It can also be seen that the PDF starts with nega-

tive values ofκ . This is because convergenceκ , by definition, is the dimensionless

surface mass density. The density contrastδ , as previously introduced in chapter

2 equation 2.14, can have the minimum value of−1.0 when the local density is

0, which represents the emptiest regions of the line of sight. The averageκ over

the entire sky is zero. Since the convergence is the projected mass, a negative con-

vergence region is emptier than elsewhere in the Universe, which yields a negative

minimum of convergence value. From figure 8.2 one can see thatthe shape of

the convergence PDF is also very distinct, starting with a negative value and then

increasing to the maximum and then decreasing at higher values ofκ , which cor-

respond to the most massive parts of the (projected) sky, dueto large halos and

clusters of galaxies along the line of sight. These highκ regions are also relatively

rare, hence the lower PDF amplitude.
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Figure 8.2: The PDF of noise-free convergence maps averaged over 185 lines
of sight. Each map is smoothed with a top-hat filter and each line in the
plot represents a certain smoothing scale. Each PDF is calculated by
binning the data into 800 equally sized bins between± 0.7 inκ .

8.1.2 Noise Addition

Motivated by the mass reconstruction routines (Kaiser and Squires [1993]), Schnei-

der [1996] pointed out the importance of understanding the noise properties in the

mass maps in order to study the mass distribution from lensing. Seitz and Schnei-

der [1996] and Squires and Kaiser [1996] identified some noise properties in the

mass maps through the numerical simulations. Later Lombardi and Bertin [1998]

derived the first analytical estimate of the total reconstructed cluster mass vari-

ance, taking into account the noise correlations. Interestingly van Waerbeke [2000]

found that the mass map can be considered as the sum of the lensing signal and a

2D Gaussian random noise map. Assuming that the ellipticities are uncorrelated
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between the different sources, van Waerbeke [2000] derivedthe factor by which

the Gaussian noise map is scaled:

f =

√

σ2
ε

2πngΘ2 . (8.1)

Hereσε = 0.44 is the intrinsic ellipticity variance,Θ = 0.21 is the pixel size of the

map in arcmins andng = 12 arcmin−2 is the galaxy number density for a typical

ground-based survey of limiting magnitude 24.5. The factor2 is due to conversion

between the two component ellipticity to convergence. The assumption of uncor-

related intrinsic ellipticities of the source galaxies canbe challenged, and hence

further studies need to be performed to establish the noise properties in the mass

maps more realistically. For the purposes of this project, we consider this assump-

tion to be valid and find that the resulting PDF, although smeared due to noise, can

still be used to constrain cosmological parameters. Figure8.3 shows the noise-free,

noisy and noise-only PDFs from 185 realizations binned in 800 bins. One can see

the effects of noise, broadening the noise-free PDF. The smoothing scale here is

chosen to be 2 arcmin. As can be seen in figure 8.4, the choice ofthe smoothing

scale affects the noisy PDF as well. Every line is an average over 185 lines of sight,

which is a sum of smoothed convergence and smoothed Gaussiannoise maps. The

resulting shape of the PDF depends on the smoothing scale andthe filter function

in addition to the cosmological parameters.

The first, second and third moments of the noise-free, noisy and noise-only

maps, averaged over the 185 lines of sight, from all four smoothing scales are sum-

marized in table 8.1. These values are used to generate the theoretical predictions.

8.1.3 Covariance Matrix

We compute the covariance matrix for the 800-bin measurements. The covariance

matrices are calculated based on

C(ni,n j) ≡ 〈(x(ni)−µ(ni))(x(n j)−µ(n j))〉, (8.2)
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Scale (arcmin) 〈x〉 σ〈x〉 〈x2〉 σ〈x2〉 〈x3〉 σ〈x3〉
Noisefreeκ 1 -4.43E-06 1.63E-03 2.19E-04 2.80E-05 7.10E-06 2.42E-06

Noise 1 3.17E-05 4.42E-04 2.48E-03 1.95E-05 1.75E-08 1.38E-06
Noisy κ 1 2.72E-05 1.69E-03 2.19E-04 2.93E-05 7.00E-06 2.91E-06

Noisefreeκ 2 -3.5E-06 1.64E-03 1.45E-04 2.24E-05 3.02E-06 1.28E-06
Noise 2 2.59E-05 4.44E-04 6.32E-04 8.78E-06 -5.27E-09 3.78E-07

Noisy κ 2 2.24E-05 1.70E-03 1.45E-04 2.34E-05 2.99E-06 1.38E-06
Noisefreeκ 4 -3.50E-06 1.67E-03 8.70E-05 1.67E-05 1.00E-06 5.45E-07

Noise 4 1.72E-05 4.49E-04 1.59E-04 4.97E-06 -2.45E-09 8.60E-08
Noisy κ 4 1.37E-05 1.73E-03 8.72E-05 1.77E-05 9.94E-07 5.71E-07

Noisefreeκ 8 -2.65E-06 1.74E-03 4.89E-05 1.23E-05 2.69E-07 1.99E-07
Noise 8 1.20E-05 4.64E-04 4.02E-05 2.71E-06 8.13E-10 2.41E-08

Noisy κ 8 9.40E-06 1.80E-03 4.89E-05 1.32E-05 2.70E-07 2.11E-07

Table 8.1: The moments of the noise-free, noisy and noise-only simulated maps. The standard deviations are calculated
over 185 samples.
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Figure 8.3: The noise-free, noisy and noise-only PDFs for top-hat smoothing
scale of 2 arcmin. This plots shows how the PDF of noise-freeκ is
convolved with the Gaussian noise to produce the noisyκ PDF.

wherex is the PDF of noisyκ data at a certain binni, andµ(ni) is the average PDF

calculated from the entire simulation set for that particular binni. The size of these

matrices is trimmed to avoid any full zero rows and columns inthe covariances.

The resulting matrices are of the following dimension: 186× 186 (noise-free),

160× 160 (noise-only) and 248× 248 (noisy). In order to display the level of

correlation between the data points, we compute the correlation coefficient, defined

as:

ρ(ni,n j) =
C(ni,n j)

√

C(ni,ni)C(n j,n j)
. (8.3)

The correlation coefficient matrices for noise-free, noisyand noise-only cases are

illustrated in figures 8.5a - 8.5c.
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Figure 8.4: The PDF of noisy convergence maps averaged over 185 lines of
sight. Each pair of convergence and noise map is smoothed with a top-
hat filter and each line in the plot represents a certain smoothing scale.
Each PDF is calculated by binning the data into 800 equally sized bins
between± 0.7 inκ .

For the purposes of likelihood calculations, the inverse ofthe covariance matrix

is required. Such large matrices are unstable to invert since they are generated by

185 samples with 800 data points. As shown by Hartlap et al. [2007], a covariance

matrix of sizep calculated fromn samples has to firstly, satisfyn− 2 > p and

secondly be rescaled byα∗ to remove the bias due to limited number of samples:

α∗ =
(n−1)

(n−1)− p−1
. (8.4)

Throughout this chapter, for the covariance matrix calculations we usedn = 185

as the total number of realizations. Table 8.3 shows the values ofα∗ for various
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Figure 8.5: The correlation coefficient matrix for the noise-free, noisy and
noise-only binned measurements. The number of bins is 800 for all
these cases. Here the matrices are trimmed to void full zero rows and
columns. The smoothing scale used is 2 arcmin with top-hat filter.
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number of data points used in the analysis (as in table 8.2). For the likelihood

analysis, we multiply the covariance matrix byα∗, so that, the bias induced by the

limited number of samples is removed.

Figure 8.6 shows the data points, sampled for the case of 2 arcmin top-hat

smoothing scale for both noise-free and noisy PDFs over-plotted with the fully

binned measurements. It is important to note that although we choose the sam-

pling to be 10 points evenly spaced over the limits of PDF, this number changes

(decreases) depending on the smoothing scale, to accommodate the variation in the

width of the data. The actual number of sampled data for all cases of our analysis

is shown in table 8.2. The choice of 10 scales was made in orderto keep the bias

factorα∗ close to unity, while sampling from the whole range of the PDF. A futrure

step to this work is to fine tune the sampling such that it captures the features of the

PDF, such as the location of the peak and the tails more efficiently. Also, figures

8.7a–8.7c show the sub-sample correlation coefficient matrix for each of the noise

combinations. The correlation coefficient matrices are derived from covariances

that are calculated for a survey of size 12.84 deg2 (simulation map size). We use

these covariance matrices later in section 8.1.5 for the likelihood analysis purposes.

8.1.4 Theoretical Predictions

We opened this chapter with figure 8.1 to show how different cosmological pa-

rameters affect the shape of the convergence PDF smoothed with 4 arcmin top-hat

function. One can see that for the same values ofΩm, largerσ8 values lead to a

broader PDF, meaning that a clumpier Universe contains the projected mass of a

wider range. On the other hand, for a given value ofσ8, smaller values ofΩm
lead to a very limited range of projected mass. Various studies have been per-

formed to calculate the theoretical prediction for the fullPDF of κ (Munshi and

Coles [2000], Munshi and Jain [2001] and Valageas [2000]). Here we employ the

method of Valageas [2000], who derived the theoretical predictions for the full

PDF ofκ from the generating functions which are cumulants of various moments

of the distribution. This approach is widely used in statistics, and Valageas [2000]

showed its applications for calculating the convergence PDF. Later Bernardeau and

Valageas [2000] extended the method to obtain the fullκ-PDF for the aperture mass
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Figure 8.6: The noise-free and noisy sampled PDFs over-plotted with the
fully binned measurement on the simulated maps. The noisefree case
has four sampled scales and the noisy case has five scales thatentered
the likelihood analysis. The smoothing scale here is 2 arcmin with top-
hat filter, and the error-bars are the standard deviation calculated be-
tween 185 lines of sight.

filter.

In the presence of noise, the noise-free PDF is convolved with the pure Gaus-

sian noise, appropriately scaled to the survey conditions.The theoretical predic-

tions for the noisy PDF are then different from those of the noise-free case and have

to be computed separately. In figure 8.8, we observe the effects of various cosmo-

logical parameter values on the noisy PDF. Although the effects are much more

subtle than in the noise-free case, there is still a distinction between the models

and hence the noisy PDF can be used in the likelihood analysis.

For the noise-free case, we have a parameter space ofΩm in the range of 0.1
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Figure 8.7: The correlation coefficient matrix for the noise-free, noisy and
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sampling. The trimming is done so that the covariance matrixis free of
all zero rows or columns. The smoothing scale used here is 2 arcmin
with top-hat filter.
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Figure 8.8: The measured noisy PDF over 800 bins, over-plotted with the-
oretical predictions for various cosmological parameter configurations.
The error-bars represent the standard deviation between 185 lines of
sight. The top-hat smoothing scale here is 4 arcmin.

to 1.0 andσ8 in the range of 0.4 to 1.4 with 0.1 spacing in both cases. This leads

to 10 nodes onΩm and 11 nodes in theσ8 side on the likelihood plane. For noisy

predictions, we have a finer sampling of the likelihood plane, with Ωm in the range

of 0.1 to 1.0 andσ8 in the range of 0.2 to 1.4, with 0.05 spacing. This leads to 19

nodes inΩm and 25 nodes in theσ8 side. Throughout our likelihood analysis, the

grid is interpolated to 1/5 finer scale for smoother likelihood contours.

8.1.5 Likelihood Analysis Results

We use the standard likelihood definition:

L = exp

[

−1
2
(d −m)T ∗C−1∗ (d −m)

]

, (8.5)
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Table 8.2: The number of scales for each PDF run, with originally 10 data
points chosen out of 800 bins.

Scale p(Noisefree) p(Noisy) vmin,vmax ∆ v
1 arcmin 5 7 ±0.6 1.5× 10−3

2 arcmin 4 5 ±0.4 1.0× 10−3

4 arcmin 4 5 ±0.2 5.0× 10−4

8 arcmin 5 6 ±0.1 2.5× 10−4

p 4 5 6 7
α∗ 1.028 1.034 1.039 1.045

Table 8.3: The covariance matrix bias factorα∗ for different numbers of data
p based on equation 8.4 The number of samplesn in all calculations is
185.

whered represents the data andm is the theoretical model.C−1 is the inverse

covariance matrix over all 185 lines of sight. The datad here is the mean of the

sampled PDF on the noisy, smoothed simulations. The covariance matrix is com-

puted over 185 simulation realizations. In this analysis weignore the cosmological

parameter dependence of the covariance matrix, since our set of simulations consist

of one particular cosmology. For the future work, one could in principle generate

a whole set of simulations for each point in cosmological parameter space. This

approach, although ideal, is exteremly costly. Figures 8.9a–8.9d show the likeli-

hood constraints from the noise-free measurements, whereas the noisy results are

presented in figures 8.10a–8.10d. Each panel presents a certain smoothing scale.

The number of scales used in each case can be found in table 8.2.

One might argue that the constraints from the realistic noisy analysis are not

sufficiently limiting for the cosmological parameter estimation studies. Note that

the analysis is performed for a survey of size 12.84 deg2. For a survey 12.5 times

large (i.e. 160 deg2), we rescale the covariance matrix and find the constraints

shown in figures 8.11a–8.11d. This shows great promise forκ-PDF methods, as

an alternative weak lensing estimator for future surveys.
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(a) Noise-free, Scale 1 arcmin (b) Noise-free, Scale 2 arcmin

(c) Noise-free, Scale 4 arcmin (d) Noise-free, Scale 8 arcmin

Figure 8.9: The likelihood results for the 4 smoothing scales of the fullnoise-
freeκ-PDF analysis for a survey size of 12.84 deg2.

8.2 Convergence Minimum Value Method:κ-min

The idea here, is very similar to the previous section, in that we use the information

embedded in the shape of the convergence PDF to learn more about the cosmolog-

ical parameters. The only difference here, is that the focusis on a particular part

of the PDF, which the minimum non-zero value. Although we focus on one point

pf the PDF and seemingly discard all other information, thischoice has its own ad-

vantages. One is that the cosmological dependence of the minimum convergence

is purely goemtrical as can be seen from equations 6.1 and 6.2. For the empti-
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(a) Noisy, Scale 1 arcmin (b) Noisy, Scale 2 arcmin

(c) Noisy, Scale 4 arcmin (d) Noisy, Scale 8 arcmin

Figure 8.10: The likelihood results for the 4 smoothing scales of the fullnoisy
κ-PDF analysis for a survey size of 12.84 deg2.

est line of sight,δ = −1, so the lensing configuration is the only contribution to

the systematics. The constraints obtained from this method, although weaker than

full PDF, can be used to isolate systematic effects and to serve as cross checks of

the mass recosntruction methods. Also, although the value of κ-min is related to

the full reconstructed PDF, when convolved with noise, the sensitivity to extended

positive tail of the distribution is reduced. As explained before the PDF ofκ starts

off as a negative value, which is the point of our focus in thismethod. The min-

imum κ corresponds to the emptiest parts of the line of sight, wherevoids exist.

As mentioned earlier, convergence is a projection along theredshift, so emptiness

157



(a) Noisy Scale 1 arcmin (b) Noisy Scale 2 arcmin

(c) Noisy Scale 4 arcmin (d) Noisy Scale 8 arcmin

Figure 8.11: The likelihood results for the 4 smoothing scales of the fullnoisy
κ-PDF analysis for a survey that is 12.5 times larger than the simulated
maps with area of 160 deg2 which is close to the effective area of the
CFHTLenS survey.

is relative and an emptier line of sight means that no dark matter halos, cluster of

galaxies or any other massive object lies in between.

8.2.1 Noise-free and Noisy

In figure 8.12 we show theκ-min value measured over all the simulated noise-free

maps. Each color band represents a different smoothing scale used. As can be

seen, larger smoothing scales lead to larger values ofκ-min, meaning that the very
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Figure 8.12: Values ofκ-min over the 185 noise-free simulated maps. Each
color band represents a particular smoothing scale.

empty regions get erased by smoothing.

Noise is added to the maps, exactly the same way as in the full PDF method.

The difference is that, here, we take the minimum value of theresulting map. Fig-

ure 8.13 shows theκ-min values as a function of smoothing scale, and ther error-

bars represent the standard deviation between 185 lines of sight. We overplot the

theoretical predictions for various cosmological parameter combinations to illus-

trate the fact thatκ-min is sensitive to the cosmology and can be used in principle

to constrain cosmological parameters. The theoretical values are extracted by tak-

ing the minimum values from the full PDF predictions. In other words, full con-

vergence PDF must be predicted and the minimum non-zero value of it has to be

extracted. In figure 8.14, one can see how the noise-free and noisy κ-min values
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Figure 8.13: The noise-free simulatedκ-min values as a function of smooth-
ing scale. The error-bars represent the variance between the 185 lines
of sight. The minimum noise-freeκ values predicted by different cos-
mological parameters are shown for comparison.

compare to each other as a function of smoothing scale. The general trend is that,

the smaller smoothing scales lead to more negative values ofκ-min, which means

emptier regions do not get washed out by smoothing in absenceof noise. Also one

can see that the convolution with Gaussian noise drives the minimum κ to more

negative values, falsely implying emptier regions than reality. It is then essential

to have a good understanding of the noise properties in the real data in order to be

able to separate these effects.
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8.2.2 Results: All Scales

We calculate the noise-free and noisy covariances from the 4smoothing scales: 1;

2; 4; and 8 arcminutes, among the 185 simulated lines of sight. Here, the number

of data points isp =4 (corresponding to four smoothing scales) and number of

samples is 185. This results in the covariance matrix bias factor α∗ =1.028, which

is applied to the covariance matrix. We also compute the correlation coefficient

from equation 8.3 for each noise case. Figures 8.15a and 8.15b shows the noise-

free and noisy correlation coefficient matrices for theκ-min analysis when the

top-hat filter is used.

We also compare the results of the likelihood analysis, of both noise-free and

noisyκ-min estimates. Figure 8.16 displays the results from the noise-free case.
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Figure 8.15: The noise-free and noisy correlation coefficient matrices of the
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value with 4 smoothing scales and over 185 lines of sight for asin-
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Figure 8.16: The likelihood results for the noise-free minimum convergence
κ measurements over 4 smoothing scales for a survey size of 12.84
deg2.

When the noise effects are considered, it can be seen from figure 8.17 that the

constraints become weaker, to the point that, for a survey ofthe size of the simu-

lation maps used here (12.84 deg2), κ-min is not a suited estimator. However, by

rescaling the covariance matrix for a survey, 12.5 times larger (area 160 deg2), we

obtain promising constraints as shown in figure 8.18. This isinteresting because

the systematic dependence of an estimator such asκ-min is different from those

affecting the higher order statistics. The reason is thatκ-min is mainly geometry

dependent. This presents an advantage for combiningκ-min measurements with

other weak lensing estimators, to obtain tighter cosmological constraints. An im-

midiate future step of this work is to verify the validity of the rescaling process

for the full PDF as we did previously for the two- and three-point statistics. This
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Figure 8.17: The likelihood results for the noisy minimum convergenceκ
measurements over 4 smoothing scales for a survey size of 12.84 deg2.
A survey this small is unable to provide any significant cosmological
constraints.

is beyond the scope of this thesis as the goal here was to explore the convergence

PDF method as a path finder, and further investigations are required.

8.3 Practical Approach for the Future

In order to implement the PDF statistics in real data, one needs to perform mass

reconstruction on the shear catalogues. The details of sucha challenging procedure

are beyond the scope of this thesis. However, there are plenty of future steps one

can take to improve the current work. First, we would consider other smoothing

filters to find the optimal function. One could also combine the smoothing scales
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Figure 8.18: The likelihood results for the noisy minimum convergenceκ
measurements over 4 smoothing scales for a survey size of 160deg2.

for the full PDF to take advantage of the joint likelihoods between the scales. The

purpose of this work was to explore the possibilities of alternative weak lensing

estimators. However, to fullfil the potentials of the PDF method, we will extend

the analysis to include broad redshift distribution, to mimic realistic survey con-

ditions better. Besides, in this work, the choice of sampling here has been very

limited. One can consider non-even sampling, such that the main features of the

PDF, (minimum, peak position, etc) are included in the sampling process. All of

these action items are set to be taken up in the near future as the next stage of this

project. The technique will then be applied to the reconstructed mass maps from

the CFHTLenS data.
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Chapter 9

The Clone

The following sections explain the purpose, production andformat of the “Clone”,

which was generated as part of my contribution to the CFHTLenS collaboration.

The clone files are made available to the CFHTLenS members forthe purposes of

covariance matrix calculations and systematics testing.

9.1 Purpose

Chapter 7 explained the CFHTLenS data in detail. The shapes and photometric

redshifts of all the galaxies are included in the cataloguesfor various scientific

applications. For most weak lensing analysis estimation ofcovariance matrices is

an essential part of the process. In the linear and Gaussian regime, one can derive

the terms of the covariance matrix analytically. This convenience however, does

not exist, when considering the full non-linear and non-Gaussian terms. The best

way to obtain realistic covariance estimation, is to have many samples of the data

and calculate the covariance between them. In case of astronomical data, this is

not possible, since we only observe one sky. The survey area can be divided up

into patches to get around this issue, however measurementsat larger scales will

not be possible. One great solution is to use the numerical simulations to generate

mock catalogues that mimic the noise amplitude, masking, redshift distribution

and overall geometry of the survey. The simulated data can also be used to test the

pipelines and the integrity of the systematics tests.
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Ωm ΩΛ σ8 h ns Ωb

0.279 0.721 0.817 0.701 0.96 0.04

Table 9.1: Cosmological parameters of the input simulations.

For these purposes, we generated the clone of the CFHTLenS data, that re-

sembles the data catalogues in many aspects, such as the galaxy number density;

position; and redshift distribution, with added simulatednoise-free and noisy shear

information for each galaxy.

9.2 Introduction

The Clone is a hybrid of data and simulations. It is partly generated from 185 dif-

ferent dark matter particle simulations. The cosmologicalparameters of the simu-

lations are listed in table 9.1 based on WMAP7 parameter values. Each simulation

is completely independent of the others with different and randomized initial con-

ditions. It is important to use independent simulations to obtain realistic covariance

matrices. Each simulation line-of-sight has 26 redshift slices with source redshift

from 0.050 to 3.17. The clone serves as copies of the real data. Table 9.2 shows

the particular simulations line of sight chosen for each clone run. Each CFHTLenS

subfield is cloned 7 times. Figures 9.3, 9.4, 9.5 and 9.6 show the orientation of

subfields in each CFHTLenS mosaic. Each color patch shows a group of fields that

are cloned using the same line of sight. Each simulation map accommodates up to

9 CFHTLenS fields as the size of simulation maps is 1024×1024 with pixel size

of 0.21 arcminutes and each CFHTLenS subfield covers 1 deg2. The data for mos

fields have been taken ini-band. The fields denoted withY, have onlyy-band data

available. Fields with+ have bothi- andy-band data. For these fields the same

line-of-sight of simulations are used for both bands.

9.3 Clone Production Foundation

For every galaxy in the data files with(x,y) position and redshiftz, we find the

corresponding location on the line-of-sight map. For that particular position on

the simulations, the values of noise-free reduced shear (defined in equation 3.25)
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are quoted as the simulated clone. There are few more technical steps along the

way that will be explained in the following sections. The steps include: format

conversion; pixel size difference; sky deprojection; and shear assignment.

The original data is inldac binary format. The first step is to extract the

galaxy identification number,wcs (world coordinates) and best redshift estimate

of each galaxy in the input catalogue and convert them to ascii format. Each input

catalogue contains the pixel position of the galaxies as well, however the origin,

(0,0), is chosen to be at the bottom left corner of each subfield. The pixel co-

ordinates of the data run from 1 to 21,000 pixels with pixel resolution on 0.186

arcseconds. We need to use the global pixel coordinate to conserve the relative

positions of the fields with respect to each other. This coordinate system has to

be properly converted fromwcs coordinates to match up with the simulation pixel

size.

Another issue to deal with is the fact that the sky is not flat. Hence, a simple

wcs to (x,y) coordinate transformation is not sufficient to encompass the curvature

of the sky at high declinations. The effects of high declination distortion have to

be taken into account, since the simulations are generated as flat maps. The non-

equatorial field (W3) is more affected by these distortions due to high declination.

For this purpose we convert thewcs coordinates to global(x,y) pixel coordinates

usingsky2xy software, which is part ofWCSTools software package.1 This

routine takes the world coordinate information from the header of the mask fits

images for each mosaic field and generates the corresponding(x,y) coordinate

which runs for the whole mosaic. There is a great advantage inthis step already,

and that is the continuous pixel values for the whole mosaic.This enables cloning

of 9 neighboring fields by using the(x,y) coordinates.

Mask images have the lower pixel resolution than the data catalogue, 0.01666

arcminutes per pixel (instead of 0.186 arcseconds), so the resulting pixel resolution

of the(x,y) coordinate is the same as the mask images. Although this seems to be

a significant drop in pixel resolution from the original input data, it does not cause

any problems in clone generation. The reason is that the simulation pixel size is

0.21 arc minutes, which is more than 12 times larger than the projected global pixel

1http://tdc-www.harvard.edu/wcstools/sky2xy/
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coordinate resolution. When using the clone, scales less than 0.21 arcminutes fall

below the resolution of the simulations and hence, not acceptable.

9.4 Shear Assignment

With proper pixel coordinates assigned as explained above,we locate each galaxy

in three dimensions on the simulated line of sight. We take the (x,y,z) coordinates

of the galaxies in a group of subfields (to a maximum of 9) as shown in colored

patches in figures 9.3, 9.4, 9.5 and 9.6. The first step, is to find the corresponding

simulation redshift slice to the galaxy’s best photometricredshift estimate from

the catalogue. The simulations have 26 redshift slices, which are generated by

collapsing the simulations boxes as they evolve over time. The evolved boxes are

adjacent, so there is no gap between them. If the galaxy’s redshift is within a given

simulation box, the corresponding source redshift is assigned to the galaxy. Figure

9.1 shows the simulation boxes and lens and source planes. Galaxies falling within

a simulation box are assigned the reduced shear values from the central collapsed

slice inside of that box. The next step is to find the (x,y) position on that particular

redshift slice map.

9.5 Rejected Galaxies

For any galaxy with best estimated photometric redshift outside the redshift range

of the simulations, a shear value of 99 is assigned. These galaxies will be taken

out of the catalogues before using. The simulated redshift slices are chosen so that

the galaxy’s redshift lies between the previous source redshift and the assigned

one. So for galaxy at redshiftzs−1 < zg ≤ zs the simulated slice atzs is taken. To

obtain a more accurate shear value than the discrete sheets,we can interpolate the

shear between the two maps that encompass the galaxy. Although each simulation

box is rotated and moved before the central collapse, every convergence map is

the geometric weighted sum of all the denistyδ -maps from the source to redshift

zero. So the interpolation is a valid approach to find a more continuous distribution

of the simulated shear values. For this purpose, the clone contains the lower and

upper shear values for each galaxy that correspond to the twomaps that encompass

the galaxy redshift at a particular location. The upper value is what is used as the
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simulated value, and the lower value is added for the case of interpolation. For

galaxies between the observer and the first slice atz = 0.0494 there is no lower

shear values, so these galaxies are assigned shear values of66 to be taken out of

the catalogue as well.

9.6 Noise Addition

In order to have the most realistic shear values compared to data, reasonable levels

of noise should be added to the simulated shear. The observednoisy ellipticity of a

galaxy is a combination of its intrinsic reduced shear and a randomized ellipticity

term caused by random intrinsic ellipticity of the galaxy.

We randomize the orientation of the input galaxy’s ellipticity to destroy the

lensing signal. The ellipticity dispersion is then calculated as
√

σ2
ε1

+ σ2
ε2

. We

the two real and imaginary components of this randomized ellipticity to the cor-

responding simulated reduced shear components as shown in Seitz and Schneider

[1997]:

eobs =
es + g

1+ g∗es (9.1)

The resulting simulated observed ellipticity resembles the observed ellipticity from

the data statistically. Hereg is the reduced shear, defined asγ/(1−κ) andes is the

randomized ellipticity of the galaxy.

9.7 Redshift PDF Re-sampling

Each photometric redshift estimate of the catalogue is the best value from a prob-

ability distribution P(z) as a function of redshift. For every galaxy, a 40 bin PDF

is given in the catalogues. The bins start fromz =0.01 toz =2.00 with bin size

z =0.05. We use this PDF of redshifts to re-sample a new redshiftvalue for any

given galaxy. We re-sample the redshift of all individual galaxies from the same

PDF that the best redshift came from.For a localized PDF, there-sampled redshift

is most likely very close to the best value in the catalogue. However, if the PDF is

very wide, the probability of finding a different value for redshift is much higher.

The goal is to have 10 re-sampled values of the redshift to study if there are any

biases due to the redshift estimates in the catalogues.
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We follow the recipe of Monte Carlo re-sampling as explainedin chapter 6.5 of

Wall and Jenkins [2003]. Figure 9.2 shows the shape of the input PDF for 6 sample

galaxies and the PDF of 1000 re-sampled redshifts, from which 10 are chosen to

be in the clone catalogue. The black lines are the PDF from thedata catalogue.

The red crosses are the result of 1000 re-samples of the PDF. It can be seen that the

distribution of these 1000 values follows the original PDF closely. Also we chose

a range of PDF distributions to demonstrate different levels of estimated redshift

accuracy for different galaxies. For the 10 re-sampled redshift values, we generate

10 different clones by random sampling the simulation(x,y) plane. These clones

of clone can be used to test redshift estimate biases in the catalogues. So far, two

generations of clone have been released to the CFHTLenS collaboration and with

added number of simulations, new generations will be generated.
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Field Clone 1 Clone 2 Clone 3 Clone 4 Clone 5 Clone 6 Clone 7
W1-1 10 100 101 102 103 104 105
W1-2 106 107 108 109 11 110 111
W1-3 112 113 114 115 116 117 118
W1-4 119 12 120 121 122 123 124
W1-5 125 126 127 128 129 13 130
W1-6 131 132 133 134 135 136 137
W1-7 138 139 14 140 141 142 143
W1-8 144 145 146 147 148 149 15
W1-9 150 151 152 153 154 155 156
W2-1 157 159 16 160 161 162 163
W2-2 164 165 166 167 168 169 17
W2-3 170 171 172 173 175 176 177
W2-4 178 179 18 180 181 185 186
W3-1 187 188 189 19 190 191 192
W3-2 193 194 195 196 197 198 199
W3-3 20 21 22 23 24 25 26
W3-4 27 28 29 30 31 32 33
W3-5 34 35 36 37 38 39 40
W3-6 41 42 43 44 45 46 47
W3-7 48 49 50 51 52 53 54
W3-8 55 56 57 58 59 60 61
W3-9 62 63 64 65 66 67 68
W4-1 69 70 71 72 73 74 75
W4-2 76 77 78 79 80 81 82
W4-3 83 84 85 86 87 88 89
W4-4 90 91 92 93 94 95 96

Table 9.2: Particular line of sights used for each clone run.

Missing Fields 1-9 158 174 182 183 184 200
Leftover Fields 97 98 99

Table 9.3: Particular line of sights used for each clone run.
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Figure 9.1: Lens and source redshift slices within simulation boxes at different redshifts. The simulation boxes are
collapsed at the lens plane. Galaxies within each simulation box are assigned shear values of the central collapsed
map.
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W1m1m1 in i-band, 1000 resampled redshifts for 6 galaxy memebers.
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Figure 9.2: The PDF and 1000 re-sampled redshifts for 6 galaxy members ofW1m1m1 i-band data. For the clone
catalogue 10 re-sampled redshifts are used for each galaxy.
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Figure 9.3: Orientation of all W1 subfields. Fields withY in the naming have only they-band data. Other fields have
only thei-band data and fields with+ have bothi- andy-band data.
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Figure 9.4: Orientation of all W2 subfields. Fields withY in the naming have only they-band data. Other fields have
only thei-band data and fields with+ have bothi- andy-band data.
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Figure 9.5: Orientation of all W3 subfields. Fields withY in the naming have only they-band data. Other fields have
only thei-band data and fields with+ have bothi- andy-band data.

177



!"#$%&% !'#$%&% !$#$%&%

!"#'%&% !'#'%&% !$#'%

#"#"% !(#"% !"#"%)% !'#"%% !$#"%

#'!(% #"!(% !(!(% !"!(% !'!(%

#'!"% #"!"% !(!"% !"!"%)% !$!(%

#'!'% #"!'% !(!'% !"!'%

*+%,-./01%%

!"#$%! "#$&! "#$'!! "#$#!

Figure 9.6: Orientation of all W4 subfields. Fields withY in the naming have only they-band data. Other fields have
only thei-band data and fields with+ have bothi- andy-band data.
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Chapter 10

Conclusion and Future Work

In this thesis we studied three alternative weak lensing estimators that are com-

plimentary to the standard two-point statistics. Chapter 1introduced the topic of

gravitational lensing and the motivation for seeking alternative estimators. Chap-

ter 2 briefly reviewed the standard model of cosmology and parameters describing

this model. In chapter 3, we explained the gravitational lensing phenomenon with

the focus on cosmic shear and the relationship between matter and lensing power

spectra. In chapter 4, various second and third order cosmicshear statistics were

introduced. These quantities were then used in the following chapter 5, as we tested

the accuracy and integrity of the numerical simulations developed for the purposes

of weak lensing studies. We examined 185 lines of sight of dark matter simulations

and showed that they follow the theoretical predictions very closely.

The simulations were also implemented to make forecasts forhigher-order

statistics for upcoming surveys. Using the simulations, weshowed that combin-

ing the two- and three-point statistics improves cosmological parameter constraints

considerably. We also demonstrated an optimal survey design that will enhance the

higher order weak lensing signal. We presented these results in chapter 6.

In chapter 7, we applied the higher order statistical techniques to the observed

data. We used 160 deg2 of the CFHTLS data that were collected at the Canada

France Hawaii Telescope. The cosmic shear catalogues have been carefully re-

duced and tested for various systematics effects by the CFHTLenS collaboration.

We measured both two- and three-point statistics through estimations of corre-
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lation functions. We computed the joint likelihood and showed that the cosmolog-

ical constraints can be indeed significantly improved when higher order statistics

are included. These preliminary results are the first 2+3-point statistics based cos-

mological constraints from a ground-based survey.

Employing numerical simulations, we explored another avenue of complemen-

tary statistics that can be derived from weak lensing data. In chapter 8 we showed

that the projected reconstructed mass maps, can also be usedto constrain cosmo-

logical parameters. We added realistic noise to the simulations to mimic the data

and measured the probability distribution function of the projected mass. In addi-

tion, we explored the emptiest parts of the simulated Universe that correspond to

the voids. We showed that such empty regions could also be used to distinguish

between cosmological parameters.

This work was performed as a proof of concept. In the future weplan to extend

this work by combining the projected mass maps to represent the galaxy redshift

distribution. We would then be able to quantify the strengthof this approach in con-

straining cosmological parameters in comparison to two- and three-point statistics.

We plan to implement the method developed on the mass maps generated from the

CFHTLenS data.

Finally in chapter 9 we presented the clone of the CFHTLenS data, which was

produced as part of this thesis, for the purpose of covariance matrix estimations

and systematics testing of various scientific projects within the collaboration.

Future weak lensing surveys such as DES (Dark Energy Survey1), KiDS (Kilo

Degree Survey2), JDEM (Joint Dark Energy Mission3) and Euclid4 are planned to

be in operation in the next decade. These surveys will cover even larger areas of

the sky. The contributions of the CFHTLenS collaboration are directly applica-

ble to future surveys and will enhance their data quality. Our work on numerical

simulations can be extended to test the systematics of thesesurveys and provide

forecasts for optimal survey strategies. Future data sets will result in larger mass

maps of the dark matter distribution. So it will be much more feasible to include

1http://www.darkenergysurvey.org/
2http://www.astro-wise.org/projects/KIDS/index.shtml
3http://jdem.gdfc.nasa.gov
4http://sci.esa.int/science-e/www/area/index.cfm?fareaid=102
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the PDF statistics in the upcoming weak lensing analysis. Also the studies using

higher-order statistics can be applied to such large surveys to further improve the

cosmological constraints.
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A. Amara and A. Réfrégier. Optimal surveys for weak-lensing tomography.
MNRAS, 381:1018–1026, Nov. 2007.doi:10.1111/j.1365-2966.2007.12271.x.

D. J. Bacon, A. R. Refregier, and R. S. Ellis. Detection of weak gravitational
lensing by large-scale structure. MNRAS, 318:625–640, Oct. 2000.
doi:10.1046/j.1365-8711.2000.03851.x.

A. J. Banday, K. M. Gorski, C. L. Bennett, G. Hinshaw, A. Kogut, C. Lineweaver,
G. F. Smoot, and L. Tenorio. Root Mean Square Anisotropy in the COBE DMR
Four-Year Sky Maps. ApJ, 475:393, Feb. 1997.doi:10.1086/303585.

J. M. Bardeen, J. R. Bond, N. Kaiser, and A. S. Szalay. The statistics of peaks of
Gaussian random fields. ApJ, 304:15–61, May 1986.doi:10.1086/164143.

M. Bartelmann and P. Schneider. Weak gravitational lensing. Phys. Rep., 340:
291–472, Jan. 2001.doi:10.1016/S0370-1573(00)00082-X.

N. Benı́tez. Bayesian Photometric Redshift Estimation. ApJ, 536:571–583, June
2000. doi:10.1086/308947.

J. Benjamin, C. Heymans, E. Semboloni, L. van Waerbeke, H. Hoekstra, T. Erben,
M. D. Gladders, M. Hetterscheidt, Y. Mellier, and H. K. C. Yee. Cosmological
constraints from the 100-deg2 weak-lensing survey. MNRAS, 381:702–712,
Oct. 2007.doi:10.1111/j.1365-2966.2007.12202.x.

F. Bernardeau. The effects of source clustering on weak lensing statistics. A&A,
338:375–382, Oct. 1998.

F. Bernardeau and P. Valageas. Construction of the one-point PDF of the local
aperture mass in weak lensing maps. A&A, 364:1–16, Dec. 2000.

F. Bernardeau, L. van Waerbeke, and Y. Mellier. Weak lensingstatistics as a
probe of{OMEGA} and power spectrum. A&A, 322:1–18, June 1997.

182

http://dx.doi.org/10.1111/j.1365-2966.2007.12271.x
http://dx.doi.org/10.1046/j.1365-8711.2000.03851.x
http://dx.doi.org/10.1086/303585
http://dx.doi.org/10.1086/164143
http://dx.doi.org/10.1016/S0370-1573(00)00082-X
http://dx.doi.org/10.1086/308947
http://dx.doi.org/10.1111/j.1365-2966.2007.12202.x


F. Bernardeau, Y. Mellier, and L. van Waerbeke. Detection ofnon-Gaussian
signatures in the VIRMOS-DESCART lensing survey. A&A, 389:L28–L32,
July 2002.doi:10.1051/0004-6361:20020700.

F. Bernardeau, L. van Waerbeke, and Y. Mellier. Patterns in the weak shear
3-point correlation function. A&A, 397:405–414, Jan. 2003.
doi:10.1051/0004-6361:20021567.

G. Bernstein. Advanced Exposure-Time Calculations. 2001.

E. Bertin and S. Arnouts. SExtractor: Software for source extraction. A&AS,
117:393–404, June 1996.

R. D. Blandford, A. B. Saust, T. G. Brainerd, and J. V. Villumsen. The distortion
of distant galaxy images by large-scale structure. MNRAS, 251:600–627, Aug.
1991.

T. G. Brainerd, R. D. Blandford, and I. Smail. Weak Gravitational Lensing by
Galaxies. ApJ, 466:623, Aug. 1996.doi:10.1086/177537.

M. L. Brown, A. N. Taylor, N. C. Hambly, and S. Dye. Measurement of intrinsic
alignments in galaxy ellipticities. MNRAS, 333:501–509, July 2002.
doi:10.1046/j.1365-8711.2002.05354.x.

L.-Y. Chiang, P. Coles, and P. Naselsky. Return mapping of phases and the
analysis of the gravitational clustering hierarchy. MNRAS, 337:488–494, Dec.
2002. doi:10.1046/j.1365-8711.2002.05931.x.

P. Coles and L.-Y. Chiang. Characterizing the nonlinear growth of large-scale
structure in the Universe. Nature, 406:376–378, July 2000.
doi:10.1038/35019009.

R. G. Crittenden, P. Natarajan, U.-L. Pen, and T. Theuns. Spin-induced Galaxy
Alignments and Their Implications for Weak-Lensing Measurements. ApJ,
559:552–571, Oct. 2001.doi:10.1086/322370.

R. G. Crittenden, P. Natarajan, U.-L. Pen, and T. Theuns. Discriminating Weak
Lensing from Intrinsic Spin Correlations Using the Curl-Gradient
Decomposition. ApJ, 568:20–27, Mar. 2002.doi:10.1086/338838.

M. Davis and P. J. E. Peebles. A survey of galaxy redshifts. V -The two-point
position and velocity correlations. ApJ, 267:465–482, Apr. 1983.
doi:10.1086/160884.

183

http://dx.doi.org/10.1051/0004-6361:20020700
http://dx.doi.org/10.1051/0004-6361:20021567
http://dx.doi.org/10.1086/177537
http://dx.doi.org/10.1046/j.1365-8711.2002.05354.x
http://dx.doi.org/10.1046/j.1365-8711.2002.05931.x
http://dx.doi.org/10.1038/35019009
http://dx.doi.org/10.1086/322370
http://dx.doi.org/10.1086/338838
http://dx.doi.org/10.1086/160884


S. Dodelson.Modern cosmology. 2003.
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