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Abstract

Topological insulators (TIs), with a gapless surface state located in a large

bulk band gap, define a new class of materials with strong application po-

tential in quantum electronic devices. However, real TI materials have many

critical problems, such as bulk conductivity and surface instability, which

hinder us from utilizing their exotic topological states. Another fundamental

question in the TI field is what the realistic spin texture of the topological

surface states (TSSs) is; no conclusive answer has yet been reached, despite

extensive studies.

We present two studies of doping the prototypical TI materials via in situ

potassium deposition at the surface of Bi2Se3 and by adding magnetic impu-

rities into the bulk Bi2Te3 during crystal growth. We show that potassium

deposition can overcome the instability of the surface electronic properties.

In addition to accurately setting the carrier concentration, new Rashba-like

spin-polarized states are induced, with tunable, reversible, and highly stable

spin splitting. Our density functional theory (DFT) calculations reveal that

these Rashba states are derived from quantum well states associated with a

K-induced 5 nm confinement potential. The Mn impurities in Bi2Te3 have

a dramatic effect on tailoring the spin-orbit coupling of the system, mani-

fested by decreasing the size of the bulk band gap even at low concentrations

(2%-5%). This result suggests an efficient way to induce a quantum phase

transition from TIs to trivial insulators.

We also explicitly unveil the TSS spin texture in TI materials. By a

combination of polarization-dependent angle-resolved photoemission spec-

troscopy (ARPES) and DFT slab calculations, we find that the surface states

are characterized by a layer-dependent entangled spin-orbital texture, which

becomes apparent through quantum interference effects. We predict a way
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Abstract

to probe the intrinsic spin texture of TSS, and to continuously manipulate

the spin polarization of photoelectrons all the way from 0 to ±100% by

an appropriate choice of photon energy and linear polarization. Our spin-

resolved ARPES experiment confirms these predictions and establishes a

generic rule for the manipulation of photoelectron spin polarization. This

work paves a new pathway towards the long-term goal of utilizing TIs for

opto-spintronics.
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Chapter 1

Introduction

In atomic physics, electrons always move in an environment with an electric

field −eE = −∇V , due to the strong Coulomb potential of the atomic core

regions. Classically, the magnetic moment of electrons µs does not couple

to the electric field. However, taking into account relativistic effects, the

electron sees in its rest frame a magnetic field, whose value is given by B =

−v ×E/c (v/c)2, with v being the velocity of the electron and c the speed

of light [3]. The interaction of the magnetic moment µs with this magnetic

field leads to a potential energy term, called spin-orbit coupling (SOC).

A more rigorous, albeit less physically transparent, derivation of the SOC

term can be obtained from the Pauli equation by taking the nonrelativistic

approximation of the Dirac equation [4]. This approach gives rise to the

Pauli SOC term:

HSOC = − ~
4m2

0c
2
σ · p× (∇V ), (1.1)

where ~ is Planck’s constant, m0 is the mass of a free electron, c is the

velocity of light, p is the momentum operator, V is the Coulomb potential

of the atomic core, and σ = (σx, σy, σz) is the vector of Pauli spin matrices.

It is clear that the strength of SOC depends on the potential gradient near

the core of atoms, therefore heavier elements usually have stronger SOC.

SOC makes the spin degree of freedom respond to its orbital environ-

ment. In solids this yields such intriguing phenomena as a spin splitting of

electron states in inversion-asymmetric systems even at zero magnetic field

[5, 6], a Zeeman splitting that is significantly enhanced in magnitude over

that for free electrons, and the newly discovered topological insulator (TI)

[7, 8]. This exotic physics has led SOC to become central to many inter-

1



1.1. SOC in systems with inversion symmetry

esting and technologically important phenomena, including ferromagnetism,

spintronics, non-centrosymmetric superconductivity, and the quantum Hall

effect.

1.1 SOC in systems with inversion symmetry

In systems with space inversion and time-reversal symmetry (TRS), the

space inversion symmetry gives rise to the same energy state at two opposite

momenta for both spin up and spin down: E+/−(k) = E+/−(−k); but TRS

flips the spin and results in a Kramers degeneracy: E+(k) = E−(−k). The

consequence of the combined effect of inversion symmetry in space and time

is the spin degeneracy: E+(k) = E−(k). Although SOC will not induce

spin-polarized states in systems with inversion symmetry, it can change the

orbital and spin characteristics of the electronic states, which are generally

described by energy band structures. For example, in a tight-binding picture

without spin, these electron states can be characterized by atomic orbitals,

such as p-like states with orbital angular momentum l = 1. With SOC taken

into account, electronic states become mixed and will be characterized by

the total angular momentum j = 3/2 and j = 1/2. The energy splitting of

j = 3/2 and j = 1/2 states results in a gap equal to the strength of SOC and

consequently lifts the hybridization degeneracy existing at the band edges.

It has been reported that the interplay between SOC and details of the

band structure close to the Fermi energy is essential for understanding the

microscopic physics in transition-metal oxides, such as the mott-insulator

Sr2IrO4 [9, 10], the p-wave superconductor Sr2RuO4 [11], and the paramag-

netic Fermi liquid Sr2RhO4 [11, 12]. Here we take Sr2RuO4 as an example to

show the importance of the SOC effect in a system with inversion symmetry

[13, 14], which is the work in which I have been involved and to which I

have contributed, although details are not shown in the main body of this

thesis.1

In Sr2RuO4, the calculated effective SOC is comparatively small (ζeff ∼
90 meV at the Γ point) with respect to the bandwidth (∼ 3 eV) of the Ru-t2g

1Details of the experimental results and calculation methods can been found in Ref. [13].
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Figure 1.1: Effect of SOC on the band dispersion and Fermi surface of
Sr2RuO4. (a) Band structure along the high-symmetry directions. (b) kz =
0 Fermi surface, calculated both without (thin black) and with (thick, color-
coded to show 〈l · s〉) the inclusion of SOC. At the Γ point, the latter gives
rise to a ζeff ∼ 90 meV splitting.

orbitals, which define the α, β and γ conduction bands. Nevertheless, its

influence always becomes important whenever bands would be degenerate in

the absence of SOC, either by symmetry or accidentally. This happens in the

three-dimensional Brillouin zone (BZ), as demonstrated in Fig. 1.1, where we

show a comparison of the ab initio tight-binding band structure and Fermi

surface calculated with (color) and without (black) SOC included. In the

absence of SOC, by symmetry the dxz and dyz bands would be degenerate

along the entire kz momentum path from Γ to Z. Additionally, there are

accidental degeneracies along the kz = 0 path from Γ to X, where the bands

of dxz,yz and dxy character all cross each other. At all these locations SOC

naturally leads to a splitting and mixing of orbital character from all three

bands.

The predicted importance of SOC can be directly visualized via the ex-

pectation value of l · s, with l and s being the orbital and spin angular

momentum operators. A non-zero value of 〈l · s〉 indicates complex orbital

eigenstates that can be entangled with the spin, seen in Fig. 1.1. Using

3



1.2. SOC in systems without inversion symmetry

circularly polarized light-combined spin- and angle-resolved photoemission

spectroscopy, we directly measured the value of the effective SOC to be

130±30 meV. This was even larger than theoretically predicted and compa-

rable to the energy splitting of the dxy and dxz,yz orbitals around the Fermi

surface, resulting in a strongly momentum-dependent entanglement of spin

and orbital character.

The consequence of a strong spin-orbital entanglement may offer a reso-

lution to conflicting experiments regarding the nature of the superconduct-

ing pairing in Sr2RuO4, which has been an unsolved question for decades.

A fundamental assumption of classifying superconductors as a realization

of singlet or triplet paired states is that one can write the wave function of

each electron as a simple product of spatial and spin parts, which is not pos-

sible in the case of a strong entanglement between spin and orbital. Thus,

the classification of the Cooper pairs in terms of singlets or triplets fun-

damentally breaks down, necessitating a description of the unconventional

superconducting state of Sr2RuO4 beyond these pure spin eigenstates.

1.2 SOC in systems without inversion symmetry

As described in the previous section, spin degeneracy is a combined effect

of inversion symmetry in space and time. However, if the system has no

inversion centre, which is the usual case at the surface of solids due to a

shape termination or in bulk systems with a zinc blende structure,2 SOC

can lift the spin degeneracy and lead to spin-split states.

In semiconductors with a zinc blende structure, the asymmetry of the

underlying crystal structure (usually called bulk inversion asymmetry), to-

gether with SOC, gives rise to a Dresselhaus term in the Hamiltonian of the

system [5]:

HD = β(kxσx − kyσy). (1.2)

Note only the linear k term is kept here, but there is also a cubic term that

can be important with a large k. Together with the kinetic energy term

2For example, GaAs, InSb, and HgxCd1−xTe have a zinc blende structure.
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1.2. SOC in systems without inversion symmetry

p2/2m, we obtain a pair of parabolic-like bands with an equal and opposite

momentum shift away from the high-symmetry point (such as at Γ with

k = 0), for example as shown in Fig. 1.2(d).

In semiconductor heterostructures, although the system has an inversion

centre, the confinement potential near the surface region (usually called

structure inversion asymmetry) breaks the inversion symmetry and can lead

to a spin-split Rashba term [15]:

HR = α(kxσy − kyσx), (1.3)

with α being the Rashba parameter proportional to the SOC strength λ and

the potential gradient along the z direction dV/dz (i.e., α ∝ λdV/dz). The

energy dispersion of Rashba band is similar to that of the Dresselhaus state,

making it a challenge to determine the absolute value of both contributions

in a single sample. However, there is a substantial difference in the spin

texture in momentum space, which can be simply checked by calculating

the expectation value of spin operators for both Hamiltonians (Eq. 1.2 and

Eq. 1.3). For Rashba spin splitting, the spin is perpendicularly locked with

momentum and forms two chiral spin textures that have an axial symme-

try about the (001) axis along kz. On the other hand, Dresselhaus spin

splitting has a spin texture only with a reflection symmetry to the (100) or

(010) axis. The symmetry difference between the spin orientations allows

an experimental way to distinguish them by measuring the electron’s spin

precession [16].

Rashba spin splitting has been extensively studied due to the wide avail-

ability of materials, such as the surface Shockley states in Au(111) [17], the

two-dimensional electron gas state in noble-metal-based surface alloys [18],

and heterostructures [19]. Since spin splitting would provide great oppor-

tunities for practical spintronic applications, high-energy-scale Rashba spin

splitting is highly desirable for enhancing the coupling between electron

spins and electricity relevant for spintronic functions. Efforts to achieve

giant Rashba spin splitting (≥ 100 meV) have been conducted mainly in

two-dimensional (2D) systems [17, 18, 20]. Recent discoveries in three-
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Figure 1.2: Rashba-type spin split bands of BiTeI. (a) Crystal structure
of BiTeI. (b) Bulk Brillouin zone. (c) Band dispersion with Rashba-split
conduction band measured by ARPES. (d) Bulk band structure calculated
by DFT with (blue lines) and without (red dashed lines) SOC included.

dimensional (3D) TIs [7, 8] have fueled further exploration of materials with

strong SOC. In Chapter 4, we will show that beside their exotic topological

surface states, TIs also provide a new platform to achieve large-energy-scale

Rashba spin splitting. Another good example of a 3D material with gi-

ant Rashba spin splitting is BiTeI [21–23], which we have also measured

(Fig. 1.2). The huge spin splitting in BiTeI is derived from the large SOC

of all the elements (Bi, Te, and I) and the material’s layered structure with
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1.3. Topological insulators

its lack of natural termination [Fig. 1.2(a)], which leads to a polar surface.

Our angle-resolved photoemission spectroscopy (ARPES) measured band

dispersions show a pair of spin-splitting bands near the Fermi level and

are supported by DFT calcualtions, as shown in Figs. 1.2(c) and (d). The

DFT calculation shows that only the inclusion of SOC will produce the spin

splitting state, indicating a SOC-driven Rashba-type spin splitting system.

1.3 Topological insulators

Recently, it has been discovered that band insulators with strong SOC can

have a conducting spin-polarized surface state located inside the large bulk

band gap. These materials, characterized by subtle topological invariants of

band structure, rather than broken symmetries, define a new quantum phase

of matter called topological insulators (TIs) [7, 8, 24–28]. The topological

invariant is usually expressed as an integral involving the electron’s wave

function in momentum space, and is a unique index characterizing the elec-

tronic band structure of the material [26, 32]. Topological insulators have

a non-trivial topological invariant that is different from the one of ordinary

insulators (e.g. vacuum is a ordinary insulator). The discontinuity of these

invariants in crossing the interface between topological and ordinary (e.g.

vacuum) insulators demands an emergence of a new metalic state existing

at the interface, in order to enable a transformation between the topological

and ordinary insulating states. This exotic phase of matter, and associated

topological surface state (TSS), have become a subject of intensive research

in the past five years, because they have been predicted to have strong ap-

plication potential in quantum electronic devices [29, 30] and to give rise to

platforms for detecting new particles, such as majorana fermions [31].

Generally, most insulators thus far known are ordinary insulators, such

as those classified as Mott insulators or band insulators. To find TIs in

real materials, we need to develop criteria for recognizing them from their

fundamental physical properties, such as bulk band structures. It is clear

that the existence of a bulk energy gap is a necessary condition to host a

gapless surface state. Another condition to be a TI is to have non-trival
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Figure 1.3: Band inversion of bulk bands in Bi2Se3. (a), (b) Bulk band struc-
tures of Bi2Se3 without (a) and with (b) SOC included, colored according
to the parity of the bands. Red represents a bonding state with “+” parity,
and blue represents an anti-bonding state with “−” parity. Insets are visual
guides to the parities of the conduction and valence states at the Γ point.
A band inversion can been seen at the time-invariant Γ point in (b) after
SOC was included in the calculations.

Z2 invariants. Based on the Z2 invariant theory, we can identify systems

with inversion symmetry as TIs, from knowledge of the parity eigenvalues

of band states at time-reversal invariant points [32]. Therefore, the guiding

principle to search for TI materials is that the material should have opposite

parity at valence and conduction bands, and a band inversion should occur

when the strength of some parameters, such as SOC, is tuned.

By using this method, we did analysis on the bulk band structure of

Bi2Se3, which is the central material studied in this thesis. As shown in

Fig. 1.3, the bulk bands are colored according to their parity, here defined

by bonding and anti-bonding states. Without SOC included, the parities

of valence and conduction bands at Γ point have opposite signs. However,

their signs are inverted after the inclusion of SOC, indicating the occurrence

of band inversion. In the DFT slab model, a spin-polarized surface state also

appears simultaneously after the band inversion is induced by SOC3, shown

3A series of slab band structures with different SOC values can be seen in Section 3.2,
Fig. 3.8, and spin polarization of the surface state is discussed in Chapter 5 and 6.
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Figure 1.4: Topological surface states and Rashba-split bands of Bi2Se3. (a)
Topological band structure with surface states shown in orange. (b) Coex-
istence of TSS and Rashba-split bands, both shown in orange. The Rashba-
split band appears only after a downward band bending was introduced by
adding a potential profile near the surface region, e.g., V = −0.3e−z/19.1 eV.

in Fig. 1.4. By doing this analysis, we can deduce that Bi2Se3 is a strong

topological insulator material. In fact, Bi2X3 (X = Bi, Te) has become the

most promising 3D TI, attracting a great deal of interest in the past four

years [33–35].

A fully spin-polarized topological surface state, an exotic quantum state

of matter, is determined only by the non-trivial topological invariant of the

bulk system. This means that no specific surface potential environment is

required to obtain the TSS, and also that the TSS is topologically protected.

These features substantially contradict the Rashba spin splitting state as

described in the previous section. There, a confined potential is required

near the surface region, and the size of Rashba spin splitting is proportional

to the potential gradient. We can demonstrate the distinction between the

TSS and the Rashba state by tuning the surface potential in Bi2Se3. In

Fig. 1.4(a), when the atomic onsite potentials are the same, both in the

bulk and at the surface, we obtain a TSS band standing alone inside of

the bulk gap. In Fig. 1.4(b), when an additional potential profile is added
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1.3. Topological insulators

near the surface region, a pair of new bands with Rashba-like spin splitting

appears, and the TSS band still remains. On the other hand, because of

the robustness of the TSS, TIs have triggered extensive research activities

and become one of the most interesting and active current topics in material

physics.

In this thesis, we provide a systematic study of the band structure and

wave function of the realistic TSS in Bi2Se3 by using ARPES and DFT. We

address material issues regarding the surface instability and the impurity

effects in Chapter 4. Our light-polarization-dependent study on the ARPES

intensity maps reveals the full complexity of the wave function of TSS in

real materials, which has a layer-by-layer entangled spin-orbital texture, as

to be presented in Chapter 5. Based on the knowledge of the existence of

a layer-by-layer entangled spin-orbital texture, we theoretically predicted

and experimentally demonstrated the manipulation of photoelectron spin-

polarization for the TSS in Chapter 6.

Although my Ph.D. research involved various SOC-related systems, in-

cluding transition-metal oxides ruthenates and the kondo insulator SmB6,

this thesis will be devoted only to presenting our work on topological mate-

rials, so consistency can be maintained across the thesis.
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Chapter 2

Angle-resolved

photoemission spectroscopy

2.1 General principles

Angle-resolved photoemission spectroscopy (ARPES) is a momentum deter-

mined, low-energy electron excitation measurement technique that has been

widely used to investigate complex systems, yielding especially notable suc-

cess in high-Tc superconductors [36] and topological insulators [7]. During

an experiment, a low-energy beam of monochromatized radiation – gener-

ated by a gas-discharged lamp, a laser, or a synchrotron beamline – is used

to illuminate the sample to emit electrons by the photoelectric effect. The

emitted electrons, named photoelectrons, travel to the sample surface in the

solid and eventually escape into a vacuum, as described by the one-step or

three-step model in Ref.[37]. In the vacuum, the emitted photoelectrons are

detected by an electron-energy analyzer, and both their kinetic energy and

emission angles are measured. Thus, the momentum of a photoelectron p

in the vacuum can be determined by p =
√

2mEkin together with its polar

(θ) and azimuthal (ϕ) emission angles. In the solid, the total energy and

momentum conservation laws can be applied to the system of crystal and

photoelectron during the photoexcitation process. The fact that there is a

very short electron escape length (∼ 5–10 Å) allows us to reasonably assume

that there are no interactions between the photoelectron and the remaining

electrons. When the photoelectron arrives at the surface, it has to consume

a portion of the kinetic energy to overcome the perpendicular surface poten-

tial before escaping into the vacuum. Thus, the perpendicular component of
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2.1. General principles

momentum is not conserved, but the parallel component is still conserved:

p|| = ~K|| =
√

2mEkin · sinθ, (2.1)

where K is the momentum of the photoelectron inside the solid, with the

sample surface assumed to be in the xy plane. By scanning the energy

and momentum distribution of photoelectrons in real space, ARPES data

provides a vivid picture to directly observe the Fermi contours and band

structure in the solid. To associate the measured parameters with band

structure, we would first write down the general expression of momentum

in both angular space and k-space:

K =
1

~
√

2mEkin(cosϕsinθî+ sinϕsinθĵ + cosθk̂)

= Kx + Ky + Kz

= kx + ky + kz + G, (2.2)

where the small k is the wave vector of a Bloch state in the Brillouin

zone (BZ) and G is a reciprocal lattice vector. The polar angle θ and az-

imuthal angle ϕ are the normal spherical coordinates. Therefore, the band

structure can be obtained by plotting the intensity distribution of electrons

in a binding energy and momentum plane. Considering that only the mo-

mentum component parallel to the sample surface is conserved, a general

ARPES measurement is not available to provide a 3D band structure, al-

though some experimental methods have been developed to obtain 3D band

mapping [38–40]. We note that the relationship in Eq. 2.2 is correct only in

the plane of the sample surface.

In ARPES one needs low-energy incoming photons to obtain high-energy

and high-momentum resolution, which is easy to achieve by looking at the

momentum differential ∆K from Eq. 2.1:

∆K|| '
√

2mEkin/~2 · cosθ ·∆θ. (2.3)

In Eq. 2.3, any contribution from a fine energy resolution ∆Ekin is neglected.
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2.2. ARPES intensity calculation

Eq. 2.3 clearly shows that either using low photon energy (i.e. low Ekin) or

detecting electrons with a large emission angle (i.e. large θ) would improve

the momentum resolution, meaning a smaller ∆K||. The lower photon en-

ergy also brings another benefit: easier achievement of a higher energy res-

olution. However, the drawback of working at low photon energies is the

extreme surface sensitivity due to the associated short mean free path for

the unscattered photoelectrons (∼ 5–10 Å for 20–100 eV kinetic energy).

The high surface sensitivity thus limits the application of ARPES for bulk

properties investigation and requires an atomically clear sample surface and

an ultra-high vacuum condition (usually lower than 5×10−11 torr).

The technical details of the in-house ARPES system at the University

of British Columbia (UBC) can been found in our previous group members’

Ph.D. theses [41, 42]. The establishment of a theoretical expression for

the ARPES spectra is described in Damascelli’s review papers [36, 37] and

references therein. Here, we would rather focus on the calculation of ARPES

intensity, which is used to produce all the results in Chapter 5.

2.2 ARPES intensity calculation

2.2.1 General formulae

The photoemission intensity measured at a momentum k is proportional

to the transition probability for an optical excitation between the ground

state Ψinital(k) and one of the possible final states Ψfinal(k), which can be

written using Fermi’s golden rule:

I(k) =
2π

~
|〈Ψfinal|Hint|Ψinitial〉|2δ(Efinal − Einitial − hν), (2.4)

where Einital and Efinal are the initial- and final-state energies of the system,

and hν is the photon energy used to excite photoelectrons. The interaction

between electrons and photons is treated as a perturbation given by:

Hint = − e

2mc
(A · p + p ·A) = − e

mc
A · p, (2.5)
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2.2. ARPES intensity calculation

where p is the electronic momentum operator and A is the electromagnetic

vector potential. Note that here we did not include the relativistic term in

Hint, which is − ~e
4m2c2

(∇V × s) · A. In the dipole approximation and by

using the commutation relation ~p/m = −i[r, H], we can write:

I(k) ∝ |〈Ψfinal|ε̂ · r|Ψinitial〉|2, (2.6)

where ε̂ is the unit vector along the polarization direction of the vector

potential A. We call the term inside the square modulus the matrix element:

M(k) = 〈Ψfinal(k)|ε̂ · r|Ψinitial(k)〉. (2.7)

Then we can rewrite the photoemission intensity as I(k) ∝ |M(k)|2.

2.2.2 Initial states

Here we describe the wave function of the initial state Ψinitial based on a

tight-binding (TB) model. In this model, Ψinitial can be written as a linear

combination of the wave functions at each basis set.

Ψinitial =
∑
i

ψi, (2.8)

where i is the index of the basis set, which usually presents atomic orbitals,

atom sites, and spin. Since the ARPES intensity is momentum k dependent,

we separate the k part of the wave function from the spatial part in Ψinitial

to explicitly show the momentum information:

Ψinitial =
∑
i

C↑i (k)φi| ↑〉+ C↓i (k)φi| ↓〉. (2.9)

C↑,↓i is the k-dependent expansion coefficients obtained by diagonalizing

the TB Hamiltonian in k space; | ↑〉 and | ↓〉 are the eigenstates of the

Pauli matrix σz, representing the spin basis; and φi is the local spatial wave
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function of the atomic orbitals:

φ = Rn,l(r)Yl,m, (2.10)

where l,m is the angular momentum, Rn,l(r) is the radial part of the Bloch

wave function, and Yl,m are the real spherical harmonics. Taking Bi2Se3 as

an example, the wave function of the initial state near the Fermi level has

only p orbital characters (4p for Se and 6p for Bi atoms), therefore l = 1

and the spatial wave functions for the px, py, and pz orbitals are:

φpx =

√
1

2
(Y1,−1 − Y1,1)Rn,l(r);

φpy = i

√
1

2
(Y1,−1 + Y1,1)Rn,l(r); (2.11)

φpz = Y1,0Rn,l(r).

2.2.3 Final states and selection rules

In our model, the final states are treated as free electrons whose wave func-

tion can be described by a plane wave Ψfinal = eik·r, which can be expressed

as a superposition of spherical waves:

eik·r = 4π

∞∑
l′=0

il
′
jl′(k · r)

m′=l′∑
m′=−l′

Y ∗l′,m′(θk, ϕk)Yl′,m′(θ, ϕ), (2.12)

where jl′(k · r) is the spherical bessel function.

Plugging Eq. 2.9, 2.10, and 2.12 into Eq. 5.3, we obtain:

M(k) =
∑
i

(C↑i (k)| ↑〉+ C↓i (k)| ↓〉)Gil′,l(θk, ϕk)Bin,l,l′ , (2.13)

where Gil′,l is the integral of the angular wave function and Bin,l is the integral

of the radial wave funciton. Gil′,l contains the information of the light po-

larization and photoemission channels, which determines the selection rules:
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Gil′,l(θk, ϕk) =

∫ m′=l′∑
m′=−l′

Y ∗l′,m′(θk, ϕk)Yl′,m′(θ, ϕ)ε̂ · r̂Yl,m(θ, ϕ)dΩ, (2.14)

We further expand the interaction term ε̂ · r̂ in Eq. 2.14 into spherical har-

monics:

ε̂ · r̂ =

√
4π

3
(εzY1,0 +

−εx + iεy√
2

Y1,1 +
εx + iεy√

2
Y1,−1), (2.15)

Based on Eq. 2.14 and 2.15 we derive the explicit expression of the an-

gular integral:

Gil′,l(θk, ϕk) =

µ=1∑
µ=−1

(
εx + iεy√

2
δµ,−1 + εzδµ,0 +

−εx + iεy√
2

δµ,1)

· Yl′,m+µ(θk, ϕk)C1,l,l′

µ,m,m+µ,

(2.16)

where δ is the delta function, and C1,l,l′

µ,m,m+µ is the Clebsch-Gordan co-

efficient, an integral product of three spherical harmonics, as defined by

〈1, µ; l,m|l′,m + µ〉. Eq. 2.16 has a non-zero value only at l′ = l ± 1, and

this is how we obtain the optical selection rule: l′ = l ± 1.

For the case of Bi2Se3, we have l = 1 because of the p orbitals and there-

fore we will have two possible photoemission channels: p-to-s excitation for

l′ = 0 and p-to-d excitation for l′ = 2. The probability of exiting photo-

electrons from each channel depends on the magnitude of the radial integral

Bin,l,l′ , which has the form:

Bin,l,l′ =

∫
il
′
jl′(k · r)Rn,l(r)r

3dr. (2.17)

For the surface state of Bi2Se3, we focus on electronic states near the Γ̄

point with θk ≤ 4◦, which corresponds to a nearly normal photoemission.

The selection rule for p-to-s and p-to-d excitations basically has the same

function in terms of the in-plane angle ϕk for normal photoemission. There-
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Figure 2.1: Sketch of selection-rule-determined ARPES intensity maps. (a)–
(c) Topological Dirac states with pz orbital character (a), with in-plane
orbitals tangential to the momentum (b), and with in-plane orbitals radial
to the momentum (c). The incident light is polarized along the z direction
for (a), and along the x direction for (b) and (c). (d-f) Expected ARPES
intensity maps according to the optical selection rule for cases shown in (a)
to (c), respectively.

fore, the selection rule for linearly polarized light can be simplified into this

description: the linearly polarized light only excites photoelectrons from or-

bitals that orient along the same direction of the light polarization. For

example: x/y/z-polarized light only excites photoelectrons from px/py/pz

orbitals, respectively, as represented in Fig. 2.1.

2.2.4 Measured spin polarization

So far, we have shown general formulae used in our photoemission inten-

sity calculations. In this subsection, we will focus on the spin-resolved
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photoemission intensity and show how to calculate the spin polarization

of photoelectrons measured by spin- and angle-resolved photoemission spec-

troscopy (SARPES). For simplicity, we define:

Mi ≡ Gil′,l(θk, ϕk)Bin,l,l , (2.18)

with Mi representing the matrix element, which is constant for a certain

light polarization and experimental geometry when θk ≈ 0. Therefore, we

can write the photoemission intensity as the sum of intensities from spin up

and spin down channels:

I(k) ∝ I↑(k) + I↓(k), (2.19)

with

I↑(k) = |
∑
i

C↑i (k)Mi|2

I↓(k) = |
∑
i

C↓i (k)Mi|2. (2.20)

The measured spin polarization vector (P ) for SARPES is defined by

P = [Px, Py, Pz]:

Px,y,z =
I↑x,y,z − I↓x,y,z
I↑x,y,z + I↓x,y,z

. (2.21)

In Chapter 5, Section 5.6, we use the above formulae to further demon-

strate quantum interference effects in ARPES, and show a manipulation of

photoelectron spin polarization in SARPES, which is a substantial aspect

of this thesis.
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Chapter 3

Ab initio tight-binding model

Besides using angle-resolved photoemission spectroscopy (ARPES) to con-

duct my Ph.D. research projects, I also spent a substantial amount of time on

density functional theory (DFT) calculations, the quantitative technique for

computing ground-state properties of materials [43]. These two techniques

are a good combination, because ARPES is the most direct experimental

method to probe electronic structures, and DFT is the most accurate theo-

retical method to calculate the electronic structures of complex systems.

In this chapter, we describe the methodology behind the ab initio tight-

binding (TB) model which was used for the work presented in Chapters 5

and 6. The purpose of developing an ab initio TB approach is to allow

us to quantitatively understand the experimental results using a minimal

model to describe the electron wavefunction, i.e. in terms of the smallest

possible basis set. The key ingredients to construct this ab initio TB model

are the lattice onsite energies and the coupling strength between lattice

sites, which are obtained by performing a bulk band calculation by DFT.

A minimal basis set, i.e. only involving p orbitals, is chosen during the

extraction of those onsite and coupling parameters. The atomic spin-orbit

coupling (SOC) term is added as a free parameter in our TB model. The

SOC effect in the ab initio TB model is checked by comparing the results to

those from a DFT calculation inclusive of SOC. A detailed description for

constructing ab initio bulk and slab TB models is given in Sections 3.1 and

3.2, respectively. Here, we start by discussing in details the advantages and

disadvantages of the ab initio TB model as compared to a standard DFT

approach.

Today DFT has already become a standard method for ab initio calcula-

tions in chemistry and solid state physics. DFT calculation gained popular-
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Chapter 3. Ab initio tight-binding model

ity over the past decades because it yields very accurate results for complex

materials at low cost. Several packages are available to use for DFT calcu-

lations in solid state physics, such as WIEN2k [44, 45], which I have used

most of the time, VASP [46–49], LMTO [50], SIESTA [51], ABINIT [52],

PWScf [53], and CRYSTAL [54]. However, there are some limitations to

using standard DFT packages. One well-known disadvantage is the lack of

proper treatment for many body interactions in strongly correlated systems.

Although improved treatments of electron correlations have been developed,

including the dynamical mean-field theory [55] and quantum Monte Carlo

approaches [56], the application of these advanced methods is at present too

computationally demanding to be generally applied to complex systems.

Another limitation is the complexity of the method, which is unadjustable

and involves many built-in parameters. Since our materials of interest here

are weakly correlated systems, the latter problem is more relevant to our

study. In this chapter, we will discuss and show how to overcome the lim-

itations on computational size and unadjustable parameters by developing

an ab initio TB model.

This ab initio TB model becomes particularly useful in a way that al-

lows us to study materials by using a minimal model but with ab initio

accuracy. Because the implementation of this method is highly determined

by the particular problem or application, at present no standard packages

are available. Nevertheless, we can follow some routines to construct the

ab initio TB model, as will be described in this chapter. The method of

this model has several advantages compared to regular DFT calculations.

First, the ab initio TB model can handle calculations of large-scale systems

(≥ 200 atoms) without reaching computational limits. Second, and most

important, we can gain full access to the Hamiltonian of the system, and

all the parameters are adjustable. Of course, there are also some drawbacks

to this model. For example, it is not appropriate for studying problems

with low symmetries, such as electronic reconstructions induced by contin-

uous transition of potential environments from the bulk to the surface. It

does, however, have great advantages for symmetry-related problems, such

as surface states in topological insulators (TIs). Since the surface and bulk
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3.1. Ab initio bulk tight-binding model
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Figure 3.1: Procedural flow for constructing a tight-binding (TB) model.
Note that HAMR is the real space Hamiltonian containing the hopping
integrals; HSOC is the local spin-orbit coupling Hamiltonian.

potential environments are similar in TI materials, we can construct an ab

initio TB model for a finite system, such as a slab model to mimic sur-

face problems, based on the hopping parameters (representing the coupling

strength between lattice sites) obtained from a bulk DFT calculation. In this

way, we can easily break the computational limit encountered in standard

DFT slab calculations. Here, I will take Bi2Se3 as an example to explicitly

show this method step by step.

3.1 Ab initio bulk tight-binding model

Our goal is to build a minimal model to describe the topological surface

state (TSS) in Bi2Se3. Our approach should be generic and adaptable for

other similar studies. We start with introducing how to construct an ab

initio TB model for the bulk. In the next section, we will show how to build

a slab model based on the bulk model without involving additional DFT

calculations.

Now we give a short summary of the steps to construct an ab initio
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3.1. Ab initio bulk tight-binding model

TB Hamiltonian, as shown in Fig. 3.1. Step I, we perform a bulk DFT

calculation by using the linear muffin-tin orbital (LMTO) method [50]. The

input parameters of the LMTO, such as muffin-tin radius and basis set, are

adjusted according to the degree of agreement between the LMTO and the

WIEN2k band structures. Note that we use the band structure calculated

by using the WIEN2k package as a reference. Step II, we use the optimized

input file from the LMTO to perform the same calculation but employing

the order-N muffin-tin orbital (NMTO) method [57]. A minimal basis set

is decided at this step, and the corresponding parameters are adjusted until

we obtain good agreement between the band structures calculated with a

full basis set and with a minimal basis set. Step III, we use the NMTO

built-in function to downfold the bulk band structures into a minimal basis

set formed by selected atomic orbitals. The downfold procedure gives us

the hopping integrals and stores them in the HAMR file. Step IV, we use

the hopping integrals in real space to construct a TB Hamiltonian in the

momentum k-space for the bulk system. At this stage, we can add extra local

Hamiltonians, such as those coming from spin-orbit coupling (SOC), electric

or magnetic fields, etc. Step V, based on the bulk TB Hamiltonian, we can

construct a Hamiltonian for a freestanding TB slab system with sufficient

thickness by a simple truncation. We obtain the energy eigenvalues and

eigenstates of the system by using the matrix diagonalization as a function

of the wave vector k|| in the surface Brillouin zone (BZ). Since the basis set

of the TB Hamiltonian is Wannier functions [58], the wave function of the

electronic states of the system is the linear combination of these Wannier

functions. When the Wannier orbitals retain the same symmetry of the

atomic orbitals, we can approximate the Wannier function by the atomic

wave function.

In Fig. 3.2, we show good agreement between the WIEN2k and optimized

LMTO band structures from the bulk Bi2Se3. In particular, the occupied

valence bands are in excellent agreement. But there is a visible offset for the

unoccupied conduction bands that is difficult to further improve in this case

and can contribute to the different potential approximations used in LMTO

(which uses sphere potential) and WIEN2k (which uses full potential).
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Figure 3.2: Comparison between the linear muffin-tin orbital (LMTO) and
WIEN2k band structures. (a) Brillouin zone of bulk Bi2Se3, with dashed
lines connecting high symmetric momentum points. (b) Bulk band struc-
tures calculated by using WIEN2k and optimized LMTO, respectively.

Since the valence and conduction bands of Bi2Se3 mainly have p orbital

characters, we are able to downfold the band structures near the Fermi level

with a minimal basis set {px, py, pz} from two Bi and three Se atoms, which

gives us a minimal TB model with 15 bands. The real space parameters

for the TB model contain the hopping integral ti,j,τ,τ ′ between different

atom sites and connecting vectors Ri,j , as illustrated in Fig. 3.3. We use

the notations i, j to represent atom positions and τ to represent atomic

orbitals. The Hamiltonian in k-space can be constructed by applying Fourier

transformation, written as:

H0(k) =
∑
i,j,τ,τ ′

ti,j,τ,τ ′e
ik·Ri,ja†i,τaj,τ ′ . (3.1)

The eigenstates of the Hamiltonian (Eq. 3.1) are a linear combination of
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3.1. Ab initio bulk tight-binding model

  ======================================
  Real Space hamiltonian (eV)
  ======================================
 
 
INT=    1
|Int.bet. Se1 0001 / Se1 0001                    |
|Dist= 0.000000  Trans. vecs. :  0  0  0         |
|Connecting vector:   0.00000  0.00000  0.00000  |
 
                   py          pz          px      
py                -4.51207     0.00000     0.00000
pz                 0.00000    -4.29555     0.00000
px                 0.00000     0.00000    -4.51207
 
------------------------------------------------
INT=    2
|Int.bet. Bi  0004 / Se1 0001                    |
|Dist= 1.272415  Trans. vecs. : -1  0  0         |
|Connecting vector:  -1.00000  0.00000  0.78679  |
 
                   py          pz          px      
py                -0.42425     0.00000     0.00000
pz                 0.00000     0.40199    -1.05214
px                 0.00000    -1.09768     1.00482
 
------------------------------------------------
INT=    3
|Int.bet. Bi  0004 / Se1 0001                    |
|Dist= 1.272415  Trans. vecs. :  0 -1  0         |
|Connecting vector:   0.50000 -0.86603  0.78679  |
 
                   py          pz          px      
py                 0.64755    -0.95062    -0.61881
pz                -0.91118     0.40199     0.52607

Figure 3.3: Illustration of the partial content of the Bi2Se3 HAMR file, which
is obtained by using a minimal basis set {px, py, pz}.
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3.1. Ab initio bulk tight-binding model

90% 85% 70% 50%

(a) (b) (c) (d)

Figure 3.4: Isosurface of charge density from the Wannier orbitals pz, with
four isovalues (a)–(d): 0.9, 0.85, 0.7, and 0.5, respectively. Red and blue
indicate the phase of the orbital.

(a) px py pz(b) (c)

Figure 3.5: (a)–(c) Wannier orbitals of px, py, and pz with an isovalue of
90%, plotted in the crystal lattice of Bi2Se3.
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3.1. Ab initio bulk tight-binding model

Wannier functions [58]:

Ψ(k) =
∑
i,τ

Ci,τ (k)wi,τ . (3.2)

One of the most important advantages of ab initio TB model is that it

allows us to expand the Hamiltonian by adding other local terms, such as

the SOC term, without involving intensive computational resources. The

simplest SOC expression is the atomic SOC, which is derived based on the

symmetry of atomic wave functions and is written as:

HSOC = λL · S, (3.3)

where λ is the SOC parameter, L is the orbital angular momentum, and S

is the spin angular momentum. Before we add this local term HSOC into the

Hamiltonian of Eq. 3.1, we need to check the spatial charge distribution of

the Wannier orbitals and make sure that we can approximate them with a

picture of the atomic orbitals. As shown in Fig. 3.4, the isosurface of charge

density from pz, shown by a Wannier orbital, indeed remains in the atomic

pz orbital shape, particularly when the isovalue that defines the percentage

of charge density contained inside an isosurface is below 80%. Plotting

Wannier orbitals in the crystal lattice, as in Fig. 3.5, shows a quite extended

spatial charge distribution around each atom site, which is important for

forming bonding and anti-bonding states in the Bi2Se3 system.

To add the SOC effect into the bulk TB Hamiltonian, we have to double

the basis set by considering spin up (↑) and spin down (↓) for each electron.

Now the basis set at each atom site is:

|px, ↑〉, |py, ↑〉, |pz, ↑〉, |px, ↓〉, |py, ↓〉, |pz, ↓〉. (3.4)

By writing the SOC Hamiltonian (Eq. 3.3) in the basis set of atomic p or-
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Figure 3.6: Comparison between the TB model and WIEN2k band struc-
tures. Bulk band structures of Bi2Se3 obtained from WIEN2k and from a
TB model with (a) and without (b) spin-orbit coupling (SOC) included.

bitals and real spins, we obtain:

HSOC =
λ

2



0 −i 0 0 0 1

i 0 0 0 0 −i

0 0 0 −1 i 0

0 0 −1 0 i 0

0 0 −i −i 0 0

1 i 0 0 0 0


(3.5)

This is the SOC Hamiltonian we added as a local term into Eq. 3.1. The

SOC parameters for Bi and Se atoms are taken from Wittel’s spectral data:

λBi = 1.25 eV and λSe = 0.22 eV [59]. In Fig. 3.6, we compare the bulk band

structures calculated by WIEN2k and by the ab initio TB model with and

without SOC included, respectively. In both cases, the overall agreement

between the two methods is good, which means that the atomic SOC ap-

proximation is sufficient to capture the realistic SOC effects in the Bi2Se3
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3.2. Ab initio slab tight-binding model

system. By combining Eq. 3.1 and Eq. 3.3, the TB Hamiltonian for the bulk

system becomes:

Hbulk = H0 +
∑
i

HSOC. (3.6)

3.2 Ab initio slab tight-binding model

Now that we have a TB Hamiltonian with SOC included for the bulk system,

the slab TB Hamiltonian used to study surface states can be created by

following three steps: (1) we set kz in the bulk Hamiltonian to zero; (2)

using the bulk unit cell as a unit block, which is one quintuple layer (QL)

for Bi2Se3, as shown in Fig. 3.7, we repeatedly duplicate the unit block along

the z direction and make a supercell with a finite thickness, such as 50 QLs;

and (3) we simply truncate the supercell Hamiltonian by discarding the

hopping integrals that are coming from any atom sites above(below) the

top(bottom) surface layer, i.e., outside of the supercell.

The simple truncation of the effective TB model means that this ap-

proach contains no surface-specific information, being based exclusively on

the bulk Wannier functions. The accuracy of this approach might be ques-

tionable, due to the fact that TB parameters near the surface might be

slightly different from those in the bulk because of the possible surface po-

tential. Instead of applying the naive truncation, one can refine the proce-

dure so as to incorporate the changes to the TB parameters near the surface.

To do so, we can perform the bulk calculation and a thin slab calculation

together. Upon aligning the on-site energies in the interior of this slab with

the bulk values, the changes to the TB parameters near the surface can be

inferred. However, it has been found that the topological surface states are

essentially the same with and without the surface potential corrections [60].

On the other hand, the truncation method is very useful as an appraisal for

illustrating the“topologically protected” surface states that arise as a man-

ifestation of the bulk electronic structure [7]. An alternative strategy for

calculating the surface bands is to use Green’s function for the semi-infinite

crystal as a function of the atomic plane, which can be obtained via iterative

methods [61–63]. For simplicity, here we use a truncated-slab approach to
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Figure 3.7: Left: Crystal structure of Bi2Se3 with a unit cell formed by five
atomic layers, called one quintuple layer (QL). A structure of three QLs is
shown here. Right: Bulk Brillouin zone (black) and surface Brillouin zone
(red) in momentum space.
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Figure 3.8: Band inversion and topological surface states in Bi2Se3. (a)–
(f) Band dispersions obtained from a 250-atomic-layers slab for Bi2Se3 with
several SOC values. As the SOC strength increases, the gap between the
bulk bands (grey) first closes [(a)–(c)] and then reopens [(d)–(f)], indicating
a band inversion induced by tuning the SOC. A gapless surface state (blue)
appears simultaneously when the band inversion occurs.

study the topological surface properties of topological insulators.

Since the SOC value λ is a free parameter in the TB Hamiltonian, and in

order to exhibit how SOC induces topological surface states, we calculate the

band dispersions as a function of SOC strength. In Fig. 3.8, we plot the band

dispersions obtained with a 250-atomic-layer slab TB model. By varying

the SOC value, we can see that the gap between the bulk bands first closes

with increasing SOC [Figs. 3.8(a)–(c)], then reopens once the SOC is large

enough [Figs. 3.8(d)–(f)]. As expected from the bulk electronic structure of

topological insulators, a band inversion occurs after the gap reopens from

zero. Meanwhile, a gapless surface state simultaneously appears when the

band inversion occurs. The topological surface state becomes more evident
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Figure 3.9: Real space distribution of quantum well (QW) states obtained
from a 250-atomic-layer slab model. These four QW states shown here are
from the first four conduction bands.

as the band inversion becomes stronger by further increasing the SOC values.

The mechanism of the SOC-driven band inversion can be understood by

analyzing the energy levels at Γ point in the bulk band structure of Bi2Se3

[33, 64]: SOC results in new eigenstates expressed by the total angular

momentum and induces energy repulsion between these energy states. The

lowest-energy conduction band is pushed down to a lower energy level with

increasing SOC values, while the highest-energy valence band is pushed up

to a higher energy level. Consequently, in a small SOC range, these two

bands get closer and eventually touch at the Γ point with increasing SOC.

If we keep increasing the value of SOC, these two bands will cross each other

and reopen a gap because of the strong hybridization between them. After

the bulk gap reopens, the characteristic of the bands sitting right above and
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3.2. Ab initio slab tight-binding model

below the Fermi level, here referring to parity as described by Z2 invariant

theory [32], are inverted as compared to the zero SOC system. Now the

system has also been translated from a trivial insulator to a topological

insulator after the band inversion is induced by a large enough SOC.

Quantum well (QW) states also always exist for the slab model of Bi2Se3,

as shown in Fig. 3.9. These states are characterized by the bulk electronic

structure, but they have spatial distribution profiles consistent with the

confined potential of a finite slab model. As will be discussed in Chapter 4,

these QW states can evolve into Rashba-like states with spin splitting when

an additional potential is added into the surface region.
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Chapter 4

Impurities in 3D topological

insulators

4.1 Rashba spin-splitting control at the surface

of Bi2Se3

The electronic structure of Bi2Se3 is studied by angle-resolved photoemission

and density functional theory. We show that the instability of the surface

electronic properties, observed even in ultrahigh-vacuum conditions, can be

overcome via in situ potassium deposition. In addition to accurately setting

the carrier concentration, new Rashba-like spin-polarized states are induced,

with a tunable, reversible, and highly stable spin splitting. Ab initio slab cal-

culations reveal that these Rashba states are derived from 5-quintuple-layer

quantum-well states. While the K-induced potential gradient enhances the

spin splitting, this may be present on pristine surfaces due to the symmetry

breaking of the vacuum-solid interface.

4.1.1 Introduction

Topological insulators, with a gapless topological surface state (TSS) located

in a large bulk bandgap, define a new quantum phase of matter [7, 26, 28, 65].

Their uniqueness, and their strong application potential in quantum elec-

tronic devices, stem from the TSS combination of spin polarization and

protection from backscattering [66, 67]. Bi2Se3 is a three dimensional topo-

logical insulator, as theoretically proposed [33] and experimentally verified

by angle-resolved photoemission spectroscopy (ARPES) and other surface

sensitive techniques [34, 35, 68]. Unfortunately, despite great effort in con-
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4.1. Rashba spin-splitting control at the surface of Bi2Se3

trolling the Se stoichiometry and with it the bulk carrier concentration [69],

unintentional and uncontrolled doping seems to lead to a bulk conductivity

that masks the surface electronic properties [70].

ARPES studies also have shown that cleaved sample surfaces and sub-

surfaces become progressively more electron doped over time – even in ultra-

high vacuum conditions – by either gas adsorption, or formation/migration

of defects and vacancies [71, 72]. Lastly, the TSS might become inacces-

sible and/or be completely deformed through a hybridization with trivial

states induced by gas molecule adsorption when exposed to air, hindering

most attempts of material processing and characterization, as well as device

fabrication.

Developing new approaches to stabilize and control the surface of these

systems is arguably the most critical step towards the exploitation of their

topological properties. Some success has been obtained in inducing electron

and hole surface doping by a combination of in situ processing, such as

material evaporation and radiation exposure [73, 74]. The same TSS has also

been fabricated on nanoribbons, which have large surface-to-volume ratio

[75]. From a different perspective, carefully doped topological insulators can

provide a platform to study the interplay between TSS and bulk electron

dynamics, which has important implications for TSS control and exploring

topological superconductivity [76].

In this section, we present a systematic ARPES study of the evolution

of the surface electronic structure of Bi2Se3 as a function of time and in situ

potassium evaporation. The deposition of submonolayers of potassium al-

lows us to stabilize the otherwise continually evolving surface carrier concen-

tration. It also leads to a more uniform surface electronic structure, in which

well-defined Rashba-like states emerge from the continuum of parabolic-like

states that characterizes the as-cleaved, disordered surfaces. This approach

provides a precise handle on the surface doping, and also allows tuning

the spin splitting of the Rashba-like states. Our density functional theory

(DFT) slab calculations reveal that the new spin-split states originate from

the bulk-like quantum-well (QW) states of a 5-quintuple-layer (5QL) slab,

as a consequence of the K-enhanced inversion symmetry breaking already
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present for the pristine surface of Bi2Se3.
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Figure 4.1: (a),(b) Time evolution of the ARPES dispersion of Bi2Se3 at
5×10−11 torr and T = 6 K: (a) 3 hours after cleaving; (b) 34 hours after
cleaving. (c) Exponential fit of the shift of the Dirac point (DP) binding
energy position versus time for 6 and 300 K cleaves (both measured at 6 K);
the fit result, ∆EDP ∝ e−t/τ , gives a mean lifetime with τ = 23 hours and
τ = 11 hours for the 6 and 300 K cleaves, respectively.
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4.1.2 Experimental and calculation methods

ARPES measurements were performed at UBC with 21.2 eV linearly polar-

ized photons on an ARPES spectrometer equipped with a SPECS Phoibos

150 hemispherical analyzer and UVS300 monochromatized gas discharge

lamp. Energy and angular resolution were set to 10 meV and ±0.1◦. Bi2Se3

single crystals, grown from the melt (with carrier density n'1.24×1019 cm−3

[69]) and by floating zone, were aligned by Laue diffraction then cleaved and

measured at pressures better than 5×10−11 torr and 6 K, unless otherwise

specified. No difference was observed for samples grown with different meth-

ods. Potassium was evaporated at the sample temperature of 6 K, with a

6.2 A evaporation current for 30 second intervals [77, 78]. DFT calcula-

tions were performed using the linearized augmented-plane-wave method in

the WIEN2k package [44], with structural parameters from Ref. [33]. We

considered stoichiometric slabs terminated by a Se layer on both sides, rep-

resenting natural cleavage planes within this material. Spin-orbit coupling

(SOC) is included as a second variational step using scalar-relativistic eigen-

functions as a basis [44]; exchange and correlation effects are treated within

the generalized gradient approximation [79].

4.1.3 In situ K deposition-induced Rashba-like states

The time evolution of the as-cleaved Bi2Se3 surface is shown in Fig.4.1.

As typically observed by ARPES, and contrary to what is predicted by

DFT for fully stoichiometric Bi2Se3 (Fig. 4.6), even immediately after a 6 K

cleave the Fermi level is not in the bulk gap; instead it crosses both TSS and

parabolic continuum of bulk-like states. The pronounced time dependence

of the data is exemplified by the variation of the Dirac point (DP) binding

energy (∆EDP ), which increases from ∼ 300 to 400 meV over 34 hours at

5×10−11 torr and 6 K [Fig. 4.1(c)]. An exponential fit of ∆EDP versus time

indicates that the lifetime value is 23 hours, e.g., EDP ' 433 meV would

be reached 46 hours after cleaving. At variance with the time dependence

of the TSS, the bottom of the parabolic continuum shifts down by only

30 meV in 34 hours, which provides evidence against the pure surface nature
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Figure 4.2: Evolution of the Bi2Se3 Γ̄−K̄ electronic dispersion with low K
deposition, upon subsequent 0.5 min K-evaporation steps: (a1)–(a4) ARPES
image plots, (b1)–(b4) corresponding energy distribution curves (EDCs).
The sample was kept at 5×10−11 torr and 6 K.

of the continuum. One should note that the pristine position of DP depends

also on the cleave temperature: on a sample cleaved at 300 K we found a

70 meV deeper starting position for the DP, although the saturation value

is approximately the same as that of the 6 K cleave [Fig. 4.1(c)].

In our ARPES study, the surface time evolution resulted only in the

deepening of Dirac cone (DC) and bulk continuum, as a consequence of the

sample gaining electrons. Other effects, such as the reported appearance of a

2-dimensional electron gas, were not observed [80]. More substantial changes

are induced by the in situ evaporation of potassium on the cleaved surfaces,
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Figure 4.3: Evolution of the Bi2Se3 Γ̄−K̄ electronic dispersion with heavy K
deposition, upon subsequent 0.5 min K-evaporation steps: (a5)–(a8) ARPES
image plots, (b5)–(b8) corresponding energy distribution curves (EDCs).
The sample was kept at 5×10−11 torr and 6 K.

also performed at 6 K to guarantee the highest stability. As a function of

K-deposition time, three stages can be identified: Stage I – for moderate K

deposition [up to 1 minute, Figs. 4.2(ab1)–(ab3)], the DP moves to higher

binding energy by electron doping and a sharper parabolic state appears

at the edge of the bulk continuum, reminiscent of the proposed 2DEG [80].

Stage II: for intermediate K deposition [from 1 to 3 minutes, Figs. 4.3(ab4)–

(ab7)], the electron doping further increases and two pairs of sharp parabolic

states appear, with an equal and opposite momentum-shift away from the

Γ̄ point, as in a Rashba type [15] splitting [these states are labelled RB1
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and RB2 in Fig. 4.4(a)]. First RB1 develops from the newly formed sharp

parabolic state identified in stage I, followed by RB2 which develops closer

to the Fermi energy. Interestingly, the appearance of the sharp RB1 and

RB2 features is accompanied by a suppression of the bulk-like continuum.

This emergence of a coherent quasiparticle dispersion from a continuum of

incoherent spectral weight indicates that the evaporation of potassium leads

to a progressively more uniform surface and subsurface structure. Stage III:

for heavy K deposition [beyond 3 minutes, Fig. 4.3(ab8)], the bottom of RB1

and RB2 as well as EDP are not changing, indicating that the sample cannot

be doped any further. The only noticeable effect is a small decrease of spin

splitting for RB1 (by 0.015 Å−1) and conversely an increase for RB2 (by

0.01 Å−1), perhaps stemming from a change in hybridization between the

two Rashba pairs. As a last remark, during the entire K-deposition process

the band velocity of the TSS close to the DP is 3.2 ± 0.3 eVÅ, consistent

with previous reports [81].

Before analyzing quantitatively the evolution of the various states upon

K deposition, we address the question of the stability of this new surface

versus time and temperature cycling. In Figs. 4.4(a)–(c) we compare the

ARPES data from a 3 minutes K-evaporated surface, as measured right af-

ter deposition and 30 hours later (during which the sample was kept at 6 K).

Other than a smaller than 10 meV shift of the bottom of RB1 [Fig. 4.4(c)],

all spectral features including the TSS have remained exactly the same over

the 30 hours interval. This is a remarkable stability, especially when com-

pared to the 365 meV shift induced by the initial K deposition [Fig. 4.4(e)],

and to the more than 100 meV shift observed versus time without any active

surface processing [Fig. 4.1(c)]. This approach might provide a new path to

overcome the general instability and self-doping problem of the surface of

Bi2Se3, which represents one of the major shortcomings towards the fabri-

cation of topological devices. Temperature effects were studied by slowly

warming up the sample, in which case K atoms diffuse and eventually leave

the surface, reverting the material back to an earlier stage with lower K

coverage. Indeed, as one can see by comparing Fig. 4.4(d) to Fig. 4.2(a4), a

sample initially K evaporated for 4 minutes at 6 K, and then measured at
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Figure 4.4: Stable and reversible band dispersions. ARPES Γ̄− K̄ band
dispersion from Bi2Se3 taken (a) immediately after a 3 min K evaporation,
and (b) 30 hours later (the sample was kept at 5×10−11 torr and 6 K the
whole time). As also emphasized by the comparison of the corresponding
Γ̄ point EDCs in (c), the evaporated surface is highly stable. (d) Band
dispersion measured at 220 K after a slow 36 hours warming up on a sample
initially K evaporated for 4 min at 6 K; the comparison with the data in
Fig. 4.3(a8) reveals the suppression of the K-induced carrier doping. (e-
g) Evolution vs. K-evaporation time of: (e) binding energy variation for
DP (∆EDP ) and bottom of RB1 (∆ERB1), as defined in (a); (f) sheet
carrier density for DC (nDC2D ) and RB1 (nRB1

2D ); (g) variation of the DC
Fermi wavevector (∆kDCF ) and of the Rashba band splitting at EF (∆kRB1

F ).
Empty symbols in (e)–(g) are for T = 6 K and filled ones for T = 220 K.
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220 K after a gradual 36 hours warming up, exhibits ARPES features simi-

lar to those obtained directly after a 1.5 minutes K deposition at 6 K. This

implies that K deposition on Bi2Se3 is also reversible, making it possible to

fine tune surface doping, position of the DP, and Rashba spin splitting.

We summarize in Figs. 4.4(e)–(g) the K-evaporation evolution of various

parameters characterizing the Γ̄− K̄ dispersion of DC and Rashba states

(empty symbols identify 6 K data, and the filled ones 220 K data). As evi-

dent in Fig. 4.4(e) from the variation of EDP and bottom of RB1, the highest

possible doping level is achieved ∼3 minutes into the K deposition, corre-

sponding to ∆EDP ' 365 meV and ∆ERB1 ' 150 meV (note that RB2 is

not plotted due to its later appearance and fewer data points; after ∼3

minutes K deposition ∆ERB2'65 meV ). The K-induced change in surface

electron density for the various states can be estimated from the relation

n2D = AFS/ABZ AUC between the area of Fermi surface, Brillouin zone,

and unit cell, without accounting for spin degeneracy given that all relevant

states are spin split. Because at these electron fillings all FS’s are hexagonal,

this reduces to n2D = k2
F /2
√

3π2, where kF is the Fermi wavevector along

the Γ̄−K̄ direction of the BZ (as in Fig. 4.2 and Fig. 4.3).

After 3 minutes K evaporation the total sheet carrier density is ntot2D '
3.64× 1013 cm−2 (0.162 electron/BZ), corresponding to the sum of the con-

tributions from DC, and inner-and-outer RB1 and RB2 (1.43, 1.60, and

0.61 × 1013 cm−2 respectively). This value is to be compared to ntot2D '
3.87 × 1012 cm−2 before K deposition (0.017 electron/BZ), which however

only accounts for the DC, given the impossibility of estimating the contri-

bution from the parabolic continuum.

As a last point, from the ∆kF data presented in Fig. 4.4(g), and the

dispersion of spin-split Rashba bands:

E±(k‖) = EΓ̄ +
~2k2
‖

2m?
± αRk‖, (4.1)

we can estimate the Rashba parameter αR = ~2∆k±‖ /2m
? for RB1 and RB2.

The latter, which depends both on the value of spin-orbit coupling (SOC)

and the gradient of the potential ∂V/∂z [82], reflects the size of the spin
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Figure 4.5: (a)–(d) Quantum well (QW) and surface slab states calculated
with various thicknesses: 2QL, 4QL, 6QL, and 8QL, respectively. The QW
number (shown in red) plus one surface state (shown in bule) equals to the
QL number of the slab thickness.

splitting in momentum space and is here controlled directly by the amount of

K deposited on the as-cleaved surfaces. The largest RB1 splitting is observed

after 2.5-3 minutes K evaporation and is anisotropic: ∆kF '0.066Å−1 along

Γ̄-K̄, and 0.080Å−1 along Γ̄-M̄ . The spin splitting of RB2 increases slowly

during the whole K evaporation process and has an isotropic ∆kF '0.02Å−1

for 3 minutes K evaporation. Fitting the Rashba-like band dispersions along

Γ̄-K̄ to Eq. 4.1, for RB1 (RB2) we obtain EΓ̄ = 295±10 meV (172 meV),

m? = 0.28±0.02me (0.19me), and αR = 0.79±0.03 eVÅ (0.35 eVÅ). The

value of αR for RB1 is more than twice the Rashba splitting of the Au(111)

surface state (αR ' 0.33 eVÅ), and also larger than the one of the Bi(111)

surface state (αR'0.56 eVÅ) [18].

4.1.4 Quantum well states and conclusion

DFT calculations for bulk Bi2Se3, as well as slabs with varying number of

QL’s (Fig. 4.5 and Fig. 4.6), provide a detailed explanation for our obser-

vations and some interesting insights. Each QL consists of 2 Bi and 3 Se

layers alternating along the c axis, with one Se layer in the middle of the

QL and the other two on either side. This forms a non-polar structure with

a natural cleavage plane between two adjacent Se layers belonging to dif-
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ferent QL’s. As shown in Fig. 4.6(b) for the particular case of a 5QL slab

in addition to the TSS-DC there are 4 QW states, for a total of 5 states

matching the number of QL’s. As evidenced by the comparison with the

fully kz−projected bulk results in Fig. 4.6(a), where the TSS is missing due

to the absence of the surface, the slab QW states exhibit the same charac-

ter and energy as the Bi-Se conduction band. However, they are discrete

in nature due to quantum confinement, and span a narrower energy range

than the corresponding bulk bandwidth WB = 520 meV. The effective slab

bandwidth WQL, defined as the energy difference between top and bottom

QW states, is asymptotically approaching the bulk WB value [Fig. 4.6(c)];

for a proper correspondence with the bulk electronic structure a rather large

number of QL’s is needed (i.e., more than 10 QL). Interestingly, the splitting

between the DP and the different QW states is extremely sensitive to the

number of QL’s. For 5QL we obtain 346 meV QW1-DP and 126 meV QW2-

QW1 splittings [Fig. 4.6(c)], which closely match the 3 minutes K-deposition

values 380±50 meV and 123±6 meV for RB1-DP and RB2-RB1, respectively

[as defined from the EDC’s at the Γ̄ point in Fig. 4.4(a)].

This analysis leads to several important conclusions: (i) The RB1 and

RB2 states that emerge from the parabolic continuum are of the same Bi

and Se character as those obtained from bulk Bi2Se3 calculations in the

same energy range. However, because of the observed lack of kz dispersion

[80] and the almost perfect match comparing the energy of RB1-RB2 with

QW1-QW2 from 5QL slab calculations [as seen in Fig. 4.6(c)], these states

should be more appropriately thought of as the quantum-confined analog

of those bulk states associated with a band-bending over a 5QL subsurface

region (47.7 Å). While this subsurface region is disordered on the as-cleaved

surfaces (either in its depth and/or carrier concentration), which causes

a continuum of states, the disorder is suppressed upon K evaporation as

evidenced by the appearance of the well defined RB1 and RB2 features. (ii)

Potassium, in addition to doping carriers, also induces a change in ∂V/∂z,

which in turn provides a very direct control knob on both band-bending

depth and spin splitting of the Rashba states. (iii) In light of the extent of

the subsurface band-bending region, these quantum-confined states should
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Figure 4.6: Energy splitting of quantum well (QW) states. DFT results for
(a) kz-projected bulk and (b) 5QL slab of Bi2Se3 (EF is at energy 0). (c)
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WB = 520 meV. The 3 minutes K-deposition RB2-RB1 splitting of 123±
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affect more than just surface sensitive experiments. For instance, Rashba

spin-split states might have to be accounted for in the interpretation of

transport data even from pristine surfaces, although with a much smaller

splitting induced solely by the symmetry breaking vacuum-solid interface.
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4.2 Tailoring spin-orbit coupling in Mn-doped

Bi2−xMnxTe3

4.2.1 Introduction

Since topological surface states are chiral and spin-polarized, they should

be immune to localization as long as the disorder potential does not vio-

late time reversal symmetry (TRS). Breaking the TRS of the topological

surface state (TSS) can lead to a gap opening at the Dirac point. More

importantly, breaking the TRS is key to realizing novel physics phenomena

such as the axion electrodynamics and the spin-galvanic effect [30]. In the

two-dimensional topological insulator (TI) HgTe, it has been shown that

a magnetic field can break the TRS and open a gap in the surface state

[83]. In three-dimensional TIs, an efficient way to break TRS is to develop a

long-range magnetic order by doping the system with magnetic impurities.

In the previous section, we demonstrated that one way to study impurity

effects is through in situ surface doping via adsorption of impurities on

pristine TI materials. Extensive studies have been conducted along this line

by evaporating magnetic impurities on the surface of topological insulators

[84–87]. However, none of these studies showed any indication of an opening

gap at the Dirac point, which we would expect from a broken TRS induced

by magnetic impurities. Success has instead been achieved using another

experimental method, which is to add magnetic impurities into the sample

during crystal growth, i.e., bulk doping. It has been reported that magnetic

dopants break the TRS and open a gap at the Dirac point in Bi2Se3 [35].

Besides their relevance for controlling the TRS in the system, a dilution

of the system’s SOC by impurities with small SOC can give rise to new

quantum phases that could be essentially important for applications of the

system, such as tuning the system through a quantum phase transition from

the topological to the non-topological phase [88, 89].

In this section, we focus on the doping evolution of the electronic states

of Bi2−xMnxTe3 (with x = 0, 0.04, and 0.1, respectively). The motivation of

the study is to examine how the ferromagnetic phase affects the topological
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surface states, such as opening a gap at the Dirac point by breaking the

TRS. Unfortunately, the Dirac point of Bi2Te3 is buried inside the valence

band [33], resulting in an invisible Dirac point. This characteristic of the

material makes it impossible to study the broken TRS by examining the

presence of a gap in Bi2Te3. Nevertheless, we can study other effects caused

by the ferromagnetic ordering and the almost zero SOC of Mn impurities.

We will show that the Mn impurities can decrease the bulk band gap by

diluting the effective SOC of the system. Furthermore, we show that the

temperature effect on the width of momentum distribution curves (MDCs)

indicates the possibility of ferromagnetic domain formation, albeit with a

short range at temperatures below 12 K.

4.2.2 Material properties

The Mn-doped Bi2Te3 samples used in our study were grown by R.J. Cava’s

group at Princeton University. The Mn concentration was analytically de-

termined by doing elemental analysis, and samples with x = 0, 0.04, and

0.1 were used for our ARPES study. The temperature-dependent magnetic

susceptibilities measured in an applied field of 1 kOe showed a ferromagnetic

transition for x ≥ 0.04 at T ≤ 12 K. The ordered ferromagnetic moment can

reach a magnitude of ∼ 4µB per mol-Mn, with the c axis as an easy axis

of magnetization. STM topographic images of the in situ cleaved surface

of Bi1.91Mn0.09Te3 did not show Mn clusters and indicated that the system

as a true dilute ferromagnetic semiconductor [90]. X-ray absorption spectra

(XAS) on the Mn L2,3 edge suggested a 2+ valence state for the Mn impu-

rities, in contrast to the 3+ of Bi atoms in Bi2Te3 [91]. This means that Mn

impurities will lead to holes in the crystal and make the system hole-doped.

The local density of states measured by STM showed a 150 meV upward

shift in chemical potential that is consistent with the p-type character of the

Mn dopants [90].
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Figure 4.7: (a)–(c) ARPES dispersions measured at 6 K with freshly cleaved
samples of Bi2−xMnxTe3: x = 0 (a), 0.04 (b), and 0.1 (c).

4.2.3 Doping-level-dependent ARPES spectra

We performed ARPES measurements on Bi2−xMnxTe3 crystals with x = 0,

0.04, and 0.1, respectively. The samples were cleaved at low temperature,

T = 6 K, with a pressure lower than 5× 10−11 torr. The orientations of the

samples were checked by Laue diffraction peaks and were aligned in the Γ

to K direction parallel to the entrance slit of the electronic analyzer.

In Fig. 4.7, we show ARPES dispersions measured with in situ freshly

cleaved samples. The Fermi levels of all three samples (indicated by white

dashed lines) cross the valence band below the Dirac point. This p-type

character of Bi2Te3 samples is in contrast to the n-type Bi2Se3 samples,

which always have a Fermi level crossing the bulk conduction bands, as

shown in Fig. 4.1. However, the as-cleaved surface of both systems, Bi2Te3

and Bi2Se3, has the same instabilities from becoming progressively electron-

doped, as seen from the dynamics of the electronic states for Bi2Te3 in

Ref.[72] and for Bi2Se3 in Fig. 4.1. Because of the surface instability, it is

difficult to identify the Mn impurities as hole dopants simply by comparing

the Fermi level positions.

After about 18 hours of sample cleavage and with the assistance of a

small amount of potassium deposition on the sample surface, we were able
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to lower the topological surface state to cross the Fermi level, as shown in

Fig. 4.8. The surface state remained in both the pure and the Mn-doped

Bi2Te3. No noticeable changes were observed by comparing the ARPES

spectra Figs. 4.8 (a) to (c) and (d) to (f). First-principles model calculations

suggested that the dispersion of the surface state should depend considerably

on the Mn magnetization. With magnetization of Mn either along the c-axis

or in the ab-plane, the dispersion will become more linear, as shown by DFT

calculations in Ref. [92]. We attempted to fit the ARPES spectra by using

the surface band dispersion, taking into account the hexagonal warping effect

as proposed by Fu [93]. The fitting results may suggest that the warping

term was indeed suppressed by increasing the Mn concentrations, meaning

a better linear dispersion at a higher Mn doping level (results are not shown

here). However, the fitting results are extremely sensitive to the fitting

procedures, such as the choice of fitting energy window and the estimation

of the Dirac point position. All these parameters can bring large uncertainty

to the fitting results and thus lead to an inconclusive outcome.

By comparing Figs. 4.8 (a) to (c) or (d) to (f), we learned that a visible

change in the electronic dispersion induced by Mn impurities is the doping

level dependence of the bulk energy gap size. Based on the EDC profile at Γ̄

point, we define the bulk energy gap size by measuring the energy distance

between the Dirac point4 and the bottom of the bulk conduction band. For

pure Bi2Te3, we obtained a gap of ∆ = 300±5 meV. For Mn-doped samples,

∆ = 260±10 meV for x = 0.04 and ∆ = 200±20 meV for x = 0.1. The

decrease in the bulk gap in Mn-doped Bi2Te3 can be also seen through the

constant energy contours (CECs). In Fig. 4.9, we plot CECs cutting through

four different energy levels with reference to the Dirac point. It is clear that

up to 0.25 eV above the Dirac point, the bulk conduction band still did not

appear in the CECs for pure samples; however, it appeared in the CECs of

the Mn-doped samples as a nondispersive feature with high-intensity around

the Γ point.

In TIs, the bulk energy gap size is directly related to the strength of the

4The Dirac point position is estimated by assuming that the surface bands are linearly
dispersed near the maxima valence band and will cross each other at the Dirac point.
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Figure 4.8: (a)–(c) Doping-level-dependent ARPES spectra of
Bi2−xMnxTe3, measured along Γ̄ → K̄ with x = 0, 0.04, and 0.1, re-
spectively. (d)–(f) Similar data but measured along Γ̄ → M̄ . The bulk
energy gap size of Mn-doped Bi2Te3 is labeled in (a)–(c) and has a value
0.3 eV (x= 0), 0.26 eV (x= 0.04), and 0.2 eV (x= 0.1), respectively.

SOC of the systems. As shown in Fig. 3.8 in Section 3.2, band inversion leads

first to closing the gap and then to reopening it as the SOC of the system

increases. We quantitatively tracked the gap size as a function of the SOC

strength from our ab initio tight-binding model described in Chapter 3, and

obtained a relationship between the bulk energy gap size ∆ and the strength

of the SOC λ after the surface state appears, written as:

∆ = 0.33λ− 0.18 (Unit: eV). (4.2)
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(a)–(d), x= 0.04 (e)–(h), and x= 0.1 (i)–(l). Here the zero binding energy
is set at the Dirac point (DP) for convenience.

Note that this relationship is obtained from the Bi2Se3 model. Bi2Te3 differs

from Bi2Se3 mainly due to the higher SOC in Te atoms (0.49 eV) compared

to Se atoms (0.22 eV). However, Bi atoms have much larger SOC at 1.25 eV,

so the total SOC of the system will mainly depend on the Bi atoms [59].

Therefore, it is still useful to compare the experimental data to this lin-

ear relationship with a ratio of 0.33 between between the gap size and the

strength of the SOC. Taking the sample with x= 0.1 as an example, we can

approximate the SOC of Mn to be zero, and thus a 5% Mn substitution of Bi

could result in a 62.5 meV reduction in SOC. Naively, the bulk energy gap

size would decrease only by 21 meV if we made the estimate based on Eq. 4.2.

However, we obtained a 100 meV reduction from ARPES data. Therefore,
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the disparity between theoretical prediction and experimental observation

indicates that although the Mn concentration is low (only 2–5%), the ef-

fective content of the impurity can be at least four times higher, which is

actually similar to what has been reported for Bi-induced large relativistic

correction in GaAs1−xBix semiconductors [94]. More importantly, when the

SOC of the system is diluted, the impurities can turn the topological system

into a trivial insulator even at low concentrations.

4.2.4 Temperature effects on ARPES spectra

Magnetic susceptibility measurements showed a development of ferromag-

netism in Mn-doped Bi2Te3 at temperatures below 12 K [90]. Therefore,

Mn-doped Bi2Te3 is expected to have broken TRS at T ≤12 K. The bro-

ken TRS may affect the topological protection and could potentially open

a gap at the Dirac point of the topological surface band. Extensive studies

have been carried out to look for an open gap in topological surface bands

using magnetic impurities through either bulk magnetic doping in crystals

and thin films [35, 95, 96] or in situ surface doping adsorption of impurities

on pristine TI materials [84–86]. Most of these efforts focused on Bi2Se3

crystals, because there is a well-defined Dirac point in the surface bands.

However, for Bi2Te3 the low-energy region of the surface band is buried

inside the bulk valence bands, making it difficult to identify a clear Dirac

point. Nevertheless, Mn impurities will always introduce disorder into the

system, which could enhance the scattering rate of the TSS. How magnetic

impurities affect the scattering channels for the TSS has so far only been

studied through the adsorption of various magnetic impurities on the surface

of topological insulators [85]. For bulk magnetic impurities-doped systems,

this question has not been studied yet. Here we study the scattering rate

of the TSS of Mn-doped Bi2Te3 by looking at the width change in the

momentum distribution curve (MDC) above and below the ferromagnetic

transition temperature Tc = 12 K.

As we discussed in Section 4.2.3, the as-cleaved sample has a Dirac sur-

face state above the Fermi level. The instability of the sample surface
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Figure 4.10: (a), (b) ARPES dispersions of Bi1.96Mn0.04Te3, measured below
(5 K) and above (21 K) Tc. The ferromagnetic transition temperature Tc is
12 K [90]. (c) EDCs at the Γ̄ point, measured at 5 K and 21 K. (d), (e)
MDCs above and below the Dirac point, measured at 5 K and 21 K.

can progressively electron dope the system either by absorbing residual gas

molecules or by diffusing Te vacancies. The uncontrolled electron doping

moves the Fermi level towards the bulk conduction band, and allows us to

access the TSS in ARPES after keeping the cleaved sample in an ultra-high

vacuum for a certain period without degradation. Fig. 4.10 and Fig. 4.11

show the ARPES spectra obtained 38 hours later after the sample cleavage
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Figure 4.11: (a), (b) ARPES dispersions of Bi1.9Mn0.1Te3, measured below
and above Tc. The ferromagnetic transition temperature Tc is 12 K [90]. (c)
EDCs at the Γ point, measured at 5 K and 21 K. (d), (e) MDCs above and
below the Dirac point, measured at 5 K and 21 K.

of Bi2−xMnxTe3 with x= 0.04 and 0.1, respectively. The Fermi level has

been shifted upwards by about 200 meV, and the linearly dispersed TSS can

be clearly observed (comparing Figs. 4.10 and 4.11 to Fig. 4.7). To exam-

ine the response of electronic structures to the ferromagnetic transition, we

compare the ARPES spectra in terms of dispersion maps, EDC and MDC

profiles that were measured at T = 5 K (below Tc) and T = 21 K (above
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Tc). The comparisons indicated subtle changes at temperatures below and

above Tc, in particular for the MDC profiles. To quantitatively identify the

changes, we will show the temperature dependence of the MDC width by

fitting the MDCs with a Voigt profile, which is a convolution of Lorentz and

Gaussian profiles.

Generally, there are three scenarios that we would expect for the tem-

perature dependence of MDC width: case I, if the scattering is mainly due

to the electron-phonon interaction, the MDC width should become narrower

with lower temperatures; case II, since the Mn-doped Bi2Te3 has a ferro-

magnetic ordering formed below Tc, if this ferromagnetic ordering is of long

range, the scattering between electrons and disordered impurities could be

suppressed and the MDC width would also become smaller at temperatures

below Tc; and case III, if the ferromagnetic ordering is a local ordering with

short range, then perturbation of impurities to the system could become

stronger due to the development of disordered ferromagnetic domains, sim-

ilar to the local antiferromagnetic ordering induced by Mn impurities in

Sr3Ru2O7 [97]. In this case, the disorder of local domains would enhance

the scattering rate and result in a wider MDC width. In addition, if the local

magnetic field broke the TRS, the ferromagnetic transition would open new

scattering channels by destroying the chiral spin texture of the TSS; then

we would expect broader MDCs at T ≤ Tc, and the scattering rate could

monotonically increase with increasing Mn concentration.

Firstly, we look at the doping level dependence of MDC widths for freshly

cleaved samples. As shown in Fig. 4.12. the MDC width of the bulk valence

band is plotted as a function of binding energy for x= 0, 0.04, and 0.1. We

see that the MDC width becomes larger as the Mn doping level increases,

indicating a more disordered system for a higher Mn concentration. By

fitting the dispersions near the Fermi level that were shown in Figs. 4.10(a),

(b) and Figs. 4.11 (a), (b), we obtained the MDC width of the TSS for

2% and 5% Mn-doped Bi2Te3, respectively. The fitting results from the

right-hand-side branch of the TSS are plotted in Fig. 4.13. For x= 0.04, the

MDC width at T = 5 K is clearly larger than at 22 K and 32 K. However,

if we compare the MDC width at two temperatures (22 K and 32 K) that
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Figure 4.12: Doping-level-dependent MDC width of Bi2−xMnxTe3, mea-
sured at 6 K. The MDC width was obtained by fitting the data shown in
Fig. 4.7.

are both higher than Tc, the difference is rather small. These results were

replicable and were independent of the temperature history. A temperature

cycle was performed by cooling down and then warming up the crystals; as

shown in Fig. 4.13(a), we obtained almost overlapping data points for the

same temperatures (5 K or 22 K) but measured during different temperature

cycles.

The increase of MDC width at temperatures below Tc can be attributed

to either the development of local ferromagnetic ordering or the broken TRS.

As described earlier, if the enhancement of scattering rate at temperatures

below Tc was predominantly due to the broken TRS, we would expect to

observe a monotonic increase in MDC width with increasing Mn concentra-

tion at T ≤ Tc. However, the difference in MDC width for x= 0.1 above
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Figure 4.13: (a, b) Temperature-dependent MDC width of Bi2−xMnxTe3

with x= 0.04 (a) and 0.1 (b). The width of the MDC is obtained by fitting
the data shown in Fig. 4.10 and Fig. 4.11. For the x= 0.04 sample, a tem-
perature cycle measurement was performed, shown by two data sets in the
same color.

and below Tc [Fig. 4.13(b)] is rather small compared to that for x= 0.04

[Fig. 4.13(a)], meaning that there is a weakly broken TRS effect on the scat-

tering rate; on the other hand, if the enhanced scattering rate is mainly

due to the onset of local ferromagnetic ordering, then the smaller change

in MDC width at higher Mn doping levels can be understood by consid-

ering that with increasing Mn concentration, the system will start to form

long-range ferromagnetic ordering, and therefore the effect of disordered do-

mains with short-range ordering will be suppressed. In conclusion, (i) the

subtle temperature- and doping-level-dependence of MDC width might sug-

gest that the ferromagnetic phase induced by Mn impurities enhanced the

scattering of the TSS by forming disordered domains and (ii) the evidence

for broken TRS is not clear in Mn-doped Bi2Te3.

4.2.5 K deposition at the surface of Bi1.96Mn0.04Te3

In Section 4.1, we described work involving in situ K deposition on Bi2Se3.

Here we use the same experimental method but apply it to 2% Mn-doped
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Figure 4.15: (a)–(f) ARPES constant energy contours of Bi1.96Mn0.04Te3

after seven minutes of K deposition. The cutting energies refer to the Dirac
point.

Bi2Te3. The purpose of this section is to demonstrate that potassium depo-

sition on Bi2Te3 can also induce Rashba-like QW states with spin splitting.

Fig. 4.14 shows the ARPES dispersions measured after varying the K de-
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position time. The modification of the surface electronic structure is similar

to what we have discussed in Section 4.1.3. Quantizations of both the bulk

conduction band and the valence band states are observable after 1.5 min-

utes of K deposition. The valence band evolves into QW states, presenting a

set of bands with an M shape. The bulk conduction band lacked dispersion

and now becomes quantized by forming pairs of parabolic bands with spin

splitting, which are QW states with Rashba-like spin splitting.

Previous DFT calculations and a photon-energy-dependent ARPES study

of Bi2Te3 [98] have indicated that the bulk states showed triangular CECs

because of the crystal lattice symmetry, and the surface states gave hexago-

nal CECs due to the warping effect [93]. In Fig. 4.15, we show the evolution

of CECs as they move away from the Dirac point and reveal the binding-

energy-dependent bulk and surface character of the bands. Near the Dirac

point, the surface states are degenerate with the bulk valence band states

and therefore we observe triangular CECs. The surface states appear alone

at 0.1 eV above the DP, with hexagonal CECs. The CECs at high energy

(i.e., 0.4 eV above DP) again show the coexistence of surface states (outside

contour) and bulk featured states (inner contour), which are spin-splitting

QW states here. The last point to emphasize is that since the Rashba-like

spin-split states are from QW states with bulk features, the CECs of these

states have a triangular star shape rather than a hexagonal or circular shape,

although their band dispersion looks like a two-dimensional (2D) electron

gas with parabolic dispersions, as shown in Fig. 4.14(d) and Fig. 4.15(a).

4.2.6 Conclusion

In this section, we used ARPES to study the electronic structures of Mn-

doped Bi2Te3 with different doping levels, as well as below and above the

ferromagnetic transition temperature Tc = 12 K. A notable effect of Mn im-

purities is the dilution of the system’s SOC, evidenced by the decrease in

the bulk energy gap size with increasing Mn concentrations. Our analysis

showed that the effective doping level can be four times higher than the

physical Mn concentrations in the crystals. This suggested that a quantum
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phase transition from non-trivial topological to trivial topological insulators

can be induced by impurities even at low concentrations (≤ 5%); similar

phenomena have also been observed in (Bi1−xInx)2Se3 [99]. A further the-

oretical investigation about impurity-induced topological phase transition

is required and would have a fundamental impact on topologically tunable

physics and devices. The wider MDC width at lower temperatures may sug-

gest an onset of local ferromagnetic ordering at T ≤ 12 K. The evidence of

broken TRS due to ferromagnetic ordering is not conclusive from this study,

and could be further investigated by performing fine temperature-dependent

ARPES and SARPES.
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Chapter 5

Layer-by-layer entangled

spin-orbital texture in Bi2Se3

With their spin-helical metallic surface state, topological insulators define

a new class of materials with strong application potential in spintronics.

Technological exploitation depends on the degree of spin polarization of

the topological surface state (TSS), assumed to be 100% in phenomenolog-

ical models. Yet in Bi2Se3, an archetypical topological insulator material,

spin- and angle-resolved photoemission spectroscopy (SARPES) detects a

spin polarization ranging from 20 to 85%, a striking discrepancy which un-

dermines the applicability of real topological insulators. Here we show –

studying Bi2Se3 by polarization-dependent ARPES and density-functional

theory slab calculations – that the TSS Dirac fermions are characterized by

a layer-dependent entangled spin-orbital texture, which becomes apparent

through quantum interference effects. This explicitly solves the puzzle of the

TSS spin polarization in SARPES, and suggests how 100% spin polariza-

tion of photoelectrons and photocurrents can be achieved and manipulated

in topological-insulator-based devices by using linearly polarized light.

5.1 Introduction

Topological insulators (TIs) define a new state of matter in which strong

spin-orbit coupling (SOC) leads to the emergence of a metallic topological

surface state (TSS) formed by spin-nondegenerate Dirac fermions [7, 24–

28]. To capture the physics of TIs, a spin-momentum locking with 100%

spin polarization is usually assumed for the TSS in time-reversal invariant

models [26–28]. A fully spin-polarized TSS has tantalizing properties, such
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as robust edge modes and exotic quasiparticle excitations, making TIs good

candidates for spintronic applications [30]; and also a playground for engi-

neering Majorana fermions, and exploiting their non-Abelian statistics in

topological quantum computation [31]. The successful realization of topo-

logical insulating behavior in quantum wells [66, 83] and crystalline mate-

rials [33–35] brings us closer to the practical implementation of theoretical

concepts built upon novel topological properties.

To this end, the fundamental question is that of the effective spin-

polarization of the TSS Dirac fermions in real materials and devices, i.e., how

realistic is the hypothesis of a 100% spin polarization. The large discrepancy

in the degree of TSS spin polarization determined for Bi2Se3 by SARPES

– ranging from 20 to 85% [73, 88, 100–102] – highlights the complexity of

real TIs. First principle density-functional theory (DFT) calculations in-

dicate that the TSS spin polarization in members of the Bi2X3 material

family (X = Se, Te) can be substantially reduced from 100% [103, 104]. In

addition, based on general symmetry arguments, it was shown that the spin

polarization direction of photoelectrons in SARPES can be very different

from that of the TSS wave function [105]. However, the role played by the

intrinsic properties of the TSS wave function in defining the highest spin

polarization that could be achieved, for instance in d.c. and photoinduced

electrical currents, has remained elusive.

We report here that the TSS many-layer-deep extension into the mate-

rial’s bulk – in concert with strong SOC – gives rise to a layer-dependent,

entangled spin-orbital texture of the Dirac fermions at the surface of Bi2Se3.

This enables the precise control of both in- and out-of-plane spin polariza-

tion of the photocurrent in SARPES – all the way from 0 to ±100% – by

varying energy, polarization, and angle of incidence of the incoming photons.

More generally, the layer-by-layer variation in spin-orbital entanglement is

of fundamental importance to spintronic studies and applications, whose

outcome will depend critically on how one couples to the TSS. A remark-

able consequence, which we will specifically exploit in this study, is that

one can gain exquisite sensitivity to the internal structure of the TSS wave

function, ΨTSS, via quantum interference effects using ARPES. In partic-
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ular, the spin-orbital texture is captured directly in the linear-polarization

dependence of the ARPES intensity maps in momentum space, and can be

fully resolved with the aid of ab initio DFT slab-calculations.

5.2 Polarization-dependent ARPES intensity

pattern

Let us start our discussion from the Bi2Se3 ARPES results in Fig. 5.1,

measured with σ and π linearly-polarized 21.2 eV photons. Based on our

experimental geometry [Fig. 5.1(a)] and the photoemission selection rules,

σ-polarized light probes mainly the in-plane px and py orbitals, whereas

π-polarized light a combination of both in-plane and out-of plane (pz) or-

bitals: the observed 80% reduction in overall intensity by switching from π-

to σ-polarization indicates that the TSS has a dominant pz orbital charac-

ter. As for the evolution of the ARPES intensity around the Dirac cone,

in σ-polarization [Figs. 5.2(a)–(c)] we observe a twofold pattern at both 0.1

and 0.2 eV above the Dirac point (DP), consistent with a previous report

[106], although somewhat asymmetric with respect to the ky = 0 plane [see

in particular Fig. 5.2(c)]; this suggests a tangential alignment of the in-plane

px,y orbitals with respect to the Dirac constant-energy contours. Conversely

in π-polarization [Figs. 5.2(d)–(f)] we observe a strongly asymmetric pat-

tern at 0.1 eV above the DP, which evolves into a triangular pattern while

still retaining some asymmetry at 0.2 eV; this is in stark contrast with the

uniform distribution of intensity along the Dirac contour expected for the

dominant out-of-plane pz orbitals. Finally, at −0.1 eV below the DP, a tri-

angular pattern is observed for both polarizations [see insets of Figs. 5.2(a)

and (d)].

The asymmetry in ARPES intensity between ±k‖ is particularly evi-

dent in π-polarization at 0.1 eV in Fig. 5.2(d) and in the band dispersion

of Fig. 5.1(b). This finding, which might seem in conflict with the time-

reversal invariance of the TSS, provides fundamental clues on the structure

of ΨTSS. Time-reversal invariance requires the state at +k with (pseudo)
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Figure 5.1: ARPES experimental geometry with linearly polarized light.
(a) Schematics of the experimental geometry, with π (horizontal) and σ
(vertical) linear polarizations, and horizontal photoelectron emission plane.
(b) ARPES dispersion measured along K̄−Γ̄−K̄ with π polarization; the
zero of energy has been set at the Dirac point (DP) for convenience.

spin up to be degenerate with the state at −k with (pseudo) spin down, i.e.,

to have the same real-orbital occupation numbers. This so-called Kramers

degeneracy, together with the ARPES selection rules for linearly polarized

light, forbids intensity patterns which are different at ±k. We emphasize

here that this restriction can be rephrased in terms of purely in-plane mo-

mentum coordinates, i.e., ±k‖, only for a perfect 2-dimensional TSS with a

delta-function-like density, for which kz plays no role. Thus the observation

of an imbalance in ARPES intensity at ±k‖, together with the established

time-reversal invariance of TIs, necessarily implies that ΨTSS must have a

finite extent – albeit not a dispersion [80] – along the third dimension. While

details will become clear when discussing our DFT results in Fig. 5.4 and

Fig. 5.5, we anticipate that this – together with the strong SOC – leads

to a complex layer-dependent spin-orbital entanglement in Bi2Se3, which

becomes apparent in ARPES through photoelectron interference effects.

By performing ARPES intensity calculations [107]5 for TSS and bulk

5Details of the ARPES calculations can be found in Section 5.6.2.
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Figure 5.2: Linear polarization dependence of the measured ARPES inten-
sity in momentum space. (a), (b) Constant energy ARPES maps from above
(0.1 and 0.2 eV) and below (-0.1 eV, inset) the DP, measured with σ polar-
ization; (d), (e) same for π polarization. (c), (f) Normalized variation of the
σ- (c) and π-polarization (f) ARPES intensity, along the Dirac contours,
plotted as a function of the in-plane angle ϕ.

wave functions from our DFT slab-calculations, we accurately reproduce

the data6. As shown in Figs. 5.3(a)–(f), we obtain very different intensities

at ±k‖ in excellent agreement with the results for both σ and π polariza-

tions. Specifically, we reproduce the quasi-twofold pattern in σ polariza-

tion, stemming from the spatial configuration of px,y orbitals [Figs. 5.3(a)

and (b)]; the quasi-threefold pattern away from the DP [Fig. 5.3(e)], which

originates from the hybridization between TSS and bulk states [108]7; and

also the triangular patterns at -0.1 eV [insets of Figs. 5.3(a) and (d)]. Note

6Note that the TSS calculations have actually been performed for 0.12 and 0.23 eV,
in order to account for the DP–conduction-band gap renormalization observed between
experiment (∼260 meV) and DFT (300 meV).

7Note that the threefold pattern is associated with the kz dispersion of valence- and
conduction-band bulk states.
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Figure 5.3: Calculated ARPES polarization dependence. (a), (b) Calculated
constant-energy σ-polarization ARPES maps for TSS (0.1 and 0.2 eV) and
bulk valence band (BVB, -0.1 eV in the inset); (c) corresponding variation
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insets: patterns obtained by rotating the sample by 90 ◦ about the normal.
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Figure 5.4: Layer-projected topological surface state. (a) Electronic disper-
sion from our 250-atomic-layer-slab DFT model, with TSS in orange and
bulk states in green (ΨTSS is composed of those states that exceed a 20%
projection onto the top five atomic layers in real space). (b) Percentage con-
tribution of pz and px,y orbitals to ΨTSS at 0.15 eV above the DP, resolved
layer-by-layer, for the top 15 atomic layers of the slab (Se1 is the natural
cleavage plane).

that the ARPES intensity visible at the Γ̄ point in Fig. 5.2(b) and (e), but

not reproduced by our calculations, originates from the scattering-induced

broadening of the bulk conduction band8. As a final test of the robustness

of our DFT analysis of ΨTSS, we have calculated constant-energy circular

dichroism ARPES patterns, which are also in excellent agreement with pre-

vious studies [111, 112].

8In the experiment, the bulk conduction band is significantly broadened by disorder-
induced scattering, which leads to intensity leaking down to lower binding energies inside
the gap, an effect not accounted for in our calculations. We also note that while this
same disorder affects to some degree the linewidth and electronic filling of the TSS, its
main features – such as dispersion and spin-orbital texture close to the Dirac point – are
retained, as a manifestation of topological protection [109, 110].
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Figure 5.5: Layer-by-layer entangled spin-orbital texture. (b)–(d)
Layer- and orbital-projected charge density along the 0.15 eV k-space
contour indicated in (a): their surfaces are defined by r(θ, φ) =∑
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orbital basis indexes, and Z the cubic harmonics; their surface color rep-
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layer independent (b), a strong layer-dependent spin-orbital entanglement is
observed for px,y (c). The total layer-resolved TSS texture (d) is obtained by
adding all p orbital contributions according to their relative, layer-dependent
weight from panel [Fig. 5.4(b)].
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5.3 Layer-dependent entangled spin-orbital

texture

To gain a microscopic understanding of the properties of ΨTSS we present

our DFT results for a 250-atomic-layer slab of Bi2Se3
9 in Fig. 5.4(a), with

bulk states in green and TSS in orange. The in- and out-of-plane p orbital

projections in Fig. 5.4(b) confirm that ΨTSS indeed has a large pz (70%)

character – although px,y (30%) is also significant – and most importantly

that ΨTSS extends deep into the solid. Even though the orbital weight decays

exponentially with the distance from the surface, as expected for a surface

bound-state, ΨTSS extends approximately 2 quintuple layers (QL) below

the surface (∼ 2 nm), with ∼75% contribution from the 1st QL and ∼25%

from the 2nd QL. Note also the interesting layer dependence of the orbital

character: while for most layers the main component is the out-of-plane pz,

for the 5th for example the in-plane px,y is actually dominant.

As a consequence of the relativistic SOC, which directly connects orbital

to spin flips via the l±s∓ terms of the spin-orbit operator l · s = lzsz +

(l+s−+ l−s+)/2, the strongly layer-dependent orbital occupation becomes

entangled with the spin polarization of ΨTSS. To visualize this entanglement,

in Figs.5.5(b)–(d) we present the layer- and orbital-projected charge density

along the 0.15 eV Dirac contour indicated in Fig.5.5(a), colored according to

the expectation value of the Sy operator. The pz-projected charge density,

being associated with a single orbital, cannot be entangled and has the

layer-independent spin helicity shown in Fig. 5.5(b)10. In contrast, a strong

layer-dependent spin-orbital entanglement is observed for px,y because the

eigenstates can be a linear combination of px,↑, py,↓, and similar states,

resulting in a complex set of charge-density isosurfaces. These surfaces show

two overall spatial configurations having opposite spin helicity, which are

oriented tangentially and radially with respect to the Dirac cone contour11,

9See methods in Section 5.6.1.
10Note that in the ky direction the charge density is white because a state with spin in

the x direction is written as a linear combination of states with equal amount of spin up
and spin down along the y direction.

11Interestingly the in-plane spin-orbital entanglement is reversed for states below the
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as seen in Fig. 5.5(c). In Fig. 5.5(d) we show the total layer-dependent charge

density obtained by adding in- and out-of-plane contributions according to

their relative weights in Fig. 5.4(b); from this it is clear that while the pz

orbitals dominate, the in-plane px,y orbitals lead to a substantial spin-orbital

entanglement of the combined ΨTSS.

We will now highlight the interplay between photoelectron interference

and the measured ARPES intensity. While a complete derivation – inclu-

sive of selection rules, Bi and Se cross sections, as well as photoelectron

escape depth – is given in Section 5.6.1 and 5.6.2, for the purpose of this

discussion we approximate the ARPES intensity as I∝|〈eik·r|A·p|ΨTSS〉|2,

expressed in terms of plane-wave photoelectron final states for simplicity.

By writing ΨTSS as linear combination of the layer-dependent eigenstates,

ΨTSS =
∑

i,σ αiψ
σ
i,k‖

with i and σ being layer and spin indexes, the ARPES

intensity then becomes I ∝
∑

σ |
∑

i e
−ikzzi〈eik‖·r‖ |A · p|αiψσi,k‖〉|

2. Here the

e−ikzzi phase term accounts for the photoelectron optical path difference

stemming from the TSS finite extent into the bulk. Because both e−ikzzi

and ψσi,k‖ vary from layer to layer [the latter via the relative orbital content

as shown in Fig. 5.7(b)], the photoemission intensity is dominated by inter-

ference between the ψσi,k‖ eigenstates, and can in fact be regarded as the

Fourier transform of the layer-dependent ΨTSS. We also note that, because

the phase of photoelectrons is defined by additive kz and k‖ contributions,

reversing the sign of either kz or k‖ will change the ARPES intensity, i.e.,

I(kz) 6= I(−kz) and especially I(k‖) 6= I(−k‖) as observed experimentally.

5.4 TSS spin texture and photoelectron spin

polarization

The spin-orbital entanglement also leads to complex in- and out-of-plane

spin-texture, as shown in Figs. 5.6(a)–(d) where the layer-integrated spin

patterns of individual and total p orbitals are presented. While for pz we

find the in-plane helical spin texture expected for the TSS this is not the case

DP: while the spin helicity remains the same as above the DP, the orbital texture switches
between tangential and radial configurations.
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Figure 5.6: Orbital-projected spin texture of TSS. (a)–(d) Spin texture of
the Dirac cone upper branch in Bi2Se3 obtained from the expectation value
of the layer-integrated, orbital-projected spin operators, normalized to the
orbital occupation [shown in Fig. 5.8(a)]; in-plane and out-of-plane spin com-
ponents are represented by arrows and colors, respectively. Note that (a),
(b) and (c), (d) have different color scales but that the arrow scaling remains
the same, with the largest arrows representing full polarization; also, moving
away from Γ̄ corresponds to moving along the Dirac dispersion away from
the DP (∼0.4 eV at the map edge).
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Figure 5.7: Calculated photoelectron spin polarization. (a), (b) Prediction
for the photoelectron spin polarization (P ) measured in SARPES as a func-
tion of photon energy and incidence angle; two experimental geometries are
examined in π polarization for the same k point located at 0.15 eV along
Γ̄−M̄, as indicated in the sketches [in (a) only the P component along y is
shown].

for the px and py orbitals, which exhibit patterns opposite to one another.

Combining all contributions [〈~Stotal〉/ntotal in Fig. 5.6(d)], the TSS out-of-

plane spin texture vanishes in the vicinity of the DP; most important, the

in-plane spin polarization is reduced from 100% to 75% at the DP, and to
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60% at 0.4 eV above the DP. Note that this is also critically dependent on

the relative px,y orbital content of ΨTSS, which increases from 25% to 45%

over the same energy range12.

Photoelectron interference also severely affects the photoelectron spin

polarization Px,y,z = (I↑x,y,z−I↓x,y,z)/(I↑x,y,z+I↓x,y,z) measured in SARPES.

This exhibits a strong dependence on photon energy, polarization, and an-

gle of incidence, which in general prevents the straightforward experimental

determination of the intrinsic spin-texture of Bi2Se3. While comprehensive

results are presented in Section 5.6.5, in Figs. 5.7(a) and (b) we show as an

example the same k point along Γ̄−M̄ measured in two different geometries,

probing selectively py,z (a) and px,z (b) orbitals. In Fig. 5.7(a), because

〈~Spy〉 and 〈~Spz〉 (the spin polarization of the py and pz orbitals) are an-

tiparallel at this specific k point, Py varies between ±100% upon changing

θ, and oscillates wildly as a function of photon energy (with the exception

of 0 ◦ and 90 ◦, which probe py and pz separately). However, if the sample

is rotated by 90 ◦ as in Fig. 5.7(b) 〈~Spx〉 becomes parallel to 〈~Spz〉 and the

measured Px,y,z are all independent of photon energy and incidence angle,

allowing the detection of the intrinsic spin polarization. We note that this

behavior is consistent with reported SARPES results [102]: for the situation

of Fig. 5.7(b), Py > 80% was obtained, close to our 100% expectation; along

Γ̄−K̄, Py was observed to vary from 25% at hν = 36 eV to −50% at 70 eV,

while we obtain +20±10% and −40±15%, respectively.

5.5 Conclusion

We have shown that the spatial extent of the TSS into the solid and its

strong layer-dependent spin-orbital entanglement are responsible – via pho-

toelectron interference – for the apparent time-reversal symmetry breaking

in ARPES and the large discrepancy in the estimated TSS spin-polarization

from SARPES. This is of critical importance for many applications and

fundamental studies of TIs. For instance we note that the photoelectron

interference responsible for I(k‖) 6= I(−k‖) in ARPES also provides an

12See Fig. 5.8 in Section 5.6.4.
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explanation for the so-far puzzling observation of spin-polarized electrical

currents photoinduced by linearly-polarized light [113], which also is associ-

ated with an imbalance in the number of photoelectrons removed at ±k‖. In

addition, exploiting photoelectron interference in SARPES provides a way

not only to probe the intrinsic spin texture of TIs, but also – and most

importantly – to continuously manipulate the spin polarization of photo-

electrons and photocurrents all the way from 0 to ±100% by an appropriate

choice of photon energy, polarization, and angle of incidence.

5.6 Supplemental material

5.6.1 Experimental and theoretical methods

Angle-resolved photoemission spectroscopy (ARPES) was performed at UBC

using a SPECS Phoibos 150 hemispherical analyzer and a monochromatized

and linearly polarized UVS300 gas-discharge lamp. Energy and angular reso-

lutions were set to 10 meV and ±0.1◦. We used 21.2 eV photons, whose close-

to-100% linear polarization can be rotated to any angle without changing

sample orientation; in this study we focused on experiments for horizontal

(π) and vertical (σ) polarizations. Bi2Se3 single crystals were grown from the

melt at the University of Maryland [with carrier density n'1.24×1019 cm−3

[69]], and by floating zone at the University of Geneva. The samples were

prealigned ex situ by conventional Laue diffraction, and cleaved and mea-

sured at pressures better than 5×10−11 torr and at a constant temperature

of 6 K [1].

The bulk electronic structure of Bi2Se3 was calculated using the tight-

binding order-N muffin-tin orbital (TB-NMTO) [50, 57] and full-potential

WIEN2k [44] density functional theory codes; we find excellent agreement

between the two methods. The TB-NMTO approach is used to down-fold

the ab initio Hamiltonian to a 15-band model involving only the p orbitals

of Bi and Se. This allows us to extract on-site energies and hopping param-

eters which are used to construct a 250-atomic-layer thick slab TB model

(i.e., 50 quintuple layers), with atomic spin-orbit coupling (SOC) included
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as a local term for Bi and Se orbitals [1.25 eV and 0.22 eV, respectively [59]].

To understand the microscopic origin of the ARPES intensity patterns in

Fig. 5.1, we have performed photoemission intensity calculations for both

linearly and circularly polarized light. Following an established approach

[107], photoelectron final states are treated as spin-degenerate plane waves;

however, to account for ARPES matrix elements, these plane waves have

been expanded in spherical harmonics and Bessel functions around each

atom. Since the initial states have mainly p orbital character, conservation

of angular momentum only allows excitations into s and d-like free-electron

states. Under these selection rules, photoelectrons from px, py, and pz or-

bitals can be excited by x, y, and z polarized light respectively [37]; all other

excitations are forbidden. Finally, the Bi and Se atomic cross sections [e.g.,

2.7 for Bi 6p and 8.0 for Se 4p at photon energy 21.2 eV [114]] also have

been taken into account in calculating photoemission intensities, as well as

the finite escape depth of the photoelectrons. Also note that throughout the

chapter, the coordinate system is consistent with the crystal structure: the

kx axis is along Γ̄−M̄, the ky axis is along Γ̄−K̄, and the z axis is along the

sample normal [001].

5.6.2 ARPES intensity and interference effects

In the following sections we will show how we calculated the data presented

in Sections 5.2 and 5.4. We will begin, in this section, by calculating the ex-

plicit ARPES intensity based on our ab initio TB model13. In the following

Section 5.6.3, we will calculate the spin-polarization of photoelectrons, and

how that relates to the TSS ground-state spin-polarization; importantly we

will note how they can differ due to interference terms, and also depend on

the relative orbital occupations. In Section 5.6.4 we will present these rel-

ative orbital occupations, while in Section 5.6.5 we resolve the interference

terms and explicitly present the spin texture patters of photoelectrons for

some example experimental configurations. In Section 5.6.6, we will demon-

strate how certain aspects of these results, namely the asymmetry in in-

13An introduction about the ab initio TB model is given in Chapter 3.
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tensity between k‖ and −k‖, can be understood through a simple model

system.

Based on Fermi’s golden rule, the photoemission intensity can be written

as [37, 107]:

I ∝ |〈Ψf |A · p|Ψi〉|2, (5.1)

where p is the electron momentum operator, A the electromagnetic vector

potential, and Ψi and Ψf the initial- and final-state wave functions. We use

the dipole approximation in the calculations such that A ·p is approximated

by r. Here we focus on the photoemission of the topological surface states

(TSS). Therefore, Ψi = ΨTSS which is the wave function of the TSS and

can be written as a linear combination of atomic wave function in our ab

initio TB model:

ΨTSS =
∑
i,τ,σ

Cσi,τψi,τ . (5.2)

Here i is the atomic layer index along the z axis of the slab with the surface

layer at i = 1, the orbital basis is given by τ ∈ {px, py, pz}, σ is the spin

index which is ↑ or ↓, and ψi,τ are the atomic wave functions of orbital

τ centered around the atomic layer i. The photoelectron final states are

treated as free-electron-like, whose wave function can be described by a

plane wave Ψf = eik·r. We can therefore define the matrix element term

as:

Mi,τ ≡ 〈eik·r|A · p|ψi,τ 〉. (5.3)

As discussed in section 5.3, the TSS is not a perfect two-dimensional

state with a delta-function-like density in the z direction. Instead, it ex-

tends more than 2 nm deep into the bulk along the z direction. We take

into account the spatial extent of the wave function along z by assigning

an atomic-layer-dependent phase to photoelectrons: eikzzi , with zi being the

position of the atomic layer i along z and kz =
√

2me
~2 (hν − EB)− k2

x − k2
y

is the momentum of photoelectrons along z, which depends on photon en-

ergy hν and the initial-state binding energy EB. Note that the phase of

the photoelectrons is determined by their kinetic energy inside the material

rather than in the vacuum; for this reason we do not consider the work
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function here. The finite photoelectron escape depth is also considered in

our calculation, by including an exponential attenuation factor dependent

on the mean free path (λ) of the photoexcited electrons; we used λ = 7 Å,

although no substantial change in our results was observed in the 5–10 Å

range. In order to show the effects of photon energy and escape depth, we

redefine Eq. 5.3 as:

Mi,τ ≡ e−ikzzie−zi/(2λ)〈eik‖·r‖ |A · p|ψi,τ 〉. (5.4)

with k = {kx, ky, kz} and k‖ = {kx, ky}. Finally, Eq. 5.1 can be written as

the sum of the intensity from up and down spin channels:

I ∝
∑
σ=↑,↓

|
∑
i,τ

Cσi,τMi,τ |2. (5.5)

The latter we can expanded to obtain the explicit form of the ARPES in-

tensity:

I =
∑
i,τ

(C↑i,τ
∗
C↑i,τ + C↓i,τ

∗
C↓i,τ )|Mi,τ |2

+
∑

i 6=i′,τ 6=τ ′
(C↑i,τ

∗
C↑i′,τ ′ + C↓i,τ

∗
C↓i′,τ ′)M

∗
i,τMi′,τ ′ .

(5.6)

Here
∑

i,τ C
↑
i,τ

∗
C↑i,τ + C↓i,τ

∗
C↓i,τ = 1 for the normalized TSS wave function

and the sum
∑

i 6=i′,τ 6=τ ′ represents the interference between different terms

in the basis set – i.e., orbitals in the same or different atomic layers.

5.6.3 Photoelectron spin polarization

There is a clear analytical relationship between the photoelectron spin po-

larization measured by SARPES and the TSS ground-state spin polarization

obtained from the expectation value of spin operators applied on the TSS

wave function. In a simple system with a single orbital and a single atomic

layer, the photoelectron spin polarization is given by the TSS ground-state

spin polarization. For a system with multiple orbitals and atomic layers,
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the interference terms become important and lead to a deviation from the

single-orbital and single-atomic-layer system. In the following part of this

section, we will derive the relationship in the multi-orbital and -atomic layer

system with the interference term included.

SARPES measures the spin polarization along different quantization

axes, which here are the x , y and z directions as defined in Fig. 5.1(a),

Section 5.2. The photoelectron spin polarization vector (P ) is defined as

P = [Px, Py, Pz] where:

Px,y,z =
I↑x,y,z − I↓x,y,z
I↑x,y,z + I↓x,y,z

. (5.7)

Hereafter, we define ↑ (↓) ≡↑z (↓z) and use the usual spin relations:

| ↑〉 =
1√
2

(| ↑x〉+ | ↓x〉) =
1√
2

(| ↑y〉+ | ↓y〉),

| ↓〉 =
1√
2

(| ↑x〉 − | ↓x〉) =
1√
2

(−i| ↑y〉+ i| ↓y〉). (5.8)

By using Eq. 5.5, 5.7, and 5.8, we can calculate Px,y,z:

Px =

∑
i,τ

(C↑i,τ
∗
C↓i,τ + C↓i,τ

∗
C↑i,τ )|Mi,τ |2

I

+

∑
i 6=i′,τ 6=τ ′

(C↑i,τ
∗
C↓i′,τ ′ + C↓i,τ

∗
C↑i′,τ ′)M

∗
i,τMi′,τ ′

I
,

Py =

∑
i,τ

i(−C↑i,τ
∗
C↓i,τ + C↓i,τ

∗
C↑i,τ )|Mi,τ |2

I

+

∑
i 6=i′,τ 6=τ ′

i(−C↑i,τ
∗
C↓i′,τ ′ + C↓i,τ

∗
C↑i′,τ ′)M

∗
i,τMi′,τ ′

I
,

(5.9)
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Pz =

∑
i,τ

(C↑i,τ
∗
C↑i,τ − C

↓
i,τ

∗
C↓i,τ )|Mi,τ |2

I

+

∑
i 6=i′,τ 6=τ ′

(C↑i,τ
∗
C↑i′,τ ′ − C

↓
i,τ

∗
C↓i′,τ ′)M

∗
i,τMi′,τ ′

I
.

In order to clarify the relationship between the photoelectron spin po-

larization (Eq. 5.10) and the TSS ground-state spin polarization, we can

express the photoelectron spin polarization in terms of expectation value of

spin operators, with the spin operator defined as:

Si,τ ; i′,τ ′
η = |ψi,τ 〉〈ψi′,τ ′ |ση, (5.10)

where η ∈ {x, y, z} and σx,y,z are the Pauli spin matrices. Using Eq. 5.2

and Eq. 5.10, one can write down the expression for the layer- and orbital-

projected expectation value of spin operators:

〈Si,τ ; i′,τ ′
x 〉 = C↑i,τ

∗
C↓i′,τ ′ + C↓i,τ

∗
C↑i′,τ ′ ,

〈Si,τ ; i′,τ ′
y 〉 = i(−C↑i,τ

∗
C↓i′,τ ′ + C↓i,τ

∗
C↑i′,τ ′), (5.11)

〈Si,τ ; i′,τ ′
z 〉 = C↑i,τ

∗
C↑i′,τ ′ − C

↓
i,τ

∗
C↓i′,τ ′ .

The spin-polarization vector of the TSS ground state, defined as 〈STSS〉 =

[〈Sx〉, 〈Sy〉, 〈Sz〉], is the sum of the expectation value of spin operators shown

in Eq. 5.10 with i = i′ and τ = τ ′: 〈STSS
η 〉 =

∑
i,τ 〈S

i,τ
η 〉. When i 6= i′ and

τ 6= τ ′, the spin operator in Eq. 5.10 represents the interference effect in the

photoelectron spin polarization.

Plugging Eq. 5.11 into Eq. 5.10, we can now rewrite the photoelectron

spin polarization in terms of the expectation values of spin operators as

defined in Eq. 5.10:

Pη =

∑
i,τ 〈S

i,τ
η 〉|Mi,τ |2 +

∑
i 6=i′,τ 6=τ ′〈S

i,τ ; i′,τ ′
η 〉M∗i,τMi′,τ ′

I
. (5.12)
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Figure 5.8: Energy dependence of the layer-integrated TSS orbital characters
and spin polarization. (a) Energy dependence of the px,y and pz relative
contributions to the TSS wave function. (b)–(c) cuts through Fig. 5.6 in the
Section 5.4 showing the relative out-of-plane (left panel) and in-plane (right
panel) spin polarization (P ) of individual p orbitals as a function of energy
along Γ̄→ M̄ (b) and Γ̄→ K̄ (c) [obtained from the expectation value of
layer-integrated, orbital-projected spin operators, normalized to the orbital
occupation shown in (a)].

This shows the relationship between the photoelectron and the TSS ground-

state spin polarization. We can see that the matrix element Mi,τ and the

interference term
∑

i 6=i′,τ 6=τ ′ can make the photoelectron spin polarization

deviate from the TSS ground-state spin polarization.

5.6.4 TSS orbital character and spin polarization

As shown in Section 5.4, Fig. 5.6, px and py orbitals have almost opposite

in-plane spin textures. Therefore, the in-plane spin polarization from the

px,y channel is almost zero over a large energy window, which results in a

less than 100% TSS in-plane spin polarization. This orbital-dependent spin

texture makes the relative occupation of px,y and pz critical to determine

the value of the TSS in-plane spin polarization. Upon moving away from

the Dirac point (DP), the px,y occupation increases from 25% to 45% and

the pz occupation correspondingly decreases, as shown in Fig. 5.8(a). The

in-plane and out-of-plane spin polarization of individual orbitals is shown in

Fig. 5.8(b) [along Γ̄→ M̄) and Fig. 5.8(c) (Γ̄→ K̄]. We can see that the TSS
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spin polarization for the total of p orbitals can never reach 100%; instead it

decreases from 75 to ∼ 60% while energy is increasing from 0 to 0.4 eV.

5.6.5 Manipulation of ARPES spin texture

In Section 5.4, Fig. 5.7, we show that the photoelectron spin polarization

can strongly depend on photon energy and experimental geometry. Here,

in Fig. 5.9, we explicitly present the spin texture patterns of photoelectrons

as measured by SARPES using four different light polarizations and five

photon energies. The strong deviations between photoelectron and TSS

ground-state spin textures can be seen by comparing Figs. 5.9(b)–(d) to

Figs. 5.6(a)–(d) in Section 5.4. One can also observe a remarkably strong and

nontrivial photon energy dependence for the experimentally determined spin

texture of photoelectrons. The only exception is the result obtained with

π-polarization at a 90◦ incidence angle [Fig. 5.9(a)]: in this case one only

probes initial states with pz orbital character, whose spin texture is nearly

layer-independent.

In Fig. 5.10, we focus on the photoelectron spin polarization vector at

two k points under two experimental geometries, as a function of photon

energy and incidence angle of π-polarized light. The photoelectrons excited

under different experimental geometries are composed of electrons with dif-

ferent spin orientations, depending on their orbital source. Even at the

same k point, the photoelectron spin polarization will change if we change

the experimental geometry, as it can be seen by comparing Fig. 5.10(a) to

Fig. 5.11(a) or Fig. 5.10(b) to Fig. 5.11(b). Moreover, the photoelectron spin

polarization can be non-zero along directions which are expected to be zero

based on the spin polarization of the TSS ground state. For instance, Py and

Pz in Fig. 5.10(a), Px and Pz in Fig. 5.10(b), Py and Pz in Fig. 5.11(a) are

expected to be zero from the spin polarization of the TSS ground state; how-

ever, the photoelectron spin polarization of these components is not zero and

has a very strong photon energy dependence as a result of interference effects

between photoelectrons from different orbitals. Only the photoelectron spin

polarization shown in Fig. 5.11(b) directly presents the TSS ground-state
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electron spin polarization, respectively; note that moving away from the Γ̄
point in these maps correspond to moving along the Dirac dispersion away
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Figure 5.10: Photon-energy dependence of the photoelectron spin polariza-
tion at two k points. The two measured k points are labeled by red dots
in the schematics of experimental geometry shown on the top panels. The
middle panels with green arrows and blue/red/white squares are used to
schematically present the in-plane (green arrows) and out-of-plane (filled
color with red: −; white: 0; blue: +) spin polarization of the only two
atomic orbitals which emit photoelectrons based on selection rules. The
bottom three panels show the three components of the photoelectron spin
polarization as a function of photon energy, with different incidence angles
(θ) of the π-polarized light shown with color.
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Figure 5.11: Photon-energy dependence of the photoelectron spin polariza-
tion at two k points. The two measured k points are labeled by red dots
in the schematics of experimental geometry shown on the top panels. The
middle panels with green arrows and blue/red/white squares are used to
schematically present the in-plane (green arrows) and out-of-plane (filled
color with red: −; white: 0; blue: +) spin polarization of the only two
atomic orbitals which emit photoelectrons based on selection rules. The
bottom three panels show the three components of the photoelectron spin
polarization as a function of photon energy, with different incidence angles
(θ) of the π-polarized light shown with color.
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spin polarization owing to the fact that – thanks to the choice of geometry

and light polarization – all photoelectrons from different layers and selected

orbitals have the ground states with the same expectation value of spin op-

erators; this eliminates possible deviations induced by matrix element and

interference effects.

Note that our calculated spin polarization of photoelectrons is in quan-

titative agreement with reported SARPES results [102]. For the situation

shown in Figs. 5.11(a) and (b), along Γ̄−M̄, Py ≥ 80% was reported, close

to 100% obtained from the calculation; along Γ̄−K̄, Py was reported to be

25% at hν = 36 eV and −50% at hν=70 eV at ky = ±0.11Å−1, while our

calculation gives 20%±10% and −40%±15%, respectively. The uncertainty

of our calculated results is estimated based on the uncertain ratio between

p− to− s and p− to− d excitations.

5.6.6 Asymmetric ARPES from a simple TSS model

While ab initio density functional theory (DFT) calculations – as presented

above – are required in order to describe the complex layer-dependent wave

function of the TSS in realistic TI materials, and especially to quantitatively

reproduce the experimental data, it is illuminating to explore certain funda-

mental aspects with as simple a model as possible. Here we will develop a

most basic time-reversal-symmetric model to qualitatively capture interfer-

ence effects on the photoemission intensity patterns, based on the solution of

the effective TSS Hamiltonian [33, 64]. First we will express the wave func-

tion of the TSS in a basis set of px,y,z orbitals to account for the entangled

spin-orbital texture. Then we will generalize it to a model wave function for

two atomic layers, to allow for a layer-dependent spin-orbital texture. Fi-

nally we use it to calculate the asymmetric ARPES using π-polarized light

incident in the yz plane, as one of the examples treated in the main content

of this Chapter.

The model Hamiltonian for the three-dimensional topological insulators

belonging to the Bi2Se3 family of materials has been fully derived by Zhang

et al. [33, 64]. In the basis set [Φ+ 1
2
,Φ− 1

2
] formed by the total angular
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momentum with Jz = ±1
2 , the effective Hamiltonian for the TSS of Bi2Se3

near the Γ̄ point can be written as [33, 64, 115]:

HTSS = ζ(σxky − σykx), (5.13)

where ζ is the constant coefficient containing the strength of spin-orbit cou-

pling (SOC), σx,y are the spin Pauli matrices, and kx,y represent the electron

momentum. The eigenstates of this model Hamiltonian are [33, 64, 115]:

Ψ± =
1√
2

[±ie−iϕ|Φ 1
2
〉+ |Φ− 1

2
〉], (5.14)

with ϕ defined by k‖e
iϕ = kx + iky. The exact k‖-dependent form of Φ± 1

2

is determined by the material details. As verified based on the DFT cal-

culations for Bi2Se3, near the Γ̄ point (i.e. away from the bottom of the

conduction band) the k‖ dependence of Φ± 1
2

is very weak, and is dominated

by the zeroth-order term in k‖. Therefore, here we express Φ± 1
2

in terms of

px,y,z orbitals by only retaining the zeroth-order term, and the basis becomes

[115]:

Φ± 1
2

= α|pz, ↑ (↓)〉 ∓ β√
2

[|px, ↓ (↑)〉 ± i|py, ↓ (↑)〉], (5.15)

where α and β are again material-dependent. Finally, the eigenstates of the

model Hamiltonian (Eq. 5.13) in the [px, py, pz] basis, with spin up (↑) and

spin down (↓), become [33, 64, 115]:

(
Ψ↑±

Ψ↓±

)
=

α√
2

(
±ie−iϕ

1

)
|pz〉 −

β

2

(
−1

±ie−iϕ

)
|px〉+

β

2

(
−i

±e−iϕ

)
|py〉. (5.16)

The orbital-dependent spin texture for this model wave function – which

qualitatively reproduces the behavior obtained through a complete DFT

slab calculations [2] – can be obtained by calculating the expectation value
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of spin operators for individual p orbitals [33, 64, 115]:

〈Spx± 〉 = ∓β
2

2
[sinϕ, cosϕ, 0],

〈Spy± 〉 = ±β
2

2
[sinϕ, cosϕ, 0], (5.17)

〈Spz± 〉 = ±α2[sinϕ,− cosϕ, 0],

where± refers to the upper- and lower-branch of the Dirac cone, respectively.

Here we see that the px, py and pz orbitals are associated with different spin

textures, which are also similar to the results of the full DFT calculations,

as shown in Fig. 5.6 [2].

As for the interpretation of experimental ARPES data in this Chapter, as

well as the SARPES data presented in the following Chapter 6, we emphasize

that the wave function presented in Eq. 5.16 alone is not sufficient to give

rise to interference-induced asymmetric intensity pattern, which has been

observed in ARPES experiments. Our ab initio DFT calculations indicate

that, in order to describe the unusual ARPES data, we need to account for

the interference between photoelectrons with different optical path lengths,

i.e. a model with at least two atomic layers is required. We construct this

by generalizing the wave function of the single-layer system (as described by

Eq. 5.16) to a two-layer system. To ensure that the two-layer model has an

entangled spin-orbital texture similar to the one obtained by DFT [2] and

also by the effective TSS model (Eq. 5.17), the spin-related phase informa-

tion of each of the individual orbitals are assumed to be layer-independent;

however, we note that the details of the px,y,z orbital superposition in the

TSS wave function can be layer-dependent. This way, the wave function

of the two-layer model will have a layer-dependent spin-orbital texture, as

reported by DFT calculations in realistic materials [2]. Following this strat-

egy, we rewrite the J = 1/2 basis states by introducing a layer-dependent

orbital character through the coefficients αi and βi:

Φ± 1
2

=
2∑
i=1

αi|pz, ↑ (↓)〉 ∓ βi√
2

[|px, ↓ (↑)〉 ± i|py, ↓ (↑)〉]. (5.18)
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We note once again that αi and βi are material-determined coefficients, and

their value can be estimated with the aid of ab initio DFT calculations.

Combining Eq. 5.14 and Eq. 5.18, the two-layer model wave function with a

layer-dependent spin-orbital texture can be obtained:

(
Ψ↑model

Ψ↓model

)
=

2∑
i=1

αi√
2

(
±ie−iϕ

1

)
|pz〉 −

βi
2

(
−1

±ie−iϕ

)
|px〉+

βi
2

(
−i

±e−iϕ

)
|py〉.

(5.19)

As an example, we study the ARPES intensity based on the experimental

geometry using π-polarization, as shown in Section 5.2, Fig. 5.1(a), for the

upper Dirac cone states. Considering the selection rules for π-polarization,

the photoelectrons are excited only from pz and py orbitals. Following the

strategy in Section 5.6.2, but using Eq. 6.3 as the initial state, we can write

the photoemission intensity as:

I ∝

∣∣∣∣∣
2∑

i=1

ie−iϕe−ikzzi
αi√

2
M̃pz − ie−ikzzi

βi
2
M̃py

∣∣∣∣∣
2

+

∣∣∣∣∣
2∑

i=1

e−ikzzi
αi√

2
M̃pz + e−iϕe−ikzzi

βi
2
M̃py

∣∣∣∣∣
2

.

(5.20)

Here, M̃pz,y are matrix elements defined by M̃pz,y ≡ 〈eik‖·r‖ |A · p|pz,y〉,
which are real numbers here, and the two sums on the left and right are the

intensity from the up and down spin channels, respectively. The imbalance

in ARPES intensity at ±k‖ is equivalent to the intensity difference between

ϕ and ϕ+ π, which can be calculated from Eq. 5.20:

Ik‖ − I−k‖ ∝ (α1β2 − α2β1) sin(kz(z1 − z2)) sin(ϕ)M̃pzM̃py . (5.21)

From this expression for the asymmetry of ARPES intensity between ±k‖
in π-polarization along emission plane yz, we find that there are three key

requirements to get Ik‖ 6= I−k‖ :

1. an atomic-layer-dependent orbital character, as shown by (α1β2−α2β1);

2. an out-of-plane phase difference between different atomic layers, from
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(a) (b) (c)

Figure 5.12: Quantum interference effects on ARPES intensity pattern from
a simple model described in Eq. 5.21. (a) A monolayer system with multiple
orbitals at each atom site. (b) A multiple-layer system with a single type
of atom orbital. (c) A multiple-layer system with layer-dependent orbital
characters.

sin(kz(z1−z2)); and

3. an in-plane phase difference ϕ between the pz and py orbitals.

It is by combining these basic aspects with the detailed layer-by-layer de-

scription of the spin-orbital texture in Bi2Se3 that we can accurately evaluate

the photoemission intensity and spin polarization from this real material.

Based on Eq. 5.21, we can simply predict the ARPES intensity pattern

for systems with different structures, as shown in Fig. 5.12. For a monolayer

system with a single lattice structure, both α2 and β2 in Eq. 5.21 are zero.

Therefore, we will not expect to observe an asymmetric intensity pattern

induced by the quantum interference effect, even if there is one or multi-

ple orbitals at each atom site [Fig. 5.12(a)]. For a system with a minimal

two-layered structure, but with only one type of orbital character, the ϕ

in Eq. 5.21 is zero. Again, we will not expect to see any asymmetric in-

tensity pattern that is merely induced by the quantum interference effect

[Fig. 5.12(b)]. However, if the system has more than one sub-lattice and
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also has multiple orbital characters at each atom site, such as the Bi2Se3

system we discuss here, all three requirements listed for Eq. 5.21 are satisfied,

and we expect an asymmetric ARPES intensity pattern due to the quan-

tum interference effect [Fig. 5.12(c)]. A similar argument can be extended

to understand the ARPES intensity patterns of other systems, such as the

surface state of Cu (111) [116] and graphene [117], in which the asymmetric

intensity patterns have also been experimentally observed. In particular,

the asymmetric ARPES intensity in graphene has attracted a great deal

of interest, and the quantum interference effects have also been mentioned,

with consideration of graphene’s two sub-lattice structures [117–121].
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Chapter 6

Photoelectron

spin-polarization-control in

Bi2Se3

We study the manipulation of the photoelectron spin-polarization in Bi2Se3

by spin- and angle-resolved photoemission spectroscopy. General rules are

established that enable controlling the spin-polarization of photoemitted

electrons via light polarization, sample orientation, and photon energy. We

demonstrate the ±100% reversal of a single component of the measured

spin-polarization vector upon the rotation of light polarization, as well as

its full three-dimensional manipulation by varying the experimental configu-

ration and photon energy. While a material-specific DFT analysis is needed

for a quantitative description, a minimal phenomenological two-layer model

qualitatively accounts for the SARPES response based on the interplay of

optical selection rules, photoelectron interference, and the complex internal

structure of the topological surface state. It follows that photoelectron spin-

polarization control is generic for systems with a layer-dependent, entangled

spin-orbital texture.

6.1 Introduction

The central goal in the field of spintronics is to realize highly spin-polarized

electron currents and to be able to actively manipulate their spin polar-

ization direction. Topological insulators (TIs), as a new quantum phase of

matter with a spin-polarized topologically-protected surface state [7, 24–28],
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hold great promise for the development of a controllable ‘spin generator’ for

quantum spintronic applications [122]. A possible avenue is via the spin Hall

effect and the spin currents that appear at the boundaries of TI systems, and

the electric-field-induced magnetization switching that can be achieved at

the interface between a TI and a ferromagnet [30]. In addition, it has been

experimentally demonstrated that a spin-polarized photocurrent can be gen-

erated from the topological surface state (TSS) of Bi2Se3 by using polarized

light, suggesting the possibility of exploiting TIs as a material-platform for

novel optospintronic devices [113, 123, 124].

All these exciting developments fundamentally rely on the spin proper-

ties of the TSS, which have been extensively studied by density functional

theory (DFT) [33, 103, 104] and spin- and angle-resolved photoemission

spectroscopy (SARPES) [73, 88, 100–102, 125–127]. On the theoretical side,

we have shown that the TSS in real materials is not a simple two-dimensional

state. Rather, it has a layer-dependent spin-orbital entangled structure –

extending over 10 atomic layers (∼ 2 nm) – challenging the hypothesis of

100% spin-polarization for the TSS Dirac fermions [2]. Our DFT work also

suggested a new pathway to control the spin polarization of photoelectrons

via photon energy and linear polarization [2]; although this is consistent

with some experimental observations by SARPES [125–127], no conclusive

understanding of the phenomenon and its governing principles has yet been

achieved. This is of critical importance for future applications, and will re-

quire a full examination of the photoelectron spin-polarization response in

specifically designed SARPES experiments.

In this chapter – guided by a detailed DFT analysis of the TSS entangled

spin-orbital texture – we present a systematic SARPES study to elucidate

the dependence of the photoelectron spin on light polarization, experimen-

tal geometry, and photon energy. We demonstrate a reversal of the spin

polarization from −100% to +100% upon switching from π to σ polarized

light. By changing the sample geometry and tuning photon energy we can

manipulate the photoelectron spin polarization in three dimensions. While

a material-specific DFT analysis is needed for the complete quantitative de-

scription, here we introduce a minimal and fully-general phenomenological
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two-layer model that qualitatively captures the unusual SARPES response,

based on the combined effect of TSS spin-orbital texture, optical selection

rules, and photoelectron interference. This paves the way to generating

fully controllable spin-polarized photocurrents in TI-based optospintronic

devices.

6.2 Experimental methods

SARPES experiments were performed at the Hiroshima Synchrotron Radia-

tion Center (HSRC) on the Efficient SPin REsolved Spectroscopy (ESPRESSO)

endstation [128, 129], with 50 meV and ≤ 0.04 Å−1 energy and momen-

tum resolution, respectively. This spectrometer can resolve both in-plane

(Px,y) and out-of-plane (Pz) photoelectron spin-polarization components.

These are obtained from the relative difference between the number of

spin-up and spin-down photoelectrons, according to the relation Px,y,z =

(I↑x,y,z−I↓x,y,z)/(I↑x,y,z +I↓x,y,z). Samples were oriented by Laue diffraction

and cleaved in-situ at ∼ 7 × 10−11 torr; all measurements were performed

at 30 K once the surface evolution had mostly stabilized [1], using 21 eV

photons unless otherwise specified.

6.3 SARPES results and discussion

In Bi2Se3, the TSS wavefunction is composed of both in-plane (px,y) and

out-of-plane (pz) orbitals. As a consequence of spin-orbit coupling, the spin

texture associated with each orbital is remarkably different, and has been

referred to as entangled spin-orbital texture [2, 115]. In Fig. 6.1, we sketch

the orbital-dependent in-plane spin polarization of the upper-branch Dirac

fermions (with the out-of-plane spin component neglected). We see that the

well-known TSS chiral spin texture is actually derived only from the out-of-

plane pz orbitals [Fig. 6.1(c)]; instead, the individual px and py spin config-

urations are not chiral14, and are also opposite to one another [Figs. 6.1(a)

14The total in-plane orbital states do instead possess a chiral spin texture, with helicity
dependent on the details of the linear combination of px and py orbitals [2].
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Figure 6.1: Spin orientation of the TSS in Bi2Se3. (a)–(c) In-plane spin
texture as obtained separately for the px (a), py (b), and pz (c) orbital con-
tributions to the topological surface state (TSS). Red/blue arrows indicate
the light electric field (π/σ polarization) that must be used to excite pho-
toelectrons from each of the individual orbitals, according to the electric
dipole selection rules.

and 6.1(b)]. By comparing the spin orientation of in-plane and out-of-plane

orbitals, we learn that they can be parallel, anti-parallel, or even perpendic-

ular to each other, in dependence of the specific momentum-space location.

For example, px and pz spin polarizations are parallel along the Γ̄−M̄ di-

rection (i.e., the kx axis), but antiparallel along Γ̄−K̄ (i.e., the ky axis). As

for probing these different orbital-dependent configurations, we note that –

based on the ARPES optical selection rules – photoelectrons are emitted

from a given px,y,z orbital if the photon electric field has a non-zero com-

ponent εx,y,z along the corresponding direction [130]. Thus, using linearly

polarized photons with electric field parallel to the kx/ky/kz directions, we

can probe the px/py/pz spin textures individually in SARPES (Fig. 6.1).

Fig. 6.2 demonstrates the ±100% manipulation of photoelectron spin-

polarization upon switching the light polarization from π to σ in SARPES.

When we measure the energy distribution curve (EDC) at kx=0.07 Å−1 with

π polarization [photon electric field in the xz plane, as in Figs. 6.2(a,b)], we

observe a peak only in the spin-down y-channel at the TSS upper-branch

binding energy at ∼0.1 eV [green curve in the top panel of Fig. 6.2(c)]. Thus
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Figure 6.2: Light-polarization-controlled photoelectron spin polarization.
(a) Schematics of the experimental geometry, with π (horizontal) and σ
(vertical) linear polarization also indicated. (b) ARPES dispersion of TSS
Dirac fermions measured along the M̄−Γ̄−M̄ direction with π polarization.
(c) The top panel shows SARPES EDCs, with spin quantization axis along
the y direction, measured with π polarization along the gray-bar highlighted
in (b); the corresponding spin polarization curve Py is shown in the lower
panel (the TSS is located at 0.1 eV in this data taken at kx = 0.07 Å−1). (d)
SARPES data analogous to those in (c), now measured with σ polarization.
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we obtain Px,z ' 0 and remarkably Py ' −100% for the spin-polarization

vector components, as highlighted in the bottom panel of Fig. 6.2(c) by the

green arrow at 0.1 eV (note that the positive Py value at ∼0.4 eV originates

from the TSS bottom branch and its reversed spin helicity [2, 115]). Most

importantly, when light polarization is switched from π to σ, while Px,z

remain zero Py suddenly becomes +100% at 0.1 eV, as shown in Fig. 6.2(d).

We note that a spin polarization as high as ±100% is rarely reported in

previous SARPES studies of Bi2Se3 [73, 88, 100–102, 125]; this is achieved

in this study owing to the high efficiency of the spin polarimeter and the

perfect alignment within the photoelectron emission plane of both the light

polarization and sample Γ̄−M̄ direction, which eliminates the interference-

induced deviations to be discussed below. In Fig. 6.2 we outline how the

experimental configuration and the entangled spin-orbital texture (Fig. 6.1)

lead to spin-polarization switching: π polarization excites photoelectrons

from px and pz orbitals only, both of which are −100% spin polarized along

y for all positive ‘+kx’ locations [Figs. 6.1(a,c)]; this gives Py ≡ −100% in

SARPES, consistent with the experiment in Fig. 6.2(c). On the contrary,

in σ polarization photoelectrons originate only from the py orbitals, which

at +kx locations are +100% spin-polarized along the y direction, i.e. Py≡
+100% as detected in Fig. 6.2(d).

By rotating light polarization between σ and π, we would observe a con-

tinuous change of Py between ±100%, as experimentally verified by Jozwiak

et al. [125]. However, here we argue that the manipulation of the photo-

electron spin polarization by light stems from the TSS orbital-dependent

spin texture combined with optical selection rules, rather than being due

to the relativistic photon-electron interaction [105, 125] which is generally

a weak perturbation compared to the non-relativistic electric-dipole term.

The SARPES response is indeed most unusual for configurations different

from the one in Fig. 6.2(a) – which is unique in that electrons photoemitted

by either π or σ light all have the same spin polarization even if originating

from multiple orbitals. This is shown in Figs. 6.3(c–e) where we examine

the photoelectron spin polarization at the same +kx point15, for the two

15In this experiment, performed along the Γ̄−M̄ direction at |kx|= 0.04 Å−1, the TSS
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Figure 6.3: Quantum interference effects on spin polarization of photoelec-
trons. (a),(b) Schematics of photoelectron interference effects for two exper-
imental configurations: (a) π-polarization incident in the xz plane probes
px and pz orbitals with the same spin state (see also Fig. 6.1); (b) when inci-
dent in the yz plane, π-polarization probes py and pz orbitals with opposite
spin states (Fig. 6.1). (c)–(e) Spin polarization curves at the +kx point
as sketched in (e), measured for (a)/(b) configurations (red/blue curves).
(f)–(h) Spin polarization curves at ±kx as sketched in (h) for the (b) con-
figuration. Note that the TSS is located at 0.25 eV in this data measured at

|kx| = 0.04 Å
−1

.
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configurations of Figs. 6.3(a,b). Case I – ε‖xz : photoelectrons are emit-

ted from px,z orbitals in the same spin state [Fig. 6.3(a)], and as before we

observe a close to −100% Py
16 and zero Px,z [red symbols in Figs. 6.3(c–

e)]. Case II – ε‖yz : photoelectrons are emitted from py,z orbitals with

mixed spin states [Fig. 6.3(b)], and are no longer fully polarized along Py.

Instead Py decreases and an unexpected Px ' 74% appears [blue symbols

in Figs. 6.3(c-e) and sketch in 6.3(e)]. Another interesting aspect is that

while both Py and Pz
17 switch sign at opposite momenta ±kx, as expected

from time-reversal symmetry [Figs. 6.3(g,h)], the Px retains the same value

[Figs. 6.3(f) and sketch in 6.3(h)].

To understand the unexpected results of Fig. 6.3 – seemingly inconsistent

with the TSS time-reversal invariance – we need to consider photoelectron-

interference effects specific for SARPES. To this end, we express the mea-

sured spin polarization vector ~P in terms of the expectation value of gener-

alized spin operators18:

Pη =

∑
i,τ 〈S

i,τ ; i,τ
η 〉|Mi,τ |2

Itotal
+

∑
i 6=i′, τ 6=τ ′〈S

i,τ ; i′,τ ′
η 〉 eikz(zi−zi′ )M∗i,τMi′,τ ′

Itotal
,

(6.1)

where η∈{x, y, z}, τ ∈{px, py, pz}, i is the atomic-layer index (the TSS layer-

dependent structure is a key factor here [2]); Mi,τ ∝ 〈eik‖·r‖ |A ·p|ψi,τ 〉 is the

matrix element of the optical transition between an atomic wavefunction of

orbital τ centered around the atomic layer i and a free-electron final state;

the kz part of the latter has been factorized in the phase term eikz(zi−zi′ ),

which accounts for the optical path difference for photoelectrons from dif-

ferent layers; and Itotal is the sum of intensity from spin-up and spin-down

channels. The generalized spin operator in the expectation value 〈Si,τ ; i′,τ ′
η 〉

is defined as:

Si,τ ; i′,τ ′
η = |ψi,τ 〉〈ψi′,τ ′ |ση, (6.2)

is located at 0.25 eV below EF (or, equivalently, at 0.1 eV above the Dirac point).
16The slight reduction from Py =−100% measured initially is due to the sample surface

degradation during the three continuous days of experiments after cleaving.
17Although Pz =0 for the TSS upper branch, the sign change of Pz can be observed for

the TSS lower branch.
18See Section 5.6.3 for the derivation of Eq. 6.1.
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Figure 6.4: Photon-energy-dependent spin polarization of photoelectrons.
(a)–(c) Solid blue lines: calculated photon-energy-dependence of the photo-
electron spin-polarization-vector components, as obtained at the −ky point
for π-polarized light incident in the xz plane as shown in the sketch in (d).
The solid red triangular symbols are SARPES data from this work; the open
red triangles are from Ref.[102, 125].

where σx,y,z are the Pauli spin matrices. The crucial point is that in Eq. 6.1

the i 6= i′, τ 6= τ ′ off-diagonal terms account for the interference effects. If

the initial states ψi,τ and ψi′,τ ′ being probed all have the same spin expec-

tation value, then 〈Si,τ ; i,τ
η 〉= 〈Si,τ ; i′,τ ′

η 〉 and Pη = 100% for the η component

corresponding to the spin quantization axis, as in Case I of Fig. 6.3(a). How-

ever, when the initial states being simultaneously probed have different spin

states, as in Case II of Fig. 6.3(b), non-trivial effects should be expected

for the measured spin polarization due to the contribution of the Si,τ ; i′,τ ′
η

interference term.

To qualitatively demonstrate that Eq. 6.1 describes the SARPES results
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6.3. SARPES results and discussion

in Fig. 6.3, in Section 6.4 we generalize the effective single-layer TSS wave

function derived by Zhang et al. [33, 64, 115] into a two-layer one for px,y,z

orbitals, as the minimal model-wave function needed to capture interference

effects19. For the upper branch of the Dirac-cone this becomes:

Ψ=

2∑
i=1

αi√
2

(
ie−iϕ

1

)
|pz〉−

βi
2

(
−1

ie−iϕ

)
|px〉+

βi
2

(
−i

e−iϕ

)
|py〉, (6.3)

where αi and βi are layer-dependent coefficients, and the in-plane phase

ϕ (defined as the angle between k and the +kx direction) reproduces the

orbital-dependent spin texture shown in Fig. 6.1. To further simplify the

problem we assume – without loss of generality – that α1 =β2 =0, α2 =
√

3/2,

and β1 = 1/
√

2; this choice matches the 1:3 overall in-plane/out-of-plane

orbital weight ratio calculated by DFT for Bi3Se2 [2]. Then, for ε‖yz (Case

II ), the initial-state components being probed reduce to:

Ψpz =

√
3

2

(
ie−iϕ

1

)
and Ψpy =

√
2

4

(
−i

e−iϕ

)
. (6.4)

At ±kx (φ=0 and π, respectively), the intrinsic spin polarization is ∓100%

(±100%) along the ky direction for the pz (py) orbital, as in Fig. 6.1. By

means of Eq. 6.1, we can now calculate the photoelectron spin-polarization

vector ~P as seen at ±kx in SARPES, obtaining:

~P (±kx) ∝ (sin θkz ,∓0.6,∓ cos θkz), (6.5)

where θkz = kz(z1−z2). We see that, although the spin polarization of each

individual initial state is purely along y, the photoelectron spin polarization

can have non-zero components along x and/or z, if z1−z2 6=0. This highlights

the need for a minimal two-atomic-layer model. Also note that the explicit

presence of kz leads to photon-energy-dependence (more below), and all

Px,y,z components oscillate sinusoidally with different phases, upon varying

kz ; this is responsible for the maximal Px and minimal Pz in Figs. 6.3(f)–(h).

19Details are shown in Section 6.4.
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Finally, Eq. 6.5 confirms the fact that only Py and Pz components reverse

their signs, while Px retains the same value at ±kx, again as observed in our

SARPES data in Figs. 6.3(f)–(h).

While our two-layer model reproduces the SARPES results qualitatively,

we stress that the quantitative description must be based on the complete

∼10-layer TSS wave function obtained for Bi2Se3 by DFT [2]. To this end, in

Fig. 6.4 we present the photon-energy-dependence of the photoelectron spin

polarization at −ky, for ε‖xz. We find good agreement between our DFT-

based results and SARPES data from this and published work [102, 125],

conclusively demonstrating that the photon-energy-controlled photoelectron

spin polarization stems from interference effects acting in concert with the

TSS layer-dependent spin-orbital texture.

6.4 A two-layer model to describe interference

effects in SARPES

In Section 5.6.6, we constructed a two-layer model based on the effective

Hamiltonian of the TSS to demonstrate the asymmetric ARPES intensity.

Here we use the same two-layer-model wave function (Eq. 6.3) to qualita-

tively show that quantum interference effects can allow a manipulation of

photoelectron spin polarization in SARPES experiments. We take the ex-

periment in Figs. 6.3(f)–(h) as an example, where the spin polarization was

measured at both ±kx positions with π-polarized light incident in the yz

plane. Since π polarization incident in the yz plane would only excite pho-

toelectrons from the py and pz orbitals, the initial state wave function of the

TSS upper-branch can be reduced to the py and pz terms in Eq. 6.3, and

can thus be rewritten as:(
Ψ↑initial

Ψ↓initial

)
=

2∑
i=1

αi√
2

(
ie−iϕ

1

)
|pz〉+

βi
2

(
−i

e−iϕ

)
|py〉, (6.6)

where αi and βi represent the layer-dependent orbital characters. At the +kx

point, ϕ = 0, we calculate the measured spin polarization of photoelectrons
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6.4. A two-layer model to describe interference effects in SARPES

by using Eq. 6.1 and Eq. 6.6:

Px =
2(α2β1 − α1β2) sin(kzz1 − kzz2)MpyMpz

Itotal
,

Py =
(β2

1 + β2
2)M2

py − (α2
1 + α2

2)M2
pz

Itotal

+
2(β1β2 − α1α2) cos(kzz1 − kzz2)MpyMpz

Itotal
, (6.7)

Pz = −2(α1β1 + α2β2) + 2(α2β1 − α1β2) cos(kzz1 − kzz2)

Itotal
MpyMpz .

We can see that although the initial state is fully spin polarized along the

y direction, with a value of 100% for the py orbital and −100% for the pz

orbital (Eq. 5.17), the photoelectron spin polarization measured by SARPES

can have non-zero components along the x and/or z direction, as long as

α1 6=α2, β1 6=β2, and z1 6=z2. Also, all the components of the photoelectron

spin polarization can be controlled by tuning the photon energy (hν) because

we have kz =
√

2me
~2 (hν − EB)− k2

x − k2
y, with EB being the binding energy.

Similarly, for the −kx point, ϕ = π, we obtain the photoelectron spin

polarization:

Px =
2(α2β1 − α1β2) sin(kzz1 − kzz2)MpyMpz

Itotal
,

Py = −
(β2

1 + β2
2)M2

py − (α2
1 + α2

2)M2
pz

Itotal

−
2(β1β2 − α1α2) cos(kzz1 − kzz2)MpyMpz

Itotal
, (6.8)

Pz =
2(α1β1 + α2β2) + 2(α2β1 − α1β2) cos(kzz1 − kzz2)

Itotal
MpyMpz .

Comparing Eq. 6.7 to Eq. 6.8, we find that both Py and Pz change their

signs when moving from +kx to −kx; on the contrary, Px maintains the

same value, consistent with our SARPES data shown in Figs. 6.3(f)–(h).

These model results demonstrate that a layer-dependent entangled spin-

orbital texture is key to observe and manipulate the photoelectron spin

polarization in SARPES experiments (as shown in Fig. 6.3 and Fig. 6.4).
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At variance with the observed behavior – for single atomic-layer model –

all the results would be photon-energy independent because the kz term in

Eq. 6.7 and Eq. 6.8 vanishes when z1−z2 = 0; in addition – for systems with

layer-independent orbital character – also the value of the (α2β1 − α1β2)

term becomes zero leading to a constant photoelectron spin polarization in

Eq. 6.7 and Eq. 6.8.

In Section 6.3, we chose a simpler situation to illustrate the effects of

interference on the photoelectron spin polarization. This simplified situation

is obtained by using these parameters: α1 = 0, β1 = 1/
√

2, α2 =
√

3/2, and

β2 = 0, and also by assuming Mpy = Mpz .

6.5 Conclusion

In this chapter, we have explained the underlying mechanism of the manipu-

lation of photoelectron spin polarization in TIs, as a consequence of the TSS

entangled spin-orbital texture, optical selection rules, and quantum interfer-

ence. This is responsible also for the significantly different ARPES intensi-

ties observed at ±kx in Fig. 6.2(b), which implies that a net spin-polarized

current can be photoinduced by linearly polarized light [113]. Thus, our

SARPES study demonstrates how to generate a spin-polarized photocurrent

in Bi2Se3 and manipulate its absolute spin polarization by linearly polarized

light, a key step in TI-based optospintronics. We argue that all these phe-

nomena could be valid in other spin-orbit coupled systems, as long as the

initial states are characterized by a layer-dependent entangled spin-orbital

texture.
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Chapter 7

Conclusion

This thesis presented systematic work on Bi2Se3 and Bi2Te3, materials that

have been referred to as the hydrogen atom of three-dimensional topo-

logical insulators (TIs). Using angle-resolved photoemission spectroscopy

(ARPES), spin-resolved ARPES (SARPES), and density functional the-

ory (DFT) calculations, various topics have been studied, ranging from TI

material problems and engineering surface electronic structures, to the fun-

damental physics of realistic surface states and their possible applications

in spintronics. In regards to the technical aspect, this thesis presented an

example of a tight combination of experimental and theoretical work. The

power of this combination allowed us to gain significant insights into the

fundamental principles of the systems we were studying. Here we will reca-

pitulate the main conclusions and their context.

Rashba spin-splitting control at the surface of Bi2Se3

The material problem is an obstacle to further advance topological-insulator-

based devices. Bi2Se3, known as a prototypical TI candidate, does not

have a truly insulated bulk – due to the unintentional and uncontrolled

doping that leads to a Fermi level crossing the bulk conduction band rather

than staying inside the bulk gap. Another critical material problem is the

unstable surface of the crystal, even in ultra-high vacuums. One approach to

reset the chemical potential of materials is via doping, which is also related

to another important question about surface or bulk impurity effects on

the surface electronic structure. Because of the polarized spin texture of

the topological surface state (TSS), no back-scattering is allowed, and the

surface state is expected to be immune to localized weak disorders, as long
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as the time-reversal symmetry (TRS) of the system is preserved.

Our first experiment was to investigate the effect of surface impurities on

TSS by in situ potassium deposition on the surface of Bi2Se3. We have sys-

tematically studied the ARPES evolution of the surface electronic structure

as a function of potassium evaporation. The deposition of submonolayers of

potassium allows us to stabilize the otherwise continuously evolving surface

carrier concentration. Thus, our approach provides a technique to overcome

the problem of general instability and self-doping at the surface of TIs.

On the other hand, the potassium deposition leads to a more uniform

surface electronic structure, in which well-defined Rashba-like states emerge

from the continuum of parabolic-like states that characterizes the as-cleaved,

disordered surfaces. The spin splitting of Rashba-like states can be con-

trolled by the amount of potassium deposition, and the entire process is

reversible by tuning the temperatures. These results suggest that TIs can

be a platform to host and manipulate the coexistence of non-trivial spin

splitting states (TSS) and conventional spin splitting states (Rashba type),

both of which are substantially important for spintronic applications. Our

DFT slab calculations reveal that the new spin-split states originate from

the bulk-like quantum well states of a five-quintuple-layer slab, as a conse-

quence of the K-enhanced inversion symmetry breaking already present for

the pristine surface.

This work is one of the earliest studies on engineering the surface elec-

tronic structures of TIs. The demonstration of generating and precisely

controlling a large energy-scale spin splitting shows a promising avenue for

the future development of TI-based spintronic devices.

Tailoring spin-orbit coupling in Mn-doped Bi2−xMnxTe3

The beauty of TIs is in its spin-polarized TSS and its topological protection.

The latter is valid under the condition that the system has TRS. Breaking

TRS therefore becomes a way to switch on and off the topological protec-

tions, and can be achieved by applying an external magnetic field or by the

magnetic moment of impurities. Doping TIs with magnetic impurities has
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been viewed as an efficient way to break the TRS by forming long-range

magnetic orders. ARPES can be one of the most direct methods to monitor

the TRS breaking effects, such as by looking for an opening gap at the Dirac

point of the TSS spectra.

We investigated magnetically doped Bi2−xMnxTe3 to observe a response

in the TSS spectra to the development of ferromagnetic order at low temper-

atures. Instead of focusing on the gap opening at the Dirac point, we raised

another fundamental question about how impurities affect the spin-orbit

coupling (SOC) of the systems, a critical parameter to sustain the appear-

ance of TSS. The size of the bulk gap shows a strong dependence of Mn

doping levels, even below 5%. Our ab initio tight-binding (TB) model calcu-

lations show that the bulk energy gap size is directly linked to the strength of

the SOC in the system. Therefore, our observation indicates that although

the Mn concentration is low (only 2-5%), the effective content of impurities

can be ∼4 times higher. More importantly, through diluting the SOC of the

system, impurities can turn a topological insulator into a trivial insulator

even at a low concentration.

A temperature-dependent study crossing the ferromagnetic transition

Tc = 12 K suggests a surprising result that the ferromagnetic order might

be of a short range. This raises a question regarding TRS behaviour in a

TI system where the magnetic order is of short range. Further theoretical

investigations are required to address this question.

Layer-by-layer entangled spin-orbital texture in Bi2Se3

In this work, we address one of the most fundamental outstanding questions

in the field of TIs: What is the degree of spin polarization of Dirac fermions

in real TI materials? In phenomenological models, a 100% spin polarization

is assumed for TSS. DFT calculations indicate that the TSS spin polariza-

tion of the Bi2X3 material family (X = Se, Te) can be substantially reduced

from 100%. Extensive SARPES studies also have attempted to answer this

question. However, the large discrepancy in the degree of spin polarization

determined from the TSS by SARPES - ranging from 20 to 85% - challenges
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all the theoretical predictions. Thus, this question has become a puzzle and

undermines the applicability of real TIs in spintronic devices.

By a combination of polarization-dependent ARPES and DFT slab cal-

culations, we are the first to explicitly solve this puzzle. We have found

that the surface state Dirac fermions in Bi2Se3 are characterized by a layer-

dependent entangled spin-orbital texture, which becomes apparent through

quantum interference effects. Quantum interference between photoelectrons

not only affects the measured ARPES intensity but also, and more impor-

tantly, causes disagreement between the measured spin polarization and the

intrinsic spin texture of TSS. We have theoretically demonstrated how the

light polarization, photon energy, and experimental setup can affect the spin

polarization of photoelectrons. We also proposed how to probe the intrinsic

spin texture of TSS and suggested a way to continuously manipulate the spin

polarization of photoelectrons all the way from 0 to ±100% by an appro-

priate choice of photon energy, linear polarization, and angle of incidence.

These discoveries are key to the understanding and exploitation of TIs.

To accomplish this work, we developed an ab initio slab TB model and

implemented spin-resolved photoemission intensity calculations. These cal-

culations involve very technical details and are not typically performed in

the ARPES community; however, we think the generic value of the method

can benefit future ARPES studies in other spin-orbit coupled systems. For

this reason, we devote Chapter 2, Chapter 3, and Section 5.6 in Chapter 5 to

all the details about how to construct ab initio TB models and use them to

calculate ARPES and SARPES data.

Photoelectron spin-polarization-control in Bi2Se3

The goal of this SARPES work is to experimentally unveil the layer-by-

layer entangled spin-orbital texture of the TSS in Bi2Se3. As predicted

by our theoretical calculations, the entangled spin-orbital texture results

in a strong photoelectron interference effect, which deviates the measured

spin polarization of photoelectrons from the intrinsic spin polarization of the

TSS, and therefore provides us with a unique opportunity to manipulate the
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spin polarization of photoelectrons. The manipulation of photoelectron spin

polarization challenges the basic assumption of spin conservation commonly

used in SARPES, but at the same time opens a new possibility to advance

TI applications in opto-spintronics.

Our SARPES data has successfully demonstrated a generic rule for ma-

nipulating photoelectron spin polarization. We have shown that the spin po-

larization of photoelectrons can be flipped between ±100% and also rotated

in three dimensions with an appropriate choice of linear light polarization

and photon energy. The underlying principle of manipulating spin polariza-

tion is to selectively excite photoelectrons from orbitals that have different

spin orientations, which can be provided by an initial state with an entan-

gled spin-orbital texture. Quantum interference between photoelectrons is a

key mechanism to achieve three-dimensional manipulation and also generate

spin-polarized photocurrents or even pure spin currents. From the applica-

tion point of view, this work paves a new way towards the long-term goal of

utilizing topological insulators for spintronics by using light control.
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[60] H.-J. Zhang, S. Chadov, L. Müchler, B. Yan, X.-L. Qi, J. Kübler, S.-C.

Zhang, and C. Felser, “Topological insulators in ternary compounds

with a honeycomb lattice,” Phys. Rev. Lett., vol. 106, p. 156402, 2011.

[61] Y.-S. Lee, M. B. Nardelli, and N. Marzari, “Band structure and quan-

tum conductance of nanostructures from maximally localized wannier

functions: The case of functionalized carbon nanotubes,” Phys. Rev.

Lett., vol. 95, p. 076804, 2005.

[62] M. P. L. Sancho, J. M. L. Sancho, and J. Rubio, “Quick iterative

scheme for the calculation of transfer matrices: application to Mo

(100),” J. Phys. F: Met. Phys., vol. 14, p. 1205, 1984.

[63] M. P. L. Sancho, J. M. L. Sancho, and J. Rubio, “Highly convergent

schemes for the calculation of bulk and surface Green functions,” J.

Phys. F: Met. Phys., vol. 15, p. 851, 1985.

[64] C.-X. Liu, X.-L. Qi, H. Zhang, X. Dai, Z. Fang, and S.-C. Zhang,

“Model hamiltonian for topological insulators,” Phys. Rev. B, vol. 82,

p. 045122, 2010.

[65] J. E. Moore, “The birth of topological insulators,” Nature, vol. 464,

pp. 194–198, 2010.

[66] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, “Quantum spin Hall

effect and topological phase transition in HgTe quantum wells,” Sci-

ence, vol. 314, pp. 1757–1761, 2006.

[67] P. Roushan, J. Seo, C. V. Parker, Y. S. Hor, D. Hsieh, D. Qian,

A. Richardella, M. Z. Hasan, R. J. Cava, and A. Yazdani, “Topological

surface states protected from backscattering by chiral spin texture,”

Nature, vol. 460, pp. 1106–1109, 2009.

[68] P. Cheng, C. Song, T. Zhang, Y. Zhang, Y. Wang, J.-F. Jia, J. Wang,

Y. Wang, B.-F. Zhu, X. Chen, X. Ma, K. He, L. Wang, X. Dai, Z. Fang,

X. Xie, X.-L. Qi, C.-X. Liu, S.-C. Zhang, and Q.-K. Xue, “Landau

115



Bibliography

quantization of topological surface states in Bi2Se3,” Phys. Rev. Lett.,

vol. 105, p. 076801, 2010.

[69] N. P. Butch, K. Kirshenbaum, P. Syers, A. B. Sushkov, G. S. Jenkins,

H. D. Drew, and J. Paglione, “Strong surface scattering in ultrahigh-

mobility Bi2Se3 topological insulator crystals,” Phys. Rev. B, vol. 81,

p. 241301, 2010.

[70] T. Hirahara, Y. Sakamoto, Y. Takeichi, H. Miyazaki, S. ichi Kimura,

I. Matsuda, A. Kakizaki, and S. Hasegawa, “Anomalous transport in

an n-type topological insulator ultrathin Bi2Se3 film,” Phys. Rev. B,

vol. 82, p. 155309, 2010.

[71] S. R. Park, W. S. Jung, C. Kim, D. J. Song, C. Kim, S. Kimura, K. D.

Lee, and N. Hur, “Quasiparticle scattering and the protected nature of

the topological states in a parent topological insulator Bi2Se3,” Phys.

Rev. B, vol. 81, p. 041405, 2010.

[72] D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J. H. Dil, J. Osterwalder,

L. Patthey, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor,

R. J. Cava, and M. Z. Hasan, “Observation of time-reversal-protected

single-Dirac-cone topological-insulator states in Bi2Te3 and Sb2Te3,”

Phys. Rev. Lett., vol. 103, p. 146401, 2009.

[73] D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier, J. Oster-

walder, L. Patthey, J. G. Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin,

A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “A tun-

able topological insulator in the spin helical Dirac transport regime,”

Nature, vol. 460, pp. 1101–1106, 2009.

[74] S.-Y. Xu, L. Wray, Y. Xia, F. von Rohr, Y. Hor, J. Dil, F. Meier,

B. Slomski, J. Osterwalder, M. Neupane, H. Lin, A. Bansil, A. Fe-

dorov, R. J. Cava, and M. Z. Hasan, “Realization of an isolated dirac

node and strongly modulated spin texture in the topological insulator

Bi2Te3,” arXiv e-prints, 1101.3985, 2011.

116



Bibliography

[75] D. Kong, J. C. Randel, H. Peng, J. J. Cha, S. Meister, K. Lai, Y. Chen,

Z.-X. Shen, H. C. Manoharan, and Y. Cui, “Topological insulator

nanowires and nanoribbons,” Nano Lett., vol. 10, pp. 329–333, 2010.

[76] L. Fu and C. L. Kane, “Superconducting proximity effect and majo-

rana fermions at the surface of a topological insulator,” Phys. Rev.

Lett., vol. 100, p. 096407, 2008.

[77] M. A. Hossain, J. D. F. Mottershead, D. Fournier, A. Bostwick, J. L.

Mcchesney, E. Rotenberg, R. Liang, W. N. Hardy, G. A. Sawatzky,

I. S. Elfimov, D. A. Bonn, and A. Damascelli, “In situ doping control

of the surface of high-temperature superconductors,” Nature Phys.,

vol. 4, pp. 527–531, 2008.

[78] D. Fournier, G. Levy, Y. Pennec, J. L. Mcchesney, A. Bostwick,

E. Rotenberg, R. Liang, W. N. Hardy, D. A. Bonn, I. S. Elfimov, and

A. Damascelli, “Loss of nodal quasiparticle integrity in underdoped

YBa2Cu3O6+x,” Nature Phys., vol. 6, pp. 905–911, 2010.

[79] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient ap-

proximation made simple,” Phys. Rev. Lett., vol. 77, p. 3865, 1996.

[80] M. Bianchi, D. Guan, S. Bao, J. Mi, B. Iversen, P. King, and P. Hof-

mann, “Coexistence of the topological state and a two-dimensional

electron gas on the surface of Bi2Se3,” Nature Commun., vol. 1, p. 128,

2010.

[81] K. Kuroda, M. Arita, K. Miyamoto, M. Ye, J. Jiang, A. Kimura,

E. E. Krasovskii, E. V. Chulkov, H. Iwasawa, T. Okuda, K. Shimada,

Y. Ueda, H. Namatame, and M. Taniguchi, “Hexagonally deformed

fermi surface of the 3d topological insulator Bi2Se3,” Phys. Rev. Lett.,

vol. 105, p. 076802, 2010.

[82] M. Nagano, A. Kodama, T. Shishidou, and T. Oguchi, “A first-

principles study on the rashba effect in surface systems,” J. Phys.:

Condens. Matter, vol. 21, p. 064239, 2009.

117



Bibliography

[83] M. König, S. Wiedmann, C. Brone, A. Roth, H. Buhmann, L. W.

Molenkamp, X.-L. Qi, and S.-C. Zhang, “Quantum spin hall insulator

state in HgTe quantum wells,” Science, vol. 318, pp. 766–770, 2007.

[84] L. A. Wray, S.-Y. Xu, Y. Xia, D. Hsieh, A. V. Fedorov, Y. S. Hor, R. J.

Cava, A. Bansil, H. Lin, and M. Z. Hasan, “A topological insulator

surface under strong coulomb, magnetic and disorder perturbations,”

Nature Phys., vol. 7, pp. 32–37, 2010.

[85] T. Valla, Z.-H. Pan, D. Gardner, Y. S. Lee, and S. Chu, “Photoe-

mission spectroscopy of magnetic and nonmagnetic impurities on the

surface of the Bi2Se3 topological insulator,” Phys. Rev. Lett., vol. 108,

p. 117601, 2012.

[86] M. R. Scholz, J. Sánchez-Barriga, D. Marchenko, A. Varykhalov,

A. Volykhov, L. V. Yashina, and O. Rader, “Tolerance of topologi-

cal surface states towards magnetic moments: Fe on Bi2Se3,” Phys.

Rev. Lett., vol. 108, p. 256810, Jun 2012.

[87] T. Schlenk, M. Bianchi, M. Koleini, A. Eich, O. Pietzsch, T. O.

Wehling, T. Frauenheim, A. Balatsky, J.-L. Mi, B. B. Iversen,

J. Wiebe, A. A. Khajetoorians, P. Hofmann, and R. Wiesendanger,

“Controllable magnetic doping of the surface state of a topological

insulator,” Phys. Rev. Lett., vol. 110, p. 126804, Mar 2013.

[88] S.-Y. Xu, Y. Xia, L. A. Wray, S. Jia, F. Meier, J. H. Dil, J. Oster-

walder, B. Slomski, A. Bansil, H. Lin, R. J. Cava, and M. Z. Hasan,

“Topological phase transition and texture inversion in a tunable topo-

logical insulator,” Science, vol. 332, pp. 560–564, 2011.

[89] T. Sato, K. Segawa, K. Kosaka, S. Souma, K. Nakayama, K. Eto,

T. Minami, Y. Ando, and T. Takahashi, “Unexpected mass acquisition

of Dirac fermions at the quantum phase transition of a topological

insulator,” Nature Phys., vol. 7, pp. 840–844, 2011.

[90] Y. S. Hor, P. Roushan, H. Beidenkopf, J. Seo, D. Qu, J. G. Checkelsky,

L. A. Wray, D. Hsieh, Y. Xia, S.-Y. Xu, D. Qian, M. Z. Hasan, N. P.

118



Bibliography

Ong, A. Yazdani, and R. J. Cava, “Development of ferromagnetism in

the doped topological insulator Bi2−xMnxTe3,” Phys. Rev. B, vol. 81,

p. 195203, 2010.

[91] I. Vobornik, U. Manju, J. Fujii, F. Borgatti, P. Torelli, D. Krizmancic,

Y. S. Hor, R. J. Cava, and G. Panaccione, “Magnetic proximity ef-

fect as a pathway to spintronic applications of topological insulators,”

Nano Letters, vol. 11, pp. 4079–4082, 2011.

[92] J. Henk, M. Flieger, I. V. Maznichenko, I. Mertig, A. Ernst, S. V.

Eremeev, and E. V. Chulkov, “Topological character and magnetism

of the dirac state in mn-doped Bi2Te3,” Phys. Rev. Lett., vol. 109,

p. 076801, 2012.

[93] L. Fu, “Hexagonal warping effects in the surface states of the topolog-

ical insulator Bi2Te3,” Phys. Rev. Lett., vol. 103, p. 266801, 2009.

[94] B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and

T. Tiedje, “Giant spin-orbit bowing in GaAs1−xBix,” Phys. Rev. Lett.,

vol. 97, p. 067205, 2006.

[95] M. Liu, J. Zhang, C.-Z. Chang, Z. Zhang, X. Feng, K. Li, K. He, L.-l.

Wang, X. Chen, X. Dai, Z. Fang, Q.-K. Xue, X. Ma, and Y. Wang,

“Crossover between weak antilocalization and weak localization in a

magnetically doped topological insulator,” Phys. Rev. Lett., vol. 108,

p. 036805, 2012.

[96] S.-Y. Xu, M. Neupane, C. Liu, D. Zhang, A. Richardella, L. A.

Wray, N. Alidoust, M. Leandersson, T. Balasubramanian, J. Sánchez-

Barriga, O. Rader, G. Landolt, B. Slomski, J. H. Dil, J. Osterwalder,

T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, N. Samarth, and M. Z.

Hasan, “Hedgehog spin texture and berry’s phase tuning in a magnetic

topological insulator,” Nature Phys., vol. 8, pp. 616–622, 2012.

[97] M. A. Hossain, B. Bohnenbuck, Y. D. Chuang, M. W. Haverkort, I. S.

Elfimov, A. Tanaka, A. G. Cruz Gonzalez, Z. Hu, H.-J. Lin, C. T.

119



Bibliography

Chen, R. Mathieu, Y. Tokura, Y. Yoshida, L. H. Tjeng, Z. Hussain,

B. Keimer, G. A. Sawatzky, and A. Damascelli, “Mott versus Slater-

type metal-insulator transition in Mn-substituted Sr3Ru2O7,” Phys.

Rev. B, vol. 86, p. 041102, 2012.

[98] Y. L. Chen, J. G. Analytis, J. H. Chu, Z. K. Liu, S. K. Mo, X. L. Qi,

H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher,

Z. Hussain, and Z. X. Shen, “Experimental realization of a three-

dimensional topological insulator Bi2Te3,” Science, vol. 325, no. 5937,

pp. 178–181, 2009.

[99] M. Brahlek, N. Bansal, N. Koirala, S.-Y. Xu, M. Neupane, C. Liu,

M. Z. Hasan, and S. Oh, “Topological-metal to band-insulator transi-

tion in (Bi1−xInx)2Se3 thin films,” Phys. Rev. Lett., vol. 109, p. 186403,

2012.

[100] S. Souma, K. Kosaka, T. Sato, M. Komatsu, A. Takayama, T. Taka-

hashi, M. Kriener, K. Segawa, and Y. Ando, “Direct measurement

of the out-of-plane spin texture in the Dirac-cone surface state of a

topological insulator,” Phys. Rev. Lett., vol. 106, p. 216803, 2011.

[101] Z.-H. Pan, E. Vescovo, A. V. Fedorov, D. Gardner, Y. S. Lee, S. Chu,

G. D. Gu, and T. Valla, “Electronic structure of the topological insula-

tor Bi2Se3 using angle-resolved photoemission spectroscopy: evidence

for a nearly full surface spin polarization,” Phys. Rev. Lett., vol. 106,

p. 257004, 2011.

[102] C. Jozwiak, Y. L. Chen, A. V. Fedorov, J. G. Analytis, C. R. Rotundu,

A. K. Schmid, J. D. Denlinger, Y.-D. Chuang, D.-H. Lee, I. R. Fisher,

R. J. Birgeneau, Z.-X. Shen, Z. Hussain, and A. Lanzara, “Widespread

spin polarization effects in photoemission from topological insulators,”

Phys. Rev. B, vol. 84, p. 165113, 2011.

[103] O. V. Yazyev, J. E. Moore, and S. G. Louie, “Spin polarization and

transport of surface states in the topological insulators Bi2Se3 and

120



Bibliography

Bi2Te3 from first principles,” Phys. Rev. Lett., vol. 105, p. 266806,

2010.

[104] Y. Zhao, Y. Hu, L. Liu, Y. Zhu, and H. Guo, “Helical States of Topo-

logical Insulator Bi2Se3,” Nano Letters, vol. 11, pp. 2088–2091, 2011.

[105] C.-H. Park and S. G. Louie, “Spin polarization of photoelectrons from

topological insulators,” Phys. Rev. Lett., vol. 109, p. 097601, 2012.

[106] Y. Cao, J. A. Waugh, X.-W. Zhang, J.-W. Luo, Q. Wang, T. J. Re-

ber, S. K. Mo, Z. Xu, A. Yang, J. Schneeloch, G. Gu, M. Brahlek,

N. Bansal, S. Oh, A. Zunger, and D. S. Dessau, “In-plane orbital tex-

ture switch at the Dirac point in the topological insulator Bi2Se3,”

arXiv e-prints, 1209.1016, 2012.

[107] M. Lindroos, S. Sahrakorpi, and A. Bansil, “Matrix element effects

in angle-resolved photoemission from Bi2Sr2CaCu2O8 : Energy and

polarization dependencies, final state spectrum, spectral signatures

of specific transitions, and related issues,” Phys. Rev. B, vol. 65,

p. 054514, 2002.

[108] J. G. Checkelsky, Y. S. Hor, M.-H. Liu, D.-X. Qu, R. J. Cava, and N. P.

Ong, “Quantum interference in macroscopic crystals of nonmetallic

Bi2Se3,” Phys. Rev. Lett., vol. 103, p. 246601, 2009.

[109] P. Roushan, J. Seo, C. V. Parker, Y. S. Hor, D. Hsieh, D. Qian,

A. Richardella, M. Z. Hasan, R. J. Cava, and A. Yazdani, “Topological

surface states protected from backscattering by chiral spin texture,”

Nature, vol. 460, pp. 1106–1110, 2009.

[110] Z. Alpichshev, J. G. Analytis, J.-H. Chu, I. R. Fisher, Y. L. Chen,

Z. X. Shen, A. Fang, and A. Kapitulnik, “STM imaging of electronic

waves on the surface of Bi2Te3: Topologically protected surface states

and hexagonal warping effects,” Phys. Rev. Lett., vol. 104, p. 016401,

Jan 2010.

121



Bibliography

[111] Y. H. Wang, D. Hsieh, D. Pilon, L. Fu, D. R. Gardner, Y. S. Lee,

and N. Gedik, “Observation of a warped helical spin texture in Bi2Se3

from circular dichroism angle-resolved photoemission spectroscopy,”

Phys. Rev. Lett., vol. 107, p. 207602, 2011.

[112] S. R. Park, J. Han, C. Kim, Y. Y. Koh, C. Kim, H. Lee, H. J. Choi,

J. H. Han, K. D. Lee, N. J. Hur, M. Arita, K. Shimada, H. Namatame,

and M. Taniguchi, “Chiral orbital-angular momentum in the surface

states of Bi2Se3,” Phys. Rev. Lett., vol. 108, p. 046805, 2012.

[113] J. W. Mciver, D. Hsieh, H. Steinberg, P. Jarillo-Herrero, and N. Gedik,

“Control over topological insulator photocurrents with light polariza-

tion,” Nature Nanotech., vol. 7, p. 96, 2011.

[114] J. J. Yeh and I. Lindau, “Atomic subshell photoionization cross sec-

tions and asymmetry parameters: 1≤ Z ≤ 103,” Atomic Data and

Nuclear Data Tables, vol. 32, pp. 1–155, 1985.

[115] H. Zhang, C.-X. Liu, and S.-C. Zhang, “Spin-orbital texture in topo-

logical insulators,” arXiv e-prints, 1211.0762, 2012.

[116] M. Mulazzi, G. Rossi, J. Braun, J. Minár, H. Ebert, G. Panaccione,

I. Vobornik, and J. Fujii, “Understanding intensities of angle-resolved

photoemission with circularly polarized radiation from a Cu(111) sur-

face state,” Phys. Rev. B, vol. 79, p. 165421, 2009.

[117] Y. Liu, G. Bian, T. Miller, and T.-C. Chiang, “Visualizing electronic

chirality and berry phases in graphene systems using photoemission

with circularly polarized light,” Phys. Rev. Lett., vol. 107, p. 166803,

2011.
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resolved photoemission study of the graphite intercalation compound

KC8: A key to graphene,” Phys. Rev. B, vol. 80, p. 075431, 2009.
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