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Abstract

We study the evolution of a warm dark matter and perfect fluid system

to determine its behaviour in the linear regime. Comparative analysis is

performed between cold dark matter, hot dark matter and warm dark matter

approximating each case. Numerical issues causes differences between the

warm dark matter approximations and the respective case. Numerical issues

that we have been unable to solve prevent the calculation of sufficient k-space

modes to study interesting scales. Analytic methods to obtain the real space

perturbations and distribution functions are derived.
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Chapter 1

Introduction

Understanding how planets, stars, galaxies formed has been a point of inter-

est throughout history. With advances in general relativity, statistical me-

chanics and electromagnetism from the last century, we are now in a position

to attempt to explain how these structures are formed. The current model

used for structure formation is the ΛCDM model [3]. In this model, there

exists the standard model particles, along with cold dark matter (CDM) and

a cosmological constant, Λ, acting as dark energy. The presence of CDM and

a cosmological constant in the model are due to observations that suggest

that visible matter does not account for the all gravitational force observable

in our Universe. In effect, visible matter accounts for only roughly 5% of all

matter, with dark matter being approximately 27% and dark energy repre-

senting the remaining 68% [1]. In cosmology,“dark” signifies that there is

no interaction with electro-magnetic force. [9] This translates to no photon

production/absorption during interactions with dark matter/energy. This

lack of interaction causes dark matter/energy to be elusive in nature, and

their existence is inferred from gravitational interactions, which are much

weaker then electro-magnetic interactions. The “cold” descriptor for cold

dark matter relates to the matter’s momentum. A cold particle exhibits a
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1.1. Cosmological Definitions

small p/m ratio, where p is the momentum andm, the mass [9]. We will look

at the detailed implications of this in further chapters, but in short, it causes

many simplifications to the system. There has been much work done to un-

derstand how cold dark matter collapses to form structures [5][15][14][2][10].

This thesis will look at the effect of making the dark matter ”warm”. In this

context, warm signifies particles for which p/m begins relatively large and

becomes insignificant at late times [9]. Before we continue the discussion of

warm dark matter (WDM) collapse, we will define some basic concepts in

cosmology, and look at the collapse of CDM in more detail.

1.1 Cosmological Definitions

In the field of cosmology, time and distance are not uniquely defined quanti-

ties. There exist numerous different ways to measure both of these quantities

[3]. For distances, the curvature of space-time itself and the expansion of

the Universe cause some issues of definition. When considering expansion,

distances measured today were not the same as in the past, and this change

in distance is significant. In order to deal with this change, the scale factor,

a, is defined. If a distance x is measured today, it is at a distance of ax at

another time. This definition sets a0 = 1, where the subscript 0 indicates

today. As our Universe is expanding, distances were smaller in the past, and

hence past values of a are smaller then 1 [3]. The exact behaviour of a is

based on the composition of the Universe[3].

In order to find a definition of time, we must decide if we desire proper

time or coordinate time[3]. Proper time is measured based on a comoving

2



1.1. Cosmological Definitions

observer, while coordinate time is measured by an outside observer. Let us

consider the distance light can travel in an expanding universe since t = 0

from the view of a comoving observer. The velocity of light can be taken

to be 1, as we are free to set c = 1. This choice of value for c gives us

that d/t = 1. If we consider only an infinitesimal time step dt, we obtain

dt = a(t)dx. As we wish to calculate the distance light has travelled we are

interested in

τ(t) =

∫ x(t)

x(t=0)
dx′ =

∫ t

0

dt′

a(t′)
. (1.1)

As dt and a are always positive, τ is an increasing function. This property

makes τ an ideal candidate for a time variable. As a time coordinate, it is

refered to as “conformal time”[3]. This qunatity contains some important

information. As it represents the distance light has travelled, it also gives the

maximum distance two objects can be apart to have been in causal contact

in the past. We call this distance the “horizon”[3]. As will be seen later, we

will be working in Fourier transformed k-space for much of our calculations.

In k-space, modes for which kτ < 1 have not yet crossed the horizon and

these are called “super-horizon” modes, while those with kτ > 1 are “sub-

horizon” modes. These two ranges of k will have distinct behaviour, as we

will see once we have derived the relevant equations for the evolution of

k-modes.
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1.2. Units

1.2 Units

In this paper, we will be using only Mpc as units. In order to achieve this,

we set the following constants to 1 : c, kB, ~. In this system, quantites are

usually expressed in terms of eV. We use G to change from eV to Mpc. The

value of G in the appropriate units is G = 163.9964Mpc−2eV−4.
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Chapter 2

Unperturbed System

We begin our study with an unperturbed universe. It is isotropic and homo-

geneous. All directions and all parts of space are the same. We will relax the

homogeneous condition as we progress, as we need inhomogeneities in the

matter distribution to cause matter to gravitationally collapse and produce

the structure we see in the Universe. We will need to determine the metric

to use, derive the general relativistic equations, and define the quantities of

interest. Once this framework is built, we will add perturbations to it to

eventually obtain our desired warm dark matter system.

2.1 Metric Defnitions

The metric contains information about the curvature of space-time. This is

one of two components necessary to determine the general relativity equa-

tions, the other component being the stress-energy tensor. For an isotropic

and homogeneous expanding Universe, the metric to use is[9]

ds2 = −a2dτ2 + a2dxidxi. (2.1)

We use conformal time as our time variable. ds2 is the proper distance

5



2.1. Metric Defnitions

in space-time in this metric. Roman indices are used to sum over the spatial

indices (1,2,3), while greek indices will also sum over the temporal indice

(0). The metric may also be written as

ds2 = gµνdx
µdxν . (2.2)

We must work our way from this metric to solving for the Einstein tensor,

Gµν :

Gµν ≡ Rµν −
1

2
gµνR = 8πGTµν , (2.3)

where, Rµν is the Ricci tensor, R is the Ricci scalar and Tµν is the stress-

energy tensor[3]. We will go through the process of defining and deriving all

these quantities for this system. We begin with

Rµν = Γα
µν,α − Γα

µα,ν + Γα
βαΓ

β
µν − Γα

βνΓ
β
µα, (2.4)

where Γµ
αβ is the Christoffel symbol, while the comma represents a derivative,

for example R,α is the derivative of R with respect to xα[3]. The Christoffel

symbol is defined as[3]

Γµ
αβ =

gµν

2
[gαν,β + gβν,α − gαβ,ν ]. (2.5)

Continuing our definitions,

R ≡ gµνRµν (2.6)
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2.2. Metric Calculations

and

Tµ
ν = Pgµν + (ρ+ P )UµUν , (2.7)

where Uµ = dxµ/
√
−ds2 is the four-velocity[9].

2.2 Metric Calculations

We now have all the pieces to solve the unperturbed system. We obtain the

following Christoffel symbols :

Γ0
00 =

(

ȧ

a

)

; (2.8a)

Γ0
ij = Γi

0j = Γi
j0 = δij

ȧ

a
. (2.8b)

All other Γs are zero. Here the dot represents a derivative with respect

to τ .

We now use the Christoffel symbols to obtain the Ricci tensor :

R00 = −3
d

dτ

ȧ

a
; (2.9a)

Rij = δij

{

d

dτ

(

ȧ

a

)

+ 2

(

ȧ

a

)2
}

. (2.9b)

The other Ricci tensor coefficients are zero.

The Ricci scalar can now be calculated. We obtain

R =
6

a2

(

ä

a

)

. (2.10)
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2.2. Metric Calculations

The stress-energy tensor, Tµ
ν , is the last piece we need. It is defined as

T 0
0 = −ρ, (2.11a)

T 0
i = T i

0 = 0, (2.11b)

T i
j = δijP, (2.11c)

where ρ and P are the energy density and the pressure, respectively.

It will be noted that we used a different configuration of indices for Tµ
ν

then we used in the Einstein equation (2.3). This is done to avoid scale

factors appearing into the stress-energy tensor. We will now need to change

the Einstein tensor to this form in order to solve the Einstein equation. To

change indices, we use Tµ
ν = gανT

µα.

After the change in indices, we obtain the final Einstein equations :

(

ȧ

a

)2

=
8πG

3
a2ρ; (2.12)

d

dτ

(

ȧ

a

)

= −4πG

3
a2(ρ+ 3P ). (2.13)

We will redefine the energy density and pressure as follows ρ′ = 8πGa4

3 ρ

and P ′ = 8πGa4

3 P , changing the above equations to

ȧ =
√

ρ′, (2.14)

d

dτ
(
ȧ

a
) = −ρ

′ + 3P ′

2a2
. (2.15)

We may use these two equations to solve for ȧ, and correspondingly a.

Once we have a, we know how the unperturbed universe evolves, solving it

8



2.2. Metric Calculations

completely. These equations are valid for a flat space-time. For a space-

time that is positively or negatively curved, an additional term appears,

modifying the first equation by the addition of a −κ term. κ represents the

overall curvature of space-time[3]. Hence, for a positively curved universe,

κ > 0, and κ < 0 for a negatively curved universe. We will be mainly

concerned with a universe with κ = 0 but the spherical collapse case will

use κ > 0.

The next step in our derivation is to add perturbations to the energy-

stress tensor and determine their evolution equations.

9



Chapter 3

Derivation from the Metric

There exists two common gauges used in cosmology for the evolution of per-

turbations, the synchronous gauge and the conformal Newtonian gauge.[9]

In this thesis, the focus will be solely on the conformal gauge. This choice is

made due to the physical interpretation of the conformal Newtonian gauge.

The gravitational perturbation ψ is equivalent to the Newtonian gravita-

tional potential, and as such, previous intuition can be used when analyzing

the gravitational perturbation. It should be noted that the majority of the

derivations in Chapters 3,4 and 5 fill in the details of the derivations from

[9].

For the conformal Newtonian gauge, the perturbed metric equation can

be written as [9]

ds2 = a2(τ){−(1 + 2ψ)dτ2 + (1− 2φ)dxidxi}. (3.1)

We may perform a similar analysis for this metric as was performed

for the unperturbed state. The equation for the Einstein tensor can be

decomposed as follows [3]:

Gµ
ν + δGµ

ν = 8πG(Tµ
ν + δTµ

ν ). (3.2)

10



Chapter 3. Derivation from the Metric

As we have already solved the unperturbed parts, these will cancel, and we

obtain

δGµ
ν = 8πGδTµ

ν . (3.3)

This will prevent us from repeating the derivations of the unperturbed sys-

tem.

From Ref. [7], the perturbed Christoffel symbols are:

δΓ0
00 = ψ̇; (3.4a)

δΓ0
0i = δΓ0

i0 = ψ,i; (3.4b)

δΓ0
ij = −δij{2H(φ+ ψ) + φ̇}; (3.4c)

δΓi
00 = ψ,i; (3.4d)

δΓi
0j = −φ̇δij ; (3.4e)

δΓi
jk = (φ,kδ

i
j + φ,jδ

i
j) + φ,iδjk. (3.4f)

Having these perturbed Christoffel symbols, we can now calculate the

perturbed Ricci tensor coefficients:

δR0
0 = a−2

{

−3φ̈−∇2ψ − 3
ȧ

a
(ψ̇ + φ̇)− 6

d

dτ

(

ȧ

a

)

ψ

}

; (3.5a)

δR0
i = −2a−2

(

φ̇+
ȧ

a
ψ

)

i

= −Ri
0; (3.5b)

δRi
j = a−2

[

−φ̈+∇2φ− ȧ

a
(ψ̇ + 2φ̇)−

{

2
d

dτ

(

ȧ

a

)

+ 4

(

ȧ

a

)2
}

ψ

]

δij

+ a−2(φ− ψ),ij .

(3.5c)
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Chapter 3. Derivation from the Metric

It should be noted that due to the nature of index raising/lowering, the

perturbed portion of the Ricci tensor is δgµαRαν + gµαδRαν .

This now allows us to find the perturbed curvature scalar,

R = a−2

[

−6φ̈+ 2∇2(2φ− ψ)− 6
ȧ

a
(ψ̇ + 3φ̇)−

12

{

d

dτ

(

ȧ

a

)

+

(

ȧ

a

)2
}

ψ

]

.

(3.6)

Using the metric for the conformal Newtonian gauge, (3.1), we can de-

termine δTµ
ν using (2.7):

δT 0
0 = −δρ; (3.7a)

δT 0
i = (ρ+ P )vi = −δT i

0; (3.7b)

δT i
j = δPδij +Σi

j ; Σi
i = 0. (3.7c)

We can now combine the perturbed equations in order to obtain our

Einstein equations:

a−2

{

−2∇2φ+ 6
ȧ

a
φ̇+ 6

(

ȧ

a

)2

ψ

}

= a−23δρ′, (3.8a)

−2a−2

(

φ̇+
ȧ

a
ψ

)

,i

= −a−23(ρ′ + P ′)vi, (3.8b)

a−2

([

2φ̈+∇2(ψ − φ) +
ȧ

a
(2φ̇+ 4ψ̇)+

{

4
d

dτ

(

ȧ

a

)

+ 2

(

ȧ

a

)2
}

ψ

]

δji + (φ− ψ),ij

)

= a−2

(

1

2
δP ′

)

+Σj
i .

(3.8c)

The third equation in this set is rather cumbersome. We may decompose

12



Chapter 3. Derivation from the Metric

it into the trace and traceless components. Before doing this, we will convert

to momentum space via a Fourier transform. It will be simpler to decompose

(3.8c) in momentum space, and we will also be working in this space once we

add interactions, as in linear theory it will decouple our equations [3], thus

it will be good exercise to convert our equations now. The primary effect of

this is the conversion of , i into −iki. This gives us ∇2 = −k2. Also, since

the ki vectors are Euclidean constructs, you can interchange their indices

freely[3]. Focusing only on (3.8c), we obtain

a−2

([

2φ̈+ k2(φ− ψ) +
ȧ

a
(2φ̇+ 4ψ̇) +

{

4
d

dτ

(

ȧ

a

)

+

2

(

ȧ

a

)2}

ψ

]

δji − kikj(φ− ψ)

)

= a−2

(

1

2
δP ′δji

)

+Σj
i .

(3.9)

We will decompose this equation into two components, the trace and

traceless parts. For the trace, δii → 3 and kiki → k2. The trace is then

a−2

([

2φ̈+ k2(φ− ψ) +
ȧ

a
(2φ̇+ 4ψ̇) +

{

4
d

dτ

(

ȧ

a

)

+ 2

(

ȧ

a

)2
}

ψ

]

3

−k2(φ− ψ)
)

= a−2

(

3

2
δP ′

)

+Σi
i.

(3.10)

Since Σj
i is defined as traceless, Σi

i = 0. Dividing both sides by 3a−2, we

obtain

2φ̈+ k2(φ− ψ) +
ȧ

a
(2φ̇+ 4ψ̇) +

{

4
d

dτ

(

ȧ

a

)

+ 2

(

ȧ

a

)2
}

ψ

−a2k
2

3
(φ− ψ) = δP ′.

(3.11)
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Chapter 3. Derivation from the Metric

Now, we deal with the traceless component of (3.8c). We can accomplish

this by applying the traceless operator k̂ik̂j − 1
3δij [3]:

(

k̂ik̂j −
1

3
δij

)

kikj(φ− ψ) =

(

k̂ik̂j −
1

3
δij

)

Σj
i . (3.12)

Let us define

(ρ+ P )θ = ikjδT 0
j , (3.13a)

(ρ+ P )σ =

(

k̂ik̂j −
1

3
δij

)

Σi
j . (3.13b)

Simplifying the left hand side, we obtain our final equation

2

3
k2(φ− ψ) = 3(ρ′ + P ′)σ. (3.14)

For ease, we will now restate the four basic equations as

k2φ+ 3
ȧ

a

(

φ̇+
ȧ

a
ψ

)

=
3

2
δρ′, (3.15a)

k2
(

φ̇+
ȧ

a
ψ

)

=
3

2
(ρ′ + P ′)θ,

(3.15b)

φ̈+
ȧ

a
(φ̇+ 2ψ̇) +

{

2
d

dτ

(

ȧ

a

)

+

(

ȧ

a

)2
}

ψ − k2

3
(φ− ψ) =

1

2
δP ′, (3.15c)

k2(φ− ψ) =
9

2
(ρ′ + P ′)σ,

(3.15d)

where, θ = kivi[3].

This completes the main derivations for the evolution of the background
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Chapter 3. Derivation from the Metric

and gravitational perturbation quantities. In the subsequent chapter, we

will derive the equations for the perturbations for various types of particles,

but beforehand, we will solve a simple system, the perfect fluid.

15



Chapter 4

Perfect Fluid

Before continuing on to consider the effects of particle interactions on the

evolution of matter, we will look at the simplest type of matter, a perfect

fluid. A perfect fluid is defined solely by its energy density, ρ and pressure,P

[9]. This simplifications allow us to solve the entire system using energy-

momentum conservation.

In general relativity, this principle is embodied by the following [3]

Tµν
;µ = δµT

µν + Γν
αβT

αβ + Γα
αβT

νβ = 0, (4.1)

where ; represents the covariant derivative, which means it is invariant under

gauge transforms.[9] Looking at the perturbed part of these equations, we

obtain the following 2 equations:

δ̇ = −(1 + w)(θ − 3φ̇)− 3
ȧ

a

(

δP

δρ
− w

)

δ; (4.2a)

θ̇ = − ȧ
a
(1− 3w)θ − ẇ

1 + w
θ +

δP/δρ

1 + w
k2δ − k2σ + k2ψ; (4.2b)

Here w = P/ρ.

We will not cover these derivations in detail here, but aside from a few

minor details, they are fairly straightforward calculations. The two main

16



4.1. Radiation

details that must be used to obtain them is that δ̇ = δ̇ρ
ρ − δρρ̇

ρ2
, and that

ρ
a2

=
(

ȧ
a

)2
using our units. Using these two substitutions, it should be an

exercise in algebra to obtain the previous equations.

There are two types of perfect fluids that we will be interested in, w = 1/3

and w = 0 fluids. w = 1/3 fluids are radiation fluids while w = 0 fluids

represent cold dark matter (CDM)[9]. A radiation fluid will be included in

our system to keep matter-radiation equality near to that of our Universe.

The CDM is being considered as a test case for high mass WDM.

For both of these perfect fluids, ẇ = 0 and σ = 0[9].

4.1 Radiation

Substituting w = 1/3 into (4.2), we obtain

δ̇ = −(4/3)(θ − 3φ̇), (4.3a)

θ̇ = k2(δ + ψ). (4.3b)

If only this perfect radiation fluid is assumed to exist, and (3.15a) or (3.15b)

are used to evolve φ, this set of equations has an analytic solution of the

form [4]

φ =
9φ0
(kτ)3

[√
3 sin

(

kτ√
3

)

− kτ cos

(

kτ√
3

)]

, (4.4a)

δ =
6φ0
(kτ)3

[

2
√
3((kτ)2 − 3) sin

(

kτ√
3

)

− kτ((kτ)2 − 6) cos

(

kτ√
3

)]

, (4.4b)

θ = −3
√
3kφ0

2(kτ)2

[

2
√
3kτ sin

(

kτ√
3

)

− ((kτ)2 − 6) cos

(

kτ√
3

)]

, (4.4c)
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4.2. Cold Dark Matter

where φ0 is the initial value of φ.

This set of analytic solutions will be used to verify the numerical accuracy

of the code, in the special case where only the perfect fluid is present. As

the system of interest will have WDM mixed in with the perfect radiation

fluid, the actual solution will differ from this analytic solution.

4.2 Cold Dark Matter

Substituting w = 0 into (4.2), we obtain

δ̇ = −θ + 3φ̇, (4.5a)

θ̇ = − ȧ
a
θ + k2ψ. (4.5b)

Again, this set of equations will be used to verify the code for the high mass

case, where we expect the WDM to behave like CDM.

18



Chapter 5

Derivation from the

Boltzmann Equation

Having now determined how the background and the gravitational potential

behaves, we must now derive the evolution of the matter. Although we

are primarily concerned with WDM, a bottom-up approach was used to

build the code, where we started with the simplest systems and added to

them until we reached WDM. For this reason, we have covered the evolution

of cold dark matter, and will now consider massless neutrinos and massive

neutrinos, where massive neutrinos will be the basis for our WDM [9]. Before

we begin to think about the evolution for a specific case of matter though,

we need to examine the distribution function and the Boltzmann equation.

It will be noted that this chapter is strongly based on Ref. [9].

The Boltzmann equation utilizes phase space, which is a six dimensional

space, having 3 positions, xi and 3 momenta, Pi = mUi. The positions

may be represented by xi, but the momenta will need to be examined more

closely.
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Chapter 5. Derivation from the Boltzmann Equation

In the conformal gauge, we have

Pi = (1− φ)api, (5.1a)

P i = −(1 + φ)a3pi. (5.1b)

Let us define the phase space distribution function as

f(xi, Pj , τ)dx
1dx2dx3dP1dP2dP3 = dN, (5.2)

where dN is the number of particles in the volume dx1dx2dx3dP1dP2dP3.

We will decompose the distribution function,f , into an unperturbed and

first order component, as follows

f(xi, Pj , τ) = f0(1 + Ψ(xi, Pj , τ)). (5.3)

In our previous definition of P , the metric perturbation appeared. This

would complicate many calculations, but we may replace Pj by qj≡apj [9]. As

qj is not the conjugate momentum, due to the lack of the (1−φ) term, we will

need to be careful when working with the energy-momentum tensor, and the

volume element. The volume element becomes dx1dx2dx3dq1dq2dq3(1− 3φ)

to first order. We can also define the comoving energy as ǫ =
√

q2 + a2m2.

As this is the energy measured by a comoving observer, it is related to P0,
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Chapter 5. Derivation from the Boltzmann Equation

the energy component of the momentum four-vector, through

P0 = −(1 + ψ)ǫ, (5.4a)

P 0 = (1− ψ)a−2ǫ. (5.4b)

Another desired modification is the separation of the magnitude of q from

its direction. This can be easily accomplished with the following definition

qj = qnj where n
ini = δij . Our phase space distribution now depends on the

position, q, nj and time.

The zeroth order distribution function, f0 will be the Fermi-Dirac func-

tion for fermions(+) and Bose-Einstein for bosons (−). As the particles

decouple while highly relativistic, q ≫ am in the distribution function, and

as such, we may approximate ǫ as q in the distribution function only:

f0(q) =
gs
h3P

1

eq/kBT0 ± 1
(5.5)

where gs is the number of spin degrees of freedom, hP is the Planck constant,

kB is the Boltzmann constant, and is set to 1, and T0 is the temperature

today. For the remainder of the discussion, we will redefine ǫ, q and m as

follows:

q → q

T0
; m→ m

T0
; ǫ→ ǫ

T0
. (5.6a)

This is the notation used by CLASS [8].

We may decompose the distribution function into a zeroth order and
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Chapter 5. Derivation from the Boltzmann Equation

higher order components:

f(xi, q, nj , τ) = f0(q)(1 + Ψ(xi, q, nj , τ) + ...), (5.7)

where Ψ represents the first order perturbation. We will ignore the higher

order perturbations.

We have previously written the energy-momentum tensor in terms of the

metric (2.7). We can also express it in terms of the distribution function

Tµν =

∫

dP1dP2dP3(−g)−1/2PµPν

P 0
f(xi, Pj , τ), (5.8)

where g is the determinant of the gµν . For the conformal gauge, g = −a8(1−

6φ + 2ψ). It should also be noted that, as discussed earlier, dP1dP2dP3 =

T 3
0 dq1dq2dq3(1− 3φ).

Combining all of these in equation (5.8), we can obtain the energy-

momentum tensor:

T 0
0 = −

(

T0
a

)4 ∫

q2dqdΩǫf0(q)(1 + Ψ); (5.9a)

T 0
i =

(

T0
a

)∫

q3dqdΩnif0(q)Ψ; (5.9b)

T i
j =

(

T0
a

)∫

q3dqdΩninj
q

ǫ
f0(q)(1 + Ψ). (5.9c)

It becomes easy to split this energy-momentum tensor into perturbed

and unperturbed components as the only first order quantity present is Ψ.

Because there exists simplifications to the integrand for various types of

matter, we will wait to determine equivalence between this equation and
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Chapter 5. Derivation from the Boltzmann Equation

the quantities from equation (3.7).

As Ψ depends on τ , its evolution must be determined. We will use the

Boltzmann equation to calculate this. The Boltzmann equation is

Df

dτ
=
∂f

∂τ
+
dxi

dτ

∂f

∂xi
+
dq

dτ

∂f

∂q
+
dni
dτ

∂f

∂ni
=

(

∂f

∂τ

)

C

, (5.10)

Where right hand side is a collision term. As we will be dealing with

dark matter, this term will be 0 for all cases we are interested in.

There is one simplification that can be done immediately. Since only

Ψ depends on ni,
∂f
∂ni

is a first order quantity. Also, only the gravitational

potentials, ψ and φ, may cause changes to ni, and so dni

dτ is also a first order

quantity, making the combined term a second order perturbaion[3]. As we

are only interested in first order quantities, we may ignore this term.

We will now determine expression for dxi

dτ . Multiplying by
√
−ds2 we

obtain [3]

dxi√
−ds2

√
−ds2
dτ

=
P i

P 0
, (5.11a)

= −(1 + ψ + φ)
q

ǫ
. (5.11b)

There is now only one term left to calculate, dq
dτ . We will use the geodesic

equation,[3]

P 0 dp
µ

dτ
+ Γµ

αβP
αP β = 0. (5.12)

Setting µ = 0, we obtain

dq

dτ
= qφ̇+ iǫnikiψ. (5.13)
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5.1. Massless Neutrinos

Utilizing all of these terms, we can obtain our general expression for the

Boltzmann equation:

∂Ψ

∂τ
+ i

q

ǫ
(~k · n̂)Ψ +

df0
dq

q

f0

[

ψ̇ − i
ǫ

q
(~k · n̂)ψ

]

= 0. (5.14)

It should be noted that the only dependance on n̂ is through its dot

product with ~k. As only the angle between both terms is significant, we may

set the direction of n̂ and only consider the angle between both vectors.

There remains one more detail to iron out before utilizing equation

(5.14). We must determine the k-space expression for Ψ. This will be done

differently for the massless neutrino and massive neutrino cases that we will

be considering,i.e. the hot dark matter, and warm dark matter candidates,

respectively.

5.1 Massless Neutrinos

For massless neutrinos, m = 0, causing ǫ = q. This causes massless neutri-

nos to be a type of hot dark matter (HDM) as they remain relativistic at

all times. With this simplification, equations (5.9) and (3.7) may be used

together to obtain expressions for ρ and P and their perturbations. We
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5.1. Massless Neutrinos

obtain,

ρ = 3P =

(

T0
a

)4 ∫

q3dqdΩf0(q), (5.15a)

δρ = 3δP =

(

T0
a

)4 ∫

q3dqdΩf0(q)Ψ, (5.15b)

δT 0
i =

(

T0
a

)4 ∫

q3dqdΩnif0(q)Ψ, (5.15c)

Σi
j =

(

T0
a

)4 ∫

q3dqdΩ

(

ninj −
1

3
δij

)

f0(q)Ψ. (5.15d)

We will integrate out the q dependance, and expand the angular depen-

dence into a series of Legendre polynomials, Pl(k̂ · n̂)

F (~k, n̂, τ) ≡
∫

q3dqf0(q)Ψ

q3dqf0(q)
≡

∞
∑

l=0

(−i)l(2l + 1)Fl(~k, τ)Pl(k̂ · n̂). (5.16)

With this new definition, we have removed the dependance on q, and

isolated the dependence on n̂. Combining (5.15), (5.16) and (5.9), we may

obtain

δ =
1

4π

∫

dΩF = F0, (5.17a)

θ =
3i

16π

∫

dΩk(k̂ · n̂)F =
3

4
kF1, (5.17b)

σ = − 3

16π

∫

dΩ

[

(k̂ · n̂)2 − 1

3

]

F =
1

2
F2. (5.17c)

It is now time to simplify the Boltzmann equation for the massless neu-

trinos. We can integrate (5.14) over
∫

q3dqf0(q) and divide by
∫

q3dqf0(q).

The only term that is not evident is

∫ d ln f0
d ln q

q3f0dq
∫
q3f0dq

. Using integration by parts,
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5.1. Massless Neutrinos

it can be shown that this term is equal to −4. With these, we obtain

∂F

∂τ
+ ikµF = 4(φ̇− ikµψ). (5.18)

where µ = k̂ · n̂.

Using the orthonormality of the Legendre polynomials, along with the

recursion relation µPl(µ) = 1
2l+1((l + 1)Pl+1 + lPl−1), we may decompose

(5.18) into individual moments to obtain

δ̇ = −4

3
θ + 4φ̇, (5.19a)

θ̇ = k2
(

1

4
δ − σ

)

+ k2ψ, (5.19b)

Ḟl =
k

2l + 1
[lFl−1 − (l + 1)Fl+1]. (5.19c)

It should be noted that each mode is only coupled to the neighbouring

modes. Also, we have now decoupled our single real space equation into an

infinite set of harmonic equations. We will choose some maximum mode,

lmax, as a cutoff. We must be careful with this truncation though, as the

incorrect lmax+1 mode will affect lmax and then trickle down the hierarchy. In

order to minimize this error, we will use the following recurrence relationship

Flmax+1 =
2lmax + 1

kτ
Flmax

− Flmax−1, (5.20)

which is inspired by the spherical Bessel behaviour exhibited by numerical

solutions.[9]

We will choose to truncate at l = 2000, as is suggested in Ref. [9]. Much like
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5.2. Massive Neutrinos

the CDM case will be a test for a high mass WDM, the massless neutrinos

will be used as a test case for the low mass WDM.

5.2 Massive Neutrinos

Unlike with the massless neutrinos, the massive neutrinos do not allow for

q = ǫ, as m 6= 0. This allows for no simplifications of equation (5.9). Also,

since ǫ depends on τ and q, we may not integrate over q. As such, we will

expand Ψ itself as the following Legendre series

Ψ(~k, n̂, q, τ) =
∞
∑

l=0

(−i)l(2l + 1)Ψl(~v, q, τ)Pl(k̂ · n̂). (5.21)

Applying this expansion to (5.9), we obtain

δρ = 4π

(

T0
a

)4 ∫

q2dqǫf0(q)Ψ0, (5.22a)

δP =
4π

3

(

T0
a

)4 ∫

q2dq
q2

ǫ
f0(q)Ψ0, (5.22b)

(ρ+ P )θ = 4πk

(

T0
a

)4 ∫

q3dqf0(q)Ψ1, (5.22c)

(ρ+ P )σ =
8π

3

(

T0
a

)4 ∫

q2dq
q2

ǫ
f0(q)Ψ2. (5.22d)

Using the properties of the Legendre polynomials, as with the massless
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5.2. Massive Neutrinos

case, we may decouple the moments of Ψ in (5.14) as follows:

Ψ̇0 = −qk
ǫ
Ψ1 − φ̇

d ln f0
d ln q

; (5.23a)

Ψ̇1 =
qk

3ǫ
(Ψ0 − 2Ψ2)−

ǫk

3q
ψ
d ln f0
d ln q

; (5.23b)

Ψ̇l =
qk

(2l + 1)ǫ
(lΨl−1 − (l + 1)Ψl+1), l ≥ 2. (5.23c)

As with the massless case, a truncation is necessary. We will use

Ψν(lmax+1) =
(2lmax + 1)ǫ

qkτ
Ψνlmax

−Ψν(lmax−1). (5.24)

We may trunctate at a much lower value of l than in the massless neutrino

case. This is due to the fact that the massive neutrinos will become non-

relativistic, causing high multipole moments to decay rapidly. We choose

l = 50, as suggested by [9].
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Chapter 6

Initial Conditions and

Normalization

Now that we have derived all the equations to evolve, we must determine the

initial conditions. The first step in this process is to define a starting point

for the simulation. At early times, during the radiation domination, τ = a
ȧ .

We can see this fact by looking at equation (2.14). ρ ∝ a−4 for a radiation

dominated Universe. As such, ȧ is constant. Hence, a = ȧτ , giving us that

a
ȧ = τ .[9]

We set a such that our WDM begins radiation dominated, and use

equation (2.14) to calculate ȧ. From equation (2.14), we also obtain that

( ȧa)
2 = τ−2 = ρ

a2
. The value of τ obtained must also satisfy kτ≪1. Ad-

ditionally, since our WDM is radiation dominated, we may treat it as a

massless neutrino at early times.

There exists some freedom in choosing an initial condition. For a detailed

description on the different options, see Ref. [7]. We choose the adiabatic

initial conditions for our case. This means that we set entropy perturbations

to 0. This is a similar case to the analytic solution in equation (4.4) that

we studied earlier. By examining those solutions, we find that φ̇ = ψ̇ = 0.

29



Chapter 6. Initial Conditions and Normalization

We can use this, along with our early time details from earlier to transform

equation (3.15), (4.3) and (5.19) into

k2φ+
3

τ2
ψ = −3

2
ρδ, (6.1a)

k2

τ
ψ = 2ρθ, (6.1b)

k2(φ− ψ) = 6ρσ, (6.1c)

δ̇wdm = δ̇pf = −4

3
θ, (6.1d)

θ̇wdm = k2
(

1

4
δwdm − σwdm + ψ

)

, (6.1e)

θ̇pf = k2
(

1

4
δpf + ψ

)

, (6.1f)

σ̇wdm =
4

15
θ, (6.1g)

where wdm and pf are used to denote the WDM and the perfect fluid cases,

respectively. Also, substituting ρ = τ−2 into (6.1), and ignoring the (kτ)2

factors, we obtain

−2ψ = δ, (6.2a)

k2τ

2
ψ = θ, (6.2b)

kτ2

6
(φ− ψ) = σ, (6.2c)

δ̇wdm = δ̇pf = −4

3
θ, (6.2d)

θ̇wdm = k2
(

1

4
δwdm + ψ

)

, (6.2e)

θ̇pf = k2
(

1

4
δpf + ψ

)

, (6.2f)

σ̇wdm =
4

15
θwdm. (6.2g)
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We have removed the σwdm term from equation (6.2d) as it is propor-

tional to (kτ)2 as seen from equation (6.2c). We can see from these equa-

tions, that δ̇wdm and δ̇pf follow the same evolution. The same can be said

about the θ equations. With this, we know that δwdm = δpf and θwdm = θpf.

We must relate δ to δwdm and δpf, and similarly for θ and σ. This is done

through

δ = (1−Rwdm)δpf +Rwdmδwdm, (6.3a)

θ = (1−Rwdm)θpf +Rwdmθwdm, (6.3b)

σ = Rwdmσwdm, (6.3c)

where

Rwdm =
ρwdm

ρwdm + ρpf
. (6.4)

We see from these, that if δwdm = δpf, δ = δpf. The same holds for θ. We

now have expressions for δ and θ. We wish to find an expression for σ now.

Let us consider equation (6.2g). If we substitute our result from equation

(6.2b) and integrate over τ , we obtain

σwdm =
(kτ)2

15
. (6.5)

Using this with equations (6.3c) and (6.2c), we obtain

φ = (1 +Rwdm)ψ. (6.6)

We have now expressed all quantities of interest in terms of ψ. As we
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Chapter 6. Initial Conditions and Normalization

are working in the linear regime, we are free to choose an initial value of ψ.

We will choose ψ = −1
2 , such that δ = 1 initially.

Although we have all physical quantities determined, we need to find

initial conditions for Ψl in order to evolve our WDM past the radiation

dominated domain. To do this, we will observe the evolution equations for

the moments. These reduce to

Ψ̇0 = −qk
ǫ
Ψ1, (6.7a)

Ψ̇1 =
qk

3ǫ
(Ψ0 − 2Ψ2)−

ǫk

3q
ψ
d ln f0
d ln q

, (6.7b)

Ψ̇2 =
qk

5
(2Ψ1). (6.7c)

Again, we will ignore the second moment in Ψ̇1, as it is proportional to

(kτ)2. We know that at early time, when am≪ q, ǫ = q. This allows us to

rewrite equation (5.22a) as

δν =

∫

q3f0(q)Ψ0dq
∫

q3f0(q)dq
. (6.8)

When deriving the massless neutrino case, we saw that if there was a

factor of d ln f0
d ln q , the integral fraction would simplify to −4. We can see that

Ψ0 = −1

4
δwdm

d ln f0
d ln q

(6.9)

satisfies the integral equation. Putting this solution into our evolution equa-
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tions, we obtain the following [9]:

Ψ1 = − ǫ

3qk
θwdm

d ln f0
d ln q

; (6.10a)

Ψ2 = −1

2
σwdm

d ln f0
d ln q

. (6.10b)

With these initial conditions, we have all the necessary initial conditions for

the WDM+pf system we will be interested in, but we need to determine the

initial conditions for the CDM case.

For the pure CDM case, we begin with a matter dominated universe,

which gives us ȧ
a = 2τ−1 = ρ1/2. There are only three variables to solve for

in the CDM system, ψ, δ, θ, since φ = ψ. We will begin our derivation of the

initial conditions by rewritting our equations, and substituting in our value

for ȧ
a . This gives us the following set of equations:

k2φ+
12

τ2
ψ = −3

2
ρδ; (6.11a)

2k2

τ
ψ =

3

2
ρθ; (6.11b)

φ = ψ; (6.11c)

δ̇cdm = −θcdm; (6.11d)

θ̇cdm = −2

τ
θcdm + k2ψ; (6.11e)

Here we set φ̇ = ψ̇ = 0, as in the WDM case.

By substituting ρ = 4
τ2
, and eliminating terms proportional to (kτ)2, we
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obtain

δcdm = −2ψ, (6.12a)

θcdm = k2τ
ψ

3
. (6.12b)

We now have our CDM initial conditions. We are again free to set an initial

value for ψ.

When we run a high mass WDM case, we will need initial conditions

for Ψl. We will follow a similar derivation of these as in the radiation

dominated WDM. The main difference exists in the integral performed over

q to obtain δ. Where we previously multiplied by q3f0dq before integrating,

we now multiply by amq2f0dq. The difference is due to the estimate that

was previously ǫ = q, but now is ǫ = am. By performing this new integral

and dividing by ρ as before, we obtain −3 instead of −4. This gives us

Ψ0 = −1

3
δcdm

d ln f0
d ln q

, (6.13a)

Ψ1 = − ǫ

3qk
θcdm

d ln f0
d ln q

, (6.13b)

Ψ2 = 0. (6.13c)

This concludes the derivation of the initial conditions. We may now begin

discussing details of the numerical routines to be used to solve the equations

derived.
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Chapter 7

Numerical Details

There are two major numerical elements that must be discussed here, the

values to be used for the energy densities, and the numerical routines utilized

during the simulation.

It should be noted at this point that we have not defined what our perfect

fluid or WDM will consist of, namely, we have not determined what f0 is

for either component. For the WDM, we will choose

f0(q) =
gs

(2π)3
1

eq + 1
, (7.1)

while the perfect fluid will be

f0(q) =
3

(2π)3
1

eq + 1
+

1

(2π)3
1

eq − 1
. (7.2)

The perfect fluid distribution function is made to represent a mix of photons

and neutrinos, while the WDM distribution is chosen to be comparable to

the massive neutrino case studied earlier.
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7.1 Energy Density Normalization

Normally gs represents the number of degrees of freedom, but since we are

not specifying a specific WDM candidate, we shall leave gs as a free param-

eter, giving us the freedom to set ρwdm to a desirable quantity. Looking at

our equations, the only time the factor of gs will appear will be in conjecture

with T 4
0wdm. As this is also the only time T0wdm explicitly enters the equa-

tions due to our scaling, this allows us to set the full product of gsT
4
0wdm to

determine the density. As we are not setting a specific value for T0wdm, we

will need to set m
T0wdm

instead of m.

For the perfect fluid, we shall consider a mix of fermions and bosons.

From Ref. [3], we can determine that

ρpf =
π2

15

{

1 + 3

(

7

8

)(

4

11

)4/3
}

T 4
pf. (7.3)

We have assumed that the fermions are massless neutrinos and that the

bosons are photons. This is done to attempt to simulate the real Universe.

With this goal in mind, we shall also set ρcrit to be that seen in the real

niverse. We will also set ρpf/ρwdm at a = 1 to be equal to the ρrad/ρmatter

observed.

Using the radiation to matter ratio and the critical density, we may

determine ρpf and ρwdm and use these to determine T0pf and gsT
4
0wdm. For

the perfect fluid, we use equation (7.3), and for the WDM, we compare ρwdm

with 4πgs(
T0wdm

a )4
∫

q2dqǫf0(q)/gs. We have now discussed how to set up the

system and the equations that will be evolved within it.
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7.2 Numerical Routines

There are two primary numerical calculations that are accomplished by the

simulation, solving the differential equations and performing the integrals.

For the differential equation solver, a Runge-Kutta routine will be used,

with adaptive step size. We will use the routine odeint to drive the solver.

For more details on these routines consult Ref. [12].

For the integration routine, we will use the Gauss-Laguerre quadrature

routine described in Ref. [8]. This is a routine that works well for exponen-

tially decaying functions that must be integrated from 0 to ∞. The basic

quadrature expression is

I =

∫

∞

0
dqf0(q)g(q) ⋍

n
∑

i=1

Wig(qi). (7.4)

For the Gauss-Laguerre quadrature, we have this basic expression

∫

∞

0
dqe−qh(q) ⋍

n
∑

i=1

wih(qi), (7.5)

where qi are the ith roots of Ln, the nth Laguerre polynomial. The weights

wi are determined from

wi =
qi

(n+ 1)2[Ln+1(qi)]2
. (7.6)

If we set h(q) = eqf0(q)g(q), we may relate wi to Wi through

Wi = wie
qif0(qi). (7.7)
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This allows us to calculate the weights once for a set of q values, and then

multiply them by the appropriate function g, depending on the integral.

Another advantage of this routine is that one only needs a few q modes to

obtain suitable precision. We choose to use 20 q modes for our case, as this

leads to convergence.

Using both of these numerical routines, it is now possible to run the

simulation, and obtain results.
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Chapter 8

Simulation Results

Before looking at out results for the full simulation of the WDM+pf model,

we will run the checks that have been discussed in previous chapters. We

will verify first that the perfect fluid matches the analytic solution. We will

then compare the high mass WDM to the CDM cases and the low mass

WDM to the massless neutrino solution.

8.1 Perfect Fluid Comparison

We will be comparing the results from our numerical analysis and the ana-

lytic solution, (4.4).

We can see from Fig. 8.1 that there is no noticeable difference between

both analytic and numerical solutions in the pure perfect fluid case at late

times. When kτ ≪ 1, numerical issues cause the analytic solution to be

inaccurate, but our computed solution matches with the expected value for

the analytic solution. Once kτ becomes larger, there is a perfect match

between both cases. As the analytic solution is only valid for a radiation

dominated universe, we will not be able to use the analytic solution for the

WDM+pf system once there is a significant matter component.
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8.2. Cold Dark Matter Comparison
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Figure 8.1: Perfect fluid comparison: Percentage difference between the
analytic solution and numerical solution for a perfect fluid. At early times,
the solution does not match, but this is due to the numerical issues when
evaluating the analytic solution when kτ ≪ 1.

8.2 Cold Dark Matter Comparison

Having now confirmed that the perfect fluid component is properly cal-

culated, we will now focus on making sure that the WDM component is

working properly. We will begin with comparing a very high mass WDM

scenario with the CDM case. We choose our mass such that the particles are

non-relativistic at the start of the simulation. In order for both these cases

to be comparable, we must evolve the high mass WDM alone, without the

perfect fluid component. This ensures that we are in a matter dominated

universe.

We can see from Fig. 8.2 that there are numerical differences between

both cases. The difference remains small during the time of integration. The
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8.2. Cold Dark Matter Comparison
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Figure 8.2: High mass warm dark matter comparison: Percentage difference
between CDM and WDM with m/T0 = 1015. At early times, the difference
is caused by a numerical inaccuracy in the integral to determine δ. At late
times, the inaccuracy grows. The magnitude of the difference remains small
for during the time of interest.

error is caused by the Laguerre quadrature integration method being inac-

curate. One possible cause of this inaccuracy are the roots of the Laguerre

polynomials used to calculate the weights. The values obtained through

using the Gnu Scientific Library (GSL) Laguerre routine do not agree with

the ones from Mathematica.[16] The values from the GSL routine matched

the roots found when using the recursion relation,

L0(x) = 1,

L1(x) = 1− x,

L(k + 1)(x) =
1

1 + k
((2k + 1− x)Lk(x)− kLk−1(x)).

(8.1)
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8.3. Massless Neutrino Comparison

Hence the GSL roots were used. It is possible that the GSL routine uses the

same recursion relation and that the same numerical inaccuracies appeared,

causing both sets of roots to match, and causing the Mathematica roots to

be the proper solution.

Another possible cause for the inaccuracy, is the number of moments

present. In the CDM case, only the first two modes are considered as the

others should be 0. When evolving the WDM case, there is the possibility

of power leaking into higher moments as we do not automatically set them

to 0. Even when setting the WDM case to only have 2 moments, there

are similar innacuracies. Without having precise integration methods, it is

hence difficult to judge if there are significant errors introduced by power

leakage.

There now remains only one more area where the code may not be func-

tional. We must now look at the low mass extreme limit.

8.3 Massless Neutrino Comparison

We will now look at the final test case, the low mass WDM. This regime

should behave like the massless neutrino case. In order to make sure that

our WDM has low enough mass, we set m
T0

≪ 1. This ensures that ǫ ∼ q.

It should be noted that Fig. 8.3 shows the actual difference and not

percentile difference like the other plots. This is due to the oscillatory nature

of the solution causing division by 0 if we tried to plot a relative difference.

From Fig. 8.3, we see a good match between both cases at early times,

given that δ varies between −2 and 3, while φ is always between −1 and
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8.3. Massless Neutrino Comparison
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Figure 8.3: Low mass dark matter, absolute difference: Difference between
massless neutrinos and WDM withm/T0 = 10−9. At early times, both cases
are seen to agree, but as kτ > 1, these cases start diverging.

1, and θ oscillates between −0.0015 and 0.0025. Both cases start diverging

when kτ > 1. The integration method does not always perform the best

around origin crossing, due to the convergence check relying on the value

itself. As our solution crosses 0, the integrator may be causing numerical

inaccuracies, but it is difficult to ascertain due to the large number of equa-

tions, causing numerical issues difficult to track. Another possible source of

inaccuracy is the number of moments present. As the low mass WDM needs

to be solved for an array of q modes, it was not computationally feasible

to solve it for the recommended 2000 modes or more with the equipment

I had access to. As such, there may be power reflecting back to the lower

moments instead of propagating.
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8.4. Warm Dark Matter Data

8.4 Warm Dark Matter Data

Although some results from our simulation may be questionable, we will

nevertheless perform the WDM+pf simulation. We choose m such that

am ≪ q initially, but such that m ≫ q. The behaviour of the solution will

depend on the properties of the system when the modes cross the horizon,

which occurs when kτ = 1. Hence, small values of k will enter the horizon

when ǫ ∼ am, and resemble CDM, while large k modes will cross when

ǫ ∼ q, behaving like massless neutrinos when crossing the horizon. Since

am will eventually dominate ǫ, we expect it will begin behaving like CDM

at late times, but with a diminished amplitude, due to the decay present

during the transition between the HDM and CDM regimes. The differential

equation solver does not seem to converge when the modes cross while still

in the HDM regime, or nearing transition to the CDM regime. As such, we

may only look at purely CDM modes, and modes that transition to CDM

shortly after horizon crossing. We will see the behaviour of the low k modes

in Figs. 8.4, 8.5 and 8.6, where we look at the perturbations for a number

of different k values.

Current versions of the code have difficulty with large k modes. We

are limited to k < 3Mpc−1 as this is the highest mode that will complete

its evolution. Also, it should be noted that increasing values of k takes

increasing time to calculate. The inaccuracies mentioned earlier may cause

errors to accumulate, causing convergence of the differential equations to be

slower and to also eventually cause the system to stop converging.

Once the numerical issues are solved, we may transform the k space data
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8.4. Warm Dark Matter Data
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Figure 8.4: Warm dark matter: Evolution of δ for k = 0.0030 Mpc−1,
k = 0.2060 Mpc−1, and k = 1.2623 Mpc−1 with m/T0 = 107. We see that
these modes lead to an increasing amlitude as expected.
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Figure 8.5: Warm dark matter: Evolution of θ for k = 0.0030 Mpc−1,
k = 0.2060 Mpc−1, and k = 1.2623 Mpc−1 with m/T0 = 107. We see
that the higher k modes are not pure CDM. The increase in θ shortly after
kτ = 1 represents the momentum of the particles inhibiting the collapse of
the system, as HDM would.

45
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Figure 8.6: Warm dark matter: Evolution of φ for k = 0.0030 Mpc−1, and
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8.4. Warm Dark Matter Data

into real space to see how the WDM is collapsing. In the following chapter,

we will discuss how we perform this real space transform.
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Chapter 9

Data Analysis Routines

There are two different real space transforms that we wish to look at. We

will begin by examining δ and θ in real space. Afterwards, we will look

at the distribution functions in real space. We may use the information

obtained from the perturbations to verify the distribution function.

9.1 Transfer Function

There is one important detail that has not been discussed yet that will al-

low us to perform these transforms. Upon looking at the equations that we

evolve, all terms are proportional, to first order, to a perturbation. As such,

we may multiply all the perturbations by some function of k, without affect-

ing the equations. What this allows us to do is rewrite our perturbations

as T (k)F (k), where T (k) is the quantity calculated in the previous sections

(δ, θ, ψ, etc) and called the transfer function and F (k) is some function of

k[3]. We should note that despite T (k) being different for each perturba-

tion, F (k) must be the same for all perturbations. What this decomposition

allows us to do is set the initial distribution of matter. Since δ is constant

at early times for all k, if we set F (k) to the Fourier transform of some f(x),

δ(x, τ0) will have the same shape as f(x). We may also use F (k) to set the
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9.2. Real Space Perturbations

properties of our system. By modifying the magnitude of F (k), this will

allow us to set either the magnitude of our initial conditions, or fix some

end point quantity to a desired value. In our case, we chose to set σ8, the

RMS overdensity in a sphere of 8 Mpc[9], such that it was comparable with

the real Universe, where

σ28 = 〈
[

d3k

(2π)3
δ(~k)W8(~k)

]2

〉, (9.1)

where W8(~k) is the Fourier transformed 3 dimensional top hat function for

a 8 Mpc sphere.

9.2 Real Space Perturbations

We can now discuss the real space perturbations. We wish to work in three

dimensional real space. Usually a Fast Fourier Transform (FFT) algorithm

is used to numerically calculate Fourier transforms. Although these can

be adapted to work in more then one dimension, we instead use the fact

that our system is spherically symmetric to utilize a Hankel transform[11].

The Hankel transform is similar to a Fourier transform but it utilizes the

Bessel functions as a basis instead of the complex exponential. The Hankel

transform is also only valid for functions which only depend on r, whether

it be in two dimensions or three. The transform is defined as [11]

Hν(k) =

∫

∞

0
h(r)Jν(kr)rdr, (9.2)
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9.2. Real Space Perturbations

where Jν is the Bessel function of first kind of order ν, with ν ≥ −1/2. The

inverse is simply

h(r) =

∫

∞

0
Hν(k)Jν(kr)kdk. (9.3)

The integer values of ν represent the 2D transforms while the half integers

are the 3D transforms. These are the ones we are interested in. We will be

looking at the ν = 1/2 transform. The corresponding Bessel function is

J1/2(kr) =

√

2kr

π

sin(kr)

kr
. (9.4)

We cannot simply Hankel transform our calculated values with equation

(9.3) as our transfer functions where specifically calculated in Fourier space.

As such, we wish to equate the Fourier transform to the Hankel transform.

We will use f(r) and F (k) to denote the Fourier functions, and h(r) and

Hν(k) for the Hankel functions. If we perform the Fourier transform for a

radially symmetric system, we obtain

F (k) = 4π

∫

∞

0
f(r)

sin(kr)

kr
r2dr. (9.5)

Comparing F (k) to H1/2(k), we can see that if we set

h(r) = f(r)(2π)3/2
√
r√
k
, (9.6)

then both F (k) and H1/2(k) are equal. The same analysis can be done for

the inverse transforms, where we find that we must take the inverse of r and

k to obtain equivalence.
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9.2. Real Space Perturbations

There is one subtlety that we now must consider before applying this

procedure to θ. When calculating θ, we used the fact that in Fourier space,

the divergence in real space can be replaced by −ik in Fourier space. This

is a property of the Fourier transform and does not hold for the Hankel

transform. As such, we must obtain a new method of transforming θ(k)

using the Hankel transform. Beginning with the inverse Fourier transform,

using the substitution procedure derived above, we will take the divergence

on both sides to obtain

∇r · ~v(r) = 4π

∫

∞

0
∇r · (~v(k)

sin(kr)

kr
k2dk). (9.7)

Performing the derivative on the RHS, we obtain

θ(r) = 4π

∫

∞

0

~v(k)

(

sin(kr)

kr2
+

cos(kr)

r

)

k2dk. (9.8)

We can compare this expression with J3/2 and J1/2 to see that

θ(r) = (2π)3/2
∫

∞

0

~v(k)k1/2

r1/2

(

J1/2

kr
− J3/2

)

kdk. (9.9)

We can now transform our perturbations from k space into real space using

a Hankel transform.

Unfortunately, due to the numerical restrictions discussed in the previous

chapter, we do not cover a sufficient k range to apply the Hankel algorithm

with enough resolution to observe interesting perturbations. The maximum

resolution is proportional to 2π/kmax and as we saw earlier, k < 3Mpc−1,

and as such, x can only be sampled roughly every 2 Mpc, and we wish for
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9.3. Distribution Function in Real Space

perturbations that are between 10-100 kpc.

9.3 Distribution Function in Real Space

The other real space quantity of interest is the distribution function. To

obtain it, we must transform Ψ(~k, τ, qn̂). Unlike the perturbations that we

transformed earlier, Ψ is not spherically symmetric due to the presence of

Pl(k̂ · n̂). As such, we cannot perform the Hankel transform. We will need

to perform a full 3D Fourier transform. Before we attempt to numerically

perform this, let us see if we may simplify the integrand.

We begin by defining the three vectors of interest, ~k, ~q, and~x. We have

some freedom on how to define these vectors. Due to azimuthal symmetry,

we know that our final solution must depend on only x̂ · n̂. As such, we can

set the direction of x̂, and place n̂ in the same plane. The simple way of

doing this is by setting x̂ in the ẑ direction and place n̂ in the xz plane. We

leave k̂ as a free vector, as we will be integrating over all of k-space in our

Fourier transform. The final form of our three vectors are

x̂ = ẑ, (9.10a)

n̂ = sin(α)x̂+ cos(α)ẑ, (9.10b)

k̂ = cos(θ) sin(φ)x̂+ sin(θ) sin(φ)ŷ + cos(φ)ẑ, (9.10c)

where α = x̂ · n̂.

We may perform the appropriate dot products and rewrite our Fourier
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9.3. Distribution Function in Real Space

transform as

Ψ(~x, ~q, τ) =

∫

e−ikx cosφ
∞
∑

l=0

(−i)l(2l + 1)Ψl(~k, ~q, τ)

Pl(sin(α) cos(θ) sin(φ) + cos(α) cos(φ))

dφdθ sin(θ)F (k)k2dk,

(9.11)

where F (k) is again the k space representation of the initial conditions.

We may now perform the angular integral analytically. We obtain

Ψ(~x, ~q, τ) = 4π

∫ ∞
∑

l=0

(2l + 1)Pl(α)
1

(kx)l+1





l
∑

m=0,even

θm(kx) sin(kx)(−1)m/2

+

l
∑

m=1,odd

θmkx cos(kx)(−1)(m+1)/2



F (k)k2dk,

(9.12)

where θm(x) are the reverse Bessel polynomials and are defined as[6]

θn(x) =
n
∑

m=0

(2n−m)!

(n−m)!m!

xm

2n−m
, (9.13a)

θn(x) =
n
∑

m=0

Cnm
xm

2n−m
. (9.13b)

The closed form of this expression was found by inputting the numer-

ical results of integrating over Pl into the Online Encyclopedia of Integer

Sequences [13].

Having determined an analytic equation, we must now consider how

to numerically compute this integral. The analytic solution works well for
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9.3. Distribution Function in Real Space

kx > 0.3 but begins to have numerical issues for small values of kx. By

Taylor expanding the solution, we obtain

Ψ(~x, ~q, τ) ≈2π

∫ ∞
∑

l=0

Pl(α)(2l + 1)

∞
∑

n=0

[

kxn(−1)n

Cnn
+

∞
∑

m=1

kxn+2m(−1)n+m

Cnn
∏m

l=1 2l(2m+ 1 + 2l)

]

k2F (k)dk,

(9.14)

which converges rapidly for small values of kx. We will hence use the analytic

solution for kx > 0.3 and the Taylor expansion for kx ≤ 0.3. We can now

numerically perform the k space integral to obtain the distribution function

in real space. To perform this integral, we integrate starting at a small value

of k and end at a large value of k instead of integrating from 0 to ∞. This

can be done since for a small k, F (k) approaches 0, and the Taylor expansion

portion approaches one. This gives us a k2 dependance overall, causing small

values to contribute little to the integral. As for the high k regime, we see

that the highest power in k is proportional to kF (k)(sin(k) or cos(k)). For a

spherically symmetric top hat of radius R, F (k) = 4π sin(kR)−Rk cos(kR)
k3

. As

such, for large k values, the integrand is proportional to k−1 or lower powers,

and, we may stop at some maximum k without incurring large errors. To

obtain the distribution function, we simply substitute Ψ we calculate into

equation (5.3).

In order to determine that this routine is valid, one may compare the

distribution functions with the perturbations. There should be a peak in

the distribution function related to δ and the peak should be displaced from
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9.3. Distribution Function in Real Space

~q = 0 by ~v.
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Chapter 10

Conclusion

With the amount of matter that is dark matter, it is important to fully

understand the behaviour of dark matter in structure formation. Using the

Conformal Newtonian gauge, we have obtained a system of equations to

evolve a variety of particle types through time. Using such equations, we

have been able to create a WDM+pf system and evolve it. Due to numerical

complications we have a limited range of k values that may be calculated.

Also, through the study of test cases, we have observed that some numerical

issues exist in our solver. After obtaining accurate transfer functions, we

would be able to transform our data into real space.

Once we have real space data, it would be possible to use it to generate

initial conditions for an N-body simulation. Our current set of equations

is linear, and as such, once the over density approaches 1, the equations

become inaccurate. Hence, the N-body simulation is necessary to obtain

the later evolution. We should note that due to the transitional properties

of WDM, we must evolve it until it is non-relativistic, before inputting it into

an N-body simulation. This N-body simulation would allow us to observe

how the WDM collapses and give us new insight in structure formation in

our Universe.

56



Bibliography

[1] Planck Collaboration. Planck 2013 results. XVI. cosmological parame-

ters. Mar 2013, 1303.5076.

[2] A. Del Popolo. Non-baryonic dark matter in cosmology. 2013,

1305.0456.

[3] S. Dodelson. Modern Cosmology. Academic Press, San Diego: London:

Burlington, first edition, 2003.

[4] Adrienne L. Erickcek and Kris Sigurdson. Reheating effects in the

matter power spectrum and implications for substructure. Phys. Rev.

D, 84:083503, Oct 2011.

[5] J. R. Gott, III and J. E. Gunn. The coma cluster as an x-ray source:

Some cosmological implications. Astrophys. J., 169:L13, Oct 1971.

[6] HL Krall and Orrin Frink. A new class of orthogonal polynomials:

The bessel polynomials. Transactions of the American Mathematical

Society, 65(1):100–115, 1949.

[7] Hannu Kurki-Suonio. Introduction to cosmological perturbation theory.

Lecture notes, Apr 2011.

57



Bibliography

[8] Julien Lesgourgues and Thomas Tram. The cosmic linear anisotropy

solving system (class) IV: efficient implementation of non-cold relics.

JCAP, 1109:032, 2011, 1104.2935.

[9] Chung-Pei Ma and Edmund Bertschinger. Cosmological perturbation

theory in the synchronous versus conformal newtonian gauge. Astro-

phys. J., 1994, astro-ph/9401007.

[10] Shmuel Nussinov. Some aspects of new cdm models and cdm detection

methods. Mod.Phys.Lett., A24:2213–2223, 2009, 0907.3866.

[11] A. Papoulis. Systems and Transforms With Applications in Op-

tics. McGraw-Hill series in systems science. Malabar, Florida: Robert

Krieger Publishing Company, 1968.

[12] William H. Press, Saul A. Teukolsky, William T. Vetterling, and

Brian P. Flannery. Numerical Recipes in C. Press Syndicate of the

University of Cambridge, Cambridge: New York: Port Melbourne, sec-

ond edition, 1988.

[13] N. J. A. Sloane. Online encyclopedia of integer sequences, Mar 2013.

[14] Shruti Thakur and Anjan A Sen. Can structure formation distinguish

λ cdm from non-minimal f(r) gravity? 2013, 1305.6447.

[15] David H. Weinberg, James S. Bullock, Fabio Governato, Rachel Kuzio

de Naray, and Annika H. G. Peter. Cold dark matter: controversies on

small scales. 2013, 1306.0913.

58



Bibliography

[16] Inc. Wolfram Research. Mathematica. wolfram Research, Inc, Cham-

paign, Illinois, version 8.0 edition, 2010.

59


