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Abstract

RNiO3 perovskites (R=rare earth) are one of the most interesting compounds in condensed

matter physics presenting various unusual physical properties. The detailed electronic structure

of these materials are very controversial at the present time. The charge transfer energy and

the d-d Coulomb interaction are the two very important parameters which can explain their

electronic behaviours nicely. However, predicting their values has been a challenge to the science

society so far.

X-ray Absorption Spectroscopy (XAS) and Resonant Inelastic Scattering (RIXS) are the

two very useful techniques to probe the electronic structure of a solid state system in general

and predict these two energies in particular. In this thesis Multiplet Ligand Field Cluster

Calculation (MLFCC) is used to calculate these two spectra, then the charge transfer energy

(∆), the covalent hopping integral(pds), and the d − d Coulomb repulsion energy Udd are

obtained by fitting the calculated spectra to the experiment.

In this work, the calculated XAS results are compared with the experiment and the adjusted

values are introduced as ∆ = 2.5 eV , pds=-1.9eV, Udd=7.5eV and 10Dq=0.5 eV.

The low spin to high spin transition is also studied and the critical charge transfer energies

and covalent hopping integrals are calculated at which the abrupt transition happens. It is

also found that in almost all low spin cases the d8L9 configuration has the largest contribution

to the ground state. Since the best fit of XAS is not satisfactory and displays considerable

differences with the experiment, the study is followed with the RIXS calculations.

Finally, the calculated RIXS results for different polarizations are compared with the exper-

iment.It results in a smaller ∆ = 0.8eV and a smaller absolute value of pds=-1.4eV at which

the double peak structure in XAS L3 vanishes. This could be an evidence to the fact that XAS

should not be interpreted in the conventional way and the ∆ should not be fitted to keep the

double peak which probably has another source than the multiplet structure.
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Chapter 1

Background Materials

1.1 Transition Metal Oxides

Transition Metal Oxides (TMOs) are believed to be one of the most fascinating systems in

solids. They exhibit various unusual physical properties such as the high temperature super

conductivity, huge variations in their magnetic properties and metal-insulator transitions. The

series RNiO3 (R=Rare earth) are the transition metal oxides, which present a sharp insulator-

metal transition strongly depending on temperature and tolerance factor.[19] Tolerance factor

(t ≡ dR−O√
2dNi−O

) is used as a measure of the amount of distortion of a perovskite from an ideal

cubic unit cell. Therefore, for a given RNiO3, the closer the tolerance factor to one, the closer

to cubic with Ni-O-Ni bond angle of θ = 180◦ .The detailed behaviour of these phase transitions

are shown in Fig. 1.1

Figure 1.1: Insulator-Metal-Antiferromagnetic phase diagram for nickelates as a function of the
tolerance factor or rare earth ionic radius and temperature.[19]

The phase diagram illustrates how for different rare earth radius, RNO shows different

magnetic and electronic properties. These transitions distinguish three different regimes: Metal,

anti-ferromagnetic insulator and paramagnetic insulator. From the diagram, it can be observed

that at low temperatures, PrNiO3 shows anti-ferromagnetic behaviour with ordered anti-parallel

spins, but when the temperature increases, it loses this ordering and experiences insulator-metal

1



1.1. Transition Metal Oxides

transition with delocalized electrons.

The sensitivity of these physical properties to the crystal chemistry and structural distortions

offers many possibilities to manipulating their properties in order to engineer new applications

in these materials, such as in the complex oxides heterostructure. [23] But for this aim, the

electronic structure of these materials itself has to be understood well.

From the Zaanen-Sawatzky-Allen scheme[21], using only a few parameters (the charge trans-

fer energy and the d − d Coulomb interaction energy) is able to account for the electronic be-

haviour of a great number of 3d TM oxides such as the phase transitions[13]. In this thesis we

try to find these two parameters by fitting the Multiplet Ligand Field Single Cluster Calcula-

tions to the experiment. Another purpose of this work is to test this theoretical approach for

the specific case of PrNiO3 (And NdNiO3) and comment if in this case the physical properties

can be described reasonably well by a single cluster calculation or not and if not what the

probable reasons could be.

In this thesis we also seek the charge transfer energy and the covalent hopping integral at

which in a given d7 valence configuration system a low spin to high spin transition can occur.

Being in a low or high spin state is an important characteristic of a system which can control

its magnetic and electronic properties.

The source of the unusual properties of d-transition metal oxides is the unique nature of

the valence d electrons.

Figure 1.2: The atomic arrangement of a single unit cell of the perovskite crystal structure of
RNO3. Green indicates the rare earth ion, red the oxygen and gray the nickel atoms.[3]

Transition metal atoms with their incomplete d shells combine with oxygen to form the

transition metal oxides. These are relatively ionic compounds with O2− ions and a rare earth

in a 3+ valence state leaving the nickel also in a 3+ valence state. Therefore, in PNO, nickel

is 3+ resulting in 3d7 valence shell configuration. Therefore, the principle quantum number n

and the orbital angular quantum number l of the valence electrons are 3 and 2 respectively. In

2



1.1. Transition Metal Oxides

a spherical potential, the electrons’ wave functions can be expressed as:

Ψn,l,m(r, θ, ϕ) = Rn,l(r)Y
m
l (θ, ϕ) = Rn,l(r)pl(cos θ)eimϕ

Rn,l(r) are the radial part of the wave functions depending on the n and the l and Y m
l (θ, ϕ)

or the spherical harmonics are the angular part of the wave function depending on the magnetic

quantum number m and the l which can be express in terms of the Legendre polynomials or

pl(cos θ) with:

n = 1, 2, 3, ...

l = 0, 1, 2, ..., n− 1

m = −l,−l + 1, ..., l − 1, l

So for the d orbitals with l = 2, there are five different magnetic quantum numbers and

therefore, five different angular wave functions, with:

−l ≤ m ≤ l→ −2 ≤ m ≤ 2→ m = −2,−1, 0, 1, 2

By using the corresponding spherical harmonics and the spherical to Cartesian coordinate

conversion, the real parts of the angular d orbitals take the following forms:

Figure 1.3: The spherical coordinates used in the spherical harmonics.[2]

x = r sin θ cosϕ

y = r sin θ sinϕ

z = r cos θ

3



1.1. Transition Metal Oxides

Y m?
l = (−1)mY −ml

d(x2 − y2) ∝ Re(Y −2
2 ) ∝ sin2 θ sin 2ϕ =

x2 − y2

r2

d(yz) ∝ Re(Y −1
2 ) ∝ sin θ cos θ sinϕ =

yz

r2

d(3z2 − r2) ∝ Re(Y 0
2 ) ∝ (3 cos2 θ − 1) =

3z2 − r2

r2

d(zx) ∝ Re(Y 1
2 ) ∝ sin θ cos θ cosϕ =

xz

r2

d(xy) ∝ Re(Y 2
2 ) ∝ sin2 θ cos 2ϕ =

xy

r2

Figure 1.4: The real part of the angular wavefunctions of d orbitals.[5]

For zero magnetic field and neglect of the spin orbit coupling, energy does not depend on

the magnetic quantum number m, therefore, in a spherical potential there are five different d

wave functions with the same energy or in the other words, in a spherical potential, d orbitals

are five-fold degenerate. Upon filling these states with electrons however one does have to take

into account the Coulomb interaction between the electrons which develops into a complicated

multiplet structure which we will discuss later in a simplified version.

However, to understand real materials, we are more interested in studying less symmetrical

cases such as the octahedral potential in a single crystal of RNO, assuming a cubic crystal

structure and equivalent Ni-O bond lengths. The lattice is shown in Fig. 1.2. One way to treat

this group of potentials and geometries is using the Ligand Field Theory (LFT) where ligand

usually refers to the oxygen 2p electron states forming bonds with the central Ni 3d states.

Crystal Field Theory (CFT) is the simplest form of LFT, in which each of the ligand

ions is treated as a point charge. If consider each oxygen, as a negative point charge, then

if the d orbitals points right towards them that will be very repulsive with a huge Coulomb

repulsion energy and if they points between them, less repulsive. So when d orbitals are off-axis

4



1.2. Covalency

(d(xy), d(xz), d(yz)) since oxygens are on the axes, it is less repulsive and in a lower energy.(

Fig. 1.4 ). Therefore, The d(x2−y2) and d(3z2−r2) which are usually referred to as eg orbitals,

have the same and a higher energy and d(xy), d(yz) and d(xz) or t2g orbitals are found to be

at a lower energy. That is how the degeneracy is partly removed in an octahedral geometry.

The splitting energy is usually referred as 10Dq. The eg orbitals go up by 6Dq and the t2g

orbitals go down by 4Dq to keep the center of gravity the same as for the spherical potential

energy levels. The crystal field energy level diagram is shown in Fig. 1.5

Figure 1.5: Crystal field energy level diagram for the octahedral geometry

1.2 Covalency

Although crystal field theory can explain some electronic features of the d orbitals, it completely

ignores the nature of ligands by treating them as point charges.

That is why it fails in, for example, explaining a large energy splitting caused by a neutral

ligand like CO or high spin to low spin transition by changing the charge transfer energy.

LFT is the model, which considers all ionic, covalent and hybridization aspects of coordi-

nation complexes.

The basic idea behind both CFT and LFT is that when there is a metal atom, mostly a transi-

tion metal ion, at the center of a coordination sphere, surrounded with donor ligand atoms, the

energy of its valence orbitals is going to be changed by the existence of those ligands. Figures

1.5 and 1.6 show these two theories predictions in this regard in an octahedral geometry.

Apparently, there is a huge contribution from covalency and electron hopping between

ligands and the metal ion. In the latter one, there are Ni-d orbitals at some energy and oxygen

orbital at some lower energy. They interact with each other resulting in σ and π bonds and

anti-bonds.

Fig. 1.7 shows how in cubic symmetry t2g and eg orbitals form π and σ combinations

respectively. Since eg orbitals point towards oxygens p orbitals, their hopping integrals are

larger and put σ bonding and anti-bonding energies at higher levels than π ones. These hopping

integrals are usually presented in the parameters pdσ and pdπ.
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1.2. Covalency

Figure 1.6: Orbitals energy level diagram for a NiO6 cluster considering covalency and
hybridizations.[8]

Figure 1.7: d(xy) and d(x2 − y2) orbitals forming π and σ bondings with oxygens’ p orbitals
respectively.[9]

tpp and pds are the other parameters related to the covalency which are defined as follows:[8]

tpp = ppσ − ppπ

where ppσ and ppπ are the σ type and π type hopping integrals between the oxygens p orbitals,

defined relative to the O-O bond direction. In the other words, the bonding and anti-bonding

orbitals are tpp below and above the Op onsite energy.

Veg or pds and Vt2g are covalent hopping integrals are also defined as the follows:
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1.3. The Zaanen-Sawatzky-Allen Model

Veg = pds = 〈ψdeg |H|ψLeg
〉 =
√

3pdσ

Vt2g = 〈ψdt2g
|H|ψLt2g

〉 = 2pdπ

Wherein pdσ and pdπ are hopping energies between an electron in a Ni-d orbital and an

electron in ligand-p shell with σ and π symmetries respectively. As an example consider the

dx2−y2 orbital with four π bonds with the oxygens p orbitals around in an xy plane as shown

in Fig. 1.7 Then

Vdx2−y2
= 〈ψdx2−y2

|H|ψLt2g
〉 =

1√
4

[〈ψdx2−y2
|H|p1〉+〈ψdx2−y2

|H|p2〉+〈ψdx2−y2
|H|p3〉+〈ψdx2−y2

|H|p4〉]

= 4√
4
pdπ = 2pdπ

Where each p orbital has been considered normalized and 1√
4

is the normalization factor for

their linear combination. The signs in the linear combinations are determined by the orbitals

phase and can be read off of the figure above. In defining the hopping integral the correct

coordinate system has to be selected to preserve the symmetry.

1.3 The Zaanen-Sawatzky-Allen Model

There are two main theories describing the outer electrons. Theories which mostly can describe

systems in which the band width is large compared to the electron-electron Coulomb repulsion

energy. Alternatively, the systems in which there is a large overlap between the orbitals of

neighbouring atoms such as the systems with s or p valence shell. The other ones are the theo-

ries which are more applicable to the systems with localized electrons and bandwidths smaller

than the Coulomb energy like systems with outer f shells. [15]

Whereas the above systems, the TMOs with partially filled d shell, have an intermediate band-

width and therefore show intermediate characters. That is why band theory or ligand field

theory alone fails in describing them perfectly. One solution can be the employment of both

theories together.

Before Fujimori[6] and Sawatzky and Allen[16] introduced charge transfer energy as an

important parameter in the physics of transition metal oxides, it was thought for a long time

that nickel oxide is a Mott-Hubbard insulator where the band gap is determined by U , the

on-site 3d − 3d Coulomb repulsion energy. But it was not consistent with the experiments

which presented huge differences in the band gap for the compounds with a same TM atom

and different surrounding ions.[10] If it was a Mott-Hubbard insulator, the band gap should be

determined by the Udd, which is not changed strongly with changing the ions. This controversy

was settled by considering ∆, the energy it costs to transfer an electron from a ligand to

the transition metal atom. Zaanen, Sawatzky and Allen presented a systematic scheme [21]

interpreting the electronic structure of the 3d transition metal compounds in terms of the ∆
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1.3. The Zaanen-Sawatzky-Allen Model

and the Udd.

According to ZSA diagram,Fig. 1.8, there are two different types of gaps possible in tran-

sition metal compounds. Namely, the charge transfer gap due to the ligand to metal charge

transfer energy and the Mott-Hubbard gap associated with Coulomb interaction energy. Then

associated with these two gaps, the compounds can be categorized into two regimes: Mott-

Hubbard regime where U is smaller than ∆ and the band gap is determined by the U, and

charge transfer regime where ∆ is smaller than U and the magnitude of band gap is given by

∆. Therefore, it can be concluded that when either the Mott-Hubbard gap or charge transfer

gap closes, there will be an insulator to metal transition. The diagram of their density of states

is shown in Fig. 1.9 which illustrates their differences in more details. Fig. 1.10 also shows

what kind of charge fluctuations happen in each of these two types of materials.

Figure 1.8: The Zaanen-Sawatzky-Allen (ZSA) diagram[21]

The on-site effective screened 3d−3d Coulomb energy U or U eff is here defined as the energy

it costs to transfer an electron from a TM d orbital to another TM d orbital on a different site.

So, basically we are left with a dn+1 and a dn−1 ions rather than the two initial dn ions. In

order to find the U or the Hubbard conductivity gap, the Hund’s ground state energies 1.4 of

the systems with n, n − 1 (ionized state), and n + 1 electrons (electron-affinity state) have to

be calculated.[12]

U = E(dn+1) + E(dn−1)− 2E(dn)

The charge transfer energy (∆) is an energy it costs to remove an electron from a ligand p
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1.3. The Zaanen-Sawatzky-Allen Model

Figure 1.9: Density of states versus energy of TM 3d and anion 2p states determining the
two different types of insulator in ZSA scheme. EA and EI are electron affinity and ionization
energies.[17]

Figure 1.10: Electron removal and addition in Mott-Hubbard insulator and charge transfer
insulators.[17]

orbital and put it in a TM d orbital.

∆ = E(dn+1L)− E(dn)
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1.4. Multiplets and Hund’s Rules

where L denotes one hole in a ligand atom.

It is believed that high valence oxides like Ni3+ in RNOs belong to the charge transfer

regime where the smallest gap is associated with the ligand to metal charge transfer energy.

Therefore, it should be strongly affected by the configurations of the transition metal and its

surrounding oxygen ions.

That could be the reason makes RNiO3 electronic structure difficult to understand and

challenging. In this thesis we try to investigate this for Praseodymium Nickel Oxide (PNO)

by doing Ligand Field Cluster Calculations (LFCC), employing M. W. Haverkorts codes[9] and

experimental data from CLS and PSI.

1.4 Multiplets and Hund’s Rules

The Hund’s rules determine in a given system which state should be the ground state. They

say that the atomic orbitals of a particular shell have to be filled according to the following

rules:

Firstly, the total spin has to be maximized. It in fact implies that the electrons should have

parallel spins. Therefore, from the Pauli exclusion principle they must be in different spatial

orbitals which results in a smaller Coulomb repulsion and lowers the energy.

Secondly, the total orbital angular momentum has to be maximized. It leads to having lots

of angular lobes which again reduces the Coulomb repulsion.

And the third one states that for the less than half filled shells the total angular momentum

is J = L− S and for more than half filled shells, it is J = L+ S

Then the Hund’s ground state energy can be determined by:[12]

E(n,Hund) = αI(n)I + αF0(n)F 0 + αJ(n)J + αC(n)C

where: αI = n, αF 0 = n!
2 and the αJ is the number of parallel spin pairs and I is the one

electron potential. C describes the angular part of the multiplet splitting and J is the Hund’s

exchange interaction energy which describes the exchange interactions between parallel spins:

C(dd) =
1

14
(
9

7
F 2 − 5

7
F 4)

JH(dd) =
1

14
(F 2 + F 4)

In Multiplet Ligand Field Theory (MLFT), there are several possible electronic configura-

tions (multiplets) with different energies because of the different Coulomb interaction energies

for each. These electron-electron Coulomb interactions can be written as:[18]

〈ψ|
N∑

i,j>i

1

rij
|ψ〉 =

(
N

2

)
〈ψ| 1

r12
|ψ〉

10



1.4. Multiplets and Hund’s Rules

In Hartree-Fock formalism the many body wavefunctions |ψ〉 are chosen to be in the form

of the Slater determinant, so with P ’s as permutation operators, we will have:

|ψ〉 = 1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1( ~x1) ... ψN ( ~x1)

ψ1( ~x2) ... ψN ( ~x2)

... ... ...

... ... ...

ψ1( ~xN ) ... ψN ( ~xN )

∣∣∣∣∣∣∣∣∣∣∣∣
= 1√

N !

N !∑
n=1

Pn{ψ1( ~x1)...ψN ( ~xN )}

〈ψ| 1

r12
|ψ〉 =

1

N !

N !∑
n,m=1

∫
(−1)n−1Pn{ψ?

1( ~x1)...ψ?
N ( ~xN )} 1

r12
(−1)m−1Pm{ψ1( ~x1)...ψN ( ~xN )}d ~x1d ~xN

=
(N − 2)!

N !

N∑
n,m=1

[

∫
ψ?
n( ~x1)ψ?

m( ~x2)
1

r12
ψn( ~x1)ψm( ~x2)d ~x1d ~x2−

∫
ψ?
n( ~x1)ψ?

m( ~x2)
1

r12
ψn( ~x2)ψm( ~x1)d ~x1d ~x2]

⇒ 〈ψ|
N∑

i,j>i

1

rij
|ψ〉 =

1

2
[

N∑
m6=n

∫
ψ?
n( ~x1)ψn( ~x1)

1

r12
ψ?
m( ~x2)ψm( ~x2)d ~x1d ~x2

−

∫
ψ?
n( ~x1)ψm( ~x1)

1

r12
ψ?
m( ~x2)ψn( ~x2)d ~x1d ~x2] = 〈nn|mm〉 − 〈nm|mn〉

Note that in the first integral the ψ?
n( ~x1)ψn( ~x1) and ψ?

m( ~x2)ψm( ~x2) terms are like the clas-

sical charge densities of two electrons in orbital n and m so the whole integral acts like the

classical Coulomb repulsion. But the second term has no classical counterpart and comes from

the ”Pauli exclusion principle”. It is subtracted from the first term and reduces the total

Coulomb repulsion energy compared to the classical case. They are usually referred as Slater

integrals and exchange term respectively.

These two terms can also be expressed in one term as:

Vijkl =

∫ ∫
1

|r1 − r2|
ψ?
i (r1)ψ?

j (r2)ψk(r2)ψl(r1)dr1dr2

It is convenient to express this integral in terms of the Legendre polynomials and the spher-

ical harmonics:

Rk(ij, kl) =

∫ ∫
2rk<

rk+1
>

P ?
i (r1)P ?

j (r2)Pk(r1)Pl(r2)dr1dr2

where r< = min(r1, r2), r> = max(r1, r2)

However, the Coulomb interaction term is usually expressed in Slater integrals as: F k(i, j) =

Rk(ij, ij) and Gk(i, j) = Rk(ij, ji) which are corresponding to the Coulomb term and exchange

term respectively. It can be derived that for electron-electron interaction in d orbitals all terms
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1.5. 2p-X-ray Absorption Spectroscopy

except F 0, F 2 and F 4 vanish, these are usually called monopole, dipole and quadrupole integrals

respectively. Because of the polarizations effect the monopole term (F 0) is strongly screened

and reduced. For example, in NiO it is about 7 eV[20], while its atomic value is about 18

eV.[14] . In our calculations it is referred as Udd which is varied to get the best agreement with

experiment. The other Slater terms are hardly reduced because of the screening so we can trust

the abinitio results for them. Although experience shows that better is reduce them by about

20% because of the atomic correlation effects and the hybridization with ligand orbitals in the

compounds.

In transition metal chemistry these Slater integrals are usually expressed in terms of Racah

parameters A,B and C with:

A = F0 − 49F4

B = F2 − 5F4

C = 35F4

With F0 ≡ F 0, F2 ≡ F 2

49 and F4 ≡ F 4

441

In MLFT the energy of a state with n electrons in an open d shell is determined by:

E(n,L, S, λ) = nI +
1

2
n(n− 1)Uav + U(n,L, S, λ)

Wherein, L, S and λ are total orbit, spin and seniority quantum numbers. I is the one

electron potential, Uav is the average multiplet Coulomb exchange interaction energy and

U(n,L, S, λ) is the multiplet splitting.

The average Coulomb repulsion energy between two electrons in a d orbital in terms of

Slater integrals is:

Uav = F 0 − 14

441
(F 2 + F 4)

1.5 2p-X-ray Absorption Spectroscopy

In 2p-XAS, a hole is created in a 2p core level by transition of an electron from there to 3d

valence shell by shining x-ray photons to the sample. This excited state is very unstable so

the core hole decays by radiant x-ray emission or other radiation-less transitions like Auger

decay.[7]

There are many different states in the valence shell but only transitions obeying dipole

selection rules can happen. Therefore for each initial state the set of available excited states

are different. That is why 2p-XAS can provide good information of the electronic structure of

the ground state.

The rate of transition from the initial state i to the final state f through the above process
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1.5. 2p-X-ray Absorption Spectroscopy

can be determined by the Fermi’s Golden rule:

Ri→f =
∑
f

2π

~
|〈f |A.p|i〉|2δ(Ef − Ei)

Where p is the momentum operator and A is the vector potential of the applied electromagnetic

field. The delta term satisfies energy conservation and the sum is over all unoccupied final states

with the energies of Ef . Then it can be seen that to have a finite transition probability we need

to have specific conditions in the initial and final states. As an example, the transition from a

s orbital to py orbital with x polarized light is not allowed since the corresponding matrix term

is zero which is an integral over an odd function over whole space. This also explains why XAS

spectra can be different for different light polarizations (but not in the cubic symmetry).

In this report, 2p-XAS is used to study a nickelate single cluster in PNO.

To understand XAS main features, let us take a look at Fig. 1.11 which is a PNO XAS

spectrum from experiment. There are two resonance structures near energies 853 and 870 eV.

Figure 1.11: PNO 2p-XAS spectra from experiment [11]

Therefore, there is a 17 eV energy difference between them. This cannot be due to the splitting

energy between t2g and eg orbitals. This splitting is only about 1eV or less. The splitting

between these two peaks, which are called L3 and L2, with L3 at a lower energy,is resulted from

the spin orbit coupling in the 2p-core level.

The spin-orbit coupling is an interaction between electron’s spin magnetic moment and the

magnetic field generated by the electron’s orbital motion around the nucleus. These interaction

energy is equal to:

∆H = µs.Bl
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1.5. 2p-X-ray Absorption Spectroscopy

The electric field electrons travel through is radial so from the Biot-Savart law the magnetic

field will be:

B =
Zeµ◦
4πr3

[v × r]

l = r ×mev

→ B =
Zeffeµ◦
4πr3me

~l

µs = −gs
e

2me
~s

→ ∆H =
Zeffe

2µ◦
8πm2

e

1

r3
(~s.~l)

We also have:

〈 1

r3
〉 ∝ Z3

eff

→ ∆H = λ~s.~l

with λ ∝ Z4
eff where Zeff is the screened nuclear charge.

The orbital angular momentum in 2p shell is 1 and spin of a single hole is 1
2 so the associated

total angular quantum number can take the following range of values:

|l − s| ≤ j ≤ |l + s| → 1

2
≤ j ≤ 3

2
→ j =

1

2
,
3

2

These two values give rise to the two different resonance peaks.

J = L+ S → J2 = L2 + S2 + 2L.S → j(j + 1) = l(l + 1) + s(s+ 1) + 2l.s

〈λl.s〉 = λ
j(j + 1)− l(l + 1)− s(s+ 1)

2

=
λ

2
[j(j + 1)− 1(1 + 1)− 1

2
(
1

2
+ 1)] = λ2[j(j + 1)− 11

4
] =

forj =
1

2
→= −λ

forj =
3

2
→=

λ

2

⇒ splitting :
3λ

2

We saw earlier that the coefficient λ is proportional to Z4
eff . Therefore this splitting in the

2p-XAS spectra should increase strongly with increasing the effective nuclear charge.

The Fig. 1.12 shows how for late transition metal compounds with higher nuclear charge

the L3 − L2 splitting is larger compared to the early transition metal ones. There is a same
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1.6. Resonant Inelastic X-ray Scattering

Figure 1.12: 2p-XAS spectroscopy of different transition metal compounds. The L3 − L2

splitting is larger for the late transition metal compounds with the higher nuclear charges. [9]

trend for transition metals with 3d, 4d, 5d and 6d configurations. The higher Zeff the larger

spin-orbit coupling effect.

L3 corresponding to j = 3
2 , has higher intensity because of the higher degeneracy of 2j+1 = 4

comparing 2j + 1 = 2 in L2. In 1.11 the continuum steps in background intensity, which are

from excitations to unbound continuum-like state, have been subtracted. In XAS, the spectral

shape can also provide detailed information of the ligands’ effect on the metal and the atom’s

electron configuration. As discussed above the energy splitting is also an indication to the

spin-orbit coupling effect.

Another feature of a spectrum is its spectral line width. The spectral lines are not infinitely

sharp. They are broadened and one of the most important reason of this broadening is called the

”‘life-time” or the ”‘natural”’ broadening. The reason is rooted in the ”‘uncertainty principle’

which relates the excited state life time to the uncertainty of its energy. The shorter life time,

the larger energy uncertainty or the wider spectral line. The experimental energy resolution is

the another source to the line width broadening.

1.6 Resonant Inelastic X-ray Scattering

RIXS is a powerful tool to probe low energy excitations such as the charge transfer and d− d
excitations.

In this process the photon makes an excitation from core to conduction band, then an

electron decays back from conduction band to the core and a photon comes out. The excitations

in which an electron decays back to the same d configuration are called d − d excitations and

those falling to another configuration with different number of d electrons and ligand holes are
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1.6. Resonant Inelastic X-ray Scattering

known as charge transfer excitations. [7]

Therefore, This process should not be necessarily elastic. The second electron can decay

from a lower level in the conduction band and photon can lose some energy. The amount of lost

energy depends on the occurred excitation. Fig. 1.13 shows how different kind of excitations

cost different amount of energies,the energy scales are relevant for transition metal oxides. The

process is resonant because energy of the incident light has to be the same as the energy of the

x-ray absorption edges to excite an electron from core to valence.

RIXS usually is considered as a two-step process. One from initial state |i〉 to an intermediate

one |m〉 and then from intermediate to final state |f〉 with the energies of Ei, Em and Ef

respectively. The intermediate state is the state with a hole in the core level, which is the same

as the excited state in XAS.

The corresponding intensity of this second order process is determined by the Kramers-

Heisenberg (KH) formula:

I ∝
∑
f

(∑
m

〈f |T †|m〉〈m|T |i〉
Ei + ~Ω− Em − iΓm

2

)2

δ(Ei − Ef + ~Ω− ~ω)

Ω and ω are angular frequencies of the incident and emitted photons respectively. Γm is the

intermediate state intrinsic line-width or the broadening due to the intermediate state lifetime

and T is the relevant transition operator. At resonant, when the intermediate state is the XAS

final state, the other terms in the denominator become zero (Em − Ei = ~Ω) and leaves only

the core-hole broadening.

Figure 1.13: Low energy excitations in a condensed matter system. The energy scales are
relevant for transition metal oxides.[1]
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Chapter 2

XAS calculations

2.1 Configuration Interaction Model in a Single Cluster

Calculation

In a configuration interaction model, the wave functions for the single cluster are expressed as

a linear combination of different possible configurations.[22] In PNO, where a nickelate single

cluster is going to be studied, nickel has d7 valence shell electron configuration and p6 core shell.

NiO cluster has six oxygens around so there are 3 ∗ 6 = 18 O − p orbitals. But, not all linear

combinations are taken into account, only those that couple and interact with Ni-d orbitals are

considered. Based on the Goodenough-Kanamori hybridization rules the number of them is

reduced to ten, because for each Ni-d orbital there is one such linear combination. In this case

either one, two or three electrons can hop from ligand to nickel d orbitals.

So the XAS ground state wavefunction can be expressed as:

ψg = α1|p6d7L10〉+ α2|p6d8L9〉+ α3|p6d9L8〉+ α4|p6d10L7〉

pndmLz denotes n electrons in the transition metal core p shell, m electrons in the transition

metal ion d shell and z electrons in the ligands’ p shell.

The dimension of Hamiltonian matrix that has to be diagonalized can be obtained as follows:

p6d7L10 : p shell is full so there is only one possible configuration here, there are seven elec-

trons in the ten d orbitals so there are
(

10
7

)
= 120 ways to arrange them there. Ligand orbitals

are also full with ten electrons so there is only one possible configuration there. Therefore,

there will be 1 ∗ 120 ∗ 1 = 120 possible states for this configuration.

With the same counting, there will be 450, 450 and 120 states corresponding to p6d8L9, p6d9L8

and p6d10L7 configurations respectively. Therefore, there are 1140 wavefunctions altogether and

a 1140× 1140 Hamiltonian matrix.

And for the XAS state since one electron is excited from Ni-p shell to the Ni-d shell the excited

wavefunction will be presented as:

ψXAS = β1|p5d8L10〉+ β2|p5d9L9〉+ β3|p5d10L8〉

Again with the same counting there will be 270, 600, 270 states corresponding to p5d8L10, p5d9L9

and p5d10L8 configurations so there are again 270 + 600 + 270 = 1140 wavefunctions in total.

Due to the multiplet effect which is rooted in electron-electron interactions, these 1140
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2.1. Configuration Interaction Model in a Single Cluster Calculation

final states do not all have the same energies. They spread out over an energy range. Each

configuration has its own multiplet and set of final states, which differ from one element to

another.

Using ligand orbitals reduces the Hilbert space significantly and increases MLFT calculations

efficiency.[8]

There are some important parameters that will be introduced in the following paragraphs.

Many of them can be calculated abinitio like dipole and quadruple Slater integrals, and some

will be adjusted to experiment, which we mostly deal with in this thesis.

Udd and Upd: The monopole Coulomb interactions which are strongly reduced because of

the screening in a polarizable medium. They will be fitted to experiment to obtain the best

agreement. Udd is the one between electrons in Ni-d shell and Upd is between the Ni p-core hole

and Ni-d electrons. From what has been discussed in the previous chapter, U3d−3d is given by:

U3d−3d = E(d6Lm) + E(d8Lm)− 2E(d7Lm)

Where E(dnLm) is the center of gravity of the dnLm multiplets.

For multiple interactions or Slater integrals F 2 and F 4 ,the screening is not huge. Because

they do not involve in changing the charge of ions. Therefore, they can be obtained abinitio

from calculations and reduced by about 20%.

The line width broadening, G: It is the energy broadening parameter as introduced in the

previous chapter.1.5

Charge transfer energy ∆: Another very important parameter in these calculations specif-

ically, and in transition metal oxides generally, is the charge transfer energy or ∆. As it was

introduced in the last chapter,1.3 it is the energy cost to hop one electron from the ligand to

the metal d shell. In this case, it is the difference between on-site energy of d7L10 and d8L9 con-

figurations. With this definition, the on-site energies for each configurations can be expressed

in terms of ∆ and the monopole Coulomb repulsion energies, Udd and Upd and the bare on-site

energies of electrons in each shell, εp, εd and εL as follows:
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Figure 2.1: The relative on-site energies of the different configurations for the initial and final
states in 2p-XAS in terms of ∆, Udd and Upd [9]

Ground state conf. On-site energy Relative on-site energy

p6d7L10 6εp + 7εd + 10εL +
(

7
2

)
Udd 0

p6d8L9 6εp + 8εd + 9εL +
(

8
2

)
Udd εd − εL + 7Udd ≡ ∆

p6d9L8 6εp + 9εd + 8εL +
(

9
2

)
Udd 2∆ + Udd

p6d10L7 6εp + 10εd + 7εL +
(

10
2

)
Udd 3∆ + 3Udd

Table 2.1: Ground state configurations and the corresponding energies.

Excited state conf. On-site energy Relative on-site energy

p5d8L10 5εp + 8εd + 10εL +
(

8
2

)
Udd −

(
8
1

)
Upd 0

p5d9L9 5εp + 9εd + 9εL +
(

9
2

)
Udd −

(
9
1

)
Upd ∆ + Udd − Upd

p5d10L8 5εp + 10εd + 8εL +
(

10
2

)
Udd −

(
10
1

)
Upd 2∆ + 3Udd − 2Upd

Table 2.2: Excited state configurations and the corresponding energies

After basis sets are defined, operators as matrices and wavefunctions as vectors also have

to be created in order to start the calculations. In this case they are created in cubic (Oh)

symmetry.
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2.2 Seeking the Best Agreement with Experiment

Now we can set numerical values to the introduced parameters and generate the XAS spectra.

We seek the best agreement with the experiment. To this aim, for each parameter, in a reason-

able range of values the calculations are repeated in small steps. The best fitting is happened

at the following values: pds = −1.9, tpp = 0.8, Udd = 7.5, Upd = 9.0, 10Dq = 0.5,∆ = 2.5, G =

1eV . The final match corresponding to the above values are shown in Fig. 2.2 The criteria for

goodness of fit are mostly the intensity ratio between between the peaks in L3 (in the double

peak structure), the line shape and the spin orbit coupling splitting energy.

For each set of values, besides the XAS spectrum, the expectation values of some other

quantities are also calculated, which are presented at the top of each spectrum. Neg, Nt2g and

Nd are the average numbers of electrons in deg and dt2g orbitals and their sum in the d shell

respectively. The square of the coefficients α1 ,α2,α3 and α4 are also calculated. As they have

been defined earlier, they are the indications of each configuration contribution to the ground

state.

ψg = α1|p6d7L10〉+α2|p6d8L9〉+α3|p6d9L8〉+α4|p6d10L7〉 = α1|ψ7〉+α2|ψ8〉+α3|ψ9〉+α4|ψ10〉

P7 = |〈ψ7|ψg〉2 = α2
1

P8 = |〈ψ8|ψg〉2 = α2
2

P9 = |〈ψ9|ψg〉2 = α2
3

P10 = |〈ψ10|ψg〉2 = α2
4

4∑
i=1

Pi = α2
1 + α2

2 + α2
3 + α2

4 = 1

By comparing the calculated and experimental spectra, it can be seen that other than some

very general features like the spin-orbit coupling splitting, the other details do not agree. The

splitting in calculated L3 peak is smaller than the experiment. The line shapes in both peaks do

not match very well and the shoulder in the calculated L3 peak is not present in the experiment.

The differences are shown more clearly in Fig. 2.3 of the L3 peaks alone. The differences are

even more considerable in Fig. 2.4 which the calculation is done with the smaller broadening

of 0.2 eV (compared the previous 1 eV broadening) which is in fact more realistic. There are

at least three significant multiplet structure peaks which are not present in the experiment.

While it is usually believed that the d7L10 configuration has the largest contribution to the

ground state[13] , it is found in our calculations that in the final result, d8L9 configuration has

a larger contribution number than d7L10 with α2
2 larger than 50% .It is an important result as
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2.2. Seeking the Best Agreement with Experiment

it can be the reason why the calculations do not work well here.

That perhaps is an indication that the cluster is not big enough, because it seems that the

starting point should have been the starting point in which we start with nickel d8 configuration

and a hole in the oxygens and then we can no longer use a single local cluster because all the

other nickels are also contributing ligand holes. for example in Pr3+NiO3 the nickel would be

2+ rather than the former 3+, and there will be one hole per each three oxygens or two holes

for the whole single octahedron with six oxygens and that is not included in our Hilbert space.

These holes can propagate and form bands with other clusters which are not included in the

Hilbert space of a single cluster calculation either.

It might sound strange that how with a positive ∆, the ground state wavefunction has a

larger d8L9 contribution than the d7L10, which basically indicates the d8L9 state has a lower

energy than the other one. The explanation is hidden in the definition of the ∆. As it has

been defined earlier, it is an average energy difference between the two states and does not

include crystal field splitting. It is simply defined in terms of the single particle energies which

are kind of an average energy, εd and εL, and monopole Coulomb interaction energy, Udd and

does not include the other Coulomb terms either. But the truth is, each of these states has

many multiplets and therefore there are many energy differences between these two states.

Apparently there must have been a particular d8L9 multiplet with a lower energy than a d7L10

multiplet.
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2.2. Seeking the Best Agreement with Experiment

tpp = 0.8, pds = −1.9, 10Dq = 0.5, Udd = 7.5, Upd = 9, ∆ = 2.5, Distortion =

0, Broadening = 1. eV

Neg = 1.707, Nt2g = 5.966, Nd = 7.673

α2
1 = 0.411, α2

2 = 0.508, α2
3 = 0.079, α2

4 = 0.002

S2 = 1.031

Figure 2.2: The final calculated XAS spectra comparing the experiment
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2.2. Seeking the Best Agreement with Experiment

Figure 2.3: Comparing the L3 peaks in the calculations and the experiment

Figure 2.4: The same calculated L3 peak with the lower broadening of 0.2 eV compared with
experiment
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Chapter 3

Spin State Transition

3.1 Introduction

It is generally accepted that if Ni is in a d7 state in these materials it is most likely in a low spin

state contrary to what it for example is in NiO where it is in a high spin state. The spin state

is of course of great importance in describing the magnetic properties but also the electronic

structure. So we should check if the XAS spectrum matches a high spin or a low spin state.

To study this I present a brief introduction to the spin state transition that would occur if we

change the parameters for example to a very large charge transfer energy . I also then compare

the XAS spectra to demonstrate that we must be in a low spin state which provides limits to

the charge transfer energy and the covalent hopping integral pds.

Fig. 3.1 is a simpler illustration of Fig. 1.6 which shows the energy levels of the d-transition

metal oxide in an octahedral geometry considering the covalency.

Figure 3.1: The energy levels of a d-transition metal oxide in an octahedral geometry considering
the covalency with surrounding oxygens.

in perturbation theory for large delta compared Veg the splitting is determined by:

splitting energy =
V 2
eg − V 2

t2g

∆

The parameters are defined in the first chapter.

Now Fig. 3.2 shows how by decreasing the ∆ or increasing the pds or Veg, which increases

the splitting energy, the system can experience an abrupt transition from a high spin state to

a low spin state ,as dictated by Hund’s rule.
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3.1. Introduction

Figure 3.2: It shows how by decreasing the charge transfer energy, splitting increases and
subsequently system changes from High spin State to Low spin State.

Apparently, this transition can occur when the low spin state has a lower energy than the

high spin one. These energies can be determined by the Hund’s energy expression as follows:

In both cases the number of electrons or n is the same so only the Hund’s exchange energy and

on-site energies are going to be considered:

E(HS) = −
(

5

2

)
J + 5(−4Dq) + 2(6Dq) = −10J − 8Dq

E(LS) = −2

(
3

2

)
J + 6(−4Dq) + 6Dq = −6J − 18Dq

To HS to LS transition:

−6J − 18Dq < −10J − 8Dq

4J < 10Dq

Therefore, when the energy 4J is smaller than the energy 10Dq the low spin state has a

lower energy and the spin transition can occur.
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3.2. Low Spin to High Spin Transition

3.2 Low Spin to High Spin Transition

In this section the critical values of the hopping integrals and the charge transfer energy wherein

PNO experiences a transition from low spin to high spin states, are obtained and discussed.

The expectation value of S2 operator in the ground state is also calculated, which should

basically be s(s + 1
2). As it has been discussed in the previous section the total spin squared

value in a nickelate single cluster is either 3.75 in the high spin state or 0.75 in the low spin

state while the calculated numbers here are either about 3 in HS or about 1 in LS. The reason is

hidden in the program’s spin operator definition and calculation. Here the total spin operator

only acts on the nickel atom not on the whole cluster including the ligands and that is why the

numbers differ. But they can still be an indication for the spin state .

In changing the parameters most changes in the shape of the spectra are continues and

gradual except at some points in changing the ∆ and pds. At some certain values even a 0.05

eV change in them alters the shape drastically. It is also true that at those points the spin

value abruptly changes from about 1 to about 3. So it seems that at those specific values of

∆ or pds, the material changes from low spin to high spin state and that is why it also shows

a very different behaviour in its XAS. Fig.3.3 and 3.4 are the spectra just before and after the

transition with increasing ∆ only by 0.05 eV from 3.75 to 3.80 eV and Fig. 3.5 and 3.6 are the

ones with changing the pds by 0.05 eV from -1.65 to -1.60 eV.

Remember, at this point, the fitting does not matter any more, here we only care about the

spin state for any d7 system with the d − d Coulomb energy of 7.5 eV, 10Dq of 0.5 eV and a

zero distortion which also gives us limits to the charge transfer energy and the covalent hopping

integral pds in our low spin system.

It is worth looking at another high spin d7 system to compare the high spin XAS spectra

with. In Fig. 3.7 you may find the XAS spectra for high spin cobaltate which is a d7 high spin

material. [4] It can be observed that the both high spin systems show some similar behaviours

in their XAS line shapes.

As it explained above by increasing ∆ or decreasing the absolute value of pds the splitting

energy decreases and system experiences a low spin to high spin transition ( 3.2) So for each

specific value of ∆ there is a specific critical value of pds which can produce the needed splitting

energy to make the spin transition and vice versa. To find these set of values, the map of the

”spin squared” values in terms of pds and ∆ is obtained. It is shown in Fig.3.8 which has two

distinct spin areas corresponding to low spin and high spin states. Each point in the red or

high spin area gives the corresponding high spin pds and ∆ values. Therefore, for any given

value of pds and ∆ the spin state can be predicted by the map.
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3.2. Low Spin to High Spin Transition

tpp = 0.8, pds = −1.9, 10Dq = 0.5, Udd = 7.5, Upd = 9, ∆ = 3.75 Dist = 0 eV

Neg = 1.618, Nt2g = 5.958, Nd = 7.575

α2
1 = 0.485, α2

2 = 0.455, α2
3 = 0.058, α2

4 = 0.001

S2 = 0.993

Figure 3.3: XAS spectra just before the spin state transition

tpp = 0.8, pds = −1.9, 10Dq = 0.5, Udd = 7.5, Upd = 9, ∆ = 3.80, Dist = 0 eV

Neg = 2.386, Nt2g = 4.993, Nd = 7.379

α2
1 = 0.646, α2

2 = 0.329, α2
3 = 0.025, α2

4 = 0.000

S2 = 3.099

Figure 3.4: XAS spectra just after the spin state transition
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3.2. Low Spin to High Spin Transition

tpp = 0.8 pds = −1.65 10Dq = 0.5, Udd = 7.5, Upd = 9, ∆ = 2.5, Dist = 0 eV

Neg = 1.673, Nt2g = 5.960, Nd = 7.633

α2
1 = 0.434, α2

2 = 0.499, α2
3 = 0.065, α2

4 = 0.001

S2 = 1.046

Figure 3.5: XAS spectra just before the spin state transition

tpp = 0.8, pds = −1.60, 10Dq = 0.5, Udd = 7.5, Upd = 9, ∆ = 2.5, Dist = 0 eV

Neg = 1.673, Nt2g = 5.960, Nd = 7.633

α2
1 = 0.434, α2

2 = 0.499, α2
3 = 0.065, α2

4 = 0.001

S2 = 3.049

Figure 3.6: XAS spectra just after the spin state transition
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3.2. Low Spin to High Spin Transition

Figure 3.7: High spin CoO XAS spectra from experiment
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3.2. Low Spin to High Spin Transition

Figure 3.8: Map of the spin values versus ∆ and pds showing the low spin to high spin transition
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3.2. Low Spin to High Spin Transition

Another interesting feature regarding spin state transition is illustrated in the ground state

energy level diagrams. The first fifty ground state eigenvalues versus pds and ∆ are shown

respectively in Fig.3.9 and 3.10 It can be seen that in both cases exactly at the spin state

transition critical values, the first two energy levels are crossed. It basically says that while

before the low to high spin transition, the lowest ground state energy is corresponding to the

spin half state and the first excited one is corresponding to the spin 3
2 , after the transition the

situation goes the other way around making the spin 3
2 state the new ground state and the first

excited state the spin half state.

Figure 3.9: Energy level diagram versus pds

Figure 3.10: Energy level diagram versus charge transfer energy

However by doing the MLFT cluster calculation in a nickelate single cluster, some interesting
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3.2. Low Spin to High Spin Transition

features such as the spin transition have been obtained, the final XAS result does not match to

the experiment very well unlike the result for NiO, MnOor SrT iO3. [8] Therefore we can not

really rely on the values have obtained by fitting the above calculations to the XAS experiment.

In the next chapter the same method is used to obtain RIXS spectra in order to understand

the material and the employed theory more deeply.
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Chapter 4

RIXS Calculations

4.1 Seeking the Best Agreement with Experiment

Here again we need an experimental reference which is RIXS results from Geneva on NdNO3.

In NNO, nickel is again 3+ and since we are treating a single cluster of nickelate, it should not

be very different than the Nickel 3+ in PNO [19]. The spectra is shown in Fig.4.1

As explained in the previous chapter, here photon excites an electron from the 2p to the

3d shell, then an electron decays into the core hole and a photon comes out. The first peak

corresponds to the elastic process where no energy is lost and the second electron decays from

the same level of energy as the excited one.

Fig. 4.1 shows the experimental RIXS spectra at different resonance energies about the

XAS L3 peak for two different temperatures. RIXS can be conducted by employing light with

two different polarizations as here in Fig.4.1 LV and LH denote vertical and horizontal light

polarizations.

The geometry of this experiment is illustrated in Fig.4.2. It clarifies what the different light

polarizations imply here.

From Fig. 4.2 the following vectors’ orientations are concluded. The calculations have also

done with respect to the experiment geometry.

Kin = {cos 15◦, 0, sin 15◦}

Kout = {cos 65◦, 0, sin◦}

σin = LVin = {0, 1, 0}

σout = LVout = {0, 1, 0}

πin = LHin = {− sin 15◦, 0, cos 15◦}

πout = {− sin 65◦, 0, cos 65◦}
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4.1. Seeking the Best Agreement with Experiment

Figure 4.1: The experimental RIXS spectra form Geneva at T=300K in the left and at T=15K
in the right.

To calculate these kind of spectra in principle three basis sets and three Hamiltonians are

needed, corresponding to the initial, intermediate and final states. But in this case initial and

final basis sets are the same and the intermediate state has the same basis set as the XAS state.

A very simple sketch of this second order process for a d7 system is illustrated in Fig.4.3 It

only shows one of the d− d excitation possibilities, which actually should be the first one.

For each incoming polarization, the RIXS spectra are obtained by adding the both possible

outgoing light polarizations. Now by choosing the resonance energy from XAS spectra, the

corresponding RIXS spectrum can be calculated.

To be able to compare the results with experiment, the same resonance energies near the

L3 peak, on the left shoulder, are chosen. The energies are relative, they are shifted to match

the experiment as much as possible for convenience. The other parameters such as hopping
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4.1. Seeking the Best Agreement with Experiment

Figure 4.2: RIXS experimental geometry

Figure 4.3: A schematic sketch of the d− d excitations in a d7 low spin system.

integrals, charge transfer energy and 10Dq are set as the final values in the second chapter

obtained by matching to the XAS from experiment . The intermediate state(XAS) broadening

and RIXS spectra broadening are set to be 0.2 and 0.3 eV respectively. The resonant energies

are shown on the XAS spectra in Fig.4.5 and the corresponding RIXS results are presented in

Fig. 4.4

The room temperature RIXS spectra in Fig. 4.1 shows a continuum behaviour in its d− d
like excitations. By looking at the phase transition diagram for NdNo in chapter one,1.1 it can
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4.1. Seeking the Best Agreement with Experiment

be seen that at 300◦, the system is in its metallic phase. So there is no gap to jump and make

an excitation. That is why the spectra basically says that for any given energy an excitation

can occur. Our calculations does not include metallic phase. It models the insulting behaviour

as discussed in the previous chapters.

In the low temperature RIXS results, the lowest excitations happen at about 0.8 eV. For

now, we assume it is corresponding to the lowest d − d excitation and no excitation peak is

lost in the elastic peak broadening. On the other hand, in the calculated spectra the first

observable excitation peak happens at about 1.4 eV as shown in Fig. 4.4 To understand which

excitation this peak corresponds to, the first eigen-energies of the system are calculated. They

are presented in table 4.1 The peaks’ energies in the RIXS spectra are basically the relative

eigen-energies of the system. The magnon and phonon excitations are not considered here.

table 4.1 suggests that in fact the first d − d excitation peak in our calculation happens at a

too low energy (0.25 eV) and can not be observed in our spectra. In order not to loose it, the

RIXS broadening is decreased to 0.2 eV. The results at the resonant energies of 853 and 853.2

eV are presented in Fig.4.6 and the relative eigen-energies are also shown on them with the

vertical lines. The other spectra at the other incident energies are presented in the appendix.
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4.1. Seeking the Best Agreement with Experiment

Figure 4.4: Calculated RIXS spectra for the following values: tpp = 0.8, pds = −1.9,∆ =

2.5, 10Dq = 0.5, Udd = 7.5, Upd = 9 eV and RIXS broadening of 0.3 eV
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4.1. Seeking the Best Agreement with Experiment

Figure 4.5: The resonant energies taken for the RIXS calculations, at 852 ,852.5, 853, 853.2,
853.5, 853.8, 854.1, 854.4 eV with the following values tpp = 0.8, pds = −1.9,∆ = 2.5, 10Dq =
0.5, Udd = 7.5, Upd = 9 eV and RIXS broadening of 0.2 eV

38



4.1. Seeking the Best Agreement with Experiment

Table 4.1: The first 25 eigen-energies of the system with ∆ = 2.5eV .
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4.1. Seeking the Best Agreement with Experiment

Figure 4.6: Calculated RIXS spectra with the following parameters: ∆ = 2.5, tpp = 0.8, pds =

−1.9, 10Dq = 0.5, Udd = 7.5, Upd = 9 eV and RIXS broadening of 0.2 eV. The vertical axis is

the intensity in an arbitrary unit and the horizontal axis is the energy loss in eV.
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4.1. Seeking the Best Agreement with Experiment

This inconsistency between the experiment and the calculation can be addressed by tuning

the charge transfer energy (∆) and hopping integral (pds). The splitting enegy which determines

the energy at which the first d − d excitation happens, is inversely proportional to the charge

transfer energy. Therefore, to increase this energy from about 0.25 to about 0.8 eV we have

to decrease ∆ dramatically. By calculating the eigen-energies of the system with the different

smaller ∆s, for ∆ = 0.5eV , the splitting of 0.67 eV is obtained which is almost equal to the

splitting energy in the experiment.

The XAS spectra with this ∆ and the given resonant energies are shown in Fig.4.7 The

corresponding RIXS spectra at the two of these energies are also presented in Fig. 4.8, the

other ones are shown in the appendix.

Figure 4.7: The resonant energies taken for the RIXS calculations, at 851.2 ,851.6, 852, 852.3,

852.5, 852.7, 852.9, 853.4, 853.6 eV with the following values ∆ = 0.5, tpp = 0.8, pds =

−1.9, 10Dq = 0.5, Udd = 7.5, Upd = 9 eV
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4.1. Seeking the Best Agreement with Experiment

Figure 4.8: Calculated RIXS spectra with the following parameters: ∆ = 0.5, tpp = 0.8, pds =

−1.9, 10Dq = 0.5, Udd = 7.5, Upd = 9 eV
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4.1. Seeking the Best Agreement with Experiment

Table 4.2: The first 25 eigen-energies of the system with ∆ = 0.5eV .

What we have done so far is decreasing the charge transfer energy from 2.5 to 0.5 eV to

increase the splitting or the first d − d excitation energy to 0.67 eV in order to match the

calculated RIXS to the experimental ones. Now the problem with the new RIXS spectra is the

intensity ratios and the polarization dependence. To adjust the splitting energy by changing

∆, we had assumed that the first peak in the experiment is the one associated with the first

to the second eigen-states. It might not be the case. The first inelastic peak in experiment

has an intensity comparable to the elastic peak or even larger. It also has a double peak which

shows polarization dependence at some resonant energies. They all are the characteristics of our

second inelastic calculated peak. Therefore, it can be concluded that the first excitation in the

experiment is also happening in a very low energy smaller than the experiment resolution (less
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4.1. Seeking the Best Agreement with Experiment

than 0.1 eV) and then the second inelastic excitation happened at bout one eV. By considering

the relation between the charge transfer energy and the hopping integral and the splitting

energy, and calculating the first eigen-energies for several cases, it has been obtained that for

the values of ∆ = 0.8 and pds = −1.4, the best agreement can be obtained. Remember we

have to consider the spin transition and not let the system make the transition to the high spin

state. The allowed low spin ∆ and pds values can be taken from the spin state transition map

in the previous chapter. 3.8

The final RIXS results are also shown in figures 4.10 to 4.16.

Figure 4.9: The resonant energies taken to calculate RIXS spectra with the following values

tpp = 0.8, pds = −1.4,∆ = 0.8, 10Dq = 0.4, Udd = 7.5, Upd = 9 eV with energy shift of 865

eV
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4.1. Seeking the Best Agreement with Experiment

Table 4.3: The first relative eigen-energies of the system with the following values: tpp =
0.8, pds = −1.4,∆ = 0.8, 10Dq = 0.4, Udd = 7.5, Upd = 9 eV
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4.1. Seeking the Best Agreement with Experiment

Figure 4.10: Calculated RIXS spectra with the following parameters: ∆ = 0.8, tpp = 0.8, pds =

−1.4, 10Dq = 0.4, Udd = 7.5, Upd = 9 eV

46



4.1. Seeking the Best Agreement with Experiment

Figure 4.11: Calculated RIXS spectra with the following parameters: ∆ = 0.8, tpp = 0.8, pds =

−1.4, 10Dq = 0.4, Udd = 7.5, Upd = 9 eV
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4.1. Seeking the Best Agreement with Experiment

Figure 4.12: Calculated RIXS spectra with the following parameters: ∆ = 0.8, tpp = 0.8, pds =

−1.4, 10Dq = 0.4, Udd = 7.5, Upd = 9

48



4.1. Seeking the Best Agreement with Experiment

Figure 4.13: Calculated RIXS spectra with the following parameters: ∆ = 0.8, tpp = 0.8, pds =

−1.4, 10Dq = 0.4, Udd = 7.5, Upd = 9
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4.1. Seeking the Best Agreement with Experiment

Figure 4.14: Calculated RIXS spectra with the following parameters: ∆ = 0.8, tpp = 0.8, pds =

−1.4, 10Dq = 0.4, Udd = 7.5, Upd = 9
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4.1. Seeking the Best Agreement with Experiment

Figure 4.15: Calculated RIXS spectra with the following parameters: ∆ = 0.8, tpp = 0.8, pds =

−1.4, 10Dq = 0.4, Udd = 7.5, Upd = 9
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4.1. Seeking the Best Agreement with Experiment

Figure 4.16: Calculated RIXS spectra with the following parameters: ∆ = 0.8, tpp = 0.8, pds =

−1.4, 10Dq = 0.4, Udd = 7.5, Upd = 9
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4.2. XAS Spectra with Parameters Driven from RIXS

Therefore, in order to match the elementary excitation energies in the experimental RIXS

experiment with the calculation, we had to decrease charge transfer energy significantly and

adjust the hopping integral and 10Dq a little bit. In terms of the polarization dependence

in the calculated final RIXS, it has been seen that while there is a considerable polarization

dependance at left side of the L3 peak, there is no such a dependence at the right side, where

the double peak should have existed. Considering the above points and the fact that even with

the big ∆ of 2.5 eV, the calculated and experimental XAS spectra presented huge differences,

it can be concluded that the double peak in the L3 may not be a result of multiplet structure

but could have an origin beyond what can be included in a isolated cluster approach.

We should mention that the resonant inelastic x ray scattering spectra extended out to an

energy region including the second peak of the L3 XAS demonstrate a linear dispersion with

incident energy after having passed through the first peak. This clearly demonstrates that the

second peak has a very different origin and must involve a continuum state in which the excited

electron in a state decoupled from the core hole and so does not participate in the decay to the

core hole state. The resulting spectrum then is that of x ray fluorescence rather than resonant

x ray inelastic scattering.

4.2 XAS Spectra with Parameters Driven from RIXS

The new fitted parameters from the previous section are ∆ = 0.8, tpp = 0.8, pds = −1.4, 10Dq =

0.4, Udd = 7.5, Upd = 9, these new values will alter the calculated XAS spectra a lot. With

this smaller ∆, the double peak in the L3 peak will disappear. From the XAS calculation,

we already know that in these type of calculations changing the charge transfer energy mostly

changes the L3 double peak intensity ratio, but from the RIXS results we concluded that maybe

it is not the right approach to get the ∆ from. This new calculated XAS is presented in Fig.

4.17 and the configuration contribution numbers and the number of electrons in the d shell are

also calculated and presented. It can be seen that with these new values for the charge transfer

energy and pds, d8L9 configuration still has the largest contribution to the ground state and

system is still in the low spin state.
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4.2. XAS Spectra with Parameters Driven from RIXS

tpp = 0.8, pds = −1.4, 10Dq = 0.4, Udd = 7.5, Upd = 9, ∆ = 0.8, Distortion = 0. eV

Neg = 1.79, Nt2g = 5.97, Nd = 7.76

α2
1 = 0.34, α2

2 = 0.56, α2
3 = 0.09, α2

4 = 0.00

S2 = 1.10

Figure 4.17: Calculated XAS spectra with the following parameters: ∆ = 0.8, tpp = 0.8, pds =

−1.4, 10Dq = 0.4, Udd = 7.5, Upd = 9 eV

54



Chapter 5

Conclusion

From the Zaanen-Sawatzky-Allen scheme, using only a few parameters (the charge trans- fer

energy and the d d Coulomb interaction energy) is able to account for the electronic be-

haviour of a great number of 3d TM oxides such as the phase transitions. In order to find the

empirical values for these energies for PNO, 2p-core X-ray absorption spectra were calculated

within multiplet ligand field theory for the PNO single cluster. Then by adjusting the calculated

spectra with the experiment, the best agreement happened at ∆ = 2.5 eV and pds=-1.9 eV.

Changing the charge transfer energy and the covalent hopping integral mostly changes the

L3 double peak intensity ratio until it reaches the spin transition and changes the line shape

drastically. Therefore, they mostly are chosen to satisfy this ratio to the most. Even though the

best match was not satisfactory and differed with experiment in this ratio and the presence of

a shoulder there. The differences are even more considerable for a smaller life-time broadening

of 0.2 eV with multiple peaks present.

Then, the low spin to high spin state transition was studied and the critical values of ∆ and

pds at which the system experiences an abrupt spin transition were obtained. A map also was

presented in which for any values of the charge transfer energy and covalent hopping integral

the spin state can be predicted.

Then, another approach was employed to adjust these crucial parameters. The RIXS spec-

tra were calculated in the same theory, basis set and ground state. In experimental RIXS,

the first excitation peaks appeared at less than 1 eV. They were double peaked and showed

polarization dependence at some resonant energies on the left side of the L3. By calculating

several RIXS spectra and corresponding the relative eigen-energies to the d−d excitation peaks

and considering the above features of the first observed inelastic peaks in the experiment, it

was concluded that these first peaks in fact correspond to the second d− d excitation in about

1 eV and the first excitation should have been in a very low energy lower than the experiment

energy resolution (less than 0.1 eV).

The values which satisfies these energies (the second relative eigen-energy at less than 0.1

eV and the third one at about 1 eV) were found to be ∆ = 0.8, tpp = 0.8, pds = −1.4, 10Dq =

0.4, Udd = 7.5, Upd = 9 eV

Therefore, to get the best agreement with RIXS in terms of the d − d excitation energies,

the charge transfer energy and covalent hopping integral change a lot. These new values do not

give the best agreement with XAS any more and the double peak on L3 will be lost. However,

the fact that even the best XAS match was not satisfactory at all and the fact that no RIXS
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polarization dependence was found on the right side of the L3 unlike the left side, and the fact

that the resonant inelastic x ray scattering spectra extended out to an energy region including

the second peak of the L3 XAS demonstrate a linear dispersion with incident energy after having

passed through the first peak demonstrates that the second peak has a very different origin and

must involve a continuum state in which the excited electron in a state decoupled from the core

hole and so does not participate in the decay to the core hole state and the true values for ∆

and pds should not be obtained by keeping this second peak in L3 in MLFT calculations.

There are some other reasons which might have caused the differences between the calcula-

tions and the experiment. In our calculations it has been shown that for almost all the low spin

cases, the d8L9 configuration has the largest contribution in the ground state. It can suggest

that the true starting point for this problem might be the starting point in which we start with

nickel d8 configuration and a hole in the oxygens and then we can no longer use a single local

cluster because all the other nickels are also contributing ligand holes.

Here also for simplicity, the cubic symmetry and zero distortion have been assumed which

is not exactly the case in the real material and might have caused the disagreements.
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Appendix

Here the resonant inelastic scattering spectra at various incident energies and with the charge

transfer energy of 2.5 and 0.5 eV are presented. The photon energies are about the X-ray

absorption L3 peak. The vertical axis is the intensity in an arbitrary unit and the horizontal

axis is the energy loss in eV. The descriptions can be found in the chapter 4 of this thesis.

Figure 5.1: Calculated RIXS spectra with the following parameters: ∆ = 2.5, tpp = 0.8, pds =

−1.9, 10Dq = 0.5, Udd = 7.5, Upd = 9 eV and RIXS broadening of 0.2 eV
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Figure 5.2: Calculated RIXS spectra with the following parameters: ∆ = 2.5, tpp = 0.8, pds =

−1.9, 10Dq = 0.5, Udd = 7.5, Upd = 9 eV and RIXS broadening of 0.2 eV
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Figure 5.3: Calculated RIXS spectra with the following parameters: ∆ = 2.5, tpp = 0.8, pds =

−1.9, 10Dq = 0.5, Udd = 7.5, Upd = 9 eV and RIXS broadening of 0.2 eV
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Figure 5.4: Calculated RIXS spectra with the following parameters: ∆ = 0.5, tpp = 0.8, pds =

−1.9, 10Dq = 0.5, Udd = 7.5, Upd = 9 eV
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Figure 5.5: Calculated RIXS spectra with the following parameters: ∆ = 0.5, tpp = 0.8, pds =

−1.9, 10Dq = 0.5, Udd = 7.5, Upd = 9 eV
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Figure 5.6: Calculated RIXS spectra with the following parameters: ∆ = 0.5, tpp = 0.8, pds =

−1.9, 10Dq = 0.5, Udd = 7.5, Upd = 9 eV
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Figure 5.7: Calculated RIXS spectra with the following parameters: ∆ = 0.5, tpp = 0.8, pds =

−1.9, 10Dq = 0.5, Udd = 7.5, Upd = 9 eV
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