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Abstract

This thesis considers variations in the parameters of the dynamics of linear

systems, and tackles modeling of Linear Time-Invariant (LTI) and Linear

Parameter Varying (LPV) plants. The variations in the dynamics make the

controller design challenging, and to successfully overcome this challenge,

two methods are proposed in this thesis.

One method generates a connected model set. The idea of the multi-

dimensional principal curves methodology is employed to detect the nonlinear

correlations between parameters of the given set of system dynamics. The

connected model set is simple and tight, leading to both nonconservatism

and reduced computational complexity in subsequent controller design, and

hence, to improve the controller performance.

The other method is developed to derive a family of discrete model sets

for a given set of system response data. A relaxed version of the normalized

cut methodology is developed and used in an algorithm to divide a given set

of system responses into the smallest possible number of partitions in such

a way that a desired performance objective is satisfied for all partitions by

designing one controller for each partition.

Using the proposed method, a tight uncertainty model is derived for Hard

Disk Drive (HDD) systems, and an H∞ controller is synthesized. The dy-

namics of HDDs is studied from a controller design point of view. Especially,

the variations in the dynamics due to the change in temperatures and limited

precision in the production line are examined.
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Also, the variations in the dynamics of Ball Screw Drive (BSD) systems

due to the structural flexibility, runout, and workpiece mass variation are

studied. These three factors are explicitly incorporated in LPV models. To

build the LPV models, it is determined how the system parameters are af-

fected by two variables, namely, the measurable table position and the un-

certain mass of the table. We design robust gain scheduling controllers which

are scheduled by the table position and are robust over the table mass.
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Preface

This thesis entitled “Modeling of Linear Systems with Parameter Variations:

Applications in Hard Disk and Ball Screw Drives” presents the research per-

formed by Daniel Sepasi1. The research conducted in this thesis was super-

vised by Dr. Ryozo Nagamune and co-supervised by Dr. Farrokh Sassani. In

this section, we briefly explain the contents of the papers that are published

or submitted for publications from this thesis [3, 4, 96–98]. We also clarify

the relative contributions of co-authors in the papers.

• M. Sepasi, F. Sassani, and R. Nagamune, “Parameter uncer-

tainty modeling using the multi-dimensional principal curves”,

Journal of Dynamic Systems, Measurement and Control, 2010,

vol. 132, Issue 5, pp. 054501-054507. This paper proposes a tech-

nique to model parametric uncertainties associated with linear time-

invariant systems. The method is based on nonconvex optimization,

involving a linear matrix inequality, a local optimization technique,

and multi-dimensional principal curves. The proposed technique is ex-

plained in Chapter 2 of this thesis. The author of this thesis was the

principal researcher of this publication. Drs. Ryozo Nagamune and

Farrokh Sassani assisted with formulating the problem and writing the

paper.

• E. Azadi Yazdi, M. Sepasi, F. Sassani and R. Nagamune,

1The author’s given name was changed from Mohammad to Daniel during his Ph.D.
program.
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“Automated multiple robust track-following control system

design in hard disk drives”, IEEE Transactions on Control

System Technology, DOI: 10.1109/TCST.2010.2053541.2 This

paper proposes a new design procedure for track-following control sys-

tems in hard disk drives. The procedure is automated, in the sense

that, for given experimental frequency response data of the suspension

arm dynamics and a model structure, it automatically constructs a

model set with parametric uncertainties. Subsequently, for the transfer

function set it automatically designs a partition of the uncertainties

and corresponding multiple robust controllers. The first step of the

procedure, i.e. model set construction, is developed by the author of

the thesis, and the second step, i.e. multiple robust controllers design,

is developed by Dr. E. Azadi Yazdi. Experiments on actual hard disk

drives demonstrate the usefulness and efficiency of the proposed proce-

dure. The experiments are performed by Dr. E. Azadi Yazdi and the

author of the thesis. The results of this paper is partly presented in

Chapter 4 of the thesis. Drs. Ryozo Nagamune and Farrokh Sassani

provided practical insight to the problem, and contributed significantly

to the writing of this paper.

• D. Sepasi, R. Nagamune, and F. Sassani, “Tracking control of

flexible ball screw drives with runout effect and mass varia-

tion”, Accepted in IEEE Transactions on Industrial Electron-

ics, DOI: 10-1720-TIE.R2.3 In this paper, tracking controllers for a

ball screw drive are designed, which consider flexibility and runout, as

well as workpiece mass variation. The flexibility, runout, and mass vari-

2A brief version is also published in: E. Azadi Yazdi, M. Sepasi, F. Sassani and
R. Nagamune, “Automated multiple robust track-following control system design in hard
disk drives”, 2010 ASME Dynamic Systems and Control Conference, Boston, MA.

3A brief version is also published in: M. Sepasi, F. Sassani, and R. Nagamune, “Tracking
control of flexible ball screw drives with runout effect compensation”, 2010 ASME Dynamic
Systems and Control Conference, Boston, MA.
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ation are explicitly incorporated in a linear parameter-varying (LPV)

model. To build an LPV model, it is determined through the principal

curve method how the system parameters are affected by two time-

varying variables, namely, the measurable position and the uncertain

mass. For the LPV model, we design robust gain scheduling controllers

which are scheduled by the measurable position and are robust over

the uncertain mass. The designed controllers are implemented on a

ball screw drive system. Drs. Ryozo Nagamune and Farrokh Sassani

supervised the research and assisted with conducting the experiment

and writing the paper.
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Chapter 1

Introduction

1.1 Motivation

To achieve satisfactory performance for control systems during their opera-

tion, controllers must be designed for any conceivable situation. In different

operating conditions, the dynamics of the system varies, and these varia-

tions need to be taken into account in high performance controller design. In

many servo systems, such as Hard Disk Drives (HDD) and Ball Screw Drives

(BSD), it is often the case that the governing dynamic equations do not vary,

but there can be variations associated with parameters in the equations.

In this thesis, we assume that uncertain and scheduling variables cause

variations in the parameters of the plant dynamics with fixed structures. In

other words, the parameters are functions of these two types of variables. An

uncertain variable is a parameter whose value is unknown and unmeasurable

during the operations, but its variation is known to be bounded within a

specific range. A varying parameter is called a scheduling variable if its

value is available in real time while the dynamics varies. Such value can be

either measured or estimated, and it can be used for scheduling controllers.

Since parameter variations affect the system dynamics, they need to be

taken into consideration in controller design. A well-established theoretical

1



tool to deal with the variations in plant dynamics is robust control [120].

Using the robust control theory, one can design controllers that guarantee

robust stability and performance for a model set with uncertainties. To avoid

unnecessary conservatism which is inherent in robust control system design,

it is of interest to derive a tight and accurate model set [13, 53, 69].

Moreover, in many applications, the variations of the system dynamics

depend on the scheduling variables. The scheduling variables can be used

to improve the closed-loop performance by adjusting controller parameters.

To effectively address these issues in controller design, adaptive controllers

[43, 108] have been utilized. We focus on an adaptive control method using

the gain scheduling approach [91]. To successfully design a gain scheduling

controller, it is essential to estimate the relations between the parameters of

the system dynamics and the scheduling variables.

One servo system that is studied in this thesis is an HDD. One of the

most important characteristics determining the quality of an HDD is the

areal storage density. It is essential to reduce the tracking error in order to

increase the areal density of HDDs. To achieve a desired performance we

require a precise model of the system dynamics, based on which the position

control of the read/write head is designed [15, 33, 45, 70]. The dynamics can

vary due to many factors such as variations in the fabrication environment,

temperature change, and mechanical imperfections due to the elapse of time.

Such variations are studied in detail in Chapter 4.

Another servo system investigated in this thesis is a BSD. BSDs are

mostly used for high precision motion applications, such as in CNC ma-

chines and wire bonding. In these applications, the objective is to accurately

position the workpiece relative to the tool. The quality of the machining

product depends greatly on the tracking performance of the machine over a

desired trajectory for the workpiece position. In order to achieve a satisfac-

tory tracking performance during the operations, servo controllers must be

designed to take into account any possible situation during the operations.

2



Therefore, it is critical to derive a model that precisely presents the BSD

dynamics, which has variations. These variations occur due to many un-

avoidable factors such as changes in the BSD table position and mass during

operations. Such variations are studied in detail in Chapter 5.

This thesis develops two modeling methodologies to tackle the challenges

caused by the variations in the plant dynamics. The effectiveness of the

proposed methodologies are investigated using HDD and BSD plants. The

dynamics of these two servo systems are also studied in detail.

1.2 Problem definition and methodology

The following is a modeling problem from a controller design point of view.

Here, the problem is stated in a very general form.

Problem 1.2.1. For a given system response data set with the same govern-

ing dynamic equation but possibly different parameter values, find a model set,

which represents the given data set accurately, in such a way that a satisfac-

tory closed-loop performance can be achieved by designing the corresponding

controller set.

Several special cases of the above problem have been addressed in the

literature (See Section 1.4). Here are a number of special cases regarding

• system response data:

D1. the given system response data is in the frequency domain.

D2. the given system response data is in the time domain.

• closed-loop performance objective:

P1. there is no given desired controller objective. However, the model

is derived to be tight to avoid unnecessary conservatism inher-

ent to any controller, which leads to the closed-loop performance

enhancement.

3



Table 1.1: Three special cases in this thesis.

P1 P2
M1 Chapter 2 Future work
M2 − Chapter 3

P2. a desired controller objective is given, and the model set is derived

in such a way that this objective is satisfied for all the given system

response data by designing the corresponding controller set.

• the model set:

M1. the derived model set is connected, i.e., not only systems in the

given set but also “intermediate” systems are considered.

M2. the derived model set is discrete, i.e., only systems in the given

set are considered.

In this thesis, the special cases are addressed as shown in Table 1.1. Two

methodologies are developed to address two special cases. One method [97]

considers the special cases M1, P1, D1, and D2. This method generates

a tight connected model set to avoid unnecessary conservatism. The other

method considers the special cases M2, P2, D1, and D2. This method derives

a family of discrete model sets, in such a way that a given satisfactory closed-

loop performance can be achieved by designing a family of robust controllers,

each of which is in charge of one discrete model set. Both of these methods

can deal with the time and frequency responses of systems.

This section briefly describes the methodology, provides a simple exam-

ple, and explains problem formulation for each of these methods deriving

connected and discrete model sets. Here, to prevent confusing notations and

excessive introductory material, the modeling problems are stated in an in-

formal form. The problems are revisited and reformulated precisely in later

4



chapters of the thesis.

1.2.1 Connected model set

To understand the variations in the dynamics of a large number of systems

with a common structure, we often take a number of samples, study their

dynamics, and deduce a model representing not only the samples but also

intermediate systems between the sampled ones. Here are two scenarios to

clarify these applications, when the variations are caused by scheduling and

uncertain variables.

1. Assume that the dynamics of a plant varies by changing the tempera-

ture during operations. For the controller design, we need to derive a

model representing the plant dynamics for the entire considered range

of temperature. To this end, we can take system responses for some

temperature samples, and identify the system based on these samples.

However, the temperature changes continuously in reality, and there-

fore, we need to drive a connected model set which approximately in-

terpolates the dynamics of the sampled models. In the case where the

temperature is measurable, it is considered as a scheduling variable,

and the system is Linear Parameter Varying (LPV).

2. Suppose that we want to design a controller for products of a production

line. We take system responses of some product samples to study the

dynamics. These plants are considered as Linear Time-Invariant (LTI).

Due to some factors, e.g., limited tolerances in the production line,

there are variations associated with the dynamics of these samples. It

is desired to derive a connected model set to cover these variations and

represent the sampled products as well as the unsampled ones. Since

we often can not measure nor estimate the sources of variations, we

deal with an uncertainty modeling problem.

5



In both scenarios, we need to model parameter variations. Such modeling

is important for designing robust and gain scheduling controllers. A smaller

model set generally leads to controllers with less conservative performances.

Therefore, it is of interest to derive a set of models with the following char-

acteristics:

• it precisely represents each plant of the given sample set.

• it is a connected set since it is also required to represent the interme-

diate plants between the sampled ones.

• a small number of independent variables are used to parameterize the

set to simplify the model set expression, leading to both nonconser-

vatism and reduced computational complexity in the subsequent con-

troller design.

A simple numerical example is studied to illustrate the advantages of vari-

ations modeling in controller design. Assume there are five samples whose

dynamics are governed by a common transfer function in the frequency do-

main as

[G(θ∗)](s) =
b0

(s+ b1)(s+ b2)
, θ∗ := [b0, b1, b2]

T , (1.1)

and the parameters are

θ∗ =

0.022
3

+

 0.01 0

0 1.5

2 0

[λ1
λ2

]
, (1.2)

where λ1 and λ2 are two independent varying terms,[
λ1

λ2

]
=

{[
1

1

]
,

[
1

−1

]
,

[
−1

1

]
,

[
−1

−1

]
,

[
0.1

0

]}
. (1.3)

Figure 1.1 shows the Frequency Response Function (FRF) data of these sys-

tems.
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Figure 1.1: Five different dynamical systems with same structure

Now, assume that the FRF data of the samples, depicted in Figure 1.1,

are given without any knowledge about the information in (1.1), (1.2), and

(1.3). The objective is to derive a connected model set to estimate all samples

as well as the unsampled systems. First, we estimate the order of a proper

rational transfer function to retrieve the structure in (1.1). The order can

be selected by systematic methods such as the Akaike’s information criterion

[1], inspection of the FRF data, or by trial and error. In this example, the

order of the transfer function can be easily estimated by inspection,

[G(θ)](s) =
a0

s2 + a1s+ a2
, θ :=

[
a0, a1, a2

]T
. (1.4)

Then, using the least-squares method, such as commands invfreqs.m or

fitfrd.m in the Matlab software, the set Θ consisting of all estimated pa-

rameter vectors is computed as

Θ := {θℓ}5ℓ=1 =


0.038.5

17.5

 ,
0.035.5

2.5

 ,
0.014.5

3.5

 ,
0.011.5

0.5

 ,
0.0215.2

6.4


 . (1.5)
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Figure 1.2(a) illustrates the parameter set, in which each vector in Θ is

shown by a dot. In this figure, the 3-dimensional grey box lies in between the

minimum and the maximum values of all the parameters. Such a box covers

all the parameter variations and therefore, a controller can be designed for

the same region. On the other hand, a manifold with fewer dimensions, one

or two here, that can approximate all vectors in Θ may exist. Subsequently,

a controller designed for this manifold can achieve a better performance in

comparison with the case that the controller covers the entire grey box.

We have applied Principal Component Analysis (PCA) to find a lin-

ear manifold approximating the parameter vectors. The resultant plane is

shown in Figure 1.2(b). For this simple example, an exact but unknown

2-dimensional manifold is obtained from (1.1), (1.2) , and (1.4) asa0a1
a2

 =

0.025
6

+

 0.01

2

4

λ1 +
 0

1.5

4.5

λ2 +
 0

0

3

λ1λ2. (1.6)

Notice that the manifold in (1.6) is nonlinear in variable terms, and therefore,

linear methods, such as PCA, can not estimate the parameter set as precisely

as nonlinear ones, such as Nonlinear PCA (NLPCA).

The goal is to detect a manifold, which interpolates the samples to cover

the variations associated with not only the samples but also the interme-

diate plant dynamics. Detecting such a manifold is essential to reduce the

conservativeness of the controllers, and hence, to improve the performance.

By generalizing the simple example above, we now formulate a problem

of constructing a connected model set.

Problem 1.2.2. Assume a set of transfer functions with a common struc-

ture, but possibly different parameter values, is given. The goal is to derive

a connected set of transfer functions, which represents each element of the

given set accurately. The connected model set should be tight1, leading to

1For instance, “tight model set” refers to a model set with few dimensions in the
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(a) The gray box covers all the variations in a
conservative way.

(b) The gray plane shows a manifold approxi-
mating the parameter set as calculated by linear
PCA.

Figure 1.2: Model parameters (black dots) and approximating mani-
folds.
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nonconservatism in subsequent controller design.

1.2.2 Discrete model set

When large parameter variations exist, it may be infeasible to design a sin-

gle robust controller to satisfy a desired performance objective for the entire

range of variations. One way to overcome this infeasibility is to divide the

parameter set into a finite number of partitions, and design one controller

for each partition. Since each controller deals with smaller parameter varia-

tions, the performance can be enhanced. Generally, the overall performance

strongly depends on the characteristics of the partitions, i.e., their size and

the way in which partitions are separated. Therefore, it is of interest to di-

vide the parameter set optimally, and derive a family of discrete model sets

with the following characteristics:

• it represents each plant of the given sample set by one element.

• a given performance objective can be satisfied for all partitions by de-

signing one controller for each partition.

As a motivating example, let us consider a control problem for a set G
including L = 12 mass-spring-damper (MSD) systems with force input and

displacement output. The dynamics of such systems can be represented in a

normalized form in the frequency domain as

Gℓ(s) :=
ω2
n,ℓ

s2 + 2ζℓωn,ℓs+ ω2
n,ℓ

, ℓ = 1, . . . , L, (1.7)

where ωn and ζ are modal parameters. The corresponding parameter set

Θ := {(ωn,ℓ, ζℓ)}Lℓ=1 is shown in Figure 1.3.

The control objective is to reject the displacement disturbance for all the

systems in G using feedback control. The disturbance rejection requirement

previous example.
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Figure 1.3: Parameter set of (1.7).

Figure 1.4: Mass-spring-damper closed-loop block diagram.

for a system G and a controller K can be expressed in terms of the sensitivity

function as

ΓMSD(G,K) :=

∥∥∥∥ W

1 +GK

∥∥∥∥
∞
< 1, (1.8)

for a given weighting function W . In this example, we assume the weighting

function is2

W (s) =
0.2s+ 391.9

s+ 0.3919
. (1.9)

Figure 1.4 shows the closed-loop block diagram, where d is the displacement

disturbance signal.

One straightforward approach to controller design for multiple systems is

to design one stabilizing feedback controller Kℓ for each system Gℓ. However,

this approach can be demanding, especially for a large number of systems,

because it leads to time-consuming design of a large number of controllers.

Therefore, our goal is to design a small number of controllers, in such a way

2The weighting function is a design specification which is given based on the perfor-
mance requirement [120].
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that each system is controlled by one of the designed controllers.

In this example, we want to design the smallest possible number of con-

trollers. First, we try to design a single controller by solving the following

optimization problem,

γ := min
K∈K

max
ℓ=1,...,L

ΓMSD(Gℓ, K), (1.10)

where K shows a set of controllers, which robustly stabilize all Gℓ. Here, we

follow an output-feedback controller design procedure proposed in [50], which

is based on the Linear Matrix Inequality (LMI) technique. The optimum γ

that is achieved by applying only one controller is 2.172. Since γ > 1,

the disturbance rejection requirement (1.8) is violated for some plants, see

Figure 1.5(a)3.

One way to possibly fulfill this requirement is to divide the set G into two

partitions G(1) and G(2), where G = G(1) ∪ G(2) and G(1) ∩ G(2) = Ø. Then,

solving the optimization problem (1.10) for each partition, the optimum γ1

and γ2 are achieved. The value of γopt := max{γ1, γ2} determines if the

control objective is satisfied. Since the dynamics of systems are governed by

a common transfer function, partitions in parameter domain {Θ(q)}2q=1 are

equivalent to {G(q)}2q=1, where Θ
(q) includes parameter vectors of systems in

G(q).

Two intuitive ways of partitioning Θ, among many others, are shown in

Figures 1.6(a) and 1.6(b). Here, elements of different partitions are shown by

different types of markers. The optimum values of γopt are 1.243 and 1.045

respectively for partition sets shown in Figures 1.6(a) and 1.6(b), and thus,

these two partition sets violate the requirement. On the other hand, a parti-

tion set shown in Figure 1.6(c) provides γopt = 0.759 < 1, see Figure 1.5(b).

In fact, this value of γopt is the global minimum for the case of two parti-

tions. This optimal partition set (Figure 1.6(c)) is derived by “full search”,

3Based on the requirement (1.8), the magnitude of W−1 is compared with those of the
sensitivity functions to examine the violation
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(a) One controller is designed for all sys-
tems, and the performance objective is not
satisfied for some systems, γopt > 1
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(b) Two controllers are designed for an
optimum partition set, and the perfor-
mance objective is satisfied for all systems,
γopt < 1

Figure 1.5: Violation or satisfaction of the disturbance rejection re-
quirement. The dashed line shows the magnitude plot of W−1

and solid lines show sensitivity functions of the systems

i.e., assessing the closed-loop performance of all 2509 possible partition sets,

combinations of twelve points in two partitions.

In many practical applications, the parameter set can be large in terms

of dimension (more complex transfer function) and the number of elements

(more systems to be controlled). In such cases, the “full search” might be-
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(c) The global optimum
partition set leading to
γopt = 0.759

Figure 1.6: Three ways of partitioning.

come impractical even for a small number of partitions. The goal is to obtain

an optimum partition set in a systematic manner to satisfy the closed-loop

performance objective.

By generalizing the simple example above, we now formulate a problem

of constructing a family of discrete model set.

Problem 1.2.3. Assume a set of transfer functions and a desired closed-

loop performance are given. The transfer functions have a common structure

with possibly different parameter values. The goal is to divide the given set

into the smallest possible number of partitions in such a way that the desired

performance objective is satisfied for all partitions by designing one controller

for each partition.

14



1.3 Objectives of the thesis

Both of the connected and discrete model set identification problems have

been previously addressed in the literature. Nevertheless, the solutions pro-

posed previously often suffer from a lack of generality and/or conservatism.

Therefore, the solutions to these problem are still being developed by re-

searchers.

Moreover, the dynamics of HDDs and BSDs have been thoroughly studied

and reported in the literature. However, there is still a lack of attention to

the dynamics of these systems from a controller design point of view.

The objectives of this thesis are to

O1. develop a modeling technique to derive connected model sets for Linear

Parameter Varying (LPV) and Linear Time-Invariant (LTI) systems,

O2. develop a systematic algorithm to derive a family of discrete model sets,

in such a way that a desired closed-loop performance can be achieved

by designing the corresponding controller set,

O3. study the dynamics of HDDs from a controller design point of view,

O4. model BSDs and design a robust gain scheduling controller to precisely

control the position of the machine table.

In this thesis, general linear plant dynamics are considered. The sys-

tems are general in a sense that they can be single-input single-output or

multi-input multi-output, and discrete-time or continuous-time. The pro-

posed methods will be compared to existing methods available and reported

in the literature. The developed methods are also numerically and/or ex-

perimentally validated, using typical benchmark problems from the control

literature, such as mass-spring-damper systems, as well as practical control

problems, namely, the hard disk drive and ball screw drive servo systems.
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1.4 Literature review

1.4.1 Connected model set

As discussed earlier, we may need to derive a connected model set to cover

all the parameter variations. There have been some investigations into pa-

rameter variations modeling in various systems to generate connected model

sets [11, 14, 52]. Most of the proposed methods assume that how each in-

dependent variable affects the parameters in the transfer functions is known

[74, 76]. This assumption is reasonable when we know the physical laws

governing the system dynamics, e.g., the structures of (1.1) and (1.2) in the

motivating example. However, this assumption is not valid in general.

The parameter variation modeling problem that we consider is closely

related to the parameter reduction. Hence, we review the literature in the

area of parameter reduction, and utilize the related best methodology as the

basis for modeling formulation.

Parameter dimension reduction is the transformation of a high-dimensional

parameter set into a meaningful representation of reduced dimensionality.

This representation has a dimensionality that corresponds to the “intrinsic

dimensionality” of the parameter set. The intrinsic dimensionality of the pa-

rameter set is the minimum number of parameters needed to account for the

observed properties of the model [34] without losing any critical information

about the plant. To this end, the possible correlation of original parameters

must be identified.

In some applications, parameters with little contribution to the input-

output behavior can be ignored in the estimation process [64, 116]. One

application of this method of parameter reduction can be found in [24] where

PCA and sensitivity analysis were used to reduce the number of parameters

in a model representing a complex metabolic network. Sun and Hahn [101]

applied three techniques to reduce the parameter set of fundamental models.

They extended the described methods to nonlinear systems. However, in
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many cases including our application, i.e., high precision controller design, it

is generally undesirable to neglect any parameter of the system model.

Dontchev et al. [27] proposed a numerical method for reduction of a priori

bounds on the values of uncertain plant parameters. The method successively

eliminates parts of the parameter domain which are inconsistent with the

plant measurement. The goal is to achieve the smallest possible area which

contains all the information about the uncertainty of the parameter set. This

method is computationally expensive.

A large number of nonlinear techniques for dimensionality reduction have

been proposed [7, 26, 41, 61, 105]. These techniques have the ability to deal

with complex nonlinear data. One can divide such techniques into supervised

and unsupervised learning methods.

Most commonly, supervised learning generates a global model that maps

inputs to desired outputs. This means that the data set consists of pairs

of input objects and desired outputs. Many well-known techniques for su-

pervised learning methodology are based on the linear discriminant analysis

[31]. Since, in our applications, the data set is a parameter set and not a set

of input-output data, the supervised learning method is not suitable here.

On the other hand, the modeling problem of the parameter variations can

be solved by implementing an unsupervised learning technique such as PCA

[42].

Nonlinear techniques for parameter reduction can also be divided into

two main categories:

• Local techniques. These techniques attempts to preserve local prop-

erties of the original data set. Four most common methodologies in this

category are, Local Linear Embedding (LLE) [90], Laplacian eigenmaps

[7], Hessian LLE [26], and local tangent space analysis [119].

There are two main disadvantages associated with this type: (a) Local

properties do not necessarily follow the global structure, as noted in

[9, 89], specially in the presence of noise. (b) Since the distribution of
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the original data set is not necessarily uniform, the neighbor selection

must be adaptive; otherwise the performance of parameter reduction

would be degraded.

• Global techniques. These techniques attempt to preserve global

properties of the original data set. Four well-known global nonlinear

techniques are, Multidimensional Scaling (MDS) [20], Isomap [104],

Diffusion Map (DM) [58], and NLPCA [55].

– MDS maps the original data to a low-dimensional representation

while preserving the distance between the data points in a pairwise

fashion. The quality of the MDS is expressed in the stress function∑
i,j

(∥xi − xj∥ − ∥yi − yj∥)2, (1.11)

where ∥xi − xj∥ and ∥yi − yj∥ are the Euclidean distances be-

tween the high-dimensional and low-dimensional data points re-

spectively. By modifying its cost function, one may put more em-

phasis on preserving distances which were originally small, such

as Sammon cost function [92].

Although it is well known that MDS has been successful in many

applications, it does not take into consideration the distribution

of the neighboring points, and it is based on Euclidean distance.

Therefore, MDS for data near to a curved manifold, such as “Swiss

roll” data set, does not perform satisfactorily.

– Isomap is a methodology that resolves the drawback of MDS by

attempting to retain a curvilinear distance between data points in-

stead of a Euclidean distance. Curvilinear distance is the distance

between points measured over the manifold.

– DM first constructs a graph of original data, x ∈ X. The weights

of the edges in the graph are computed using a Gaussian kernel
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function, leading to a matrix with entries, pij. This matrix is used

to calculate the diffusion distance:

D(xi, xj) :=
∑
k

(pik − pjk)
2

ψ(xk)
, (1.12)

where ψ(xk) is a term attributing more weight to part of the graph

with high density. The main idea is that the DM is based on many

paths through the graph. This makes the DM more robust than,

e.g., the methods based on the curvilinear distance, such as the

Isomap.

– NLPCA is an extension of PCA. Traditional linear PCA is a data

analysis technique identifying patterns and expressing the data

with independent variables in lower dimensional space. In other

words, if vector θ ∈ Rnθ represents the observations, there is a

transformation matrix P to produce independent variables stored

in λ ∈ Rnλ , nλ ≤ nθ,

λ = P T θ. (1.13)

There are some nonlinear extension of PCA that have been pro-

posed over the past two decades. Studies on NLPCA can be di-

vided into the utilization of neural network [54], principal curves

[38], and kernel approaches [94, 95].

Although Isomap and DM show a capability of outperforming some other

techniques to reduce the dimension of data, in uncertainty modeling aspect

they are not so powerful as NLPCA. Therefore, we propose an optimization

problem based on the concept of PCA.

Here, we prefer to adopt the principal curves method over neural network

and kernel PCA for the following reasons:

- The computational cost of neural network formulations increases consid-

erably if the number of observations (here, the number of elements in
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the parameter set) rises. On the other hand, based on some literature

such as [25], principal curve computation is not normally subject to

this computational concern.

- Kernel PCA performs PCA in a feature space of arbitrarily large (pos-

sibly infinite) dimensionality. The size of the kernel matrix increases

quadratically with an increase in the number of samples. Also, com-

pared to principal curves, kernel PCA is harder to interpret in the input

space [57].

Principal curves presented by Hastie and Stuetzle [37, 38] are smooth

one-dimensional curves that pass through the middle4 of multi-dimensional

distributions or data sets. The shape of the principal curve is determined by

the structure of the data set, and it provides a nonlinear summary of the data.

The principal curve is formally defined to be smooth self-consistent curve for

a data set. In other words, any point on the curve is the average of all of

the data which project onto that point. Although, in the original definition,

the principal curve is defined as a one-dimensional curve, in this study the

concept of the principal curve is extended to develop a multi-dimensional

curve.

1.4.2 Discrete model set

As discussed above, the variations in the system dynamics increase the size

of the model set, and consequently degrade the closed-loop performance, and

thus need to be taken into consideration. In many applications, achieving the

desired performance of the controller can be demanding due to the size of the

model set [120]. There are two main approaches to overcome this challenging

problem.

The more common approach solves the problem by modifying the con-

troller synthesis methodology for a given model set. Depending on the essence

4The interpretation of “middle” is given in Section 2.3.1.
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of the variations in the model set, different controller synthesis methodologies

are available, such as the switching ([72, 115]), multiple robust ([18, 117]),

adaptive ([32, 88]), and model predictive controllers [29]. The common idea

of these methods is to design a number of controllers, such that, each of

which covers one part of the variations. However, these methods lead to a

more conservative closed-loop system in comparison with the case where a

multiple-model set is derived based on the closed-loop performance.

The other approach attempts to derive a multiple-model set. This ap-

proach has a history of two generations [63, 65]. The first generation was rep-

resented by Magill [73] and Lainiotis [60]. Blom and Bar-Shaloms pioneered

an interacting multiple-model algorithm [8] and introduced the second gener-

ation. The interacting multiple-model has earned an enviable reputation for

multiple-model estimation via a significant number of successful applications

(see, e.g., [6]). Since then, different aspects of multiple-model set derivation

have been investigated [66, 87].

All the above literature in the multiple-model approach considers switch-

ing between local models. To the best of our knowledge, there is no literature

on derivation of a family of discrete model sets based on the desired closed-

loop performance, as defined in the Problem 3.2.1.

In cases where the system variations are only due to the parameter vari-

ations, the parameter set can be divided into a finite number of partitions.

Then, one controller is designed for each partition, and since it deals with

less parametric variations the performance can be enhanced. Generally, the

overall performance strongly depends on the characteristics of the partitions,

i.e., their size and the way that they are formed. Therefore, it is of interest

to divide the parameter set optimally.

In general, dividing a given parameter set into partitions is based on

the “similarity” among the parameters. A comprehensive introduction and

survey in clustering can be found in [47]. Classical algorithms optimize sim-

ple objectives, for instance K-means minimizes the spread over centroids.
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However, due to their simplifying assumptions about partition structure and

intuitive interpretations, they may provide poor clustering solutions.

One well-recognized method for clustering is the Normalized Cut (NCut)

[99]. However, it involves an optimization with a nonlinear objective and a

combinatorial nature of the feasible set, which leads to an NP-hard problem.

Spectral relaxation is a legitimate approach with significant practical suc-

cesses [99] for relaxing the NCut optimization. Nevertheless, Guattery and

Miller discussed some valid drawbacks of spectral relaxation [35]. Semidefi-

nite programming (SDP) has been powerful in approximating similar difficult

clustering optimization [51, 113], which results in a tighter relaxation of NCut

in comparison with the spectral relaxation [122].

In this thesis, a relaxed version of NCut is applied in an algorithm to

achieve an optimum set of partitions in such a way that a given performance

objective is satisfied for all partitions by designing one controller for each

partition. Further details about this approach is provided in Chapter 3.

1.5 The layout of the thesis

This thesis is organized as follows. Chapter 2 is devoted to Objective (O1)

of the thesis, presented in Section 1.3. To be more specific, this chapter

proposes a method to derive connected model sets. In Chapter 3 an algorithm

is developed to achieve Objective (O2). The dynamics of HDD read/write

head positioning systems is investigated in Chapter 4, where Objective (O3)

is accomplished. The proposed method in Chapter 2 is then used to model

the dynamics of HDD systems to design track-following controllers. The

variations in the dynamics of BSDs are studied in Chapter 5 to achieve

Objective (O4). Three main sources of variations are considered in tracking

controller design. Finally, Chapter 6 concludes the thesis, summarizes its

major contributions, and provides directions for future research.
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Chapter 2

Connected Model Set for a Set
of System Response Data

1

2.1 Introduction

This chapter proposes a systematic method to obtain a connected model

set for a given set of system response data. It is assumed that the govern-

ing equations of these system are the same but associated with parameter

variations. This method achieves Objective (O1) in Section 1.3.

The proposed practical procedure of this method is briefly illustrated in

Figure 2.1, and is described with mathematical expressions in this chapter.

This algorithm develops a mapping from experimental system response data

of a batch of sampled plants to a connected model set. The resultant set is a

set of real rational transfer functions, of which parameters are parameterized

by a small number of uncorrelated variables that capture the differences in

the dynamics of the sampled plants.

The transfer function structure can be selected by systematic methods

such as the Akaike’s information criterion [1], inspection of the FRF data,

1Most of this chapter is based on the following publication: M. Sepasi, F. Sassani, and
R. Nagamune, “Parameter uncertainty modeling using the multi-dimensional principal
curves”, Journal of Dynamic Systems, Measurement, and Control, 2010, Vol. 132, No. 5,
pp. 054501-054508.
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Figure 2.1: Connected model set derivation.

or by trial and error. The corresponding parameter set can be estimated

through many powerful tools, such as the System Identification [68] and

Signal Processing [67] Toolboxes in the Matlab software. Therefore, the pro-

cedure of obtaining the parameter set from the system responses is ignored

in this chapter, and in the problem formulation, it is assumed that the pa-

rameter set is given.

After deriving a connected parameter set, we generate the corresponding

connected model set, which can be simply done since the transfer function

structure is available. Therefore, in the problem formulation the goal is to

obtain a connected parameter set. An example is explained in Section 2.4.2,

in which the connected model set is derived for a general case where we deal

with both uncertain and scheduling variables.

This chapter is organized as follows. Section 2.2 formulates a connected

model set derivation problem. In Section 2.3, a method is proposed to solve

the formulated problem. Section 2.4 provides numerical and practical exam-

ples to validate the proposed method.

24



2.2 Connected set derivation problem

In Section 1.2.1, we have formulated a problem of generating a connected

model set in a general term; See Problem 1.2.2. Here, using mathematical

notation, we will reformulate it more rigorously.

Problem 2.2.1. Assume a set of L parameter vectors of transfer functions

with a common structure is given as

Θ := {θℓ ∈ Rnθ , ℓ = 1, . . . , L}. (2.1)

The goal is to derive a tight connected parameter set

Θ̂(f) := {f(λ) ∈ Rnθ , λ ∈ Rnλ : nλ ≤ nθ}, (2.2)

which represents each element of the given set Θ. The function f is the

parameterizing operator, and λ represents uncorrelated variables.

Remark. There are three remarks regarding the above problem;

1. The parameter λ can include uncertain and scheduling independent

variables.

2. A small number of uncorrelated variables λ are used to parameterize

the set Θ to obtain a tight model set, leading to both nonconservatism

and reduced computational complexity in subsequent controller design.

3. The number of independent variables λ as well as the structure of the

function f are assumed to be known. However, if they are unknown,

they can be obtained by trial and error. See the example explained in

Section 2.4.1.
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2.3 Connected set synthesis algorithm

The goal of this algorithm is to derive the set Θ̂ in (2.2), which interpo-

lates L members of Θ in (2.1), and represent the intermediate plants. Also,

it is desired that the resultant set Θ̂ has the smallest possible size2. To

this end, possible correlations among parameter vectors are determined by

parametrization with a small number of uncorrelated variables.

In the following, first we explain the synthesis algorithm for a general

function f . Then, in Section 2.3.2, a special case of this function is studied.

2.3.1 General structure of the parameterizing
function

Parameters λ represent the sources of variations, which can be scheduling

variables (e.g. temperature), denoted by λs

Λs := {λs ∈ Rns}, (2.3)

or uncertain variables (e.g. product differences), denoted by λu which are

normalized3,

Λu := {λu ∈ Rnu : λu ∈ [−1, 1]}, (2.4)

or a combination of both.

Here, we develop the methodology based on the principal curves for the

most general case, which takes into account both scheduling and uncertain

2Our intention of “the size of the parameter set” was clarified through an example in
Section 1.2.1. In different problems, the word “size” can refer to the dimension, area, etc.

3It is common in robust controller design methods to normalize the uncertain variables.
Therefore, we normalize the uncertain variables λu, contrary to the scheduling variables
λs.
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Figure 2.2: Visual explanations of distance notation.

variables

Λ := Λs ⊕Λu = {λ ∈ Rnλ : nλ = ns + nu}. (2.5)

The distance between Θ̂ and a sample parameter vector θℓ in Θ is defined

by

d(Θ̂(f), θℓ) := min
λ

∥f(λ)− θℓ∥, (2.6)

with a proper norm ∥ · ∥. See the visual explanations of the notation in

Figure 2.2. Such distance is desired to be minimized for all L samples. The

function f which yields the minimum distance is obtained by a minimax

optimization problem

min
f∈F

max
ℓ=1,...,L

d(Θ̂(f), θℓ), (2.7)

where F represents the given class of functions.

Remark. Here, the accuracy of the model is equally important for all

samples. For example, instead of optimization (2.7), if we solve

min
f

L∑
ℓ=1

d(Θ̂(f), θℓ) (2.8)

to derive the function f , we may face a situation that the optimum f ∗ pro-

vides a model that has a large error for one sample θℓ. Since the error for

27



other samples are small, the cost function of the optimization problem (2.8) is

minimized. However, this result may not be acceptable from system model-

ing point of view. Therefore, we prefer the minimax optimization formulation

rather than minimization of other cost functions, such as mean absolute error

and mean square error.

Since the optimization problem (2.7) is nonconvex in general, we propose

an iterative procedure to solve it as follows.

Algorithm 2.3.1.

Inputs: The set Θ = {θℓ ∈ Rnθ ; ℓ = 1, . . . , L}, the structure of the func-

tion f , and values of {λsℓ}Lℓ=1, nu and ns.

1. Initialize the function f .

2. Discretize the set Λu by selecting N values for λu. Then, solve the

optimization (2.6) for discretized λun

min
λu
n

∥f(

[
λun

λsℓ

]
)− θℓ∥, for n = 1, . . . , N, (2.9)

for each ℓ and denote the solution by λu
∗

ℓ .

3. Solve the optimization (2.7)

min
f

max
ℓ=1,...,L

∥f(

[
λu

∗

ℓ

λsℓ

]
)− θℓ∥ (2.10)

to update the function f .

4. Iterate Steps 2 and Step 3 until change in optimal values between iter-

ations is small or a satisfactory error is achieved.

The initialization of the function f in the first step of the above algorithm

can be done by any suitable algorithm. We suggest to use linear PCA,

which provides the principal directions of correlation between the parameters.
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Depending on the structure of the function f , the third step can be a convex

or nonconvex optimization problem.

2.3.2 Special structure of the parameterizing function

In some cases, the nonlinear function f can be chosen such that it can be

decomposed into two multiplicative matrices of the form f(λ) = CV (λ).

Matrices C and V are the coefficient and the variable matrices, respectively.

The details of this decomposition will be explained in a subsequent section

through mathematical expressions.

There are two main advantages of selecting a function f such that the

varying terms can be extracted by the above decomposition.

• Varying terms can be extracted from the system and the model can

simply be transformed into a Linear Fractional Transformation (LFT)

form shown in Figure 2.3, where K is the controller, G is the linear

varying system, Λ is a matrix representing the variations, and P is the

corresponding linear invariant system. For the LFT form, there are

many robust control techniques available.

• The third step of the Algorithm 2.3.1 becomes a convex optimization

problem

min
C

max
ℓ=1,...,L

∥CV (

[
λu

∗

ℓ

λsℓ

]
)− θℓ∥, (2.11)

and can be solved by well-developed techniques, such as LMI.

As an example, assume that the function f : Rnλ 7−→ Rnθ is in the form

of

f(λ) =

0.025
6

+

 0.01

2

4

λ1 +
 0

1.5

4.5

λ2 +
 0

0

3

λ1λ2,
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Figure 2.3: A closed-loop configuration for the special case

where nλ = 2 and nθ = 3. Then, the matrices C ∈ R3×6 and V ∈ R6×1 can

be decomposed as

C =

0.02 0.01 0 0 0 0

5 2 1.5 0 0 0

6 4 4.5 0 0 3

 , V (λ) =



1

λ1

λ2

λ21

λ22

λ1λ2


.

In general, the variable matrix V (λ) is in the form of

V (λ) :=


v0(λ)

v1(λ)
...

vm(λ)

 , (2.12)

where m is the order of the polynomial function f , and vi is the Veronese

map of degree i [36]. A veronese map vi : Rnλ 7−→ RJi(nλ) is a map from

[λ1, · · · , λnλ
] to all Ji(nλ) monomials of degree i in λ1, . . . , λnλ

. In the above
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example,

v0 = 1, J0(2) = 1,

v1(λ) =

[
λ1

λ2

]
, J1(2) = 2,

v2(λ) =

 λ21

λ22

λ1λ2

 , J2(2) = 3.

The size of the general matrix C is nθ × p, where p :=
∑m

i=0 Ji(nλ).

The special case, m = 0, corresponds to a single transfer function. Pa-

rameter m expresses the order of the uncertainty model. One may achieve a

more accurate model by increasing the polynomial order, m. Notice that the

parameterm assigns the size of the V matrix and consequently the size of the

Λ block in Figure 2.3. Therefore, increasing m leads to a higher computa-

tional cost in controller design and possibly to an unacceptable conservative

performance.

We would like to obtain a coefficient matrix C such that the connected

set Θ̂ satisfactorily interpolates all the elements of Θ. For this purpose, we

follow the Algorithm 2.3.1 with the special convex form in the third step

shown in (2.11).

2.4 Examples

In this section, the developed algorithm is validated through numerical and

practical examples. First, we study the results of our method applied to the

motivating example explained in Section 1.2.1. Then, the uncertainty asso-

ciated with a multi-input multi-output BSD is modeled using the proposed

method.
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2.4.1 Connected model set for a numerical example

We show the performance of the proposed algorithm by applying to the

example explained in Section 1.2.1. Let us assume that the variations of

the FRF data (Figure 1.1) are caused by only uncertain variables. The goal

is to model these uncertainties. For this purpose, we employ a polynomial

function f in the formulation (2.2).

First, we apply linear PCA in order to model the uncertainties. Linear

PCA is one possible method in dealing with parameter variations for robust

control design [56, 75, 76]. To evaluate the final resultant connected set Θ̂,

we study how precisely it approximates the original parameter vectors. To

this end, we obtain the nearest point in this connected set to each of the

original parameter vector. The resultant parameter vectors are

Θ̂PCA = {θ̂ℓ}Lℓ=1 =


 0.03

8.701

17.061

 ,
0.0285.523

2.222

 ,
0.0184.350

4.185

 ,
0.0092.166

0.168

 ,
0.0215.215

6.388


 .

By comparing this resultant parameter set with the original one shown in

Section 1.2.1, Equation (1.5), it can be seen that there are some deviations

which might not be acceptable for many applications. Therefore, one may

want to derive a nonlinear uncertainty model rather than a linear one in

order to cover the variations of the parameter set Θ more accurately.

By applying the proposed method, we derive different nonlinear uncer-

tainty models for different values of nλ, number of uncertain terms, and m,

the order of the polynomial function. To compare the results quantitatively,

the error is defined as

ϵ :=
L∑

ℓ=1

∥θℓ − θ̂ℓ∥, (2.13)

where θℓ is the original parameter vector from (1.5), and θ̂ℓ is the nearest

point in the connected set Θ̂ to θℓ.

32



Table 2.1: Errors for different models

nλ = 1 nλ = 2

m = 1 1 0.12
m = 2 0.9 9× 10−9

Error values ϵ for different models are shown in Table 2.1, where the error

of the linear PCA is normalized to 1. From (1.6), we know that the actual

values are nλ = 2 and m = 2, which concur with the results shown in the

table.

2.4.2 Uncertainty modeling of a dual-input
dual-output Ball Screw Drive (BSD)

As a practical example, we consider to model the uncertainties associated

with a machine tool with a ball screw drive. A picture of this machine is

illustrated in Figure 5.1. This machine is a dual-input dual-output system.

A motor controls the position of a table along a shaft. For different locations

of the table, the mass distribution of the system varies, and as a result, the

characteristics of the plant change during the operation.

It is assumed that this dual-input dual-output plant is governed by the

following structure:

G(s) =

[
M1(s) M2(s)

M2(s) M3(s)

]
.

To control the position of the table for all locations along the shaft, one

way is to build a continuous uncertainty model such that it covers all the

variations. For this purpose, we take some sample FRF data illustrating the

system characteristics for different locations of the table,

{(ωw, M̂iwℓ) : ωw ∈ R, M̂iwℓ ∈ C, i = 1, 2, 3, w = 1, . . . ,W, ℓ = 1, . . . , L},

where M̂iwℓ represents the system response of Mi(s) at the ℓ-th location at
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the frequency of ωw, and W is the number of frequencies.

Figure 2.4 shows the dynamic responses (dotted lines) of the plant for

three different table locations. For the given FRF data, no a priori knowl-

edge about the system transfer functions M is assumed except being time-

invariant and linear. Therefore, we estimate the general rational form of the

transfer functions whose orders are assumed to be identical for all the sam-

ples, {Gℓ(s)}Lℓ=1. This implies that the variations shown in Figure 2.4 are

due to parameter variations only.

The first step is to obtain the order of the numerator and denominator

polynomials of the transfer functions M . The results are as follows: M1(s)

has 2 zeros and 4 poles, M2(s) has 1 zeros and 5 poles, andM3(s) has 3 zeros

and 5 poles, which are selected by inspecting the shapes of the FRF data.

Now, the least squares optimization is used to estimate the parameter

sets Θi by minimizing the error as follows for i = 1, 2, 3.

Θi := {θℓ = argmin
θ

W∑
w=1

|M̂iwℓ − [Mi(θ)](jωw)|2, ℓ = 1, . . . , L}, (2.14)

where W is the number of frequencies for the FRF data. The responses of

the transfer functions corresponding to these parameter sets are shown with

solid lines in Figure 2.4.

Then, we define the parameter set Θ := {Θ1 ⊕ Θ2 ⊕ Θ3}, and model

the uncertainty of this parameter set. First, we apply linear PCA (m = 1)

with one uncertain variable (nλ = nu = 1). The nearest responses in the

connected set to the original ones are shown by dashed lines in Figure 2.5.

As can be seen in the figure, this model captures the main features but it

is not capable to capture the entire ranges of variations. This is concluded

because the dashed lines lie in between the solid lines.

By increasing either nλ or m, the model captures the variations more

satisfactorily. The numerical comparison is made in Table 2.2. Similar to

Table 2.1, to evaluate the resultant uncertainty models, we compare the
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Figure 2.4: Frequency responses of the ball screw machine (dotted
line), and the estimated transfer function (solid line).
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Table 2.2: Ball screw uncertainty model normalized errors for different
values of nλ and m

nλ = 1 nλ = 2 nλ = 3

m = 1 1 2.3× 10−9 7.6× 10−9

m = 2 0.15 2.6× 10−11 2× 10−15

m = 3 0.12 1× 10−15 1.5× 10−15

errors defined in (2.13) between the parameter sets. The error of the linear

PCA is normalized to unity. Depending on the complexity and accuracy

requirements in a particular application, the values of nλ and m should be

selected accordingly.

As can be seen in Table 2.2, if the linear PCA is applied, m = 1, we are

not able to achieve the normalized error less than the order of 10−9, and by

increasing the polynomial order to m = 2, a significant improvement might

be accomplished. For instance, in the case of nλ = 3, the error decreases by

a factor of 106. The resultant frequency responses for nλ ≥ 2 almost overlap

the estimated dynamics responses.

2.5 Conclusions

This chapter proposed a systematic method to derive a connected set for a

given set of system response data associated with parameter variations. This

method achieved Objective (O1) in Section 1.3. The algorithm illustrated in

Figure 1.1 was described with mathematical expressions in this chapter. This

algorithm developed a mapping from experimental system response data of

a batch of sampled plants to a connected set. The resultant set was a set of

real rational transfer functions, of which parameters were parameterized by

a small number of uncorrelated variables that captured the differences in the

dynamics among the sampled plants.

The method was based on a minimax optimization problem for the multi-

dimensional principal curves. We applied our algorithm to an illustrative and
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Figure 2.5: The estimated transfer function (solid line), and the model
set calculated by applying linear PCA (dashed line). The results
for nλ ≥ 2 almost overlap the solid lines.
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a practical example, and obtained accurate models in both cases, and hence

circumvented the possibility of conservative performance of the closed-loop

control systems.
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Chapter 3

Family of Discrete Model Sets
for a Set of System Response
Data

1

3.1 Introduction

This chapter addresses Objective (O3) in Section 1.3. The algorithm that

we propose to achieve this objective is briefly illustrated in Figure 3.1, and

is described in detail with mathematical expressions in this chapter. This

algorithm develops a mapping from the system response data to a family of

discrete model sets. It is assumed that the governing equations of the given

system responses are the same but associated with parameter variations. The

goal is to divide the given set of system responses into the smallest possible

number of partitions, and generate a family of discrete model sets, in such

a way that the given performance objective is satisfied for all partitions by

designing one controller for each partition.

The common transfer function structure for the system responses can be

selected by systematic methods such as the Akaike’s information criterion

1This chapter is based on the following articles which is under preparation: D. Sepasi,
R. Nagamune and F. Sassani, “Performance-oriented multiple model set estimation using
normalized cut”
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Figure 3.1: Family of discrete model set derivation.

[1], inspection of the system responses, or by trial and error. The corre-

sponding parameter set can be estimated through many powerful tools, such

as the System Identification [68] and Signal Processing [67] Toolboxes in the

Matlab software. Therefore, these two procedures, i.e., deriving the transfer

function set from the system responses and obtaining the parameter set, are

not discussed in this chapter.

This chapter is organized as follows. Section 3.2 formulates a problem of

deriving a family of discrete model sets. In Section 3.3, a method is proposed

to solve the formulated problem. Section 3.4 provides numerical examples to

validate the proposed method as well as the effectiveness of combining the

method developed in this chapter with that in Chapter 2.

3.2 Problem of deriving a family of discrete

model sets

In Section 1.2.2, we have formulated a problem of generating a connected

model set in a general term; See Problem 1.2.3. Here, using mathematical

notation, we will reformulate it more rigorously.
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Problem 3.2.1. Assume a set of L transfer functions and a desired closed-

loop performance are given. The transfer functions have a common structure

with possibly different parameter vectors,

G := {[G(θ)](s), θ ∈ Θ}, (3.1)

where

Θ := {θℓ ∈ Rnθ , ℓ = 1, . . . , L} (3.2)

is the related parameter set. The goal is to divide the set (3.1) into the

smallest possible number of partitions, Q, and derive a partition set,

Ĝ := {G(q)}Qq=1, G(q) := {[G(θ)](s) : θ ∈ Θ(q)}, (3.3)

such that a certain closed-loop performance is satisfied by designing one con-

troller K(q) for each partition G(q).

Remark. There are two remarks regarding the above problem.

1. For simplicity, the problem is formulated in a continuous-time setting.

However, the discrete-time case can be treated analogously.

2. The resultant pairs of {G(q), K(q)} may be used for switching systems.

However, we do not investigate potential issues related to switching

between the controllers.

3.3 Synthesis of a family of discrete model

sets

In this section, we explain the main idea of how to tackle Problem 3.2.1 and

derive the optimum partition set2. The proposed algorithm is summarized

as a flowchart in Figure 3.2. Each step is briefly addressed first, and then,

detailed explanations are provided in the following sections.

2Although this partition set is called optimum, it may not be the global optimum.
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Figure 3.2: Main idea of the procedure to seek the optimum partition
set.

(1,2) In the flowchart, there are two distinct steps labeled as (1) and (2).

However, the developed algorithm performs these two steps simulta-

neously as follows. For the given transfer function set, we employ a

procedure, which is explained in Section 3.3.2, to obtain a family of P
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“best”3 partition sets,

{Ĝp}Pp=1 = {Ĝ1, . . . , ĜP}. (3.4)

Note that each of these sets of partitions, Ĝp, consists of Q partitions

as shown in (3.3), Ĝp = {G(1)
p , . . . ,G(Q)

p }.

(3) The closed-loop performances of these P partition sets are assessed as

explained in Section 3.3.3. Therefore, the partition set, which provides

the best performance, is obtained.

(4) If the best performance in Step (3) is satisfactory, we select the corre-

sponding partition set as the optimum one. Otherwise, we go back to

step (1) with Q = Q+ 1.

Since the dynamics of all systems are governed by a common transfer

function, partitions in the model set i.e., {G(q)}Qq=1, are equivalent to the

partitions in the parameter domain, i.e., {Θ(q)}Qq=1, where Θ(q) includes pa-

rameter vectors of the systems in G(q). Hence, we divide the parameter set

Θ into Q partitions {Θ(q)}Qq=1 such that there exists a controller K(q) ∈ K

to satisfy the performance objective of the systems in partition q, where K

represents a class of stabilizing feedback controllers.

In this section, first, we provide some background material, which is nec-

essary before explaining the main algorithm. A procedure, which provides

the family of P best partition sets, is explained in Section 3.3.2. Obtaining

the optimum partition set, which leads to the best closed-loop performance

is described in Section 3.3.3. The entire procedure is summarized as an

algorithm in Section 3.3.4.

3Our meaning of the word “best”, and how to select the value of P will be explained
in detail in Section 3.3.2.
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3.3.1 Background material

Notations used in this section are standard. If each element of the vector d

is shown by a nonnegative number di, the vector d1/2 is defined as a vector

with elements of d
1/2
i .

Definition: The nonempty sets Θ(1), . . . ,Θ(Q) form partitions of the

data points Θ if Θ(i) ∩Θ(j) = Ø and Θ(1) ∪ . . . ∪Θ(Q) = Θ.

Given a set of data points Θ, the similarity graph S models the data

set in the form of a graph for which the vertices represent the data points.

If the similarity sij between two data points, θi and θj, is greater than a

certain threshold, the corresponding two vertices are connected in the graph

by an edge with the weight of sij. For a visual explanation see Figure 3.3,

where data points and edges are shown by dots and lines, respectively. For

notational brevity, only weight s12 is labeled.

The similarity sij represents the local neighborhood relationships between

θi and θj. Generally, the higher value sij holds, the more similar the corre-

sponding points are. The goal of clustering is to find partitions of the graph

S such that the edges within the partitions have high weights while the edges

between the partitions have small weights.

Three mostly used similarity graphs are neighborhood [48], k-nearest

neighbor [30], and fully connected [80] graphs. A comprehensive survey on

these graphs is given in [110], based on which, the fully connected similarity

graph with Gaussian similarity weights is employed in our algorithm.

Definition: The affinity matrix A = (aij)i,j=1,...,L is defined as

aij = sij := e−
∥θi−θj∥

2

2σ2 if i ̸= j,

aii = 0, (3.5)

with a proper norm ∥ · ∥.
The constant σ governs all the similarities throughout the entire data

set, and regulates the width of the neighborhoods in the Gaussian similarity
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(a)

(b)

Figure 3.3: Two ways of partitioning a graph. Vertices and edges are
shown by dots and solid lines, respectively. The dashed lines are
partition boundaries.

function. The parameter σ is in the order of the average distance of a point

to its r-th nearest neighbors, where r is chosen to be the nearest integer to

log(L) + 1 [10].

Definition: The degree of a vertex θi is defined as di :=
∑L

j=1 aij, and

the degree matrix D is a diagonal L× L matrix with {d1, . . . , dL} on the

diagonal.

3.3.2 Parameter set partitioning and derivation of
the best partition sets

This section describes Steps (1) and (2) in Figure 3.2 in detail. These steps

attempt to minimize a cost function by dividing the estimated parameter set

Θ into Q partitions. The outputs of this step are P partition sets, which
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provide the smallest cost function values as will be explained later.

An intuitive objective of data clustering is to partition the data in such

a way that the sum of the pairwise similarities of the points from different

partitions is minimized. However, such a naive objective may yield a trivial

solution. For example, some partitions may include only one point as shown

in Figure 3.3(a).

The Normalized Cut (NCut) methodology normalizes the previous naive

cost function, which was the sum of the pairwise similarities of the points

from different partitions, with the total weighted degree of the points in

each partition. Consequently, partitions such as the one illustrated in Fig-

ure 3.3(b) have higher chance to be derived in comparison with the case that

a naive objective was considered.

Definition: The indicator matrix is defined as Ŷ ∈ RL×Q with columns

of ŷj := [ŷ1j, ŷ2j, . . . , ŷLj]
T , where

ŷij =

{
1 : if i ∈ Θj

0 : if i /∈ Θj

. (3.6)

For example, for the partition sets shown in Figure 3.3, we have

For (a): Ŷ =



1 0

1 0

1 0

0 1

1 0

1 0


, For (b): Ŷ =



1 0

1 0

1 0

0 1

0 1

0 1


. (3.7)

The weight of the NCut can be expressed as [113]

WNCut(Ŷ ) :=
∑
j

ŷTj (D − A)ŷj

ŷTj Dŷj
= Tr[(Ŷ TDŶ )−1(Ŷ T (D − A)Ŷ )]. (3.8)
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Consequently, the clustering problem can be defined as the following opti-

mization problem

min
Ŷ

WNCut(Ŷ ). (3.9)

It is an optimization problem with a nonlinear objective function, shown in

(3.8), and a combinatorial nature of the feasible set Ŷ , which leads to an

NP-hard problem.

One way to relax the NCut optimization problem (3.9) is to define an

indicator matrix Y ∈ RL×Q which is the “normalized” Ŷ by an unknown fac-

tor, such that Y = D1/2Ŷ (Ŷ TDŶ )−1/2 [113]. If Z := Y Y T , the optimization

(3.9) can be expressed in the relaxed version as (The proof is provided in

Appendix A)

max
Z

Tr(WZ) (3.10)

Zd1/2 = d1/2,Tr(Z) = Q,

Z ≥ 0, I ≽ Z ≽ 0,

where I is the identity matrix with the right size, and

W := D−1/2AD−1/2, (3.11)

where D and A are the degree and affinity matrices, respectively. The con-

straint Zd1/2 = d1/2 indicates ΣUTd1/2 = UTd1/2 where Σ and U are derived

from eigenvalue decomposition, Z = UΣUT . Hence, the i-th eigenvalue Σii

equals to one when (UTd1/2)i ̸= 0, and can be arbitrary when (UTd1/2)i = 0.

Since at the optimal solution Z∗ = Y Y T , the eigenvalues of Z∗ corresponding

to Y are 1, and the indicator matrix Y is the Q eigenvectors in U correspond-

ing to the Q largest eigenvalues in Σ.

In order to introduce a standard Semidefinite Programming (SDP), which
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is equivalent to optimization (3.10), we define

Z̃ :=

[
Z

1− Z

]
. (3.12)

As discussed above, to obtain the indicator matrix Y , the eigenvectors of Z∗

should be extracted. The eigenvalue decomposition of Z̃∗ is

Z̃∗ =

[
Z∗

1− Z∗

]
=

[
UΣUT

U(1− Σ)UT

]

=

[
U

U

][
Σ

(1− Σ)

][
UT

UT

]
. (3.13)

Therefore, eigenvectors of Z∗, i.e., U , can be selected from eigenvectors of

Z̃∗.

The optimization problem (3.10) can be written in the standard SDP form

as described in Appendix B. A standard dual pair of the SDP optimization

shown in Appendix B can be modeled as a Linear Matrix Inequality (LMI),

min
x

tTx (3.14)

F (x) := Fx−

[
W

0

]
≽ 0,

where x ∈ RM : M = 1.5(L2 + L) + 1,

t =

[
12L+1

01.5L2−0.5L

]
, (3.15)
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and F : RM → S2L is a linear operator as

Fx =
L∑
i=1

[
(D̃i + (D̃i)T )/2

0

]
xi +

[
I/Q

0

]
xL+1 (3.16)

+
L∑
i=1

[
Bi

Bi

]
xi+L+1 +

L−1∑
m=1

L∑
n=m+1

[
Cmn

Cmn

]
x
n+(m+1)L−m2+m

2
+1

+
L∑
i=1

L∑
j=1

[
H ij

(H ij)T

]
x
j+iL+L2+L

2
+1
,

where elements of matrices D̃i, Bi, Cmn and H ij are zero except that

• the i-th row of D̃i is d1/2/d
1/2
i ,

• Bi
ii = 1,

• Cmn
mn = Cmn

nm = 1, and

• H ij
ij = 1,

for i, j = 1, . . . , L and 1 ≤ m < n ≤ L.

Now, the optimal solution x∗ is used to achieve the eigenvectors of Z̃∗.

In the above primal-dual pair of SDP, optimizations (B.1) and (3.14), the

strong duality is satisfied in the sense that for any optimal primal solution

Z̃∗ and any optimal dual x∗ we have4

Z̃∗F (x∗) = 0. (3.17)

Therefore, the large eigenvalues of Z̃∗ correspond to the small eigenvalues of

F (x∗).

Consequently, eigenvectors of Z∗ can be selected from eigenvectors of

F (x∗) by extracting its L eigenvectors, whose largest entries concentrate at

4In general, for any standard primal-dual pair of SDP, such a relationship (3.17) be-
tween the optimal solutions holds [86].
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the first half (see the decomposition in (3.13)) without knowing the primal

solution Z̃∗. Since the Q smallest eigenvalues of F (x∗) correspond to the Q

largest eigenvalues of Z∗, Y can be simply selected from U by conducting

eigenvalue decomposition of F (x∗).

Then, the un-normalized indicator matrix Ŷ should be approximated. To

this end, we generate the matrix D−1/2Y ∈ RL×Q, and consider rows of this

matrix as L points in RQ. These points represent the original points {θℓ}Lℓ=1

in a different domain. By applying the K-means technique, these points are

divided into Q partitions. The K-means method attempts to minimize the

cost υ, which is the sum of the point-to-centroid distances in each partition,

summed over all Q partitions. The K-means method is well developed in the

Statistics Toolbox of the Matlab software [49].

One of the outputs of the K-means algorithm is the centroid for each

partition. One can put an accurate interpretation on the distances of each

point, rows of the matrix D−1/2Y , to every centroid in order to rank the

points of each partition. Therefore, we can determine how close each point

is to the other members of its partition and to those of other partitions. As

a result, the partition sets, indicated by Ŷ , can be assorted by the cost υ,

{{Ŷ1, υ1}, {Ŷ2, υ2}, . . .} : υi < υj if i < j. (3.18)

We ignore the partition sets with high costs, and keep P partition sets

with the least costs. One may choose one of the following ways to select a

value for P .

1. If there is a jump between υi and υi+1, we select P = i.

2. The value of P should be large enough to possibly cover all the satis-

factory partition sets.

After selecting P , the partition sets {Ĝp}Pp=1 corresponding to the indicator

matrices Ŷp are entitled as the output of step (2) in Figure 3.2. The procedure

developed in this section is illustrated in Figure 3.4.
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Figure 3.4: A short-form flowchart of the procedure explained in Sec-
tion 3.3.2.

3.3.3 Optimum partition set selection

This section describes Step (3) in Figure 3.2 in detail. This step attempts

to obtain the optimum partition set, which leads to the best closed-loop

performance, among the given P partition sets from Step (2). We suggest

the following two approaches. Note that one controller K(q) satisfies the

performance objective of all the systems in partition G(q).

1. Synthesize a controller set for each of the P partition sets, and the

system-controller pairs are derived as {{G(q)
p , K

(q)
p }Qq=1}Pp=1. The set

with the best closed-loop performance is chosen as the optimum parti-

tion set. Assume that the closed-loop performances for system-controller

pairs can be denoted by {{γ(q)p }Qq=1}Pp=1, and that the better perfor-

mance is achieved for the smaller γ. Therefore, the best performance

can be selected as

γopt := min
p

max
q
γ(q)p . (3.19)

The partition set corresponding to the pair with the best closed-loop

performance, γopt, is chosen as the optimum partition set.
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2. Synthesize a controller set for the partition set with the minimum cost,

i.e, υ1, and generate {G(q)
1 , K

(q)
1 }Qq=1 and {γ(q)1 }Qq=1. Then, we define

γ∗1 := max
q
γ
(q)
1 . (3.20)

The performance of this controller set {K(q)
1 }Qq=1 is analyzed on the

other P − 1 partition sets. Therefore, we obtain {γ∗p}Pp=2 for the pairs

of {{G(q)
p , K

(q)
1 }Qq=1}Pp=2. Similarly, the best performance is selected as

γopt := min
p=1,...,P

γ∗p . (3.21)

In the first approach, P controller sets are synthesized while in the second

approach, one controller set is synthesized, and analyzed for the remaining

P − 1 partition sets. The user chooses one approach based on the advantages

of each for a specific application. In general, controller analyzing is more

straightforward than synthesizing. However, the first approach may achieve

a partition set with a better closed-loop performance since controllers are

synthesized for each partition set separately.

3.3.4 Optimum partition set derivation algorithm

To improve the performance of the algorithm, the parameter set Θ should

be normalized such that all parameters are in the range of [−1, 1]. Also, we

may need to scale the normalized Θ to address the controller design limit.

We multiply the i-th component of θ by a weight ρi. For example, if the

parameter vector includes the natural frequency and the damping ratio of a

system, and the variations in the natural frequency is more problematic in

controller design, the weight for the natural frequency is higher than that for

the damping ratio. The weight ρ ∈ Rnθ is either given as a priori knowledge

or obtained by trial and error.

Here, we summarize the proposed methods in Sections 3.3.2 and 3.3.3 as
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an algorithm.

Algorithm 3.3.1.

Inputs: Parameter set Θ = {θℓ ∈ Rnθ ; ℓ = 1, . . . , L}, the number of

partitions Q, and the scale factor ρ ∈ Rnθ .

1. Normalize Θ such that all parameters are in the range of [−1, 1].

2. Scale Θ by ρ to address the controller design limit.

3. Generate constant matrices for optimization problem (3.14).

4. Follow the flowchart in Figure 3.4 to obtain P best partition sets.

5. Follow the procedure in Section 3.3.3 to derive the optimum partition

set.

3.4 Numerical examples

In this section, the developed method is validated through numerical ex-

amples. First, we discuss the results of applying Algorithm 3.3.1 to the

motivating example explained in Section 1.2.2. Then, we apply the method

developed in Chapter 2 to the discrete sets to derive connected sets. Five

different approaches are compared to highlight the effectiveness of the devel-

oped methods.

3.4.1 Illustrative example

It has been shown in Section 1.2.2 that, to achieve the desired closed-loop

performance of systems (1.7), the parameter set shown in Figure 3.5 needs

to be divided into at least two subsets. We apply Algorithm 3.3.1 step by

step as follows to derive the optimum partition set.

1. Parameters ωn and ζ are normalized to the range of [−1, 1].
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Figure 3.5: The parameter set of the example in Section 1.2.2.

2. The weight ρ is chosen such that the parameter ωn is multiplied by 2,

because variations in ωn deteriorate the controller performance more

in comparison with that in ζ in this example.

3, 4. The flowchart in Figure 3.4 is followed, and the sorted pairs of cost-

partition are derived as explained in (3.18). The normalized values of

the costs υ for P = 12 partition sets are shown in Figure 3.6. Figure 3.7

shows three partition sets with the least costs.

5. As it can be seen, the global optimum partition set shown in Figure1.6(c),

which obtained by checking the closed-loop performances of all the pos-

sible partition sets, is among three partition sets derived in the previous

step. Obviously, after checking the closed-loop performance, the global

optimum partition set is chosen.

The proposed algorithm takes 254 s of completion time using a computer

with a 2.93 GHz processor and 2 GB of RAM to extract the optimum par-

tition set, while examining the closed-loop performances of the entire 2509

possible partition sets takes 10246 s. It shows the efficiency of the proposed

method. In many practical applications, the parameter set is large in terms

of the dimension (more complex transfer function) and the number of ele-

ments (more systems to be controlled). In such cases, the “full search” might

become impractical even for a small number of partitions.
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Figure 3.7: Three cluster sets with least cost functions.

3.4.2 Closed-loop performance comparison of
connected sets

In this section, the effectiveness of combining the algorithm in this chapter

with that presented in Chapter 2 is studied. We consider five different ap-

proaches to divide the given parameter set in the previous example into two

partitions, where each of which is a connected set as follows.
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1. The entire parameter variation region, {ωn ∈ [1, 2], ζ ∈ [0.1, 0.2]} shown
by a rectangle in Figure 3.5, is divided into two subregions in ωn direc-

tion, i.e., ωn1 ∈ [1, 1.5] and ωn2 ∈ [1.5, 2], and a controller is synthesized

for each subregion. These two controllers cover the entire region, which

leads to a conservative solution.

2. The entire parameter variation region is divided into two subregions in

ζ direction, i.e., ζ1 ∈ [0.1, 0.15] and ζ2 ∈ [0.15, 0.2], and a controller

is designed for each subregion. Similar to the previous approach, this

approach is conservative.

3. Algorithm 2.3.1 is applied to each of two partitions, which are generated

intuitively and shown in Figure 3.8(a), to derive connected sets. The

user inputs to the algorithm are ns = 0, nu = 1, N = 50, and the

functions f are chosen as second order polynomials for both partitions.

4. Similar to the previous approach, the connected sets are derived for the

partitions, which are generated intuitively and shown in Figure 3.8(b).

5. Algorithm 2.3.1 is applied to the optimum partition set, Figure 3.7(b).

For both partitions, ns = 0, nu = 1, N = 50, while the functions f are

chosen as second and third order polynomials for the partitions shown

by dots and circles, respectively.

Robust controllers are designed for the resultant connected sets using the

Matlab Robust Control Toolbox software [5]. The resultant closed-loop per-

formances γ for above approaches are shown in Table 3.1 for both partitions

for each approach. Note that the controller performances deteriorate in com-

parison with the performances shown in the example in Section 1.2.2. The

main reason is that the controllers guarantee the performances γ for infinite

number of systems (connected sets) here. On the other hand, in the previous

case (discrete sets), the performances γ are guaranteed for a finite number

of systems.
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According to Table 3.1, the best performance is achieved for the forth

approach. However, in this approach, the partitions are derived intuitively,

which might be impractical for applications with the higher dimension of the

parameter domain. The second best performance is obtained by the pro-

posed method, which shows the effectiveness of the developed method. For

a bigger parameter domain, which can be the case in practical applications,

naive approaches (similar to the first and second ones above) lead to more

conservative controllers, and intuitive clustering (similar to the third and

forth approaches) becomes more difficult.
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Figure 3.8: Two intuitive ways of clustering.

3.5 Conclusions

We proposed a technique to derive a family of discrete model sets, in the form

of a partition set, for a given set of system response data. It was assumed

that the given response data set was governed by a common transfer func-

tion with variations in parameters. A systematic algorithm was developed
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Table 3.1: The achieved closed-loop performance γ for different ap-
proaches.

Approach γ1 γ2 max{γ1, γ2}
1 3.3168 2.8941 3.3168
2 3.8516 3.8526 3.8526
3 3.3124 3.1582 3.3124
4 3.2249 3.2231 3.2249
5 3.2999 2.0135 3.2999

to estimate a family of discrete model sets such that a certain closed-loop

performance objective is fulfilled for all the given systems by designing a cor-

responding controller set. A relaxed version of Normalized Cut was applied

in an algorithm to divide the system set into a few partitions. The effective-

ness of the proposed method was verified through an illustrative example.

Also, the effectiveness of combining this method and the one developed in

Chapter 2 was shown.
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Chapter 4

Modeling and Robust
Track-Following Controller
Design for Hard Disk Drives

1

4.1 Introduction

Hard Disk Drives (HDDs) have been used widely in many consumer elec-

tronics, such as commercial computer systems, digital music players, and

video-cameras for more than 50 years. They have been continuously evolv-

ing to achieve higher storage capacity and miniaturized sizes. In magnetic

disks, data is stored on a recording medium (in industry commonly referred

to as the media), which is responsive to the presence of strong magnetic fields,

but stable in their absence.

Figure 4.1 shows the schematic diagram of a typical single-stage HDD.

Main components are a spindle motor, one or more disks with data written

on their surfaces, suspensions, heads/sliders, and a Voice-Coil Motor (VCM),

1This chapter is based on the following articles: E. Azadi Yazdi, M. Sepasi, F. Sassani
and R. Nagamune, “Automated multiple robust track-following control system design in
hard disk drives”, 2010 ASME Dynamic Systems and Control Conference, Boston, MA,
and E. Azadi Yazdi, M. Sepasi, F. Sassani and R. Nagamune, “Automated multiple robust
track-following control system design in hard disk drives”, to appear in IEEE Transactions
on Control System Technology.
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Figure 4.1: A schematic diagram of an HDD.

which rotates the arms around a pivot. Figure 4.2 shows a solid model, which

includes the arms, suspensions, and heads. During operations, the disk may

spin at speeds as high as 10,000 RPM by the spindle motor and generates

high velocity airflow between the disk surface and the head. This high speed

airflow has the effects of air bearing. A dynamic balance keeps the slider

at a flying height of several nanometers over the disk surface. The VCM

positions the head at the right data track, and thereby data can be read

from or written to the disk.

The main HDD characteristic, which is the focus of most literature in

this area, is areal storage density. It is essential to decrease the tracking

error of the read/write head in order to increase the areal density of HDDs.

A practical approach to achieve small tracking error is to add a secondary

MEMS actuator to the servo assembly, and manufacture dual-stage HDDs

(see, e.g., [106], [102], and [12]). Moreover, to achieve a good performance,

we require a precise positioning control of the read/write head, such as the

designs explained in [70], [33], [15], and [45].

To be able to design a high performance controller, the dynamics of

HDDs should be examined thoroughly. Their dynamics can vary due to

many factors such as variations in the fabrication environment, the tempera-

ture change during the operations, and mechanical deteriorations due to the

elapse of time. This chapter addresses the Objective (O3) in Section 1.3.

Here, we study the variations in the dynamics of HDDs, and derive a math-
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ematical model for tracking controller design based on the FRF data.

This chapter is organized as follows. The experimental setup is briefly

described in Section 4.2. The dynamics of this setup is explained in Sec-

tion 4.3. The variations in the dynamics due to the manufacturing limits

and the temperature change are discussed in detail. Modeling of the sys-

tem is presented in Section 4.4. Section 4.5 explains the design of a robust

controller, and demonstrates its track-following performance.

Figure 4.2: The solid model, which includes the arms, suspensions,
and heads of an HDD.

4.2 HDD experimental setup

As a prelude to the demonstration and verification of modeling and controller

design methods in the following sections, we will first describe an HDD ex-

perimental setup at the University of British Columbia, shown in Figure 4.3.

The equipment, listed below, is quite standard for HDD servo experiments:

• laser doppler vibrometer (LDV) OFV-5000 and OFV-551 (Polytec);

• anti-vibration table RS3000 (Newport);

• amplifier TA105-A14 (TRUST Automation Inc.);

• FFT dynamic signal analyzer 35670A (Agilent Technologies);

• controller board DS1103 (dSPACE Inc.);

• five hard disk drives N256 (Maxtor);

• A blower heater to change the HDD temperature.
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The input to the system is the voltage to the VCM while the output is the

position of the head tip, which is measured by the LDV.

Figure 4.3: HDD experimental setup.

4.3 Dynamics of HDDs

It has been well-recognized that not only performance of track-following con-

trollers but also their robustness are of great importance in HDDs [19, 77].

We study two types of factors, which introduce variations in dynamics. One

type causes time-invariant variations, such as the product variability. The

transfer function between the VCM voltage and the read/write head position

may have differences between products due to the limited precision in the

manufacturing line. The other type causes time-varying variations, such as

the ones due to the temperature change during the HDD operations. The
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temperature change occurs owing to the heat caused by the spinning spindles

and the cooling air generated by the fan to avoid overheating.

To design a precise robust control system the knowledge about the plant

dynamics as well as its variations is essential. However, such knowledge is

frequently unavailable a priori. Therefore, some experiments must be carried

out with the system in order to estimate the lacking information. In this

section, the variations in the system dynamics are studied.

4.3.1 Variations in HDD dynamics due to
temperature

It is well known that the temperature influences the dynamics of the sys-

tems by affecting such factors as the geometry and material properties. In

all probability, the temperature of the arm varies during the operation, and

therefore, it is essential to consider the influence of the temperature on the

HDD dynamics. Temperature effects are studied for an HDD micro-actuator

in [46]. However, the temperature effects on HDD dynamics are not suffi-

ciently addressed in the literature from a controller design point of view (for

one of the few examples see [82]).

We derived the FRF data for three distinct temperatures of the arm, 35,

45, and 55 degree Celsius. This range of temperature change is realistic for a

standard HDD during operations [45]. In the experiments, the temperatures

are measured at the position of the pivot. However, one can assume that

the temperature of the arm is fairly uniform [79]. Figure 4.4 shows the FRF

data for different temperatures. As it can be seen, the frequency and damping

ratio of each mode change slightly over temperature.

4.3.2 Variations in HDD dynamics due to the
manufacturing limits

To investigate the variations between the dynamics of different HDDs from

one production line, the frequency responses of five sample HDDs are studied.
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(a) FRF data for HDD at different temperatures.
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(b) Zoomed FRF data for HDD at different temperatures.

Figure 4.4: Variations due to the changes in the temperature.

Two sets of FRF data for each of the five HDDs are derived, and thus we

have ten FRF data sets in total. As can be seen in Figure 4.5, all ten FRF

data sets have similar gain and phase curves, but manufacturing variations

obviously exist.

4.4 Modeling of HDDs

Based on the results shown in Section 4.3, there are variations in the HDD

dynamics, which need to be taken into consideration. By comparing the

results shown in Figures 4.4 and 4.5, it can be concluded that the variations

in dynamics due to the manufacturing limits are more significant than those

due to the temperature. Therefore, in the modeling and controller design we
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Figure 4.5: 10 FRF data (2 FRF are taken for each HDD).

ignore the effect of the time-varying temperature on the system dynamics.

Since only variations due to the time-invariant source, i.e. limited toler-

ance in the production line, are considered, the HDD dynamics is modeled

as an LTI system. The sources of this type of variations may neither be

measured nor estimated. Therefore, we deal with an uncertain LTI plant. It

is desired to derive a connected model set to cover these variations and to

represent the sampled products as well as the unsampled ones with a tight

model.

By inspection of the FRF data, we have selected the model structure as

[G(θ)](s) :=
a

s2

4∏
i=1

s2 + 2ζniωnis+ ω2
ni

s2 + 2ζdiωdis+ ω2
di

(4.1)

with θ ∈ R17 consisting of a and {ζni, ωni, ζdi, ωdi}4i=1. Now, it is of interest

to generate a connected set of transfer functions

G(Θ̂) := {[G(θ)](s) : θ ∈ Θ̂} (4.2)

or equivalently, a connected parameter set Θ̂, such that we have the following:

• each FRF data in Figure 4.5 is represented properly by one element in

G(Θ̂);

• the members of the set Θ̂ are parameterized with a small number of
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uncorrelated parameters.

The method developed in Chapter 2 is employed to estimate the con-

nected parameter set Θ̂. The inputs to the Algorithm 2.3.1 are

• ns = 0,

• nu = 1 and N = 100.

The parameterizing functions f is chosen by trial and error as2

f(λ) := f0 + f1λ+ f2λ
2 (4.3)

where λ ∈ Λ ⊂ R and fj ∈ R17, j = 0, 1, 2. The uncertainty set Λ is

Λ := {λ ∈ R : λ ∈ [−1, 1]}. (4.4)

Since the function f is chosen as a polynomial, we applied the special

case of the algorithm explained in Section 2.3.2 to estimate the coefficient

vectors f0, f1, and f2. The resulting coefficient vectors are provided in Ta-

ble 4.1. Figure 4.6 shows the Bode plots of ten samples from the set G(Θ̂(f)).

The figure illustrates that the obtained model set captures well the major

characteristics of the 10 FRF data sets.

4.5 Robust controller design for HDDs

To design robust track-following controllers, various methodologies have been

proposed. These methodologies include, for example, H∞ control [28], adap-

tive robust control [103], and sliding mode control [44]. In pursuing to im-

prove robustness, it is inevitable to worsen the tracking performance, due to

the trade-off relationship between robustness and performance inherent in

2In order to obtain a more accurate model set, one may increase the order of the
polynomial, but the subsequent controller design would be numerically more demanding.
The second order parametrization provides sufficient resolution in this study.
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Table 4.1: Numerical values of the coefficients of polynomial functions
in (4.3).

parameter f0 f1 f2
a 1360.4 -389.1 181.1
ζn1 0.612 0.0101 -0.6
ωn1 13345 127 -719
ζd1 0.2104 0.0544 -0.0825
ωd1 11077 -1 15
ζn2 0.1746 0.2306 0.5195
ωn2 14276 573 -144
ζd2 0.0329 0.013 0.0346
ωd2 15650 148 -604
ζn3 0.0196 -0.01 -0.007
ωn3 17746 -469 1300
ζd3 0.059 0.011 -0.044
ωd3 18432 -420 695
ζn4 0.466 0.0705 -0.1871
ωn4 31419 3366 2889
ζd4 0.055 -0.0129 -0.0251
ωd4 30740 1926 -1272

Figure 4.6: 10 random samples from the connected model set.

controller design. Therefore, in HDD applications, it is essential to compro-

mise this conflict between high performance requirements and robust perfor-

mance limitations. To meet such requirements by overcoming the limitations,

a robust controller design technique has been proposed in [117].
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We employ the proposed method in [117] for the derived connected model

set (4.2) to meet the design specifications by designing an H∞ robust con-

troller. A typical performance specification for HDD track-following control

is as follows.

Robust sensitivity shaping: The sensitivity function for a plant G(s) and

a controller K(s) is defined as

S(s) := F(G,K) :=
1

1 +G(s)K(s)
. (4.5)

For HDD servo control, the function S represents the transfer function from

the track reference signal to the Position Error Signal (PES), and from the

output disturbance to the read/write head tip position. By interpreting the

shape of the Bode plot of S, the tracking performance can be determined.

In particular, the low frequency gain and the bandwidth of S indicate degree

of tracking accuracy and tracking speed, respectively. Therefore, constraints

on the FRF S(jω) is one of the key specifications for track-following.

Let us define a class of fixed-structure controllers robustly stabilizing

G(Θ̂(f)) as K. How to shape S can be expressed as a weighted H∞ problem:

design a controller K ∈ K, which satisfies the inequality constraint

max
G∈G(Θ̂(f))

∥F(G,K)∥∞ < γ. (4.6)

Here, γ is a given positive scalar, the function F contains weighting functions,

and ∥F∥∞ denotes the H∞ norm of F , i.e. the maximum singular value of

F over all frequencies. Since the transfer function G(Θ̂(f)) is parameterized

by the variable λ ∈ Λ, we can rewrite the left-hand side of (4.6) in terms of

λ as

max
λ∈Λ

∥F(G(λ), K)∥∞ < γ. (4.7)

where Λ is defined in (4.4).

For the connected transfer function set G(Θ̂(f)), the controller is synthe-
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Figure 4.7: Frequency-domain response of closed-loop systems.

sized to fulfill the above explained track-following specification. The values

of the given pre-specified parameters, e.g., γ, and tuning parameters, e.g.,

weighting functions, are provided in [4]3. The resultant sensitivity function

of the closed-loop system is shown in Figure 4.7. As can be seen, the exper-

iments show generally

• low gain peaks, which leads to large stability and less oscillatory time-

domain responses,

• low gain at low frequencies, which leads to disturbance attenuation in

these frequencies, and

• high bandwidth, which leads to high speed tracking.

For one of the five HDDs, the open-loop and the closed-loop responses are

shown in Figure 4.8. From this time-domain signal, it is evident that the

controller not only suppresses the head vibration but also eliminates the

drift of the head position caused by effects, such as friction and air-flow

turbulence. Note that there is an offset of around 11 µm.

3The design of the robust controller for HDDs is not within the scope of this thesis.

69



Figure 4.8: Time-domain response of open-loop and closed-loop sys-
tems.

4.6 Conclusions

In this Chapter, we studied the dynamics of HDD systems, especially, the

variations in the dynamics due to the change in the temperatures and limited

tolerances in the production line. It was shown that the influence of the

temperature on the system dynamics was not significant, and hence was

ignored in the modeling and controller design. A tight connected model set

was derived based on a set of experimental FRF data. Then, the controller

synthesis was described. The experimental results were demonstrated in the

frequency and time domains.
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Chapter 5

Modeling and Robust Tracking
Controller Design for Flexible
Ball Screw Drives with Runout
Effect and Mass Variation

1

5.1 Introduction

Most machine tools rely on precision Ball Screw Drives (BSD) to accurately

position the workpiece relative to the tool. The quality of the machining

outcome depends significantly on the tracking performance of the workpiece

position over the desired trajectory. In order to minimize the tracking errors

at all times during machining processes, feedback servo controllers must be

designed carefully for any conceivable condition [16].

To achieve small tracking errors in various conditions, the servo controllers

should compensate for the variations in the dynamics of the systems. Such

variations occur because of nonlinearities and uncertainties inherent to real

1This chapter is based on the following articles: M. Sepasi, F. Sassani and R. Nagamune,
“Tracking Control of Flexible Ball Screw Drives with Runout Effect Compensation”, 2010
ASME Dynamic Systems and Control Conference, Boston, MA, and M. Sepasi, F. Sassani
and R. Nagamune, “Tracking Control of Flexible Ball Screw Drives with Runout Effect
and Mass Variation”, to appear in IEEE Transactions on Industrial Electronics.
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plants. Two of the most common sources of nonlinearities in BSD systems

are the structural flexibility [123] and runout [78]. The former is a natural

characteristic of physical materials, and the latter results from the variability

in ball screw manufacturing and assembly. In addition, during operations,

the table mass, which refers to the combined equivalent mass of the ball

screw table and the mass of the workpiece attached to it, is normally varying

and not measurable, and hence, classified as uncertain. Such uncertainty in

the mass leads to the system parametric uncertainty, which along with the

nonlinearities in the dynamics, makes the servo controller design a challenging

process.

Extensive research has been conducted on servo control methods applied

to precision motion mechanisms. Classical controllers are found to be widely

used [17, 111] because of their high adaptability, simplicity, and ease of un-

derstanding, designing and tuning. Despite the popularity of the classical

controllers, their performances are limited due to the uncertainties and non-

linearities in the systems. To effectively address these issues in controller

design, sliding mode controllers [84, 112] and adaptive controllers [43] have

been utilized. This chapter focuses on adaptive control, and uses the gain

scheduling approach.

Since the variations due to the nonlinearities of the BSDs depend on the

table position [85], and the speed of the table is bounded in reality, the

tracking performance can be improved by adjusting controller parameters

using the table position information. Therefore, one may consider the table

position as a scheduling variable and design a gain scheduling controller [91]

accordingly. Furthermore, the intended control system must have a good

tracking performance in the presence of uncertainty in the system dynamics.

The table mass uncertainty influences the transfer function parameters, and

thus, makes them uncertain. It is critical to detect the correlations between

the parameters and the table mass in order to develop a tight uncertain set

for the controller synthesis. It is a non-trivial task to detect such correlations
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through physical laws alone due to the complex coupling effects in the BSDs

[83]. In such cases, experimental and numerical analysis methods can be

used in a complementary manner.

This chapter addresses the Objective (O4) in Section 1.3. Here, we study

the variations in the dynamics of BSDs and develop a systematic method to

make a mathematical model and design tracking controllers for BSDs based

on their FRF data. We consider structural flexibility and runout of the shaft,

as well as the table mass variation. Although one specific experimental setup

is used for investigation of the plant dynamics and validating the proposed

method, the discussion and the methodology are general enough to be applied

to other BSDs.

This chapter is organized as follows. The experimental setup is described

in Section 5.2. The dynamics of the BSD systems is explained in Section 5.3.

The position-dependent and mass-dependent variations in the dynamics are

discussed in detail. Modeling of the system is presented in Section 5.4. Sec-

tion 5.5 explains the design of a number of controllers, and demonstrates

their track-following performances in the presence of flexibility, runout, and

mass variations.

5.2 BSD experimental setup

The investigation of the variations in the dynamics and the demonstration

and verification of modeling and controller design methods are carried out

on an experimental BSD system at the University of British Columbia. The

components of the setup, which is depicted in Figure 5.1, are listed below.

• A brushless DC motor.

• A linear encoder with a resolution of 50 nm.

• A ball screw with 20 mm shaft diameter, 20 mm screw pitch, and 360

mm stroke.

• A 20 kg table sliding on roller bearing guideways.
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Figure 5.1: The ball screw experimental setup.

• A controller board.

• An amplifier.

• An FFT dynamic signal analyzer. (not shown in the picture)

All experiments reported in the following sections are carried out within the

range of [0.12, 0.3] m along the ball screw shaft.

5.3 Variations in the dynamics of BSDs

A schematic diagram of the mechanical structure of the BSD is shown in

Figure 5.2. The objective is to control the position of the table ℓ by applying

the motor torque τ , while the disturbance d is applied. The dynamics of the

BSD varies by changing the position and the mass of the table due to some

factors, such as different mass distribution of the plant. From the controller

design viewpoint, it is essential to know the manner in which these factors

influence the dynamics of the system, and consequently, the positioning of

the table. To this end, we take FRF data for different table positions and

masses.
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5.3.1 Position-dependent variations

The actuation torque τ , transmitted to the table, passes through the active

length of the ball screw shaft, i.e. the part of the shaft between the motor

and the table. The equivalent stiffness of the ball screw within its active

length mainly depends on the bearing, the shaft itself, and the ball screw-

nut interface. The position of the table, ℓ, affects the active length of the

shaft and the corresponding stiffness, and hence, the dynamics of the system.

On the other hand, the runout phenomenon mainly occurs due to the

tolerances in the bearings and in the shaft manufacturing. Figure 5.3 visually

explains this phenomenon. Figure 5.3(a) shows the ideal position of the ball

screw shaft which is aligned with the motor shaft, while Figure 5.3(b) shows

one possible configuration of the ball screw shaft in reality. Because of this

phenomenon, the table positioning dynamics depends on the rotational angle

of the shaft. The cyclic dependency is experimentally revealed later.

The position of the table is measurable with a bounded rate of change

within the plant limits

ℓ̇(t) ∈ [−0.1, 0.1] m/s. (5.1)

Hence, table position ℓ is employed as a scheduling variable. Consequently,

we design a gain scheduling controller, which is adapted online by the value

of this variable. To achieve a high performance controller, we need to extract

accurately how this scheduling variable influences the dynamics.

Figure 5.2: A schematic diagram of a ball screw assembly.
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(a) Ideal configuration. (b) Exaggerated configura-
tion of a case which leads to
runout.

Figure 5.3: Run out effect in the ball screw shaft.
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Figure 5.4: Frequency responses for 37 different positions of the table
along the shaft when no mass is added to the table.

To obtain an accurate representation of the dynamics needed for designing

controllers, the FRF data of the system is examined for several positions of

the table along the ball screw shaft. In these experiments, the input to the

open-loop system is the motor voltage while the output is the table position.

The FRF data for the entire range of table motion, [0.12, 0.3]m, is derived for

every 5 mm, and thus, for 37 frequency points in total. Figure 5.4 shows the

resultant 37 frequency responses when there is no added mass to the table.

Here, the system response varies by changing the table location mostly due

to the nonlinearities.

5.3.2 Mass-dependent variations

The mass of the workpiece changes significantly as material is removed during

the cutting operations. The situation is further complicated by the fact that
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Figure 5.5: Frequency responses for four different masses added to the
table when the position is at 0.25 m.

the rate of mass change cannot be easily predicted because it is different for

each tool, workpiece, machine tool and cutting process combination.

The mass of the table is considered uncertain but expected to remain

within a bounded range during the machining operation. However, the rate

of change is not bounded. Therefore, the tracking gain scheduling controller

must be robust enough to handle this time-varying uncertainty. To achieve

a high performance robust controller, we need to extract accurately how this

uncertain variable affects the parameters of the model.

To obtain an accurate representation of the dynamics needed for designing

controllers, the FRF data of the system is examined for different masses

attached to the table. The FRF data for four different masses (0, 3, 6, 9

kg) is taken. Figure 5.5 shows the FRF data when the table position is at

0.25 m and different masses are placed on the table. Likewise, the frequency

responses vary according to table mass changes.

5.4 Linear parameter varying model of

BSDs

As explained earlier, we have samples of FRF data for 37 different table po-

sitions and 4 different masses, totally D = 148 samples. In this section, first

we identify an LTI system for each sampled FRF data. These systems have
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the same structures but different parameters. Then, we apply the method

developed in Chapter 2 to estimate the correlations between the system pa-

rameters and the variables, which are scheduling and uncertain variables.

Next, an uncertain Linear Parameter Varying (LPV) model is derived to

cover the entire variations over the table position and mass. Moreover, we

apply the method developed in Chapter 3 to divide the mass variations into

a few subsets, and consequently, a multiple model is derived.

5.4.1 Linear time-invariant system identification
based on frequency response

The structure of the transfer function for LTI models may be selected by

inspection of the FRF data, application of systematic methods such as the

Akaike information criterion [1], or by trial and error. A model, which cap-

tures the first mode dynamics, has been developed in [109], where the ball

screw system was represented by a uniform beam and some rigid bodies con-

nected through springs. Then, the beam model was transformed into a two

degree of freedom system.

Here, suppose that the model structure is given and fixed as

G(s) := G1(s)G2(s), (5.2)

G1(s) :=
1

Js2 + β s
, G2(s) :=

kω2
n

s2 + 2ζωn s+ ω2
n

,

where J and β are the equivalent mass and viscous damping factor respec-

tively, while k, ζ and ωn are modal parameters. The transfer function G1(s)

models the low frequency characteristics while G2(s) captures the first struc-

tural mode of the ball screw. All parameters are estimated using a nonlinear

least squares optimization formulation [76]. For the sake of convenience in

the formulation, instead of J , parameter J∗ := 1/J is used. The estimated

parameters show that the viscous damping β remains almost constant at the
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value of β = 604.01 over different masses m and different table positions ℓ,

m ∈ [20, 29] kg, ℓ ∈ [0.12, 0.3] m. (5.3)

On the other hand, other parameters, k, ζ, ωn and J∗, vary depending on ℓ

and m. Hence, the parameter set Θ is introduced as

Θ := {θd := [kd, ζd, ωnd, J
∗
d ]

T , d = 1, . . . , D}. (5.4)

Figure 5.6(a) shows the values of estimated parameters at the table posi-

tions of every 20 mm when no mass is added to the table. Since the sampled

table position interval is equal to the ball screw pitch, the runout effect is

not observable here. Hence, variations in estimated parameters are mostly

due to the structural flexibility. Further, the FRF data is studied for more

table positions, i.e. for every 5 mm. In this case, quasi-sinusoidal variations

due to the runout can be observed, as shown in Figure 5.6(b).

A normalized uncertain term µ is defined as√
1

m
∈ [x, y] =

{
x+ y

2
+
x− y

2
µ

}
:

x :=

√
1

max(m)
, y :=

√
1

min(m)
, µ ∈ [−1, 1]. (5.5)

Value of µ can be explicitly derived from

µ =

[√
1

m
− x+ y

2

]
2

x− y
. (5.6)

The variations in the parameters of the system dynamics due to µ are shown

in Figure 5.6(c). By this transformation, m = 20 and m = 29 correspond to

µ = −1 and µ = 1, respectively. The figure demonstrates that the effect of

table mass on the dynamics is as significant as the effect of the table position
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Figure 5.6: Estimated transfer function parameters.
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ℓ. It is worthwhile to note that, contrary to parameters J∗, ζ and ωn, the

parameter k is theoretically independent of the mass. However, due to some

coupling inherent to the physical systems and unmodeled dynamics [83], k

is influenced by the mass of the table, and hence, some variations can be

observed in Figure 5.6(c).

The way how the table position and mass affect the varying parameters

is expressed by a function f̃ ,

Θ̂(f̃) := {f̃(ℓ,m) ∈ R4, ℓ ∈ [0.12, 0.3] m, m ∈ [20, 29] kg}, (5.7)

where Θ̂ estimates the parameter set Θ. The goal is to obtain an accurate

and yet simple function f̃ .

The uncertainty parameter µ is introduced such that it is proportional

to
√
1/m, see (5.5). This is inspired since, based on the physical laws, the

parameters ζ and ωn are proportional to
√

1/m and the parameter J∗ is pro-

portional to 1/m, and hence, they are proportional to µ and µ2, respectively.

Consequently, the set Θ̂ in (5.7) can be reformulated as

Θ̂(f) := {f(ℓ, µ) ∈ R4, ℓ ∈ [0.12, 0.3] m, µ ∈ [−1, 1]}, (5.8)

where the function f is readily parameterized as second order polynomials

of µ.

5.4.2 Uncertain LPV modeling

In general, parameters of an LPV model vary with respect to independent

variables called scheduling variables. As discussed above, the parameters of

the linear model (5.2) are varying in time due to the scheduling variable.

Therefore, we construct an LPV model to represent the dynamics of the

system. In order to derive the LPV model, we interpolate the local LTI

models. This interpolation is performed through the function f in (5.8).

Remark. It is not always possible to directly interpolate local models to
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derive the overall LPV model [107]. However, according to [71], such deriva-

tion is implementable if the parameters of the identified local models show a

smooth variation over the scheduling parameter (position ℓ here), and there

is no sign change due to the non-uniqueness of the balancing transformation

[62]. Here, the system is qualified for the direct interpolation (see Figure 5.6).

Moreover, our LPV system is uncertain. Therefore, it is essential to

model the parametric uncertainty associated with the table mass. Such a

model should be as tight as possible to reduce the unnecessary conservatism

inherent to robust controllers.

Based on the knowledge about the BSD dynamics and the variations

shown in Figure 5.6 the function f is expressed as

f(ℓ, µ) = θ0 + Pℓ(ℓ) + Pµ(µ) + α sin(ωℓ+ ϕ), (5.9)

where Pℓ and Pµ are polynomials. The polynomials Pℓ(ℓ) approximate the

variations due to the table position change shown in Figure 5.6(a), while

the sinusoidal term approximates the quasi-sinusoidal variations shown in

Figure 5.6(b). The polynomials Pµ(µ) model the variations due to the mass

change shown in Figure 5.6(c). The parameters ϕ and ω are assumed to be

the same for k, ζ, ωn and J∗. The phase ϕ is manually selected as ϕ = 1 rad

by trial and error, and ω is calculated, ω = 2π/(screw pitch) = 100π rad/m.

The estimation of the other parameters in the function f , i.e., θ0, coefficients

in polynomials Pℓ and Pµ, and α, will be explained later.

For the controller design procedure proposed is Section 5.5, we need to

derive the LPV model in the state space form. Therefore, the system (5.2)

with uncertain time-varying parameters k, ζ, ωn and J∗ and constant β is

expressed in a quadruple of the state space data (AG(ℓ, µ), BG(ℓ, µ), CG, DG).
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The stae-space matrices are obtained for an observable canonical form as

AG(ℓ, µ) =


0 0 0 J∗(ℓ, µ)

1 − βJ∗(ℓ, µ) 0 0

0 0 0 − ωn(ℓ, µ)
2

0 0 1 − 2ζ(ℓ, µ)ωn(ℓ, µ)

,
BG(ℓ, µ) =

[
0 0 k(ℓ, µ)ωn(ℓ, µ)

2 0
]T
,

CG =
[
0 1 0 0

]
,

DG = 0. (5.10)

Single uncertain LPV model

First, we derive a single uncertain LPV model, which estimates the system

dynamics for the entire range of table position and mass variation. The

method developed in Chapter 2 is employed to estimate parameters of the

functions f in (5.9). The inputs to the Algorithm 2.3.1 are

• ns = 1 and λs = [0.12 : 0.005 : 0.3],

• nu = 1 and N = 20.

The resultant estimated parameters are given in Table 5.1, and the corre-

sponding values of k, ζ, ωn and J∗ are shown in Figure 5.7 with dash lines

over the entire range of the table positions for all the values of the added

mass. Some model errors inherent with the modeling can be observed. These

errors diminish by utilizing a more detailed (complex) model, e.g. higher or-

der polynomials Pℓ and Pµ, at the cost of higher complexity of controller

design and implementations.

Multiple uncertain LPV model

In order to improve the closed-loop performance, we employed the method

developed in Chapter 3 to divide the mass variation region m ∈ [20, 29] kg
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Figure 5.7: Transfer function parameters (solid lines), values in the es-
timated single model (dash lines), boundary of partitions (ver-
tical dotted lines).
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Table 5.1: Estimated parameters of the polynomial and sinusoidal
functions.

Pℓ coefficient Pµ coefficients

θ0 α ℓ µ µ2

k 58849.8 2367.4 −77822.8 1885.3 4815.0
ζ 0.0567 0.0084 −0.132 0.0053 0.01841
ωn 1299.5 −28.64 −256 −81.13 −2.28
J∗ 0.0104 0.0013 0.0081 −0.00116 −3.742× 10−5

into two subregions. By choosing ρi = 1 for i = 1, ..., 4 in the Algorithm 3.3.1,

the optimum partition set, {Θ(q)}2q=1, is derived, which consists of the follow-

ing portions of mass variations

m(1) ∈ [20, 23] kg, m(2) ∈ (23, 29] kg. (5.11)

Then, normalized parameters µ(1) and µ(2) can be introduced using (5.5)

for m(1) and m(2), respectively. Vertical dotted lines in Figure 5.7 show the

boundary of the partitions.

The parametrization function f (q) can be expressed as

f (q)(ℓ, µ) = θ0 + Pℓ(ℓ) + P (q)
µ (µ) + α sin(ωℓ+ ϕ). (5.12)

The polynomials P
(q)
µ (µ) model the variations due to the mass change within

partition q shown in Figure 5.7b, or equivalent Figures 5.8(b) and 5.8(c).

According to these figures, the order of the polynomials Pℓ, P
(1)
µ and P

(2)
µ

are selected as 1, 1 and 2, respectively. Subsequently, the Algorithm 2.3.1 is

applied independently to each partition with the similar inputs as for single

model derivation.

The estimated parameters for function f (q) are given in Tables 5.2 and

5.3 for partitions µ(1) and µ(2), respectively. The resultant estimated transfer
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Table 5.2: Estimated parameters of the polynomial and sinusoidal
functions for partition µ(1).

Pℓ coeff. Pµ coeff.

θ0 α ℓ µ
k 59613.2 2367.8 −77823.2 −1665.7
ζ 0.0577 0.0081 −0.133 −0.0073
ωn 1353 −28.1 −255.4 −25.1
J∗ 0.0113 0.0011 0.00809 −2.05× 10−4

Table 5.3: Estimated parameters of the polynomial and sinusoidal
functions for partition µ(2).

Pℓ coefficient Pµ coefficients

θ0 α ℓ µ µ2

k 60458.1 2367.5 −77798.3 3450.2 1150.8
ζ 0.0754 0.009 −0.131 0.01213 −0.01211
ωn 1291.17 −28.4 −256.3 −44 −14.67
J∗ 0.0111 0.0014 0.00811 −0.001 −2.22× 10−4

function parameters are presented in Figure 5.8 with dash lines. As it can

be seen, the multiple model leads to less errors in the model in comparison

with the single model, see Figure 5.7.

5.5 Controller design for the BSD

A gain scheduling output-feedback controller proposed by Apkarian and

Adams [2] is applied to the LPV models derived earlier. The goal is to

enforce the stability and achieve a good tracking performance of the closed-

loop system. The design of the controller is an iterative procedure. It does

not give a global solution to the problem, but it has been demonstrated in

practice to result in acceptable solutions [22, 39, 118].
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Figure 5.8: Transfer function parameters (solid lines) and values in the
estimated multi model (dash lines).
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To examine the effectiveness of the robustness over the mass variation,

controllers with and without robustness are designed, and referred to as the

robust controllers and non-robust controllers, respectively. The non-robust

controllers are designed for the case where there is no added mass to the table.

While, the robust controllers take into consideration the mass variations.

Figure 5.9 shows the closed-loop block diagram used for both robust

and non-robust controller synthesis schemes. In this configuration, a con-

stant weight Wu is chosen based on the physical plant specifications to limit

the control input u. The weighting function We in the state space form

(Ae, Be, Ce, De) is included to shape the frequency response, and is tuned to

reach the desired performance of the controller K, which attempts to track

the reference signal r in the presence of the disturbance d.

The aim of tuning parameters inWe is to shape the closed-loop sensitivity

function to meet the following criteria:

1. Minimize the gain in low frequencies to achieve a good disturbance

rejection capability and tracking performance.

2. Maximize the cross-over frequency to obtain a fast response and good

tracking performance.

3. Minimize the gain peak to provide a large stability margin and less

oscillatory time-domain response.

For each controller synthesis, a distinct second order weighting function We

is tuned to obtain the best achievable performance. However, the constant

Wu is selected as

Wu = 2.5 (5.13)

to limit the control input in all controller designs.
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Figure 5.9: The closed-loop block diagram.

Figure 5.10: Synthesis closed-loop configurations for the case that the
uncertainty is ignored in the plant G.

5.5.1 Non-robust gain scheduling controller design

The LPV model in (5.10) is a general model in which variations in table

position and mass are considered. To address a special case where the mass

uncertainty is ignored, the parametrization (5.9) is written in the form

f(ℓ) = θ0 + Pℓ(ℓ) + α sin(ωℓ+ ϕ). (5.14)
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Accordingly, the quadruple of the state space data for system G in the block

diagram in Figure 5.9 is

AG(ℓ) =


0 0 0 J∗(ℓ)

1 − βJ∗(ℓ) 0 0

0 0 0 − ωn(ℓ)
2

0 0 1 − 2ζ(ℓ)ωn(ℓ)

,
BG(ℓ) =

[
0 0 k(ℓ)ωn(ℓ)

2 0
]T
,

CG =
[
0 1 0 0

]
,

DG = 0. (5.15)

The dynamics of this LPV system can be written in the form

ẋ = AG(ℓ(t))x+BG(ℓ(t))u,

y = CGx+DGu. (5.16)

Figure 5.10 is a Linear Fractional Transformation (LFT) form [121] of the

configuration shown in Figure 5.9. The model PLPV (ℓ) in Figure 5.10 is

generated by combining the system (5.16) with the weighting functions. The

mathematical expression of the configuration shown in this figure is

[
ẋ

ẋe

]
[
ee

eu

]
[
e
]


=

 AL B1L B2L

C1L D11L D12L

C2L D21L D22L


︸ ︷︷ ︸

PLPV (ℓ)



[
x

xe

]
[
d

r

]
[
u
]


, (5.17)

where x and xe are the state vectors of the plant (5.16) and the weighting
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function We in the state space form (Ae, Be, Ce, De), respectively, and

AL =

[
AG(ℓ) 0

−BeCG Ae

]
,

B1L =

[
0 0

−Be Be

]
,

B2L =
[
BG(ℓ) −BeDG

]T
,

C1L =

[
−DeCG Ce

0 0

]
,

C2L =
[
−CG 0

]
,

D11L =

[
−De De

0 0

]
,

D12L =
[
−DeDG Wu

]T
,

D21L =
[
−1 1

]
,

D22L = −DG(ℓ).

The resultant controller is in the state space form (AK(ℓ), BK(ℓ), CK(ℓ), DK(ℓ))

for which the order is six, equal to the sum of the orders of G and We. The

matrices are

AK =N−1[ÂK −X(AL −B2LD̂KC2L)Y0

− B̂KC2LY0 −XB2LĈK ],

BK =N−1(B̂K −XB2LD̂K),

CK =ĈK − D̂KC2LY0,

DK =D̂K , (5.18)

where N = I − XY0, and matrices Y0 and X are Lyapunov variables [93,
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Figure 5.11: Synthesis closed-loop configurations for the uncertain
plant G.

page 902]. Matrices ÂK , B̂K , ĈK , D̂K , and X are in an affine fashion as

ÂK(ℓ) = ÂK0 + ℓÂK1 + sin(ωℓ+ ϕ)ÂK2 ,

B̂K(ℓ) = B̂K0 + ℓB̂K1 + sin(ωℓ+ ϕ)B̂K2 ,

ĈK(ℓ) = ĈK0 + ℓĈK1 + sin(ωℓ+ ϕ)ĈK2 ,

D̂K(ℓ) = D̂K0 + ℓD̂K1 + sin(ωℓ+ ϕ)D̂K2 ,

X(ℓ) = X0 + ℓX1 + sin(ωℓ+ ϕ)X2, (5.19)

which can be written in a generic form as

O = O0 + ℓO1 + sin(ωℓ+ ϕ)O2, (5.20)

where O = {ÂK(ℓ), B̂K(ℓ), ĈK(ℓ), D̂K(ℓ), X(ℓ)} An iterative procedure is

explained in [2] to obtain the optimum values for Y0, O0, O1, and O2 for a

non-robust gain scheduling controller.

5.5.2 Robust gain scheduling controller design

Figure 5.11 is also a Linear Fractional Transformation (LFT) form [121] of

the configuration Figure 5.9 when the system G is uncertain. To derive such

a form, the uncertainty of the plant G is extracted into an upper LFT form2.

2Extracting the LFT form is well developed in the Matlab software [5].
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The dynamics of the certain part, which is a function of ℓ, can be written in

the form

ẋ = A(ℓ(t))x+B1(ℓ(t))w +B2(ℓ(t))u,

z = C1(ℓ(t))x+D11(ℓ(t))w +D12(ℓ(t))u,

y = C2(ℓ(t))x+D21(ℓ(t))w +D22(ℓ(t))u, (5.21)

and the uncertainty block is

Λ(t) := µ(t)I, (5.22)

where the size of I is the same as the order of the polynomial Pµ(µ). Then, the

system (5.21) combines with the weighting functions, generating the model

PLPV (ℓ) in Figure 5.11. The mathematical expression of the configuration

shown in Figure 5.11 is

[
ẋ

ẋe

]
 z

ee

eu


[
e
]


=

 AL B1L B2L

C1L D11L D12L

C2L D21L D22L


︸ ︷︷ ︸

PLPV (ℓ)



[
x

xe

]
 w

d

r


[
u
]


, (5.23)
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where x and xe are the state vectors of the plant (5.10) and the weighting

function We in the state space form (Ae, Be, Ce, De), respectively, and

AL =

[
A(ℓ) 0

−BeC2(ℓ) Ae

]
,

B1L =

[
B1(ℓ) 0 0

−BeD21(ℓ) −Be Be

]
,

B2L =
[
B2(ℓ) −BeD22(ℓ)

]T
,

C1L =

 C1(ℓ) 0

−DeC2(ℓ) Ce

0 0

 ,
C2L =

[
−C2(ℓ) 0

]
,

D11L =

 D11(ℓ) 0 0

−DeD21(ℓ) −De De

0 0 0

 ,
D12L =

[
D12(ℓ) −DeD22(ℓ) Wu

]T
,

D21L =
[
−D21(ℓ) −1 1

]
,

D22L = −D22(ℓ).

Similar to Section 5.5.1, the resultant controller is in the state space form

(AK(ℓ), BK(ℓ), CK(ℓ), DK(ℓ)) for which the order is six. The optimum values

for the matrices are obtained by following a procedure given in [2] for a robust

gain scheduling controller.

5.5.3 Disturbance observer design

By tuning the weighting function We during controller design, we try to

achieve the best possible tracking performance for each controller. Moreover,

in the implementations of all the designed controllers, a disturbance observer
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(DOB) has been employed in order to further reduce the tracking error by

attenuating the low frequency disturbances [23, 59, 81]. The addition of the

DOB does not change the open-loop dynamics as well as the transfer function

between r (the reference signal) and ℓ (the output signal). Therefore, the

dynamics of the DOB does not need to be considered in the controller design

procedure, which is explained in Section5.5.2.

Figure 5.12 shows the block diagram of the implemented motion con-

trol system. The following transfer functions can be obtained for this block

diagram

ℓ(s) =Q(s)d(s) +G(s)T (s)u(s),

Q(s) :=
G0(s)(1− F (s))

G0(s)−G0(s)F (s) +G(s)F (s)
,

T (s) :=

[
1− F (s) +

F (s)

G0(s)
G(s)

]−1

. (5.24)

The transfer function G0 includes the low frequency dynamics of the nominal

plant. Here, G0 has the structure of G1(s) in (5.2) with nominal values of

J and β. The block F represents a stable low-pass filter with the following

characteristics. Its bandwidth is limited by the frequency where the unmod-

eled dynamics is significant, it has a DC gain of unity, and its relative degree

is greater or equal to that of G0. Here, a filter with all these characteristics

is selected as

F (s) =
a0

(τs)2 + a1τs+ a0
, (5.25)

where τ = 1/(20π), a0 = 120, and a1 = 200. The structure of the filter is

chosen from [100], and the parameters are tuned to fulfill above characteristic

requirements.

The low frequency disturbance d is attenuated since at low frequencies

F (s) ≈ 1, which means that Q(s) vanishes. Moreover, the DOB has small
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Figure 5.12: Controller with disturbance observer scheme.

influence on the plant dynamics, i.e. open-loop transfer function between u

and ℓ, because T (s) ≈ 1 for the entire frequency range. The proximity of

T (s) to unity is due to the facts that the gain of F (s) attenuates at high

frequencies, and that G(s) ≈ G0(s) at low frequencies. This phenomenon

is proven by simulation in Figure 5.13. This figure shows various frequency

responses of T (s) for different values of parameters k, ζ, ωn and J∗. Based on

the magnitude and the phase of the transfer function T (s), the effect of T (s)

on the system dynamics can be neglected over the entire frequency range.

Remark. The performance of the DOB depends strongly on the accuracy

of the estimation of low frequency dynamics, e.g. the nominal values of J and

β. Since the table mass is uncertain, the DOB is designed for the conservative

case. In other words, the cutoff frequency of the low pass filter F (s) is chosen

based on the plant with the smallest crossover frequency.

5.6 Controller results

In order to compare the tracking performance of the controllers, a trajectory

for the machine table position is generated. Considering the test bed limits,

the following values are chosen in the trajectory generation: stroke of 0.18

m, velocity of 0.09 m/s, acceleration of 0.7 m/s2, and jerk of 50 m/s3. The

trajectory moves the table along the shaft from one end, farthest from the

motor, to the other and then returns to the starting position.

Four sets of experiments are carried out in this section.
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Figure 5.13: Frequency responses of perturbed T (s).

1. Three non-robust controllers are designed for the BSD without mass

variations. Hereby, we study the importance of including the position

dependent nonlinearities in the modeling and controller design steps.

2. We perturb the system parameters, and design new controllers to study

the performance sensitivity to the estimated parameters provided in

Table 5.1.

3. A robust gain scheduling controller for the BSD with mass variations

is synthesized to study the effectiveness of the robustness in presence

of mass variations.

4. A controller set for the derived multiple model is designed to study the

effect of dividing the range of the mass variation on the closed-loop

performance.

All the above is discussed in detail in the following sections.
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5.6.1 Single controller for the BSD without mass
variations

Considering the parametrization (5.20), the resultant controller, denoted by

Krunout, compensates for the flexibility and runout effects. To synthesize a

controller, denoted by Kno−runout which ignores the runout effect, the sinu-

soidal terms in the parametrization (5.20) are excluded, and only the poly-

nomials are considered

O = O0 + ℓO1. (5.26)

The tracking performances of two controllers, non-robust Krunout and

Kno−runout, as well as a PID controller are investigated with no added mass

to the table. In the design of Krunout and Kno−runout, the state space form

(Ae, Be, Ce, De) of the tuned We is(  −10 −10

8 0

,
 64

0

, [ 2.3 82.3
]
,

[
0.25

])
. (5.27)

The experimental results are shown in Figure 5.14. The control input

signal of the PID controller is slightly higher than those of the other two

controllers. The spikes in the errors at the beginning and in the middle,

when the direction of motion reverses, occur mostly due to the momentary

static friction and a backlash-like effects in the nut assembly [21].

A numerical comparison based on the Mean Absolute Error (MAE) is

given in Table 5.4. Tracking performance of the PID controller is the worst

due to the plant nonlinearities, specially the structural flexibility. Recall

that the flexibility is taken into account in both Kno−runout and Krunout,

but the runout effect is considered in Krunout only. Two cases are reported

in this table. “Full run” addresses the data for the entire time span of

the run, i.e. t ∈ [0, 4.4] s, while “Tracking” refers to the time span of

t ∈ [0.25, 2.2]
∪

[2.52, 4.4] s, which ignores the error spikes. The track-
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Table 5.4: Controllers tracking error results (µm).

PID Kno−runout Krunout

Full run 32.6 21.2 17.1
Tracking 21.0 11.6 9.3
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Figure 5.14: Tracking errors and control inputs.

ing performance of Krunout is 55.7 % and 19.8 % better than that of the PID

and Kno−runout controllers, respectively. It justifies the use of Krunout in high

precision application even though the design procedure is more involved.

5.6.2 Performance sensitivity of the BSD without
mass variations

Now, we study the sensitivity of the closed-loop performance to the accu-

racy of the estimated model. The estimated nominal values of parameters

k, ζ, ωn, J
∗ (in Table 5.1) are perturbed one at a time by ±5 %. Different

non-robust Krunout controllers, with common weighting functions (5.13) and

(5.27), are designed based on the perturbed models. Tracking errors are pro-
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Table 5.5: Controllers tracking error (µm), and the percentage increase
of errors in comparison with Krunout tracking error in Table 5.4.

k ζ ωn J∗

−5 % 9.9 (6.4%) 9.4 (1.1%) 11.4 (22.6%) 9.2 (-1.1%)
+5 % 11.3 (21.5%) 9.5 (2.1 %) 10.7 (15.1%) 11.1 (19.3%)

vided in Table 5.5, when nominal values increase and decrease by 5 %. Also,

a percentage showing how much the tracking error of Krunout increases by

perturbing each parameter is shown in parentheses.

Small tracking error changes can be neglected since they are related to the

experimental setup repeatability. By perturbing some parameters, the per-

formance degrades more than 20%. Therefore, it is critical to either estimate

the model accurately, or if not possible, to design robust controllers.

5.6.3 Single controller for the BSD with mass
variations

In this section, we focus on the role and importance of the robustness of

the controllers. A new robust controller Krunout is designed, where the state

space form (Ae, Be, Ce, De) of the tuned We is selected as(  −3 −1

1 0

,
 16

0

, [ 0.3 21.7
]
,

[
0.2

])
. (5.28)

Figure 5.15 shows the tracking performances of the closed-loop plant when

the runout effect is taken into consideration, and different masses are added

to the table. A comparison between the tracking errors is given in Table 5.6.

Recall that the non-robust Krunout is synthesized for the plant without added

mass while the robust Krunout is robust over the table mass variation. Be-

cause of not considering robustness, the non-robust Krunout yields the best
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Figure 5.15: Tracking errors of robust and non-robust Krunout con-
troller for different added masses to the table.

Table 5.6: Tracking error results of the controllers in the third scenario.

Added mass (kg) Robust Krunout (µm) Non-robust Krunout (µm)
0 20.2 9.3
3 19.1 29.4
6 19.0 54.3
9 20.9 Unstable

performance with an MAE of 9.3 µm. However, its performance deteriorates

by adding some mass to the table, and eventually, the closed-loop system

becomes unstable when a mass of 9 kg is added. On the other hand, the per-

formance of the robust Krunout remains uniformly acceptable over different

added masses.
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Table 5.7: Tracking errors and performance improvement (%) calcu-
lated by 100(MAEsingle −MAEmultiple)/MAEsingle.

Added mass (kg) 0 3 6 9

Single (µm) 20.2 19.1 19.0 20.9
multiple (µm) 15.1 14.5 15.9 16.6
Improvement (%) 25.2 24.1 16.3 20.6

5.6.4 Multiple controllers for the BSD with mass
variations

In this section, we study the effect of dividing the range of the mass variation

on the closed-loop performance. A robust controller is designed for each LPV

model in the derived multiple model. In controller design for both partitions,

an identical We is selected as(  −5 −2.5

4 0

,
 32

0

, [ 0.44 31.23
]
,

[
0.21

])
. (5.29)

The results for the robust multiple controller show similar patterns to those

shown in Figure 5.15(b) but with less tracking error. A numerical comparison

is made in Table 5.7. These results imply that the multiple controller had

potential for improving the track-following performance of the BSD by more

than 16%.

5.7 Conclusions

The variations in the dynamics of BSD systems due to the structural flex-

ibility, runout, and workpiece mass variation were studied in Chapter 5.

Tracking controllers for a BSD were designed, which considered flexibility

and runout, as well as mass change. These three factors were explicitly in-

corporated in LPV models. To build the LPV models, it was determined
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how the system parameters were affected by two scheduling and uncertain

variables, namely, the measurable table position and the uncertain mass of

the table. For the LPV models, we designed controllers which were scheduled

by the table position and were robust over the table mass. The performances

of the designed controllers were examined on the BSD experimental setup.

It was experimentally demonstrated that the tracking performance im-

proved significantly by taking into account the runout effect in modeling

and controller design. Also, it was shown that more than 20% performance

degradation occurs by perturbing some parameters by 5%. Therefore, it is

critical to either estimate the model accurately, or if not possible, to de-

sign robust controllers. In addition, it was verified that the consideration

of robustness against mass variation in the design stage was necessary for

maintaining the stability and a uniform tracking performance. Also, multi-

ple model derivation and the performance of the corresponding controller set

were demonstrated and discussed thoroughly. It was shown that the multiple

controller had potential for improving the track-following performance of the

BSD by more than 16%.
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Chapter 6

Conclusions, Contributions and

Future Research Directions

6.1 Conclusions

This thesis considered variations in the dynamics of linear systems, and tack-

led modeling of Linear Time-Invariant (LTI) and Linear Parameter Varying

(LPV) plants. These variations were assumed to be parametric, and caused

by two types of variables, uncertain and scheduling. The variations in the dy-

namics make the controller design challenging, and, to successfully overcome

this challenge, two methods were proposed in this thesis.

The method developed in Chapter 2 generated a connected model set

based on a given set of system response data. This method interpolated the

given system dynamics to cover the variations associated with not only these

systems but also the intermediate plant dynamics. The connected model

set was constructed to become simple and tight, leading to both noncon-

servatism and reduced computational complexity in subsequent controller

design, and hence, to improve the performance. We applied our algorithm

to an illustrative and a practical example, and obtained accurate model in

both cases.
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In Chapter 3, a method was developed to derive a family of discrete

model sets for a given set of system response data. The idea was to divide

the given set into the smallest possible number of partitions in such a way

that a desired closed-loop performance was satisfied for all partitions by

designing one controller for each partition. The effectiveness of the proposed

method was verified through an illustrative example. Also, the effectiveness

of combining this method and the one developed in Chapter 2 was shown

through an example.

In Chapter 4, we studied the dynamics of Hard Disk Drive (HDD) sys-

tems, especially, the variations in the dynamics due to the change in tempera-

tures and limited precision in the production line. A tight uncertainty model

was derived based on a set of experimental frequency response data, and an

H∞ controller was synthesized. The experimental results were demonstrated

and discussed in the frequency and time domains.

The variations in the dynamics of Ball Screw Drive (BSD) systems due to

the structural flexibility, runout, and workpiece mass variation were studied

in Chapter 5. Tracking controllers for a BSD were designed, which considered

flexibility and runout, as well as mass change. These three factors were

explicitly incorporated in LPV models. To build the LPV models, it was

determined how the system parameters were affected by two scheduling and

uncertain variables, namely, the measurable table position and the uncertain

mass of the table. We designed controllers which were scheduled by the

table position and were robust over the table mass. The performances of the

designed controllers were examined on the BSD experimental setup.

It was experimentally demonstrated that the tracking performance im-

proved significantly by taking into account the runout effect in modeling

and controller design. Also, it was shown that more than 20% performance

degradation occurs by perturbing some parameters by 5%. Therefore, it is

critical to either estimate the model accurately, or if not possible, to de-

sign robust controllers. In addition, it was verified that the consideration
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of robustness against mass variation in the design stage was necessary for

maintaining the stability and a uniform tracking performance. Also, multi-

ple model derivation and the performance of the corresponding controller set

were demonstrated and discussed thoroughly. It was shown that the multiple

controller had potential for improving the track-following performance of the

BSD by more than 16%.

6.2 Summary of contributions

The contributions of this thesis are as follows.

• The connected model set derivation method

– The idea of the principal curves methodology in a multi-dimensional

fashion is employed to detect the nonlinear correlations between

parameters of the system dynamics. Therefore, the model can be

parameterized by the minimum number of independent variables.

The number of independent variables can be detected readily by

trial and error using the developed method.

– This method does not need any information about the way that

uncertain and scheduling variables affect the physical parameters

of the system, such as natural frequency and damping ratio, in

contrast to most of the literature in this field [74, 76]. Therefore,

the method is applicable to any form of the transfer functions,

e.g., the general form.

– The developed method is applicable to LTI and LPV systems.

Such applications are demonstrated through examples in this the-

sis.

• The family of discrete model sets derivation method
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– A relaxed version of the normalized cut methodology is developed

and used in an algorithm to divide a given set of LTI system re-

sponses into the smallest possible number of partitions in such a

way that a desired performance objective is satisfied for all parti-

tions by designing one controller for each partition. To the best of

our knowledge, there is no literature on derivation of a family of

discrete model sets based on the desired closed-loop performance

as described in this thesis.

• Controller design for flexible BSDs with runout effect and mass varia-

tion

– The dynamics of BSDs is studied, where the position and mass de-

pendent variations are examined in detail from a controller design

point of view. LPV models are derived to represent the dynam-

ics of the BSDs, which happens to be time-varying and uncer-

tain. The modeling results prove the effectiveness of the proposed

method. To the best of our knowledge, there is no literature con-

sidering the effects of the structural flexibility, runout, and mass

variations in the BSD systems simultaneously.

– Tracking controller design method is proposed for BSDs, which

consists of a disturbance observer and a robust gain scheduling

controller. Tracking performances of a number of different con-

trollers are compared, and it is demonstrated the importance of

including flexibility, runout effect, and mass variations in modeling

and controller design. Also, experimental results show more than

16% improvement in the tracking performance by implementing a

multiple controller.
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6.3 Future research directions

This section recommends a number of potential future research directions.

6.3.1 Uncertainty modeling for stochastic robust
controller

The method, which is developed to derive connected model sets, is success-

ful in uncertainty modeling for HDD and BSD systems. One assumption is

inherently made that these systems are deterministic, and not stochastic. Re-

cently, stochastic robust control has received an increasing attention. Many

results about conventional robust control are extended in stochastic setting

since Hinrichsen [40] proposed the stochastic H∞ control. For instance, Xu

and Chen [114] proposed the sufficient condition for the solvability of robust

H∞ control problem for uncertain stochastic delay systems. One topic of

research which emanates from this thesis is to extend the developed method

to model the uncertainty for the robust controller design, when stochastic

perturbations exist.

6.3.2 Performance oriented connected model set
derivation

The algorithm, which is explained in Chapter 2, attempts to circumvent the

possibility of conservative performance of the closed-loop control systems.

We do not take into account if there is a desired closed-loop performance.

Refer to the special case in Table 1.1 which is denoted by “Chapter 2”.

Since the closed-loop performance depends on the characteristics of the model

set, considering the performance in deriving the connected model sets can

be beneficial. Therefore, One research topic is to consider the special case

denoted by “Future work” in Table 1.1.

By considering the controller performance, we may need to divide the

connected model set, and derive a family of connected model sets. The
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algorithm, which is explained in Chapter 2, derives a connected model set

with the minimum size, and does not take into consideration the possibility of

dividing the set, and deriving a family of connected model sets. On possible

research direction is to extend the developed method in such a way that

the model set is divided into a number of subsets if necessary based on the

closed-loop performance.

6.3.3 Advanced performance oriented family of
discrete model sets derivation

In the algorithm explained in Chapter 3, first we generate a number of par-

tition sets based on a clustering cost function, and then, the best partition

set is chosen based on the closed-loop performance. The performance of this

method can be improved by combining these two steps, and consequently, an

optimization can be formulated to provide the best partition set in one step.

The new method may be faster and computationally simpler and results in

a better family of discrete model sets.

6.3.4 Switching controllers for BSDs

In Chapter 5, we derive a multiple closed-loop system by dividing the mass

variation to improve the tracking performance. However, deriving the mul-

tiple system should agree with the machining operation. In this study, we

divide the range of mass variations into two partitions, and assume that the

table mass stays within one of these partitions during machining. However,

in the machining operations, we may need to violate this boundary. For ex-

ample, the machining starts with a mass within the range of (23, 29] kg, and

during cutting operations the mass reduces to the range of the other parti-

tion [20, 23] kg1. In this case, we need to consider switching between two

controllers. Therefore, it is essential to design switching controllers, which

1These numbers are from the results in Chapter 5.
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guarantee stability and robust tracking, when switching occurs.

6.3.5 BSD table mass estimation in real time

We assume that the value of the BSD table mass is not available in real time

during the operations. This lack of information causes loss of performance

due to the mass variations. One extension of the method proposed in this

thesis is to estimate the table mass in real time. Therefore, the tracking

performance can be improved by updating the mass-dependent parameters

of the controllers as a function of the table mass, similar to the position-

dependent gain scheduling controllers described in Chapter 5.
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Appendix A: Relaxed Form of

the Optimization (3.9)

It is desired to show that the combinatorial optimization problem

min
Ŷ

Tr[(Ŷ TDŶ )−1(Ŷ T (D − A)Ŷ )]

Ŷ T Ŷ = IQ, Ŷij ∈ {1, 0} (A.1)

can be relaxed to a non-combinatorial one as

max
Z

Tr(WZ)

Zd1/2 = d1/2,Tr(Z) = Q,

Z ≥ 0, I ≽ Z ≽ 0, (A.2)

where W := D−1/2AD−1/2, A and D are L × L diagonal matrices, and d is

a vector whose entries are diagonal elements of D. The cost function of the

optimization (A.1) can be expanded and rewritten as

Tr[(Ŷ TDŶ )−1(Ŷ TDŶ )− (Ŷ TDŶ )−1(Ŷ TAŶ )]. (A.3)
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Therefore, the optimization (A.1) is equivalent to

max
Ŷ

Tr[(Ŷ TDŶ )−1(Ŷ TAŶ )],

Ŷ ∈ RL×Q, Ŷij ∈ {1, 0}. (A.4)

The trace operator is invariant under cyclic permutations, i.e.,

Tr(KPMN) = Tr(MNKP ),

for matrices K, P , M , and N with proper sizes. Hence, the known and

unknown parts of the cost function in (A.4) can be separated as

Tr(A · Ŷ (Ŷ TDŶ )−1Ŷ T ).

Then, by normalizing the unknown part, the cost can be written as

Tr(D−1/2AD−1/2 ·D1/2Ŷ (Ŷ TDŶ )−1Ŷ TD1/2).

Using the definition of W , the above can be written as

Tr(WZ),

where

Z := D1/2Ŷ (Ŷ TDŶ )−1Ŷ TD1/2.

The matrix Z as defined above has the following properties [113]:

Zd1/2 = d1/2,Tr(Z) = Q,

Z ≥ 0, I ≽ Z ≽ 0. (A.5)

By deriving the optimizer for the relaxed optimization problem (A.2), we

approximate the optimizer of the original optimization problem (A.1).
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Appendix B: Standard SDP

Form of the Optimization

(3.10)

The optimization problem (3.10) can be written in the standard SDP form

as

max
Z̃

Tr

([
W

0

]
Z̃

)
, (B.1)

EZ̃ = t,

Z̃ ≽ 0,

where W is defined in (3.11), E : S2L → RM is a linear operator, where

M = 1.5(L2 + L) + 1, and

t =

[
12L+1

01.5L2−0.5L

]
, (B.2)

The set S2L represents a set of symmetric matrices with the order of 2L.

The detailed version of the first constraint in the optimization (B.1),

EZ̃ = t, is
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Tr

([
(D̃i + (D̃i)T )/2

0

]
Z̃

)
= 1, i = 1, . . . , L, (B.3)

Tr

([
I/Q

0

]
Z̃

)
= 1, (B.4)

Tr

([
Bi

Bi

]
Z̃

)
= 1, i = 1, . . . , L, (B.5)

Tr

([
Cmn

Cmn

]
Z̃

)
= 0, 1 ≤ m < n ≤ L, (B.6)

Tr

[ H ij

(H ij)T

]T
Z̃

 = 0, i, j = 1, . . . , L, (B.7)

where the matrices D̃i, Bi, Cmn and H ij are similar to the ones defined for

the optimization in (3.14).

In the constrains, (B.3) and (B.4) represent Zd1/2 = d1/2 and Tr(Z) = Q

in (3.10), respectively. The constraintes (B.5) and (B.6) guarantee that the

diagonal blocks of Z̃ are Z and (1−Z), and (B.7) keeps the other entries in

Z̃ zeros.
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