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Abstract

Interfacial instabilities of multi-layer shear flows may be eliminated by astute

positioning of yield stress fluid layers that remain unyielded at the interface(s).

The contribution of this thesis comes in three parts. Firstly, we have performed

a computational study of these flows in the setting of a Newtonian core fluid

surrounded by a Bingham lubricating fluid, within pipe and channel configura-

tions. The simulations include an inlet geometry in the computational model

and study the multi-layer flows, both as the fluids are initially injected (start

up) and later the established steady flows (development lengths). Nonlinear

perturbations are also studied, showing in particular that during energy de-

cay of stable perturbations the initial rapid decay of the perturbation kinetic

energy relates to reforming/breaking of the unyielded plug and is followed by

slower viscous decay. For axisymmetric perturbations these flows can be stable

to order unity initial perturbation amplitudes and for Re . 102. The chan-

nel geometry allows for symmetry breaking and appears to be less stable. A

number of interesting effects are explored using the channel geometry.

Secondly, we focus on demonstrating whether the stable core annular flow can

be achieved when lubricating a visco-elastic core fluid with a yield stress fluid.

We have performed over 100 experiments using Carbopol solutions as the lu-

bricating yield stress fluid and Polyethylene Oxide solutions as the visco-elastic

fluid. Thirdly, we have applied the energy stability method to study nonlinear

stability of a core-annular flow of an Oldroyd-B fluid surrounded by a Bingham

fluid. Together with the experimental study, this shows that visco-elasticity is

not a barrier to use of this methodology.
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Preface

In this section, we briefly explain the contents of the journal papers that

are published or submitted for publication from this thesis and clarify the

contributions of co-authors in the papers. We also include list of conference

contributions.

Journal papers

• [Hormozi, S.], Wielage-Burchard, K. & Frigaard, I.A. (2011)

Entry and start up effects in visco-plastically lubricated viscous

shear flow in pipe. J. Fluid Mech. 673, 432-467.

This publication has mostly focused at trying to understand better the

stability and robustness of visco-plastically lubricated pipe flows. Chap-

ter 2 includes the contents of this publication. The author of this thesis

was the principal contributor to this publication. Dr. Kerstin Wielage-

Burchard assisted with code development. Professor Ian Frigaard super-

vised the research and assisted with writing the paper.

• [Hormozi, S.], Wielage-Burchard, K. & Frigaard, I.A. (2011)

Multi-layer channel flows with yield stress fluids. J. Non-

Newtonian Fluid Mech. 166, 262-278.

In this publication, we present results of a computational study of visco-

plastically lubricated plane channel multi-layer flows, in which the yield

stress fluid layers are unyielded at the interface. Chapter 3 includes the

contents of this publication. The author of this thesis was the principal
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Contributions to refereed conference proceedings

contributor to this publication. Dr. Kerstin Wielage-Burchard assisted

with code development. Professor Ian Frigaard supervised the research

and assisted with writing the paper.

• [Hormozi, S.], Martinez, D.M. & Frigaard, I.A. (2011) Stable

core-annular flows of viscoelastic fluids using the visco-plastic

lubrication technique. Submitted for publication, under re-

view.

In this paper, we give an experimental demonstration that stable core-

annular flows can be achieved when lubricating a viscoelastic core fluid

with a yield stress fluid. Chapter 4 includes the contents of this publi-

cation. The author of this thesis was the principal contributor to this

publication. Professor Ian Frigaard and professor Mark Martinez super-

vised the research and assisted with writing the paper.

• [Hormozi, S.] & Frigaard, I.A. (2011) Nonlinear stability of a

visco-plastically lubricated viscoelastic fluid flow. Submitted

for publication, under review.

In this paper, a core-annular flow of an Oldroyd-B fluid surrounded by

a lubricating Bingham fluid is studied using energy stability methods.

Chapter 5 includes the contents of this publication. The author of this

thesis was the principal contributor to this publication. Professor Ian

Frigaard supervised the research and assisted with writing the paper.

Contributions to refereed conference

proceedings

• Hormozi, S., Wielage-Burchard, K., Frigaard, I.A, Martinez, D.M. &

Grecov, D. Entry and start-up flows in visco-plastic lubrication. CSME

(2010), June 6-9, Victoria, Canada.
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Chapter 1

Introduction

Multi-layer flows occur industrially in

• Co-extrusion processes, where a product is made of more than one layer

simultaneously.

• Film coating processes, where a layer is applied to a fluid substrate.

• Lubricated transport processes, where a lubricating fluid lies in a layer

between the wall of a duct and the transported fluid.

In all 3 processes the flow rate (or production rate) is frequently limited by

the growth of interfacial instabilities. Methodologies to suppress or eliminate

interfacial instabilities and further stabilise multi-layer flows are therefore of

considerable practical interest. In this thesis we study one such method that

uses a visco-plastic fluid as the lubricating fluid.

1.1 The visco-plastic lubrication flow

paradigm

The unique feature of a visco-plastic fluid is that it possesses a yield stress.

The yield stress is a stress value that separates the flow behavior into two

distinctly different qualitative regimes. If the shear stresses in the fluid lie

below the yield stress then the fluid has a solid-like structure and moves as a

rigid body. For stresses above the yield stress, the fluid deforms and flows (see

§1.2).

1



1.1. The visco-plastic lubrication flow paradigm

a)

b) c)
r

Velocity

Shear 

stress

Plug

i
τ̂
Y
τ̂Fluid 1

Fluid 2

Figure 1.1: Schematic of the flow geometry: a) axisymmetric core-annular
flow; b) cross-section of the pipe; c) velocity and stress profile across a radial
section, showing unyielded plug configuration at the interface.

The key feature of our methodology is best illustrated by considering either

a steady core annular flow (Fig. 1.1) or a symmetric 3-layer plane Poiseuille

flow of iso-density fluids (Fig. 1.2). The shear stress increases linearly from

the pipe or channel center to the outer walls. The main idea is to position the

visco-plastic fluid in the outer lubricating layer and ensure that the yield stress

(τ̂Y ) is larger than the interfacial shear stress (τ̂i) by a finite amount. This has

the effect of assuring that there is an unyielded solid-like ring of visco-plastic

fluid surrounding the core fluid. Since the yield stress exceeds the interfacial

stress by a finite amount, we would expect that finite perturbations are needed

to yield the fluid at the interface. Therefore without finite perturbations we

expect that there will be no growth of interfacial instabilities. The above idea

is simplistic, but has been further developed by [26, 55, 85], and is studied for

the remainder of this thesis.
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1.1. The visco-plastic lubrication flow paradigm
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Figure 1.2: Schematic of the flow geometry: a) symmetric 3-layer flow; b) ve-
locity and stress profile across a section, showing unyielded plug configuration
at the interface.

1.1.1 Context of the thesis

Before giving a more general literature survey in §1.3, we review the 4 studies

that have specifically considered VPL (Visco-Plastically Lubricated) flows.

This helps to understand the context of the thesis, Then, in §1.1.2, we outline

the objectives.

• Frigaard, [26] studied the linear stability of a configuration similar to that

of Fig. 1.2, with the inner fluid also a Bingham fluid. Linear stability

studies of Bingham fluids, e.g. [27], show that the unyielded regions

of parallel shear flows are not perturbed by linear perturbations (since

the perturbations are modal the stress perturbations average to zero

longitudinally). The results show that the linear stability studies only

consider decoupled yielded layers. In [26] the same analysis is applied

as in [27], resulting in a decoupling of the stability problems for the 2

fluids. Via a mapping technique, each linear stability problem is then

shown to be more stable than the linear stability problem of the same

fluid flowing alone in the channel. The approach used by [26, 27] involves
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1.1. The visco-plastic lubrication flow paradigm

considering the even extensions of linear eigenvalue problem, following a

symmetry argument which has been questioned by [89]. The full domain

eigenvalue problem has been extensively studied by [89] and no unstable

modes have been found. The authors of [89] also present a convincing

argument for the unconditional linear stability of this flow. In either case

one can say that flows of the type illustrated in Fig. 1.1 & Fig. 1.2 will

not become linearly unstable to interfacial modes.

• Very recently in [86] this linear stability approach was extended to two-

layer flows of a Bingham fluid coupled with either a Carreau fluid or a

modified FENE-CR fluid. Configurations were identified in which the

two-layer flows were linearly stable even as Re→ ∞. This was achieved

by combining the VPL technique with selection of base flows that have

a strong enough Couette component in the non-Bingham fluid layer.

• Moyers-Gonzalez [84] and Moyers-Gonzalez et al. [85] explore the non-

linear stability of these flows. The configuration chosen consists of a

Bingham lubricating fluid and a Newtonian core (Fig. 1.1). The main

method used by [85] is the energy stability method, but there are various

complications due to the 2 fluids and possibilities of interfacial motion.

For general two-fluid flows energy stability methods are not particularly

useful as the interface topology is unknown and may vary significantly.

The authors of [85] consider only perturbations for which the fluid at the

interface remains unyielded in a layer about the core fluid, but do not

restrict the interface motion. The unyielded cylinder may also translate

in the axial direction and may translate and rotate within the plane of

the cross-section. These restrictions allow the interface motion to be

described in terms of the bulk fluid motion and in this way energy decay

is established. Although in [85] the authors prove energy decay, they in

fact show that the perturbed flow decays only to a base flow that has a

Newtonian core encapsulated within the Bingham fluid surrounded by
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1.1. The visco-plastic lubrication flow paradigm

an unyielded ring of fluid, but not necessarily to the concentric base flow.

The results of [85] are not weakly nonlinear results, although conditional

on the perturbation amplitude. This dependency is not easy to resolve

quantitatively (except if the core fluid domain remains concentrically

positioned) and this makes the results unwieldy. Thus, the main contri-

bution of [85] is in establishing that the flows are nonlinearly stable and

hence in some sense robust, without quantifying this robustness.

• Huen [54] and Huen et al. [55] demonstrate that these flows can be

achieved experimentally. They use aqueous Carbopol and Xanthan so-

lutions as the base fluids (Carbopol has a yield stress, Xanthan is shear

thinning). Four sequences of experiments are conducted using different

concentration solutions with slightly different rheologies. In each case

stable multi-layer flows are found, where they are predicted to be by the

existence of base flows of the type illustrated schematically in Fig. 1.1.

Unstable flows are found where these base flow solutions do not exist.

In addition, where stable multi-layer flows are found they appeared to

be both stable and concentrically positioned.

Therefore, although VPL flows have been studied, we can easily identify

unanswered questions and limitations. Firstly, the stability studies have ei-

ther been linear stability, which is not always practical, or nonlinear energy

stability. The energy stability method tells us little about the structure of

the flow and is usually conservative. Clearly, computational studies can tell

us much about these aspects. Secondly, due to practical restrictions on the

possible fluid types, on the pump flow rates, as well as costs of performing the

experiments, the study in [55] was necessarily not a broad systematic study,

but rather a proof of concept. There is clear scope for further experimental

work. Thirdly, in using the VPL technique for more industrial application, we

are likely to encounter different fluid types than those studied so far.
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1.1.2 Objectives of the thesis

This thesis concerns flows such as in Fig. 1.1 & Fig. 1.2. Overall our programme

of study seeks to establish the practicality of the VPL method, at least in the

fluid mechanic context. Different objectives of this study include the following.

1. We want to explore aspects of flow development and start-up in ge-

ometries such as pipes and channels. The plane channel geometry is

a generic geometry for laminated products and eventually also coating

applications. The pipe geometry is used in co-extrusion and transport

processes.

2. Understanding the stability of these flows in greater detail, e.g. what

role does the unyielded plug play, do perturbations remain concentric

or develop asymmetries, how large an amplitude of perturbation can be

withstood and at what Re, etc.

3. In working with a geometry that allows for asymmetry (i.e. plane chan-

nel) we want to look at new types of flow, where interesting and exotic

effects could be introduced, but in a controlled manner, exploiting still

the underlying method of retaining unyielded fluid at the interface.

4. Extension of the VPL concept to different flow scenarios (e.g. new fluid

types, different flow geometries) while retaining the basic method of

eliminating interfacial instabilities. Many industrial multi-layer flows

involve fluids with visco-elastic properties. Therefore, the feasibility of

establishing visco-plastic lubrication flows with visco-elastic core fluids

is inherently of interest from experimental and theoretical perspectives.
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1.2. Non-Newtonian fluids

1.2 Non-Newtonian fluids

For Newtonian fluids, shear stress τij(u) and shear rate γ̇ij(u) are proportional

τij(u) = µγ̇ij(u), (1.1)

where µ is the viscosity of the material. However, daily life teems with ex-

amples of fluids with macro-molecular structures and as a consequence, a rich

variety of behavior which can not be explained by the constitutive laws of a

Newtonian fluid, (1.1). Such fluids are called non-Newtonian. This category

includes visco-plastic fluids and visco-elastic fluids, on both of which this thesis

will concentrate.

1.2.1 Visco-plastic fluids

In classical models of visco-plastic fluids, these materials do not deform when

subjected to a shear stress smaller than a certain value, which is called the

yield stress, (τY ). In this range of applied shear stress, these materials behave

as ideal rigid solids. If the shear stress in the fluid exceeds the yield stress then

the fluid deforms as a (nonlinearly) viscous fluid and is typically shear-thinning

since the fluid structure breaks down progressively with shear.

Although it is doubtful that any real material actually behaves precisely in

this manner, the behavior of many materials can be adequately approximated

in this fashion. Examples of visco-plastic fluids are pastes, suspensions, slur-

ries, paints, etc (see Fig. 1.3). The most common rheological models of this

form are the Bingham, Casson and Herschel-Bulkley fluid models, Fig. 1.4.

• Bingham plastic model

The Bingham model is one of the simplest visco-plastic models. It de-

scribes the characteristics of a fluid with yield stress and with a viscosity

that is independent of shear rate. The constitutive equations are
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1.2. Non-Newtonian fluids

Figure 1.3: Examples of visco-plastic fluids. Top row (left to right); paint,
toothpaste, hagfish mucus, Middle row (left to right); dairy products, liquid
chocolate, diaper cream, Bottom row (left to right); basaltic lavas, polymer
gels, drilling Fluids

γ̇(u) = 0 ⇐⇒ τ(u) ≤ τY , (1.2)

τij(u) =

(

τY
γ̇(u)

+ µ

)

γ̇ij(u) ⇐⇒ τ(u) > τY . (1.3)

• Casson model

The Casson model is based on a structural model of the interactive be-
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1.2. Non-Newtonian fluids

havior of solid and liquid phases of a two-phase suspension. The model

has both a yield stress and a shear-thinning non-Newtonian viscosity.

The constitutive equations are

γ̇(u) = 0 ⇐⇒ τ(u) ≤ τY , (1.4)

τij(u) =

(
√

τY
γ̇(u)

+
√
µ

)2

γ̇ij(u) ⇐⇒ τ(u) > τY . (1.5)

• Herschel-Bulkley model

The Herschel-Bulkley model extends the simple power-law model to in-

clude a yield stress as follows

γ̇(u) = 0 ⇐⇒ τ(u) ≤ τY , (1.6)

τij(u) =

(

τY
γ̇(u)

+ µγ̇(u)n−1

)

γ̇ij(u) ⇐⇒ τ(u) > τY . (1.7)

In all of the mentioned models, γ̇(u) and τ(u) denote the second invariants of

the strain rate and stress tensors, respectively and we have

γ̇ij =
∂ui

∂xj

+
∂uj

∂xi

,

γ̇(u) =

[

1

2

3
∑

i,j=1

[γ̇ij(u)]2

]1/2

τ(u) =

[

1

2

3
∑

i,j=1

[τij(u)]2

]1/2

. (1.8)

1.2.2 Visco-elastic fluids

As implied by the name, visco-elastic fluids exhibit the properties of both

viscous and elastic materials. Fig. 1.5 shows few examples of visco-elastic
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Figure 1.4: Relationship between shear rate γ̇ and shear stress τ for; Bingham
fluids(-); Casson fluids (-.) & Herschel-Bulkley fluids(- -).

fluids.

We have mentioned that for a purely viscous material, internal stresses

are a function only of the instantaneous shear rate or strain rate. On the

contrary, a purely elastic material develops stresses which are a function only

of the instantaneous strain. For visco-elastic fluids, internal stresses are a

function not only of the instantaneous deformation (e.g. strain, strain rate,

etc.) but also depend upon the entire past history of the deformation. The

influence of time upon the relation between stress and strain can be described

either by a differential equation, which includes derivatives of the stress and

strain tensors with respect to time, or by an integral equation with time as

the independent variable. In the limit of small deformation, visco-elastic flu-

ids have a linear relationship between their strain history and current value

of stress. Linear visco-elastic models can be constructed by combination of

linear mechanical or electrical elements which represent purely viscous and

elastic properties. The conventional mechanical/electrical elements represent-

ing the linear viscous and elastic behavior are spring/circuit’s capacitance

and dashpot/circuit’s resistance respectively. Figure (1.6) shows mechanical

and electrical analogs used to construct the simplest linear visco-elastic model

10
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Figure 1.5: Examples of visco-elastic fluids (http://web.mit.edu/nnf ). Top row
(left to right); saliva , shaving gels, Bottom row (left to right); okra’s juice,
polymer solution.

called linear Maxwell model. In this model the total strain is the sum of the

elastic strain (γs) of the spring and the fluid strain (γd) of the dashpot

γ = γs + γd,

Differentiating this with respect to time:

γ̇ = γ̇s + γ̇d =
τ̇

G
+
τ

µ
,
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Figure 1.6: a) Mechanical ; b) Electrical, model of Maxwell Fluid.

or

τ + λτ̇ = µγ̇, (1.9)

where λ = µ/G.

Let us compare the behavior of an ideal viscous fluid (Newtonian fluid),

an ideal elastic solid (Hookean solid) and a visco-elastic fluid (linear Maxwell

fluid) subjected to a stress relaxation test where a shear strain of magnitude γ0

is suddenly applied on the materials (see Fig. 1.7). We consider the following

strain function

γ(t) = γ0U(t). (1.10)

where U(t) is the unit step function, defined as

U(t) = 0, for t ≤ 0 and U(t) = 1, for t > 0. (1.11)

We express the resulting stress as a function of time by solving (1.9) and (1.11).

The following solution obtained by using the laplace transform method:

τ(t) = Gγ0e
−t/λ = τ0e

−t/λ. (1.12)
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Figure 1.7: a) Applied strain for stress relaxation test, b)Response to stress
relaxation test (t0 = 0), (see [17]).

When the material is a purely viscous fluid (Newtonian fluid: G→ ∞ and

λ → 0), the stress would relax infinitely fast (τ → 0 as λ → 0). Therefore

the relaxation time of stress is zero for Newtonian fluid. On the other hand,

when the material is purely elastic (Hookean solid: µ → ∞ and λ → ∞)

the stress would not relax at all and the relaxation time is infinity (τ → τ0

as λ → ∞). Lastly, for a Maxwell fluid, the initial stress response is purely

elastic (τ → Gγ0 as t→ 0+). It then decays exponentially with time, reaching

37% of its initial value at a time equal to λ. Thus, the material property λ

is a characteristic time constant, representative the time scale of the material

for stress relaxation, and is called the stress relaxation time [17].

Linear visco-elastic models are not valid when the applied deformation is

not small. As previously noted, for visco-elastic materials, it is not only the

instantaneous strain or rate of strain, but the entire past history of strain that

determines the measure of deformation. Moreover, the constitutive equation

(rheological equation) has meaning only when associated with a specific ele-

ment of material (material point). Hence, an embedded coordinate axes should

be established which always passes through the same material elements as they
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move through the system. An objective deformation 1 is measured relative to

this system and a constitutive equation of state is formulated for a given ma-

terial in terms of stress and strain variables relative to these convected coor-

dinates. The constitutive equation must then be transformed from convected

coordinates to a fixed coordinate frame to where all physical observations are

made relative [17]. The nonlinear modification of Maxwell’s linear law (1.9)

considering convected coordinates is

τ̇ + (u.▽)τ − (▽u)τ − τ(▽u)T + λτ = µγ̇, (1.13)

This model is called the upper convected Maxwell model (UCM) which is

the nonlinear extension of Maxwell’s idea (1.9) and takes account of frame-

indifference 2 which is violated by linear models for large deformation. The

reader is referred to [56, 68, 117, 118] for more details.

The UCM model (1.13) can also be motivated by molecular theories [7, 98].

The Oldroyd B model has a stress that is the linear superposition of the UCM

and a Newtonian contribution. Other popular differential models differ from

the UCM by adding additional nonlinearities.

1.3 Literature review

In this thesis we study parallel multi-layer shear flow with a visco-plastic fluid

in one of the layers. It is evident that the subject area, although quite spe-

cialized, touches on many related areas. In the first place, we give a survey on

stability of single fluid flows with yield stress in §1.3.1 to elucidate the role of

yield stress. Secondly, the start-up phase of the flow typically involves filling

the pipe initially with the visco-plastic fluid then injecting both fluids simul-

taneously. This flow is similar to displacement flows, which have been studied

1Any measure of deformation defined to such a coordinate system should be independent
of the local translation or rotation of the material

2The frame-indifference constitutive operator is the same for all observers in relative
motion
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in detail, both experimentally and numerically. Our fluids are miscible and we

therefore mostly provide an overview of miscible displacement flow studies in

§1.3.2.

Moving now to multi-layer flows, the main focus is on stability of the flow.

There are a number of studies of multi-layer flows without a yield stress. These

studies are in both planar and axisymmetric geometries, but since the usual

instability is interfacial the base flow is less significant. We review these studies

in §1.3.3. Moreover, we have validated our computational study on stability

of the visco-plastic lubrication using the available results in the context of

miscible Newtonian multi-fluid flows. The related literature is reviewed in

§1.3.4.

Finally, there are numerous effects related to visco-elasticity. We try to

summarise only those that appear to us most relevant in §1.3.5 - §1.3.7 .

1.3.1 Visco-plastic fluids and shear flow stability

The first study of linear stability of a visco-plastic fluid flow is given by [27],

who studied the linear stability of Bingham fluid in plane channel Poiseuille

flow. They considered odd and even perturbation separately, and found marginal

stability curves that approached the Newtonian limit as the yield stress van-

ished. However, treatment of odd and even perturbation has been questioned

by [89] who implemented the correct conditions at the yield surface and found

no unstable modes. Three-dimensional linear instabilities have been studied in

[88] and transient growth phenomena in [89]. A key feature of the linear stabil-

ity studies is that the plug region remains unyielded for linear perturbations.

This fact can lead to interesting mathematical anomalies. For example, [77]

consider the distinguished asymptotic limit of linear stability with small yield

stress (vanishing slower than the linear perturbation). This results in a rigid

sheet in the center of a plane channel and is linearly stable. They suggest that

the passage to the Newtonian limit of a yield stress fluid is ill-defined insofar

as questions of stability are concerned, i.e. based on the linear theory the flow
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is believed to be stable for all Re. However, the boundary conditions in the

linear theory are derived based on the continued existence of the plug region.

Apart from the linear analysis, fully nonlinear (energy) stability results

are derived in [87]. As with the Newtonian fluid energy stability results are

very conservative. For yield stress fluids the nonlinearity of the problem is not

simply in the inertial terms, but also in the shear stress and in the existence

of unyielded plug regions, which are defined in a non-local fashion even for

simple flows. This means that the gap between linear and nonlinear theories

is much wider than with Newtonian fluids. In Newtonian fluids, this gap is

partly filled by weakly nonlinear theories, but in the case of visco-plastic fluid

flows, these methods are algebraically complicated. Only [78] have performed

this type of analysis, for Rayleigh-Benard-Poiseuille flow and they found that

the range of the validity of the amplitude equation was limited. Outside of

the domain of shear flows there are only a small number of studies of stability,

e.g. [134].

1.3.2 Displacement flow in pipes and channels

Miscible displacement flows have been studied in detail, both experimentally

and numerically. In experimental studies large Péclet number (Pe) is common,

e.g. [92] study displacements over a range of Péclet, Atwood (At) and Stokes-

buoyancy numbers, using a glycerine-water system which only can give Pe in

the range Pe & 400. For the large Pe regime, depending on At, (or viscosity

ratio m), quasi-steady viscous fingers may form and propagate with a sharp

displacement front that is retained over O(1) timescales, or longer. Chen &

Meiburg [14] presented a computational investigation in conjunction with the

experimental work in [92].

A mix of experimental, computational and asymptotic methods have been

used to study this regime, e.g. [5, 66, 69, 70, 71, 72, 95, 105, 131]. Rako-

tomalala,et al. [95] applied the Lattice Gas Method (BGK) 3 with a viscos-

3Lattice Boltzmann methods is a class of computational fluid dynamics methods for fluid
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ity mixing rule to study the miscible displacement of two fluids between two

parallel plates over a range of Péclet number (Pe) and viscosity ratio. They

showed that the interface becomes a well-defined finger at high Pe number and

for large viscosity ratio. The fingering pattern is analogous to the Saffman-

Taylor [103] finger in potential flows. Asymptotic methods are used in [131]

to solve miscible displacements in geometries such as Hele-Shaw cells or long

capillary tubes. Yang and Yortsos, [131] showed that the leading order term

in the regular expansion satisfies a single integro-differential equation for the

concentration of displacing fluid. This equation is solved numerically to inves-

tigate the flow behavior over a range of viscosity ratio and Pe number. The

authors of [69, 70, 72, 105] studied experimentally the miscible displacements

in a vertical planar Hele-Shaw cell in the high Pe regime. They obtained a

threshold in both the flow velocity and viscosity ratio beyond which a 3D finger

pattern develops. They showed that the experimental threshold is in agree-

ment with analytical result based on a 2D argument similar to [131]. Further

experimental studies of miscible displacement in pipe geometry are given in

[5, 66, 105].

Considering generalised Newtonian fluids in tubes and between parallel

plates, the formal high Pe limit has been considered in the lubrication limit

by [1, 4, 113]. The propagation of fingers in fully two-dimensional displacement

flows of yield stress fluids is considered both computationally and analytically

in [1, 30]. Related experimental studies are those of [31, 32]. It is worth

mentioning that of the above studies the vast majority are concerned with

finger propagation, efficiency of displacements and residual layers, rather than

stability of the flow; see e.g. [39, 40] and [104].

There is also an extensive literature on immiscible displacements, includ-

ing Newtonian and non-Newtonian effects. The most important early works

belong to [16] and [115], who discussed the fractional amount of viscous fluid

left behind on the wall of a tube when it is displaced by an inviscid fluid (air),

simulation in which the discrete Boltzmann equation is solved to simulate the flow of fluid.
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as a function of capillary number, Ca. These flows are investigated compu-

tationally by [97], who showed the results are in a very good agreement with

experimental observations. Soares,et al. [109] extended this classical work to

flows with finite viscosity ratios. Displacement of visco-plastic fluids by gas has

also been studied by various authors. Dimakopoulos and Tsamopoulos, [20]

studied computationally the transient displacement of Newtonian and visco-

plastic liquids by highly pressurized air in cylindrical tubes of finite length

with an expansion followed by a contraction in their cross section. The reg-

ularised method with Papanastasiou’s formula was considered for Bingham

model. They examined the evolution of the free surface, the distribution of

the displaced material and velocity and pressure field for a range of the di-

mensionless parameters such as pressure, Reynolds and Bingham numbers and

geometric characteristics. The problem of gas-liquid displacement in capillary

tubes has been studied by [18, 110, 116].

1.3.3 Multi-layer viscous shear flow instability

For Newtonian fluids perhaps the earliest study of viscosity stratified shear

flow is the classical study of [133]. Yih, [133] found that both plane Poiseulle

flow and plane Couette flow can be unstable even at small Re number. Later

work includes studies of multi-layer Couette, Poiseuille and Couette-Poiseuille

flows of Newtonian fluids, e.g. [43, 49, 132]. A fairly extensive review of this

literature is given in [61], which also includes the many contributions of the

authors to the study of core annular flows; see also [59]. Broadly speaking,

the linear stability of immiscible iso-density flows requires a sufficiently large

surface tension and that the lubricating fluid is less viscous. Surface tension

stabilises short wavelength interfacial modes and the viscosity ratio tends to

stabilise long wavelength instabilities. More recent contributions to this field

are [108, 114], who consider a plane channel core-annular flow.

Other than Newtonian fluids, a number of authors have considered the lin-

ear stability of multi-layer flows of inelastic non-Newtonian fluids, e.g. power-
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law fluids are treated extensively in [63, 111, 121, 122]. Carreau-Yasuda and

(regularised) Bingham-like fluids are treated in [93]. In brief, these results are

qualitatively similar to those found for Newtonian fluids, i.e. linear interfacial

instabilities arise at small-moderate Reynolds numbers. Importantly, these

studies do not consider fluids with a yield stress and unyielded plug at the

interface. Explanations of the physical mechanisms that govern this type of

instability for Newtonian fluids have been offered by [12, 13, 45]. These ex-

planations can be largely extended to purely viscous generalised Newtonian

fluids. In simple terms, sufficiently close to the fluid-fluid interface, the non-

Newtonian (nonlinear) character of any purely viscous generalised Newtonian

fluid is simply not recognised, i.e. the dominant feature at the interface is a

discontinuity in a finite constant viscosity between two fluids.

1.3.4 Miscible multi-fluid flows

In the context of miscible multi-fluid flows there is less work on shear insta-

bilities. In the first place, the term multi-layer is ill-defined if the fluids can

mix completely. Where linear stability studies have been performed the par-

allel base state is assumed quasi-steady. This assumption and the necessity

to specify a closure law relating viscosity to fluid concentration lead to in-

herent difficulties in establishing the generality of results. Ranganathan and

Govindarajan [96, 102] analysed the stability of miscible fluids of different

viscosities flowing through a channel in a three-layer Poiseuille configuration.

They obtained instabilities at high Schmidt numbers and low Reynolds num-

bers, resembling those of [133]. In Couette flow it appears that the stability

characteristics of the miscible flow are predicted by those of the immiscible

flow with zero surface tension; see [25]. However, for core annular flow this is

not the case; see [106]. It does appear true that introduction of a diffuse layer

of intermediate concentration and rheological properties does serve to stabilise

the flow. On the other hand non-monotone variations in rheological properties

can lead to shear-type instability, as in the reactive flows studied by [11].
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More recently, interest has focused on convective instabilities in miscible

multi-layer flows. d’Olce [22] and d’Olce et al. [23] studied experimentally a

miscible core annular flow with more viscous fluid adjacent to the wall. On

controlling the respective flow rates one can adjust the equilibrium radius of the

the interface. As this interfacial position was increased a number of interesting

secondary flows were observed, resembling pearls at smaller interfacial radii

and mushrooms at larger radii. A similar transition was affected by increasing

Re. This flow has been studied more deeply, both experimentally by [24] and

computationally/analytically by [107] in an effort to understand the transition

between convective instability and absolute instability. In a related vein, Sahu

et al. [104] have recently considered the onset of convective instabilities in

3-layer plane channel flows.

1.3.5 Linear stability of shear flow of visco-elastic

fluids

There are a number of theoretical studies on stability of single viscoelastic

fluid in Couette or Poiseuille flow geometries. Accurate study of the linear

stability for Upper Convected Maxwell (UCM) fluid in plane Poiseulle flow

dates back to the work of [46], who show that the flow is linearly stable at low

Reynolds number to sinuous or symmetric modes. This study was extended

to antisymmetric or varicose modes by [74] who also obtained linear stability

results for inertia-less plane Poiseuille flows. However, they reported that

unlike the Newtonian fluid the most dangerous modes correspond to anti-

symmetric modes. They also indicated that the Maxwell model is stable in

plane Couette flow. The absence of unstable eigenvalues for plane Couette

flow of Maxwell fluids at high Reynolds number has been verified in [100]

using spectral methods.

Linear instability results for plane Poiseuille and Couette flows have been

established for other viscoelastic models by several authors, e.g. [8, 9, 129,

130]. Grillet et al. [130] have used transient finite element calculations and

20



1.3. Literature review

the Chebyshev-tau spectral method to investigate planar shear flows of PTT

(Phan-Thien-Tanner) and Giesekus fluids. Their results show the existence of

unstable modes for both plane Poiseuille and Couette flows of a PTT fluid.

The Giesekus model was found to be stable for Couette flow but unstable in

pressure driven flows. The mechanisms were investigated using the linearized

energy equation in [35] and [57]. The results indicate that the instability

mechanism is associated with coupling between the base state stresses and the

perturbation velocity gradients.

1.3.6 Nonlinear stability of single visco-elastic fluid

There is less work in the context of nonlinear stability. Atalik and Keuninngs

[2] have investigated the nonlinear stability of plane channel flows for Giesekus,

Oldroyd-B and UCM models using a fully-spectral Galerkin method. The tem-

poral evolution of 2D, finite amplitude perturbations at high and low Re is

considered and the results show the development of finite amplitude waves for

Poiseuille flow. In the case of Couette flow the finite amplitude disturbances

decay in an oscillatory fashion over the considered parameter range. Sarloos

and coworkers [79, 80, 83] studied the weakly nonlinear stability of Poiseuille

flow of a UCM fluid in channel and pipe geometries. They derived an ampli-

tude equation and obtained the critical amplitude beyond which the flow is

nonlinearly unstable. Similar to [2], they have found subcritical instabilities.

Lozinski and Owen [90] obtained an energy estimate for the flow of Ol-

droyd B fluid in a bounded domain. They have integrated the trace of the

stress tensor over the flow domain as a form of elastic energy. Two barriers to

generalizing the energy stability method to Oldroyd B fluids in a self-consistent

way have been raised in [21]. The first is due to the impossibility of defining

a norm on the stress space, which is a space of symmetric positive-definite

tensors. The second difficulty is related to non-normality of the operator de-

scribing the time evolution of infinitesimal disturbances of an Oldroyd-B fluid,

which may cause the transient growth of disturbances at low Reynolds num-
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ber. Further interesting studies in the context of transient growth phenomena

are [67, 99, 112]. Recently, Kumar and coworkers [47, 48, 62] analysed the

ensemble-averaged kinetic energy density of the linearized momentum equa-

tion for plane Couette and Poiseuille flows of Oldroyd-B fluids. They obtained

monotonic decay of their energy density by controlling both Reynolds and

Weissenberg numbers to be small.

1.3.7 Theoretical and experimental studies on

multi-layer visco-elastic fluid

Moving now to multi-layer flows of visco-elastic fluids, the main focus is on

the linear stability of the flow, see e.g. [15, 33, 34, 44, 101, 129]. Generally,

the results indicate that elastic stratification (jump in the normal stresses) can

produce linear interfacial instabilities even in the absence of any viscosity or

density mismatch. In the long wave limit the perturbations affect the entire

domain and the flow becomes stable when the more elastic fluid is the major

component of the flow. However in the short wave limit, the disturbances

decay exponentially fast away from the interface and the instability mechanism

is local in nature. The physical mechanism of instability is explained in [33,

35, 44]. Recently, Miller & Rallison [81, 82] considered the relaxation length-

scale which is a measure of the distance that a typical particle travels during

a relaxation time. They explored linear stability in two parametric regimes.

In the first regime, the wavelength is long compared to the channel width but

short compare to the relaxation length scale [82]. In the second regime, the

relaxation length scale is the longest length scale, but the interface is close to

the center-line [81].

In terms of experimental studies there is less work for interfacial instability

of viscoelastic flows. Wilson & Khomami [125, 126, 127] performed a com-

prehensive series of experiments on two-layer co-extrusion polymer melts in a

channel configuration. They studied interfacial instabilities generated by intro-

ducing temporally regular disturbances of different amplitude and wave length
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at the interface. In [125] the neutral stability was constructed experimentally

for an incompatible polymer system of PP/HDPE, with a jump in both elastic

and viscous properties along the interface. As with the theoretical results the

most dangerous wave number is of order of unity. Qualitative agreement with

theory was also found with measurements of the growth rate. Later theoreti-

cal studies based on a more realistic model were able to achieve a reasonable

quantitative comparison, [34, 35]. In [126] experiments were performed with a

similar two fluid system (PP/HDPE), but at temperatures for which the fluids

have the same viscosity but different normal stress at the interface. In this

way they verified experimentally the existence of purely elastic instabilities. In

[127] a compatible polymer system of LLDPE/HDPE was used. A later study

[128] used a modified apparatus with a converging-diverging channel instead

of a parallel channel; similar experiments to [125] were performed. Their re-

sults showed stabilizing and destabilizing effects in converging and diverging

sections, respectively. According to [127] this can be explained by an analysis

similar to [44]. In the diverging channel, as it follows the converging section,

the destabilizing mechanism was partly due to the release of elastic energy

stored in converging part. In the context of experimental work, we should

also mention the studies [119, 120] on stability of two layer co-extrusion flow.

They find that long wave asymptotic analysis gives a good prediction of the

occurrence of instabilities, but do find some instabilities in flows predicted to

be stable. Finally, in [64] interfacial instability is investigated in three-layer

symmetric and asymmetric pressure-driven channel flow of polymeric melts.

Interfacial instability in multi-layer viscous flows often leads to encapsulation,

which happens due to the tendency for the more viscous fluid to migrate into

the less viscous one, irrespective of the stability of the interface. There have

also been a limited number of experimental studies of encapsulation in the

context of viscoelastic flows e.g. [41, 42, 64, 65, 73, 125].
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1.4 Outline of the thesis

The axisymmetric core-annular geometry is studied computationally in Chap-

ter 2 for the simplest rheological pair of fluids (a Bingham lubricating fluid

and Newtonian core fluid). The simulations include an inlet geometry in the

computational model and study the development of the multi-layer flow, both

as the fluids are initially injected (start up) and later the established steady

flows (development lengths). We have also studied the Nonlinear stability,

considering temporal stability of a periodic cell of established parallel flow.

In chapter 3 visco-plastic lubrication flows are investigated computation-

ally in a plane channel configuration. This geometry allows for symmetry

breaking while retaining the advantages of 2D computation. In addition to

start-up and stability of the flows, a number of different effects are explored

using this geometry. These include the ability to control the downstream flow

via changing the inlet positioning and flow rate with time, different ways of

establishing the steady parallel flows, multi-layer flows with up to 7 layers.

Chapter 4 serves to extend the breadth of experimental observations of

visco-plastic lubrication flows by considering viscoelastic core fluids. Our study

has two principal objectives. Firstly, we demonstrate the experimental feasi-

bility of this type of flow in a laboratory environment. Secondly, we study

how viscoelasticity might affect design of the inlet geometry, e.g. the effects of

downstream contraction and expansion.

In chapter 5 nonlinear stability via the Reynolds-Orr equation has been

studied for visco-plastic lubrication of visco-elastic fluid along an infinite pipe.

The core fluid is an Oldroyd-B fluid and the outer fluid is a Bingham fluid. We

show that, when the maximal shear stress and elastic stress perturbations are

bounded, a suitable energy functional will decay exponentially for sufficiently

small Reynolds and Weissenberg numbers.

Chapter 6 of the thesis contains a summary of the results of the thesis and

recommendations for future work.
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Chapter 2

Visco-plastically lubricated pipe

flows 1

In this Chapter we study axisymmetric core-annular VPL flows computation-

ally. The simulations include an inlet geometry in the computational model

and we study the development of the multi-layer flow, both as the fluids are

initially injected (start up) and later when steady flows are established (de-

velopment lengths). As mentioned in chapter 1, previous studies considered

the stability of the established flow both theoretically [26, 85] and experimen-

tally [55]. However, the theoretical approach does not consider how to set the

flows up and perhaps a criticism of [55] is that all experiments were in a single

geometry with established core fluid radius similar to the inlet. Therefore,

one of the motivations for this work is investigating two aspects of the initial

part of the core annular flow. First, is it possible to establish the base multi-

layer flows at all, i.e. from a practically realizable initial flow configuration.

Secondly, having established a base flow, what factors affect the entry or de-

velopment length of the flow. Whilst the latter problem could be studied via a

steady flow computation, we have studied both questions via a transient flow

computation.

The fact that the start-up flows become steady implies some kind of convec-

tive stability. Nonlinear temporal stability to axisymmetric perturbations is

also studied . Our aim is to understand structural aspects of the flow stability,

1A version of Chapter 2 has been published. [S. Hormozi], K. Wielage-Burchard and
I.A. Frigaard. (2011) Entry, start up and stability effects in visco-plastically lubricated pipe
flows. Journal of Fluid Mechanics. 673, 432-467, [52].
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not easily extracted from the energy stability results of [85].

An outline of this chapter is as follows. Section 2.1 introduces the physical

model of the flows that we study and also outlines the numerical method and

various computational studies used to validate the code. Section 2.2 presents

the results of our study of start-up flows and development lengths. Nonlinear

temporal stability is studied in §2.3 and the chapter ends with a brief discussion

(§2.4).

2.1 A multi-layer flow model

An axisymmetric pipe flow is considered throughout this chapter. The pipe

has outer radius R̂ and is initially filled with Bingham fluid (fluid 2). The pipe

is vertically oriented and we use axisymmetric cylindrical coordinates with ẑ

pointing upwards along the pipe axis. For time t̂ > 0 a Newtonian fluid (fluid

1) is injected upwards through a concentrically positioned inner pipe of radius

R̂i < R̂, while at the same time the Bingham fluid is pumped through the

annular space surrounding this pipe, (see Fig. 2.1a). The Bingham fluid thus

acts as lubricating layer for the Newtonian core fluid. For the stability studies

later (§2.3) we consider an axially periodic section of uniform pipe downstream

of the inlet.

Although the setting described is general, we consider flow parameters

that correspond approximately to those that we can achieve experimentally in

our lab. As a guide, we consider radii 0.005m . R̂ . 0.1m, mean velocities

0.001m/s . Û0 . 1m/s, and suppose that the fluids consist of miscible aqueous

solutions of equal density, ρ̂. The choice of a Bingham fluid as the lubricant is a

simplification of a typical yield stress rheology (which is often shear-thinning)

and the Newtonian core is also primarily for simplicity.

Fluid 1 has Newtonian viscosity µ̂[1] and fluid 2 is characterised by its

yield stress τ̂
[2]
yield and plastic viscosity µ̂[2]. The total flow rate along the pipe

is Q̂, which defines the mean axial velocity: Û0 = Q̂/πR̂2. The pressure is
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Figure 2.1: a) Schematic of the dimensionless flow geometry in an axisymmet-
ric pipe; b) example computational mesh close to the inlet region for Ri = 0.2.

denoted by p̂(x̂, t̂), û(x̂, t̂) is the velocity, τ̂ij
[k] denotes the deviatoric stress

tensor in fluid k, and ĝ is the gravitational acceleration. We model the change

between (pure) fluids 1 and 2 via a scalar concentration C, representing the

concentration of fluid 2. The Navier-Stokes equations are made dimensionless

with the following scaling:

x =
x̂

R̂
, t =

t̂Û0

R̂
, u =

û

Û0

, p =
p̂+ ρ̂ĝẑ

ρ̂Û2
0

, τij =
τ̂ijR̂

µ̂[2]Û0

. (2.1)

The dimensionless model considered is as follows:

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
+

1

Re

∂τij
∂xj

, (2.2)

∂C

∂t
+ uj

∂C

∂xj
=

1

Pe

∂2C

∂x2
j

, (2.3)

0 =
∂ui

∂xi

. (2.4)
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Constitutive laws for the two pure fluids are:

τ
[1]
ij = mγ̇ij, (2.5)

γ̇(u) = 0 ⇐⇒ τ [2](u) ≤ B, (2.6)

τ
[2]
ij (u) =

[

1 +
B

γ̇(u)

]

γ̇ij(u) ⇐⇒ τ [2](u) > B. (2.7)

where

γ̇ij =
∂ui

∂xj

+
∂uj

∂xi

,

γ̇(u) =

[

1

2

3
∑

i,j=1

[γ̇ij(u)]2

]1/2

τ [2](u) =

[

1

2

3
∑

i,j=1

[τ
[2]
ij (u)]2

]1/2

. (2.8)

Note that in dealing with mixtures, we will use constitutive laws that are

interpolated from the pure fluid constitutive laws; see (2.15) and (2.16). The

dimensionless model has 3 principal dimensionless groups, defined by:

m =
µ̂[1]

µ̂[2]
, Re =

ρ̂R̂Û0

µ̂[2]
, B =

τ̂
[2]
yieldR̂

Û0µ̂[2]
. (2.9)

These are the viscosity ratio, Reynolds number and Bingham number, respec-

tively. The Bingham number denotes the ratio of the yield stress of the fluid

to a typical viscous stress of the flow. The Reynolds number has been based

on fluid 2 properties. The relevant Reynolds number for fluid 1 is Re/m. Note

that we also have 2 geometric groups: Ri = R̂i/R̂, the inlet radius ratio, and ri

which is the radial position of the interface in a parallel multi-layer flow. This

latter is governed by the relative distribution of the total flow rate between the

two fluids, as we shall discuss below in §2.1.1. A final dimensionless group is

the Péclet number, Pe = R̂Û0/D̂m, with D̂m the molecular diffusivity. Typi-

cally we have Pe ∼ 106−1010, for which values the concentration is effectively

advected with the flow. The Péclet number is discussed further in §2.1.3.

In considering a start-up flow (Fig. 2.1a) we impose uniform axial velocity
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and concentrations (0 or 1) at the inlets at the base of the pipe. The mean

axial velocity that we impose is determined by solving the problem for base

flow, which is the parallel flow that we are trying to achieve in the downstream

region; see §2.1.1 following. No slip conditions are imposed at the solid walls,

with no flux for the concentration. Outflow conditions are imposed at the exit

of the pipe.

2.1.1 Basic flows, Pe→ ∞
In the limit Pe→ ∞, we recover a model of 2 immiscible fluids without surface

tension. Following [85], there are three distinct types of base velocity profile,

u = (0,W (r)), for which a Newtonian core fluid is surrounded by a Bingham

fluid. The inner core fluid always assumes a characteristic parabolic velocity

profile, but the velocity profile in fluid 2 depends on the fraction of the outer

layer that is yielded. The case of primary interest here is that for which the

inner core is surrounded by a ring of unyielded fluid. With interface at r = ri

and yield surface position r = ry, these flows have ri < ry < 1 and velocity

profile

W (r) =



































B

2ry

[

1

m
(r2

i − r2) + (1 − ry)
2

]

0 ≤ r ≤ ri,

B

2ry
(1 − ry)

2 ri < r ≤ ry,

B

2ry

[

(1 − ry)
2 − (r − ry)

2
]

ry < r ≤ 1.

(2.10)

The yield surface position ry depends only on ri, B and m. It is computed

from the constraint that the mean velocity, averaged over both inner and outer

fluid layers, is equal to 1. After some algebra, ry ∈ (ri, 1) is found as the root

of the following quartic equation:

0 = (ry)
4 − 4ry

(

1 +
3

B

)

+ 3

(

1 +
r4
i

m

)

. (2.11)
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Figure 2.2: Parameter domains where the base solutions are found in
(ri, B,m)-space: a) m = 1; b) m = 10.

Following [85] this solution is denoted as case 1 solution. As ri, B and m

are varied the other 2 solution types are found: a case 2 solution, for which the

outer fluid is entirely yielded, and a case 3 solution for which the outer fluid

is entirely unyielded and stationary. These solutions are described further in

[85]. It is only the case 1 solutions that allow stable visco-plastically lubricated

flows. In the 3-dimensional (ri, B,m)-parameter space the boundary between

case 2 and case 1 solutions is given by:

B <
12ri

r4
i

(

3

m
+ 1

)

− 4ri + 3

, (2.12)

(with case 1 solutions found when this inequality is not satisfied). The bound-

ary between case 3 and case 1 solutions is given by:

B >
4m

r4
i

. (2.13)

(again case 1 solutions are found when this inequality is not satisfied). Figure

2.2 illustrates the domain in which case 1 solutions are found for 2 different

viscosity ratios, m.
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Returning to the dimensional parameters of the problem, we recall that for

a typical hydraulic flow one can specify either the flow rate or the pressure

drop, but not both. The analogy for the multi-layer flows studied is that if one

specifies the flow rates of the individual fluid phases, then it can be shown that

the pressure drop and the radial interface position are uniquely determined.

Conversely (and perhaps more obviously) specifying the pressure drop and

radial interface position uniquely determines (the velocity and) the flow rates

in the individual fluid phases.

2.1.2 Computational solution

The model equations (2.2)-(2.8) have been discretised using a mixed finite ele-

ment/finite volume method. The Navier-Stokes equations are solved using the

Galerkin finite element method. The computations are carried out on a struc-

tured rectangular mesh, with linear elements (Q1) for the velocity and constant

elements (P0) for the pressure discretisation. The divergence-free condition is

enforced by an augmented Lagrangian technique; see [38]. Although we could

use a higher order discretisation we have not done so. Since, we are cautious

to impose more regularity on the discrete solution than may exist for the so-

lution to the exact Bingham fluid model. The solution of Bingham fluid flow

problems are not twice differentiable and may have yield surfaces that have

singular points. Hence, it is not always good to use a smoother approxima-

tion than the solution we are trying to compute. A potential disadvantage

of our choice of elements is that the inf-sup condition is generally not sat-

isfied by this discretisation. Velocity errors are usually independent of the

discrete inf-sup condition; see [10]. The augmented Lagrangian approach for

the divergence free condition induces L2-stability (dependent on the penalty

parameter) for the pressure, making the discretisation less sensitive to effects

of spurious pressure modes. We have not observed any evidence of spurious

modes or numerical instability in any of our computations. These aspects are

discussed in more detail in [10, 94].
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There are two sources of nonlinearity in the Navier-Stokes equations: the

convective terms and the shear stress terms (in the case of the Bingham fluid).

Regarding the Bingham fluid, note that the effective viscosity becomes infinite

in unyielded regions of the flow, although stress and strain rate tensors remain

finite. Two methods are popular for dealing with this. Either one regularises

the effective viscosity functional to remove the singular behavior; see e.g. [6,

29, 36, 91]. This system can then be solved iteratively as a flow problem

with a nonlinear viscosity. Alternatively, one solves the equations using a

relaxation-multiplier approach such as the augmented Lagrangian method;

e.g. [36, 37, 38]. The regularisation approach replaces the unyielded region with

a region of small strain rate and high viscosity. The augmented Lagrangian

method gives zero strain rate in such regions. We implemented both strategies

in the code development stage. As regularisation method we have followed [6],

replacing (2.6) & (2.7) with

τ
[2]
ij (u) =

[

1 +
B

[γ̇2(u) + ǫ2]1/2

]

γ̇ij(u), (2.14)

where we take the regularisation parameter ǫ = 10−4, (see below). Except

in cases when the unyielded plug is very thin we see only minor differences

in our results between methods2. For this particular flow it seems that the

numerical limit on the unyielded plug thickness is more related to the mesh

resolution than to the method used to resolve the stress. The regularisation

method gives faster computations than the augmented Lagrangian method,

(if one discounts the time spent in establishing an acceptable ǫ), and this has

been the main reason for our usage. All results presented in this chapter use

regularisation method. However, comparison of viscosity regularisation and

augmented Lagrangian method is given in §3.2.1 for VPL flows in channel

geometry.

We use a fixed timestep for the Navier-Stokes equations, advancing from

2The reader is referred to [29] for more discussion on the use of regularisation method.
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timestep N to N+1. Regarding the implementation of the nonlinear terms, we

use a semi-implicit method. The convective velocity is approximated at time

step N while the linear spatial derivatives of the velocity are approximated

implicitly at time step N + 1. The effective viscosity is approximated at time

step N∗ with the strain rate components at step N + 1. A Picard iteration is

then used within each time step to successively update the variables at step

N∗, so that the shear stress discretisation becomes successively closer to being

fully implicit. The pressure is approximated at time step N + 1.

The concentration equation (2.3) is solved via a finite volume method, in

which the concentration is approximated at the center of each regular mesh

cell. The advective terms are dealt with via a MUSCL scheme (Monotone

Upstream-centred Scheme for Conservation Laws). These are essentially

slope-limiter methods for reducing oscillations close to discontinuities; see

e.g. [75, 123] for more description. On each (Navier-Stokes) timestep a split-

ting method is used to advance the concentration equation over a number of

smaller sub-timesteps. This time advance is explicit and a CFL condition is

implemented for the sub-timesteps to ensure numerical stability.

The numerical algorithm is implemented in C++ as an application of PELI-

CANS.3 Although the equations could have been implemented in a commercial

CFD code, these codes are often over-stabilised and give little access to the

detailed implementation. We used 60 elements across the pipe and 40 ele-

ments per unit length along the pipe, which is of dimensionless length L. The

length is adjusted according to the physical situation we model and for longer

geometries we preserve the mesh density. The inflow section of a typical mesh

is shown in Fig. 2.1b. Figure 2.3a-c shows the difference between the analytic

solution and the computed solution at the exit, for various mesh sizes and

3PELICANS is an object oriented platform developed at IRSN, France, to provide
a general framework of software components for the implementation of partial differen-
tial equation solvers. PELICANS is distributed under the CeCILL license agreement
(http://www.cecill.info/licences/Licence CeCILL V2-en.html). PELICANS can be down-
loaded from https://gforge.irsn.fr/gf/project/pelicans/.
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Figure 2.3: Effect of mesh size on: a) exit velocity profile; b) exit concentration
profile; c) L2 norm of difference between exit velocity W and analytic velocity
Wa. Flow parameters are: m = 10, Re = 5, B = 10, ri = 0.4 and Ri = 0.2.
In each figure, line styles (:), (−.), (−−), and (−) correspond to ∆r = 0.025,
∆r = 0.02, ∆r = 0.017 and ∆r = 0.014 respectively; ∆r is the radial mesh
size. d) Effect of regularisation parameter ǫ on computed exit velocity profile
W : ǫ = 1, 0.1, 0.0001.

fairly typical parameters. It can be seen that the velocity is well represented

at this mesh resolution and the concentration field also, except at the interface

where the jump in concentration is smeared over a few cells. Refinement does

reduce the thickness of the diffuse layer, but this effect of numerical diffusion

is always present.

For the same parameters as Fig. 2.3a-c, we show in Fig. 2.3d and in Fig. 2.4

the effects of varying the regularisation parameter ǫ. For ǫ = 1 this is effectively

just a shear-thinning fluid, but we observe that even for ǫ = 0.1 the exit velocity

34



2.1. A multi-layer flow model

 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 2.4: Effects of regularization parameter ǫ on computed strain rate:
ǫ = 1, 0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001, (left to right). Flow
parameters are: m = 10, Re = 5, B = 10, ri = 0.4 and Ri = 0.2.

and strain rate profiles are converging. Our choice of ǫ = 0.0001 is similar to

that made by other authors.

It is worth commenting that we have not observed any physically spurious

instabilities while using the regularisation method. In hydrodynamic stability

studies these instabilities can arise firstly at the interface (which formally is

simply very viscous), and secondly close to the yield surface where a disconti-

nuity in the second derivative of the velocity is smoothed; see [29]. Although

such instabilities are theoretically possible, they occur in parts of the flow that

are very viscous (of order B/ǫ) and hence grow very slowly. Thus, even if these

additional modes were present in our computations they would probably not

be observable on the timescale of our computations.

2.1.3 Code validation

In order to validate the code implementation a number of steps have been

taken. Firstly, various 1D single fluid benchmark flows were computed, e.g. pipe

and plane Poiseuille flow. Secondly, for the start-up/development flow simu-

lations we are able to compute analytically the fully developed base flow (as

described in §2.1.1) which can be compared with the velocity profile at the
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Figure 2.5: Comparison of computed exit axial velocities with the analytic
base flow W (r) for Ri = 0.2, Re = 5, B = 10: a) (first row) m = 1 and from
left to right, ri = 0.2, 0.4, 0.8; b) (second row) m = 10 and from left to right,
ri = 0.2, 0.4, 0.8. In each figure the solid line shows the analytic solution and
the circle symbols indicate the computed exit axial velocity.

exit. An example of such a comparison is shown in Fig. 2.5. For the range

of ri selected, some of the base flows are of case 1, whereas others are case 2

and case 3. In general we observe that the comparison between the analytical

base flow and computed exit profiles is reasonable. However as we shall see

later, there is a small amount of numerical diffusion/dispersion at the interface

which leads to some error. For the computations of Fig. 2.5 we have selected

Ri = 0.2, so that the core fluid expands radially outwards as the developed

flow is attained. We shall see later that such flows tend to have the most sig-

nificant numerical diffusion/dispersion, so effectively we are presenting a worst

case scenario. The diffuse interfacial region is also larger when there is strong

shear at the interface.
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2.1. A multi-layer flow model

Diffusive effects

In view of the large magnitude of Péclet numbers, we may expect that physical

(molecular) diffusion is not significant for the flows we consider. Mixing due

to molecular effects only becomes significant on the radial length-scale for

long pipes, defined in the dimensionless parameters by L ∼ Pe, which is the

Taylor dispersion regime. Here we are restricted to more practical lengths,

L . O(102), and since L ≪ Pe we eliminate the diffusive terms from the

concentration equation (2.3), by setting Pe = ∞ later in this chapter.

Although we may eliminate molecular diffusion easily numerical diffusion

still remains. These effects are reduced by method such as a MUSCL scheme,

but are not eliminated. As a practical matter, this means that intermediate

concentrations C ∈ (0, 1), are computed during solution of (2.3) in interfacial

regions. For such concentrations we interpolate the constitutive laws of the 2

fluids, resulting in:

τij =

(

[C +m(1 − C)] +
BC

γ̇

)

γ̇ij ⇐⇒ τ > BC, (2.15)

γ̇ij = 0, ⇐⇒ τ ≤ BC, (2.16)

and use the pure fluid rheologies for concentrations outside of (0, 1).

To quantify the effects of numerical diffusion in our code we have performed

a sequence of studies at increasing Pe = 102, 103, ..., 107. We fix Ri = 0.2,

ri = 0.4, Re = 40, B = 10 and examine the exit velocity and concentration

profiles for a channel of length L = 50. The results are shown in Fig. 2.6. The

base flow for these parameters is a case 1 flow with significant plug region.

The smallest value of Pe (Pe = 102) is of the same order as L and Re.

For this value, molecular and viscous diffusion are equally significant and the

length of pipe is sufficient to allow significant diffusive mixing. We observe

that over the length of the pipe the two fluids mix completely (see Fig. 2.6b),

giving a mean concentration C̄ ≈ 0.7. Note that the mixture has a Bingham

number equal to BC̄ and therefore an unyielded plug region is found in the
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Figure 2.6: Effects of Péclet number on: a) exit velocity profile; b) exit con-
centration profile; c) numerically defined interface radius ξ. Flow parameters
are: m = 1, Re = 40, B = 10, ri = 0.4 and Ri = 0.2.

center of the pipe (see Fig. 2.6a).

As Pe is increased the degree of mixing decreases and the interfacial layer

becomes progressively less diffuse. For Pe ≥ 105 we find that the profiles

are indistinguishable from one another. The diffusion is now dominated by

numerical effects and unaffected by Pe. The diffuse region occupies a thickness

that is determined by the mesh discretisation, corresponding roughly to 2-3

cells. To give a quantitative measure of the interface radius we define

f(C) =

{

0 if C > 1
2

1 if C ≤ 1
2

and then integrate to find a numerically defined interface radius, ξ:

ξ =

∫

f(C)dr. (2.17)

The final figure in Fig. 2.6 shows the variation of ξ with Pe, converging ap-

proximately to ri = 0.4. The numerical interface position is evidently sensitive

to the mesh refinement, even as Pe → ∞. Although we could further refine

our mesh to reduce numerical effects and perhaps then include physical diffu-

sion via a finite Péclet number, a mesh size of order Pe−1/2 would be required
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2.1. A multi-layer flow model

and this quickly becomes prohibitive in terms of computational times required,

especially for larger Pe ranges.

Although the interpolation (2.15) & (2.16) is simplistic and imposing Pe =

∞ is also partly for simplicity, it is worth noting that providing a more phys-

ically realistic model is not easy. In modeling miscible Newtonian flows poly-

nomial splines, exponential and power-law interpolations have all been used

as different examples of viscosity closure laws: e.g. [104, 106, 131], but there

is evidently no universal closure. All that can be done to establish the ro-

bustness of results is to benchmark different closure models over a reasonable

range of flows. In preliminary computations we have tested the exponential

interpolation of [106] and the power law interpolation of [131], finding little

noticeable difference in results. Secondly, if we were to model the molecular

diffusivity it would not be constant in the yield stress fluid. Indeed if we accept

the idealisation of the Bingham model as a rigid solid when unyielded, then

the molecular diffusivity will certainly be drastically reduced in these regions

(according to the specifics of the gel structure) so that Pe = ∞ may not be a

poor approximation.

Pearls and mushrooms

While comparisons such as Fig. 2.5 illustrate that our code is able to simulate

the development of stable established base flows, in the second part of this

chapter we wish to study evolution of transient imposed perturbations. In

order to demonstrate that more complex transient flow structures can also be

simulated, we have conducted a number of comparative computations in order

to simulate the recent experimental results of [22, 23]. In these experiments two

iso-density miscible Newtonian fluids with different viscosities were pumped

concentrically into a pipe. The ratio of outer to inner fluid viscosity was 25

and a range of different relative flow rates were tested, producing beautiful

“pearl” and “mushroom” shaped patterns.

In the context of our model problem, we have m = 1/25, B = 0 and a range
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Figure 2.7: Pearl and mushroom patterns computed in (Re1, r) = (mRe, ri)
space. Left: ⋆ indicates observed mushroom-like flows without any flow pertur-
bation; ⋄ and � indicate pearl-like and mushroom-like flows respectively, ob-
served with a small flow perturbation. The right-hand panels illustrate the flow
parameters circled (left to right): (i) pearl-like pattern for ri = 0.2, Re1 = 15;
(ii) mushroom-like pattern for ri = 0.411, Re1 = 18.7; (iii) mushroom-like
pattern for ri = 0.51, Re1 = 12.8.

of different ri, according to the different relative flow rates. Since there is no

yield stress all base flows are case 3, but equally since there is no unyielded

plug, the interface can deform and mix. The experimental regime studied

by [22, 23] considers relatively moderate Re and the authors estimate their

Péclet number in the range 2 × 104 - 6 × 105, so that although the fluids are

miscible, purely diffusive effects are minimal. In Figs. 2.7 and 2.8, we present

our numerical simulation results for a wide range of the parameters explored

experimentally in [23]. For these figures only, the Reynolds number Re1 is the

fluid 1 Reynolds number, as used by d’Olce and co-investigators (i.e. Re/m

in terms of our parameters). The parameter r in [23] is equivalent to ri used

here.

The first observation, by comparison with [23] is that we are able to get

qualitatively and quantitatively similar instability patterns using our numeri-

cal code. We note that quantitative comparisons beyond comparing the radial
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2.1. A multi-layer flow model

a) b) c) d)

Figure 2.8: Illustration of the pearl to mushroom transition as ri is increased,
for Re1 = 19: a) ri = 0.12; b) ri = 0.17; c) ri = 0.27; d) ri = 0.411.

perturbations of the diffusive interface are difficult: the figures presented in

[23] are images (from which a concentration might be inferred), whereas the

results shown here represent a quantitatively computed concentration, dis-

played in grayscale for comparison purposes. Nevertheless, it is clear that our

numerical simulation can capture the same flow features as those observed

experimentally in representative multi-layer flows.

The left panel of Fig. 2.7 illustrates where pearl and mushroom patterns

have been computed in (Re1, ri) space (compare with Fig. 6 in [23]). Mushroom-

like patterns can be found with no flow perturbation for ri > 0.45, but for small

ri . 0.45 we found it necessary to slightly perturb the flow at the inlet, for

both pearl-like and mushroom-like patterns. We impose base constant flow

rates Q1 and Q2, in fluids 1 and 2 respectively, with Q1 + Q2 = 1. We then
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2.2. Start-up and entry length effects

slightly perturb these flow rates as follows:

Q1 → Q1 + δ sin 2πft, Q2 → Q2 − δ sin 2πft.

For the frequency f we choose f = ui/λ where ui is the interface velocity

of the base flow and λ is the wave length of perturbation observed in [23].

Typically we have been able to excite the patterns observed for ri . 0.45 by

using amplitudes δ < 5% (and in all cases δ < 10%).

It is interesting to observe that our simulations are computed with Pe = ∞
in (2.3), whereas the study in §2.1.3 indicates that numerical effects dominate

for Pe & 105. Although for at least a good part of the computed results

our (numerical) diffusive effects are smaller than molecular diffusive effects

(as reported in the experimental work), we find in fact quite similar diffuse

patterns. This highlights the strong role of dispersive secondary currents in

such flows. Although the diffusion we calculate is non-physical the observed

dispersive effects are predominantly physical.

2.2 Start-up and entry length effects

Two aspects of the initial part of the core annular flow are of interest. First, is

it possible to establish the base multi-layer flows at all, i.e. from a practically

realisable initial flow configuration? If realisable, how robust is this initial

flow? Secondly, having established a base flow, what factors affect the entry

or development length of the flow? Whilst the latter problem could be studied

via a steady flow computation, we have in fact studied both questions via a

transient flow computation.

As an initial condition the entire pipe is filled with pure fluid 2. For fixed

(m,B) the parameter ri defines the relative flow rates Q1 and Q2 in each phase,

such that Q1 +Q2 = 1. The individual flow rates are translated into constant

mean inflow velocities, which are applied at the inlets of the inner pipe and

annulus for t > 0. Also for t > 0 we impose C = 0 at the inflow of the inner
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2.2. Start-up and entry length effects

pipe, with C = 1 imposed at the annulus inflow. The computations are run

until the inner fluid exits the pipe at z = L and the flow becomes steady. The

final steady flow is used for our calculations of entry (or development) length.

Estimation of the required development length is a valuable part of process

design.

2.2.1 Start-up flows

Typical examples of the start-up phase of the flow are shown in Figs. 2.9 &

2.10. In Fig. 2.9 we show some of the effects of the ratio ri/Ri. In each row

the first 3 panels show C at times t = 4, 8, 12. In each case, we observe

that the initial front of fluid 1, penetrating into fluid 2 is destabilised locally,

with a recirculating vortex developing at the sides. The extent of this feature

varies with ri/Ri, but does not destabilise the flow behind the front. The

recirculation leads to significant dispersive mixing between the fluids in this

region. Beyond t = 12 this recirculating pattern simply is advected up the

pipe and out the exit, leaving behind the smooth multi-layer configuration.

Looking between the first three frames we see that the frontal region does

grow as it propagates, and hence should be termed convectively unstable, but

is not absolutely unstable.

The following 3 panels on each row of Fig. 2.9 show further features of the

flow at t = 12. From left to right, they show the speed, the absolute value

of the shear stress and strain rate, respectively. On the shear stress plot we

contour explicitly τ = B, denoting the yield surface when in fluid 2. On the

strain rate plot we have superimposed the axial component of velocity at 3

different heights. The plug-like velocity profile is evident in fluid 2, ahead of

the front, in both speed and stress plots. The parameters B = 10, ri = 0.4,

m = 1, have a case 1 base solution, see Fig. 2.2a. On the right-hand figure

we observe this base flow profile is established in the axial flow region behind

the front. Formation of the plug region around the core fluid appears to take

longer for the expansion inflow (middle row) and we note that this is also the
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Figure 2.9: Start-up flow for B = 10, ri = 0.4, m = 1, Re = 20, L = 25:
top row, Ri = 0.4; middle row expansion, Ri = 0.2; bottom row contraction,
Ri = 0.6. In each row the first 3 panels show C at times t = 4, t = 8 and
t = 12, respectively. The 4th panel is a colourmap of the speed at t = 12.
The 5th panel shows the shear stress at t = 12, with value τ = B highlighted.
The 6th panel shows the strain rate γ̇ at t = 12. On this figure we have
superimposed the computed axial velocity profiles at selected distances along
the pipe. 44
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Figure 2.10: Start-up flow for B = 10 ri = 0.4, Re = 20, Ri = 0.2: top row,
m = 0.1, L = 60; bottom row, m = 10, L = 25. See caption of Fig. 2.9 for
description of the different panels.

flow which has the most significant dispersive mixing at the front. Having said

this, it is clear that the base flow is established in each case.

Figure 2.10 explores the effects of varying viscosity ratio m with all other

parameters fixed. The results form = 1 are shown in the middle row of Fig. 2.9

and can be compared with those for m = 10 and m = 0.1 in Fig. 2.10. Note

that m is the ratio of inner/outer fluid viscosity. For small m the core fluid

moves much faster ahead of the outer fluid. This leads to a large change in

velocity gradient across the interfacial region. In contrast, for a case 1 solution

with large m, across the interface we have a transition from zero strain rate in
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2.2. Start-up and entry length effects

the plug to strain rate of O(1/m) in the core fluid. We can see the effects of

this change by comparing the top and bottom rows of Fig. 2.10.

Note first that L = 60 in the top row (m = 0.1), so the aspect ratio in

the 2 figures is different. For m = 0.1 the large change in shear rate across

the interfacial region leads to strong dispersive mixing. Although there is in

fact a case 1 base solution for m = 0.1, most of the flow rate is focused in

the core fluid. Dispersive mixing means that in the mixed region part of the

mixture is fluid 2. The result is a very slowly moving plug with narrow yielded

layer at the wall. In the near-axial region behind the front there is a smooth

transition in C and also in the strain rate, all due to mixing. If we examine

the yield surface structure close to the inlet geometry, we can see that fluid 2

is unyielded in a plug attached to the wall, just ahead of where the inlet pipe

ends. We can see a relatively high velocity jet-like region, shaped by the yield

surface. This jet focuses fluid 2 inwards towards the core and enhances mixing.

Further up in the pipe we have recirculatory motion about the displacement

front and further mixing. The two effects combine to give the long dispersive

“tails” evident in the t = 12 concentration plot, extending down towards the

inlet. As there are both inlet effects and dispersion backwards from the front,

it is unclear how to categorize this flow, except as convectively unstable. At

later times the frontal region does advect from the pipe, leaving behind a

parallel unyielded interface, but the mixing induced by the jetting in the inlet

region does not cease.

The flow for m = 10 is quite different. By comparing with m = 1 (Fig. 2.9)

we observe that the larger viscosity in the core fluid acts to suppress the

recirculation and instability at the front, evident in Fig. 2.9. We appear to

approach the base flow very quickly and there is minimal dispersive mixing

anywhere in the flow.

The results shown are typical in that the frontal dispersive region is even-

tually advected from the pipe, replaced by the near parallel flow. We have

not explored a large variation in B, since at fixed m and ri as we vary B we
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2.2. Start-up and entry length effects

transition from case 2 to case 1 to case 3 base flows, whereas our interest is ex-

clusively the case 1 flows. Similarly, we have some computational restrictions

in Re. The development length grows with Re, necessitating increasingly long

domains for Ri 6= ri. At the same time we wish to retain the mesh resolution

in the axial direction in order to resolve dispersive effects at the front and

elsewhere. This results in a very expensive computation that becomes infea-

sible for pipe aspect ratios L > 100. For geometries Ri = ri entry lengths are

markedly reduced and we have been able to compute start-up flows for Re in

the range 100 − 500, but have not studied this regime systematically.

It is worth noting at this stage that we have not found parameters for which

a stable steady configuration was not achieved for a case 1 base flow parameter

set. This suggests that for Re < 50, although the initial frontal displacement

is convectively unstable the axisymmetric flow produced is temporally stable

and appears to be robust over a range of different inlet/outlet radius ratios.

The method of starting the flow is identical with that used experimentally in

[55], but is certainly not the only method possible.

2.2.2 Development lengths

Process design requires some estimate of the length of pipe required for the flow

to develop, and how this length varies with the principal parameters. We take

these estimates from the final computed time of the start-up computations,

described above.

An example of the final computed flows is shown in Fig. 2.11. Each row

shows results for ri = Ri as well as for a typical expansion and contraction (at

the same fixed ri, so that the final base flow is identical). From top to bottom

the Reynolds number is increased. In each simulation we show C at the final

time and also the magnitude of the rate of strain. For all figures shown the

final base state is identical.

Two features are evident from Fig. 2.11. Firstly that the flow develops

more quickly with the inlet radius closer to the established interface radius
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Figure 2.11: Steady developed flow for m = 1, B = 10: top row Re = 5;
middle row Re = 20; bottom row Re = 40. Each row shows (left to right):
Ri = ri = 0.4; 0.2 = Ri < ri = 0.4; 0.6 = Ri > ri = 0.4. For each
parameter set we show C and γ̇, with the computed axial component of velocity
superimposed near the outflow.
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2.2. Start-up and entry length effects

ri. Secondly, we can see that increasing Re retards development of the base

flow. Less obvious is that the thickness of the diffuse interfacial layer increases

slightly with Re and forRi 6= ri. Essentially, the longer the development length

is the more time there is for numerical diffusion and dispersion to occur.

Careful examination of results such as those in Fig. 2.11 reveals that there

are in fact different interpretations of the flow development possible. In the

first place, as case 1 solutions require an unyielded plug region surrounding

the core fluid, it is of interest to know the first point at which this unyielded

plug begins to form. We characterise this by Lτ , defined as the distance from

the inlet at which the first unyielded fluid is found.

A second entry length consideration in a multi-layer flow is whether the

interface becomes parallel and approaches the established radius. As we have

seen, a diffuse region emerges around the interface and this makes direct com-

parison with the analytical ri problematic as a means of defining flow estab-

lishment. For example, the exit flows for contraction and expansion are no

less established than those for ri = Ri. It is simply that the thickness of the

diffuse interfacial layer is larger. Therefore, we have used the following defi-

nition to denote where the concentration field is established. We define Lc as

the smallest z that satisfies the following inequality:

L− Lc

‖C‖2r (L)

∥

∥

∥

∥

∂C

∂z

∥

∥

∥

∥

2r

(z) ≤ 0.01, (2.18)

where for a function f(r, z) we define ‖f‖2r (z) by:

‖f‖2r (z) =

[
∫ 1

0

r|f(r, z)|2 dr

]1/2

.

In addition we verify that the diffuse interfacial layer is centred on r = ri.

Finally, we wish to define an entry length for the velocity, say z = Lu. We

have similar problems in this definition in comparing against the analytical

solution, due to diffusive effects. Therefore, we again define LU as the smallest
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z that satisfies the following inequality:

L− Lu

‖W‖2r

∥

∥

∥

∥

∂w

∂z

∥

∥

∥

∥

2r

(z) ≤ 0.01, (2.19)

where W = W (r) denotes the analytic velocity profile given by (2.10) and

w(r, z) is the computed z-component of velocity.

Fig. 2.12 shows the different development lengths and how they vary as the

ratio ri/Ri is changed along with m, Re and B. In each row we present the

different entry lengths Lτ , Lc and Lu, respectively. Each figure consists of data

from 2 sets of simulations at fixed Ri: firstly Ri = 0.6 with ri = 0.2, 0.4, 0.6

(contraction flows), and secondly Ri = 0.2 with ri = 0.2, 0.3, 0.4, 0.5 (expan-

sion flows). In each row we vary either m, Re or B. In all cases we verify that

there exists a case 1 base flow.

The overall trends are as follows. In all cases we have an ascending hi-

erarchy of development lengths: Lτ < Lc < Lu. The minimal entry lengths

are found at ri = Ri, although increases in entry length due to contraction

are not very significant. It is interesting that for both the contraction and

expansion series the entry lengths are comparable at ri = Ri, although these

have quite different geometries and relative flow rates for the different series.

Flows in which there is a significant expansion have the largest development

lengths and also the largest differences between Lc and Lu. the latter is due to

increased diffusion/dispersion in expansion flows, as illustrated and discussed

earlier; see Fig. 2.11. As the diffuse layer becomes thicker it is not possible for

the velocity to become established before the concentration field is developed.

For less diffuse interfaces the lengths Lc and Lu are very similar. Variations

with m, Re and B follow predictable qualitative trends. Increased m and B

(within the range allowable to preserve the case 1 solutions) both increase the

viscosity of the flow and decrease the entry lengths. Increasing Re has the

effect of increasing entry lengths. Unlike duct flows of Newtonian fluids, the

increase in entry length with Re is not linear.
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Figure 2.12: Variations in entry lengths with ratio ri/Ri: top row shows m = 1
and m = 10 for fixed Re = 20, B = 10; middle row shows Re = 5, Re = 20
and Re = 40, for fixed m = 1, B = 10; bottom row shows B = 5, B = 10
and B = 20 for fixed m = 1, Re = 20. Each row shows the three entry
lengths: Lτ , Lc and Lu. Each figure consists of two sequences of simulations:
Ri = 0.6 with ri = 0.2, 0.4, 0.6 (contraction flows), and secondly Ri = 0.2
with ri = 0.2, 0.3, 0.4, 0.5 (expansion flows).
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2.3 Stability of the established flow

The stability of visco-plastically lubricated flows has been studied by [26] and

[85]. Although [26] studies linear stability of plane channel flows, as opposed to

pipe flows, we expect very similar results. Note that unlike Newtonian fluids,

both Hagen Poiseuille and plane Poiseuille flows of a Bingham fluid are linearly

stable. In conducting linear stability studies of shear flows of yield stress fluids

containing finite plug regions, one makes the (valid) assumption that the plug

is not broken by the infinitesimal perturbation. This results in a decoupling of

the linear stability into a sequence of reduced single fluid stability problems,

each formulated on a purely viscous shear layer. For these reduced problems

the length-scales and velocity scales are smaller and we generally find that the

linear stability is enhanced.

The linear stability results are of limited practical use unless the stability

extends into the nonlinear regime. Here the only nonlinear study is that of

[85], who consider a parallel pipe flow similar to that here. For yield stress fluid

flows conducting weakly nonlinear stability analysis is problematic, since the

topology of the yielded regions when perturbed is unknown, and therefore it is

more common to use energy methods. In the flow considered here there is the

additional problem of the interface to deal with, which is not ideal for energy

methods. However, in [85] they circumvented these difficulties by assuming a

finite stress perturbation that is small enough to leave a ring of unyielded fluid

around the core. This ring of fluid may translate away from the concentric

location, but as it remains unyielded the interface velocity is described as a

function of the plug velocity. This enables application of the energy method

and derivation of lower bounds on Re, for exponential decay of the velocity

perturbation.

This hybrid type of analysis in [85] does give stability for Re in the range

10−100, depending on the other parameters, but has a number of drawbacks.

Firstly, the bounds are certainly conservative and also not particularly easy to

evaluate numerically. Second, the decay predicted is in fact decay to a base
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solution that need not be axisymmetric. The experiments performed by [55]

showed that the flows achieved are axisymmetric, but this study did not look

at flow stability. Questions of symmetry breaking remain therefore open, but

in any case will not be answered here. Thirdly, unlike a weakly nonlinear

stability analysis, no information on the flow structure is forthcoming from

the energy method. In particular, we have no understanding of how the plug

region influences stability of the flow. Lastly, we note that [85] considered the

Pe → ∞ limit of the model analytically. However, we have seen earlier in

§2.1.3 and 2.2.1 that even with large Pe strong dispersive effects can lead to

modified flow structures.

Our stability analysis focuses on developing a finer understanding of the

types of flows that occur when perturbing case 1 base flows. This is a temporal

stability analysis conducted numerically on a spatially periodic cell. As well as

the base flow parameters (m,B, ri) the flows are characterised by Re and the

axial periodicity of the flow. In conducting a numerical study it is necessary

to specify initial conditions for the perturbations and in the nonlinear regime

the precise solution behavior is influenced by the choice of initial conditions.

Thus necessarily, what is presented are examples of flow behavior rather than

general results. In this sense the study is complementary to that of [85].

2.3.1 Methodology

Having fixed the base flow parameters (m,B, ri) and computed the analytic

base flow W (r), we select an axial wavelength α, which defines the length of

computational domain: 2π/α. Taking (0,W (r)) and a unit step in concen-

tration C at ri as initial conditions, we first run the transient computations

until steady state to establish the numerical base flow. This is done imposing

periodicity at the ends of the spatial domain.

We then superimpose an initial condition on the numerical base flow and

launch the transient computation. Initial conditions are selected to be spa-

tially periodic (wavenumber α), to be divergence free and to satisfy boundary,
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Figure 2.13: Decay of velocity perturbation for ri = 0.4, m = 10, B = 20,
at Re = 1: a) case A; b) case B. Different curves denote initial perturbation
amplitudes: A = 0.01 (�), 0.1 (�), 0.4 (×), 0.6 (N), 1 (•), 3 (◭).

interface and symmetry conditions. Within this we construct the radial depen-

dence using polynomials of the lowest order possible. Additionally we consider

2 types of initial perturbation: case A, where the entire domain is perturbed;

case B, where only yielded regions of the flow domain are perturbed. These

two initial perturbations are given in the form:

u(r, z, 0) = A(vr(r, z), vz(r, z)); ‖(vr(r, z), vz(r, z))‖2 = ‖W (r)‖2 ,

so that A denotes the size of the L2 norm of the initial perturbation, relative

to that of the base flow, i.e. A2 represents the relative kinetic energy of the

initial perturbation. The spatial structure of these perturbations is described

in appendix §A.

2.3.2 Results

For the results presented below we have focused on two specific base flows.

For both flows we fix (m,B) = (10, 20) and we consider ri = 0.4 and ri = 0.6.

For both interface radii there is a case 1 base solution. With ri = 0.4 the yield

surface is at ry ≈ 0.71 whereas for ri = 0.6 the yield surface is at ry ≈ 0.72, re-
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Figure 2.14: Initial stages of decay for amplitude A = 0.4 and for ri = 0.4,
m = 10, B = 20, at Re = 1. Each figure shows the magnitude of the strain
rate at times (left to right) t = 0, t = 0.001, t = 0.002, t = 0.005 and t = 1,
with superimposed axial velocity profile: top row = case A; bottom row =
case B.

sulting in a thinner plug. For both base solutions we have performed stability

studies for both case A and case B initial conditions, for Re = 1, 10, 100, 1000

and for amplitudes A = 0.01, 0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 3. Various addi-

tional computations have also been run to explore specific parameters, so that

in total around 200 computations have been performed. For all results shown

we have fixed the wavenumber α so that the length of domain is L = 2π/α = 4.

We start by exploring the decay of ‖u‖2 (t) for different A at low Re and

with the thicker plug, ri = 0.4. The results are shown in Fig. 2.13 for cases
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A & B. For both cases we see an initial very rapid drop in ‖u‖2 (t), which we

shall explore below. The case A perturbation shows a distinct linear profile

(exponential decay) until a constant saturation value is obtained. For low

amplitudes the saturation values are very small. These values are limited

anyway by the tolerance set in the nonlinear iteration for the solution. We see

that for A = 0.01 we approach this tolerance. At higher A the perturbation

decays to a value in the range ‖u‖2 (t) ∼ O(10−4) for all except the largest A.

For this level of error, the final solutions appear to the eye to be very close

to the base solution and the error comes principally from diffusive/dispersive

effects near the interface.

For the case B initial conditions we see immediately that the decay is rapid,

but that the final saturation values are not as small as for the case A initial

conditions. There is a linear region of exponential decay, but it is apparently

much shorter than for the case A perturbation. To explore this difference we

investigate the initial sudden decay of the perturbation. Figure 2.14 shows

the strain rate magnitude (and superimposed velocity profile) for the 40%

amplitude perturbation with ri = 0.4 at times t = 0, t = 0.001, t = 0.002,

t = 0.005 and t = 1. The top row of figures shows the case A initial condition

and the bottom row shows the case B initial condition.

It is interesting to note that for the case A initial condition the plug reforms

very quickly. For the case B initial condition since the plug is not initially

broken all the energy of the initial perturbation is localised in the core fluid

and yielded part of the outer fluid. For t > 0 these large gradients dissipate

rapidly, but in the process destroy the plug region. Both perturbations in fact

decay to the same solution (see last panel at t = 1), but we observe that the

case A perturbation has a reformed plug and quasi-1D flow structure much

more rapidly. The longer time of decay allows for more diffusion and dispersion

at the interface, so that the final values of the case B perturbations are larger

than those of the case A perturbations.

Similar features are found with the ri = 0.6 base solution, as shown in
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Figure 2.15: Decay of velocity perturbation for ri = 0.6, m = 10, B = 20,
at Re = 1: a) case A; b) case B. Different curves denote initial perturbation
amplitudes: A = 0.01 (�), 0.1 (�), 0.4 (×), 0.6 (N), 1 (•), 3 (◭).
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Figure 2.16: Decay of velocity perturbation for case A with m = 10, B = 20,
A = 0.4, plotted against t/Re. Line styles (−), (−−) and (−.) denote Re = 1,
Re = 10 and Re = 100 respectively. a) ri = 0.4; b) ri = 0.6.

Fig. 2.15. This base solution has a thinner plug region and is expected to be

less stable. We observe that the decay of ‖u‖2 (t) is qualitatively similar to

that at ri = 0.4, but that the final values are larger. For final values greater

than around 1% the final solutions are progressively different to the base flow,

and we explore some of these secondary flows later.

As Re is increased it is found that the time required for decay of ‖u‖2 (t) to
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its saturation value is progressively longer. Figure 2.16 shows this decay as a

function of t/Re for 3 different Re values. Although the curves do not collapse

to a single curve, the scaling is evident and indicates that this intermediate

stage is dominated by pure viscous decay. This makes sense since after the plug

has formed (or reformed) and the flow is quasi-1D the dissipation is governed

by the viscous terms. Due to the viscosity ratio m 6= 1, there are in fact

2 viscous timescales and we should not be surprised that the curves do not

collapse fully.

Figures 2.17 & 2.18 present a panorama of our computed results, in the

form of colourmaps of C(r, z, t) at t = 9.9 for varying A and Re. By this

time, even for the larger Re, the flow structure is predictive of the final form.

We show only the less stable case B initial perturbation. Figures 2.17 &

2.18 show the case B initial perturbation, for base flows ri = 0.4 and ri =

0.6, respectively. The overall pattern indicated by these figures is that for

a wide range of A and Re this flow is temporally stable to axisymmetric

perturbations. For A . 1 and Re . 100 we observe that the base flow is

essentially recovered, with dispersive effects barely visible. However, as either

speed (Re) or amplitude is increased various secondary flow effects become

evident. At very large Re and A the flows are unstable and the fluids mix

dispersively. We need to be cautious about the interpretation of some of these

flows, as the numerical method has limited spatial resolution. Nevertheless,

the onset of many of these flows, at lower Re and A are undoubtedly physical,

similar to the pearl and mushroom simulations of §2.1.3.

We now look in more detail at some of the basic phenomena that we have

seen in the sequence Figs. 2.17 & 2.18. To start with we observe that some of

the figures in Figs. 2.17 & 2.18 show a wavy-walled interface at t = 9.9. For

example, consider a case B initial perturbation with ri = 0.4 for Re = 100

and with A = 1, (see Fig. 2.17, 3rd row, 6th column). Figure 2.19 shows

the magnitude of strain rate and the colourmaps at t = 0, t = 0.2, t = 0.5,

t = 0.8, t = 1.1. We see that, as before, the initial dissipation of energy breaks
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Figure 2.17: Concentration colourmaps for case B initial perturbation for ri =
0.4 and (m,B) = (10, 20), at t = 9.9. The rows from top to bottom show
Re = 1, Re = 10, Re = 100 and Re = 1000. The columns, from left to right
show the amplitudes: A = 0.1, 0.2, 0.4, 0.6, 0.8, 1 , 2, 3.
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Figure 2.18: Concentration colourmaps for case B initial perturbation for ri =
0.6 and (m,B) = (10, 20), at t = 9.9. The rows from top to bottom show
Re = 1, Re = 10, Re = 100 and Re = 1000. The columns, from left to right
show the amplitudes: A = 0.1, 0.2, 0.4, 0.6, 0.8, 1 , 2, 3.
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the plug and results in a marked axial variation of the perturbation. The

velocity perturbation decays in both the core fluid and in the outer fluid, but

we can see that the interface is still deformed at the time which the fluid at

the interface becomes unyielded (between t = 0.5 and t = 0.8). The interface

effectively freezes in whatever shape it is in at the point the stress falls below

the yield stress. Once frozen in the interface retains its shape. We can see that

at t = 1.1 the inner fluid velocity field is still perturbed by the shape of the

interface, whereas that in the yielded part of the lubricating fluid is essentially

axial. This is a first type of secondary flow that can be found.

On increasing the initial perturbation amplitude the wavy nature of the

interface is increased and eventually we develop secondary flows that break

through the surrounding plug, in places. These flows have partly unyielded

plugs and interfacial patterns that are similar to the pearl patterns of [22, 23].

An example is shown in Fig. 2.20. We note that the pearl-like flow structures

observed are not permanent when the plug is yielded in parts. The uneven

interfacial region means that there are 2D secondary flows present. Over time

these disperse the intermediate concentrations and numerical diffusion smooths

the concentrations. An example of the long time evolution is shown in the final

frame of Fig. 2.20, at t = 100.

For larger ri = 0.6 (when the plug region is also narrower), the flows are

less stable and the plug breaks at smaller amplitudes. An example is shown

in Fig. 2.21. The flow patterns at intermediate times resemble the mushroom

patterns of [22, 23]. Again at long times numerical diffusion and physical

dispersion dominate to render the flow axial with a significant mixed interfacial

region.

2.4 Discussion

This chapter has mostly focused at trying to understand better the stability

and robustness of visco-plastically lubricated pipe flows. In the first place we
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Figure 2.19: Freezing in of wavy-walled interfaces for a case B initial condition
at (m,B) = (10, 20) with ri = 0.4, A = 1 and Re = 100. The figures are
shown at t = 0.2, t = 0.5, t = 0.8, t = 1.1, t = 1.4 (left to right): top row =
strain rate magnitude; bottom row = concentration.

have shown that for wide ranges of operating parameters (Re,Ri), as long as

the base flow parameters (m,B, ri) admit a case 1 solution then this base flow

can be achieved by a start-up procedure analogous to that used experimentally

by [55]. In contrast, for Newtonian multi-layer flows in similar configurations

both the experimental work of [22, 23] and our test computations presented in

§2.1.3, showed that many of these flows are convectively unstable leading to

pearl and mushroom patterns. Even when convectively stable, we have been

able to excite these patterns with relatively low amplitude oscillations of the
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Figure 2.20: Pearl-like instabilities for a case B initial condition at (m,B) =
(10, 20) with ri = 0.4, A = 3 and Re = 100. The figures are shown at t = 0.7,
t = 1.2, t = 1.7, t = 2.3, t = 100 (left to right): top row = strain rate
magnitude; bottom row = concentration.

flow rate. In contrast, we have observed no signs of absolute instability in

the start-up of our flows, which are established as soon as the convectively

unstable frontal region exits the pipe. This is perhaps the first indication of

the robustness of the flows we have studied.

Secondly we have carried out a parametric investigation of the entry length

for establishment of the base flow. The entry length increases with Re, and

decreases with m and B, as is intuitive. Note that the decrease with m is

artificial in that we have scaled with the plastic viscosity of the lubricating
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Figure 2.21: Mushroom-like instabilities for a case B initial condition at
(m,B) = (10, 20) with ri = 0.6, A = 0.8 and Re = 100. The figures are
shown at t = 2, t = 4, t = 6, t = 7, t = 100 (left to right): top row = strain
rate magnitude; bottom row = concentration.

fluid, as opposed to some average (plastic) viscosity. This means that the

average viscosity always increases with m. The behavior with ri/Ri, being

minimal when the inlet radius matches the far-field radius is also intuitive. It

is surprising that relatively few radii are needed to establish the flow.

Turning now to the flow stability, we have examined perturbations of 2

different flows with 2 different initial conditions, over a broad range of initial

amplitudes A and Re. For Re < 100 we have routinely found stable flows for

amplitudes A . 1. While this does not establish any theoretical limits, it does
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suggest that the analytic results in [85] may be fairly conservative, especially

since we have demonstrated that stability may result even when the base flow

plug region is perturbed. Retaining an unyielded plug region was an essential

part of the analysis in [85].

At larger perturbation amplitudes we have shown that there are interest-

ing flow regimes that may result from perturbation of the base flow. For

example, we are able to “freeze in” non-planar interface and form interesting

non-Newtonian pearl and mushroom patterns. At still larger perturbations,

large scale dispersion occurs and some judgement needs exercising about the

validity of the observed results in these regimes. Nevertheless, we have seen

that even when significant mixing occurs the perturbations often decay back

to stable states.

We have also studied the nature of the energy decay when the flow is stable.

There exists a significant and very fast transient in the initial stages, which is

responsible for breaking and reforming of the plug. Presumably this process

is governed by the yield stress, whereas at later times the decay is exponential

and characteristically viscous. It is well known that yield stress fluids can have

a finite time decay when stable, e.g. [36, 134]. The typical result is proven by

considering the energy decay, and involves a global bound on the decay of

‖u‖2. This bound is exponential when the base flow is non-trivial, but occurs

in finite time otherwise. It could be that for complex flows such as this we

may have more rapid decay than exponential, but only locally.
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Chapter 3

Visco-plastically lubricated

channel flows 1

The computations performed in chapter 2 are axisymmetric. Such flows and

perturbations can be significantly more stable than asymmetric perturbations.

Having said this, we note that the experimental flows in [55] were also observed

to be axisymmetric. We suspect that the study of 3D flows and instabilities

would decrease the Reynolds numbers and amplitudes of perturbation required

for instability, but that the flow will remain nonlinearly stable for practically

significant ranges. This chapter has two motivations.

1. We wished to explore aspects of flow development and start-up in a

different geometry to the pipe flow, to assess how general the results of

chapter 2 were. The plane channel geometry is a generic geometry for

laminated products and eventually also coating applications, so there are

some practical benefits.

2. The flows in chapter 2 proved surprisingly stable but were axisymmetric.

Fluid mechanics is rife with examples of loss of stability through sym-

metry breaking and axisymmetric flows can frequently exhibit stability

well above stability limits observed in real flows where asymmetry is not

controlled. While retaining the economy of 2D computations the plane

channel allows for symmetry breaking. We wanted to explore where this

effect might become important.

1A version of Chapter 3 has been published. [S. Hormozi], K. Wielage-Burchard and
I.A. Frigaard. (2011) Multi-layer channel flows with yield stress fluids. Journal of Non-
Newtonian Fluid Mechanics. 166, 262-278, [53].
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Figure 3.1: Schematic of the dimensionless flow geometry for the start up flow
computations.

An outline of this chapter is as follows. Section 3.1 introduces the physical

model of the flows that we study. We present the results of our study of start-

up flows and development lengths in §3.2 . Section 3.3 includes the results of

nonlinear temporal stability. Also, in working with a geometry allowing for

asymmetry we look at new types of flow, where interesting and exotic effects

can be introduced, but in a controlled manner exploiting still underlying the

method of retaining unyielded fluid at the interface. Finally, the chapter ends

with summary and discussion in §3.5.

3.1 Multi-layer channel flows

A vertically oriented channel of width 2R̂ is initially filled with Bingham fluid

(fluid 2). For times t̂ > 0 a Newtonian fluid (fluid 1) is injected upwards

through a centrally positioned inner channel of width 2Ŷi < 2R̂, while at

the same time the Bingham fluid is pumped through the outer part of the

channel, (see Fig. 3.1a). The Bingham fluid thus acts as lubricating layer for

the Newtonian core fluid. This is the basic geometry studied in this chapter,

although later we will consider variations.
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The flow parameters are assumed to correspond approximately to those

one might have in a typical industrial processing situation. Thus, nominally

we suppose that 0.005m . R̂ . 0.1m, mean velocities 0.001m/s . Û0 . 1m/s,

and we consider fluids that are miscible aqueous solutions of equal density, ρ̂.

The choice of a Bingham fluid as the lubricant is a simplification of a typical

yield stress rheology (which is usually shear-thinning) and the Newtonian core

is also selected primarily for simplicity.

Fluid 1 has viscosity µ̂[1] and fluid 2 is characterised by its yield stress

τ̂
[2]
yield and plastic viscosity µ̂[2]. The total real flow rate along the channel is Q̂,

which defines the mean axial velocity: Û0 = Q̂/2R̂. The pressure is denoted

by p̂(x̂, t̂), û(x̂, t̂) is the velocity, τ̂ij
[k] denotes the deviatoric stress tensor in

pure fluid k, and ĝ is the gravitational acceleration. We model the change

between (pure) fluids 1 and 2 via a scalar concentration C, representing the

concentration of fluid 2. The Navier-Stokes equations are made dimensionless

with the following scaling:

x =
x̂

R̂
, t =

t̂Û0

R̂
, u =

û

Û0

, p =
p̂+ ρ̂ĝx̂

ρ̂Û2
0

, τij =
τ̂ijR̂

µ̂[2]Û0

. (3.1)

The dimensionless model considered is as follows:

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
+

1

Re

∂τij
∂xj

, (3.2)

∂C

∂t
+ uj

∂C

∂xj
=

1

Pe

∂2C

∂x2
j

, (3.3)

∂ui

∂xi

= 0. (3.4)
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3.1. Multi-layer channel flows

Constitutive laws for the two pure fluids are:

τ
[1]
ij = mγ̇ij, (3.5)

γ̇(u) = 0 ⇐⇒ τ [2](u) ≤ B, (3.6)

τ
[2]
ij (u) =

[

1 +
B

γ̇(u)

]

γ̇ij(u) ⇐⇒ τ [2](u) > B. (3.7)

where

γ̇ij =
∂ui

∂xj

+
∂uj

∂xi

,

γ̇(u) =

[

1

2

2
∑

i,j=1

[γ̇ij(u)]2

]1/2

τ [2](u) =

[

1

2

2
∑

i,j=1

[τ
[2]
ij (u)]2

]1/2

. (3.8)

There are 3 principal dimensionless groups:

m =
µ̂[1]

µ̂[2]
, Re =

ρ̂R̂Û0

µ̂[2]
, B =

τ̂
[2]
yieldR̂

Û0µ̂[2]
. (3.9)

These are the viscosity ratio (m), Reynolds number (Re) and Bingham number

(B), respectively. The Bingham number denotes the ratio of the yield stress

of the fluid to a typical viscous stress of the flow. The Reynolds number has

been based on fluid 2 properties. The relevant Reynolds number for fluid 1

is Re/m, as the fluids are considered iso-density. We also have 2 geometric

groups: Yi = Ŷi/R̂, the inlet width ratio, and yi which is the position of the

interface in a parallel multi-layer flow; see Fig. 3.1. This latter is governed

by the relative distribution of the total flow rate between the two fluids, as

we discuss below in §3.1.1. A final dimensionless group is the Péclet number,

Pe = R̂Û0/D̂m, with D̂m the molecular diffusivity. Typically we have Pe ∼
106 − 1010, for which values the concentration is effectively advected with the

flow. Computations detailed in chapter 2 indicate that the diffusive term in

(3.3) can be ignored for Péclet numbers in this range for the size of mesh

we typically use. Effectively numerical diffusion is dominant in this range of
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Figure 3.2: Parameter domains where the base solutions are found in
(yi, B,m)-space: a) m = 1; b) m = 10.

Pe, although physical dispersion due to secondary flows is still present. Thus,

throughout this chapter we consider the immiscible limit of 2 miscible fluids

(Pe→ ∞), or equivalently an immiscible flow at infinite capillary number.

3.1.1 Basic flows, Pe→ ∞
Setting Pe → ∞ we recover the ideal clean interface limit of the flow, which

admits a steady 1D solution. This type of 1D flow has proven useful as a simple

model for experimental design; see [55]. In the steady 1D flow, the shear stress

varies linearly from the channel centerline to the wall. The type of base flow

that one finds depends on whether the shear stress exceeds the yield stress of

the lubricating fluid at either the wall or the interface. The flow of principal

interest is that in which the yield stress lies between the interfacial stress and

the wall shear stress. This ensures that the lubricating layers of Bingham fluid

are mobile and that the Bingham fluid remains unyielded at the interface. We

call this type of solution, u = (U(y), 0), a case 1 base solution, defined as
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3.1. Multi-layer channel flows

follows for y ∈ [−1, 1]:

U(y) =



































B

2y∗

[

1

m
(y2

i − y2) + (1 − y∗)2

]

0 ≤ |y| ≤ yi,

B

2y∗
(1 − y∗)2 yi < |y| ≤ y∗,

B

2y∗
[

(1 − y∗)2 − (|y| − y∗)2
]

y∗ < |y| ≤ 1.

(3.10)

Here y∗ is defined as the root of

0 = (y∗)3 − 3y∗
(

1 +
2

B

)

+ 2

(

1 +
y3

i

m

)

. (3.11)

that lies in (yi, 1), for yi ∈ [0, 1]. The two interfaces are at y = ±yi and the

yield surface positions are at y = ±y∗.
Two other types of solution can be found. If the yield stress is exceeded at

the interface we call this a case 2 solution. The boundary between case 2 and

case 1 solutions is given by:

B <
6yi

y3
i

(

2

m
+ 1

)

− 3yi + 2

, (3.12)

(with case 1 solutions found when this inequality is not satisfied). Finally, if

the yield stress is not exceeded at the wall then the entire layer of Bingham

fluid is static. The boundary between case 3 and case 1 solutions is given by:

B >
3m

y3
i

. (3.13)

(again case 1 solutions are found when this inequality is not satisfied). Figure

3.2 illustrates the domain in which case 1 solutions are found for 2 different

viscosity ratios, m.
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3.2 Computational method and development

of steady flows

The computational method we use is largely as described in chapter 2, where

we have dealt with pipe flows. The model equations (3.2)-(3.8) have been

discretised using a mixed finite element/finite volume method. The compu-

tations are carried out on a structured rectangular mesh. The Navier-Stokes

equations are solved using a semi-implicit Galerkin finite element method,

where the divergence-free condition is enforced by an augmented Lagrangian

technique. The concentration equation is dealt with via a MUSCL scheme,

with on each timestep a splitting method used to advance the concentration

equation over a number of smaller sub-timesteps, preserving stability. The nu-

merical algorithm is implemented in C++ as an application of PELICANS.2

We refer the reader to chapter 2 (see also [124]) for a more detailed description

of the numerical method.

In chapter 2 we have validated the code by presenting comparisons between

exit velocity profiles and the analytic base solutions. Similar comparisons can

be made here and are generally very good, except close to the interface where

numerical diffusion can smear the interface over a few cells. This effect can be

reduced via mesh refinement, but at computational cost. For computations

presented below we use 120 elements across the channel and 40 elements per

unit length along the channel, which is of dimensionless length L. The length is

adjusted according to the physical situation we model and for longer geometries

we preserve the mesh density. Also in chapter 2 we presented studies on the

effects of Pe variation and viscosity regularisation, both of which are very

similar in the channel geometry. Finally, in chapter 2 we demonstrated that

2PELICANS is an object oriented platform developed at IRSN, France, to provide
a general framework of software components for the implementation of partial differen-
tial equation solvers. PELICANS is distributed under the CeCILL license agreement
(http://www.cecill.info/licences/Licence CeCILL V2-en.html). PELICANS can be down-
loaded from https://gforge.irsn.fr/gf/project/pelicans/.
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the code was able to reproduce complex convective “pearl and mushroom” type

instabilities observed experimentally (see [22, 23]) when Newtonian-Newtonian

flows are considered. Similar convective instabilities can be observed in the

channel geometry for Newtonian-Newtonian flows that we have simulated, but

now we have no experimental study against which to compare.

3.2.1 Comparison of viscosity regularisation and

augmented Lagrangian method

We present an additional benchmark for the channel flow. For the Bingham

fluid the effective viscosity becomes infinite in unyielded regions of the flow,

although the stress and strain rate tensors remain finite. Two methods for

dealing with this are either to regularise the effective viscosity functional to

remove the singular behavior (see e.g. [6, 29, 36, 91]) or to solve the equa-

tions using a relaxation-multiplier approach such as the augmented Lagrangian

method (e.g. [36, 37, 38]). We have implemented both strategies, using [6] with

regularisation parameter ǫ = 10−4, i.e. (3.6) & (3.7) are replaced with

τ
[2]
ij (u) =

[

1 +
B

[γ̇2(u) + ǫ2]1/2

]

γ̇ij(u). (3.14)

We show typical comparative results in Figs. 3.3 & 3.4.

The left figure of Fig. 3.3 shows the L2 norm of the difference in computed

axial velocity solutions at different distances x along the channel. We see that

there is a discrepancy of the order of 10% close to the inflow that decays with

distance as the flows become more one-dimensional. The right figure of Fig. 3.3

shows a comparison of the axial velocity profiles at the exit of the channel,

where they are indistinguishable.

Fig. 3.4 shows the colourmaps of the concentration and strain rate at t =

100, during the same displacement as in Fig. 3.3. Flows of this complexity are

not covered by existing theory, but from the theory available for simpler flows,

we might expect that the velocity field of the regularised model should converge
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Figure 3.3: Comparison between solutions computed with the augmented La-
grangian and the regularisation (3.14) with ǫ = 10−4. Top figure measures
the L2 norm of the difference in axial velocity solutions at different distances
along the channel. Bottom figure presents the exit velocity profiles (solid
line = regularized, broken line = augmented Lagrangian). Model parameters:
m = 1, B = 10, Re = 5, yi = 0.4, Yi = 0.2, L = 8.
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Figure 3.4: Solutions at t = 100 for the parameters as Fig. 3.3: left = aug-
mented Lagrangian; right = regularized viscosity model. For each model we
see the concentration profile (left) and the strain rate colourmap (right), with
a single axial velocity superimposed.
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to that of the exact model as the regularisation parameter decreases. The

concentration field depends solely on the velocity field and the close comparison

between the concentration fields suggests that this is true. On the other hand

we can see significant differences in the strain rate distributions in the entry

region. The augmented Lagrangian method solution tends to form a plug

closer to the inlet than is the case with the regularised solution. However, we

have not noticed any significant effect on qualitative results, such as stability

of establishment of the flow. The only other discernible difference between

solutions comes when the unyielded plug is very thin, e.g. of the order of the

mesh. However, in this range numerical diffusion effects also have a significant

effect on the results. If these flows need resolving then mesh refinement is

more of a concern than choice of solution method for the constitutive law.

3.2.2 Development of steady flows

We move now to the study of developing steady flows, following largely the

methodology we have adopted for the pipe flows in chapter 2. In general we

have not observed any remarkable qualitative difference between the plane

channel development flow and that in the pipe considered in chapter 2. A

typical example of the developing flow is shown in Fig. 3.5 (top row). The

first 4 frames show the concentration profile at t = 4, 8, 12, 16. The initially

injected core fluid tends to form a plume and destabilize locally. Although

this frontal plume is convectively unstable, as time evolves this initial unstable

frontal region is advected further down the channel and eventually exits the

channel. Behind the front we observe a stable multi-layer regime developing.

The final 3 frames of Fig. 3.5 (top row) show the shear stress, speed and strain

rate of the flow, respectively, at t = 16. The stress plot also includes the

yield stress and the strain rate plot has superimposed on it the axial velocity

profile. It can be observed that the flow assumes its characteristic profile, with

unyielded plug bounding the viscous core, within a few channel widths of the

entry region.

75



3.2. Computational method and development of steady flows

−0.5 0 0.5
 

 

2

4

6

8

10

12

14

 

 

0

0.5

1

1.5

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

2

4

6

8

10

12

14

 

 

0

0.5

1

1.5

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.5: Typical start-up flows for m = 1, B = 10, Re = 20, Yi = 0.2, yi =
0.4, L = 25. Top row: inner fluid is injected into channel of outer fluid; bottom
row: outer fluid is injected into channel of inner fluid. For both rows the first
4 frames show C at t = 4, 8, 12, 16. Thereafter we show for t = 16 the stress
magnitude (with τ = B marked with the heavy line contour), the speed and
the strain rate (with superimposed axial velocity profiles).

The numerical simulation follows that of our experimental practice in [55].

Initially the channel is filled with the Bingham fluid in steady flow. At t = 0

the Newtonian fluid is injected in the central inlet while the Bingham fluid is

still injected in the outer inlets on either side of the central inlet. The relative

balance of flow rates between the inlets is fixed by the far-field downstream

velocity profile that one is seeking to establish. This balance is deduced from

solution of the 1D base flows described earlier in §3.1.1.
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Figure 3.6: Examples of developed flows at t = 100 for parameters: m =
1, B = 10, yi = 0.4, Yi = 0.2, L = 25. From left to right: Re = 5, 20, 40.
Each figure shows the fluid concentrations C (left) and the magnitude of the
strain rate (right), with superimposed axial velocity profiles.

However, this procedure is not the only method of establishing these flows.

Fig. 3.5 (bottom row) shows a different strategy, in which we first establish

the Newtonian core fluid and then inject the outer lubricating fluid. The

displacement front itself appears more stable than the plume formed when

injecting the inner fluid, so mixing is reduced. The flow eventually develops

into the same parallel flow, but takes longer as it is necessary to displace

the Newtonian fluid from near the walls, where long drainage layers form.

Depending on the costs of the fluids and other process constraints this method

could be more attractive as a means of establishing the flows.

In Fig. 3.6 we show established flows at t = 100 for 3 different Re. We can

observe that the entry length increases with Re but that the far-field velocity

profile near the channel exit is near-identical in each case. From the results of

our developing flow computations we can compute development lengths. As

discussed in chapter 2 there are (at least) 3 different development lengths: (i)

where the first unyielded fluid is found; (ii) where the flow concentration at-

tains its steady profile, say Lc; (iii) where the flow velocity attains its steady
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3.2. Computational method and development of steady flows

profile, say Lu. More precisely, for the latter two of these we define the devel-

opment length as where the variation in the (concentration or axial velocity)

profile varies by less than 1% in the downstream direction. Although there are

slight quantitative differences in these development lengths, the main qualita-

tive trends are the same as for the pipe flow. We present examples in Fig. 3.7,

of variations in Lc & Lu with the ratio yi/Yi for different Re, m and B. The

results are somewhat intuitive. Entry lengths increase with Re but decrease

with m and B. The entry lengths are shortest at approximately yi/Yi = 1,

with both expansion and contraction causing the lengths to increase.

The principal difference between the pipe and channel geometries is that

asymmetrical instabilities may develop in the plane channel. However, for

Re < 100 we have rarely observed symmetry breaking. For example for the

results shown in Fig. 3.7, all the established flows are symmetrical and stable.

Our parameter range is limited since we require that base far field flows are

case 1 flows. However, within this restriction we have computed a range of

different inlet width ratios and far-field base flow parameters. The base flows

are independent of Re but we have a restriction on computational length of

our domain, while keeping reasonable mesh resolution and acceptable com-

putational times for a parametric study. As Re increases the development

lengths increase and so it becomes increasingly time consuming to study the

developing flow. Computing entry flows above Re = 100 becomes extremely

time consuming.

Within the range of flows computed we have observed symmetry breaking

in start-up flows only for base flows that are close to the case 1 - case 3 frontier

in the (yi, B,m) parameter space (see §3.1.1). These flows are characterised

by having a large flow of the inner fluid, relative to the outer. An example of

the type of symmetry breaking we observe is shown in Fig. 3.8. For Re = 5

a symmetric parallel flow develops whereas for Re = 20 the flow is unstable

and asymmetric. At larger Re the degree of instability and mixing increase,

suggesting an inertial origin to this behavior. For the base flow in Fig. 3.8
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Figure 3.7: Effects of varying the flow parameters on velocity and concentra-
tion development lengths for the channel. Effect of viscosity ratio on: a) Lc

and b) Lu, at Re = 20, B = 10 for m = 1 and m = 10. Effect of Re on c) Lc

and d) Lu at m = 1, B = 10 for Re = 5, Re = 20 and Re = 40. Effect of B
on e) Lc and f) Lu at m = 1, Re = 20 for B = 5, B = 10 and B = 20. The
light symbols are computed for an inlet width Yi = 0.6 (contraction flows of
the inner fluid) and the dark symbols for Yi = 0.2 (mostly expansion flows of
the inner fluid).
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Figure 3.8: Symmetry breaking in developing flows: ( B = 10, yi = 0.6, Yi =
0.6, m = 1, L = 25). Left hand images show concentration and strain rate
colourmaps for Re = 5 at t = 100. Right-hand images show concentration and
strain rate colourmaps for Re = 20 at t = 100, with overlay of exit velocity
profile (computed vs analytical). Final image shows computed axial velocity
at the exit compared with the symmetric base flow.

approximately 95% of the total flow rate takes place in the inner fluid layer.

The velocity profile shown in Fig. 3.8 suggests that as symmetry is broken one

of the Bingham fluid layers becomes close to stationary while the other layer

flows. Since only 5% of the total flow is passing in these 2 outer layers any

asymmetry is likely to lead to this type of intermittency. It is interesting to

note that in analogous displacement flows (i.e. case 3 flows) the static residual

wall layers are very stable; see e.g. [124]. In these case 3 flows the unyielded

fluid abuts the wall, which prevents extensional strain rates, whereas here

extension can break the plug. The repeating pattern of instability coupled

with dispersive mixing is akin to the pearl and mushroom flows observed in

[22, 23], but no longer symmetric.
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3.3 Temporal stability

The second part of our study considers the stability of the established base

flow. Linear stability of visco-plastically lubricated plane channel flows has

been studied in [26], wherein the inner fluid was also assumed to be a Bingham

fluid. Our flow configuration is therefore included in this analysis. The main

result of [26] was to decouple the linear stability problems in the different

fluid layers and hence tackle each one individually, with the result that the

multi-layer flow is in fact more stable than the corresponding single fluid flow.

Here we are interested in nonlinear stability, where the fluid regions are

fully coupled. We study the characteristics of temporal stability numerically

by imposing a nonlinear perturbation on a periodic cell of the established

base flow. The procedure is as follows. Having fixed a wavenumber α for

the perturbation we set the axial distance of the periodic cell: L = 2π/α.

The analytical base solution is set as the initial condition and the numerical

solution is integrated forward until convergence. This procedure establishes a

numerical steady state, which is the flow which we perturb about, rather than

the analytical base solution. After this, we add to the numerical steady flow

an initial (periodic and divergence free) perturbation of given amplitude and

study evolution of the computed transient flow. The numerical method is that

described previously. The only change is the imposition of periodic boundary

conditions in the x-direction. The spatial structure of these perturbations is

described in appendix §B.

3.3.1 1D perturbations

As a test problem for the numerical method, we also consider the following

1D stability problem: U(y) 7→ U(y) + u(y, t), for which the 1D momentum

balance is satisfied.

∂u

∂t
= −∂p

∂x
(t) +

1

Re

∂

∂y
[τxy(U + u) − τxy(U)], (3.15)
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where the 1D constitutive laws are as in §3.1.1. Note that the 1D perturbation

only admits a time dependent axial pressure gradient perturbation, which

cannot be calculated as part of the solution. We therefore set the axial pressure

perturbation to zero and study decay of the velocity u(y, t).

It can be shown that for a 1D the interface is fixed. Hence the classical

formulation of our 1D problem is as follows:

∂u

∂t
=

m

Re

∂2u

∂y2
y ∈ [0, yi) (3.16)

∂u

∂t
=

1

Re

∂

∂y
[τxy(U + u) − τxy(U)] y ∈ [yi, 1] (3.17)

together with continuity of the shear stress and velocity at the interface. The

perturbation vanishes at the walls.

This is a coupled parabolic system which may be integrated numerically

for comparison with the 2D computations. To simplify, we use the Bercovier-

Engelmann regularisation for the constitutive law, i.e. equation (3.14). We

discretise using a semi-implicit finite difference scheme (approximating only

the effective viscosity terms explicitly) and solve the resulting tri-diagonal

system on each timestep using the Thomas algorithm. This can be compared

with the numerical solution to the 2D problem, using the same 1D initial

condition.

In general the comparisons are quite good. Although the 2D solution is

fully nonlinear and 2D it does not break symmetry for suitably small Re &

initial size of perturbation, ‖u‖2(0). An example of this comparison is given in

Fig. 3.9 where we compare the decay rates of the L2 norm of the perturbation.

We observe a small discrepancy between the results, but with identical decay

rates. The decay is exponential in time, as would be expected for viscous

fluids.

Figure 3.9 also shows comparison against an analytical upper bound for the

decay, which we derive as follows. On multiplying (3.16) & (3.17) by u(y, t)
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Figure 3.9: Comparisons of the decay of a 1D perturbation for m = 10, yi =
0.4, B = 20, Re = 1, ‖u‖2(0) = 0.01: 1D code (–), PELICANS(-.), analytic
bound (-)

and integrating over the individual fluid domains and summing we derive:

∫ 1

0

1

2

d

dt
u2 dy = − m

Re

∫ yi

0

u2
y dy

− 1

Re

∫ 1

yi

uy[τxy(U + u) − τxy(U)] dy

≦ − m

Re

∫ yi

0

u2
y dy − 1

Re

∫ 1

yi

u2
y dy.

(3.18)

Using the Poincaré inequality we have:

1

2

d

dt

∫ 1

0

u2 dy ≦ −λcp
∫ 1

0

u2 dy, (3.19)

where

λ = min{ m
Re

,
1

Re
}, cp =

π2

4
. (3.20)
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Finally, this gives the following exponential decay of ‖u‖2:

‖u‖2(t) ≦ ‖u‖2(0)e−λcpt (3.21)

3.3.2 General perturbations

For 2D perturbations we focus on 2 distinct initial conditions (case A & case B)

that satisfy stress and velocity continuity conditions at the interface, plus the

conditions of periodicity and incompressibility. These functions are normalised

with an amplitude A such that for A = 1 the L2 norm of the perturbation

is equal to 1, i.e. A2 gives the initial kinetic energy of the perturbation. The

principal qualitative difference between the two initial conditions is that the

case B perturbation is selected so that the unyielded plug region is initially

undisturbed by the flow, whereas the case A perturbation breaks the plug.

The y-dependency of the two initial perturbations is illustrated in Fig. 3.10 at

fixed αx = 3π/2.

3.3.3 Instability and asymmetry

We have carried out a similar range of simulations for the plane channel

as for the pipe flow in chapter 2. For 2 different base flows and for Re =

1, 10, 100, 1000 we have carried out sequences of simulations at increasingly

large initial perturbation amplitudes A. This has been done for both case A

and case B initial conditions. While no computational study can be consid-

ered fully comprehensive, the range of computations is wide enough to discern

basic trends. A direct comparison with the pipe flow study in chapter 2 is not

sensible as for the same base flow parameters the base flows and underlying

flow rate ratio in each fluid layer is quite different (due to the radial geometry).

However, the overall impression is that we have qualitatively similar results

but that the plane channel flows destabilise at lower Re and lower A.

Figure 3.11 illustrates typical decays of the velocity perturbation with time
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Figure 3.10: Top to bottom: y-dependency of the base flow, initial perturba-
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solid line. Perturbations are shown at fixed αx = 3π/2 and for A = 1.
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Figure 3.11: Decay of the velocity perturbation for case A initial perturbations
(m = 10, B = 20, yi = 0.6): left panel) Re = 1 and A = 0.01 (�), 0.05 (�),
0.1 (×), 0.2 (N), 0.4 (•); right panel) A = 0.1 and line styles (−), (−−) and
(−.) denote Re = 1, 10, 100, respectively.

for the case A initial conditions, showing variations with both amplitude A

and Re. We see 3 different regimes. First there is a very short timescale over

which we see rapid decay of the kinetic energy. This is followed by a second

regime of exponential decay and finally a third regime of near constant per-

turbation energy. These 3 regimes are similar to those observed in the pipe

flow computations of chapter 2. The initial short-time regime is associated

with breaking and reforming of the plug region. The second regime is charac-

teristic of viscous decay. The third region, where the kinetic energy plateaus,

indicates the decay is over. For low amplitudes the final kinetic energy of

the perturbation is close to the numerical residual tolerance in the iteration.

However, as A increases the initial transient allows for an increasing amount

of dispersion to take place before the kinetic energy decays. Hence the final

energy plateau increases with A. For sufficiently low amplitudes A the final

flow is indistinguishable from the base flow. The right panel of Fig. 3.11 plots

‖u‖2(t) for fixed A and various Re against a rescaled time: t/Re. This simply

confirms the viscous origin of the second regime.

At larger A or Re we begin to see more interesting phenomena. As with
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3.4. Asymmetry, flow control and exotic effects

the pipe flow the case B initial perturbations are the less stable. These pertur-

bations do not initially break the plug but consequently have larger gradients

in the initial kinetic energy and the kinetic energy is distributed more in the

inner fluid. For brevity we illustrate only the results from the case B pertur-

bation. Figure 3.12 shows the concentration colourmap at t = 20 for a range

of parameters A and Re. We notice that at moderate A or Re, instabilities

that do not decay are frozen into the interface, i.e. when the interfacial shear

stress decays below the yield stress before the perturbation in the central fluid

has sufficiently decayed. These frozen-in shapes were also observed in the pipe

flow study in chapter 2. However, now we also observe the main significant

difference to the pipe flow. The observed perturbations no longer evolve sym-

metrically and even the frozen-in oscillations are generally asymmetric. As

A or Re is increased further we observe significant distortion of the interface

and plug region, which results in enough dispersive mixing that the flow does

not regain its initial profile. It is also interesting to observe that the unstable

concentration field evolves into a banded structure.

Figure 3.13 shows the temporal evolution of a case B perturbation that

evolves into an asymmetric secondary flow. The top row shows the evolving

strain rate and axial velocity profiles. The initial perturbation is of course

symmetric. We can observe that in the left-hand side of the channel the

perturbation decays faster and that an unyielded interfacial plug appears to

partially re-form. In the right-hand side of the channel the flow disturbance

is greater and the plug never fully re-forms.

3.4 Asymmetry, flow control and exotic

effects

We finally present a range of results that both illustrate the robustness of the

flow paradigm that we have studied and stimulate ideas for application.
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Figure 3.12: Concentration colourmaps for case B initial perturbation for yi =
0.6 and (m,B) = (10, 20), at t = 20. The rows from top to bottom show
Re = 1, 10, 100, 1000. The columns, from left to right show the amplitudes:
A = 0.01, 0.05, 0.1, 0.2, 0.4, .6. 88
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Figure 3.13: Asymmetric instabilities for a case B initial condition at (m,B) =
(10, 20) with ri = 0.6, A = 0.6 and Re = 100. The figures are shown at t = 0.3,
t = 1, t = 2, t = 20, t = 50 (left to right): top row = strain rate magnitude;
bottom row = concentration.

3.4.1 Asymmetry and control

The first observation that we wish to emphasize is the importance of the base

flow in flow design and control. Until now we have considered symmetric 3-

layer base flows. These are the easiest to conceptualize and also to calculate.

More generally, if we decide on a distribution of the flow rates between the 3

layers that is not symmetric we can compute an asymmetric velocity profile

and interface positions. Alternatively, we can specify the interface positions

and compute the unique velocity profile and hence the flow rate distribution
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y∗L yiL yiR y∗R

Q
[2]
L

Q
[2]
RQ[1]

Figure 3.14: Schematic of an asymmetric base flow illustrating interface posi-
tions and flow rates.

between the layers.

Suppose for example that the base flow interfaces are at y = yiL and

y = yiR; see Fig. 3.14. Integrating the 1D momentum balance (3.2) we have

τ [1]
xy = τ [2]L

xy = τ [2]R
xy = −Gy + c,

in the respective layers (the superscript denotes the fluid and “L” and “R”

the left and right layers, respectively). Here G = −Re ∂p
∂x

and c is constant of

integration. The velocity profiles for the base flow are found inverting the 1D

constitutive laws and integrating the velocity gradient, assuming continuity

of velocity at the interfaces (yiL&yiR). The no slip condition at the walls

determine c.

Having found U(y) we integrate across each layer to give the respective flow

rates in left-hand, central and right-hand layers: Q
[2]
L , Q[1] and Q

[2]
R , respec-

tively. The constraint on the flow rate, due to scaling with the mean velocity

is as follows:

Q
[2]
L +Q[1] +Q

[2]
R = 2.

It may be shown that each of the flow rates increases monotonically with G

and hence this constraint is used to determine G. The above procedure is
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3.4. Asymmetry, flow control and exotic effects

identical for any 1D multi-layer flow and is fairly straightforward. For at least

some of these asymmetric base velocity profiles we will maintain an unyielded

plug at both interfaces and these flows should also be suitable as stable visco-

plastically lubricated flows.

What we have found surprising is how easy these asymmetric flows are to

establish and control via the flow rates. To demonstrate this fact we have

computed a number of start up flows for the same base parameters (B = 10,

Re = 5, m = 10), but with differing asymmetries. The width of the inner fluid

inlet is always 2Yi (where here Yi = 0.2) and the base flow is designed so that

the width of the inner fluid layer is also 2Yi. The start up flow follows the usual

pattern whereby the frontal region displaces up the channel and is eventually

advected from the channel, leaving behind a steady flow. Four different 2D

simulations have been computed, as detailed below. The start up and final

steady flows are illustrated in Fig. 3.15 and the parameters (flow rates and

interface positions) are tabulated in Table 1 for convenience.

• Simulation 1 is the standard symmetric simulation: the inlets are sym-

metrically located and the flow rates are symmetrically distributed

(Fig. 3.15a).

• Simulation 2 distributes the flow rates symmetrically, but the core fluid

inlet is asymmetrically positioned: y ∈ [0, 2Yi] (Fig. 3.15b).

• Simulation 3 has the asymmetric core fluid inlet, y ∈ [0, 2Yi], and also the

asymmetric distribution of flow rates corresponding to the asymmetric

base flow (Fig. 3.15c).

• Simulation 4 has symmetric inlets, y ∈ [−Yi, Yi], but with asymmetric

distribution of flow rates corresponding to the asymmetric base flow

(Fig. 3.15d).

We observe that in the first two simulations the exit velocity profile is sym-

metric, while in the last two simulations the exit velocity profile is asymmetric.
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3.4. Asymmetry, flow control and exotic effects

Fig YIL YIR yiL yiR Q[1] Q[2]L Q[2]R

( 3.15.a) -0.2 0.2 -0.2 0.2 0.4684 0.7658 0.7658
( 3.15.b) 0.0 0.4 -0.2 0.2 0.4684 0.7658 0.7658
( 3.15.c) 0.0 0.4 0.0 0.4 0.46 1.0213 0.5187
( 3.15.d) -0.2 0.2 0.0 0.4 0.46 1.0213 0.5187

Table 1: Flow data for fig 3.15.

Looking at the comparison of exit velocity profiles we see that in each case the

numerical axial velocity is very close to the predicted analytical solution. Note

that in each of the 4 simulations it is the desired base flow (and consequent

distribution of flow) that determines the far-field flow. Secondly, note that

the flow development appears robust with respect to these (quite significant)

changes in the inlet conditions.

To demonstrate that these flows can be achieved at higher Re, Fig. 3.16

show results at Re = 20 and Re = 40 for the same simulation as in the bottom

row of Fig. 3.15. Again the flow develops stably from the initial channel full

of Bingham fluid and the same final asymmetric 3-layer flow is achieved. The

larger Re results in a slightly longer development length, but otherwise there

is little difference.

It is natural to question whether this robustness can be exploited in con-

trolling the flow position in a transient setting. Either one could move the inlet

nozzle and/or one could simply control the flow rates into the different layers

upstream. To test this we alternate between two asymmetric flows by switch-

ing instantaneously from a left-handed inlet to right-handed inlet, while at the

same time adjusting the flow rates appropriately so that the far-field base flow

should converge. The spatial distributions of imposed flow rate and inlet con-

centration are shown in Fig. 3.17. The results of the simulation are shown in

Fig. 3.18. The initial flow development is asymmetric, with he central core to

the left of the channel, at t = 20 we switch the central layer to the right hand

side of the channel by changing both inflow rates and inlet position. It can be
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Figure 3.15: Illustration of asymmetrical start-up flows and steady flows: B =
10, Re = 5, m = 10, L = 18. In each row we present concentration fields
for t = 4, 8, 12, 16, 100. The next colourmap plots the magnitude of the
strain rate, with axial velocity profiles superimposed, at t = 100. The final
image shows the exit velocity profile for the established flow, compared to the
analytical solution (solid line), at t = 100.
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Figure 3.16: The simulation of Fig. 3.15 (bottom row) for Re = 20 (left) and
Re = 40 (right) at t = 100.

seen that there is a small region where the abrupt step change ruptures the

interface, but then the stable flow re-establishes. At t = 30 we again switch

the central layer back to the left-hand side of the channel. Again the small

region of rupture is observed. The rupture might be reduced by imposing a

more gradual change in flow rates and inlet position. Note also that the change

in inlet position is not strictly necessary in order to control the downstream

flow asymmetry (see our earlier Fig. 3.15), but doing so does tend to reduce

the development length required for establishing the new parallel flow.

3.4.2 More complex multi-layer flows

Next we look at the possibility of introducing more fluid layers into these

flows. Note that purely in terms of the final axial base flow there is no essential

difficulty in having additional layers. This is simply an exercise in mathematics

to compute flows of increasing algebraic complexity. However, establishing

such multi-layer flows will induce additional stresses at the inlet while also

reducing the thickness of stabilizing unyielded fluid layers. Therefore, there are

questions about how easy it will be to establish multi-layer flows of increasing

complexity. Numerically there are also additional potential costs in simulation.
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Figure 3.17: Spatial distributions of inflow rates (left) and fluid concentra-
tion (right) for the moving inlet example in Fig. 3.18. Solid line indicates
initial left-handed configuration with broken line illustrating the right-handed
asymmetry.

First, one would want to refine the mesh sufficiently to capture the layers and

particularly the unyielded layers. Second, as the layers thin computations

should be performed with the augmented Lagrangian method to ensure that

unyielded layers do not deform.

To demonstrate that more complex layering patterns are possible we demon-

strate a 7-layer flow. We first select parameters such that the symmetric 3-layer

base flow has a suitably wide plug. The simulation starts by establishing the

3-layer symmetric flow. Having done this, two layers are injected in the inte-

rior of the two plug regions. This inlet configuration is maintained for a finite

time and then we switch back to the 3-layer inlet control. The distributions

of inlet flow rates and fluid concentrations are illustrated in Fig. 3.19. The

results of the simulation are shown in Fig. 3.20. We observe that apart from

dispersive spreading at the initial injection of the additional layers, the 7-layer

flow is stably and uniformly established, and returns to the 3-layer flow in a

controlled manner.

Note that in our case for simplicity we have used the same Newtonian fluid

injected in the additional layers. Of course different fluids could be used to

95



3.4. Asymmetry, flow control and exotic effects

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.18: The effects of step changes in inlet flow rates and position
for parameters m = 1, B = 20, Re = 40, L = 8. Top row illustrates
the fluid concentration. Bottom row illustrates the magnitude of the rate
of strain, with an axial velocity profile superimposed. Times shown are
t = 20, 22, 26, 30, 32, 36, 40.
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Figure 3.19: Spatial distributions of inflow rates (left) and fluid concentration
(right) for the 7-layer flow example in Fig. 3.20. Solid line indicates the initial
and final 3-layer flow controls; the broken line illustrates the inlet control for
the 7 layer flow, at intermediate times.

construct laminated flows of very different properties. It is also possible to

embed an unyielded yield stress fluid in the channel center (ensuring that it

is unyielded at the interface), lubricated by thin Newtonian wall layers, and

then add additional layers of fluid within the plug.

3.4.3 More exotic flow effects

As a final example we combine many of the techniques of the previous exam-

ples: moving multiple inlets, varying the flow rates, turning on and off new

inlets. By judicious control of these variable we are able to “write” within the

inner unyielded core, and have these letters advect along the channel. As an

example we show in Fig. 3.21 the loci of the center of 3 inlet channels which in-

ject Newtonian fluid at constant rate over a fixed time interval, with Bingham

fluid injected elsewhere along the channel inlet. The resulting flow is shown at

different time intervals Fig. 3.22. by generalising this methodology we are able

to produce the flow in Fig. 3.23. Whilst such effects are mostly decorative, it is

still impressive that stability is largely preserved as these flows are established.
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Figure 3.20: Example of a 7-layer flow for m = 10, B = 10, Re = 5, L = 8 for
the flow control of Fig. 3.19. Top row shows fluid concentration distribution
and the bottom row shows the magnitude of the strain rate, with superimposed
axial velocity profiles. Times shown: t = 2, 6, 45, 52, 56, 100, 102, 106, 150,
from left to right.

Some dispersion is observed, but note that we have not paid special attention

to control of acceleration/deceleration of the inlets and/or gradually varying

the flow rates - these are produced using crude on/off controls.
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Figure 3.21: Loci of the center of the 3 inlet channels used to inject the letter
“N”.

3.5 Summary and discussion

The first part of this chapter was focused at start-up flows and establishment

of multi-layer configurations. We have shown that multi-layer flows can be

established by injecting either fluid into a channel full of the other fluid, in

steady motion. This indicates an inherent robustness to the flows. We have

tested various flow configurations admitting case 1 base solutions (with a plug

at the interface) and in most cases have been able to establish the multi-layer

flow, for Re ≤ 100 (limited by computational cost). The development lengths

decrease with either B or m, both of which tend to increase viscosity of the

fluids, and increase with Re. For different ratios of inlet width (2Yi) to width

of the core fluid in the established flow (2yi) we observe that the development

lengths are smallest when yi ≈ Yi.

We have also considered nonlinear temporal stability via computation. Af-

ter benchmarking against a simpler 1D stability problem, we have run a range

of simulations using 2 different initial conditions, selected to be divergence

free and to either break the plug initially or to leave it intact (cases A and B,

respectively). For low enough Re or amplitude A2 of the initial kinetic energy,

we observe stable flows with decay of the energy norm of the perturbation.
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Figure 3.22: Flow resulting from the 3 moving inlet channels of Fig. 3.21.

Figure 3.23: NUTS.

All the features discussed above are qualitatively very similar to the core

annular pipe flows considered in chapter 2. This suggests that these features

may be more general for other duct flows where we keep an unyielded plug at

the interface. Having said this we do note a number of differences. Firstly,

we have observed instability coupled to symmetry breaking of the flow. This

arises in the start-up flows, apparently in situations where the flow rate passes

mostly through the inner fluid layer, and is inertial in origin. It also arises in

the temporal stability calculations. In these results, observed instabilities are

nearly always asymmetric and arise via increases in either Re or A.

The second difference with the pipe flow is that instability arises at lower

Re and A. In chapter 2 we did not observe any instability at all for start-up

flows (for Re ≤ 100), but here we have. In temporal stability calculations, the

axisymmetric flows of chapter 2 remained stable for A ≥ 1 and Re ≥ 100 in
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some cases. Of course the base flows are different in the two geometries and

in making computational studies of instability we are vulnerable to the choice

of initial conditions and any particular susceptibility of the flow to specific

perturbations (which is unknown in general). Nevertheless, the evidence is

that the channel flows are less stable.

Apart form the symmetry breaking, the main novelty of our results comes

in the last section of this chapter, where we have purposefully explored the

flexibility of these flows in producing specific controlled effects. The main

point to emphasize in all these flows is that control (or design) of the flow is

entirely via an understanding of the established parallel flows. Mathematically

these flows are easy to compute: algebraically there is of course complexity

increasing with the number of layers, fluids etc., but in principle all such

problems are calculable.

We have presented a number of examples. The asymmetric base flows

indicate how asymmetric multi-layer products could be stably produced. The

7-layer flows are an extreme example of this. Our transient variation of flow

asymmetry shows that online control could be applied and the final example of

writing in the core fluid shows an admittedly extreme example. In each of the

transient flows we must emphasize that our control strategies are simplistic in

the extreme: step or ramp changes in position and flow rate only, in each of

the flow inlets. We do see dispersive effects at the corners/edges of some of

the structures produced, but suspect that much of this could be reduced via

smoother flow control and possibly with immiscible fluids.
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Chapter 4

Visco-plastically lubricated

flows of viscoelastic fluids:

Experiment 1

The present chapter serves to extend the breadth of experimental observa-

tions of VPL (Visco-Plastically Lubricated) flows by considering viscoelastic

core fluids. Many industrial multi-layer flows involve fluids with viscoelastic

properties. Therefore, the feasibility of establishing VPL flows with viscoelas-

tic core fluids is inherently of interest. Although viscoelastic fluids have been

studied within the context of linear stability in [86], this is a completely dif-

ferent flow configuration. We are unaware of any experimental, analytical or

computational study of the core-annular VPL flow using a viscoelastic core.

Our study has 2 principal objectives. Firstly, we seek to definitively demon-

strate the experimental feasibility of this type of flow in a laboratory environ-

ment. Secondly, we should like to understand how viscoelasticity might affect

design of the inlet geometry, e.g. the effects of downstream contraction and

expansion.

An outline of this chapter is as follows. Below, in §4.1 we give a brief out-

line of the base flow we are trying to achieve, showing that for steady 1D shear

flows this is not affected by the fluid elasticity. This helps to distinguish the

3 base types of flow possible in the core-annular configuration and delineate

1A version of Chapter 4 has been submitted for publication (under review). [S. Hormozi],
D.M. Martinez and I.A. Frigaard. Stable core-annular flows of viscoelastic fluids using the
visco-plastic lubrication technique [51].
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Figure 4.1: Schematic of the 3 base flow types for an iso-density core-annular
VPL flow: a) Stable (the desired VPL flow configuration, with an unyielded
plug at the interface); b) Unstable (meaning yielded at the interface); c) Static
(meaning an unyielded plug is attached to the wall).

those that may be stable VPL flows. This is followed in §4.2 by an overview

of the experimental setup and scope of the study. Results are presented in

§4.3. These are divided into calibration studies, those that demonstrate sta-

ble/unstable VPL flows with a visco-elastic core, and those that consider the

effects of inlet geometry. The chapter finishes with concluding remarks in §4.4.

4.1 Multi-layer flows with a visco-elastic core

We consider a fully developed axisymmetric core-annular pipe flows of 2 fluids.

We do this under the assumption that the same constant pressure gradient

(P = −Gz) acts in both fluid layers. This simplifying assumption can be

relaxed to allow for different constant axial pressure gradients in each fluid,

but this does not affect the type of base flow velocity that we derive. As our

main purpose is to highlight the relation between shear stress and velocity, we

do not consider the more general case.

We either assume that the fluids are immiscible with zero surface ten-

sion (infinite capillary number) or are miscible but at infinite Péclet number.

We denote the velocity components in radial, azimuthal and axial directions
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4.1. Multi-layer flows with a visco-elastic core

respectively, by (u, v, w). From symmetry arguments the stress tensor compo-

nents σ
[k]
ij are:







−P + τ
[k]
rr 0 τ

[k]
rz

0 −P + τ
[k]
θθ 0

τ
[k]
zr 0 −P + τ

[k]
zz






= σ

[k]
ij . (4.1)

In a viscoelastic fluid (fluid 1) τ [1] is non-deviatoric and contains both viscous

and elastic contributions. In an inelastic fluid (fluid 2) τ [2] is the deviatoric

stress tensor. Since the flow is fully developed and axisymmetric the stress

components (τ
[k]
ij ) vary only in the radial direction and the velocity reduces to

(0, 0, w(r)). Hence, the momentum equations reduce to

∂P

∂r
=

1

r

∂

∂r
[rτ [k]

rr ] − τ
[k]
θθ

r
, k = 1, 2 (4.2)

1

r

∂P

∂θ
= 0, (4.3)

∂P

∂z
=

1

r

∂

∂r
[rτ [k]

rz ] − ρkg, k = 1, 2 (4.4)

where ρk is the density of fluid k. Differentiating (4.2) with respect to z

confirms that the axial pressure gradient must be independent of r. The shear

stress τrz is obtained from the axial momentum equation (4.4), which integrates

to:

τ [1]
zr =

r

2

[

∂P

∂z
+ ρ1g

]

, 0 ≤ r ≤ ri, (4.5)

τ [2]
zr =

r

2

[

∂P

∂z
+ ρ2g

]

+
(ρ1 − ρ2)gr

2
i

2r
, ri ≤ r ≤ R, (4.6)

In all the flows we consider the outer fluid is a visco-plastic fluid, with a

yield stress τY and no elasticity. The inner fluids have no yield stress, but

could be visco-elastic. In the outer fluid, in those parts where the shear stress

exceeds the yield stress, the fluid is nonlinearly viscous and from the form of
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4.1. Multi-layer flows with a visco-elastic core

the velocity we have that

τ [2]
rr = τ

[2]
θθ = τ [2]

zz = 0.

The shear stresses are continuous through the yield surface but are indetermi-

nate within a plug region. Thus, non-zero normal stresses are not generated at

the yield surface but are possible within any unyielded plug region. However

for the established flows we consider, the normal stresses within the plug could

vary only with r, would need to satisfy the momentum equations and jump

conditions at the interface, and the magnitude of the deviatoric stress must

lie below the yield stress.

If the inner fluid is inelastic we also have

τ [1]
rr = τ

[1]
θθ = τ [1]

zz = 0.

If the inner fluid is viscoelastic the viscous part of the normal stresses is zero,

but there can exist non-zero elastic components. Assuming an established par-

allel flow, the elastic part of τ
[1]
rr contributes to the interfacial stress but the

elastic part of τ
[1]
zz does not, and so can be discontinuous across the interface.

The separation of the deviatoric stress into elastic and viscous components de-

pends upon the constitutive relation that describes the rheological behaviour.

However, for the moment suppose that we measure the steady shear rheology

of the inner fluid, i.e. in fully relaxed elastic state. This steady shear flow

curve gives a viscometric relationship of form

τ [1]
zr = µ1

(
∣

∣

∣

∣

∂w

∂r

∣

∣

∣

∣

)

∂w

∂r
,

where µ1 may have components stemming from polymer and solvent con-

stituents.

For a given pressure gradient and desired interface radius ri in the estab-

lished base flow it is straightforward to substitute the shear rheometry data
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4.1. Multi-layer flows with a visco-elastic core

into (4.5) and (4.6) integrate to find the velocity field in each fluid, and even-

tually the required flow rates in inner and outer fluids, which we denote by Q1

and Q2, respectively. Provided that the flow curves for the shear rheology of

the 2 fluids exhibit a monotonically increasing relationship, the mapping

(
∂P

∂z
, ri) 7→ (Q1, Q2)

will be one-to-one and invertible. The integration of (4.5) and (4.6) can either

use a numerical approximation of the flow curve or could be based on a closed-

form constitutive model (fitted to the flow curve data). Both approaches

have been adopted before in [55] and the only difference here is that density

difference can potentially be incorporated.

Assuming ρ1 = ρ2, (following [55]), there are three distinct types of base

velocity profile, u = (0, 0, w(r)), that may arise, according to the values of

interfacial shear stress, wall shear stress and yield stress. These are illustrated

schematically in Fig. 4.1. The type of velocity that is of primary interest here

is that for which the inner core fluid is surrounded by a ring of unyielded/plug

fluid, denoted here as stable. The other types of base velocity profile are

denoted unstable and static. The former refers to the case for which the outer

fluid is yielded at the interface and the latter refers to the case in which the

outer fluid is completely unyielded and remains fully static.

This simple multi-layer flow model, based on the shear rheology, forms

the basis for our experimental design. If one specifies the flow rates of the

individual fluid phases, the pressure drop and the radial interface position

are uniquely determined. Conversely (and perhaps more obviously) specifying

the pressure drop and radial interface position uniquely determine the flow

rates in the individual fluid phases. Later, we indicate the flow maps in both

(Q1, Q2) and (|Pz|, ri) spaces. In our experiments we fix the two pump flow

rates (Q1, Q2) and the simple model predicts the expected radial position of

the interface. The predicted pressure gradient is of less direct interest but does

dictate the flow type (see Fig. 4.1) and hence gives a prediction of where the
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4.2. Experimental description

transition from stable to unstable base flows is, according to the values of the

interfacial stress and yield stress of the outer fluid.

We see that from the perspective of the base flow velocity profile, the

shear rheology is sufficient to determine the profile. This does not require a

specification of the elastic and viscous parts of the stress tensor. The normal

stresses may be ignored in this calculation. We consider elastic effects further

in interpreting our results.

4.2 Experimental description

A schematic of the experimental multi-layer flow loop is shown Fig. 4.2. A

4 m long plexiglass pipe of radius 25.4 mm is attached to a C-Channel which

is bolted to the ground. Approximately 60 L of both the inner and outer fluids

are stored in separate reservoirs. A progressive cavity pump was used to pump

the outer fluid directly from the reservoir to the manifold inlet, which is located

at the bottom of the plexiglass pipe. The manifold consists of 8 inlet ports of

6.35 mm inner diameter (ID), equally distributed along the circumference of

the pipe. The total flow rate of the outer fluid is measured with a magnetic

flow meter (FMG-400 series from http://www.omega.com) which is connected

to a computer for data logging purposes. The flow rate of the inner fluid

is measured with a paddle wheel flow meter (model DRG-1105N1F300, from

http://www.kobold.com) which is also connected to a computer. The inner

fluid is injected on the central axis of the pipe, in the direction of the main

flow, using a 300 mm length tube. Five different ID tubes were used in this

study: 3.17, 7.67, 10.74, 13.86 and 18.84 mm. Details of the apparatus as well

as the methodology of preparing the outer fluid are described fully in [54].

To begin each experiment, the outer fluid is pumped through the channel

at the designated flowrate Q2. When the entire channel is filled, the inner

fluid is then introduced at flowrate Q1. The inner fluid is colored black using

a commercially available food dye to increase the contrast between the two
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4.2. Experimental description

Figure 4.2: Flowloop schematic. Fluids 1 and 2 are inner and outer fluids
respectively.

fluids. For each combination of fluids we performed experiments at different

flow rates (Q1, Q2), in order to observe changes in the interface radius, ri. The

range of flow rates feasible, for both the inner and outer fluids, is approximately

5 − 60 mL/s and is restricted by the operating range of our pumps.

In total 120 experiments were conducted using either glycerin (Fisher Sci-

entific Canada), water, or Polyethylene Oxide (PEO, MW 7 × 106) (Sigma

Aldrich) as the inner fluid and Carbopol-940 (Noveon Inc) as the outer fluid.

Details of the experimental series conducted are given in Table 4.1. We shall

discuss the results in detail later, but briefly, series 1 and 2 tested effects of

a Newtonian fluid as inner fluid with a visco-plastic outer fluid. Principally

these series were intended as control cases. In series 3-5, we have studied

visco-elastic core fluids with visco-plastic lubricating fluid, in different scenar-

ios with fixed inlet geometry. In series 6, we have studied the effect of varying

the size of the diameter of the core fluid inlet pipe to test the effect of inlet

geometry on elasticity.

Our visualization system consisted of two CCD cameras with 720×480 and

2590× 3870 pixel spatial resolution, mounted 0.5 m and 1.5 m above the inlet
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Series Fluid Flowrate Inner Pipe
Inner Outer Inner Outer ID

(wt/wt) (wt/wt) (mL/s) (mL/s) (mm)
1 0.95% Gly. 0.15% Carb. 5-40 8 3.17
2 Water 0.15% Carb. 5-40 10 3.17
3 0.5% PEO 0.15% Carb. 5-40 5-60 3.17
4 0.75% PEO 0.15% Carb. 5-40 5-60 3.17
5 1.0% PEO 0.10% Carb. 5-40 5-25 3.17
6 0.75%PEO 0.15% Carb. 5-40 30 3.17-18.84

Table 4.1: Concentrations of the solutions, range of flow rate and size of inner
pipe in each experimental series. Abbreviations: Gly. = Glycerin (Fisher
Scientific Canada); PEO = Polyethylene Oxide (MW 7×106) (Sigma Aldrich);
Carb. = Carbopol-940 (Noveon Inc).

manifold. With this set-up, the maximum resolution of the cameras is about

0.14 mm/pixel and the cameras are able to capture 20 cm and 60 cm lengths

of the tube. The recorded images are post-processed in 2 different ways: (i) to

create spatiotemporal plots of the interface evolution, as described e.g. in [31];

and (ii) to measure the width of the inner core fluid. Spatiotemporal plots (i)

are obtained by averaging the pixel intensity across the pipe at each time. The

averaged intensity value is indicative of the inner fluid radius. To measure (ii),

the width of the inner core fluid, we locate the edges of the inner fluid using

a second derivative test on the pixel intensity (from Matlab). Corrections are

made for concavity of the pipe and the measurements are calibrated against a

sequence of 5 metal cylinders of representative known diameters, placed inside

a section of plexiglass pipe filled with Carbopol solution. We average the

measured ri values to compare against predictions from the multi-layer model

(described in §4.1). To do this we first select a range of 10−15 s over which the

flow is visually stable, then average both spatially and temporally. For each

second we have about 30 frames and from each frame we can make about 700

axial measurements of ri. Therefore in total we have ≈300,000 measurements
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Figure 4.3: Example flowcurve data: (a) 0.15% Carbopol 940 solution at pH
5.8 and 22◦C; (b) 0.75% Polyethylene Oxide solution at 22◦C.

for each comparison point.

A number of different test procedures were used to characterize the fluid

rheology, using both a Bohlin C-VOR rotational rheometer (www.malvern.com)

and a HAAKE CaBER 1 Extensional Rheometer (www.rheowin.com/caber.htm).

For all inner fluids, the shear rheometry was performed using a Cone and Plate

4◦/40 mm geometry and the rheological parameters were determined through

regression to a power-law fluid model, see Table 4.2. For the Newtonian fluids

tested, our results are similar to those reported in the literature. For the PEO,

shear thinning behavior was the most evident feature. Examples of the shear

stress plotted as a function of strain rate are shown in Fig. 4.3.

Turning now to the elastic properties of the PEO, the longest relaxation

time was determined by performing oscillatory shear tests using a Bohlin C-

VOR digital rotational rheometer and extensional rheometry tests using a

HAAKE CaBER 1 extensional rheometer. The characteristic relaxation time,

λs, can be obtained from the inverse of the frequency where elastic modulus

G′ and viscous modulus G′′ cross over, [19]. The break up time of the fluid

sample in extensional rheometry is denoted by tb. Note that tb is not a material

property; however, it quantifies the stringiness of the material. Measured

values of λs and tc with their uncertainties are shown in Table 4.2.

110



4
.2

.
E

x
p
erim

en
ta

l
d
escrip

tio
n

Fluid Shear rate, Yield Stress, Consistency, Power-law Relaxation Extensional
γ̇ τY κ index, n time, λs break up time, tb

(wt/wt) (1/s) (Pa) (Pa1/n) (s) (s)
95% Gly. 1-100 - 0.525 1 - -
Water 1-100 - 0.0013 1 - -
0.10% Carb. 1-80 3.4(± 1) 4.54 0.34 - -
0.15% Carb. 1-80 11(± 1) 18.66 0.27 - -
0.50% PEO 1-200 - 0.27 0.6 - 0.71 (± 0.1)
0.75% PEO 1-200 - 1.02 0.49 3.0 (± 0.5) 1.96 (± 0.25)
1.0% PEO 1-200 - 2.47 0.43 3.0 (± 0.5) 4.9 (± 0.45)

Table 4.2: Rheological properties of the fluids tested. Abbreviations: Gly. = Glycerin (Fisher Scientific
Canada); PEO = Polyethylene Oxide (MW 7 × 106) (Sigma Aldrich); Carb. = Carbopol-940 solution at
pH 5.8 (Noveon Inc). This pH is used for all experiments.
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The shear rheometry of the Carbopol solutions was determined using a

40 mm serrated parallel plate geometry (see Fig. 4.3). The yield stress was

evaluated using the maximal instantaneous viscosity technique [76]. This test

has been performed 8 times for each sample, with a high degree of repeata-

bility. Nevertheless, precisely measuring a yield stress that agrees with the

theoretical notion is not straightforward. We expect that there is some uncer-

tainty (around ±1 Pa) in considering our measured yield stress as equivalent

to a theoretical yield stress. It is partly due to this difficulty that we have

used the same concentration of Carbopol solution for all but one of our series

of experiments. Having fixed τY , we fit the consistency κ and power law index

n, from the plot of (τ − τY ) vs γ̇, using regression.

4.3 Experimental results

Our experimental series follow 3 main directions. First, we have carried out a

number of calibration studies using Newtonian core fluids (series 1 and 2; see

§4.3.1). Secondly, we establish whether or not viscoelastic core fluids can be

used in the VPL technique, by using different concentrations of PEO in the

core region (series 3-5; see §4.3.2). This is the main objective of this chapter.

Thirdly, we explore the effects of inlet radius on these flows (series 6; see

§4.3.3).

4.3.1 Calibration experiments

In §4.1, we introduced a simple laminar multi-layer flow model and defined 3

different types of flow, namely stable, unstable and static, classified according

to the value of shear stress at the interface. This model suggests that the

transition between different flow types is determined by the shear rheology

of the fluids. Evidently, when elasticity is introduced this may be incorrect.

Thus, our initial experiments considered Newtonian core fluids in order to
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establish that at least for inelastic fluid flows this type of idealised description

is valid.

The procedure used for the multi-layer flow model is the same as [55]. We

compute the relation

(ri, |
dp

dz
|) 7→ (Q1, Q2)

directly from the rheological measurements of the shear rheology. For given

(ri, |dp
dz
|), equations (4.5) and (4.6) define the shear stress in each fluid layer.

We interpolate linearly from the flowcurve data to define γ̇(τ) in each fluid

layer. We integrate once from the pipe wall to give the velocity profile and

then integrate again to give the flow rates (Q1, Q2). We carry out all numerical

integrations using the fourth order Simpson’s rule. These computations are

generally very quick. We then invert the mapping (ri, |dp
dz
|) 7→ (Q1, Q2) numer-

ically to give a mapping (Q1, Q2) 7→ (ri, |dp
dz
|). This mapping is more natural

for experimental design as we have a limited range of flow rates attainable

with our pumps.

Although we have given values for τY , κ and n in Table 4.2, note that these

fitted values are not used in the above design procedure. We have used directly

the measured shear rheology in order to eliminate errors that would otherwise

result from curve-fitting of the rheological data to a Herschel-Bulkley fluid

model, and subsequently using algebraic expressions for the flow rates. The

only fitted rheological parameter that is used in experimental design is the

yield stress. This is used only to distinguish between stable, static and unsta-

ble parameter regimes. The actual value of the yield stress does not affect the

computation of the two flow rates, nor the inversion of this mapping. Uncer-

tainty in τY is not uncommon and anyway does not translate into significant

uncertainty in computed velocity and flow rates, since the strain rate is close

to zero when the shear stress is close to the yield stress of the fluid.

In the first series of experiment a 95% glycerin solution and 0.15% Car-

bopol 940 solution are pumped through the inner pipe and the annular space

respectively. The viscosity of 95% Glycerin solution is comparable to the vis-
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Figure 4.4: Experimental data from series 1 and 2. Inner core fluids are
95% glycerin solution and water at 22◦C. Outer fluid is 0.15% Carbopol 940
solution at pH 5.8 and 22◦C. (a) Experimentally measured flow rates and
classification: series 1 (95% glycerin solution), stable (�) and unstable (�);
series 2 (water) stable (◦) and unstable (•). (b) Measured ri vs. predicted ri

for stable data of 95% glycerin solution (�) and water (◦).

cosity of the 0.75% PEO solutions at average shear rate of core fluid for a

moderate range of Q1 and Q2. Seven experiments have been performed at

constant flow rate of outer fluid Q2 = 8 mL/s and different flow rate of inner

fluid (5 ≤ Q1 ≤ 37 mL/s). The multi-layer flow model gives the radius of the

core fluid (95% Glycerin solution) in the established flow, which is compared

with the experimentally measured radius. The multi-layer model also gives us

a predicted flow rate for the transition from stable to unstable flows, which

can be compared with experimental observations.

The (�) and (�) symbols in Fig. 4.4a show the stable and unstable exper-

iments from series 1, plotted in the (Q1, Q2) plane. The uncertainty for Q1 is

small and is not shown here. In the stable visco-plastic lubrication regime the

flow is stable and is observed to have a sharp interface. Outside this regime

(when the outer fluid is yielded at the interface, τi > τY ) the flow becomes un-

stable and mixing occurs. The multi-layer flow model predicts the transition

between stable and unstable for experimental series 1 to be at Q1 ≈ 30 mL/s.

Experimentally, the transition is observed at slightly lower Q1. We have some

114



4.3. Experimental results

uncertainty in the yield stress measurement. Also note that the unyielded plug

around the interface thins as Q1 is increased and this transition is approached,

and can become vulnerable to small finite flow perturbations. Given these fac-

tors we feel that the comparison is relatively good. For the stable experiments

the measured interfacial radii are in good agreement with those predicted from

the multi-layer model; see Fig. 4.4b.

A second series of experiments is performed using water as the Newtonian

core fluid, at different Q1 while keeping constant flowrate for the outer fluid

(Q2 = 10 mL/s). The (◦) and (•) symbols in Fig. 4.4a show the observed

stable and unstable experiments of this second series in the (Q1, Q2) plane.

The transition from stable to unstable flows for experimental series 2 (as pre-

dicted by the multi-layer model) occurs at a high flow rate, well above the

range of our pumps. However, Fig. 4.4a shows that for Q1 & 25 mL/s the

flow is observed to be unstable. This flow rate is well below the transition

value at which the interface would become yielded. If the laminar multi-layer

model were valid in this range, the interface should be surrounded by a plug

of unyielded lubricating fluid. However, in these unstable experiments a con-

siderable amount of mixing occurs and it is clear that the assumptions behind

the laminar multi-layer model are no longer valid in this range. The inner fluid

Reynolds number is around 1750 at Q1 = 25 mL/s. The high Re suggests that

the inner fluid stream is perhaps close to the limit for shear flow transition

when Q1 & 25 mL/s. This is only a rough estimate as the transitional Re for

this type of flow is not known. Instabilities observed at these flow rates are

localized, suggestive of the initial turbulent puffs in a shear flow transition. It

appears that these localized disturbances have sufficient momentum to break

the unyielded layer of the lubricating fluid, allowing mixing. Compared with

series 1, note that the Reynolds numbers of the inner fluid in series 1 are

significantly lower due to the higher viscosity of the glycerin.

Figure 4.4b also shows the measured radii for the stable experiments in

series 2. We see that the measured radii are in good agreement with the pre-
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dicted ones when the flow is stable. In conclusion, series 1 and 2 establish that

in cases where the flow is stable and laminar the multi-layer model provides

a good prediction of the interfacial radius of the established flow. Provided

that the inner fluid is in a laminar regime (series 1) stable flows are found for

flow rates that approach the theoretical stability limit of the multi-layer model.

However, highly inertial flows of the inner fluid (series 2) can render the multi-

layer model invalid far below the theoretical stability limit. This theoretical

stability limit is anyway only defined by the existence of an unyielded ring

around the interface and does not address decay of the perturbation energy.

Finally, although intended only for calibration, we comment that in series 1

there is a significant difference in density between the two fluids ρ1/ρ2 = 1.24.

This has not been studied previously: experimentally, computationally or the-

oretically.

4.3.2 Viscoelastic core fluids

We now turn to the main objective of our study: establishing the feasibility of

the VPL technique with visco-elastic core fluids. Firstly, a series of experiments

has been performed with 0.5% Polyethylene Oxide solution in the core and

0.15% Carbopol 940 solution at pH 5.8 in the outer region (Experimental series

3). The shear rheometry of 0.5% Polyethylene Oxide solution is comparable

to 0.3% Xanthan NF-C solution which [55] used for the core fluid. However,

0.3% Xanthan NF-C solution is largely inelastic. Hence, we expect to detect

novel qualitative effects of elasticity in our experiment, by comparison with the

previous work [55]. As a second step, we increase the elasticity of the core fluid

by using 0.75% Polyethylene Oxide solution, but keep the yield stress constant

by again using 0.15% Carbopol 940 solution in the outer region (Experimental

series 4).

Figure 4.5a and b show contours of Q1 and Q2, as functions of (ri,
∣

∣

dp
dz

∣

∣),

for the pair of fluids used in experimental series 3 and 4. Regions of stable,

unstable and static base flows are indicated in the (ri,
∣

∣

dp
dz

∣

∣)-planes. We have
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Figure 4.5: Stable, unstable and static regions for experimental series 3 and 4,
with the range of our experimental matrix (cross-hatched region) illustrated
in terms of Q1 and Q2 (mL/s).

also crosshatched the region occupied by our experimental matrix of flow rates.

This shows that for the range of flowrates studied in series 3 (see Table 4.1),

the multi-layer model predicts stability for all the experimental points. By

increasing the concentration of PEO (see Fig. 4.5b) the experimental matrix

of flow rates includes flows that are unstable as well as stable.

Figures 4.6a and b identify stable (�) and unstable (⊞, �) experiments for

series 3 and 4. The dashed line shows the theoretical boundary of transition

between stable and unstable regions. We first note that instability is observed

before passing the theoretical transition. Secondly, we note that increasing

the elasticity of the core fluid (increasing the concentration of PEO) appears

to destabilize the flow, i.e. instability appears at smaller flow rates of the core

fluid.

Before describing the unstable flows we illustrate a typical stable exper-

iment in Fig. 4.7. A series of snapshots illustrate the time evolution of the

interfaces in the first 0.3 m after the exit of the inner pipe. We observe that

the initial front of core fluid, penetrating into outer fluid is destabilised locally

but does not destabilise the flow behind the front. The front region is advected

up the pipe and out the exit, leaving behind the smooth multi-layer config-
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Figure 4.6: (a) Series 3 and (c) Series 4: experimental classifications plotted
with respect to flow rates of two fluids, compared against model predictions.
Stable (�); frozen (⊞); mixing (�). Broken line indicates the predicted tran-
sition between stable and unstable. (b) Series 3 and (d) Series 4: measured ri

vs. predicted ri.
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uration. The interface is generally sharp and clear with no new mixing nor

localised instability observed along the total length of the pipe. Visually there

is no difference in Fig. 4.7 between the snapshots at t = 300 s and t = 600 s.

This particular experiment carries on for at least 15 min. When no instability

of the interface is observed, the flow is classified as stable by visual inspection.

We also construct a spatiotemporal plot of the mean intensity at each height in

the pipe, which can be used for more quantitative analysis if the visual inspec-

tion is ambiguous. The right panel in Fig. 4.7 shows an example of this. The

steep dark wedge indicates the convectively unstable initial front. There is a

light region at the bottom of the spatiotemporal plot which diffuses upwards

into a uniform grey. This lighter region is the expanding development length

of core fluid exiting from the nozzle. In our experiments only the frontal view

is recorded by our video system, but by visual inspection of numerous flows

from different angles, those flows that are stable certainly appear to be axisym-

metric. For the stable cases our results are largely similar to those reported

in [55] with xanthan-Carbopol combinations. However, the interface appears

sharper here (with the viscoelastic core fluid) and the degree of mixing at the

front appears to be reduced. We have not attempted to quantify either effect.

We have observed two different instability patterns in Series 3 and 4. We

designate these as either frozen (⊞) or mixed (�). By increasing the flowrate

of the core fluid (Q1) gentle waves with small amplitudes begin to appear at

the interface. These waves are frozen at the interface by the unyielded plug

region of the lubricating fluid and are convected along the pipe with the same

velocity as the interface. Figure 4.8 shows snapshots at 1 s time intervals

from a typical experiment with a frozen interfacial wave. Note that these

images are scaled with an aspect ratio of ≈ 15 : 1 to show more of the wave

pattern. The right panel of Fig. 4.8 shows the spatiotemporal plot of the

same experiment, focusing on a region above the exit nozzle expansion. The

constant slope lines of dark and white regions confirm the constant advective

velocity of the frozen interfacial waves. Note that the wavelengths are not
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Figure 4.7: Snapshots of a typical stable experiment from Series 4 at
(Q1, Q2) = (11, 30) mL/s. Inner core and lubricated fluids are Polyethy-
lene Oxide solution 0.75% and Carbopol 940 solution at pH 5.8, respectively.
Images taken at t = 2, 4, 5, 6, 7, 10, 13, 16, 300, 600 s, for (a)-(j). The
camera captures the first 0.3 m after the exit of the inner pipe. The right
panel shows a spatiotemporal plot constructed from the same experiment

constant, which leads to the rather exotic patterning of the spatiotemporal

plot. This kind of instability is not observed with Newtonian core fluids (see

§4.3.1) nor with inelastic shear thinning core fluids (see [55]), at the same

range of flowrates or Reynolds numbers of core fluid. In either of these cases

with inelastic core fluids, interfacial disturbances lead to mixing of the two

fluids. PEO has a larger extensional viscosity than the fluids of series 1 and

2, and the extensional viscosity is a measure of the resistance of the fluid to

the stretching motions that would occur during mixing.

Figures 4.6b and d plot the measured ri vs. predicted ri for Series 3 and 4,

respectively. Both stable and frozen experimental data is used. The stable ex-

periments have radii that are predicted well by the multi-layer model (i.e. from

the shear rheology). For Series 3 the frozen interface oscillations are small, of

the order of the camera resolution, and no error bars are shown. For Series 4

the error bars indicate the range of radii observed in the frozen experiments.

It is worth noting that the multi-layer model still predicts reasonably well the

mean radii of these flows. The viscoelastic core fluid exits the inner pipe and
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a) b) c) d) e) f) g) h) i) j) k)

Figure 4.8: Snapshots of a typical experiment with frozen interfacial wave
from Series 4 at (Q1, Q2) = (21, 30) mL/s. The interfacial wave has mean
amplitude ≃ 0.7 mm and mean wave length ≃ 48 mm. Snapshots (a)-(k)
show t varying from 80s to 88s with time interval of 1s. The camera captures
the first 0.65 m of the pipe from the exit of the inner pipe. The right panel
shows the spatiotemporal plot of the same experiment.

expands to an average radius (predicted by multi-layer model; §4.1) and then

waves appear as the fluid relaxes. Roughly speaking, the amplitudes are of

order 1 mm and the wavelengths are of order 50 mm.

At higher flowrates of core fluid the interfacial waves do not remain con-

vectively stable, propagating downstream as frozen interfacial perturbations.

The disturbances are strong enough to yield the plug region along the flow and

hence mixing occurs. The � symbols in Fig. 4.6 correspond to this type of

observation. An example is shown in the snapshots of Fig. 4.9. Dynamic waves

appear directly after the inlet region and expand while traveling downstream,

penetrating into the outer fluid. In the spatiotemporal plot we note constant

slope in the grey-scale variations after a short distance (≈ 20cm) from the

entrance region. The expanding darker regions and non-constant slope further

downstream indicate that the interfacial non-uniformities propagate at speeds

different to the interfacial speed.

Looking at Figs. 4.6a and c we note that unstable flows are found further

below the multi-layer model stability threshold in Series 3 than in Series 4.
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Figure 4.9: A typical unstable experiment from Series 3 at (Q1, Q2) =
(37, 32.5) mL/s. The snapshots (a)-(k) show t between 41 s and 51 s with
time interval of 1 s. The camera captures the first 60 cm of the pipe from the
exit of the inner pipe. The right panel shows the spatiotemporal plot of the
same experiment.

This further suggests that the instabilities observed are due to the elasticity

of the inner fluid. Further, it is evident the instability occurs after passing a

threshold in flowrate of the inner fluid (approximately Q1 > 21 mL/s for Series

3 and Q1 > 10 mL/s for Series 4). These both suggest that the instabilities

initiate before the flow has fully developed, after the exit from the inner pipe,

and depend to some extent on the state of stress of the core fluid transported

to the exit of the inner pipe.

Purely elastic effects on interfacial instability

So far, our experimental results appear mostly to show that the elasticity of

the core fluid has a destabilizing effect and that interfacial instabilities appear

before passing the theoretical transition line. However, we have also noticed

that the degree of mixing appears retarded by the PEO. This leads us to

question if we can stabilize the flows using primarily elasticity. Series 5 has

therefore been performed with 1% Polyethylene Oxide solution as the core
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Figure 4.10: (a) Experimental observations plotted with respect to flow rates
of two fluids, compared against model predictions. Stable (�); unstable (�).
predicted transition line is shown. (b) Measured ri vs. predicted ri.

fluid and 0.1% Carbopol 940 solution as the lubricating fluid. The core fluid

has increased elasticity 2 over that in Series 3 and 4, but this also increases

the shear viscosity. The lubricating fluid has a reduced yield stress (τY ≈ 3.4).

In consequence, for all of the experiments in Series 5, the visco-plastic fluid is

yielded at the interface (e.g. as in Fig. 4.1b). The simple multi-layer model

classifies all these flows as unstable.

The experimental points are marked in Fig. 4.10a, It is interesting to see

that these flows are observed to be stable at small enough flow rates and

become unstable when Q1 > 11 mL/s. In the absence of an unyielded plug

around the core fluid, frozen interfacial waves are not observed in this set of

experiment. Instead it appears that at sufficiently low flow rates the elasticity

is sufficient to damp out oscillations due to the stress relaxation as the flow

expands. For these stable flows we show in Fig. 4.10b a good comparison

between predicted and observed interfacial radii.

Figure 4.11a-h shows snapshots of the interfacial waves in the entrance

region as a result of relaxation for an unstable flow. Compared to Series 3

and 4, the development length is shorter and the amplitudes of the waves are

21% Polyethylene Oxide solution has increased both normal stress and relaxation time.
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Figure 4.11: (a)-(h) Snapshots of a typical unstable experiment from Series 5
at (Q1, Q2) = (16, 21) mL/s: t varies from 180 s to 187 s from left to right.
The camera captures 11 cm of the pipe from above the exit of the inner pipe.
(i) Variation of the amplitude of the interface oscillation (A) vs time. (j) Power
spectrum (A2) vs frequency (f(Hz)), for a point located at 5 cm above the
exit of the inner pipe on the left edge of the observed interface.

larger. These images show 11 cm of the plexiglass pipe from above the inner

pipe exit. We have selected a point on the left interface of the core fluid,

located 5 cm above the inner pipe exit, and have measured the amplitude A of

the oscillation about the predicted radial position (see Fig.4.11i). Taking the

Fourier transform, we find the dominant frequency of the oscillation which is

in the range of 0.25 to 0.5 Hz (see Fig.4.11j). Table 4.2 shows the relaxation

time and break-up time of the 1.0% PEO solution, which are in the ranges

1 < λs < 5 s and 4.9 s respectively. We note simply that these timescales

correspond approximately with the range of dominant frequencies observed in

the interface oscillations.
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Size of pipe Inner Diameter Outer Diameter
ID (mm) OD (mm)

1 3.17 6.35
2 7.67 13.71
3 10.74 17.14
4 13.86 21.33
5 18.84 26.67

Table 4.3: Sizes of inner pipes used in Series 6.

4.3.3 Inlet geometry effects

In §4.3.2 the radius of the inner pipe used is significantly smaller than the

established radius of the developed flow, as predicted by multi-layer model of

§4.1. Thus, the inner fluid experiences high stress in the inner pipe followed by

flow expansion and a net relaxation of the elastic stresses. We have seen that

this relaxation can lead to interfacial instability even when a ring of unyielded

fluid exists around the core fluid stream. This suggest that selection ofRi could

have a dominant effect on the transition, over the range of our experiments.

Therefore, in this final set of experiments we study the effect of inner

pipe geometry on the flow by increasing the inlet diameter (2Ri). We have

used 5 different diameters of inner pipe (including that used in the previous

experiments) and for each pipe diameter we conducted 7 experiments at con-

stant outer fluid flow rate (Q2 ≈ 30 mL/s) for increasing core fluid flow rate

(5 < Q1 < 40 mL/s). The dimensions of the pipes are given in Table 4.3.

Note that the same length of inner pipe is used in each geometry and no

other changes are made to the inlet manifold. The inner and outer fluids are

0.75% Polyethylene Oxide solution and 0.15% Carbopol 940 solution at pH

5.8, respectively.

Figure 4.12a marks the stable and unstable experimental points for differ-

ent sizes of inner fluid pipe at different core fluid flow rate. We observe that

the unstable region is reduced by increasing the diameter of the inner pipe,
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Figure 4.12: (a) Series 6 experimental observations plotted with respect to
inner diameter of the pipes and flow rates of inner fluids: stable (�); frozen
(⊞); mixed (�). Experimental observations plotted in the (Q1, Q2)-plane for:
(b) the smallest inner pipe; (c) the largest inner pipe. The predicted transition
from the multi-layer model is plotted. To account for uncertainty in the value
of τY we plot additional transition curves that would be predicted if τY =
11 ± 1 Pa.

which has the effect of reducing the elastic stresses of the core fluid inside the

inner pipe. In Fig. 4.12b and c we have plotted the experimental points in the

(Q1, Q2)-plane, for the smallest and largest diameter inner pipes, respectively.

We have indicated in these figures the transition between stable and unsta-

ble regions predicted by the multi-layer model, and also additional transition

boundaries representing uncertainty in the yield stress, i.e. corresponding to

τY = 11±1 Pa. It can be seen that as the inner pipe diameter is increased the

flow remains stable up to larger flow rates, possibly also exceeding the theoret-

ical bounds for transition. Figures 4.13a and b, show images of the established

flows for the smallest and largest inner pipe diameters (i.e. corresponding to

Fig. 4.12b and c). These results confirm that elastic effects are primarily due

to the stress history at the exit of the inner pipe, before the flow becomes

established.

We now try to quantify the total normal stress in the entry region of our

flow. Figure 4.14a shows an example of the extensional viscosity ηE(ε) for the

0.75% Polyethylene Oxide solution used in these experimental series. From

the images of the experiments we can measure the developing radial position
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(a)

(b)

Figure 4.13: Snapshots of the established flows in Series 6 for (a) in-
ner pipe of size 1 (b) inner pipe of size 5. From left to right Q1 =
5.5, 11, 16, 21, 28, 37 mL/s respectively. The camera captures 30 cm of
the pipe from above the exit of the inner pipe.
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rd of the interface as it evolves along the development region. For the smallest

diameter inner pipe (size 1), Fig. 4.14b plots rd against the distance z from the

nozzle exit, at different flow rates. The vertical broken lines in this figure show

the fully developed radius, as predicted from the multi-layer model. From the

flow rate and interface position we are able to estimate the mean extensional

strain (ε) and strain rate (ε̇), as the flow develops in the entry region. We

then evaluate the mean total normal stress difference σe
t from

σe
t = ηE(ε̇, t)ε̇. (4.7)

Equation (4.7) gives a reasonable estimate of the normal stress difference in the

development region. How much of σe
t remains at the end of the development

region is estimated using a characteristic time (tc = development length/mean

velocity) and on assuming an exponential decay. The residual normal stress

difference σr
t is therefore estimated by:

σr
t = σe

t exp(−tc
λ

), (4.8)

where λ comes from fitting an upper convected Maxwell model to our exten-

sional rheometry data. Here we have taken λ = 0.08s, but in practice for

such fluids, a spectrum of relaxation times can occur. Figure 4.14c shows

the characteristic time for the smallest and largest inner pipes at different

flow rates. Note that at fixed flow rate the larger inner pipe diameter has a

much slower mean velocity. Therefore, although the development lengths are

typically shorter when the interface contracts rather than expands, the char-

acteristic time may be longer. The other main influence is from the flow rate:

the development length tends to increase with Reynolds number.

The total and residual normal stress differences are shown in Fig. 4.15 for

the different flow rate and for inner pipes of size 1 and 5. For the large pipe

diameter we see that the residual normal stress difference has decayed to the

yield stress value or below, whereas for the smaller inlet diameter the residual
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Figure 4.14: a) Example of the extensional viscosity for 0.75% Polyethy-
lene Oxide solution at ε̇0 = 9 s−1. b) Developing radius of inner fluid (rd)
against axial distance z, measured from the inner pipe exit for size 1 pipe
at: (Q1, Q2) = (5.5, 30) mL/s, ◦; (Q1, Q2) = (11, 30) mL/s, △ ; (Q1, Q2) =
(16, 30) mL/s, �; (Q1, Q2) = (21, 30) mL/s, ⋄ ;(Q1, Q2) = (28, 30) mL/s, ×.
Broken vertical lines show the value of ri predicted from the multi-layer model.
c) Characteristic times tc for inner pipe of size 1, •, and size 5, �.

stresses far exceed the yield stress. Although we may estimate σe
t and σr

t in

this way, interpretation of the values is quite hard. First of all, let us note

that even with inelastic fluids there is an entry/development region in which

the outer fluid is yielded at the interface. Thus, trying to make quantitative

estimates for the normal stresses that are transmitted to the Carbopol in the

entry/development region has no purpose.

Secondly, the residual stress estimates do not tell us the distribution of

the normal stresses between radial and axial components. If we consider the

residual normal stress differences in Fig. 4.15b for the smaller pipe size, we

see that even at low flow rates these far exceed the yield stress. However, for

these flows there is no evidence of instability. We can infer that the interface

is unyielded at these stable low flow rates since at slightly higher flow rates we

have observed the frozen interfacial wave pattern, advected at constant speed.

Since the radial component of the normal stress would transmit across the in-

terface and be sufficient to yield the Carbopol at low flow rates, it seems that

the majority of σr
t comes from the axial component. Even when we have the

frozen wavy interface, note that the axial stress component is multiplied by the
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Figure 4.15: a) Total normal stress difference; b) residual normal stress differ-
ence. Pipe of size 1, •; size 5, �.

slope of the interface before contributing to the normal stress transmitted at

the interface. This slope may be approximated by twice the ratio of amplitude

to wavelength of the oscillations, i.e. ≈ 1/25, meaning that the contribution

from the axial stresses is of the order of 1 − 2 Pa for our smallest size inner

diameter, for the observed frozen wavy interfaces. As we already have signif-

icant shear stresses, the size of this additional contribution is consistent with

the observed eventual yielding of the plug as Q1 is further increased. However,

this falls short of a quantitative prediction.

4.4 Conclusions

This chapter has mostly focused on establishing the practicality of using the

visco-plastic lubrication technique with a viscoelastic core fluid. A simple one-

dimensional multi-layer model has been outlined for experimental design and

control purposes. This model relies exclusively on the shear rheology of the

two fluids. We have performed two series of test experiments with Newtonian

core fluids (water and Glycerin 95%) to verify the multi-layer model. These

initial results indicate that the stable flow is robust and persists over lengths

of ∼ 1000ri, for the duration of our experiments. Moreover the presence of
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the plug around the core fluid guaranties the stability of the multi-layer flow

provided the inner core fluid is itself stable and lies in laminar flow regime.

These conclusions largely confirm those of [55]. A new finding of relevance to

the design of robust multi-layer transport processes is that the series of exper-

iments performed with Glycerin 95% exhibited a significant density difference

between the fluids but was still found to be stable where predicted. The pipe

inclination is vertical here, so this may be affected by other inclinations, but

at least the methodology does not break down with density differences. This

is an area that merits further investigation.

Turning now to the main focus of this chapter, viscoelastic core fluids, the

first conclusion is that we have been able to observe stable multi-layer flows

when lubricated by a visco-plastic fluid, i.e. the methodology does extend to

this important class of flows. The more difficult question to answer is whether

the elasticity of the core fluid has a positive or negative effect on the stability.

Our second set of experiments (Series 3-5) used a small inlet pipe diam-

eter, so that the core fluid always has to expand to attain the radius ri of

the established base flow. This expansion entails a relaxation of the normal

stresses, which we have seen is destabilizing. The flows in Series 3 and 4 do

destabilize before the transition predicted by the multi-layer shear flow model.

Indeed the transition occurs at a threshold in flow rate Q1, which largely cor-

responds to a threshold in normal stresses. At small Q1 the flow is stable with

a sharp interface along the length of the pipe, but on increasing Q1 interfacial

instabilities appear.

When the unyielded plug exists around the core fluid we see an interest-

ing transitional regime in which the wavy elastic instability is frozen into the

unyielded plug and then translates along the pipe. This effect is amplified

with the inner fluid elasticity. The frozen interface flows are a fascinating

combination of both elastic and yield stress effects. The yield stress does the

freezing but the viscoelasticity combined with the flow expansion (= stress

relaxation) combine to instigate the interfacial waves in the flow development
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region, before the parallel flow is established and the plug forms at the in-

terface. Our recent computational work (albeit for Newtonian core fluids and

Bingham outer fluids) indicates that the plug can begin to form within a few

diameters of the core fluid inlet pipe exit, [52, 53]. Therefore, the balance of

elastic instability and freezing is evidently delicate.

At still larger flow rates Q1 (but still below the shear flow threshold) the

plug is broken. However, even in the unstable regime the degree of mixing

is much less than in the case of a Newtonian core fluid. One phenomenon

associated with viscoelasticity is the resistance to stretching of fluid elements

due to the large extensional viscosity. This evidently retards local mixing

mechanisms and can be viewed as a stabilizing effect.

In Series 5 we reduced the yield stress in the outer fluid and amplified the

elasticity of the core fluid, so that all our base flows had a yielded interface.

This series highlighted the importance of the elasticity in both stabilizing and

destabilizing the flow. At low flow rates we found stable axisymmetric flows

with a sharp interface at the predicted radial position: the elasticity is sta-

bilizing with the larger extensional viscosity resisting interfacial deformation

that is instigated by normal stress relaxation due to the flow expansion. As Q1

increases, the normal stress relaxation dominates and interfacial waves appear.

Analysis of typical instabilities indicate that the range of dominant frequency

of the viscoelastic oscillation overlaps with the range of relaxation frequencies

obtained from extensional and shear rheometry measurements.

Finally we have shown (Series 6) that elastic instabilities depend to a large

extent on the state of stress of the core fluid transported to the exit of the

inner pipe and thereafter to the established flow. Hence the inlet geometry

has significant effect on stability of the flow. Our experiments have shown

that for large inlet pipe diameters the appearance of interfacial instabilities

is retarded. This leads to the interesting question of whether or not a flow

contraction could be used to stabilize an otherwise unstable flow?
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Chapter 5

Nonlinear stability of a

visco-plastically lubricated

viscoelastic fluid flow1

In this chapter, we study theoretically a core-annular pipe flow configuration,

with a viscoelastic core fluid lubricated by a yield stress fluid (see Figs. 5.1a-c).

As many industrial multi-layer flows involve fluids with viscoelastic properties

it is of interest to establish the feasibility of VPL (Visco-Plastically Lubri-

cated) flows with viscoelastic core fluids. In Chapter 4, we have addressed this

question from an experimental perspective and here we consider analysis of

the flow stability for the established flow.

In the context of the existing literature (see chapter 1) our study is some-

what unique in that we consider fully nonlinear stability of two complex fluids

via an energy stability method, i.e. this is not a weakly nonlinear extension

of linear stability. Energy stability methods are rarely used for multi-fluid

problems since in general the deforming interface makes it hard to track the

domains of perturbed and unperturbed fluids. However, in VPL flows an inter-

facial region in the yield stress fluid remains unyielded which means that the

set of interfacial motions is restricted to rigid body motions. Here we adapt

the method of [85] for dealing with this aspect of the flow stability.

One particular feature of the study of stability in shear flows of yield stress

1A version of Chapter 5 has been submitted for publication (under review). [S. Hormozi],
and I.A. Frigaard. Nonlinear stability of a visco-plastically lubricated viscoelastic fluid flow
[50].
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Figure 5.1: a) A visco-plastically lubricated pipe flow; b) Cross-section of the
flow in the axisymmetric case, with Ω1 (Newtonian fluid) lubricated by Ω2

(Bingham fluid); c) Schematic of the type of basic velocity profiles considered,
with reduced rate of strain in the Newtonian fluid and an unyielded plug
zone adjacent to the interface in the lubricating fluid; d) A visco-plastically
lubricated flow with a square cross-section.

fluids is the implicit assumption of boundedness of the shear stress pertur-

bations, i.e. in both linear stability and nonlinear stability, smallness of the

perturbations is measured with respect to the stress perturbations and not

the velocity perturbations. Although we use the energy method, our results

are conditional on the size of perturbations. In the yield stress context this

translates into conditions on the L∞ norm of shear stress perturbations. Here

we also assume a similar condition on the maximal perturbation of the elastic

stresses. This enables us to derive decay bounds for the two-fluid system, via

control of both Weissenberg and Reynolds numbers. The energy used is a
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linear combination of the L2 norms of the velocity and elastic stress pertur-

bation. Since assumptions were made on the L∞ norm of the elastic stress

perturbation our results are not self-consistent, i.e. this assumption cannot be

verified by the results. However, this self-consistency is anyway lacking in VPL

flows without elasticity due to the necessity to bound the shear stress pertur-

bations. In this sense the introduction of viscoelasticity does not compromise

the stability results.

The chapter proceeds as follows. Below in §5.1 we introduce the model

equations and class of flows that we consider. Section 5.2 introduces the anal-

ysis for the case where the interface does not move. For clarity, we start with

the case in which even the outer fluid layer is static in order to expose the

treatment of individual terms in the viscoelastic region. We focus on the core

annular case with a circular interface (Figs. 5.1a-c) but also state more general

bounds that could be applied to non-circular interfaces (e.g. Fig. 5.1d), which

are feasible as steady flows in the VPL context. We allow the outer layer to

move in §5.2.2 and then finally in §5.3 allow the fluid domains to translate

within the pipe. The chapter closes with a discussion.

5.1 Model equations

Two Non-Newtonian fluids flow along an infinite circular pipe. We focus on the

case where the pipe cross section is separated into two distinct fluid domains,

with fluid 2 providing a lubricating layer for fluid 1, i.e. the cross-sectional

domain occupied by fluid 1 is completely surrounded by fluid 2, which abuts

the wall of the pipe, see Fig. 5.1. It will be assumed throughout that fluid 1

is a visco-elastic fluid and fluid 2 is a visco-plastic fluid with yield stress. The

aim of this chapter is to show that the type of (conditional) energy stability

that was established in [85] for the above configuration with an inelastic core

fluid also holds for visco-elastic fluids, under the same physical assumptions

on the stress perturbations as made in [85].
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5.1. Model equations

We fix an arbitrary finite length L̂ of the pipe and will consider nonlinear

stability of the basic flows to perturbations that are L̂-periodic with respect

to the axial direction. We denote the total fluid domain by Ω and the 2

individual fluid domains by Ω1 and Ω2, respectively. The pipe and coordinates

are aligned such that the ẑ-axis corresponds to the pipe axis. Fluid 1 has total

viscosity µ̂[1] and solvent viscosity η̂. Fluid 2 is characterised rheologically by

its yield stress τ̂
[2]
yield and plastic viscosity µ̂[2]. It is assumed that both fluids

have the same density ρ̂ and surface tension is neglected. The total flow rate

along the pipe is Q̂ and the pipe radius is R̂, thus defining the mean axial

velocity: Û0 = Q̂/πR̂2. The pressure is denoted p̂(x̂, t̂), û(x̂, t̂) is the velocity,

τ̂ij
[k] denotes the deviatoric stress tensor in fluid k, and ĝi is the gravitational

acceleration in direction i.

The Navier-Stokes equations are made dimensionless with the following

scaling:

x =
x̂

R̂
, t =

t̂Û0

R̂
, u =

û

Û0

, p =
p̂

ρ̂Û2
0

, τij =
τ̂ijR̂

µ̂[2]Û0

, fi =
ĝiR̂

Û2
0

, (5.1)

leading to:

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
+

1

Re[2]
∂τij

[l]

∂xj
+ fi, l = 1, 2 (5.2)

0 =
∂ui

∂xi
, (5.3)

in each fluid domain. Constitutive laws for the two fluids are:

τ
[1]
ij = βmγ̇ij + τ e

ij (5.4)

1

We
τ e
ij +

∂τ e
ij

∂t
+ uk

∂τ e
ij

∂xk
− ∂ui

∂xk
τ e
kj − τ e

ik

∂uj

∂xk
=

m

We
(1 − β)γ̇ij, (5.5)
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5.1. Model equations

γ̇(u) = 0 ⇐⇒ τ [2](u) ≤ B, (5.6)

τ
[2]
ij (u) =

[

1 +
B

γ̇(u)

]

γ̇ij(u) ⇐⇒ τ [2](u) > B. (5.7)

where

γ̇ij =
∂ui

∂xj
+
∂uj

∂xi
,

γ̇(u) =

[

1

2

3
∑

i,j=1

[γ̇ij(u)]2

]1/2

τ [2](u) =

[

1

2

3
∑

i,j=1

[τ
[2]
ij (u)]2

]1/2

. (5.8)

Thus, we have assumed that the outer fluid is a Bingham fluid and the inner

fluid is an Oldroyd-B fluid.

The 5 dimensionless parameters appearing above are defined by:

m =
µ̂[1]

µ̂[2]
, β =

η̂

µ̂[1]
, We =

λ̂Û0

R̂
, Re[2] =

ρ̂R̂Û0

µ̂[2]
, B =

τ̂
[2]
yieldR̂

Û0µ̂[2]
. (5.9)

These are the viscosity ratio m (total viscosity of inner to plastic viscosity of

outer fluid), the solvent to total viscosity ratio of fluid 1 (β), the Weissenberg

number of fluid 1 (We, where λ̂ is characteristic relaxation time for viscoelastic

fluid), the fluid 2 Reynolds number and the Bingham number, respectively. A

fluid 1 Reynolds number Re[1] may also be defined as: Re[2] = mβRe[1], and

will be used for convenience later.

Boundary conditions are:

u = 0, x2 + y2 = 1, (5.10)

u(x, y, z, t) = u(x, y, z + L, t), (5.11)

Across the interface, (denoted Γi with unit normal n), velocity and stress are
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5.1. Model equations

continuous:

u continuous on Γi, (5.12)

(−pδij +
1

Re[2]
τ

[k]
ij )nj continuous on Γi, (5.13)

where δij is the Kronecker delta.

5.1.1 Axisymmetric base flows

In what follows we shall consider nonlinear perturbations of the base flow.

Following [85] the base flows of interest will include those that are asymmet-

ric. However, to gain some insight into the problem we start by considering

axisymmetric base flows, in which a circular region of fluid 1 is surrounded con-

centrically by an annulus of fluid 2. The base flows are parallel shear flows with

a single velocity component W in the z-direction. We adopt cylindrical coor-

dinates (r, θ, z), and denote the axisymmetric base solution u = (0, 0,W (r)).

The interface between the fluids is at r = ri.

For fluid 1, the elastic stress of the base flow has the following form:

τ
[e]
ij =







0 0 m(1 − β)W ′

0 0 0

m(1 − β)W ′ 0 2 We m(1 − β)W ′2







We note that in a fully developed flow the component τ
[e]
zz plays no role in

determining the base velocity, which is essentially Newtonian and determined

from τrz = βmγ̇rz + τ
[e]
rz . Instead, this expression defines τ

[e]
zz in terms of the

base velocity gradient.

To find the base flow we include the body force terms fi into a modified

pressure field, P (z), which decreases linearly with z, and define

G = −Re[2]∂P
∂z

> 0.

138



5.1. Model equations

In the Bingham fluid the only non-zero components of the stress tensor are:

τ [2]
rz = τ [2]

zr = −Gr
2
, (5.14)

and we observe that the Bingham fluid is yielded for r > ry, where ry = 2B/G.

If the Bingham fluid is yielded, then we have:

τ [2]
rz = τ [2]

zr = −Gr
2

= W ′(r) − B,

and otherwise W ′(r) = 0. Three different types of base flow can be found

according to whether or not the Bingham fluid moves at all, and whether or

not the Bingham fluid is yielded at the interface, i.e. ry ≥ 1, 1 > ry > ri or

ry ≤ ri. We illustrate these solution types in Fig. 5.2 and describe the different

cases as follows.

Case 1: ry ∈ (ri, 1), in which case there exists an unyielded plug surrounding

the Newtonian region. The solution is given by:

W (r) =































G

4m
[(r2

i − r2)] +Wp 0 ≤ r ≤ ri,

Wp ri < r ≤ ry,

Wp −
B

2ry
[(r − ry)

2] ry < r ≤ 1.

(5.15)

where the flow rate constraint now leads to finding G from the root of the

following quartic:

0 = G4(3 +
3r4

i

m
) − 8G3(3 +B) + 16B4. (5.16)

This can be recast into an implicit equation for ry:

0 = 3 +
3r4

i

m
− 4ry

(

3

B
+ 1

)

+ r4
y. (5.17)
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5.1. Model equations

The plug velocity Wp and yield surface radius are given by:

Wp =
B

2ry
(1 − ry)

2, ry =
2B

G
(5.18)

Case 2: ry ∈ [0, ri), in which case the Bingham fluid region is entirely yielded.

The solution is given by:

W (r) =















G

4m
(r2

i − r2) +
G

4
(1 − r2

i ) +B(ri − 1) 0 ≤ r ≤ ri,

G

4
(1 − r)2 +B(r − 1) ri < r ≤ 1.

(5.19)

with G determined from:

0 = 8B(r3
i − 1 − 3

B
) + 3G(1 +

r4
i

m
− r4

i ). (5.20)

Note that in cases 2 & 3 the nonlinear equations for the pressure gradient

G can be recast in the form of equations for ry < 1. The solutions to these

equations depend exclusively on (ri, B,m). The parameter domains where

each solution type is found are displayed in Fig. 5.2.

Case 3: ry ∈ [1,∞), in which case the Bingham fluid is wholly unyielded and

does not flow. The solution is:

W (r) =







G

4m
[(r2

i − r2)] 0 ≤ r ≤ ri,

0 ri < r ≤ 1.
(5.21)

Where, G, which is determined from:

0 = 8m−Gr4
i . (5.22)

This latter equation is simply the constraint on the flow rate which follows

from scaling with the mean velocity, i.e. the mean velocity must equal 1.
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r

W(r)

r

W(r)

r

W(r)

Figure 5.2: Parameter domains where the base solutions are found in
(ri, B,m)-space for m = 10, with schematic velocity profiles.

5.2 Conditional stability for a stationary

domain Ω1

Compared to previous studies the main physical difference we consider is that

the inner core fluid 1 is now viscoelastic. Our treatment of the Bingham fluid

will be largely as in [85], so we structure this chapter to expose the analysis

of the viscoelastic core. For this reason we start (§5.2.1) with the simplest

situation, namely that in which the outer Bingham fluid is static (i.e. case 3,

above) which has only the viscoelastic fluid to deal with. We then move to the

visco-plastic lubrication scenario (case 2, above), but still keeping the interface

between domains fixed (§5.2.2). In the following section (§5.3) we allow the

interface and plug to move. As we develop our analysis we consider primarily

the concentric circular interface, but also outline how the various bounds are

changed for a more general shape of Ω1.
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5.2. Conditional stability for a stationary domain Ω1

5.2.1 Conditional stability of the case 3 axisymmetric

base flow

Although we start with a case 3 axisymmetric base flow, which apparently

requires only analysis of fluid 1, it is important to realize at the outset that

the validity of the analysis is still conditional on the size of shear stress pertur-

bation. The base stress in the outer fluid is given by (5.14) and the non-zero

components have maximal value G/2 < B at the outer wall. If the outer fluid

is to remain unyielded we require:

|τij [2](U + u) − τij
[2](U)| < A, i, j = 1, 2, 3, (5.23)

for some A > 0 such that

τ [2](U + u) ≤ |A + τij(U)| =

[

(A +G/2)2 +
7

2
A2

]1/2

< B.

Thus, assuming bounds on the L∞ norm of the perturbed shear stress compo-

nents is a natural part of any analysis of stability of yield stress fluid flows.

Below we shall also assume a similar bound on the size (L∞ norm) of the

perturbed elastic stresses. This is necessary, but evidently weakens the self-

consistency of the energy method. We acknowledge this weakness and can

offer no analytical remedy, but simply point out that this type of assumption

is anyway necessary in dealing later with the yield stress fluid.

We consider nonlinear stability of (5.21) via the classical energy stability

approach. The perturbed velocity and pressure fields are assumed periodic in

the axial direction, and are denoted:

U + u = (0, 0,W ) + (u, v, w), P + p = P + p,

where W = W (r) is given by (5.21) and P = P (z) is linear in z. The pertur-
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5.2. Conditional stability for a stationary domain Ω1

bation of the elastic stresses is denoted

δτ e
ij = τ e

ij(U + u) − τ e
ij(U).

The equations of motion and constitutive equation for the base flow are:

0 = −∂P
∂xi

+
1

Re[2]
∂

∂xj

τij
[1](U), (5.24)

0 =
∂Ui

∂xi

(5.25)

0 =
1

We
τ e
ij(U) − ∂Ui

∂xk

τ e
kj(U) − τ e

ik(U)
∂Uj

∂xk

− m

We
(1 − β)γ̇ij(U) (5.26)

and for the perturbed flow:

0 =

[

∂

∂t
+ (Uj + uj)

∂

∂xj

]

(Ui + ui) +
∂

∂xi

(P + p)

− 1

Re[2]
∂

∂xj

τij
[1](U + u). (5.27)

0 =
∂

∂xi

(Ui + ui) (5.28)

0 =
1

We
τ e
ij(U + u) +

∂τ e
ij(U + u)

∂t
+ (Uk + uk)

∂τ e
ij(U + u)

∂xk

−∂(Ui + ui)

∂xk

τ e
kj(U + u) − τ e

ik(U + u)
∂(Uj + uj)

∂xk

− m

We
(1 − β)γ̇ij(U + u) (5.29)

For the kinetic energy we subtract (5.24) from (5.27), multiply by ui, and
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5.2. Conditional stability for a stationary domain Ω1

integrate over Ω1 to give

∫

Ω1

1

2

D

Dt
ui

2 dx = −
∫

Ω1

uj
∂Ui

∂xj

ui dx

− 1

Re[2]

∫

Ω1

∂ui

∂xj
[τij

[1](U + u) − τij
[1](U)] dx

+

∫

∂Ω1

ui[−p +
1

Re[2]
[τ

[1]
ij (U + u) − τ

[1]
ij (U ))]n

[1]
j ds,

(5.30)

where we have used the divergence theorem to derive the last term, n de-

noting the outward normal to the boundary ∂Ω1 of Ω1. All the boundary

integrals vanish, through a combination of: (i) periodicity at the ends of the

domain considered, (ii) zero perturbed velocity u = 0 in the outer fluid and

consequently (by continuity), u = 0 at the interface. This leads to:

1

2

D

Dt
〈uiui〉 = −〈uj

∂Ui

∂xj
ui〉 −

mβ

Re[2]
〈∂ui

∂xj

∂ui

∂xj
〉 − 1

Re[2]
〈∂ui

∂xj
δτ e

ij〉 (5.31)

where, we have denoted by 〈.〉 the operation of integration over Ω1.

For the elastic perturbation we consider (a linear multiple of) the polymer’s

elastic potential energy. We subtract (5.26) from (5.29), multiply by δτ e
ij , and

integrate over domain Ω1 to give:

1

2

D

Dt
〈δτ e

ijδτ
e
ij〉 +

1

We
〈δτ e

ijδτ
e
ij〉 =

2m(1 − β)

We
〈∂ui

∂xj
δτ e

ij〉 (5.32)

+〈∂(Ui + ui)

∂xk
δτ e

kjδτ
e
ij〉 + 〈δτ e

ik

∂(Uj + uj)

∂xk
δτ e

ij〉 (Term A)

+〈 ∂ui

∂xk
τ e
kj(U)δτij〉 + 〈τ e

ik(U)
∂uj

∂xk
δτij〉 (Term B)

−〈uk

∂τ e
ij(U)

∂xk

δτ e
ij〉 (Term C)
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As total energy functional E[1] for the perturbed flow of fluid 1, we select

E[1] =
1

2

[

〈uiui〉 +
We

2m(1 − β)Re[2]
〈δτ e

ijδτ
e
ij〉
]

=

1

2

[

||u||22 +
We

2m2β(1 − β)Re[1]
||δτ e||22

]

;

recall Re[2] = mβRe[1]. Note that we use || · ||p to denote the Lp norm. This

choice of a specific linear combination of kinetic and elastic perturbation en-

ergies serves to balance the last term in (5.31) with the first term on the

right-hand side of (5.32). Combining (5.31) with (5.32) leads to:

D

Dt
E[1] = −〈uj

∂Ui

∂xj
ui〉 −

1

Re[1]
〈∂ui

∂xj

∂ui

∂xj
〉 − 1

2m2β(1 − β)Re[1]
〈δτ e

ijδτ
e
ij〉

+
We

2m2β(1 − β)Re[1]
[(Term A) + (Term B) + (Term C)] (5.33)

The first term in (5.33) is bounded as follows

−〈uj
∂Ui

∂xj
ui〉 =

G

2m
〈ruw〉 ≤ GΛN

2m
〈∂ui

∂xj

∂ui

∂xj
〉, (5.34)

and following [85] we have the upper bound ΛN ≤ r3
i /RJ , with RJ = 81.49

from Joseph & Carmi (see e.g. [58, 60]). We now consider bounds for (Term

A) - (Term C).

Term A

General Ω1: From the symmetry of δτ e
ij and linearity of γ̇ij, we can rewrite:

(Term A) = 〈δτ e
ijγ̇ik(U)δτ e

kj〉 + 〈δτ e
ij γ̇ik(u)δτ e

kj〉.

Using the generalized Holder inequality and modified Young’s inequality (see

[3]) we can bound the first term above as follows (making the summations
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explicit):

〈δτ e
ijγ̇ik(U)δτ e

kj〉 = 〈
3
∑

i,k=1

γ̇ik(U)
3
∑

j=1

δτ e
kjδτ

e
ij〉

≤
3
∑

i,j,k=1

||γ̇ik(U)||∞ ||δτ e
kj||2 ||δτ e

ij||2

≤ CA,1

3
∑

i,j,k=1

〈δτ e
kjδτ

e
kj〉2

2
+

〈δτ e
ijδτ

e
ij〉2

2
= 3CA,1〈δτ e

ijδτ
e
ij〉,

where

CA,1 ≡ max
ik

{||γ̇ik(U)||∞}.

For the second part of (Term A) we note that the expressions are cubic in the

perturbation. As discussed earlier, we shall assume a bound of the form (5.23)

on the elastic stress perturbations. For simplicity we adopt the same upper

bound, i.e. we assume

||δτ e||∞ < A. (5.35)

Applying the same inequalities as for the first part of (Term A) we may write

:

〈
3
∑

i,j,k=1

γ̇ik(u)δτ e
kjδτ

e
ij〉 ≤ ||δτ e||∞

3
∑

i,j,k=1

〈γ̇ik(u)γ̇ik(u)〉
2

+
〈δτ e

ijδτ
e
ij〉

2

≦
3

2
A{〈γ̇ij(u)γ̇ij(u)〉 + 〈δτ e

ijδτ
e
ij〉}.

Circular Ω1: For the circular cylindrical domain we have only one non-zero

rate of strain for the base flow, so that CA,1 = Gri/2m and:

〈δτ e
ijγ̇ik(U)δτ e

kj〉 ≤ CA,1〈δτ e
ijδτ

e
ij〉 =

Gri

2m
||δτ e||22. (5.36)
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Consequently for (Term A) we have:

(Term A) ≦

(

Gri

2m
+

3A
2

)

||δτ e||22 + 3A〈∂ui

∂xj

∂ui

∂xj
〉. (5.37)

Note we have used that:

〈γ̇ij(u)γ̇ij(u)〉 = 2〈∂ui

∂xj

∂ui

∂xj
〉.

Term B

General Ω1: For (Term B) we use symmetry of the elastic stress tensor, then

apply the generalized Holder inequality and modified Young’s inequality:

(Term B) = 〈
3
∑

i,k=1

γ̇ik(u)

3
∑

j=1

τ e
ji(U)δτ e

jk〉

≤
3
∑

i,j,k=1

||γ̇ik(u))||2||τ e
ji(U)||∞||δτ e

jk(U)||2

≤ CB,1

3
∑

i,j,k=1

〈γ̇ik(u)γ̇ik(u)〉
2

+
〈δτ e

jkδτ
e
jk〉

2

= 3CB,1

( ||δτ e||22
2

+ 〈∂ui

∂xj

∂ui

∂xj
〉
)

,

where CB,1 ≡ supij{||τ e
ij(U )||∞.

Circular Ω1: In this case there are only 2 non-zero elastic stress components:

τ e
rz(U) = τ e

zr(U ) = (1 − β)
Gr

2
, τ e

zz(U) = We(1 − β)
G2r2

2m
, (5.38)

so that

CB,1 = (1 − β)
Gri

2
max

{

1,
WeGri

m

}

,
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and the bound can be improved to:

(Term B) ≤ CB,1

(

||δτ e||22 + 2〈∂ui

∂xj

∂ui

∂xj
〉
)

. (5.39)

Term C

General Ω1: We apply the generalized Holder inequality on (Term C) in the

following way:

(Term C) ≤
3
∑

i,j,k=1

∥

∥

∥

∥

∂τ e
ij(U)

∂xk

∥

∥

∥

∥

3

||uk||6||δτ e
ij||2 (5.40)

For this choice of spaces, using the Sobolev embedding theorem, we have:

||u||L6 ≤ CC,0||u||W 1,2

for some positive constant CC,0. Thus, we can proceed in the usual fashion to

derive an energy bound. The main point here is that we can use the norm

∥

∥

∥

∥

∂τ e
ij(U)

∂xk

∥

∥

∥

∥

3

for the base flow elastic stress field. This may allow us to treat less regular

base flow elastic stress fields within the same framework. Such stress fields are

likely to arise from less regular domains Ω1.

Circular Ω1: For this case the base flow elastic stresses are C∞, have only 3

non-zero components (depending only on r) and we can use a simpler choice
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of spaces:

(Term C) ≤
3
∑

i,j=1

∥

∥

∥

∥

∂τ e
ij(U)

∂xk

∥

∥

∥

∥

∞

||u||2||δτ e
ij||2

≤ CC,1

3
∑

i,j=1

||u||2||δτ e
ij||2 ≤

3CC,1

2
||u||22 +

CC,1

2
||δτ e||22

where, from (5.38) we have:

CC,1 ≡ sup
ij

{
∥

∥

∥

∥

∂τ e
ij(U)

∂xk

∥

∥

∥

∥

∞

}

= (1 − β)
G

2
max

{

1,
2WeGri

m

}

.

Energy decay bound

Combining our bounds for the above terms we have the following energy in-

equality:

D

Dt
E[1] ≤ 1

2m2β(1 − β)Re[1]
[FI − 1] ||δτ e||22

+

[

F∗
II −

1

Re[1]

]

〈∂ui

∂xj

∂ui

∂xj
〉 + F∗

III||u||22 (5.41)

where the constants are:

FI = We

[

3A
2

+
Gri

2m
+ CB,1 +

CC,1

2

]

(5.42)

F∗
II =

GΛN

2m
+

We

2m2β(1 − β)Re[1]
[3A + 2CB,1] (5.43)

F∗
III =

We

2m2β(1 − β)Re[1]
3CC,1

2
(5.44)

For energy decay we shall assume that F∗
II < 1/Re[1], after which we can
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5.2. Conditional stability for a stationary domain Ω1

apply the Poincaré inequality, combining the last two terms in (5.41):

−
[

1

Re[1]
−F∗

II

]

〈∂ui

∂xj

∂ui

∂xj
〉 + F∗

III||u||22 ≤ − 1

Re[1]CP
[1 −FII ]||u||22

where

FII =
GΛNRe

[1]

2m
+

We

2m2β(1 − β)

[

3A + 2CB,1 +
3CPCC,1

2

]

and CP is the coefficient in the Poincaré-inequality for circular Ω1 of radius ri:

CP =
r2
i

RM
,

where RM = 5.78319; see [85].

We can see that F∗
II < 1/Re[1] is satisfied if FII < 1. Assuming the two

conditions: FI < 1 and FII < 1 we have:

D

Dt
E[1](t) =

D

Dt

[

We

2m2β(1 − β)Re[1]
||δτ e||22

2
+

||u||22
2

]

≤ −
[

(1 − FI)

2m2β(1 − β)Re[1]
||δτ e||22 +

(1 − FII)

Re[1]CP
||u||22

]

,

≤ −2 min

{

(1 −FI)

We
,
(1 − FII)

Re[1]CP

}

E[1](t). (5.45)

and consequently:

E[1](t) ≤ E[1](0) exp

(

−2 min

{

(1 − FI)

We
,
(1 − FII)

Re[1]CP

}

t

)

,

showing the role of both We and Re[1] in the decay of the energy.

Let’s now examine the two conditions FI < 1 and FII < 1, with the aim

of extracting simpler expressions that can be interpreted physically. If FI < 1

we see that WeGri/m < 2 and this allows us to bound the constants CB,1 and
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5.2. Conditional stability for a stationary domain Ω1

CC,1. Substituting also for the expression for G = 8m/r4
i , we have:

FI ≤We

[

3A
2

+
8

r4
i

(ri[0.5 +m(1 − β)] +m(1 − β))

]

≤ 1.

FII ≤ 4Re[1]

81.49ri

+
We

m2β(1 − β)

[

3A
2

+
m(1 − β)

r3
i

(8 +
12ri

5.783..
)

]

≤ 1.

Starting with FII < 1, we see that it is first necessary to satisfy a bound on

Re[1]. Suppose we satisfy the constraint on Re[1] by setting

4Re[1]

81.49ri
= α < 1, (5.46)

for some chosen α. We now select We to satisfy:

We ≤ min







1
[

3A
2

+ 8
r4

i

(ri[0.5 +m(1 − β)] +m(1 − β))
] ,

(1 − α)m2β(1 − β)
[

3A
2

+ m(1−β)
r3

i

(8 + 12ri

5.783..
)
]







(5.47)

Both the above bounds depend on ri. In the bound for We this dependency

is strong. Note however that for a case 3 base flow all the fluid passes through

the central core: the mean velocity scales like 1/r2
i and the diameter like ri.

Consequently, we may consider that an appropriate Reynolds number for the

inner fluid in a case 3 flow is:

R̃e
[1]

=
Re[1]

ri

,

and similarly, an appropriate Weissenberg number is

W̃ e =
We

r3
i

.
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5.2. Conditional stability for a stationary domain Ω1

Consequently, the bounds become

R̃e
[1]

=
81.49α

4
: α < 1, (5.48)

W̃ e ≤ min{Ξ1Ξ2} (5.49)

Ξ1 =
1

[

3Ar3

i

2
+ 8([0.5 +m(1 − β)] +m(1 − β)/ri)

] ,

Ξ2 =
(1 − α)m2β(1 − β)

[

3Ar3

i

2
+m(1 − β)(8 + 12ri

5.783..
)
] .

Neither bound is particularly severe when expressed in terms of the modi-

fied Reynolds and Weissenberg numbers, R̃e
[1]

and W̃ e.

If we were to consider a non-circular Ω1, the more general bounds on terms

A-C need to be applied, which rely on some regularity of Ω1. However, we can

see that the basic structure of the inequalities and the conditions for energy

stability, are not qualitatively affected.

5.2.2 Conditional stability for the case 1 axisymmetric

base solution: stationary Ω1

We now look at the situation in which the base solution is the case 1 ax-

isymmetric solution, so that the outer Bingham fluid is mobile. In the next

section (§5.3) we allow for the possibility that the interface and surrounding

plug region are mobile, but here we consider a more restricted problem.

(i) The domain Ω1 remains stationary, i.e. the interface does not move and

the perturbed velocity is zero at the interface.

(ii) The shear stress of the nonlinear perturbation satisfies a stress bound of

form (5.23), such that we retain a layer of unyielded fluid around the in-

terface. We also assume again a bound on the elastic stress perturbation

of the same form, as in the previous section.
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5.2. Conditional stability for a stationary domain Ω1

This last condition amounts to choosing a sufficiently small (but finite) bound

A in (5.23). Note that the unperturbed stress varies linearly with r:

τ [2](U)(r) = |τrz
[2](U)|(r) =

r

ry
B.

From (5.23) we see that

τ [2](U + u) ≤
[

(

A +
r

ry

B

)2

+
7

2
A2

]1/2

,

and setting r∗ ∈ (ri, ry) the perturbed flow will be unyielded for r ∈ (ri, r
∗)

provided that

A <
2B

9

(

[

9

2
− 7

2
(
r∗

ry
)2

]1/2

− r∗

ry

)

, (5.50)

i.e. with A satisfying (5.50) we have an unyielded fluid ring of width h = r∗−ri

surrounding the interface.

This restricted problem might be (falsely) interpreted as being irrelevant,

but in fact is a natural extension of a linear stability analysis. In linear sta-

bility of visco-plastic fluids, the asymptotically small size of perturbation is

imposed on the shear stress rather than on the strain rate (or velocity); see

the discussion in [28]. Essentially we take A ≪ 1, which implies only a linear

perturbation in the yield surface. Under the normal mode approach, for tem-

poral stability, the linearly perturbed stresses are periodic in z, which has the

consequence that the net force of the perturbation on the unyielded plug inte-

grates to zero. Thus, linear perturbation problems for yield stress fluids leave

any finite plug regions unperturbed. Our assumptions above can be viewed as

relaxing A ≪ 1 into the nonlinear domain, but retaining the (linear) condition

that the plug region is not perturbed. Even in nonlinear stability studies of

yield stress fluid flows it is common to make assumptions of boundedness of

the shear stress perturbation, e.g. [87].
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5.2. Conditional stability for a stationary domain Ω1

The kinetic energy equation in each domain Ωk is:

∫

Ωk

1

2

D

Dt
ui

2 dx = −
∫

Ωk

uj
∂Ui

∂xj

ui dx

− 1

Re[2]

∫

Ωk

∂ui

∂xj
[τij

[k](U + u) − τij
[k](U)] dx

+

∫

∂Ωk

ui[−p+
1

Re[2]
[τ

[k]
ij (U + u) − τ

[k]
ij (U))]n

[k]
j ds,

(5.51)

On summing the kinetic energy equations for the two domains the interfacial

terms above cancel, via continuity. The rest of the boundary integrals cancel

out due to either periodicity in z or to the boundary conditions at the wall.

We now add the perturbation kinetic energy of the Bingham fluid region to

the energy E[1](t) of the viscoelastic region, to give:

E(t) =
1

2
[〈uiui〉Ω1

+ 〈uiui〉Ω2
+

We

2m2β(1 − β)Re[1]
〈δτ e

ijδτ
e
ij〉Ω1

].

We have appended a subscript to the 〈.〉 operator, to indicate which domain

the integration is over. Adding in (5.32) as before, to the total kinetic energy

we arrive at:

D

Dt
E = −〈uj

∂Ui

∂xj
ui〉Ω1

− 1

Re[1]
〈∂ui

∂xj

∂ui

∂xj
〉Ω1

−
〈δτ e

ijδτ
e
ij〉Ω1

2m2β(1 − β)Re[1]

+We
[(Term A) + (Term B) + (Term C)]

2m2β(1 − β)Re[1]

−〈uj
∂Ui

∂xj
ui〉Ω2

− 1

Re[2]
〈∂ui

∂xj
[τ

[2]
ij (U + u) − τ

[2]
ij (U)]〉Ω2

(5.52)

Note that (Term A) - (Term C) are exactly as in (5.32).
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5.2. Conditional stability for a stationary domain Ω1

The Viscoelastic fluid region, Ω1

The base flow velocity is still an axisymmetric function, depending only on r.

The velocity gradients, strain rate components and elastic stresses of the inner

fluid are the same as for the case 3 base solution, given by identical expressions

except that now the modified pressure gradient G is found from (5.16). Since

we consider the case where the interface and plug region are not perturbed, it

follows that u = 0 at the interface r = ri.

It follows that the stability analysis for the viscoelastic region is the same

as §5.2.1. We may write

D

Dt
E ≤ [FI − 1]

2m2β(1 − β)Re[1]
||δτ e||2Ω1

+

[

F∗
II −

1

Re[1]

]

〈∂ui

∂xj

∂ui

∂xj
〉Ω1

+ F∗
III||u||2Ω1

−〈uj
∂Ui

∂xj
ui〉Ω2

− 1

Re[2]
〈∂ui

∂xj
[τ

[2]
ij (U + u) − τ

[2]
ij (U)]〉Ω2

(5.53)

where || · ||Ωk
denotes the L2 norm on Ωk. The constants FI , F∗

II and F∗
III

are as defined in (5.42)-(5.44), except that now G is found from (5.16). The

only terms left to treat in (5.53) come from the Bingham fluid region.

The Bingham fluid region, Ω2

We follow precisely the analysis in [85] for the inertial and dissipative terms

in (5.53):

−〈uj
∂Ui

∂xj
ui〉Ω2

≤ G

2
[ΛB + (ry − ri − h)ΛC ]〈∂ui

∂xj

∂ui

∂xj
〉Ω2

(5.54)

− 1

Re[2]
〈∂ui

∂xj
[τ

[2]
ij (U + u) − τ

[2]
ij (U)]〉Ω2

≤ − 1

Re[2]
〈∂ui

∂xj

∂ui

∂xj
〉Ω2

(5.55)

where

ΛB ≤ [1 − (ri + h)]3

RJ
, ΛC ≤ [1 − (ri + h)]2

RM
. (5.56)
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5.2. Conditional stability for a stationary domain Ω1

Energy stability and decay

Combining the bounds of §5.2.2 and §5.2.2, we have straightforwardly:

D

Dt
E ≤ 1

2m2β(1 − β)Re[1]
[FI − 1] ||δτ e||2Ω1

+

[

F∗
II −

1

Re[1]

]

〈∂ui

∂xj

∂ui

∂xj
〉Ω1

+F∗
III||u||2Ω1

+
1

Re[2]
[FIII − 1] 〈∂ui

∂xj

∂ui

∂xj
〉Ω2

(5.57)

with

FIII =
Re[2]G

2
[ΛB + (ry − ri − h)ΛC ]. (5.58)

We make the assumptions that FI < 1, F∗
II < 1/Re[1] (or FII < 1) and

that FIII < 1. This allows us to use the Poincaré inequality in both domains,

leading to:

D

Dt
E(t) ≤ −

[

(1 − FI)

2m2β(1 − β)Re[1]
||δτ e||22 +

(1 − FII)

Re[1]CP
||u||2Ω1

+
(1 −FIII)

Re[2]CP,2
||u||2Ω2

]

,

≤ −2 min

{

(1 − FI)

We
,
(1 − FII)

Re[1]CP
,
(1 − FIII)

Re[2]CP,2

}

E(t). (5.59)

Here CP,2 is the Poincaré constant for Ω2, which we do not evaluate as it affects

the decay rate rather than the condition for stability. Under these conditions

we have:

E(t) ≤ E(0) exp

(

−2 min

{

(1 − FI)

We
,
(1 −FII)

Re[1]CP
,
(1 − FIII)

Re[2]CP,2

}

t

)

.

Exploration of the stability bounds

As before, we can analyse the bounds FI < 1, FII < 1 and FIII < 1,

but this is made simpler by some simplification. First, FI < 1 implies that

WeGri/m < 2 which allows simple upper bounds on CB,1 and CC,1:

CB,1 ≤ (1 − β)Gri, CC,1 ≤ 2(1 − β)G,
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Figure 5.3: Contours of φ(ri, B,m) for the concentric case 1 base solution,
plotted for m = 10. The black shaded regions indicate the regimes for yielded
interface (case 2) and static wall layer (case 3) base solutions.

We now write for the case 1 solutions

G =
8m

r4
i

φ, (5.60)

(essentially scaling with the value of G for the case 3 solutions). Figure 5.3

plots contours of φ. This leads to the following bounds:

FI ≤ We

r3
i

[

3Ar3
i

2
+ 8φ(0.5 +m(1 − β) +m(1 − β)/ri)

]

≤ 1.

FII ≤ 4φ

81.49

Re[1]

ri

+
We

r3
i

1

m2β(1 − β)

[

3Ar3
i

2
+ φm(1 − β)(8 +

12ri

5.783..
)

]

≤ 1.

and

FIII =
4mφRe[2]

r4
i

[

[1 − (ri + h)]3

RJ
+

(ry − ri − h)[1 − (ri + h)]2

RM

]

≤ 1.

Suppose we now consider for simplicity a weak nonlinear perturbation,

i.e. taking A small. The terms involving A in the bounds for FI & FII are
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multiplied by r3
i so can be ignored in comparison to the others. Also note that

as A → 0 we have that ri + h→ ry. Let us fix A so that

ry − ri − h = (1 − ri − h)
RM

RJ
< 1.

This leads to the following approximate bounds for weak nonlinear stability:

We

r3
i

[8φ(0.5 +m(1 − β) +m(1 − β)/ri)] ≤ 1, (5.61)

4φ

81.49

Re[1]

ri
+
We

r3
i

[

φ
(

8 + 12ri

5.783..

)

mβ

]

≤ 1, (5.62)

8m2βφRe[1](1 − ry)
3

81.49r4
i

≤ 1. (5.63)

Again (5.62) involves both We and Re. If we choose 0 < α < 1 and select

Re[1] and We such that

Re[1] <
81.49ri

4φ
min

{

α,
r3
i

2m2β(1 − ry)3

}

(5.64)

We <
r3
i

φ
min

{

1

8(1 +m(1 − β) +m(1 − β)/ri)
,

(1 − α)mβ
(

8 + 12ri

5.783..

)

}

(5.65)

the flow is stable. In Fig. 5.4 we plot contours of the maximal Reynolds

number for stability, according to the simplified bounds (5.64) & (5.65). We

plot these contours in the (B, W̃e)-plane (recall that W̃ e = We/r3
i is the

Weissenberg number appropriate to the inner core fluid region). We present

contours of Re[2] = mβRe[1]. We see that for modest W̃ e we can achieve

stability for moderately large Re[2]. There is an apparent non-monotonicity

as B is increased. Note however that for the large values of B, ry ∼ 1 and it

would be unlikely to operate in this regime for a lubricated transport process.

Thus, practically speaking one is more likely to observe the increase in critical

Re[2] with B.
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Figure 5.4: Contours of maximal Re[2] for stability, computed from the simpli-
fied bounds (5.64) & (5.65) for m = 10, β = 0.7, plotted in the (B, W̃e)-plane:
a) ri = 0.5; b) ri = 0.7

5.3 Conditional stability for a moving Ω1

We now turn to the general problem in which the viscoelastic region may

move. Our results will be derived under the assumption that for small finite

perturbations away from the axisymmetric flow and for a bounded stress per-

turbation satisfying (5.23), for small finite A an annular region of thickness at

least h will remain about Ω1. Since there is no deformation within the plug,

the shape of the interface Γi remains circular of radius ri, but Ω1 may move.

Thus, Ω1(t) is a cylinder of radius ri, which at time t has axis centered at

xc(t) = (xc(t), yc(t), 0). We show later that the departure from axisymmetry:

rc(t) ≡ |(xc(t), yc(t))|, (5.66)

is bounded when the flow is energy stable. Similar to [85], we consider the

evolution of a perturbation from the base that is defined by xc(t). We shall

write the solution at time t as follows:

U + u = (0, 0,W (x, y; xc(t), yc(t)) + (u, v, w), P (z; xc(t), yc(t)) + p,
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5.3. Conditional stability for a moving Ω1

where the base flow is parameterised by (xc, yc). Since we consider an infinitely

long pipe, rotational movements of the plug region are only possible about

axes that are parallel to the z-axis. Thus, at time t, the plug motion can be

described as combination of a linear motion, say (uc, vc, wc +Wp), and a rigid

body rotation about an axis through (xc(t), yc(t), 0), parallel to the z-axis,

with angular velocity ω̃c(t).

Before proceeding, we consider further the form of the base solution within

the viscoelastic region. Firstly, note that since the inner region is surrounded

by a rigid plug region with constant axial velocity Wp the difference W −Wp

will only depend on the shear viscosity of fluid 1, the shape of Ω1 and the

modified pressure gradient G = G(xc). Indeed this part of the base solution

is effectively Newtonian, it scales linearly with G/m and could be described

in terms of coordinates (x′, y′) = (x − xc, y − yc). For the specific case in

which at any time t the interface retains its circular shape we may deduce

that W −Wp depends only on the radial distance from xc(t) and furthermore

that G = G(xc) = G(rc), i.e. it does not matter in which direction the interface

translates. The axial velocity within the viscoelastic region is given by:

W (r′, rc) =
G

4m
[(r2

i − (r′)2)] +Wp, 0 ≤ r′ ≤ ri, (5.67)

where r′ measures radial distance from xc and both G and Wp depend only on

rc (and the shear rheology of both fluids). The symmetry of Ω1 and reduced

dependence of the base solution on xc only through rc does help to produce

more specific bounds below. However, nothing is changed qualitatively if the

interface is non-circular, (except see the earlier comments on bounding Term

C).

5.3.1 Perturbation equations and energy equation

The main advantage of perturbing around the base flow parameterized by

xc(t) is that the fluid domains of base flow and perturbation coincide at all
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5.3. Conditional stability for a moving Ω1

times. The cost however is that time-dependency has entered the base flow, via

the dependence on xc(t). This results in additional terms in the momentum

balance and viscoelastic stress equation. The perturbed momentum equation

in Ωk is:

0 =

[

∂

∂t
+ (Uj + uj)

∂

∂xj

]

(Ui + ui) +
∂

∂xi
(P + p)

− 1

Re[2]
∂

∂xj
τij

[k](U + u) + δiz(uc, vc) · ∇cW. (5.68)

and the perturbed constitutive equation is:

m

We
(1 − β)γ̇ij(U + u) =

1

We
τ e
ij(U + u) +

∂

∂t
[τ e

ij(U) + δτ e
ij ]

+(Uk + uk)
∂τ e

ij(U + u)

∂xk
− ∂(Ui + ui)

∂xk
τ e
kj(U + u)

−τ e
ik(U + u)

∂(Uj + uj)

∂xk

+ (uc, vc) · ∇cτ
e
ij(U)(5.69)

Here ∇c = ( ∂
∂xc
, ∂

∂yc
).

We formulate the energy equation in the same way as before, using again

the total energy:

E(t) =
1

2
[〈uiui〉Ω1

+ 〈uiui〉Ω2
+

We

2m2β(1 − β)Re[1]
〈δτ e

ijδτ
e
ij〉Ω1

].

The following equation is straightforwardly derived:

D

Dt
E = −〈uj

∂Ui

∂xj
ui〉Ω2

− 〈[uc · ∇cW ]w〉Ω2
− 1

Re[2]
〈∂ui

∂xj
[τ

[2]
ij (U + u) − τ

[2]
ij (U)]〉Ω2

−〈uj
∂Ui

∂xj
ui〉Ω1

− 〈[uc · ∇cW ]w〉Ω1
− 1

Re[1]
〈∂ui

∂xj
γ̇ij(u)〉Ω1

−
〈δτ e

ijδτ
e
ij〉Ω1

2m2β(1 − β)Re[1]

+We

[

(Term A) + (Term B) + (Term C) + 〈uc · ∇cτ
e
ij(U)δτ e

ij〉Ω1

]

2m2β(1 − β)Re[1]
(5.70)
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The first two lines of this equation are the same as for the Newtonian-Bingham

flow studied in [85]. These terms may be bounded in an identical fashion and

we simply summarise in §5.3.1 the bounds from [85]. The last line of (5.70)

contains the elastic stress terms, which we will treat in §5.3.1 below (borrowing

from the analysis of the stationary Ω1 cases studied earlier).

Inelastic terms

For the purposes of analysis, we introduce the velocity field u∗:

u∗ = (u∗, v∗, w∗) ≡ (uc, vc, wc) + (−(y − yc)ω̃c, (x− xc)ω̃c, 0). (5.71)

Note that (uc, vc) is the velocity of (xc(t), yc(t)). If Ω2,p(t) denotes the un-

yielded part of the outer domain Ω2, we observe that for any x ∈ Ω2,p(t),

u∗ + U , gives exactly the perturbed velocity of the fluid in the rigid plug and

u∗ = u. In what follows we often consider the velocity field u′ = u−u∗, which

subtracts off the rigid plug perturbation from the perturbation velocity. We

note that u′ = 0 at the interface and that γ̇ij(u) = γ̇ij(u
′), since γ̇ij(u

∗) = 0.

The first line of (5.70) involves the irregular domain and is bounded exactly

as in equation 4.26 of [85], see :

−〈uj
∂Ui

∂xj
ui〉Ω2

− 〈[uc · ∇cW ]w〉Ω2
− 1

Re[2]
〈∂ui

∂xj
[τ

[2]
ij (U + u) − τ

[2]
ij (U)]〉Ω2

≤
[

AB − 1

Re[2]

]

〈∂ui

∂xj

∂ui

∂xj

〉Ω2
− 2πL(riω̃c)

2

Re[2]

(5.72)

The first two terms of the next line can be slightly simplified, on noting

that the derivatives of the base flow are only in the radial direction(s). We use

a similar approach to [85], splitting into components involving u′ and uc and

adopting the bounds on the components of uc; see equations (4.23), (4.24) and
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(4.33) in [85]. This leads to:

−〈uj
∂Ui

∂xj
ui〉Ω1

− 〈[uc · ∇cW ]w〉Ω1
≤ AN 〈∂ui

∂xj

∂ui

∂xj
〉Ω2|Ω2,p

+2BN

[

〈∂ui

∂xj

∂ui

∂xj
〉Ω2|Ω2,p

〈∂u
′
i

∂xj

∂u′i
∂xj

〉Ω1

]1/2

+ CN〈
∂u′i
∂xj

∂u′i
∂xj

〉Ω1
(5.73)

where the constants are

AN =
πr2

i [1 − (ri + h)2]

4(ri + h)2

[

Gri

3πm
+

r2
i

8m

∣

∣

∣

∣

∂G

∂rc

∣

∣

∣

∣

+

∣

∣

∣

∣

∂Wp

∂rc

∣

∣

∣

∣

]

(5.74)

BN =
πr2

i [1 − (ri + h)2]1/2

4(ri + h)
×
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(
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1/2
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Λ̃
1/2
N,4
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)
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1/2
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4m

∣
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∣

∣
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∣

∣

∣

+

∣

∣

∣

∣

∂Wp

∂rc

∣

∣

∣

∣

)

]

(5.75)

CN =
Gr3

i Λ̃N,1

2m
. (5.76)

The constants Λ̃N,k are scaled versions of the ΛN,k in [85] and have the following

numerical upper bounds; see equations (4.58) & (4.60) in [85].

Λ̃N,1 ≤
1

RJ
, Λ̃N,2, Λ̃N,4 ≤

1

23.13275
, Λ̃N,3 ≤

1

RM
. (5.77)

For the third term we note the identities:

− 1

Re[1]
〈∂ui

∂xj
γ̇ij(u)〉Ω1

= − 1

2Re[1]
〈γ̇ij(u)γ̇ij(u)〉Ω1

= − 1

2Re[1]
〈γ̇ij(u

′)γ̇ij(u
′)〉Ω1

= − 1

Re[1]
〈∂u

′
i

∂xj

∂u′i
∂xj

〉Ω1
.
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Putting all this together:

−〈uj
∂Ui

∂xj

ui〉Ω1
− 〈[uc · ∇cW ]w〉Ω1

− 1

Re[1]
〈∂ui

∂xj

γ̇ij(u)〉Ω1
≤

(AN +BN )〈∂ui

∂xj

∂ui

∂xj
〉Ω2

[

BN + CN − 1

Re[1]

]

〈∂u
′
i

∂xj

∂u′i
∂xj

〉Ω1
. (5.78)

Visco-elastic terms

For the visco-elastic terms in (5.70) we mostly proceed as before. Terms A-C

are as defined in (5.32). The only difference in our treatment of (Term A) and

(Term B) is that we establish bounds in terms of γ̇ij(u
′). Straightforwardly

these are

(Term A) ≤
(

Gri

2m
+

3A
2

)

||δτ e||2Ω1
+

3A
2
〈γ̇ij(u

′)γ̇ij(u
′)〉Ω1

. (5.79)

(Term B) ≤ CB,1

(

||δτ e||2Ω1
+ 〈γ̇ij(u

′)γ̇ij(u
′)〉Ω1

)

. (5.80)

For (Term C) we split u into u′ + u∗, note that the base elastic stresses

depend only on r′ and that the radial component of u∗ is simply uc,r (the

radial component of (uc, vc)).

−〈uk

∂τ e
ij(U)

∂xk
δτ e

ij〉Ω1
= −〈(u′r + uc,r)

∂τ e
ij(U)

∂r′
δτ e

ij〉Ω1
.

We consider separately the terms involving u′r and uc,r, apply the generalised

Holder inequality to each term, and after a little algebra:

(Term C) ≤ CC,1||δτ e||2Ω1
+

3CC,1

2
||u′||22 +

3CC,1π
2r2

i [1 − (ri + h)2]

8(ri + h)2
〈∂ui

∂xj

∂ui

∂xj
〉Ω2|Ω2,p

(5.81)
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The constant CC,1 is as before and the final term above comes from bounding

|uc,r|, (see equations (4.23) & (4.24) in [85]).

Finally, we bound the last term in (5.70) as follows:

〈uc · ∇cτ
e
ij(U)δτ e

ij〉Ω1
≤ (1 − β)

4

∣

∣

∣

∣
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2WeG
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∣
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∣
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×
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1 +
2WeGr4

i

3m

)

〈∂ui

∂xj

∂ui

∂xj
〉Ω2|Ω2,p

. (5.82)

5.3.2 Energy decay

Putting together the different inequalities and bounds leads to the energy

decay inequality:

D

Dt
E ≤ − [1 −KI ]

Re[1]
〈∂u

′
i

∂xj

∂u′i
∂xj

〉Ω1
− [1 −KII ]

Re[2]
〈∂ui

∂xj

∂ui

∂xj

〉Ω2

− [1 −KIII]

2m2β(1 − β)Re[1]
||δτ e||2Ω1

. (5.83)

The constants KI −KIII are defined as follows:

KI = Re[1][BN + CN ] +WeBE (5.84)

KII = Re[2][AB + AN +BN ] +WeCE (5.85)

KIII = WeAE . (5.86)

The subscript B indicates that the constant comes from bounding inertial

terms in the Bingham fluid region. The subscript N indicates that the constant

comes from bounding inertial terms in the core region, and these terms are

essentially Newtonian. The subscript E indicates that the constant comes from

bounding terms involving the elastic stress perturbation. It is worth noting

that the structure of (5.83) is similar to those bounds considered before for
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the case of stationary Ω1. However, due to movement of the fluid domains it

is necessary to use the dissipation of the outer region to bound part of both

the inertial contributions from the core fluid (AN + BN) and an elastic stress

contribution (CE). The various constants are defined more precisely below in

§5.3.2. The decay bound proceeds as follows. First we assume that

KI < 1, KII < 1, KIII < 1, (5.87)

(essentially by making We, Re[1] and Re[2] sufficiently small). This ensures

energy decay, but to get the actual bound we use:

〈∂u
′
i

∂xj

∂u′i
∂xj

〉Ω1
=
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2
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′)〉Ω1

,

〈γ̇ij(u)γ̇ij(u)〉Ω2
≤ 2〈∂ui

∂xj

∂ui

∂xj
〉Ω2

,

so that when (5.87) is satisfied

D
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||δτ e||2Ω1

≤

− CK

2CP,0
min

{

[1 −KI ]

Re[1]
,
[1 −KII]

Re[2]

}

||u||2Ω

− [1 −KIII]

2m2β(1 − β)Re[1]
||δτ e||2Ω1
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−2 min
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[1 −KI ]

Re[1]
,
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Re[2]
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[1 −KIII]

We

}

E(t)

(5.88)

where CK is the constant in Korn’s inequality and CP,0 is the constant from

the Poincaré inequality, (both applied over the entire domain Ω); see e.g. [3].
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Therefore, when (5.87) is satisfied the perturbation energy decays expo-

nentially over timescale, t ∼ λ−1:

λ = 2 min

{

CK

2CP,0

[1 −KI ]

Re[1]
,
CK

2CP,0

[1 −KII ]

Re[2]
,
[1 −KIII ]

We

}

.

Note that, as in [85], decay of the energy E(t) implies that the perturbation

from the base solution at xc(t) decays to zero. To complete the analysis,

we may show that decay of E(t) implies decay of ||u||2Ω, which implies decay

of (uc, vc), all on the same exponential timescale. Integrating the bound on

(uc, vc) over time guarantees that xc(t) is bounded for all time, and the bound

on xc(t) is made small by making λ large. This procedure is explained in more

detail in [85]. To summarise, the perturbation decays exponentially to zero and

we are left with a base solution that is close to the concentric axisymmetric

base flow.

Discussion of the terms in (5.87)

We start with KIII = WeAE which is defined by:

AE =
3A
2

+
Gri

2m
+ CB,1 + CC,1 +

1 − β

4

∣

∣

∣

∣
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∂rc
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∣

max
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2WeG

m

}

. (5.89)

Note that the first terms in this expression are very similar to those in FI ,

considered earlier, except that now we compute G from the asymmetric flow.

When KIII < 1 we can bound WeGri < 2m and this allows simplification of

the various constants, as earlier:

KIII = WeAE ≤ We

r3
i

[

3Ar3
i

2
+ 4φ+

8m(ri + 2)(1 − β)φ

ri

+
(1 − β)

ri

∣

∣

∣

∣

∂φ

∂rc

∣

∣

∣

∣

]

.

recall that φ = Gr4
i /8m.

The main difference from earlier bounds is the term
∣

∣

∣

∂φ
∂rc

∣

∣

∣
. Typically, the

pressure gradient for the concentric interface configuration is maximal, which
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implies that ∂φ
∂rc

= 0, for the concentric case. As we bound the motion of the

inner region, rc, we can assume that this value is close to zero, i.e.

∣

∣

∣

∣

∂φ

∂rc

∣

∣

∣

∣

∼ O(rc) as rc → 0.

This suggests that the bound KIII < 1 is not much more severe than the

bounds on FI for stationary Ω1.

The bound on KI has contributions from BN and CN , multiplying Re[1].

If we re-express G in terms of φ we can see that the Re[1] bounds do not vary

strongly with ri. They also contain a term proportional to
∣

∣

∣

∂φ
∂rc

∣

∣

∣
. The elastic

terms are captured in the term WeBE :

BE =
3A + 2CB,1 + 1.5CC,1CP

2m2β(1 − β)
, (5.90)

which has similar dependency on ri as the term AE .

Finally the terms in KII contain the constants AB, AN and CN which

multiply Re[2]. These terms are discussed in [85]. In particular, due to the

irregular domain, the estimates made for AB are quite conservative. We note

that the term
∣

∣

∣

∂Wp

∂rc

∣

∣

∣
enters AN and this is also zero for the symmetric concentric

flow. The elastic terms are bounded by

CE ≤ πr2
i [1 − (ri + h)2]

6CB,1 + 7
3
(1 − β)

∣

∣

∣

∂G
∂rc

∣

∣

∣

32m(1 − β)(ri + h)2
, (5.91)

which is again similar to the previous stationary Ω1 case.

5.4 Discussion and conclusions

In this chapter we have shown that, provided the maximal shear stress and elas-

tic stress perturbations are bounded (i.e. sufficiently small but finite bounds)

a suitable energy functional will decay exponentially for sufficiently small
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Reynolds and Weissenberg numbers. In the case where the domains do not

move, which may be thought of a weakly linear assumption, this implies sta-

bility of the concentric core-annular base state. In the case that the fluid

domains may change in time, the perturbation is measured relative to an ar-

bitrary nearby base solution. Thus, energy decay implies only stability of the

concentric core-annular base state, but asymptotic stability of a nearby state.

This situation is analogous to that in [85] and in this sense the introduction

of viscoelasticity changes neither the assumptions required for the analysis

nor the results. Given the complexity of the flow we feel that our results are

reasonable.

A weakness in our results comes in the fact that the assumption of bounds

on the L∞ norm of the elastic stress perturbation cannot be verified as a

consequence of the energy decay of the L2 norm, i.e. we cannot make the anal-

ysis self-consistent. Thus, the validity of the analysis really rests on whether

such an assumption is physically reasonable. As we consider established flows

with smooth domains there is no obvious source of singular behavior. On

the other hand, mathematical degeneracy is relatively common amongst vis-

coelastic constitutive models. As we have developed our analysis we have also

derived bounds for the various elastic terms that are valid for more general

cross-sectional domains, e.g. polygonal domains as in Fig. 5.1d. Provided that

we can reasonably bound the L∞ norm of the elastic stress perturbation, the

same analysis developed here would apply equally to such flows. Similarly,

although we have focused on the Oldroyd-B model for simplicity, some other

models could be treated in a similar way with similar assumptions, e.g. FENE-

CR. However, this treatment is algebraically more complex and it is hard to

motivate the additional complexity.

In chapter 4, we demonstrated this type of flow experimentally, using

Polyethylene Oxide (PEO) as the core fluid and Carbopol as the lubricat-

ing fluid. There is a significant disconnect between the experimental study

and the analysis here: the experimental fluids are strongly shear-thinning, the
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experimental study shows strong entry/development effects, etc. Neverthe-

less both studies point in the same direction in establishing the feasibility of

these flows with viscoelastic core fluids. Closing the gap between these two

approaches requires computational study, which is underway.

Throughout the study we have ignored surface tension effects. This is

partly to be faithful to our experimental study where the fluids were miscible,

although in practice the elasticity tends to retard interfacial mixing. If we

were to consider immiscible fluids note that in static situations it is hard to

cleanly measure the surface tension of yield stress fluids. Secondly, for the

scale of experiments we performed surface tension forces would generally be

much smaller that the yield stress. Therefore, it is unlikely that surface tension

could become important unless the interface was able to deform. Preventing

such deformation is at the heart of the VPL technique.
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Chapter 6

Summary and future research

directions

6.1 Summary

The work carried out in this thesis considers one strategy for eliminating in-

terfacial instabilities in multi-layer shear flows, by using a visco-plastic fluid

with unyielded plug at the interface. This strategy is investigated from com-

putational, experimental and theoretical perspectives.

The computational study is addressed in chapter 2 and 3. We have in-

vestigated the initiation, development lengths and temporal stability of VPL

(Visco-Plastically Lubricated) flows in the setting of a Newtonian core fluid

surrounded by a Bingham lubricated fluid, within a pipe and channel con-

figuration. The study of multi-layer shear flows in channel geometry allows

for symmetry breaking as a result of relaxing axisymmetric condition existing

in pipe flow. Flow initiation is affected by starting the flow with a domain

full of stationary Bingham fluid and injecting both inner and outer fluids si-

multaneously. Initial instability and dispersive mixing at the front remains

localised and is advected from the domain leaving behind a stable multi-layer

configuration, found for moderate Reynolds numbers (Re), for a broad range

of interface radii (ri) and for different inlet diameters (Ri), whenever the base

flow parameters admit a multi-layer flow with unyielded interface. We have

found 3 distinct entry lengths for the established flows. These relate to: (a)

establishment of the first unyielded plug close to the interface (shortest); (b)
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establishment of the interface radius; (c) establishment of the velocity profile

(longest). The 3 entry lengths increase with Re and decrease with both the

Bingham number (B) and the viscosity ratio (m).

Nonlinear temporal stability to axisymmetric perturbations has been stud-

ied numerically, considering initial perturbations that are either localised in

yielded parts of the flow, or that initially break the unyielded plug regions.

The aim is to understand structural aspects of the flow stability that are not

easily extracted from the energy stability results of [85]. The initial stages of

a stable perturbed flow are characterised by a very rapid decay of the per-

turbation kinetic energy during which time the unyielded plug reforms (or

breaks and reforms). This is followed by slower exponential decay on a viscous

timescale (t ∼ Re). For smaller Re and moderate initial amplitudes A the

perturbations decay to the numerical tolerance. As either Re or A is increased

sufficiently a number of interesting phenomena arise. The amount of disper-

sion increases, making the interfacial region increasingly diffuse and limiting

the final decay. At larger Re or A we have found secondary flow structures

that persist. A first example of these is when the shear stress decays below the

yield stress before the velocity perturbation has decayed, leading to freezing

in of the interface shape. This can lead to flows with a rigid wavy interface.

Secondly, depending on the core fluid radius and thickness of the surrounding

plug region, we observed a range of dispersive structures similar to the pearls

and mushrooms of [23].

In the case of channel geometry, we have also demonstrated the establish-

ment of symmetric 3-layer flows for wide ranges of viscosity ratio (m), Bing-

ham number (B) and interface position (yi), for Reynolds numbers Re ≤ 100.

Where an inner Newtonian layer was sandwiched between 2 layers of Bingham

fluid. However, unlike the pipe geometry, for the situations where the inner

fluid flow rate is dominant we observed inertial symmetry breaking in the sym-

metric start-up flows as Re was increased. Asymmetry was also observed in

studying temporal nonlinear stability of these flows, which appear stable up
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to moderate Re and significant amplitudes. In general the flows destabilize

at lower Re and perturbation amplitudes than do the analogous core-annular

pipe flows, but 1-1 comparison is hard. Because, the base flows do not really

correspond to each other at the same m, B and ri.

Multi-layer channel flows allow us to explore more exotic flow effects. We

showed how flow control could be used to position layers asymmetrically within

the flow, and how this effect might be varied transiently. We demonstrated

that more complex layered flows can be stably achieved, e.g. a 7-layered flow

is established. We also showed how a varying inlet position can be used to

“write” in the yield stress fluid: complex structures that are advected with

the flow and encapsulated within the unyielded fluid.

We extended our study to VPL flow of different flow scenario by using the

visco-elastic core fluids in place of inelastic fluids within a pipe. In chapter 4,

we gave an experimental demonstration that stable core-annular flows can be

achieved when lubricating a viscoelastic core fluid with a yield stress fluid. We

have used Carbopol as the lubricating yield stress fluid and Polyethylene Oxide

(PEO) as the core fluid. The yield stress in the lubricating fluid preserves

a ring of unyielded material around the interface, restricting the growth of

instabilities. When the inlet radius is smaller than that of the established

flow the core fluid stream expands, resulting in a net relaxation of the elastic

normal stresses as the flow becomes fully developed. At low flow rates (Q1) of

the core fluid this relaxation does not break the surrounding plug. At larger Q1

secondary flows and then instabilities are observed. The secondary flows are

interesting in that the elastic instability is frozen into the yield stress fluid at

the interface, as the stresses drop below the yield stress in the developing flow.

At still larger Q1 the surrounding plug is broken and the interface may deform.

In this case elasticity appears to retard the degree of interfacial mixing, in

comparison to Newtonian core fluids. When the inlet radius is larger than

that of the established flow a stabilizing effect is observed.

Finally in chapter 5, we have investigated theoretically VPL flows with
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visco-elastic core fluids. We extended the nonlinear stability analysis of [85]

to the situation where the core fluid is viscoelastic. A core-annular flow of an

Oldroyd-B fluid surrounded by a lubricating Bingham fluid was studied using

energy stability methods. For small finite restrictions on the size of shear

stress and elastic stress perturbations we have demonstrated the exponential

decay of a suitable energy functional, for sufficiently small Reynolds number

and Weissenberg number.

6.2 Limitations of the study

Although we have made a number of advances, as listed above, we must also

acknowledge some limitations of our computational and experimental studies.

In terms of computational study, one restriction is on not exploring wave-

length dependency of the nonlinear perturbations, instead keeping α = O(1)

and fixed. In the Newtonian context the long and short wavelength limits

are often studied because of analytical simplifications of the linear stability

problem, but here the linear stability problem is anyway stable to high Re,

so that there is little benefit here. Another interest is in considering capil-

lary effects, particularly at short wavelengths, but here these are absent due

to the miscibility of the fluids. Even if we were to consider immiscible flu-

ids, for typical experimental geometries and fluid properties (R̂ in the range

0.01 − 0.1m and yield stresses τ̂Y & 1Pa) capillary effects are only significant

by comparison to the yield stress at extremely small wavelengths and in initial

perturbations that break the plug. Thus, we feel that α = O(1) is the most

practically relevant range, although we acknowledge that a further study could

be interesting.

In chapter 2, much of our study has been targeted at verifying analytical

stability results and exploring these flow features. An alternative approach

would have been to use the computational solutions to compare against the

experimental results in [55]. This comparison is hard to make at a quanti-
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tative level for a number of reasons. First the fluids used in [55], (Carbopol

and Xanthan solutions) are not well represented by Bingham and Newtonian

constitutive models, due to shear-thinning, so that the present computational

model would need extending. Secondly, the experiments in [55] were not par-

ticularly detailed, with only bulk quantities being measured. Principally this

was the interface radius, which did compare favourably with the 1D (base flow)

design model used by [55]. If we were to extend this experimental study to

compare directly against numerical solutions we would certainly improve the

visualisation aspects of [55] to allow more detailed comparisons to be made.

Moreover, we have not considered convective stability explicitly (except in

the sense that the frontal region of the start-up flows are convectively unsta-

ble). Partly the reason for this is that we focus on case 1 flows for which the

objective is to establish a stable multi-layer configuration. Once established,

in all the usual multi-layer applications one would be avoiding introduction of

entry perturbations as far as is possible.

In terms of the broader interest of our experimental results in the context

of interfacial instability of multi-layer flow of viscoelastic fluids, there is little

direct relevance. Only experimental series 5 (see chapter 4) studied flows for

which the base flow was yielded at the interface and even here it is hard to

isolate the purely viscoelastic effects. Our experiments have been focused at

establishing the feasibility of stable flows, rather than studying hydrodynamic

instability. Although we have data for unstable regimes that could be analysed

further to extract the statistics of experimental wavelengths and growth rates,

our experiments have not systematically explored any such instability. This

could be also a future direction.
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6.3 Summary of contributions

The novel significant contribution of this thesis can be summarized in two

main categories: VPL flow of inelastic fluids and VPL flow with elastic core

fluid.

6.3.1 VPL flow of inelastic fluids

• The possibility of visco-plastic lubrication flows has been established by

a systematic computational study over a wide range of flow parameters

in pipe and channel configurations.

• Entry/development lengths of the established flow have been obtained for

governing parameters in both pipe and channel geometries. Estimation

of the required development length is a valuable part of process design.

• The physical mechanism of energy decay for finite perturbation to VPL

flow has been studied computationaly. The results provide more detailed

understanding, which can not be obtained from theoretical nonlinear

stability analysis [85]. Two examples of these results are

– The initial short time scale on which the perturbation kinetic en-

ergy decays rapidly and the unyielded plug reforms ( or breaks and

reforms).

– Flows with rigid wavy interface which occur when the shear stress

decays below the yield stress before the velocity perturbation has

decayed.

• In practical situations the multi-layer flow might lose its symmetry.

Hence, the symmetry breaking has been allowed by performing the sim-

ulation in channel geometry and we have seen that these flows are less

stable than the axisymmetric pipe flows.
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• Asymmetry has been used to establish exotic effects such as

– Establishing and controling of the asymmetric base flows via the

flow rates.

– Establishing complex layering patterns such as 7-layer flow.

– Controlling the flow position in a transient setting by either moving

the inlet nozzle or controlling the flow rates into the different layers

upstream.

– “Writing” within the unyielded fluid by combining many techniques

such as moving multiple inlets, varying the flow rates, turning on

and off new inlets.

• Stable VPL flow of fluids with different densities has been obtained ex-

perimentally.

6.3.2 VPL flow of elastic core fluids

• VPL flows with visco-elastic core fluid have been established experimen-

tally. The results are new practical achievment since many industrial

multi-layer flows involve fluids with visco-elastic properties.

• A fascinating combination of both elastic instability and stabilizing yield

stress effects results in a frozen wavy interface. This is a novel flow effect

that was not predicted.

• The energy stability method has been applied to demonstrate nonlinearly

stable VPL flows with visco-elastic core fluid. The exponential decay of

the energy of perturbation has been obtained when both Reynolds and

Weissenberg numbers are controlled. To obtain the nonliear stability

bound, we considered bounds on the L∞ norm of elastic stress pertur-

bation. However, assumption of boundedness of the L∞ norm of the
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Q1

t
b)

Q2

t
c)a)

Figure 6.1: Examples of visco-elastic necklaces in visco-plastic fluid a) Pul-
sating flow rate of inner Q1 and outer Q2 fluid b) Pearl necklace c) Diamond
necklace

perturbed shear stress components is a natural part of any analysis of

stability of yield stress fluid flows.

6.4 Future research directions

Probing deeper, the results in this thesis also provide a strong foundation for

future work. This section discusses several lines of research arising from this

work which can be pursued.

• Our computational studies have shown that interesting convective ef-

fects may be frozen into the interface. This opens up interesting areas

for application such as possibilities for drop encapsulation, multi-layer

products with axial variations, near net shape product (see Fig. 6.1).

This is an area we are exploring in a more systematic fashion.

• There is a significant disconnect between the experimental study of VPL
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Figure 6.2: The art of confectionery

flows with visco-elastic core fluid (chapter 4) and the analysis in chapter

5: the experimental fluids are strongly shear-thinning, the experimental

study shows strong entry/development effects, etc. Nevertheless both

studies point in the same direction in establishing the feasibility of these

flows with viscoelastic core fluids. The gap between these two approaches

requires computational study, which is underway.

• It could be practically of interest to explore hydrodynamic instability

of VPL flows of visco-elastic fluid when the base flow is yielded at the

interface.

• We have performed a small number of test case experiments to establish

stable VPL flows with significant density difference between two fluids.

A systematic, computational and experimental study is of practical in-

terest.

• Confectionery is a good example of an engineered food item with non-

Newtonian behavior that is produced industrially. The food industry
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a) b) c)

Figure 6.3: Snapshots of the established flows for separation process, in-
ner fluid: 0.75%PEO dyed with particulate paint, Outer fluid: Carbopol
Solution 0.15% (a) (Q1, Q2) = (5.5, 20)mL/s (b) (Q1, Q2) = (11, 20)mL/s
(c)(Q1, Q2) = (16, 20)mL/s.The camera captures 30 cm of the pipe from above
the exit of the inner pipe.

has to produce products that people want to eat at a price they can af-

ford. An example of a complex confectionaery item is shown in Fig. 6.2.

These items are currently produced laboriously by rolling and stretching

individual strands. The VPL method could provide a viable alternative

for continuous production of such items. A first step would be to con-

sider VPL flows with more exotic cross-sections than the core-annular

configuration.
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6.4. Future research directions

• A small number of experiments have been performed to establish VPL

flows with particulate visco-elastic core fluid. Elasticity enforces parti-

cles to migrate to the axis of the flow while yield stress prevents inter-

facial mixing. This flow might have potential in separation process (see

Fig. 6.3).
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Appendix A

Initial perturbations for pipe

flows

We outline here the initial perturbations used in chapter 2, section 2.3, for the

study of temporal stability.

Initial conditions for the velocity perturbation u are constructed so as to

satisfy the continuity equation and the various boundary and interface condi-

tions. We consider two different cases A & B. In case A initially the whole

domain is perturbed. In case B the plug region is left intact by the initial

perturbation. In both cases we denote the initial velocity perturbation by

u(r, z, 0) = A(vr(r, z), vz(r, z)), where vr and vz are shape functions for the

radial and axial components of the perturbed velocity, respectively, and A is

the amplitude of the perturbation. The components vr and vz can be defined

in terms of a stream function ψ:

vr =
1

r

∂ψ

∂z
, vz = −1

r

∂ψ

∂r
(A.1)

We assume that ψ has the following form

ψ = ζ {φ(r) sin(αz) + f(r)} . (A.2)

where the length of the pipe section is 2π
α

and ζ is defined so as to normalise

the perturbation with the base flow:

ζ =
‖W (r)‖2

‖(vr(r, z), vz(r, z))‖2

. (A.3)
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A.1. Case A

A.1 Case A

We satisfy the following boundary conditions and continuity of stress and

velocity at interface

1. at r = 0, vr = 0, ∂vz

∂r
= 0, ψ = 0

2. at r = ri, ψ = 0

3. at r = 1, vr = 0, vz, ψ = 0

Note that to simplify the imposition of stress continuity at interface, we con-

sider

γ̇rr = 0, γ̇zz = 0, γ̇θθ = 0.

For r ≤ ri we have:

vr = −ζr3(r − ri)
3α cosαz. (A.4)

vz = ζ
[

r2(r − ri)
2(7r − 4ri) sinαz + 4r2(r − ri)

2 + 2r3(r − ri)
]

. (A.5)

and for r > ri:

vr = −ζ (r − ri)
3(r − 1)2α cosαz

r
. (A.6)

vz = ζ

(

(r − 1)(r − ri)
2(5r − 2ri − 3)

r
sinαz+

2(r − 1)(r − ri)(2r − ri − 1)

r

2mr4
i − Br2

i /ry − Bri

2(ri − 1)2

)

. (A.7)

A.2 Case B

To keep the plug intact, we apply the following conditions

1. at r = 0, vr = 0, ∂vz

∂r
= 0, ψ = 0

2. r ∈ [ri, ry], vr = vz = 0, ψ = 0
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A.2. Case B
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Figure A.1: Example of the axial component of the initial velocity perturba-
tions for (m,B) = (10, 20) with ri = 0.4, A = 1, plotted where sinαz = 1.
From left to right: a) axial component of initial velocity perturbations (solid
line = case A, broken line = case B); b) base flow; c) superposition of pertur-
bation and base flow.

3. at r = 1, vr = vz = 0, ψ = 0

For r ≤ ri we have:

vr = −ζr3(r − ri)
2α cosαz. (A.8)

vz = ζr2(r − ri)(6r − 4ri) sinαz. (A.9)

For r > ri:

vr = −ζ (r − ry)
2(r − 1)2α cosαz

r
. (A.10)

vz = ζ
2(r − 1)(r − ry)(2r − ry − 1) sinαz

r
. (A.11)

Figure A.1 shows an illustrative example of axial components of the two initial

velocity perturbations (case A and case B) and their superposition with the

base flow velocity profile.
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Appendix B

Initial perturbations for channel

flows

We outline here the initial perturbations used in chapter 3, section 3.3, for the

study of temporal stability.

Initial conditions for the velocity perturbation u are constructed so as to

satisfy the continuity equation and the various boundary and interface condi-

tions. We consider two different cases, A & B. In case A initially the whole

domain is perturbed. In case B the plug region is left intact by the initial

perturbation. In both cases we denote the initial velocity perturbation by

u(x, y, 0) = A(vx(y, z), vy(x, y)), where vx and vy are shape functions for the

radial and axial components of the perturbed velocity, respectively, and A is

the amplitude of the perturbation. The components vx and vy can be defined

in terms of a stream function ψ:

vx =
∂ψ

∂y
, vy = −∂ψ

∂x
(B.1)

We assume that ψ has the following form

ψ = ζ {φ(y) sin(αx) + f(y)} . (B.2)

where the length of the periodic cell considered is 2π
α

and ζ is defined so as to

normalise the perturbation with the base flow:

ζ =
‖W (y)‖2

‖(vx(y, z), vy(x, y))‖2

. (B.3)
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B.1. Case A

B.1 Case A

We satisfy the following boundary conditions

1. at y = 0, ∂vx

∂y
= 0, vy = 0, ψ = 0

2. at y = 1, vx, vy = 0, ψ = 0

and continuity of stress and velocity at the interface. For y ≤ yi we have:

vx = ζ
[

y2(y − yi)
2(6y − 3yi) sinαx+ 3y2(y − yi)

2

+2y3(y − yi)
]

. (B.4)

vy = −ζy3(y − yi)
3α cosαx. (B.5)

and for y > yi:

vx = ζ
(

(y − 1)(y − yi)
2(5y − 2yi − 3) sinαx+

2(y − 1)(y − yi)(2y − yi − 1)
2my3

i − Byi/y
∗ − B

2(yi − 1)2

)

.

(B.6)

vy = −ζ(y − yi)
3(y − 1)2α cosαx. (B.7)

B.2 Case B

To keep the plug intact, we apply the following conditions

1. at y = 0, ∂vx

∂y
= 0, vy = 0, ψ = 0

2. y ∈ [yi, y
∗], vx = vy = 0, ψ = 0

3. at y = 1, vx = vy = 0, ψ = 0

For y ≤ yi we have:

vx = ζy2(y − yi)(5y − 3yi) sinαx. (B.8)

vy = −ζy3(y − yi)
2α cosαx. (B.9)
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B.3. Stream function conditions

For y > y∗:

vx = ζ2(y − 1)(y − y∗)(2y − y∗ − 1) sinαx. (B.10)

vy = −ζ(y − y∗)2(y − 1)2α cosαx. (B.11)

B.3 Stream function conditions

The stream function conditions at the interface (ψ = 0) may appear unnec-

essary at first reading. However, here we consider finite perturbations and to

impose a non-zero ψ at the interface would essentially shift the balance of flow

rates between the layers, i.e. we would expect the perturbations to decay to a

different base flow in this case.
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