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Abstract

We develop and analyze mixed discontinuous Galerkin findement methods for
the numerical approximation of incompressible magnetobgyghamics problems.

Incompressible magnetohydrodynamics is the area of phifsat is concerned
with the behaviour of electrically conducting, resistiregcompressible and viscous
fluids in the presence of electromagnetic fields. It is medeby a system of
nonlinear partial differential equations, which couples Navier-Stokes equations
with the Maxwell equations.

In the first part of this thesis, we introduce an interior ggndiscontinuous
Galerkin method for the numerical approximation of a lineed incompressible
magnetohydrodynamics problem. The fluid unknowns are eliged with the dis-
continuousZ«- #_1 element pair, whereas the magnetic variables are approxi-
mated by discontinuous?y- %, 1 elements. Under minimal regularity assump-
tions, we carry out a complete a priori error analysis and/@rthat the energy
norm error is optimally convergent in the mesh size in genaslyhedral domains,
thus guaranteeing the numerical resolution of the strangegnetic singularities
in non-convex domains.

In the second part of this thesis, we propose and analyze amirad dis-
continuous Galerkin finite element method for the approxiomaof a fully non-
linear incompressible magnetohydrodynamics model. Thecitg field is now
discretized by divergence-conforming Brezzi-Douglasriiaclements, and the
magnetic field by curl-conforming Nédélec elements. Idiidn to correctly cap-
turing magnetic singularities, the method yields exacfixedjence-free velocity
approximations, and is thus energy-stable. We show thatribegy norm error is
convergent in the mesh size in possibly non-convex polyieaind derive slightly



suboptimal a priori error estimates under minimal regtyagnd small data as-
sumptions.

Finally, in the third part of this thesis, we present two esiens of our dis-
cretization techniques to time-dependent incompressitdgnetohydrodynamics
problems and to Stokes problems with nonstandard boundegitions.

All our discretizations and theoretical results are corapiahally validated
through comprehensive sets of numerical experiments.
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exactly divergence-free velocities for incompressiblegnetohydrodynam-
ics. Computer Methods in Applied Mechanics and Engineerirg9:2840—
2855, 2010.

Chapter 2 is based on paper (a), while Chapter 3 describegsdkarch published
in paper (b). Chapter 4 of this thesis presents extensi@istk to be submitted. |
am the sole author of the results there.

| have taken a central role in all aspects of these publicatid was the lead
author in paper (a), which is joint with my research supewiBrof. Dominik
Schotzau and Prof. Paul Houston (University of Nottinghamdy main contri-
bution has been the construction and analysis of the metudi the theoretical
derivation of the a priori error estimates, while the nuroaritests have been im-
plemented and carried out by Prof. Houston.

Paper (b) is joint with Prof. Chen Greif (University of Beti Columbia),
Prof. Schotzau, and Dan Li who was a Ph.D. student in the UB@aliment of
Computer Science supervised jointly by Prof. Greif and Pgahotzau. My focus
in this paper has been on the numerical analysis of the methdthe derivation of



the a priori error estimates, while my colleague Li has dboted to the numerical
experiments.



Table of Contents

Abstract . . . . .. ii
Preface . . . . . . . v
Tableof Contents . . . . . . . . . . .. .. ... Vi
Listof Tables . . . . . . . . . . . iX
Listof Figures . . . . . . . . . . . . . Xi
Acknowledgments . . . . . . . . ... e Xiv
1 Introduction . . . . . . . . . ... 1
1.1 Governing equations of incompressible magnetohydrachycs . 1
1.2 Background and motivation . . . . .. ... ... ... ... .. 6
1.3 Overviewofthesis . ... ... ... ... ... ... ... ... 10
1.3.1 A mixed discontinuous Galerkin method for linearinealy-
netohydrodynamics . . . . . .. ... ... ... ..... 10
1.3.2 A mixed finite element method with exactly divergence-
free velocities for nonlinear magnetohydrodynamics . ... 12
1.3.3 Extensions to time-dependent magnetohydrodynaamnids
Stokesproblem . . . ... oo o 16

2 A mixed discontinuous Galerkin method for linearized incanpress-

ible magnetohydrodynamics . . . ... ... ... .......... 19
2.1 Introduction . . . . . . ... 19
2.2 Discretization of a model problem . . . ... ... ... ..... 21

Vi



221 AnMHD modelproblem . . . ... ... ......... 21

2.2.2 Meshesandtraceoperators . . . . ... .. ... ..... 24
2.2.3 Interior penalty formulation . . .. .. ... ... .... 25
224 Stability . . . ... 28
2.3 Apriorierrorestimates . . . . . ... 0o 31
2.4 Proofoftheerrorestimates . . ... ................ 32
241 Preliminaries . . . . . .. ... . e 32
242 Errorbounds ... ... ... ... .. ... 36
25 Numericalresults . . . . .. .. .. ... .. .. .. .. 0. 51
251 Smoothsolutions . .. ... ............... 51
2.5.2 Example 3: 2D problem with a singular solution . . . . . 55
2.5.3 Hartmannchannelflow . .. ... ... .......... 58
26 Conclusions . . . . . ... . e 64

A mixed finite element method with exactly divergence-freeveloci-

ties for nonlinear incompressible magnetohydrodynamics . . . . . 66
3.1 Introduction . . . . . . ... 67
3.2 Variational formulation of an MHD problem . . . . . .. ... .. 70
3.3 Mixed finite element discretization . . . . .. ... ... ... .71
3.3.1 Mixeddiscretization . . ... ... ... ... ..... 71
3.3.2 Stability properties . . . . .. ... oL 75
3.3.3 Existence and uniqueness of discrete solutions . . . . 77
3.4 Erroranalysis . . . . . . .. e 78
341 Mainresults. . . ... ... 78
3.4.2 Continuity . ... ... ... e 80
3.4.3 Preliminary errorestimates . . . . ... .......... 86
3.44 Proofof Theorem3.4.2 . . . ... ... ... ... ..., 91
3.45 Proofof Theorem3.4.3. . ... ... .. ... ..... 93
3.5 Numericalresults . . . .. ... ... ... .. .. .. .. ..., 93

3.5.1 Example 1: two-dimensional problem with a smoothtsmiu 94

3.5.2 Example 2: two-dimensional problem with a singular so
lution . . . . ... 96

3.5.3 Hartmannchannelflow . . . . . ... ... ... ..... 97

Vii



3.54 Drivencavityflow .. .................. 104

3.5.5 Example 7: two-dimensional MHD flow overastep. . . . 107
3.6 Conclusions . . . . . .. ... 110
4 EXIenSiONS . . . . . ... 112
4.1 Time-dependent incompressible magnetohydrodynamics. . . 112
41.1 Introduction . . . . . . . ... 112
41.2 Weakformulation. . . ... ... ... ... ... .... 114
4.1.3 Spacediscretization . .. .. .. ... 0000 115
4.1.4 Timediscretization . . . ... ... ... ... ... .. 116
415 Numericaltests . . . . ... ... . ... ... L 117
416 Conclusions. . .. .. ... ... ... L 121
4.2 An exactly divergence-free method for the Stokes eqnoatith
nonstandard boundary conditions . . . .. ... ... .. ... .. 121
421 Introduction . . . . . . ... 122
4.2.2 Weak formulation and well-posedness . . . . . ... ... 125
4.2.3 Finite element approximation . . .. .. .. .. ... .. 126
424 Erroranalysis . . . ... ... 128
4.25 Numericalexamples . .. ... ... ... ........ 133
426 Conclusions. . .. .. ... ... o 134
5 Conclusionsand futurework . . . ... ... ... oL 135
51 Conclusions . . . . . .. . ... 135
52 Futurework . . . . ... 137
Bibliography . . . . . . . . . 139

viii



List of Tables

Table 1.1
Table 1.2
Table 1.3

Table 1.4

Table 1.5
Table 1.6

Table 2.1
Table 2.2
Table 2.3
Table 2.4
Table 2.5
Table 2.6

Table 3.1
Table 3.2
Table 3.3
Table 3.4
Table 3.5
Table 3.6
Table 3.7
Table 3.8
Table 3.9

Smooth solution. Convergenceugfand py, in the energy norm.

Smooth solution. Convergencebgfandry, in the energy norm.
Magnetic singularity in L-shaped domain. Coneacg ofby,
andrpintheenergynorm. . . . . .. ... ... .......
Magnetic singularity in L-shaped domain. Energgmmerrors
ofbhandrp. . . . . ...
3D channel flow. Convergenceugfand py, in the energy norm.
3D channel flow. Convergencebgfandry in the energy norm.

Example 2. Convergence|@|| 2q), [|eullv, and|[ep| 2(q)-
Example 2. Convergence|@|| o) and||&flc. - . . . . . .
Example 2. Convergence|@f|| 2oy and|lers. . . . . . . ..
Example 3. Convergence|@fi|| 2q), [|eullv, and||ep| 2(q)-
Example 3. Convergence|@|| 2oy and||&llc. . . . . . ..
Example 3. Convergence|@|| 2oy and|lers. . . . . . . ..

Discrete inf-sup constants ¥ < Qp. . . . . . . . . .. ...
Example 1. Convergence|@f|| 2q), [|eull1,n, and|/ep|lLz(q)- -
Example 1. Convergence|@|| 2q) and||&|[H(curq)- - - - -
Example 1. Convergence|@f|| 2oy and|Ue || 2q). - - - - -
Example 2. Convergence|@|| 2q), [|€ull1h, and|[epl| 2(q)- -
Example 2. Convergencel|@f|[ 2(q), [[€||H(curiq), @and||rnll 2(q)
Example 3. Convergence|@|| 2q), |eull1h, and|[epl| 2(q)- -
Example 3. Convergencef@f [ 2(q)., [|€||H(curq) @nd|[rafl2q)
Example 4. Convergence|@|| 2q), |€ull1h, and|[epl| 2(q)- -

11
11

.12

15
15
16

55
56
55
58
59
60

77
95
95
95
98

. 98

101

102

104



Table 3.10 Example 4. Convergence|ef|| 2(q), [|llH(curq), @nd||rhllL2(q)-104

Table 4.1 Example 1. Convergence in timelgf<mm(tn) — Uplliz()
<n<

and max|lb(tn) —bllizy. - - oo 1.8
1<n<N
Table 4.2 Example 1. Convergence|ef|1p, ||eull 2(q), and|[epl| 2q). - 133
Table 4.3  Example 2. Convergence|@f|1h, [|eull 2(q), and|lep[| 2q). - 134



List of Figures

Figure 1.1
Figure 1.2
Figure 1.3

Figure 1.4
Figure 1.5

Figure 1.6

Figure 1.7

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4
Figure 2.5

Figure 2.6

MHD flowmeter. . . . . .. .. .. ... ... ... .. ... 2
Electromagneticpump. . . . . . . .. ... .. .. ... 2
Contours of (d)1; (b) by; (c) nodal approximation aby; (d)

nodal approximation d,. . . . .. .. .. ... ... ... 7
Elemental degrees of freedom for (a) B@M,); (b) Ned (%,). 13

2D channel flow. Numerical approximations of (aloeity;

(b) normalized magnetic field. . . . . ... ... ... .... 15
Transient MHD flow. Numerical approximations efocity at

time (@)t =001, (b)t=21. .. ... ... .. ........ 7
Transient MHD flow. Numerical approximations afrmal-

ized magnetic field at time (&)= 0.01; (b)t=1. . ... .. 17

Example 1. (a) Problem domain; (b) Initial unstinwed trian-

gularmesh. . . . .. .. ... 52
Example 1. Convergence whkrefinement: (a)|e,||v; (b)

l&llc: () [ler]ls; (d) [leullv + [lenllc+lells - oo 53
Example 1. Convergence whthefinement: (aj|ey || 2(q); (b)
€plliz(0); (©) |0 lliz(q); (@A) [l&rllzy- - - o v oo 54
Example 4. Initial unstructured triangular mesh . . . . . . 53
Example 4. Convergence whkrefinement: (a)le,llv; (b)

[&ollc; () llerlls; (d) leplloqqye + o v v v v v 61
Example 4. DG solution computed on the finest meah w

k= 1: (a) Velocity field; (b) Magnetic field. . . . .. ... .. 62

Xi



Figure 2.7

Figure 2.8

Figure 2.9

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Figure 3.9

Figure 3.10

Example 4. DG solution computed on the finest ma#h w

k=1. Slices alongx =5, —1 <y < 1 of the solution: (a)

First component of the velocity field; (b) First component of

the magneticfield. . . ... ... ... ... ........
Example 5. DG solution computed on a uniform tegtdzal
mesh withk = 1: (a) Velocity field; (b) Magnetic field. . . . .
Example 5. DG solution computed on a uniform tegtdzal
mesh withk = 1. Slices alongx =5, -1 <y<1,z=0 of
the solution: (a) First component of the velocity field; (lnsE
component of the magneticfield. . . . .. .. ... .....

Example 1. Convergence history of the Picardtit@n for the
grid sequence defined in Tabes 3.2--3.4. . . . . ... ...
Example 2. Numerical approximations of (a) vigyoc(b)
Pressure CONtOUIS. . . . . . v v v v v v i e e e e e e e e e
Example 2. Numerical approximations of (a) méigrfeeld;

53

... 96

(b) contours of the first component of the magnetic field; (c)

contours of the second component of the magnetic field.
Example 3. Slices alomg=5, —1 <y < 1: (a) Velocity com-
ponentu(y); (b) Magnetic componerii(y). . . . .. ... ..
Example 3. Numerical approximations of (a) viyog¢b) nor-
malized magneticfield. . . . . . ... ... ... ......
Example 4. Slices alomg=5, —2 <y <2, andz=0: (a)
Velocity componenti(y,0); (b) Magnetic componerii(y, 0).
Example 4. Numerical approximations of (a) viyog¢b) nor-
malized magnetic field. . . . . .. ... .. ... ......
Example 5. Numerical approximations of (a) viyog¢b) nor-
malized magneticfield. . . . . . ... ... ... ......
Example 5. Numerical approximations of (a) cardmf the
first velocity components; (b) streamlines of velocity. . . .
Example 6. Numerical approximations of (a) &0 (b) nor-
malized magneticfield. . . . . . ... ... ... ......

Xii

99



Figure 3.11 Example 7. Numerical approximations of (a) ##yo (b) nor-

malized magnetic field; (c) pressure contours. . . . . .. ... ¢ 10
Figure 3.12 Example 7. Velocity flow vectors and streamlinesmed in
behind the step for (§=2.5e4; (b)x=1e5. . ... ... ... 1.0

Figure 4.1  Example 2. Numerical approximations of veloeitytime (a)

t=001, (b)t=01;(c)t=1. .. ... ... ... ..... 120
Figure 4.2 Example 2. Numerical approximations of norneliznag-
netic field attime (a) = 0.01; (b)t=0.1; (c)t=1. ... .. 121

Xii



Acknowledgments

First and foremost | would like to express my sincerest grdé to my supervi-
sor Prof. Dominik Schoétzau for all he has done for me; fordosstant support
throughout the program, for the abundant ideas and advieés provided in all
academic matters, and for his patience. Without his heig thiesis could not have
been possible.

| would also like to thank my teachers and committee membeo$. Fan
Frigaard, Prof. Chen Greif, Prof. Anthony Peirce, and PBsfan Wetton for all |
have learned from them.

I would like to thank my coauthors Prof. Greif, Prof. Paul l4tan, and Dan Li,
and my fellow graduate student Liang Zhu for the valuablewlisions and ideas.
Special thanks to Prof. Greif for his great help and support.

Last but not least, | thank the mathematics community andrtiegnt at UBC
for providing an excellent learning and working environrhen

Xiv



Chapter 1

Introduction

This thesis is concerned with the development, the anadysigthe implementation
of finite element methods (FEMSs) for the numerical approxiamaof incompress-
ible magnetohydrodynamics (MHD) problems. In this introguy chapter, we
first present the governing equations of incompressible MAWB then provide the
background and the motivation for our work, followed by a suany of our main

results.

1.1 Governing equations of incompressible
magnetohydrodynamics

Magnetohydrodynamics is the area of physics that desctiiteelsehaviour of elec-
trically conducting fluids (such as liquid metals, plasnmsaf water, etc.) in the
presence of electromagnetic fields; cf. [27, 35, 65, 67, 6¢ombines electro-
magnetism and fluid dynamics through two fundamental caggifects: first, the
motion of a conducting material in a transverse magnetid fietluces an elec-
tric current that modifies the existing electromagneticdfieBecond, the electric
current and the magnetic field generate a mechanical forabefiuid (Lorentz
force). This force accelerates the fluid particles in theation normal to both the
magnetic field and the electric current.

We are mainly interested in incompressible magnetohydradhcs. Here, the
electrically conducting viscous fluid is incompressibladahe fluid’s electric re-
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Figure 1.1: MHD flow meter.

sistivity cannot be neglected. Incompressible MHD has alramoef technologi-

cal and industrial applications such as metallurgical eegiing, electromagnetic
pumping, stirring of liquid metals, aluminum electrolysisnd measuring flow
guantities based on induction; cf. [25, 35]. Figure 1.1 shidve sketch of an MHD
flow meter. There, the flow in direction af transverse to the applied magnetic
field b induces the current, which can then be measured and used to determine
the flow speed. Figure 1.2 illustrates the principle of arctetenagnetic pump,
where the applied magnetic fieldand the current densifymove the fluid along

the pipe in direction of the induced Lorentz forbe For more applications of
incompressible MHD, we refer the reader to, e.q., [67].

Figure 1.2: Electromagnetic pump.

In this thesis, we study a standard formulation of the incasgible MHD
equations as derived in [3]; see also [33, 35, 48]. That isneglect phenom-
ena involving high frequency as well as the convection currand consider an



isotropic and homogeneous fluid with constant material @riogs. We eliminate
the electric field and formulate the problem in terms of thiveigy, the pressure,
and the magnetic field. The corresponding mathematical hiodas a system of
nonlinear partial differential equations (PDES) where ith@mpressible Navier-
Stokes equations are coupled with the Maxwell equationsey Tdre derived as
follows.

The fluid motion is governed by the incompressible Naviek8¢ equations:

du—%Au+(u-D)u+%Dp:fL+f, (1.1a)

0.-u=0. (1.1b)

Hereu andp are the velocity and pressure of the fluidjs the Lorentz force anfl
an external body force (both per unit mass). The positivarpatersn andp are
the viscosity and density of the fluid, respectively. Thempressibility constraint
(1.1b) corresponds to conservation of mass.

Electromagnetic effects are modelled by Maxwell’s equegio

ob+0Oxe= 0, Faraday’s law (1.2a)
—0oi(0e)+ O x (%b) =], Maxwell-Ampeére’s law (1.2b)
0. (0€) =pe, Gauss’ law (1.2¢)

O-b=0, Gauss’ law for magnetism (1.2d)

The fields appearing in systemn (1.2) are: the magnetic figttie electric fielde,
the electric current density(per unit area) and the electric charge dengity{per
unit volume). The positive parametedsand u are the electric permittivity and
magnetic permeability, respectively.

The above system has to be supplemented by Ohm’s law. If theiteks of
positive and negative charges are equal in any sizablerrdgimasi-neutrality as-



sumption as in [3]), the convection current is omitted anarn@®Haw becomes
j =06(e+uxbh). (1.3)

Here 0 (positive) denotes the electric conductivity of the fluiddahe termu x b
represents the electric field induced by the flow.

Furthermore we assume that phenomena involving high firezyuare not con-
sidered. The displacement currehtde) in (1.2b) can then be neglected, leading
to the simplified Ampére’s law

O (50)=]. (1.4)

Combining (1.3)-(1.4) and solving fergives

1. 1
e:EJ—uxb_@Dxb—uxb.

Now we substitute this expression into (1.2a) to obtain

db+%DX(Dxb)—Dx(uxb):O,

where the ternt] x (u x b) accounts for the first coupling effect.

Based on(1.4), the Lorentz for€ein (1.14a) is given by

1 1
f=—jxb=—(0Oxb)xb.
L pJ pu( )

Inserting this form of_ into the momentum equation (1.1a) yields

n 1 1
ou——Au-+(u-Ou+=-0p— —(Oxb)xb=f.
) (u-0) 5P pu( )

Here, the ter%(D x b) x b incorporates the second coupling effect.
After non-dimensionalization and without changing namti we obtain the



following incompressible MHD system:

gu—vAu+ (u-Oju+0Op—k(Oxb)xb=f, (1.5a)
O-u=0, (1.5b)

Ab+ vmdx (Oxb)—Ox (uxb) =0, (1.5¢)
0-b=0. (1.5d)

It has to be supplemented with suitable initial and boundanyditions.

The different regimes of (1.5) are characterized by theethmen-dimensional
numbersv = Re !, v, = Rm ! andk. The parameter Re is the hydrodynamic
Reynolds number. It is defined as Ref’tj—j/L';, and represents the ratio of iner-
tial to viscous forces. Herd, andU are the characteristic length and velocity
of the problem, respectively. The second parameter=R@uLU is the magnetic
Reynolds number. It measures how much the magnetic fieldligimced by the
flow motion. The non-dimensional coefficiektis called the coupling number. It

is sometimes expressed as a function of the Hartmann nundeasH

. Ha?
~ ReRmM

The Hartmann number Ha ;’JB—;LLJZ is the root of the ratio of magnetic to viscous
forces, whereB is the characteristic magnetic induction. It is a measuréhef
effect of the magnetic field on the flow.

For liquid metal flows, the ratio between Rm and Re is typjcathall. Mer-
cury, for instance, has a ratio of order 0 In many applications, the mag-
nitudes of Rm andc are of order one, whereas Re can be substantially larger.
For example, in aluminum electrolysis, typical values ama R 1071, k = 1,
and Re= 10°; cf. [2, 35]. For further discussion of these parameters,refer
the reader also to [71].

From a numerical point of view, the main difficulties relevdn space dis-

cretization are already present for the stationary versiofl.£). Thus, we shall



mostly consider the following stationary incompressibléiDlsystem:

—VvAu+ (u-Ou+0Op—k(Oxb)xb=f, (1.6a)
O-u=0, (1.6b)

VO x (Oxb)—0Ox (uxb)=0, (1.6c)
O-b=0. (1.6d)

In addition, if implicit time-stepping is employed, probis of the form (1.6) (with
additional zero order terms) will have to be solved in eactetstep.

1.2 Background and motivation

The numerical approximation of incompressible MHD probdess in (1.5) or (1.6)
requires discretizing systems of coupled PDEs. In thisishege focus on finite
element methods for doing so, since they have become theodseti choice for
many large-scale applications.

One of the main computational challenges is dealing witHdhge null-space
of the curl-curl operator in (1.5c) or (1.6¢). Based on thetoeidentity

—Ab=0x (Oxb)—0(0-b) (1.7)

and sincell-b = 0, it seems feasible to apply an augmentation technique to re-
place the curl-curl operator in (1.5¢) or (1.6¢) by the vettaplacian. This would
then allow one to use the standard nodal (itél;conforming) finite elements
for the approximation of the magnetic field, which are cambins in all compo-
nents over inter-elemental faces. Indeed, various FEMreligations based on
this approach have been proposed for both linear and namlik#D systems,
see, e.g., [&, 33, 48]. However, it is well-known that in reomvex polyhedra, the
magnetic field may have regularity belddt. A straightforwardly applied nodal
FEM discretization, albeit stable, will then converge toagmetic field that misses
certain singular solution components induced by reentramters; see: [23, 24] and
the references therein. This s illustrated in Figures ar&ftwo-dimensional MHD



08 \ / 08
\ | /

06 — ‘ / 06

0.4 N\ I/ e 0.4

02

-02 [ -0.2
-0.4 \ N -0.4
-06 \ -06

-08f \ ) B -08

() (d)

Figure 1.3: Contours of (a)by; (b) by; (c) nodal approximation ob;; (d)
nodal approximation olfy,.

problem on an L-shaped domain. The magnetic fiield (bs,b,), whose contours
are shown in Figures 1.3(a) and 1.3(b), represents thegasbrmagnetic corner
singularities at the reentrant corner. It belongsH®®. However, it is evident
that the nodal approximations obtained on a sufficiently firesh and depicted in
Figures 1.3(c) and 1.3(d) do not correctly resolve this giagty.

A number of remedies have been proposed for electromagpetidlems in
isolation, for example the weighted regularization applo@n [24] or the ap-
proach in [7], whereby the divergence of the electric fieldtiabilized inH
with % < a < 1.In|50], a weighted regularization nodal finite elementmoe
has been introduced and analyzed for the full incompresaitiD system.

In the recent work [73], a new variational setting for thenfiolation of incom-
pressible MHD problems has been proposed. It is based onedrapproach for
the discretization of the Maxwell operator. In the statignease, it amounts to



solving a system of PDEs of the following form:

—VAu+ (u-O)u+Op—k(Oxb)xb=f, (1.8a)
O-u=0, (1.8b)
KvmOx (Oxb)+0Or—kOx (uxb)=g, (1.8c)
O-b=0. (1.8d)

Here, the additional variableis the Lagrange multiplier related to the divergence
constraint of the magnetic field, ¢'. 152, 66], agds an additional source term.
Indeed, by taking the divergence of (1.8c), we see that

Ar=1[]-g.
In particular, ifg is divergence-free, we obtain

r

0, (1.9)

and in this case the sole purpose of the multiplier is to enstability. In this
setting, the above mentioned difficulties associated witfahelements are seam-
lessly avoided, because the magnetic field can now be saughttirl-conforming
Sobolev space, which is the natural choice especially iptesence of reentrant
corners [52, €6]. As a consequence, it is now possible tox ikl continuity re-
quirements for the approximate magnetic field across isliemental faces of the
underlying mesh. In particular, one is allowed to enforcy déangential continu-
ity (weakly or strongly), thus making it possible to designité element methods
that are able to correctly resolve the strongest magnetgusarities.

One option is to use discontinuous Galerkin (DG) methodschvare based
on completely discontinuous approximating finite elemgiices. Tangential con-
tinuity of the approximation to the magnetic field is ensuireé weak sense by
introducing in the discrete bilinear forms suitable fluxmsrover elemental bound-
aries. Over the last two decades, DG methods have becomtegrairpart of com-
putational fluid mechanics and electromagnetics, see F.414, 23, 51] and the



references therein. Central features of discontinuousi®ial methods are their ro-
bustness in convection-dominated regimes, their flexyiithe mesh design, their
natural way of handling high order and adaptivity, and the fhat the approxima-
tion of magnetic field can be based on standard polynomigdeshanctions. DG

methods have been successfully applied to both ideal amdusscompressible
MHD problems [64, 77]. In our work [56], the first interior palty discontinuous

Galerkin finite element method has been developed and athfgr a linearized

version of (1.8). In[46], a similar interior penalty techjoe is applied to enforce
the tangential continuity of the magnetic variable acrosmains with different

electromagnetic properties, while nodal elements are @yegl in the interior.

Another option is to employ curl-conforming Nédélec etmts for approxi-
mating the magnetic field [538]. For these elements, tangeatintinuity across
inter-elemental faces is enforced strongly through apjsigelemental degrees of
freedom. In our work [43], a method of this type has been psedcand analyzed
for the fully nonlinear system (1.8). The correspondingdidiscretization is based
on the divergence-conforming discontinuous Galerkin agpn of [20]; it yields
exactly divergence-free velocity approximations, anduees the energy-stability
of the resulting method. In [30], a similar discretizatiom@oying Nédélec ele-
ments for the magnetic field combined with conforming eletaéor the fluid vari-
ables has been presented for a nonlinear MHD problem invglfive unknowns
(velocity, pressure, magnetic field, electric current aoteptial). In the recent
work [70], various fully discrete schemes based on Nédélements fob have
been theoretically studied for the time-dependent MHDesyst1.5).

Other numerical methods for the discretization of the eiquatof incompress-
ible MHD can be found in the literature. We mention here the Dproblem
analyzed in'[44, £5], which stems from the dynamo effect ammlsdwith domains
consisting of both insulating and conducting regions.' | {8e long-term dissi-
pativity of time-stepping algorithms for transient incoragsible MHD problems
has been studied. Convergence results for time-steppittigoaie involving nodal
discretizations in convex domains can be founc in [70].



1.3 Overview of thesis

In this section we outline the contents and summarize the neaults presented in
this thesis. Chapter 2 is devoted to the development angsisaf a DG method
for a linearized version of (1.8). In Chapter 3, we focus oa thlly nonlinear
problem (1.3). In Chapter 4, we present two extensions ofi@maretization tech-
niques to (a) the time-dependent problem (1.5), and (b) thkeS equations with
nonstandard boundary conditions. Conclusions and opéerigms related to our
work are presented in Chapter 5.

1.3.1 A mixed discontinuous Galerkin method for linearized
magnetohydrodynamics

In Chapter 2, we propose and analyze the first interior pgi2@ finite element
method for a linearized variant of (Z..8), whereby all theiakles are approximated
in discontinuous finite element spaces. More specificatlykf> 1, our method
yields approximations

Unh € (), Ph € Pr-1(h),

bh € Pu(Th), rh € Pi1(h),

where Z(7h) is the standard (vector- or scalar-valued) discontinuonisefiel-
ement space of ordde over a tetrahedral triangulatio, of mesh sizeh of the
computational domain. The components of the proposedddization are bor-
rowed from the DG methods available for incompressible fliliiadv problems
[17,18, 19, 49 74], and from the discontinuous element paiposed for the
mixed Maxwell operator in [54, 55], see also [53], combindthva discontinuous
discretization of the coupling terms.

Our main result is an a priori error estimate for the propasedhod under the
following smoothness assumption on the analytical sahutio

ueHl  peH, (1.10a)

beHT, OxbeH?, reH™ (1.10b)
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for regularity parameters, 7 > % These regularity assumptions are minimal in
the sense that they are satisfied by the strongest hydmatatimagnetic singular-
ities in possibly non-convex polyhedral domains; see [3,a826] 23, 24]. More
precisely, we prove that

|||(U — Un, b— bha P—Pn, I — I'h)|||E = ﬁ(hmin{air’k}% (111)

where|| - ||e is a suitably defined energy norm ahdhe mesh size. In particu-
lar, this shows convergence of ordéi(h™™.7}) for non-smooth solutions, and
order ¢(h¥) for smooth ones. This rate is optimal in the approximatiorthef
velocity, the pressure and the magnetic field.

k| DOFsun/pn | [lu—unle | rate | ||p—pnlle | rate
4,608/384 5.823e-1 | - 4.564e-1 | -
1| 36,864/3,072 | 2.896e-1 | 1.01| 2.606e-1 | 0.81
294,912/24,57 1.442e-1 | 1.01| 1.400e-1 | 0.90

1,440/192 1.262e-1 | - 3.424e-1 | -
2| 11,520/1,536 | 3.162e-2 | 2.00| 8.488e-2 | 2.01
92,160/12,288| 7.822e-3 | 2.02| 2.127e-2 | 2.00

Table 1.1: Smooth solution. Convergence wf and py in the energy norm.

k DOFsby/rp [lb—bn|le | rate | ||Ir—rn||e | rate
4,608/3,840 3.445e-1 | - 5.098e-1| -
1| 36,864/30,720 | 1.668e-1 | 1.05| 1.363e-1| 1.90
294,912/245,76Q 8.184e-2 | 1.03 | 3.405e-2 | 2.00
1,440/960 4.920e-2 | - 2.559%e-1| -
2 11,520/7,680 | 1.146e-2 | 2.10 | 3.430e-2 | 2.90
92,160/61,440 | 2.767e-3 | 2.05| 4.210e-3 | 3.03

Table 1.2: Smooth solution. Convergence lof andry in the energy norm.

In Tables 1.1 and 1.2, we show representative convergescétsdor a three-
dimensional problem with a smooth solution, employkeg 1 andk = 2. The
experimental orders of convergence for the velocity, tlesgure, and the magnetic
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field are of orderc’(h*), confirming our theoretical results in (1/11). They are of
order ¢ (h**1) for the error in the multiplier. While optimal and expected, this
rate is not reflected in our error estimates. We also noteith&ection 2.5.1.2
the L2-norm errors in the velocity and the magnetic field are obsgrio be of
the optimal ordero(h%*1). For the L-shaped domain problem with the singular
magnetic field shown in Figure 1..3, we obtain the numbersdish Table 1.3.
They show that our method correctly captures the singulaatieur ofb at the
reentrant corner, at convergence rates that are actuatlgridban expected. On
the other hand, the rates foare of order’(h?/3), which is in agreement with the
regularity of the magnetic field.

A version of this chapter has been publishec in [56].

k| DOFsbp/rn | ||o—bnlle | rate | [|r—rn||e | rate
2,304/2,304 | 1.112e-1 | - 1.265 -
1| 9,216/9,216 | 5.280e-2 | 1.07 | 8.384e-1| 0.59
36,864/36,864| 2.657e-2 | 0.99| 5.387e-1| 0.64
4,608/3,840 | 8.065e-2 | 1.15| 1.412 -
2 | 18,432/15,360| 3.654e-2 | 1.14| 9.193e-1| 0.62
73,728/61,440| 1.766e-2 | 1.05| 5.868e-1| 0.65
7,680/5,760 | 6.363e-2 | - 1.559 -
3| 30,720/23,040| 2.812e-2 | 1.18| 1.008 | 0.63
122,880/92,16Q 1.320e-2 | 1.09| 6.415e-1| 0.65

Table 1.3: Magnetic singularity in L-shaped domain. Convergencebpf
andrp in the energy norm.

1.3.2 A mixed finite element method with exactly divergencéee
velocities for nonlinear magnetohydrodynamics

While itis in principle possible to extend the fully disconious approach of Chap-
ter Z to the nonlinear setting, however in Chapter 3, for #asons presented below,
we have chosen to suitably modify the DG discretization lmcpeding as follows.
First, we replace the discontinuodgy elements for the velocity by divergence-
conforming Brezzi-Douglas-Marini (BDM) elements of degie These elements
are continuous in normal direction over inter-elementakfa and hence the DG
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approach is now only employed to enforce the tangentialicoity of the veloc-
ity field. This choice of elements has been introduced andyaed in 19, 2)]
in the context of the incompressible Navier-Stokes equatidt has the attractive
property that it yields exactly divergence-free velocippeoximations, which nat-
urally guarantees the energy-stability of the discreimatin |20], a detailed error
analysis of exactly divergence-free discretizations aafolind for a variety of DG
methods; they have been shown to be inf-sup stable and dlytiozavergent in
natural norms. We also refer the reader to [27., 59] for furtispects.

Second, we replace the completely discontinusds .1 elements for the
discretization of the magnetic variablésandr by the conforming first family
Nédélec pair of ordek. That is, we seek the approximate magnetic field in a curl-
conforming finite element space of piecewise polynomialslefreek, and the
discrete Lagrange multiplier in thid *-conforming nodal space of ord&r This
choice of elements has the advantage that it reduces tHentotder of coupled
degrees of freedom. Based on the discrete Helmholtz decsitigpo|66], it also
yields

rh=0 (1.12)

for a divergence-free right-hargl thus mimicking the continuous scenario/in (1.9).

(a) (b)
Figure 1.4: Elemental degrees of freedom for (a) BRWr); (b) Ned, ().

In summary, we now determine approximationgwob, p,r) in the finite ele-
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ment spaces

un € BDMy(%h), Ph € Pr-1(h), (1.13q)

b € Ned«(.%), rh € P(h), (1.13b)

where Z{(.7,) denotes the space of continuous piecewise polynomialsgrede
at mostk. The lowest-order BDM and Nédélec elemerks=(1) are illustrated in
Figures 1.4(a) and 1.4(b), respectively.

Our main results are then proofs of the following theorétmraperties of the
resulting finite element discretization. First, we showeRistence and uniqueness
of discrete solutions under a standard small data assumpgecond, we show
convergence in general (possibly non-convex) polyhedvadains under the min-
imal regularity assumptior) (1.10). That is, as the mesh BiEnds to zero, we
have

[II(u—un,b—bn, p—pn,r —rp)fle — 0.

Finally, we carry out an error analysis and prove the follogverror estimate

ﬁ(hmin{a,r.k}ff)’ in 2D,
| (u— un,b —bn)le = : ! i
ﬁ(hmm{a,r.k}*z)’ in 3D,

for € > 0 arbitrarily small. This estimate is nearly optimal for teamensional
problems, but falls short by half a power bfin three dimensions. This loss in
optimality stems from the use of Sobolev embeddings andrsevestimates to
establish the continuity of the variational forms ass@dawith the nonlinear cou-
pling terms. However, all our numerical experiments intkogptimal convergence
rates, in both two and three dimensions.

Let us again present some representative numerical resulthe proposed
method. In Table 14 we show the numbers obtained for the samgelar prob-
lem on the L-shaped domain as in Figure 1.3. The approximagnetic field
is convergent of ordet’(h?/?), as predicted by our theory, whereas ttfenorm
of the approximate multiplier, is now zero up to machine accuracy, as expected
from (1.12). As the mesh is refined, the actual values of-throrm ofry, slightly
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increase, which is likely due to the increased condition bers of the correspond-
ing linear systems.

DOFsbp/rn | [[b—bnlle | rate | ||rnlll 2
2,368/833 7.473e-2 - 4.260e-11
9,344/3,201 | 4.754e-2 | 0.65| 1.406e-10
37,120/12,545 3.013e-2 | 0.66 | 3.018e-10

Table 1.4: Magnetic singularity in L-shaped domain. Energy norm esror
of by andrp,.

‘N\\%
Wﬂz
‘N\\\%
Wﬂ

(b)

Figure 1.5: 2D channel flow. Numerical approximations of (a) velocitly) (
normalized magnetic field.

DOFsun/pn | [[[u—un[|e | rate | [ip—pn[le | rate
2,502/384 | 0.9561 | — | 8194 | -
19,584/3,072 | 0.4903 | 0.96| 2.837 | 1.53
152,064/24,576 0.2484 | 0.98| 1.091 | 1.38

Table 1.5: 3D channel flow. Convergence of and py, in the energy norm.

In Figure 1.5, we show the approximate velocity and the (radizad) mag-
netic field of a unidirectional channel flow driven by a pressgradient under
the transverse magnetic fie{@,1). The solution of this problem is smooth. The
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DOFsby/ry | [[b—bp||e | rate | |[||rnll.2
604/125 2.579%-5 | - | 1.013e-10
4,184/729 | 1.464e-5 | 0.82 | 4.098e-10
31,024/4,913 7.543e-6 | 0.96| 1.795e-9

Table 1.6: 3D channel flow. Convergence bf andry in the energy norm.

velocity field only has a component wdirection, with a profile that can be ex-
pressed in terms of a hyperbolic cosine (rather than thebpdicaprofile obtained
for the Navier-Stokes problem in isolation). The magnetedfiis of the form
b = ((b(y),1) whereb(y) measures the deviation fro(f,1). The approximations
shown in Figure: 1.5 are in excellent agreement with the eselcttions. A three-
dimensional version of this problem has also been testedalres 1.5 and 1.6,
we list the computational results. We see convergence oditeisler one inu and
b, and of order slightly better than one jm We observe again thag is zero up to
machine accuracy; the slight increase of the actual ermtheamesh is refined is
again due to the increased condition numbers.

A version of this chapter has been publishec in [43].

1.3.3 Extensions to time-dependent magnetohydrodynamiesd
Stokes problem

In Chapter 4, we present two extensions of the techniquesdimted in Chapters 2
and 3.

1.3.3.1 Time-dependent magnetohydrodynamics computatic

In [70], theoretical aspects of fully discrete schemes liertime-dependent MHD
problem (1.55) have been established. Our goal here is tceiigaht one of these
methods and show a number of computational tests.

We employ the elements proposed in (7..13), and discretizinia using the
implicit Euler scheme. As a result, a linearized (but stllpled) version of prob-
lem (1.8) has to be solved in each time step.

In Figures 1.5 and 1.7, we show the evolution of the approtémelocity and
the (normalized) magnetic field of a channel flow driven by avimg top wall
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Figure 1.6: Transient MHD flow. Numerical approximations of velocity at
time (a)t = 0.01; (b)t = 1.

under a transverse magnetic field. The analytical solutidrikis problem can be
expressed by Fourier series. The approximations showrgur€ 1.5 and 1.7 are

in excellent agreement with the exact solutions.

(L))

(@) (b)

Figure 1.7: Transient MHD flow. Numerical approximations of normalized
magnetic field at time (&)= 0.01; (b)t = 1.

1.3.3.2 An optimal error estimate of a curl-curl formulation of the Stokes
equations with nonstandard boundary conditions

In the spirit of the method proposed n [20], we investigateegactly divergence-
free DG method for the numerical approximation of the Stat@sations with the

nonstandard boundary conditions
u-n=0 and (Oxu)xn=0.

These boundary conditions are of practical interest in agatmnal fluid dynam-

ics; cf. |8, 37]; they correspond to normal velocity (no-ptration) and tangential
vorticity conditions. They lend themselves naturally torrarical methods that are
based on reducing the vector Laplacian to the curl-curl atpersee also (1.7), and
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rewriting the Stokes equations in the curl-curl formulatio

vOx (Oxu)+Op=H,

O-u=0.

Again, we use théd(div)-conforming BDM finite element space of degree
for the velocity approximation [L.1], along with a discontous pressure space of
degreek— 1. The tangential continuity of the approximate velocitydiis enforced
through an interior penalty approach. We establish a crumam-equivalence
property and show convergence of ordgth*) in the mesh size for the broké'-
norm of the velocity error, despite the fact that the methoelschot give any explicit
control on gradients. We confirm the theoretical results aeres of numerical
tests.
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Chapter 2

A mixed discontinuous Galerkin
method for linearized
Incompressible
magnetohydrodynamics

In this chapter, we introduce and analyze the first interiemgity discontinuous
Galerkin method for the numerical discretization of a stadiry incompressible
magnetohydrodynamics model problem. The fluid unknownsle@etized with
inf-sup stable discontinuou@f—@k_l elements whereas the magnetic part of the
equations is approximated by discontinuo@f—@kM elements. We carry out a
complete a priori error analysis of the method and provetti@energy norm error

is optimally convergent in the mesh size. These results arfied in a series of
numerical experiments.

2.1 Introduction

The numerical simulation of incompressible MHD problemguiees discretizing
a system of partial differential equations that couplesititempressible Navier-
Stokes equations with Maxwell’s equations. Various finiegreent methods (FEM)
can be found in the literature where the magnetic field is@ayprated by standard
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H1-conforming finite elements, see, e.q., [3, 33, 45, 48] ard¢ferences therein.
However, in non-convex polyhedra of engineering interést, magnetic field may
have regularity belowH! and a nodal FEM discretization, albeit stable, can con-
verge to a magnetic field that misses certain singular swmiutomponents induced
by reentrant vertices or edges; s=€ [24]. In the recent vikgk fhis drawback of
nodal elements was overcome by the use of Nédélec elerfoeritee approxima-
tion of the magnetic field. Thereby, a new variational segtfior the formulation
of incompressible MHD problems was proposed. It is based mixad approach
for the discretization of the Maxwell operator and introds@ Lagrange multiplier
related to the divergence constraint of the magnetic fidld5€].

Over the last two decades, discontinuous Galerkin methads bhecome an in-
tegral part of computational fluid mechanics and computafi@lectromagnetics,
see [14, 16, 51] and the references therein. DG methods &enely versatile
and flexible; they can deal robustly with partial differetequations of almost
any kind, as well as with equations whose type changes wittl@rcomputational
domain. Their intrinsic stability properties make themunally suited for prob-
lems where convection is dominant. Moreover, discontisuGalerkin methods
can easily handle irregularly refined meshes and variabbpeoapmation degrees
(hp-adaptivity). The DG approximations of magnetic or electiields can be
based on standard polynomial shape functions, in conwastif--conforming or
divergence-conforming elements commonly used in comjmualt electromagnet-
ics. DG methods have already been successfully appliedtioitheal and viscous
compressible MHD problems [64, 77].

In this chapter, we propose and analyze an interior penayniethod for a
linearized incompressible MHD model problem based on theathformulation
introduced in [73]. Our method combines the DG discretati that have been
developed recently for incompressible flow problems and Wklks equations.
More specifically, the fluid unknowns are approximated usitiged discontinu-
ous «@S'«@kfl elements [18, 7.9, 74] while the magnetic variables are efsad
with the L@E—L@Hl element pair proposed and analyzed irn |54, 55]. We carry out
a complete a priori error analysis for the proposed DG method show that the
energy error in all variables is convergent of ordeth*) in the mesh sizéx. Our
results further show that the proposed DG method is able necity resolve the
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strongest magnetic singularities in non-convex polyhledoanains, in contrast to
H1-conforming elements.

The rest of the chapter is organized as follows. In Secti@)®e introduce
an interior penalty DG method for a linearized incompreestMHD model prob-
lem. In Section 2.3, we state and discuss a priori error @s&émfor the method.
Section 2.4 is devoted to the detailed proof of these estigndh Section 25, we
present a series of numerical experiments validating aorttical results. Finally,
we present some concluding remarks in Section 2.6.

2.2 Discretization of a model problem

2.2.1 An MHD model problem

We consider the following linear and stationary MHD systemsdd on the mixed
formulation proposed in [73]: find the velocity field the pressurg, the magnetic
field b, and the scalar potentialsuch that

—vAu+ (w-Ou+yw+0Op—k(Oxb)xd=f in Q, (2.1a)
O-u=0 inQ, (2.1b)

KvnOx (Oxb)+0Or—kOx (uxd)=g in Q, (2.1c)
O0-b=0 inQ. (2.1d)

Here,Q is a bounded simply-connected Lipschitz polytop&fh(d = 2 or 3). In
the two-dimensional case, the curl operatox applied to a vectob = (b, by)

is determined by x (bg,by,0), while the curl of a scalar functionis given by

0 x (0,0, r). Thatis,Oxb= %2 — %—t;l, and0 xr = (4, —45). The cross prod-
uct x is defined similarly. The functiow € W= (Q)9 is a prescribed convective
field, andd € L°(Q)? a given magnetic field. Typically these fields come from a
linearization process. The right-hand sidemndg are vector-valued source terms

in L?(Q)Y. The scalar functiory belongs taL*(Q). We further assume that there
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is a positive constant, such that
1
Yo(X) := y(X) — ED -W(X) >y, >0, xe Q. (2.2)

Remark 2.2.1 The positivity ofy, in (2.2) is a purely technical (but standard)
assumption that facilitates dealing with the convectiamtén the error analysis.
However, in the absence of a reaction terpn= 0), the parametern, must be
allowed to be zero. While the proposed DG method is stablevwaiddefined in
this case as well, the error analysis becomes more involmeldequires additional
(duality) arguments, see [18] for the Oseen operator.

Without loss of generality, we may assume that the lengtlesaf, and the
L”-norms ofw andd are one. In many engineering applications (such as aluminum
electrolysis), the magnitudes of Rm ardare of order one, whereas Re can be
substantially larger; cf. [3]. We will focus on this case arat make explicit our
error estimates with respect tg, andk.

We suppose that the bounddryof Q is connected, and can be partitioned into
two disjoint parts. That is, we have

r:rDurN with TpNy =0.

Throughout, we assume thag satisfies/- ds> 0. Denoting byn the unit out-
ward normal on the boundary, we then supplement the MHD sy¢#el) with the
following boundary conditions:

u=up onlp, (2.3a)

(pl —vOu)n = pyn only, (2.3b)
nxb=nxbp onl, (2.3¢)

r=0 onl. (2.3d)

Here, lis the identity matrix inR9*9, We assume thaty € L?(My) and thatup
andbp are restrictions to the boundary of sufficiently smooth djemce-free func-
tions inQ. Finally, we notice that, if y = 0, the datunup must satisfy the com-
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patibility condition - up -nds=0.

Remark 2.2.2 The magnetic boundary conditioris (2.3) are geared towarag-H
mann flow problems with insulating wall conditions in thetisgt of [35, Sec-
tion 3.7.1]. The method can be readily extended to otherstyelectromagnetic
boundary conditions. For example, with only minimal chageis possible to
specify bottb-nand (0 x b) x nonT", corresponding to perfectly conducting wall
conditions; cf. [33, 35, 73].

Letl_ ={xerl:w(x)-n(x) <0} be the inflow boundary df. We adopt the
(physically reasonable) hypothesis that

w(x)-n(x) >0 forallx ely.

Obviously, we then have_ C I'p.

Remark 2.2.3 As in | 73], the scalar potential r is the Lagrange multipliassoci-

ated with the magnetic divergence constraint. By takingdilrergence of (2.1.c),
we see thafir = [0-gin Q, r =0onT. In particular, we have & 0 provided that

the functiong is divergence-free. In this case, the MHD problem (2.1) ésshme
as the one studied in [33] or the linearized version of the ooesidered in [48].

To define the weak formulation of the MHD system, we introdiieeSobolev
spaces

V:{veHl(Q)d :v:OonFD},
C = Ho(cur:Q) = {ce L2(Q)? : Oxce LZ(Q)d,nxc:OonF},
S=H3(Q)={seHY(Q):s=0o0nl},

andQ = L?(Q). In the case wherEy = 0, we also need to enforce the mean val-
ues of functions irQ to be zero. We denote by, -)o the inner product in.?(Q)

or L?(Q)Y, and by(-,-)r+ the inner product in.?(I"") or L3(I")d for I’ C T'. The
weak formulation of the incompressible MHD system (2.1)ntleensists in de-
termining u € HY(Q)9, b € H(cur;Q), p€ Q andr € S, with u=up on p
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andn x b =nxbp onTl, such that

A(U,V)—i—O(U,V)—i-C(V,b)—i-B(V, p) = (va)Q_ <pNn7V>FN7
B(U,Q) = 0
M(b,c) —C(u,c)+D(c,r) = (9,C)q,

D(b,s) = O
forall (v,c,q,s) € V x C x Q x S Here, the bilinear forms are given by
A(u,v):/QvDu:Dvdx, O(u,v):/Q((W-D)u+yu)-vdx,
M(b,c) = /QKVm(D x b)- (0O x c)dx, C(v,b) = /QK(VX d)- (0 x b)dx,

B(u,q):—/Q(D-u)qu, D(b,s):/Qb.Dsdx.

Under the above assumptions, the well-posedness of thidgmnofollows from
standard stability properties and the theory of mixed fielements; see also [73]
and the references therein.

2.2.2 Meshes and trace operators

We consider a family of regular and shape-regular triarttpria .7, that partition
the domaim into simplices{K} (i.e., triangles fod = 2 and tetrahedra fat = 3).
The indexh is indicative of the mesh sizewhich is defined at = maxc % hk,
wherehg is the diameter oK. We denote by#, the set of all edgesd(= 2) or
faces (I = 3) of 7. In the following, we generically refer to elements.i#, as
faces. We also denote b the set of all interior faces off, and by.#®? the
set of all boundary faces. We always assume &t can be divided into two
disjoint sets%? andﬁ‘g\' of Dirichlet and Neumann faces, respectively. That is,
we assume tha?y = 7 U7, wherelp = U, zoF andly = Ugc gnF. As
usual,hg denotes the diameter of the faEe Finally, we writeny to denote the
unit outward normal on the bounda#K of an elemenk.

Next, we introduce the average and jump operators. To det®,+ K NIK’
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be an interior face shared &y andK’ and letx € F. Let ¢ be a generic piecewise
smooth function (scalar-, vector- or tensor-valued) andotie by ¢ and ¢’ the
traces ofp onF taken from within the interior oK andK’, respectively. Then, we
define the mean value gfatx € F as

ol =(0+¢)/2

Furthermore, lety be a piecewise smooth function agga piecewise smooth
vector-valued field. Analogously, we define the followingnjos atx € F:

(@] = wnk+y'ng, (@] = @2+ ¢ @ng,
(@]t =nk x @+ng x @, [@In=@-nk+ @ -ng,

wherep®n = (cnnj)lgiqjgd. On a boundary facé = dK NI, we set accordingly

{en=¢. [WI=yn, [gl=uen, [@lr=nxe, [glx=e-n.

2.2.3 Interior penalty formulation

Fork > 1, let Z(K) denote the space of polynomials of total degree at rkost
onK. We then define

P T ={pel?Q): plk € Z(K),K e Fh}.

The corresponding vector-valued function space is dertmed (.7)% with d = 2
or 3. Now we introduce the finite element spaces

Vh= (R, Ch= (%), Q=P 1(R), Sh= P,

where we also impose zero mean value of the functiorig,im the casd \ = 0.
We consider the following discontinuous Galerkin methodd fiup, by, pn,rn)
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in Vi x Ch x Qp x $, such that

An(Up,V) +On(up,Vv) +Ch(v,bn) + Bn(v,pr) = Fn(v), (2.4a)
Bh(uth) = <uD'n7q>rD7 (24b)
M (bn,€) —Cn(un,€) +Dn(c,rh) = Gn(c), (2.4c)

Dn(bn,s) = Jdn(rn,s) = O (2.4d)

for all (v,c,q,s) € Vi x Ch x Qn x S. Here, the form#\,, O, andBy, are related
to the discretization of the Oseen operator. We take the progsed and studied
in [1&, 19, 49, 74]. The form&/4,, Dy, andJy, are related to the discretization of
the Maxwell operator. We choose the ones correspondingeatm-stabilized
@fj‘ — P1 interior penalty methods proposed and analyzed in [54, Bbjally,
the formC;, couples the Maxwell equations to the Oseen problem. Thesesfare
defined next.

First, the formAy, is chosen as the standard interior penalty form

An(u,v) :KEZ%/K vOu: Dvdx—F JfZWQD/F{{vDu}} :[v]ds

> [ fvovy:uldst Zﬂ% [ w1 [vjas

Fe7, U7, FeZ,UZ,

The parameteay > 0 is a sufficiently large stabilization parameter; see Psépo
tion 2.2.4 below. For the convective form, we take the uspalind form defined

by

On(u,v) = Zy/K((W-D)w—yu)-vdx
Ke%

/ w-ng(u®—u)-vds— [ w-nu-vds
OK I

K< r_

Here,u® is the value of the trace aftaken from the exterior &K anddK_ = {x
JK : w(x)-nk(x) < 0} is the inflow boundary oK. The formBy, related to the
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divergence constraint amis defined by

Bru.)=—~ 3 [(@-waccr 3 [ fa)fulnds
FeZ UFD

Keh K

Next, we define the forms for the discretization of the Maxtveglerator. The
form My, for the curl-curl operator is given by

Mn(b, c) :K;/K <n(0xb) (0 C)dx— / Km0 x bY} - [c]r ds

- 3 JAenOxc) lolrds+ 5 S [ bl

FEn Fe

As for the diffusion form, to ensure stability, the stakdliion parametem, > 0
must be chosen large enough, see Proposition 2.2.4 below.forim Dy, for the
divergence constraint dmis given by

Dh(b.s) = ¥ /b-Dsdx
Keh K

The form J, is a stabilization term that ensures tHé-conformity of the multi-
plier ry. It is given by

AL

Fe/h

-3 T JAGRELE

with 5 > O denoting a positive stabilization parameter. The depecel®nvy,
andk is chosen so as to suitably balance the multiplier terms ireaor analysis.

Finally, for the coupling fornCy, in our DG formulation, we take a discontinu-
ous Galerkin version of the bilinear for@, namely:

Calv.b)= K/K(vxd)-(Dxb)dx— /{{vxd}} b ds

Ke%, Fe/ U/
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With these forms, the source terfagv) andGp(c) must be chosen as

F

Fn(v) = /Qf.vdx—FGZ%P/ vOv: (up®n)ds

+ Z \%0 ‘uD-vds— Z /K(vxd)-(nbe)ds
Fezp ' JF Fez) F

— ‘w-nuD~vds— Z / pnn-vds

r- FezN

and

Gnh(c) = /g-cdx— Z /Kvm(Dxc)-(nbe)ds
Q FeZp F

K\;mnb/(nbe)-(nxc)ds
FezP F F
- Z /K(qud)'(nxc)ds
FezP F

respectively.

2.2.4  Stability

The stability properties of the above DG forms have been aa&thblished in the
recent literature on DG methods. To review them, we intredihe norms

lulin="3 lIBullE + he I U] iz

Keh FegluzpP

1 1 1
ullG = vIiulEn+ g ullEzq) + EFGE} - n2 [u]|[F2 e
Zh
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In the last termp denotes any of the outward normalsenFor the magnetic field,
we define

bE =K 5 0Bl + kv S helIblr [
KG% Feyh

2 2 2
Ib]| = Kvin]|bZ2 ) +[bIZ.
Finally, on the magnetic multiplier space, we introduce

[ S S [ A Ve Sl = [ 3 [ [P
Keh FeZn
First, we recall the following coercivity properties 8§, On and My, see [5,
18, 54] and the references therein.

Proposition 2.2.4 Under the assumption (2..2), there is a threshold valye-®,
independent of the mesh size,vy, and Kk, such that for every @> a, there is a
constant C> 0 independent of the mesh sizge v, andk such that

An(u,u) +On(u,u) > Cljul[g,  ue€Vn.

Moreover, there is a threshold valug,nt O, independent of the mesh size,vp,
and k, such that for m > m, there is a constant G 0 independent of the mesh
size,v, vy and K such that

Mh(b,b) >Clb|2, b€ Cp.

Next, we recall that the velocity/pressure pdijy x Qp is inf-sup stable; cf. [11,
Remark 11.2.10] and [49, Proposition 10]:

Proposition 2.2.5 There is a stability constant & 0 independent of the mesh
size,v, vy and K such that

inf Bh(V, p)

— 7  >C>0.
P\ {0} veviy\ (o} IVII2hl[PllLz(@)
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There is no inf-sup condition available for the p&f x §,. However, the
underlying conforming spaces are stable, sez [66]. To dssthis, we introduce
the conforming spaceS; = ChN C andS; = §,N'S. The space&y is the Nédélec
finite element space of the second family of orll¢6€, 68], with zero tangential
trace onl. The spaces; is the space of continuous piecewise polynomials of
degree at modt+ 1, with zero trace o. Thus, we may decomposg, and S,
into

Ch=CLaCh, S=So%, (2.5)

respectively. Obviously, the norms of the jumps

bR = kv S el lblrl, R =k et 5 eI,
FeZy FeZy

define norms oi€;- andS, respectively. The following norm-equivalence results
from [54, Theorem 4.1] are essential to our error analysis.

Proposition 2.2.6 There is a constant G 0, independent of the mesh size,vn,
andk, such that

Clibllc < blcx <|blle;  ClIrlls < Irs- < Irls,
foranyb € Ci and re St.

For the conforming paiCi x S, the following properties of the formd andD
hold true, see [54, Lemma 5.3] for a proof.

Proposition 2.2.7 There exists a constant:€0independent of the mesh sizeyn,
andk such that
M(b,b) > C||b|Z,

for anyb in Xt, where
F={beCj:D(b,s)=0 VseS}. (2.6)

Furthermore, there exists a second constant Gindependent of the mesh size,
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Vm andk such that

inf sup M >C>0.
re§\{0} cecey (o) lICliclIrlls
Employing the above properties and applying arguments [®irProposition
3.3], existence and uniqueness of discrete solutions casdoily shown provided
thatag > a,, mp > m, andsp > 0.

2.3 A priori error estimates

In this section, we present and discuss the main result@ttiapter: a priori error
estimates for the proposed DG method.

We shall suppose that the solutiti b, p,r) of the MHD problem satisfies the
regularity properties

(u,p) e HTHQ)I x HO(Q), for o > 3, (2.7a)

(b,0xb,r) eHY(Q)¥ x HT(Q) x HT"}(Q),  forT> 1. (2.7b)
These regularity assumptions are realistic. This can befsem the regularity
properties of the Maxwell operator and the linearized Na@ikes operator in
polyhedral domains, respectively, s2e [Z, 26]. In paréicuhe strongest magnetic

singularities satisfy assumptiaon (2.7h).
The following theorem represents the main result of thigptéa

Theorem 2.3.1 Let the solution(u, b, p,r) of the MHD problem satisfy the regu-
larity assumptions stated in (2.7). Further, lety, by, pn,rn) denote the DG ap-
proximation defined in (2.4). Assumira (2.2) holds, thersr@an be bounded

by
[[u—unllv +[[b—bnllc +[[P— Phllz) + Ir —Tnlls

i _1
<N (|lulyos(g) + V™2 Plluera) )

+CHnin{r,k} (”b”HT(Q) + ”D X b”HT(Q) + HrHH”l(Q)>’
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where C is a positive constant, independent of the mesh size.a

Remark 2.3.2 For smooth solutions, the estimate in Theorem 2.3.1 ensumes
vergence rates of ordef(h*) in the mesh size h. This rate is optimal in the ap-
proximation of the velocity, the pressure and the magnedid fn the respective
norms, but suboptimal by one order in the approximation efrfultiplier r with
respect to the nornf| - ||s. This is due to the fact that we are using polynomials
of degree kt 1 to approximate r. The same suboptimal result is observedhtor
conforming Necelec family of the second type [€6, 68]. On the other hand, the
use of polynomials of degreetkl for the magnetic multiplier leads to optimal
convergence rates in theerror in the magnetic fieldb, in contrast to the use of
polynomials of degree Kk, cf. the discussion ir |53, 54].

Remark 2.3.3 Our error estimates also hold in the case where the confagmin
Nécklec pairCy x §; is used for the approximation bfandr. While these spaces
have less degrees of freedom than their discontinuous eqantsCy, and S, the
use of discontinuous approximations for the magnetic fiakldeveral advantages.
For example, DG approximations can be based on standarchpatyal shape func-
tions which greatly facilitates the implementation of léglerder elements and
magnetic boundary conditions. Moreover, they are natyrallited to deal with
irregularly refined meshes and variable approximation éegr(hp-adaptivity).

2.4 Proof of the error estimates

2.4.1 Preliminaries

For the purpose of our analysis, we $&h) =V +Vy, C(h) = C+Cy, andS(h) =
S+ S,. Using the lifting operators constructed in 5, 74] and [52], it is then
possible to extend the discrete bilinear forfyg Bn, My, Dy to bilinear forms
An:V(h)xV(h) =R, By:V(h) xQ — R, Mp: C(h) x C(h) — R andDy, : C(h) x
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S(h) — R, respectively. The extended forms are continuous:

[An(U V)| <CVullaplVltn  Yu,veV(h), (2.8)
IMn(b,c)| < C|blc|clc Vb,ce C(h), (2.9)
B(u, p)| < ClullinllPliz@) — YueV(h), peq, (2.10)
Dn(b, 1) <C|blicIrlls vbeC(h),resh),  (211)

with constant€ > 0 that are independent of the mesh sizey, andk. Moreover,
the extended forms are constructed in such a way that

Ah(U,V) = Ah(U,V), gh(u> p) = Bh(uv p),

_ B (2.12)
Mh(b,C) = Mh(b,C), Dh(b,r) = Dh(b,r),

for all discrete functionsi,v € Vi, b,ce Cy, p€ Qnandr € §,, as well as

Ah(U,V) :A(U,V), BJh(uap) :B(U,p),
_ _ (2.13)
Mn(b,c) =M(b,c), Dn(b,r) =D(b,r),

forallu,veV,b,ceC,peQandreS
Suppose now thdu, b, p,r) is the solution of the MHD equations. We define,
foranyv € Vy, c € C,, ands € S, the following functionals

RA(V) = An(U,V) 4 On(U, V) +Ch(V,b) + Br(V, p) — Fn(V),
P (€) = Mn(b,c) — Cn(u,c) + Dp(c,r) — Gn(c),

<@D(S) = 6|’l(b7s) _‘Jh(r7 S)'
The termsZa, %v andZ%p measure how well the analytical solution satisfies the
DG formulation when it is rewritten in terms of the extendelinbar forms. In-

deed, if now(up, bn, pn,rn) is the DG approximation ang, = u — up, & = b — by,
€= P— pn ande =r —ry are the errors, then the following error equations can
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be shown to hold:
ZA(V) = An(€u,V) + On(&y,V) +Cn(V, &) + Bn(v,ep),
Z\(C) = Mi(&,¢) — Ch(eu,c) + Dn(c, &),

o () = Dn(en,s) — dn(e,9),

for anyv € Vy, c € Cy, ands € S,. We remark that the third equation of our DG
method is consistent when it is rewritten in terms of the f(ﬁmnThat is, from the
definition ofBy, in [74] we see that

Bn(U—Un,0) =0, g€ Qn.
Proceeding as in [153, 54, 74], we readily obtain the follajviround.

Proposition 2.4.1 Let the solutior{u, b, p,r) of the MHD problem satisfy the smooth-
ness assumptions in (2.7). Then, we have

(V)| < 2vE|VI[1né (U,b,p), % (C)] < [clc £(u,b, p),
[%p(8)| < [sls-&(u,b, p)
for all v € Vy, c € C and s€ S, where&'(u, b, p) can be bounded by
E(ub,p) < CH™K (VE|ullyoig) + V2 Pluer))
+ CHM™ ([|b][ e (q) + 1|0 % bllr(a))
with a constant C> 0 that is independent of the mesh size and

Let us also establish some continuity properties of the liogijand convection
formsC;, andOy. To that end, we need to introduce the following trace seonivs:

‘uEl/Z,ﬂh: z hKHUHEz(aKy ‘u‘i/z.ﬂh: z hil”u”EZ(aK)-
Keh KeJ,
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Proposition 2.4.2 The coupling form g satisfies
(Co(u,b)l <C (ulliziey + lul 125, ) bble VueV(h),beC(h),
ICh(u,b)[ < C|lulli2(q) Iblc Yu € Vh, b eC(h).
Moreover, the convection form,@an be bounded by

On(u,v)| < C (Jullzn+lullzie) + uly2.5 ) Ve

for all u € V(h), v € V. The constants G 0 are independent of the mesh size
andv.

Proof: Applying the Cauchy-Schwarz inequality and taking intoastt the shape-
regularity of the meshes, we immediately obtain the firstreste

1
2
Cn(u.5)] < Clulizey 17 bl + € ;hKnunEZ(,,K)) ble.
Ke.%h

To prove the second continuity estimate, we use the follgvdiscrete trace
inequality: for any polynomiall € Z«(K), K € %, we have

1
2

[Ulleeory < Chclullzk)- (2.14)

The constanC > 0 only depends on the polynomial degrkeeand the shape-
regularity constants of the meshes. We then readily obtain

ul_1/2,5 <Clullzq)  YUEVh,

from which the second estimate follows.
To prove the estimate fo®y,, we apply the Cauchy-Schwarz inequality to
the form Oy, take into account the shape-regularity of the meshes aadhss
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bound (2.14). This results in

1On(u,V)| < (W= ullsn+ IVlo(o) lulegey ) IVIlz(o)

1 1
2 2
+Clwlir 3 U0 (3 nlvIRon

Ke% Ke%h
<C(Ilullzn+ Iullzi@ + ul1/2.5 ) Mz(a)-

This proves the estimate f@y,. O

2.4.2 Error bounds

Let us now denote bfu, b, p,r) the solution of the MHD problem and By, bn, pn, )
its DG approximation. We split the velocity error as follaws

& =U—Un=(u—Mgu)+ (Ngu—un) =n,+§,, (2.15)

where we use the Brezzi-Douglas-Marini (BDM) projectidg ontoV,NH (div; Q)
of degreek for the approximation of the velocity, see [11, Propositildr8.6]. This
allows us to use an exactly divergence-free approximatidheovelocity and to de-
couple the velocity error from the pressure error which isca@l for bounding the
convection and coupling terms. For the other fields, speajgroximations will
be chosen at a later point.

For notational convenience, we introduce the product norm

1
b, O = U2+ U + 02+ 5 (e nfE (]l
FeZy

2 - 2 2
+ 1blI2 + v Pl g + IIFlI3:
Finally, we decomposby, andry, into
b = ﬁ-l—bl, rh:rﬁ+rﬁ,

with bf € Cf, by € Cii, rf € S andrp € S, in accordance to (2.5).

36



2.4.21 Errorinuandb

We first prove two technical lemmas.

Lemma 2.4.3 There are constants € 0 and G > 0 independent of the mesh size
andv such that

1€l + bR I2. + Iri 3.
< g]b—bn|i& +C&(u,b, p)* +Cef|(ny,b —c,p—a.r = 5[,
foranye > 0, ce Ci, g€ Qp, and sc §. The constant Cdepends om.
Proof: Fix ce C§, g€ Qn, s€ § ande > 0. As in (2.15), we write
& =b—bh=(b—c)+(c—bn)=np+&y,
€ =P—Ph=(P—0)+(d—Pn) = Np+&p, (2.16)
&=r—rh= (-9 +(s—r) =n+é.

We now proceed in the following steps.
Step 1:We first observe that, since the functionsandc are conforming in
£, we have
by |cr = |c—bf — by lce = [c—bnlc: < |&plc.

Similarly, from the conformity of f andsin S,
rivlse = Is—rh—rils: = [s—rnls: = |&ls:- (2.17)
Taking into account these two bounds, we have
€I+ [brlE. +Iri 15 < €Wl +1&6lE + &5 (2.18)

To bound the right-hand side above, we observe (2.12), esst#iility results for
An+On, Mp in Proposition 2.2.4, the fact tha§(&, &) = so\ér\é, and add and
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subtract the coupling and multiplier terms. Thereby, weobt

Cy (1€l + €2+ &13.)
< An(&y, &) +On(€ ., €4) +Cn(€ . &b) +Bn(&y, &)
+Mn(&y, &) —Cn(& . &) +Dn(&p. &)
—Bn(&,&p) —Dn(&p, &) + (&, &)

From this estimate and the error equations in Section 2wlelnow readily con-
clude that
Cr (I€llG+IEpE+&[3) <Ti+To+Ta+ T, (2.19)

where

T = %A(fu)_'&(nuafu)_Oh(nwfu)_Ch(fwnb)_gh(fwr’p)a
T2 = Zu(&) —Mn(Np, &p) +Cn(Ny, &p) — Dn(&p, i),
T3 = éh(nu»fp)v

T = —%b(&)+Dn(Np,&) — (. &).

Step 2:We now bound the term¥, — T4 under the additional assumption that
c belongs to the kerneX{ defined in(2.3).

To boundT;, we use the estimate oF, in Proposition 2.4.1, the continuity
of A, and By, in (2.€) and [(2.10), respectively, and the bounds@grand Oy, in
Proposition 2.4.2. Upon application of the arithmetic4getric mean inequality,
we readily obtain that

ITa < ClI&[lv (&' (u,b. p) + (N4, Mo, 115, 0)])

C
< %HEUII\"} +C&(u,b, p)*+Cll(ny, N, p. O) 1%
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Similarly, from Proposition 2.4 1, (2.9), (2.11) and Prsjtion 2.4.2, we have
T2l <C[&plc(&'(u.b, p)+ (N4 N, 0,0)[1) +ClI&ylcllnels

< Cl&plc (€ (u,b, p) +I(ny, 15,0.0)[I) +Cllesiclinclls+Clinpliclinels

Using the arithmetic-geometric mean inequality again, asetthat, for alls > 0,
Cis 2, G 2 2 2
ITol < S 1&plc + 5 €l —bnllc +C&'(u, b, )" +Cel(y, Ap, 0, Nr) I

Next, we claim thafl3 = 0. To see this, we note thgt, = u — Ngu belongs
to H(div; Q). It follows that[n ] = O on interior faces. In addition, by virtue
of [11, Proposition 111.3.7] and sincé -u = 0, we have thail-n, =0in Q. Then,
using the definition oBy, in [74] and the defining properties of the BDM projection
(cf. [11, Proposition 111.3.6]), we conclude that

Ta=Bn(Ny.ép)= 3 /Fnu'nfpdSZO;

FeZzP

thereby, proving thatz = 0.
For the ternily, we first note, sincec ;, we havel (1, &) =0. Furthermore,

6h(nb7EI') = 6h(nb73_ rh) - 6h(nb73_ rﬁ) - 6h(nb7rﬁ)'
From property (2.13), we conclude that
6h(nb73_ rﬁ) = D(b,S— rﬁ) - D(C7S_ rﬁ)

Both terms on the right-hand side are zero: the first one dukadourth equa-
tion in the weak formulation of the MHD problem and the seconé due to the
assumption that € Xi. As a consequence, we obtain

Ta=—~%p(&) — Dn(Np. 17y
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From Proposition 2.4/1 and the continuity df in (2.11),

T4l < Cl&rls:&(u,b, p) +Cnpllclrils.
The norm-equivalence in Proposition 2.2.6 and the idef#i¥7) yield

Ir s < Clriylse = Clérls.

These results and the arithmetic-geometric mean inegualitdily show that

Tl < 18 +C(8(ub. 0+ [n,]2)
Combining (2.19) and the bounds for throughT, implies that

S (18415 + £6[2 + 1&12.)
< %Ellb—bhH%JrCéa(u,b, P)? +Cell(Mus Mo, Mp: 10 I

Dividing the previous estimate b%l and using (2.18) yield

1€l + bR &0+ Ir 3
(2.20)
< g||b—by||E+C&(u,b, p)*+Celll(ny,b—c,p—a,r —9)||%,

provided that € Xf.
Step 3: We show that, in estimate (2.20), the approximatioa X}, can be
replaced by ang ¢ Cf. To that end, take € Cf; and look fora € Cf; such that

Dh(a,s) =Dp(b—c,s) Vse<.
By (2.11), the right-hand side is a continuous functionalSnSinceXF is non-
empty andDy, = D on Ch x &, cf. (2.13), the inf-sup condition fdD in Proposi-

tion'2.2.7 implies that there exists at least one non-trasgéutiona € Cf, satisfying

lallc <Cl[b—cllc,
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with a constanCC > 0 only depending on the continuity constant@f and the
discrete inf-sup constant d on Cf x § in Proposition 2.2.7, see [11, Equa-
tion 11.2.20]. By construction, we have+ c € Xt, since, due to (2.1.3) and the
fourth equation of the weak formulation of the MHD systenerthholds

Dh(b,s)=D(b,s)=0 VseS..
Consequently(a+ c) can be used as an approximation in (:2.20). In addition,
Ib—(a+c)lc < |b—cllc+alc <Clb—cllc,
and inequality (2.20) holds for arge C¢, which completes the proof. O

Lemma 2.4.4 There exists a constant € 0 independent of the mesh size and
such that

I —bnl|g < C(I&, 1% +1bg & + Iry[&. + [l (1u,b —c.0r = 9)[?),
foranyc € Cf and sc §.

Proof: Letc € C®andse §. Again, we split the errors ib andr into two parts
and adopt the same notation as in (2.16). We now proceed isteps.
Step 1:We first consider the case where the approximatienCy, to the mag-
netic fieldb is such that
c—bg € Xf. (2.21)

It can be readily shown that non-trivial approximationstosttype exist. To show
this, consider the problem: firtle Cf such that

Dh(c,s) = Dn(bt,s)  Vse S (2.22)

As before, the right-hand side is a continuous functionalSpncf. (2.11), and
the discrete inf-sup condition fdD in Proposition 2.2.7, cf. (2...3), ensures that
problem (2.2?2) admits at least one non-trivial solutaoa C which then satisfies
property (2.21).
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Now let c € Cf; be such that (2.21) holds. We decompose the fundfiga-
c— by into
E,=&+&, &,¢Cf & eCy, (2:23)

according to/(2.5). Since the approximatiobelongs to the conforming spacs,
we have
E=(c—bf), & =-by. (2.24)

Next, we bound|&|c. Due to the coercivity oMy, on Cp, see Proposi-
tion'2.2.4 and (2.12), and the fact tt&t = & — by, we have

C1[€5lI2 < Mn(&5,&5) = Mn(Np + &, €5) — Mn(1p, €5) + Mn(by , &p).
Using the error equation from Section 2.4.1, we obtain that
Mn(Np + &, &) = Zu (&) +Cn(Nu+ &y, &) — Dn(&p, 1+ &)

The term%u (&} is zero becausé;, € CE. The term—Dn (&, n; + &) can be sim-
plified as follows: sinceé | = c— bf ands € S, we deduce from (2.21) and (212)
that

—5h(fga n+é&) = _5h(£ga nr)— ISh(fE,S— r— )
= —Dn(&5. 1) +Dn(&p.1iy)-
From the previous discussion, we conclude that
CllErl <Si+ S, (2.25)

where

S = —Mn(np, &) +Ch(Nny,&5) —Dn(&g,nr),

S = Mu(by,&5)+Ch(&,, EL) +Dn(&L,ri).
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The continuity properties dfl,, Dp andC, in (2.€), (2.11) and Propositich 2.4.2,
respectively, and the arithmetic-geometric mean ineugield

Ci
S| < ZIIEEH%+C(Ian%+ ||nu||EZ(Q) + |nu|gl/2,37h +nrl3)-

Similarly,
Cy
S| < ZHEEH%+C(Hb#H%+ 1€ ullE2iq) + IIr 115)
C
< 7 1E518+C(bR1E. + IEullf +Irn15.).

where we have also used the norm-equivalence results iroBitmm 2.2.65.
Combining (2.25) with the estimates 8§ andSs, we conclude that

I1E5IE < CIE WG + bR 3. + i[5+ [1(7u, 1, 0.7 I7).

Therefore, the previous estimate, the decomposiiion §2(234), the triangle in-
equality and the norm equivalence in Proposiiion 2.2.6dyileat

Ib—bn[|g < C(lInpIg + 1 £51IE)
<C(Inpl&+1§51E + IbrI2.)
<CUI&l7 +1brlE: +Ira & + I (My,b—c,0.r = 9)]),

foranyse S andc € Cj, satisfying (2.21).
Step 2:We now show that the last bound of Step 1 holdsder Cy arbitrary.
Proceeding as before, we can find a non-trivial funcaanCf, such that

Dh(a,s) =Dn(b—c—bt,s)  Vse S,
(2.26)
lallc <C (b —clc+ by lic)-
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Then, due to the properties in (2.12). (2.13) and the weakditation of the equa-
tions and the DG discretization, we have

D((a+c) —bf,s) = Dn((a+c) —bf,s)
= Dp(b —bp,s) = D(b,s) — Dn(bp,s) = 0,

for anysec S;. Hence,(a+c) — by € Xf anda+ c satisfies|(2.21). It can then be
used as an approximation in the last inequality of Step lidwwf (2.26) and the
norm-equivalence in Proposition 2.2.6, we obtain

Ib—(a+¢)fc < [lb—clc +|lalc < Clb—cllc+ by |-

It follows that the last inequality of Step 1 holds for any appmationc € Ct,
which completes the proof of the lemma. O

We are now ready to bound the errorsumandb.

Theorem 2.4.5 There exists a constant € O, independent of the mesh size and
such that

[Ju—unllv +[Ib—bnllc + by lc: +Iris:
ch(u7b7 p) +C‘H(nuab_c7 p_qar _S)’Hv
foranyce Cf, qe Qnand sc §.

Proof: Fix ce C§, g€ Q, ands € §. Decomposing the errors as in (2.15)
and (2.15), we obtain from the triangle inequality, Lemn¥a£2and Lemma 2.4.3:

2 2 2 2
lu—un|[§ + llb— brlIg + bR [ + Ira|5:

2 2 2 2 2
< C(Inul + 1€l + lIo —ballZ + b3 3. +Iri- 3.

< C (1143 + 110 16,07 ) 12+ 1B 2. + It 2.

< Cellb —bn[|g +C (&'(u, p,b)* +Ce[l(ny,b —c,p—a,r —9)||).

44



Choosinge = 5= and bringing the terng||b —by||2 to the left-hand side now read-
ily implies the assertion. O

2.4.2.2 Errorin pandr

Next, we bound the errors in the pressprand the multiplierr.

Proposition 2.4.6 There is a constant & 0 independent of the mesh size and
such that

”p_ ph”LZ(Q) S C(@([}(U,b, p) + H’(nwb —C, p_ q7r _S)‘H)v
foranyce Cf, qe Qnand sc §.

Proof: We begin by recalling the Poincaré inequality for piecengsnooth func-
tions cf. 9, Remark 1.1]:

IVllz@) < ClIVllzh,  veV(h). (2.27)

Letnowc e Cf, g€ Qnandse S. As before, we split the errors into two parts
and adopt the same notation as in (2.16). Obviously, by thegie inequality

[P—Pnllzi@) < INpllLz@) + 11€pllLz(@)- (2.28)

We must then further estimatp|| 2(q). To this end, we make use of the continu-
ous inf-sup condition ove¥ x Q; see, e.g., [1.1]. Therefore, we conclude that there
isv e V such that

Cliéplliz) <Bn(v,&p)  and V[ < 1, (2.29)

where we have also used (2.13). We nowsget MgV with Mg denoting the BDM
projection intoVy, NH(div; Q). By using the definition of the extended forBn
in [74], (2.12), (2.13) and the properties of the BDM projent we readily obtain

Bh(Vh, &p) = Bn(V, &p).
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In addition, the approximation property of the BDM projectiand (2.29) guaran-
tee that
[VhllLh < [IV=Vhll1h+[[VlLh < C[V[lHyq) <C. (2.30)

We use the error equations from Section Z.4.1 to obtain
Bh(Vh, &p) = To+ To+ Ta+Ta, (2.31)
where

T = Za(Vh) — An(Ry;Vh) — On(Ny,Vh) — Bn(Vh, Np),

T, = —Ch(Vh, b— bh),
T3 - _Kh(ELth)a
T4 = _Oh(Eth)'

Let us boundly, T,, Tz andTy.

For T1, we use Proposition 2.4.1, the continuity resultsﬁqar B, and Oy, in
(2.€), (2.10) and Propositicn 2.4.2, respectively, corabimwith the Poincaré in-
equality (2.27). We obtain

1
Tal < Cllvalln (V£ (ub,p) +[1(1,,0.1p. 0

1
<C (vzg(u,b, p)+ |||(nu,0,np,0)|||) :

where we have also used (2.30).
To estimatel,, we use the continuity @y, in Proposition 2.4.2 and the Poincaré
inequality (2.27):

| T2 < Cl[Vhl[L2(0)[b — bhlc < Cl[va[[1hl[b —bnllc.
From the bound fob — by, in Theorem 2.4.5 and (2.30), we thus conclude

‘Tz‘ < C(@@(uaba p) + H’(nwnbanpanl’)’”)'

46



To boundTs, we proceed similarly: we use the continuity Af, the bound
for &, in Lemma 2.4.3 (wittke = 1), the error bound — by, in Theoren' 2.4.5 and
(2.30). We readily conclude that

ITs| <CV2 (&(u,b, P) + (Mg, o> Nps 1)) -

The termTy is the reason for introducing the continuous velocity field (2.28).
To bound this term, we proceed as follows. We integrate bisghe formOy, and
write

On(§y:vh) =Ta1+Tao+Taz,
with

T4.1 = —KEZ%/K(W-D)Vh-EudX—I—KEZ%/(V—D-W)Eu.vhdx,

Tar = w-ng&, - (vpn—Vp)ds

Kezyh /5K+\|—+

Taz = w-n&,-vhds
r.

wherel . = {x € I :w(x)-n(x) > 0} anddK, = {x € K : w(x) -ng > 0}. Em-
ploying the Poincaré inequality (2.27), the tefgy can be readily bounded by

Taal < Cl&ullizie) (Ibllan+ Vnllee) ) < CIEwIV Ivhllzn.

For the termT, 2, we use arguments as in the proof of Proposiion 2.4.2 and the
discrete trace inequality (2.14) to obtain

NI=

1 _
Tazl < Clwle@) (S hell€ullon) (Y et lvallifze)
KeJh FeZ)

IN

Cllwllie@) € ullzi@)IVallan < ClIEylivIIvallLh:

Finally, the termT, 3 can be written as

T4’3:/r w-né, - (vh—Vv)ds+ - w-né,-vds=Ty31+ Taz2,
+ +
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with the continuous velocity field from (2.29). For the first integral above, we
use the approximation properties of the BDM projection i), [Rroposition 111.3.6]

and obtain
. : :
(/ \W.ny\fu\zds> (/ yw.nHv—vhyzds>
r r

1
Chz| & [lvI[VIIHi(q)-

IN

Ta31

IN

To estimate the second integral, we use the trace theorefarfotions inH(Q).
This yields

1 1
2 2
Toae < [ wnil&2ds) ([ Iwenlivds) < ClE IV,

As a consequence, we see that
Ta3 <Cl&ullvIIVilzg)-
Hence, from the above estimates. (2.29) and (2.30), we gdacthat
Ta] <CJ[&ullv-
From Lemma 2.4.3 (witle = 1) and Theorern 2.4.5, we then obtain:
Tal <C(&(u,b,p)+|[[(b—c,p—a,r—s)).

The desired estimate for the pressure now follows from (2.(ZB31) and the
above estimates fdr throughT,. O

Finally, we bound the error in.

Proposition 2.4.7 There is a constant & 0 independent of the mesh size and
such that

Ir =rnlls < C(&(u,b, p) +[l[(Ny,b—c.p—a,r =s)ll),
foranyce Cf, qe Qnand sc §.
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Proof: Letc € Cf, g€ Qnandse §. As before, we adopt the notation from (2.16).
By the triangle inequality, we have

Ir =rnlls < lInrlls+ (& ls.
To bound the ternfié, ||s, we decomposé; into
E=&+&, e & es, (2.32)
according to (2.5). Sincebelongs to the conforming spagg we have
Ef=(s—rpf), &= —rp. (2.33)
By the triangle inequality and the norm-equivalence in Bsijon 2.2.5, we have
I1€ells < 1°1Is + lIri[Is < [1&°lls +Clras: -
The latter term can be bounded by Theorem 2.4.5:
rils: <C(&(u,b,p)+ (b —c.p—ar—9)).

To bound the former term, we use (2.13) and the inf-sup cimmdfor D in Propo-
sition 2.2.7. Thereby, we obtain

Dh(c, &°
Cléfls< sup n&E)
cecevioy  iclic

Using (2.32) and (2.33), we write
Dn(c, &%) = Dn(c, Ny + &) — Dn(c,nr) + Dn(c, ry),
and use the error equation in Section 2.4.1 to conclude that
Dn(c, &) = Zm(C) —Mn(Mp,c) +Cn(Ny,C)

—Mh(fb,C) +Ch(£u>c) - 5h(ca nr) + Bh(C,th)
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for all c € C§. We note thatZy(c) = 0 for ¢ € Ci. The continuity properties and
the norm-equivalence in Proposition 2.2.6 then yield

IDh(c, &°)| < Cllcllc (I(MusMo,0.10) | + 1 €plic + 1 ullv + I [ls)
<Clclc(l(ny:np,0,m0)ll+ [0 —bnllc + 1§ullv + Irils: )-
Combining the above estimates with Lemma 2.4.3 (with 1) and Theorern 2.4.5

readily gives the assertion. O

2.4.2.3 Proof of Theorem 2.3.1

We are now ready to complete the proof of Theorem 2.3.1. [FE(2 the approxi-
mation for the velocityu has already be chosen to be the BDM projecfibsu of
degreek. We now approximate the remaining fields as follows:

C= an, q:I"Ik,lp, S= |_|3I', (234)

wherely is theH (curl; Q)-conforming Nédélec projection of the second kind of
degreek onto C¢; see [65, 68][1,_1 the L?-projection of degred — 1 onto Qy,
and Mg the H-conforming nodal interpolation operator of degiee- 1 into S,.
The approximation properties of these operators immegligield the following
result.

Proposition 2.4.8 Choosing the interpolants as i2.34), there holds
l(ny,b—c,p—a,r—9s)
< CH™M (|1ulyos(a) + V2 [Pllne())
+CHMNTK (HbHHr(Q) + 10 x blyr(q) + ”r”H”l(Q)>a
with a constant C> O that is independent of the mesh size and

The error estimate in Theorem 2.3.1 now follows directlynfréhe error es-
timates in Theorern 2.4.5, Proposition 2 4.6 and Propae®id.”, in conjunction
with the approximation results in Proposition 2/4.1 andpesition 2.4.3.
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2.5 Numerical results

In this section we present a series of numerical experimertighlight the practi-
cal performance of the mixed DG method introduced in thigtérafor the numer-
ical approximation of incompressible MHD problems. Thrbagt this section,
we select the stabilization parameters as folloags= a k?, myp = pk? andsy = 1,
a,u >0, cf. |54], for example. To ensure stability of the undantyiDG method
we seta = 4 = 10 in 2D; for 3D simulations, it is necessary to increasend u
toa =pu=20.

All computations have been performed using the AptoFEMdialement soft-
ware package; sez |36] for details. In order to solve theltiagusystem of lin-
ear equations, we have employed a variety of open-sourteaef for relatively
small numbers of degrees of freedom, we exploit the MUItifed Massively Par-
allel Solver (MUMPYS), see: [1] for details; for larger probis, we have used both
the out of core version of PARDISO [72], as well as the (patpidditive Schwarz
preconditioned GMRES solver available in PETSic [6].

2.5.1 Smooth solutions

First, we verify the theoretical error bound stated in Tteeor2.3.1 for problems
with smooth analytical solutions.

2.5.1.1 Example 1: 2D problem in an L-shaped domain

The first example we consider is a two-dimensional versiothefMHD problem

(2.1). While the Navier-Stokes operator has the same formwvondimensions,
some care is required for the curl-curl operator and the lbogiperms in the equa-
tions; see [€6, Page 51] ard [53] for detalils.

We consider the L-shaped domdin= (—1,1)2\ ([0,1) x (—1,0]) with 'y =
{(1,y):y€(0,1)} andl'p =T\ Iy, cf. Figure 2.1(a). We set=vp=K =1,w=
(2,1), y=0, d = (x,—y), and choose the forcing functiofsindg and boundary
conditions so that the analytical solution of the two-disienal variant of (2.1) is
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(@) (b)

Figure 2.1: Example 1. (a) Problem domain; (b) Initial unstructuredrgu-
lar mesh.

of the form

U(X, y) = (—(yCOS}/—FSiny)ex,ySinyex), p(X,y) = Zé(Siny>

b(x,y) = (—(ycosy+ siny)e*,ysinye"), r(x,y) = —sinnx siny.

Here, we investigate the asymptotic convergence of thaamtgenalty DG method
on a sequence of successively finer quasi-uniform unstegttiiangular meshes
fork=1,2,3,4. In each case the meshes are constructed by uniformlyrgfine
initial mesh depicted in Figure 2.1(b).

In Figure 2.2 we plot the normis ||v, || - ||c, and|| - ||s of the errorse, = u— up,
& = b —by, ande =r —ry, respectively, against the square root of the number
of degrees of freedom in the finite element spagex Ch x Qn x §,. Here, we
observe that bothe, ||y and||e, ||c converge to zero, for each fixédat the optimal
rate ﬁ(h"), as the mesh is refined, in accordance with Thearem 2.3.1. h®n t
other hand, for this mixed-order methapk ||s converges at the raw@(hk+1), for
eachk, ash tends to zero; this rate is indeed optimal, though this igeftécted by
Theoremn 2.3.1, cf. also [54]. Additionally, in FigLre 2.2(de plot the sum of the
three error contributions with respect to the square roghefnumber of degrees
of freedom in the finite element space. Clearly, as abovs diverges to zero at
the optimal rate predicted by Theorem 2.3.1.
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Figure 2.2: Example 1. Convergence with-refinement: (a)l|ey|lv; (b)

1&sllc: (©) llerls; (d) [leullv + [|evllc +[ler|s.

Second, we highlight the optimality of the proposed mixedhuod when the
components of the error are measured in terms ofLthrorm. From Figure 23
we observe that the?-norm of the error in both the approximation to the velocity
field u and the magnetic field tend to zero at the expected optimal raten*+1),
for eachk, ash tends to zero. In agreement with Theorem 2.3.1, for each xed
theL?-norm of the error in the pressuge denoted bye, = p— pn, tends to zero at
the optimal rate”’(h¥) as the mesh is enriched, whiler|| z(q) is of ordere (h<2)

ash tends to zero.
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Figure 2.3: Example 1. Convergence wittrrefinement: (a)|eull 2q); (P)
epllL2(@); (€) & llLz(qy; (d) & lL2)-

2.5.1.2 Example 2: 3D problem in the unit cube

The second example is a 3D problem with a smooth analytidatisn. Here, we
setQ = (0,13 c R3withTp =T andly=0,v=vn=k=1,w=(21,1),y=0,
andd = (x,—Y,1), and selecf andg, together with appropriate inhomogeneous
boundary conditions, so that the solution of the incompbés$HD system (2.1)

is given by

u = (—(ycosy-+siny+ zcosz)e* ysinye’, zsinze"),
b = (—(ycosy+siny+zcogz))e", ysinye*, zsinze"),

p = 2€(siny+sinz)—py, r=sinmxsinmnysinmz
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k | DOFsun/pn | lleulliz@) | ! lleullv || llepllieg) | !
576/48 6.400e-2| - 1.168 - 7.321e-1| -
1 4,608/384 | 1.647e-2| 1.96| 5.823e-1| 1.00 | 4.564e-1| 0.68
36,864/3,072| 4.213e-3| 1.97 | 2.896e-1| 1.01| 2.606e-1| 0.81
294,912/24,5761.072e-3| 1.97 | 1.442e-1| 1.01 | 1.400e-1| 0.90
1,440/192 | 5.082e-3| - 1.262e-1| - 3.424e-1| -
2 | 11,520/1,536| 6.802e-4| 2.90 | 3.162e-2| 2.00 | 8.488e-2| 2.01
92,160/12,28$ 8.417e-5| 3.01| 7.822e-3| 2.02 | 2.127e-2| 2.00

Table 2.1: Example 2. Convergence §&ul| 2(q), [[eullv, and|lep[ 2(q).

wherepy = 4(—1+ e+ cos1-ecos).

In Table 2.1 we investigate the asymptotic rate of convergest the error in
the approximation of the hydrostatic variables; héenotes the computed rate of
convergence. To this end, we shdj@y|| 2(q), [leullv, and||ep|| 2q) computed on
a sequence of uniformly refined tetrahedral meshek foil, 2. As in the previous
example, we again observe optimal rates of convergencdlftirae measures of
the error. Indeed, in accordance with Theorem 2.3.1, Hethly and ||| 2(q
tend to zero at the optimal raté(hk), for each fixedk, as the mesh is refined.
Additionally, we observe thate, || 2(q) is of optimal orderc (h*t1) ash tends to
zero.

The corresponding errors for the magnetic variables aresstio Tables; 2.2 &
2.2. Here, we clearly observe the optimality of the appration to the magnetic
field b. Indeed, from Table 2.2 we observe thib|[ 2 q) and|/&||c converge to
zero at the optimal rateg(h*t1) and @' (h¥), respectively, for each fixek as the
mesh is refined. As in the previous example, we again obsbatdé || 2oy and
|e||s are of orderd(hk+2) and @' (h*t1), respectively, as the mesh is uniformly
refined.

2.5.2 Example 3: 2D problem with a singular solution

To verify the ability of the proposed interior penalty DG inedl to capture the
strongest magnetic (and hydrostatic) singularities, wesitler a problem in which
the precise regularity of the analytical solution is knowfo this end, we again
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k | DOFsbn | [|&lli20) | | &nllc |
576 7.289e-2| — 7.324e-1| -
1 4,608 2.076e-2| 1.81 | 3.445e-1| 1.09
36,864 | 5.486e-3| 1.92 | 1.668e-1| 1.05
294,912 | 1.399e-3| 1.97 | 8.184e-2| 1.03
1,440 6.082e-3| - 4.920e-2| -
2| 11,520 | 7.953e-4| 2.94 | 1.146e-2| 2.10
92,160 | 1.006e-4| 2.98 | 2.767e-3| 2.05

Table 2.2: Example 2. Convergence §, || 2(q) and||es||c.

k

DOFsry,

& llizg)

lerlls

480
3,840
30,720
245,760

1.038e-1
1.766e-2
2.350e-3
2.924e-4

2.56
291
3.01

1.546
5.098e-1
1.363e-1
3.405e-2

1.60
1.90
2.00

960
7,680
61,440

1.327e-2
8.567e-4
5.135e-5

3.95
4.06

2.559e-1
3.430e-2
4.210e-3

2.90
3.03

Table 2.3: Example 2. Convergence & [| 2oy and||&|[s.

let Q be the L-shaped domain employed in Example 1 above Mth= {(1,y) :

ye (0,1)} andl'p =T \I'y. We choosev = vy =k =1, and seiw=0, y=0
andd = (—1,1). Hence, the Navier-Stokes operator coincides with the e¥tok
equations. We further choo$eandg, and appropriate inhomogeneous boundary
conditions so that the solution to this problem is given bg #trongest corner
singularities for the underlying elliptic operators. Thsat in polar coordinates
(p, ) around the origin, the hydrostatic solution componenédp are taken to
be

oo P ((1+2)sin(@)y(@) +cos )¢/ (¢))
’ P (—(1+A)cog @)Y (o) +sin(@) Y/ (9))

PP, @) = =P H(1A+2) %Y (@) + ¢ (9)/(1-A),
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where

Y(@) =sin((1+A)@)cofAw)/(1+A) —cos(1+A)9)
—sin((1-2)@)cosAw)/(1—A)+cos(1-A)g),
with A =~ 0.54448373678246 an = 371/2. The magnetic paitb,r) is taken as
b(x) = 0(p?3sin(2/3¢)),  r(x)=0.

We point out that the magnetic fielddoes not belong té11(Q)? and thus cannot
be correctly captured by nodal elements. In fact, for thignegle, we have that
(u,p) € HH(Q)2 x HA(Q) andb € H%3(Q)2. Thus, the limiting regularity ex-
ponent, cf. (2.7a) and (2.7b), appearing in Theorem 2.3ALwgich stems from
the regularity of the hydrostatic variables.

In this example we study the asymptotic convergence of tieeior penalty DG
method on the sequence of successively finer quasi-unifastiuctured triangular
meshes employed in Example 1, cf. Figure 2.1(b), vikite 1,2,3. Table 2.4
presents thé.?>-norm of the error in both the computed velocity and pressure
pn, as well as thé! - ||y-norm of the error iruy. In agreement with Theorem 2.3.1
we see that botffe, |lv and||epl| 2q) tend to zero at the optimal ra@(h’) as
h tends to zero. The rate of convergencel|ef|| >(q) is observed to be between
¢(ht?) and &' (h'®) approximately as the mesh is uniformly refined.

From Table 2.5 we observe that bai || 2oy and|/& |c are approximately
0'(h) ash tends to zero. For this latter error, this rate is higher tidrat we
would expect from Theorern 2.3.1. However, this same beliavid the error
has also been observed in the case of simply approximatedirtie-harmonic
Maxwell operator in isolation, cf. [54]. In contrast, fronafle 2.6, we observe
that||e ||s converges to zero at the rat&h?/3) as the mesh is refined. In terms of
the numerical approximation of the time-harmonic Maxwedetor in isolation,
this rate is indeed optimal, cf. [54], though this is not refiéel in Theorem 2.3.1.
Finally, we note that th&?-norm of the error in the approximation to the variable
r tends to zero at the rat@(h*3) ash tends to zero.
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k | DOFsun/pn

leullizg)

leullv

epllizq)

144/24
576/96

1 2,304/384
9,216/1,536
36,864/6,144

1.311e-1
4.638e-2
1.632e-2
5.837e-3
2.120e-3

1.50
151
1.48
1.46

1.910
1.352
9.419e-1
6.510e-1
4.482e-1

0.50
0.52
0.53
0.54

1.443
1.064
7.690e-1
5.436e-1
3.789%e-1

0.44
0.47
0.50
0.52

288/72
1,152/288
2| 4,608/1,152
18,432/4,608
73,728/18,432

6.089e-2
2.405e-2
9.434e-3
3.837e-3
1.630e-3

1.34
1.35
1.30
1.24

1.075
7.382e-1
5.065e-1
3.474e-1
2.383e-1

0.54
0.54
0.54
0.54

1.520
9.010e-1
5.852e-1
3.910e-1
2.649e-1

0.75
0.62
0.58
0.56

480/144
1,920/576
3| 7,680/2,304
30,720/9,216

3.094e-2
1.198e-2
4.844e-3
2.054e-3

122,880/36,864

19.046e-4

1.37
131
1.24
1.18

7.498e-1
5.151e-1
3.532e-1
2.422e-1
1.661e-1

0.54
0.54
0.54
0.54

9.219e-1
5.809e-1
3.779%e-1
2.527e-1
1.713e-1

0.67
0.62
0.58
0.56

Table 2.4: Example 3. Convergence &, || 2(q),

eullv, and|lepll z(q)-

Figure 2.4: Example 4. Initial unstructured triangular mesh.

2.5.3 Hartmann channel flow

Finally, we consider 2D and 3D Hartmann channel flow problechs3%]. Note
that assumption (2.2) is not satisfied in these examples. edMenvthe particular
structure of the solutions implies théaw - 0)u = 0 and assumptior. (2.2) is not
relevant in this context.
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k | DOFsbn | [|&lli20) | | &nllc |

144 2.601le-1| - 4.091e-1| -
576 1.492e-1| 0.80| 2.291e-1| 0.84
1 2,304 7.699e-2| 0.96| 1.112e-1| 1.04
9,216 4.038e-2| 0.93 | 5.280e-2| 1.07
36,864 | 2.265e-2| 0.84 | 2.657e-2| 0.99

288 2.244e-1| - 3.649e-1| -
1,152 1.124e-1| 1.00| 1.785e-1| 1.03
2 4,608 5.371e-2| 1.07 | 8.065e-2| 1.15
18,432 | 2.679e-2| 1.00 | 3.654e-2| 1.14
73,728 | 1.452e-2| 0.88 | 1.766e-2| 1.05

480 1.888e-1| - 3.090e-1| -
1,920 9.013e-2| 1.07 | 1.448e-2| 1.09
3 7,680 4.156e-2| 1.12 | 6.363e-2| 1.19
30,720 | 2.004e-2| 1.05| 2.812e-2| 1.18
122,880 | 1.055e-2| 0.93 | 1.320e-2| 1.09

Table 2.5: Example 3. Convergence §, || 2(q) and||es|lc.

2.5.3.1 Example 4: 2D Hartmann flow

In the domainQ = (0,L) x (—1,1), L > 1, we consider the steady 2D unidirec-
tional flow under a constant pressure gradief@ in the x-direction. We set

W:<VHat;“Ha) (1 cosh(yHa)> ,O) ’ d:(G (sinh(yHa) y) ’1> ’

~ cosh{Ha) K \ sinh(Ha)
y=0,f =0, andg = 0. Additionally, we impose the boundary conditions

u=0 ony==+1,

(pl —vOu)n = pyn onx=0andx=L,

nxb=nxbp onrl,

where

G2 /sinh(yHa 2
bD:(0>l)7 pN:_GX__<M_y> +p0,

2k \ sinh(Ha)
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k | DOFsrh | [lefliz) | | ledlls | |

144 2.397e-1| - 2.107 -

576 1.150e-1| 1.06| 1.768 | 0.25
1| 2,304 | 4.860e-2| 1.24| 1.265 | 0.48
9,216 | 1.946e-2| 1.32| 8.384e-1| 0.59
36,864 | 7.664e-3| 1.34| 5.387e-1| 0.64
240 1.944e-1| - 2.728 -

960 8.588e-2| 1.18| 2.066 | 0.40
2| 3,840 | 3.498e-2| 1.30| 1.412 | 0.55
15,360 | 1.382e-2| 1.34| 9.193e-1| 0.62
61,440 | 5.419e-3| 1.35| 5.868e-1| 0.65
360 1.621e-1| - 3.188 -
1,440 | 6.932e-2| 1.23| 2.323 | 0.46
3| 5,760 | 2.784e-2| 1.32| 1.559 | 0.58
23,040 | 1.095e-2| 1.35| 1.008 | 0.63
92,160 | 4.290e-3| 1.35| 6.415e-1| 0.65

Table 2.6: Example 3. Convergence @& || 2q) and||&[s.

and pg is any constant. The analytical solution to the incompl#sdiiHD equa-
tions is given byu =w, b =d, p= py, r = 0, wherek = vv,H&. We note that
the fluid always moves in the direction in which the pressuwgereases. We set
L=10,v=v,=0.1, Ha=10,G = 0.5, andpy = 10.

First, in Figure 2.5 we investigate the asymptotic convecgeof the interior
penalty DG method on a sequence of successively finer quéskm unstructured
triangular meshes fdt = 1,2,3. In each case the meshes are constructed by uni-
formly refining the initial unstructured mesh depicted igtie 2.4. Here, we plot
the norms| - [|v, [|- llc, || - ls, @nd|| - [|_2(q) Of the errorsey, &, &, andep, respec-
tively, with respect to the square root of the number of degref freedom in the
finite element spac¥y, x C,, x Qn x $. As in the previous examples presented in
Section 2.5.1, we observe thigg,[|v, ||&]/c and||p|| 2(q) converge to zero, for
each fixedk, at the optimal rat@’(hk) as the mesh is refined, in accordance with
Theorem 2.3.1, whildle ||s converges at the rat€(h*+1), for eachk, ash tends
to zero. Moreover, we note that thé-norms of the error in the approximation to
u, b andr tend to zero optimally, cf. Section 2.5.1; for brevity, thagsults have
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Figure 2.5: Example 4. Convergence with-refinement: (a)|leu/lv; (b)
enllc; (©) [lerls; (d) [lepll 2(q)-

been omitted.

Finally, in Figures 2.6 & 2.7 we show the DG solution computadthe finest
mesh with 41216 elements, employikg- 1; thereby, the total number of degrees
of freedom employed in the finite element spagex Ch x Qp x §, is 783104.

In particular, from Figure 2.7, we observe extremely goorkament between the
computed and analytical solutions of the first componentiérvelocity and mag-
netic fields.

2.5.3.2 Example 5: 3D Hartmann flow

In this final example, we consider the steady 3D unidirectidlow in the rectan-
gular duct given by2 = [0, L] x [—Yo, Yo] X [—20, Z0] With Yp,2p < L. We takew =u
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Figure 2.6: Example 4. DG solution computed on the finest mesh withl.:
(a) Velocity field; (b) Magnetic field.

0.4

——DG Solution
o - = - Analytical Solution|| 03

0.5

——DG Solution
- - - Analytical Solution

0.4

0.3

0.2

0.1

-1 -05 0 0.5 1 -1 -0.5 0 0.5 1

(@) (b)

Figure 2.7: Example 4. DG solution computed on the finest mesh withl.
Slices alongx = 5, —1 < y < 1 of the solution: (a) First component of
the velocity field; (b) First component of the magnetic field.

(cf. below),f =g=0, y=0,d = (0,1,0), and consider solutions of the form

u=(Uy2,0,0, b=(by2,1,0, p=-Gxtp, r=0.
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(b)

Figure 2.8: Example 5. DG solution computed on a uniform tetrahedralmes
with k= 1: (a) Velocity field; (b) Magnetic field.

We enforce the boundary conditions

u=0 fory=+ypandz= £z,
(pl —vOu)n = pyn forx=0andx =L,

nxb=nxbp onl,

with py = —Gx+ po andbp = (0,1,0). As before,G and pg are arbitrary con-
stants. For this channel problem, the analytical solutian be expressed by
Fourier series; for details, we refer to [34]. Here, welset 10, Yo = 2, 0 = 1,
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Figure 2.9: Example 5. DG solution computed on a uniform tetrahedralmes
with k=1. Slicesalong=5,—-1<y<1,z=0 of the solution: (a) First
component of the velocity field; (b) First component of thegmetic
field.

V=vVnh,=01,Ha=5,G=0.5, andpy = 10.

In Figures 2.3 & 2.9 we show the DG solution computed on a umiftetra-
hedral mesh comprising of 30720 elements with the polynbuaegreek = 1;
this results in a total of 1075200 degrees of freedom in thigefilement space
Vh x Ch x Qn x S In particular, from Figure 2'9, we observe that there isosa
ably good agreement between the computed and analytiaatisw of the first
components in the velocity and magnetic fields on this redticoarse mesh.
However, here we do observe some over-shoots in the compgotetion, which
are particularly evident in the approximation to the magmigId.

2.6 Conclusions

In this chapter, we have proposed and analyzed a mixed DGochéthn a linear
incompressible magnetohydrodynamics problem. We haveeatkn priori error
estimates and computationally verified them with a set oferiral examples. We
have further tested the methods for channel flow problem®ih two- and three-
dimensions. As mentioned in Remark 2.3.3, our analysis eandsily adapted
to the case where conforming Nédélec elements are usetthdaapproximation
of the magnetic unknowns. It can also be extended to thegéwnee-conforming
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@E — P_1 elements proposed in [20] for the approximation of the fliadables.

The systematic development of efficient solution methodbkmaconditioners
for the proposed discretization is the subject of ongoirspagch. Indeed, a wide
variety of efficient and robust saddle point solvers arelalég in the literature
for both the Oseen operator and the Maxwell operator. Hovd#vese approaches
need to be extended to MHD problems of the form (2.1). We a$er the reader
to [48] and [73, Section 3.4] for discussions of iterativatggies that amount to the
solution of a sequence of decoupled Navier-Stokes and Magvablems. Ongo-
ing work also includes extensions of the method to fully moedr incompressible
MHD systems, which will be presented in Chaptar 3.
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Chapter 3

A mixed finite element method
with exactly divergence-free
velocities for nonlinear
Incompressible
magnetohydrodynamics

We introduce and analyze a mixed finite element method fomtiraerical dis-
cretization of a stationary incompressible magnetohygnadhics problem, in two
and three dimensions. The velocity field is discretizedgidimergence-conforming
Brezzi-Douglas-Marini (BDM) elements and the magneticdfiisl approximated
by curl-conforming Nédélec elements. THe-continuity of the velocity field is
enforced by a DG approach. Central features of the methottharé produces ex-
actly divergence-free velocity approximations, and cegstithe strongest magnetic
singularities. We prove that the energy norm error is cagwat in the mesh size
in general Lipschitz polyhedra under minimal regularitg@®ptions, and derive
nearly optimal a priori error estimates for the two-dimemsil case. We present a
comprehensive set of numerical experiments, which indicgtimal convergence
of the proposed method for two-dimensional as well as thigeensional prob-
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lems.

3.1 Introduction

We consider a standard form of the incompressible MHD eqoatias derived
in [3, Section 2]; see also [33, 35, 48]. That is, we negle&namena involving
high frequency as well as the convection current, and censichon-polarizable,
non-magnetizable and homogeneous medium. In addition,alerthe curl-curl
operator arising in the Maxwell equations amenable to diszation with Nédélec
elements, we use the mixed formulation proposed in [73]. ddwerning equations
are then of the form

—VAu+ (u-Du+Op—k(Oxb)xb=f in Q, (3.1a)
O-u=0 inQ, (3.1b)
KvmOx (Oxb)+0Or—kOx (uxb)=g in Q, (3.1c)
O-b=0 in Q. (3.1d)

Here,u is the velocity,b the magnetic fieldp the hydrostatic pressure, ands

a Lagrange multiplier associated with the divergence caimton the magnetic
field b. The functionsf andg represent external force terms. For simplicity, we
consider the following pure Dirichlet (i.el,= 'p) homogeneous boundary condi-
tions:

u=~0 onl, (3.2a)
nxb=0 onl, (3.2b)
r=0 onl, (3.2¢)

with n being the unit outward normal dn. By taking the divergence of the mag-
netostatic equation (3.1c), we obtain the Poisson problem

Ar=[-g inQ, r=0 onl. (3.3)
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Sinceg is typically divergence-free in physical applicationse tmultiplier r is
typically zero and its primary purpose is to ensure stahiiee [29, Section 3].

Various finite element methods for discretizing linear andlimear MHD sys-
tems can be found in the literature. The magnetic field isnofteproximated by
standard nodal (i.eH *-conforming) finite elements [3, 33, 45, 46, 48]. However,
since the strongest magnetic singularities have regylaetow H*, straightfor-
wardly applied nodal elements may fail to resolve them in-oonvex polyhedral
domains; see [23] and the references therein. A number oédera have been
proposed for electromagnetic problems, for example theylted regularization
approach in [24] or the approach in [7], whereby the diveogenf the electric
field is stabilized inH~% with % < a < 1. In |50], weighted regularization has
been applied to a full incompressible MHD system.

In the mixed formulation of [73] the above mentioned diffiteé associated
with nodal elements are seamlessly avoided without the faestabilizing the
divergence. This approach amounts to introducing the Lregggamultiplierr, and
yields the PDE system (3.1). As a result, it is possible to aig&conforming
Nédélec elements for approximating the magnetic field. tRese elements, only
tangential continuity is enforced across inter-elemefateds. This makes this ap-
proach feasible in situations of highly singular magnettd§ 52, 66, €8]. In the
context of incompressible magnetohydrodynamics, a mlatexed approach for
the discretization of the magnetic unknowns has been piegém 30].

We are interested in discretizations for incompressibleDioblems that are
based on discontinuous Galerkin methods; see, e.qg., theysuil4, 16 28] and
the references therein. 11 [46], an interior penalty tegheiis applied to enforce
continuity of the magnetic variable across domains witfed&nt electromagnetic
properties, while nodal elements are employed in the imtef full DG method is
proposed in [56] for a linearized variant of the system (3wlhereby all the vari-
ables are approximated in discontinuous finite elementespdsased on existing
discretizations for the Oseen and Maxwell equations [18 519. However, this
approach requires a large number of degrees of freedomhdtuarbre, a straight-
forward extension to the nonlinear setting in a locally @wmative fashion would
require a post-processing procedure for smoothing the D& itg approximations
throughout the nonlinear iteration [19].
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In this chapter we design a new finite element discretizaiiomn attempt to
overcome the above mentioned difficulties. Instead of disnaous elements for
all unknowns, we use divergence-conforming Brezzi-Dosilearini (BDM) el-
ements [11, 20] for the approximation of the velocity fielddacurl-conforming
Nédélec elements [568] for the magnetic field, thereby wutiglly reducing the
total number of the coupled degrees of freedom. AAecontinuity of the velocity
field is again enforced by a DG technique. A central featuréhf discretiza-
tion is that it yields exactly divergence-free velocity apgmations, guaranteeing
stability of the linearized system within each Picard itiema, without any other
modifications. We note that divergence-conforming disza¢ibns have been an-
alyzed for the incompressible Navier-Stokes equation:264.[ For the magnetic
approximation we have a discrete version of the desiralupepty '3.3), in contrast
to the method presented in [56].

We prove well-posedness of our discretization, and showergence under
minimal regularity assumptions. Thus, our method capttinesstrongest mag-
netic singularities in non-convex polyhedra. Our numenieaults clearly indicate
optimal convergence rates in two and three dimensions, leutmanage to show
(nearly) optimal estimates only for the two-dimensionaecaSpecific details on
this are given in Sectian 2.4 and are summarized in the ceitria in Section 3.6.
We note that our method converges optimally for the linesattizersion of (3.1), as
follows from the arguments in [56, Remark 3.3].

The rest of the chapter is structured as follows. In Sectidm@ state the well-
posedness of the variational formulation of (3.1). Se(B&nis devoted to the finite
element discretization; the existence and uniquenessprbgimate solutions are
proved. In Section 3.4 we present and prove the main resoltsergence and a
priori error estimates. In Section 3.5 we present a serigainferical experiments
validating the theoretical results. In Section 3.6 we enthwsome concluding
remarks.
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3.2 \Variational formulation of an MHD problem

Upon setting
V=H3Q)¢={veHY Q) :v=00nT},
Q=L3(Q) = {aeL*Q) : (q,1)o =0},

C = Ho(curl;Q) andS= H}(Q), the variational formulation of the incompressible
MHD system (3.1)-(3.2) amounts to findifg, b, p,r) € V x C x Q x Ssuch that

A(U,V) +O(u,u,v) +C(b,v,b) + B(v,p) = (f,v)a. (3.4a)
B(u,q = O, (3.4b)

M(b,c) —C(b,u,c)+D(c,r) = (g,0)a, (3.4¢)

D(b,s) = O, (3.4d)

for all (v,c,q,s) € V x C x Q x S The variational forms are given by

A(u,v):/ vOu: Ovdx, O(W,U,V):/(W-D)U'de,
Q Q

M(b,c):/K;Kvm(Dxb)-(Dxc)dx, C(d,v,b):/QK(vxd)-(Dxb)dx,

B(u,q):—/Q(D-u)qu, D(b,s):/Qb-Dsdx.

To discuss the well-posedness of the mixed formulatior)(8:é introduce the
product norms

Nl=

1WB) v xe = (VIulZsq) + Kvnllbl @) ) > (ub) €V xC,
1 2 1 2 %
1P Dllexs = | 1Pz +K—\/rn”r”H1(Q) ; (p,r) €QxS
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Here, the curl-norm is defined by

Nl

HbHH(curl;Q) = HbHEZQ +||DXb||EZQ
Q) Q)

Furthermore, we define the norm of the source terms by

I )11 = (1122 + uguﬁm)%-
Finally, we introduce the parameters
vV =min{V,KvVm},
K =max{1kK}.
The following result can be found in [73, Corollary 2.18 anenfRark 2.14].

Theorem 3.2.1 There is a constantic> 0 only depending orQ such that for
small data with gkv—2||(f,g)|| < 1, the MHD problem (3.4) has a unique so-
lution (u,b, p,r) € V x C x Q x S. Moreover, we have the stability bound

I, 9l

Il(u,b)|[vxc < c2

)

S|
Nl

for a constant ¢ > 0 only depending o®Q.

3.3 Mixed finite element discretization

In this section, we introduce a mixed finite element methadl¢mploys divergence-
conforming elements for the approximation of the velocigydiand curl-conforming
elements for the magnetic field. ThE-continuity of the velocity is enforced by a
DG technique.

3.3.1 Mixed discretization

Recall the notation on meshes and traces in Section 2.2.2asé¢ene in addition
that the triangulatiorn?j, is quasi-uniform. Fok > 1, we wish to approximate the
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solution of [3.1)-(3.2) by finite element functio(s,, bn, Pn, ) € Vh x Ch x Qp X
S\, where

Vh = {VveHo(div;Q) : v[x € Z(K)!, K € T},

Ch={ceHo(cur;Q) : clx € Z1(K)4®R(K),K € F},
(3.5)

Qn= {q € L(z)(Q) : q’K € ‘@k—l(K)7 Ke gh}’
S ={s€H§(Q) : slk € Z(K),K € F}.
Here, we denote bl (div; Q) the space
Ho(div; Q) = {ve L2(Q)¢ :0-ve LZ(Q),v-nZOOnr},

and byRy(K) the space of homogeneous vector polynomials of total ddgtieat
are orthogonal ta.

The spaceVy is the divergence-conforming Brezzi-Douglas-Marini (BDPM
space (see [11, Section Il1.3] for details); it has degrdeseedom specified for
the normal components of functions along faces. The s@agepresents the first
family of curl-conforming Nédélec elements (cf. [68, @her 5]); its degrees of
freedom are defined for the tangential components of funstalong faces. We
notice that the finite element spadég, Qn and$, are conforming irC, Q andS,
respectively, while/y, is non-conforming irv.

Now we consider the following finite element method: fifwgh, by, pn,rn) €
Vi x Ch x Qn x § such that

An(Up,V) + On(up,un,v) +C(bn,v,bp) +B(v,pn) = (f,v)o, (3.6a)
B(Uh, q) = 07 (36b)
M(bn,c) —C(bn,un,c)+D(c,rn) = (9,C)o, (3.6¢)

D(bn,s) = O, (3.6d)

forall (v,c,q,S) € Vh x Ch X Qnh X Sy.
The form A, associated with the Laplacian is chosen as the standanmibinte
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penalty form [4 5]:

An(u,v) = z /KvDu:Dvdx—Fezyh/F{{vDu}} : [v]ds

Keh
ao
- 3 [Avovy:luldse 3 3 [u]: [ds

Fe.7y Fe.7n

Here,ap > 0 is the interior penalty stabilization parameter; it habea@hosen larger
than a threshold value which is independenhof, k andvy,. For the convection
form, we take the standard upwind form [62]:

On(w,u,v) = Z /(W-D)u-vdx
Ke.%, K

1
+ / ~(w-ng —|w-ng|)(u®—u)-vds
Kez% oK\ 2

—/ }(W'n—\w-n])u-vds
r2

Here,u€ is the trace ol taken from the exterior oK. The remaining forms are
the same as in the continuous case. Notice that due to thenoesf the upwind
terms the fornOy,(w,u, V) is not linear in the first argument; see also Lemma 3.4.6
and [3.8).

By choosing the divergence-conforming BDM elements as fimgaximating
space for the velocity, the method gives exactly divergdrme velocity approx-
imations; cf. [20]. Moreover, the Lagrange multipliey vanishes identically for
divergence-free source terms, thereby mimicking the coiotiis property in (3'3).

Proposition 3.3.1 Let (up, b, pn, rn) solve (3.5). Then we have:
() O-up=0inQ.
(i) the Lagrange multiplier y is the solution of
(Orp,09)q = (9,09)q Vse §.
In particular, if g is solenoidal, theny= 0.
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Proof: To prove item (i), we proceed as in 20]. We note thatu,, has vanishing
mean value o2, and is a discontinuous polynomial of degiee 1. Thus, we
have - uy € Qn. Equation ((3.6b) then implies that - uy, is orthogonal to all
functionsq € Qn. Therefore, it is equal to zero.

To prove item (ii), we takee = s in equation (3.6¢) (noting thalS, C Cy)
and obtain

(g> DS)Q = M(bh7 DS) - C(bh> Uh, DS) + D(DS7 rh) = D(D87 rh)‘
Here, we have used the fact thatx Os= 0. Therefore [, satisfies
(Orp,0s)q = (9,09)q Vse S.

Since(g,0s)q = (U-g,9)q, we havery = 0 provided that]-g=0. O
For our analysis, it will be convenient to introduce thedaling product forms:
2h(u,b;v,c) = An(u,v)+M(b,c),
On(w,d;u,b;v,c) = Op(w,u,v)+C(d,v,b) —C(d,u,c),
%(u,b;q,s) = B(u,q) +D(b,s),
Z(v,c) = (f,v)o+(9,0)q.

Then, the mixed discretization (3.6) is equivalent to thiboWaing saddle-point
system: find'up, bn, pn, ) € Vh x Ch x Qn X $, such that

%h(Un, bn;V,C) + Oh(un, bp; un, by v, €) + B(v.C; pn,th) = Z(v,c),

‘@(uhybh;qv S) =0

forall (v,c,q,S) € Vh x Ch X Qnh X Sy.
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3.3.2 Stability properties

To discuss the stability properties of the finite elementrfalation (3.65), we intro-
duce the discretel t-norm for the hydrostatic velocity:

1

lullzn = ( S [Dulf+ S hpln[[unn’@(p)) - (37)

Ke, Fesn

We further define

Nl

(. D)livrcs = (VIuIZn -+ KVl oI curicy)

First, we note that the forms4, and.% are continuous over the finite element
spaces:

| h(U,b;V,C)| < Cor [ (U, B) [Iviyxcy 1V, ©) vy s

% (u,b;p,1)| < Cal|(U,b) vy, [ (P Pl sy

forallu,veVy, b,ceCp, pe Qn, r € §, with constantE,,,C» > 0 independent
of h, v, Kk andv,.

Next, we introduce the following spaces of (discretely)edgence-free func-
tions:

Jy = {ueVy:B(u,q=0vgeQn},

Xn = {beCh:D(b,s)=0Vse S }.

For the form &y, we then have the following continuity result: there exiats
constantC, > 0 independent of, v, Kk and vy, such that, for anyw;,w, € Vy,
u,v € Vy, d1,d, € Xy, andb, c € Cy,, we have

|Onh(W1,d1;U,b;V, C) — Oh(Wa,d2; u,b;v, C)|
— 3.8)
Cok (
—— [|(W1 —Wp,d1 — d2) v xc, [| (U, D) [Ivyxc, ([ (V, ©) [l <

V2

<
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see also Proposition 3.4.8 for a more detailed discussion.
Furthermore, the following stability properties of, and &}, hold; cf. [5, 18,
2, Theorem 4.7] and the references therein:

h(u,byu,b) > Cc|(u,b)[[§ .o, V(ub) € Vpx X, (3.9)

Oh(w,d;u,b;u,b) = Op(w,u,u) >0 YW e Jp, UE Vp, b,deCy, (3.10)

with a constan€Cc > 0 independent dfi, v, k andvp,.
Finally, let us address the inf-sup stability of the forBiandD. For the formB
we have the following result [49, Proposition 10]:

__BWP _yscso (3.11)
p<Qn\{0}vevi\ (o} IVIILnllPllLz(q)

where C is independent oh, v, Kk and vy,. Moreover, sincellS, C Cy, there
holds [54, Lemma 5.3]:

: D(c,r)
inf
reSi\{0} cec,\ {0} ”CHH(curI;Q) ”r”Hl(Q)

=ph >C>0, (3.12)

for a constan€C independent off, v, k andvp,.
An immediate consequence 0f (3.11) and (3.12) is the foligvimf-sup condi-
tion for the product formg:

AB(V,C,p,r)
|(p, 1) lloxs

inf sup

>Cs>0, (3.13)
(PNEQ=SN(00} (v.c)evnxCn\{(00)} [[(V:C)l[vhxcy

where the stability constafls is independent o, v, kK andvp,.

In Table 3.1, we show the discrete inf-sup constapis (3.11) for the velocity-
pressure pai¥y x Qn defined in(3.5). We use the lowest-order BDM elements on
Q = (—1,1)? and compute the discrete inf-sup constaki$or a sequence of suc-
cessively refined uniform triangular meshes. The inf-supstants are obtained by
solving a generalized eigenvalue problem related to theixnegpresentation of
the bilinear formB and the norms in (3.2.1); ci. [11, page 75]. Table 3.1 illusisa
that the discrete inf-sup constants are approaching aiyms$iwer bound as the
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mesh is refined.

DOFsun/pn | 112/32 | 416/128 | 1,600/512| 6,272/2,048| 24,832/8,192
An 1.273e-1| 1.251e-1| 1.241e-1| 1.236e-1 1.233e-1

Table 3.1: Discrete inf-sup constants fofy, x Qp.

3.3.3 Existence and uniqueness of discrete solutions

In the following theorem, we state the unique solvabilityled method (3.6) under
a discrete version of the smallness assumption in Theor@m.3The proof of
this result follows along the same lines as [73, Theorem]2Lising the stability
properties outlined in Section 3.3.2.

Theorem 3.3.2 There is a constant > 0 independent of hy, k and v, such
that for small data with @xv—2||(f,g)|| < 1, the mixed finite element discretiza-
tion (3.6) has a unique solutiofup, bp, pr,rh) € Vh x Ch x Qp x S;. Moreover,
there is a constant £> 0 independent of hy, k and vy, such that

|||( )|||

| (Un, bn)[lvi,xc, < Ca

The solution of (3.6) can be found by employing the followiRgard-type
iteration: given(ufi 1, 1) € Vi, x Cp, let (ul, b, pl, 1) in Vi x Ch x Qn x S, be
the solution of the linearized Oseen-type problem

An(up,v) + On(ul~t ul v) +C(bD 1 v, b)) +B(v,pl) = (f,v)q,(3.144)
B(up,q) = O, (3.14b)
M(bf,c) —C(by*,uf,c)+D(c,rf) = (g,0)a,(3-14c)
D(bp,s) = O, (3.14d)
forall (v,c,q,S) € Vh x Ch X Qn X Sy.

Theorem 3.3.2 guarantees the convergence of the itefati@sby, ph, ) }n>o0
to the solution(up,bn, pn,rn) of (3.€) for any initial guess(uﬂ,bﬂ) € Vh x Cqy
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with exactly divergence—freeﬂ, provided that the small data assumption in The-
orem 3.3.2 is satisfied. However, the scheme is only lineeolyvergent, as we
illustrate in Section 3.5.

Remark 3.3.3 A more efficient nonlinear solver such as Newton’s method can
also be used for solvin€3.€), see, e.g., [34, 35, 48]. When upwinding is not
incorporated, Newton’s method can be straightforwardlylaga. However, when
upwind terms are included, adapting the nonlinear iteratto our discretization

is more delicate, since it requires additional linearizatiof the convection form
On(w,u,V) in the first argument. This remains an item for future ingegion.

3.4 Error analysis

In this section, we present the main results of this chapiamely the conver-
gence of finite element approximations and a priori erroinestes for the two-
dimensional version of our MHD problem. We provide detaif@dofs in Sec-
tions 3.4.2 through 3.4.5.

3.4.1 Main results

Our first result is a convergence result. To state it, we ss@pioe solutioru, b, p,r)
of (3.1)-/3.2) possesses the smoothness

(u,p) e HTHQ)I x HI(Q), (3.15a)

(b,0xb,r) e H(Q)I x H(Q) x H(Q), (3.15b)

1
foro, 7> 3.

Remark 3.4.1 The regularity assumption (3.15b) is minimal in the sensa ith

is satisfied by the strongest singularities of the Maxwe#rafor in polyhedral

domains; cf. [23, 24]. Similarly, the regularity (3.15a)lds true for the strongest
singularities of the Stokes operator in polyhedral domaiee [2, 25]. In view

of these results, we expect (2.15) to be the minimal smosghofesolutions to the
MHD system (3.1)-(3.2) in general Lipschitz polyhedra. ldaeer, we do not have
a full proof of this conjecture.
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Theorem 3.4.2 Let (u,b, p,r) and (un,bp, pn,rn) be the solutions of (3.1)—(3.2)
and (3.6), respectively, obtained on a sequence of quafirommesheg 7 }n-o
of mesh size h. Assume (3.15) and that?|| (f,g)|| is sufficiently small. Then we
have

fim [(u—un,b=bn)lvxc, =0, lim[|(p—pn,r —rh)lloxs=0.

Theorem 3.4.2 guarantees that the method (3.6) gives twohations pro-
vided that the (minimal) smoothness assumption (3.15)tisfieal and the data is
sufficiently small. In particular, it ensures convergentsituations where straight-
forwardly applied nodal elements for the approximationbodire not capable of
correctly capturing the singular solution components.

Next, we present a priori error estimates for the two-dinamel version of the
MHD problem [3.6).

Theorem 3.4.3Let Q C R? be a simply-connected Lipschitz polygon with a con-
nected boundary. Under the same assumption as in Theorem 3.4.2, we have the
following error estimates for ang > O:

[|(u—un,b—bn)lv,xc,
min{o,1,k}—¢ 1 1 1
<Cch (V2 11ullos() + (<vm) 2 Blle ) + (kvm) 2|0 x b))
_|_Chmin{a,1'.k} (Vﬁ% H pHHU(Q) + (Kvm)ié ||r||Hr+l(Q)>,
and

[(P— pn,T —Th)lloxs

H 1 1 1

< Cehmintorid-22 (Vz [[Ullo+1(q) + (KVm) 2 [IBlHr (o) + (KVm) 2|0 x bHHT(Q))
. 1 1

+ Chmin{o.rkj—¢ (VTHPHHG(Q) + (KVm)féHrHHHl(Q))-

Here, the constants C and @re independent of hj, k and vy,. While G depends
on g, the constant C does not.
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The convergence rates in Theoream 3.4.3 are optimal in thé sies, up to a
loss of &'(hf) for € arbitrarily small. This loss stems from the use of the Sobole
embedding oH(Q) into LP(Q), for all p > 1, but not intoL®(Q); cf. [39]. To
bridge this gap, we use inverse estimates to establish thigady of the nonlinear
coupling form; see the proof of Lemma 3.4.7. In addition, ¢hastaniC, might
become unbounded a&stends to zero. However, in our numerical experiments
this constant is observed to stay bounded. In fact, we obsaptimal rates of
convergence in all our tests, for both smooth and non-snealthions. Full details
are given in Section 3.5.

Remark 3.4.4 Our technique of proof is applicable to three-dimensioneibp
lems. However, since in three dimensions the Sobolev ennigsdare more re-
strictive, the use of the inverse estimates leads to coamemgrates that fall short
half a power of h for the error i andb, and a full power of h for the error in p
and r (i.e., Theorern 3.4.3 holds with= %). To see this, we carry out the proof of
Theorem 3.4.3 simultaneously foed2 and d= 3. We emphasize, however, that in
our numerical testspptimal convergence rates are observed for three-dimensional
problems with smooth solutions.

Remark 3.4.5 For the linearized variant of the MHD syste(8.1), our method
converges optimally in the mesh size h, as follows fror [S5éndRke 3.3]. That
is, the estimates of Theorem 3.4.3 hold true without any, lbeth in two and
three dimensions. However, there we make stronger smastlassumptions on the
linearized magnetic field. Therefore, this optimality canbe straightforwardly
carried over to the nonlinear setting.

The proofs of Theoren's 3.4.2 and 3 4.3 are presented in thidoe subsec-
tions.

3.4.2 Continuity

We begin by revisiting the continuity properties of the farim a more general
setting. To that end, we introduce the space

V(h) =V +V,
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and endow it with the norrj- ||1». We then make use of an auxiliary folg(u, v)
constructed as in [19, 74] via the use of suitable liftingrapers. It is defined as

An(u,v) = /Q v(Opu: Opv — Z(v) : Onu— Z(u) : Opv) dx

oV / )

+ > —— [ [u]:[v]ds
FEZL%] hF F

Here,Z :V(h) — X, = {ag € L2(Q)¥9 : g|x € #(K)¥*Y, K € F} is the lifting

operator given by

> [Lul:{ahds voes,

[SE N

/ Z(u):odx=
Q F

and [y, is the elementwise gradient operator. By construction,fdine ﬂh(u,v)
satisfies

An(u,v) = A(u,v) Yu,vev,
(3.16)

An(u,v) = An(u,v) Yu,ve V.

Furthermore, using arguments similar to those: in [19, Mj,fbrmﬂh(u,v) can be
shown to be bounded ow(h) x V(h). Then, by setting

h(u,b;v,c) = An(u,v) +M(b,c),
we readily obtain
[ (u, DV, ) < CIl(u,B) v xn 1V, ) v (3.17)
for u,v € V(h) andb,c € C. Moreover, we have

(v, €,0,9)[ < C[|(V,€)[Ivyxcyll(a: S)lloxs (3.18)

for (v,c,q,s) e V(h) xCxQx S
In (3.17)—(3.13) and in the following, we denote ®y generic (positive) con-
stant that is independent of the mesh $iznd the parametens k andvp,.
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Next, we state the continuity of the convection term. Theopaf this result
follows similarly to the ones ir [60, Proposition 4.15] aiid| Proposition 4.2].

Lemma 3.4.6 There holds:
|On(W1,U,V) — On(wz,u,V)| < C|lwy —Wal[1h[|luf[Lh[IV]lLh
for all wi,w, € V(h), andu,v € V(h).

In the sequel, we shall analyze the two- and three-dimeabicases simulta-
neously (see also Remerk 3.4.4). To do so, we introduce thetifun /(d) given
by

h—¢, d=2,

1

h=2, d=3

((d) =

Here,e > 0 is a fixed number. The functiof(d) will indicate the loss of con-
vergence rates for both the two-dimensional and threetioeal cases. We also
denote byCy > 0 a generic constant independenthpfv, k and vy, but depen-
dent on the dimensiod. In particular, ford = 2 it depends ore and might be
unbounded as — 0.

By introducing the kernel

X={beC:D(b,s)=0 VseS},

we state and prove the continuity of the coupling fa2(dl, u,c) for several cases.
Lemma 3.4.7 There holds:

() ford e XUXp,ue Vyandce C:
’C(dauac)‘ <Ck HdHH(curI;Q) HuHLh ”CHH(curI;Q)-
(i) for d € XUXp,u e V(h)andce Cyp:

IC(d,u,c)| <Ck HdHH(curl;Q) ulLh ||CHH(curI;Q)-
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(iif) for de C,u eV andc e Cy:
IC(d,u,c)| < Cal(d)k [|d][20) [UllH1(@) [ICllH(curia) -
(iv) forde C,ueVyandce C:
C(d,u,0)| < Caf(d)k [|d][2() lullLh l[CllH(cur0)-

Proof: We proceed in two steps.
Step 1.We first discuss preliminary results that will be used in theo. From
the Poincaré inequality in [52, Corollary 4.4], there told

Next, we recall the inverse inequality (cf. (10, Lemma 4]B.3or any u €
Z(K), there holds

&)
HUHLnl(K) < ChK v ”U”an(K) V1<ng,ny <oo. (320)

Further, letH : X;, — X be the Hodge operator that maps discretely divergence-
free functions into exactly divergence-free functionsulsa way that

OxHd =0xd. (3.21)

It satisfies the following approximation property (cf. [32mma 4.5]): there ex-
istsT > £ such that

Id—Hd||2q) <Ch O xdlzq)  Vd € Xn. (3.22)
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Finally, we present the following Sobolev embeddings:

[[ul[Lmo) (@) < Callull(g) YueHY(Q), (3.23a)
[[ullma () < CallullLn vue V(h), (3.23b)
dlls@) <ClldllHeuna)  VdeX. (3.23¢)

Here,m(2) = 2/¢ andm(3) = 6. The embedding (3.23a) is a standard result, while
the embedding (3.23b) follows similarly to [40, 61]. Inetya(3.23c) follows
from [Z, Proposition 3.7].

Step 2. We are now ready to prove the bounds in the lemma. The proof of
inequality (i) can be found ir [73, Proposition 3.2].

To establish the second inequality, we follow [73, Lemm4 ar&l first show it
for d € X,u € V(h) andc € Cy,. This is done by applying Holder’s inequality and
the Sobolev embeddings (3.23b) and (3.23c). We obtain

IC(d,u,c)| < k||dll s llullLs@)lID x cll 2(q)

(3.24)
< Ck||d|(cur) lullallclH(curq)-
Second, ifd € X}, we decompose it into
d=(d—Hd)+Hd,
whereH is the Hodge operator in (3.21). We then rew(@, u,c) as
C(d,u,c) =C(d —Hd,u,c) +C(Hd,u,c). (3.25)

BecauseHd € X, we can apply the previous argument, (3.24), and bound #te la
term of (3.25) by
’C(Hd7u7c)’ §CKHHd”H(curI;Q)”u”LhHC”H(curI;Q)
(3.26)

< CKHdHH(curI;Q) HUHl,hHCHH(curI;Q)-

In (3.26), we have used the Poincaré inequality (3.19) angesty '3.21) of the
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Hodge operator.
For the first term on the right-hand side of (2.25), we obtaont Holder's

inequality, the Sobolev embedding (3.23b) and the appraton property (3.22)

that
IC(d—Hd,u,c)| < k|[d — Hd[| 2(q)l[ul| ey [F % €l 3(q)

< Ckh'||O x dl|i2(q) lullLhll O X ¢f| 30,

fort > % Finally, we apply the inverse estimate (=.20) to achieve

‘C(d - Hdauac)’ < CKHdHH(curI;Q) HUHLh”D X CHLZ(Q)a (3.27)

for bothd = 2 andd = 3. Referring to (3.25), (3.26) and (3.27) proves the asserti

of item (ii).
To verify item (iii), we definem*(d) such that

Then we apply Holder's inequality, the Sobolev embedd®@3a) and the inverse

estimate (3.20) to conclude that
IC(d, u,c)| < k|[dl|Lz(q) 1l ma ) 1T X Cf| L))
< Cak||d[2(q) llullr(q)(d) |0 x cf| 2(q)-

The proof of item (iv) is similar to that of item (iii):

IC(d,u,c)| < Kld]| 2(q)lul[Le (@)1 % €l 2
< Cak||df|2(q)t(d)[|ullme) (o)l (curia) -

Applying (3.23b) finishes the proof. O

As an immediate consequence of Leminas 3.4.6 and 3.4.7 rthefpsatisfies

the following continuity properties.
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Proposition 3.4.8 There is a constant £> 0 independent of hy, k and vy, such
that there holds:

(i) for wy,wp € V(h), d1,d2 € XUXh, (u,b) € V(h) x C, and(v,c) € Vj x
Ch:

|Onh(W1,d1;U,b;V,C) — Oh(Wa2,d2; u,b;v, C)|

CoK
< =5 1Wa=wz, d1 = d2)lvxc, [ (U B) v xca [1(V: ©) v i

(i) for wi,wp € V(h),d1,d2 € C, (u,b) € V x C,and(v,c) € Vp x Cp:

|Onh(w1,d1;U,b;V, C) — Oh(Wa,d2; u, b v, C)|

CsK
—— | (W1 — w2, d1 — da)[lvixc, || (U; B)llvxc (v, ©) v

V2

<Cql(d)

3.4.3 Preliminary error estimates

In this subsection, we present two lemmas for estimatingttas. Let(u,b, p,r)
and(up, bp, pn,rn) be the solutions of (3.1)—(.2) ard (3.6), respectively.
We begin by defining the residual

Zn(V) = An(U,V) +On(u,u,v)+C(b,v,b) +B(v, p) — (f,v)q (3.28)

for anyv € Vy,. It measures how well the exact solution satisfies the findment
formulation expressed in terms of the auxiliary foly in (3.16). We have the
following upper bound for the residual (cf. [74]):

FAV) <VE|V]1pé(U) with  &(u) < CHM™ON V2 |uf o). (3.29)
In the following, we shall denote the errors by

&=U—Uy e&=Db-—bn €=p—pr &=r—rh
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We shall also decompose the errors into

QJ:nu‘i'Eu:(u_V)"i'(V_uh)v

& =N, +&,=(b—c)+(c—bn),
(3.30)

e ="nNp+ép=(P—a)+(q—pn),
&=Nr+&=(r—9s) +(s—rn),
for a discrete functioriv, c,q,s) € Vi x Ch x Qp x §, to be specified later.

Lemma 3.4.9 Assume that

Co kI (f, 9)ll

1

Then there holds

(U~ tnb~br)llvyuc, <Cal(d) inf [[(u=V,b~0) s,

(v,c)eVhxChp

+C(&(U)+  inf —0,r —9)||loxs)-
(6@ + ot (p-ar—Sloxs)

Proof: We proceed in two steps.

Step 1.In the error decomposition (3.30), we first considerc) € J, x Xp.
Clearly, we also havé€ ,, &) € Jn x Xn. In view of the residual equation (3.28),
we obtain

'%A(Eu) = h(aheo; Euv Eb) + ﬁh(uvb;uab; Eua Eb)
— Oh(un,bp;un,bn; &, &) + B8y, &b ep. &)

= h(a.lve()’ Eua Eb) + ﬁh(uab;uab; Eua Eb) - ﬁh(uhabh; U,b; Eu»fb)

+ Oh(un,bn; ey, &y, &) +Z(&. € ep.&r).

Becausauy, € J,, (see Proposition 3.2.1), the stability 6f, in (3.10) guarantees
that

ﬁh(umbh;fwfb;fu,fb) > 0.
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Therefore, we have

(& & &0 &) + On(V,Cu,b; & &) — On(Un,br;u,b; &, &)

< %A(Eu) - h(nuvnb;fuvfb) _%(wab;epva)

+ On(v,cu,b; &, &) — On(u,b;u,b; &, &)

(3.32)

— On(Un,bn; Ny, Ny &y, €p)-

From the coercivity ofe, in (3.€) and the continuity of’}, in Propositior 3.4.8 (i),
the left-hand side of equation (3.32) can be bounded by

. Cok
Lh.s. of (3.32)> Cell (8, &b, = o3 1 (U:0) ey | (8- &0) o

Next, we estimatd(u,b)||v xc, using the stability bound in Theorem 3.2.1 (noting
that||(u,b)||w,xc, < [|(u,b)|lvxc). We obtain

.h.s. of [3.32)> (Cc— %\!(fg)\!\) (&4, o)y

In view of assumption (3.31), we then have

1
Lh.s. of 13.32)> ECC”(EwEb)”\Z/hXCh'

For the right-hand side ot (3.32), we note that (si§geand&, are in the kerneldy,
andXh, respectively)

‘%(Euyfb;epva') = ‘@(Euvfb;r’p?nr)'

Then, to bound the right-hand side of (2.32), we use the w©oityi properties
of QZ % and 0y, in (3.17), (3.13) and Propositicn 3.4.8, respectively, &l as
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the estimate foZa (&) in (3.29). We readily obtain
rh.s. of (3.32)<[[(§y; &) Ivexcy (@@(u) +Cl(Ny, Mp)lvexcn + 11(0p: 1r) lloxs

Cok
+Call(d) =2 (s o) I (1,D) v e

Cok
72 Bl o) )

Next, we employ the stability bounds in Theorems 3.2.1 aBd3or ||(u,b)|lv xc
and||(un, bn)||w,xc,, respectively, apply the small data assumption (3.31) canat
bine the lower and upper bounds of (2.32) into the estimate

18 - Eo)lvecn < Call)]| (M, M), +C (&) + (79,7 ).

From the triangle inequality, we thus obtain the error bound

[|(u—un, b—Dbn)lv,xc,
(3.33)
< Cgl(d)][(u—v,b—0)|lvyxc, +C<5(U) +(p—a,r —S)Hst)7

for any (v,c) € Jn x X and(q,s) € Qn x Sh.
Step 2.Next, we replacgv,c) € Jn x Xj, in (3.30) by(v,c) € V}, x Cp. To that
end, let(v,c) € Vj x Cy, and we look forfw, d) € V}, x Cp such that

#(w,d;q,s) = Zu-Vv,b-cq,s) V(4,5 €QxS.

Since the right-hand side is a continuous functionaQarnx S,, we conclude from
the inf-sup condition of# in (3.1%) that there exists at least one non-trivial solu-
tion (w, d) of this problem satisfying the bound

1w, d)lvixc, < Cl[(U =V, b —=C)[lvyxc-

By construction(w +v,d +c) € J, x Xp. Therefore, it can be inserted info (3.33).
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With the help of the triangle inequality, we readily see that

[|(u—un,b—bn)|v,xc,

< /(U =V, )y + W4V — U, -+ €~ bi) [y, + (W, ) gy
< Cal(d) (U=, = Olvycy +C(£(W) + (P~ &r — 9 loxs)

This completes the proof. O

Next, we present the following result for the multipliers.

Lemma 3.4.10 Assume (3.31). Then there holds

I(p= P —rllges <C(&(W)+ inf (Pt ~9)loxs

+ || (u —un,b —bn) [lv,xc,

C(b—bpn,v,b) —C(b—bp,u,c
n sup |C(b —bp,v,b) —C(b — by, ,)|>.
(V.0)eVhx C\{(0,0)} [ (v, €)lIvixcy

Proof: For any(q,s) € Qn x S, we recall from(3.30) that

€p = &p+Np; & =4&+n.

The inf-sup condition for8 in (3.13) and the triangle inequality guarantee that

BV, C'Epﬂfr)

[(§psér)lloxs<C sup oo <C(Mi+Ty),
woevaxen {00} I(V;C)llvuxcy
where
T, — sup HB(V,CNp, Nr)
(v,c)eVhxCn\{(0,0)} (v, C)||Vh><ch
T sup B(V,C ep, &)

w.oevaxcn {00} [1(V,0)llvixa,
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Using the continuity ofZ in (3.1¢),T; can be easily bounded by

T <C||(Np,Nr) loxs:

For T,, we make use of the weak formulation and the residual equ{B®8)
and write out the forn®y, into its individual parts. We obtain

B(V,C,ep, &) = Za(V) — “h(€y,e;V,C) — Oh(Un,bp; €y, &;V,C)
— Oh(u,b;u,b;v,c) + Oh(up,bp;u,b;v,c)
= ZA(V) — Sh(€y, €n;V,C) — On(Un, bh; €y, €; V,C)
— Op(u,u,V) + On(up,u,v) — C(ey,V,b) +C(ep, u,c).

Applying the bound (3.29) and the continuity properties%i}f OnandOyin (3.17),
Propositior: 3.4.8 (i) and Lemma 3.4.6, respectively, wecthare that

CoK
I
2

T2 <&(U) +Cll (eu; &) [Ivixcy + = € €)[[vi <y [| (Un, B [l <y

Cﬁl? ‘C(eo,v,b)—C(Q),U,C)‘
+ —3 H(eU7O)HVh><Ch”(u7O)”Vh><Ch+ sup :
% (V.0)eVhx Cr\{(0,0)} [1(v,C) IV xcs
Using the small data assumption (5.31), the assertionvisllo O

3.4.4 Proof of Theorem 3.4.2

In this subsection, we prove the convergence result statétieorem 3.4.2.

In view of Lemma 3.4.9, the convergence wf andby, is obtained under the
smoothness assumpticn (3.15) by using the standard appaogin properties of
the finite element spaceéy, Ch, Qn and S,, respectively. This proves the first
statement of Theorem 3.4.2.

Next, we show the convergence of the multipliers in the gnem || - | oxs.
From Lemmas 3.4.2.0 and 3.4.9, it only remains to show that

|C(b - bh,V, b) _C(b - bhv U,C)|
sup
(V.0)eVhx C\{(0,0)} [ (v, €)llvixc,

—0 ash— 0. (3.34)

91



Recalling the Hodge operatét from (3.21.), we write
C(b —bp,v,b) =C(b —Hbp,v,b) + C(Hby — by, v,b). (3.35)

The first term on the right-hand side of (3.35) tends to ze®tdl_emma 3.4.7 (i)
and the fact that

[b— thHH(curI;Q) <|b- bh”H(curI;Q) + [|bon— th”H(curI;Q) —0

ash — 0. Here, we have applied the triangle inequality, the propsntif the Hodge
operator in(3.21) and (3.22), and the stability bound indreen 3.3.2. For the last
term of (3.35), we first utilize item (iv) of Lemma 3.4.7 aneéththe approximation
result /3.22), to get

1
|C(Hbh —bn,v,b)| < Ch™2 k||Hbp — bn|| 2(q) [[VI[LhlPlIH(cura)

1
< Ch™ 2k [|[0 x bl 2(q)lIVIl1hBllH(curo)

_1 K
< Ch™2—|(0,bp) v x| (V; 0) I, 10, 0) [[v xc

V2
_1 fvg
< (v, 0y, LD

V2

In the last step, we have applied the stability bounds in Tdras 3.2.1 and 3.3.2,
as well as the small data assumption (3.31). Swce||(f,9)|| < kv-2||(f,9)]|
andt > 1, we obtain

ap  [CO=bnvD)

— " 2 0 ash — 0.
w.oevaxCn {00} 1(V;C)llvixc,

A similar argument shows that

sup |C(b — bp,u,c)|

— " "~ 0 ash — 0.
woevxcn {00} II(VsC)llvixa,

Therefore (3.34) holds true, and the convergence of theipliats is obtained.
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3.4.5 Proof of Theorem 3.4.3

In this subsection we prove the a priori error estimates iacram 3.4.3. As before,
we consider the cases= 2 andd = 3 simultaneously.

Based on Lemma 3.4.9, we choasas the BDM projection ofi, c the Nédélec
projection ofb, q ands the L2-projections ofp andr, respectively. We then apply
the approximation properties of these projections in [IrbpBsition 111.3.6], [665,
Theorem 5.41] anc [13], and the estimates for the errorsenviiocity and mag-
netic fields are readily obtained.

To prove the error estimate for the multipliers, we first gpplopositior 3.4.8
(ii) to bound the supremum in the estimate of Lemma 3.4.10:

|C(b B bh,V,b) _C(b B bh,U,C)|

sup
(V.0)€Vhx C\{(0,0)} [ (v, €)lIvixcy
CoK
< Ca(d) =2 1(0,b b i (U, D) v e

Utilizing the stability bound in Theorem 3.2..1, we obtain

I(p=pnot —t)lloxs <C(&()+ inf (=t ~5)loxs)

+Cg/(d) || (u—un,b —bn)]lvixc,

<Cql(d)? inf —v,b—
<Cq((d) (Vp)levhxch\l(u V,b —C)|lv,xcy

+Cq(d <(§’u+ inf —-q,r—s X).
alld) ( s+ it (p-ar-9loss

Again, we choose&s as the BDM projection ofi, ¢ the Nédélec projection ds,
q ands the L2-projections ofp andr, respectively. As before, the approximation
properties of these projections finish the proof.

3.5 Numerical results

In this section we present a series of numerical experime®isr computations
have been carried out using AVILAB, with direct linear solvers. The primary
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purpose of our experiments is to confirm optimal convergeates of our method.
We start by considering one problem with a smooth solutiod arsecond one
with a singular solution. Then, we consider the numericgrapimations of two-

and three-dimensional Hartmann channel flow and driventyedildw problems.

Finally, we present results for another benchmark probletdD flow over a step

in two dimensions.

Throughout this section, the lowest-order BDM and Nédelements are em-
ployed and the interior penalty stabilization parameteagis= 10. The Picard it-
eration described in Section 3.4.5 is used to solve the meatisystems. For all
the examples, we solve a Stokes problem and the Maxwell iegsaidecoupled,
to obtain an initial guess. The tolerance for the Picardittens is chosen as le-5.

We test our method on problems with mixed Dirichlet and Neamiaoundary
conditions in the hydrostatic variables, even though thedyais has been carried
out solely for the Dirichlet case.

3.5.1 Example 1: two-dimensional problem with a smooth solion

First, we verify the theoretical results stated in Theore8nk2 and 3.4.3 for a
problem with a smooth analytical solution.

We consider the following two-dimensional problem. We €et (—1,1)?
with'ny={(1y):ye(-1,1)},Tp=T\In, V=K =1, vy, = 1e4, and choose the
source termg, g and the boundary conditions so that the analytical solugarf
the form

U(X,y) = (yZ’XZ)’ p(X,y) =X,
b(x,y) = (1-y*,1-%), rxy) = (1) (1-y).

We construct this example with+# 0 to show the convergence raterig later
examples will feature a divergence-frgand a vanishing; cf. Propositior) 3.3.1.

In Tables 3.2-3.4, we investigate the asymptotic rates nvexgence of the
errors in the approximations of the hydrostatic and magnetiiables; herd, de-
notes the experimental rate of convergence. We observe||thatup||1n, ||P—
PnllL2(q)s 10— bhllH(curq) @nd||T(r —rn) | 2(q) converge to zero as the mesh is re-
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DOFsun/pn | [leulliz@)| ! lleull1h || llepllee) | !

112/32 3.893e-2| - 8.297e-1| - 1.297 -
416/128 1.016e-2| 1.94| 4.105e-1| 1.01 | 3.734e-1| 1.78
1,600/512 2.707e-3| 1.91| 2.045e-1| 1.01| 1.293e-1| 1.53
6,272/2,048 | 7.087e-4| 1.93 | 1.021e-1| 1.00| 5.475e-2| 1.24
24,832/8,192| 1.813e-4| 1.97 | 5.104e-2| 1.00| 2.597e-2| 1.08
98,816/32,768 4.578e-5| 1.99 | 2.552e-2| 1.00| 1.281e-2| 1.02

Table 3.2: Example 1. Convergence 0, | 2(q), |€ull1h, and|€pll 2(q)-

DOFsbn/rn | [[&llizi) | | | l®llH(cute) | !

56/25 4.720e-1| - 9.431e-1 -
208/81 2.358e-1| 1.00 4.714e-1 | 1.00
800/289 1.179e-1| 1.00 2.357e-1 | 1.00
3,136/1,089 | 5.893e-2| 1.00 1.179e-1 | 1.00
12,416/4,225| 2.946e-2| 1.00 5.893e-2 | 1.00
49,408/16,641 1.473e-2| 1.00 2.946e-2 | 1.00

Table 3.3: Example 1. Convergence || 2(q) and||&p|[Hcuriq)-

DOFsbn/rh | ll&llizie) | 1 | P&z | |
56/25 1.673e-1| - 9.391e-1 -
208/81 4.433e-2| 1.92| 4.824e-1 | 0.96

800/289 1.125e-2| 1.98| 2.429e-1 | 0.99
3,136/1,089 | 2.822e-3| 1.99| 1.216e-1 | 1.00
12,416/4,225| 7.062e-4| 2.00| 6.085e-2 | 1.00

49,408/16,641 1.766e-4| 2.00| 3.043e-2 | 1.00

Table 3.4: Example 1. Convergence & [| 2oy and||Ce || 2(q)-
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fined, in accordance with Theorem 3.4.2. The rate of convegéso'(h). Notice
that we obtain the optimal rate in this numerical experimewen though Theorem
3.4.3 predicts a sub-optimal rate with a lossufh®). Additionally, [[u — un|| 2(q)
and||r —rpl| 2@y converge at ratef(h?) ash tends to zero, which is also optimal.
In Figure 3.l we show the convergence history of the Picamtions for the
grid sequence considered in this example. The plot defietaumber of iterations




against the differences between consecutive iteratesesmnding to the approxi-
mated vector coefficients, measured in a normalized des&eatorm and labelled
as ‘Tolerance’ in the plot. As expected, convergence isalirend the iteration
count is fairly insensitive to the size of the grid. A very damn behaviour has been
observed in all of our other experiments, in 2D as well as in 3D

Tolerance

Figure 3.1: Example 1. Convergence history of the Picard iteration fer t
grid sequence defined in Tab es 3.2--3.4.

3.5.2 Example 2: two-dimensional problem with a singular skution

In order to verify the capability of the proposed method tptage singularities in
two dimensions, we consider a problem in the L-shaped dofain (—1,1)2\
([0,1) x (—1,0])) with 'y = {(1,y) :ye€ (0,1)}, T'p =T\I'y, and setv = k =1,
vm = led. We choose the forcing terms and the boundary conditioals that the
analytic solution is given by the strongest corner singtidar for the underlying el-
liptic operators. In polar coordinatép, @), the hydrostatic solution components
andp are then given by

.= | P DSN@U(@)-+cos @) ()
P A cos (@) +sin ) ()

PP, @) = —p* H(1+2)%W (@) + " (9)/(1-A),
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where

Y(g) =sin((1+A)p)codAw)/(1+A) —cos(1+2)9)
—sin((1—A)@)cosAw)/(1—A) +cog(1—A)@),

A ~ 0.54448373678246 and = 37. The magnetic paifb,r) is given by

b(p,) = 0(p*3sin(2/3p)),  r(p,p)=0.

For this example, we have that, p) € H1**(Q)? x H*(Q) andb € HZ/3(Q)2.
Note that straightforwardly applied nodal elements carowtectly resolve the
magnetic field. In Tables 2.5—3.6, we investigate the asgtitptates of conver-
gence of the errors in the approximations of the hydrostatitmagnetic variables.
Again, we observe that the discrete solution convergesetexiact one as the mesh
sizeh approaches zero, in accordance with Theorem 3.4.2. Thégehow full
agreement with the optimal rates fu — up|[1h and ||b — bh|[cur,0)- For the
pressure, we also see that the rate [fpr— pn[[ 2(q) is approaching the optimal
rate, albeit more slowly. Additionally, we observe th&norm of r,, is zero be-
causeg is divergence-free, in accordance with Proposiiion 3.34.the mesh is
refined, the actual values of thé-norm ofry, slightly increase, which is likely due
to the increased condition numbers of the correspondiragalisystems.

In Figures 3.2-3.3, we show the solution computed on thetfimesh with
24,576 elements; the total number of degrees of freedomagmglin the finite
element spac¥y, x Ch, x Qn x S, is 148,481. The results show that our solution
captures the strongest corner singularities and are cableato the results in [56].

3.5.3 Hartmann channel flow

Next, we consider Hartmann channel flow problems in two anektldimensions;
cf. [35]. In these examples, we denote by Ha the Hartmann euynwhich is

defined as Ha= vam
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DOFsun/pn | [leullizq)| ! lleull1h I |lleplleey| |
88/24 2.159%e-1| - 2.468 - 15.91 -
320/96 1.781e-1| 0.28 1.880 | 0.39| 9.328 | 0.77

1,216/384 1.204e-1| 0.56 1.368 | 0.46| 5.387 | 0.79
4,736/1,536 | 6.816e-1| 0.82 | 9.588e-1| 0.51| 3.301 | 0.71
18,688/6,144| 3.490e-2| 0.97 | 6.627e-1| 0.53| 2.124 | 0.64

74,240/24,576 1.705e-2| 1.03 | 4.559e-1| 0.54| 1.408 | 0.59

Table 3.5: Example 2. Convergence 0, | 2(q), |€ull1h, and|€pll 2(q)-

DOFsbn/rh | ll&lliz@) | I | I&llneute) | 1 | lIrnllize)
44121 2.796e-1| — | 279%e-1 | — |2.162e-12
160/65 | 1.814e-1| 0.62| 1.814e-1 | 0.62| 6.188e-12
608/225 | 1.169e-1| 0.63| 1.169e-1 | 0.63 | 2.289e-11
2,368/833 | 7.473e-2| 0.65| 7.473e-2 | 0.65| 4.260e-11

9,344/3,201 | 4.754e-2| 0.65| 4.754e-2 | 0.65| 1.406e-10

37,120/12,545 3.013e-2| 0.66| 3.013e-2 | 0.66 | 3.018e-10

Table 3.6: Example 2.
IrhllLz(q)-

Convergence ofelli2q), [l&llH(curq), and

3.5.3.1 Example 3: two-dimensional Hartmann flow

Consider the two-dimensional Hartmann flow problem, whiooives a steady
unidirectional flow in the chann& = (0,10) x (—1,1) under the influence of the
constant transverse magnetic field = (0,1). The MHD solution then takes the

form:
u(xy) = (u(y),0),

b(x,y) = (b(y),1),

P(X,y) = —Gx+ po(y),
(3.36)

r(x,y) =0.
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Figure 3.2: Example 2. Numerical approximations of (a) velocity; (bg@gr
sure contours.
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Figure 3.3: Example 2. Numerical approximations of (a) magnetic fiel; (
contours of the first component of the magnetic field; (c) carg of the
second component of the magnetic field.

We impose the following boundary conditions:
u=0 ony==£1,
(pL —vOu)n = pnn onx = 0 andx = 10,
nxb=nxbp onl,

r=0 onl,

99



where

PN (X Y) = p(X,Y)

G? (sinh(yHa) 2
=G < sinh(Ha) —y> '

The exact solution is given by (3.36) with

B G coshyHa)
uy) = vHatant{Ha) <1_ coshHa) )’

~ G (sinh(yHa)
b(y) = « (W(Ha) —y> )

~ G? [sinh(yHa) 2
PolY) = =5 ( sinh(Ha) )

We note thatp(y) and—%y)2 are the same up to an additive constant.

In Tables 3.7-3.8 and Figurzs 3.4--3.5, wewset k = 1, vi, = 1le4, andG =
10. We observe that, = 0, as predicted in Proposition 3.3.1, aja— up||1p,
[P — Pnlli2(q) @nd||b — bn|[H(cura) cONverge to zero at the optimal rate(h) as
the mesh is refined. Moreover, we note that tifenorms of the errors in the
approximations ofi, b and p tend to zero optimally as well.

In Figures 3.4-3.5 we show the solution computed on the me$h3&,768
elements; the total number of degrees of freedom employéideirfinite element
spaceVy x Cp x Qp x §is 197,633. In order to show the directions of vectors, in
Figure 3.5(b) and later figureb,is normalized such that the largest magnitude of
each component is 1 in the computational domain. The cordputd analytical
solutions of the first components in the velocity and magniédids are virtually
indistinguishable; see Figure 3.4.

3.5.3.2 Example 4: three-dimensional Hartmann flow

In this example, we consider the three-dimensional unitiveal flow in the rect-
angular duct given b@ = (0,L) x (—Yo,Yo) X (—20,20) With yp,Zp < L under the
influence of the constant transverse magnetic figle- (0,1,0). We takef =g=0
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DOFsun/pn | [leulliz)| ! |lleullin | 1 |llepllize)| !

416/128 2.028e-1| - 3.215 - 13.97 -
1,600/512 5.169e-2| 1.97| 1.611 | 1.00| 6.986 | 1.00
6,272/2,048 | 1.306e-2| 1.99| 0.8061| 1.00| 3.493 | 1.00
24,832/8,192| 3.282e-3| 1.99 | 0.4033| 1.00| 1.747 | 1.00
98,816/32,768 8.227e-4| 2.00| 0.2017| 1.00| 0.8734 | 1.00

Table 3.7: Example 3. Convergence §&yl| 2(q),

eull1n, and|[eplliz(q)-

DOFsbn/rh | ll&lliz@) | I | I&llHeute) | 1 | lIrnllize)
208/81 | 1.679e-4| — | 22594 | - | 3.868e-12
800/289 | 8.605e-5| 0.96| 1.148e-4 | 0.98 | 1.746e-11

3,136/1,089 | 4.328e-5| 0.99| 5.761e-4 | 0.99 | 3.627e-11

12,416/4,225| 2.167e-5| 1.00| 2.883e-5 | 1.00 | 9.424e-11
49,408/16,641 1.084e-5| 1.00| 1.442e-5 | 1.00 | 2.401e-10

Table 3.8: Example 3.

[rhlli2Q)-

-1 -05

Convergence 0|'4®o||L2(Q)1 ||90HH(curI;Q), and

b(y)
- T S - S R - T}

Figure 3.4: Example 3. Slices along=>5, -1 <y < 1: (a) Velocity compo-
nentu(y); (b) Magnetic componerii(y).

u(x,y,2)

b(x,y,2)

(u(y;2),0,0),

(b(y,2),1,0),

and consider solutions of the form

p(X7 Y, Z) = —Gx+ pO(yv 2)7

r(x,y,z) =0.
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Figure 3.5: Example 3. Numerical approximations of (a) velocity; (by-no
malized magnetic field.

We enforce the boundary conditions
u=~0 fory = +yp andz= £z,
(pl —vOu)n=pyn for x=0andx =L,
nxb=nxbp onrl,
r=0 onl,

with pn(X,y,z) = —Gx— L%”Z)Z +10. The functiorb(y, z) is given by the Fourier
series

[o0)

b(y> Z) = Zobn(y) COS(AHZ)>
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where

P 2n+1)m
n— 220 ’
v/ A2_p2 | A2
bn(y) = P (Aﬁp—lpl sinh(pyy) + Bp—" P2 smh(pzy)>,

P2, = AF+Hef /2 4+ Hay/ A2+ Ha?/4,

_ )

An A Un(Yo) Sinh(p2yo),
n
A2 p? _
By = P28 = P o) sintpayo),
n

An = p2(AZ — p?) sinh(p1yo) cosh payo) — p1(AZ — p3) sinh(payo) cosh p1yo),

G .
un(Yo) = VA3 sin(Anzo).
n

The functionsu(y,z) and po(y,z) can be also expressed by Fourier series; for de-
tails, see [34]. In factpy(y, 2) and—%yl)2 are identical up to an additive constant.
Note also thap(x,y,z) = pn(X,Y,2).

Inourtests,wesdt=10,yo=2,20=1,v=kKk=1,vpy=1e4 andcs=0.5. In
Tables 3.9-3.10, we investigate the asymptotic rates afezgence of the errors in
the approximations of the hydrostatic and magnetic vaembAgain, we observe
that the finite element solution converges to the exact isols the mesh size
approaches zero, in accordance with Theorem 3.4.2. We\ab#se results show
good agreement with the optimal rates far— un|1.n and||b — bn||Hcurq)- For
the pressure, we also see that the rate|for pn || 2(q) is approaching the optimal
rate, although more slowly. Additionally, we observe ttfenorm of ry, is zero
becausey is divergence-free, in accordance with Proposition 3.3.1.

In Figures 3.5-3.7 we show the solution computed on a unifetrahedral
mesh of 24,576 elements; this results in a total of 212,5¢feds of freedom
in the finite element spac¥y x Ch, x Qn x $,. We observe that the computed
and analytical solutions are in good agreement on thisivelgtcoarse mesh; see
Figure 3.6.
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DOFsun/pn | lleulliz@| | | lleulluh | T [llepllieey| !

360/48 3.959e-1| - 1.829 - 30.89 -
2,592/384 1.320e-1| 1.58 | 0.9561| 0.94| 8.194 | 1.91
19,584/3,072 | 3.609e-2| 1.87 | 0.4903| 0.96| 2.837 | 1.53
152,064/24,576 9.590e-3| 1.91| 0.2484| 0.98| 1.091 | 1.38

Table 3.9: Example 4. Convergence 0, | 2(q), |€ul[1h, and|€pll 2(q)-

DOFsbn/rh | l[&lliz@) | I | I&llneute) | 1| lIrnllize)
9827 | 1.850e-5| — | 3.219e-5 | - |9.855e-12
604/125 | 1.565e-5| 0.24| 2.579e-5 | 0.32 | 1.013e-10
4,184/729 | 8.592e-6| 0.86| 1.464e-5 | 0.82 | 4.098e-10

31,024/4,913 4.411e-6| 0.96| 7.543e-6 | 0.96| 1.795e-9

Table 3.10:Example 4.  Convergence ofes| 2q), [/€llH(curg), and
[rhllizq)-

3.5.4 Driven cavity flow

Let us consider a classic test problem used in fluid dynankicsywn as driven-
cavity flow. Itis a model of the flow in a cavity with the lid mag in one direction;
cf. [31, Chapter 5.1.3] and [39].

3.5.4.1 Example 5: two-dimensional driven cavity flow

In this example, we consider the two-dimensional dongaia (—1,1)2 with 'p =
I", and set the source terms to be zero. The boundary conddiengrescribed as
follows:

u=~0 onx=+1andy=—1,
u=(1,0) ony=1,
nxb=nxbp onrl,

r=0 onl,
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Figure 3.6: Example 4. Slices along=5, -2 <y <2, andz=0: (a)
Velocity component(y,0); (b) Magnetic componerii(y, 0).

wherebp = (1,0).

We setv = le-2,v,, = 1eb,k = 1eb, which simulate liquid metal type flows.
Figures 3.3-3.9 show the solution computed on a mesh wi®28lements and
49,665 degrees of freedom. Figure 3.8(a) shows that thelation created by
the moving lid; Figure 3.8(b) shows the magnetic field changjeection due to
the coupling effect. Figurz 2.9(a) demonstrates the baynkdger formation in
terms of the first component of the velocity. Streamlinestli@r velocity field are
displayed in Figure 3:9(b). The computed solution agreél thie solution in the
literature [69].

3.5.4.2 Example 6: three-dimensional driven cavity flow

The problem we consider is the three-dimensional driveiitc#ow in the domain
Q = (—1,1)% with 'p = dQ. The source terms are set to be zero. The boundary
conditions are prescribed as follows:

u=0 onx=+4l,y=+1andz= -1,
u=(1,0,0) onz=1,

nxb=nxbp onrl,
r=0 onl,
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Figure 3.7: Example 4. Numerical approximations of (a) velocity; (by-no
malized magnetic field.

wherebp = (1,0,0).

We setv = le-2, vy, = 1eb, k = 1eb and obtain Figure 3.10 on a uniform
tetrahedral mesh comprising 24,576 elements; this resulestotal of 212,577
degrees of freedom. The flow vectors on slices demonstrateilaisbehaviour to
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Figure 3.8: Example 5. Numerical approximations of (a) velocity; (by-ho
malized magnetic field.

the two-dimensional scenario in Secton 3.5.4.1; see E @L8.

3.5.5 Example 7: two-dimensional MHD flow over a step

The example we present here is another classical problemflofvaover a step
under a transverse magnetic field; ¢f. [33]. The magnetid fiehds to damp the
vortex of the fluid after the step.

The domain i€2 = (—0.25,0.75) x (—0.1250.125)\ (—0.25,0] x (—0.1250],
with My = {(0.75,y) : y € (—0.1250.125} andl'p =T \I'y. We setf =g=0,
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Figure 3.9: Example 5. Numerical approximations of (a) contours of thst fi
velocity components; (b) streamlines of velocity.

and choos& = le-2,vy, = 1e5,k = 2.5e4. The boundary data are given by

u=0
u=0
u=(—256y(y—0.125),0)
(pl —vOu)n=pyn
nxb=nxbp

r=0

wherepy = 0 andbp = (0,1).

ony = +0.125,{(x,0) : x€ (—0.25,0)},

on{(0,y): ye (—-0.1250)},

onx= —0.25,
onx=0.75,
onl,

onl,

Figures 3.11-3.1.2 show the solution computed on a mesh wi8&lements
and 43,649 degrees of freedom. Itis evident from Figure thafthe flow field is

correctly captured; the magnetic field changes directiarestd the coupling effect;
the pressure drops behind the step. Figure 3.12 shows theityefield in terms of
stream lines. The recirculation after the step decreasttea®upling coefficienk

increases. We observe that our numerical method reprodbisedamping effect
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Figure 3.10: Example 6. Numerical approximations of (a) velocity; (by-no
malized magnetic field.

without any oscillation in the numerical solution. The cartggl solutions agree
with the solutions in the literature [22, 33].
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Figure 3.11: Example 7. Numerical approximations of (a) velocity; (by-no
malized magnetic field; (c) pressure contours.
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Figure 3.12: Example 7. Velocity flow vectors and streamlines zoomed in
behind the step for (§=2.5e4; (b)x=1e5.

3.6 Conclusions

We have introduced a new mixed finite element method for theamical dis-
cretization of a stationary incompressible magnetohygnadics problem, with
divergence-conforming BDM elements and curl-conformingdBlec elements for
the velocity and magnetic fields, respectively. The appnaxion of the velocity
field is exactly mass conservative. We have shown the walegoess of the dis-
crete formulation under a standard small data assumptimhcanvergence of the
approximations under minimal regularity assumptions.

We have proved that the energy norm error is convergent inrtegh size in
general Lipschitz polyhedra, and have derived a priorireegiimates. As shown
in detail in Sectiori 3.4, in the two-dimensional case thera loss of&'(hf) in
the theoretical error estimates. In the three-dimensicaak our error estimates
end up falling short by half a power &f for the errors inu andb, and by a full
power inp andr. Nevertheless, the numerical experiments of Section 3®/sh
optimal convergence in all cases. This probably indicatas the sub-optimality
is a mere artifact of our technique of proof, which relies averrse estimates to
establish the continuity of the nonlinear coupling formrtRarmore, the numerical
experiments indicate that the const&tin Theorem 3.4.3 stays bounded, even
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though this is not guaranteed by the analysis. Altogethner,computed results
are in excellent agreement with results in the literature] he method correctly
resolves the strongest magnetic singularities in non-eomomains. But there is
a need to further pursue the theoretical issue of sub-optiorvergence rates.

Based on the theoretical results in [70], we expect the saod gerformance
of our discretization and solution techniques to carry deethe dynamic prob-
lem, provided that the nonlinear terms are treated (serpl)aitly. This will be
discussed further in detail in Chapter 4. We also mentiorighee of higher order
elements. Here, too, we do not expect any deviation from awent computa-
tional results. In particular, we expect to see optimal evggnce rates for smooth
solutions.

The scope of our work can be broadened in a number of addittbretions.
A very important issue is the investigation of efficient bmesolvers for large-scale
problems. In such settings iterative solvers are necesaad,this brings up the
need for deriving effective and scalable precondition&#hile there are efficient
solution techniques for the Navier-Stokes equations a$ agefor the curl-curl
operator, the primary challenge is how to deal with the ciogpterm, especially
when coupling is strong. Preliminary work on this is curtgninderway.

Another item for future work is the derivation of a nonlinesolver that con-
verges more rapidly than the Picard iteration used in ouegrpents. As we have
pointed out in Remark 3.2.3, developing the Newton iterata our discretization
is somewhat delicate and is subject of ongoing investigatio
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Chapter 4

Extensions

In this chapter, we describe two extensions of the disrétizaechniques presented
in Chapters 2 and 3. First, we consider the fully nonlinearetidependent MHD
problem introduced in Section ..1. We employ the impliciléeumethod for the
temporal discretization, and our DG approach with exadtrgmence-free veloci-
ties for the spatial discretization, which as before ersthie energy-stability of the
fully discrete scheme. We present a preliminary set of cdatfpnal experiments.
Second, we investigate an exactly divergence-free DG mdthvahe approxi-
mation of the Stokes problem with nonstandard boundaryitiond. These bound-
ary conditions are naturally suited for approximating thek&s equations using a
curl-curl formulation. We establish a crucial norm-equérace property for the
proposed discretization, and prove optimal convergenaipofmethod in the bro-
kenH-norm. The theoretical results are confirmed in a series oferical tests.

4.1 Time-dependent incompressible
magnetohydrodynamics

4.1.1 Introduction

A number of papers on time-dependent MHD systems can be fiouti litera-
ture. In 3], a class of time-stepping algorithms for thengi@nt incompressible
MHD equations has been analyzed, with focus on the long-tissipative struc-
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ture of the underlying dynamical system. In[46], the seeortkr BDF2 scheme
has been applied for the time discretization of the MHD syst€he Navier-Stokes
equations have been decoupled from the Maxwell equatioriakiyg the nonlin-

ear terms fully explicitly. Theoretical aspects of othelyfudiscrete schemes for
time-dependent MHD problems have been presented n [70].aM¢e refer the

reader to the monograph [35].

In this section, we implement a fully discrete scheme forthenerical approx-
imation of the time-dependent incompressible MHD equatiovhere the implicit
Euler method is employed for time stepping, and the diverg&url-conforming
finite elements presented in Chagter 3 are used for the bpat@etization. The
nonlinear terms are discretized semi-implicitly. Henaegach time step, a lin-
earized (but coupled) MHD system similar to the one preseimg3.14) needs
to be solved. The goal of this section is to present a prelinyiiset of numerical
computations and to demonstrate that our DG approach isnciple applicable
to transient problems.

In a simply-connected Lipschitz doma € RY (d = 2 or 3) and forT > 0,
we consider the time-dependent MHD equations

gdu—vAu+ (u-Du+0Op—k(Oxb)xb=f inQx (0,T), (4.18)
O-u=0 inQx (0,T), (4.1b)
Kob+kvnOx (Oxb)—kOx(uxb)=0 inQx(0,T), (4.1c)

0b=0 inQx(0,T), (4.1d)

subject to the following boundary and initial conditions

u=0 onl x (0,T), (4.2a)
nxb=0 onl x (0,T), (4.2b)
u(0) =up onQ, (4.2c)
b(0)=by  onQ. (4.2d)
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Note that the incompressibility constraint of the magnéétd in (4.1d) is implic-
itly implied by the magnetic equation (4 1c). To see this,tale the divergence
of (4.1¢) and obtain

g(d-b)=0 Vte (0,T).

Therefore, the constraint (4.1d) is satisfied as long asritialimagnetic fieldog
is solenoidal.

4.1.2 Weak formulation

Upon setting
V=H§(Q)?,  C=Holcur;Q), Q=Lj(Q)

the variational formulation of problem (4.1)-(4.2) is: feveryt € (0, T), find
u(t) € V,b(t) € Candp(t) € Q such that

(du(t),v)q +A(u(t),v) +O(u(t),u(t),v) (4.3a)

+C(b(t),v,b(t)) +B(v,p(t)) = (f(t),v)a,

B(u(t),q = 0, (4.3b)
K(ab(t),c)o +M(b(t),c) —C(b(t),u(t),c) = O, (4.3c)
U(O) = Up, b(O) = bo, (43d)

for all (v,c,g) € V x C x Q. The weak forms are given by

A(u,v):/ vOu: Ovdx, O(W,U,V):/(W-D)u-vdx,
Q Q

M(b,c):/QKvm(Dxb)'(Dxc)dx, C(d,v,b):/QK(vxd)-(Dxb)dx,

B(u,q) = —/g;(D-u)qu.
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Since0H(Q) C C, we may choose = Oswith s€ H3(Q) in (4.3¢) and obtain
d(b,0s)o=0  VscHIQ), te(0,T).

Therefore the incompressibility of the weak solutibris satisfied automatically
for divergence-fredog, and there is no need to introduce a Lagrange multiplier as
in the stationary case considered in Chagters z and 3.

In addition, we have the following energy identity, ¢f. [70]

1
éat(”u”EZ(Q) +K|[b[[F2q) + VIIOU[ P2 q) + KVml[D % bl|Fzq) = (fu)a,  (4.4)

which is an immediate consequence of setiing u in (4.3a) andcc = b in (4.3¢),
making the sum of both equations, and using the divergentstreint (4.10).

4.1.3 Space discretization

Under the same assumptions on meshes and traces as in &8tlrwe look for
approximations tai(t), b(t) andp(t) in the same finite element spaces as in (3.5).
That is,

Un(t) € Vi = {Vv € Ho(div; Q) : v|x € Z(K), K € 1,
bn(t) € Ch = {c e Ho(curl;Q) : clk € Z1(K)? @ Re(K), K € F 1,
Pr(t) € Qn={g e L5(Q) : alk € P 1(K),K € F},

with k > 1. The semi-discrete scheme then reads: for every0,T), find up(t),
bn(t) andpp(t) such that

(Gtun(t),v)a + An(Un(t), V) + On(un(t), Un(t), V) (4.52)
+C(bn(t),v,bn(t)) + BV, p(t)) = (f(t),v)a,

B(un(t),q) = O, (4.5b)

K(dtbn(t),C)a +M(bn(t),c) —C(bn(t),un(t),c) = O, (4.50)

unh(0) = uon, bnh(0) = bon, (4.5d)
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forall (v,c,q) € Vi x Ch x Qn. Here,ugn andbg, are suitable approximations o
andbg, respectively, withl- ugy, = 0. The formAy, corresponding to the Laplacian
is again the interior penalty form [4, 5]:

An(u,v) :KGZ%/KVDU : Dvdx—FEZjh/F{{vDu}} :[v]ds

agV
=y [Avovyludst 3 2 [ qul: [vids
FeZy F FeZy F JF
with ag > 0 the interior penalty stabilization parameter. It has tacbesen larger
than a threshold value which is independenhof, k andvy,. For the convection
term, we take the standard upwind form [62]:

On(w,u,v) = Z /(W-D)u-vdx
Ke.%, K

1
+ / ~(w-ng —|w-ng|)(u®—u)-vds
Kez% oK\ 2

—/ }(W'n—\w-n])u-vds
r2

Here,u®is the trace ofi taken from the exterior dk. The remaining forms are the
same as in the continuous case.

4.1.4 Time discretization

Let us now introduce the time sté&p =T /N, whereN is the number of time levels,
and sett, = nAt for 0 < n < N. We discretize in time using the implicit Euler
scheme, and denote Iy, by, p{l the approximations to(t,), bn(th) and pn(tn)

in (4.£). By settingjﬂ = Uoh, bﬂ = bgn, and taking the nonlinear and coupling terms
semi-implicitly, the fully discrete solutions are then falby solving the following
linearized (but still coupled) system on each time level h < N: find uf, bj]
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andpj such that

1
E(uﬂ,v)QJrAh(uﬂ,v)+Oh(uﬂ*1,uﬂ,v) (4.6a)
1
+C(bptv,bh) +B(v, pp) = (", V)a+ E(UE*EV)Q,
B(up,q) = 0O, (4.6b)
K n n n-1  .n K n—1
E(bh>C)Q+M(bh>C)_C(bh ,Uh,C) = E(bh 7C)Qa (46C)

for all (v,c,q) € Vi x Cp, x Qn, wheref” = f(t,). Closely related systems of this
form have been analyzed in Chagter 3.
As shown in Proposition 3.2.1, our discretization guaresitinat

O-up=0 vY1<n<N.

Therefore by choosingv, c) = (uj,bj), and adding equations (4 6a) and (4.6c), we
obtain the discrete energy property which mimcs (4.4);ase [70]:

1 2 2 At 2 2
5D (11URl22 ) + KIIBRIZ2 ) ) + 5 (1IDURIZ2 ) + K IDBRIZ: )

+CeVI|UplEn + K viml| O % bR[Z2 ) < (", uR)a,

where|| - ||1n is the discreteH!-norm defined in'(3.7) an@c is the coercivity
constant in (3.9). FurthermorB, is the difference quotient operator given by
uh — unfl

4.1.5 Numerical tests

We test our method on a series of computational experimeirig the lowest-order
BDM and Nédélec element& & 1) for two-dimensional systems. The computa-
tion has been carried out usingAviLAB with direct linear solvers. We will specify
(pl — vOu)n on the Neumann part of the boundary denoted Ry where lis the
identity matrix anch is the unit outward normal oh. Our discretization can easily
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be extended to Neumann boundary conditions of this type. Oihiehlet bound-
ary is then denoted blyp. We choose the stabilization paramesgr= 10 in all

cases. The initial valuesy, andbg, are set to be the BDM projection of and

the Nédélec projection obg, respectively. Notice thdil - ugy, = O provided that
0-ug=0.

4.1.5.1 Example 1. Convergence test for time discretizatio

For T = 1, we consider a two-dimensional problem @n= (—1,1)? with 'y =
{(1,y) :ye (=1,1)} andl'p = '\I'y. The parameters, vy, andk are all set to
one. We choose the right-hand side source terms and boundadjtions so that
the analytical solution is given by

(x+12, —y+cost), p(x,y,t) = 10+ sint,

u(x,y,t)
b(x,y,t) = (1—y+sint, x+¢€).
For this example, the spatial discretization is exact; éfee only temporal er-

rors are introduced by our scheme. This problem is thus yiseited to test the
accuracy of the temporal discretization.

At max Jutn) — Upllz) | | max [b(tn) —bpllz) | !
1/4 6.060e-2 - 4.358e-1 -
1/8 3.221e-2 0.91 2.229%e-1 0.97
1/16 1.657e-2 0.96 1.127e-1 0.98
1/32 8.403e-3 0.98 5.667e-2 0.99

Table 4.1: Example 1. Convergence in time ?f< <n|\1‘¢41<1(tn) — Upllz(o)
sn=<

_ hn
andlgrrnlgil(Hb(tn) nllLz(Q)-

In Table 4.1, we present the asymptotic rates of convergentme of the er-
rors in the approximations of the velocity and the magneédfiHere, we denote
by u(tn) andb(t,) the exact solutions af andb at timet,, respectively, and by
the experimental rate of convergence. The mesh size is ket ty4 (since spatial
errors are zero up to machine accuracy). We evaluatle<tnh<t=':\l \mw(g)—norm (dis-
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crete maximum norm in time arid-norm in space) errors of the approximations.
We clearly see first-order convergence in time as expected.

4.1.5.2 Example 2: Couette channel flow

Next, we consider the two-dimensional Couette channel flavblpm, cf. [75],
where the conducting fluid is contained in the char@et (0,5) x (0,1) with the
top wally = 1 moving with velocityup = (1,0). A uniform magnetic fieldop =
(0,1) is applied across the channel. The MHD solution takes thra for

U(X>y>t) = (U(y,t),O), b(X,y,t) = (b(y7t)?1)7 p(X,y,t) = p(y7t) 4.7)

We setf = 0 and impose the following boundary conditions

u=20 ony=20,
u=up ony=1
(pl —vOu)n = pyn onx=0andx=5,

nxb=nxbp onl,

and initial conditions

Here, (
K = y—1)Ha 2
with
sinh¥32 @ (—1)n
Pyt) = —+ sin(nmy)e """,
sinhH2 & An
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In the casev = vy, the solution of this problem can be obtained in exact and is
given by (4.7) with

uyt) = cosh? (1)
o) = - sinh g ),

K
p(yt) = 1— b(y,t)*.

We note thaip(y,t) = pn, as in Hartmann flow problems.

g
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Figure 4.1: Example 2. Numerical approximations of velocity at time (a)
t=0.01; (b)t =0.1; (c)t = 1.

In Figures 4.1 and 4.2, we show the evolution of the compugtalcity and the
magnetic field, respectively. In all these tests, the patarsare chosen as=
Vm =1, Ha= 5 andk = vv,H&. We observe that at an early stage- 0.01,
only the local velocity profile is changed by the effect of theving top wall as
illustrated in Figure 4.1(a), whereas at tirhe- 0.1, the entire field is affected,
see Figure 4.1(b). The approximate velocity in Figure: 4.Igclose to the steady
state solution. In Figure 4.2, in order to show the changéefitiduced magnetic
field b(y,t), b = (b(y,t),1) is normalized such that the largest magnitude of each
component is 1 in the computational domain. The computechetagfield att = 1
in Figure 4.2(c) is again an almost steady profile.
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Figure 4.2: Example 2. Numerical approximations of normalized magneti
field attime (a} = 0.01; (b)t =0.1; (c)t = 1.

4.1.6 Conclusions

In this section, we have presented and implemented a disecbeme for the time-
dependent MHD problem, where the time stepping is realiz&the implicit Euler
scheme, and the space discretization is based oH (ti&)-conforming BDM el-
ements and thél (curl)-conforming Nédélec elements of the first kind prsed
in Chapter 3. The approximate velocities are automatidadilhergence-free, thus
guaranteeing the stability of our discretization. We haakdated the accuracy of
our approach through a series of numerical tests. In ea@hdtap, a fully coupled
linearized MHD problem has to be solved, which is compuretily expensive. To
make our approach feasible in practice, it is therefore ratorgl to develop effi-
cient solvers/preconditioners or further decouplingtsgyaés as in [£€, 70]. While
a wide variety of efficient and robust solvers is availabletfoth the Navier-Stokes
and the Maxwell subproblems in (4.6), s=e [31, 41, 42, 5€]effective treatment
of the coupling terms remains an open question.

4.2 An exactly divergence-free method for the Stokes
equations with nonstandard boundary conditions

We analyze an exactly divergence-free DG method for theeSteluations with
nonstandard boundary conditions. To incorporate the bayncbnditions, a curl-
curl formulation of the Stokes problem is employed. Our nresult is an optimal
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a priori error estimate in the broketi*-norm for the velocity and the?-norm for
the pressure. The theoretical results are verified in a setiiwferical experiments.

4.2.1 Introduction

In [19, 20], a new class of exactly divergence-free finiteveat methods for in-
compressible fluid flow problems have been introduced. Thbods are based on
approximating the velocity field in a divergence-conformifinite element space
and the pressure in a properly matched discontinuous spaagined with a dis-
continuous Galerkin discretization of the Laplace operappearing in the Navier-
Stokes equations to enforce the ftft-continuity of the discrete velocity. The
resulting numerical schemes then have the desirable pyoibett the approximate
velocity field is exactly divergence-free over the compotal domain. In[[20], a
detailed error analysis of such methods can be found foriatyasf DG methods;
they have been all shown to be inf-sup stable and optimallyegent in natural
norms. We also refer the reader to [21, 43, 59] for furtheeatpand applications.

In this section, we adopt an exactly divergence-free DG owkfbr the numer-
ical solution of the Stokes equations

—vAu+Op=f in Q, (4.8a)

O.u=0 inQ, (4.8b)
subject to the nonstandard boundary conditions
u-n=0 and (Oxu)xn=0 onT. 4.9)

Here,u is the velocity field of the fluidp the pressuref € L?(Q)9 represents an
external body force. The boundary conditions are normailaigi (no-penetration)
and tangential vorticity conditions. We shall make the &ddal (smoothness)
assumptions o (more details can be found below).

Assumption 4.2.1 The domairQ is convex or has a boundary of clag8-! in the
sense of [2, Notation 2.1].

The boundary conditions (£.9) lend themselves naturaltyutoerical methods
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that are based on rewriting the vector Laplacian in term$efdurl-curl operator.
Indeed, by using the well-known vector identity

—Au=0x(O0xu)—0(0-u),

the Stokes equations (4.8)—(4.9) can be written in the form

vOx (Oxu)+Op=f inQ, (4.10a)
O-u=0 inQ, (4.10b)

u-n=0 onl, (4.10c)
(Oxu)xn=0 onT. (4.10d)

Various finite element methods incorporating nonstandatthdary conditions
for the Stokes (or Navier-Stokes) equations can be foundariterature. In [58],
a theoretical analysis of a class of such methods has besadcaut. The finite
element methods therein have been designed to handle #ithenixed velocity,
vorticity and pressure boundary conditions, or the veloaitd traction boundary
conditions. In [3], the same boundary conditions as In (4&)e been consid-
ered, and formulations which decouple the pressure fronstbkes system have
been investigated. In [37], a mixed method has been propfisethe Navier-
Stokes equations using a vector potential-vorticity folation. We mention here
also [33] where curl-conforming elements and nodal elesardg employed for the
approximations of velocity and pressure, respectively. &=detailed discussion of
alternate boundary conditions and formulations of theatiscterm, we refer the
reader to [47].

In the spirit of 20], we develop and analyze an exactly djesice-free DG
method for the numerical approximation of (4.10) on tridiagitetrahedral meshes.
In particular, we use a Brezzi-Douglas-Marini (BDM) finiteement space of de-
greek for the velocity approximation [.1], along with a discontous pressure
space of degrele— 1. The curl-curl operator is then discretized using a stedhie
terior penalty approach. The proposed DG method has sevwgpaltant features.
First, the resulting velocity approximation is exactly eligence-free. Second, the
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boundary conditions (4.10c)—(4.10d) can be enforced ineangggly straightfor-
ward manner, (4.10c) essentially and (4.10d) naturallyirdllin contrast to some
of the aforementioned papers, the pressure is souglﬁ(m).

As usual for curl-curl formulations, our analysis requithe relatively strong
regularity properties stated in Assumption 4.2.1. Theeigdield u in (4.10) can
then be shown to belong td1(Q)4. One of the main contributions of our work
here is to prove an estimate for the error measured in a bridkemorm for the ve-
locity and in theL.2-norm for the pressure. The critical issue arising here @simg
the H1-stability of the DG discretization based on the curl-corimiulation (4.10).
We do this by employing an averaging operator as introduad@i], and by split-
ting the solution into ard*-conforming part and a remainder. A similar idea can
also be found in [12] for the simpler no-slip boundary coiuditu = 0 onT, in the
context of hybridized LDG methods.

We point out that problems of the forrn (4 10) also appear ireahiformula-
tions of Maxwell's equations [53]. For smooth or convex damawe expect our
DG approach to work in the Maxwell context as well. Howevehew Assump-
tion 4.2.. is not satisfied, it is well known thatin (4.10) might have singular
components that are not!(Q)¢ any longer. The analysis of related methods for
such problems remains an open question. We mention thakldawvell's equa-
tions in mixed form, DG methods based on completely disoogtis spaces can
be found in [53, 54].

The outline of Section 4.2 is as follows. In Section 4.2.2,rexdew a vari-
ational formulation suitable for (4.10). In Section 4 28 discretize it using a
mixed @E"@k—l element pair that yields exactly solenoidal velocity appra-
tions. Section 4.2 .4 is devoted to the error analysis of thegsed method. A set
of numerical examples is presented in Section 4.2.5.

124



4.2.2 Weak formulation and well-posedness

In this section, we present a mixed formulation of (4.10} tedased on the fol-
lowing two spaces

V={vel?(Q): Oxvel?Q) O-vel?Q),v-n=0o0nrl},
Q=L§(Q)={geL*Q): (a,1)o =0}.
These spaces are endowed with the norms
Ul = 1D x ullZzq) + 18- ullEq)

and||pl|.z(q). From the Poincaré inequality in [32, Proposition 7.4grthholds

0% ullz(q) + 18- Ul[2q) > C (||U||L2(Q) +[|0 x ul| z(q) + 1|0~ UHLz(Q)) ;

for all u € V, with a constan€ > 0 only depending 0. It follows that|| - ||v is
indeed a norm oW. It further follows from [2, Theorems 2.9 and 2.17] that the
spaceV is continuously embedded k' (Q)9. Hence, there are constamisandc;
only depending o2 such that

Cillullpo) < [Jullv < c2flullnrg), — u€eV. (4.11)
Now, we consider the variational problem: fifi, p) € V x Q such that
A(u,v)+B(v,p) = (f,v)q, (4.12a)
B(u,q) = 0 (4.12b)
for all (v,q) € V x Q. Here, the form#\(u,v) andB(u, q) are given by

A(u,v) = /Q v(Oxu)-(Oxv)dx,

B(u,q) = —/(D-U)qu.
Q
To discuss the well-posedness of (4.12), we first note tleafdhmsA andB
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are clearly continuous:

|A(u, V)| < v|ullv|IVlv, uvev, (4.13a)
B(u,p)| < ullvliplliz), ueV,peQ (4.13b)
Next, we observe that the foriis coercive on the kernel &. That is, by defining
J={ueV:B(uq) =0 VgeQ},
we have
Alu,u) >v|ullg, ueld. (4.14)
Finally, let us prove the following inf-sup condition foretiormB.

Lemma 4.2.2 There holds

inf sup M >C>0,
peQ\{0}vew {0} [IVIIVIIPllLz(q)

with a constant C only depending én

Proof: Givenp € Q, let @ € H1(Q) be the solution of the Neumann problem
—Ap=p InQ, Op-n=0 onr.

Settingv = 0@, we havev € V, B(v,p) = HpHEz(Q) and||v[lv = [|pllL2(q)- These
properties now readily yield the desired inf-sup condition O

The theory of mixed finite element methods, see for examudle 39)], along
with the stability properties ir (4.13), (4.14) and Lemm2.Z.imply that the weak
formulation [4.12) has a unique solutign, p) € V x Q and is well-posed. More-
over, in view of the embedding in (4.11), the velocity fieldactually belongs
to HY(Q)“.

4.2.3 Finite element approximation

In this section, we propose a finite element method for (4thad) is based on
Brezzi-Douglas-Marini spaces for the approximation ofiblcities, and on stan-
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dard discontinuous finite element spaces for the pressure.

4.2.3.1 Mixed formulation

For a polynomial degrek > 1, we now wish to approximate the solution of (£.12)
by finite element functiongun, pr) € Vi x Qn, Where

Vi = {u e Ho(div;Q) : ulx € 2«(K), K € n},
Qh={peLi(Q): plk € Pk-1(K),K € F}.

The spaceV/y, is the divergence-conforming Brezzi-Douglas-Marini (BP&pace
(see [11, Section 111.3] for details); it has degrees of fi@a specified for the
normal components of functions along faces.

Then, we introduce the finite element method: fing, pn) € Vi x Qn such
that

Ah(uh,V)+Bh(V, ph) = (f7V)Q> (415a)
Bn(un,q) = 0O, (4.15b)

for all (v,q) € Vi x Qn. The formsA, andBy, are given by:

Ah(u,v):Kez%/(v(Dxu)-(va)dx— 3 /F{{vau}}-[[v]]Tds

Fez|

_Fezy’hl/F{{vav}}.[[u]]T ds+ Z F?;:[[U]]T‘[[V]]Tds

FeZ)
Bh(u7q) = B(U,q)

The parametery > 0 is an interior penalty stabilization parameter; it has ¢o b
chosen larger than a threshold value that is independemanév; see also [4].

Remark 4.2.3 Notice that the boundary condition(#.10c¢)are enforced essen-
tially, whereag4.10d)is incorporated as natural boundary conditions.

As in [19, 20], the approximate velocity is exactly divergerfree.
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Proposition 4.2.4 The approximate velocity fielg, € Vi, obtained from(4.15)is
exactly divergence-free.

4.2.4 Error analysis

In this section, we present the error analysis of the mixdtkfalement method (4.15).
In particular, we derive an optimal estimate for the erromswed in a brokehl -
norm in the velocity, andl>-norm in the pressure.

4.2.4.1 Averaging operator

As in [40, 60, 61], our main technical tool is an averagingrega&. To introduce
it, we defineV§ = VpnHY(Q)d.

Proposition 4.2.5 There is an averaging operatof : Vi, — Vi such that

S Ju-thulZp <C 5 hellulrlZe),

KEZ, Feﬂ,‘,
% I0@U=1hw) 20 <C 5 et [ulr|Ze),
Ke. h Feﬂ}',

with a constant C> 0 independent of the mesh size.
Proof: We first denote b\, the fully discontinuous scalar space
WL = P( ),

and setV¢ =W, NHY(Q). Let.# (%) be a set of nodes off, that is unisolvent
in the sense that it allows us to define a Lagrange bad afith respect to these
nodes. For a nodd € ./'(%,), the set of adjacent elements is given by

on={Ke Z : Nisavertex oK }.
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For a DG functionu € W,, we now define the averaging operatgu € WS by
setting its value at each node to

1
Ih)(N) = ————— ulx(N) |, N e AN (Fh).
N = 5 (%N & )) (%)
In [61], averaging operators of this type have been intreduand analyzed which
map DG functions intdM, N H}(Q), i.e., into conforming piecewise polynomial
functions with zero Dirichlet boundary conditions. A sltgmodification of the
(scaling) arguments there show that the following inedjgslihold

Z ||U—|hU||EZ(K)§C z hFH[[U]]HEZ(F)’

KE%, Feﬁﬂ',
Y I0u=1n)Zg <C Y het Uz,
KEZ FeZ)

where[[u]] is the usual jump of a scalar function over a f&ce~or more details on
these averaging operators, we also refer the reader to [4CGar@l the references
therein.

For the vector-valued discontinuous spéi¢g= L@k(ﬂh)d and itsH*-conforming
partWE = WpnHY(Q)9, we definel, componentwise als, = (In, In, In). Clearly,
for anyu € Wy, we have

Z HU—thHEZ(K)SC Z hFH[[U]]HEZ(FV
|

KE%h FeZ,
Y 10u—1w)lZw <C Y heHullZe).
Ke,ﬁh Feﬁf}']

Then, letK be an element anB a face orK. For any vectou, we have the
following orthogonal decomposition d#:

U:(U-HK)HK—I—(HKXU)XHK,

wheren is the unit outward normal oR. It follows from this identity that ifu €
V4, is divergence-conforming, then the jumpwbver F reduces to the tangential
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jump, i.e.,[u] = [ullr.
This finishes the proof. O

4.2.4.2 Stability

We introduce the following discrete semi-norms for the eéio

ulin="Y I0ulEe)+ 5 hetllullitee).

KETh FeZ!

Ulinn =Y 10xullEp)+ 5 hetllullrllEze).

KETh FeZ,
and define the norm
ulliZp = llullEzq) + ulEn,
The bilinear formsA, andB;, are now continuous over the finite element spaces:
|An(u,v)| SCV‘U‘cuth‘V‘cuer (4.16)
Bn(u, p)| < ClufynllpllL2(q) (4.17)

for all u,v € Vy, p € Qn, with a constan€ > 0 independent dfi andv.
Next, we define the discrete kernel

Jh={U€Vn:Bn(u,q)=0 VqeQn},
and prove the following crucial coercivity result.

Proposition 4.2.6 If the interior penalty parameterqis sufficiently large inde-
pendently of h andt, then we have

An(u,u) > CV[[uflfp,  u€ In,
with a constant C> 0 independent of the mesh size h and the parameter

Proof: It is well-known that there is a threshold valag> 0 independent df and
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v such that forag > aj there holds
An(u,u) > Cv|ulZn, ue Vh, (4.18)

with C > 0 independent ofi andv; cf. [4, 5].
Let nowu € Jy. As in the proof of Proposition 4.2.4, we conclude that
exactly divergence-free. Then, by the triangle inequality

llullgn <C (lrnullEp+ fllu—ThullEp) =C <H|hu|||2-|l(Q) +lu— |hulllih> - (4.19)

Then, we claim that th&lt-norm of ILu on the right-hand side o7 (4.19) can be
bounded by
Tl q) < Clulunn- (4.20)

To prove (4.20), we use the embedding (4.11), the triangdguality and the fact
thatu is divergence-free. We obtain

1hullZsgy < CID X (1) Iz + 10+ (1) 220 )

<C Oxulon +T).
(3 (18Ul +T)

where

T S (1% ) B+ 10 ) ).
Keh

According to Proposition 4.2.5, we readily have

T<C S heti[ulrlitze,
FeZ)

and therefore (4.20) holds.
Next, we claim that

llu—1hullEh < ClulZun. (4.21)
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To prove this bound, we start by noticing that

v~ 1hulliEze) = ITulliEae) = I Tulr IE2qe)-

Now we apply again Proposition 4.2.5 and obtain

flu=thullzn <C 3 hetllulrlczce)

FeZl

The assertion now follows by referring 10 (4.18), (4.19)2¢9 and (4.21). [

Finally, let us address the inf-sup stability of the foBm We have the follow-
ing result [49, Proposition 10]:

Lemma 4.2.7

inf Bh(V, p)

sup — P oo
peQn\{0}vevy\ (o} IVIlLhllPllLz(q)

for a constant C> 0 independent of h and.

Proof: The proof is analogous to that of /49, Proposition 10]. O

Proposition 4.2.6, Lemma 4.2.7, together with equationd€(4and (4.17)
guarantee the existence and uniqueness of the solutionléf)(4

4.2.4.3 A priori error estimates

It is now straighforward to prove error estimates for thedbldh method (4.15). In-
deed, by proceeding as in [11] and using the stability prigmof Section 4.2.4.2,
we readily obtain the following result.

Theorem 4.2.8 Suppose the solutiofu, p) of (4.10) possesses the smoothness
(u,p) €HTHQ)I X HI(Q), (4.22)

for o > % Then the following error estimates hold:

v Ju—unllzn+vlp— prllizi@) < CH™H (VR ullosio) +v 2 Pl o) )
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where the constant € 0is independent of h and.

4.2.5 Numerical examples

In this section we present a series of numerical experiment®nfirm the opti-
mal convergence rates of Theorem 4.2.8. For all the examtiledowest-order
BDM elements are employed, i.e., we tdke 1. The interior penalty stabilization
parameterg is set to 10 for two-dimensional test problems and to 20 foreidi-
mensions. Whenever necessary, we enforce inhomogeneounsgldry conditions
u-n=uy and( x u) x n = wy in a standard fashion. In this case, the load vector
on the right-hand side has to be adjusted accordingly. Thdtieg linear systems
are solved using the preconditioned MINRES iterative methath tolerance set
to 1e-6 (in the vector 2-norm of the relative residual). Asracpnditioner, we
have chosen the approach of [41] for saddle-point systertts highly singular
(1,1)-blocks.

4.25.1 Example 1: a two-dimensional problem

We consider the following problem o2 = (—1,1)2. We setv = 1, and choose
the source terni and the boundary conditiongy and wr so that the analytical
solution is given by

u(x,y) = (—€*(ycosy+ siny),€ysiny), p(x,y) = 2€*siny.

DOFsun/pn l€ul1h I lleulleee) | 1| lepllizg) ||

416/128 8.5664e-1| - 8.7865e-2| -— 2.1706 -
1,600/512 | 4.2240e-1| 1.02 | 2.4900e-2| 1.82 1.1633 | 0.90
6,272/2,048 | 2.0988e-1| 1.01 | 6.4988e-3| 1.94 | 5.9879e-1| 0.96
24,832/8,192| 1.0476e-1| 1.00| 1.6488e-3| 1.98 | 3.0300e-1| 0.98
98,816/32,768 5.2369e-2| 1.00 | 4.1444e-4| 1.99 | 1.5229e-1| 0.99

Table 4.2: Example 1. Convergence &, |1, [|€ull 2(q), and||ep| 2(q)-

In Table 4.2, we investigate the asymptotic rates of corararg of the errors in
the approximations of the velocity and pressure. Hedgnotes the experimental
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convergence rate. We observe that- un|1n and||p— pn|| 2(q) converge to zero
with first order in the mesh size, whilgs — up|[ 2(q) converges with second order.

4.2.5.2 Example 2: a three-dimensional problem

Next, we consider a three-dimensional problem in the ddbe (—1,1)3. We set
v =1, and choose the source tefrand the boundary conditiong; and wt so
that the analytical solution is given by

U(X,y, Z) = (y27X2_yaZ+ y2)7 p(xaya Z) =z

DOFsup/pn l€ul1n || lleullze) | 1| llepllizgy ||

360/48 2.7139 - 2.0165e-1| - 1.5716 -
2,592/384 1.3621 | 0.99 | 5.4302e-2| 1.89| 6.0147e-1| 1.39
19,584/3,072 | 6.8314e-1| 1.00 | 1.4425e-2| 1.91 | 2.4423e-1| 1.30
152,064/24,574 3.4218e-1| 1.00| 3.7167e-3| 1.96 | 1.0525e-1| 1.21

Table 4.3: Example 2. Convergence (¥, |1,

eullL2(q), and|epllL2(q)-

Table 4.3 shows the asymptotic rates of convergence of thesaneasured in
the appropriate norms. Again, we see that- un|1n and||u — up|[ 2oy converge
with order @' (h) and & (h?), respectively, as tends to zero. Th&2-norm of the
error in the pressure converges at a rate slightly higher thd).

4.2.6 Conclusions

We have proposed and analyzeH @iv)-conforming discretization for a curl-curl
formulation of the Stokes equations with nonstandard bagndonditions. The
tangential continuity of the approximate velocity field isferced through a DG
approach. We have proved optimal convergence rates fotgrabwith smooth
solutions. The theoretical results have been verified in vl three-dimensional
test problems.
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Chapter 5

Conclusions and future work

5.1 Conclusions

In this thesis, we have developed, analyzed and numeritzgtgd mixed discon-
tinuous Galerkin finite element methods for the numericalragimation of in-
compressible magnetohydrodynamics problems.

In Chapter 2, we have presented the first interior penalty Dé&thod for a
linearized stationary incompressible MHD problem, whgralb the variables are
approximated in discontinuous finite element spaces. We Havived a priori er-
ror estimates for the energy norm error in general (possibly-convex) polyhedral
domains, and have computationally verified them in a set ofarical examples.
The theoretical convergence rates are optimal in the ajppedion of the veloc-
ity u, the pressurg and the magnetic fielld, but suboptimal by one order in the
approximation of the multiplier related to the divergence constraint of the mag-
netic field. This is due to the fact that we have used polyntsmofone degree
higher to approximate, as in the second family of Nédélec elements [68]. On
the other hand, this choice leads to optirhdtapproximations of the magnetic
field. Numerically, however, optimal asymptotic rates ofeergence have been
observed for all variables.

In principle, it is possible to extend the fully discontiugoapproach of Chap-
ter z to the nonlinear setting, following the ideas preserite[19]. However, in
Chapter 3, we have chosen to modify the fully discontinuoissrdtization and
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have introduced a new mixed DG method for the numerical diszation of a
fully nonlinear stationary incompressible magnetohygramics problem. This
proposed approach is based on employing divergence-comfgrBDM elements
and curl-conforming Nédélec elements for the velocityl amagnetic fields, re-
spectively, while DG techniques are used to enforce theetatig continuity of
the discrete velocity fields. There have been two main reagmnthese modifi-
cations. First, the approximation of the velocity field issnexactly mass conser-
vative, which ensures the energy-stability of the method #traightforward man-
ner. Second, the discrete magnetic field can be split naturdb a (discretely)
divergence-free part and a (discrete) gradient, thus Bxatmicking desirable
properties of the underlying PDE system. We have shown cganee in general
Lipschitz polyhedra of the approximations for small datdema minimal regular-
ity assumption. In addition, we have derived a priori errstiraates. As shown
in detail in Section 3.4, in the two-dimensional case there lioss of order’(h®)

in the theoretical error estimates. In the three-dimeraicase our error estimates
end up falling short by half a power &f We have successfully tested the method
for a number of benchmark problems available in the litegatiHartmann flow,
driven cavity, and flow over a step. The numerical experimeshbw optimal con-
vergence in all cases, and the method correctly resolvestthagest magnetic
singularities in non-convex domains.

In the first part of Chapter 4 (Section 4.1), we have extendedliscretization
techniques to the time-dependent MHD problem, and havesimghted a fully dis-
crete scheme. We have computationally tested the methoddries of numerical
experiments, and have verified convergence of the finite e¢rapproximations
in time.

In the second part of Chaptar 4 (Secton 4.2), we have arlgreexactly
divergence-free DG method for a curl-curl formulation o€ tBtokes equations
with nonstandard boundary conditions. By establishinguaiat norm-equivalence
property, we have shown optimal convergence in the brék&morm error of the
velocity. Our theoretical results have been computatignadlidated in a set of
numerical tests for problems with smooth solutions in twd #iree dimensions.
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5.2 Future work

In this section, we identify a number of items that remainrofme future research.

e One of the most important challenges of the approaches rgeabén this
thesis is that solving the linear systems of equations ig @emputationally
expensive. For large-scale problems, iterative linearesslbecome manda-
tory, which brings up the need for developing effective acalable precon-
ditioners. Indeed, a wide variety of efficient and robustdéagboint solvers
are available in the literature for both the Navier-Stoked the Maxwell op-
erators; see: [31, 41, 42, 57]. However, the primary chabeamgnains how to
deal with the coupling term. A few preliminary ideas for ppaditioning the
fully coupled linear systems have been numerically explang63, Section
4.3], with mixed results, and there is room for a lot more egsh devoted to
this aspect.

e For fully nonlinear systems, solvers which converge fadtan the Picard it-
eration are preferred. For example, it would be desirabtiet@lop Newton-
type methods which are super-linearly convergent, but doetuire the ex-
plicit calculation of the Jacobian matrix. However, as wegehpointed out
in Remark 3.3.3, developing the Newton iteration for ourctisization is
somewhat delicate due to the presence of upwind conveatidmeamains an
open issue.

e Another open question is the optimality of the error estesaterived in Sec-
tion 3.£.. Although only suboptimal error estimates havenbg®ved so far,
numerical experiments show optimal convergence in allabhis probably
indicates that the sub-optimality is a mere artifact of @ahinique of proof,
which relies on inverse estimates to establish the conyimafithe nonlinear
coupling form. In order to overcome this difficulty, new Sdtdoetype em-
bedding results and approximation properties of (distyethvergence-free
function spaces have to be established.

e For the time-dependent MHD problem in Secton 4.1, we hawaseh to
solve a fully coupled system within each time step. Futurekvoould in-
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volve comparing and analyzing different decoupling medras for time-
stepping. Higher-order time discretization schemes ghaldo be consid-
ered.

In this thesis, we have designed methods with exactly dererg-free veloc-
ity approximations. We believe it should also be possibldgsign methods
with exactly divergence-free magnetic approximationsdekd, for prob-
lems with smooth magnetic fields, this could be done stréaghardly in
the spirit of the method presented in Section 4.2. HoweVer,approach
there cannot be adopted to the more interesting case ofgonahlvith singu-
lar magnetic fields. In fact, the design and analysis of éxdetergence-free
methods in this case remains an issue open for future rdsearc
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