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Abstract

Habitat destruction and land use change are among the anthropogenic influences affect-

ing many ecosystems. Sandpit mining often restricts grassland plant restoration efforts due

to the abioticially stressed mine substrate, a lack of viable plant symbionts, and disrupted

multi–trophic interactions in soil food webs. Recently excavated sandpits can be amelio-

rated with soil amendments and arbuscular mycorrhizal fungal inoculum to address these

degraded substrate conditions, potentially improving plant performance and accelerating

soil food web development. This dissertation describes the results of a multi–year grassland

restoration project established in southern Ontario that optimized industrial–scale grass-

land restoration protocol in post–extraction sandpits. This research tested the effect of soil

amendment rate (municipal compost, biochar) and arbuscular mycorrhizal (AM) fungal

inoculum (Rhizophagus irregularis) in a grassland plant plug trial and a seed application

trial. In the plant plug trial, the multi–year effects of the experimental treatments on

plant growth, AM fungal colonization of roots, soil microbial biomass (i.e. bacteria and

fungi) and soil animal abundance (i.e. nematodes, Collembola, and mites) were explored

over two growing seasons. In the plant plug trial, 20 T ha−1 (tons hectare−1) of compost

mixed with a low rate of biochar (10 T ha−1) yielded the largest positive effect on total

plant biomass, microbial community biomass, and soil animal abundance after two growing

seasons. AM fungal inoculation did not influence total plant biomass or soil food web devel-

opment during this trial. In the seed application trial, the multi–year effects of increasing

rates of compost and biochar (0 T ha−1 to 40 T ha−1) were explored for total plant cover

over three growing seasons. AM fungal inoculation combined with high rates of compost

(20 T ha−1 and 40 T ha−1) and biochar (20 T ha−1 and 40 T ha−1) resulted in the highest

plant cover over three growing seasons compared to controls. Our results indicate that: (1)

co–amending mine substrates with compost, biochar, and AM fungal inoculum are practical

land management tools that improve grassland plant growth while increasing soil food web

development, (2) AM fungal inoculum increases plant cover when applying seed with high

rates of compost + biochar, and (3) amending post–mine substrates with biochar as a soli-

tary amendment may increase biotic stress in the sandpit environment during restoration.

I suggest that restoration practitioners emphasize soil community development in tandem

with plant community growth when restoring sandpits to maximize restoration success.
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Audét. AM fungal colonization was conducted by the Soil Analysis Laboratory, University
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plant plug trial. Soil organisms were measured by the Soil Analysis Laboratory, Univer-

sity of California, Riverside. I performed all linear model analyses for soil organisms. Dr.

Anita Antoninka at Northern Arizona University assisted me with the proper implemen-

tation and execution of the structural equation models in the statistical program AMOS.

I created the a priori hypotheses, co–ran the structural equation models, interpreted the
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Drs. Miranda Hart and John Klironomos. Thesis chapters were reviewed by the members

of my supervisory committee: Drs. Melanie Jones and David Scott from the University of
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Chapter 1

Introduction

Human–induced disturbance is pervasive among all ecosystems as the result of waste

accumulation, industrial pollution, resource extraction, and urban sprawl (Hannah et al.

1995). Previous land use, ranging from industrial spoils (e.g. mine tailings, contaminated

brownfields) to road construction, dictates the approach of a restoration project (Jackson

and Hobbs 2009). For my purposes, I define a severely disturbed landscape as an area

manipulated in such a way that the pre–existing habitat can no longer be maintained. I

will focus on the restoration of grassland vegetation and ecosystem processes after post–mine

sand extraction.

The definition of restoration success is largely dependent upon the goals of the restora-

tion practitioner. Goals can range from achieving diversity indices (e.g. organism richness

and abundance), vegetative structure (e.g. percent cover, biomass, vegetative profiles), or

ecosystem process reestablishment (e.g. nutrient cycling and soil stabilization) (Ruiz-Jaen

and Aide 2005). The current paradigm in restoration tends to be phytocentric while under–

emphasizing belowground food webs (van der Heijden et al. 2008, Kardol and Wardle 2010)

and soil ecological knowledge (Callaham Jr. et al. 2008). Furthermore, restoration projects

tend to evaluate short–term outcomes for vegetative and microbial production, as well as

soil processes.

Practitioners need viable techniques that influence the recovery of the entire ecosystem.

After severe disturbance (i.e. post–mine areas), edaphic conditions and soil communities

may not support diverse plant communities. The addition of inoculum and soil conditioners

can address some components of the soil environment. Soil amendments should create more

suitable conditions for diverse and productive plant communities. With an ecosystem–

level approach to restoration, native plant production is the consequence of the restoration

practice, not the focus.

1.1 Landscape restoration and successional theory

1.1.1 Historical context

Historically, ecological succession has been viewed in terms of stable, climax community

endpoints (Clements 1916, Odum 1969). Current thought recognizes that community diver-
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1.1. Landscape restoration and successional theory

sity is shaped by environmental fluctuations at large spatial, temporal, and organizational

scales (Pimm 1991). Successional pathways can be multi-directional, driven by stochastic

processes and disturbance, thus long-term community stability will never be maintained

(Glenn-Lewin and van der Maarel 1992). This implies that an ecosystem has multiple, al-

ternative stable states separated by unstable transitions (Scheffer et al. 2001). Alternative

stable states depend upon the surrounding biotic community, order of organism arrival,

and inherent system randomness. In terms of restoration, degraded systems are often in

a persistent stable state (Suding et al. 2004). Plant establishment and soil building in de-

graded habitats may be slow to recover by natural successional processes without human

intervention.

Restoration ecology and successional theory often address similar questions, albeit from

different perspectives. Successional pathways are comprised of temporal changes in com-

munity assembly, biodiversity, and biogeochemical cycles (Walker et al. 2007). Habitat

restoration manipulates these processes to accelerate target community establishment (Har-

ris, 2009). Successional research, generally confined to one ecosystem, addresses time scales

related to vascular plant life history (10–200 years). In contrast, landscape restoration oper-

ates on broad spatial scales (e.g. altitude gradients, moisture gradients, catchment basins)

(del Moral et al. 2007), focusing on the duration of human involvement (120 years).

A practical application of successional mechanisms in restoration has not been broadly

developed for practitioners (Walker et al. 2007). Restoration ecologists must acknowledge

the potentially persistent stable state of degraded systems. Feedback mechanisms between

biotic and abiotic factors in degraded systems may suppress plant establishment and com-

munity sustainability. For example, Ash et al. (1994) described abandoned waste areas in

northwest England that had reduced plant cover and diversity after a century following

disturbance.

1.1.2 Post–mine areas as primary succession models

Abandoned mine lands (e.g. ore extraction, gravel pits) are analogous to natural pri-

mary succession events such as volcanic activity or glacial retreat. The extraction process

completely removes flora, fauna, and soils of the previous system. Following resource ex-

haustion, post–mine areas are typically characterized by low soil organic matter (SOM)

content, low fertility, and poor physio-chemical and biological properties (Bradshaw 2000).

The resulting raw substrate (i.e. subsoils and rock material) is a stark contrast to the abiotic

and biotic soil complexity of the original habitat. As a consequence, natural reestablish-

ment of above- and belowground communities in abandoned mine areas is typically slow

(Bradshaw 1997).
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Suppressed regeneration of biotic communities may be due to reduced biological com-

plexity in post–mine substrates. The deposition and subsequent heterotrophic turnover of

organic matter is a critical link for facilitating plant establishment. Restoration projects in

degraded soils must include attempts to rehabilitate, at least in part, biological complexity.

Biological colonization requires a source of energy and nutrients, which may be initially

lacking in post–mine substrates (Frenot et al. 1998). One solution is to add organic detritus

containing natural microbial assemblages (e.g. bacteria (Tscherko et al. 2003, Bardgett

et al. 2007), cyanobacteria (Nemergut et al. 2007), and fungi (Hodkinson et al. 2002)).

These microbes actively turn over organic substrates and prime biogeochemical cycles.

1.2 An ecological context of degraded system restoration

Clearly, soil health is paramount to restoration success in devastated landscapes. Soil

microbial communities play a major role in the development and sustainability of soil health

(Anderson 2003). Soil health is defined as the capacity of soil to function as a living system,

sustaining biotic productivity, and maintaining ecosystem services (Doran and Zeiss 2000).

Soil microbial communities are well correlated with plant primary production (Bardgett and

Wardle 2003, van der Heijden et al. 2008, Heneghan et al. 2008, Benayas et al. 2009) and

integral in the recycling of organic matter and nutrients (Wardle et al. 2002). Decomposers

(Harte and Kinzig 1993, Reynolds et al. 2003), mycorrhizal fungi (Klironomos 2002) and

nitrogen-fixing bacteria (van der Heijden et al. 2008) are key soil functional groups in the

rhizosphere (i.e. soil area directly influenced by plant tissues and secretions). Soil microbial

communities are also important for soil stabilization via stable aggregate formation (Rillig

2004, Six et al. 2004). These factors can ultimately mediate successional dynamics and plant

community composition (Wardle et al. 2004), thus contributing to the reestablishment of

natural systems in severely disturbed landscapes.

Edaphic characteristics, resource availability, and soil microorganisms mediate above-

ground biotic responses to include primary productivity (Baer et al. 2004), organic matter

decomposition rates (Smith and Bradford 2003), and plant community structure (Baer et al.

2003, Heneghan et al. 2008). CENTURY (Parton et al. 1993), an established ecosystem–

level model of plant–soil biogeochemical cycles, models the links among plant productivity,

decomposition, climate and land management options. Among its many functions, CEN-

TURY emphasizes the role of carbon management decisions under natural and agricultural

scenarios. Restoration projects that appropriately manage soil organic matter dynamics

and soil microbial feedbacks may increase production and carbon storage in disturbed habi-

tats (Ojima et al. 1993). Practitioners should emphasize soil carbon cycles and microbial

processes in tandem with plant establishment in damaged ecosystems (Cairns 2000).
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1.3 Grassland vegetation

Grassland productivity varies with habitat classification, ranging from shortgrass steppe

(least productive) to tallgrass prairies (most productive) (Knapp and Smith 2001). Grass-

land productivity is ultimately dictated by the availability of three limiting resources: light,

water, and nitrogen (Baer et al. 2003). Resource availability is determined by patterns

in precipitation (Sala et al. 1988), soil characteristics (Briggs and Knapp 1995), herbivory

(Knapp et al. 1999), and periodic fires (Knapp and Seastedt 1986). Plant production in

grasslands will ultimately depend upon adaptations to spatial and temporal availabilities

of these limiting resources.

Grassland restoration in severely degraded habitats must recognize the factors that

shape and maintain these communities. Grassland plants are evolutionarily adapted to the

mentioned environmental context. Restoration projects incorporating locally adapted plant

populations are more likely to improve rates of establishment and persistence (Pywell et al.

2002). Resulting plant communities are expected to more closely resemble natural grassland

remnants and encourage the conservation of rare flora and fauna.

Four functional groups composed of herbaceous perennials dominate grassland commu-

nities: perennial C4 grasses, C3 graminoids (grasses and sedges), nitrogen-fixing species

(primarily Fabaceae), and late summer flowering, drought-hardy composites (Asteraceae)

(Kindscher and Wells, 1995). Cool season C3 grasses have traits that provide early season

plant cover, nutrient-rich plant tissues beneficial to herbivores, and have decreased light re-

quirements ideal for shady refugia. Compared to cool season grasses, warm season C4 grasses

exhibit higher water-use efficiency, higher plant biomass potential, late season growth, and

tolerance of full sun exposure (Tiessen et al. 1993). Composite forbs are integral in rapidly

colonizing open soil (especially after grazing or fire disturbances), supporting pollinator

populations, and driving overall plant community diversity indices (Pokorny et al. 2004).

Forbs in the legume family (Fabaceae) form a symbiotic relationship with nitrogen-fixing

bacteria. Nitrogen-fixing bacteria are found within legume root nodules, and convert biolog-

ically unavailable atmospheric N2 gas into forms of nitrogen usable by plants. In exchange

for usable nitrogen, the plant delivers a supply of nutrition in the form of carbohydrates.

Nitrogen-rich legumes within grasslands can contribute to the total nitrogen pool of soils

during growth and after senescence (Oelmann et al. 2007). Soil nitrate and ammonium

levels are usually limited within grasslands due to rapid utilization and immobilization by

primary producers and microbial decomposers (Risser and Parton 1982). The introduction

of N-fixing plants may affect the structure and function of grassland systems.

Restoration projects that incorporate multiple functional groups and high numbers of

species are more likely to achieve community sustainability (Piper and Pimm 2002). Long–
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term ecosystem stability depends on communities containing species or functional groups

that are capable of differential response to disturbance (McCann 2000, Hooper et al. 2005).

Studies of grassland ecosystems indicate that increased diversity can be expected, on av-

erage, to give rise to resistance and resilience (Tilman et al. 1997, Tilman and Downing

1994). Higher species diversity may also lead to increased plant production due to species

complementarity (Cardinale et al. 2007). Restoration projects that maintain high species

diversity with varied functional traits could increase the likelihood of achieving long-term

community stability.

1.4 Soil food webs

Microbial communities (i.e. bacteria and fungi) play a fundamental role in driving

biogeochemical cycles in terrestrial ecosystems. Carbon cycling and plant nutrient avail-

ability are dictated by bacterial and fungal communities, subsequently mediating plant

productivity and soil development in habitat restoration (Harris 2009). Fungivorous and

bacteriovorus soil animals (i.e. grazing nematodes, Oribatid mites and Collembola) directly

or indirectly consume microorganisms embedded within organic matter, thus contributing

to litter breakdown and soil mixing (Lavelle et al. 2006). Microorganisms associated with

litter have high nutritional value compared to detritus and become a critical food source

that links fungal and bacterial communities to soil animal abundance (Bardgett and Cook

1998). In conjunction with abiotic conditions, food resource availability determines the

population size of soil animals within a soil food web (Ingham et al. 1985).

Restoring a grassland ecosystem can be challenging in post–mine sandpits. Land man-

agers often emphasize aboveground plant biodiversity when rehabilitating sandpits while

largely ignoring the contribution of soil biota to plant community productivity. Adopting a

holistic restoration strategy that focuses on soil recovery can positively influence the restora-

tion trajectory of a degraded area (Heneghan et al. 2008). Thus, re–establishing a functional

detrital food web is an essential component of recovering soils in severely degraded systems.

Mine activities, such as sandpit excavation, disrupts and diminishes the multi–trophic

interactions among soil biota, consequently reducing the beneficial ecosystem services asso-

ciated with soil food webs (de Vries et al. 2012, Araújo et al. 2013, Zhao and Neher 2013). In

the case of aggregate extraction sites, substrate conditions are stressful as these systems lack

high concentrations of essential nutrients, soil organic matter, and a large water–holding

capacity. Thus, the growth of all organisms is often restricted and the ecological connections

between soil-plants-microbes are usually severed (Maiti 2013). Successfully restoring soil

food webs in conjunction with plant communities depends on alleviating abiotic stress in

mine substrate (McKinley et al. 2005).

5



1.4. Soil food webs

To address the depauperate conditions of post–mine areas, reclamation tools such as

soil amendments (i.e. compost and biochar) and microbial inoculants (i.e arbuscular my-

corrhizas) are often required to increase plant production (Refer to Chapters 1 and 3).

Incorporating organic soil amendments and arbuscular mycorrhizal inoculants strengthens

the feedback links among plants-soils-microbes to ultimately re–establish decomposition cy-

cles and accelerate soil development (Elkins et al. 1984, Ros et al. 2003). To accomplish

this, researchers must recognize the links among restoration protocol (i.e. amendment ap-

plication), soil microorganisms, soil animals, and ecosystem functioning when revegetating

severely disturbed areas (Coleman and Whitman 2005). To date, an explicit protocol useful

to land managers that will increase soil microbial biomass and soil animal abundance in

post–mine grassland restoration does not exist.

1.4.1 Soil microbial communities as indicators for post–mine substrate

recovery

Fungi and bacteria are key decomposers in soils that are responsible for nutrient avail-

ability, nutrient transformations, and litter breakdown. Therefore, estimating the biomass

of these microbial constituents in recovering soils are a proxy to soil function (Visser and

Parkinson 1992, Karlen et al. 1997) and can be used to evaluate ecological restoration soils

(Harris 2009). Assessing the biomass of microbial assemblages elucidates the stage of soil

development and food resource availability for grazing soil animals in the soil food web.

The ratio of fungal and bacterial biomass can be a useful tool to assess soil develop-

ment status. Severe anthropogenic disturbance, such as mining, often shifts the dominance

of soil microbial communities from fungal–dominated to bacterial–dominated assemblages

due to poor physiochemical conditions in recently exposed substrates (Frey et al. 1999,

Bailey et al. 2002, Mummey et al. 2002). Bacterial–based soil food webs are common in

ecosystems with poorly developed, low organic matter soils such as mined or conventional

agriculture landscapes (Kardol and Wardle 2010). In contrast to mine systems, natural

grassland soils are dominated by fungal decomposers due to the higher volume of com-

plex organic matter from nutrient–rich litter inputs (Bardgett and McAlister 1999, Harris

2009). Reduced disturbance facilitates an extensive hyphal fungal network, allowing fungi

to access spatially separated limiting nutrients in the soils via fungal translocation (Beare

et al. 1992). Restoration ecologists should target fungal–dominated systems to indicate a

successful grassland restoration (Bardgett and McAlister 1999, Smith et al. 2003).
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1.4.2 Soil animals as indicators for post–mine substrate recovery

Soil animals (i.e. nematodes, Collembola, mites) are ecosystem engineers that enhance

biological, chemical, and physical soil properties that benefits the growth of plants. Lavelle

et al. (2006) suggested that soil animals enhance nutrient release in the plant rhizosphere,

stimulate mutualistic associations, and positively affect soil physical structure. After a

severe disturbance, soil animal communities are removed or severely reduced (Curry and

Good 1992), thus the ecosystem services provided by these soil organisms are non-existent.

Restoration practitioners should create soil recovery plans that promote high densities of di-

verse soil animals to facilitate multi–trophic interactions among soil microbial communities

and soil animals.

Multi–trophic interactions in soil food webs are based on soil animal feeding preferences.

Grazing soil animals (i.e. bacteriovorus and fungivorous nematodes, Collembola, and Orib-

atid mites) depend upon soil microorganisms as a food resource. Grazing nematodes alter

soil nutrient cycles and influence organic matter decomposition by ingesting large quantities

of fungal and bacterial communities residing in plant litter (Yeates et al. 1993). The domi-

nant microbial community in soils has been shown to determine the abundance of nematode

feeding groups. Greater bacterial production supports mainly bacteriovorus fauna (Hendrix

et al. 1986) while fungivorous feeding soil animals are expected to thrive in fungal–rich soil

(Beare et al. 1992). Comparatively, Collembola and Oribatid mites feed on soil microbial

communities but also ingest litter, influencing microbial populations and litter turnover

rates in soil systems (Hättenschwiler et al. 2005, Frouz et al. 2006). Collembola, often con-

sidered consumers of fungi and bacteria, are also known to be predatory on rotifers with

some species consuming nematodes when available (Wallwork 1976, Lee and Widden 1996).

Thus, the activities of grazing soil animals can ultimately influence nutrient cycles and litter

retention in soil by regulating microbial decomposition rates in a restoration project.

Predators in the soil food web can have a top–down trophic cascade effect on the micro-

bial production at the base of the soil food web (Lenoir et al. 2007). Predatory nematodes

feed upon lower trophic levels such as rotifers, protists, and other soil nematodes. Grazing

nematode abundance has been shown to be reduced by the feeding activities of predatory

nematodes, ultimately influencing microbial productivity (Laakso and Setälä 1999). Fur-

thermore, fungal activity has also been shown to increase when predatory mites consume

Collembola in a tri–trophic interaction study (Hedlund and Öhrn 2000). Overall, the com-

plex multi–trophic interactions in soil food webs can indirectly influence soil function and

litter decomposition rates in restoration project via consumption of grazing soil animals.

Soil food webs are important indicators for determining restoration success and soil

development trajectories. These organisms are invaluable to a restoration project because

of the ecosystem services provided by the activities of soil animals. Therefore, soil animal
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1.5. Techniques for improving disturbed soils in grassland restoration projects

abundance has been used as indications of soil quality as they are sensitive to disturbance

and land management practices (Wardle et al. 1995, Roub́ıc̆ková et al. 2013). Nematodes

are easily collected, respond rapidly to environmental change, and can be easily sorted

into functional feeding groups based on morphology. Nematodes have been successfully

used to evaluate mine area recovery in a variety of disturbance scenarios (Biederman et al.

2008, Háněl 2008, Courtney et al. 2011). Soil microarthropods are also useful indicators of

successional stage and soil system recovery as population growth is reliant on food resources

in their immediate environment (Ferris et al. 2001, Parisi et al. 2005). Thus, soil animal

abundance should be incorporated into the restoration of degraded systems to assess the

development trajectory of soils.

1.5 Techniques for improving disturbed soils in grassland

restoration projects

The positive effects of soil amendments on plant and microbial production within agri-

cultural systems, restoration projects, and greenhouse experiments have been extensively

recognized. In the following section, I review three typical amendments that are widely ac-

cessible to restoration practitioners. These amendments (i.e. biochar, compost, arbuscular

mycorrhizas) have had promising results both in greenhouse and field settings.

1.5.1 Vegetation–derived biochar

Application of black carbon to soils is expected to build soil organic matter, enhance

nutrient biogeochemical cycles, lower bulk soil density, increase bio–available water, and

reduce nutrient leaching (Shrestha et al. 2010). Black carbon consists of all C rich residues,

ranging from partly charred material to graphite and soot particles, resulting from the

incomplete combustion of organic materials (Schmidt and Noack 2000). Research has shown

that prairie soils contain substantial amounts of black carbon resulting from a 10,000 year

legacy of prairie fires (Skjemstad et al. 2002, Brodowski et al. 2005). Laird (2008) estimates

that between 5% and 15% of the total organic carbon in natural Midwestern prairie soils is

composed of black carbon. Within boreal forests, short–term soil fertility effects have been

attributed to increased charcoal fractions in the soil after naturally occurring fires (Wardle

et al. 1998).

Historically, human agricultural practices (i.e. terra preta soils in the central Amazon)

have long recognized plant growth benefits of black carbon soil supplements (Glaser et al.

2002) . Terra preta literally translates to black earth in Portuguese. These ancient soils

(500–7,000 YBP) have been anthropogenically amended with black carbon, bones, and ma-
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nure. Compared to adjacent infertile soils (terra comum or common soils), the concentration

of black carbon in terra preta soils is seventy times greater. Furthermore, these soils still

exhibit three times more soil organic matter, nitrogen, and phosphorus in comparison to

neighboring terra comum soils (Glaser 2007).

One form of refined black carbon being used in environmental management is biochar, or

carbon–rich charcoal (Lehmann et al. 2009). To create biochar, organic materials (i.e. feed-

stocks) are heated to temperatures between 300 oC and 800 oC in a low oxygen environment.

Anoxic conditions during heating leads to the incomplete combustion of the organic matter,

thus producing biochar. Feedstocks may include agricultural wastes, forestry wastes, wood

pellets, or manures. The high temperatures used in pyrolysis induce molecule polymer-

ization within feedstocks to produce aromatic and aliphatic compounds (Sohi et al. 2009).

This creates a stable product demonstrated to be a long–term carbon storage pool for atmo-

spheric CO2 in addition to being a beneficial soil amendment (Lehmann et al. 2006). When

incorporated into soils, initial degradation of biochar by chemical oxidation and microbial

processes has been noted (Bruun et al. 2008, Nguyen et al. 2008). The recalcitrant proper-

ties of black carbon stocks eventually stabilize and resist microbial degradation within soils

for 100–1000+ years (Glaser et al. 2002).

Amended soils benefit from biochar’s large, oxidized surface area and porous structure.

Soils amended with biochar have an increased soil charge density (potential cation exchange

capacity [CEC] per unit surface area) in comparison to non–amended soils (Liang et al.

2006). Biochar improves: (1) soil nutrient availability and retention (i.e. major cations,

phosphorus, total nitrogen) (Lehmann et al. 2003), (2) acidic soil conditions, (3) organic

matter adsorption (Shrestha et al. 2010), and (4) soil aeration (Shrestha et al. 2010).

Biochar as a soil amendment has generated promising results within agricultural systems

and greenhouse experiments. Recent research has demonstrated that biochar amended soils

have greater crop biomass (Rondon et al. 2007, Major et al. 2010) and enhanced biological

N–fixation in leguminous crops (Rondon et al. 2007). A meta–analysis by Biederman and

Harpole (2012) shows that biochar increases aboveground productivity, crop yield, soil mi-

crobial biomass, rhizobia nodulation, and soil nutrients compared to controls. The fertilizer

effect induced in plants may be explained by the retention of beneficial nutrients and pH

neutralization.

Indirectly, plant growth may be stimulated by increased mycorrhizal associations (Nishio

and Okano 1991, Ishii and Kadoya 1994) and soil microorganism activity (Thies and Rillig

2009). Warnock et al. (2007) proposed four mechanisms that may benefit arbuscular myc-

orrhizal fungi in soils with biochar: (1) positively changing physio–chemical soil properties

(i.e. CEC, bioavailability of phosphate [PO4−] in low P soils), (2) promoting beneficial

soil organisms (i.e. phosphate solubilizing bacteria, mycorrhization helper bacteria), (3)
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adsorbing plant secretions that may alter mycorrhizal root colonization, and (4) providing

a grazing refuge in biochar’s porous structure. In general, increased soil microbial activity

in biochar amended soils may also be attributed these hypothesized mechanisms for AM

fungi.

Biochar soil amelioration in severely degraded landscapes has the potential to increase

grassland plant production, enrich soil microbial populations, and stimulate arbuscular

mycorrhizal persistence. Biochar is hypothesized to reduce nutrient leaching in well–drained

soils. Nutrient retention in impoverished post–mine substrates should increase productivity

by stimulating biotic–abiotic feedbacks.

1.5.2 Leaf and yard waste compost

Agricultural societies have historically recognized that ameliorating fields with compost

results in improved soil conditions. Soil disturbance (e.g. mining or tillage) generally de-

creases SOM pools due to erosion and disruption of the biogeochemical mechanisms and mi-

crobial communities associated with SOM pools (McLauchlan 2006). When added to soils,

composted material increases soil fertility by increasing: (1) soil organic carbon (Crecchio

et al. 2004, Walter et al. 2006), (2) available soil nitrogen (Eriksen et al. 1999, Gabrielle

et al. 2005), phosphorus (Wortmann and Walters 2007), and micronutrients (i.e. iron, cop-

per, zinc)(Hargreaves et al. 2008), (3) water holding capacity (Movahedi-Naeini and Cook

2000), (4) cation exchange capacity (McConnell et al. 1994), (5) soil aggregation (Bresson

et al. 2001, Annabi et al. 2007, Abiven et al. 2009), and (6) neutralization of acid soils

(Mkhabela and Warman 2005).

Leaf and yard waste (LYW), largely composed of community organic waste, is typically

composted at large scales. During aerobic LYW composting, theromphilic microbes assim-

ilate and mineralize complex organic compounds while releasing heat, water vapor, CO2,

and ammonia waste products. The remaining non–mineralized organic material is humified

to form the stable end product, compost. Civic and environmental benefits of composting

LYW include waste volume reduction, microbial pathogen and weed sterilization (due to

high temperatures), and odor suppression (Jakobsen 1995). LYW compost derived from

municipal processing facilities is utilized in gardens, organic agriculture, land reclamation,

and slope stabilization projects.

Research demonstrates direct increases to crop biomass (Montemurro et al. 2006) and

nutritional quality (Allievi et al. 1993) in compost amended soils. Compost addition strongly

influences soil microbial communities by increasing microbial biomass, respiration rates,

and soil enzyme activity (Albiach et al. 2001). As bacterial and fungal decomposers utilize

and sequester carbon in amended soils, concentrations of total nitrogen and phosphorus

increase over time (Iglesias-Jiménez 2001, Wolkowski 2003). Long–term ramifications of
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microbial community activity (Ros et al. 2006) and soil biochemical characteristics (Garćıa-

Gil et al. 2004) due to compost ameliorations have been noted. Pascual et al. (1999)

found that microbial biomass, soil basal respiration, and dehydrogenase activity recovered to

levels similar to adjacent Mediterranean soils eight years after a single compost amendment.

Within restoration projects specifically, compost bolstered arbuscular mycorrhizas inoculum

persistence, thus benefiting native plant cover (Noyd et al. 1996, Celik et al. 2004). In semi–

arid soil restorations, extensive work from Caravaca et al. suggest short–term (Caravaca

et al. 2002b;a; 2003b) and medium-term (Caravaca et al. 2003a) influences of mycorrhizal

inoculations and compost ameliorations. Sharp increases in plant primary production were

attributed to the abiotic–biotic link between bioavailable phosphorus supplied by compost

residues and AM fungal phosphorus uptake.

In sandy soils with low SOM, compost improves soil structure (Wahba and Darwish

2008), bioavailable nutrients (P, K, Mg) (Weber et al. 2007), total inorganic N (Busby et al.

2007), plant production (Mkhabela and Warman 2005), and soil microbial activity(Ros et al.

2006). Low SOM and poor physio–chemical properties in post–mine substrates are expected

to have restricted microbial community activity and depleted nutrients. LYW compost

amendments should increase microbial activity (Ros et al. 2003), mycorrhizal persistence

(Gaur and Adholeya 2005), and increase plant biomass. To date, few studies have researched

the effect of compost application to native plants and mycorrhizal communities in severely

degraded post–mine substrates (Busby et al. 2007).

1.5.3 Arbuscular mycorrhizal fungal inoculation of grassland plants

Arbuscular mycorrhizal (AM) fungi are globally distributed soil microorganisms that

form symbiotic associations with more than 80% of terrestrial plants (Smith and Read 2008).

These obligate biotrophs constitute a major fraction of the plant–associated soil microbial

community. In exchange for host plant–derived photosynthate, arbuscular mycorrhizas

benefit plants by: (1) increasing soil nutrient acquisition and subsequent assimilation into

plant tissues (especially phosphorus), (2) protecting target plant roots from pathogens, (3)

enhancing seedling performance, (4) improving plant water relations, and (5) improving soil

stabilization. In addition to improved target plant performance, AM fungal communities

directly relate to the biodiversity of plant communities (van der Heijden et al. 1998).

Positive plant growth responses to mycorrhizas have stimulated the emergence of biotech

companies promoting the use of commercially–produced AM fungal inoculum as a soil en-

hancement agent. In horticultural systems (Azcón-Aguilar and Barea 1997) and landscape

restoration (Miller and Jastrow 1992), mycorrhizal inoculum has been recommended to in-

crease plant growth performance. The intentional movement of mycorrhizal fungal species

is growing, but the potential negative ecological ramifications of non–native arbuscular my-
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corrhizal invasion are poorly understood (Schwartz et al. 2006). Evidence indicates that

symbiotic associations between plants and fungus range from parasitic to beneficial depend-

ing on host plant/AM fungal pairings (Klironomos 2003). Depending on the biogeochemical

context and AM fungal–plant associations within an ecosystem, AM fungal inoculation may

yield positive, neutral, or negative plant growth effects in the field. Furthermore, a recent

greenhouse study by Mummey et al. (2009) indicated that plant pre–inoculation with AM

fungi may have unintended implications for resident AM fungal communities. AM fungal

inoculum may restrict assembly potentials in resident soil AM fungal communities with

divergent phylogenies, thus suppressing plant growth and foliar nutrients. As research in-

dicates AM fungal phylogeny diversity in host plant roots directly correlates to increased

plant growth responses (Maherali and Klironomos 2007), restricting native soil inoculum

potentials could have ramifications to plant production and soil feedback mechanisms in a

restoration project.

The ramifications of pre–inoculating native plants with AM fungal inoculum in severely

degraded habitats have not been thoroughly addressed. Evidence indicates that after major

soil disturbances such as agricultural tilling, native AM fungal associations are fractured

and strongly diminished (Jansa et al. 2002; 2003) . The resident AM fungal community

in post–mine substrates is expected to be strongly reduced compared to natural grassland

soils. To date, the resident AM fungal community soil inoculum potential within post–mine

substrates has not yet been identified. The AM fungal inoculum potential in severely dis-

turbed sites should be determined by spore immigration rates, soil nutrient availability (i.e.

phosphorus availability), plant identity (i.e. obligate mycorrhizal plants vs. facultative my-

corrhizal plants vs. non–mycorrhizal plants) in the degraded area, and time since landscape

disturbance (Allen and Allen 1980).

To date, some AM fungal inoculation research has been conducted in non-toxic post–

mine reclamation areas. These field studies indicate that AM fungi benefit native plant

production and establishment in severely degraded areas (Johnson 1998, Matias et al. 2009).

Mycorrhizal inoculum is anticipated to benefit plant production in post–mine substrates due

to a lack of an existing AM fungal community.

1.6 Review conclusions

It is imperative that restoration practitioners integrate soil ecological knowledge into

the reclamation of degraded habitats. Emphasizing an ecosystem–level approach to grass-

land restoration in degraded areas should reduce landscape recovery time and reduce plant

failure. When used in combination, the addition of mycorrhizal fungi, biochar, and compost

approaches the goal of a viable soil environment for sustainable plant growth.
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It is clear that soil amendments are necessary to restore severely disturbed landscapes in

a reasonable time–frame. A checklist or key could be developed to facilitate identification of

factors that are important for determining the most appropriate amendments and practices.

Application rates of biochar and compost could be determined experimentally to establish

a feasible restoration protocol under a variety of restoration scenarios. Since universal

application of soil microorganisms may not always be beneficial, more studies testing the use

of locally bolstered inoculum sources should be conducted to eliminate the environmental

impact of foreign inoculum.

The list of amendments discussed is by no means complete. Other amendments may

include inoculation (e.g. nitrogen–fixing bacteria, earthworms), and organic materials (e.g.

biosolids, hydrogels, paper mill sludge). Further research into the integration of these

amendments into severely degraded landscapes during restoration projects needs to be con-

ducted. As we make advancements in biotechnology and soil conditioners, we can reduce

long–term maintenance costs and create a foundation for sustainable above– and below-

ground communities.

1.7 Research objectives

The research conducted for my Ph.D. dissertation tests the efficacy of industrially feasi-

ble rates of soil amendments (i.e. compost, biochar) and a commercial AM fungal inoculum

(R. irregularis) on grassland plant restoration and soil food web development in a post–

extraction sandpit. To accomplish this, I installed a large–scale restoration research site

near Port Rowan, Ontario, Canada in the summer of 2010. Two planting strategies were

implemented: greenhouse grown plant plugs and direct seeding. In September of each year,

plant response data was collected for two growing seasons in the plant plug trial (2011–

2012) and three growing seasons in the seed application trial (2011–2013). A soil food web

analysis was conducted for data collected from the plant plug experiment in September

2012. The results of this dissertation will directly inform land management protocol when

restoring grassland plants in post–mine sandpits. The three main research objectives of this

Ph.D. dissertation are as follows:

Objective #1 Develop a minimally destructive statistical method to increase mea-

surement accuracy and reduce data collection time when estimating aboveground plant

biomass. I hypothesized that plant biomass predictive models using multiple mor-

phological plant traits would be more accurate and robust compared to single plant

trait model estimates. The rationale for this hypothesis that increased information

would be acquired on plant morphology in the field, thus leading to higher prediction

accuracy for each plant species.
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Objective #2 Determine the multi–year plant response of both planting strategies

to soil amendments and the commercial AM fungal isolate in a post-mine sandpit.

In both experiments, I hypothesized that: (a) AM fungal inoculation, compost, and

biochar addition would increase total plant community mass in the plug trial and

vegetative cover in the direct seeding trial compared to non–amended controls, and

(b) plots with the highest rates of compost + biochar and inoculated with the AM

fungal isolate will yield the highest plant responses. The rationale for these hypotheses

was that water and nutrient stress of the plants would be ameliorated when the mine

substrate is ameliorated. When all amendments are combined, maximal plant response

was anticipated due to higher nutrient inputs and retention from the soil amendments

and increased nutrient acquisition due to the plant–fungal symbiosis.

Objective #3 Determine the soil food web response to the addition of soil amend-

ments and a AM fungal isolate in sandpit substrate. I hypothesized that: (a) adding

compost, biochar, and AM fungal inoculum singly would increase soil microbial

biomass (i.e. bacteria and fungi) and soil animal abundance (i.e. nematodes, Collem-

bola, and mites), and (b) co–amending sandpits with compost, biochar, and AM

fungal inoculum will show the greatest response in soil biota. The rationale for these

hypotheses was that nutrient stress would be alleviated due to increased belowground

production and rhizosphere activity, and organic matter in sandpit substrate.
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Chapter 2

Improving Plant Biomass

Estimation

2.1 Background

Aboveground plant biomass is an important measurement relevant across multiple dis-

ciplines. Plant biomass is often considered a good approximation of productivity, especially

in grassland communities (Hector et al. 1999). Directly measuring plant biomass, however,

requires destructive sampling, thus severely disrupting the plant community of interest and

burdens the researcher with a large labor cost. Harvesting, drying, and weighing a large

volume of plants restricts a researcher’s ability to minimize plant community destruction,

rapidly collect a high volume of data, and track plant production of an individual at multiple

time points (See Table 2.1 for several detailed scenarios). Therefore, minimally destructive

estimation methods are useful when data collection is time sensitive, labor force constraints

exist, large–scale plant harvesting is impractical, and sampling design requires repeated

measures (Catchpole and Wheeler 1992).

Minimally destructive measures have been suggested as alternatives to harvesting plant

biomass, with varying success. Techniques include measuring community attributes per unit

area (e.g. percent cover, point intercept transects, photographic image analysis (Byrne et al.

2011)) and individual estimates of plant mass (e.g. simple linear regression estimates and

allometric equations). However, such approaches tend to have high variability and inherent

subjectivity, reducing the predictive power of the models. For example, several authors have

found good correlations between biomass and point–intercept methods but high variability

still exists depending upon sampling intensity (Jonasson 1988, Glatzle et al. 1993, Vittoz and

Guisan 2007). This experimental error due to the sampling method represents potentially

important biotic variation that is unaccounted for in a study.
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Table 2.1: Experimental or observational situations to employ non–destructive
biomass estimation.

Annual Net Primary Production (ANPP):
Plant species respond differently to seasonal and inter-annual environmental varia-
tion resulting in different biomass maxima throughout the growing season (Briggs
and Knapp 1995, Fay et al. 2003, Moya-Larao and Corcobado 2008). Measuring
ANPP from one or two time points, such as mid/ late season community biomass,
underestimates ANPP due to fluctuations in biomass by different species throughout
the season. With minimally destructive methods, researchers track plant species
biomass throughout the year to accurately determine ANPP of individual plant
species without severely disrupting the plant community.

Repeated Measures / Time Series Experiments:
Researchers are interested in spatial and temporal aspects of plant growth in a time–
series. Phenological responses of individual plants can be tracked over the duration
of an experiment with minimally destructive prediction methods. The establishment
of a standard curve to predict biomass at a plant’s life stage would allow for high–
throughput sample replication while being minimally invasive.

Sampling Accuracy:
Increased accuracy and precision in biomass estimates leads to higher confidence in
results. Increased measurement accuracy reduces variability in dataset predictions,
thus reducing statistical noise due to prediction error. Error reduction enhances the
ability to detect discrete differences among experimental treatments and controls.

2.1.1 Techniques to predict plant biomass

Two main methods have been used to predict biomass of a plant individual using mini-

mally destructive techniques. The first approach uses published allometric equations devel-

oped mainly to estimate tree biomass. The second approach creates a predictive standard

curve from the relationship between a measured plant trait such as plant height and plant

mass. These predictive methods have been shown to be unreliable in their ability to con-

sistently predict plant biomass. Thus, I introduce a new multivariate statistical approach,

partial least squares (PLS) regression, to increase predictive accuracy of estimating plant

mass in the field.

Historically, allometric equations have been used to estimate plant biomass in the field.

Allometric equations are mathematical functions published in the literature that are often

limited to the estimation of woody plant biomass. These equations are constructed using

easily measured predictor variables such as diameter at breast height and total plant height

to estimate biomass (Picard et al. 2012). The advantage of allometric equations is that a
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researcher can apply these equations to estimate tree biomass without creating a standard

curve. However, allometric equations developed to measure herbaceous plants are relatively

scarce and can be highly variable in prediction accuracy when available (e.g. (Elliott and

Clinton 1993)).

When using published allometric equations, a researcher must be aware of variability

in plant morphology due to experimental treatments and local environmental conditions

that will reduce prediction performance. In addition, allometric equations may not mea-

sure predictor variables that optimally estimate plant biomass (Chave et al. 2004). Thus,

published allometric equations are not readily usable when measuring plants under unique

experimental conditions.

Alternatives to allometric equations have been used by a measuring predictor variable

regressed against plant mass (Catchpole and Wheeler 1992). Plant traits that describe a

strong linear relationship between plant biomass and a predictor variable are measured to

create a standard curve. Once a standard curve is established, rapid measurement of similar

vegetation is straightforward. When using this method, the researcher must balance the

precision of the mathematical relationship, conform to statistical assumptions, and weigh

the costs associated with direct versus indirect measurements.

When establishing a standard curve for predicting plant biomass, the strength of the

relationship between a plant trait and harvested biomass determines the predictive perfor-

mance of the model. To achieve the most accurate prediction, the standard curve must meet

the following assumptions: a linear relationship, equal residual variance (i.e. homoscedas-

ticity), normal distribution of residuals, no highly influential outliers, and no strong multi-

collinearity among predictor variables (Zuur et al. 2007). Multiple regression models would

increase plant estimation accuracy by taking into account several plant traits but must be

approached with caution. When predicting plant biomass, morphological plant traits are of-

ten strongly correlated, violating the assumption of predictor independence and potentially

reducing predictive power of the external samples (Graham 2003).

Partial least squares regression (PLS) is a statistical method commonly used in com-

putational chemistry that predicts a response variable from multiple, collinear predictor

variables (Wold et al. 2001). PLS is a robust generalization of multiple linear regression

and principle component regression that extracts orthogonal factors (i.e. latent variables)

from predictors while taking into account the response variable (Abdi 2010). PLS is becom-

ing increasingly popular in ecological data analysis (Carrascal et al. 2009). PLS is valuable

when two conditions exist: (1) the dataset has a high number of predictor variables relative

to the number of samples and/or (2) high collinearity amongst predictor variables exists

such as the case for most plant biomass estimations. Continuous and categorical data can
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be used simultaneously in PLS, an essential feature when measuring morphological aspects

of plants.

PLS is a powerful statistical method that will maximize the predictive accuracy and

precision of plant mass estimation in the field. PLS should be used in combination with

variable reduction techniques such as Bayesian Information Criterion (BIC) model selection

to optimize the predictive model and reduce field measurements (Mehmood et al. 2011).

Compared to destructive plant harvesting, minimally destructive PLS plant biomass esti-

mation will increase sampling volume, reduce data collection time, and minimize labor. The

statistical assumptions associated with PLS make it well–suited to estimating aboveground

plant biomass. Thus, using a multivariate plant biomass prediction approach with PLS ul-

timately increases measurement accuracy and precision and will outperform other methods

in the field.

In this chapter, I propose a highly accurate, customizable approach to estimating plant

biomass with minimal plant destruction in the field using PLS. My method achieves this by

collecting a set of simple measures from the plant population under study. I propose that

PLS is an accessible and powerful technique for the estimation of plant biomass compared to

other plant estimation alternatives. Thus, I hypothesize that partial least squares regression

will increase plant biomass prediction performance in three distinct plant growth forms

compared to simple linear regression models using a single predictor variable, plant height.

2.2 Methods

2.2.1 Species selection and data collection

I selected three plant species representing extreme differences in morphology/growth

habit in order to determine the robustness of my approach. I tested a small shrub (Cor-

nus racemosa Lam., grey dogwood), a tussock grass (Sporobolus cryptandrus Torr., sand

dropseed), and a fern with radial rhizomes (Osmunda claytoniana L., interrupted fern). In

September 2012, 41 individuals from each plant species were selected from southern On-

tario’s hardwood forest near Simcoe, Ontario, Canada along 50 m transects. Plants along

each transect were selected to capture the range of sizes and shapes present in the population

to establish a standard curve.

2.2.2 Measured plant traits

Easily measured plant traits that had a potential to estimate plant biomass were cus-

tomized for the growth form of each species. These selected traits were based on mea-

surement variations stemming from plant height and circumference, structural counts (i.e.
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number of sand dropseed seed heads), and a weighted plate estimator to approximate plant

density (Rayburn and Rayburn 1998). A weighted plate apparatus was constructed using

40.0 cm length x 40.0 cm width x 3.2 mm depth acrylic plexiglass sheet and a 122.0 cm length

x 1.9 cm width wooden dowel. A large hole was drilled into the center of the plexiglass plate

to insert the wooden dowel. In addition, four small holes were drilled into each corner of

the acrylic sheet to attach strings to raise and lower the plate. When taking measurements,

the wooden dowel was set–up near the center of the each plant and the weighted plate

was lowered until four leaves touched the plate. Plant height was recorded by measuring

height of the plate from the soil surface. After measuring plant height, the weighted plate

was then lowered to rest upon the plant. The resting plate height gives an estimate of

plant density and plate height at rest was recorded. Circumference measures were made

by gathering and compressing the plant material and measuring the circumference of the

vegetation using a cloth measuring tape. Circumference measurements were also collected

in a similar manner at half of the plant height and at 30 cm from the soil surface. This

measurement was considered as the plant’s basal circumference may be highly variable. A

list of measurements collected for each species is given in Figure 2.1. After measuring each

individual, aboveground biomass was clipped at the soil surface, dried in a forced air oven

at 60 ◦C for approximately 3–6 days, and weighed. Plants were considered to be dry when

the biomass weights stabilized within ± 0.3 g.

In the case of the interrupted fern, plant morphology was distinctly different from the

sand dropseed and grey dogwood growth forms. Interrupted ferns have radial rhizomes with

multiple fronds growing in a circular cluster. Plant measurements were taken per frond and

subsequently averaged and summed per individual. The average and sum measurements

were the variables used to create the statistical models.

2.2.3 Model creation

Two datasets, a training dataset and a test dataset, were created from the 41 individuals

measured and weighed for each plant species. The training dataset was built by randomly

selecting thirty–five plants from each plant population and subsequently used to calculate

the standard curve. The remaining six plants were used as external data points to establish

a test dataset. Samples from the test dataset were not included in the creation of the

predictive model to remove any potential influence when generating the standard curve.

The same training and test datasets were used when creating the partial least squares

regression (PLS) and linear regression (LR) prediction models.
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Data Collection

Predictive Model

Sample Prediction

Partial Least
Squares Regression Biomass Prediction

Field Data

Oven-Dry Plants

Grass

Shrub Fern
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shc
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Bayesian Information
Criterion Models

Figure 2.1: Workflow for predicting plant biomass with partial least squares regression.
Plant measurement abbreviations: 30c = circumference at height of 30 cm; bc = basal
circumference; bl = fern blade length; cd = maximum canopy diameter; fl = frond length
(blade length + stipe length); hc = circumference at half plant height; ln = leaf number;
lp = longest pinna per blade; pi = pinnae number per blade; shc = seed head count; sl =
stipe length; th = total plant height; wph = resting height of falling plate meter.
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2.2.4 Data transformation, auto–scaling, and polynomial terms

Each variable was transformed to approximate normality to maximize the statistical

performance of each predictive model (Table 2.2). Data were normalized (mean centered

and auto–scaling) as PLS is sensitive to fluctuations in scale and variance among predictor

variables. Diagnostic plots indicated potential curvilinear relationships after auto–scaling

between predictor and response variables. Polynomial terms (2nd and 3rd orders) were

calculated for each response variable after auto–scaling and included in the variable selection

calculations (Schielzeth 2010).

Table 2.2: Measured plant traits included in the LR and optimized partial least squares
regression models. Partial least squares regression component selection based on lowest
root mean squared error from cross–validation (RMSECV) using 10–fold cross–validation.
Plant measurement abbreviations: 30c = circumference at height of 30cm; bc = basal
circumference; cd = maximum canopy diameter; fc = frond count; fl = frond length (blade
length + stipe length); hc = circumference at half plant height; ln = number of leaves; sl
= stipe length; th = total plant height; wph = resting height of falling plate meter.

Species Model Comp RMSECV Predictors(mass ~ x1+x2+...xn)

grey dogwood PLS 3 37.4g
sqrt(mass)~ bc + bc2 + cd + cd2

+ hc + sqrt(ln) + sqrt(ln)2 + th

LR NA 55.7g sqrt(mass)~ th

interrupted fern PLS 3 13.8g
log(mass) ~ sqrt−1(

∑
(sl)) + log(fc)

+ sqrt−1(x̄(bl)) +log(
∑

(fl))

LR NA 16.8g log(mass) ~ log(x̄(fl))

sand dropseed PLS 4 30.9g
sqrt(mass)~ bc + bc2 +
square(30c) + cube(th) +
cube(th)2 + sqrt(wph)

LR NA 42.3g sqrt(mass)~ cube(th)

2.2.5 Variable reduction and model averaging

Using the training dataset (n = 35), all possible combinations of transformed variables

and associated (2nd and 3rd order polynomials were scored using Bayesian Information

Criterion (BIC) model selection in the MuMin package (Bartoń 2013) in R (R-Core-Team

2013). MuMin’s dredge function was used to force the condition that polynomial regression

coefficients must be evaluated in conjunction with 1st order regression coefficients to ensure

proper fitting of the model (Schielzeth 2010, Symonds and Pither 2012). Models with BIC
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≤ 2 are considered to be equivalent. Therefore, BIC models ≤ 2 were averaged and variable

importance values for the predictor variables were extracted. The plant measurements

selected by BIC model selection represent the optimized variables that will best predict

plant mass in the dataset (Johnson and Omland 2004, Grueber et al. 2011).

2.2.6 Partial least squares regression and linear regression models

PLS regression models were created with the pls package (Mevik and Wehrens 2007)

in R. The optimized predictor variables and transformations used to calculate each plant’s

PLS model are given in Table 2.2. Simple linear regression (LR) models were calculated

with the plant height predictor variable to establish a standard curve in R’s lm function.

Predicted biomass from allometric equations were not compared to PLS and LR models

because published equations did not exist for the three measured plant species in this

study.

The number of orthogonal components (i.e. latent variables) extracted from the PLS

models was determined to evaluate each component’s contribution to overall predictive

fit. The number of components to retain in each model was determined using the root

mean squared error of cross–validation (RMSECV) calculated from 10–fold cross–validation.

RMSECV is a diagnostic metric used to test each component’s contribution to the overall

predictive fit of the model. The latent variable with the lowest average RMSECV indicates

the number of components to retain in the PLS model, thus maximizing each model’s

predictive performance.

After generating standard curves from the PLS and LR models, plant mass was predicted

and back transformed (Pmass) for the training and test datasets. Pmass was subtracted from

the corresponding reference plant mass (Rmass) weighed in the laboratory to determine how

well the model predicted each data point. A perfect model prediction for a sample is equal to

zero (i.e. Pmass - Rmass = 0). Root mean squared error (RMSE) and R–squared estimates

for the linear relationship between Pmass versus Rmass were calculated to determine the

training and test dataset’s actual predictive performance. The regression slope used to

calculate RMSE and R–squared for the Pmass versus Rmass training dataset is equal to a

slope = 1 with an intercept = 0. Mean and standard deviations of Pmass - Rmass were

calculated for the training and test datasets.
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2.3 Results

2.3.1 Variable selection in partial least squares regression models

BIC model selection reduced the number of variables from the full model in the inter-

rupted fern (5 → 4) and sand dropseed (5 → 4) datasets. Comparatively, grey dogwood

models included all five field measured variables in the optimized PLS models (Table 2.2).

Field measured variables retained in the PLS models for all three species accounted for as-

pects of plant diameter, height, and structural counts. The most descriptive variables, scaled

from 0.00 to 1.00, were determined by relative variable importance measures. The following

are variables with high influence in each plant’s PLS model: grey dogwood (basal circumfer-

ence (1.00), canopy diameter (1.00), plant height (1.00), leaf number (1.00), circumference at

half height (0.95)), interrupted fern (Σ frond length (0.72), Σ stipe length (0.59), Σ blade

length (0.46), Σ frond count (0.43)), and sand dropseed (circumference at 30 cm (1.00),

weighted plate height (1.00), basal circumference (0.98), plant height (0.90)). Weighted

plate measurements were only relevant when predicting the biomass of sand dropseed. PLS

models used for grey dogwood and sand dropseed corrected for curvilinear relationships be-

tween plant biomass and several field measured variables (i.e. 2nd order polynomial terms)

(Table 2.2).

2.3.2 Comparing models for predicting plant biomass in the training

dataset

LR models using plant height predicted plant biomass well in the field but optimized PLS

models consistently performed better in prediction diagnostics for all three plant species

(Tables 2.2 & 2.3). PLS RMSECV calculated in each training dataset was 37.4 g (grey

dogwood), 13.8 g (interrupted fern), and 30.9 g (sand dropseed). Comparatively, training

dataset RMSECV predication accuracy in LR models was reduced for all three plant species

using plant height as the predictor variable (55.7 g (grey dogwood), 16.8 g (interrupted fern),

and 42.3 g (sand dropseed)).

The RMSECV model performance indicators translated to higher prediction accuracy

when evaluating Pmass versus Rmass in each training dataset. All optimized PLS models

had R-squared values ranging between 0.985 – 0.995. Predicted Pmass versus Rmass regres-

sion diagnostics were more variable in LR models with R-squared values ranging from 0.784

– 0.945. In all LR models, the lower R-squared values are a result of reduced model per-

formance when predicting heavier plants in the population (Figure 2.2). Therefore, linear

regression models introduced higher variability when predicting heavier plants. In compar-

ison, PLS models accurately predicted training dataset plant mass across all plant weights

resulting in higher R-squared values (Figure 2.2).
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Figure 2.2: Graphs of predicted (Pmass) vs. reference (Rmass) plant biomass using the
optimized PLS models and the LR model for the three plant species. The blue(PLS) and
red(LR) points represent internally predicted data used to train each model (n = 35).
Black points represent external data predictions from the test dataset using only predictor
variables (n = 6). Each dashed line indicates a perfect prediction (Pmass = Rmass) with a
slope = 1 and intercept = 0.
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Table 2.3: Summary statistics for PLS and LR model training datasets. R-squared (R2)
and root mean squared error (RMSE) values are based on Pmass versus Rmass estimates
where slope = 1 and intercept = 0.

Species mass ± 1 SD height ± 1 SD Model RMSE R2

grey dogwood 42.9g ± 41.3g 77.7cm ± 32.9cm PLS 4.6g 0.995

LR 25.2g 0.872

interrupted fern 17.1g ± 12.9g 81.0cm ± 18.1cm PLS 2.8g 0.986

LR 5.1g 0.945

sand dropseed 32.9g ± 23.6g 88.3cm ± 19.0cm PLS 3.4g 0.994

LR 14.2g 0.794

Model prediction performance in the training dataset, best determined by RMSE values,

indicated that all PLS models consistently outperformed LR models when comparing Pmass

- Rmass data. LR model RMSE increased as average plant mass increased (Table 2.3). This

indicates that LR prediction accuracy is reduced when measuring plants with higher biomass

in the field thus introducing higher prediction variability (RMSE: 25.2 g grey dogwood, 5.1 g

interrupted fern, 14.2 g sand dropseed). In comparison, PLS models prediction accuracy

was consistent across all plant growth forms thus reducing variability when predicting plant

biomass (RMSE: 4.6 g grey dogwood, 2.8 g interrupted fern, 3.4 g sand dropseed).

2.3.3 Comparing models for predicting plant biomass in the test dataset

Similar to models using the training set data, external data points predicted by PLS

models consistently outperformed LR models. Higher variability in LR models was shown in

all diagnostic tests compared to the PLS models. R-squared of Pmass versus Rmass PLS test

data points ranged between (0.995 – 0.995) while LR R-squared data ranged between (0.755

– 0.943). RMSE of PLS model Pmass versus Rmass was consistently lower when using LR

models to predict species biomass. Average Pmass - Rmass ± 1 SD for externally predicted

data using PLS was highest in grey dogwood (4.4 g ± 5.8 g) and lowest in interrupted fern

(0.4 g ± 2.2 g) (Table 2.4). In comparison, average Pmass - Rmass ± 1 SD using LR had

reduced predictive model performance with highest prediction variability in grey dogwood

(−11.1 g ± 21.6 g) and lowest variability in interrupted fern (−1.5 g ± 9.6 g). Using the

external dataset, PLS models had superior prediction performance with lower variability in

all diagnostic tests.
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Table 2.4: Summary statistics for PLS and LR model externally predicted data. R-squared
(R2) and root mean squared error (RMSE) values are based on Pmass verses Rmass estimates
where slope = 1 and intercept = 0.

Species Model x̄(Pmass-Rmass) ± 1 SD RMSE R2

grey dogwood PLS 4.4g ± 5.8g 5.7g 0.995

LR -11.1g ± 21.6g 15.5g 0.943

interrupted fern PLS 0.4g ± 2.2g 2.8g 0.995

LR -1.5g ± 9.6g 12.5g 0.926

sand dropseed PLS -2.5g ± 2.3g 3.3g 0.996

LR -2.5g ± 19.0g 17.4g 0.755

2.4 Discussion

Partial least squares regression was a superior predictive methodology compared to

simple linear regression in the three plant species selected in this study. PLS predicted

plant biomass had high accuracy and precision in datasets across distinct plant growth

forms. This indicates a distinct advantage of using a multivariate approach to predict plant

biomass in the field since growth form did not strongly influence the predictive performance

of PLS.

2.4.1 Variable selection

Response variable selection is the most crucial step when creating a predictive standard

curve to estimate plant mass. A statistical model is only as good as the response vari-

ables included in the analyses. For example, if all input variables are weakly correlated to

plant mass, the best models chosen by model selection techniques will still result in poorly

performing models in the field. Therefore, model selection techniques are used to identify

the best model selected from a complete set of variable combinations based on statistical

support (Johnson and Omland 2004). BIC model selection optimizes the most descriptive

combination of variables that fit the data and improves predictive performance to build a

representative model. BIC model selection is more statistically conservative than Akaike

Information Criterion (AIC) calculations (Burnham and Anderson 2004). In the case of this

study, this statistical property is advantageous as BIC model selection will identify fewer

plant response variables to input into PLS analyzes, ultimately reducing field measurement
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time. In my methodology, I employed BIC model selection due to its more conservative

approach when selecting PLS variables.

In my study, the variables selected in grey dogwood and sand dropseed were strongly

correlated to plant mass as shown by variable importance indicators. On the other hand,

variables to predict interrupted fern biomass were not as strong. This may be an artifact of

using the sum and average frond measurements in the field. This approach may have masked

information in the individual frond measurements and reduced the predictive performance

of each variable. Despite the weak correlation of the individual variables to plant mass in

the interrupted fern population, the multivariate PLS approach still resulted in an accurate

model with good predictive performance and highlights the usefulness of the technique in

the field.

Plant height was reasonably correlated with plant biomass in the LR models. Thus, it

has been used as an easily measured surrogate for plant biomass in the field (Singh et al.

1975, Catchpole and Wheeler 1992). In the field, simple linear regression models using

one measurement variable have been shown to have low to moderate statistical accuracy

depending on ecosystem type and vegetative structure (Catchpole and Wheeler 1992). To

address reduced sampling accuracy, Bonham (1982) noted the need for the development of

a multivariate sampling method to predict plant biomass. Models were developed to esti-

mate sampling cost for increased variable collection but no predictive model was proposed.

Thus, variable selection methods in this paper did not address the statistical assumption

violations associated with collinear predictors in multiple regression. To account for this,

the multivariate PLS approach in my study shows the importance of incorporating sev-

eral predictor variables to estimate plant mass for these three species while accounting for

variable collinearity. Incorporating variables that estimated plant density, circumference,

and structural counts highlighted the morphological variation in the field as it pertains to

correlating plant biomass.

An approach that employs only one predictor variable largely ignores the fact that two

plants with identical heights may have distinctly different plant volumes in the field. This

ultimately leads to higher variance in prediction accuracy and less reliable results. This

effect is shown in my study when LR models of Pmass versus Rmass become increasingly

unreliable as Rmass increases (Figure 2.2). Predicting the biomass of larger individuals with

LR reduces measurement accuracy and introduces uncertainty into the model. Increased

variability in prediction performance is indicated by lower R–squared and higher RMSE

estimates in the training (Table 2.3) and external (Table 2.4) datasets compared to PLS.

The best way to avoid selecting weakly correlated response variables is to measure a

large number of estimators in the field and iteratively reduce the number of predictor vari-

ables post–hoc using model selection techniques (Johnson and Omland 2004). Creative
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measurements that are non–traditional in ecology (i.e. weighted plate measurements, plant

circumference at a height of 30 cm) may yield surprisingly strong correlations when esti-

mating the plant biomass of a target plant (Rayburn and Rayburn 1998, Rayburn and

Lozier 2003). Once a suite of measurements have been collected, the number of variables

in full models should be reduced to obtain a more parsimonious prediction model, remove

irrelevant variables, and maximize measurement efficiency (Andersen and Bro 2010). This

ultimately leads to highly accurate prediction models balanced against the cost of labor in

the field.

2.4.2 The statistical advantage of using partial least squares regression

when prediction plant biomass

In comparison to LR, PLS improves the precision and accuracy of estimating biomass

across the herbaceous and shrub phenotypes by incorporating a multivariate estimation

approach (Figure 2.2). PLS models have no statistical restrictions when variables exhibit

multicollinearity (Wold et al. 2001), thus allowing for the incorporation of all variables

that adequately describe aboveground plant architecture and morphological variation. This

feature of PLS results in exemplary predictive performance in the field compared to all

tested LR models. For example, the optimized PLS model for grey dogwood includes

five collinear measurements (basal circumference, canopy diameter, circumference at half

plant height, leaf number, and plant height). These response variables would violate the

assumptions of traditional multiple regression methods even though the several estimators

would be advantageous when predicting plant mass (Graham 2003). As shown in all PLS

models, the multivariate approach led to more robust and accurate statistical models using

both the training and test datasets compared to LR.

Variance in externally and internally predicted data tended to increase with higher

average plant mass in the field for the three plant species (Figure 2.2). Larger prediction

error can reasonably be expected due to the higher variability associated with plant growth

rate response during competition for water, light and nutrients (Poorter and Nagel 2000).

Hence, I show that samples predicted in the grey dogwood model (mass: 42.9 g ± 41.3 g)

has the highest RMSE values while interrupted fern models (17.1 g ± 12.9 g) had the lowest

RMSE in the regression diagnostics for PLS and LR. Thus, higher variation would be

expected in plant populations with a larger range of plant mass in the field. But in all

cases, LR was more sensitive to plants with higher average biomass and standard deviations

resulting in less robust biomass prediction models using plant height as the sole predictor

variable. PLS models, on the other hand, exhibited high predictive performance across all

plants, regardless of plant biomass ranges in the field. The robustness of the multivariate

28



2.4. Discussion

approach largely accounts for more morphological variability thus increasing the reliability

of the models.

LR models were also less reliable when measuring larger plants within each plant pop-

ulation. LR models exhibited higher variation in biomass predictive performance near the

upper end of plant mass in all species. This effect was most pronounced when evaluating

predicted mass versus reference mass in the sand dropseed population, but was present in

all evaluated plant species (Figure 2.2). This means that the plant height response variable

in the LR models is less descriptive when predicting plants with larger biomass in the field,

most likely due to increased morphological variation at larger sizes in the plant population

due to variability in field response (Poorter and Nagel 2000). The use of a single response

variable in all species highlights the need for multivariate measurements since prediction

accuracy is not uniformly reliable across the entire plant population (Gholz et al. 1979).

Comparatively, all PLS models performed equally well and had relatively uniform pre-

diction accuracy regardless of mass in all species (Figure 2.2). In all PLS models, predicted

mass linearly increases near the perfect prediction slope indicating excellent predictive per-

formance in the training and test datasets. RMSE diagnostics show that 66% of the pre-

dicted data in the externally predicted test dataset will fall within 2.8 g (interrupted fern),

3.3 g (sand dropseed), 5.7 g (grey dogwood) of the reference mass compared to the larger

RMSE prediction errors associated with LR models. Therefore, I show that more uncer-

tainty is introduced when predicting plant biomass using only one response variable. Thus,

PLS is shown to be a more robust statistical technique that increases prediction confidence

in experimental scenarios.

2.4.3 Practical applications of partial least squares regression

This paper follows a workflow (Figure 2.1) that integrates common statistical techniques

(i.e. BIC model selection, data–transformations) with PLS. The intensity of labor cost and

time necessary to create a PLS model in an experimental setting was similar to collecting

a single response variable using LR. As shown by (Bonham 1982), optimizing the alloca-

tion of response variables for model input will maximize labor efficiencies and reduce data

collection costs. Thus, implementing PLS into data collection schemes will increase plant

prediction accuracy without introducing significantly higher opportunity costs such as in-

creased sampling time. This approach is easily adapted to a variety of field and greenhouse

situations, thus increasing sample replication, work efficiency, and prediction accuracy.

When creating a PLS model, choose a suite of morphological traits that are measured

quickly and accurately under greenhouse or field conditions. As PLS evaluates categorical

and continuous variables, morphological measurements should be tailored to the plant(s)

of interest. This approach incorporates the flexibility to choose the number of variables
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to be used in the predictive model. BIC model averaging extracts predictor variables with

the highest parsimony. If a large suite of variables was measured, a complex model with

5 or more measurement variables could potentially be extracted. In this case, sampling

volume during data collection may be a higher priority when weighed against final prediction

accuracy. As BIC models ≤ 2 are considered equivalent, each equivalent model should be

calculated using the PLS algorithm. RMSECV results using 10–fold cross–validation can

be subsequently compared to determine the predictive capabilities within each model. PLS

models should be optimized to create the best model for external predicting data while also

considering sampling efficiency.

Compared to published allometric equations, PLS is customizable to a researcher’s study

system or greenhouse experiment. Allometric equations for predicting biomass have been

shown to differ as a function of morphologic features and environmental conditions (Niklas

and Enquist 2002). Thus, reliance upon published equations is not necessary for herbaceous

plants and shrubs when utilizing PLS. Unlike published allometric equations, a drawback

of this technique is the creation of the biomass standard curve. The destruction of a small

subset of plants is inevitably required for all non–destructive biomass prediction analyses.

Destructive harvesting can be accounted for when designing an experiment. A researcher

can adjust the experimental design of a project by increasing sample replication with the

intent of destructive harvesting, creating a preliminary experiment under the same envi-

ronmental conditions and harvesting its biomass, or choosing a representative population

in the field similar to the population of interest.

Several statistical methodologies have been proposed to predict multivariate, collinear

datasets. The main alternatives to PLS regression are principal component regression

(PCR), ridge regression (RR), and artificial neural networks (ANN) (Hastie et al. 2001).

Compared to PLS, PCR does not account for variance associated with response variables

and resulting models tend to be less parsimonious with higher variability. Studies evaluating

PLS performance compared to RR show similar (Frank and Friedman 1993) or marginally

better (Yeniay and Goktas 2002) predictive performance using external datasets while both

outperform PCR. In general, PLS models are more parsimonious, easier to interpret, and

more user friendly than RR. Alternatively, advances in computational statistics and machine

learning suggest that ANN will create better predictive models than all of the preceding

linear regression techniques. Currently, ANN methodologies are not widely used in ecol-

ogy. ANN computations have a steep learning curve as the underlying statistics do not use

common statistical methods. Thus, ANN methods are less accessible and more difficult to

implement compared to PLS regression techniques.
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2.5 Summary

In this chapter, I describe a double sampling method for accurately estimating individual

herbaceous plant and small shrub biomass in the field. Partial least squares regression is

a robust statistical technique that should be employed to accurately predict plant biomass

in ecological experiments. In comparison to liner regression using a sole predictor variable,

partial least squares regression increases prediction confidence and reliability in ecological

experiments.

This chapter is intended to be a simple, customizable guide for ecologists and land

managers. My approach maximizes aboveground biomass prediction accuracy with high

measurement efficiency using simple statistical methods and inexpensive tools in the field.

The customizable nature of this technique makes PLS a powerful statistical tool for re-

searchers in ecological and environmental science.
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Chapter 3

The Restoration of Grassland

Vegetation in Post–Extraction

Sandpits

3.1 Background

Ontario’s sand plain prairies support a high biodiversity of regionally unique plants,

insects, and animals (Gartshore et al. 1987). Surveys indicate that approximately 22%

of Ontario’s rare plant species are found in these prairie ecosystems (Ontario-Biodiversity-

Council 2010). Many of these species have been elevated to endangered status due to habitat

loss from land–use change, invasive species colonization, and fire suppression. It is estimated

that Ontario’s prairies occupy less than three percent of their original coverage (Rodger

1998). Increasing patch size on marginal lands through prairie restoration will facilitate the

survival of sensitive habitat in addition to supporting species at risk. Excavated sandpits are

candidate areas to restore prairie plant species but edaphic conditions limit the spontaneous

development of high diversity plant communities (Wali 1999, Prach and Hobbs 2008). If

post–mine substrate is left unassisted, plant communities can take decades to recover, if

ever (Bradshaw 1997).

3.1.1 Biochar and compost as sandpit amendments

When added to soils, researchers suggest that biochar alters physiochemical soil proper-

ties by directly releasing nutrients or indirectly altering plant available nutrient concentra-

tions (Chan and Xu 2009). Several studies, limited to agricultural systems, indicate that

plant nutrient bioavailability of macro- (P,K) and micro–nutrients (Ca,Mg) have increased

in response to charcoal application (Lehmann et al. 2003, Major et al. 2010, Rondon et al.

2007). Meta–analysis shows that biochar significantly translated to increased agricultural

crop biomass and plant tissue macro–nutrients across all soil types and climates (Biederman

and Harpole 2012). Biochar’s largest positive influence on agricultural plant production has

been shown in acidic, nutrient poor soils (Jeffery et al. 2011).
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To date, there is little information on the effect of biochar on native plant growth in a

restoration setting. Biochar amendments influenced grassland plant biomass inconsistently

(Adams et al. 2013) and has the potential to cause shifts in species composition within

managed grasslands (Schimmelpfennig et al. 2014). To date, no field study has investigated

biochar as a soil conditioner when restoring grassland plants in degraded landscapes. The

large–scale implication of biochar as a land management tool to grow native grassland plants

still remains unexplored.

As a solitary soil amendment, compost has demonstrated ameliorative effects on soils

in agricultural and mine restoration settings (Shiralipour et al. 1992, Giusquiani et al.

1995, Ouédraogo et al. 2001). Compost amendment increases organic matter content, wa-

ter holding capacity, and soil nutrients, thus improving soil quality in degraded systems

(Termorshuizen et al. 2004). Soil organic matter is a major component of soil quality be-

cause it directly or indirectly contributes to physical, chemical, and biological properties

of functioning soils (Lal 2009). Compost strongly influences soil microbial communities by

increasing in microbial biomass, respiration rates, and soil enzyme activity (Allievi et al.

1993). Microbial activity and soil fertility are generally related as compost is mineralized

by microorganisms, thus releasing important elements (C, N, P and S) to the soil solution

(Frankenberger and Dick 1983). Thus, increasing soil organic matter in soil is essential to

restoring degraded landscapes by alleviating infertile conditions through the reestablish-

ment decomposition cycles. As a land management tool, compost application to severely

degraded landscapes increases grassland plant survivorship and primary production thus

influencing restoration success (Hortenstine and Rothwell 1972, Norland and Veith 1995,

Noyd et al. 1996).

3.1.2 Arbuscular mycorrhizal fungi as inoculum

In comparison to natural systems, post–mine areas have reduced arbuscular mycorrhizal

diversity and abundance in addition to low nutrients and organic material (Stahl et al. 1988,

Ganesan et al. 1991, Diaz and Honrubia 1994). This compounds the nutrient stress of these

environments because some plants may be unable to establish and persist simply because

they lack important microbial symbionts. Even if pre–mine area topsoil is stockpiled and

retained, mining activities have been shown to degrade the efficacy of pre–mine populations

of arbuscular mycorrhizas (Stahl et al. 1988). Thus, target plants can be inoculated with

fungal propagules to facilitate plant production in disturbed mine areas (Bi et al. 2003,

Taheri and Bever 2010).

Arbuscular mycorrhizal inoculum has been used in the restoration of mine areas for more

than thirty years because of the ability to enhance plant establishment and survival. Plants

inoculated with AM fungi in post–mine areas show positive growth responses (Khan 1981,
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Johnson 1998, Enkhtuya et al. 2005, Rydlová et al. 2008). Several studies highlight the need

to screen AM fungal isolates in order to determine their efficacy in the abiotically stressed

edaphic conditions (Taheri and Bever 2010, Püschel et al. 2011). Not all commercial AM

fungal isolates will be adapted to the harsh abiotic conditions present in post–mine areas.

3.1.3 Synergisms among biochar, compost, and arbuscular mycorrhizas

In degraded mine systems, the use of compost to restore plant communities is effective

but its land management potential may be underestimated. Co–amending soils with biochar

and compost may be synergistic as biochar’s high cation exchange capacity and large surface

area has the potential retain nutrients released from mineralized compost (Fischer and

Glaser 2012). Initial studies show mixed results when co–amending soils with biochar and

compost in terms of plant growth. Research on cultivar production ranged from a neutral

(Vitis vinifera L., Schmidt et al. 2014) to positive (Avena sativa L., Schulz and Glaser 2012;

Samanea saman F.Muell. and Suregada multiflora (A.Juss.) Baill., Ghosh et al. 2014)

impact on the growth and quality of plants in soils co–amended with biochar compared to

compost only treatments. To date, no field studies have investigated the impact of biochar

co–amended with compost on native grassland plants.

Combining AM fungal inoculum with biochar and compost is anticipated to promote

larger gains in plant community biomass compared to adding soil amendments alone. The

application of organic amendments have a positive effect on the proliferation of natural AM

fungi in agricultural systems (Harinikumar et al. 1990). AM fungi are able to exploit nutri-

ents released by mineralization of organic matter due to the activities of soil microorganisms

(Hodge et al. 2010). The combination of organic amendments in degraded systems and AM

fungal inoculum has been shown to produce larger plants compared to either treatment

alone when reclaiming desertified areas with shrubs (Caravaca et al. 2003b) and coal-mine

spoil banks with biofuel cultivars (Püschel et al. 2011). Studies that have investigated

the effect of biochar and AM fungal inoculation on plant biomass show inconclusive re-

sults. Both positive (Warnock et al. 2007) and negative (Birk et al. 2009, Warnock et al.

2010) effects on plant biomass are dependent upon pyrolysis temperature and quality of the

biochar produced. Therefore, determining the optimized combination of compost, biochar,

and AM fungal inoculum to increase plant response is essential when restoring grasslands

in post–mine systems.

Considering the goal of grassland plant community restoration, the effect of AM fungal

inoculation, municipal compost, and biochar has never been tested in degraded systems.

In this multi–year study, two large–scale experiments using common grassland plants were

sown in a recently excavated sandpit in southern Ontario, Canada. In the first experiment,

a fully factorial combination of compost [CP], biochar [BC], and AM fungal inoculum were
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applied to greenhouse grown plant plugs in a post–mine sandpit for two growing seasons.

In a second experiment, a direct seeding experiment measured total plant cover along gra-

dients of industrially feasible rates of compost and biochar with and without AM fungal

inoculum. I hypothesized that AM fungal inoculation, compost, and biochar addition would

individually increase plant dry mass and cover compared to non–amended controls. The

rationale for this hypothesis was that additions were expected to alleviate water and nu-

trient stress in post–mine sandpit substrates. I further hypothesized that plots with the

highest rates of compost + biochar and AM fungal inoculum would yield the highest plant

dry mass and total cover. The rationale for this hypothesis was that the largest nutrient

input, retention, and acquisition was expected through the fungal symbiosis. This will be

evident by increased plant growth and total cover when compared to non–amended con-

trol plots. The overall aim of this study was to prescribe industrially feasible abiotic and

biotic soil amendments to facilitate the long–term growth of a grassland plant community

in post–mine sandpits while understanding the role of biochar, compost, and AM fungi in

vegetative restoration.

3.2 Methods

3.2.1 Research site establishment

My research site was established on a recently active sand extraction area (0.5

hectares(ha)) near Port Rowan, Ontario, Canada (42 ◦40’17”N, 80 ◦28’46”W, elevation

211 m). The mine area, surrounded by Carolinian forest on three sides, is dominated by

black oak (Quercus velutina Lam.), sassafras (Sassafras albidum (Nutt.) Nees.), and tulip

tree (Liriodendron tulipifera L.) with interspersed exotic Scots pine (Pinus sylvestris L.).

In 2010, the north side of the research site had a cover crop of soybean (Glycine max (L.)

Merr.) followed by seeding with endemic grassland vegetation in 2011.

In the summer of 2010, the mine area was graded flat by an earthmover and a nine–

wire fence was installed on the research site perimeter before the experimental plots were

established to minimize deer browsing. The mine area substrate was poorly developed

and composed of unconsolidated mineral substrate with no evidence of coarse soil organic

material. The exposed sand substrate was easily eroded by wind which created a slight

berm at the field site after one growing season. In 2011, relative height of each plot was

measured where difference between the highest to lowest plots in the plant plug trial and

seed application trial was 0.76 meters(m) and 1.02 m respectively.

35



3.2. Methods

3.2.2 Experimental design

I tested the effects of soil amendments (biochar, compost and AM fungal inoculation) on

the establishment and growth of endemic grassland plants in a post-mining sandpit using

two planting approaches: plant plugs, whereby plants were established in greenhouse and

planted as plugs, and direct seeding at the site. Two different plant response measurement

methods were used in the field: predicted plant biomass estimation in the plant plug trial,

and vegetative cover estimation for the seed application trial. In the plant plug trial, a

minimally destructive biomass estimation methodology was used because each plant plug

location was known and could be tracked over multiple years. This methodology allows

for the precise estimation of individual plant response to the experimental treatments over

time. In the seed application trial, vegetative cover was estimated because tracking the

growth of plant individuals was less feasible in the field. Therefore, vegetative cover was

used as a non–destructive proxy for plant response, thus estimating plant germination and

establishment rates in the field.

Biochar

I used biochar created from wood pellet feed stock that was pyrolyzed at 500 ◦C in an

industrial scale non–oxygenated vacuum reactor. My biochar was supplied by the large-scale

biochar producing facility, New Earth Renewable Energy Inc., based in Quebec, Canada.

As biochar is a relatively unknown commodity as a soil amendment, I tested two industrially

feasible biochar rates (5 T ha−1 and 10 T ha−1) in the plant plug experiment. These rates

balance amendment cost against the potential plant growth benefit of biochar relevant to

the industrial–scale restoration of sandpit areas. In the direct seeding experiment, I tested

six rates of biochar ranging from no biochar to rates at the upper end of cost feasibility in

sandpit restoration (0 T ha−1 to 40 T ha−1) (Table 3.1).

Compost

I used compost derived from municipal lawn and leaf urban waste streams distributed by

Try Recycling in London, Ontario, Canada. I tested one industrially feasible compost rate

(20 T ha−1) in the plant plug experiment. As compost is relatively less expensive compared

to biochar, compost can be applied at a higher rate when budgeting for an industrial–scale

grassland restoration project. In the direct seeding experiment, I tested six rates of compost

ranging from 0 T ha−1 to 40 T ha−1(Table 3.1).
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3.2. Methods

Table 3.1: Experimental treatments for the seed application experiment. All treatment
levels are fully factorial. Each treatment combination was applied to one plot only. Total
number of plots was 72.

Biochar Level Compost Level AM Level

0.0 T ha−1 0.0 T ha−1 No inoculum

2.5 T ha−1 2.5 T ha−1 Rhizophagus irregularis

5.0 T ha−1 5.0 T ha−1

10.0 T ha−1 10.0 T ha−1

20.0 T ha−1 20.0 T ha−1

40.0 T ha−1 40.0 T ha−1

Factorial = biochar level × compost level × AM fungal inoculum level

Arbuscular mycorrhizal fungal inoculum

I used a commercial arbuscular mycorrhizal fungal inoculant, Rhizophagus irregularis

(Blaszk., Wubet, Renker & Buscot) C. Walker & A. Schüßler (2010), supplied by Mikro–Tek

located in Timmins, Ontario, Canada. In the plant plug experiment, each plug container was

inoculated with 20 spores contained in a proprietary powdered medium. The spore medium

was added just below the soil surface of each plant plug container during seed sowing in

April 2010. In the seed application experiment, each plot received 2 liters of water with

suspended with spores. To mix the solution, a proprietary water–soluble powdered medium

containing the spores was added to a watering can and applied evenly over the plot following

seed compaction. Spores were applied at Mikro–Tek’s recommended rate of 1000 spores/m2.

3.2.3 Plants used in restoration

The eight grassland plant species selected for this project met the following criteria:

plant species that are common in Ontario prairies, tolerant of sandy soils and dry conditions,

endemic to the study area, and known to associate with arbusuclar mycorrhizal fungi.

Details about these plants are given in Table 3.2.
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Table 3.2: The eight grassland plant species used in the plant plug trial and seed application trial. The abbreviation column
indicates the plant code scheme associated with Figure 3.1. The final two columns indicate the abundance (i.e. number of plant
plugs) of all species in each plot and the core sampling areas for the plant plug trial.

Species Common Name Abbreviation plants
plot

plants
core

C4 Grasses
Andropogon gerardii Vitman Big Bluestem AG 11 5

Panicum virgatum L. Switchgrass PV 11 4

C3 Grasses
Elymus canadensis L. Canada Wild Rye EC 8 3

Bromus kalmii A. Gray Prairie Brome BK 8 4

N–Fixing Forbs
Desmodium canadense L. Showy Tick–trefoil DC 11 5

Lespedeza capitata Michx. Roundhead Bushclover LZCA 3 3

Composite Forbs
Liatris cylindracea Michx. Ontario Blazing Star LC 10 4

Symphyotrichum laeve(L.) Á. Löve & D. Löve var. laeve Smooth Blue Aster SL 10 5

TOTAL 72 33
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3.2. Methods

3.2.4 Plant plug trial

In the plant plug trial, plants were grown as plugs for 16 weeks in a commercial green-

house by Pterophylla / St. Williams Nursery & Ecology Centre in St. Williams, Ontario,

Canada from March 1st to June 24th. No supplemental light or heating was used in the

greenhouse. Plant plugs were grown in 72 cell Landmark plug trays each filled with 57 cu-

bic centimeters of a proprietary growing medium containing pine bark, sphagnum peat, leaf

and yard waste compost and perlite. At the time of plug sowing, half of the plug containers

were inoculated with AM fungal spores in the greenhouse. The growing medium used in

the plugs was not sterilized to mimic industrial conditions. Background AM fungal com-

munities were anticipated in non–inoculated plant plugs due to potential growing medium

contamination in the industrial–scale greenhouse setting. The plant source material was

collected from local plant populations by Pterophylla / St. Williams Nursery & Ecology

Centre in the vicinity of the restoration project.

Plots (size: 10.2 m2) were established by June 22nd, 2010 using a fully–crossed, random-

ized factorial design, and monitored for 3 growing seasons (2010–2012). The two factors

were: soil amendments (no amendment, 5 T ha−1 biochar, 10 T ha−1 biochar, 20 T ha−1

compost, 5 T ha−1 biochar + 20 T ha−1 compost, 10 T ha−1 biochar + 20 T ha−1 compost)

and Rhizophagus irregularis inoculation (±). Each of the 12 factorial combinations was

replicated ten times for a total of 120 plots. Compost and biochar were raked into the

upper 6 cm of substrate in May 2010. Control plots were not amended and were planted

with non–inoculated plant plugs. A one meter buffer zone separated each plot to minimize

plant interactions.

Native plant plugs were transplanted to the field between June 24th, 2010 – July 1st,

2010. Seventy–two plant plugs per plot were pre–mapped to have identical positions across

all field plots (plug spacing = 33 cm)(Figure 3.1). A hexagonal plug arrangement was

chosen to minimize spatial variability. Of the 8,640 plant plug positions, only two plugs

were incorrectly planted as noted during vegetative censuses.

AM fungal quantification

AM fungal colonization of roots was quantified for greenhouse grown plant plugs (June

2010) and field plots (September 2011 / 2012) in the plant plug trial. For plugs, ten non–

inoculated and ten inoculated plugs from each of the eight plant species were randomly

selected in the greenhouse to assess root colonization before adding plugs in the field. In

each field plots, sixteen soil cores per plot were collected and pooled near designated plug

locations in September 2011 / September 2012 to minimize spatial variability. Plugs and

the pooled field soil cores were washed free of soil in a 1 mm sieve to extract the roots.
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Roots were removed, cut into 1 cm pieces, and preserved in 50% ethanol until microscopic

analysis. Roots were stained with Chlorazol Black E (Brundrett et al. 1984) and then

counted systematically under a microscope using the gridline intersect method (McGonigle

et al. 1990).

Plant biomass estimation

I used partial least squares (PLS) regression to predict plant biomass using the same

model creation methodology described in Chapter 2. A subset of randomly selected plots,

one from each factor combination, was destructively harvested to create a PLS standard

curve for six of eight plant species between September 14th, 2011 and September 16th, 2011.

Similarly, a second set of plots was also destructively harvested between August 28th, 2012

and August 31th, 2012 as plants grew larger and morphological predictor characteristics

were anticipated to change from first to second growing season. In both years, the C3

grasses (see above) were not estimated; living plant tissue was not available in September

due to early season senescence and poor plant performance, resulting in unreliable partial

least squares regression estimates in the field. Since aboveground biomass harvesting may

have introduced a plant growth bias in subsequent growing seasons, plots harvested in

the first year were excluded from the final analyses. Plots destructively harvested in the

second growing season were included in final analyses as they were not disturbed prior to

harvesting.

Biomass was estimated for plants in the center of each plot (i.e. the ”core area”(Figure

3.1)) in September 2011 and 2012. Core area plants were measured to reduce any con-

founding edge effects present in the field plots. Thirty–three (33) plant plugs in the core

area were measured for each plot for a total of 3,960 plug locations measured per growing

season.

I measured morphological plant characters related to height, diameter, and stem counts

when appropriate for each plant species for the Fall 2011 and Fall 2012 growing seasons

(Table 3.3). The predictor variables were selected via BIC model selection then used to

measure the remainder of the 3,960 plant plugs in the field each season (Table 3.4). Partial

least squares predicted mass was subtracted from the corresponding reference plant mass

(Pmass–Rmass) ± 1 standard deviation (SD) to estimate prediction error. A value of zero

indicates Pmass = Rmass, hence a perfect prediction. Statistical details of measurement

accuracy for each species are given in Table 3.5.
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Figure 3.1: Diagram of the plant plug layout with plant positioning. Each hexagonal cell
signifies the location and identity of one plant taxa added to the plot as a plant plug. All
plots have the same plug configuration to minimize spatial variability. Plug spacing = 33 cm.
Plants sampled in the core are indicated in beige. See Table 3.2 for plug abbreviations.
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Table 3.3: Morphological characters measured in the field for the six plant species in
September 2011 and September 2012. The most parsimonious combination of variables was
selected via Bayesian Information Criterion model selection to create the predictive models.

Species Year Measured Variables)

C4 Grasses

Andropogon gerardii 2011
height; weigh plate; # of tillers; # of seed heads;
basal circumference

2012
height; weigh plate; # of tillers; # of seed heads;
basal circumference; circumference @ 30cm

Panicum virgatum 2011
height; weigh plate; # of tillers; # of seed heads;
basal circumference

2012
height; weigh plate; # of tillers; # of seed heads;
basal circumference; circumference @ 30cm

N–Fixing Forbs

Desmodium canadense 2011
stem length; # of stems; length of stem
inflorescence; basal circumference

2012
stem length; # of stems; length of stem
inflorescence; basal circumference; circumference
@ 30cm

Lespedeza capitata 2011
stem length; # of stems; # of stems with
inflorescence; inflorescence length; basal
circumference

2012
stem length; # of stems; # of stems with
inflorescence; inflorescence length; basal
circumference

Composite Forbs

Liatris cylindracea 2011
# of leaves; height; # of inflorescence; length of
stems with inflorescence

2012
# of leaves; height; # of inflorescence; length of
stems with inflorescence

Symphyotrichum laeve 2011
stem length; # of stems; # of stems with
inflorescence; inflorescence length

2012
stem length; # of stems; # of stems with
inflorescence; inflorescence length
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Table 3.4: Morphological characters selected for the six plant species measured in Septem-
ber 2011 and September 2012. The variables given in the table were selected via Bayesian
Information Criterion model selection to create the predictive models using partial least
square regression.

Species Year Comp Predictor Vars(mass ~ x1 + x2 + ... xn)

C4 Grasses
Andropogon gerardii 2011 2 (height) + (weigh plate)

2012 3
(weigh plate) + (circumference @ 30cm) +
(circumference @ 30cm)2 + (# of seed
heads) + (# of seed heads)2

Panicum virgatum 2011 2 (basal circumference) + (weigh plate)

2012 2
(circumference @ 30cm) + (weigh plate) +
(weigh plate)2 + (# of seed heads)

N–Fixing Forbs

Desmodium canadense 2011 2
(mean stem length) + (sum stem length) +
(sum stem length)2

2012 1
(basal circumference) + (circumference @
30cm)

Lespedeza capitata 2011 2 (sum stem length)+ (mean stem length)

2012 2 (sum stem length) + (sum stem length)2

Composite Forbs

Liatris cylindracea 2011 2
(# of leaves) + (# of leaves)2 + (# of
leaves)3 + (height) + (height)2

2012 1 (# of leaves) + (height)

Symphyotrichum laeve 2011 3
(sum stem length) + (mean stem length) +
(mean stem length)2

2012 4
(mean inflorescence length) + (mean
inflorescence length)2 + (sum stem length)
+ (sum stem length)2
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Table 3.5: Partial least squares regression diagnostics for the six plant species measured in September 2011 and September 2012.
All prediction data is based on variables selected via Bayesian Information Criterion model selection (Table 3.4). Mass data is
given in grams (g) dry weight based on weighed plants used to create the standard curve. For each species, predicted plant mass
from the partial least squares regression model was subtracted from the reference plant mass (Pmass – Rmass ) ± 1 standard
deviation (SD) to calculate within–model estimates. When Pmass = Rmass, predicted mass is equal to reference mass, thus
represents a perfect prediction. R-squared, root mean squared error (RMSE), and p–values were calculated for Pmass – Rmass

using linear regression for each plant species to indicate prediction accuracy. All regression diagnostics are based on a slope = 1
and intercept = 0.

Species Year mass ± 1 SD Rep (Pmass–Rmass) ± 1 SD RMSE R2 p–value

C4 Grasses
Andropogon gerardii 2011 8.5g ± 5.1g 36 0.2g ± 2.4g 9.9g 0.944 <0.001

2012 30.7g ± 22.9g 41 0.9g ± 5.1g 28.6g 0.983 <0.001

Panicum virgatum 2011 15.7g ± 11.1g 34 -0.7g ± 6.2g 17.6g 0.892 <0.001

2012 94.1g ± 84.9g 41 -1.2g ± 21.5g 100.0g 0.970 <0.001

N–Fixing Forbs
Desmodium canadense 2011 33.5g ± 20.1g 36 -0.4g ± 7.6g 36.1g 0.962 <0.001

2012 29.6g ± 21.2g 41 -1.0g ± 12.9g 38.1g 0.873 <0.001

Lespedeza capitata 2011 2.7g ± 2.2g 25 -0.1g ± 1.0g 2.9g 0.923 <0.001

2012 2.2g ± 3.3g 25 -0.1g ± 1.1g 1.9g 0.924 <0.001

Composite Forbs
Liatris cylindracea 2011 2.5g ± 1.3g 35 0.0g ± 0.6g 3.1g 0.957 <0.001

2012 0.9g ± 0.8g 41 0.9g ± 0.8g 1.0g 0.917 <0.001

Symphyotrichum laeve 2011 7.9g ± 4.1g 36 -0.3g ± 2.8g 10.2g 0.901 <0.001

2012 7.9g ± 9.7g 41 -0.2g ± 1.8g 6.9g 0.981 <0.001
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3.2.5 Seed application trial

The seed application experimental plots were set–up adjacent to the plug experiment

using the same plot dimensions and soil amendment incorporation protocol. Plots were

established in August of 2010 using a fully–crossed, randomized factorial design and moni-

tored for 3 growing seasons (2011–2013). Factors were: six rates of each amendment given

in Table 3.1 and Rhizophagus irregularis inoculation (±). Amendment and inoculation

combinations were not replicated, for a total of seventy–two plots. To minimize overwinter

seed mortality and undesired seed movement via wind scour, seeding and inoculation were

not done until May 2011.

In April 2011, seeds were pre–weighed into bags, mixed with moist vermiculite, and

stored at 4 ◦C in the refrigerator for one month (Table 3.6). This process of cold–moist

stratification promotes rapid spring germination of dormant plant seeds. In May 2011,

cold–moist stratified seeds were hand sown and lightly mixed with a steel rake into the

sandpit substrate. A seed roller was used to press the seed into the sandpit floor to ensure

soil–seed contact. Mycorrhizal inoculum was added to one set of the amendments via a

liquid medium containing spores at the recommended rate. Seeds were applied at double

the standard rate for recommended for tallgrass prairie restoration projects to ensure plant

establishment in the experiment.

Table 3.6: Seeding rate in grams (g) for the eight grassland plant species used in the seed
application trial. Plot size was 10.2 m2. Seeds were cold–moist stratified at 4 ◦C for one
month until the time of sowing in the field (May 2011).

Species Seeding Rate (g)

Andropogon gerardii 7.0 g

Panicum virgatum 1.5 g

Elymus canadensis 5.5 g

Bromus kalmii 2.5 g

Desmodium canadense 1.5 g

Lespedeza capitata 1.5 g

Liatris cylindracea 4.0 g

Symphyotrichum laeve 6.0 g
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Percent cover estimation

A photographic time–series technique was used to estimate the percent cover of plant

growth in the seed application trial. This approach tracked the germination and establish-

ment rates of the seeded grassland species across the treatment levels. An angle camera

monopod was constructed to take overhead pictures in each plot (Figure 3.2). Photos were

cropped to analyze a 2.6 m2 area. Total plant cover was measured using the SamplePoint

software (Booth and Cox 2008). In SamplePoint, a 100 point overlaying grid was used to

classify pixels as grass, composite forb, N–fixing forb, soil, or plant litter. Native plant cover

was estimated from the summation of grasses, forbs, and N–fixing forbs and subsequently

divided by total pixels estimated. Photographs of each plot were taken in September for

three growing seasons (2011–2013).

Figure 3.2: Collecting photographic data to analyze percent plant cover. A right–angled
monopod was designed to take over–head photographs used to estimate plant cover in the
seed application trial. The monopod was raised and leveled with the camera on a delayed
setting to capture a picture for cover estimation in the SamplePoint software. (Photo Taken:
September 2012)
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3.2.6 Statistical analyses

Linear mixed effects models were used to test treatment significance for the plant re-

sponse estimates and AM colonization of field roots. Linear mixed effects models use mul-

tivariate statistical procedures that account for random variability associated with plots

at the field site. AM colonization of plant plug roots in inoculated versus non–inoculated

treatments were evaluated using a t–test. Data transformations were employed when nec-

essary to approximate a normal distribution of model residuals. Relative plot height was

included as a covariate in all linear mixed effects models. Linear mixed effect model se-

lection procedures iteratively removed non–significant variables using Chi–squared tests.

This resulted in the most parsimonious models to analyze statistical significance for each

response variable. Linear mixed effects models were analyzed using the lme4 package in R

(R-Core-Team 2013, Bates et al. 2014). Significance levels (p–values) derived from Markov

Chain Monte Carlo methods, % explained deviance (an R–squared proxy, abbreviated: %

Expl. Dev.), and main level post–hoc comparisons were calculated using the R package

LMERConvenienceFunctions by Tremblay and Ransijn (2013).

3.3 Results

3.3.1 Plant plug trial

AM fungal establishment in greenhouse plug roots

All eight plant species were colonized by AM fungi in the greenhouse (Figure 3.3). The

application of R. irregularis inoculum resulted in significant increases in percent colonization

in all species compared to non–inoculated plants (p<0.001) (mean ranges of AM fungi in

inoculated roots: 16.9% (E. canadensis) – 30.1% (Andropogon gerardii)). As expected

in the unsterile greenhouse environment, low levels of AM fungal colonization of roots

were detected in non–inoculated plant plugs across all plant species (<5.0% mean AM

colonization of roots). These results indicate that the AM fungal inoculum treatment was

established at the onset of the plant plug trial.

AM fungal establishment in field roots

R. irregularis inoculum persisted in the field after two growing seasons. Significant

increases in AM colonization rates of field roots were detected in inoculated vs. non–

inoculated plots (p<0.001)(Figure 3.4a). AM fungal inoculated treatments nearly doubled

in the rate of root colonization between September 2011 and September 2012 (mean AM

fungal colonization of roots: 22.4% (2011) to 45.8% (2012)). Mean AM fungal colonization
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rates of roots in the non–inoculated plots tripled from 5.5% (2011) to 15.8% (2012). Roots

in inoculated plots experienced a larger relative increase in AM fungal colonization between

September 2011 and September 2012 compared to non–inoculated treatments (p<0.001).

Plant biomass responses in the plant plug trial

Increases in total plant biomass were influenced by soil amendments (p=0.056), growing

season (p<0.001), and the relative plot height covariate (p=0.068) in the plant plug trial. No

significant difference in total plant biomass was detected in plots receiving soil amendments

compared to non–amended controls (p>0.05). No significant interactions among the model

terms were detected.
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Figure 3.3: Percent AM fungal colonization of greenhouse grown plant plug roots. Plant
plugs were randomly selected just prior to sowing plant plugs in the field (June 2010). Ten
plant plugs from each treatment level (± R. irregularis) of all eight species were analyzed
for AM colonization of roots using t-tests comparing inoculated and non–inoculated plants.
Raw data ± 1 SD is presented in the graph. Each asterisk represents a p–value (***) <
0.001 for comparisons between inoculation treatment levels. Replication = 10.

48



3.3. Results

(a)

Inoculated
Not Inoculated

0%

20%

40%

September 2011 September 2012

60%

A
M

 C
ol

on
iz

at
io

n 
of

 R
oo

ts
(%

 A
rb

us
cu

le
s 

+ 
%

 V
es

ic
le

s)

Non
e

5B
C

10
BC

20
CP

20
CP + 

5B
C

20
CP + 

10
BC

Non
e

5B
C

10
BC

20
CP

20
CP + 

5B
C

20
CP + 

10
BC

(b)

Model Terms p–value sig. level % Expl. Dev.

AM Inoculation <0.001 *** 33.64%
Year <0.001 *** 24.19%
Plot Height (Dry → Wet) 0.003 (**) 0.94%

Interactions
Year × Plot Height 0.056 . 0.39%
Year × AM Inoculation <0.001 *** 3.35%
Amendment × AM Inoculation × Year 0.035 * 1.27%

Significance: *** ≤ <0.001 | ** ≤ 0.010 | * ≤ 0.050 | . ≤ 0.100
Note: Relationships with negative regression slopes are indicated by parentheses.

Figure 3.4: AM fungal colonization of the mixed community of field roots in the plant plug
trial. Panel (a) represents the graph of raw data with error bars (± 1 SD) based on the most
parsimonious linear mixed effects model. Experimental treatment replication = 9. The left
graph panel represents data after one growing season. Labels on the x–axis: None = no
soil amendment, 5BC = 5 T ha−1 biochar, 10BC = 10 T ha−1 biochar, 20CP = 20 T ha−1

compost, 5BC +20CP = 5 T ha−1 biochar + 20 T ha−1 compost, 10BC +20CP = 10 T ha−1

biochar + 20 T ha−1 compost. Statistical output (b) shows significant main effect terms
and interactions. Main effects included in the model were: Amendment, AM inoculation,
Plot Height, and Year. % explained deviance is abbreviated as % Expl. Dev. in the output.
Model terms with negative regression slopes are indicated in parentheses.
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Biochar amendments compared to non–amended control plots, direct effects of biochar

were not detected on total plant biomass (p>0.05)(Figure 3.5a). Unexpectedly, biochar only

amendments significantly reduced total plant biomass compared to the majority of compost

and compost + biochar amended plots (Figure 3.5a). Only Andropogon gerardii responded

negatively to the addition of biochar compared to non–amended control plots (Figure 3.6a).

All other measured plant species exhibited no direct response to either biochar rate.

Compost amendment The total plant biomass response to the compost only amend-

ment was positive compared to non-amended controls although not statistically significant

(p=0.125). Andropogon gerardii biomass was reduced in the presence of compost compared

to non–amended control plots (Figure 3.6a). Desmodium canadense experienced significant

increases in plant biomass in the presence of compost amendments. No other direct compost

only effect were detected in plant response for the four other plant species in this trial.

AM fungal inoculation AM fungal inoculation did not significantly influence total plant

biomass in the plant plug trial (Figure 3.5a) although each species varied in plant biomass

when inoculated with R. irregularis. The biomass of Panicum virgatum (p<0.001) and Les-

pedeza capitata (p=0.021) responded positively to R. irregularis inoculation. In contrast,

Andropogon gerardii and Liatris cylindracea biomass was significantly reduced in AM in-

oculated plots (p<0.05). No inoculation response was detected for Symphyotrichum laeve

and Desmodium canadense. Altogether, interspecies variation in plant response to AM

inoculation resulted in a neutral effect on the total biomass response in the community.

Synergistic effects of biochar, compost, and AM fungal inoculation Direct total

plant biomass effects of 10 T ha−1 of biochar + 20 T ha−1 of compost were positive compared

to non–amended control plots although not statistically significant (p=0.117).(Figure 3.5a).

Co–amended plots with 10 T ha−1 of biochar + 20 T ha−1 of compost significantly increased

total plant biomass compared to plots with 5 T ha−1 of biochar (p=0.037) and 10 T ha−1

of biochar (p=0.008) amended plots. The interaction of AM fungal inoculum and soil

amendments did not significantly influence total plant biomass. No significant differences

were detected when comparing total plant biomass in compost and compost + biochar.

50



3.3. Results

(a)

0

200

400

September 2011 September 2012

600

To
ta

l P
la

nt
 B

io
m

as
s

(g
ra

m
s)

Non
e

5B
C

10
BC

20
CP

20
CP + 

5B
C

20
CP + 

10
BC

Non
e

5B
C

10
BC

20
CP

20
CP + 

5B
C

20
CP + 

10
BC

(b)

Model Terms p–value sig. level % Expl. Dev.

Amendment 0.056 . 2.95%
Year <0.001 *** 3.99%
Plot Height (Dry → Wet) 0.068 . 0.90%

Sig. Post–Hoc Comparisons p–value sig. level

5BC → 20CP 0.039 *
5BC → 20CP + 10BC 0.037 *
10BC → 20CP 0.008 **
10BC → 20CP + 5BC 0.052 .
10BC → 20CP + 10BC 0.008 **

Significance: *** ≤ 0.001 | ** ≤ 0.010 | * ≤ 0.050 | . ≤ 0.100
Note: Relationships with negative regression slopes are indicated by parentheses.

Figure 3.5: Predicted total plant biomass in the plant plug trial. Panel (a) represents the
graph of raw data with error bars (± 1 SD) based on the most parsimonious linear mixed
effects model. Experimental treatment replication = 9. The left graph panel represents
data after one growing season. Labels on the x–axis: None = no soil amendment, 5BC
= 5 T ha−1 biochar, 10BC = 10 T ha−1 biochar, 20CP = 20 T ha−1 compost, 5BC +20CP
= 5 T ha−1 biochar + 20 T ha−1 compost, 10BC +20CP = 10 T ha−1 biochar + 20 T ha−1

compost. Statistical output (b) shows significant main effect terms and interactions. Main
effects included in the model were: Amendment, AM inoculation, Plot Height, and Year. %
explained deviance is abbreviated as % Expl. Dev. in the output. Note that model terms
with negative regression slopes are indicated in parentheses around the significance levels.
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(b)

Model Terms p–value sig. level % Expl. Dev.

Amendment 0.048 (*) 1.45%
Year <0.001 *** 17.61%
Plot Height (Dry → Wet) 0.061 . 0.45%
AM Inoculation 0.022 (*) 0.67%

Sig. Post–Hoc Comparisons p–value sig. level

None → 5BC 0.094 (.)
None → 10BC 0.012 (*)
None → 20CP + 5BC 0.003 (**)
None → 20CP + 10BC 0.027 (*)
10BC → 20CP 0.069 .
20CP → 20CP + 5BC 0.018 (*)

Significance: *** ≤ 0.001 | ** ≤ 0.010 | * ≤ 0.050 | . ≤ 0.100
Note: Relationships with negative regression slopes are indicated by parentheses.

Figure 3.6: Predicted Andropogon gerardii biomass in the plant plug trial. Panel (a) repre-
sents the graph of raw data with error bars (± 1 SD) based on the most parsimonious linear
mixed effects model. Experimental treatment replication = 9. The left graph panel repre-
sents data after one growing season. Labels on the x–axis: None = no soil amendment, 5BC
= 5 T ha−1 biochar, 10BC = 10 T ha−1 biochar, 20CP = 20 T ha−1 compost, 5BC +20CP
= 5 T ha−1 biochar + 20 T ha−1 compost, 10BC +20CP = 10 T ha−1 biochar + 20 T ha−1

compost. Statistical output (b) shows significant main effect terms and interactions. Main
effects included in the model were: Amendment, AM inoculation, Plot Height, and Year. %
explained deviance is abbreviated as % Expl. Dev. in the output. Note that model terms
with negative regression slopes are indicated in parentheses around the significance levels.
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Lespedeza capitata was positively influenced by the interaction among the soil amend-

ments and AM fungal inoculum compared to non–amended control (Figure 3.7a). Desmod-

ium canadense experienced biomass gains in the presence of all compost + biochar amended

treatments compared to biochar only and non–amended plots (Figure 3.8a). Desmodium

canadense’s large response to compost and compost + biochar amended plots strongly

influenced total biomass results in September 2011 (Figure 3.5a). Comparatively, only An-

dropogon gerardii responded negatively to the compost + biochar treatments compared to

non–amended control plots (Figure 3.6a). Overall, these results indicate that compost +

biochar addition with AM fungal inoculation enhances the plant community response at

the species level in post–mine sandpits.

Growing season Interspecies growth response was highly variable after two full growing

seasons. In all models, growing season explained the highest amount of variation in the

species biomass datasets. The biomass of N-fixing forbs (Figure 3.7a & Figure 3.8a) and

composite forbs (Figure 3.10a & Figure 3.11a) was significantly reduced between September

2011 and September 2012. Comparatively, the C4 grasses (Andropogon gerardii and Pan-

icum virgatum) experienced biomass gains between September 2011 and September 2012.

The C4 grasses were amongst the largest contributors to total biomass, accounting for total

biomass gains from September 2011 to September 2012.

Plot height covariate A trend was detected in the response of total biomass to the plot

height covariate (p=0.068)(Figure 3.5a). This indicates that plant biomass increased in

plots lower on the landscape regardless of treatment. Similarly, the plot height covariate

was significant and positive for all measured plant species except for Desmodium canadense

(p>0.05) and Panicum virgatum (p>0.05). The influence of the plot height covariate in the

total biomass analysis may have been suppressed since Desmodium canadense and Panicum

virgatum are among the largest contributors to total plant biomass.

3.3.2 Seed application trial

Note: Two plots in the southeast corner of the seed application trial were removed from

the analysis due to close proximity to the research site’s water table. These outlier plots,

5 T ha−1 biochar + AM fungi (% cover in 2013: 53%) and 5 T ha−1 biochar - AM fungi (%

cover in 2013: 61%), were nearest to a former wet depression at the field site and exhibited

high vegetative density compared to all other plots. Mean total % cover ± 1 SD excluding

outlier plots was 21% ± 9% in 2013.

The eight species sown at the mine site accounted for the vast majority of the vegeta-

tion in seed application trial. Non–seeded volunteer plant cover was negligible throughout
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(b)

Model Terms p–value sig. level % Expl. Dev.

Year <0.001 (***) 4.00%
Plot Height (Dry → Wet) 0.035 * 0.50%
AM Inoculation 0.021 * 0.60%

Interactions
Amendment × AM Inoculation × Year 0.014 * 1.61%

Significance: *** ≤ 0.001 | ** ≤ 0.010 | * ≤ 0.050 | . ≤ 0.100
Note: Relationships with negative regression slopes are indicated by parentheses.

Figure 3.7: Predicted Lespedeza capitata biomass in the plant plug trial. Panel (a) represents
the graph of raw data with error bars (± 1 SD) based on the most parsimonious linear mixed
effects model. Experimental treatment replication = 9. The left graph panel represents
data after one growing season. Labels on the x–axis: None = no soil amendment, 5BC
= 5 T ha−1 biochar, 10BC = 10 T ha−1 biochar, 20CP = 20 T ha−1 compost, 5BC +20CP
= 5 T ha−1 biochar + 20 T ha−1 compost, 10BC +20CP = 10 T ha−1 biochar + 20 T ha−1

compost. Statistical output (b) shows significant main effect terms and interactions. Main
effects included in the model were: Amendment, AM inoculation, Plot Height, and Year. %
explained deviance is abbreviated as % Expl. Dev. in the output. Note that model terms
with negative regression slopes are indicated in parentheses around the significance levels.
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(b)

Model Terms p–value sig. level % Expl. Dev.

Amendment <0.001 *** 9.27%
Year <0.001 (***) 14.05%

Sig. Post–Hoc Comparisons p–value sig. level

None → 20CP <0.001 ***
None → 20CP + 5BC <0.001 ***
None → 20CP + 10BC <0.001 ***

5BC → 20CP <0.001 ***
5BC → 20CP + 5BC <0.001 ***
5BC → 20CP + 10BC <0.001 ***

10BC → 20CP <0.001 ***
10BC → 20CP + 5BC <0.001 ***
10BC → 20CP + 10BC <0.001 ***

Significance: *** ≤ 0.001 | ** ≤ 0.010 | * ≤ 0.050 | . ≤ 0.100
Note: Relationships with negative regression slopes are indicated by parentheses.

Figure 3.8: Predicted Desmodium canadense biomass in the plant plug trial. Panel (a)
represents the graph of raw data with error bars (± 1 SD) based on the most parsimonious
linear mixed effects model. Experimental treatment replication = 9. The left graph panel
represents data after one growing season. Labels on the x–axis: None = no soil amend-
ment, 5BC = 5 T ha−1 biochar, 10BC = 10 T ha−1 biochar, 20CP = 20 T ha−1 compost,
5BC +20CP = 5 T ha−1 biochar + 20 T ha−1 compost, 10BC +20CP = 10 T ha−1 biochar
+ 20 T ha−1 compost. Statistical output (b) shows significant main effect terms and in-
teractions. Main effects included in the model were: Amendment, AM inoculation, Plot
Height, and Year. % explained deviance is abbreviated as % Expl. Dev. in the output.
Note that model terms with negative regression slopes are indicated in parentheses.
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(b)

Model Terms p–value sig. level % Expl. Dev.

Year <0.001 *** 43.34%
AM Inoculation <0.001 *** 0.88%

Significance: *** ≤ 0.001 | ** ≤ 0.010 | * ≤ 0.050 | . ≤ 0.100
Note: Relationships with negative regression slopes are indicated by parentheses.

Figure 3.9: Predicted Panicum virgatum biomass in the plant plug trial. Panel (a) represents
the graph of raw data with error bars (± 1 SD) based on the most parsimonious linear mixed
effects model. Experimental treatment replication = 9. The left graph panel represents
data after one growing season. Statistical output (b) shows significant main effect terms
and interactions. Main effects included in the model were: Amendment, AM inoculation,
Plot Height, and Year. % explained deviance is abbreviated as % Expl. Dev. in the output.
Note that model terms with negative regression slopes are indicated in parentheses around
the significance levels.
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(b)

Model Terms p–value sig. level % Expl. Dev.

Year <0.001 (***) 34.74%
Plot Height (Dry → Wet) 0.001 ** 1.86%

Interactions
Amendment × Year 0.094 . 1.65%
Year × Plot Height <0.001 *** 2.21%

Significance: *** ≤ 0.001 | ** ≤ 0.010 | * ≤ 0.050 | . ≤ 0.100
Note: Relationships with negative regression slopes are indicated by parentheses.

Figure 3.10: Predicted Symphyotrichum laeve biomass in the plant plug trial. Panel (a)
represents the graph of raw data with error bars (± 1 SD) based on the most parsimonious
linear mixed effects model. Experimental treatment replication = 9. The left graph panel
represents data after one growing season. Labels on the x–axis: None = no soil amend-
ment, 5BC = 5 T ha−1 biochar, 10BC = 10 T ha−1 biochar, 20CP = 20 T ha−1 compost,
5BC +20CP = 5 T ha−1 biochar + 20 T ha−1 compost, 10BC +20CP = 10 T ha−1 biochar
+ 20 T ha−1 compost. Statistical output (b) shows significant main effect terms and in-
teractions. Main effects included in the model were: Amendment, AM inoculation, Plot
Height, and Year. % explained deviance is abbreviated as % Expl. Dev. in the output.
Note that model terms with negative regression slopes are indicated in parentheses around
the significance levels.
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(b)

Model Terms p–value sig. level % Expl. Dev.

Year <0.001 (***) 70.96%
Plot Height (Dry → Wet) <0.001 *** 1.09%

Interactions

Plot Height × Year 0.045 * 0.38%
Amendment × Inoculation 0.081 (.) 0.93%
Year × Inoculation 0.039 (*) 0.40%

Significance: *** ≤ 0.001 | ** ≤ 0.010 | * ≤ 0.050 | . ≤ 0.100
Note: Relationships with negative regression slopes are indicated by parentheses.

Figure 3.11: Predicted Liatris cylindracea biomass in the plant plug trial. Panel (a) repre-
sents the graph of raw data with error bars (± 1 SD) based on the most parsimonious linear
mixed effects model. Experimental treatment replication = 9. The left graph panel repre-
sents data after one growing season. Labels on the x–axis: None = no soil amendment, 5BC
= 5 T ha−1 biochar, 10BC = 10 T ha−1 biochar, 20CP = 20 T ha−1 compost, 5BC +20CP
= 5 T ha−1 biochar + 20 T ha−1 compost, 10BC +20CP = 10 T ha−1 biochar + 20 T ha−1

compost. Statistical output (b) shows significant main effect terms and interactions. Main
effects included in the model were: Amendment, AM inoculation, Plot Height, and Year. %
explained deviance is abbreviated as % Expl. Dev. in the output. Note that model terms
with negative regression slopes are indicated in parentheses around the significance levels.
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the study (mean % cover: 1.1%, range: from 0.0% - 16.0%). When present, non–seeded

vegetation was dominated by patches of the perennial herb Artemisia campestris (common

name: field wormwood). Pooled C3 and C4 grasses largely dominated vegetative cover after

three growing seasons (2013 mean % cover: 17.4%, range: 2.0% – 42.0%). The cover of

N–fixing forbs was second most abundant by the third growing season (2013 mean % cover:

3.0%, range: 0.0% – 19.0%). The establishment and survival of composite forbs was sparse

after three growing seasons (2013 mean % cover: 0.4%, range: 0.0% – 7.0%), leading to a

negligible contribution to total plant cover.

Plant cover in the seed application trial

As main effects, compost rate (p=0.025) and growing season (p<0.001) were the most

influential drivers of total plant cover. Model term interactions show variable positive and

negative plant cover responses depending upon factor combination. Significant increases

in total plant cover were largely driven by plots with three-way and four-way interactions

among biochar, compost, AM fungal inoculation, and growing season (Figure 3.12a). The

plot height covariate significantly influenced total cover where plots higher on the landscape

had more plant cover regardless of treatment when accounting for growing season (p=0.002).

Biochar amendments When all other factors were held constant, increasing rates

of biochar did not significantly influence total plant cover in the seed application trial

(p>0.05)(Figure 3.13). In addition, the plot height covariate and growing season did not

alter the influence of biochar in the field (p>0.05). The addition of biochar, regardless of

application rate, resulted in no direct influence on total plant cover in this experiment.

Compost amendments With all other factors held constant, increasing rates of compost

were a main driver of increasing total plant cover in the direct seeding study (p=0.025).

The compost x year interaction (p=0.001) revealed a significant negative total plant cover

response mainly driven by large variation in plots adding 40 T ha−1 compost (Figure 3.13).

AM fungal inoculation No direct influence of AM fungal inoculation was detected in the

seed application trial (p>0.05)(Figure 3.13). A trend of decreasing plant cover was detected

in plots adding AM fungal inoculum when accounting for growing season (p=0.065).
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(b)

Model Terms p–value sig. level % Expl. Dev.

Compost 0.025 * 0.92%
Year <0.001 *** 8.23%

Interactions
Compost × Biochar 0.062 (.) 0.64%
Compost × Year 0.001 (**) 1.91%
Biochar × Inoculation 0.093 (.) 0.52%
Inoculation × Year 0.067 (.) 0.62%
Inoculation × Plot Height (Dry → Wet) 0.075 (.) 0.58%
Year × Plot Height (Dry → Wet) 0.002 (**) 1.79%
Compost × Biochar × Year 0.040 * 0.77%
Compost × Biochar × Inoculation 0.093 . 0.52%
Compost × Year × Inoculation 0.018 * 1.03%
Compost × Biochar × Inoculation × Year × Plot Height 0.012 * 1.17%

Significance: *** ≤ 0.001 | ** ≤ 0.010 | * ≤ 0.050 | . ≤ 0.100
Note: Relationships with negative regression slopes are indicated by parentheses.

Figure 3.12: Raw data wireframe graph (a) of total native plant cover in the seed application
trial based on the most parsimonious linear mixed effects model. Panels represent the three
analyzed growing seasons (Fall 2011–Fall 2013). The gradient bar on the left indicates
increasing % cover from magenta → cyan. Results are based on the most parsimonious
statistical model. Significance levels and interactions for the model terms are given in the
statistical output table(b). y–axis = % total plant cover; x–axis = biochar rate, z–axis =
compost rate. AM fungal inoculation and relative plot height are not included in the graph
due to visual complexity. % explained deviance accounts for the proportion of variation
explained by each model term. Replication = 1.
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Figure 3.13: Diagnostic boxplots and a scatterplot for each main model term analyzing total
native plant cover when all other factors were held constant in the seed application trial.
Panels A–D are boxplots representing the raw data distribution for each categorical model
term included in the linear mixed effect model. Panel E is a scatterplot of the relative plot
height in meters compared to total native plant cover. The surveyed plots with relative
plot height values closer to zero are higher on the landscape. At the field site, surface soils
of plots higher on the landscape were observed to dry more rapidly than plots lower on the
landscape.
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Synergistic effects of biochar, compost, and AM fungal inoculation Plots with

increasing rates of biochar and compost resulted in significant increases in total plant cover

when accounting for growing season (p=0.040). When adding R. irregularis inoculum, total

plant cover was significantly increased only when combined with increasing rates of compost

+ growing season (p=0.018) or compost + biochar (p=0.093). Overall, plot inoculation with

AM fungal inoculum was most effective for increasing total plant cover when combined

with high rates of biochar and compost while accounting for plot height and growing season

influences (p=0.012).

Growing season Growing season explained the largest amount of variation in the model

(Expl. Dev: 8.23%) (Figure 3.12a). Total % cover across all treatments was sparse after

one growing season, gradually increasing by the second and third growing seasons (mean %

cover: 14.9% (2011), 17.7% (2012), and 20.9% (2013)).

Plot height covariate The plot height covariate did not directly influence total plant

cover in the model when all other factors were held constant (Figure 3.13). Plot height

was a significant covariate when determining increasing plant cover in the interaction terms

combining biochar, compost, AM fungal inoculation, and growing season (p=0.012). Plots

with a higher position at the field site exhibited increased plant biomass when accounting

for growing season (p=0.002).

3.4 Discussion

These field trials show that compost is the most influential driver to improve plant

response in post-mine sandpit areas regardless of planting method. Supplementing compost

with biochar and a commercial AM fungal inoculant largely accentuates its effectiveness by

further increasing plant response in the seed application trial. The combination of compost,

biochar, and AM inoculum are effective land management tools to restore grassland plants

in severely disturbed post-mine sandpits.

Plant response to AM fungal inoculation

The effectiveness of AM fungal inoculation depended upon the restoration planting

method in the field. Total plant biomass in the plant plug experiment was not significantly

influenced by R. irregularis inoculum. Although AM colonization was significantly greater

in inoculated plots in the plant plug trial, this did not translate to a consistent plant

response. Comparatively, total cover in the seed application trial responded positively

to the AM fungal inoculum addition only in the presence of high rates of compost and
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biochar. In both trials, my hypothesis that AM fungal inoculation would directly account

for increased total plant response in post–mine sandpits was not supported.

Studies indicate that the application of AM fungi in a mine restoration setting generates

positive plant responses from seed compared to non–inoculated controls (Noyd et al. 1996,

Johnson 1998, de Souza et al. 2010). But, these studies also suggest that the application

of AM fungi does not consistently increase plant response for all plant species or restora-

tion scenarios. In the seed application trial, the model suggests that AM fungal inoculum

increased total plant cover in the presence of increasing compost and compost + biochar

rates. Under similar mine area conditions, Püschel et al. (2011) shows that plant response

was maximized in mine spoil banks co–amended with AM fungal isolates and organic mat-

ter treatments due to increased resource availability. Contrary to this study, plant response

to AM fungal inoculum in mine areas can vary in the presence of soil conditioners such as

organic matter or fertilizer (Gryndler et al. 2008). Gryndler et al. (2008) revealed that the

addition of compost increased plant performance in reclaimed clay substrate to the detri-

ment of a plant biomass effect from AM fungal inoculation. Therefore, the addition of AM

fungal inoculum does not universially benefit plant growth in severely degraded mine areas.

In the plant plug trial, inoculated and non–inoculated plants were colonized by R. irreg-

ularis and the inoculation effect persisted in the field for two growing seasons. Yet, plant

host–fungal pairings in this study yielded mixed results in terms of plant response to the

commercial inoculum. P. virgatum and L. capitata responded positively to the commer-

cial inoculum while A. gerardii and L. cylindracea biomass decreased. Plant–mycorrhizal

associations range from mutualistic to parasitic depending upon the environmental context

and host species (Johnson et al. 1997). Klironomos (2003) shows that AM fungal–plant

pairings are known to be unpredictable in biomass responses along a mutualistic–parasitic

continuum. In my mixed community of grassland plants, the effectiveness of commercial

inoculum was shown to be variable depending upon plant species. Thus, the universal

application of a single AM fungal isolate may not benefit all target plants when restoring

grassland habitat.

In the plant plug trial, AM fungal colonization was initially present in the non–inoculated

control plugs due to non–sterile greenhouse conditions. A mycorrhizal effect induced by

R. irregularis on plant response may have been significant if inoculated plant plugs were

compared to sterile, non–colonized plant plug roots. In a transplant study of Sporobolus

wrightii into agricultural fields, greenhouse grown plants inoculated with AM fungi had

greater survival, larger basal diameters, and increased tiller production after two growing

seasons (Richter and Stutz 2002). That study compared plants growing in sterilized soil

versus plants inoculated with AM fungi. Therefore, it is possible that the background

mycorrhizal community present in non–inoculated plant plugs grown in the greenhouse may
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have also benefited plant growth in the field. Thus, a mycorrhizal effect from R. irregularis

may be minimized due to the presence of a background AM fungal community in my study.

Compared to the plant plug trial, a background community of AM fungi was not in-

troduced into the seed application experiment in the non–inoculated controls. The sandpit

did not have a legacy of plant growth prior to planting. Therefore, inoculum potential in

the mine substrate was anticipated to be very low (Allen and Allen 1980, Stahl et al. 1988).

Furthermore, any established hyphal networks present before the disturbance would have

reduced infectivity in the severely disturbed mine system (Jasper et al. 1989). In my study,

the addition of AM fungi was potentially more effective in promoting a plant response in

the seed application trial due to a lack of an infective background AM fungal community

at the site.

Over time, the immigration of AM fungal propagules adapted to post–mine conditions

is expected to develop and benefit new plant recruits in degraded areas (Ganesan et al.

1991). Thorne et al. (2013) found no difference in dominant prairie plant growth when

comparing AM fungi collected from a 30-year reclaimed mine spoil and a tallgrass prairie

soil. The commercial fungal isolate used in that experiment, R. irregularis, may not be

well–adapted to mine land conditions, thus exhibiting an inconsistent plant response in the

plant plug trial. Taheri and Bever (2010) found that plants growing in mines are particularly

dependent on strong AM fungal partners under harsh edaphic condition. Larger plant

biomass responses were induced when locally adapted AM fungi from recovering mine areas

were applied as inoculum. Inoculating plants with AM fungi isolated from sandy, post–mine

habitats may increase target plant biomass due to local adaptation of the inoculum.

Plant response to biochar

Biochar as a solitary amendment was not an effective land management tool to promote

plant growth in either trial. Applying biochar alone reduced plant growth compared to

most compost and compost + biochar amended plots in the plant plug experiment while

exhibiting no significant difference from non–amended controls. In the seed application

experiment, biochar rate did not directly influence total plant cover but was an effective

tool to promote plant response when used in combination with compost and AM fungal

inoculum. In both trials, my hypothesis that biochar would directly account for increased

total plant response in post–mine sandpits was not supported.

The high cation exchange capacity of biochar may have bound nutrients in the soil

solution, thus introducing more abiotic stress into the plant plug trial (Liang et al. 2006).

Positive vegetative response to biochar application in disturbed mine substrates has been

attributed to increased water holding capacity, nutrient retention, and reduced soil bulk

density (Fellet et al. 2011, Kelly et al. 2014). These nutrient retention properties may have
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been to be detrimental to rapidly growing plants in my study. Xu et al. (2013) found that

biochar application to sandy soils resulted in pH changes and mineral sorption to alter

nutrient bioavailability and reduce predicted total phosphorous. In metal contaminated

mine sites, Beesley et al. (2014) found high metal adsorption rates when co–amending soils

with biochar and compost. The potential nutrient retention (Ding et al. 2010) and release

(Mukherjee and Zimmerman 2013) of biochar alone did not result in increased total plant

biomass in the plant plug trial. Further research should be conducted to determine the

efficacy of applying biochar as a solitary amendment in unconsolidated mine substrates.

The properties of biochar as a solitary amendment may only be beneficial depending

upon the environmental context. Experiments on biochar amendments have been largely

restricted to agricultural soil systems and test plants have exhibited mixed growth results

(Major et al. 2010, Jones et al. 2012, Filiberto and Gaunt 2013). A solitary study investi-

gating biochar’s effect on a native and invasive grassland plant in a greenhouse experiment

indicates increased biomass of the native plant, Andropogon gerardii, while reducing the

growth of the invasive plant, Lespedeza cuneata (Adams et al. 2013). The results of my

study contradict Adams et al. (2013) as biochar had no significant influence on the biomass

of Andropogon gerardii. A key difference between the studies was that the greenhouse

experiment used natural soils collected from a 2–yr–old prairie restoration site on former

agricultural land. Biochar’s effectiveness as a soil amendment may be more promising when

restoring former agricultural landscapes as compared to low quality post–mine soils.

The negative effects of biochar were not evident in the seed application trial. With all

other factors held constant, biochar rate had no direct effect on total native plant cover. One

reason may be that plant plug individuals grew much larger and faster than seeded plants

over the same time period. Plant competition for soil nutrient resources may have outpaced

a fertilization benefit gained by low rates of biochar at the site. The increased root stock

associated with gains in aboveground plant tissues would have a high nutrient and water

demand in the mine substrate (Craine and Dybzinski 2013). Comparatively, the growth

of the grassland plants in the seed application trial was stunted over the same growing

period. The nutrient requirements of plants in the seed application trial may have been

reduced, thus minimizing the negative effects attributed to biochar. Therefore, restoration

practitioners should approach the application of biochar to abioticially stressed mine areas

with caution. Unintended reductions in plant community response may cascade through the

system by creating more stressful plant growth conditions after the application of biochar

in the field.
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Plant response to compost

Compost as a solitary amendment was the most effective soil amendment to promote

plant growth in both trials. Applying compost alone promoted positive plant growth in

the plant plug trial with compared non–amended and biochar amended plots. In the seed

application experiment, increasing the rate of compost directly contributed to total plant

cover and its effectiveness increased when used in combination with biochar and AM fungal

inoculum. In both trials, my hypothesis that compost would directly account for increased

total plant response in post–mine sandpits was supported.

It is not surprising that compost resulted in improved plant growth, likely due to its

well–known fertilizer effect, its ability to increase water retention, and create higher cation

exchange capacity in soils (Shiralipour et al. 1992). Similarly, compost has been shown to

promote plant production from seed in other severely disturbed mine restoration scenarios

(Hortenstine and Rothwell 1972, Norland and Veith 1995, Noyd et al. 1996). A one–time

application of compost is shown to be an effective, readily available technical reclamation

tool that accelerates prairie plant growth from seed in my study. The long–term residual

effects of compost are anticipated to continue to benefit plant growth in upcoming growing

seasons (Diacono and Montemurro 2010).

In the seed experiment, high rates of compost were the most influential technical recla-

mation tool to alleviate abiotic plant stress as evident by increased total plant cover. A

reduction in plant cover was detected in plots adding compost when accounting for growing

season. Investigating the patterns in the raw data, high variability was detected in plots

adding compost at 40 T ha−1 with increasing rates of biochar. This created large variance

in the final predictive model for this treatment level with all other factors held constant.

As the model interaction terms increased in complexity, total plant cover values showed

a positive response as biochar rates and AM fungal inoculum were incorporated into the

linear mixed effects model. Increased plot replication in the seed application trial would

have accounted for the inevitable natural environmental stochasticity at the field site.

Synergisms among biochar, compost, and arbuscular mycorrhizas

Combining biochar, compost, and AM fungal inoculum had minimal effect in the plant

plug trial in terms of total plant biomass compared to non–amended controls. The highest

rates of compost + biochar, 20 T ha−1 of compost + 10 T ha−1 of biochar, had the largest

positive influence on total plant biomass compared to control although not significant. In

the seed application trial, the synergistic effect of increasing rates of compost and biochar

combined with AM fungal inoculation was effective in promoting total plant cover in the

field. My hypothesis that the synergistic effect of all amendments would account for the
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largest plant response in each trial was weakly supported in the plant plug trial and strongly

supported in the seed application trial.

Compost rates in the plant plug experiment may have been too low to elicit a strong

plant response in the plant plug trial. Noyd et al. (1996) shows a significant increase in

plant grassland plant cover in taconite mine spoils when increasing compost rates from

22.4 T ha−1 to 44.8 T ha−1 after three growing seasons. In clay spoils, Püschel et al. (2008a)

indicates that three high compost amendment rates (100 T ha−1, 200 T ha−1, 500 T ha−1)

significantly increased the flax biomass compared to controls. However, only negligible in-

creases in plant biomass were detected among these compost treatments. As such, Püschel

et al. (2008a) suggested that lowering compost rates would be more cost effective for indus-

trial applications when restoring mine spoil areas. When growing plant plugs in Ontario’s

sandpits, the optimal compost application rate should be determined to maximize plant

response at an industrial scale.

In the seed application trial, the most effective amendment rates occurred when both

biochar and compost were applied at 20 T ha−1 or greater. Studies investigating co–amended

soils indicate mixed plant growth results when adding compost and biochar to soils (Ghosh

et al. 2014, Schmidt et al. 2014). In my study, higher rates of compost and biochar in

extremely degraded systems may be required to produce a larger plant response. More

research needs to be conducted to determine optimal rates of biochar and compost when

restoring plant communities in Ontario’s post-mine sandpits.

The effect of biochar may have been enhanced by the concurrent addition of compost by

charging biochar surfaces and promoting a plant response in both trials (Fischer and Glaser

2012). It has been shown that biochar and compost amended soils stimulates microbial

growth and respiration rates thus enhancing decomposition rates and nutrient availability

during the composting process (Steinbeiss et al. 2009). Fischer and Glaser (2012) show

that plant growth generally increased with increasing amendment of biochar and compost

amendments, especially in nutrient poor, sandy soil. I similarly suggest that mixing high

biochar rates in conjunction with high compost rates compliments the nutrient retention

properties of biochar in soils when restoring post–mine sandpits.

The addition of AM fungal inoculum in the seed application trial was most effective

as compost and biochar rates increased. Therefore, the alleviation of stressful edaphic

conditions by the soil amendments may have facilitated the effectiveness of the plant host–

fungal pairings leading to a positive plant response in the field. In the plant plug trial,

the addition of 20 T ha−1 of compost and/or 5 T ha−1 and 10 T ha−1 of biochar may have

been too low favor a positive plant response due to AM fungal inoculation in all plant

species. Using locally adapted inoculum may be more effective in promoting a plant response

in restoration scenarios when applying lower rates of soil amendments (Gryndler et al.
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2008). Further research needs to be conducted regarding the most appropriate mycorrhizal

inoculum to include in the restoration of tallgrass prairie species in abandoned sandpits.

In my study, plug plants were germinated under stress–free conditions in the greenhouse.

In contrast, germinating plant seeds under field conditions had to overcome the stressful

environment of post-mine substrate. When restoring from seeds in field, plants benefited

more from the AM fungal symbiotic association due to the alleviation of stress, especially

in the presence of high compost and biochar rates. This was most likely due to increased

access to soil nutrients and more favorable water balance in the plant provided by the

AM fungal symbiosis. The difference in AM fungal inoculum efficacy between plugs and

seedling trials may be due to early soil conditions experienced by germinating seedlings.

Spontaneous plant succession of post–mine soils is often restricted by poor soils, a lack of

biotic symbionts, and restricted local seed immigration (Prach and Hobbs 2008). When

spontaneous succession of plants in quarries is observed, weedy annual plant species often

persist (Khater et al. 2003). Thus, even with the introduction of grassland plant seeds

to mine areas, plant germination would be restricted if soil amendments and AM fungal

inoculum are not incorporated.

In the presence of increasing amendments in the seed application trial, AM fungi had

a greater access to a pool of nutrients and greater water availability that was provided by

the compost and biochar. Research by Hodge and Fitter (2010) shows that the AM fungal

symbiosis with plants improves fungal nitrogen acquisition from decomposing organic matter

which is especially beneficial in nitrogen limited systems. The transfer of nitrogen to the

plant can therefore benefit plant establishment and production when restoring of degraded

mine areas (Govindarajulu et al. 2005). These results indicate that AM fungal inoculum will

be most effective after the stressful abiotic conditions are improved with soil amendments.

Plant growth dynamics

In the plant plug experiment, four of the six measured plants, (Desmodium canadense,

Lespedeza capitata, Symphyotrichum laeve, Liatris cylindracea, had significantly reduced

plant biomass between Fall 2011 and Fall 2012 despite the addition of soil amendments.

The selection of these plant species was not optimal for long–term growth in post–mine

sandpits. Only the C4 grasses, Andropogon gerardii and Panicum virgatum, had significant

biomass increases during the same time period. The large increase in C4 grass biomass

accounted for the majority of the detected increase in total plant biomass between Fall

2011 and Fall 2012. Long–term monitoring of these plots needs to be conducted in order to

track the potential biodiversity loss in this trial.

In the seed application experiment, relative plot height had a significant influence on

total native plant cover. Conflicting results were identified in the model depending upon

68



3.5. Summary

interactions among model terms. The interaction between growing season and relative plot

height led to a significant decline total native plant cover. High plant cover variation in

plots adding no compost exists within this two–way interaction, thus driving this signifi-

cant decline in the model. Conversely, plot height was a significant term in the five–way

interaction among the experimental variables and growing season. The resolution of the

five–way interaction model most accurately represents the true experimental design in this

trial. I speculate that a decrease in the relative plot height would increase water availabil-

ity at the site. In this trial, higher water retention would be expected as compost rates

and biochar rates increase (Aggelides and Londra 2000, Movahedi-Naeini and Cook 2000,

Abel et al. 2013). As abiotic soil measurements were not collected during the study, a de-

tailed soil moisture analysis needs to be determine to understand the driving abiotic factors

determining variation in the total plant cover measurements.

3.5 Summary

The restoration of tallgrass prairie plants in post–mine aggregate sites is a viable man-

agement option in southern Ontario. Increasing grassland community diversity on marginal,

anthropogenically influenced lands through prairie restoration will ensure the survival of

sensitive habitat in addition to supporting species at risk. But, the harsh edaphic charac-

teristics present in the post–mine sandpits restricts plant community development in the

field. Thus, restoring self–sustaining and diverse grassland communities is not possible

without acknowledging the impoverished conditions of post–mine substrates.

Incorporating land management tools to mitigate the harsh abiotic conditions of post–

extraction substrate is therefore necessary to increase plant production in target grassland

communities. The technical reclamation tools investigated in this study led to higher seed

establishment rates and total plant biomass when used in combination. A single applica-

tion of high rates (20 T ha−1) of biochar and compost at the onset of an industrial–scale

restoration project can lessen site maintenance costs, increase plant community recovery

time, and promote vegetative biodiversity.
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Chapter 4

Soil Food Webs

4.1 Background

Ecosystem productivity and fertility are characterized by organic matter inputs, primary

production, and microbial energy pathways (Wardle et al. 2004). The high density and di-

versity of biota in soils influence these ecosystem services by altering soil water storage,

litter decomposition rates, and nutrient cycles (Doran and Zeiss 2000). Ultimately, ecosys-

tem services provided by microbial communities and soil animals in belowground food webs

can influence plant community growth in mine areas restoration (Wardle 1999). Thus, this

study explored the bottom–up effects of multi–trophic group interactions in belowground

food webs during a grassland restoration in a post–extraction sand pit.

Grassland restoration projects focused on recovering soil food webs in post–mine sand-

pits must overcome harsh edaphic conditions and the lack of soil organic matter. Over

time, soil invertebrates and microorganisms recolonize restored areas without assistance,

but management intervention can accelerate the establishment of desirable species (Curry

and Good 1992). Incorporating soil amendments into post–mine areas can increase soil

organic matter, fertility, and water-holding capacity, ultimately influencing soil food web

development. Increasing plant production with amendments and arbuscular mycorrhizas

can further contribute to the development of an active plant rhizosphere, thus further stim-

ulating the soil food web (Kuzyakov 2002).

4.1.1 Arbuscular mycorrhizal fungal inoculum

The plant–AM fungal association extends the biologically active zone around plant roots

(i.e. rhizosphere) to incorporate the influence of the plant symbiont (i.e mycorrhizosphere).

Soil areas under the influence of the mycorrhizosphere have rapid water and nutrient uptake,

high concentrations of exudates, high root turnover, and increased respiration (Garbaye

1991). The plant-AM fungal symbiosis has been shown to enhance rhizobial N–fixation

by legumes (Amora-Lazcano et al. 1998) and increase bacterial populations (Johansson

et al. 2004) compared to non–mycorrhizal plants. Therefore, soil animals may benefit

from increased microbial activity associated with the mycorrhizosphere due to higher food

availability. Thus, increased plant root biomass and mycorrhizosphere activity due to AM
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fungal inoculation can translate into greater soil food web production in these zones of high

root exudates and plant root turnover.

4.1.2 Biochar

Biochar as a soil amendment is anticipated to prime fungal and bacterial biomass by

providing carbon substrates, retaining soil macro–nutrients, and/or providing suitable mi-

crobial refugia (Lehmann et al. 2011, Lou et al. 2014). Lower temperature biochar (250 ◦C

to 400 ◦C) is anticipated to most improve soil fertility and stimulate microbial communities

(Novak et al. 2009).

The mechanisms of biochar’s influence on microbial biomass and soil animal abundance

are understudied (McCormack et al. 2013). Thus, it is difficult to predict the effects of

biochar in post–mine restoration on soil biotic communities due to the dearth of research and

the complexity of biological and physical interactions in soil. But, I anticipate that biochar’s

projected physiochemical benefits in soils will increase plant growth and soil microbial

communities, thus increasing food resources for higher trophic levels in the soil food web.

4.1.3 Compost

Compost increases microbial community biomass, soil respiration rates, and soil enzyme

activity by providing bacteria and fungi with decomposable substrate (Allievi et al. 1993).

Compost has been shown to favor the development of fungal–dominated systems by adding

complex organic matter to degraded systems (Biederman and Whisenant 2009, Biederman

2013). Microbial growth and soil fertility are closely related as compost is decomposed by

the microbial community. Thus, the decomposition of compost releases important elements

(N, P) into the soil solution to be taken up by organisms (Frankenberger and Dick 1983).

Compost can be considered a bio–inoculant with an associated community of fungi and

bacteria, nematodes, and microarthropods (Cernova 1970, Streit et al. 1985, Steel et al.

2013a;b). As soil animal communities are severely diminished in post–mine habitats, the

addition of compost is anticipated to give compost amended areas a soil food web head

start. Furthermore, increased microbial biomass associated with compost should provide

soil animals with an increased food supply. Thus, compost is expected to be an essential

soil amendment crucial to the development of soil food webs.

4.1.4 Synergisms among biochar, compost, and arbuscular mycorrhizas

This study is the first to test the concurrent application of biochar, compost, and com-

mercial inoculum on soil food webs. Although conceptually recommended to incorporate

biochar and compost simultaneously (Fischer and Glaser 2012), no studies have researched
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the soil food web response to the application of compost, biochar, and AM fungal inoculum

in a restoration setting. As compost is expected to positively ameliorate soils, co–amended

soils with biochar can further increase water and nutrient retention. Increased mycorrhizo-

sphere activity and plant root biomass associated with AM fungal inoculation is anticipated

to further accelerate the development of soil food webs in post–mine sandpits. Thus, co–

amended soils with biochar, compost, and AM fungal inoculum are expected to exhibit the

greatest increase in soil food web response.

4.1.5 Hypotheses

To my knowledge, the relationship among compost, biochar, arbuscular mycorrhizal

(AM) fungal inoculation, and the soil food web has never been tested when restoring grass-

land vegetation in post–mine sandpits. I hypothesized that compost, biochar, and AM

fungal inoculation would individually increase soil microbial biomass compared to non–

amended controls. In addition, I hypothesized that the concurrent addition of compost,

biochar and AM fungal inoculum would yield the largest response in plant functional group

biomass and soil microbial community biomass. The rationale for these hypotheses is that

the amendments and AM fungal inoculation would alleviate of water and nutrient stress and

increase mycorhizosphere activity in post–mine sandpit substrates. A structural equation

model was constructed to describe the direct, indirect, and total effects driving soil food

web response among plant functional biomass, soil organisms abundance, and soil amend-

ments (i.e. compost, biochar, and AM fungal inoculum). As a guide to create my structural

equation model, trophic interactions from Hunt et al. (1987) form the basis in determining

relationships within soil food webs. The goal of this study was to prescribe industrially

feasible abiotic and biotic soil amendments to facilitate soil development and determine the

trajectory of soils in recovering post–mine sandpits when restoring grassland communities.

4.2 Methods

I tested the fully factorial effects of soil amendments (biochar, compost) and AM fungal

inoculation on soil microbial biomass and soil animal abundance in the post-mine sandpit.

Soils were collected from plots in the plant plug trial after two growing seasons. Full

experimental design details of the plant plug trial are described in Chapter 3: Methods.

4.2.1 Soil collection and organismal analyses

In September 2012, sixteen soil cores (2.54 cm diameter) were collected to a depth of

12 cm from each plot in the plant plug experiment. Soil cores were sampled directly adjacent

72



4.2. Methods

to aboveground plant tissue for each of the six C4 grasses, five N–fixing forbs, and five

composite forbs within the core sampling area. Soil cores were sampled directly adjacent to

each plant at each plug location to minimize plant destruction. The soil corer was cleaned of

substrate with a clean cloth and water between plot sampling to minimize contamination.

Collected soils were pooled at the plot level and homogenized. Soil samples were stored

in a cooler on ice in the field until final storage at 4◦C. Soil microbial biomass and soil

animal abundance were analyzed at the Soil Analysis Laboratory, University of California,

Riverside.

Bacterial and fungal biomass

Bacterial and fungal biomass was estimated by differential fluorescent staining (DFS)

following an adapted protocol by Klironomos et al. (1996). The DFS was composed of a

mixture of europium(III)thenoyl–trifluoroacetonate and a fluorescent intensifier (Anderson

and Westmoreland 1971). For fungal biomass estimation, 200 ml of soil was suspended with

1 ml of DFS stain for 1 hour. Once stained, the suspension was filtered through nitrocellulose

filter paper using a 50% ethanol wash. Filters were then mounted on microscope slides for

visual inspection under UV light at 620 nm. Active cellular material was visually highlighted

with red fluorescence under UV light. Fungal biomass was calculated from images taken

by computer imaging software. Hyphal length was measured to estimate milligrams (mg)

of fungal biomass kilogram (kg)−1 soil using conversion factors [hyphal diameter: 1.65

micrometers (µm)(Kjøller and Struwe 1982), density: 0.33 g cm−3 (van Veen and Paul 1979),

C content: 45% (Swift et al. 1979)].

To estimate bacterial biomass, soil dilution aliquots were stained with DFS for 1 hour.

After staining, filters were rinsed with a 50% ethanol wash and slides mounted for visual

inspection using UV microscopy at 620 nm. Active cellular material was visualized by red

fluorescence and images taken with computer imaging software. Bacterial biomass was

estimated using a conversion factor of 6.4 × 10−14 g carbon cell−1 calculated by Hunt and

Fogel (1983). Results are given in mg of bacterial biomass kg−1 soil.

Nematode enumeration

Nematodes were extracted by the same wet sieve sucrose centrifuge approach for extract-

ing arbuscular mycorrhizal spores as described in Klironomos et al. (1993). Soil samples

were suspended in water and passed through a series of mesh sieves decreasing in pore size

(1.0 mm – 45µm). After rinsing with water, the material retained in the 45µm sieve was

suspended on top of a 60% sucrose solution and centrifuged for 20 minutes. Nematodes were

collected via a pipette at the sucrose–water interface. Nematode individuals were sorted
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and counted under a microscope. Individuals were classified into one of three functional

feeding groups: bacterial feeding, fungal feeding, and predatory. Categorization was based

upon nematode morphological characteristics. Abundance is reported as # of individuals

g−1 soil.

Soil arthropod enumeration

A high efficiency canister–type soil arthropod extractor (Lussenhop 1971) was used to

extract mites and Collembola onto dishes containing picric acid as described in Klironomos

et al. (1996). Soil arthropods were counted and classified into Collembola, microbial feeding

(Oribatid) mites, and predatory mites based on morphological characteristics. Abundance

is reported as # of individuals g−1 soil.

4.2.2 Statistical analyses for soil biota

Linear models were used to test treatment–level effects on bacterial and fungal biomass.

Fungal and bacterial biomass data approximated a normal data distribution after a log

transformation. Generalized linear models with a negative binomial distribution link func-

tion were used to test the treatment effects on soil animal abundance (i.e. nematodes,

Collembola, mites). As with most count data, all soil animal abundance data displayed

characteristics of over–dispersion (the variance of the response variable exceeded the mean)

and is best analyzed using a generalized linear models (Bolker et al. 2009).

Linear and generalized linear models for each soil functional group were reduced using

model selection procedures. Full models including treatment factors, covariates, and inter-

actions were iteratively reduced to remove non–significant variables using χ2 tests. This

resulted in the most parsimonious model to test differences in the response variable. Lin-

ear models were analyzed using the base package in R (R-Core-Team 2013). Generalized

linear models were analyzed with the glm.nb function from the MASS package to calculate

estimates from a negative binomial distribution.

4.2.3 Soil food web analysis with structural equation modeling

Structural equation modeling was used to test multivariate hypotheses and their in-

terdependencies among soil functional groups, experimental treatments, and plant func-

tional group biomass. A priori soil food web hypotheses, developed from prior literature

knowledge, were determined among exogenous variables (i.e. soil amendments, AM fungal

inoculation) and endogenous variables (i.e. biota in the soil food web, plant functional

group biomass)(Figure 4.1). Before running the analysis, a covariance matrix of relation-
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ships among all variables suggested that log transformations were appropriate to better

approximate normality of residuals.

Plant biomass was estimated by partial least squares regression (PLS) for C4 grasses, C3

grasses, and N–fixing forbs (See Chapter 3 for full details). Plant functional group biomass

was pooled at the plot–level in September 2012 and used as a variable in the structural

equation model.

Structural equation models were conducted in IBM’s SPSS program extension AMOS.

Overall fit of the a priori hypotheses was tested by evaluating χ2 tests and the comparative

fit index (CFI). An acceptable fit of a model is indicated by non–significant p–values in

χ2 tests and CFI values over 0.93 (Byrne 2013). Generalized least squares (GLS) with a

bootstrap correction was used to calculate squared multiple correlations and standardized

path coefficients. Squared multiple correlations were calculated for each endogenous vari-

able to determine explained variance by incoming predictor variables. Standardized path

coefficients were calculated from maximum likelihood distributions based on each variable’s

standard deviations (Grace 2006). Standardized path coefficients are interpreted as the

expected change in response variable for each unit increase of the explanatory variable.

Three structural equation models were compared by selecting the model with the lowest

AIC value to remove non–significant explanatory variables in the soil food web. Removing

non–significant variables increases statistical power and improves structural equation model

parsimony. Note that predatory and Oribatid mites were pooled in all models due to low

correlations and large variances in this data.

Model 1: Exogenous variables: compost rate, biochar rate, AM fungal inoculation;

Endogenous plant biomass variables: composite forbs, N-fixing forbs, C4 grasses

Model 2: Exogenous variables: compost rate, biochar rate; Endogenous plant

biomass variables: composite forbs, N-fixing forbs, C4 grasses

Model 3: Exogenous variables: compost rate, biochar rate; Endogenous plant

biomass variables: N-fixing forbs

Only biologically relevant standardized direct pathways with estimates greater than 0.1

or less than -0.1 were included in Figure 4.5 – Figure 4.12. Pathway significance (p<0.05)

and trends (0.05<p<0.1) are indicated by colored arrows. Non–significant pathways (p>0.1)

are indicated by dashed lines. All direct, indirect, and total standardized regression coeffi-

cients are given in Tables 4.1 – Table 4.3.
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Figure 4.1: A priori hypotheses used to construct the most parsimonious structural equation
soil food web model (Model 3). Exogenous variables are displayed in shaded gray boxes.
Endogenous variables are displayed in white boxes. The residual error associated with each
endogenous variable is displayed as (ε). Single headed arrows indicate direct pathways.
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4.3 Results

4.3.1 Soil food web structural equation model selection

Model #1 (χ2=17.381, df=13, p=0.182; CFI=0.955; AIC=201.4), Model #2

(χ2=17.276, df=11, p=0.100; CFI=0.940; AIC=177.3), and Model #3 (χ2=7.9, df=5,

p=0.162; CFI=0.970; AIC=129.9) had an acceptable fit for testing a priori hypotheses

as shown by non–significant χ2 comparisons and CFI values > 0.93. Nevertheless, Model

#3 (Exogenous variables: soil amendment rate; Endogenous plant biomass variables: N-

fixing forbs) was chosen as the final model because it had the highest statistical power and

parsimony as shown by lowest AIC values. Therefore, AM fungal inoculation, composite

forb biomass, and C4 grass variables were removed from the final model as they did not

have sufficient explanatory power. Inoculated and non–inoculated plots were pooled by soil

amendment rate (replication = 18).

4.3.2 Microbial community biomass and soil animal abundance

The influence of AM fungal inoculum on soil biota

The response of the soil microbial community to the AM fungal inoculation of plant

plugs was not significant in this study. No significant effect of AM fungal inoculation was

detected for fungal biomass or the fungal:bacterial ratio as the AM fungal inoculation term

was dropped from both linear models. Plots inoculated with AM fungi exhibited a positive

trend in bacterial biomass at the study site (p=0.085)(Figure 4.2a).

Fungal feeding nematode (p=0.035) and Collembola (p=0.043) abundance was signif-

icantly reduced in plots inoculated with AM fungi (Figure 4.3a & 4.4a respectively). All

other grazing and predatory soil animals were not significantly influenced by R. irregularis

inoculation.

The influence of biochar on soil biota

Biochar’s influence on soil microbial community biomass and soil animal abundance

was consistently negative compared to non–amended control plots. Although not always

significant, both biochar rates reduced microbial biomass and soil animal abundance in all

cases as evident by negative coefficient estimates in the statistical output of the models.

Biochar as a solitary amendment had no significant direct impact on the soil microbial

biomass, soil animal abundance, or N–fixing forb biomass in the structural equation model

(Figure 4.5 & Table 4.1).
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(b)

Model Terms Estimate SE p–value sig. level

Intercept 0.312 0.033 <0.001 ***
5BC -0.116 0.044 0.010 (**)
10BC -0.109 0.044 0.015 (*)
20CP 0.064 0.044 0.149 n.s.
20CP + 5BC 0.190 0.044 <0.001 ***
20CP + 10BC 0.194 0.047 <0.001 ***
AM Fungi 0.044 0.025 0.085 .

Significance: *** ≤ 0.001 | ** ≤ 0.010 | * ≤ 0.050 | . ≤ 0.100
Note: Significantly different intercepts with negative values in parentheses

Figure 4.2: Bacterial biomass collected during the second growing season of the prairie
restoration (September 2012). Data were analyzed with linear models to test treatment–
level effects. Panel (a) represents raw data ± 1 SD; n = 9. x–axis: None = no soil amend-
ment, 5BC = 5 T ha−1 biochar, 10BC = 10 T ha−1 biochar, 20CP = 20 T ha−1 compost,
5BC +20CP = 5 T ha−1 biochar + 20 T ha−1 compost, 10BC +20CP = 10 T ha−1 biochar
+ 20 T ha−1 compost. Significant main effect terms and interactions shown in (b). Model
term estimates represent the expected change from the model intercept (i.e. control plots).
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(b)

Model Terms Estimate SE p–value sig. level

Intercept 0.400 0.837 0.633 n.s.
5BC -0.844 1.205 0.484 n.s.
10BC -10.130 10.204 0.321 n.s.
20CP 1.301 1.114 0.243 n.s.
20CP + 5BC 2.390 1.034 0.021 *
20CP + 10BC 1.620 1.067 0.129 n.s.
AM Inoculation -5.700 2.703 0.035 (*)

Interactions
5BC × AM Inoculation 5.741 3.069 0.061 .
10BC × AM Inoculation 17.930 10.559 0.090 .
20CP × AM Inoculation 5.938 2.917 0.042 *
20CP + 5BC × AM Inoculation 5.960 2.931 0.042 *
20CP + 10BC × AM Inoculation 7.006 2.860 0.014 *
AM Inoculation × Plot Height 0.134 0.062 0.030 *
5BC × AM Inoculation × Plot Height -0.163 0.070 0.021 (*)
10BC × AM Inoculation × Plot Height -0.331 0.192 0.086 (.)
20CP × AM Inoculation × Plot Height -0.134 0.071 0.059 (.)
20CP + 5BC × AM Inoculation × Plot Height -0.165 0.067 0.014 (*)
20CP + 10BC × AM Inoculation × Plot Height -0.184 0.068 0.007 (**)

Significance: *** ≤ 0.001 | ** ≤ 0.010 | * ≤ 0.050 | . ≤ 0.100
Note: Significantly different intercepts with negative values in parentheses

Figure 4.3: Fungivorous nematode abundance collected during the second season (Septem-
ber 2012). Generalized linear models with a negative binomial distribution link function
were used to test the treatment effects. Panel (a) represents raw data ± 1 SD; n = 9. x–axis:
None = no soil amendment, 5BC = 5 T ha−1 biochar, 10BC = 10 T ha−1 biochar, 20CP =
20 T ha−1 compost, 5BC +20CP = 5 T ha−1 biochar + 20 T ha−1 compost, 10BC +20CP
= 10 T ha−1 biochar + 20 T ha−1 compost. Significant main effect terms and interactions
shown in (b). Model estimates represent the expected change from the intercept.
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(b)

Model Terms Estimate SE p–value sig. level

Intercept 1.591 0.456 <0.001 ***
5BC 0.071 0.478 0.882 n.s.
10BC -0.560 0.492 0.256 n.s.
20CP -0.105 0.477 0.825 n.s.
20CP + 5BC 1.562 0.469 <0.001 ***
20CP + 10BC 2.151 0.461 <0.001 ***
AM Inoculation -1.071 0.530 0.043 (*)

Interactions
AM Inoculation × Plot Height 0.029 0.014 0.032 *

Significance: *** ≤ 0.001 | ** ≤ 0.010 | * ≤ 0.050 | . ≤ 0.100
Note: Significantly different intercepts with negative values in parentheses

Figure 4.4: Collembola abundance collected during the second growing season of the prairie
restoration (September 2012). Generalized linear models with a negative binomial distribu-
tion link function were used to test the treatment effects. Panel (a) represents raw data ± 1
SD; n = 9. x–axis: None = no soil amendment, 5BC = 5 T ha−1 biochar, 10BC = 10 T ha−1

biochar, 20CP = 20 T ha−1 compost, 5BC +20CP = 5 T ha−1 biochar + 20 T ha−1 compost,
10BC +20CP = 10 T ha−1 biochar + 20 T ha−1 compost. Significant main effect terms and
interactions shown in (b). Model term estimates represent the expected change from the
model intercept (i.e. control plots).
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Figure 4.5: Structural equation soil food web model for the plant plug experiment. Exoge-
nous variables are displayed in shaded gray boxes. Endogenous variables are displayed in
white boxes. The residual error associated with each endogenous variable is displayed as
(ε). Structural equation model line weights are scaled to the direct pathway standardized
regression estimates given in each boxes. Blue (positive) and red (negative) arrows indicate
significant standardized regression estimates (p < 0.05). Yellow (positive) and orange (neg-
ative) arrows indicate trends in standardized regression estimates (0.05 < p < 0.1). Dashed
lines are non–significant paths with standardized regression estimates > 0.1. Regression
estimates < 0.1 are not included to simplify the data presentation. A full description of
direct, indirect, and total model estimates are given in Table 4.1 – 4.3. Squared multiple
correlations are reported within endogenous variable boxes. Squared multiple correlations
were calculated for each endogenous variable to determine explained variance.
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Table 4.1: Direct, indirect, and total standardized regression estimates of soil amendments
on the soil community and N–fixing forbs generated by the structural equation model.
Significant direct pathway estimates are given in bold text (p < 0.05).

Observed Effects(λ)
Predictor → Response Direct Indirect Total

Amendments → Microbes

BC → bacterial biomass -0.18 -0.01 -0.18
BC → fungal biomass -0.13 0.00 -0.12

CP → bacterial biomass 0.15 -0.03 0.12
CP → fungal biomass 0.15 0.01 0.17

BC + CP → bacterial biomass 0.64 -0.04 0.60
BC + CP → fungal biomass 0.63 0.02 0.65

Amendments → N–fixing forbs

BC → N–fixing forbs 0.07 0.00 0.07

CP → N–fixing forbs 0.35 0.00 0.35

BC + CP → N–fixing forbs 0.61 0.00 0.61

Amendments → Nematodes

BC → bact. feeding nematodes -0.07 0.02 -0.05
BC → fungal feeding nematodes -0.05 0.06 0.01
BC → predatory nematodes -0.02 0.01 -0.02

CP → bact. feeding nematodes 0.13 -0.01 0.12
CP → fungal feeding nematodes 0.23 -0.07 0.16
CP → predatory nematodes 0.32 -0.11 0.21

BC + CP → bact. feeding nematodes 0.71 -0.05 0.66
BC + CP → fungal feeding nematodes 0.87 -0.28 0.59
BC + CP → predatory nematodes 0.83 -0.30 0.54

Amendments → Microarthropods

BC → Collembola -0.04 0.02 -0.02
BC → mites -0.13 0.04 -0.10

CP → Collembola 0.16 -0.14 0.02
CP → mites 0.07 -0.08 -0.01

BC + CP → Collembola 0.94 -0.45 0.49
BC + CP → mites 0.62 -0.19 0.43
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When applied as a solitary amendment, both biochar rates negatively influenced bacte-

rial biomass compared to non–amended control plots (5 T ha−1 biochar, p=0.010; 10 T ha−1

biochar, p=0.015)(Figure 4.2a). Fungal biomass was not significantly influenced by either

biochar rate in this study (5 T ha−1 biochar, p=0.441; 10 T ha−1 biochar, p=0.119)(Figure

4.6a). Across all soil amendment treatments, the only significant increase in fungal:bacterial

ratios compared to non–amended controls occurred at the 5 T ha−1 biochar amendment rate

(p=0.002)(Figure 4.7a).

Biochar’s influence on soil nematode abundance was variable, ranging from a neutral

to significantly negative responses. Bacterial feeding nematode abundance was significantly

reduced in the 10 T ha−1 biochar application rate (p=0.005) but unaffected in 5 T ha−1

biochar treatments when compared to non–amended controls (Figure 4.8a). Fungal feeding

nematode abundance was not directly influenced by biochar (5 T ha−1 biochar, p=0.484;

10 T ha−1 biochar, p=0.321)(Figure 4.3a). No predatory nematodes were detected in either

biochar amendment rates (Figure 4.9a).

Direct effects of biochar on the soil arthropods was not predictable after generalized

linear model analysis. Oribatid mite abundance was significantly reduced in plots with

both biochar rates (5 T ha−1 biochar, p=0.014; 10 T ha−1 biochar, p=0.047) while Collem-

bola abundance (5 T ha−1 biochar, p=0.882; 10 T ha−1 biochar, p=0.256) and predatory

mite abundance (5 T ha−1 biochar, p=0.146; 10 T ha−1 biochar, p=0.363) was unaffected

by biochar application rate(Figures 4.4a, 4.10a, & 4.11a).

Bacterial biomass tended to be reduced in the presence of biochar in the structural equa-

tion model (direct pathway coefficient = -0.18, p=0.059) (Figure 4.12). Soil fungal biomass

(p=0.171) and soil animal abundance (bacterial feeding nematodes (p=0.497); fungal feed-

ing nematodes (p=0.648); predatory nematodes (p=0.827); Collembola (p=0.723); mites

(p=0.219)) remained largely unaffected by the introduction of biochar in the post–mine

sandpit. Although not significant, all direct pathway coefficients were negative for soil mi-

crobial biomass and soil animal abundance relationships suggesting a negative impact on

the soil food web compared to control plots (See Table 4.1 for direct pathway values).

The influence of compost on soil biota

The effect of 20 T ha−1 compost on the soil food web was largely neutral in this post–mine

restoration trial compared to non–amended plots. Only fungal biomass was significantly

increased by compost addition in the study (p=0.010) (Figure 4.6a). Bacterial biomass

(p=0.149) and fungal:bacterial ratios (p=0.822) were not influenced by the addition of

compost. Among soil animals, the abundance of predatory nematodes was significantly

increased by 20 T ha−1 of compost (p<0.001). All other soil animals had no significant

response to the compost amendment compared to non–amended controls (bacterial feeding
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(b)

Model Terms Estimate SE p–value sig. level

Intercept 0.333 0.033 <0.001 ***
5BC -0.036 0.046 0.441 n.s.
10BC -0.073 0.046 0.119 n.s.
20CP 0.122 0.046 0.010 **
20CP + 5BC 0.252 0.046 <0.001 ***
20CP + 10BC 0.261 0.046 <0.001 ***

Significance: *** ≤ 0.001 | ** ≤ 0.010 | * ≤ 0.050 | . ≤ 0.100

Figure 4.6: Fungal biomass collected during the second growing season of the prairie restora-
tion (September 2012). Data were analyzed with linear models to test treatment–level ef-
fects. Panel (a) represents raw data ± 1 SD; n = 9. x–axis: None = no soil amendment, 5BC
= 5 T ha−1 biochar, 10BC = 10 T ha−1 biochar, 20CP = 20 T ha−1 compost, 5BC +20CP
= 5 T ha−1 biochar + 20 T ha−1 compost, 10BC +20CP = 10 T ha−1 biochar + 20 T ha−1

compost. Significant main effect terms and interactions shown in (b). Model term estimates
represent the expected change from the model intercept (i.e. control plots).
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(b)

Model Terms Estimate SE p–value sig. level

Intercept 0.267 0.226 0.238 n.s.
5BC 0.847 0.274 0.002 **
10BC 0.343 0.299 0.251 n.s.
20CP 0.069 0.311 0.822 n.s.
20CP + 5BC 0.094 0.309 0.760 n.s.
20CP + 10BC 0.055 0.311 0.860 n.s.

Significance: *** ≤ 0.001 | ** ≤ 0.010 | * ≤ 0.050 | . ≤ 0.100

Figure 4.7: Fungal:bacterial biomass ratios collected during the second growing season of the
prairie restoration (September 2012). Generalized linear models with a negative binomial
distribution link function were used to test the treatment effects. Panel (a) represents raw
data ± 1 SD; n = 9. x–axis: None = no soil amendment, 5BC = 5 T ha−1 biochar, 10BC =
10 T ha−1 biochar, 20CP = 20 T ha−1 compost, 5BC +20CP = 5 T ha−1 biochar + 20 T ha−1

compost, 10BC +20CP = 10 T ha−1 biochar + 20 T ha−1 compost. Significant main effect
terms and interactions shown in (b). Model term estimates represent the expected change
from the model intercept (i.e. control plots).
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(b)

Model Terms Estimate SE p–value sig. level

Intercept 2.448 0.712 0.001 ***
5BC -1.380 0.952 0.147 n.s.
10BC -3.412 1.210 0.005 (**)
20CP -0.316 0.960 0.742 n.s.
20CP + 5BC 1.814 0.893 0.042 *
20CP + 10BC 0.684 0.915 0.046 *
Plot Height (Dry → Wet) -0.052 0.025 0.040 (*)

Interactions
10BC × AM Inoculation 4.642 1.668 0.005 **
5BC × Plot Height 0.058 0.029 0.046 *
10BC × Plot Height 0.100 0.034 0.003 **
20CP × Plot Height 0.060 0.036 0.096 .
20CP + 10BC × Plot Height 0.060 0.0305 0.049 *
AM Inoculation × Plot Height 0.071 0.033 0.030 *
10BC × AM Inoculation × Plot Height -0.169 0.047 <0.001 (***)
20CP × AM Inoculation × Plot Height -0.076 0.045 0.090 (.)
20CP + 10BC × AM Inoculation × Plot Height -0.093 0.041 0.025 (*)

Significance: *** ≤ 0.001 | ** ≤ 0.010 | * ≤ 0.050 | . ≤ 0.100
Note: Significantly different intercepts with negative values in parentheses

Figure 4.8: Bacteriovorus nematode abundance collected during the second growing season
of the prairie restoration (September 2012). Generalized linear models with a negative bino-
mial distribution link function were used to test the treatment effects. Panel (a) represents
raw data ± 1 SD; n = 9. x–axis: None = no soil amendment, 5BC = 5 T ha−1 biochar,
10BC = 10 T ha−1 biochar, 20CP = 20 T ha−1 compost, 5BC +20CP = 5 T ha−1 biochar
+ 20 T ha−1 compost, 10BC +20CP = 10 T ha−1 biochar + 20 T ha−1 compost. Signifi-
cant main effect terms and interactions shown in (b). Model term estimates represent the
expected change from the model intercept (i.e. control plots).
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(b)

Model Terms Estimate SE p–value sig. level

Intercept -2.140 0.749 0.004 **
5BC - - - -
10BC - - - -
20CP 3.401 0.796 <0.001 ***
20CP + 5BC 3.959 0.792 <0.001 ***
20CP + 10BC 4.184 0.791 <0.001 ***

Significance: *** ≤ 0.001 | ** ≤ 0.010 | * ≤ 0.050 | . ≤ 0.100

Figure 4.9: Predatory nematode abundance collected during the second growing season of
the prairie restoration (September 2012). Generalized linear models with a negative bino-
mial distribution link function were used to test the treatment effects. Panel (a) represents
raw data ± 1 SD; n = 9. x–axis: None = no soil amendment, 5BC = 5 T ha−1 biochar,
10BC = 10 T ha−1 biochar, 20CP = 20 T ha−1 compost, 5BC +20CP = 5 T ha−1 biochar
+ 20 T ha−1 compost, 10BC +20CP = 10 T ha−1 biochar + 20 T ha−1 compost. Signifi-
cant main effect terms and interactions shown in (b). Model term estimates represent the
expected change from the model intercept (i.e. control plots).
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(b)

Model Terms Estimate SE p–value sig. level

Intercept 1.386 0.273 <0.001 ***
5BC -1.041 0.424 0.014 (*)
10BC -0.811 0.407 0.047 (*)
20CP -0.028 0.386 0.942 n.s
20CP + 5BC 1.843 0.370 <0.001 ***
20CP + 10BC 0.905 0.375 0.016 *

Significance: *** ≤ 0.001 | ** ≤ 0.010 | * ≤ 0.050 | . ≤ 0.100
Note: Significantly different intercepts with negative values in parentheses

Figure 4.10: Oribatid mite abundance collected during the second growing season of the
prairie restoration (September 2012). Generalized linear models with a negative binomial
distribution link function were used to test the treatment effects. Panel (a) represents raw
data ± 1 SD; n = 9. x–axis: None = no soil amendment, 5BC = 5 T ha−1 biochar, 10BC =
10 T ha−1 biochar, 20CP = 20 T ha−1 compost, 5BC +20CP = 5 T ha−1 biochar + 20 T ha−1

compost, 10BC +20CP = 10 T ha−1 biochar + 20 T ha−1 compost. Significant main effect
terms and interactions shown in (b). Model term estimates represent the expected change
from the model intercept (i.e. control plots).
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Model Terms Estimate SE p–value sig. level

Intercept -0.118 0.419 0.778 n.s.
5BC -0.981 0.674 0.146 n.s.
10BC -0.575 0.632 0.363 n.s.
20CP -0.724 0.564 0.893 n.s.
20CP + 5BC 1.545 0.549 0.005 **
20CP + 10BC 1.658 0.548 0.002 **

Significance: *** ≤ 0.001 | ** ≤ 0.010 | * ≤ 0.050 | . ≤ 0.100

Figure 4.11: Predatory mite abundance collected during the second growing season of the
prairie restoration (September 2012). Generalized linear models with a negative binomial
distribution link function were used to test the treatment effects. Panel (a) represents raw
data ± 1 SD; n = 9. x–axis: None = no soil amendment, 5BC = 5 T ha−1 biochar, 10BC =
10 T ha−1 biochar, 20CP = 20 T ha−1 compost, 5BC +20CP = 5 T ha−1 biochar + 20 T ha−1

compost, 10BC +20CP = 10 T ha−1 biochar + 20 T ha−1 compost. Significant main effect
terms and interactions shown in (b). Model term estimates represent the expected change
from the model intercept (i.e. control plots).
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Figure 4.12: Negative standardized regression estimates in the soil food web model for the
grassland restoration plant plug experiment Exogenous variables are displayed in shaded
gray boxes. Endogenous variables are displayed in white boxes. Structural equation model
line weights are scaled to the direct pathway standardized regression estimates given in
each boxes. Red arrows indicate significant standardized regression estimates (p < 0.05) and
orange arrows indicate trends in standardized regression estimates (0.05 < p < 0.1). Dashed
lines are non–significant paths with standardized regression estimates > 0.1. Regression
estimates < 0.1 are not included to simplify the data presentation. A full description of
direct, indirect, and total model estimates are given in Table 4.1 – 4.3. Squared multiple
correlations are reported within endogenous variable boxes. Squared multiple correlations
were calculated for each endogenous variable to determine explained variance.
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nematodes, p=0.742; fungal feeding nematodes, p=0.243; Collembola, p=0.825; Oribatid

mites, p=0.942; predatory mites, p=0.893).

As a solitary amendment, compost had a significant positive influence on the soil food

web for several biotic variables in the structural equation model (direct pathway coefficients:

N–fixing forb biomass = 0.35 (p<0.001); predatory nematode abundance = 0.32 (p=0.004);

fungal feeding nematode abundance = 0.23 (p=0.026))(Figure 4.13 & Table 4.1). A positive

trend in increasing fungal biomass was detected in plots with compost only addition (direct

pathway coefficients = 0.15 (p=0.089)).

Synergistic effects of biochar, compost, and AM fungal inoculation

The synergistic interaction of compost and biochar had a large positive effect on the soil

microbial community, but no such interaction occurred with AM fungal inoculation and soil

amendments. Regardless of biochar rate, compost + biochar significantly increased bacterial

and fungal biomass (p<0.001) compared to non–amended controls (Figures 4.2a & 4.6a).

Biochar + compost significantly increased all biotic variables (i.e. soil microbial community

biomass, soil animal abundance, and N–fixing forb biomass) in the soil food web structural

equation model (all p–values<0.001)(Figure 4.5 & Table 4.1). No significant change in

fungal:bacterial ratios was detected in the compost + biochar treatments compared to non–

amended controls.

Soil animal abundance responded positively in plots with added compost + biochar.

Bacterial feeding nematode abundance increased significantly in both compost + biochar

treatments (20 T ha−1 compost + 5 T ha−1 biochar, p=0.042; 20 T ha−1 compost +

10 T ha−1 biochar, p=0.046) while fungal feeding nematode abundance was only signifi-

cantly increased in the 20 T ha−1 compost + 5 T ha−1 biochar treatment (p=0.021) and

no significant response in the 20 T ha−1 compost + 10 T ha−1 biochar treatment (p=0.129)

(Figures 4.3a & 4.8a). Predatory nematode abundance was significantly increased in both

compost + biochar treatments compared to controls (p<0.001)(Figure 4.9a). A consistent

positive response in fungal feeding nematode abundance was also detected when adding AM

fungal inoculum in conjunction with all amendment rates (Figure 4.3a).

Collembola abundance (20 T ha−1 compost + 5 T ha−1 biochar, p<0.001; 20 T ha−1

compost + 10 T ha−1 biochar, p<0.001), Oribatid mite abundance (20 T ha−1 compost +

5 T ha−1 biochar, p<0.001; 20 T ha−1 compost + 10 T ha−1 biochar, p=0.016), and preda-

tory mite abundance (20 T ha−1 compost + 5 T ha−1 biochar, p<0.005; 20 T ha−1 compost

+ 10 T ha−1 biochar, p=0.002) responded positively to both compost + biochar treatments

(Figures 4.4a, 4.10a, & 4.11a).

The standardized direct pathway coefficients in biochar + compost treatments were

demonstrably larger (range of direct pathway coefficients: N–fixing forb biomass (0.61) –
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Figure 4.13: Positive standardized regression estimates in the soil food web model for the
grassland restoration plant plug experiment. Exogenous variables are displayed in shaded
gray boxes. Endogenous variables are displayed in white boxes. The residual error asso-
ciated with each endogenous variable is displayed as (ε). Structural equation model line
weights are scaled to the direct pathway standardized regression estimates given in each
boxes. Blue arrows indicate significant standardized regression estimates (p < 0.05) and
yellow arrows indicate trends in standardized regression estimates (0.05 < p < 0.1). Dashed
lines are non–significant paths with standardized regression estimates > 0.1. Regression es-
timates < 0.1 are not included to simplify the data presentation. A full description of
direct, indirect, and total model estimates are given in Table 4.1 – 4.3. Squared multiple
correlations are reported within endogenous variable boxes. Squared multiple correlations
were calculated for each endogenous variable to determine explained variance.
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Collembola abundance (0.94)) compared to biochar only and compost only plots (Table

4.1). In the biochar + compost treatments, large indirect effects were detected due to

negative interactions among the soil animals (Tables 4.1 & 4.3). Thus, the biochar +

compost treatments resulted in reduced total effects in the soil food web model compared

to direct effects (range of total pathway coefficients: mite abundance (0.43) – bacterial

feeding nematode abundance (0.66)). Comparatively, the total effects of the biochar +

compost treatments are consistently more influential on all soil biota than compost alone

(range of total pathway coefficients: mite abundance (-0.01) – N–fixing forb biomass (0.35))

and biochar alone (range of total pathway coefficients: bacterial biomass (-0.18) – N–fixing

forb biomass (0.07))(Table 4.1).

The influence of plot height on soil biota

Relative plot height had no significant direct effect on the majority of soil food web

biota. Only bacterial feeding nematode abundance had a direct negative response to de-

creasing height of plots on the landscape. The interaction of soil amendments, AM fungal

inoculation, and decreasing plot height indicated a consistent reduction in fungal feeding

nematode abundance (Figure 4.3a). Collembola abundance increased significantly with plot

height and the inoculated plots (p=0.043).

The influence of plant functional group biomass on the soil food web

Model #2 containing the C4 grass and composite forb biomass variables had an ac-

ceptable fit to the proposed a priori hypotheses (χ2=17.276, df=11, p=0.100; CFI=0.940;

AIC=177.3). Compared to Model #3 (AIC=129.9), dropping the C4 grass and compos-

ite forb biomass variables greatly improved model performance Therefore, these variables

were dropped from the final structural equation model. N–fixing biomass was significantly

increased as a result of compost addition (direct pathway coefficient: 0.35, p<0.001) and

biochar + compost addition (direct pathway coefficient: 0.61, p<0.001). Although soil

amendment rate influenced N–fixing biomass, no significant direct effect of N–fixing biomass

was observed on soil microbial biomass or soil animal abundance (Table 4.2).

The influence of bacterial and fungal biomass on soil animal abundance

No significant covariance effect was detected between bacterial biomass and fungal

biomass (direct pathway coefficient: 0.00, p=0.950)(Table 4.2). Bacterial biomass did

not significantly influence the abundance of soil animals in the study (bacterial feed-

ing nematodes (p=0.393), predatory nematodes (p=0.292); Collembola (p=0.197); mites

(p=0.476))(Table 4.2). Comparatively, fungal biomass significantly reduced fungal feed-
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Table 4.2: Direct, indirect, and total standardized regression estimates of soil microbes
and N–fixing forbs on the soil community generated by the structural equation model.
Significant direct pathway estimates are given in bold text (p < 0.05).

Observed Effects(λ)
Predictor → Response Direct Indirect Total

N–fixing forbs → Soil Community

N–fixing forbs → bacterial biomass -0.07 0.00 -0.07
N–fixing forbs → fungal biomass 0.04 0.00 0.04

N–fixing forbs → bact. feeding nematodes 0.00 0.01 0.01
N–fixing forbs → fungal feeding nematodes 0.01 -0.02 0.00
N–fixing forbs → predatory nematodes -0.16 0.01 -0.15

N–fixing forbs → Collembola 0.00 0.06 0.06
N–fixing forbs → mites 0.00 0.04 0.04

Bacteria → Soil Community

bacterial biomass → fungal biomass 0.00 0.00 0.00

bacterial biomass → bact. feeding nematodes -0.09 0.00 -0.09
bacterial biomass → predatory nematodes -0.12 0.00 -0.12

bacterial biomass → Collembola -0.14 0.04 -0.10
bacterial biomass → mites -0.08 0.02 -0.06

Fungi → Soil Community

fungal biomass → bacterial biomass 0.00 0.00 0.00

fungal biomass → fungal feeding nematodes -0.44 0.00 -0.44
fungal biomass → predatory nematodes -0.01 0.10 0.10

fungal biomass → Collembola 0.04 0.14 0.18
fungal biomass → mites -0.08 0.01 -0.07
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Table 4.3: Direct, indirect, and total standardized regression estimates among the soil
animals generated by the structural equation model. Significant direct pathway estimates
are given in bold text (p < 0.05).

Observed Effects(λ)
Predictor → Response Direct Indirect Total

Grazing nematodes → Predatory nematodes

bacterial feeding nematodes → predatory nematodes 0.02 0.00 0.02
fungal feeding nematodes → predatory nematodes -0.23 0.00 -0.23

Grazing nematodes → Microarthropods

bacterial feeding nematodes → Collembola 0.02 -0.01 0.01
bacterial feeding nematodes → mites -0.21 0.00 -0.21

fungal feeding nematodes → Collembola -0.39 0.07 -0.32
fungal feeding nematodes → mites 0.04 -0.04 0.00

Predatory nematodes → Microarthropods

predatory nematodes → Collembola -0.32 0.00 -0.32
predatory nematodes → mites -0.18 -0.08 -0.26

Collembola → Mites

Collembola → mites 0.25 0.00 0.25

ing nematode abundance (direct pathway coefficient: -0.44, p<0.001), but did not signifi-

cantly influence any other soil animal group (predatory nematodes (p=0.962); Collembola

(p=0.724); mites (p=0.507)) (Table 4.2).

Soil animal functional feeding group interactions

Significant negative direct effects were observed in the proposed feeding hierarchy based

on my a priori hypotheses (Figure 4.12 & Table 4.3). Fungal feeding nematode abundance

was negatively correlated with predatory nematode abundance (direct pathway coefficient:

-0.23, p=0.033) and Collembola abundance (direct pathway coefficient: -0.39, p<0.001). In

addition, predatory nematode abundance had a significant negative effect on Collembola

abundance (direct pathway coefficient: -0.32, p<0.001). Negative trends were detected be-

tween bacterial feeding nematodes→ mites (direct pathway coefficient: -0.18, p=0.055) and

predatory nematodes → mites (direct pathway coefficient: -0.18, p=0.076). The only sig-

nificant, positive direct path coefficient detected in soil animal interactions was Collembola

→ mites (direct pathway coefficient: 0.25, p=0.015).
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4.4 Discussion

After two growing seasons, this study showed that soil amendments can significantly af-

fect soil microbial biomass and soil animal abundance in post–mine sandpits. I found that

AM fungal inoculation of plant plug roots had little influence on soil food web structure

compared to non–inoculated controls. As a solitary amendment, biochar had a largely neg-

ative effect on the soil food web although this effect was not always significant. Conversely,

biochar mixed with compost promoted large significant increases in the soil microbial com-

munity and soil animal abundance. Thus, I clearly show that soil food web development

is highly dependent upon amendment choice during grassland restoration in the degraded

sandpit.

4.4.1 Soil food web response to AM fungal inoculation

N–fixing plant biomass, soil microbial biomass, and soil animal abundance were unaf-

fected by AM fungal inoculation. The structural equation model clearly showed that AM

fungal inoculation did not have sufficient explanatory power to describe any direct effect

influences on soil microbial biomass and soil animal abundance. Thus, my hypothesis that

AM fungal inoculation of plant plugs would increase the response of microbial community

biomass and soil animal abundance in post–mine sandpits was not supported.

Arbuscular mycorrhizal fungi are key components of the soil microbiota and interact

with other microorganisms in the rhizosphere (Bowen and Rovira 1999). AM fungi can

influence belowground soil food webs by increasing plant root biomass through nutrient

acquisition, therefore increasing litter inputs (Langley and Hungate 2003). Jastrow et al.

(1998) determined strong positive direct and indirect effects by AM fungi on fine roots,

microorganisms, and soil aggregation using path analysis. Increased microbial biomass and

rhizosphere activity can subsequently support soil nematodes and microarthropods through

bottom–up cascading mechanisms (Scherber et al. 2010).

One reason for no effect may be due to the presence of a background AM fungal commu-

nity in non–inoculated plant plug roots at the time of planting due to unsterilzed greenhouse

conditions in the nursery. Rowe et al. (2007) has suggested that locally collected field inocu-

lum is more effective than commercial inoculum for establishing late-successional species.

This background community of local AM fungi may have formed a strong partnership with

the plants used in this restoration, thus contributing to a positive plant biomass response

in the field. In desertified semi–arid systems, the establishment of the shrub with local

vs. non–native AM fungal inoculum showed increases in soil enzyme activity compared to

controls but no difference between inoculum source (Alguacil et al. 2005). Therefore, the

influence of the AM fungal inoculum on the development of the soil food web may have
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gone undetected because of a beneficial belowground plant response by the background AM

fungal community in the non–inoculated plots. Thus, the commercial AM fungal inoculum,

R. irregularis, was not an effective land management tool to increase total plant biomass,

plant functional group biomass, or soil food web biomass and abundance in this study.

4.4.2 Soil food web response to biochar

Biochar had neutral to negative influence soil microbial biomass and soil animal abun-

dance in this study. My hypothesis that both biochar amendments would positively increase

soil microbial biomass, soil animal abundance, and N–fixing plant abundance due to ame-

liorative effects in sandpit substrate was not supported.

Biochar application as a land management tool has been proposed to assist soil recov-

ery in severely degraded systems (Blackwell et al. 2009). To date, most mine reclamation

studies using biochar have investigated soil chemical properties under laboratory conditions

(i.e. pH, cation exchange capacity, heavy metal sequestration) (Fellet et al. 2011; 2014,

Kelly et al. 2014). When investigated, the response of soil microbes to biochar in the lit-

erature are mixed. Kelly et al. (2014) found that microbial biomass was not altered by

biochar amendments in mine tailings while a meta–analysis of plant and microbial biomass

by Biederman and Harpole (2012) found that biochar addition increased aboveground pro-

ductivity, crop yield, soil microbial biomass, and favorable tissue macro–nutrients across all

soil types and climates. Graber et al. (2010) suggested that shifts in soil microbial activity

were indirect and arose from biochar stimulating plant growth, thus inducing a plant exu-

date effect in the rhizosphere. My study suggests that this mechanism is unlikely as plant

biomass decreases were not detected by the structural equation model yet decreases in the

soil microbial community were detected.

In my study, biochar may have introduced nutrient stress associated with post–mine

sandpits, reducing microbial biomass and soil animal abundance. One potential mechanism

for reduced biotic response in reduced soil microbial abundance is biochar’s high cation ex-

change capacity strongly adhering limited nutrients in post–mine soils (Steiner et al. 2007,

Xu et al. 2013). Ultimately, feedstock source and pyrolysis time determines nutrient leach-

ing rates, chemical properties, and hydrophobicity of biochar in soils, thus dictating a soil

biotic response (Singh et al. 2010, Kinney et al. 2012). Furthermore, biochar’s hydrophobic

nature may have repelled soil moisture, causing negative trends in soil microbial biomass

(Kinney et al. 2012). Complex biogeochemical interactions will ultimately determine re-

source availability for biotic communities and may need to be optimized for soil conditions.

The long–term ecological effect of biochar application needs to be investigated in terms of

soil community development and plant response under field conditions.
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Reductions in soil animal abundance were also detected when applying biochar although

not significant. This is most likely due to reduced fungal and bacterial biomass creating

a limiting microbial food resource for grazing soil animals. Mikola and Setälä (1998) es-

tablished a trophic dynamic microcosm experiment testing the soil interactions among mi-

crobes, microbivorous nematodes, and predatory nematodes. This study suggested that

increased microbial productivity leads to the increased biomass of microbes followed by a

lagging response time in the microbivorous nematode trophic level. As nematode recovery

after severe disturbance is slow (Bongers and Ferris 1999), the reduced abundance of graz-

ing soil animals in biochar only plots most likely contributed to the minimized abundance

of predatory soil animals. To date, biochar’s influence on soil food web structure is rela-

tively unknown (Lehmann et al. 2011). My study results are contrary to the hypotheses

proposed by McCormack et al. (2013) where the addition of biochar was anticipated to in-

crease microbial and soil animal resource availability. The direct influence of biochar on the

multi–trophic interactions warrants further study in restoration and agriculture. Biochar’s

use as a land management tool to assist soil food web development is questionable as shown

by my results.

4.4.3 Soil food web response to compost

Compost application did not affect most of the organisms in my study. While it in-

creased the abundance of N–fixing plant biomass, fungal biomass, and predatory nematode

abundance, I could not detect an influence of compost in other groups. This is contrary to

my hypothesis which predicted that compost would increase soil microbial biomass and soil

animal abundance due to ameliorated soil conditions.

Compost was expected to promote increased soil microbial community growth due to im-

proved nutrient and water retention profiles in compost amended soils (Bastida et al. 2008,

Larney and Angers 2012). Long–term and short–term studies indicate that urban compost

primes microbial community decomposition and increases plant–available macro–nutrients

in agricultural soils (Weber et al. 2007, Hadas and Portnoy 1997). Jones et al. (2010)

concluded that compost additions in bauxite–processing residue sand positively influenced

water retention and nutrient profiles, thus increasing soil microbial activity. The influence

of organic amendments has been shown to favor the growth of fungal community compared

to bacteria communities (Jastrow et al. 2007). Fungi are more efficient decomposers of

compost amendments compared to bacteria due to large hyphal networks and efficient nu-

trient acquisition and translocation mechanisms (Lucas et al. 2014). My study confirms

that fungal biomass was significantly increased by the addition of compost compared to a

positive, but non–significant influence on bacterial biomass.
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An important indicator in re–establishing a soil microbial community is the relative

proportions of bacterial and fungal biomass (Bardgett and McAlister 1999) with natural

grassland systems being dominated by fungal communities (Harris 2009). Mummey et al.

(2002) suggested that fungal:bacterial ratios in mine spoils can approach ratios in natural

soils after 20 years following restoration although total biomass is comparatively reduced.

Compost addition in my study did not significantly influence fungal:bacterial biomass ra-

tios compared to non–amended controls. This is surprising as the compost amendment re-

sulted in significant increases in fungal biomass but did not significantly influence bacterial

biomass. This result suggests that soil conditions improved due to the compost amendment

but gains in fungal biomass were not pronounced compared to gains in bacterial biomass. As

fungal:bacterial biomass ratios were only measured after two growing seasons, these ratios

are expected to increase as above– and belowground litter inputs accumulate, ultimately

favoring fungal dominance in the soil food web (Holtkamp et al. 2008).

I had anticipated that compost would have a larger influence on soil food web struc-

ture due to the alleviation abiotic stress in impoverished soils, increased microbial food

resources, and more feeding substrate. The addition of farm composts containing crop

residue and manure showed increased fungal feeding nematodes in a soil incubation study

due to increased food resources (Steel et al. 2012). Jørgensen and Hedlund (2013) showed

that Collembola and predatory mites had increased fecundity when adding a fungal inocu-

lated clover amendment to soils, highlighting the importance of fungal biomass for grazing

animal fecundity and prey attraction.

After two growing seasons, my study showed that no direct influence of compost was

detected on soil animal abundance. This is surprising as compost significantly increased

fungal biomass, a food source for fungal feeding nematodes, Collembola, and Oribatid

mites. As Collembola and Oribatid mites also consume litter, the addition of composted

plant material had little influence on population densities. Therefore, predatory nematodes

and mites subsequently had low population densities most likely attributed to low prey

abundances. Several studies have linked rates of organic matter mineralization to microbial

production and the biomass of soil microbivores and predators (Seastedt 1984, Bardgett

et al. 1998, Laakso et al. 2000).

As increases in resource availability drives microbial production (Baer et al. 2003), the

chosen compost rate may have been too low to overcome the harsh abiotic sandpit condi-

tions, resulting in a subdued response in the soil food web. Thus, I speculate that largest

obstacle for soil food web development is the harsh conditions in post–mine areas. Increas-

ing the amount of organic matter may have a stronger influence on the development of

the soil food web by further ameliorating soil conditions and increasing food resources for

grazing soil animals.
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4.4.4 Soil food web response to compost and biochar

Soil food web responses were much more pronounced when compost and biochar were

applied together. My hypothesis that co–amending soils with compost + biochar and AM

fungal inoculation would positively influence soil microbial biomass and soil animal abun-

dance was partially supported in my study. The compost + biochar treatments had a large

positive influence on soil food web development but an effect of AM fungal inoculation was

not detected.

This is the first study to investigate the influence of compost and biochar on soil food web

structure. As suggested by Fischer and Glaser (2012), a synergistic interaction of compost

+ biochar can positively influence soil conditions, leading to a large positive impact on soil

food web structure. Potential mechanisms may be increased water and nutrient retention,

buffered pH, or creation of microbial refugia in biochar’s highly porous structure with a large

nutrient pulse supplied by compost. Fischer and Glaser (2012) also indicate that compost

may charge biochar’s surfaces to slowly release nutrients to soils, increase soil aeration,

and reduce leaching losses. These soil amelioration mechanisms may have overcome the

abiotic conditions associated with post–mine sandpits, significantly increasing soil microbial

biomass followed by soil animal abundance compared to solitary amendments or controls.

Food resources are key to the development of multi–trophic belowground food webs

(Hunt et al. 1987). Increased knowledge regarding the linkages within decomposer food webs

requires an understanding of the importance of resource availability upon the growth and

abundance microbial communities and the associated consumer trophic levels (Wardle 2006).

Adding compost with biochar clearly influenced bacterial and fungal biomass by creating

a bottom–up trophic cascade effect within the soil food web. By co–mixing amendments,

large increases in soil microbial communities translated to increased abundance of grazing

nematodes, Collembola, Oribatid mites. Increased abundance of grazing soil animals created

a prey resource for predatory nematodes and mites leading to a more complete trophic

hierarchy in the soil food web. Thus, the soil environment with compost + biochar was

more tolerable for the growth and development of a belowground soil microbial communities,

inducing a positive response in soil nematode and microarthropod abundance.

Compost + biochar treatments did not influence fungal:bacterial biomass ratios when

compared to control plots even though substantial increases in fungal and bacterial biomass

were detected. The addition of organic amendments to severely degraded areas drives

positive changes in microbial activity as estimated by soil microbial biomass carbon (Ros

et al. 2003). This suggests that an influence of increased resource availability may have

equally benefited the growth of both fungal and bacterial functional groups. As biochar

persists in soils for over 100+ years (Lehmann et al. 2009), the growth benefits gained by
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soil microbial communities and belowground plant response from biochar’s physiochemical

properties are anticipated to be long–term (Glaser et al. 2002).

My study results clearly confirm that the development of soil microbial communities

and soil animals is significantly enhanced when biochar and compost are used in tandem.

When used as a land management tool, co–amending soils with compost + biochar can

accelerate the development of soil food webs, indicating that post–mine substrate recovery

is substantial when compared to non–amended controls. As the soil food web is developed,

functioning decomposition and nutrient cycles can translate into greater plant response in

the field due to the ecosystem services provided by multi–trophic interactions of soil biota

(de Vries et al. 2013). Thus, when a researcher approaches restoration with a holistic ecosys-

tem perspective, the incorporation of compost + biochar is an essential to soil regeneration

in degraded mine areas.

4.4.5 Interactions among soil microbial biomass and soil animal

abundance

This study showed that increasing fungal biomass significantly reduced fungal feeding

nematode abundance while increasing Collembola abundance. Bacterial biomass had no

significant effect on bacterial feeding nematode and Collembola grazers. These relationships

in the fungal and bacterial energy pathways channels did not coincide with my hypothesis

that increased food resources in the soil microbial community would correlate to higher

grazing soil animal densities.

As described previously, amendment choice had a direct influence on microbial biomass

and soil animal density with compost + biochar amendments significantly increasing all

soil animals in the belowground food web. These results indicate that the soil edaphic

conditions improved the growth of food resources for grazing and predatory animals. Con-

versely, when investigating direct relationships in the fungal and bacterial energy channels,

unexpected patterns emerged. Increasing fungal biomass resulted in a significant nega-

tive correlation with fungal feeding nematodes while no significant correlation was detected

between bacterial biomass and bacterial feeding nematodes.

Bacterial and fungal nematode response to soil amendments is not equivocal due to

different life history strategies in these groups (Ferris and Bongers 2006). Generally, bac-

terial feeding nematodes have short life cycles and high reproductive potential to quickly

respond to bacterial blooms in soils (Bongers and Ferris 1999). Fungal feeding nematodes,

on the other hand, are longer–lived and reproduce more slowly compared to bacterial feed-

ing nematodes, thus are less likely to respond to changing conditions (Ferris et al. 2001).

Disturbance severity will ultimately dictate the composition of bacterial vs. fungal feeding

nematodes with severe disturbance shifting soil systems towards bacterial feeding energy
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channels (Bongers 1990). Thus, in the fungal pathway, the negative correlation between

fungal biomass and fungal feeding nematodes may be due to a lag in rapid nematode re-

sponse to the available fungal food resource. Bacterial colonizers present in the sandpit

may have a more ephemeral response to bacterial biomass leading to no direct correlation

between these trophic levels. Long–term monitoring of the grazing nematodes populations

is needed to determine the recovery trajectory of this system.

Furthermore, Yeates et al. (1993) points out that nematode feeding group identification

may not be well delineated in practice. Bacterial feeding nematodes are generally classi-

fied by having a wide mouth, but bacterial feeders have been known to feed upon fungal

food resources (Gupta et al. 1979). Fungal feeding nematodes are classified as possessing

a stylet but some genera with this feature are known to feed on plant roots or be verte-

brate predators (Bongers and Bongers 1998). The large nematode family, Tylenchidae, is

commonly considered root feeding nematodes but have been shown to feed on fungal food

resources (Okada et al. 2005). Distinguishing between plant feeding nematodes and fungal

feeding nematodes is important to understand interactions between food resources. In my

study, nematodes classified as fungal feeding nematodes may feed upon plant roots in the

rhizosphere, leading to unexpected correlations between fungal biomass and fungal feeding

nematodes by inaccurately attributing food resource being consumed.

Fungal biomass had a positive total effect on predatory nematode abundance. Con-

versely, bacterial biomass had a negative total effect on predatory nematode abundance.

Wardle et al. (1995) showed that top predatory nematodes were regulated by microbial

biomass while fungal and bacterial feeding nematode responses were more variable in the

belowground interactions. Li et al. (2014) found that organic enrichment in an agricultural

setting shifted grazing fungal dominance to the fungal energy channel while increasing

predatory nematodes. In my study, the ephemeral life cycle response of bacterial feeding

nematodes may not be a stable food source for predatory nematodes. Thus, the longer–

lived fungal feeding nematodes in the fungal energy channel may be a more nutritious food

source with a more stable population to support nematode predators.

Compost + biochar soil amendments showed large increases in soil microarthropods

abundance compared to controls. This indicates that a food resource is available to support

these soil animals in the food web. When investigating the relationship in the structural

equation model, Collembola responded positively to increases in fungal biomass while a

negative response was detected for bacterial biomass although no strong relationship ex-

ists. Soil mites had no strong response to the microbial community. Results from field

studies in microarthropod populations are often ambiguous as invertebrate population size

can increase or decrease with amendment type (Bardgett and Cook 1998, Jørgensen and

Hedlund 2013). Complex trophic interactions present in soil food webs occur as a number
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of direct and indirect interactions occur between species is difficult to predict (Bengtsson

et al. 1996). More research needs to be conducted on the reliability of fungal and bacterial

biomass measurements when determining resource availability for grazing soil animals and

predators.

Sandpit resource extraction strongly diminishes populations of soil animals in the sys-

tem. Slow recovery may be expected as the soil environment develops over time and response

of microarthropods can be highly variable due to environmental heterogeneity (Curry and

Good 1992, Menta 2012). As evident in control plots, soil animal abundances were ex-

tremely low after two growing seasons. In former agricultural lands, colonization of new

areas is unpredictable and responds differently to successional changes in plant communities

(Scheu and Schulz 1996, Korthals et al. 2001). Most soil organisms are considered to have

limited abilities of overcoming soil heterogeneity and have restricted movement (Ojala and

Huhta 2001). In my study system, compost + biochar amended plots ultimately improved

soil conditions to support a higher abundance of soil microbes and soil animals compared

to control plots. Thus, as soil organisms disperse to the field site, these amended plots

are anticipated to better support the survival of newly arriving immigrants compared to

unamended plots.

To accelerate recovery of soil food webs, post–mine sandpits may benefit from an in-

oculation of soil food web biota. Assuming soil animals survive the composting process,

it is reasonable to conclude that compost would act as soil food web inoculant that con-

tained a high abundance of bacteria, fungi, nematodes, and soil microarthropods (Cernova

1970, Streit et al. 1985, Steel et al. 2013b). After two growing seasons, compost additions

alone unexpectedly did not alter soil animal abundance significantly as shown by marginally

improved soil animal densities compared to non–amended plots. Conversely, improved bio-

geochemical conditions of compost + biochar amended soils may have allowed for soil animal

survival associated with compost. Further research on the potential of using compost as a

soil food web inoculum should be conducted under various restoration scenarios.

4.4.6 Summary

Based on my results, the recovery of soil food webs when restoring grasslands in post–

mine aggregate sites is a viable management option in southern Ontario. As ecosystem

productivity and soil fertility are closely tied to soil biota, land managers should target

the development of soil food webs in tandem with phyto–centric goals to maximize plant

production in a restoration project. As shown in this study, mining sand strongly reduces

soil microbial communities and soil animal abundance even after two years of habitat re-

covery with grassland plant plugs. The harsh substrate conditions in non–amended control

plots suggests that the recovery time of a soil food web would be slow if no management
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action was implemented. Therefore, land management tools are necessary to accelerate the

development of functioning soil food webs in severely disturbed habitats.

In my study, the technical reclamation tools (i.e. compost, biochar, and AM fungal in-

oculation) induced a variable response within the soil food web. The application of biochar

alone added stress to the post–mine substrate and further restricted soil food web devel-

opment in the field while compost had a negligible effect compared to control plots. In

contrast, co–amending soils with compost + biochar led to large increases in soil food web

development in the field. The application of compost + biochar in an industrial–scale

restoration project should promote increases in soil microbial biomass and soil animal pro-

duction leading by improving soil conditions at the site. Increasing the function of soil food

webs can ultimately drive aboveground plant community production due to the ecosystem

services provided. These ecosystem services can lead to reduced site maintenance costs,

increase plant community recovery time, and promote vegetative biodiversity.
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Management Recommendations for

Grassland Restoration in

Post–Extraction Sandpits

Restoring a grassland plant community is challenging when attempting to recreate nat-

ural habitat in post–mine sandpits. Native plant growth in sandpits is hampered by stress-

ful abiotic conditions and disrupted connections among plants–microbes–soil animals at-

tributed to severe disturbance and low organic matter. As shown in this study, only C4

grasses and N–fixing forbs responded positively in sandpit substrate during the plant plug

and seed application trials. Composite forbs and C3 grasses exhibited poor plant response

in the study, regardless of treatment. Thus, recreating highly diverse prairie ecosystems

remains a challenge, even after addressing the harsh conditions of sandpit substrate using

soil amendments and AM fungal inoculum.

My results show that soil amelioration can benefit plant response when restoring grass-

land vegetation as plugs or seeds. When directly seeding in sandpits, significant increases

in plant response were achieved by concurrently amending soils with high rates of biochar

and compost (20 T ha−1 and 40 T ha−1) and the recommended rate of the commercial AM

fungal inoculum, Rhizophagus irregularis. In the plant plug trial, no significant differences

in total plant biomass were detected in plots adding 20 T ha−1 of compost + 10 T ha−1 of

biochar although a positive trend was indicated. In this case, the rate of 20 T ha−1 of com-

post + 10 T ha−1 of biochar may have been too low to create a strong positive plant growth

response in the plug experiment. But, in terms of soil food web development, the large

biotic response of fungi, bacteria, and soil animals to 20 T ha−1 of compost + 10 T ha−1

of biochar in the soil food web indicates more favorable conditions for soil microbial and

animal growth after two growing seasons. Therefore, the addition of high rates of biochar

and compost improved soil conditions to accelerate soil food web development and increase

plant response in the field compared to non–amended and non–inoculated control plots.
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5.1 Plant species selection and sourcing

Incorporating plant material as seed or plugs is essential when recreating prairie–like

habitat in post–mine sandpits to reach plant community targets. When left to natural

plant recolonization, control areas (i.e. no plant plugs added) were sporadically colonized

by weedy, ephemeral plants with low biomass. Native seed recruitment was minimal in

these control areas even with the incorporation of soil amendments in non–vegetated plots.

Therefore, incorporating native plant material as seed or plant plugs is essential when

restoring grassland habitat in post–mine aggregate sites.

The decision to rehabilitate prairies with native plant seeds or plugs will be determined

by desired speed of recovery and future maintenance considerations. Seeding the landscape

incorporates drawback such as:

− slower and less successful plant establishment

− possible increased time to achieve rehabilitation certification

− increased site maintenance requirements (i.e. reseeding applications)

− increased influence of weedy, invasive plant species (i.e. herbicide applications may

be necessary)

The upfront cost of sowing native plant plugs with soil amendments is initially more

cost prohibitive than direct seeding (Table 5.1). The advantage of restoring with plant

plugs is high plant biomass production by the C4 grass and N–fixing forbs compared to

seed growth over a similar growing period. Accelerated growth rates in the plant plug trial

can increase soil stabilization by binding substrate with native plant roots and reducing

wind scour. From personal observation, plant plug addition reduced surface erosion by

wind energy immediately at the time of plug installation. Compared to the plant plug trial,

plant growth in the seed application trial was stunted after three growing seasons compared

to plants starting as plugs. Thus, integrating plug installation with native seeded may be

a cost effective hybrid technique to minimize seed loss and stabilize the mine substrate at

a restoration site.

This restoration project used locally–collected seed mixtures which were adapted to

regional growing conditions. Locally–sourced plant material has been suggested to positively

influence plant response in restoration projects with greatest success in soils experiencing

lower disturbance (Lesica and Allendorf 1999, Buisson et al. 2006). In southern Ontario,

high diversity seed mixes can range from 10 - 30 plant species to include a mixture of warm

season (C4) grasses, cool season (C3) grasses, legumes (i.e. nitrogen–fixing forbs), and
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composite wild flowers (Delaney et al. 2000). As shown by this study, C4 grasses and N–

fixing forbs will likely dominate the vegetative community in a sandpit restoration project

after several years of plant growth. Further research on seed mixture proportions needs to

be investigated to achieve the best results for creating a high diversity plant community in

post–extraction sandpits.

This study shows that plant response to soil amendments and AM fungal inoculation

varies among plant species. Therefore, plant selection must be considered on a case by case

basis. The environmental tolerance of each plant species to amended post–mine substrate

conditions favored some species, while being a detriment to another. All plant species,

except for Andropogon gerardii, had a neutral to positive response to the compost or compost

+ biochar amendment addition. All plant species growing in biochar only treatments had a

neutral to negative biomass response compared to control. Panicum virgatum and Lespedeza

capitata biomass was significantly greater in AM inoculated compared to non–inoculated

plants while the opposite was true for Andropogon gerardii. In general, the addition of

compost and biochar amendments benefited the growth of most species in the post–mine

substrate by alleviating abiotic stress. Conversely, plant response to the commercial AM

inoculum was dependent upon species and planting method thus its use in tallgrass prairie

restoration is context–dependent.

The composite forbs, Symphyotrichum laeve and Liatris cylindracea, did not perform

well in either restoration trial. In the seed application trial, composite forb cover was

negligible after three growing seasons. In the plug trial, significant reductions in composite

forb biomass were exhibited in the field after two growing seasons. The chosen composite

forb species in this trial were not ideal candidates for this post–mine restoration. In the

following years, I expect that these species will be non–existent in the two trials.

In contrast, the C4 grasses and N–fixing forbs tolerated the post–mine sandpit environ-

ment and were responsive to the applied soil amendments. These species were the largest

contributor to total plant biomass in the field. Thus, sand pit restoration should include a

mixture of these plant functional groups to increase plant community biomass.

Inconsistent plant species responses highlights the need to have clearly stated goals in

restoration management plans when recreating prairies in severely disturbed areas. If total

plant response is the key component to determine restoration success, then the application

of biochar, compost, and AM inoculum would be an effective tool to assist the restoration

of grassland plants in post–mine sandpits. If a practitioner is targeting a specific suite of

plant species and managing for species at risk, higher caution must be used when choosing

amendments and AM fungal inoculum. Target plants may be adversely affected by the

addition of soil amendments in the field and/or choice of mycorrhizal inoculum. Context–

dependent abiotic and biotic scenarios ultimately determine the success of each restoration.
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5.1.1 Soil amendments and commercial AMF inoculum

Commercial AM fungal inoculum

The arbuscular mycorrhizal inoculum, Rhizophagus irregularis, was most effective during

seed application when co–amended with high rates of compost and biochar. No significant

effects on the total plant biomass and soil food web development were detected in the plant

plug experiment. This may be a result of background AM fungal present in unsterilized

plant plug soils in the commercial greenhouse.

As shown by other mine land reclamation studies, AM fungal inoculum benefits the

growth of plants in severely degraded mine areas (Rao and Tak 2002, Rydlová et al. 2008, Wu

et al. 2009) but plant response due to AM fungal inoculation can be enhanced by the addition

of soil amendments (Gryndler et al. 2008, Püschel et al. 2008a). My research supports the

finding that adding AM fungal inoculum enhances plant response when amended with

compost in the seed trial. Co-amending soils with increasing rates of compost and biochar

further facilitates the plant growth in this system. In this sandpit restoration, adding a

commercial AM inoculum is appropriate when establishing grassland plants from seed when

applying soil amendments. When growing plants from plugs in an unsterilzed greenhouse

setting, my results show that land managers do not need to apply AM fungal inoculum if

biochar and compost are not added as no significant plant response was detected in this

trial after two growing seasons.

Biochar as a soil amendment

Biochar has been shown to be a beneficial land management tool to enhance plant pro-

duction in tropical agriculture (Major et al. 2010). To date, no research has been conducted

on the role of biochar in the restoration of grasslands in severely degraded post–mine areas.

My results show that the incorporation of biochar as a solitary amendment for grassland

restoration in sandpits should not be used. The negative responses detected in plant plug

growth and soil food web development indicate that biochar addition further stresses the

substrate and restricts the development of biota in the recovering system. Comparatively,

high rates of biochar had no effect on total plant cover after three growing seasons in the

direct seeding trial. Therefore, solitary biochar addition should be approached with caution

as plant response can be hampered in a restoration project. More research needs to be

conducted for the most appropriate restoration scenarios to add biochar with the goal of

increasing plant response.
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Compost as a soil amendment

Compost has been shown to increase plant response in degraded mine areas by alleviating

stressful abiotic conditions in many studies (Noyd et al. 1996, Püschel et al. 2011). My study

indicates that compost positively influences plant growth in the plant plug trial although not

significant compared to non–amended controls. In the seed application trial, high levels of

compost addition is the main driver of total plant cover. If a land manager is presented with

an amendment choice, compost as a solitary amendment outweighs the use of biochar as

a soil amendment. Incorporating 20 T ha−1 to 40 T ha−1 of compost into sandpit substrate

has the largest potential to positively influence soil conditions as shown by increased plant

response in grassland vegetation.

Synergism among biochar, compost, and AM fungal inoculum

The results of this study indicate that the concurrent addition of municipal compost,

biochar and mycorrhizal inoculum are simple land management tools that improve plant

performance and soil food web development in post–extraction aggregate sites. In the plant

plug experiment, 20 T ha−1 of compost mixed with 10 T ha−1 of biochar had the highest

positive effect on plant biomass, soil microbial biomass, and soil animal abundance. Thus,

the amelioration of stressful abiotic conditions in the sandpit was achieved when compost

and biochar were used together in the plant plug trial. AMF inoculation combined with high

rates of compost (20 T ha−1 to 40 T ha−1) and low rates of biochar (20 T ha−1 to 40 T ha−1)

resulted in the highest plant cover in the seed experiment.

The rates of biochar and compost need to be optimized to achieve the highest plant re-

sponse at industrially feasible costs. My results suggest that low rates of biochar (5 T ha−1

and 10 T ha−1) combined with higher rates of compost (20 T ha−1 and 40 T ha−1) may

achieve significant responses in the plant community while being cost effective. As the

cost of biochar is substantially higher than that of municipal compost, adding 20 T ha−1

and 40 T ha−1 of biochar is not a cost effective amendment at this time (Table 5.1). Funds

to restore grassland vegetation in a sandpit could be more effectively used by incorporating

plant plugs with a high diversity seed mixture.

5.2 Purchasing soil amendments and inoculum for a

restoration project

Rhizophagus irregularis can be purchased as a seed coat powder from Myke Pro R©

(www.usemykepro.com) and applied at the rate suggested by the manufacturer. The in-
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oculum recommended for agricultural crops, Myke Pro R© PS3, would be the most effective

AMF inoculum for grassland restoration in sandpits.

Compost can be purchased locally at most landscape supply locations across Ontario.

The approximate cost of compost is $40–$50 per metric ton plus delivery. Compost is

typically generated from municipal waste collection streams and is readily available for

purchase.

In comparison, the U.S. Biochar Initiative reports the cost of biochar as $500 per ton ex-

cluding shipping (http://biochar-us.org/, 2014). Currently, production facilities of biochar

are not widespread, making large quantities of biochar less readily available to the land

manager.

Although the cost and availability of biochar may be prohibitive in 2014, the soil con-

ditioning effect of this amendment when co–amended the compost may become a viable

option in the future. As carbon taxes are on the horizon, landholders may soon be able

to generate offset carbon credits from activities that reduce emissions or sequester carbon,

including biochar application. These offset carbon credits may defer the cost associated

with biochar.

5.3 Site preparation

When preparing the pit floor substrate for a grassland restoration project, the area

should be roughly graded flat to allow for ease of planting. Once graded, compost and

biochar can be tilled into the upper 10 cm of sandpit substrate before planting occurs. I

recommend minimizing the time between compost incorporation and planting to reduce

the colonization of unwanted weedy plants. Seeds and/or plant plugs can be sown by

hand or with machinery depending upon the scale of the project. Ideally, seeds should be

compacted with a seed roller to ensure solid contact with the pit floor. I do not recommend

reincorporating long–term storage stock piles into the site. A high density of weedy plants

will have developed on the stock–piled topsoil and would potentially out compete the growth

of seeded native vegetation.

5.4 Summary

My goal was to optimize cost and effectively establish a tallgrass prairie ecosystem. I

suggest that integrating both planting approaches (i.e. plant plugs and seed) will be the

most effective strategy for ecosystem establishment. I recommend incorporating 20 T ha−1

to 40 T ha−1 of compost into the substrate before planting and /or seeding the site. If

available, co–amend sandpit substrate with low rates of biochar (5 T ha−1 to 15 T ha−1).
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Table 5.1: The projected materials cost of land rehabilitation in abandoned sandpits in
southern Ontario. Two viable options are available for prairie system rehabilitation: seed
addition or plug addition. Note that the cost per ha decreases as the rehabilitation area
increases.

Approx. Cost to Establish One Hectare of Prairie Grasses

Prairie Rehabilitation w/ Seed

Seed Application / ha (no grading required) $3,000

Miscellaneous Costs (Transportation, etc.) $500

Total $3,500

Prairie Rehabilitation w/ Plugs

Plug Cost ($1.00 × 20,000 plants / ha [1 plant / 0.5 m2] $20,000

Miscellaneous Costs (Transportation, labour, etc.) $2,750

Total $22,750

Amendments

AMF Inoculum (4 kg inoculum = 5.3 ha coverage) $400

Compost [$45 / metric ton × 20 T ha−1] $900
Biochar [$500 / metric ton × 10 T ha−1] $5,000
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Incorporate plant plugs composed of legumes and warm season grasses at a rate of one

plug per square meter. These plants have a high survivorship and growth success at the

site, which will maximize the cost effectiveness of plant plugs. Sow a high diversity plant

seed mixture containing warm season grasses, cool season grasses, legumes, and wildflowers

among the plant plugs. When planting, incorporating AM fungal inoculum can further

promote vegetative establishment and growth. Incorporating all of the investigated amend-

ments is an effective restoration strategy that compliments the desired outcome of grassland

plant establishment and soil development.
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Conclusion

Severe land disturbance is pervasive among all ecosystems as a result of anthropogenic

activities. As a society, we have a responsibility to repair the destruction that accompanies

resource extraction and land–use change. Therefore, it is imperative that we restore viable

ecosystems that support plant and animal communities in severely impacted sites to account

for regional habitat loss. In this study, I show that the restoration of grassland plants

in post–mine aggregate sites is a viable management option in southern Ontario. After

resource depletion in mine areas, the substrate conditions that are a legacy of aggregate

extraction are a stark contrast to functional soils in natural habitats. The edaphic conditions

of sand extraction restricts plant growth and soil food web development as shown by the

control plots at my research site. My goal was to recreate functional grassland habitat

with ecological characteristics that resemble reference sites. Land management tools (i.e

compost, biochar, and AM fungal inoculation) were anticipated to accelerate plant growth

and soil recovery, translating into aboveground and belowground biota recovery on marginal

lands.

A summary of the support garnered for the three main thesis objectives is addressed

below:

Objective #1 Develop a minimally destructive statistical method to increase mea-

surement accuracy and reduce data collection time when estimating aboveground plant

biomass. The sampling method developed to estimate individual herbaceous plant

and small shrub biomass in the field via partial least squares regression was superior

to linear regression statistical techniques. Partial least squares regression was shown

to be a robust statistical technique that should be used to accurately predict plant

biomass in ecological experiments. In comparison to liner regression using a sole pre-

dictor variable, partial least squares regression increases prediction confidence and

reliability in ecological experiments.

Objective #2 Determine the multi–year plant response of both planting strategies

to soil amendments and the commercial AM fungal isolate in a post-mine sandpit.

Incorporating land management tools to mitigate the harsh abiotic conditions of

post–extraction substrate is necessary to increase plant production in target grass-
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land communities. As solitary amendments, the incorporation of the commercial

arbuscular mycorrhizal fungal isolate and biochar did not significantly improve plant

growth in either trial. In both field trials, the addition of compost was the most

influential driver of plant production in the post–mine sandpit. In the plant plug

trial, a trend was detected when comparing the total plant biomass in plots adding

20 T ha−1 compost and 20 T ha−1 compost + 10 T ha−1 biochar compared to control.

When compost was supplemented with biochar and the arbuscular mycorrhizal fun-

gal inoculum (Rhizophagus irregularis) in the seed application trial, grassland plant

response was largely accentuated. Thus, co–amending sandpit soils with biochar, com-

post, and mycorrhizal inoculum increased the effectiveness of the restoration protocol

in this trial. A single application of high rates 20 T ha−1 of biochar and compost at

the onset of an industrial–scale restoration project will lessen site maintenance costs,

increase plant community recovery time.

Objective #3 Determine the soil food web response to the addition of soil amend-

ments and a AM fungal isolate in sandpit substrate. As shown in this study, mining

sand strongly reduces soil microbial communities and soil animal abundance even af-

ter two years of habitat recovery. Non–amended control plots had low soil food web

abundance across all trophic levels. Thus, the natural recovery time of a soil food web

would be slow if no management action is implemented. The application of biochar

alone added stress to the post–mine substrate and further restricted soil food web

development compared to control plots. In contrast, compost and arbuscular mycor-

rhizal inoculum had a negligible effect compared to control plots. Co–amending soils

with compost + biochar led to large increases in soil food web development across all

trophic levels indicating improved soil conditions at the site. Increasing the function

of soil food webs ultimately drives aboveground plant community production due to

the ecosystem services provided. These ecosystem services can lead to reduced site

maintenance costs, increase plant community recovery time, and promote vegetative

biodiversity.

The restoration of severely disturbed mine areas necessitates interventions that address

stressful soil conditions (Séré et al. 2008). Restoration projects have successfully used munic-

ipal compost in mine areas with low organic matter content to promote plant growth (Noyd

et al. 1996, Gryndler et al. 2008, Püschel et al. 2008b) and soil community development

(Ros et al. 2003; 2006, Biederman et al. 2008). My research shows marginal improvement

of plant growth and soil food web development due to compost in the plant plug trial. The

20 T ha−1 compost rate applied in the plant plug trial may have insufficient stimulate large

production changes compared to controls.
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Biochar has been shown to improve soil nutrient availability and retention, reduce soil

acidity, and adsorb organic matter (Lehmann et al. 2003, Shrestha et al. 2010). As biochar

research is sparse in restoration, the successful application of biochar to improve biotic

response will ultimately depend upon soil type, source feedstock, pyrolysis conditions, and

biochar application rates (Verheijen et al. 2014). Biochar as a soil amendment to increase

plant growth has generated promising results within agricultural systems and greenhouse

experiments. Research has demonstrated that biochar amended soils have greater crop

biomass (Rondon et al. 2007, Major et al. 2010, Biederman and Harpole 2012) and enhanced

biological N–fixation in leguminous crops (Rondon et al. 2007). In contrast to these studies,

a plant growth effect was not detected in my grassland restoration experiment.

In the field of mine restoration, a dearth of information exists on the effect of biochar

in facilitating the growth of plants, development of microbial communities, and soil fauna

abundance (Lehmann et al. 2011). My research indicates that biochar as a solitary amend-

ment results in no significant improvement in plant growth. Furthermore, biochar added

stress to the system as shown by the reduction of microbial and soil fauna abundance in

the plant plug trial. In the seed application trail, increasing rates of biochar were only

beneficial for promoting plant cover when soils were co–amended with increasing compost

and inoculation with Rhizophagus irregularis.

Biotic symbionts such as arbuscular mycorrhizal fungi have been used as inoculum to

facilitate plant production in severely degraded habitats (Johnson 1998, Gryndler et al.

2008, Rydlová et al. 2008). The effectiveness of mycorrhizal inoculation on plant growth

can vary by the combination of plant species, soil disturbance type, and the selection of an

arbuscular mycorrhizal fungal isolate (Taheri and Bever 2010, Püschel et al. 2011, Thorne

et al. 2013). My research indicates that the addition of a commercial arbuscular mycorrhizal

fungal isolate, Rhizophagus irregularis, successfully established in the plant plug trial and

persisted over the study period. No arbuscular mycorrhizal effect was detected on total

plant biomass in the plant plug trial, but individual plants had a varied response to the

addition of the inoculum. This indicates that plants did not respond equally to the addition

of the isolate.

Background arbuscular mycorrhizal colonization was also detected in the non–inoculated

control plants in the plant plug trial and persisted throughout the study period. Thus,

the arbuscular mycorrhizal fungi present in the non–inoculated controls may have benefited

growth and nutrient acquisition of plants in these plots. Furthermore, several studies suggest

that arbuscular mycorrhizas should be collected directly from similar mine sites as these

fungi will be better adapted to field conditions when restoring plants (Noyd et al. 1995,

Taheri and Bever 2010). As I used a commercial inoculum in this study, the isolate used in

my experiment may not have been well adapted to post–mine conditions in the field.
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6.1 Strengths and limitations of the dissertation research

This dissertation research makes several strong contributions to the field of restoration

ecology and ecological sampling methodology. The techniques developed in this study are

applicable to mine restoration projects across the world. Severely degraded soil conditions

are pervasive within the resource extraction industry. This research clearly shows that mine

soil conditions need to be altered before the restoration of natural vegetation is attempted,

especially when establishing plants from seed. Furthermore, the use of plant plugs in a

research setting is a novel technique to restore grasslands in post–mine areas. Growing

plants as plugs may have assisted the grassland plants in overcoming initial abiotic soil

conditions compared to establishing plants from seed. Thus, the use of plant plugs was

shown to be a reliable restoration technique, especially for C4 grasses.

Selecting the appropriate suite of soil amendments carefully is essential when restor-

ing post–mine sandpits. Land managers should be aware that all soil amendments and

arbuscular mycorrhizal inoculum will not ubiquitously produce positive growth responses

for plants, soil microbial communities, and soil animals. A single application of high rates

(20 T ha−1) of biochar and compost with arbuscular mycorrhizal fungal inoculum at the

onset of an industrial–scale grassland restoration project can maximize plant response from

seed and improve soil food web development. Thus, this translates to a restoration project

that more closely approximates reference site conditions when compared to no management

intervention.

During this research, I developed a new statistical technique to more accurately esti-

mate herbaceous plant and small shrub biomass in the field. The improved measurement

accuracy can reduce the error in plant biomass estimation and increase plant measurement

experimental replication. The increased resolution in plant biomass estimation will prove

to be an invaluable tool to experimentally measure plant growth in a variety of ecological

scenarios. A limitation during the development of this technique was the low numbers of

species measured in the field. Ideally, a large suite of plants would have been measured to

test the robustness of this technique across many different types of vegetation in southern

Ontario.

A strength of this research was testing biochar as a soil amendment when restoring veg-

etation in severely degraded habitats. My research clearly shows that biochar as a solitary

amendment provided no positive plant growth effects and is detrimental to the development

of soil food webs. Comparatively, co–amending soils with biochar, compost, and Rhizoph-

agus irregularis significantly improved the biotic response of the soil food web and plant

cover in the seed application trial, indicating improved soil conditions belowground. When

approaching grassland restoration from an ecosystem perspective, the combination of all
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amendments was shown to yield the most interesting prospects as a reclamation tool to

restore vegetation and belowground soil food webs.

A limitation of this study was the replication in the seed application trial. As natural

variability would be anticipated in field, the single replication of each factor combinations

led to high variation in total native plant cover. Plot size and labor was a limiting factor

that restricted the replication in the seed application experiment. Ideally, a smaller scale

project could have been used to increase replication and statistical resolution.

6.2 Future directions

I would like to continue the investigation of the interactions among biochar, organic

amendments, and arbuscular mycorrhizal fungi. My career as a restoration ecologist will

focus on the recovery of plants and soils in severely degraded habitats. As biochar is a tool

to create sustainable biofuels, improve soils conditions, and increase carbon sequestration,

I think its role as in restoration needs to be explored more thoroughly. Thus, I would like

to experiment with designing and creating ways to more cost-effectively produce biochar

from inexpensive feed stocks and incorporate the resulting char into restoration plans.

In addition, restoration projects are often limited to short–term monitoring. I would like

to continue to monitor the long–term research site established during my PhD program. The

plots I have established will be available to be monitored indefinitely. I plan to continue to

track the plant growth rates and soil food web recovery over multiple time points throughout

my career. This long–term monitoring will prove to be an invaluable tool to investigate the

influence of the land management tools on the recovery trajectory of the community. As

the plant plug and seed application trial was only monitored for two years and three years

respectively, this may not have been enough time to show large significant effects on the

plant growth dynamics among the treatments. As the effect of solitary biochar addition

to mine soils is unknown, there may be a lag in the response of plants and soil food web

development early in the establishment of the ecosystem.
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Hedlund, K. and M. S. Öhrn. 2000. Tritrophic interactions in a soil community enhance

decomposition rates. Oikos 88(3):585–591.

Hendrix, P. F., R. W. Parmelee, D. A. Crossley, D. C. Coleman, E. P. Odum, and P. M.

Groffman. 1986. Detritus food webs in conventional and no–tillage agroecosystems. Bio-

science 374–380.

129



Bibliography

Heneghan, L., S. P. Miller, S. Baer, M. A. Callaham, J. Montgomery, M. Pavao-Zuckerman,

C. C. Rhoades, and S. Richardson. 2008. Integrating soil ecological knowledge into restora-

tion management. Restoration Ecology 16(4):608–617.

Hodge, A. and A. H. Fitter. 2010. Substantial nitrogen acquisition by arbuscular mycorrhizal

fungi from organic material has implications for N cycling. Proceedings of the National

Academy of Sciences 107(31):13754–13759.

Hodge, A., T. Helgason, and A. H. Fitter. 2010. Nutritional ecology of arbuscular mycor-

rhizal fungi. Fungal Ecology 3(4):267–273.

Hodkinson, I. D., N. R. Webb, and S. J. Coulson. 2002. Primary community assembly on

land–the missing stages: Why are the heterotrophic organisms always there first? Journal

of Ecology 90(3):569–577.

Holtkamp, R., P. Kardol, A. van der Wal, S. C. Dekker, W. H. van der Putten, and P. C.

de Ruiter. 2008. Soil food web structure during ecosystem development after land aban-

donment. Applied Soil Ecology 39(1):23–34.

Hooper, D. U., F. S. Chapin Iii, J. J. Ewel, A. Hector, P. Inchausti, S. Lavorel, J. H. Law-

ton, D. M. Lodge, M. Loreau, and S. Naeem. 2005. Effects of biodiversity on ecosystem

functioning: A consensus of current knowledge. Ecological Monographs 75(1):3–35.

Hortenstine, C. C. and D. F. Rothwell. 1972. Use of municipal compost in reclamation of

phosphate–mining sand tailings. Journal of Environmental Quality 1(4):415–418.

Hunt, G. A. and R. Fogel. 1983. Fungal hyphal dynamics in a western Oregon Douglas–fir

stand. Soil Biology and Biochemistry 15(6):641–649.

Hunt, H. W., D. C. Coleman, E. R. Ingham, R. E. Ingham, E. T. Elliott, J. C. Moore,

S. L. Rose, C. P. P. Reid, and C. R. Morley. 1987. The detrital food web in a shortgrass

prairie. Biology and Fertility of Soils 3(1):57–68.
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Wold, S., M. Sjóstróm, and L. Eriksson. 2001. PLS–regression: A basic tool of chemometrics.

Chemometrics and Intelligent Laboratory Systems 58(2):109–130.

Wolkowski, R. P. 2003. Nitrogen management considerations for landspreading municipal

solid waste compost. Journal of Environmental Quality 32(5):1844–1850.

Wortmann, C. S. and D. T. Walters. 2007. Residual effects of compost and plowing on

phosphorus and sediment in runoff. Journal of Environmental Quality 36(5):1521–1527.

Wu, F. Y., Y. L. Bi, and M. H. Wong. 2009. Dual inoculation with an arbuscular mycorrhizal

fungus and Rhizobium to facilitate the growth of Alfalfa on coal mine substrates. Journal

of Plant Nutrition 32(5):755–771.

Xu, G., L. L. Wei, J. N. Sun, H. B. Shao, and S. X. Chang. 2013. What is more important

for enhancing nutrient bioavailability with biochar application into a sandy soil: Direct

or indirect mechanism? Ecological Engineering 52:119–124.

Yeates, G. W., T. Bongers, R. G. M. De Goede, D. W. Freckman, and S. S. Georgieva.

1993. Feeding habits in soil nematode families and generaan outline for soil ecologists.

Journal of Nematology 25(3):315.

Yeniay, O. and A. Goktas. 2002. A comparison of partial least squares regression with other

prediction methods. Hacettepe Journal of Mathematics and Statistics 31(99):99–111.

Zhao, J. and D. A. Neher. 2013. Soil nematode genera that predict specific types of distur-

bance. Applied Soil Ecology 64:135–141.

Zuur, A. F., E. N. Ieno, and G. M. Smith. 2007. Analysing ecological data. Springer New

York, New York.

146



Appendices

Appendix A

R Code for AM Fungal Plant Plug

Root Colonization in the Plant

Plug Trial

l i b r a r y ( ggp lot2 )

c o l . d f <− read . csv ( ”C:\\ Users \\Ohsowski\\Documents\\PhD\\D i s s e r t a t i o n \\Data\\
AMF Colon i za t i on \\Plant Plug AMF Colon i za t i on . csv ” )

names ( c o l . d f ) <− c ( ”abb” , ” fun ” , ” rep ” , ”myco” , ”ac” , ”vc” )

c o l . d f $ to t <− c o l . d f $ac + c o l . d f $vc

colMn . df <− aggregate ( c o l . d f $ tot , by=l i s t ( c o l . d f $abb , c o l . d f $myco , c o l . d f $ fun )

, FUN = mean , na . rm = TRUE)

names ( colMn . df ) <− c ( ”abb” , ”myco” , ” fun ” , ”totMn” )

colTotSD . df <− aggregate ( c o l . d f $ tot , by=l i s t ( c o l . d f $abb , c o l . d f $myco , c o l . d f $

fun ) , FUN = sd , na . rm = TRUE)

names ( colTotSD . df ) <− c ( ”abb” , ”myco” , ” fun ” , ”totSD” )

colTotSD . df $ totSE <− colTotSD . df $totSD / s q r t (10)

f i n a l . d f <− merge ( colMn . df , colTotSD . df , by = c ( ”abb” , ”myco” , ” fun ” ) )
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Appendix A. R Code for AM Fungal Plant Plug Root Colonization in the Plant Plug Trial

# Graphs

graph <− ggp lot ( f i n a l . df , aes ( x = f a c t o r ( abb ) , y = totMn , f i l l = myco , ) )

l i m i t s <− aes (ymax = totMn + totSE , ymin = totMn − totSE )

dodge <− p o s i t i o n dodge ( width = 0 . 9 )

l egendLabe l s <− c ( ”No Inoc ” , ” Inoc ” )

legendBreaks <− c ( ”N” , ”Y” )

graph output <− graph +

theme bw( ) +

geom bar ( p o s i t i o n = dodge , s t a t = ” i d e n t i t y ” ) +

geom er ro rba r ( l i m i t s , width = 0 . 5 , c o l o r = ” black ” , p o s i t i o n = dodge ) +

labs ( x = ” Plant Spec i e s ” ,

y = ” Total % Co lon i za t i on ” ) +

s c a l e f i l l grey ( breaks = legendBreaks , l a b e l s = legendLabels , s t a r t = 0 . 3 ,

end = 0 . 7 5 ) +

f a c e t g r id (˜ fun ) +

theme ( panel . g r i d . major = element l i n e ( co l ou r = ’ grey85 ’ ) ) +

theme ( panel . g r i d . minor = element l i n e ( co l ou r = ’ grey85 ’ ) ) +

theme ( legend . p o s i t i o n = c ( 0 . 8 8 , 0 . 88 ) ) +

theme ( a x i s . t ex t . x = element text ( s i z e = 13) ) +

theme ( a x i s . t ex t . y = element text ( s i z e = 13) ) +

theme ( a x i s . t i t l e . x = element text ( s i z e = 12 , v ju s t = 0 . 1 ) ) +

theme ( a x i s . t i t l e . y = element text ( s i z e = 12 , ang le = 90) ) +

theme ( legend . t i t l e = element blank ( ) ) +

theme ( s t r i p . background = element r e c t ( f i l l = ’ grey85 ’ ) ) +

theme ( s t r i p . t ex t . x = element text ( f a c e = ’ bold ’ , s i z e = 14) )

graph output
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Appendix B

R Code for AM Fungal Root

Colonization in the Plant Plug

Trial Field Plots

l i b r a r y (RODBC)

l i b r a r y ( ggp lot2 )

l i b r a r y (glmmADMB)

# Data Transformation Sec t ion

Cube . Tns <− f unc t i on ( x ) { x ˆ 3 }

Square . Tns <− f unc t i on ( x ) { x ˆ 2 }

Raw. Tns <− f unc t i on ( x ) { x }

Sqrt . Tns <− f unc t i on ( x ) { s q r t ( x ) }

Log . Tns <− f unc t i on ( x ) { l og10 ( x + 1) }

RecipRoot . Tns <− f unc t i on ( x ) { −1 / s q r t ( x ) }

Recip . Tns <− f unc t i on ( x ) { −1 / ( x ) }

InvSquare . Tns <− f unc t i on ( x ) { −1 / ( x ˆ 2) }

# Back Transformations

unsca l e . fn <− f unc t i on ( x ) { as . data . frame ( unsca l e (x , unsca l e . ob j e c t ) ) }

backLog . Tns <− f unc t i on ( x ) { 10 ˆ ( x ) − 1 }

backSqrt . Tns <− f unc t i on ( x ) { ( x ) ˆ 2 }

backRaw . Tns <− f unc t i on ( x ) { ( x ) }
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# Pred i c t i on Data Centered and Sca led to Unity

## This un i t y f unc t i on compares the c o l l e c t e d t e s t p l an t s to the p l s r data

ana lyzed

## x = t e s t v a r i a b l e data ; y = main data ; r e qu i r ed to have same mean /

var iance

PredU <− f unc t i on (x , y ) {
cente r <− x − mean( y )

sdCenter <− sd ( y − mean( y ) )

c en te r / sdCenter

}

# Pearson ’ s Method ( Parametric Test )

PearsonsMethod <− f unc t i on ( x ) {
cor (x , use = ” complete . obs” , method = ” pearson ” )

}

# Spearman ’ s Method (Non−Parametric Test )

SpearmansMethod <− f unc t i on (x , y ) {
cor (x , use = ” complete . obs” , method = ”spearman” )

}

# Plot Informat ion Data Frame

channel <− odbcConnectAccess ( ”C: / Users /Ohsowski/Documents/PhD/ D i s s e r t a t i o n /

Data/ d i s s e r t a t i o n data exp 1 13 aug2” )

p l o t In f oCo l . df <− sqlQuery ( channel , ”SELECT plot , b iochar rate , compost rate ,

amf , hgt , treatment FROM DATA Q WHERE harvestOne = FALSE” )

c l o s e ( channel )

# Training Data , Sum and Mean Stem Length Organizat ion

channel <− odbcConnectAccess ( ”C: / Users /Ohsowski/Documents/PhD/ D i s s e r t a t i o n /

Data/ d i s s e r t a t i o n data exp 1 13 aug2” )

ac . df <− sqlQuery ( channel , ”SELECT plot , data , dataType , season FROM AMF WHERE

dataType = ’ acCol ’ AND harvestOne = FALSE” )

vc . df <− sqlQuery ( channel , ”SELECT plot , data , dataType , season FROM AMF WHERE

dataType = ’ vcCol ’ AND harvestOne = FALSE” )

c l o s e ( channel )

totCol . df <− merge ( ac . df , vc . df , by = c ( ” p l o t ” , ” season ” ) )

totCol . df $ to t <− totCol . df $ data . x + totCol . df $ data . y
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f i n a l C o l . df <− unique ( merge ( p l o t In f oCo l . df , totCol . df , by = c ( ” p l o t ” ) ) )

f i n a l C o l . df <− data . frame ( f i n a l C o l . df $ plot , f i n a l C o l . df $ treatment , f i n a l C o l . df

$hgt , f i n a l C o l . df $compost rate , f i n a l C o l . df $ b iochar rate , f i n a l C o l . df $amf ,

f i n a l C o l . df $ season )

f i n a l C o l . df $ data . x , f i n a l C o l . df $ data . y , f i n a l C o l . df $ to t )

names ( f i n a l C o l . df ) <− c ( ” p l o t ” , ” treatment ” , ”hgt ” , ”compost ra t e ” , ” b iochar

ra t e ” , ”amf” , ” season ” , ”arb” , ” ves ” , ” to t ” )

f i n a l C o l . df $ season <− i f e l s e ( f i n a l C o l . df $ season == ”2011” , ”A” , ”B” )

f i n a l C o l . df $ p l o t <− as . f a c t o r ( f i n a l C o l . df $ p l o t )

f i n a l C o l . df $ treatment <− as . f a c t o r ( f i n a l C o l . df $ treatment )

f i n a l C o l . df $amf <− as . f a c t o r ( f i n a l C o l . df $amf )

f i n a l C o l . df $ season <− as . f a c t o r ( f i n a l C o l . df $ season )

f i n a l C o l . df $ ra t e <− f i n a l C o l . df $compost ra t e + f i n a l C o l . df $ b iochar ra t e

mean( f i n a l C o l . d f $ to t )

var ( f i n a l C o l . df $ to t )

f i n a l C o l . df $ totT <− Raw. Tns ( f i n a l C o l . d f $ to t )

qqnorm ( f i n a l C o l . df $ totT )

q q l i n e ( f i n a l C o l . df $ totT )

TC. n u l l <− lmer ( totT ˜ 1 + ( 1 | p lo t ) , data = f i n a l C o l . df )

TC1 <− lmer ( totT ˜ treatment ∗ season ∗ hgt ∗ amf + ( 1 | p lo t ) , data = f i n a l C o l

. df )

summary(TC1)

anova (TC. nu l l , TC1)

r e l L i k (TC. nu l l , TC1)

mcp . fnc (TC1)

pamer . fnc (TC1)

TC2 <− update (TC1 , . ˜ . −treatment : season : amf : hgt )

summary(TC2)

anova (TC2)

anova (TC1, TC2)

r e l L i k (TC1, TC2)

TC3 <− update (TC2 , . ˜ . −season : hgt : amf )

summary(TC3)

anova (TC3)
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anova (TC2, TC3)

r e l L i k (TC2, TC3)

TC4 <− update (TC3 , . ˜ . −treatment : season : hgt )

summary(TC4)

anova (TC4)

anova (TC3, TC4)

r e l L i k (TC3, TC4)

# FINAL MODEL

TC5 <− update (TC4 , . ˜ . −treatment : hgt : amf )

summary(TC5)

anova (TC5)

anova (TC4, TC5)

r e l L i k (TC4, TC5)

anova (TC5)

summary(TC5)

pamer . fnc (TC5)

TC5. ph <− mcposthoc . fnc ( model = TC5, var = l i s t ( ph1 = ” treatment ” ) )

summary(TC5. ph)

#Wireframe Graph

s c a t t e r 3 d ( f i n a l C o l . df $ totT ˜ f i n a l C o l . d f $ hgt + f i n a l C o l . d f $ rate ,

bg=” white ” , a x i s . s c a l e s=TRUE, g r id=TRUE, id . method=” i d e n t i f y ” ,

e l l i p s o i d=FALSE, xlab=” biochar ra t e ” , ylab=” cover ” , z lab=”compost

ra t e ” ,

groups = as . f a c t o r ( f i n a l C o l . df $amf ) )

wireframe ( totT ˜ ra t e + hgt , data=f i n a l C o l . df , x lab = ”Compost Rate” , ylab = ”

Biochar Rate ) ” ,

drape = TRUE,

co lo rkey = TRUE)

p <− wireframe ( v a r i a b l e ˜ ra t e ∗ hgt , data=f i n a l . d f )

npanel <− c (4 , 2)

rotx <− c (−50 , −80)

ro t z <− seq (30 , 300 , l ength = npanel [ 1 ]+1)

update (p [ rep (1 , prod ( npanel ) ) ] , l ayout = npanel ,

panel = func t i on ( . . . , s c r e en ) {
panel . wire frame ( . . . , s c r e en = l i s t ( z = ro t z [ cur r ent . column ( ) ] ,

x = rotx [ cur rent . row ( ) ] ) )

# Graph Set−up
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totCol <− aggregate ( f i n a l C o l . df $ tot , by = l i s t ( f i n a l C o l . df $ season , f i n a l C o l . df

$ treatment , f i n a l C o l . df $amf ) , FUN = mean , na . rm = TRUE)

names ( totCol ) <− c ( ” season ” , ” treatment ” , ”amf” , ” data ” )

totColSD <− aggregate ( f i n a l C o l . df $ tot , by = l i s t ( f i n a l C o l . df $ season , f i n a l C o l .

df $ treatment , f i n a l C o l . df $amf ) , FUN = sd , na . rm = TRUE)

names ( totColSD ) <− c ( ” season ” , ” treatment ” , ”amf” , ” sd” )

totCol . gr <− merge ( totCol , totColSD , by = c ( ” season ” , ” treatment ” , ”amf” ) )

# GGPLOT Graphing

graph <− ggp lot ( data = totCol . gr , aes ( x = treatment , y = data , f i l l = amf ) )

l i m i t s <− aes (ymax = totCol . gr $ data + totCol . gr $sd , ymin = totCol . gr $ data −
totCol . gr $ sd )

dodge <− p o s i t i o n dodge ( width = 0 . 9 )

graph output <− graph +

theme bw( ) +

geom bar ( p o s i t i o n = ”dodge” , s t a t = ” i d e n t i t y ” ) +

geom er ro rba r ( l i m i t s , width = 0 . 5 , c o l o r = ” black ” , p o s i t i o n = dodge , s t a t =

” i d e n t i t y ” ) +

f a c e t g r id ( . ˜ season ) +

labs ( x = ”Carbon Amendment” ,

y = ” Estimated Biomass\n dry mass ( g ) ” ) +

theme ( panel . g r i d . major = element l i n e ( co l ou r = ’ grey85 ’ ) ) +

theme ( panel . g r i d . minor = element l i n e ( co l ou r = ’ grey85 ’ ) ) +

theme ( legend . p o s i t i o n = c (0 , −0.40) ) +

theme ( a x i s . t ex t . x = element text ( s i z e = 11 , ang le = 60) ) +

theme ( a x i s . t ex t . y = element text ( s i z e = 13) ) +

theme ( a x i s . t i t l e . x = element text ( s i z e = 12 , v ju s t = 0 . 1 ) ) +

theme ( a x i s . t i t l e . y = element text ( s i z e = 12 , ang le = 90) ) +

theme ( legend . t i t l e = element blank ( ) ) +

theme ( s t r i p . background = element r e c t ( f i l l = ’ grey85 ’ ) ) +

theme ( s t r i p . t ex t . x = element text ( f a c e = ’ bold ’ , s i z e = 14) )

graph output
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l i b r a r y (RODBC)

l i b r a r y ( reshape )

l i b r a r y ( t c l t k )

l i b r a r y ( t c l t k 2 )

l i b r a r y ( Hmisc )

l i b r a r y ( p l s )

l i b r a r y (DMwR)

l i b r a r y ( ggp lot2 )

l i b r a r y ( p ly r )

l i b r a r y ( s c a t t e r p l o t 3 d )

l i b r a r y ( rg l , pos=4)

l i b r a r y (mgcv , pos=4)

l i b r a r y (MuMIn)

# Data Transformation Sec t ion

Cube . Tns <− f unc t i on ( x ) { x ˆ 3 }

Square . Tns <− f unc t i on ( x ) { x ˆ 2 }

Raw. Tns <− f unc t i on ( x ) { x }

Sqrt . Tns <− f unc t i on ( x ) { s q r t ( x ) }

Log . Tns <− f unc t i on ( x ) { l og10 ( x + 1) }

RecipRoot . Tns <− f unc t i on ( x ) { −1 / s q r t ( x ) }

Recip . Tns <− f unc t i on ( x ) { −1 / ( x ) }

InvSquare . Tns <− f unc t i on ( x ) { −1 / ( x ˆ 2) }
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# Back Transformations

unsca l e . fn <− f unc t i on ( x ) { as . data . frame ( unsca l e (x , unsca l e . ob j e c t ) ) }

backLog . Tns <− f unc t i on ( x ) { 10 ˆ ( x ) − 1 }

backSqrt . Tns <− f unc t i on ( x ) { ( x ) ˆ 2 }

backRaw . Tns <− f unc t i on ( x ) { ( x ) }

# Pred i c t i on Data Centered and Sca led to Unity

## This un i t y f unc t i on compares the c o l l e c t e d t e s t p l an t s to the p l s r data

ana lyzed

## x = t e s t v a r i a b l e data ; y = main data ; r e qu i r ed to have same mean /

var iance

PredU <− f unc t i on (x , y ) {
cente r <− x − mean( y )

sdCenter <− sd ( y − mean( y ) )

c en te r / sdCenter

}

# Pearson ’ s Method ( Parametric Test )

PearsonsMethod <− f unc t i on ( x ) {
cor (x , use = ” complete . obs” , method = ” pearson ” )

}

# Spearman ’ s Method (Non−Parametric Test )

SpearmansMethod <− f unc t i on (x , y ) {
cor (x , use = ” complete . obs” , method = ”spearman” )

}

################################

## 2011 Plant Pred i c t i on Data ##

################################

# Plot Informat ion Data Frame

channel <− odbcConnectAccess ( ”C: / Users /Ohsowski/Documents/PhD/ D i s s e r t a t i o n /

Data/ d i s s e r t a t i o n data exp 1 13 aug2” )

155



Appendix C. R Code for Plant Plug Trial Biomass Predictions and Plot Mass Calculations

p l o t 1 1 I n f o . df <− sqlQuery ( channel , ”SELECT plot , po s i t i on , funGroup , spAbbr ,

amf , treatment , b iochar rate , compost rate , season , hgt FROM DATA Q WHERE

season = ’2011 ’ ” )

c l o s e ( channel )

# Training Data ( Var iab l e Creat ion )

channel <−
odbcConnectAccess ( ”C: / Users /Ohsowski/Documents/PhD/ D i s s e r t a t i o n /Data/

d i s s e r t a t i o n data exp 1 13 aug2” )

mainTrain11 . df <− sqlQuery ( channel , ”SELECT plot , po s i t i on , data , dataType ,

spAbbr , p l s r , t e s t FROM DATA Q WHERE season = ’2011 ’ AND t e s t = 0 AND p l s r

= 1” )

stemLenTrain11 . df <− sqlQuery ( channel , ”SELECT plot , po s i t i on , data , spAbbr ,

p l s r FROM DATA Q WHERE season = ’2011 ’ AND dataType = ’ stemLen ’ AND p l s r =

1 AND t e s t = 0” )

## Ca l cu l a t e s the Mean o f stem l en g t h f o r the t r a i n i n g p l an t

stemLenMeanTrain11 . df <− aggregate ( stemLenTrain11 . df $data , by=l i s t (

stemLenTrain11 . df $ plot , stemLenTrain11 . df $ po s i t i on , stemLenTrain11 . df $

spAbbr , stemLenTrain11 . df $ p l s r ) , FUN = mean , na . rm = TRUE)

names ( stemLenMeanTrain11 . df ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” p l s r ” , ”

stemLenMean” )

## Sum of stem l en g t h s f o r p r e d i c t i on p l an t s

stemLenSumTrain11 . df <− aggregate ( stemLenTrain11 . df $data , by=l i s t (

stemLenTrain11 . df $ plot , stemLenTrain11 . df $ po s i t i on , stemLenTrain11 . df $

spAbbr , stemLenTrain11 . df $ p l s r ) , FUN = sum , na . rm = TRUE)

names ( stemLenSumTrain11 . df ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” p l s r ” , ”

stemLenSum” )

## Sum of stem l en g t h s f o r p r e d i c t i on p l an t s

stemLenCountTrain11 . df <− aggregate ( stemLenTrain11 . df $data , by=l i s t (

stemLenTrain11 . df $ plot , stemLenTrain11 . df $ po s i t i on , stemLenTrain11 . df $

spAbbr , stemLenTrain11 . df $ p l s r ) , FUN = func t i on ( x ) c ( count = length ( x ) ) )
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names ( stemLenCountTrain11 . df ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” p l s r ” , ”

stemLenCount” )

## Mean o f p l an t biomass f o r p r e d i c t i on p l an t s

massTrain11 . df <− sqlQuery ( channel , ”SELECT plot , po s i t i on , data , spAbbr , p l s r

FROM DATA Q WHERE season = ’2011 ’ AND dataType = ’ mass ’ AND p l s r = 1 AND

t e s t = 0” )

massMeanTrain11 . df <−aggregate ( massTrain11 . df $data , by=l i s t ( massTrain11 . df $

plot , massTrain11 . df $ po s i t i on , massTrain11 . df $spAbbr , massTrain11 . df $ p l s r )

, FUN = mean , na . rm = TRUE)

names ( massMeanTrain11 . df ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” p l s r ” , ”mass” )

c l o s e ( channel )

# Data ( Var iab l e Creat ion ) −

channel <−
odbcConnectAccess ( ”C: / Users /Ohsowski/Documents/PhD/ D i s s e r t a t i o n /Data/

d i s s e r t a t i o n data exp 1 13 aug2” )

data11 . df <− sqlQuery ( channel , ”SELECT plot , po s i t i on , data , dataType , spAbbr ,

core FROM DATA Q WHERE season = ’2011 ’ AND core = 1 AND harvestOne = 0” )

stemLenData11 . df <− sqlQuery ( channel , ”SELECT plot , po s i t i on , data , spAbbr ,

core FROM DATA Q WHERE season = ’2011 ’ AND dataType = ’ stemLen ’ AND core =

1 AND harvestOne = 0” )

c l o s e ( channel )

stemLenMeanData11 . df <−aggregate ( stemLenData11 . df $data , by=l i s t ( stemLenData11 .

df $ plot , stemLenData11 . df $ po s i t i on , stemLenData11 . df $spAbbr , stemLenData11

. df $ core ) , FUN = mean , na . rm = TRUE)

names ( stemLenMeanData11 . df ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” core ” , ”

stemLenMean” )

stemLenSumData11 . df <−aggregate ( stemLenData11 . df $data , by=l i s t ( stemLenData11 .

df $ plot , stemLenData11 . df $ po s i t i on , stemLenData11 . df $spAbbr , stemLenData11

. df $ core ) , FUN = sum)
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names ( stemLenSumData11 . df ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” core ” , ”

stemLenSum” )

## Sum of stem l en g t h s f o r p r e d i c t i on p l an t s

stemLenCountData11 . df <− aggregate ( stemLenData11 . df $data , by=l i s t (

stemLenData11 . df $ plot , stemLenData11 . df $ po s i t i on , stemLenData11 . df $spAbbr ,

stemLenData11 . df $ core ) , FUN = func t i on ( x ) c ( count = length ( x ) ) )

names ( stemLenCountData11 . df ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” core ” , ”

stemLenCount” )

# AG Training Data Import

visAG <− subset ( mainTrain11 . df , spAbbr == ’AG’ )

agMassMean <− subset ( massMeanTrain11 . df , spAbbr == ’AG’ )

agWPHgt <− subset ( mainTrain11 . df , spAbbr == ’AG’& dataType == ’sWPHgt ’ , s e l e c t

= c ( plot , po s i t i on , spAbbr , p l s r , data ) )

names (agWPHgt) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” p l s r ” , ”WPHgt” )

agLv4Hgt <− subset ( mainTrain11 . df , spAbbr == ’AG’& dataType == ’ s4LvHgt ’ ,

s e l e c t = c ( plot , po s i t i on , spAbbr , p l s r , data ) )

names ( agLv4Hgt ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” p l s r ” , ” lv4Hgt ” )

agTrain11 . tmp <− merge ( merge (agWPHgt , agLv4Hgt , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”

spAbbr” , ” p l s r ” ) ) , agMassMean , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” p l s r ” )

)

# AG Training Transformation Sec t ion

agTrain11 . tmp$massT <− Log . Tns ( agTrain11 . tmp$mass )

agTrain11 . tmp$lv4HgtT <− Log . Tns ( agTrain11 . tmp$ lv4Hgt )

agTrain11 . tmp$WPHgtT <− Sqrt . Tns ( agTrain11 . tmp$WPHgt)
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agTrain11 . tmp$massUT <− s c a l e ( agTrain11 . tmp$massT)

agTrain11 . tmp$lv4HgtUT <− s c a l e ( agTrain11 . tmp$lv4HgtT )

agTrain11 . tmp$WPHgtUT <− s c a l e ( agTrain11 . tmp$WPHgtT)

agTrain11 . sc <− agTrain11 . tmp [ ,−1:−10]

agTrain11UTSq <− as . data . frame (

apply ( agTrain11 . sc [ , −1 ] , 2 ,

f unc t i on ( x ) { xˆ2 })

) ; names ( agTrain11UTSq ) <− paste (

names ( agTrain11UTSq ) , ” sq ” ,

sep = ” . ”

)

agTrain11UTCb <− as . data . frame (

apply ( agTrain11 . sc [ , −1 ] , 2 ,

f unc t i on ( x ) { xˆ3 })

) ; names ( agTrain11UTCb ) <− paste (

names ( agTrain11UTCb ) , ”cb” ,

sep = ” . ”

)

ag11 . df <− as . data . frame ( cbind ( agTrain11 . sc , agTrain11UTSq , agTrain11UTCb ) )

# AG AIC / BIC Models −
# This s e c t i on w i l l undergo mult i−model v a r i a b l e s e l e c t i o n to determine

# the b e s t v a r i a b l e s f o r running the PLSR model . CAUTION: Running the f u l l

# model t a k e s a long time . Grab c o f f e e !

# ag11LMF <− lm(massUT ˜

# lv4HgtUT + lv4HgtUT . sq + lv4HgtUT . cb +

# WPHgtUT + WPHgtUT. sq + WPHgtUT. cb ,

# data = ag11 . d f

# )

# ag11Subset <− exp re s s i on (

# ( lv4HgtUT | ! lv4HgtUT . sq ) & ( lv4HgtUT & lv4HgtUT . sq | ! lv4HgtUT . cb ) &

# (WPHgtUT | !WPHgtUT. sq ) & (WPHgtUT & WPHgtUT. sq | !WPHgtUT. cb )

# )

# AIC Dredge

# ag11 .AIC . dredge <−dredge (
# ag11LMF ,
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# sub s e t = ag11Subset ,

# rank = AIC

# )

# ag11 .AIC . top <− s u b s e t (

# ag11 .AIC . dredge ,

# d e l t a < 2

# )

# BIC Dredge

# ag11 .BIC . dredge <−dredge (
# ag11LMF ,

# sub s e t = ag11Subset ,

# rank = BIC

# )

# ag11 .BIC . top <− s u b s e t (

# ag11 .BIC . dredge ,

# d e l t a < 2

# )

# Globa l model c a l l : lm( formula = massUT ˜ lv4HgtUT + lv4HgtUT . sq + lv4HgtUT .

cb +

# WPHgtUT + WPHgtUT. sq + WPHgtUT. cb , data = ag11 . d f )

# −
# Model s e l e c t i o n t a b l e

# ( In t ) l4H WPH df l o gL i k BIC d e l t a we igh t

# 10 −3.978e−17 0.1875 0.7806 4 −17.427 49.2 0.00 0.567

# 9 1.462 e−16 0.9067 3 −19.488 49.7 0.54 0.433

# AG Training PLSR Sec t ion −

agUT11 .PLSR <− p l s r ( ag11 . df $massUT ˜ lv4HgtUT + ag11 . df $WPHgtUT,

ncomp = 2 , data = ag11 . df , v a l i d a t i o n = ”CV” ,

method = ” o s c o r e s p l s ” )

summary(agUT11 .PLSR)

# AG Data Import −−

agWPHgt <− subset ( data11 . df , spAbbr == ’AG’& dataType == ’sWPHgt ’ ,

s e l e c t = c ( plot , po s i t i on , spAbbr , core , data ) )

names (agWPHgt) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” core ” , ”WPHgt” )
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agLv4Hgt <− subset ( data11 . df , spAbbr == ’AG’& dataType == ’ s4LvHgt ’ ,

s e l e c t = c ( plot , po s i t i on , spAbbr , core , data ) )

names ( agLv4Hgt ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” core ” , ” lv4Hgt ” )

agAl l11 . tmp <− merge (agWPHgt , agLv4Hgt , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ”

core ” ) )

# AG Data Transformation −

agUTAll11 . df <− agAl l11 . tmp

agUTAll11 . df $ lv4HgtT <− Log . Tns ( agUTAll11 . df $ lv4Hgt )

agUTAll11 . df $WPHgtT <− Sqrt . Tns ( agUTAll11 . df $WPHgt)

agUTAll11 . df $lv4HgtUT <−PredU( agUTAll11 . df $ lv4HgtT , agTrain11 . tmp$lv4HgtT )

agUTAll11 . df $WPHgtUT <−PredU( agUTAll11 . df $WPHgtT, agTrain11 . tmp$WPHgtT)

# AG Data Pred i c t i on −

agUTAll11 . df $mx <− as . matrix ( agUTAll11 . df [ c ( 9 : 1 0 ) ] )

agUTAll11 . df $ predictMass <− p r e d i c t (agUT11 .PLSR, ncomp = 2 , newdata =

agUTAll11 . df $mx)

## Ins e r t the o b j e c t to form the b a s i s f o r unsca l ing the p r ed i c t e d r e s u l t .

## This o b j e c t shou ld conta in the s c a l i n g a t t r i b u t e s from the o r i g i n a l s c a l i n g

unsca l e . ob j e c t <− agTrain11 . tmp$massUT

agUTAll11 . df $massFinalT <− unsca l e . fn ( agUTAll11 . df $ predictMass )

agUTAll11 . df $ massFinal <−backLog . Tns ( agUTAll11 . df $massFinalT )

agUTMass11 . df <− data . frame ( agUTAll11 . df $ plot , agUTAll11 . df $spAbbr , agUTAll11 .

df $ po s i t i on , agUTAll11 . df $ massFinal )

names (agUTMass11 . df ) <− c ( ” p l o t ” , ”spAbbr” , ” p o s i t i o n ” , ” massFinal ” )

ag11Test . df <− merge ( agTrain11 . tmp , agUTMass11 . df , by = c ( ” p l o t ” , ” p o s i t i o n ” ) )

#########################
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## PREDICTION Accuracy ##

#########################

agCV <− 0 .4359

RMSEag <− data . frame (agCV)

RMSEag$agBICUn <− unsca l e (agCV, agTrain11 . tmp$massUT)

RMSEag$agBIC <− backLog . Tns (RMSEag$agBICUn)

ag11TEST . df <− data . frame ( p r e d i c t (agUT11 .PLSR, ncomp = 2 , newdata = ag11 . df ) )

names (ag11TEST . df ) <− c ( ”massUT” )

unsca l e . ob j e c t <− agTrain11 . tmp$massUT

ag11TEST . df $massFinalT <− unsca l e (ag11TEST . df $massUT , agTrain11 . tmp$massUT)

ag11TEST . df $ massFinal <− backLog . Tns (ag11TEST . df $massFinalT )

ag11TEST . df $massREAL <− agTrain11 . tmp$mass

ag11TEST . df $ subt rac t <− ag11TEST . df $ massFinal − ag11TEST . df $massREAL

mean(ag11TEST . df $ subt rac t )

sd (ag11TEST . df $ subt rac t )

ag11LM <− lm(ag11TEST . df $ massFinal ˜ ag11TEST . df $massREAL −1 , o f f s e t = 1 .00

∗ ag11TEST . df $massREAL)

summary (ag11LM)

mean(ag11TEST . df $massREAL)

sd (ag11TEST . df $massREAL)

# PV Training Data Import −

pvMassMean <− subset ( massMeanTrain11 . df , spAbbr == ’PV’ )

pvWPHgt <− subset ( mainTrain11 . df , spAbbr == ’PV’& dataType == ’sWPHgt ’ ,

s e l e c t = c ( plot , po s i t i on , spAbbr , p l s r , data ) )

names (pvWPHgt) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” p l s r ” , ”WPHgt” )

pvBCirc <− subset ( mainTrain11 . df , spAbbr == ’PV’& dataType == ’ bCirc ’ ,

s e l e c t = c ( plot , po s i t i on , spAbbr , p l s r , data ) )

names ( pvBCirc ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” p l s r ” , ” bCirc ” )
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pvTrain11 . tmp <−
merge (

merge (pvWPHgt, pvBCirc , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” p l s r ” ) ) ,

pvMassMean , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” p l s r ” ) )

# PV Training Transformation −−

pvTrain11 . tmp$massT <− Log . Tns ( pvTrain11 . tmp$mass )

pvTrain11 . tmp$bCircT <− Raw. Tns ( pvTrain11 . tmp$ bCirc )

pvTrain11 . tmp$WPHgtT <− Sqrt . Tns ( pvTrain11 . tmp$WPHgt)

pvTrain11 . tmp$massUT <− s c a l e ( pvTrain11 . tmp$massT)

pvTrain11 . tmp$bCircUT <− s c a l e ( pvTrain11 . tmp$bCircT )

pvTrain11 . tmp$WPHgtUT <− s c a l e ( pvTrain11 . tmp$WPHgtT)

pvTrain11 . sc <− pvTrain11 . tmp [ ,−1:−10]

pvTrain11UTSq <− as . data . frame (

apply ( pvTrain11 . sc [ , −1 ] , 2 ,

f unc t i on ( x ) { xˆ2 })

) ; names ( pvTrain11UTSq ) <− paste (

names ( pvTrain11UTSq ) , ” sq ” ,

sep = ” . ”

)

pvTrain11UTCb <− as . data . frame (

apply ( pvTrain11 . sc [ , −1 ] , 2 ,

f unc t i on ( x ) { xˆ3 })

) ; names ( pvTrain11UTCb ) <− paste (

names ( pvTrain11UTCb ) , ”cb” ,

sep = ” . ”

)

pv11 . df <− as . data . frame ( cbind ( pvTrain11 . sc , pvTrain11UTSq , pvTrain11UTCb ) )

# OC AIC / BIC Models −
# This s e c t i on w i l l undergo mult i−model v a r i a b l e s e l e c t i o n to determine

# the b e s t v a r i a b l e s f o r running the PLSR model . CAUTION: Running the f u l l

# model t a k e s a long time . Grab c o f f e e !

pv11LMF <− lm(massUT ˜

bCircUT + bCircUT . sq + bCircUT . cb +
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WPHgtUT + WPHgtUT. sq + WPHgtUT. cb ,

data = pv11 . df

)

pv11Subset <− exp r e s s i on (

( bCircUT | ! bCircUT . sq ) & ( bCircUT & bCircUT . sq | ! bCircUT . cb ) &

(WPHgtUT | !WPHgtUT. sq ) & (WPHgtUT & WPHgtUT. sq | !WPHgtUT. cb )

)

# AIC Dredge

# pv11 .AIC . dredge <−dredge (
# pv11LMF ,

# sub s e t = pv11Subset ,

# rank = AIC

# )

# pv11 .AIC . top <− s u b s e t (

# pv11 .AIC . dredge ,

# d e l t a < 2

# )

# BIC Dredge

# pv11 .BIC . dredge <−dredge (
# pv11LMF ,

# sub s e t = pv11Subset ,

# rank = BIC

# )

# pv11 .BIC . top <− s u b s e t (

# pv11 .BIC . dredge ,

# d e l t a < 2

# )

# Globa l model c a l l : lm( formula = massUT ˜ bCircUT + bCircUT . sq + bCircUT . cb +

WPHgtUT +

# WPHgtUT. sq + WPHgtUT. cb , data = pv11 . d f )

# −
# Model s e l e c t i o n t a b l e

# ( In t ) bCU WPH df l o gL i k BIC d e l t a we igh t

# 10 −3.927e−16 0.3363 0.6606 4 −20.805 55.7 0 1

# PV Training PLSR −−

pvUT11 .PLSR <− p l s r ( pv11 . df $massUT ˜ pv11 . df $bCircUT + pv11 . df $WPHgtUT,

ncomp = 2 , data = pv11 . df , v a l i d a t i o n = ”CV” ,

method = ” o s c o r e s p l s ” )
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summary(pvUT11 .PLSR)

# PV Data Import −−

pvWPHgt <− subset ( data11 . df , spAbbr == ’PV’& dataType == ’sWPHgt ’ ,

s e l e c t = c ( plot , po s i t i on , spAbbr , core , data ) )

names (pvWPHgt) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” core ” , ”WPHgt” )

pvBCirc <− subset ( data11 . df , spAbbr == ’PV’& dataType == ’ bCirc ’ ,

s e l e c t = c ( plot , po s i t i on , spAbbr , core , data ) )

names ( pvBCirc ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” core ” , ” bCirc ” )

pvAll11 . tmp <− merge (pvWPHgt, pvBCirc , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ”

core ” ) )

# PV Data Transformation −−

pvUTAll11 . df <− pvAll11 . tmp

pvUTAll11 . df $bCircT <− Raw. Tns ( pvUTAll11 . df $ bCirc )

pvUTAll11 . df $WPHgtT <− Sqrt . Tns ( pvUTAll11 . df $WPHgt)

pvUTAll11 . df $bCircUT <−PredU( pvUTAll11 . df $bCircT , pvTrain11 . tmp$bCircT )

pvUTAll11 . df $WPHgtUT <−PredU( pvUTAll11 . df $WPHgtT, pvTrain11 . tmp$WPHgtT)

# PV Data Pred i c t i on −

pvUTAll11 . df $mx <− as . matrix ( pvUTAll11 . df [ c ( 9 : 1 0 ) ] )

pvUTAll11 . df $ predictMass <− p r e d i c t (pvUT11 .PLSR, ncomp = 2 , newdata =

pvUTAll11 . df $mx)

## Ins e r t the o b j e c t to form the b a s i s f o r unsca l ing the p r ed i c t e d r e s u l t .

## This o b j e c t shou ld conta in the s c a l i n g a t t r i b u t e s from the o r i g i n a l s c a l i n g

unsca l e . ob j e c t <− pvTrain11 . tmp$massUT

pvUTAll11 . df $massFinalT <− unsca l e . fn ( pvUTAll11 . df $ predictMass )

pvUTAll11 . df $ massFinal <−backLog . Tns ( pvUTAll11 . df $massFinalT )
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pvUTMass11 . df <− data . frame ( pvUTAll11 . df $ plot , pvUTAll11 . df $spAbbr , pvUTAll11 .

df $ po s i t i on , pvUTAll11 . df $ massFinal )

names (pvUTMass11 . df ) <− c ( ” p l o t ” , ”spAbbr” , ” p o s i t i o n ” , ” massFinal ” )

#########################

## PREDICTION Accuracy ##

#########################

pvCV <− 0 .4870

RMSEpv <− data . frame (pvCV)

RMSEpv$pvBICUn <− unsca l e (pvCV, pvTrain11 . tmp$massUT)

RMSEpv$pvBIC <− backLog . Tns (RMSEpv$pvBICUn)

pv11TEST . df <− data . frame ( p r e d i c t (pvUT11 .PLSR, ncomp = 2 , newdata = pv11 . df ) )

names (pv11TEST . df ) <− c ( ”massUT” )

unsca l e . ob j e c t <− pvTrain11 . tmp$massUT

pv11TEST . df $massFinalT <− unsca l e (pv11TEST . df $massUT , pvTrain11 . tmp$massUT)

pv11TEST . df $ massFinal <− backLog . Tns (pv11TEST . df $massFinalT )

pv11TEST . df $massREAL <− pvTrain11 . tmp$mass

pv11TEST . df $ subt rac t <− pv11TEST . df $ massFinal − pv11TEST . df $massREAL

mean(pv11TEST . df $ subt rac t )

sd (pv11TEST . df $ subt rac t )

pv11LM <− lm(pv11TEST . df $ massFinal ˜ pv11TEST . df $massREAL −1 , o f f s e t = 1 .00

∗ pv11TEST . df $massREAL)

summary (pv11LM)

mean(pv11TEST . df $massREAL)

sd (pv11TEST . df $massREAL)

# LC Training Data Import −

lcMassMean <− subset ( massMeanTrain11 . df , spAbbr == ’LC ’ )

lcLv4Hgt <− subset ( mainTrain11 . df , spAbbr == ’LC ’& dataType == ’ s4LvHgt ’ ,

s e l e c t = c ( plot , po s i t i on , spAbbr , p l s r , data ) )

names ( lcLv4Hgt ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” p l s r ” , ” lv4Hgt ” )
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lcLeafNo <− subset ( mainTrain11 . df , spAbbr == ’LC ’& dataType == ’ lea fNo ’ ,

s e l e c t = c ( plot , po s i t i on , spAbbr , p l s r , data ) )

names ( lcLeafNo ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” p l s r ” , ” lea fNo ” )

l cTra in11 . tmp <−
merge (

merge ( lcLv4Hgt , lcLeafNo , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” p l s r ” ) ) ,

lcMassMean , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” p l s r ” ) )

# LC Training Data Transformation −−

l cTra in11 . tmp$massT <− Log . Tns ( l cTra in11 . tmp$mass )

l cTra in11 . tmp$ leafNoT <− Sqrt . Tns ( l cTra in11 . tmp$ lea fNo )

l cTra in11 . tmp$lv4HgtT <− Raw. Tns ( l cTra in11 . tmp$ lv4Hgt )

l cTra in11 . tmp$massUT <− s c a l e ( l cTra in11 . tmp$massT)

lcTra in11 . tmp$leafNoUT <− s c a l e ( l cTra in11 . tmp$ leafNoT )

lcTra in11 . tmp$lv4HgtUT <− s c a l e ( l cTra in11 . tmp$lv4HgtT )

lcTra in11 . sc <− l cTra in11 . tmp [ ,−1:−10]

lcTrain11UTSq <− as . data . frame (

apply ( l cTra in11 . sc [ , −1 ] , 2 ,

f unc t i on ( x ) { xˆ2 })

) ; names ( lcTrain11UTSq ) <− paste (

names ( lcTrain11UTSq ) , ” sq ” ,

sep = ” . ”

)

lcTrain11UTCb <− as . data . frame (

apply ( l cTra in11 . sc [ , −1 ] , 2 ,

f unc t i on ( x ) { xˆ3 })

) ; names ( lcTrain11UTCb ) <− paste (

names ( lcTrain11UTCb ) , ”cb” ,

sep = ” . ”

)

l c 11 . df <− as . data . frame ( cbind ( l cTra in11 . sc , lcTrain11UTSq , lcTrain11UTCb ) )
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# OC AIC / BIC Models −
# This s e c t i on w i l l undergo mult i−model v a r i a b l e s e l e c t i o n to determine

# the b e s t v a r i a b l e s f o r running the PLSR model . CAUTION: Running the f u l l

# model t a k e s a long time . Grab c o f f e e !

lc11LMF <− lm(massUT ˜

leafNoUT + leafNoUT . sq + leafNoUT . cb +

lv4HgtUT + lv4HgtUT . sq + lv4HgtUT . cb ,

data = l c11 . df

)

l c11Subset <− exp r e s s i on (

( leafNoUT | ! leafNoUT . sq ) & ( leafNoUT & leafNoUT . sq | ! leafNoUT . cb ) &

( lv4HgtUT | ! lv4HgtUT . sq ) & ( lv4HgtUT & lv4HgtUT . sq | ! lv4HgtUT . cb )

)

# AIC Dredge

# lc11 .AIC . dredge <−dredge (
# lc11LMF ,

# sub s e t = lc11Subse t ,

# rank = AIC

# )

# lc11 .AIC . top <− s u b s e t (

# lc11 .AIC . dredge ,

# d e l t a < 2

# )

# BIC Dredge

# lc11 .BIC . dredge <−dredge (
# lc11LMF ,

# sub s e t = lc11Subse t ,

# rank = BIC

# )

# lc11 .BIC . top <− s u b s e t (

# lc11 .BIC . dredge ,

# d e l t a < 2

# )

# Globa l model c a l l : lm( formula = massUT ˜ leafNoUT + leafNoUT . sq + leafNoUT .

cb +

# lv4HgtUT + lv4HgtUT . sq + lv4HgtUT . cb , data = lc11 . d f )

# −
# Model s e l e c t i o n t a b l e

# ( In t ) lNU lNU . cb lNU . sq l4H l4H . sq d f l o gL i k BIC d e l t a we igh t
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# 48 0.08204 0.3404 0.2421 −0.2994 0.1593 0.1884 7 −16.498 57.9 0 1

# LC Training PLSR −−

lcUT11 .PLSR <− p l s r (massUT ˜ leafNoUT + leafNoUT . sq + leafNoUT . cb +

lv4HgtUT + lv4HgtUT . sq ,

ncomp = 5 , data = l c11 . df , v a l i d a t i o n = ”CV” ,

method = ” o s c o r e s p l s ” )

summary( lcUT11 .PLSR)

# LC Data Import −−

lcLv4Hgt <− subset ( data11 . df , spAbbr == ’LC ’& dataType == ’ s4LvHgt ’ ,

s e l e c t = c ( plot , po s i t i on , spAbbr , core , data ) )

names ( lcLv4Hgt ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” core ” , ” lv4Hgt ” )

lcLeafNo <− subset ( data11 . df , spAbbr == ’LC ’& dataType == ’ lea fNo ’ ,

s e l e c t = c ( plot , po s i t i on , spAbbr , core , data ) )

names ( lcLeafNo ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” core ” , ” lea fNo ” )

l c A l l 1 1 . tmp <− merge ( lcLv4Hgt , lcLeafNo , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” ,

” core ” ) )

# LC Data Transformation −−

lcUTAll11 . df <− l c A l l 1 1 . tmp

lcUTAll11 . df $ leafNoT <− Sqrt . Tns ( lcUTAll11 . df $ lea fNo )

lcUTAll11 . df $ lv4HgtT <− Raw. Tns ( lcUTAll11 . df $ lv4Hgt )

lcUTAll11 . df $ leafNoUT <−PredU( lcUTAll11 . df $ leafNoT , l cTra in11 . tmp$ leafNoT )

lcUTAll11 . df $lv4HgtUT <−PredU( lcUTAll11 . df $ lv4HgtT , l cTra in11 . tmp$lv4HgtT )

lcUTAll11 . df $ leafNoUT . sq <− ( lcUTAll11 . df $ leafNoUT ) ˆ2

lcUTAll11 . df $ leafNoUT . cb <− ( lcUTAll11 . df $ leafNoUT ) ˆ3

lcUTAll11 . df $lv4HgtUT . sq <− ( lcUTAll11 . df $lv4HgtUT ) ˆ2

lcUTAll11 . df <− data . frame ( lcUTAll11 . df $ plot , lcUTAll11 . df $spAbbr , lcUTAll11 .

df $ po s i t i on , lcUTAll11 . df $leafNoUT , lcUTAll11 . df $ leafNoUT . sq , lcUTAll11 .

df $ leafNoUT . cb ,
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lcUTAll11 . df $lv4HgtUT , lcUTAll11 . df $lv4HgtUT . sq )

names ( lcUTAll11 . df ) <− c ( ” p l o t ” , ”spAbbr” , ” p o s i t i o n ” , ” leafNoUT” , ”leafNoUT .

sq ” , ” leafNoUT . cb” , ”lv4HgtUT” , ”lv4HgtUT . sq ” )

# LC Pred i c t i on −−

lcUTAll11 . df $mx <− as . matrix ( lcUTAll11 . df [ ,−1:−3])

lcUTAll11 . df $ predictMass <− p r e d i c t ( lcUT11 .PLSR, ncomp = 2 , newdata =

lcUTAll11 . df $mx)

## Ins e r t the o b j e c t to form the b a s i s f o r unsca l ing the p r ed i c t e d r e s u l t .

## This o b j e c t shou ld conta in the s c a l i n g a t t r i b u t e s from the o r i g i n a l s c a l i n g

unsca l e . ob j e c t <− l cTra in11 . tmp$massUT

lcUTAll11 . df $massFinalT <− unsca l e . fn ( lcUTAll11 . df $ predictMass )

lcUTAll11 . df $ massFinal <−backLog . Tns ( lcUTAll11 . df $massFinalT )

lcUTMass11 . df <− data . frame ( lcUTAll11 . df $ plot , lcUTAll11 . df $spAbbr , lcUTAll11 .

df $ po s i t i on , lcUTAll11 . df $ massFinal )

names ( lcUTMass11 . df ) <− c ( ” p l o t ” , ”spAbbr” , ” p o s i t i o n ” , ” massFinal ” )

#########################

## PREDICTION Accuracy ##

#########################

lcCV <− 0 .5734

RMSElc <− data . frame ( lcCV )

RMSElc$lcBICUn <− unsca l e ( lcCV , l cTra in11 . tmp$massUT)

RMSElc$ lcBIC <− backLog . Tns (RMSElc$lcBICUn )

lc11TEST . df <− data . frame ( p r e d i c t ( lcUT11 .PLSR, ncomp = 2 , newdata = l c11 . df ) )

names ( lc11TEST . df ) <− c ( ”massUT” )

unsca l e . ob j e c t <− l cTra in11 . tmp$massUT

lc11TEST . df $massFinalT <− unsca l e ( lc11TEST . df $massUT , lcTra in11 . tmp$massUT)

lc11TEST . df $ massFinal <− backLog . Tns ( lc11TEST . df $massFinalT )

lc11TEST . df $massREAL <− l cTra in11 . tmp$mass
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lc11TEST . df $ subt rac t <− lc11TEST . df $ massFinal − lc11TEST . df $massREAL

mean( lc11TEST . df $ subt rac t )

sd ( lc11TEST . df $ subt rac t )

lc11LM <− lm( lc11TEST . df $ massFinal ˜ lc11TEST . df $massREAL −1 , o f f s e t = 1 .00

∗ lc11TEST . df $massREAL)

summary ( lc11LM )

mean( lc11TEST . df $massREAL)

sd ( lc11TEST . df $massREAL)

# SL Training Data Import −

slStemLenMean <− subset ( stemLenMeanTrain11 . df , spAbbr == ’SL ’ )

slStemLenSum <− subset ( stemLenSumTrain11 . df , spAbbr == ’SL ’ )

slMassMean <− subset ( massMeanTrain11 . df , spAbbr == ’SL ’ )

s lTra in11 . tmp <−
merge (

merge ( slStemLenSum , slStemLenMean , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ”

p l s r ” ) ) ,

slMassMean , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” p l s r ” ) )

# SL Training Data Transformation −

s lTra in11 . tmp$massT <− Log . Tns ( s lTra in11 . tmp$mass )

s lTra in11 . tmp$stemLenSumT <− Log . Tns ( s lTra in11 . tmp$stemLenSum )

s lTra in11 . tmp$stemLenMeanT <− Log . Tns ( s lTra in11 . tmp$stemLenMean )

s lTra in11 . tmp$massUT <− s c a l e ( s lTra in11 . tmp$massT)

s lTra in11 . tmp$stemLenSumUT <− s c a l e ( s lTra in11 . tmp$stemLenSumT)

s lTra in11 . tmp$stemLenMeanUT <− s c a l e ( s lTra in11 . tmp$stemLenMeanT)

171



Appendix C. R Code for Plant Plug Trial Biomass Predictions and Plot Mass Calculations

s lTra in11 . sc <− s lTra in11 . tmp [ , 1 1 : 1 3 ]

slTrain11UTSq <− as . data . frame (

apply ( s lTra in11 . sc [ , −1 ] , 2 ,

f unc t i on ( x ) { xˆ2 })

) ; names ( slTrain11UTSq ) <− paste (

names ( slTrain11UTSq ) , ” sq ” ,

sep = ” . ”

)

slTrain11UTCb <− as . data . frame (

apply ( s lTra in11 . sc [ , −1 ] , 2 ,

f unc t i on ( x ) { xˆ3 })

) ; names ( slTrain11UTCb ) <− paste (

names ( slTrain11UTCb ) , ”cb” ,

sep = ” . ”

)

s l 1 1 . df <− as . data . frame ( cbind ( s lTra in11 . sc , slTrain11UTSq , slTrain11UTCb ) )

# OC AIC / BIC Models −
# This s e c t i on w i l l undergo mult i−model v a r i a b l e s e l e c t i o n to determine

# the b e s t v a r i a b l e s f o r running the PLSR model . CAUTION: Running the f u l l

# model t a k e s a long time . Grab c o f f e e !

sl11LMF <− lm(massUT ˜

stemLenSumUT + stemLenSumUT . sq + stemLenSumUT . cb +

stemLenMeanUT + stemLenMeanUT . sq + stemLenMeanUT . cb ,

data = s l 1 1 . df

)

s l 11Subse t <− exp r e s s i on (

(stemLenSumUT | ! stemLenSumUT . sq ) & (stemLenSumUT & stemLenSumUT . sq | !

stemLenSumUT . cb ) &

(stemLenMeanUT | ! stemLenMeanUT . sq ) & (stemLenMeanUT & stemLenMeanUT . sq | !

stemLenMeanUT . cb )

)

# AIC Dredge

# s l 11 .AIC . dredge <−dredge (
# sl11LMF ,

# sub s e t = s l11Subse t ,

# rank = AIC
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# )

# s l 11 .AIC . top <− s u b s e t (

# s l 11 .AIC . dredge ,

# d e l t a < 2

# )

# BIC Dredge

# s l 11 .BIC . dredge <−dredge (
# sl11LMF ,

# sub s e t = s l11Subse t ,

# rank = BIC

# )

# s l 11 .BIC . top <− s u b s e t (

# s l 11 .BIC . dredge ,

# d e l t a < 2

# )

# Globa l model c a l l : lm( formula = massUT ˜ stemLenSumUT + stemLenSumUT . sq +

stemLenSumUT . cb +

# stemLenMeanUT + stemLenMeanUT . sq + stemLenMeanUT . cb , data = s l 11 . d f )

# −
# Model s e l e c t i o n t a b l e

# ( In t ) sLS d f l o gL i k BIC d e l t a we igh t

# 9 −5.337e−17 0.7303 3 −42.047 95.2 0 1

# SL Training PLSR −

slUT11 .PLSR <− p l s r ( s l 1 1 . df $massUT ˜ s l 1 1 . df $stemLenSumUT + s l 1 1 . df $

stemLenMeanUT +

s l 1 1 . df $stemLenMeanUT . sq ,

ncomp = 3 , data = s l 1 1 . df , v a l i d a t i o n = ”CV” ,

method = ” o s c o r e s p l s ” )

summary( slUT11 .PLSR)

# SL Data Import −

slStemLenMean <− subset ( stemLenMeanData11 . df , spAbbr == ’SL ’ )

slStemLenSum <− subset ( stemLenSumData11 . df , spAbbr == ’SL ’ )

s l A l l 1 1 . tmp <− merge ( slStemLenSum , slStemLenMean , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”

spAbbr” , ” core ” ) )

# SL Data Transformation −
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slUTAll11 . df <− s l A l l 1 1 . tmp

slUTAll11 . df $stemLenSumT <− Log . Tns ( slUTAll11 . df $stemLenSum )

slUTAll11 . df $stemLenMeanT <− Log . Tns ( slUTAll11 . df $stemLenMean )

slUTAll11 . df $stemLenSumUT <−PredU( slUTAll11 . df $stemLenSumT , s lTra in11 . tmp$

stemLenSumT)

slUTAll11 . df $stemLenMeanUT <−PredU( slUTAll11 . df $stemLenMeanT , s lTra in11 . tmp$

stemLenMeanT)

slUTAll11 . df $stemLenMeanUT . sq <− ( slUTAll11 . df $stemLenMeanUT) ˆ2

# SL Pred i c t i on −

slUTAll11 . df $mx <− as . matrix ( slUTAll11 . df [ c ( 9 : 1 1 ) ] )

slUTAll11 . df $ predictMass <− p r e d i c t ( slUT11 .PLSR, ncomp = 3 , newdata =

slUTAll11 . df $mx)

## Ins e r t the o b j e c t to form the b a s i s f o r unsca l ing the p r ed i c t e d r e s u l t .

## This o b j e c t shou ld conta in the s c a l i n g a t t r i b u t e s from the o r i g i n a l s c a l i n g

unsca l e . ob j e c t <− s lTra in11 . tmp$massUT

slUTAll11 . df $massFinalT <− unsca l e . fn ( slUTAll11 . df $ predictMass )

slUTAll11 . df $ massFinal <−backLog . Tns ( slUTAll11 . df $massFinalT )

slUTMass11 . df <− data . frame ( slUTAll11 . df $ plot , slUTAll11 . df $spAbbr , slUTAll11 .

df $ po s i t i on , slUTAll11 . df $ massFinal )

names ( slUTMass11 . df ) <− c ( ” p l o t ” , ”spAbbr” , ” p o s i t i o n ” , ” massFinal ” )

#########################

## PREDICTION Accuracy ##

#########################

slCV <− 0 .7437

RMSEsl <− data . frame ( slCV )

RMSEsl$slBICUn <− unsca l e ( slCV , s lTra in11 . tmp$massUT)

RMSEsl$ slBIC <− backLog . Tns (RMSEsl$slBICUn )

sl11TEST . df <− data . frame ( p r e d i c t ( slUT11 .PLSR, ncomp = 3 , newdata = s l 1 1 . df ) )
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names ( sl11TEST . df ) <− c ( ”massUT” )

unsca l e . ob j e c t <− s lTra in11 . tmp$massUT

sl11TEST . df $massFinalT <− unsca l e ( sl11TEST . df $massUT , s lTra in11 . tmp$massUT)

sl11TEST . df $ massFinal <− backLog . Tns ( sl11TEST . df $massFinalT )

sl11TEST . df $massREAL <− s lTra in11 . tmp$mass

sl11TEST . df $ subt rac t <− sl11TEST . df $ massFinal − sl11TEST . df $massREAL

mean( sl11TEST . df $ subt rac t )

sd ( sl11TEST . df $ subt rac t )

sl11LM <− lm( sl11TEST . df $ massFinal ˜ sl11TEST . df $massREAL −1 , o f f s e t = 1 .00

∗ sl11TEST . df $massREAL)

summary ( sl11LM )

mean( sl11TEST . df $massREAL)

sd ( sl11TEST . df $massREAL)

# LZCA Training Data Import −

lzcaStemLenMean <− subset ( stemLenMeanTrain11 . df , spAbbr == ’LZCA ’ )

lzcaStemLenSum <− subset ( stemLenSumTrain11 . df , spAbbr == ’LZCA ’ )

lzcaMassMean <− subset ( massMeanTrain11 . df , spAbbr == ’LZCA ’ )

l zcaTra in11 . tmp <−
merge (

merge ( lzcaStemLenSum , lzcaStemLenMean , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ”

p l s r ” ) ) ,

lzcaMassMean , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” p l s r ” ) )

# LZCA Training Data Transformation −

l z caTra in11 . tmp$massT <− Log . Tns ( l zcaTra in11 . tmp$mass )

l zcaTra in11 . tmp$stemLenSumT <− Sqrt . Tns ( l zcaTra in11 . tmp$stemLenSum )

lzcaTra in11 . tmp$stemLenMeanT <− Raw. Tns ( l zcaTra in11 . tmp$stemLenMean )
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l z caTra in11 . tmp$massUT <− s c a l e ( l zcaTra in11 . tmp$massT)

lzcaTra in11 . tmp$stemLenSumUT <− s c a l e ( l zcaTra in11 . tmp$stemLenSumT)

lzcaTra in11 . tmp$stemLenMeanUT <− s c a l e ( l zcaTra in11 . tmp$stemLenMeanT)

lzcaTra in11 . sc <− l z caTra in11 . tmp [ , 1 1 : 1 3 ]

lzcaTrain11UTSq <− as . data . frame (

apply ( l zcaTra in11 . sc [ , −1 ] , 2 ,

f unc t i on ( x ) { xˆ2 })

) ; names ( lzcaTrain11UTSq ) <− paste (

names ( lzcaTrain11UTSq ) , ” sq ” ,

sep = ” . ”

)

lzcaTrain11UTCb <− as . data . frame (

apply ( l zcaTra in11 . sc [ , −1 ] , 2 ,

f unc t i on ( x ) { xˆ3 })

) ; names ( lzcaTrain11UTCb ) <− paste (

names ( lzcaTrain11UTCb ) , ”cb” ,

sep = ” . ”

)

l z ca11 . df <− as . data . frame ( cbind ( l zcaTra in11 . sc , lzcaTrain11UTSq ,

lzcaTrain11UTCb ) )

# OC AIC / BIC Models −
# This s e c t i on w i l l undergo mult i−model v a r i a b l e s e l e c t i o n to determine

# the b e s t v a r i a b l e s f o r running the PLSR model . CAUTION: Running the f u l l

# model t a k e s a long time . Grab c o f f e e !

lzca11LMF <− lm(massUT ˜

stemLenSumUT + stemLenSumUT . sq + stemLenSumUT . cb +

stemLenMeanUT + stemLenMeanUT . sq + stemLenMeanUT . cb ,

data = lzca11 . df

)

l z ca11Subset <− exp r e s s i on (

(stemLenSumUT | ! stemLenSumUT . sq ) & (stemLenSumUT & stemLenSumUT . sq | !

stemLenSumUT . cb ) &

(stemLenMeanUT | ! stemLenMeanUT . sq ) & (stemLenMeanUT & stemLenMeanUT . sq | !

stemLenMeanUT . cb )

)
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# AIC Dredge

# l z ca11 .AIC . dredge <−dredge (
# lzca11LMF ,

# sub s e t = l zca11Subse t ,

# rank = AIC

# )

# l z ca11 .AIC . top <− s u b s e t (

# l z ca11 .AIC . dredge ,

# d e l t a < 2

# )

# BIC Dredge

# l z ca11 .BIC . dredge <−dredge (
# lzca11LMF ,

# sub s e t = l zca11Subse t ,

# rank = BIC

# )

# l z ca11 .BIC . top <− s u b s e t (

# l z ca11 .BIC . dredge ,

# d e l t a < 2

# )

# LZCA Training PLSR −

lzcaUT11 .PLSR <− p l s r ( l z ca11 . df $massUT ˜ l z ca11 . df $stemLenSumUT + lzca11 . df $

stemLenMeanUT ,

ncomp = 2 , data = lzca11 . df , v a l i d a t i o n = ”CV” ,

method = ” o s c o r e s p l s ” )

summary( lzcaUT11 .PLSR)

# LZCA Data Import −−

lzcaStemLenMean <− subset ( stemLenMeanData11 . df , spAbbr == ’LZCA ’ )

lzcaStemLenSum <− subset ( stemLenSumData11 . df , spAbbr == ’LZCA ’ )

l z c a A l l 1 1 . tmp <− merge ( lzcaStemLenSum , lzcaStemLenMean , by = c ( ” p l o t ” , ”

p o s i t i o n ” ,

”spAbbr” , ” core ” ) )

# LZCA Data Transformation −−

lzcaUTAll11 . df <− l z c a A l l 1 1 . tmp

lzcaUTAll11 . df $stemLenSumT <− Sqrt . Tns ( lzcaUTAll11 . df $stemLenSum )
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lzcaUTAll11 . df $stemLenMeanT <− Raw. Tns ( lzcaUTAll11 . df $stemLenMean )

lzcaUTAll11 . df $stemLenSumUT <−PredU( lzcaUTAll11 . df $stemLenSumT , lzcaTra in11 .

tmp$stemLenSumT)

lzcaUTAll11 . df $stemLenMeanUT <−PredU( lzcaUTAll11 . df $stemLenMeanT , l zcaTra in11 .

tmp$stemLenMeanT)

# LZCA Pred i c t i on −

lzcaUTAll11 . df $mx <− as . matrix ( lzcaUTAll11 . df [ c ( 9 : 1 0 ) ] )

lzcaUTAll11 . df $ predictMass <− p r e d i c t ( lzcaUT11 .PLSR, ncomp = 2 , newdata =

lzcaUTAll11 . df $mx)

## Ins e r t the o b j e c t to form the b a s i s f o r unsca l ing the p r ed i c t e d r e s u l t .

## This o b j e c t shou ld conta in the s c a l i n g a t t r i b u t e s from the o r i g i n a l s c a l i n g

unsca l e . ob j e c t <− l z caTra in11 . tmp$massUT

lzcaUTAll11 . df $massFinalT <− unsca l e . fn ( lzcaUTAll11 . df $ predictMass )

lzcaUTAll11 . df $ massFinal <−backLog . Tns ( lzcaUTAll11 . df $massFinalT )

lzcaUTMass11 . df <− data . frame ( lzcaUTAll11 . df $ plot , lzcaUTAll11 . df $spAbbr ,

lzcaUTAll11 . df $ po s i t i on , lzcaUTAll11 . df $ massFinal )

names ( lzcaUTMass11 . df ) <− c ( ” p l o t ” , ”spAbbr” , ” p o s i t i o n ” , ” massFinal ” )

#########################

## PREDICTION Accuracy ##

#########################

lzcaCV <− 0 .3948

RMSElzca <− data . frame ( lzcaCV )

RMSElzca$lzcaBICUn <− unsca l e ( lzcaCV , l zcaTra in11 . tmp$massUT)

RMSElzca$ lzcaBIC <− backLog . Tns (RMSElzca$lzcaBICUn )

lzca11TEST . df <− data . frame ( p r e d i c t ( lzcaUT11 .PLSR, ncomp = 2 , newdata = lzca11

. df ) )

names ( lzca11TEST . df ) <− c ( ”massUT” )

unsca l e . ob j e c t <− l z caTra in11 . tmp$massUT

lzca11TEST . df $massFinalT <− unsca l e ( lzca11TEST . df $massUT , l zcaTra in11 . tmp$

massUT)
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lzca11TEST . df $ massFinal <− backLog . Tns ( lzca11TEST . df $massFinalT )

lzca11TEST . df $massREAL <− l z caTra in11 . tmp$mass

lzca11TEST . df $ subt rac t <− lzca11TEST . df $ massFinal − lzca11TEST . df $massREAL

mean( lzca11TEST . df $ subt rac t )

sd ( lzca11TEST . df $ subt rac t )

lzca11LM <− lm( lzca11TEST . df $ massFinal ˜ lzca11TEST . df $massREAL −1 , o f f s e t =

1 .00 ∗ lzca11TEST . df $massREAL)

summary ( lzca11LM )

mean( lzca11TEST . df $massREAL)

sd ( lzca11TEST . df $massREAL)

# DC Training Data Import −

dcStemLenMean <− subset ( stemLenMeanTrain11 . df , spAbbr == ’DC’ )

dcStemLenSum <− subset ( stemLenSumTrain11 . df , spAbbr == ’DC’ )

dcMassMean <− subset ( massMeanTrain11 . df , spAbbr == ’DC’ )

dcBCirc <− subset ( mainTrain11 . df , spAbbr == ’DC’& dataType == ’ bCirc ’ ,

s e l e c t = c ( plot , po s i t i on , spAbbr , p l s r , data ) )

names ( dcBCirc ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” p l s r ” , ” bCirc ” )

dcTrain11 . tmp <−
merge (

merge (

merge (dcStemLenSum , dcStemLenMean , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” p l s r

” ) ) ,

dcBCirc , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” p l s r ” ) ) ,

dcMassMean , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” p l s r ” ) )

# DC Training Data Transformation −

dcTrain11 . tmp$massT <− Log . Tns ( dcTrain11 . tmp$mass )

dcTrain11 . tmp$stemLenSumT <− Log . Tns ( dcTrain11 . tmp$stemLenSum )

dcTrain11 . tmp$stemLenMeanT <− Sqrt . Tns ( dcTrain11 . tmp$stemLenMean )

dcTrain11 . tmp$bCircT <− Log . Tns ( dcTrain11 . tmp$ bCirc )
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dcTrain11 . tmp$massUT <− s c a l e ( dcTrain11 . tmp$massT)

dcTrain11 . tmp$stemLenSumUT <− s c a l e ( dcTrain11 . tmp$stemLenSumT)

dcTrain11 . tmp$stemLenMeanUT <− s c a l e ( dcTrain11 . tmp$stemLenMeanT)

dcTrain11 . tmp$bCircUT <− s c a l e ( dcTrain11 . tmp$bCircT )

dcTrain11 . sc <− dcTrain11 . tmp [ , 1 3 : 1 6 ]

dcTrain11UTSq <− as . data . frame (

apply ( dcTrain11 . sc [ , −1 ] , 2 ,

f unc t i on ( x ) { xˆ2 })

) ; names ( dcTrain11UTSq ) <− paste (

names ( dcTrain11UTSq ) , ” sq ” ,

sep = ” . ”

)

dcTrain11UTCb <− as . data . frame (

apply ( dcTrain11 . sc [ , −1 ] , 2 ,

f unc t i on ( x ) { xˆ3 })

) ; names ( dcTrain11UTCb ) <− paste (

names ( dcTrain11UTCb ) , ”cb” ,

sep = ” . ”

)

dc11 . df <− as . data . frame ( cbind ( dcTrain11 . sc , dcTrain11UTSq , dcTrain11UTCb ) )

# OC AIC / BIC Models −
# This s e c t i on w i l l undergo mult i−model v a r i a b l e s e l e c t i o n to determine

# the b e s t v a r i a b l e s f o r running the PLSR model . CAUTION: Running the f u l l

# model t a k e s a long time . Grab c o f f e e !

dc11LMF <− lm(massUT ˜

stemLenSumUT + stemLenSumUT . sq + stemLenSumUT . cb +

stemLenMeanUT + stemLenMeanUT . sq + stemLenMeanUT . cb +

bCircUT + bCircUT . sq + bCircUT . cb ,

data = dc11 . df

)

dc11Subset <− exp r e s s i on (

(stemLenSumUT | ! stemLenSumUT . sq ) & (stemLenSumUT & stemLenSumUT . sq | !

stemLenSumUT . cb ) &

(stemLenMeanUT | ! stemLenMeanUT . sq ) & (stemLenMeanUT & stemLenMeanUT . sq | !

stemLenMeanUT . cb ) &

( bCircUT | ! bCircUT . sq ) & ( bCircUT & bCircUT . sq | ! bCircUT . cb )

)
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# AIC Dredge

# dc11 .AIC . dredge <−dredge (
# dc11LMF ,

# sub s e t = dc11Subset ,

# rank = AIC

# )

# dc11 .AIC . top <− s u b s e t (

# dc11 .AIC . dredge ,

# d e l t a < 2

# )

# BIC Dredge

# dc11 .BIC . dredge <−dredge (
# dc11LMF ,

# sub s e t = dc11Subset ,

# rank = BIC

# )

# dc11 .BIC . top <− s u b s e t (

# dc11 .BIC . dredge ,

# d e l t a < 2

# )

# DC Training PLSR −−

dcUT11 .PLSR <− p l s r ( dc11 . df $massUT ˜ dc11 . df $stemLenMeanUT + dc11 . df $

stemLenSumUT +

dc11 . df $stemLenSumUT . sq ,

ncomp = 3 , data = dc11 . df , v a l i d a t i o n = ”CV” ,

method = ” o s c o r e s p l s ” )

summary(dcUT11 .PLSR)

# DC Data Import −−

dcStemLenMean <− subset ( stemLenMeanData11 . df , spAbbr == ’DC’ )

dcStemLenSum <− subset ( stemLenSumData11 . df , spAbbr == ’DC’ )

dcBCirc <− subset ( data11 . df , spAbbr == ’DC’& dataType == ’ bCirc ’ ,

s e l e c t = c ( plot , po s i t i on , spAbbr , core , data ) )

names ( dcBCirc ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” core ” , ” bCirc ” )
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dcAl l11 . tmp <−
merge (

merge (dcStemLenSum , dcStemLenMean , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” core

” ) ) ,

dcBCirc , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” core ” ) )

# DC Data Transformation −−

dcUTAll11 . df <− dcAl l11 . tmp

dcUTAll11 . df $stemLenSumT <− Log . Tns ( dcUTAll11 . df $stemLenSum )

dcUTAll11 . df $stemLenMeanT <− Sqrt . Tns ( dcUTAll11 . df $stemLenMean )

dcUTAll11 . df $stemLenMeanUT <−PredU( dcUTAll11 . df $stemLenMeanT , dcTrain11 . tmp$

stemLenMeanT)

dcUTAll11 . df $stemLenSumT <− Log . Tns ( dcUTAll11 . df $stemLenSum )

dcUTAll11 . df $stemLenSumUT <−PredU( dcUTAll11 . df $stemLenSumT , dcTrain11 . tmp$

stemLenSumT)

dcUTAll11 . df $stemLenSumUT . sq <− ( dcUTAll11 . df $stemLenSumUT) ˆ2

dcUTAll11 . df $stemLenSumUT . cb <− ( dcUTAll11 . df $stemLenSumUT) ˆ3

# DC Pred i c t i on −

dcUTAll11 . df $mx <− as . matrix ( dcUTAll11 . df [ c ( 1 0 : 1 2 ) ] )

dcUTAll11 . df $ predictMass <− p r e d i c t (dcUT11 .PLSR, ncomp = 2 , newdata =

dcUTAll11 . df $mx)

## Ins e r t the o b j e c t to form the b a s i s f o r unsca l ing the p r ed i c t e d r e s u l t .

## This o b j e c t shou ld conta in the s c a l i n g a t t r i b u t e s from the o r i g i n a l s c a l i n g

unsca l e . ob j e c t <− dcTrain11 . tmp$massUT

dcUTAll11 . df $massFinalT <− unsca l e . fn ( dcUTAll11 . df $ predictMass )

dcUTAll11 . df $ massFinal <−backLog . Tns ( dcUTAll11 . df $massFinalT )

dcUTMass11 . df <− data . frame ( dcUTAll11 . df $ plot , dcUTAll11 . df $spAbbr , dcUTAll11 .

df $ po s i t i on , dcUTAll11 . df $ massFinal )

names (dcUTMass11 . df ) <− c ( ” p l o t ” , ”spAbbr” , ” p o s i t i o n ” , ” massFinal ” )

#########################

## PREDICTION Accuracy ##
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#########################

dcCV <− 0 .4064

RMSEdc <− data . frame (dcCV)

RMSEdc$dcBICUn <− unsca l e (dcCV, dcTrain11 . tmp$massUT)

RMSEdc$dcBIC <− backLog . Tns (RMSEdc$dcBICUn)

dc11TEST . df <− data . frame ( p r e d i c t (dcUT11 .PLSR, ncomp = 2 , newdata = dc11 . df ) )

names (dc11TEST . df ) <− c ( ”massUT” )

unsca l e . ob j e c t <− dcTrain11 . tmp$massUT

dc11TEST . df $massFinalT <− unsca l e (dc11TEST . df $massUT , dcTrain11 . tmp$massUT)

dc11TEST . df $ massFinal <− backLog . Tns (dc11TEST . df $massFinalT )

dc11TEST . df $massREAL <− dcTrain11 . tmp$mass

dc11TEST . df $ subt rac t <− dc11TEST . df $ massFinal − dc11TEST . df $massREAL

mean(dc11TEST . df $ subt rac t )

sd (dc11TEST . df $ subt rac t )

dc11LM <− lm(dc11TEST . df $ massFinal ˜ dc11TEST . df $massREAL −1 , o f f s e t = 1 .00

∗ dc11TEST . df $massREAL)

summary (dc11LM)

mean(dc11TEST . df $massREAL)

sd (dc11TEST . df $massREAL)

# Plot Leve l Biomass Pred i c t i on −

bindUT11 . df <− rbind (agUTMass11 . df , pvUTMass11 . df , dcUTMass11 . df , lzcaUTMass11

. df ,

slUTMass11 . df , lcUTMass11 . df )

plotUT11 . df <− aggregate ( bindUT11 . df $ massFinal , by=l i s t ( bindUT11 . df $ p l o t ) , FUN

= sum , na . rm = TRUE)

names ( plotUT11 . df ) <− c ( ” p l o t ” , ” biomassPred ” )

plotUT11 . f i n a l <− unique ( merge ( plotUT11 . df , p l o t 1 1 I n f o . df [ ,−2:−4] , by = ” p lo t ”

) )
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biomass11 <− aov ( Log . Tns ( plotUT11 . f i n a l $ biomassPred ) ˜ treatment ∗ amf , data =

plotUT11 . f i n a l )

TukeyHSD( biomass11 , ordered = TRUE)

# Spec i e s Dataframe −−
agMass11 . df <− aggregate (agUTMass11 . df $ massFinal , by=l i s t ( agUTMass11 . df $ plot ,

agUTMass11 . df $spAbbr ) , FUN = sum , na . rm = TRUE)

pvMass11 . df <− aggregate (pvUTMass11 . df $ massFinal , by=l i s t (pvUTMass11 . df $ plot ,

pvUTMass11 . df $spAbbr ) , FUN = sum , na . rm = TRUE)

lcMass11 . df <− aggregate ( lcUTMass11 . df $ massFinal , by=l i s t ( lcUTMass11 . df $ plot ,

lcUTMass11 . df $spAbbr ) , FUN = sum , na . rm = TRUE)

slMass11 . df <− aggregate ( slUTMass11 . df $ massFinal , by=l i s t ( slUTMass11 . df $ plot ,

slUTMass11 . df $spAbbr ) , FUN = sum , na . rm = TRUE)

lzcaMass11 . df <− aggregate ( lzcaUTMass11 . df $ massFinal , by=l i s t ( lzcaUTMass11 . df $

plot , lzcaUTMass11 . df $spAbbr ) , FUN = sum , na . rm = TRUE)

dcMass11 . df <− aggregate (dcUTMass11 . df $ massFinal , by=l i s t (dcUTMass11 . df $ plot ,

dcUTMass11 . df $spAbbr ) , FUN = sum , na . rm = TRUE)

speciesUT11 . df <− rbind ( agMass11 . df , pvMass11 . df , lcMass11 . df , lzcaMass11 . df ,

s lMass11 . df , dcMass11 . df )

names ( speciesUT11 . df ) <− c ( ” p l o t ” , ”spAbbr” , ”mass” )

p l o t 1 1 I n f o . df1 <− p l o t 1 1 I n f o . df [ ,−2:−4]

s p e c i e s 1 1 . f i n a l <− unique ( merge ( speciesUT11 . df , p l o t 1 1 I n f o . df1 , by = c ( ” p l o t ” )

) )

qqnorm ( Log . Tns (dcUTMass11 . df $ massFinal ) )

q q l i n e ( Log . Tns (dcUTMass11 . df $ massFinal ) )

#Plot Leve l Biomass Pred i c t i on Grass ONLY

grassUT11 . df <− rbind (agUTMass11 . df , pvUTMass11 . df )

grassUT11 . df <− aggregate ( grassUT11 . df $ massFinal , by=l i s t ( grassUT11 . df $ p l o t ) ,

FUN = sum , na . rm = TRUE)

names ( grassUT11 . df ) <− c ( ” p l o t ” , ” biomassPred ” )
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grassUT11 . f i n a l <− unique ( merge ( grassUT11 . df , p l o t 1 1 I n f o . df [ ,−2:−4] , by = ”

p lo t ” ) )

g ras s11 <− aov ( Log . Tns ( grassUT11 . f i n a l $ biomassPred ) ˜ treatment ∗ amf , data =

grassUT11 . f i n a l )

summary( gras s11 )

TukeyHSD( grass11 , ordered = TRUE)

#Plot Leve l Biomass Pred i c t i on NF ONLY−

nfUT11 . df <− rbind (dcUTMass11 . df , lzcaUTMass11 . df )

nfUT11 . df <− aggregate ( nfUT11 . df $ massFinal , by=l i s t ( nfUT11 . df $ p l o t ) , FUN = sum

, na . rm = TRUE)

names ( nfUT11 . df ) <− c ( ” p l o t ” , ” biomassPred ” )

nfUT11 . f i n a l <− unique ( merge ( nfUT11 . df , p l o t 1 1 I n f o . df [ ,−2:−4] , by = ” p lo t ” ) )

nf11 <− aov ( Log . Tns ( nfUT11 . f i n a l $ biomassPred ) ˜ treatment ∗ amf , data = nfUT11

. f i n a l )

summary( nf11 )

TukeyHSD( nf11 , ordered = TRUE)

################################

## 2012 Plant Pred i c t i on Data ##

################################

# Plot Informat ion Data Frame −

channel <−
odbcConnectAccess ( ”C: / Users /Ohsowski/Documents/PhD/ D i s s e r t a t i o n /Data/

d i s s e r t a t i o n data exp 1 13 aug2” )

p l o t 1 2 I n f o . df <− sqlQuery ( channel , ”SELECT plot , po s i t i on , funGroup , spAbbr ,

amf , treatment , b iochar rate , compost rate , season , hgt

FROM DATA Q WHERE season = ’2012 ’ ” )

c l o s e ( channel )
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# Training Data ( Var iab l e Creat ion ) −

channel <−
odbcConnectAccess ( ”C: / Users /Ohsowski/Documents/PhD/ D i s s e r t a t i o n /Data/

d i s s e r t a t i o n data exp 1 13 aug2” )

mainTrain12 . df <− sqlQuery ( channel , ”SELECT plot , po s i t i on , data , dataType ,

spAbbr , funGroup , p l s r , t e s t

FROM DATA Q WHERE season = ’2012 ’ AND p l s r = 1” )

stemLenTrain12 . df <− sqlQuery ( channel , ”SELECT plot , po s i t i on , data , spAbbr ,

funGroup , p l s r , t e s t

FROM DATA Q WHERE season = ’2012 ’ AND dataType = ’ stemLen ’

AND p l s r = 1” )

in f l o rLenTra in12 . df <− sqlQuery ( channel , ”SELECT plot , po s i t i on , data , spAbbr ,

funGroup , p l s r , t e s t

FROM DATA Q WHERE season = ’2012 ’ AND dataType = ’ in f l o rLen ’

AND p l s r = 1” )

massTrain12 . df <− sqlQuery ( channel , ”SELECT plot , po s i t i on , data , spAbbr ,

funGroup , p l s r , t e s t

FROM DATA Q WHERE season = ’2012 ’ AND dataType = ’ mass ’

AND p l s r = 1” )

c l o s e ( channel )

## Ca l cu l a t e s the Mean o f stem l en g t h f o r the t r a i n i n g p l an t

stemLenMeanTrain12 . df <− aggregate ( stemLenTrain12 . df $data ,

by=l i s t ( stemLenTrain12 . df $ plot , stemLenTrain12 . df $ po s i t i on ,

stemLenTrain12 . df $spAbbr , stemLenTrain12 . df $funGroup , stemLenTrain12 . df $ p l s r ,

stemLenTrain12 . df $ t e s t ) ,

FUN = mean , na . rm = TRUE)

names ( stemLenMeanTrain12 . df ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ”

p l s r ” , ” t e s t ” , ”stemLenMean” )

## Sum of stem l en g t h s f o r p r e d i c t i on p l an t s

stemLenSumTrain12 . df <− aggregate ( stemLenTrain12 . df $data ,

by=l i s t ( stemLenTrain12 . df $ plot , stemLenTrain12 . df $ po s i t i on ,

stemLenTrain12 . df $spAbbr , stemLenTrain12 . df $funGroup , stemLenTrain12 . df $ p l s r ,
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stemLenTrain12 . df $ t e s t ) ,

FUN = sum , na . rm = TRUE)

names ( stemLenSumTrain12 . df ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ”

p l s r ” , ” t e s t ” , ”stemLenSum” )

## Sum of stem l en g t h s f o r p r e d i c t i on p l an t s

stemLenCountTrain12 . df <− aggregate ( stemLenTrain12 . df $data ,

by=l i s t ( stemLenTrain12 . df $ plot , stemLenTrain12 . df $ po s i t i on ,

stemLenTrain12 . df $spAbbr , stemLenTrain12 . df $funGroup , stemLenTrain12 . df $ p l s r ,

stemLenTrain12 . df $ t e s t ) ,

FUN = func t i on ( x ) c ( count = length ( x ) ) )

names ( stemLenCountTrain12 . df ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ”

p l s r ” , ” t e s t ” , ”stemLenCount” )

## Ca l cu l a t e s the Mean o f i n f l o r e s c e n c e l e n g t h f o r the t r a i n i n g p l an t

inf lorLenMeanTrain12 . df <− aggregate ( in f l o rLenTra in12 . df $data ,

by=l i s t ( in f l o rLenTra in12 . df $ plot , i n f l o rLenTra in12 . df $ po s i t i on ,

in f l o rLenTra in12 . df $spAbbr , in f l o rLenTra in12 . df $funGroup , in f l o rLenTra in12 . df $

p l s r ,

i n f l o rLenTra in12 . df $ t e s t ) ,

FUN = mean , na . rm = TRUE)

names ( inf lorLenMeanTrain12 . df ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ”

p l s r ” , ” t e s t ” , ” inf lorLenMean ” )

## Sum of i n f l o r e s c e n c e l e n g t h s f o r p r e d i c t i on p l an t s

inf lorLenSumTrain12 . df <− aggregate ( in f l o rLenTra in12 . df $data ,

by=l i s t ( in f l o rLenTra in12 . df $ plot , i n f l o rLenTra in12 . df $ po s i t i on ,

in f l o rLenTra in12 . df $spAbbr , in f l o rLenTra in12 . df $funGroup , in f l o rLenTra in12 . df $

p l s r ,

i n f l o rLenTra in12 . df $ t e s t ) ,

FUN = sum , na . rm = TRUE)

names ( inf lorLenSumTrain12 . df ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ”

p l s r ” , ” t e s t ” , ” inf lorLenSum ” )

## Mean o f p l an t biomass f o r p r e d i c t i on p l an t s
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massMeanTrain12 . df <−aggregate ( massTrain12 . df $data ,

by=l i s t ( massTrain12 . df $ plot , massTrain12 . df $ po s i t i on ,

massTrain12 . df $spAbbr , massTrain12 . df $funGroup , massTrain12 . df $ p l s r ,

massTrain12 . df $ t e s t ) ,

FUN = mean , na . rm = TRUE)

names ( massMeanTrain12 . df ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” p l s r ”

, ” t e s t ” , ”mass” )

# Data ( Var iab l e Creat ion ) −

channel <−
odbcConnectAccess ( ”C: / Users /Ohsowski/Documents/PhD/ D i s s e r t a t i o n /Data/

d i s s e r t a t i o n data exp 1 13 aug2” )

data12 . df <− sqlQuery ( channel , ”SELECT plot , po s i t i on , data , dataType , spAbbr ,

funGroup , core

FROM DATA Q WHERE season = ’2012 ’ AND core = 1 AND harvestOne = 0” )

stemLenData12 . df <− sqlQuery ( channel , ”SELECT plot , po s i t i on , data , spAbbr ,

funGroup , core

FROM DATA Q WHERE season = ’2012 ’ AND dataType = ’ stemLen ’

AND core = 1 AND harvestOne = 0” )

in f lorLenData12 . df <− sqlQuery ( channel , ”SELECT plot , po s i t i on , data , spAbbr ,

funGroup , core

FROM DATA Q WHERE season = ’2012 ’ AND dataType = ’ in f l o rLen ’

AND core = 1 AND harvestOne = 0” )

c l o s e ( channel )

## Stem Length Mean

stemLenMeanData12 . df <−aggregate ( stemLenData12 . df $data ,

by=l i s t ( stemLenData12 . df $ plot , stemLenData12 . df $ po s i t i on ,

stemLenData12 . df $spAbbr , stemLenData12 . df $funGroup , stemLenData12 . df $ core ) ,

FUN = mean , na . rm = TRUE)

names ( stemLenMeanData12 . df ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ”

core ” , ”stemLenMean” )

## Stem Length Sum

stemLenSumData12 . df <−aggregate ( stemLenData12 . df $data ,

by=l i s t ( stemLenData12 . df $ plot , stemLenData12 . df $ po s i t i on ,

stemLenData12 . df $spAbbr , stemLenData12 . df $funGroup , stemLenData12 . df $ core ) ,
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FUN = sum)

names ( stemLenSumData12 . df ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” core

” , ”stemLenSum” )

## Stem Length Count

stemLenCountData12 . df <− aggregate ( stemLenData12 . df $data ,

by=l i s t ( stemLenData12 . df $ plot , stemLenData12 . df $ po s i t i on ,

stemLenData12 . df $spAbbr , stemLenData12 . df $funGroup , stemLenData12 . df $ core ) ,

FUN = func t i on ( x ) c ( count = length ( x ) ) )

names ( stemLenCountData12 . df ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ”

core ” , ”stemLenCount” )

## In f l o r e s c en c e Length Mean

inflorLenMeanData12 . df <−aggregate ( in f lorLenData12 . df $data ,

by=l i s t ( in f lorLenData12 . df $ plot , in f lorLenData12 . df $ po s i t i on ,

in f lorLenData12 . df $spAbbr , in f lorLenData12 . df $funGroup , in f lorLenData12 . df $

core ) ,

FUN = mean , na . rm = TRUE)

names ( inflorLenMeanData12 . df ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ”

core ” , ” inf lorLenMean ” )

## In f l o r e s c en c e Length Sum

inflorLenSumData12 . df <−aggregate ( in f lorLenData12 . df $data ,

by=l i s t ( in f lorLenData12 . df $ plot , in f lorLenData12 . df $ po s i t i on ,

in f lorLenData12 . df $spAbbr , in f lorLenData12 . df $funGroup , in f lorLenData12 . df $

core ) ,

FUN = sum , na . rm = TRUE)

names ( inflorLenSumData12 . df ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ”

core ” , ” inf lorLenSum ” )

# AG Training Data Import −−

agCirc30 <− subset ( mainTrain12 . df , spAbbr == ’AG’& dataType == ’ c i r c 3 0 ’ ,

s e l e c t = c ( plot , po s i t i on , spAbbr , funGroup , p l s r , t e s t , data ) )

names ( agCirc30 ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” p l s r ” , ” t e s t ” ,

” c i r c 3 0 ” )

agLWPHgt <− subset ( mainTrain12 . df , spAbbr == ’AG’& dataType == ’lWPHgt ’ ,
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s e l e c t = c ( plot , po s i t i on , spAbbr , funGroup , p l s r , t e s t , data ) )

names (agLWPHgt) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” p l s r ” , ” t e s t ” ,

”lWPHgt” )

agSeedCulms <− subset ( mainTrain12 . df , spAbbr == ’AG’& dataType == ’ noSeedCulms

’ ,

s e l e c t = c ( plot , po s i t i on , spAbbr , funGroup , p l s r , t e s t , data ) )

names ( agSeedCulms ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” p l s r ” , ” t e s t

” , ” seedCulms” )

agMassMean <− subset ( massMeanTrain12 . df , spAbbr == ’AG’ )

agTrain12 . tmp <−
merge (

merge (

merge ( agCirc30 , agLWPHgt , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ”

p l s r ” , ” t e s t ” ) ) ,

agSeedCulms , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” p l s r ” , ” t e s t ” ) )

,

agMassMean , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” p l s r ” , ” t e s t ” ) )

# AG Training Transformation Sec t ion −−

agTrain12 . tmp$massT <− Log . Tns ( agTrain12 . tmp$mass )

agTrain12 . tmp$lWPHgtT <− Log . Tns ( agTrain12 . tmp$lWPHgt)

agTrain12 . tmp$ circ30T <− Raw. Tns ( agTrain12 . tmp$ c i r c 3 0 )

agTrain12 . tmp$seedCulmsT <− Sqrt . Tns ( agTrain12 . tmp$seedCulms )

agTrain12 . tmp$massUT <− s c a l e ( agTrain12 . tmp$massT)

agTrain12 . tmp$lWPHgtUT <− s c a l e ( agTrain12 . tmp$lWPHgtT)

agTrain12 . tmp$circ30UT <− s c a l e ( agTrain12 . tmp$ c irc30T )

agTrain12 . tmp$seedCulmsUT <− s c a l e ( agTrain12 . tmp$seedCulmsT )

agTrain12 . tmp <− subset ( agTrain12 . tmp , t e s t == ’ 0 ’ )

agTrain12 . sc <− agTrain12 . tmp [ , 1 5 : 1 8 ]

agTrain12UTSq <− as . data . frame (

apply ( agTrain12 . sc [ , −1 ] , 2 ,

f unc t i on ( x ) { xˆ2 })

) ; names ( agTrain12UTSq ) <− paste (

names ( agTrain12UTSq ) , ” sq ” ,
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sep = ” . ”

)

agTrain12UTCb <− as . data . frame (

apply ( agTrain12 . sc [ , −1 ] , 2 ,

f unc t i on ( x ) { xˆ3 })

) ; names ( agTrain12UTCb ) <− paste (

names ( agTrain12UTCb ) , ”cb” ,

sep = ” . ”

)

ag12 . df <− as . data . frame ( cbind ( agTrain12 . sc , agTrain12UTSq , agTrain12UTCb ) )

# OC AIC / BIC Models −
# This s e c t i on w i l l undergo mult i−model v a r i a b l e s e l e c t i o n to determine

# the b e s t v a r i a b l e s f o r running the PLSR model . CAUTION: Running the f u l l

# model t a k e s a long time . Grab c o f f e e !

ag12LMF <− lm(massUT ˜

lWPHgtUT + lWPHgtUT. sq + lWPHgtUT. cb +

circ30UT + circ30UT . sq + circ30UT . cb +

seedCulmsUT + seedCulmsUT . sq + seedCulmsUT . cb ,

data = ag12 . df

)

ag12Subset <− exp r e s s i on (

(lWPHgtUT | ! lWPHgtUT. sq ) & (lWPHgtUT & lWPHgtUT. sq | ! lWPHgtUT. cb ) &

( circ30UT | ! circ30UT . sq ) & ( circ30UT & circ30UT . sq | ! circ30UT . cb ) &

( seedCulmsUT | ! seedCulmsUT . sq ) & ( seedCulmsUT & seedCulmsUT . sq | ! seedCulmsUT

. cb )

)

#AIC Dredge

# ag12 .AIC . dredge <−dredge (
# ag12LMF ,

# sub s e t = ag12Subset ,

# rank = AIC

# )

# ag12 .AIC . top <− s u b s e t (

# ag12 .AIC . dredge ,

# d e l t a < 2

# )
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#BIC Dredge

# ag12 .BIC . dredge <−dredge (
# ag12LMF ,

# sub s e t = ag12Subset ,

# rank = BIC

# )

# ag12 .BIC . top <− s u b s e t (

# ag12 .BIC . dredge ,

# d e l t a < 2

# )

# con f s e t .95 p <− ge t . models ( ag12 .BIC . dredge , cumsum( weigh t ) <= .95)

# avgmod .95 p <− model . avg ( c on f s e t .95 p )

# summary(avgmod .95 p )

# AG Training PLSR Sec t ion −

agUT12 .PLSR <− p l s r ( ag12 . df $massUT ˜ ag12 . df $lWPHgtUT + ag12 . df $ circ30UT +

ag12 . df $ circ30UT . sq +

ag12 . df $seedCulmsUT + ag12 . df $seedCulmsUT . sq , ncomp = 5 , data = ag12 . df ,

v a l i d a t i o n = ”CV” ,

method = ” o s c o r e s p l s ” )

summary(agUT12 .PLSR)

# AG Data Import −−

agCirc30 <− subset ( data12 . df , spAbbr == ’AG’& dataType == ’ c i r c 3 0 ’ ,

s e l e c t = c ( plot , po s i t i on , spAbbr , funGroup , core , data ) )

names ( agCirc30 ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” core ” , ” c i r c 3 0 ”

)

agLWPHgt <− subset ( data12 . df , spAbbr == ’AG’& dataType == ’lWPHgt ’ ,

s e l e c t = c ( plot , po s i t i on , spAbbr , funGroup , core , data ) )

names (agLWPHgt) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” core ” , ”lWPHgt”

)

agSeedCulms <− subset ( data12 . df , spAbbr == ’AG’& dataType == ’ noSeedCulms ’ ,

s e l e c t = c ( plot , po s i t i on , spAbbr , funGroup , core , data ) )
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names ( agSeedCulms ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” core ” , ”

seedCulms” )

agAl l12 . tmp <−
merge (

merge ( agCirc30 , agLWPHgt , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ”

core ” ) ) ,

agSeedCulms , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” core ” ) )

# AG Data Transformation −

agUTAll12 . df <− agAl l12 . tmp

agUTAll12 . df $lWPHgtT <− Log . Tns ( agUTAll12 . df $lWPHgt)

agUTAll12 . df $ c i rc30T <− Raw. Tns ( agUTAll12 . df $ c i r c 3 0 )

agUTAll12 . df $seedCulmsT <− Sqrt . Tns ( agUTAll12 . df $ seedCulms )

agUTAll12 . df $lWPHgtUT <−PredU( agUTAll12 . df $lWPHgtT, agTrain12 . tmp$lWPHgtT)

agUTAll12 . df $ circ30UT <−PredU( agUTAll12 . df $ circ30T , agTrain12 . tmp$ c irc30T )

agUTAll12 . df $ circ30UT . sq <− ( agUTAll12 . df $ circ30UT ) ˆ2

agUTAll12 . df $seedCulmsUT <−PredU( agUTAll12 . df $seedCulmsT , agTrain12 . tmp$

seedCulmsT )

agUTAll12 . df $seedCulmsUT . sq <− ( agUTAll12 . df $seedCulmsUT ) ˆ2

# AG Data Pred i c t i on −

agUTAll12 . df $mx <− as . matrix ( agUTAll12 . df [ c ( 1 2 : 1 6 ) ] )

agUTAll12 . df $ predictMass <− p r e d i c t (agUT12 .PLSR, ncomp = 3 , newdata =

agUTAll12 . df $mx)

## Ins e r t the o b j e c t to form the b a s i s f o r unsca l ing the p r ed i c t e d r e s u l t .

## This o b j e c t shou ld conta in the s c a l i n g a t t r i b u t e s from the o r i g i n a l s c a l i n g

unsca l e . ob j e c t <− agTrain12 . tmp$massUT

agUTAll12 . df $massFinalT <− unsca l e . fn ( agUTAll12 . df $ predictMass )

agUTAll12 . df $ massFinal <−backLog . Tns ( agUTAll12 . df $massFinalT )

agUTMass12 . df <− data . frame ( agUTAll12 . df $ plot , agUTAll12 . df $ po s i t i on ,

agUTAll12 . df $spAbbr ,

agUTAll12 . df $funGroup , agUTAll12 . df $ massFinal )
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names (agUTMass12 . df ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” massFinal

” )

ag12Test . df <− merge ( agTrain12 . tmp , agUTMass12 . df , by = c ( ” p l o t ” , ” p o s i t i o n ” ,

”spAbbr” , ” funGroup” ) )

ag12Test . df $ subt rac t <− ag12Test . df $mass − ag12Test . df $ massFinal

#########################

## PREDICTION Accuracy ##

#########################

agCV <− 0 .2664

RMSEag <− data . frame (agCV)

RMSEag$agBICUn <− unsca l e (agCV, agTrain12 . tmp$massUT)

RMSEag$agBIC <− backLog . Tns (RMSEag$agBICUn)

ag12TEST . df <− data . frame ( p r e d i c t (agUT12 .PLSR, ncomp = 3 , newdata = ag12 . df ) )

names (ag12TEST . df ) <− c ( ”massUT” )

unsca l e . ob j e c t <− agTrain12 . tmp$massUT

ag12TEST . df $massFinalT <− unsca l e (ag12TEST . df $massUT , agTrain12 . tmp$massUT)

ag12TEST . df $ massFinal <−backLog . Tns (ag12TEST . df $massFinalT )

ag12TEST . df $massREAL <− agTrain12 . tmp$mass

ag12TEST . df $ subt rac t <− ag12TEST . df $ massFinal − ag12TEST . df $massREAL

mean(ag12TEST . df $ subt rac t )

sd (ag12TEST . df $ subt rac t )

ag12LM <− lm(ag12TEST . df $ massFinal ˜ ag12TEST . df $massREAL −1 , o f f s e t = 1 .00

∗ ag12TEST . df $massREAL)

summary (ag12LM)

# PV Training Data Import −−

pvCirc30 <− subset ( mainTrain12 . df , spAbbr == ’PV’& dataType == ’ c i r c 3 0 ’ ,

s e l e c t = c ( plot , po s i t i on , spAbbr , funGroup , p l s r , data ) )

names ( pvCirc30 ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” p l s r ” , ” c i r c 3 0 ”

)
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pvLWPHgt <− subset ( mainTrain12 . df , spAbbr == ’PV’& dataType == ’lWPHgt ’ ,

s e l e c t = c ( plot , po s i t i on , spAbbr , funGroup , p l s r , data ) )

names (pvLWPHgt) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” p l s r ” , ”lWPHgt”

)

pvSeedCulms <− subset ( mainTrain12 . df , spAbbr == ’PV’& dataType == ’ noSeedCulms

’ ,

s e l e c t = c ( plot , po s i t i on , spAbbr , funGroup , p l s r , data ) )

names ( pvSeedCulms ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” p l s r ” , ”

seedCulms” )

pvMassMean <− subset ( massMeanTrain12 . df , spAbbr == ’PV’ )

pvTrain12 . tmp <−
merge (

merge (

merge ( pvCirc30 , pvLWPHgt, by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ”

p l s r ” ) ) ,

pvSeedCulms , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” p l s r ” ) ) ,

pvMassMean , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” p l s r ” ) )

# PV Training Transformation −−

pvTrain12 . tmp$massT <− Sqrt . Tns ( pvTrain12 . tmp$mass )

pvTrain12 . tmp$lWPHgtT <− Sqrt . Tns ( pvTrain12 . tmp$lWPHgt)

pvTrain12 . tmp$ circ30T <− Log . Tns ( pvTrain12 . tmp$ c i r c 3 0 )

pvTrain12 . tmp$seedCulmsT <− Sqrt . Tns ( pvTrain12 . tmp$seedCulms )

pvTrain12 . tmp$massUT <− s c a l e ( pvTrain12 . tmp$massT)

pvTrain12 . tmp$lWPHgtUT <− s c a l e ( pvTrain12 . tmp$lWPHgtT)

pvTrain12 . tmp$circ30UT <− s c a l e ( pvTrain12 . tmp$ circ30T )

pvTrain12 . tmp$seedCulmsUT <− s c a l e ( pvTrain12 . tmp$seedCulmsT )

pvTrain12 . sc <− pvTrain12 . tmp [ , 1 5 : 1 8 ]

pvTrain12UTSq <− as . data . frame (

apply ( pvTrain12 . sc [ , −1 ] , 2 ,

f unc t i on ( x ) { xˆ2 })

) ; names ( pvTrain12UTSq ) <− paste (

names ( pvTrain12UTSq ) , ” sq ” ,

sep = ” . ”

)
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pvTrain12UTCb <− as . data . frame (

apply ( pvTrain12 . sc [ , −1 ] , 2 ,

f unc t i on ( x ) { xˆ3 })

) ; names ( pvTrain12UTCb ) <− paste (

names ( pvTrain12UTCb ) , ”cb” ,

sep = ” . ”

)

pv12 . df <− as . data . frame ( cbind ( pvTrain12 . sc , pvTrain12UTSq , pvTrain12UTCb ) )

# OC AIC / BIC Models −
# This s e c t i on w i l l undergo mult i−model v a r i a b l e s e l e c t i o n to determine

# the b e s t v a r i a b l e s f o r running the PLSR model . CAUTION: Running the f u l l

# model t a k e s a long time . Grab c o f f e e !

pv12LMF <− lm(massUT ˜

lWPHgtUT + lWPHgtUT. sq + lWPHgtUT. cb +

circ30UT + circ30UT . sq + circ30UT . cb +

seedCulmsUT + seedCulmsUT . sq + seedCulmsUT . cb ,

data = pv12 . df

)

pv12Subset <− exp r e s s i on (

(lWPHgtUT | ! lWPHgtUT. sq ) & (lWPHgtUT & lWPHgtUT. sq | ! lWPHgtUT. cb ) &

( circ30UT | ! circ30UT . sq ) & ( circ30UT & circ30UT . sq | ! circ30UT . cb ) &

( seedCulmsUT | ! seedCulmsUT . sq ) & ( seedCulmsUT & seedCulmsUT . sq | ! seedCulmsUT

. cb )

)

#AIC Dredge

# pv12 .AIC . dredge <−dredge (
# pv12LMF ,

# sub s e t = pv12Subset ,

# rank = AIC

# )

# pv12 .AIC . top <− s u b s e t (

# pv12 .AIC . dredge ,

# d e l t a < 2

# )

#BIC Dredge

# pv12 .BIC . dredge <−dredge (
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# pv12LMF ,

# sub s e t = pv12Subset ,

# rank = BIC

# )

# pv12 .BIC . top <− s u b s e t (

# pv12 .BIC . dredge ,

# d e l t a < 2

# )

# PV Training PLSR Sec t ion −

pvUT12 .PLSR <− p l s r ( pv12 . df $massUT ˜ pv12 . df $ circ30UT + pv12 . df $lWPHgtUT +

+ pv12 . df $lWPHgtUT. sq + pv12 . df $seedCulmsUT

, ncomp = 4 , data = pv12 . df , v a l i d a t i o n = ”CV” ,

method = ” o s c o r e s p l s ” )

summary(pvUT12 .PLSR)

# PV Data Import −−

pvCirc30 <− subset ( data12 . df , spAbbr == ’PV’& dataType == ’ c i r c 3 0 ’ ,

s e l e c t = c ( plot , po s i t i on , spAbbr , funGroup , core , data ) )

names ( pvCirc30 ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” core ” , ” c i r c 3 0 ”

)

pvLWPHgt <− subset ( data12 . df , spAbbr == ’PV’& dataType == ’lWPHgt ’ ,

s e l e c t = c ( plot , po s i t i on , spAbbr , funGroup , core , data ) )

names (pvLWPHgt) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” core ” , ”lWPHgt”

)

pvSeedCulms <− subset ( data12 . df , spAbbr == ’PV’& dataType == ’ noSeedCulms ’ ,

s e l e c t = c ( plot , po s i t i on , spAbbr , funGroup , core , data ) )

names ( pvSeedCulms ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” core ” , ”

seedCulms” )

pvAll12 . tmp <−
merge (

merge ( pvCirc30 , pvLWPHgt, by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ”

core ” ) ) ,

pvSeedCulms , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” core ” ) )
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# PV Data Transformation −

pvUTAll12 . df <− pvAll12 . tmp

pvUTAll12 . df $lWPHgtT <− Sqrt . Tns ( pvUTAll12 . df $lWPHgt)

pvUTAll12 . df $ c i rc30T <− Log . Tns ( pvUTAll12 . df $ c i r c 3 0 )

pvUTAll12 . df $seedCulmsT <− Sqrt . Tns ( pvUTAll12 . df $ seedCulms )

pvUTAll12 . df $ circ30UT <−PredU( pvUTAll12 . df $ circ30T , pvTrain12 . tmp$ circ30T )

pvUTAll12 . df $lWPHgtUT <−PredU( pvUTAll12 . df $lWPHgtT, pvTrain12 . tmp$lWPHgtT)

pvUTAll12 . df $lWPHgtUT. sq <− ( pvUTAll12 . df $lWPHgtUT) ˆ2

pvUTAll12 . df $seedCulmsUT <−PredU( pvUTAll12 . df $seedCulmsT , pvTrain12 . tmp$

seedCulmsT )

# PV Data Pred i c t i on −

pvUTAll12 . df $mx <− as . matrix ( pvUTAll12 . df [ c ( 1 2 : 1 5 ) ] )

pvUTAll12 . df $ predictMass <− p r e d i c t (pvUT12 .PLSR, ncomp = 2 , newdata =

pvUTAll12 . df $mx)

## Ins e r t the o b j e c t to form the b a s i s f o r unsca l ing the p r ed i c t e d r e s u l t .

## This o b j e c t shou ld conta in the s c a l i n g a t t r i b u t e s from the o r i g i n a l s c a l i n g

unsca l e . ob j e c t <− pvTrain12 . tmp$massUT

pvUTAll12 . df $massFinalT <− unsca l e . fn ( pvUTAll12 . df $ predictMass )

pvUTAll12 . df $ massFinal <− backSqrt . Tns ( pvUTAll12 . df $massFinalT )

pvUTMass12 . df <− data . frame ( pvUTAll12 . df $ plot , pvUTAll12 . df $ po s i t i on ,

pvUTAll12 . df $spAbbr ,

pvUTAll12 . df $funGroup , pvUTAll12 . df $ massFinal )

names (pvUTMass12 . df ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” massFinal

” )

pv12Test . df <− merge ( pvTrain12 . tmp , pvUTMass12 . df , by = c ( ” p l o t ” , ” p o s i t i o n ” ,

”spAbbr” , ” funGroup” ) )

pv12Test . df $ subt rac t <− pv12Test . df $mass − pv12Test . df $ massFinal

#########################

## PREDICTION Accuracy ##

#########################

pvCV <− 0 .2923

RMSEpv <− data . frame (pvCV)
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RMSEpv$pvBICUn <− unsca l e (pvCV, pvTrain12 . tmp$massUT)

RMSEpv$pvBIC <− backSqrt . Tns (RMSEpv$pvBICUn)

pv12TEST . df <− data . frame ( p r e d i c t (pvUT12 .PLSR, ncomp = 2 , newdata = pv12 . df ) )

names (pv12TEST . df ) <− c ( ”massUT” )

unsca l e . ob j e c t <− pvTrain12 . tmp$massUT

pv12TEST . df $massFinalT <− unsca l e (pv12TEST . df $massUT , pvTrain12 . tmp$massUT)

pv12TEST . df $ massFinal <− backSqrt . Tns (pv12TEST . df $massFinalT )

pv12TEST . df $massREAL <− pvTrain12 . tmp$mass

pv12TEST . df $ subt rac t <− pv12TEST . df $ massFinal − pv12TEST . df $massREAL

mean(pv12TEST . df $ subt rac t )

sd (pv12TEST . df $ subt rac t )

pv12LM <− lm(pv12TEST . df $ massFinal ˜ pv12TEST . df $massREAL −1 , o f f s e t = 1 .00

∗ pv12TEST . df $massREAL)

summary (pv12LM)

mean(pv12TEST . df $massREAL)

sd (pv12TEST . df $massREAL)

# LC Training Data Import −−

lcLeafNo <− subset ( mainTrain12 . df , spAbbr == ’LC ’& dataType == ’ lea fNo ’ ,

s e l e c t = c ( plot , po s i t i on , spAbbr , funGroup , p l s r , data ) )

names ( lcLeafNo ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” p l s r ” , ” lea fNo ”

)

lcS4LvHgt <− subset ( mainTrain12 . df , spAbbr == ’LC ’& dataType == ’ s4LvHgt ’ ,

s e l e c t = c ( plot , po s i t i on , spAbbr , funGroup , p l s r , data ) )

names ( lcS4LvHgt ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” p l s r ” , ”

s4LvHgt” )

lcMassMean <− subset ( massMeanTrain12 . df , spAbbr == ’LC ’ )

l cTra in12 . tmp <− merge (
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merge ( lcMassMean , lcS4LvHgt , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” ,

” p l s r ” ) ) ,

lcLeafNo , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” p l s r ” ) )

# LC Training Transformation −−

l cTra in12 . tmp$massT <− Log . Tns ( l cTra in12 . tmp$mass )

l cTra in12 . tmp$ leafNoT <− Log . Tns ( l cTra in12 . tmp$ lea fNo )

l cTra in12 . tmp$s4LvHgtT <− Raw. Tns ( l cTra in12 . tmp$s4LvHgt )

l cTra in12 . tmp$massUT <− s c a l e ( l cTra in12 . tmp$massT)

lcTra in12 . tmp$leafNoUT <− s c a l e ( l cTra in12 . tmp$ leafNoT )

lcTra in12 . tmp$s4LvHgtUT <− s c a l e ( l cTra in12 . tmp$s4LvHgtT )

lcTra in12 . sc <− l cTra in12 . tmp [ , 1 3 : 1 5 ]

lcTrain12UTSq <− as . data . frame (

apply ( l cTra in12 . sc [ , −1 ] , 2 ,

f unc t i on ( x ) { xˆ2 })

) ; names ( lcTrain12UTSq ) <− paste (

names ( lcTrain12UTSq ) , ” sq ” ,

sep = ” . ”

)

lcTrain12UTCb <− as . data . frame (

apply ( l cTra in12 . sc [ , −1 ] , 2 ,

f unc t i on ( x ) { xˆ3 })

) ; names ( lcTrain12UTCb ) <− paste (

names ( lcTrain12UTCb ) , ”cb” ,

sep = ” . ”

)

l c 12 . df <− as . data . frame ( cbind ( l cTra in12 . sc , lcTrain12UTSq , lcTrain12UTCb ) )

# OC AIC / BIC Models −
# This s e c t i on w i l l undergo mult i−model v a r i a b l e s e l e c t i o n to determine

# the b e s t v a r i a b l e s f o r running the PLSR model . CAUTION: Running the f u l l

# model t a k e s a long time . Grab c o f f e e !

lc12LMF <− lm(massUT ˜

leafNoUT + leafNoUT . sq + leafNoUT . cb +

s4LvHgtUT + s4LvHgtUT . sq + s4LvHgtUT . cb ,

data = l c12 . df

)
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l c12Subset <− exp r e s s i on (

( leafNoUT | ! leafNoUT . sq ) & ( leafNoUT & leafNoUT . sq | ! leafNoUT . cb ) &

(s4LvHgtUT | ! s4LvHgtUT . sq ) & (s4LvHgtUT & s4LvHgtUT . sq | ! s4LvHgtUT . cb )

)

#AIC Dredge

# lc12 .AIC . dredge <−dredge (
# lc12LMF ,

# sub s e t = lc12Subse t ,

# rank = AIC

# )

# lc12 .AIC . top <− s u b s e t (

# lc12 .AIC . dredge ,

# d e l t a < 2

# )

#BIC Dredge

# lc12 .BIC . dredge <−dredge (
# lc12LMF ,

# sub s e t = lc12Subse t ,

# rank = BIC

# )

# lc12 .BIC . top <− s u b s e t (

# lc12 .BIC . dredge ,

# d e l t a < 2

# )

# LC Training PLSR Sec t ion −

lcUT12 .PLSR <− p l s r ( l c 12 . df $massUT ˜ l c12 . df $ leafNoUT + lc12 . df $s4LvHgtUT ,

ncomp = 2 , data = l c12 . df , v a l i d a t i o n = ”CV” ,

method = ” o s c o r e s p l s ” )

summary( lcUT12 .PLSR)

# LC Data Import −−

lcLeafNo <− subset ( data12 . df , spAbbr == ’LC ’& dataType == ’ lea fNo ’ ,

s e l e c t = c ( plot , po s i t i on , spAbbr , funGroup , core , data ) )

names ( lcLeafNo ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” core ” , ” lea fNo ”

)

lcS4LvHgt <− subset ( data12 . df , spAbbr == ’LC ’& dataType == ’ s4LvHgt ’ ,

s e l e c t = c ( plot , po s i t i on , spAbbr , funGroup , core , data ) )
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names ( lcS4LvHgt ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” core ” , ”

s4LvHgt” )

l c A l l 1 2 . tmp <− merge ( lcLeafNo , lcS4LvHgt , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” ,

” funGroup” , ” core ” ) )

# LC Data Transformation −−

lcUTAll12 . df <− l c A l l 1 2 . tmp

lcUTAll12 . df $ leafNoT <− Log . Tns ( lcUTAll12 . df $ lea fNo )

lcUTAll12 . df $s4LvHgtT <− Raw. Tns ( lcUTAll12 . df $s4LvHgt )

lcUTAll12 . df $ leafNoUT <− PredU( lcUTAll12 . df $ leafNoT , l cTra in12 . tmp$ leafNoT )

lcUTAll12 . df $s4LvHgtUT <− PredU( lcUTAll12 . df $s4LvHgtT , l cTra in12 . tmp$s4LvHgtT )

# LC Data Pred i c t i on −

lcUTAll12 . df $mx <− as . matrix ( lcUTAll12 . df [ c ( 1 0 : 1 1 ) ] )

lcUTAll12 . df $ predictMass <− p r e d i c t ( lcUT12 .PLSR, ncomp = 1 , newdata =

lcUTAll12 . df $mx)

## Ins e r t the o b j e c t to form the b a s i s f o r unsca l ing the p r ed i c t e d r e s u l t .

## This o b j e c t shou ld conta in the s c a l i n g a t t r i b u t e s from the o r i g i n a l s c a l i n g

unsca l e . ob j e c t <− l cTra in12 . tmp$massUT

lcUTAll12 . df $massFinalT <− unsca l e . fn ( lcUTAll12 . df $ predictMass )

lcUTAll12 . df $ massFinal <− backLog . Tns ( lcUTAll12 . df $massFinalT )

lcUTMass12 . df <− data . frame ( lcUTAll12 . df $ plot , lcUTAll12 . df $ po s i t i on ,

lcUTAll12 . df $spAbbr ,

lcUTAll12 . df $funGroup , lcUTAll12 . df $ massFinal )

names ( lcUTMass12 . df ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” massFinal

” )

l c12Test . df <− merge ( l cTra in12 . tmp , lcUTMass12 . df , by = c ( ” p l o t ” , ” p o s i t i o n ” ) )

l c12Test . df $ subt rac t <− l c12Test . df $mass − l c12Test . df $ massFinal

l c12Test . df

#########################

## PREDICTION Accuracy ##
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#########################

lcCV <− 0 .596

RMSElc <− data . frame ( lcCV )

RMSElc$lcBICUn <− unsca l e ( lcCV , l cTra in12 . tmp$massUT)

RMSElc$ lcBIC <− backLog . Tns (RMSElc$lcBICUn )

lc12TEST . df <− data . frame ( p r e d i c t ( lcUT12 .PLSR, ncomp = 1 , newdata = l c12 . df ) )

names ( lc12TEST . df ) <− c ( ”massUT” )

unsca l e . ob j e c t <− l cTra in12 . tmp$massUT

lc12TEST . df $massFinalT <− unsca l e ( lc12TEST . df $massUT , lcTra in12 . tmp$massUT)

lc12TEST . df $ massFinal <− backLog . Tns ( lc12TEST . df $massFinalT )

lc12TEST . df $massREAL <− l cTra in12 . tmp$mass

lc12TEST . df $ subt rac t <− lc12TEST . df $ massFinal − lc12TEST . df $massREAL

mean( lc12TEST . df $ subt rac t )

sd ( lc12TEST . df $ subt rac t )

lc12LM <− lm( lc12TEST . df $ massFinal ˜ lc12TEST . df $massREAL −1 , o f f s e t = 1 .00

∗ lc12TEST . df $massREAL)

summary ( lc12LM )

mean( lc12TEST . df $massREAL)

sd ( lc12TEST . df $massREAL)

# SL Training Data Import −−

slStemLenMean <− subset ( stemLenMeanTrain12 . df , spAbbr == ’SL ’ )

slStemLenSum <− subset ( stemLenSumTrain12 . df , spAbbr == ’SL ’ )

s l In f lorLenMean <− subset ( inf lorLenMeanTrain12 . df , spAbbr == ’SL ’ )

s l In f lorLenSum <− subset ( inf lorLenSumTrain12 . df , spAbbr == ’SL ’ )

slMassMean <− subset ( massMeanTrain12 . df , spAbbr == ’SL ’ )
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s lTra in12 . tmp <−
merge (

merge (

merge (

merge ( slMassMean , slStemLenMean , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ”

funGroup” , ” p l s r ” , ” t e s t ” ) ) ,

slStemLenSum , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” p l s r ” , ” t e s t ” )

) ,

s l Inf lorLenMean , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” p l s r ” , ”

t e s t ” ) ) ,

s l Inf lorLenSum , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” p l s r ” , ” t e s t

” ) )

# SL Training Transformation −−

s lTra in12 . tmp$massT <− Log . Tns ( s lTra in12 . tmp$mass )

s lTra in12 . tmp$stemLenMeanT <− Sqrt . Tns ( s lTra in12 . tmp$stemLenMean )

s lTra in12 . tmp$stemLenSumT <− Log . Tns ( s lTra in12 . tmp$stemLenSum )

s lTra in12 . tmp$ inflorLenMeanT <− Sqrt . Tns ( s lTra in12 . tmp$ inf lorLenMean )

s lTra in12 . tmp$ inflorLenSumT <− Sqrt . Tns ( s lTra in12 . tmp$ inf lorLenSum )

s lTra in12 . tmp$massUT <− s c a l e ( s lTra in12 . tmp$massT)

s lTra in12 . tmp$stemLenMeanUT <− s c a l e ( s lTra in12 . tmp$stemLenMeanT)

s lTra in12 . tmp$stemLenSumUT <− s c a l e ( s lTra in12 . tmp$stemLenSumT)

s lTra in12 . tmp$ inflorLenMeanUT <− s c a l e ( s lTra in12 . tmp$ inflorLenMeanT )

s lTra in12 . tmp$inflorLenSumUT <− s c a l e ( s lTra in12 . tmp$ inflorLenSumT )

s lTra in12 . sc <− s lTra in12 . tmp [ , 1 7 : 2 1 ]

slTrain12UTSq <− as . data . frame (

apply ( s lTra in12 . sc [ , −1 ] , 2 ,

f unc t i on ( x ) { xˆ2 })

) ; names ( slTrain12UTSq ) <− paste (

names ( slTrain12UTSq ) , ” sq ” ,

sep = ” . ”

)

slTrain12UTCb <− as . data . frame (

apply ( s lTra in12 . sc [ , −1 ] , 2 ,

f unc t i on ( x ) { xˆ3 })

) ; names ( slTrain12UTCb ) <− paste (

names ( slTrain12UTCb ) , ”cb” ,

sep = ” . ”

)
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s l 1 2 . df <− as . data . frame ( cbind ( s lTra in12 . sc , slTrain12UTSq , slTrain12UTCb ) )

# OC AIC / BIC Models −
# This s e c t i on w i l l undergo mult i−model v a r i a b l e s e l e c t i o n to determine

# the b e s t v a r i a b l e s f o r running the PLSR model . CAUTION: Running the f u l l

# model t a k e s a long time . Grab c o f f e e !

sl12LMF <− lm(massUT ˜

stemLenMeanUT + stemLenMeanUT . sq + stemLenMeanUT . cb +

stemLenSumUT + stemLenSumUT . sq + stemLenSumUT . cb +

inflorLenMeanUT + inflorLenMeanUT . sq + inflorLenMeanUT . cb +

inflorLenSumUT + inflorLenSumUT . sq + inflorLenSumUT . cb ,

data = s l 1 2 . df

)

s l 12Subse t <− exp r e s s i on (

( stemLenMeanUT | ! stemLenMeanUT . sq ) & (stemLenMeanUT & stemLenMeanUT . sq | !

stemLenMeanUT . cb ) &

(stemLenSumUT | ! stemLenSumUT . sq ) & (stemLenSumUT & stemLenSumUT . sq | !

stemLenSumUT . cb ) &

( inflorLenMeanUT | ! inflorLenMeanUT . sq ) & ( inflorLenMeanUT & inflorLenMeanUT .

sq | ! inflorLenMeanUT . cb ) &

( inflorLenSumUT | ! inflorLenSumUT . sq ) & ( inflorLenSumUT & inflorLenSumUT . sq |
! inflorLenSumUT . cb )

)

#AIC Dredge

# s l 12 .AIC . dredge <−dredge (
# sl12LMF ,

# sub s e t = s l12Subse t ,

# rank = AIC

# )

# s l 12 .AIC . top <− s u b s e t (

# s l 12 .AIC . dredge ,

# d e l t a < 2

# )

#BIC Dredge

# s l 12 .BIC . dredge <−dredge (
# sl12LMF ,

# sub s e t = s l12Subse t ,

# rank = BIC

# )
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# s l 12 .BIC . top <− s u b s e t (

# s l 12 .BIC . dredge ,

# d e l t a < 2

# )

# SL Training PLSR Sec t ion −

slUT12 .PLSR <− p l s r ( s l 1 2 . df $massUT ˜ s l 1 2 . df $ inflorLenMeanUT + s l 1 2 . df $

inflorLenMeanUT . sq +

s l 1 2 . df $stemLenSumUT + s l 1 2 . df $stemLenSumUT . sq ,

ncomp = 4 , data = s l 1 2 . df , v a l i d a t i o n = ”CV” ,

method = ” o s c o r e s p l s ” )

summary( slUT12 .PLSR)

# SL Data Import −−

slStemLenMean <− subset ( stemLenMeanData12 . df , spAbbr == ’SL ’ )

slStemLenSum <− subset ( stemLenSumData12 . df , spAbbr == ’SL ’ )

s l In f lorLenMean <− subset ( inflorLenMeanData12 . df , spAbbr == ’SL ’ )

s l In f lorLenSum <− subset ( inflorLenSumData12 . df , spAbbr == ’SL ’ )

s l A l l 1 2 . tmp <−
merge (

merge (

merge ( s l Inf lorLenSum , slStemLenMean , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ”

funGroup” , ” core ” ) ) ,

slStemLenSum , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” core ” ) ) ,

s l Inf lorLenMean , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” core ” ) )

# SL Data Transformation −−

slUTAll12 . df <− s l A l l 1 2 . tmp

slUTAll12 . df $stemLenMeanT <− Sqrt . Tns ( slUTAll12 . df $stemLenMean )

slUTAll12 . df $stemLenSumT <− Log . Tns ( slUTAll12 . df $stemLenSum )

slUTAll12 . df $ inflorLenMeanT <− Sqrt . Tns ( slUTAll12 . df $ inf lorLenMean )

slUTAll12 . df $ inflorLenSumT <− Sqrt . Tns ( slUTAll12 . df $ inf lorLenSum )

slUTAll12 . df $stemLenMeanUT <− PredU( slUTAll12 . df $stemLenMeanT , s lTra in12 . tmp$

stemLenMeanT)
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slUTAll12 . df $ inflorLenMeanUT <− PredU( slUTAll12 . df $ inflorLenMeanT , s lTra in12 .

tmp$ inflorLenMeanT )

slUTAll12 . df $ inflorLenSumUT <− PredU( slUTAll12 . df $ inflorLenSumT , s lTra in12 . tmp

$ inflorLenSumT )

slUTAll12 . df $ inflorLenSumUT . sq <− ( slUTAll12 . df $ inflorLenSumUT ) ˆ2

slUTAll12 . df $stemLenSumUT <− PredU( slUTAll12 . df $stemLenSumT , s lTra in12 . tmp$

stemLenSumT)

slUTAll12 . df $stemLenSumUT . sq <− ( slUTAll12 . df $stemLenSumUT) ˆ2

# SL Data Pred i c t i on −

slUTAll12 . df $mx <− as . matrix ( slUTAll12 . df [ c ( 1 6 : 1 9 ) ] )

slUTAll12 . df $ predictMass <− p r e d i c t ( slUT12 .PLSR, ncomp = 4 , newdata =

slUTAll12 . df $mx)

## Ins e r t the o b j e c t to form the b a s i s f o r unsca l ing the p r ed i c t e d r e s u l t .

## This o b j e c t shou ld conta in the s c a l i n g a t t r i b u t e s from the o r i g i n a l s c a l i n g

unsca l e . ob j e c t <− s lTra in12 . tmp$massUT

slUTAll12 . df $massFinalT <− unsca l e . fn ( slUTAll12 . df $ predictMass )

slUTAll12 . df $ massFinal <− backLog . Tns ( slUTAll12 . df $massFinalT )

slUTMass12 . df <− data . frame ( slUTAll12 . df $ plot , slUTAll12 . df $ po s i t i on ,

slUTAll12 . df $spAbbr ,

slUTAll12 . df $funGroup , slUTAll12 . df $ massFinal )

names ( slUTMass12 . df ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” massFinal

” )

s l 12Tes t . df <− merge ( s lTra in12 . tmp , slUTMass12 . df , by = c ( ” p l o t ” , ” p o s i t i o n ” ) )

s l 12Tes t . df $ subt rac t <− s l 12Tes t . df $mass − s l 12Tes t . df $ massFinal

s l 12Tes t . df

#########################

## PREDICTION Accuracy ##

#########################

slCV <− 0 .2706

RMSEsl <− data . frame ( slCV )

RMSEsl$slBICUn <− unsca l e ( slCV , s lTra in12 . tmp$massUT)
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RMSEsl$ slBIC <− backLog . Tns (RMSEsl$slBICUn )

sl12TEST . df <− data . frame ( p r e d i c t ( slUT12 .PLSR, ncomp = 4 , newdata = s l 1 2 . df ) )

names ( sl12TEST . df ) <− c ( ”massUT” )

unsca l e . ob j e c t <− s lTra in12 . tmp$massUT

sl12TEST . df $massFinalT <− unsca l e ( sl12TEST . df $massUT , s lTra in12 . tmp$massUT)

sl12TEST . df $ massFinal <− backLog . Tns ( sl12TEST . df $massFinalT )

sl12TEST . df $massREAL <− s lTra in12 . tmp$mass

sl12TEST . df $ subt rac t <− sl12TEST . df $ massFinal − sl12TEST . df $massREAL

mean( sl12TEST . df $ subt rac t )

sd ( sl12TEST . df $ subt rac t )

sl12LM <− lm( sl12TEST . df $ massFinal ˜ sl12TEST . df $massREAL −1 , o f f s e t = 1 .00

∗ sl12TEST . df $massREAL)

summary ( sl12LM )

mean( sl12TEST . df $massREAL)

sd ( sl12TEST . df $massREAL)

# LZCA Training Data Import −−

lzcaStemLenMean <− subset ( stemLenMeanTrain12 . df , spAbbr == ’LZCA ’ )

lzcaStemLenSum <− subset ( stemLenSumTrain12 . df , spAbbr == ’LZCA ’ )

lzcaInf lorLenMean <− subset ( inf lorLenMeanTrain12 . df , spAbbr == ’LZCA ’ )

lzcaInf lorLenSum <− subset ( inf lorLenSumTrain12 . df , spAbbr == ’LZCA ’ )

lzcaMassMean <− subset ( massMeanTrain12 . df , spAbbr == ’LZCA ’ )

l zcaTra in12 . tmp <− merge (

merge (

merge (

merge ( lzcaMassMean , lzcaStemLenMean , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ”

funGroup” , ” p l s r ” , ” t e s t ” ) ) ,

lzcaStemLenSum , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” p l s r ” , ” t e s t

” ) ) ,
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l zcaInf lorLenMean , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” p l s r ” , ”

t e s t ” ) ) ,

lzcaInf lorLenSum , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” p l s r ” , ”

t e s t ” ) )

# LZCA Training Data Transformation −−

l z caTra in12 . tmp$massT <− Log . Tns ( l zcaTra in12 . tmp$mass )

l zcaTra in12 . tmp$stemLenMeanT <− Sqrt . Tns ( l zcaTra in12 . tmp$stemLenMean )

l zcaTra in12 . tmp$stemLenSumT <− Log . Tns ( l zcaTra in12 . tmp$stemLenSum )

lzcaTra in12 . tmp$ inflorLenMeanT <− Sqrt . Tns ( l zcaTra in12 . tmp$ inf lorLenMean )

l zcaTra in12 . tmp$ inflorLenSumT <− Sqrt . Tns ( l zcaTra in12 . tmp$ inf lorLenSum )

lzcaTra in12 . tmp$massUT <− s c a l e ( l zcaTra in12 . tmp$massT)

lzcaTra in12 . tmp$stemLenMeanUT <− s c a l e ( l zcaTra in12 . tmp$stemLenMeanT)

lzcaTra in12 . tmp$stemLenSumUT <− s c a l e ( l zcaTra in12 . tmp$stemLenSumT)

lzcaTra in12 . tmp$ inflorLenMeanUT <− s c a l e ( l zcaTra in12 . tmp$ inflorLenMeanT )

lzcaTra in12 . tmp$inflorLenSumUT <− s c a l e ( l zcaTra in12 . tmp$ inflorLenSumT )

lzcaTra in12 . sc <− l z caTra in12 . tmp [ , 1 7 : 2 1 ]

lzcaTrain12UTSq <− as . data . frame (

apply ( l zcaTra in12 . sc [ , −1 ] , 2 ,

f unc t i on ( x ) { xˆ2 })

) ; names ( lzcaTrain12UTSq ) <− paste (

names ( lzcaTrain12UTSq ) , ” sq ” ,

sep = ” . ”

)

lzcaTrain12UTCb <− as . data . frame (

apply ( l zcaTra in12 . sc [ , −1 ] , 2 ,

f unc t i on ( x ) { xˆ3 })

) ; names ( lzcaTrain12UTCb ) <− paste (

names ( lzcaTrain12UTCb ) , ”cb” ,

sep = ” . ”

)

l z ca12 . df <− as . data . frame ( cbind ( l zcaTra in12 . sc , lzcaTrain12UTSq ,

lzcaTrain12UTCb ) )

# OC AIC / BIC Models −
# This s e c t i on w i l l undergo mult i−model v a r i a b l e s e l e c t i o n to determine

# the b e s t v a r i a b l e s f o r running the PLSR model . CAUTION: Running the f u l l

# model t a k e s a long time . Grab c o f f e e !
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lzca12LMF <− lm(massUT ˜

stemLenMeanUT + stemLenMeanUT . sq + stemLenMeanUT . cb +

stemLenSumUT + stemLenSumUT . sq + stemLenSumUT . cb +

inflorLenMeanUT + inflorLenMeanUT . sq + inflorLenMeanUT . cb +

inflorLenSumUT + inflorLenSumUT . sq + inflorLenSumUT . cb ,

data = lzca12 . df

)

l z ca12Subset <− exp r e s s i on (

( stemLenMeanUT | ! stemLenMeanUT . sq ) & (stemLenMeanUT & stemLenMeanUT . sq | !

stemLenMeanUT . cb ) &

(stemLenSumUT | ! stemLenSumUT . sq ) & (stemLenSumUT & stemLenSumUT . sq | !

stemLenSumUT . cb ) &

( inflorLenMeanUT | ! inflorLenMeanUT . sq ) & ( inflorLenMeanUT & inflorLenMeanUT .

sq | ! inflorLenMeanUT . cb ) &

( inflorLenSumUT | ! inflorLenSumUT . sq ) & ( inflorLenSumUT & inflorLenSumUT . sq |
! inflorLenSumUT . cb )

)

#AIC Dredge

# l z ca12 .AIC . dredge <−dredge (
# lzca12LMF ,

# sub s e t = l zca12Subse t ,

# rank = AIC

# )

# l z ca12 .AIC . top <− s u b s e t (

# l z ca12 .AIC . dredge ,

# d e l t a < 2

# )

#BIC Dredge

# l z ca12 .BIC . dredge <−dredge (
# lzca12LMF ,

# sub s e t = l zca12Subse t ,

# rank = BIC

# )

# l z ca12 .BIC . top <− s u b s e t (

# l z ca12 .BIC . dredge ,

# d e l t a < 2

# )

# LZCA Training PLSR Sec t ion −
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lzcaUT12 .PLSR <− p l s r ( l z ca12 . df $massUT ˜ l z ca12 . df $stemLenSumUT + lzca12 . df $

stemLenSumUT . sq ,

ncomp = 2 , data = lzca12 . df , v a l i d a t i o n = ”CV” , method = ” o s c o r e s p l s ” )

summary( lzcaUT12 .PLSR)

# LZCA Data Import −−

lzcaStemLenMean <− subset ( stemLenMeanData12 . df , spAbbr == ’LZCA ’ )

lzcaStemLenSum <− subset ( stemLenSumData12 . df , spAbbr == ’LZCA ’ )

lzcaInf lorLenMean <− subset ( inflorLenMeanData12 . df , spAbbr == ’LZCA ’ )

lzcaInf lorLenSum <− subset ( inflorLenSumData12 . df , spAbbr == ’LZCA ’ )

l z c a A l l 1 2 . tmp <−
merge (

merge (

merge ( lzcaStemLenSum , lzcaStemLenMean , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ”

funGroup” , ” core ” ) ) ,

lzcaInf lorLenMean , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” core ” ) ) ,

lzcaInf lorLenSum , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” core ” ) )

# LZCA Data Transformation −−

lzcaUTAll12 . df <− l z c a A l l 1 2 . tmp

lzcaUTAll12 . df $stemLenMeanT <− Sqrt . Tns ( lzcaUTAll12 . df $stemLenMean )

lzcaUTAll12 . df $stemLenSumT <− Log . Tns ( lzcaUTAll12 . df $stemLenSum )

lzcaUTAll12 . df $ inflorLenMeanT <− Sqrt . Tns ( lzcaUTAll12 . df $ inf lorLenMean )

lzcaUTAll12 . df $ inflorLenSumT <− Sqrt . Tns ( lzcaUTAll12 . df $ inf lorLenSum )

lzcaUTAll12 . df $stemLenMeanUT <− PredU( lzcaUTAll12 . df $stemLenMeanT , l zcaTra in12

. tmp$stemLenMeanT)

lzcaUTAll12 . df $ inflorLenMeanUT <− PredU( lzcaUTAll12 . df $ inflorLenMeanT ,

l zcaTra in12 . tmp$ inflorLenMeanT )

lzcaUTAll12 . df $ inflorLenSumUT <− PredU( lzcaUTAll12 . df $ inflorLenSumT ,

lzcaTra in12 . tmp$ inflorLenSumT )

lzcaUTAll12 . df $stemLenSumUT <− PredU( lzcaUTAll12 . df $stemLenSumT , lzcaTra in12 .

tmp$stemLenSumT)

lzcaUTAll12 . df $stemLenSumUT . sq <− ( lzcaUTAll12 . df $stemLenSumUT) ˆ2

# LZCA Data Pred i c t i on −

lzcaUTAll12 . df $mx <− as . matrix ( lzcaUTAll12 . df [ c ( 1 7 : 1 8 ) ] )
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lzcaUTAll12 . df $ predictMass <− p r e d i c t ( lzcaUT12 .PLSR, ncomp = 2 , newdata =

lzcaUTAll12 . df $mx)

## Ins e r t the o b j e c t to form the b a s i s f o r unsca l ing the p r ed i c t e d r e s u l t .

## This o b j e c t shou ld conta in the s c a l i n g a t t r i b u t e s from the o r i g i n a l s c a l i n g

unsca l e . ob j e c t <− l z caTra in12 . tmp$massUT

lzcaUTAll12 . df $massFinalT <− unsca l e . fn ( lzcaUTAll12 . df $ predictMass )

lzcaUTAll12 . df $ massFinal <− backLog . Tns ( lzcaUTAll12 . df $massFinalT )

lzcaUTMass12 . df <− data . frame ( lzcaUTAll12 . df $ plot , lzcaUTAll12 . df $ po s i t i on ,

lzcaUTAll12 . df $spAbbr ,

lzcaUTAll12 . df $funGroup , lzcaUTAll12 . df $ massFinal )

names ( lzcaUTMass12 . df ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ”

massFinal ” )

l zca12Test . df <− merge ( l zcaTra in12 . tmp , lzcaUTMass12 . df , by = c ( ” p l o t ” , ”

p o s i t i o n ” ) )

l zca12Test . df $ subt rac t <− l z ca12Test . df $mass − l z ca12Test . df $ massFinal

l z ca12Test . df

#########################

## PREDICTION Accuracy ##

#########################

lzcaCV <− 0 .3166

RMSElzca <− data . frame ( lzcaCV )

RMSElzca$lzcaBICUn <− unsca l e ( lzcaCV , l zcaTra in12 . tmp$massUT)

RMSElzca$ lzcaBIC <− backLog . Tns (RMSElzca$lzcaBICUn )

lzca12TEST . df <− data . frame ( p r e d i c t ( lzcaUT12 .PLSR, ncomp = 2 , newdata = lzca12

. df ) )

names ( lzca12TEST . df ) <− c ( ”massUT” )

unsca l e . ob j e c t <− l z caTra in12 . tmp$massUT

lzca12TEST . df $massFinalT <− unsca l e ( lzca12TEST . df $massUT , l zcaTra in12 . tmp$

massUT)

lzca12TEST . df $ massFinal <− backLog . Tns ( lzca12TEST . df $massFinalT )

lzca12TEST . df $massREAL <− l z caTra in12 . tmp$mass
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lzca12TEST . df $ subt rac t <− lzca12TEST . df $ massFinal − lzca12TEST . df $massREAL

mean( lzca12TEST . df $ subt rac t )

sd ( lzca12TEST . df $ subt rac t )

lzca12LM <− lm( lzca12TEST . df $ massFinal ˜ lzca12TEST . df $massREAL −1 , o f f s e t =

1 .00 ∗ lzca12TEST . df $massREAL)

summary ( lzca12LM )

mean( lzca12TEST . df $massREAL)

sd ( lzca12TEST . df $massREAL)

# DC Training Data Import −−

dcStemCount <− subset ( mainTrain12 . df , spAbbr == ’DC’& dataType == ’ dcStemNo ’ ,

s e l e c t = c ( plot , po s i t i on , spAbbr , funGroup , p l s r , data ) )

names ( dcStemCount ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” p l s r ” , ”

dcStemNo” )

dcBCirc <− subset ( mainTrain12 . df , spAbbr == ’DC’& dataType == ’ bCirc ’ ,

s e l e c t = c ( plot , po s i t i on , spAbbr , funGroup , p l s r , data ) )

names ( dcBCirc ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” p l s r ” , ” bCirc ” )

dcCirc30 <− subset ( mainTrain12 . df , spAbbr == ’DC’& dataType == ’ c i r c 3 0 ’ ,

s e l e c t = c ( plot , po s i t i on , spAbbr , funGroup , p l s r , data ) )

names ( dcCirc30 ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” p l s r ” , ” c i r c 3 0 ”

)

dcMassMean <− subset ( massMeanTrain12 . df , spAbbr == ’DC’ )

dcTrain12 . tmp <−
merge (

merge (

merge (dcMassMean , dcCirc30 , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ”

p l s r ” ) ) ,

dcStemCount , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” p l s r ” ) ) ,

dcBCirc , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” p l s r ” ) )

# DC Training Transformation −−

dcTrain12 . tmp$massT <− Sqrt . Tns ( dcTrain12 . tmp$mass )

dcTrain12 . tmp$bCircT <− Raw. Tns ( dcTrain12 . tmp$ bCirc )
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dcTrain12 . tmp$ circ30T <− Raw. Tns ( dcTrain12 . tmp$ c i r c 3 0 )

dcTrain12 . tmp$dcStemNoT <− Raw. Tns ( dcTrain12 . tmp$dcStemNo )

dcTrain12 . tmp$massUT <− s c a l e ( dcTrain12 . tmp$massT)

dcTrain12 . tmp$bCircUT <− s c a l e ( dcTrain12 . tmp$bCircT )

dcTrain12 . tmp$circ30UT <− s c a l e ( dcTrain12 . tmp$ c irc30T )

dcTrain12 . tmp$dcStemNoUT <− s c a l e ( dcTrain12 . tmp$dcStemNoT)

dcTrain12 . sc <− dcTrain12 . tmp [ , 1 5 : 1 8 ]

dcTrain12UTSq <− as . data . frame (

apply ( dcTrain12 . sc [ , −1 ] , 2 ,

f unc t i on ( x ) { xˆ2 })

) ; names ( dcTrain12UTSq ) <− paste (

names ( dcTrain12UTSq ) , ” sq ” ,

sep = ” . ”

)

dcTrain12UTCb <− as . data . frame (

apply ( dcTrain12 . sc [ , −1 ] , 2 ,

f unc t i on ( x ) { xˆ3 })

) ; names ( dcTrain12UTCb ) <− paste (

names ( dcTrain12UTCb ) , ”cb” ,

sep = ” . ”

)

dc12 . df <− as . data . frame ( cbind ( dcTrain12 . sc , dcTrain12UTSq , dcTrain12UTCb ) )

# OC AIC / BIC Models −
# This s e c t i on w i l l undergo mult i−model v a r i a b l e s e l e c t i o n to determine

# the b e s t v a r i a b l e s f o r running the PLSR model . CAUTION: Running the f u l l

# model t a k e s a long time . Grab c o f f e e !

dc12LMF <− lm(massUT ˜

bCircUT + bCircUT . sq + bCircUT . cb +

circ30UT + circ30UT . sq + circ30UT . cb +

dcStemNoUT + dcStemNoUT . sq + dcStemNoUT . cb ,

data = dc12 . df

)

dc12Subset <− exp r e s s i on (

( bCircUT | ! bCircUT . sq ) & ( bCircUT & bCircUT . sq | ! bCircUT . cb ) &

( circ30UT | ! circ30UT . sq ) & ( circ30UT & circ30UT . sq | ! circ30UT . cb ) &

(dcStemNoUT | ! dcStemNoUT . sq ) & (dcStemNoUT & dcStemNoUT . sq | ! dcStemNoUT . cb )
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)

#AIC Dredge

# dc12 .AIC . dredge <−dredge (
# dc12LMF ,

# sub s e t = dc12Subset ,

# rank = AIC

# )

# dc12 .AIC . top <− s u b s e t (

# dc12 .AIC . dredge ,

# d e l t a < 2

# )

#BIC Dredge

# dc12 .BIC . dredge <−dredge (
# dc12LMF ,

# sub s e t = dc12Subset ,

# rank = BIC

# )

# dc12 .BIC . top <− s u b s e t (

# dc12 .BIC . dredge ,

# d e l t a < 2

# )

# DC Training PLSR Sec t ion −

dcUT12 .PLSR <− p l s r ( dc12 . df $massUT ˜ dc12 . df $bCircUT + dc12 . df $circ30UT ,

ncomp = 2 , data = dc12 . df , v a l i d a t i o n = ”CV” ,

method = ” o s c o r e s p l s ” )

summary(dcUT12 .PLSR)

# DC Data Import −−

dcStemCount <− subset ( data12 . df , spAbbr == ’DC’& dataType == ’ dcStemNo ’ ,

s e l e c t = c ( plot , po s i t i on , spAbbr , funGroup , core , data ) )

names ( dcStemCount ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” core ” , ”

dcStemNo” )

dcBCirc <− subset ( data12 . df , spAbbr == ’DC’& dataType == ’ bCirc ’ ,

s e l e c t = c ( plot , po s i t i on , spAbbr , funGroup , core , data ) )

names ( dcBCirc ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” core ” , ” bCirc ” )
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dcCirc30 <− subset ( data12 . df , spAbbr == ’DC’& dataType == ’ c i r c 3 0 ’ ,

s e l e c t = c ( plot , po s i t i on , spAbbr , funGroup , core , data ) )

names ( dcCirc30 ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” core ” , ” c i r c 3 0 ”

)

dcAl l12 . tmp <−
merge (

merge ( dcBCirc , dcCirc30 , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” core

” ) ) ,

dcStemCount , by = c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” core ” ) )

# DC Data Transformation −−

dcUTAll12 . df <− dcAl l12 . tmp

dcUTAll12 . df $bCircT <− Raw. Tns ( dcUTAll12 . df $ bCirc )

dcUTAll12 . df $ c i rc30T <− Raw. Tns ( dcUTAll12 . df $ c i r c 3 0 )

dcUTAll12 . df $dcStemNoT <− Raw. Tns ( dcUTAll12 . df $dcStemNo )

dcUTAll12 . df $bCircUT <− PredU( dcUTAll12 . df $bCircT , dcTrain12 . tmp$bCircT )

dcUTAll12 . df $ circ30UT <− PredU( dcUTAll12 . df $ circ30T , dcTrain12 . tmp$ c irc30T )

dcUTAll12 . df $dcStemNoUT <− PredU( dcUTAll12 . df $dcStemNoT , dcTrain12 . tmp$

dcStemNoT)

# DC Data Pred i c t i on −

dcUTAll12 . df $mx <− as . matrix ( dcUTAll12 . df [ c ( 1 2 : 1 3 ) ] )

dcUTAll12 . df $ predictMass <− p r e d i c t (dcUT12 .PLSR, ncomp = 1 , newdata =

dcUTAll12 . df $mx)

## Ins e r t the o b j e c t to form the b a s i s f o r unsca l ing the p r ed i c t e d r e s u l t .

## This o b j e c t shou ld conta in the s c a l i n g a t t r i b u t e s from the o r i g i n a l s c a l i n g

unsca l e . ob j e c t <− dcTrain12 . tmp$massUT

dcUTAll12 . df $massFinalT <− unsca l e . fn ( dcUTAll12 . df $ predictMass )

dcUTAll12 . df $ massFinal <− backSqrt . Tns ( dcUTAll12 . df $massFinalT )

dcUTMass12 . df <− data . frame ( dcUTAll12 . df $ plot , dcUTAll12 . df $ po s i t i on ,

dcUTAll12 . df $spAbbr ,

dcUTAll12 . df $funGroup , dcUTAll12 . df $ massFinal )
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names (dcUTMass12 . df ) <− c ( ” p l o t ” , ” p o s i t i o n ” , ”spAbbr” , ” funGroup” , ” massFinal

” )

dc12Test . df <− merge ( dcTrain12 . tmp , dcUTMass12 . df , by = c ( ” p l o t ” , ” p o s i t i o n ” ,

”spAbbr” , ” funGroup” ) )

dc12Test . df $ subt rac t <− dc12Test . df $mass − dc12Test . df $ massFinal

dc12Test . df

#########################

## PREDICTION Accuracy ##

#########################

dcCV <− 0 .5580

RMSEdc <− data . frame (dcCV)

RMSEdc$dcBICUn <− unsca l e (dcCV, dcTrain12 . tmp$massUT)

RMSEdc$dcBIC <− backSqrt . Tns (RMSEdc$dcBICUn)

dc12TEST . df <− data . frame ( p r e d i c t (dcUT12 .PLSR, ncomp = 1 , newdata = dc12 . df ) )

names (dc12TEST . df ) <− c ( ”massUT” )

unsca l e . ob j e c t <− dcTrain12 . tmp$massUT

dc12TEST . df $massFinalT <− unsca l e (dc12TEST . df $massUT , dcTrain12 . tmp$massUT)

dc12TEST . df $ massFinal <− backSqrt . Tns (dc12TEST . df $massFinalT )

dc12TEST . df $massREAL <− dcTrain12 . tmp$mass

dc12TEST . df $ subt rac t <− dc12TEST . df $ massFinal − dc12TEST . df $massREAL

mean(dc12TEST . df $ subt rac t )

sd (dc12TEST . df $ subt rac t )

dc12LM <− lm(dc12TEST . df $ massFinal ˜ dc12TEST . df $massREAL −1 , o f f s e t = 1 .00

∗ dc12TEST . df $massREAL)

summary (dc12LM)

mean(dc12TEST . df $massREAL)

sd (dc12TEST . df $massREAL)
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# Plot Leve l Biomass Pred i c t i on −

bindUT12 . df <− rbind (agUTMass12 . df , pvUTMass12 . df , dcUTMass12 . df , lzcaUTMass12

. df ,

slUTMass12 . df , lcUTMass12 . df )

plotUT12 . df <− aggregate ( bindUT12 . df $ massFinal , by=l i s t ( bindUT12 . df $ p l o t ) , FUN

= sum , na . rm = TRUE)

names ( plotUT12 . df ) <− c ( ” p l o t ” , ” biomassPred ” )

plotUT12 . f i n a l <− unique ( merge ( plotUT12 . df , p l o t 1 2 I n f o . df [ ,−2:−4] , by = ” p lo t ”

) )

biomass12 <− aov ( Log . Tns ( plotUT12 . f i n a l $ biomassPred ) ˜ treatment ∗ amf , data =

plotUT12 . f i n a l )

TukeyHSD( biomass12 , ordered = TRUE)

# For So i l Food Web Data

plotUT12 . web <− data . frame ( plotUT12 . f i n a l $ plot , plotUT12 . f i n a l $ biomassPred )

names ( plotUT12 . web) <− c ( ” p l o t ” , ” plantBio ” )

wr i t e . csv ( plotUT12 . web , ”C:\\ Users \\Ohsowski\\Desktop\\ plantBio . csv ” )

# Spec i e s Dataframe −−
agMass12 . df <− aggregate (agUTMass12 . df $ massFinal ,

by=l i s t ( agUTMass12 . df $ plot , agUTMass12 . df $spAbbr ) ,

FUN = sum , na . rm = TRUE)

pvMass12 . df <− aggregate (pvUTMass12 . df $ massFinal ,

by=l i s t (pvUTMass12 . df $ plot , pvUTMass12 . df $spAbbr ) ,

FUN = sum , na . rm = TRUE)

lcMass12 . df <− aggregate ( lcUTMass12 . df $ massFinal ,

by=l i s t ( lcUTMass12 . df $ plot , lcUTMass12 . df $spAbbr ) ,

FUN = sum , na . rm = TRUE)

slMass12 . df <− aggregate ( slUTMass12 . df $ massFinal ,

by=l i s t ( slUTMass12 . df $ plot , slUTMass12 . df $spAbbr ) ,

FUN = sum , na . rm = TRUE)

lzcaMass12 . df <− aggregate ( lzcaUTMass12 . df $ massFinal ,

by=l i s t ( lzcaUTMass12 . df $ plot , lzcaUTMass12 . df $spAbbr ) ,

FUN = sum , na . rm = TRUE)

dcMass12 . df <− aggregate (dcUTMass12 . df $ massFinal ,
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by=l i s t (dcUTMass12 . df $ plot , dcUTMass12 . df $spAbbr ) ,

FUN = sum , na . rm = TRUE)

speciesUT12 . df <− rbind ( agMass12 . df , pvMass12 . df , lcMass12 . df , lzcaMass12 . df ,

s lMass12 . df , dcMass12 . df )

names ( speciesUT12 . df ) <− c ( ” p l o t ” , ”spAbbr” , ”mass” )

p l o t 1 2 I n f o . df1 <− p l o t 1 2 I n f o . df [ ,−2:−4]

s p e c i e s 1 2 . f i n a l <− unique ( merge ( speciesUT12 . df , p l o t 1 2 I n f o . df1 , by = c ( ” p l o t ” )

) )

qqnorm ( Log . Tns (dcUTMass12 . df $ massFinal ) )

q q l i n e ( Log . Tns (dcUTMass12 . df $ massFinal ) )

wr i t e . csv ( s p e c i e s 1 2 . f i n a l , ”C:\\ Users \\Ohsowski\\Desktop\\ s p e c i e s . csv ” )

#Plot Leve l Biomass Pred i c t i on Grass ONLY−

grassUT12 . df <− rbind (agUTMass12 . df , pvUTMass12 . df )

grassUT12 . df <− aggregate ( grassUT12 . df $ massFinal , by=l i s t ( grassUT12 . df $ p l o t ) ,

FUN = sum , na . rm = TRUE)

names ( grassUT12 . df ) <− c ( ” p l o t ” , ” biomassPred ” )

grassUT12 . f i n a l <− unique ( merge ( grassUT12 . df , p l o t 1 2 I n f o . df [ ,−2:−4] , by = ”

p lo t ” ) )

g ras s12 <− aov ( Log . Tns ( grassUT12 . f i n a l $ biomassPred ) ˜ treatment ∗ amf , data =

grassUT12 . f i n a l )

summary( gras s12 )

TukeyHSD( grass12 , ordered = TRUE)

# Plot Leve l Biomass Pred i c t i on NF ONLY−

nfUT12 . df <− rbind (dcUTMass12 . df , lzcaUTMass12 . df )

nfUT12 . df <− aggregate ( nfUT12 . df $ massFinal , by=l i s t ( nfUT12 . df $ p l o t ) ,

FUN = sum , na . rm = TRUE)

names ( nfUT12 . df ) <− c ( ” p l o t ” , ” biomassPred ” )

nfUT12 . f i n a l <− unique ( merge ( nfUT12 . df , p l o t 1 2 I n f o . df [ ,−2:−4] , by = ” p lo t ” ) )
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nf12 <− aov ( Log . Tns ( nfUT12 . f i n a l $ biomassPred ) ˜ treatment ∗ amf , data = nfUT12

. f i n a l )

summary( nf12 )

TukeyHSD( nf12 , ordered = TRUE)

PRED <− read . csv ( ”C: / Users /Ohsowski/Documents/PhD/ D i s s e r t a t i o n /Data/ Plant

Biomass Pred i c t i on 2012/ p l s r T h e s i s p lant p r e d i c t i o n 14 feb12 . csv ” )

PRED <− subset (PRED, s p e c i e s == ’ l z c a ’ & year == 2012)

summary(PRED)

p <− ggp lot (PRED, aes (massREAL , massUTBIC) )

p + geom point ( ) +

s c a l e y cont inuous ( l i m i t s = c (0 , 20) ) +

s c a l e x cont inuous ( l i m i t s = c (0 , 20) )

#######################

## PLOT BIOMASS DATA ##

#######################

# Multi−season Plo t Data Merging −
sumBio . df <− rbind ( plotUT11 . f i n a l , plotUT12 . f i n a l )

sumBio . df $massLog <− l og10 ( sumBio . df $ biomassPred )

sumBio . df $massRR <− RecipRoot . Tns ( sumBio . df $ biomassPred )

sumBio . df $ season <− i f e l s e ( sumBio . df $ season == ”2011” , ”A” , ”B” )

qqnorm ( sumBio . df $ biomassPred )

sumBio . df $ p l o t <− as . f a c t o r ( sumBio . df $ p l o t )

sumBio . df $ treatment <− as . f a c t o r ( sumBio . df $ treatment )

sumBio . df $amf <− as . f a c t o r ( sumBio . df $amf )

sumBio . df $ season <− as . f a c t o r ( sumBio . df $ season )

v i g n e t t e ( ” using−lsmeans ” , package=” lsmeans ” )

mean( sumBio . df $ biomassPred )

var ( sumBio . df $ biomassPred )
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s c a t t e r p l o t . matrix ( sumBio . df , e l l i p s e = TRUE)

# Genera l i zed Linear Mixed E f f e c t s Model

M. n u l l <− lmer (massRR ˜ 1 + ( 1 | p lo t ) , data = sumBio . df )

M1 <− lmer (massRR ˜ treatment ∗ season ∗ amf + ( 1 | p lo t ) , data = sumBio . df )

anova (M. nul l , M1, t e s t = ”F” )

M2 <− update (M1, . ˜ . −treatment : season : amf )

drop1 (M2)

M3 <− update (M2, . ˜ . −treatment : season )

drop1 (M3)

M4 <− update (M3, . ˜ . −treatment : amf )

drop1 (M4)

M5 <− update (M4, . ˜ . − season : amf )

anova (M4, M5)

drop1 (M5)

M6 <− update (M5, . ˜ . − amf )

drop1 (M6)

anova (M5, M6)

M7 <− update (M6, . ˜ . − treatment )

anova (M6, M7)

drop1 (M7)

anova (M. nul l , M1, M2, M3, M4, M5, M6, M7, t e s t = ’F ’ )

p l o t ( f i t t e d (M6) , r e s i d u a l s (M6) ,

xlab = ” Fi t t ed Values ” , ylab = ” Res idua l s ” )

a b l i n e (h=0, l t y =2)

l i n e s ( smooth . s p l i n e ( f i t t e d (M6) , r e s i d u a l s (M6) ) )

p l o t ( p r e d i c t (M6, type=” response ” ) ,

r e s i d u a l s (M6, type= ” deviance ” ) )

c o e f p l o t 2 (M6)

f u l l P v a l s <− pva l s . fnc (M6)
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f u l l P v a l s . d f <− data . frame ( rownames ( f u l l P v a l s $ f i x e d ) , f u l l P v a l s $ f i x e d $MCMCmean

,

f u l l P v a l s $ f i x e d $HPD95lower , f u l l P v a l s $ f i x e d $HPD95upper ,

f u l l P v a l s $ f i x e d $pMCMC)

names ( f u l l P v a l s . d f ) <− c ( ” treatment ” , ”MCMCmean” , ” lower ” , ”upper” , ”pMCMC” )

#Correct

tota lMass <− aggregate ( sumBio . df $biomassPred ,

by = l i s t ( sumBio . df $ season , sumBio . df $ treatment ) ,

FUN = mean , na . rm = TRUE)

names ( tota lMass ) <− c ( ” season ” , ” treatment ” , ” data ” )

totalMassSD <− aggregate ( sumBio . df $biomassPred ,

by = l i s t ( sumBio . df $ season , sumBio . df $ treatment ) ,

FUN = sd , na . rm = TRUE)

names ( totalMassSD ) <− c ( ” season ” , ” treatment ” , ” sd” )

tota lMass . gr <− merge ( totalMass , totalMassSD , by = c ( ” season ” , ” treatment ” ) )

graph <− ggp lot ( data = tota lMass . gr , aes ( x = treatment , y = data ) )

l i m i t s <− aes (ymax = tota lMass . gr $ data + tota lMass . gr $sd ,

ymin = tota lMass . gr $ data − tota lMass . gr $ sd )

dodge <− p o s i t i o n dodge ( width = 0 . 9 )

graph output <− graph +

theme bw( ) +

geom bar ( p o s i t i o n = ”dodge” , s t a t = ” i d e n t i t y ” ) +

geom er ro rba r ( l i m i t s , width = 0 . 5 , c o l o r = ” black ” , p o s i t i o n = dodge , s t a t = ”

i d e n t i t y ” ) +

f a c e t g r id ( . ˜ season ) +

labs ( x = ”Carbon Amendment” ,

y = ” Estimated Biomass\n dry mass ( g ) ” ) +

theme ( panel . g r i d . major = element l i n e ( co l ou r = ’ grey85 ’ ) ) +

theme ( panel . g r i d . minor = element l i n e ( co l ou r = ’ grey85 ’ ) ) +

theme ( legend . p o s i t i o n = c (0 , −0.40) ) +
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theme ( a x i s . t ex t . x = element text ( s i z e = 11 , ang le = 60) ) +

theme ( a x i s . t ex t . y = element text ( s i z e = 13) ) +

theme ( a x i s . t i t l e . x = element text ( s i z e = 12 , v ju s t = 0 . 1 ) ) +

theme ( a x i s . t i t l e . y = element text ( s i z e = 12 , ang le = 90) ) +

theme ( legend . t i t l e = element blank ( ) ) +

theme ( s t r i p . background = element r e c t ( f i l l = ’ grey85 ’ ) ) +

theme ( s t r i p . t ex t . x = element text ( f a c e = ’ bold ’ , s i z e = 14) )

graph output

# Spec i e s Models

s p e c i e s . df <− rbind ( s p e c i e s 1 1 . f i n a l , s p e c i e s 1 2 . f i n a l )

s p e c i e s . df <− subset ( s p e c i e s . df , mass > 0)

s p e c i e s . df $ season <− i f e l s e ( s p e c i e s . df $ season == ”2011” , ”A” , ”B” )

s p e c i e s . df $ p l o t <− as . f a c t o r ( s p e c i e s . df $ p l o t )

s p e c i e s . df $ treatment <− as . f a c t o r ( s p e c i e s . df $ treatment )

s p e c i e s . df $amf <− as . f a c t o r ( s p e c i e s . df $amf )

s p e c i e s . df $ season <− as . f a c t o r ( s p e c i e s . df $ season )

s p e c i e s . df $spAbbr <− as . f a c t o r ( s p e c i e s . df $spAbbr )

# AG Model

agLM. df <− subset ( s p e c i e s . df , spAbbr == ”AG” )

agLM. df $massLog <− l og10 (agLM. df $mass )

qqnorm (agLM. df $massLog )

q q l i n e (agLM. df $massLog )

AG. n u l l <− lmer ( massLog ˜ 1 + ( 1 | p lo t ) , data = agLM. df )

AG1 <− lmer ( massLog ˜ treatment ∗ season ∗ amf + ( 1 | p lo t ) , data = agLM. df )

drop1 (AG1)

anova (AG. nu l l , AG1)

AG2 <− update (AG1, . ˜ . −treatment : season : amf )

drop1 (AG2)

AG3 <− update (AG2, . ˜ . −season : amf )

drop1 (AG3)

AG4 <− update (AG3, . ˜ . − treatment : amf )

drop1 (AG4)
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AG5 <− update (AG4, . ˜ . − treatment : season )

drop1 (AG5)

AG6 <− update (AG5, . ˜ . − amf )

drop1 (AG6)

anova (AG5, AG6)

AG7 <− update (AG6, . ˜ . − treatment )

drop1 (AG7)

anova (AG. nu l l , AG1, AG2, AG3, AG4, AG5, AG6, AG7, t e s t = ’F ’ )

anova (AG5, AG6)

p l o t ( f i t t e d (AG5) , r e s i d u a l s (AG5) ,

xlab = ” Fi t t ed Values ” , ylab = ” Res idua l s ” )

a b l i n e (h=0, l t y =2)

l i n e s ( smooth . s p l i n e ( f i t t e d (AG5) , r e s i d u a l s (AG5) ) )

p l o t ( p r e d i c t (AG5, type=” response ” ) ,

r e s i d u a l s (AG5, type= ” deviance ” ) )

c o e f p l o t 2 (AG5)

#agPvals <− pva l s . fnc (AG5)

agPvals . df <− data . frame ( rownames ( agPvals $ f i x e d ) , agPvals $ f i x e d $MCMCmean,

agPvals $ f i x e d $HPD95lower , agPvals $ f i x e d $HPD95upper ,

agPvals $ f i x e d $pMCMC)

names ( agPvals . d f ) <− c ( ” treatment ” , ”MCMCmean” , ” lower ” , ”upper” , ”pMCMC” )

#Correct

agMass <− aggregate (agLM. df $mass ,

by = l i s t (agLM. df $ season , agLM. df $ treatment , agLM. df $amf ) ,

FUN = mean , na . rm = TRUE)

names ( agMass ) <− c ( ” season ” , ” treatment ” , ”amf” , ” data ” )

agMassSD <− aggregate (agLM. df $mass ,

by = l i s t (agLM. df $ season , agLM. df $ treatment , agLM. df $amf ) ,

FUN = sd , na . rm = TRUE)

names (agMassSD) <− c ( ” season ” , ” treatment ” , ”amf” , ” sd” )

agMass . gr <− merge ( agMass , agMassSD , by = c ( ” season ” , ” treatment ” , ”amf” ) )
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graph <− ggp lot ( data = agMass . gr , aes ( x = treatment , y = data , f i l l = amf ) )

l i m i t s <− aes (ymax = agMass . gr $ data + agMass . gr $sd ,

ymin = agMass . gr $ data − agMass . gr $ sd )

dodge <− p o s i t i o n dodge ( width = 0 . 9 )

graph output <− graph +

theme bw( ) +

geom bar ( p o s i t i o n = ”dodge” , s t a t = ” i d e n t i t y ” ) +

geom er ro rba r ( l i m i t s , width = 0 . 5 , c o l o r = ” black ” , p o s i t i o n = dodge , s t a t = ”

i d e n t i t y ” ) +

f a c e t g r id ( . ˜ season ) +

labs ( x = ”Carbon Amendment” ,

y = ” Estimated Biomass\n dry mass ( g ) ” ) +

s c a l e y cont inuous ( l i m i t s = c (0 , 350) ) +

theme ( panel . g r i d . major = element l i n e ( co l ou r = ’ grey85 ’ ) ) +

theme ( panel . g r i d . minor = element l i n e ( co l ou r = ’ grey85 ’ ) ) +

theme ( legend . p o s i t i o n = c (0 , −0.40) ) +

theme ( a x i s . t ex t . x = element text ( s i z e = 11 , ang le = 60) ) +

theme ( a x i s . t ex t . y = element text ( s i z e = 13) ) +

theme ( a x i s . t i t l e . x = element text ( s i z e = 12 , v ju s t = 0 . 1 ) ) +

theme ( a x i s . t i t l e . y = element text ( s i z e = 12 , ang le = 90) ) +

theme ( legend . t i t l e = element blank ( ) ) +

theme ( s t r i p . background = element r e c t ( f i l l = ’ grey85 ’ ) ) +

theme ( s t r i p . t ex t . x = element text ( f a c e = ’ bold ’ , s i z e = 14) )

graph output

# PV Model

pvLM. df <− subset ( s p e c i e s . df , spAbbr == ”PV” )

pvLM. df $massLog <− l og10 (pvLM. df $mass )

qqnorm (pvLM. df $massLog )

q q l i n e (pvLM. df $massLog )

PV. n u l l <− lmer ( massLog ˜ 1 + ( 1 | p lo t ) , data = pvLM. df )

225



Appendix C. R Code for Plant Plug Trial Biomass Predictions and Plot Mass Calculations

PV1 <− lmer ( massLog ˜ treatment ∗ season ∗ amf + ( 1 | p lo t ) , data = pvLM. df )

c o e f p l o t 2 (PV1)

drop1 (PV1)

PV2 <− update (PV1 , . ˜ . −treatment : season : amf )

drop1 (PV2)

PV3 <− update (PV2 , . ˜ . −treatment : season )

drop1 (PV3)

PV4 <− update (PV3 , . ˜ . − treatment : amf )

drop1 (PV4)

PV5 <− update (PV4 , . ˜ . − season : amf )

drop1 (PV5)

PV6 <− update (PV5 , . ˜ . − treatment )

drop1 (PV6)

PV7 <− update (PV6 , . ˜ . − amf )

drop1 (PV7)

anova (PV. nu l l , PV1, PV2, PV3, PV4, PV5, PV6, PV7, t e s t = ’F ’ )

anova (PV6, PV7)

p l o t ( f i t t e d (PV6) , r e s i d u a l s (PV6) ,

xlab = ” Fi t t ed Values ” , ylab = ” Res idua l s ” )

a b l i n e (h=0, l t y =2)

l i n e s ( smooth . s p l i n e ( f i t t e d (PV6) , r e s i d u a l s (PV6) ) )

p l o t ( p r e d i c t (PV6, type=” response ” ) ,

r e s i d u a l s (PV6, type= ” deviance ” ) )

c o e f p l o t 2 (PV6)

#pvPvals <− pva l s . fnc (PV6)

pvPvals . df <− data . frame ( rownames ( pvPvals $ f i x e d ) , pvPvals $ f i x e d $MCMCmean,

pvPvals $ f i x e d $HPD95lower , pvPvals $ f i x e d $HPD95upper ,

pvPvals $ f i x e d $pMCMC)

names ( pvPvals . df ) <− c ( ” treatment ” , ”MCMCmean” , ” lower ” , ”upper” , ”pMCMC” )

#cor r e c t

pvMass <− aggregate (pvLM. df $mass ,
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by = l i s t (pvLM. df $ season , pvLM. df $amf ) ,

FUN = mean , na . rm = TRUE)

names ( pvMass ) <− c ( ” season ” , ”amf” , ” data ” )

pvMassSD <− aggregate (pvLM. df $mass ,

by = l i s t (pvLM. df $ season , pvLM. df $amf ) ,

FUN = sd , na . rm = TRUE)

names (pvMassSD) <− c ( ” season ” , ”amf” , ” sd” )

pvMass . gr <− merge ( pvMass , pvMassSD , by = c ( ” season ” , ”amf” ) )

graph <− ggp lot ( data = pvMass . gr , aes ( x = amf , y = data ) )

l i m i t s <− aes (ymax = pvMass . gr $ data + pvMass . gr $sd ,

ymin = pvMass . gr $ data − pvMass . gr $ sd )

dodge <− p o s i t i o n dodge ( width = 0 . 9 )

graph output <− graph +

theme bw( ) +

geom bar ( p o s i t i o n = ”dodge” , s t a t = ” i d e n t i t y ” ) +

geom er ro rba r ( l i m i t s , width = 0 . 5 , c o l o r = ” black ” , p o s i t i o n = dodge , s t a t = ”

i d e n t i t y ” ) +

f a c e t g r id ( . ˜ season ) +

labs ( x = ”Carbon Amendment” ,

y = ” Estimated Biomass\n dry mass ( g ) ” ) +

s c a l e y cont inuous ( l i m i t s = c (0 , 350) ) +

theme ( panel . g r i d . major = element l i n e ( co l ou r = ’ grey85 ’ ) ) +

theme ( panel . g r i d . minor = element l i n e ( co l ou r = ’ grey85 ’ ) ) +

theme ( legend . p o s i t i o n = c (0 , −0.40) ) +

theme ( a x i s . t ex t . x = element text ( s i z e = 11 , ang le = 60) ) +

theme ( a x i s . t ex t . y = element text ( s i z e = 13) ) +

theme ( a x i s . t i t l e . x = element text ( s i z e = 12 , v ju s t = 0 . 1 ) ) +

theme ( a x i s . t i t l e . y = element text ( s i z e = 12 , ang le = 90) ) +

theme ( legend . t i t l e = element blank ( ) ) +

theme ( s t r i p . background = element r e c t ( f i l l = ’ grey85 ’ ) ) +

theme ( s t r i p . t ex t . x = element text ( f a c e = ’ bold ’ , s i z e = 14) )
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graph output

# DC Model

dcLM. df <− subset ( s p e c i e s . df , spAbbr == ”DC” )

dcLM. df $massLog <− l og10 (dcLM. df $mass )

qqnorm (dcLM. df $massLog )

q q l i n e (dcLM. df $massLog )

DC. n u l l <− lmer ( massLog ˜ 1 + ( 1 | p lo t ) , data = dcLM. df )

DC1 <− lmer ( massLog ˜ treatment ∗ season ∗ amf + ( 1 | p lo t ) , data = dcLM. df )

c o e f p l o t 2 (DC3)

drop1 (DC1)

anova (DC. nu l l , DC1)

DC2 <− update (DC1 , . ˜ . −treatment : season : amf )

drop1 (DC2)

DC3 <− update (DC2 , . ˜ . −treatment : season )

drop1 (DC3)

DC4 <− update (DC3 , . ˜ . − season : amf )

drop1 (DC4)

DC5 <− update (DC4 , . ˜ . − treatment : amf )

drop1 (DC5)

DC6 <− update (DC5 , . ˜ . − amf )

drop1 (DC6)

DC7 <− update (DC6 , . ˜ . − treatment )

drop1 (DC7)

anova (DC. nu l l , DC1, DC2, DC3, DC4, DC5, DC6, DC7, t e s t = ’F ’ )

anova (DC4, DC5)

p l o t ( f i t t e d (DC4) , r e s i d u a l s (DC4) ,

xlab = ” Fi t t ed Values ” , ylab = ” Res idua l s ” )

a b l i n e (h=0, l t y =2)

l i n e s ( smooth . s p l i n e ( f i t t e d (DC4) , r e s i d u a l s (DC4) ) )

p l o t ( p r e d i c t (DC4, type=” response ” ) ,
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r e s i d u a l s (DC4, type= ” deviance ” ) )

c o e f p l o t 2 (DC4)

#dcPvals <− pva l s . fnc (DC4)

dcPvals . df <− data . frame ( rownames ( dcPvals $ f i x e d ) , dcPvals $ f i x e d $MCMCmean,

dcPvals $ f i x e d $HPD95lower , dcPvals $ f i x e d $HPD95upper ,

dcPvals $ f i x e d $pMCMC)

names ( dcPvals . d f ) <− c ( ” treatment ” , ”MCMCmean” , ” lower ” , ”upper” , ”pMCMC” )

summary(DC4)

dcMass <− aggregate (dcLM. df $mass ,

by = l i s t (dcLM. df $ season , dcLM. df $ treatment , dcLM. df $amf ) ,

FUN = mean , na . rm = TRUE)

names ( dcMass ) <− c ( ” season ” , ” treatment ” , ”amf” , ” data ” )

dcMassSD <− aggregate (dcLM. df $mass ,

by = l i s t (dcLM. df $ season , dcLM. df $ treatment , dcLM. df $amf ) ,

FUN = sd , na . rm = TRUE)

names (dcMassSD) <− c ( ” season ” , ” treatment ” , ”amf” , ” sd” )

dcMass . gr <− merge ( dcMass , dcMassSD , by = c ( ” season ” , ” treatment ” , ”amf” ) )

graph <− ggp lot ( data = dcMass . gr , aes ( x = treatment , y = data , f i l l = amf ) )

l i m i t s <− aes (ymax = dcMass . gr $ data + dcMass . gr $sd ,

ymin = dcMass . gr $ data − dcMass . gr $ sd )

dodge <− p o s i t i o n dodge ( width = 0 . 9 )

graph output <− graph +

theme bw( ) +

geom bar ( p o s i t i o n = ”dodge” , s t a t = ” i d e n t i t y ” ) +

geom er ro rba r ( l i m i t s , width = 0 . 5 , c o l o r = ” black ” , p o s i t i o n = dodge , s t a t = ”

i d e n t i t y ” ) +

f a c e t g r id ( . ˜ season ) +
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l ab s ( x = ”Carbon Amendment” ,

y = ” Estimated Biomass\n dry mass ( g ) ” ) +

s c a l e y cont inuous ( l i m i t s = c (0 , 350) ) +

theme ( panel . g r i d . major = element l i n e ( co l ou r = ’ grey85 ’ ) ) +

theme ( panel . g r i d . minor = element l i n e ( co l ou r = ’ grey85 ’ ) ) +

theme ( legend . p o s i t i o n = c (0 , −0.40) ) +

theme ( a x i s . t ex t . x = element text ( s i z e = 11 , ang le = 60) ) +

theme ( a x i s . t ex t . y = element text ( s i z e = 13) ) +

theme ( a x i s . t i t l e . x = element text ( s i z e = 12 , v ju s t = 0 . 1 ) ) +

theme ( a x i s . t i t l e . y = element text ( s i z e = 12 , ang le = 90) ) +

theme ( legend . t i t l e = element blank ( ) ) +

theme ( s t r i p . background = element r e c t ( f i l l = ’ grey85 ’ ) ) +

theme ( s t r i p . t ex t . x = element text ( f a c e = ’ bold ’ , s i z e = 14) )

graph output

#cor r e c t

# LC Model

lcLM . df <− subset ( s p e c i e s . df , spAbbr == ”LC” )

lcLM . df $massLog <− l og10 ( lcLM . df $mass )

qqnorm ( lcLM . df $massLog )

q q l i n e ( lcLM . df $massLog )

LC. n u l l <− lmer ( massLog ˜ 1 + ( 1 | p lo t ) , data = lcLM . df )

LC1 <− lmer ( massLog ˜ treatment ∗ season ∗ amf + ( 1 | p lo t ) , data = lcLM . df )

c o e f p l o t 2 (LC1)

drop1 (LC1)

anova (LC. nu l l , LC1)

LC2 <− update (LC1 , . ˜ . −treatment : season : amf )

drop1 (LC2)

LC3 <− update (LC2 , . ˜ . −treatment : season )

drop1 (LC3)

LC4 <− update (LC3 , . ˜ . − treatment : amf )

drop1 (LC4)
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LC5 <− update (LC4 , . ˜ . − season : amf )

drop1 (LC5)

LC6 <− update (LC5 , . ˜ . − treatment )

drop1 (LC6)

LC7 <− update (LC6 , . ˜ . − amf )

drop1 (LC7)

anova (LC. nu l l , LC1 , LC2 , LC3 , LC4 , LC5 , LC6 , LC7 , t e s t = ’F ’ )

anova (LC1 , LC2)

p l o t ( f i t t e d (LC7) , r e s i d u a l s (LC7) ,

xlab = ” Fi t t ed Values ” , ylab = ” Res idua l s ” )

a b l i n e (h=0, l t y =2)

l i n e s ( smooth . s p l i n e ( f i t t e d (LC7) , r e s i d u a l s (LC7) ) )

x <− c (AIC(LC. n u l l ) ,AIC(LC1) ,AIC(LC2) , AIC(LC3) , AIC(LC4) ,

AIC(LC5) , AIC(LC6) , AIC(LC7) )

p l o t ( p r e d i c t (LC7 , type=” response ” ) ,

r e s i d u a l s (LC7 , type= ” deviance ” ) )

c o e f p l o t 2 (LC1)

#lcPva l s <− pva l s . fnc (LC1)

l cPva l s . d f <− data . frame ( rownames ( l cPva l s $ f i x e d ) , l cPva l s $ f i x e d $MCMCmean,

l cPva l s $ f i x e d $HPD95lower , l cPva l s $ f i x e d $HPD95upper ,

l cPva l s $ f i x e d $pMCMC)

names ( l cPva l s . d f ) <− c ( ” treatment ” , ”MCMCmean” , ” lower ” , ”upper” , ”pMCMC” )

#cor r e c t

lcMass <− aggregate ( lcLM . df $mass ,

by = l i s t ( lcLM . df $ season , lcLM . df $ treatment , lcLM . df $amf ) ,

FUN = mean , na . rm = TRUE)

names ( lcMass ) <− c ( ” season ” , ” treatment ” , ”amf” , ” data ” )

lcMassSD <− aggregate ( lcLM . df $mass ,

by = l i s t ( lcLM . df $ season , lcLM . df $ treatment , lcLM . df $amf ) ,

FUN = sd , na . rm = TRUE)

names ( lcMassSD ) <− c ( ” season ” , ” treatment ” , ”amf” , ” sd” )

lcMass . gr <− merge ( lcMass , lcMassSD , by = c ( ” season ” , ” treatment ” , ”amf” ) )
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graph <− ggp lot ( data = lcMass . gr , aes ( x = treatment , y = data , f i l l = amf ) )

l i m i t s <− aes (ymax = lcMass . gr $ data + lcMass . gr $sd ,

ymin = lcMass . gr $ data − lcMass . gr $ sd )

dodge <− p o s i t i o n dodge ( width = 0 . 9 )

graph output <− graph +

theme bw( ) +

geom bar ( p o s i t i o n = ”dodge” , s t a t = ” i d e n t i t y ” ) +

geom er ro rba r ( l i m i t s , width = 0 . 5 , c o l o r = ” black ” , p o s i t i o n = dodge , s t a t = ”

i d e n t i t y ” ) +

f a c e t g r id ( . ˜ season ) +

labs ( x = ”Carbon Amendment” ,

y = ” Estimated Biomass\n dry mass ( g ) ” ) +

s c a l e y cont inuous ( l i m i t s = c (0 , 350) ) +

theme ( panel . g r i d . major = element l i n e ( co l ou r = ’ grey85 ’ ) ) +

theme ( panel . g r i d . minor = element l i n e ( co l ou r = ’ grey85 ’ ) ) +

theme ( legend . p o s i t i o n = c (0 , −0.40) ) +

theme ( a x i s . t ex t . x = element text ( s i z e = 11 , ang le = 60) ) +

theme ( a x i s . t ex t . y = element text ( s i z e = 13) ) +

theme ( a x i s . t i t l e . x = element text ( s i z e = 12 , v ju s t = 0 . 1 ) ) +

theme ( a x i s . t i t l e . y = element text ( s i z e = 12 , ang le = 90) ) +

theme ( legend . t i t l e = element blank ( ) ) +

theme ( s t r i p . background = element r e c t ( f i l l = ’ grey85 ’ ) ) +

theme ( s t r i p . t ex t . x = element text ( f a c e = ’ bold ’ , s i z e = 14) )

graph output

# SL Model

slLM . df <− subset ( s p e c i e s . df , spAbbr == ”SL” )

slLM . df $ sqrtLog <− Sqrt . Tns ( slLM . df $mass )

qqnorm ( slLM . df $ sqrtLog )

q q l i n e ( slLM . df $ sqrtLog )
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SL . n u l l <− lmer ( sqrtLog ˜ 1 + ( 1 | p lo t ) , data = slLM . df )

SL1 <− lmer ( sqrtLog ˜ treatment ∗ season ∗ amf + ( 1 | p lo t ) , data = slLM . df )

c o e f p l o t 2 (SL1)

drop1 (SL1)

anova (SL . nu l l , SL1)

SL2 <− update (SL1 , . ˜ . −treatment : season : amf )

drop1 (SL2)

SL3 <− update (SL2 , . ˜ . −treatment : season )

drop1 (SL3)

SL4 <− update (SL3 , . ˜ . − treatment : amf )

drop1 (SL4)

SL5 <− update (SL4 , . ˜ . − season : amf )

drop1 (SL5)

SL6 <− update (SL5 , . ˜ . − treatment )

drop1 (SL6)

SL7 <− update (SL6 , . ˜ . − amf )

drop1 (SL7)

anova (SL . nu l l , SL1 , SL2 , SL3 , SL4 , SL5 , SL6 , SL7 , t e s t = ’F ’ )

p l o t ( f i t t e d (SL7) , r e s i d u a l s (SL7) ,

xlab = ” Fi t t ed Values ” , ylab = ” Res idua l s ” )

a b l i n e (h=0, l t y =2)

l i n e s ( smooth . s p l i n e ( f i t t e d (SL7) , r e s i d u a l s (SL7) ) )

p l o t ( p r e d i c t (SL7 , type=” response ” ) ,

r e s i d u a l s (SL7 , type= ” deviance ” ) )

c o e f p l o t 2 (SL7)

#s lP v a l s <− pva l s . fnc (SL7)

s l P v a l s . d f <− data . frame ( rownames ( s l P v a l s $ f i x e d ) , s l P v a l s $ f i x e d $MCMCmean,

s l P v a l s $ f i x e d $HPD95lower , s l P v a l s $ f i x e d $HPD95upper ,

s l P v a l s $ f i x e d $pMCMC)

names ( s l P v a l s . d f ) <− c ( ” treatment ” , ”MCMCmean” , ” lower ” , ”upper” , ”pMCMC” )
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s lMass <− aggregate ( slLM . df $mass ,

by = l i s t ( slLM . df $ season ) ,

FUN = mean , na . rm = TRUE)

names ( slMass ) <− c ( ” season ” , ” data ” )

slMassSD <− aggregate ( slLM . df $mass ,

by = l i s t ( slLM . df $ season ) ,

FUN = sd , na . rm = TRUE)

names ( slMassSD ) <− c ( ” season ” , ” sd” )

slMass . gr <− merge ( slMass , slMassSD , by = c ( ” season ” ) )

graph <− ggp lot ( data = slMass . gr , aes ( x = season , y = data ) )

l i m i t s <− aes (ymax = slMass . gr $ data + slMass . gr $sd ,

ymin = slMass . gr $ data − s lMass . gr $ sd )

dodge <− p o s i t i o n dodge ( width = 0 . 9 )

graph output <− graph +

theme bw( ) +

geom bar ( p o s i t i o n = ”dodge” , s t a t = ” i d e n t i t y ” ) +

geom er ro rba r ( l i m i t s , width = 0 . 5 , c o l o r = ” black ” , p o s i t i o n = dodge , s t a t = ”

i d e n t i t y ” ) +

labs ( x = ”Carbon Amendment” ,

y = ” Estimated Biomass\n dry mass ( g ) ” ) +

s c a l e y cont inuous ( l i m i t s = c (0 , 350) ) +

theme ( panel . g r i d . major = element l i n e ( co l ou r = ’ grey85 ’ ) ) +

theme ( panel . g r i d . minor = element l i n e ( co l ou r = ’ grey85 ’ ) ) +

theme ( legend . p o s i t i o n = c (0 , −0.40) ) +

theme ( a x i s . t ex t . x = element text ( s i z e = 11 , ang le = 60) ) +

theme ( a x i s . t ex t . y = element text ( s i z e = 13) ) +

theme ( a x i s . t i t l e . x = element text ( s i z e = 12 , v ju s t = 0 . 1 ) ) +

theme ( a x i s . t i t l e . y = element text ( s i z e = 12 , ang le = 90) ) +

theme ( legend . t i t l e = element blank ( ) ) +

theme ( s t r i p . background = element r e c t ( f i l l = ’ grey85 ’ ) ) +
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theme ( s t r i p . t ex t . x = element text ( f a c e = ’ bold ’ , s i z e = 14) )

graph output

# LZCA Model

lzcaLM . df <− subset ( s p e c i e s . df , spAbbr == ”LZCA” )

lzcaLM . df $ sqrtLog <− Sqrt . Tns ( lzcaLM . df $mass )

qqnorm ( lzcaLM . df $ sqrtLog )

q q l i n e ( lzcaLM . df $ sqrtLog )

LZCA. n u l l <− lmer ( sqrtLog ˜ 1 + ( 1 | p lo t ) , data = lzcaLM . df )

LZCA1 <− lmer ( sqrtLog ˜ treatment ∗ season ∗ amf + ( 1 | p lo t ) , data = lzcaLM .

df )

c o e f p l o t 2 (LZCA1)

drop1 (LZCA1)

LZCA2 <− update (LZCA1 , . ˜ . −treatment : season : amf )

drop1 (LZCA2)

LZCA3 <− update (LZCA2 , . ˜ . −treatment : season )

drop1 (LZCA3)

LZCA4 <− update (LZCA3 , . ˜ . − treatment : amf )

drop1 (LZCA4)

LZCA5 <− update (LZCA4 , . ˜ . − season : amf )

drop1 (LZCA5)

LZCA6 <− update (LZCA5 , . ˜ . − treatment )

drop1 (LZCA6)

LZCA7 <− update (LZCA6 , . ˜ . − amf )

drop1 (LZCA7)

anova (LZCA. nu l l , LZCA1, LZCA2, LZCA3, LZCA4, LZCA5, LZCA6, LZCA7, t e s t = ’F ’ ,

REML = FALSE)

anova (LZCA. nu l l , LZCA1)

p l o t ( f i t t e d (LZCA6) , r e s i d u a l s (LZCA6) ,

xlab = ” Fi t t ed Values ” , ylab = ” Res idua l s ” )

a b l i n e (h=0, l t y =2)
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l i n e s ( smooth . s p l i n e ( f i t t e d (LZCA1) , r e s i d u a l s (LZCA1) ) )

p l o t ( p r e d i c t (LZCA5, type=” response ” ) ,

r e s i d u a l s (LZCA5 type= ” deviance ” ) )

c o e f p l o t 2 (LZCA6)

#l z caPva l s <− pva l s . fnc (LZCA6)

l z caPva l s . d f <− data . frame ( rownames ( l z caPva l s $ f i x e d ) , l z caPva l s $ f i x e d $MCMCmean

,

l z caPva l s $ f i x e d $HPD95lower , l z caPva l s $ f i x e d $HPD95upper ,

l z caPva l s $ f i x e d $pMCMC)

names ( l z caPva l s . d f ) <− c ( ” treatment ” , ”MCMCmean” , ” lower ” , ”upper” , ”pMCMC” )

x <− c (AIC(LZCA. n u l l ) ,AIC(LZCA1) ,AIC(LZCA2) , AIC(LZCA3) , AIC(LZCA4) ,

AIC(LZCA5) , AIC(LZCA6) , AIC(LZCA7) )

#cor r e c t

lzcaMass <− aggregate ( lzcaLM . df $mass ,

by = l i s t ( lzcaLM . df $ season , lzcaLM . df $amf ) ,

FUN = mean , na . rm = TRUE)

names ( lzcaMass ) <− c ( ” season ” , ”amf” , ” data ” )

lzcaMassSD <− aggregate ( lzcaLM . df $mass ,

by = l i s t ( lzcaLM . df $ season , lzcaLM . df $amf ) ,

FUN = sd , na . rm = TRUE)

names ( lzcaMassSD ) <− c ( ” season ” , ”amf” , ” sd” )

lzcaMass . gr <− merge ( lzcaMass , lzcaMassSD , by = c ( ” season ” , ”amf” ) )

graph <− ggp lot ( data = lzcaMass . gr , aes ( x = amf , y = data ) )

l i m i t s <− aes (ymax = lzcaMass . gr $ data + lzcaMass . gr $sd ,

ymin = lzcaMass . gr $ data − lzcaMass . gr $ sd )

dodge <− p o s i t i o n dodge ( width = 0 . 9 )

graph output <− graph +
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theme bw( ) +

geom bar ( p o s i t i o n = ”dodge” , s t a t = ” i d e n t i t y ” ) +

geom er ro rba r ( l i m i t s , width = 0 . 5 , c o l o r = ” black ” , p o s i t i o n = dodge , s t a t = ”

i d e n t i t y ” ) +

f a c e t g r id ( . ˜ season ) +

labs ( x = ”Carbon Amendment” ,

y = ” Estimated Biomass\n dry mass ( g ) ” ) +

s c a l e y cont inuous ( l i m i t s = c (0 , 350) ) +

theme ( panel . g r i d . major = element l i n e ( co l ou r = ’ grey85 ’ ) ) +

theme ( panel . g r i d . minor = element l i n e ( co l ou r = ’ grey85 ’ ) ) +

theme ( legend . p o s i t i o n = c (0 , −0.40) ) +

theme ( a x i s . t ex t . x = element text ( s i z e = 11 , ang le = 60) ) +

theme ( a x i s . t ex t . y = element text ( s i z e = 13) ) +

theme ( a x i s . t i t l e . x = element text ( s i z e = 12 , v ju s t = 0 . 1 ) ) +

theme ( a x i s . t i t l e . y = element text ( s i z e = 12 , ang le = 90) ) +

theme ( legend . t i t l e = element blank ( ) ) +

theme ( s t r i p . background = element r e c t ( f i l l = ’ grey85 ’ ) ) +

theme ( s t r i p . t ex t . x = element text ( f a c e = ’ bold ’ , s i z e = 14) )

graph output

# Mul t i p l e b a r p l o t graph

graph <− ggp lot ( data = a l l . df , aes ( x = treatment , y = mass , f i l l = f a c t o r ( amf )

) )

l i m i t s <− aes (ymax = a l l . d f $mass + a l l . d f $ se ,

ymin = a l l . d f $mass − a l l . d f $ se )

dodge <− p o s i t i o n dodge ( width = 0 . 9 )

graph output <− graph +

theme bw( ) +

geom bar ( p o s i t i o n = ”dodge” , s t a t = ” i d e n t i t y ” ) +

geom er ro rba r ( l i m i t s , width = 0 . 5 , c o l o r = ” black ” , p o s i t i o n = dodge , s t a t = ”

i d e n t i t y ” ) +

f a c e t g r id ( . ˜ season ) +

labs ( x = ”Carbon Amendment” ,

y = ” Estimated Biomass\n dry mass ( g ) ” ) +
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s c a l e y cont inuous ( l i m i t s = c (0 , 600) ) +

theme ( panel . g r i d . major = element l i n e ( co l ou r = ’ grey85 ’ ) ) +

theme ( panel . g r i d . minor = element l i n e ( co l ou r = ’ grey85 ’ ) ) +

theme ( legend . p o s i t i o n = c (0 , −0.40) ) +

theme ( a x i s . t ex t . x = element text ( s i z e = 11 , ang le = 60) ) +

theme ( a x i s . t ex t . y = element text ( s i z e = 13) ) +

theme ( a x i s . t i t l e . x = element text ( s i z e = 12 , v ju s t = 0 . 1 ) ) +

theme ( a x i s . t i t l e . y = element text ( s i z e = 12 , ang le = 90) ) +

theme ( legend . t i t l e = element blank ( ) ) +

theme ( s t r i p . background = element r e c t ( f i l l = ’ grey85 ’ ) ) +

theme ( s t r i p . t ex t . x = element text ( f a c e = ’ bold ’ , s i z e = 14) )

graph output
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# R−Sc r i p t f o r Percent Cover Data

l i b r a r y (RODBC)

l i b r a r y ( reshape )

l i b r a r y ( Hmisc )

l i b r a r y (DMwR)

l i b r a r y ( ggp lot2 )

l i b r a r y ( p l s )

l i b r a r y ( car )

l i b r a r y ( lme4 )

l i b r a r y ( rg l , pos=4)

l i b r a r y (mgcv , pos=4)

l i b r a r y ( s c a t t e r p l o t 3 d )

l i b r a r y ( m u l t i l e v e l )

l i b r a r y ( lme4 )

l i b r a r y ( languageR )

l i b r a r y ( lsmeans )

l i b r a r y ( pbkr te s t )

l i b r a r y ( lmerTest )

l i b r a r y (HLMdiag)

l i b r a r y ( nlme )

l i b r a r y ( l a t t i c e )

l i b r a r y ( i n f l u e n c e .ME)

l i b r a r y ( LMERConvenienceFunctions )

# Data Transformation Sec t ion

Cube . Tns <− f unc t i on ( x ) { x ˆ 3 }

Square . Tns <− f unc t i on ( x ) { x ˆ 2 }

Raw. Tns <− f unc t i on ( x ) { x }

Sqrt . Tns <− f unc t i on ( x ) { s q r t ( x ) }

Log . Tns <− f unc t i on ( x ) { l og10 ( x + 1) }
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RecipRoot . Tns <− f unc t i on ( x ) { −1 / s q r t ( x ) }

Recip . Tns <− f unc t i on ( x ) { −1 / ( x ) }

InvSquare . Tns <− f unc t i on ( x ) { −1 / ( x ˆ 2) }

# Back Transformations

unsca l e . fn <− f unc t i on ( x ) { as . data . frame ( unsca l e (x , unsca l e . ob j e c t ) ) }

backLog . Tns <− f unc t i on ( x ) { 10 ˆ ( x ) − 1 }

backSqrt . Tns <− f unc t i on ( x ) { ( x ) ˆ 2 }

backRaw . Tns <− f unc t i on ( x ) { ( x ) }

# Pred i c t i on Data Centered and Sca led to Unity

## This un i t y f unc t i on compares the c o l l e c t e d t e s t p l an t s to the p l s r data

ana lyzed

## x = t e s t v a r i a b l e data ; y = main data ; r e qu i r ed to have same mean /

var iance

PredU <− f unc t i on (x , y ) {
cente r <− x − mean( y )

sdCenter <− sd ( y − mean( y ) )

c en te r / sdCenter

}

# Pearson ’ s Method ( Parametric Test )

PearsonsMethod <− f unc t i on ( x ) {
cor (x , use = ” complete . obs” , method = ” pearson ” )

}

# Spearman ’ s Method (Non−Parametric Test )

SpearmansMethod <− f unc t i on (x , y ) {
cor (x , use = ” complete . obs” , method = ”spearman” )

}

# Data Import

channel <− odbcConnectAccess ( ”C: / Users /Ohsowski/Documents/PhD/ D i s s e r t a t i o n /

Data/ d i s s e r t a t i o n data exp 2 ” )

main . df <− sqlQuery ( channel , ”SELECT ∗ FROM DATA Q WHERE months = ’ Fal l ’ ” )
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c l o s e ( channel )

s o i l . tmp <− subset ( main . df , dataType == ’ s o i l px ’ )

s o i l . tmp$ s o i l pc <− s o i l . tmp$ data / s o i l . tmp$ g r i d S i z e

g ra s s . tmp <− subset ( main . df , dataType == ’ g ra s s px ’ )

g ra s s . tmp$ gra s s pc <− g ra s s . tmp$ data / g ra s s . tmp$ g r i d S i z e

nf . tmp <− subset ( main . df , dataType == ’ nf px ’ )

nf . tmp$ nf pc <− nf . tmp$ data / nf . tmp$ g r i d S i z e

fo rb . tmp <− subset ( main . df , dataType == ’ fo rb px ’ )

f o rb . tmp$ fo rb pc <− f o rb . tmp$ data / fo rb . tmp$ g r i d S i z e

l i t t e r . tmp <− subset ( main . df , dataType == ’ l i t t e r px ’ )

l i t t e r . tmp$ l i t t e r pc <− l i t t e r . tmp$ data / l i t t e r . tmp$ g r i d S i z e

weed . tmp <− subset ( main . df , dataType == ’ weed px ’ )

weed . tmp$weed pc <− weed . tmp$ data / weed . tmp$ g r i d S i z e

tmp <− merge ( fo rb . tmp , nf . tmp , by = c ( ” p l o t id ” , ”seasonNum” ) )

tmp2 <− merge ( s o i l . tmp , g ra s s . tmp , by = c ( ” p l o t id ” , ”seasonNum” ) )

tmp3 <− merge ( weed . tmp , l i t t e r . tmp , by = c ( ” p l o t id ” , ”seasonNum” ) )

tmp4 <− merge (tmp , tmp2 , by = c ( ” p l o t id ” , ”seasonNum” ) )

tmp5 <− merge ( tmp4 , tmp3 , by = c ( ” p l o t id ” , ”seasonNum” ) )

f i n a l . d f <− data . frame ( tmp5$ p lo t id , tmp5$ hgt cm. y , tmp5$seasonNum , tmp5$

compost ra t e . x . x , tmp5$ b iochar ra t e . x . x , tmp5$myco . x . x , tmp5$ s o i l pc , tmp5

$ g ra s s pc , tmp5$ fo rb pc , tmp5$ nf pc , tmp5$ l i t t e r pc , tmp5$weed pc )

names ( f i n a l . d f ) <− c ( ” p l o t id ” , ” hgt” , ” season ” , ”compost ra t e ” , ” b iochar ra t e

” , ”amf” , ” s o i l pc” , ” g ra s s pc” , ” fo rb pc” , ” nf pc” , ” l i t t e r pc” , ”weed pc”

)

f i n a l . d f $hgt <− f i n a l . d f $ hgt / 100

#f i n a l . d f $ season <− as . f a c t o r ( f i n a l . d f $ season )

f inalSUB . df <− subset ( f i n a l . df , season == ’ 3 ’ )

summary( finalSUB . df )

f i n a l . d f $ nat ive pc <− f i n a l . d f $ g ra s s pc + f i n a l . d f $ nf pc + f i n a l . d f $ fo rb pc

f i n a l . d f $ s o i l l i t t e r pc <− f i n a l . d f $ s o i l pc + f i n a l . d f $ l i t t e r pc
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f i n a l . d f $ green pc <− f i n a l . d f $ g ra s s pc + f i n a l . d f $ nf pc + f i n a l . d f $ fo rb pc +

f i n a l . d f $weed pc

f i n a l . d f $ nat ive l i t t e r pc <− f i n a l . d f $ g ra s s pc + f i n a l . d f $ nf pc + f i n a l . d f $

fo rb pc + f i n a l . d f $ l i t t e r pc

f i n a l . d f <− f i n a l . d f [ c (−193:−195 , −169:−171) , ]

f i n a l . d f $ v a r i a b l e <− Log . Tns ( f i n a l . d f $ nat ive pc )

qqnorm ( f i n a l . d f $ v a r i a b l e )

q q l i n e ( f i n a l . d f $ v a r i a b l e )

# qqnorm( f i n a l . d f $ v a r i a b l e )

# q q l i n e ( f i n a l . d f $ v a r i a b l e )

#f i n a l . d f $compost ra t e <− as . f a c t o r ( f i n a l . d f $compost ra t e )

#f i n a l . d f $ b iochar ra t e <− as . f a c t o r ( f i n a l . d f $ b iochar ra t e )

#f i n a l . d f <− f i n a l . d f [ c (−196 , −197, −198) , ]

PC. n u l l <− lmer ( v a r i a b l e ˜ 1 + ( 1 | p lo t id ) , data = f i n a l . df , REML = FALSE)

PC1 <− lmer ( v a r i a b l e ˜ compost ra t e ∗ biochar ra t e ∗ season ∗amf∗hgt+

( 1 | p lo t id ) , data = f i n a l . df , REML = FALSE)

summary(PC1)

anova (PC1)

mcp . fnc (PC1)

anova (PC. nu l l , PC1)

r e l L i k (PC. nu l l , PC1)

PC2 <− update (PC1 , . ˜ . −compost ra t e : b iochar ra t e : season : amf : hgt )

summary(PC2)

anova (PC2)

anova (PC1, PC2)

r e l L i k (PC1, PC2)

PC3 <− update (PC2 , . ˜ . −compost ra t e : season : hgt )

summary(PC3)

anova (PC3)

anova (PC2, PC3)

r e l L i k (PC2, PC3)

PC4 <− update (PC3 , . ˜ . −compost ra t e : b iochar ra t e : hgt )

summary(PC4)

anova (PC4)
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anova (PC3, PC4)

r e l L i k (PC3, PC4)

pamer . fnc (PC4)

mcp . fnc (PC4)

############################# FINAL MODEL #########################3

PC5 <− update (PC4 , . ˜ . − biochar ra t e : season : hgt )

summary(PC5)

anova (PC5)

anova (PC4, PC5)

r e l L i k (PC4, PC5)

PC6 <− update (PC5 , . ˜ . −compost ra t e : b iochar ra t e : season )

summary(PC6)

anova (PC6)

anova (PC5, PC6)

r e l L i k (PC5, PC6)

PC7 <− update (PC6 , . ˜ . −compost ra t e : hgt )

summary(PC7)

anova (PC7)

anova (PC6, PC7)

r e l L i k (PC6, PC7)

PC8 <− update (PC7 , . ˜ . −biochar ra t e : hgt )

summary(PC8)

anova (PC8)

anova (PC7, PC8)

r e l L i k (PC7, PC8)

PC9 <− update (PC8 , . ˜ . −biochar ra t e : season )

summary(PC9)

anova (PC9)

anova (PC8, PC9)

r e l L i k (PC8, PC9)

PC10 <− update (PC9 , . ˜ . −season : hgt )

summary(PC10)

anova (PC10)

anova (PC9, PC10)

r e l L i k (PC9, PC10)

PC11 <− update (PC10 , . ˜ . −compost ra t e : b iochar ra t e )
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summary(PC11)

anova (PC11)

anova (PC10 , PC11)

r e l L i k (PC10 , PC11)

PC12 <− update (PC11 , . ˜ . −compost ra t e : season )

summary(PC12)

anova (PC12)

anova (PC11 , PC12)

r e l L i k (PC11 , PC12)

PC13 <− update (PC12 , . ˜ . −amf )

summary(PC13)

anova (PC13)

anova (PC12 , PC13)

r e l L i k (PC12 , PC13)

PC14 <− update (PC13 , . ˜ . −hgt )

summary(PC14)

anova (PC14)

anova (PC13 , PC14)

r e l L i k (PC13 , PC14)

# Wireframe Graph

p lo t ( f i t t e d (M13) , r e s i d u a l s (M13) , xlab = ” Fi t t ed Values ” , ylab = ” Res idua l s ” )

a b l i n e (h=0, l t y =2) l i n e s ( smooth . s p l i n e ( f i t t e d (M13) , r e s i d u a l s (M13) ) )

wireframe ( nat ive pc ˜ compost ra t e ∗ biochar rate , data=f i n a l . df , x lab = ”

Compost Rate” , ylab = ” Biochar Rate ) ” , drape = TRUE, co lo rkey = TRUE)

p <− wireframe ( v a r i a b l e ˜ compost ra t e ∗ biochar rate , data=f i n a l . d f )

npanel <− c (4 , 2)

rotx <− c (−50 , −80)

ro t z <− seq (30 , 300 , l ength = npanel [ 1 ]+1)

update (p [ rep (1 , prod ( npanel ) ) ] , l ayout = npanel ,

panel = func t i on ( . . . , s c r e en ) {
panel . wire frame ( . . . , s c r e en = l i s t ( z = ro t z [ cur r ent . column ( ) ] ,

x = rotx [ cur rent . row ( ) ] ) )

})
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l i b r a r y (RODBC)

l i b r a r y ( reshape )

l i b r a r y ( Hmisc )

l i b r a r y ( p l s )

l i b r a r y (DMwR)

l i b r a r y ( ggp lot2 )

l i b r a r y ( lme4 )

l i b r a r y (MuMIn)

l i b r a r y ( m u l t i l e v e l )

l i b r a r y ( lme4 )

l i b r a r y ( languageR )

l i b r a r y ( lsmeans )

l i b r a r y ( pbkr te s t )

l i b r a r y (HH)

l i b r a r y ( geoR )

l i b r a r y ( car )

l i b r a r y ( qcc )

l i b r a r y ( p s c l )

# Data Transformation Sec t ion

Cube . Tns <− f unc t i on ( x ) { x ˆ 3 }

Square . Tns <− f unc t i on ( x ) { x ˆ 2 }

Raw. Tns <− f unc t i on ( x ) { x }

Sqrt . Tns <− f unc t i on ( x ) { s q r t ( x ) }

Log . Tns <− f unc t i on ( x ) { l og10 ( x + 1) }

RecipRoot . Tns <− f unc t i on ( x ) { −1 / s q r t ( x ) }
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Recip . Tns <− f unc t i on ( x ) { −1 / ( x ) }

InvSquare . Tns <− f unc t i on ( x ) { −1 / ( x ˆ 2) }

# Back Transformations

unsca l e . fn <− f unc t i on ( x ) { as . data . frame ( unsca l e (x , unsca l e . ob j e c t ) ) }

backLog . Tns <− f unc t i on ( x ) { 10 ˆ ( x ) − 1 }

backSqrt . Tns <− f unc t i on ( x ) { ( x ) ˆ 2 }

backRaw . Tns <− f unc t i on ( x ) { ( x ) }

backRecipRoot . Tns <− f unc t i on ( x ) {1 / ( x ) ˆ2}

# Pred i c t i on Data Centered and Sca led to Unity

## This un i t y f unc t i on compares the c o l l e c t e d t e s t p l an t s to the p l s r data

ana lyzed

## x = t e s t v a r i a b l e data ; y = main data ; r e qu i r ed to have same mean /

var iance

PredU <− f unc t i on (x , y ) {
cente r <− x − mean( y )

sdCenter <− sd ( y − mean( y ) )

c en te r / sdCenter

}

# Pearson ’ s Method ( Parametric Test )

PearsonsMethod <− f unc t i on ( x ) {
cor (x , use = ” complete . obs” , method = ” pearson ” )

}

# Spearman ’ s Method (Non−Parametric Test )

SpearmansMethod <− f unc t i on (x , y ) {
cor (x , use = ” complete . obs” , method = ”spearman” )

}

# Plot Informat ion Data Frame

246



Appendix E. R Code for Soil Food Web Organisms

channel <−
odbcConnectAccess ( ”C: / Users /Ohsowski/Documents/PhD/ D i s s e r t a t i o n /Data/

d i s s e r t a t i o n data exp 1 13 aug2” )

p l o t 1 2 I n f o . df <− sqlQuery ( channel , ”SELECT plot , amf , treatment , b iochar rate ,

compost rate , hgt FROM DATA WEB” )

c l o s e ( channel )

p l o t 1 2 I n f o . df <− unique ( merge ( plotUT12 . web , p l o t 1 2 I n f o . df , by = ” p lo t ” ) )

web . df <− read . csv ( ”C:\\ Users \\Ohsowski\\Documents\\PhD\\D i s s e r t a t i o n \\Data\\
S o i l Food Web 2012\\ s o i l food web 13 aug13 . csv ” )

#######################

## Bac t e r i a l Biomass ##

#######################

bactBio . df <− subset (web . df , dataType == ’ bactBio ’ , s e l e c t = c ( plot , data ) )

bactBio . df <− unique ( merge ( bactBio . df , p l o t 1 2 I n f o . df , by = ” p lo t ” ) )

bactBio . df <− as . data . frame ( subset ( bactBio . df , amf == ’Y ’ | amf == ’N ’ ) )

bactBio . df <− as . data . frame ( subset ( bactBio . df , data < 5 . 8 ) )

# Poisson ov e rd i s p e r s i on t e s t

qcc . o v e r d i s p e r s i o n . t e s t ( bactBio . df $data , type=” po i s son ” )

# Log Transformed Data approximates normal d i s t r i b u t i o n

bactBio . df $dataT <− Log . Tns ( bactBio . df $ data )

qqnorm ( bactBio . df $ data )

q q l i n e ( bactBio . df $ data )

# Using g en e r a l i z e d l i n e a r models to t e s t t reatment l e v e l data

# Poisson d i s t r i b u t i o n s assume mean = var iance

mean( bactBio . df $ data )

var ( bactBio . df $ data )

# frequency d i s t r i b u t i o n o f the co l l em data

bactBioBar <− barp lo t ( as . vec to r ( t ab l e ( bactBio . df $ data ) ) , names . arg = seq ( 1 : 3 6 )

)

bactBioBar
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boxplot ( dataT ˜ treatment + amf , data = bactBio . df )

# Nul l Model Es tab l i shment

bactBio . n u l l <− lm( dataT ˜ 1 , data = bactBio . df )

summary( bactBio . n u l l )

bactBio .M1 <− lm( dataT ˜ treatment ∗ amf ∗ hgt , data = bactBio . df )

summary( bactBio .M1)

anova ( bactBio . nu l l , bactBio .M1)

bactBio .M2 <− update ( bactBio .M1, . ˜ . − treatment : amf : hgt )

summary( bactBio .M2)

anova ( bactBio .M1, bactBio .M2)

bactBio .M3 <− update ( bactBio .M2, . ˜ . − amf : hgt )

summary( bactBio .M3)

anova ( bactBio .M2, bactBio .M3)

bactBio .M4 <− update ( bactBio .M3, . ˜ . − amf : treatment )

summary( bactBio .M4)

anova ( bactBio .M3, bactBio .M4)

bactBio .M5 <− update ( bactBio .M4, . ˜ . − treatment : hgt )

summary( bactBio .M5)

anova ( bactBio .M4, bactBio .M5)

bactBio .M6 <− update ( bactBio .M5, . ˜ . − hgt )

summary( bactBio .M6)

anova ( bactBio .M5, bactBio .M6)

bactBio .M7 <− update ( bactBio .M6, . ˜ . − amf )

summary( bactBio .M7)

anova ( bactBio .M6, bactBio .M7)

anova ( bactBio . nu l l , bactBio .M1, bactBio .M2 , bactBio .M3)

x <− c (AIC( bactBio . n u l l ) ,AIC( bactBio .M1) ,AIC( bactBio .M2) , AIC( bactBio .M3) ) #

s t o r e s AIC va lu e s in a vec t o r

d e l t a <− x − min ( x )

d e l t a

# Model #3 i s most appropr ia t e

# Check Diagnos t i c p l o t s

p lo t ( bactBio .M2)

p l o t ( p r e d i c t ( bactBio .M2 , type=” response ” ) ,
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r e s i d u a l s ( bactBio .M2 , type= ” deviance ” ) )

p l o t ( hatva lues ( bactBio .M2) )

p l o t ( r s tudent ( bactBio .M2) )

p l o t ( cooks . d i s t anc e ( bactBio .M2) )

i n f l u e n c e P l o t ( bactBio .M2)

# Res idua l s l ook good f o r Bac t e r i a l biomass

summary( bactBio .M4)

> summary( bactBio .M4)

# Cal l :

# glm ( formula = dataT ˜ treatment , f ami l y = gaussian , data = bactBio . d f )

# Deviance Res idua l s :

# Min 1Q Median 3Q Max

# −0.292319 −0.100532 0.002878 0.097328 0.313709

# Co e f f i c i e n t s :

# Estimate Std . Error t va lue Pr(>| t | )
# ( In t e r c e p t ) 0.33371 0.03114 10.715 < 2e−16 ∗∗∗
# treatment05T/ha BC −0.11594 0.04404 −2.632 0.00981 ∗∗
# treatment10T/ha BC −0.10882 0.04404 −2.471 0.01516 ∗
# treatment20T/ha CP + 00T/ha BC 0.06404 0.04404 1.454 0.14907

# treatment20T/ha CP + 05T/ha BC 0.19008 0.04404 4.316 3.72 e−05 ∗∗∗
# treatment20T/ha CP + 10T/ha BC 0.19489 0.04469 4.361 3.12 e−05 ∗∗∗
# −−−
# S i g n i f . codes : 0 ∗∗∗ 0.001 ∗∗ 0.01 ∗ 0.05 . 0 .1 1

# ( Dispers ion parameter f o r gauss ian fami l y taken to be 0.01745883)

# Nul l dev iance : 3.4504 on 106 degrees o f freedom

# Residua l dev iance : 1.7633 on 101 degrees o f freedom

# AIC: −121.65

# Number o f Fisher Scor ing i t e r a t i o n s : 2

# Create f i n a l c o e f f i c i e n t and mu l t i p l i c a t i v e e s t ima t e s

bactBio . e s t <− cbind ( Estimate = c o e f ( bactBio .M4) , c o n f i n t ( bactBio .M4) )

bactBio . f i n a l <− exp ( bactBio . e s t )

bactBio . f i n a l

# Merged Bact Biomass
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bactBioMn <− aggregate ( bactBio . df $data , by = l i s t ( bactBio . df $ treatment ) , FUN =

mean , na . rm = TRUE)

names ( bactBioMn ) <− c ( ” treatment ” , ” data ” )

bactBioSD <− aggregate ( bactBio . df $data , by = l i s t ( bactBio . df $ treatment ) , FUN =

sd , na . rm = TRUE)

names ( bactBioSD ) <− c ( ” treatment ” , ” sd” )

# No s i g d i f f f o r amf terms

bactBio . gr <− merge ( bactBioMn , bactBioSD , by = c ( ” treatment ” ) )

#Graph

graph <− ggp lot ( data = bactBio . gr , aes ( x = treatment , y = data , f i l l = f a c t o r (

amf ) ) )

l i m i t s <− aes (ymax = bactBio . gr $ data + bactBio . gr $sd , ymin = bactBio . gr $ data −
bactBio . gr $ sd )

dodge <− p o s i t i o n dodge ( width = 0 . 9 )

graph output <− graph +

theme bw( ) +

geom bar ( p o s i t i o n = ”dodge” , s t a t = ” i d e n t i t y ” ) +

geom er ro rba r ( l i m i t s , width = 0 . 5 , c o l o r = ” black ” , p o s i t i o n = dodge , s t a t =

” i d e n t i t y ” ) +

labs ( x = ”Carbon Amendment” ,

y = ” Factor ” ) +

theme ( panel . g r i d . major = element l i n e ( co l ou r = ’ grey85 ’ ) ) +

theme ( panel . g r i d . minor = element l i n e ( co l ou r = ’ grey85 ’ ) ) +

theme ( legend . p o s i t i o n = c (0 , −0.40) ) +

theme ( a x i s . t ex t . x = element text ( s i z e = 11 , ang le = 60) ) +

theme ( a x i s . t ex t . y = element text ( s i z e = 13) ) +

theme ( a x i s . t i t l e . x = element text ( s i z e = 12 , v ju s t = 0 . 1 ) ) +

theme ( a x i s . t i t l e . y = element text ( s i z e = 12 , ang le = 90) ) +

theme ( legend . t i t l e = element blank ( ) ) +

theme ( s t r i p . background = element r e c t ( f i l l = ’ grey85 ’ ) ) +

theme ( s t r i p . t ex t . x = element text ( f a c e = ’ bold ’ , s i z e = 14) )
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graph output

####################

## Fungal Biomass ##

####################

funBio . df <− subset (web . df , dataType == ’ funBio ’ , s e l e c t = c ( plot , data ) )

funBio . df <− unique ( merge ( funBio . df , p l o t 1 2 I n f o . df , by = ” p lo t ” ) )

funBio . df <− subset ( funBio . df , amf == ’Y ’ | amf == ’N ’ )

boxcox ( funBio . df $data , p l o t i t=T)

boxcox ( funBio .M3, lambda = seq ( 0 . 5 , 1 . 5 , by =0.05) , p l o t i t = T)

funBio . df $dataT <− Log . Tns ( funBio . df $ data )

mean( funBio . df $ data )

var ( funBio . df $ data )

boxplot ( dataT ˜ treatment + amf , data = funBio . df )

# Nul l Model Es tab l i shment

funBio . n u l l <− lm( dataT ˜ 1 , data = funBio . df )

summary( funBio . n u l l )

funBio .M1 <− lm( dataT ˜ treatment ∗ amf ∗ hgt , data = funBio . df )

summary( funBio .M1)

anova ( funBio . nu l l , funBio .M1)

funBio .M2 <− update ( funBio .M1, . ˜ . − treatment : amf : hgt )

summary( funBio .M2)

anova ( funBio .M1, funBio .M2)

funBio .M3 <− update ( funBio .M2, . ˜ . − amf : hgt )

summary( funBio .M3)

anova ( funBio .M2, funBio .M3)

funBio .M4 <− update ( funBio .M3, . ˜ . − amf : treatment )

summary( funBio .M4)

anova ( funBio .M3, funBio .M4)

funBio .M5 <− update ( funBio .M4, . ˜ . − treatment : hgt )

summary( funBio .M5)
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anova ( funBio .M4, funBio .M5)

funBio .M6 <− update ( funBio .M5, . ˜ . − hgt )

summary( funBio .M6)

anova ( funBio .M5, funBio .M6)

funBio .M7 <− update ( funBio .M6, . ˜ . − amf )

summary( funBio .M7)

anova ( funBio .M6, funBio .M7)

anova ( funBio . nu l l , funBio .M1, funBio .M2 , funBio .M3)

x <− c (AIC( funBio . n u l l ) ,AIC( funBio .M1) ,AIC( funBio .M2) , AIC( funBio .M3) ) #

s t o r e s AIC va lu e s in a vec t o r

d e l t a <− x − min ( x )

d e l t a

# Model #3 i s most appropr ia t e

# Check Diagnos t i c p l o t s

p lo t ( funBio .M3)

p l o t ( p r e d i c t ( funBio .M3 , type=” response ” ) ,

r e s i d u a l s ( funBio .M3 , type= ” deviance ” ) )

p l o t ( hatva lues ( funBio .M3) )

p l o t ( r s tudent ( funBio .M3) )

p l o t ( cooks . d i s t anc e ( funBio .M3) )

i n f l u e n c e P l o t ( funBio .M3)

summary( funBio .M4)

# Cal l :

# glm ( formula = data ˜ treatment , f ami l y = gaussian , data = funBio . d f )

# Deviance Res idua l s :

# Min 1Q Median 3Q Max

# −2.00556 −0.61528 −0.09444 0.60556 2.81667

# Co e f f i c i e n t s :

# Estimate Std . Error t va lue Pr(>| t | )
# ( In t e r c e p t ) 1.2722 0.2244 5.670 1.34 e−07 ∗∗∗
# treatment05T/ha BC −0.1278 0.3173 −0.403 0.6880

# treatment10T/ha BC −0.3889 0.3173 −1.226 0.2232

# treatment20T/ha CP + 00T/ha BC 0.6222 0.3173 1.961 0.0526 .

# treatment20T/ha CP + 05T/ha BC 1.8111 0.3173 5.708 1.13 e−07 ∗∗∗
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# treatment20T/ha CP + 10T/ha BC 1.8333 0.3173 5.778 8.27 e−08 ∗∗∗
# −−−
# S i g n i f . codes : 0 ∗∗∗ 0.001 ∗∗ 0.01 ∗ 0.05 . 0 .1 1

# ( Dispers ion parameter f o r gauss ian fami l y taken to be 0.906171)

# Nul l dev iance : 179.769 on 107 degrees o f freedom

# Residua l dev iance : 92.429 on 102 degrees o f freedom

# AIC: 303.68

# Number o f Fisher Scor ing i t e r a t i o n s : 2

# Merged FUNGAL Biomass

# No s i g d i f f f o r amf terms

funBioMn <− aggregate ( funBio . df $data , by = l i s t ( funBio . df $ treatment ) , FUN =

mean , na . rm = TRUE)

names ( funBioMn ) <− c ( ” treatment ” , ” data ” )

funBioSD <− aggregate ( funBio . df $data , by = l i s t ( funBio . df $ treatment ) , FUN = sd

, na . rm = TRUE)

names ( funBioSD ) <− c ( ” treatment ” , ” sd” )

funBio . gr <− merge ( funBioMn , funBioSD , by = c ( ” treatment ” ) )

graph <− ggp lot ( data = funBio . gr , aes ( x = treatment , y = data ) )

l i m i t s <− aes (ymax = funBio . gr $ data + funBio . gr $sd , ymin = funBio . gr $ data −
funBio . gr $ sd )

dodge <− p o s i t i o n dodge ( width = 0 . 9 )

graph output <− graph +

theme bw( ) +

geom bar ( p o s i t i o n = ”dodge” , s t a t = ” i d e n t i t y ” ) +

geom er ro rba r ( l i m i t s , width = 0 . 5 , c o l o r = ” black ” , p o s i t i o n = dodge , s t a t =

” i d e n t i t y ” ) +
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l ab s ( x = ”Carbon Amendment” ,

y = ” Factor ” ) +

theme ( panel . g r i d . major = element l i n e ( co l ou r = ’ grey85 ’ ) ) +

theme ( panel . g r i d . minor = element l i n e ( co l ou r = ’ grey85 ’ ) ) +

theme ( legend . p o s i t i o n = c (0 , −0.40) ) +

theme ( a x i s . t ex t . x = element text ( s i z e = 11 , ang le = 60) ) +

theme ( a x i s . t ex t . y = element text ( s i z e = 13) ) +

theme ( a x i s . t i t l e . x = element text ( s i z e = 12 , v ju s t = 0 . 1 ) ) +

theme ( a x i s . t i t l e . y = element text ( s i z e = 12 , ang le = 90) ) +

theme ( legend . t i t l e = element blank ( ) ) +

theme ( s t r i p . background = element r e c t ( f i l l = ’ grey85 ’ ) ) +

theme ( s t r i p . t ex t . x = element text ( f a c e = ’ bold ’ , s i z e = 14) )

graph output

###########################

## Co l l embe l l a Abundance ##

###########################

co l l em . df <− subset (web . df , dataType == ’ co l l em ’ , s e l e c t = c ( plot , data ) )

co l l em . df <− unique ( merge ( co l l em . df , p l o t 1 2 I n f o . df , by = ” p lo t ” ) )

co l l em . df <− subset ( co l l em . df , amf == ’Y ’ | amf == ’N ’ )

rownames ( co l l em . df ) <−NULL

# Using g en e r a l i z e d l i n e a r models to t e s t t reatment l e v e l data

# Poisson d i s t r i b u t i o n s assume mean = var iance

mean( co l l em . df $ data )

#[ 1 ] 10.75

var ( co l l em . df $ data )

#[ 1 ] 488.7687

# Nul l Model Es tab l i shment

mean( co l l em . df $ data )

var ( co l l em . df $ data )

# Nul l Model Es tab l i shment

co l l em . n u l l <− glm . nb( data ˜ 1 , data = col l em . df )

summary( co l l em . n u l l )
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co l l em .M1 <− glm . nb( data ˜ treatment ∗ amf ∗ hgt , data = col lem . df )

summary( co l l em .M1)

anova ( co l l em . nu l l , co l l em .M1)

co l l em .M2 <− update ( co l l em .M1, . ˜ . − treatment : amf : hgt )

summary( co l l em .M2)

anova ( co l l em .M1, co l l em .M2)

co l l em .M3 <− update ( co l l em .M2, . ˜ . − treatment : hgt )

summary( co l l em .M3)

anova ( co l l em .M2, co l l em .M3)

co l l em .M4 <− update ( co l l em .M3, . ˜ . − amf : treatment )

summary( co l l em .M4)

anova ( co l l em .M3, co l l em .M4)

co l l em .M5 <− update ( co l l em .M4, . ˜ . − amf : hgt )

summary( co l l em .M5)

anova ( co l l em .M4, co l l em .M5)

co l l em .M6 <− update ( co l l em .M5, . ˜ . − hgt )

summary( co l l em .M6)

anova ( co l l em .M5, co l l em .M6)

co l l em .M7 <− update ( co l l em .M6, . ˜ . − amf )

summary( co l l em .M7)

anova ( co l l em .M6, co l l em .M7)

x <− c (AIC( co l l em . n u l l ) ,AIC( co l l em .M1) ,AIC( co l l em .M2) , AIC( co l l em .M3) ) #

s t o r e s AIC va lu e s in a vec t o r

d e l t a <− x − min ( x )

d e l t a

# Model #5 i s most appropr ia t e

# Check Diagnos t i c p l o t s

p lo t ( co l l em .M3)

p l o t ( p r e d i c t ( co l l em .M3 , type=” response ” ) ,

r e s i d u a l s ( co l l em .M3, type= ” deviance ” ) )

p l o t ( r s tudent ( co l l em .M3) )

p l o t ( cooks . d i s t anc e ( co l l em .M3) )
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i n f l u e n c e P l o t ( co l l em .M3)

# Model #5 i s most appropr ia t e

g lh t po i s <− g lh t ( co l l em .M3, l i n f c t = mcp( treatment = ”Tukey” ) )

summary( g lh t po i s )

# Res idua l s l ook good f o r Co l l embe l l a abundance

collemMn <− aggregate ( co l l em . df $data , by = l i s t ( co l l em . df $ treatment , co l l em . df

$amf ) ,FUN = mean , na . rm = TRUE)

names ( collemMn ) <− c ( ” treatment ” , ”amf” , ” data ” )

collemSD <− aggregate ( co l l em . df $data , by = l i s t ( co l l em . df $ treatment , co l l em . df

$amf ) , FUN = sd , na . rm = TRUE)

names ( collemSD ) <− c ( ” treatment ” , ”amf” , ” sd” )

co l l em . gr <− merge ( collemMn , collemSD , by = c ( ” treatment ” , ”amf” ) )

graph <− ggp lot ( data = col lem . gr , aes ( x = treatment , y = data , f i l l = f a c t o r (

amf ) ) )

l i m i t s <− aes (ymax = col lem . gr $ data + col lem . gr $sd ,

ymin = col l em . gr $ data − co l l em . gr $ sd )

dodge <− p o s i t i o n dodge ( width = 0 . 9 )

graph output <− graph +

theme bw( ) +

geom bar ( p o s i t i o n = ”dodge” , s t a t = ” i d e n t i t y ” ) +

geom er ro rba r ( l i m i t s , width = 0 . 5 , c o l o r = ” black ” , p o s i t i o n = dodge , s t a t =

” i d e n t i t y ” ) +

labs ( x = ”Carbon Amendment” ,

y = ” Factor ” ) +

theme ( panel . g r i d . major = element l i n e ( co l ou r = ’ grey85 ’ ) ) +

theme ( panel . g r i d . minor = element l i n e ( co l ou r = ’ grey85 ’ ) ) +

theme ( legend . p o s i t i o n = c (0 , −0.40) ) +

theme ( a x i s . t ex t . x = element text ( s i z e = 11 , ang le = 60) ) +
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theme ( a x i s . t ex t . y = element text ( s i z e = 13) ) +

theme ( a x i s . t i t l e . x = element text ( s i z e = 12 , v ju s t = 0 . 1 ) ) +

theme ( a x i s . t i t l e . y = element text ( s i z e = 12 , ang le = 90) ) +

theme ( legend . t i t l e = element blank ( ) ) +

theme ( s t r i p . background = element r e c t ( f i l l = ’ grey85 ’ ) ) +

theme ( s t r i p . t ex t . x = element text ( f a c e = ’ bold ’ , s i z e = 14) )

graph output

#################################

## Bac t e r i a l Feeding Nematodes ##

#################################

bactFDNem . df <− subset (web . df , dataType == ’bactFDNem ’ , s e l e c t = c ( plot , data )

)

bactFDNem . df <− unique ( merge (bactFDNem . df , p l o t 1 2 I n f o . df , by = ” p lo t ” ) )

bactFDNem . df <− subset (bactFDNem . df , amf == ’Y ’ | amf == ’N ’ )

rownames (bactFDNem . df ) <− NULL

# Using g en e r a l i z e d l i n e a r models to t e s t t reatment l e v e l data

# Poisson d i s t r i b u t i o n s assume mean = var iance

mean(bactFDNem . df $ data )

var (bactFDNem . df $ data )

bactFDNem . n u l l <− glm . nb( data ˜ 1 , data = bactFDNem . df )

summary(bactFDNem . n u l l )

bactFDNem .M1 <− glm . nb( data ˜ treatment ∗ amf ∗ hgt , data = bactFDNem . df )

summary(bactFDNem .M1)

anova (bactFDNem . nul l , bactFDNem .M1)

bactFDNem .M2 <− update (bactFDNem .M1, . ˜ . − treatment : amf : hgt )

summary(bactFDNem .M2)

anova (bactFDNem .M1, bactFDNem .M2)

bactFDNem .M3 <− update (bactFDNem .M2, . ˜ . − treatment : hgt )

summary(bactFDNem .M3)

bactFDNem .M4 <− update (bactFDNem .M3, . ˜ . − amf : treatment )

anova (bactFDNem .M2, bactFDNem .M3)
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summary(bactFDNem .M4)

anova (bactFDNem .M3, bactFDNem .M4)

bactFDNem .M5 <− update (bactFDNem .M4, . ˜ . − amf : hgt )

summary(bactFDNem .M5)

anova (bactFDNem .M4, bactFDNem .M5)

bactFDNem .M6 <− update (bactFDNem .M5, . ˜ . − hgt )

summary(bactFDNem .M6)

anova (bactFDNem .M5, bactFDNem .M6)

bactFDNem .M7 <− update (bactFDNem .M6, . ˜ . − amf )

summary(bactFDNem .M7)

anova (bactFDNem .M6, bactFDNem .M7)

x <− c (AIC(bactFDNem . n u l l ) ,AIC(bactFDNem .M1) ,AIC(bactFDNem .M2) ,

AIC(bactFDNem .M3) ) # s t o r e s AIC va l u e s in a vec t o r

d e l t a <− x − min ( x )

d e l t a

# Model #5 i s most appropr ia t e

# Check Diagnos t i c p l o t s

p lo t (bactFDNem .M3)

p l o t ( p r e d i c t (bactFDNem .M3 , type=” response ” ) ,

r e s i d u a l s (bactFDNem .M3, type= ” deviance ” ) )

p l o t ( r s tudent (bactFDNem .M3) )

p l o t ( cooks . d i s t anc e (bactFDNem .M3) )

i n f l u e n c e P l o t (bactFDNem .M3)

# Merged Bact Feeding Nematodes Biomass

# No s i g d i f f f o r amf terms

bactFDNemMn <− aggregate (bactFDNem . df $data , by = l i s t (bactFDNem . df $ treatment ,

bactFDNem . df $amf ) , FUN = mean , na . rm = TRUE)

names (bactFDNemMn) <− c ( ” treatment ” , ”amf” , ” data ” )

bactFDNemSD <− aggregate (bactFDNem . df $data , by = l i s t (bactFDNem . df $ treatment ,

bactFDNem . df $amf ) , FUN = sd , na . rm = TRUE)
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names (bactFDNemSD) <− c ( ” treatment ” , ”amf” , ” sd” )

bactFDNem . gr <− merge (bactFDNemMn, bactFDNemSD , by = c ( ” treatment ” , ”amf” ) )

graph <− ggp lot ( data = bactFDNem . gr , aes ( x = treatment , y = data , f i l l =

f a c t o r ( amf ) ) )

l i m i t s <− aes (ymax = bactFDNem . gr $ data + bactFDNem . gr $sd ,

ymin = bactFDNem . gr $ data − bactFDNem . gr $ sd )

dodge <− p o s i t i o n dodge ( width = 0 . 9 )

graph output <− graph +

theme bw( ) +

geom bar ( p o s i t i o n = ”dodge” , s t a t = ” i d e n t i t y ” ) +

geom er ro rba r ( l i m i t s , width = 0 . 5 , c o l o r = ” black ” , p o s i t i o n = dodge , s t a t =

” i d e n t i t y ” ) +

labs ( x = ”Carbon Amendment” ,

y = ” Factor ” ) +

theme ( panel . g r i d . major = element l i n e ( co l ou r = ’ grey85 ’ ) ) +

theme ( panel . g r i d . minor = element l i n e ( co l ou r = ’ grey85 ’ ) ) +

theme ( legend . p o s i t i o n = c (0 , −0.40) ) +

theme ( a x i s . t ex t . x = element text ( s i z e = 11 , ang le = 60) ) +

theme ( a x i s . t ex t . y = element text ( s i z e = 13) ) +

theme ( a x i s . t i t l e . x = element text ( s i z e = 12 , v ju s t = 0 . 1 ) ) +

theme ( a x i s . t i t l e . y = element text ( s i z e = 12 , ang le = 90) ) +

theme ( legend . t i t l e = element blank ( ) ) +

theme ( s t r i p . background = element r e c t ( f i l l = ’ grey85 ’ ) ) +

theme ( s t r i p . t ex t . x = element text ( f a c e = ’ bold ’ , s i z e = 14) )

graph output

#################################

## Fungal Feeding Nematodes ##

#################################

funFDNem . df <− subset (web . df , dataType == ’funFDNem ’ , s e l e c t = c ( plot , data ) )

funFDNem . df <− unique ( merge (funFDNem . df , p l o t 1 2 I n f o . df , by = ” p lo t ” ) )

funFDNem . df <− subset (funFDNem . df , amf == ’Y ’ | amf == ’N ’ )
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rownames (funFDNem . df ) <− NULL

# Using g en e r a l i z e d l i n e a r models to t e s t t reatment l e v e l data

# Poisson d i s t r i b u t i o n s assume mean = var iance

mean(funFDNem . df $ data )

var (funFDNem . df $ data )

funFDNem . n u l l <− glm . nb( data ˜ 1 , data = funFDNem . df )

summary(funFDNem . n u l l )

funFDNem .M1 <− glm . nb( data ˜ treatment ∗ amf ∗ hgt , data = funFDNem . df )

summary(funFDNem .M1)

anova (funFDNem . nul l , funFDNem .M1)

funFDNem .M2 <− update (funFDNem .M1, . ˜ . − treatment : amf : hgt )

summary(funFDNem .M2)

anova (funFDNem .M1, funFDNem .M2)

funFDNem .M3 <− update (funFDNem .M2, . ˜ . − treatment : hgt )

summary(funFDNem .M3)

funFDNem .M4 <− update (funFDNem .M3, . ˜ . − amf : treatment )

anova (funFDNem .M2, funFDNem .M3)

summary(funFDNem .M4)

anova (funFDNem .M3, funFDNem .M4)

funFDNem .M5 <− update (funFDNem .M4, . ˜ . − amf : hgt )

summary(funFDNem .M5)

anova (funFDNem .M4, funFDNem .M5)

funFDNem .M6 <− update (funFDNem .M5, . ˜ . − hgt )

summary(funFDNem .M6)

anova (funFDNem .M5, funFDNem .M6)

funFDNem .M7 <− update (funFDNem .M6, . ˜ . − amf )

summary(funFDNem .M7)

anova (funFDNem .M6, funFDNem .M7)

x <− c (AIC(funFDNem . n u l l ) ,AIC(funFDNem .M1) ,AIC(funFDNem .M2) ,

AIC(funFDNem .M3) ) # s t o r e s AIC va lu e s in a vec t o r

d e l t a <− x − min ( x )

d e l t a
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# Model #5 i s most appropr ia t e

# Check Diagnos t i c p l o t s

p lo t (funFDNem .M3)

p l o t ( p r e d i c t (funFDNem .M3 , type=” response ” ) ,

r e s i d u a l s (funFDNem .M3, type= ” deviance ” ) )

p l o t ( r s tudent (funFDNem .M3) )

p l o t ( cooks . d i s t anc e (funFDNem .M3) )

i n f l u e n c e P l o t (funFDNem .M3)

g lh t po i s <− g lh t (funFDNem .M5, l i n f c t = mcp( treatment = ”Tukey” ) )

summary( g lh t po i s )

# Merged Bact Feeding Nematodes Biomass

# No s i g d i f f f o r amf terms

funFDNemMn <− aggregate (funFDNem . df $data , by = l i s t (funFDNem . df $ treatment ,

funFDNem . df $amf ) ,

FUN = mean , na . rm = TRUE)

names (funFDNemMn) <− c ( ” treatment ” , ”amf” , ” data ” )

funFDNemSD <− aggregate (funFDNem . df $data , by = l i s t (funFDNem . df $ treatment ,

funFDNem . df $amf ) , FUN = sd , na . rm = TRUE)

names (funFDNemSD) <− c ( ” treatment ” , ”amf” , ” sd” )

funFDNem . gr <− merge (funFDNemMn, funFDNemSD, by = c ( ” treatment ” , ”amf” ) )

graph <− ggp lot ( data = funFDNem . gr , aes ( x = treatment , y = data , f i l l = f a c t o r

( amf ) ) )

l i m i t s <− aes (ymax = funFDNem . gr $ data + funFDNem . gr $sd ,

ymin = funFDNem . gr $ data − funFDNem . gr $ sd )

dodge <− p o s i t i o n dodge ( width = 0 . 9 )

graph output <− graph +

theme bw( ) +
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geom bar ( p o s i t i o n = ”dodge” , s t a t = ” i d e n t i t y ” ) +

geom er ro rba r ( l i m i t s , width = 0 . 5 , c o l o r = ” black ” , p o s i t i o n = dodge , s t a t =

” i d e n t i t y ” ) +

labs ( x = ”Carbon Amendment” ,

y = ” Factor ” ) +

theme ( panel . g r i d . major = element l i n e ( co l ou r = ’ grey85 ’ ) ) +

theme ( panel . g r i d . minor = element l i n e ( co l ou r = ’ grey85 ’ ) ) +

theme ( legend . p o s i t i o n = c (0 , −0.40) ) +

theme ( a x i s . t ex t . x = element text ( s i z e = 11 , ang le = 60) ) +

theme ( a x i s . t ex t . y = element text ( s i z e = 13) ) +

theme ( a x i s . t i t l e . x = element text ( s i z e = 12 , v ju s t = 0 . 1 ) ) +

theme ( a x i s . t i t l e . y = element text ( s i z e = 12 , ang le = 90) ) +

theme ( legend . t i t l e = element blank ( ) ) +

theme ( s t r i p . background = element r e c t ( f i l l = ’ grey85 ’ ) ) +

theme ( s t r i p . t ex t . x = element text ( f a c e = ’ bold ’ , s i z e = 14) )

graph output

#########################

## Predatory Nematodes ##

#########################

predFDNem . df <− subset (web . df , dataType == ’predNem ’ , s e l e c t = c ( plot , data ) )

predFDNem . df <− unique ( merge (predFDNem . df , p l o t 1 2 I n f o . df , by = ” p lo t ” ) )

predFDNem . df <− subset (predFDNem . df , amf == ’Y ’ | amf == ’N ’ )

rownames (predFDNem . df ) <− NULL

predFDNem . df <− predFDNem . df [−43 , ]

# Using g en e r a l i z e d l i n e a r models to t e s t t reatment l e v e l data

# Poisson d i s t r i b u t i o n s assume mean = var iance

mean(predFDNem . df $ data )

var (predFDNem . df $ data )

predFDNem . n u l l <− glm . nb( data ˜ 1 , data = predFDNem . df )

summary(predFDNem . n u l l )
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predFDNem .M1 <− glm . nb( data ˜ treatment ∗ amf ∗ hgt , data = predFDNem . df )

summary(predFDNem .M1)

anova (predFDNem . nul l , predFDNem .M1)

predFDNem .M2 <− update (predFDNem .M1, . ˜ . − treatment : amf : hgt )

summary(predFDNem .M2)

anova (predFDNem .M1, predFDNem .M2)

predFDNem .M3 <− update (predFDNem .M2, . ˜ . − treatment : hgt )

summary(predFDNem .M3)

predFDNem .M4 <− update (predFDNem .M3, . ˜ . − amf : treatment )

anova (predFDNem .M2, predFDNem .M3)

summary(predFDNem .M4)

anova (predFDNem .M3, predFDNem .M4)

predFDNem .M5 <− update (predFDNem .M4, . ˜ . − amf : hgt )

summary(predFDNem .M5)

anova (predFDNem .M4, predFDNem .M5)

predFDNem .M6 <− update (predFDNem .M5, . ˜ . − hgt )

summary(predFDNem .M6)

anova (predFDNem .M5, predFDNem .M6)

predFDNem .M7 <− update (predFDNem .M6, . ˜ . − amf )

summary(predFDNem .M7)

anova (predFDNem .M6, predFDNem .M7)

predFDNem . n u l l <− glm . nb( data ˜ 1 , data = predFDNem . df )

summary(predFDNem . n u l l )

predFDNem .M1 <− glm . nb( data ˜ treatment ∗ amf , data = predFDNem . df )

summary(predFDNem .M1)

anova (predFDNem . nul l , predFDNem .M1)

predFDNem .M2 <− update (predFDNem .M1, . ˜ . − treatment : amf )

summary(predFDNem .M2)

anova (predFDNem .M1, predFDNem .M2)

predFDNem .M3 <− update (predFDNem .M2, . ˜ . − amf )

summary(predFDNem .M3)

anova (predFDNem .M2, predFDNem .M3)
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x <− c (AIC(predFDNem . n u l l ) ,AIC(predFDNem .M1) ,AIC(predFDNem .M2) ,

AIC(predFDNem .M3) ) # s t o r e s AIC va l u e s in a vec t o r

d e l t a <− x − min ( x )

d e l t a

# Model #5 i s most appropr ia t e

# Check Diagnos t i c p l o t s

p lo t (predFDNem .M3)

p l o t ( p r e d i c t (predFDNem .M3 , type=” response ” ) ,

r e s i d u a l s (predFDNem .M3, type= ” deviance ” ) )

p l o t ( r s tudent (predFDNem .M3) )

p l o t ( cooks . d i s t anc e (predFDNem .M3) )

i n f l u e n c e P l o t (predFDNem .M3)

g lh t po i s <− g lh t (predFDNem .M4, l i n f c t = mcp( treatment = ”Tukey” ) )

summary( g lh t po i s )

# Merged Bact Feeding Nematodes Biomass

# No s i g d i f f f o r amf terms

predNemMn <− aggregate (predFDNem . df $data , by = l i s t (predFDNem . df $ treatment ) ,

FUN = mean , na . rm = TRUE)

names (predNemMn) <− c ( ” treatment ” , ” data ” )

predNemSD <− aggregate (predFDNem . df $data , by = l i s t (predFDNem . df $ treatment ) ,

FUN = sd , na . rm = TRUE)

names (predNemSD) <− c ( ” treatment ” , ” sd” )

predNem . gr <− merge (predNemMn , predNemSD , by = c ( ” treatment ” ) )

graph <− ggp lot ( data = predNem . gr , aes ( x = treatment , y = data ) )

l i m i t s <− aes (ymax = predNem . gr $ data + predNem . gr $sd ,

ymin = predNem . gr $ data − predNem . gr $ sd )

dodge <− p o s i t i o n dodge ( width = 0 . 9 )

graph output <− graph +

theme bw( ) +
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geom bar ( p o s i t i o n = ”dodge” , s t a t = ” i d e n t i t y ” ) +

geom er ro rba r ( l i m i t s , width = 0 . 5 , c o l o r = ” black ” , p o s i t i o n = dodge , s t a t =

” i d e n t i t y ” ) +

labs ( x = ”Carbon Amendment” ,

y = ” Factor ” ) +

theme ( panel . g r i d . major = element l i n e ( co l ou r = ’ grey85 ’ ) ) +

theme ( panel . g r i d . minor = element l i n e ( co l ou r = ’ grey85 ’ ) ) +

theme ( legend . p o s i t i o n = c (0 , −0.40) ) +

theme ( a x i s . t ex t . x = element text ( s i z e = 11 , ang le = 60) ) +

theme ( a x i s . t ex t . y = element text ( s i z e = 13) ) +

theme ( a x i s . t i t l e . x = element text ( s i z e = 12 , v ju s t = 0 . 1 ) ) +

theme ( a x i s . t i t l e . y = element text ( s i z e = 12 , ang le = 90) ) +

theme ( legend . t i t l e = element blank ( ) ) +

theme ( s t r i p . background = element r e c t ( f i l l = ’ grey85 ’ ) ) +

theme ( s t r i p . t ex t . x = element text ( f a c e = ’ bold ’ , s i z e = 14) )

graph output

###########################

## Microbe Feeding Mites ##

###########################

predMite . df <− subset (web . df , dataType == ’ predMite ’ , s e l e c t = c ( plot , data ) )

predMite . df <− unique ( merge ( predMite . df , p l o t 1 2 I n f o . df , by = ” p lo t ” ) )

predMite . df <− subset ( predMite . df , amf == ’Y ’ | amf == ’N ’ )

rownames ( predMite . df ) <− NULL

predMite . df <− predMite . df [−64 , ]

# Using g en e r a l i z e d l i n e a r models to t e s t t reatment l e v e l data

# Poisson d i s t r i b u t i o n s assume mean = var iance

mean( predMite . df $ data )

var ( predMite . df $ data )

predMite . n u l l <− glm . nb( data ˜ 1 , data = predMite . df )

summary( predMite . n u l l )

predMite .M1 <− glm . nb( data ˜ treatment ∗ amf ∗ hgt , data = predMite . df )

summary( predMite .M1)

anova ( predMite . nu l l , predMite .M1)
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predMite .M2 <− update ( predMite .M1, . ˜ . − treatment : amf : hgt )

summary( predMite .M2)

anova ( predMite .M1, predMite .M2)

predMite .M3 <− update ( predMite .M2, . ˜ . − treatment : hgt )

summary( predMite .M3)

predMite .M4 <− update ( predMite .M3, . ˜ . − amf : treatment )

anova ( predMite .M2, predMite .M3)

summary( predMite .M4)

anova ( predMite .M3, predMite .M4)

predMite .M5 <− update ( predMite .M4, . ˜ . − amf : hgt )

summary( predMite .M5)

anova ( predMite .M4, predMite .M5)

predMite .M6 <− update ( predMite .M5, . ˜ . − hgt )

summary( predMite .M6)

anova ( predMite .M5, predMite .M6)

predMite .M7 <− update ( predMite .M6, . ˜ . − amf )

summary( predMite .M7)

anova ( predMite .M6, predMite .M7)

x <− c (AIC( predMite . n u l l ) ,AIC( predMite .M1) ,AIC( predMite .M2) ,

AIC( predMite .M3) ) # s t o r e s AIC va lu e s in a vec t o r

d e l t a <− x − min ( x )

d e l t a

# Model #5 i s most appropr ia t e

# Check Diagnos t i c p l o t s

p lo t ( predMite .M3)

p l o t ( p r e d i c t ( predMite .M3 , type=” response ” ) ,

r e s i d u a l s ( predMite .M3, type= ” deviance ” ) )

p l o t ( r s tudent ( predMite .M3) )

p l o t ( cooks . d i s t anc e ( predMite .M3) )

i n f l u e n c e P l o t ( predMite .M3)

# Merged Bact Feeding Nematodes Biomass

# No s i g d i f f f o r amf terms
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predMiteMn <− aggregate ( predMite . df $data , by = l i s t ( predMite . df $ treatment ) ,

FUN = mean , na . rm = TRUE)

names ( predMiteMn ) <− c ( ” treatment ” , ” data ” )

predMiteSD <− aggregate ( predMite . df $data , by = l i s t ( predMite . df $ treatment ) ,

FUN = sd , na . rm = TRUE)

names ( predMiteSD ) <− c ( ” treatment ” , ” sd” )

predMite . gr <− merge ( predMiteMn , predMiteSD , by = c ( ” treatment ” ) )

graph <− ggp lot ( data = predMite . gr , aes ( x = treatment , y = data ) )

l i m i t s <− aes (ymax = predMite . gr $ data + predMite . gr $sd ,

ymin = predMite . gr $ data − predMite . gr $ sd )

dodge <− p o s i t i o n dodge ( width = 0 . 9 )

graph output <− graph +

theme bw( ) +

geom bar ( p o s i t i o n = ”dodge” , s t a t = ” i d e n t i t y ” ) +

geom er ro rba r ( l i m i t s , width = 0 . 5 , c o l o r = ” black ” , p o s i t i o n = dodge , s t a t =

” i d e n t i t y ” ) +

labs ( x = ”Carbon Amendment” ,

y = ” Factor ” ) +

theme ( panel . g r i d . major = element l i n e ( co l ou r = ’ grey85 ’ ) ) +

theme ( panel . g r i d . minor = element l i n e ( co l ou r = ’ grey85 ’ ) ) +

theme ( legend . p o s i t i o n = c (0 , −0.40) ) +

theme ( a x i s . t ex t . x = element text ( s i z e = 11 , ang le = 60) ) +

theme ( a x i s . t ex t . y = element text ( s i z e = 13) ) +

theme ( a x i s . t i t l e . x = element text ( s i z e = 12 , v ju s t = 0 . 1 ) ) +

theme ( a x i s . t i t l e . y = element text ( s i z e = 12 , ang le = 90) ) +

theme ( legend . t i t l e = element blank ( ) ) +

theme ( s t r i p . background = element r e c t ( f i l l = ’ grey85 ’ ) ) +

theme ( s t r i p . t ex t . x = element text ( f a c e = ’ bold ’ , s i z e = 14) )

graph output

#####################

## Predatory Mites ##
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#####################

predMite . df <− subset (web . df , dataType == ’ predMite ’ , s e l e c t = c ( plot , data ) )

predMite . df <− unique ( merge ( predMite . df , p l o t 1 2 I n f o . df , by = ” p lo t ” ) )

predMite . df <− subset ( predMite . df , amf == ’Y ’ | amf == ’N ’ )

# Using g en e r a l i z e d l i n e a r models to t e s t t reatment l e v e l data

# Poisson d i s t r i b u t i o n s assume mean = var iance

mean( predMite . df $ data )

var ( predMite . df $ data )

predMite . n u l l <− glm . nb( data ˜ 1 , data = predMite . df )

summary( predMite . n u l l )

predMite .M1 <− glm . nb( data ˜ treatment ∗ amf ∗ hgt , data = predMite . df )

summary( predMite .M1)

anova ( predMite . nu l l , predMite .M1)

predMite .M2 <− update ( predMite .M1, . ˜ . − treatment : amf : hgt )

summary( predMite .M2)

anova ( predMite .M1, predMite .M2)

predMite .M3 <− update ( predMite .M2, . ˜ . − treatment : hgt )

summary( predMite .M3)

predMite .M4 <− update ( predMite .M3, . ˜ . − amf : hgt )

anova ( predMite .M2, predMite .M3)

summary( predMite .M4)

anova ( predMite .M3, predMite .M4)

predMite .M5 <− update ( predMite .M4, . ˜ . − amf : hgt )

summary( predMite .M5)

anova ( predMite .M4, predMite .M5)

predMite .M6 <− update ( predMite .M5, . ˜ . − hgt )

summary( predMite .M6)

anova ( predMite .M5, predMite .M6)

predMite .M7 <− update ( predMite .M6, . ˜ . − amf )

summary( predMite .M7)

anova ( predMite .M6, predMite .M7)
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x <− c (AIC( predMite . n u l l ) ,AIC( predMite .M1) ,AIC( predMite .M2) ,

AIC( predMite .M3) ) # s t o r e s AIC va lu e s in a vec t o r

d e l t a <− x − min ( x )

d e l t a

# Model #5 i s most appropr ia t e

# Check Diagnos t i c p l o t s

p lo t ( predMite .M3)

p l o t ( p r e d i c t ( predMite .M5 , type=” response ” ) ,

r e s i d u a l s ( predMite .M5, type= ” deviance ” ) )

p l o t ( r s tudent ( predMite .M5) )

p l o t ( cooks . d i s t anc e ( predMite .M5) )

i n f l u e n c e P l o t ( predMite .M5)

# Merged Bact Feeding Nematodes Biomass

# No s i g d i f f f o r amf terms

predMiteMn <− aggregate ( predMite . df $data , by = l i s t ( predMite . df $ treatment ) ,

FUN = mean , na . rm = TRUE)

names ( predMiteMn ) <− c ( ” treatment ” , ” data ” )

predMiteSD <− aggregate ( predMite . df $data , by = l i s t ( predMite . df $ treatment ) ,

FUN = sd , na . rm = TRUE)

names ( predMiteSD ) <− c ( ” treatment ” , ” sd” )

predMite . gr <− merge ( predMiteMn , predMiteSD , by = c ( ” treatment ” ) )

graph <− ggp lot ( data = predMite . gr , aes ( x = treatment , y = data ) )

l i m i t s <− aes (ymax = predMite . gr $ data + predMite . gr $sd ,

ymin = predMite . gr $ data − predMite . gr $ sd )

dodge <− p o s i t i o n dodge ( width = 0 . 9 )

graph output <− graph +

theme bw( ) +
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geom bar ( p o s i t i o n = ”dodge” , s t a t = ” i d e n t i t y ” ) +

geom er ro rba r ( l i m i t s , width = 0 . 5 , c o l o r = ” black ” , p o s i t i o n = dodge , s t a t =

” i d e n t i t y ” ) +

labs ( x = ”Carbon Amendment” ,

y = ” Factor ” ) +

theme ( panel . g r i d . major = element l i n e ( co l ou r = ’ grey85 ’ ) ) +

theme ( panel . g r i d . minor = element l i n e ( co l ou r = ’ grey85 ’ ) ) +

theme ( legend . p o s i t i o n = c (0 , −0.40) ) +

theme ( a x i s . t ex t . x = element text ( s i z e = 11 , ang le = 60) ) +

theme ( a x i s . t ex t . y = element text ( s i z e = 13) ) +

theme ( a x i s . t i t l e . x = element text ( s i z e = 12 , v ju s t = 0 . 1 ) ) +

theme ( a x i s . t i t l e . y = element text ( s i z e = 12 , ang le = 90) ) +

theme ( legend . t i t l e = element blank ( ) ) +

theme ( s t r i p . background = element r e c t ( f i l l = ’ grey85 ’ ) ) +

theme ( s t r i p . t ex t . x = element text ( f a c e = ’ bold ’ , s i z e = 14) )

graph output

######################################

## FUNGAL / Bac t e r i a l Ratio Biomass ##

######################################

FBR. df <− subset (web . df , dataType == ’ FBRatio ’ , s e l e c t = c ( plot , data ) )

FBR. df <− unique ( merge (FBR. df , p l o t 1 2 I n f o . df , by = ” p lo t ” ) )

FBR. df <− subset (FBR. df , amf == ’Y ’ | amf == ’N ’ )

FBR. df <− FBR. df [ c (−89 , −102) , ]

rownames (FBR. df ) <− NULL

# Using g en e r a l i z e d l i n e a r models to t e s t t reatment l e v e l data

# Poisson d i s t r i b u t i o n s assume mean = var iance

mean(FBR. df $ data )

var (FBR. df $ data )

# frequency d i s t r i b u t i o n o f the co l l em data
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fBRBar <− barp lo t ( as . vec to r ( t ab l e (FBR. df $ data ) ) , names . arg = seq ( 1 : 9 0 ) )

fBRBar

# Poisson D i s t r i b u t i o n doesn ’ t f i t

po in t s ( fBRBar , dpo i s ( seq ( 1 : 9 0 ) , 2 . 140768) ∗ sum( t a b l e (FBR. df $ data ) ) ,

cex =2, type=”b” , c o l=” s i enna ” , lwd=2,pch=19)

#nega t i v e b inomia l d i s t r i b u t i o n f i t s the data

po in t s ( fBRBar , dnbinom ( seq (1 ,90 ) , mu = mean(FBR. df $ data ) ,

s i z e =(mean(FBR. df $ data ) ˆ2) /( var (FBR. df $ data ) − mean(FBR. df $ data ) ) ) ∗sum(

t ab l e (FBR. df $ data ) ) ,

type=”b” , cex =2, c o l=”salmon” , lwd=2,pch=19)

# Nul l Model Es tab l i shment

fBR . n u l l <− glm ( data ˜ 1 , data = FBR. df , f ami ly = po i s son )

summary( fBR . n u l l )

fBR .M1 <− glm ( data ˜ treatment ∗ amf , data = FBR. df , f ami ly = po i s son )

summary( fBR .M1)

# Model Comparison

anova ( fBR . nu l l , fBR .M1, t e s t=”Chisq” )

# Create nega t i v e b inomia l d i s t r i b u t i o n

fBR .M1 <− glm . nb( data ˜ treatment ∗ amf ∗ hgt , data = FBR. df )

summary( fBR .M1)

anova ( fBR . nu l l , fBR .M1)

fBR .M2 <− update ( fBR .M1, . ˜ . − treatment : amf : hgt )

summary( fBR .M2)

anova ( fBR .M1, fBR .M2)

fBR .M3 <− update ( fBR .M2, . ˜ . − amf : hgt )

summary( fBR .M3)

anova ( fBR .M2, fBR .M3)

fBR .M4 <− update ( fBR .M3, . ˜ . − amf : treatment )

summary( fBR .M4)

anova ( fBR .M3, fBR .M4)

fBR .M5 <− update ( fBR .M4, . ˜ . − treatment : hgt )

summary( fBR .M5)
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anova ( fBR .M4, fBR .M5)

fBR .M6 <− update ( fBR .M5, . ˜ . − hgt )

summary( fBR .M6)

anova ( fBR .M5, fBR .M6)

fBR .M7 <− update ( fBR .M6, . ˜ . − amf )

summary( fBR .M7)

anova ( fBR .M6, fBR .M7)

x <− c (AIC(fBR . n u l l ) ,AIC(fBR .M1) ,AIC(fBR .M2) ,

AIC(fBR .M3) ) # s t o r e s AIC va l u e s in a vec t o r

d e l t a <− x − min ( x )

d e l t a

p l o t ( fBR .M3)

summary( fBR .M3)

FBRMn <− aggregate (FBR. df $data , by = l i s t (FBR. df $ treatment ) , FUN = mean , na . rm

= TRUE)

names (FBRMn) <− c ( ” treatment ” , ” data ” )

FBRSD <− aggregate (FBR. df $data , by = l i s t (FBR. df $ treatment ) , FUN = sd , na . rm =

TRUE)

names (FBRSD) <− c ( ” treatment ” , ” sd” )

FBR. gr <− merge (FBRMn, FBRSD, by = c ( ” treatment ” ) )

graph <− ggp lot ( data = FBR. gr , aes ( x = treatment , y = data ) )

l i m i t s <− aes (ymax = FBR. gr $ data + FBR. gr $sd ,

ymin = FBR. gr $ data − FBR. gr $ sd )

dodge <− p o s i t i o n dodge ( width = 0 . 9 )

graph output <− graph +

theme bw( ) +

geom bar ( p o s i t i o n = ”dodge” , s t a t = ” i d e n t i t y ” ) +

geom er ro rba r ( l i m i t s , width = 0 . 5 , c o l o r = ” black ” , p o s i t i o n = dodge , s t a t =

” i d e n t i t y ” ) +
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l ab s ( x = ”Carbon Amendment” ,

y = ” Factor ” ) +

theme ( panel . g r i d . major = element l i n e ( co l ou r = ’ grey85 ’ ) ) +

theme ( panel . g r i d . minor = element l i n e ( co l ou r = ’ grey85 ’ ) ) +

theme ( legend . p o s i t i o n = c (0 , −0.40) ) +

theme ( a x i s . t ex t . x = element text ( s i z e = 11 , ang le = 60) ) +

theme ( a x i s . t ex t . y = element text ( s i z e = 13) ) +

theme ( a x i s . t i t l e . x = element text ( s i z e = 12 , v ju s t = 0 . 1 ) ) +

theme ( a x i s . t i t l e . y = element text ( s i z e = 12 , ang le = 90) ) +

theme ( legend . t i t l e = element blank ( ) ) +

theme ( s t r i p . background = element r e c t ( f i l l = ’ grey85 ’ ) ) +

theme ( s t r i p . t ex t . x = element text ( f a c e = ’ bold ’ , s i z e = 14) )

graph output
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