Utilizing Graph Classes for
Community Detection in Social and
Complex Networks

by
James Nastos
B.Math., University of Waterloo, 2000

B.Ed., University of British Columbia, 2002
M.Sc., University of Alberta, 2006

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
in
THE COLLEGE OF GRADUATE STUDIES

(Interdisciplinary Studies - Optimization)

THE UNIVERSITY OF BRITISH COLUMBIA
(Okanagan)
April 2015
(© James Nastos, 2015

Abstract

Social network analysis is a cross-disciplinary study of interest to math-
ematicians, physicists, computer scientists and sociologists. It deals with
looking at large networks of interactions and extracting useful or meaning-
ful information from them. One attribute of interest is that of identifying
social communities within a network: how such a substructure should be de-
fined is a widely-studied problem in itself. With each new definition, there
is a need to study in what applications or context such a definition is appro-
priate, and develop algorithms and complexity results for the computation
of these clusterings.

This thesis studies problems related to graph clustering, motivated by the
social networking problem of community detection. One main contribution
of this thesis is a new definition of a specific kind of family-like community,
accompanied by theoretical and computational justifications. Additional
results in this thesis include proofs of hardness for the quasi-threshold editing
problem and the diameter augmentation problem, as well as improved exact
algorithms for cograph and quasi-threshold edge deletion and vertex deletion
problems.

ii

Preface

Many of the results contained in this thesis have already appeared in
published print.

— The results in Section 2.3 are joint work with my supervisors Y. Gao
and D. R. Hare and appear in the Discrete Mathematics paper: “The
cluster deletion problem for cographs” [50].

— Sections 2.4, 2.5 and 2.6 appear in the Social Networks paper: “Fa-
milial groups in social networks” [110].

— The diameter-related results in Section 4.3 have been published in
the Discrete Applied Mathematics paper [57], although we present
an alternate proof of the diameter-2 theorem in this thesis, originally
printed in an earlier arxiv manuscript [107].

— The work shown in sections 4.4.4 and 4.4.5 is my work done as part of a
project originating from Ajay Sridharan’s MSc thesis (UVictoria) [132]
and appear in the publication [133].

— The results in Chapter 5 were preliminarily published in the LNCS
conference proceedings of the 2010 Conference on Combinatorial Op-
timization and Algorithms (COCOA) [108] and later in journal form
in [109].

iii

Table of Contents

Abstract i e e e e e ii
Preface o 0 o i i i e e e iii
Tableof Contents iv
List of Tables i i ittt it i i e, vii
Listof Figures i ittt it i v i v viii
Acknowledgements 0 0. X
Dedication i e e e xi
Chapter 1: Introduction 1
1.1 Definitions 2
1.1.1 Graphs and Networks 2

1.1.2 Complexity Theory 4

1.2 Computational Problems on Graphs 7
1.2.1 Max Clique 7

1.2.2 Dominating Set oL 7

1.2.3 Diameter Augmentation 7

1.2.4 Graph Modification Problems 8

1.3 Graph Classes 9
1.3.1 Cluster Graphs 10

1.3.2 Quasi-Threshold Graphs 11

1.3.3 Cographs 12

1.3.4 Py-sparse Graphs 13

1.3.5 Chordal Graphs 15

1.3.6 Bipartite and Split Graphs 16

iv

TABLE OF CONTENTS

Chapter 2: Social Communities

2.1

2.2
2.3

24

2.5

2.6

2.7

Existing Methods for Cluster Partitioning
2.1.1 An Induced Subgraph Variation
Cliques and Beyond
Cluster Deletion,
2.3.1 On the Hardness of Cluster Deletion
2.3.2 Cluster Deletion on Cographs
2.3.3 Algorithms
Quasi-Threshold Graphs as Communities
2.4.1 Properties of Familial Groups
Hardness of Finding Familial Groups
2.5.1 Algorithms for Familial Groups
2.5.2 Intra-communal Ranking
Case Studies
2.6.1 Zachary’s Karate Club
2.6.2 Communities in the Les Misérables Network and Char-
acter Importance
2.6.3 Lusseau’s Dolphin Network
2.6.4 Grassland Species
2.6.5 College Football Network
Summary

Chapter 3: Familial Groups for Hierarchical Organization . .

3.1
3.2
3.3
3.4

Historical Perspective
Graph-theoretic Framework for Hierarchical Organization
Hierarchical Organization of Individuals in a Network
Familial Groups in Directed Networks
3.4.1 Directed Networks with a Simple Underlying Graph
3.4.2 Transitive out-tree editing without reversal operations
3.4.3 Weighted Directed Framework

Chapter 4: Network Measures: Diameter and Distribution

4.1
4.2
4.3

4.4

Degree Distribution and Power Law
The Small-World Phenomenon
Graph Diameter
4.3.1 Diameter Augmentation is W[2]-hard
4.3.2 Generalization L.
4.3.3 Additional Observations
4.3.4 Diameter Augmentation for Pj-sparse Graphs
Network Models

54
54
55
56
58
99
62
64

TABLE OF CONTENTS

4.4.1 The Erdés-Rényi Model
4.4.2 The Watts-Strogatz Model
4.4.3 The Barabasi-Albert Preferential Attachment Model .
4.4.4 The Random k-tree Model
4.4.5 Cliques and Higher-Order Structures
4.5 A Graph Classes Perspective on Graph Generation

Chapter 5: Bounded Search Tree Methods
5.1 Edge-Deletion Algorithms
5.1.1 Computing Cograph Edge-Deletion Sets on Py-sparse
Graphs in Linear Time
5.1.2 A Bounded Search Tree Algorithm for Cograph Edge-
Deletion L
5.1.3 A Bounded Search Tree Algorithm for Edge-Deletion
to Trivially Perfect Graphs
5.2 Vertex-Deletion Algorithms
5.2.1 Vertex-Deletion to Cographs
5.2.2 Improvement using Hitting-Set
5.2.3 Vertex-Deletion for Trivially Perfect Graphs
5.3 Summary

Chapter 6: Concluding Remarks.
6.1 Summary of Thesis L.
6.2 The Key of Contributions of this Thesis

6.2.1 Future Considerations

Bibliography e e e e e e e e e e e e

vi

List of Tables

Table 2.1 Football conferences. 51
Table 3.1 Branching rules for transitive out-tree editing with the
addition, deletion, and reversal operations. 62
Table 3.2 Branching rules for transitive out-tree editing using
only the addition and deletion operations. 63
Table 3.3 Branching rules for transitive out-tree edge-deletion. . 64

vii

List of Figures

Figure 1.1
Figure 1.2
Figure 1.3

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6

Figure 2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure 2.11

Figure 2.12
Figure 2.13
Figure 2.14
Figure 2.15
Figure 2.16
Figure 2.17

Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4

Figure 4.1
Figure 4.2

Wolk’s characterization for quasi-threshold graphs. . . 11
The forbidden induced subgraphs for Ps-sparse graphs. 14
Spiders. 15
The one-vertex extensionsofa P3. 21
Small graphs 25
Max clique is not always kept intact. 26
A cotree (left) and its corresponding cograph (right). 28
Acotree. 29
Two equally-weighted outcomes of modifying a graph

to a closest (Py, Cy)-free graph.. 30
Freeman’s communities. 30
Quasi-threshold graph. 31
Reduction construction.o 36
Obstacle to greedy method. 40
The degree of an actor does not determine its social

rank. ... 41
Zachary’s karate club. 43
Les Misérables. 44
Dolphin network. oo 45
Grassland species. 48
Football network. 50
Intracommunal ranking.o 000 52
Krackhardt’s out-tree. 59
Obstructions for out-forests. 60
Hockey team rankings. 65
Edited results of the hockey network. 66
Centrality., 68
Clustering coefficient. 68

viii

LIST OF FIGURES

Figure 4.3
Figure 4.4
Figure 4.5

Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9

Figure 5.1

Network of hijacking terrorists from the 9/11 attacks. 72

G9 constructed from G =Py, 75
Example Networks from Palla et al. with power-law

community sizes. 83
K-Clique Communities in a Random Partial 4-Tree. . 84
Power Law Community Size in Partial k-trees. 85
K-Clique Communities in BA-model Graphs. 86

K-clique communities in a BA-odel graph with m = 20. 87

An impossible configuration for a C5 in an extended
Py-sparse graph. 0oL 107

ix

Acknowledgements

Firstly, I would like to thank Unit 5 of UBCO for their years of hospi-
tality, support, and opportunity. An interdisciplinary PhD has proven to
be a fruitful endeavor and I appreciate the effort put towards creating and
evolving such a graduate program. I also greatly appreciate the opportuni-

ties I had to teach undergraduates, especially the lecturing appointments I
had in 2011 and 2012.

I also want to thank everyone in the department I have had dealings with,
from fellow graduate student officemates to professors who I marked exams
with to the departmental support staff. I feel the relationships I made here
were collegial yet friendly and personal, and have contributed to an amazing
experience for me.

In addition to departmental financial support, I would like to especially
thank Dr. Y. Gao and for his financial support throughout my PhD.

I would also like to thank Dr. Y. Gao for his mentorship and encourage-
ment over the duration of this PhD. His ability to identify the strengths of
his students and how they can contribute to a research project has been the
driving force behind all the work in this thesis.

And T would like to thank both my supervisors, Dr. Y. Gao and Dr. D.
R. Hare for their collaboration with and supervision of all the work in this
thesis. They each brought a style of problem solving to our collaboration
which resulted in successes I could not have achieved on my own. I also
must thank them for their infinite patience.

And finally, I would like to thank my family for their love, support and hugs.

Dedication

Dedicated to my father, Athanasios (Tommy) Nastos, who offered me
(among so many other things) every academic opportunity I ever wanted.

X1

Chapter 1

Introduction

The field of graph theory has generally been application-driven, even
from its earliest days. Indeed, the first theorem on graph theory from 1736
was motivated by a path-finding problem over bridges [11] and its associ-
ated algorithms have recently been used in DNA fragment assembly [119].
While graph theory has found its place in pure mathematics, the branch
of algorithmic graph theory has flourished alongside the development and
improvement of computer technology.

Social networks are graph structures that had been studied by sociolo-
gists long before the existence of online social networks. The popularity and
accessibility of online social networks in recent years has brought the notion
of graph networks to the forefront of much research in sociology, physics,
marketing, computer science, mathematics, epidemiology of infectious dis-
eases, and more. The analysis of the structure of social networks has spread
beyond that of an academic interest as companies (such as Klout) that spe-
cialize in social media analytics are noticeably gaining popularity.

Much of this thesis is inspired by the phenomenon of clustering in net-
works. In social networks, clustering can take the form of communities,
hierarchical organization or structural equivalence, as examples.

The rest of Chapter 1 reviews background material on algorithms, com-
plexity theory, graph classes and graph modification problems.

Chapter 2 introduces and explores a new definition for modeling so-
cial communities as familial groups through the graph-theoretic concept of
quasi-threshold graphs. Computational problems for finding familial groups
are given, including a problem reduction and exact algorithms. Some com-
putational results are also included to strengthen the case for a social inter-
pretation of familial groups.

Chapter 3 offers a formal framework for potentially extending the idea
of familial groups to directed networks. Chapter 4 discusses the well-studied
phenomenon of power-law distributions observed in social network measures
such as vertex degree and community size. An equally popular phenomenon,
the small-word property, is discussed and a study on the computational
complexity of the relevant measure of graph diameter is given. Chapter 5

1.1. Definitions

presents the main algorithms of the thesis for various graph modification
problems. We summarize the results and mention some open problems and
future directions in Chapter 6.

1.1 Definitions

We begin with a set of necessary definitions of terms that will be used
throughout the thesis.

1.1.1 Graphs and Networks

Our graph-theoretical definitions follow the reference book Graph Classes:
A Survey[16], and we refer the reader to that book for any definitions or
basic concepts not included in this thesis.

A graph is a structure composed of a set of objects or vertices and a
set of edges, each edge joining two vertices. More formally, a graph is a
pair (V, E) where V is a set and E is a set of unordered pairs of V. Unless
otherwise noted in the discussion, a graph will be understood to be simple
(no duplicate edges, no edge joining a vertex to itself). Vertices are also
sometimes referred to as nodes.

An edge e that joins two vertices u and v will be written as e = uv or
equivalently, e = vu, e = {u,v}. When e = wv is an edge of a graph, we will
say that e is uv, or that e is incident on v and v or that u is adjacent to v.
We also say that the endpoints of e are u and v. The degree of a vertex v is
the number of distinct edges having v as an endpoint.

The vertex set V of a graph G = (V, E) can be written as V(G) or Vg,
and similarly the edge set F of G will be written as E(G) or Eg. Unless
otherwise defined, a convention we adopt here is that when there is only one
graph in consideration, the symbols n and m are reserved for n = |V| and
m = |E|. Additional notation will be defined in cases where multiple graphs
are involved.

When edges are ordered pairs, F can be described as a subset of V x V.
Such edges are called arcs or directed edges, and a graph involving directed
edges will be called a digraph.

A subgraph H = (Vy, Eg) of a graph G = (Vz, Eg) is another graph
where Vi C Vo and Fy C Eg. An important type of subgraph that will
be used throughout this thesis is an induced subgraph, where if u and v are
vertices in H, there is an edge uv € Eg if and only if uv € Eg. Given a
graph G, we may specify a subset W of the vertex set V(G) and speak of
the induced subgraph on W, which is the unique graph having vertex set

1.1. Definitions

W and every edge of E(G) which joins two vertices of W. The size of an
induced subgraph H is the number of vertices in H.

The complement G = (V,E) of a graph G = (V, E) is another graph
with the same set of vertices, but where uv € E if and only if uv ¢ E. A
set of vertices which are pairwise adjacent is called a clique and a clique is
called a maximal cligue if it is not contained as a subgraph in any other
clique. A mazimum cliqgue of a graph is a clique with the largest number
of vertices. A maximum clique is a maximal clique, but not every maximal
clique is a maximum clique. A clique of size k will be called a k-clique. The
complement of a clique is a set of vertices with no edges, and it is called a
stable set or an independent set.

A colouring of a graph is an assignment of a label to each vertex of the
graph such that no two adjacent vertices are given the same label. These
labels will be called colours. When the colouring uses k colours to colour the
n vertices in this manner, it is called a k-colouring. The chromatic number
X(G) of a graph is the smallest number k for which G has a k-colouring.
Another way to describe this is that a graph is k-coloured if we partition
its vertices into k disjoint sets, each set inducing an independent set. Note
that if a graph contains a k-clique, then x(G) > k.

A sequence v1, v, ..., v of pairwise distinct vertices is a path of a graph
G if vjviy1 € E(G). The length of such a path is k — 1. A path is also called
a cycle if vivg € E(G). The length of such a cycle is k.

If v1,v9,...,v is a path (respectively, cycle) of a graph G, we say that
an edge e € E(G) that joins two vertices of the path (cycle) is a chord of
the path (cycle) if e is not an edge of the path (cycle). A path (resp. cycle)
is chordless if it contains no chords. The endpoints of a path v, vs,..., vk
are v and vg.

In this thesis, we denote the chordless paths and chordless cycles on k
vertices as P, and C}, respectively. A P is simply an edge and a Cj is a
clique on 3 vertices, also called a triangle.

Two graphs G and H are called isomorphic if there is a bijective function
f from V(G) to V(H) such that uv € E(G) if and only if f(u)f(v) € E(H).

When a subgraph H on k vertices is isomorphic to a path (resp. cycle),
we will say that H is a Py (Ci). When the induced subgraph on a set of
vertices is a Py (Cy), we may refer to that vertex set itself as being a Py
(C)-

Two vertices are called connected if there is some path having those two
vertices as endpoints. A component (or, equivalently, a connected compo-
nent), C' of a graph G is a maximal subgraph such that every two vertices
in C are connected. We write C' C G to denote that C is a subgraph of G.

3

1.1. Definitions

A connected graph which has no cycle is called a tree. A graph in which
every connected component is a tree is called a forest.

1.1.2 Complexity Theory
Algorithm Analysis

A complete treatment of the analysis of algorithms can be found in a
standard textbook such as [30], and we refer the reader to that text for any
additional definitions and basic concepts not mentioned here. Our default
assumption in analysing algorithms in this thesis is that an item of the input
data can be accessed in constant time. This is realistic in practice provided
the data in use is completely stored in RAM (random access memory). Any
exceptions to this assumption will be explicitly stated.

The following notation is standard in the analysis of function growth
rates:

function f(n) is O(g(n)) if there exists a positive constant ¢ such that
f(n) < ex*g(n) for all sufficiently large n.

function f(n) is Q(g(n)) if there exists a positive constant ¢ such that
f(n) > c¢x g(n) for all sufficiently large n.

function f(n) is ©(g(n)) if f(n) is both O(g(n)) and Q(g(n)).

As is standard, algorithm runtime or space-complexity will be anal-
ysed by worst-case analysis throughout this thesis unless otherwise stated.
Growth rates for runtime or space will be expressed in terms of input size
and/or input parameters. For a graph with n vertices and m edges, an al-
gorithm is considered to run in linear time if it runs in O(m + n)-time. A
polynomial time algorithm is an algorithm whose runtime can be bounded
by some polynomial function of the input size.

An exponential time algorithm is an algorithm whose (worst case) run-
time is ©(c™) where n is an input parameter and ¢ > 1 is a constant. When
multiple input parameters such as n and m are given and an algorithm
runs in O(2™p(n)) where p(n) is some polynomial function, we may say this
algorithm is exponential in m and also polynomial in n).

Reductions

A problem P is called polytime solvable or simply polytime if there is a
polynomial-time algorithm solving every instance of P. Unless P is stated

1.1. Definitions

to be an optimization problem, P is understood to be a decision problem
where every instance I of P is either a yes- or mo-instance. The task of a
decision problem is to determine whether a given instance is a yes-instance
or no-instance.

A decision problem P; can be shown to be at least as hard as a problem
P; if one can show that every instance Is of P> reduces to a problem instance
I, of P; in such a way that I5 is a yes-instance of P» if and only if 17 is a yes-
instance of P;. With such a reduction, any algorithm that solves problem
P; can be used to solve any instance of P» by reducing the instance of P to
an instance of P; and using the algorithm that solves P to find the correct
answer.

Let R be a reduction that transforms instances of problem P, to an
instance of problem P;. If P; can be solved with a polynomial time algorithm
and the reduction can be computed in polynomial time, then composing
the reduction with the algorithm as described earlier will yield a polytime
solution for P». If, on the other hand, there is no polytime solution to P, yet
P, polynomially reduces to P, then there cannot be a polytime algorithm
solving P;. This concepts allows for a definition of computational hardness:
that if P is sufficiently hard, then P; is at least as hard.

When a proposed solution to an instance of a decision problem is given
to affirm that this instance is a yes-instance (such as a set of vertices for
CLIQUE or a truth assignment for 3-SAT) and this solution can be verified
within polynomial time of the problem size, then the problem is said to be
in NP.

A problem Py is NP-hard if every problem in NP polynomially reduces to
P;. If an NP-hard problem is also in NP itself, then it is called NP-complete.

The Cook-Levin Theorem [28] showed that the BOOLEAN SATISFIABIL-
ITY PROBLEM is NP-complete, and Karp’s consequences [32] used polytime
reductions to show that many other problems such as CLIQUE, INDEPEN-
DENT SET, 3-SAT are also NP-complete.

To date, there is no proof that an NP-complete problem cannot be solved
in polynomial time. Since a polynomial time solution to any one of the
thousands of known NP-complete problems would imply a polytime solution
to every NP-complete problem, and that no polytime algorithm has been
found to solve an NP-complete problem, it is generally accepted that the
class of NP-complete problems form a set of computationally-hard problems.
This notion of computational hardness has allowed researchers to identify a
problem as NP-hard and then attempt to deal with solving these problems
with specific algorithm-design strategies, such as those from parameterized
complexity (next subsection), approximation algorithms, heuristics or other

1.1. Definitions

search strategies.

Parameterized Complexity

Given a problem P and an algorithm solving it, the algorithm is typically
measured in terms of the input size n of P. In the case that the input to
a problem is a graph, the runtime is usually written in terms of n = |V/|
and m = |E|. Sometimes, in addition to a problem instance, the input
may also accept a parameter k, in which case we say that the problem is
parameterized.

A problem which accepts a parameter k is called fized-parameter tractable
(or FPT) if there exists an algorithm solving the problem with runtime
O(f(k)n®) where n is the input size, f is a function of k& which does not de-
pend on n and c is a constant. When the value k is fixed, this is essentially
a polynomial runtime, and in particular for any fixed k it is the same poly-
nomial (up to coefficients). FPT algorithms have received much attention
lately as many NP-hard problems have been shown to be fixed-parameter
tractable. For instance, the VERTEX COVER(G, k) problem is a well-known
NP-complete problem but can be solved in O(an)—time by a simple search
tree method, selecting one of two possible endvertices of an uncovered edge.
Note that this runtime is linear in n for any fixed k. Analogous to the idea
of NP-hardness, there is a measure of hardness for parameterized problems
which depends on parameterized reductions.

Parameterized problems are classified into a hierarchy of problem classes:
FPT, W11, W[2],...,W]t],.... The weighted 3SAT(k) parameterized prob-
lem asks whether an instance of 3SAT has a satisfying assignment with
Hamming weight equal to k. Weighted 3SAT(k) and CLIQUE(G, k) are rep-
resentative problems in W([1]. A parameterized reduction is a Turing re-
duction taking time O(f(k)p(n)) where p(n) is a polynomial in the input
size and f(k) is an arbitrary function which does not depend on n. Addi-
tionally, an instance (z, k) reducing to an instance (2, k") must produce a
parameter k' dependent only on k and not on n = |z|. The class of all fixed-
parameter tractable problems, FPT, is contained in W[l]. The complete
problems for W1] are not expected to be in FPT, as it has been shown that

'The class W[i] is defined as the class of parameterized problems that can reduce to
a WEIGHTED CIRCUIT SATISFIABILITY problem for weft-i circuits. Elaborating on this
definition diverts us away from our discussion of graph problems, and the reader is only
required to know that there are representative graph problems for W1] and W 2] for the
purposes of this thesis. Some representative problems for these classes are given in the
following paragraph.

1.2. Computational Problems on Graphs

if FPT = W/1] then all problems in NP can be solved in O(2°()-time [41].

Weighted 3SAT(k) and CLIQUE(G, k) are W/[l]-complete. DOMINAT-
ING SET(G, k) is W[2]-complete. Discussion of these results and a thor-
ough introduction to parameterized problems can be found in [115]. Being
parameterized-hard also has implications for the approximatibility of the
problem. For instance, a problem which is W[l]-hard does not have an
efficient polynomial-time approximation scheme (EPTAS) unless W[l] =
FPT [103].

1.2 Computational Problems on Graphs

1.2.1 Max Clique

Finding a maximum clique is fundamental to many network clustering
methods. The corresponding decision problem is formulated as follows:
Problem 1. CLIQUE(G, k)

INPUT: A graph G = (V, E) and a positive integer k.
TAsSK: To determine if there exists a set S C V of size at least k& such that
for every u,v € S, uv is an edge.

This problem is NP-complete [$2] and W [1]-complete [115].

Since an independent set is the complement of a clique, the problem of
finding a maximum independent set is computationally equivalent to the
maximum clique problem on the graph complement.

1.2.2 Dominating Set

A dominating set in a graph G = (V,E) is a set of vertices S C V
such that every vertex of GG is either in S or adjacent to some vertex of S.
Dominating sets and their variants have appeared in the context of many
applications, see for example [138] or [137].

Problem 2. DOMINATING SET(G, k)

INpUT: A graph G = (V, E) and a positive integer k.

TAsK: To determine if there exists a set S C V of size at most k& such that
for every v € V'\ S there is some s € S where sv is an edge.

This problem is NP-complete and W[2]-complete [115].

1.2.3 Diameter Augmentation

For any two vertices z,y in a graph, a (z,y)-path is a path having end-
points x and y. Let dist(x,y) be the distance between x and y, defined

7

1.2. Computational Problems on Graphs

as the number of edges in a shortest path joining them, if one exists. If
such a path does not exist, we may define dist(x,y) to be oo where every
real number r has the property that r < oo, but we do not explicitly need
this special case in this thesis. When intermediate vertices and edges of
a (x,y)-path are restricted to a particular subgraph H of G, the distance
between x and y will be denoted disty(z,y). A graph G has diameter t if
max dist(x,y) = t, and we write diam(G) = t.

“YGraph diameter has been studied for its combinatorial structure as well
as for the wide-ranging applications. A decision problem formulation is:

Problem 3. DIAMETER-t AUGMENTATION(G, k)

INpUT: A graph G = (V, E) and a positive integer k.

TAsk: To determine if there exists a set S of at most k edges such that
resulting graph (V, E'U S) has diameter t.

This problem was first shown NP-hard for ¢ = 3 in [1258] and was later
shown to remain hard for the t = 2 case [95]. Note that the case of t =1 is
trivially polynomial-time solvable as adding an edge between every pair of
nonadjacent vertices is necessary.

We prove in this thesis that DIAMETER-2 AUGMENTATION is W[2]-hard
in Section 4.3. We show that DIAMETER-t AUGMENTATION is W[2]-hard
for t > 2 in [57].

1.2.4 Graph Modification Problems

An important class of problems studied in this thesis can be described
as graph modification problems. The general form of a graph modification
problem takes a graph and asks if it can be altered using at most k operations
so that the resulting graph has a desired property.

An example of a graph modification problem is the FEEDBACK VERTEX
SET problem, which is one of the earliest-known NP-complete problems [32].
A feedback vertex set is a set of vertices whose removal from a graph results
in an acyclic graph. The decision problem asks if there is a feedback vertex
set of size at most k.

Many of the above problems can also be stated as graph modification
problems: for example, finding a maximum clique is equivalent to finding
the minimum number of vertices that can be removed to leave behind a
clique.

An edge edit is the operation of either adding or deleting an edge. A
large class of graph modification problems revolve around edge edits, asking
if there is a set of at most k edge edits in order to turn a given graph into

1.3. Graph Classes

one of a type-C, where C is some set of graphs having a desired property.
This edge editing problem is usually called the C-editing problem. When
restricting the edge edits to edge deletions, the corresponding problem is
usually referred to as a C-deletion problem. Similarly, the C-addition or
C-completion problem only adds edges in order to obtain a graph of type C.

A conceptually simple way to extract the dense clusters of a network
is to modify a given graph with the fewest number of edge edits in order
to leave behind a collection of disjoint cliques. This is precisely the cluster
editing problem (definitions and discussion of cluster graphs appear in Sec-
tion 1.3.1). Cluster editing and deletion has been studied extensively in the
scope of FPT algorithms, and discussion of this will be revisited a number
of times in this thesis.

Yannakakis shows that vertex-deletion problems to many types of target
structures are NP-hard [1453]. Elmallah and Colbourn give hardness results
for many edge-deletion problems [13].

When the graph property of belonging to a class C can be characterized
by a finite list of forbidden induced subgraphs, it was shown by Cai [19] that
the graph modification problem allowing up to k edge and/or vertex edits
is fixed-parameter tractable.

As we define several graph classes in the next section, we will not only
discuss their defining properties and characteristics but we will also discuss
the current state of their associated graph modification problems.

1.3 Graph Classes

A central concept that is used throughout this thesis involves special
graph classes which are sets of graphs defined with a particular structure.
The study of graph classes comes from the fact that modeling certain appli-
cations on graphs often implies an inherent structure in the resulting graph
which can be exploited.

For example, if we are given the task of assigning rooms to n seminars,
each of which has a specified start time and end time, then we can model
this as a graph colouring problem by the set of all seminars being the vertex
set and two seminars are adjacent if they have an overlap in their time
interval (a time conflict). Then a colouring of these vertices corresponds to
a room assignment of the seminars, each colour class having no edges (no
time conflicts) within it. A minimum colouring corresponds to a solution
using the fewest number of rooms.

Karp’s consequences [32] showed that finding the chromatic number is

1.3. Graph Classes

NP-complete (in fact, it showed that simply determining whether a given
graph can be coloured with 3 colours is itself an NP-complete problem).
But our room-assignment problem can be solved in polytime due to the fact
that the resulting graph obtained from intersections of intervals on a time
line has a special structure. Note, for example, that it is impossible for
graph obtained in this way to contain a chordless cycle of size 4 or more.
The resulting graphs are called interval graphs and it can be shown that a
greedy method can optimally colour an interval graph in linear time.

Let H be some fixed graph. If a graph G does not contain an induced
subgraph which is isomorphic to H, then G is called H-free. The discussion
above states that if a graph G is an interval graph, then G is Cy-free for
each k > 4. There are many other configurations that interval graphs do
not contain as well.

A graph class C is called hereditary if it has the property that whenever
G € C, every induced subgraph H of G is also in C. The property of being
H-free is a hereditary property. Every hereditary graph class has a forbidden
induced subgraph characterization, although the list of forbidden induced
subgraphs may not always be finite.

1.3.1 Cluster Graphs

A cluster graph is a disjoint collection of cliques. That is, every connected
component is a maximal clique.

If an edge xy of a graph denotes a symmetric relation between x and y,
then the graph on a set of vertices is a cluster graph if and only if the relation
is transitive. Cluster graphs have been used in a variety of applications
whenever clustering of objects is studied or when consistent data is sought
among noisy or error-prone data.

A graph G is a cluster graph if and only if G is Ps-free. Note that the
cluster-completion problem in which one is allowed to only add edges to a
given graph is polytime solvable since the only solution would be to add all
possible edges within each connected component.

The cluster-deletion problem is NP-complete [130] [111] and hard to
approximate [130].

The cluster-editing problem has been proven hard several times indepen-
dently and in different contexts [91] [130] [5]. Both these problems were again
proven to be NP-hard in [36] where they were further showed to remain hard
for bounded-degree graphs and studied under alternate parameterizations.

Indeed, as cluster graphs give a simple and fundamental way of partition-
ing a network into clusters, the corresponding problems have been studied for

10

1.3. Graph Classes

their algorithms and alternate parameterizations as well. The fastest-known
runtime for cluster-editing has been repeatedly improved [65], [121], [121], [71], [22],
with the current best runtime standing at O(1.62%+m) [10]. Cluster-deletion

can be solved in O(1.415% + n?) [12].

For some applications where enforcing cliques to be completely disjoint
from one another is too stringent, generalizations to clusters graphs have
been studied. For instance, allowing two cliques to share at most t vertices
or t edges was studied in [35]. Another is that of relaxing each component’s
structure from a clique to a k-plex [72]. The Ps-free characterization of
cluster graphs allows for other natural generalizations, such as enforcing Py-
freeness or more generally S-free graphs where S is any collection of graphs
which contain a Ps.

1.3.2 Quasi-Threshold Graphs

A rooted forest is a disjoint union of trees, each tree having a designated
root vertex. The root should be thought of as a “top level” node, its children
as second-level nodes, and so on. Define reachability in a tree between two
nodes to mean that u reaches v (or v is reachable from w) if and only if
the unique path from the root vertex to v passes through u. That is, v is
reachable from w if u is an ancestor of v (equivalently, v is a descendant of
u). The comparability graph of a rooted forest is a new graph with the same
vertices as the rooted forest such that an edge is joined two vertices if one
is reachable from another.

Figure 1.1: Wolk’s characterization for quasi-threshold graphs states that if
there are four vertices having at least those edges shown in the graph on the
left, then it must be that one of the extra edges — shown in the situations
on the right — must exist. The dashed line in the figure represents the fact
that there may or may not be an edge there.

Wolk [141] introduced the concept of comparability graphs of trees and
gave conditions on a simple undirected graph G which imply that G can be
oriented in the directed tree structure described. Figure 1.1 depicts Wolk’s
formulation of the structural characterization for these graphs, and it is

11

1.3. Graph Classes

not hard to confirm that this is essentially equivalent to stating that there
cannot exist an induced subgraph isomorphic to a Py or a C4 in the graph.

The (Py, Cy)-free graphs are now known as the class of quasi-threshold
graphs? [25], trivially perfect graphs® [63], comparability graphs of trees [144],
or arborescent comparability graphs [10].

A vertex v is called universal on a set of vertices S if v is adjacent to
every vertex of S except possibly itself, in the case that v € S.

Every quasi-threshold graph can be generated through a composition
scheme that repeatedly performs any of two possible operations: (i) If G
and H are two quasi-threshold graphs, then the disjoint union G’ = (Vg U
Vi, Eq U Eg) is quasi-threshold; (ii) if G is quasi threshold, then Gt =
(Vo U {v}, Eq U {vz | © € Vg}) is also quasi-threshold (that is, adding a
universal vertex to a quasi-threshold graph yields a quasi-threshold graph).

Reversing this composition scheme says that every connected component
of a quasi-threshold graph has a universal vertex, and the removal of any
set of vertices - which is equivalent to taking an induced subgraph - also has
the property that each of its connected components has a universal vertex.

A generative process for quasi-threshold graphs which adds one vertex
at a time also exists. This generation scheme is used by Chu [23] to decide,
in linear time, whether a given graph is quasi-threshold and in the case
that it is not, the algorithm will produce a P, or a Cy to certify this fact.
The generative process uses one operation: add a new vertex v adjacent to
any existing vertices uy,...,u; (possibly none) and further attach v to the
connected component of each u;. To use this as a recognition algorithm, we
note the a vertex of largest degree can always be assumed to have been the
last vertex added to a graph in this generation scheme, and a lexicographic
BF'S search can verify all the necessary adjacencies in linear time.

1.3.3 Cographs

Many graph properties can be deduced from looking at individual con-
nected components of a graph separately. In this sense, a graph decomposes

2The term quasi-threshold comes from the fact that these graphs generalize threshold
graphs, which are graphs created from weighted vertices, and two vertices u and v are
joined by an edge if and only if the sum of the weights of u and v is above a given fixed
threshold value. Threshold graphs are equivalently characterized as (Py, C4, C4)-free.

3A graph was defined to be trivially perfect if every maximal clique intersects the
maximum independent set of the graph. The name derives from the fact that these are
easily shown to be a subclass of perfect graphs which are an important class in algorithmic
graph theory. It turns out that a graph is trivially perfect if and only if it is (Ps, Ca)-free.

12

1.3. Graph Classes

into its connected components. Some properties are further maintained un-
der a decomposition into connected components of the complement of the
graph. When a graph G can decompose completely via connected compo-
nents either in G or connected components in the complement G, the graph
is said to be a complement-reducible graph or a cograph. Cographs have
been another important class of graphs to the development of algorithmic
graph theory. The decomposition scheme defining the class of graphs has
been generalized to apply to general graphs in the form of the modular de-
composition and further as the primeval decomposition and homogeneous
decomposition.

While it is not obvious from the above definition, cographs can also be
characterized as Pj-free graphs. These serve as a generalization to Ps-free
graphs in that they allow Pss to exist in the graph provided the P3 does not
extend further to a Pj.

Cographs can be recognized in linear time [31]. The vertex deletion
problem for cographs is NP-complete [94], and the edge deletion problem
is also NP-complete [13]. Since cographs are self-complementary, the edge
deletion problem is equivalent to the edge addition problem for this class.
The problem of edge editing (allowing for both deletions and additions) has
also been determined to be NP-complete [96].

The finite forbidden induced subgraph characterization for cographs im-
plies that the above-mentioned NP-hard problems are fixed-parameter tractable.
The problems of modifying a graph to a cograph has also been studied in
the context of kernelizations [69].

Cographs have been generalized in a number of ways: Py-sparse graphs
were defined in a way that generalizes the forbidden induces subgraphs [75]
while still being perfect graphs and recognizable in linear time [79], but they
also generalize cographs through a decomposition scheme [30]. These have
further been generalized to (g, t) graphs, which are those graphs for which
every set of ¢ vertices induces at most ¢ Pys. Cographs are (4, 0)-graphs and
Py-sparse are (5,1)-graphs. Cographs are also exactly the graphs of clique
width 2 [32], and bounded clique width graphs are known to have important
algorithmic properties.

1.3.4 P,-sparse Graphs

One generalization to the class of cographs is created by allowing Pys to
exist in a graph but in restricted amounts. Hodng [7%] introduced Pj-sparse
graphs to be those for which every induced subgraph on five vertices induces
at most one P;. This immediately implies a forbidden induced subgraph

13

1.3. Graph Classes

[} Cs co-4-pan fork

Figure 1.2: The forbidden induced subgraphs for Ps-sparse graphs.

characterization which restricts any subgraph of five vertices inducing two
or more Pys. We include these graphs in Figure 1.2.

A special graph structure called a spider [79] commonly occurs in graph
classes of bounded cliquewidth. We define two types of spiders here:

Definition 1.1. A graph G = (V, E) is a thin spider if V can be partitioned
into K, S and R such that:

i) K is a clique, S is a stable set, and |K| = |S| > 2.

ii) every vertex in R is adjacent to every vertex of K and to no vertex in

S.

iii) each vertex in S has a unique neighbour in K, that is: there exists
a bijection f : § — K such that every vertex k € K is adjacent to
f(k) € S and to no other vertex in S.

A graph G is called a thick spider if G is a thin spider. Note that the
vertex sets K and S swap roles under graph complementation, that condition
(i) and (ii) hold for thick spiders, and that statement (iii) changes to saying
that every vertex in S has a unique non-neighbour in K. The sets K, S and

14

1.3. Graph Classes

Figure 1.3: A thin (a) spider and a thick (b) spider with |K| = [S| =5 and
|R| = 2.

R are called the body, feet and head of the spider, respectively. The edges
with one endpoint in S are called thin legs or thick legs for thin spiders or
thick spiders, respectively. Examples of spiders are given in Figure 1.3.

Hoang [78] defined a graph G to be Pj-sparse if every induced subgraph
with exactly five vertices contains at most one P;. The following decompo-
sition theorem for Pj-sparse graphs was proven in [79]:

Lemma 1.2. [79] Let G be a Py-sparse graph. Then at least one of the
following is true:

i) G is disconnected
ii) G is disconnected
i11) G is a thin spider
i) G is a thick spider

1.3.5 Chordal Graphs

Chordal graphs have been studied under the names rigid circuit graphs [39]
or triangulated graphs. They are defined as graphs in which every cycle of
size 4 or more contains a chord. Equivalently, chordal graphs are those
containing no induced cycles of size 4 or more. They have been instrumen-
tal in the development of algorithmic graph theory, as lexicographic breadth
first search (or LBFS) was first used to recognize chordal graphs in linear

15

1.3. Graph Classes

time, and LBF'S has come to be a very important tool in algorithmic graph
theory. Chordal graphs also naturally give rise to the important decomposi-
tion scheme known as the clique separator decomposition [131] [1413], which
decomposes graphs while maintaining certain structures.

Every cluster graph (defined in 1.3.1) and split graph (defined in 1.3.6)
is chordal, and in fact the class of split graphs are exactly the graphs which
are chordal and whose graph complement is also chordal. The importance of
graph modification problems on chordal graphs has grown proportionately
to the importance of treewidth which is a key graph invariant used heav-
ily in algorithm design. Edge deleting [112], edge completing [119], edge
editing [111] and vertex deleting [91] a general graph to a chordal graph is
NP-complete. These were also all shown to be fixed-parameter tractable
problems [104].

For a set of sets S, an intersection graph of S is a graph where each
v € V is an element of S and an edge uv is in the graph if and only if the
sets u and v have nonempty intersection. An example of this is when S is
a set of intervals on the real line. The resulting intersection graph of S is
called an interval graph. Not every graph is an interval graph. One small
example of a graph which is not an interval graph is a C4. For all possible
S, the resulting set of interval graphs is called the class of interval graphs.

A chordal graph can be thought of as a generalization of interval graphs.
An early characterization of chordal graphs shows that chordal graphs are
exactly the graphs which are intersections of subtrees of a tree [59]. While
this easily shows that interval graphs are a subclass of chordal graphs, the
forbidden induced subgraph characterization of interval graphs is not easy
to describe [93].

1.3.6 Bipartite and Split Graphs

A graph is bipartite if it can be partitioned into two sets in such a way
that every edge of the graph has an endpoint in each partition. Bipartite
graphs arise from applications where vertices usually represent two different
types of objects. Some social networks are affiliation networks where a set of
actors are related through a set of affiliations. When an affiliation network
is created with affiliations and actors as vertices, and an edge representing
when an actor is associated with a certain affiliation, the resulting network
has a bipartite structure with one partition of vertices being the actors and
the other partition being the affiliations [139]. Deciding whether a graph is
bipartite, and finding the vertex bi-partition, can be solved in linear time.

A bipartite graph can also be described as graphs which can be parti-

16

1.3. Graph Classes

tioned into two stable sets. A split graph is a graph which can be partitioned
into a clique and a stable set.

Bipartite graphs do not have a finite forbidden induced subgraph char-
acterization: they are the graphs with no induced odd cycles. Modifying a
graph to a bipartite graph through graph edits have been studied under the
name of odd cycle transversals and the first fixed-parameter tractable algo-
rithm for this problem [124] is credited with the initiation of the iterative
compression method for algorithm design.

Split graphs do have a finite forbidden induced subgraph characteriza-
tion: a graph is split if and only if it is (2K2, Cy, Cs)-free, where a 2K is
the graph on four vertices and two disjoint edges. Interestingly, the problem
of modifying a graph to a split graph is NP-complete when dealing with
only edge deletions or only edge additions [111], but it is polynomial-time
solvable when both of these operations are allowed [73]. Deciding whether
a graph is split, and finding a corresponding clique and stable set partition,
can be solved in linear time. This algorithm uses just the degree sequence
of the input graph to decide where to add and where to remove edges. The
edge-edit distance to a split graph is called the splittance of a graph (so split
graphs have splittance 0).

The edge editing problem to a bipartite graph is easily seen to be equiva-
lent to the edge-deletion problem to bipartite graphs, since adding edges can
never help make a graph bipartite. The edge deletion problem to bipartite
graphs, known as edge bipartization, is NP-complete [117].

17

Chapter 2

Social Communities

2.1 Existing Methods for Cluster Partitioning

Some community-finding methods exploit the fact that as much a com-
munity should be densely connected within itself, it should not be as heavily
connected to the rest of the network. There are several examples of defini-
tions that require exterior sparsity in addition to interior density. In 1969,
this idea was expressed in an LS-set which is a set .S such that every vertex
in S has more neighbours in S than in G — S [99].

Many methods have been developed to identify dense clusters in net-
works. The measure of betweenness centrality [53] has been used by [(2]
to identify cohesive groups. The strategy in the Girvan-Newman algorithm
is to identify and remove edges of high betweenness centrality (see Defini-
tion 4.3) since such edges are typically regarded as being edges that cross
between separate communities. In the case of multiple choices of edges with
equal and highest centrality, any arbitrary choice of these suffices. Upon
deleting an edge, the algorithm recomputes the centrality of all edges in
order to find the next edge to be deleted. If an edge deletion results in
partitioning the graph into more connected components than there were be-
fore the edge deletion, the modularity of the network is measured. Once
all edges have been removed in this manner, the step of this process which
resulted with the largest modularity score gives a natural partition of the
network into groups. The process runs in polynomial time and has been
shown to produce meaningful results on real networks; however, its focus on
edges which are not in communities does not imply or suggest a structure
of community that we are after.

The Girvan-Newman algorithm is an example of a method that suc-
cessively partitions a network via edge deletions. Other methods, such as
partitioning along a minimum cut of a network [150], also yield a hierar-
chical decomposition of components of a network while removing multiple
edges at once.

18

2.1. Existing Methods for Cluster Partitioning

Algorithm 1: High-level description of the Girvan-Newman process
for cluster-finding.

Algorithm GIRVANNEWMAN(G):

Input: A Graph G = (V, E)

Output: A hierarchical decomposition of G

while (G has at least one edge) do
Let e = xy be an edge of largest betweenness centrality;
G+ G—e¢;
if x and y are in different components then
‘ Record the new connected components;
end
end

2.1.1 An Induced Subgraph Variation

Other algorithms, similar to the Girvan-Newman algorithm, have been
suggested with betweenness centrality swapped out for another measure. For
example, [122] observes that edges that cross dense groups are not typically
in as many triangles as edges inside the dense clusters. Removing edges that
appear in the fewest triangles results in partitions similar to those found by
the Girvan-Newman method. These methods are also shown to generalize

19

2.2. Cliques and Beyond

LS-sets.
Algorithm 2: High-level description of Radicchi et al.’s process for
cluster-finding.
Algorithm Rapiccui(G):
Input: A Graph G = (V, E)
Output: A hierarchical decomposition of G

while (G has at least one edge) do
Let e = xy be an edge involved in the fewest number of triangles

(breaking ties arbitrarily, if needed);

G+ G—e¢;

if © and y are in different components then
‘ Record the new connected components;

end

end

Many of the methods which use a structural definition for community and
seek out these structures in networks result in problem formulations which
are inherently NP-complete. Examples of this approach include clique, clan,
club, and k-plex finding, and these are defined in the next section. While
being NP-Complete is a computational obstruction, there are a variety of
algorithmic techniques that can be used to extract these desirable structures
from networks. For instance, Integer LPs such as those in [3] offer an exact
algorithm for these problems, and also lend themselves readily to faster
approximation algorithms. Fixed-parameter tractability (FPT) is another
algorithm-design technique that can sometimes be used to solve an NP-
complete problem with reasonable time. Finding network clusters via cluster
editing, for example, has been studied extensively in the FPT framework [1]
with great success.

The literature on finding cohesive subgroups of networks is vast, and
methods such as spectral methods [131] and probabilistic model-fitting [77]
have been explored. Many such methods are summarized in the surveys
by [50] and [127].

2.2 Cliques and Beyond

In data where relationships (edges) between objects are expected to be
transitive, the resulting graph that represents that relationship is expected
to arrange itself into a disjoint union of cliques. These graphs are known

20

2.2. Cliques and Beyond

TV VN WY

(A) (B)) (D) (E)

Figure 2.1: The one-vertex extensions of a Ps3: (A) Py; (B) claw; (C) paw;
(D) Cy; (E) diamond.

as cluster graphs and they form a hereditary class of graphs which can
alternately be characterized as the Ps-free graphs. We can thus say that
this Ps-free local structure on three vertices completely characterizes the
network structure.

When data-gathering methods are incomplete, the resulting network will
be close to a cluster graph but with some missing edges. In other applications
where false-positives appear, the corresponding graph will contain extrane-
ous edges between the implied components. The common approach taken
to identify the implied clusters of such networks is through graph editing:
the addition or removal of as few edges as possible in order to obtain the
desired structure. The associated algorithmic problem is known as Cluster
FEditing.

The idea of cluster editing is also known as correlation clustering [5] in
machine learning and other fields of computer science and approximation
algorithms have been designed for the problems of partitioning a network
to minimize the number of inter-cluster edges and/or maximize the intra-
cluster edges.

As clique components are a very stringent condition to impose on a
social collection, various generalizations to cliques have been explored in the
literature. Early attempts include that of Luce’s n-cliques [100] and Alba’s
n-clans and n-clubs [2] [106]. An n-club of a network is an induced subgraph
having diameter n. A clique is exactly a 1-club. The computational problems
of determining whether a graph contains an n-clique or n-club were shown
to be NP-complete in [1]. In fact, the problem of finding a 2-club was shown
to be NP-complete even on relatively simple input graphs, such as those
which are bipartite after deleting one vertex and graphs which are covered
by 3 cliques [74].

Another generalization of cliques is the k-plex, which is a collection of
n vertices in which every vertex is adjacent to at least n — k other vertices
in the collection [129]. Finding a k-plex of size n was shown to be NP-
complete by [3]. Cluster graphs have also been generalized in such a way

21

2.3. Cluster Deletion

that cliques - rather than being completely disconnected - may intersect in at
most s vertices or ¢t edges [18]. Such graphs admit a finite forbidden induced
subgraph characterization as well: for example, the graphs in which cliques
are allowed to intersect in at most one vertex are exactly the diamond-free
graphs, where the diamond is the one-vertex extension of a P3 depicted in
Figure 2.1. Again, the structure of this class of graphs is characterized via
a characterization of its local structure.

The class of cluster graphs can be generalized through its local structure
by allowing Pss to exist in a graph, but forbidding some of the possible
extensions of a P3. A complete set of isomorphically-distinct one-vertex
extensions of a P53 are given in Figure 2.1.

2.3 Cluster Deletion

Cluster graphs have been used in a variety of applications whenever
clustering of objects is studied or when consistent data is sought among
noisy or error-prone data [5].

The parameterized CLUSTER DELETION problem takes a graph G and
an integer k as input and asks whether it is possible to delete at most &
edges F' from G in order to make G \ F' a cluster graph. This problem is
known to be NP-hard [130].

Many NP-complete problems have been studied on restricted input in
order to find classes of instances for which efficient solutions to the problem
can be found. For example, the NP-complete problem MAX CLIQUE can be

solved in polynomial time on perfect graphs [65], in O(n?)-time on weakly
chordal graphs [77], and in O(m + n)-time on chordal graphs [59] and on
cographs [31] and a host of other graph classes (for example, [20], [60], [16]).

CLIQUE remains hard on (C5, P5)-free graphs, and even on the relatively
small class formed by the complements of square-and-triangle-free graphs [64].
A general result of Cai [19] on graph modification problems implies that
CLUSTER DELETION(G, k) is a fized-parameter tractable problem, solvable
in O*(2%) time, where the notation O*(f(n, k)) means O(p(n, k) f(n,k)) for
some polynomial function p (n is the number of vertices of G). This standard
search method, finds a P3, and then branches on the two possible edge-
deletions. An improved branching method was developed by Gramm et
al. in [65], improving the runtime to O*(1.77%). Later, the same authors
developed an algorithm for CLUSTER DELETION running in O*(1.53%) time.
There have been further improvements on the above runtime using algo-
rithms that rely on the property of being able to solve CLUSTER DELETION

22

2.3. Cluster Deletion

efficiently (i.e. in polynomial time) when exploiting certain structure. Dam-
aschke [30] characterized the structure of graphs in which no edge is con-
tained in three P3s and used this structure to optimally delete all remaining
Ps3s in polynomial time. Using branching rules to reduce a general instance
to this special structure resulted in an algorithm running in O*(1.47%) [36].
This has been improved even further to O*(1.415%) by Bocker and Dam-
aschke [12] using the fact that an optimal cluster deletion set can be found
in polynomial time on graphs which are formed as a clique and a constant
number of other vertices attached to the clique.

In light of these results, it is of interest to determine any significant
subclasses of input graphs on which CLUSTER DELETION can be solved in
polynomial time. For instance, the edge-deletion problem which asks how to
delete the fewest number of edges from a graph in order to obtain a cograph
was studied in [108] where improved algorithms with given by first deleting
to a certain superclass of cographs, and then deleting remaining edges in
polynomial time.

In this section, we present an algorithm that solves CLUSTER DELETION
in polynomial time on cographs. This serves to fill Phase 2 of a general meta-
algorithm (Algorithm 5) that is the focus of Chapter 5. We also observe that
this result is close to the boundary of polytime solvability by noting that
CLUSTER DELETION remains NP-hard on a slightly larger graph class. As
far as we know, this is the first published algorithm that solves CLUSTER
DELETION in polynomial time on a well-studied graph class.

The literature on finding subclasses of graphs on which certain NP-
Complete problems become polytime solvable is vast, particularly with re-
spect to clique finding and vertex colouring. Graph modification problems,
however, have not been extensively studied on graph classes, perhaps with
the exception of the chordal completion or treewidth problem. Chordal com-
pletion is also known as the minimum fill-in problem, and examples of graph
classes on which minimum fill-in is solvable in polynomial time are chordal
bipartite graphs [20], circle graphs and circular-arc graphs [34], and house-
hole-domino-free (HHD-free) graphs [17].

2.3.1 On the Hardness of Cluster Deletion

The proof of Natanzon [I111] reduces from the NP-Complete CLIQUE
problem to CLUSTER DELETION by first considering a general instance G of
the CLIQUE problem and completely joining a clique to it. We observe that
as long as the initial instance of G is NP-hard, the class of constructed graphs
obtained will be hard instances for CLUSTER DELETION. Some example

23

2.3. Cluster Deletion

classes of where CLIQUE remains hard is on (Cs, P5)-free graphs and on
(2K2,3K;)-free graphs.

Call a vertex universal on a subgraph H if it is adjacent to every vertex
in H (except itself).

Lemma 2.1. Let graph G have no induced subgraph isomorphic to F, where
F is a subgraph without a universal vertex. Then the graph GT obtained in
Natanzon’s construction (G completely joined to a new clique) is also F-free.

Proof. Assume on the contrary that G* contains some induced subgraph H
isomorphic to F. Since G is F-free, H must contain at least one vertex from
the clique joined to G. But every vertex in this clique is universal on GT
and so must be universal on F', a contradiction. |

Corollary 2.2. Let (Fy, Fy, Fs,...) be a sequence of graphs such that F;
does not contain a universal vertex for each i. Then CLUSTER DELETION
remains NP-hard on the class of (F1, Fa, F3,...)-free graphs.

Since each of Cs, Ps,2K5,3K7 does not have a universal vertex, it fol-
lows that the constructed instances of CLUSTER DELETION from Natanzon’s
proof are also free of these subgraphs when the original CLIQUE instance is.
Thus we have:

Corollary 2.3. CLUSTER DELETION remains NP-hard on (Cs, Ps)-free graphs
and on (2K3,3K1)-free graphs.

Shamir et al. [130] showed that CLUSTER DELETION is still hard when
enforcing that the input graph be deleted into exactly d > 3 components.
They also showed that when deleting to exactly d = 2 components, the
problem is polynomial time solvable.

Although [87] [36] prove that CLUSTER DELETION is hard for graphs with
maximum degree 4, it also gives a O(n!?® log? n) polynomial time algorithm
solving CLUSTER DELETION on graphs with maximum degree 3.

The above results explore the boundary of where the CLUSTER DELE-
TION goes from being NP-hard to being polynomial time solvable. In light
of the results which use polynomial time solvability of certain subclasses
in the design of general exponential-time algorithms, classifying the polyno-
mial time instances of CLUSTER DELETION proves to be of great algorithmic
importance while additionally being an interesting investigation in its own

right.
The CLIQUE problem is known to be polynomial time solvable on perfect
graphs [08] and thus all of its subclasses. As mentioned earlier, CLIQUE re-

mains hard on (Cj, Ps)-free graphs and thus CLUSTER DELETION is hard on

24

2.3. Cluster Deletion

(@) g (b)
(©)
O/O_O\O O—O—O@
d O (e)

Figure 2.2: (a) bull; (b) 4-pan; (c) fork; (d) gem; (e) co-gem; (f) co-4-pan.

this graph class as well. Another class (call it Z-class) defined by forbidding
all of (C5,Ps, bull, 4-pan, fork, co-gem, co-4-pan) is a superclass of cographs
(see Figure 2.2). This class restricts 7 of the 10 possible ways a vertex can
join a Py. Since every forbidden graph in the list defining the Z-class has
no universal vertex, the following lemma shows that CLUSTER DELETION
remains hard on Z-graphs.

Lemma 2.4. CLIQUE remains NP-hard on class Z.

Proof. Let G be a graph with m edges. Solving independent set on G is
NP-complete. Following Poljak [120], construct graph F which replaces
every edge of G with a 3-edge path. This is called a 2-subdivision of G.
Note that a(F) = a(G) +m . So finding a(F) will find a(G) and shows
that independent set is NP-complete on 2-subdivision graphs. Now a 2-
subdivision cannot contain a C5, 4-pan, co-4-pan, bull, gem, co-fork, or a
co-P5 as an induced subgraph. So 2-subdivisions are a subclass of co-Z, and
so independent set is NP-complete on co-Z. Therefore clique is NP-complete
on Z4 |

2.3.2 Cluster Deletion on Cographs

A clique partition of a graph G is a partition CP = {V1,Va,...,V;} of
the vertex set such that each V; € C'P induces a clique in G. Note that
CLUSTER DELETION can be rephrased to ask for a clique partition such
that the sum of the number of edges that join V; to V; over all @ # j, is a
minimum. For this reason, CLUSTER DELETION has also been studied under
the name of the minimum edge clique partition problem [33]. A greedy max

4Using the same reasoning, the result remains true if the graphs co-Cs, co-C7 and co-Cs
are added to Z.

25

2.3. Cluster Deletion

Figure 2.3: A Cy-free graph for which an optimal min edge cluster partition
does not contain the maximum clique in a single part of the partition.

clique partition of a graph G is a clique partition {Ay, As, ..., Ax} where A
is a maximum clique of G, and A; is a maximum clique of G\ U;;ll Aj.

Note that greedily selecting maximum cliques does not necessarily yield a
minimum edge clique partition in general. Figure 2.3 depicts a graph which
is a (K3,(04,C5)-free graph where choosing the unique maximum clique
(which is induced by the set B U C' in the diagram) and then the remaining
two cliques (one induced by A and the other induced by D) yields a clique
partition which realizes the cluster deletion solution of deleting the 6 edges
joining A to B and the 6 edges joining C to D, for a total of 12 edge
deletions. However, AU B is a clique and C'U D is a clique, and choosing
those two cliques is equivalent to a solution to the cluster deletion problem
which deletes the 9 edges joining B to C.

The (K3,C4,C5)-free graphs is a fairly small subclass of Ps-free graphs,
so it is rather remarkable that we have the following theorem:

Theorem 2.5. [50] If G is a Py-free graph, then the minimum edge clique
partitions of G are precisely the greedy clique partitions of G.

The proof of this theorem is not included here but can be found in [506].
Although following the details of this proof is rather arduous, it results in a
truly simple algorithm for solving cluster deletion on cographs.

26

2.3. Cluster Deletion

2.3.3 Algorithms

We present here the simple algorithm for solving cluster deletion on
cographs in polynomial time, as implied by Theorem 2.5.

Algorithm 3: Cluster deletion algorithm on cographs.
Algorithm CLUSTERDELETION(G):
Input: A cograph G = (V, E)
Output: A set of edges S C F such that G — S is a cluster graph.

S <+ 0;

while |V(G)| > 0 do
Choose a maximum clique C' of G;
For every edge cx with ¢ € C and x € G — C, add cx to S}
Remove C from G;

end

return S;

This routine can be used to improve a bounded search tree method for
solving CLUSTER DELETION on general graphs. In particular, it can be used
as a realization of Phase 2 of Algorithm 5 (Chapter 5).

We illustrate a trace of this algorithm performed on a cotree represen-
tation of a cograph. For completion, we quickly describe cotrees here.

Definition 2.6. A cotree of a cograph G is a rooted tree representation T'
of G where every vertex of G appears as a leaf node of T" and the internal
nodes of T are labeled either 0 (for disjoint union) or 1 (for complete join).
For every two vertices u,v of G, if uv is an edge then the lowest common
ancestor node in T of the leaf nodes u and v is a 1 node, and is 0 in the case
that v is not adjacent to v.

The 0-nodes can be thought of as a disjoint union of all the subgraphs
rooted at the children of the 0-node. The 1-nodes can be thought of as a
complete-join between all the subgraphs rooted at the children of the 1-node.
See [31] for a linear time algorithm for constructing a cotree of a cograph.

To obtain a maximum clique of a cograph, we process the tree bottom-up,
by first labeling each node with weight 1, and then every 0-node is labeled
with the maximum weight of its children and every 1-node is labeled with
the sum of the weights of its children. To make the cotree data structure
more conducive to our need of finding maximal cliques, let a 0-node point
towards its children achieving the maximum weight among all its children.
The size of a maximum clique in a cograph is then the label assigned to

27

2.3. Cluster Deletion

SR

AN
| A KA
02080

Figure 2.4: A cotree (left) and its corresponding cograph (right).

the root. To find the nodes of the maximum clique, from the root one can
traverse down each branch from a 1-node and just a single branch that is
oriented away from each 0-node, and all leaves reached are the nodes of a
maximum clique.

A cotree can be updated when vertices are deleted from a cograph simply
be deleting the corresponding leaf nodes of the cotree. When an internal
node N of the cotree has 0 children, IV can also be deleted. If N has a single
child which is a vertex (leaf) z, then z can be made a child of the parent
node of N and N can be deleted. If N has a single child which is another
internal node N’, then the children of N’ can be made children of the parent
node of N and both N and N’ can be removed.

Since the internal nodes will always have 2 or more children, the number
of internal nodes of a cotree will always be less than the number of leaf
vertices, and so computing the maximum clique size labels is a linear time
process.

Figure 2.5 shows the process of removing the maximum clique and reduc-
ing the cotree from a graph on 11 vertices and 45 edges. The first maximum
clique found is of size 7, thus containing (g) = 21 edges in it. Once the
maximum clique is extracted and the cotree is reduced, we find a clique of
size 4 containing 6 edges. This implies the minimum size of a set of edges
solving Cluster Deletion on this graph is of size 45 — 21 — 6 = 18.

When using a bounded search tree techniques (see Chapter 5), we bound
and prune the search tree based on the numerical size of the solution, and
so computing the number of edges not involved in the greedily-extracted
maximum cliques (by arithmetic) is all that is needed to use this algorithm
as a subroutine for a general search. Constructing the actual edges in the
solution set would require multiple adjacency tests, each taking O(log (n))
time.

28

2.3. Cluster Deletion

Figure 2.5: (a) The original cotree with labels on the internal nodes indicat-
ing the max clique size below it. (b) Identifying the nodes of a maximum
clique from the root by following oriented edges downward. (c¢) The cotree
after the vertices of the maximum clique are removed. (d) The cotree af-
ter removing interval nodes with O children. (e) The cotree after removing
internal nodes with 1 child.

29

2.4. Quasi-Threshold Graphs as Communities

‘/\o&

Figure 2.6: Two equally-weighted Figure 2.7: A community satis-
outcomes of modifying a graph to fying Freeman’s transitively over-
a closest (Py, Cy)-free graph. lapping clique condition (left) that

is not hereditary. Removing the
two filled vertices yields a graph
(right) which no longer satisfies
the definition.

2.4 Quasi-Threshold Graphs as Communities

We define a new community structure by generalizing cluster graphs
through local structure. Rather than each community being a clique as in
the case of cluster graphs, we relax that definition so that our components are
family-like structures. As in the case of cluster editing where communities
are found by finding a closest Ps-free graph, we find familial groups of a
network by finding a closest (Py, C4)-free graph.

Definition 2.7. The familial groups of a network G are the connected
components of a closest (Py, Cy)-free graph.

The measure of what a “closest” network can vary, but following the
paradigm of the cluster editing problem, we shall use the measure of total
edge additions plus edge deletions. These are collectively referred to as edge
edits.

Since there are several ways to “destroy” a P, or C4 with edge edits, the
resulting decomposition may not be unique (but this is a reality in Ps-editing
for correlation clustering, and many other community-finding methods as
well). An example of two different outcomes of editing a given graph with
an equal number of edge edits is shown in Figure 2.6. Under a framework of
weighted modifications, for instance, a cost of « for adding an edge and 3 for
deleting an edge, one could weigh one decomposition better than another.
For instance, if we were interested more in seeing how a network decomposes
into groups, we would set a > 3, and vice versa if we were more interested in

30

2.4. Quasi-Threshold Graphs as Communities

RN

Figure 2.8: (left) A quasi-threshold graph; (center) A tree arrangement of
the graph on the left; (right) The comparability tree of the quasi-threshold
graph on the left

seeing how individuals in a community are organized. Weights on individual
edges with perturbations can ensure a unique optimal decomposition into
familial groups if desired. Here, we only consider « = 8 = 1 and we are
interested in modifying networks using as few modifications as possible.

2.4.1 Properties of Familial Groups

In the following subsections, we give support to the idea that a quasi-
threshold graph (a (Py, Cy)-free graph) is an ideal structure for networks
composed of family-like or hierarchically-organized communities.

Hierarchical Representation of Familial Groups

Quasi-threshold graphs have many characterizations and properties (see
Section 1.3.2 for details) but we will be mainly interested in the forbid-
den induced subgraph characterization and the rooted tree representation
of quasi-threshold graphs, which we describe here.

Every quasi-threshold graph G can be arranged into a forest-like struc-
ture (a set of tree-like structures) in which every vertex is adjacent (in G) to
every descendant in the tree. In particular, the root of a tree 1" is adjacent
(in G) to every vertex in T', and there does not exist an edge joining two
vertices in separate trees. An example of a quasi-threshold graph and its
associated comparability tree are given in Figure 2.8. Note that every leaf
in a tree is adjacent to all of its ancestors and that every set of vertices along
a root-to-leaf path forms a maximal clique of the graph.

In the graph in Figure 2.8, vertex 5 is a universal vertex (a vertex adja-
cent to every vertex). It is the root of the associated tree. The rest of the
vertices form two connected components: {4} and {1,2,3,6}. In the compo-
nent {1,2,3,6}, vertex 2 is universal and is the root of the subtree consisting

31

2.4. Quasi-Threshold Graphs as Communities

of vertices 1,2,3, and 6. The other subtree consists of a single vertex 4. In
the subtree rooted at 2, the positions of 1 and 6 can be interchanged with
each other arbitrarily because they are structurally equivalent. In this ex-
ample, the whole network is a familial group. If vertex 5 is removed from the
network, then we will have two separated smaller familial groups {1,2,3,6}
and {4}. In turn, after removing vertex 2 in the group {1,2,3,6}, we will
get two even smaller familial groups {1,6} and {3}.

Quasi-threshold graphs are natural structures that arise from modeling
certain applications. For instance, if a graph is created on a set of species
such that an edge is drawn between two species if and only if they have an
ancestor/descendant relationship, then the graph created will form a quasi-
threshold graph if the information obtained was error-free. Another example
is that of a corporate structure in which every employee (except one) has a
direct supervisor, and that commands can be passed to an employee from
her supervisor or her supervisor’s supervisor, etc. When an edge is joined
between any two individuals on which a command can pass, the resulting
graph is a quasi-threshold graph.

Familial Groups as Robust Communities

Freeman [51] gave a definition for social community which uses the idea
of clique overlaps. Two cliques overlap if they intersect in at least one vertex.
The definition [54] can be summarized as follows: a set of maximal cliques
C1,C5,Cs, ..., % which induces a connected graph forms a community if
the cliques C; overlap transitively. That is, for any three cliques C;, C;, Cy,
if C; overlaps C; and C; overlaps C}, then C; and C}, must also overlap.
Freeman rationalized his definition by stating that an individual should be
contained in a single community (that is, a network should decompose into
disjoint communities), that it generalized cliques, and that it is applicable to
networks in which only relationships (of unknown strength) between pairs
of individuals was known. That is, his definition applies to undirected and
unweighted graphs.

We will enforce a level of robustness to this definition of community to
create a tighter definition of community. The removal of any vertices from
a graph G leaves behind a graph H which is an induced subgraph of G.
The robustness we impose can be stated as follows: a set of vertices S will
form a familial group if S and every connected induced subgraph of S sat-
isfies the above transitively-overlapping clique property. Socially speaking,
the community remains intact if the removal of any number of individuals
leaves the group connected. Or, in the case that some “important” individ-

32

2.4. Quasi-Threshold Graphs as Communities

uals leave the community and disconnect it, then the remaining connected
components will themselves form smaller communities. An example of a
community which satisfies Freeman’s transitively-overlapping clique prop-
erty, but not hereditarily, is depicted in Figure 2.7.

We show that simply requiring Freeman’s transitively-overlapping clique
condition to be hereditary yields a formulation of social community which
exactly corresponds to connected (Py, Cy)-free graphs.

Theorem 2.8. A connected set S of vertices satisfies Freeman’s transitively-
overlapping clique condition in every connected induced subgraph if and only
if S induces a connected (Py, Cy)-free graph.

Proof.
If S satisfies the transitively-overlapping clique condition for every induced
subgraph, then it cannot contain an induced path on 4 vertices abcd since
each edge is a maximal clique while ab overlaps with bc and bc overlaps with
cd, but ab does not overlap with cd. Similarly, it cannot contain an induced
cycle on 4 vertices abeda for the same reason. So any graph satisfying the
transitively-overlapping clique condition must be (Py, Cy)-free.

Conversely, if a connected graph S is (Py, C4)-free, it must have a vertex
u which is adjacent to all other vertices in S [1416]. Since there is such a
universal vertex u in every connected component of a (Py, Cy)-free graph,
every maximal clique in a connected component must include u, and so all
maximal cliques in the connected component overlap, at least on vertex w.
Consequently, the cliques overlap transitively. O

Familial Groups as an Extension of Triadic Closure

Some sociometric data not only measures when two objects are related,
but also measures the strength of the tie between them. In 1973, Granovet-
ter [67] formulated:

The Weak-Tie Hypothesis: if a is strongly tied to b and a is strongly
tied to ¢, then it is more likely than not that b and c are at least weakly tied
to each other.

Granovetter observed that the weak-tie hypothesis can be used to assert
that the most unlikely triad to appear in a social group is when a is strongly
tied to b and a is strongly tied to ¢, while b and ¢ have no social relation
between them. He goes on to propose a graph edit operation called triadic
closure which adds at least a weak tie between b and c. In the framework of
unweighted edges, this is exactly the condition that a social group is Ps-free
as discussed previously.

33

2.5. Hardness of Finding Familial Groups

We generalize the forbidden restriction on triads to forbidding certain
configurations on 4 nodes, the Py (which contains two induced Pss) and the
C4 (which contains four induced Pss).

An intuitive argument further supports the restriction of long induced
paths or cycles from social communities. A close-knit community should
have relatively low diameter, and the existence of two vertices of geodesic
distance d from each other would imply the existence of an induced path of
length d. Thus a social community should be Py-free from some relatively
small value of d. An argument against the existence of induced 4-cycles in
communities is that if a is tied to b, b to ¢, ¢ to d, then d tied to a, it is
highly likely that a will get to know ¢ or b to know d. That is, ac and bd are
highly-likely chords in the cycle abeda. As such, it is reasonable to expect
social communities to be Py-free and Cy-free for relatively small values of d.

While we will be concerned with (Py, Cy)-free graphs here, larger and
more relaxed communities could be identified if the focus is changed to
(Ps, Cs5)-free graphs or (Ps, Cy, C5)-free graphs.

Friedkin’s Horizon of Observability

In 1983, Friedkin [55] studied the observability between two actors of a
network, loosely defined as whether one actor knows what the other actor
is doing. He writes that in a social control system, observability is a prereq-
uisite for control and that for nonadjacent nodes in such a network, control
must be indirect and can exist if and only if an observer can gain informa-
tion from a node some distance away and that reactions can be somehow
transmitted through intermediate nodes.

Friedkin states two hypotheses: (i) that observability declines with dis-
tance between two nodes, and (ii) likelihood of observability between two
particular nodes increases with the number of shortest paths between them.

2.5 Hardness of Finding Familial Groups

If G is a graph and S is a set for which S C E(G), we use G — S to
mean the graph (V(G), E(G) \ S). Similarly, when T is a set of vertex pairs
which are not in G, we use G + T to mean the graph (V(G), E(G)UT(G)).
When S and T are disjoint sets of pairs of vertices, note that G — S + T
is equivalent to G 4+ T — S. The computational problem of finding familial
groups of a network is as follows:

Problem 4. Quasi-Threshold Editing(G,k): Given a graph G and an
integer k, is there a set S of edge deletions and a set T' of edge additions

34

2.5. Hardness of Finding Familial Groups

such that |S|+ |T| < k and G — S+ T is (Py, Cy)-free?
The quasi-threshold edge-addition problem has been studied in [70] and

the quasi-threshold edge-deletion problem in [108]. To our knowledge, the
quasi-threshold editing problem has not yet been studied directly.
Given any graph as input, the algorithm of [23] decides in linear time

(O(m + n)) whether the input is quasi-threshold and in the case that it is
not, a P4 or a C4 will be produced. The computational status of the problem
of finding the closest quasi-threshold graph (in terms of the number of edge
modifications) was stated as an open problem in [18], and then in [102], and
again in [97]. We resolve this open question by showing that this problem
is NP-complete by observing some extensions to a theorem in [97].

Theorem 2.9. Quasi- Threshold Editing is NP-complete.

[13] proved that Cograph Deletion is NP-Complete by a reduction from
Exact 3-Cover. [97] used the same construction to show that Cograph Edit-
ing is NP-Complete by strengthening the proof used for Cograph Deletion.

A quick description of the proof, without the details, is as follows: the
reduction from Exact 3-Cover used by [97] to show that Cograph Editing
is NP-complete constructs a graph G* which is also Cy-free. The optimal
edge-edit set for G* that destroys all Pys does not produce any Cjy.

Since every quasi-threshold graph is a cograph, the number of edits re-
quired to the closest quasi-threshold graph is at least the number of edits
required to obtain the closest cograph.

An algorithm solving quasi-threshold editing, applied to G*, would de-
stroy the P4s (and not have any C4s to worry about, as observed above) and
would thus provide a solution to the instance of Exact 3-Cover.

The complete details of this proof are now provided.

Proof of Theorem 2.9.

We use the same construction and notation as those in [13], which was
also used by [97].

Let S = {s1,89,...,8,} and C = {51, 52, 953,...,S,} be an instance of
Exact 3-Cover. Since each set S; € C contains three elements from S, an
exact 3-cover of S would use exactly 5 sets from C, as the Exact 3-Cover
problem requires that each s; is covered exactly once. We let n = 3t and
r= (3;) Construct an instance of quasi-threshold editing as follows:

- Each s; is a vertex, and the set S of these induces a clique.
- For every S; € C, create two cliques X; and Y; such that | X;| = r and
|Y;| = q, where ¢ = 9(m — t)r + 3(r — 3t).

35

2.5. Hardness of Finding Familial Groups

Y, Y Ys [XX X] Y.
X1 X2 X3 (XX X) X'"
S = { S3 Sz S3 Sa Ss S6 0000 Sn }

Figure 2.9: An instance of Quasi-Threshold Editing when reduced from an
instance of Exact-3-Cover having S; = {s1,s2,54}, S2 = {s2,s3,s5} and
S3 = {s4, 85,86}

- Each of the three elements s, sy, s. of S; is adjacent to every z € X;
and every x € X; is adjacent to every y € Yj.

- No other edges exist in this graph.

The parameter to this instance of quasi-threshold editing is k = 4 =

3(m —t)r + (r — 3t). This construction is depicted in Figure 2.9. ’

We note that if the instance of Exact 3-Cover is nontrivial (if some s;
exists in at least two 3-sets) this constructed graph is not a quasi-threshold
graph since there are many Fys, for instance, starting in some Y;, adjacent
to a vertex in Xj, adjacent to s;, and adjacent to another Xj. There are no
induced Cys in this graph, however.

First, we prove that if we have a solution to the Exact 3-Cover instance,
we can find at most k£ edge edits to turn this constructed graph into a quasi-
threshold graph. Say that C’ is a collection of ¢ subsets of C such that the
union of subsets in C’ is S. For every pair s; and s; in S, delete the edge
joining s; and s; if they do not coexist in a 3-set S; in the solution C’. These
amount to r — 3t edge deletions. Further, delete any edges from an X; to S
if S; is not in C’. This adds another 3(m — t)r deletions. In total, this gives
3(m —t)r +r — 3t = k edge edits, resulting in a (Py, Cy)-free graph.

Note that a quasi-threshold editing set of size at most k is also a cograph
editing set of size at most k. The same argument used in [97] can be used

36

2.5. Hardness of Finding Familial Groups

to show that the editing set contains edge deletions only. For the sake of
completeness, we include the proof here.

Assume we have a quasi-threshold editing set E’ of size at most k, where
E' is a set of vertex pairs of G* (if uv € E’ is an edge of G*, this represents
an edge deletion; if uv € E’ is not an edge of G*, this represents an edge
addition). The modified graph G’ = (V(G*), E(G*)AE’) is (P4, Cy)-free,
where A denotes the symmetric difference of sets. Call a vertex affected if it
is a vertex with at least one incident edge that was modified by the k-edge
edit set E’. Since each edge edit is incident on two vertices, there are at
most 2k affected vertices.

Since |Y;| = 9(m — t)r + 3(r — 3t) = 3k > 2k, each Y; set contains an
unaffected vertex. We show that the edge edit set E' does not contain any
edge additions.

Claim 1. E’ contains no edge from X; UY; to X; UY].

Proof.
Assume there is an edge u = v;v; from X; UY; to X; UYj, with ¢ # j as
X; UYj is already a clique. Then let y; € Y; and y; € Y; be unaffected
vertices. Since v; and v; are affected by u, they are distinct from y; and
yj. It is readily seen that y;v;v;y; is a Py, contradicting the fact that G’ is
quasi-threshold, so there can be no such edges. Il

Claim 2. Every vertex s; in G’ is adjacent to vertices of at most one X;.

Proof.
Assume s; is adjacent to z, € X, and x, € X, where p # ¢. From the
previous claim, z,, is not adjacent in x4 in G’. Let y € Y}, be an unaffected
vertex. Then y,x,siz, is a Py, contradicting the fact that G’ is quasi-
threshold. O

Claim 3. If in G’ we have that s; is adjacent to X, and s; is adjacent to X,
with p # ¢, then E' must delete the edge s;s;.

Proof.
Since the previous claim shows that each s; is adjacent to at most one of
the X;, we have that s; is adjacent to X, and so cannot be adjacent to Xj.
Similarly, s; cannot be adjacent to X,,. Since the first claim shows there is
no edge from X, to X,, we have a P4 from X, to s; to s; to X, unless s;s;
is a deleted edge. O

Claim 4. Every set X; has neighbour s; in the modified graph G'.

Proof.
The total number of edges in G* joining | J X; to S is 3rm, and Claim 2

37

2.5. Hardness of Finding Familial Groups

implies that the edited graph G’ has at most rn edges which join J X; to
S, which means that at least 3rm —rn = 3rm — 3rt = 3(m — t)r edges were
removed by E’.

Since the size of the edit set is |[E'| < k = 3(m — t)r + r — 3t edges and
we have described at least 3(m — t)r deletions in E’, we have at most r — 3t
edits unaccounted for, which is less than the size of any X; since |X;| = r.
Thus every X; is adjacent to some s; € S. d

Corollary 2.10. The number of edge edits which are not of the form sx for
some s € S and v € |JX; is at most r — 3t. In particular, the number of
edge edits in | J(X; UY;) is less than r = | X;].

Claim 5. If E' is a minimum edge edit set, then E’ does not add any edge
from Y; to s;.

Proof.

Assume there is some y; € Y; that is adjacent to s; in the modified graph
G'.

Firstly, assume that there is set B C S of vertices s, such that s; is
adjacent to s; in G’. Then since every Y; has an unaffected vertex y;, we
have a Py = y;y;sjsp for each s; € B and so y;s, would also have to exist
in E’. If this occurs, removing y;s; and every y;s; for each s, € B from E’
and adding the deletion s;s, would decrease |E’| by 1, contradicting the fact
that |E’| is a minimum.

Now we can assume s; is not adjacent to any other s, € S'in G'. If s; is
adjacent to X;, then the connected component containing s; in the graph G’
must be the induced graph on vertex set Y; UX;U{s;}. So if edge y;s; € E,
then this edge can be removed from E’, yielding a smaller edge-edit solution,
since the graph induced by Y; U X; U {s;} in G is already (P, Cy)-free.

On the other hand, if s; is adjacent to some X, where p # ¢ then consider
an unaffected vertex y, € Y,. Using a vertex x, € X, which is adjacent to
sj as well as y,, we find the Py y,2,5;;.

Finally, if s; is not adjacent to any vertex of any X; in G’, then there
is a Py sjy;xisq in the case that X; is adjacent to s4, or else {s;} UY; U X;
is a connected component in G’, and the added edge from s; to y; can be
removed from E’ yielding a better edit set. (Note that there is some x; for
which y;x; is not an edge deletion in E’ by Corollary 2.10.) U

Claim 6. If E' is a minimum edge edit set of G such that the modified graph
G’ is quasi-threshold with |E’| = k, then E’ has no edge additions.

Proof.

38

2.5. Hardness of Finding Familial Groups

This follows from the previous set of claims, and we summarize these
here.

There is no edge added from any X; UY; to any X; UY; by Claim 1.
There is no edge added from any Y; to any s; € S by Claim 5. There is no
edge added from any s; € S to an X since each X; is adjacent to exactly
one sp, and these edges are in G* (before applying the edits E’) by Claims 2
and 4. And finally, there cannot be any edges added from some s; to some
sj for i # j since all such edges exist in G*. O

Claim 7. If E’ is an edge edit set of G* such that the modified graph G’ is
quasi-threshold with |E’| = k, then we can find a collection C" of t 3-sets
which is an exact cover of S.

Proof.

Recall that S = {s1, s2,...,8,} and C = {51, 52, 53,...,Sn}. The proof
of Claim 4 shows that the edited graph had at least 3(m —t)r deletions from
S to |JX; and so at most nr edges remain of the form sz with s € S and
x € UXz

We must now describe the other (at least) k—3(m—t)r = r—3t deletions.
Claim 3 deletes every s;s; when s; is adjacent to some z, € X, and s; is
adjacent to some x, € X, with p # ¢. Since S induces r edges in the
original graph G*, and we have (at least) r — 3t other deletions, we have
that S induces (at most) 3t edges in the edited graph G’, and this maximum
is obtained only when S induces a disjoint union of ¢ triangles in G’ such
that each triangle is a triplet of vertices of S each belonging to one set in
C. This partition provides a subset of X; sets which cover each s; exactly
once, giving our exact cover. Il

This completes the proof of Theorem 2.9, as we have provided a polyno-
mial time reduction from EXACT 3-COVER to QUASI-THRESHOLD EDITING.
O

2.5.1 Algorithms for Familial Groups

From the finite forbidden induced subgraph characterization of quasi-
threshold graphs, the problem of modifying a graph to a closest quasi-
threshold graph is fixed-parameter tractable when using either edge addi-
tions or deletions or both [19]. The trivial algorithm for quasi-threshold
editing considers all possibilities of adding/deleting an edge between each
pair of vertices in a forbidden P, or C4, and so finding a closest quasi thresh-
old graph with k edits runs in O*(6%)-time, where the notation O*(f(n, k))
means O(f(n, k)p(k,n)) for some polynomial p.

39

2.5. Hardness of Finding Familial Groups

Figure 2.10: A graph which is 2 edge edits away from a quasi-threshold
graph, with no single edge edit which reduces the total number of forbidden
subgraphs.

The similar problem of modifying a graph to a quasi-threshold graph
using only edge deletions is throughly discussed in Chapter 5.

For computational feasibility, we combined the above bounded search
tree method with greedy edge-edit choices according to the measure of count-
ing the total number of induced P,s and Cys in the graph. By testing every
possible edge-addition and every possible edge-deletion, we (greedily) chose
the edge edit that resulted in the largest improvement (that is, the largest
decrease) in the total number of induced Pys plus the number of induced
Cys in the graph. Greedy choices were made until the brute-force exact al-
gorithm was able to execute on the modified graph within reasonable time.

We note here that only using greedy choices as described above may
result in a process that cycles without reaching a quasi-threshold graph. In
Figure 2.10, there are four P;s with an endpoint in {a,b} and the other
endpoint in {¢,d}. This graph is not quasi-threshold, and can be turned
into a quasi-threshold graph by deleting the two edges ax and bx. However,
any possible single edge edit will increase the total number of obstructions,
and so the above greedy method would choose an edge edit with 0 net-gain
over one of the edges ax and bx as removing ax or bx would create more Pys
than it would destroy (deleting ax would destroy two P4s but introduce 4
new ones: abx{u,v,w,y}, where abxS denotes the set abxs for each s € S.
For completion, we report the net gain of the remaining edge edits: bz, cy, dy
all have net improvement of -2 for symmetric reasons to the ax removal. A
deletion of an edge joining {u,v,w} to {x,y} has score 0, as does adding
an edge inside {u,v,w}. Adding an edge from any of {u,v,w} to any of

40

2.5. Hardness of Finding Familial Groups

Figure 2.11: The degree of an actor does not determine its social rank.

{a,b,c,d} will only create P4s without destroying any, so they also have
negative improvement scores. Deleting xy would destroy the 4 original Pys
but would introduce 12 new ones. Adding an edge of the form {a,b}y or
{¢,d}x causes a net gain of +3 obstructions. Adding an edge from {a,b}
to {c,d} destroys just one Py but adds 9 Pys, along with a C4. This shows
that an edit (such as removing ab) with net improvement of 0 would be
chosen by the greedy process, and the edit can be toggled repeatedly. If we
restrict ourselves from undoing an edge edit, the result can still be poor due
to deleting a large number of edges of 0 score without making progress (such
as deleting an edge of a trivial 2-vertex component).

Observe also that the discussion in the previous paragraph shows that
Figure 2.10 also serves as an example that a similar cograph-editing greedy
process may suffer from the same non-termination. We stress, though, that
our implementation utilized the greedy process only while significantly large
improvements were being made, and that the brute-force (optimal) search
replaced the greedy process once its computation was feasible.

In the next section, we analyze a selection of social networks by comput-
ing an approximate closest quasi-threshold graph with this combined search
and greedy heuristic method.

2.5.2 Intra-communal Ranking

The importance of individuals to a network or a subnetwork is often
measured by means of various vertex centrality metrics. These range from
simple local properties such as vertex degree to global properties such as
betweenness centrality.

41

2.6. Case Studies

The actors in a connected component of a quasi-threshold network nat-
urally arrange themselves in a rooted tree representation. This correspon-
dence can be used to extract an importance measure of each actor within
the community. Intuitively, the root or top-most vertex of a familial group
is the most important node and the others are ranked by virtue of the fact
that each node can be regarded as the root of a subtree. The size of a sub-
tree under an individual will be the relevant measure of importance here,
rather than a metric such as vertex degree.

For instance, in the quasi-threshold community in Figure 2.11, vertex 6
has degree 5 and “oversees” 2 others, while vertex 3 has a lower degree of 4
but oversees 3 others. We perceive vertex 3 to have a more important role
than vertex 6 in this community.

Hence, we define the intra-communal rank of a vertex v in a quasi-
threshold community to be the number of vertices beneath v in the corre-
sponding comparability tree. In the case that M vertices are structurally
equivalent within the community in such a way that these M vertices all
oversee d vertices beneath them in any associated comparability tree, then

these M vertices can be given an intra-communal importance score of d +
M-1

7
This quantitative measure of intra-communal rank is merely one way to

assign a value to a vertex that captures how important it is in its familial
group. There are many possible ways such a measure could be defined, and
an appropriate quantitative function is perhaps a topic for future research.

2.6 Case Studies

We present some example networks from the literature and the implied
communities from a close quasi-threshold graph we computed.

2.6.1 Zachary’s Karate Club

Zachary [150] studied the social relationships between individuals in a
university karate club. The club suffered a division which split the club
into two, and it was observed that the split very closely corresponded to a
min-cut that separates the two opposing individuals of largest influence. A
minimum cut (G, s,t) is a smallest set of edges of G such that the removal
of this edge set will leave nodes s and ¢ in different components.

The method of [62] for hierarchical clustering predicts roughly the same
partition that Zachary observed after the karate club experienced its so-
cial fission, with the exception of vertex 3 being misclassified. The familial

42

2.6. Case Studies

chac.e’?‘aﬁ'°gd Cchepa ot cem o
5 KT
Oldién [
\
ahD cheleyent
=

7
, ‘.!//,;A gy
; ng@'wr“
. S e ‘/d&'ﬂ@
AA/«AA | .

7B

7
=

74cheviie

i abarrq
= A \

X
a8

4

i)

Mﬁn
Anzelma

romye Mo

Figure 2.13: (top) Characters in the novel Les Misérables. The network
is drawn in Cytoscape’s spring embedding, while the approximated familial
groups are distinguished by vertex shape and shading; (bottom) The familial
groups found from the top network. The bold dashed lines represent edge
additions, and deleted connections are not shown.

44

2.6. Case Studies

SIomjeu urgd[op 97} Ul PUNOJ SOI}IUNWIOD Ploysalyl-Isenb o) jo
soa1y Afiqereduod Surpuodseriod oy, (SLI) (SUIpRYS YIep puR ‘OUI[INO IDIY] Y)m SuIpers JYSI| ‘Surpeys 31|
UMM UMOUS oI puUnoj sdnoid [er[iure] urewl 991y} 9y, 'So[SUeLI} se poajoldop ole I9pPUsS UMOUNUN JO S[RNPIAIPUI

9011} pue ‘sodeys-orenbs ore sorew ‘podeySs-o[OIId OIR SO[RMID,] ‘SUOIjRIdOsSe UId[op Jo y10Mm)oN (3JO]) :F1°g oInSI

Qe & ® @
® & ®
® e e

45

2.6. Case Studies

groups of the karate network identified by our approach are depicted in Fig-
ure 2.12 (top), where dashed lines represent edges from the network that
were deleted and bold dashed lines represent new edges added in order to
find the closest quasi-threshold graph. The obtained quasi-threshold parti-
tion groups the network into two groups, equivalent to the first two groups
produced by the Girvan-Newman method. This network shows 21° edits,
and this is optimal®.

An interesting result of the tree structures revealed by our approach for
the two groups is that it predicts exactly two distinct components with roots
of vertices 1 and 34, while Zachary’s method had begun with knowing that 1
and 34 are the conflicting leaders and found a minimum cut that separated 1
and 34. Sub-communities of the two major communities can be identified as
subtrees of the quasi-threshold tree. Consider the removal of vertex 1: this
leaves subtrees of {12}, {5,6,7,11,17}, {2,3,4,8,13,14, 18,20, 22}, which
imply overlapping subcommunities when vertex 1 is regarded as a member
of each of these subcommunities. We observe the similarity in the results im-
plied by the dendrogram of Girvan and Newman, identifying a second-level
community of {5,6,7,11,17} as well, and vertex 12 quickly being separated
from the remaining network. The larger of these three further decomposes
into overlapping subcommunities when looking under vertex 2, and these
communities are {1,2,18}, {1,2,22}, {1,2,20}, and {1,2,3,4,8,13,14}.

2.6.2 Communities in the Les Misérables Network and
Character Importance

Les Misérables is a 19™-century novel by Victor Hugo containing 5 parts

(or volumes) broken into 70 chapters. A network of 77 major and minor
characters in the novel was constructed in [$5] by joining two individuals
with an edge if they exist in a chapter together.

Figure 2.13 shows the Les Misérables network and the computed familial
groups. The familial groups found are distinguished by node shape and
shading. The quasi-threshold graph obtained, after 64 edge edits, consists
of three large nontrivial components and several smaller ones. The predicted
leaders (roots) of these three components Jean Valjean, Marius Pontmercy
and Fantine with implied intra-communal scores 27, 19, 10 (respectively),
are key characters in the novel as is witnessed by the fact that their names

®We would like to thank Yarko Senyuta for noticing the error published in [110] where
only 20 edits are reported.

5We thank Yarko Senyuta for verifying the optimality of this solution by showing that
no solution exists in a bounded search tree of depth 20.

46

2.6. Case Studies

are titles to 3 of the 5 volumes. This quasi-threshold graph correctly isolates
only minor characters into trivial groups.

2.6.3 Lusseau’s Dolphin Network

Lusseau [101] studied a population of dolphins over a period of 7 years,
building the social network depicted in the left-side network of Figure 2.14
by joining an edge between two dolphins if they were observed together
significantly more often than was statistically expected. The community
structure of this network was studied in [113], where the main community
was identified as predominantly female and the male community split into
two upon a temporary disappearance of several individuals.

Using 75 edge edits, our closest quasi-threshold graph found for the dol-
phin network is shown in the right-side of Figure 2.14. Our familial grouping
supports the observed communities: it shows three main groupings, one of
which is almost entirely female while each of the other two are mostly male.
The remaining 15 dolphins are shown in the network as white nodes.

The number of small or trivial components in the edited dolphin network
seems to be uncharacteristic of these edited networks, which may be con-
cerning at first glance. But according to Lusseau’, these bottlenose dolphins
do not form hierarchies the same way as other social systems.

2.6.4 Grassland Species

The top network of Figure 2.15 is a network of grassland species interac-
tions built in [37], and its hierarchical community structure was analyzed in
[27]. The network contains 1007 induced obstructions (Pys or Cys) and we
produce a quasi-threshold graph that is 34 edge edits away from it, depicted
on the bottom of Figure 2.15. Each node corresponds to a type of organism
such as plants (circle-shaped nodes), plant-eating organisms (square-shaped
nodes) and parasitic organisms (the rest of the nodes.)

Interestingly, the root node of every non-trivial familial group was found
to be a herbivore. It was found in [27] that several sets of parasites were
grouped together not because they fed on each other but instead because
they all fed on the same herbivore. Our familial groups strongly show that
the herbivores play central roles in the organization of these species.

"Personal communication, May 30, 2013. “Socially though we do not have hierarchy
formation like you might have in other types of social systems. The dispersal processes are
also a bit different to what you might expect in our (human) notions of familial groups...”

47

2.6. Case Studies

Figure 2.15: (top) Network of grassland species. Node cate-
gories are: plant(circle), herbivore(square), parasitoid(triangle), hyper-
parasitoid(diamond), and hyper-hyper-parasitoid(hexagon). (bottom) The
corresponding familial groups found after 34 edge edits. Bold dashed lines
are edge additions and deleted edges are not shown.

48

2.6. Case Studies

2.6.5 College Football Network

[62] gives a network joining two American college teams together if they
played against each other during the year 2000 football season. Evans writes
that the data is likely the 2001 season [15], and corrects some of the con-
ference assignments in the data®. In that football season, the 115 teams
are grouped into 11 conferences, with a 12th group of independent teams.
Teams are usually matched against their conference-mates, an average of
about 7 games against teams within their own conference and 4 games out-
side of conference. Girvan and Newman extracted the community structure
of this network and found a near-match to the expected partitions defined
by conferences.

The network began with 613 edges, and our greedy method made 255
edge edits on the network to arrive at a (Py, Cy)-free graph.

Quasi-threshold editing found exactly 12 connected components, almost
perfectly matching the 12 conference groups as labeled by Evans. A table
of the familial groups found is given in Table 2.1. The numeric groupings
in the table correspond to the connected components found. The left and
right icons in each row describe which conference that team is assigned to
as given by the Newman dataset and the Evans dataset, respectively.

Figure 2.17 illustrates the intra-communal ranking of the teams in group
6, according to the discovered structure. The large score of Akron (the root)
suggests that group 6 corresponds to the conference containing Akron, which
is the Mid American conference. The relatively-high score of Buffalo is a
strong suggestion that Buffalo belongs to the same conference as Akron. The
very low scores of 0 for Central Florida and Connecticut tell us that although
the structure of the scheduling that year seems to associate those two teams
with the Mid American conference, these associations are very weak, even
weaker than the ties for the other leaf-node teams of larger depth. The
four teams ranked with 8.5 (Toledo, West Michigan, Miami Ohio, Central
Michigan) were found to be equivalently structured in the community and so
the placement order of those 4 teams in the comparability tree is arbitrary
amongst each other. Similarly: Marshall, Ohio and Kent were found to be
structurally equivalent, as were Northern Illinois, East Michigan and Ball
State.

To illustrate how the scores are determined, Buffalo scores 12 because
there are exactly 12 nodes below it in this tree (and in every tree obtained
by permuting the order of any of the structurally-equivalent nodes). Toledo,

8We thank one of the referees for bringing to our attention the corrected conference
assignment made by Evans.

49

2.6. Case Studies

) ¢
\\e7l
"\O\r’ﬁ.ﬁ"‘vs’

XA

h@Y
|

O
QAL
NS

SRY

Figure 2.16: (top) The football network drawn with yEd’s organic layout;
(bottom) The corresponding familial groups found after 255 edge edits. In-
terestingly, exactly 12 components were found, mostly corresponding to the
12 conferences that partitioned the teams.

50

2.6. Case Studies

Familial Groups Found in the Football Network

) Clemson oad Alabama Birmingham a4 B North Texas

oo ‘Wake Forest oad East Carolina e Utah State

oo Maryland oo Houston 9 a4 B Arkansas State
oo North Carolina State oo Louisville <4 P Boise State

oo Florida State 5 oo Memphis a4 @ Idaho

oo Virginia oo Southern Mississippi a4 New Mexico State
oo Georgia Tech oo Tulane VAV Arkansas

oo Duke oo Army VAV Auburn

o o North Carolina (| Cincinnati VAV Alabama

0K Miami Florida o0 Marshall VAV Florida

L) Virginia Tech o0 Northern Illinois VAV Kentucky

L) Boston College o0 ‘Western Michigan 10 VAV Vanderbilt

) West Virginia o0 Akron (VRV} Mississippi State
oo Syracuse oo Ball State VAV South Carolina
L) Pittsburgh oo Bowling Green State © QO Tennessee

L) Temple oo Buffalo Q0 Mississippi

L) Rutgers 6 oo Central Michigan VAV Georgia

| N Navy © o East Michigan VAV Louisiana State
L Notre Dame o0 Kent < < Hawaii

> D> Michigan State o Miami Ohio O« Texas Christian

> > Indiana oo Ohio <« Fresno State

> > Northwestern O Toledo < <« Rice

> > Wisconsin | | Central Florida 11 <« Southern Methodist
> > Michigan | N | Connecticut <« Nevada

> > Towa * * Oregon State < <« San Jose State

> > Purdue * Arizona State <« Texas El Paso

> > Ohio State * * California < < Tulsa

> > Minnesota * * UCLA <« Louisiana Tech

> > Illinois 7 * * Arizona 12 < Louisiana Monroe
> D> Penn State * * ‘Washington < Middle Tennessee State
> > Missouri * * Oregon <l Louisiana Lafayette
> > Oklahoma State * x Stanford

> > Baylor * * Washington State

> > Colorado * % Southern California

> > Kansas State & & Nevada Las Vegas

> > Kansas & San Diego State

> > Texas Tech & & ‘Wyoming

> > Iowa State 8 & Brigham Young

> > Nebraska & & Utah

> > Texas A&M & & Colorado State

[Oklahoma & & New Mexico

[S Texas & & Air Force

Table 2.1: The 12 connected components found after greedily editing-out the
Pys and Cys from the football network. The left symbol is the conference
assignment as given in Girvan and Newman’s dataset, while the right symbol
corresponds to Evans’ corrected conference assignment. The grouping found
corresponds almost exactly to the 12 conference groups described by Evans.
The conference labels are depicted by the legend below.

o Atlantic Coast [J Conference USA * Pac 10 ® Big East

B IA Independents Q SEC > Big 10 ¢ Mid American

< Sunbelt » Big 12 & Mountain West <« Western Athletic
@ Big West

51

2.7. Summary

14 Akron

12 Buffalo 0 Central Florida

0 Connecticut
8.5 West Michigan

8.5 Miami Ohio

8.5 Central Michigan

1 Northern lllinois 3 Bowling Green State

1 East Michigan 1 Marshall

1 Ohio

1 Ball State 1 Kent

Figure 2.17: The implied comparability tree corresponding to one particular
familial group. The intra-communal ranking is also given for each team.
This is group 6 in Table 2.1.

however, is in an equivalence group {Toledo, West Michigan, Miami Ohio,
Central Michigan}, and this group directly oversees 7 nodes below them.
The intra-communal score of d + % with d =7 and M = 4 gives each of
these 4 teams a score of 8.5.

2.7 Summary

The main contribution of this chapter is a new definition for community
structure (familial groups) based on the graph-theoretical concept of forbid-
ding small induced subgraphs. We give evidence that editing-out P;s and
Cys in order to obtain a quasi-threshold graph yields meaningful clusterings
in real networks.

We show that the computational problem of edge-editing to a nearest
quasi-threshold graph is NP-complete, resolving the open complexity status
of this problem as mentioned in [18], [102] and in [97].

Familial groups are a natural and meaningful relaxation of many stan-
dard structures widely-used in social community definitions such as cliques
and k-plexes and their generalizations. They are robust against the removal
of network nodes, a characterization that is not guaranteed in most other
definitions of a social community. This robustness is in the sense that if
the unique leader of a group is removed, the remaining individuals will ei-
ther still form a familial group with a leader or will decompose into several

52

2.7. Summary

familial groups, each with a respective leader.

Familial groups automatically provide a ranking of the individuals within
a group and a hierarchical arrangement of a group itself - a unique feature
that, to our best knowledge, no other existing model of community structure
provides. These communities also retain many of the properties that a
highly-connected group should have such as having a low diameter. In fact,
the diameter of a familial group is at most 2, since the editing process ensures
a universal vertex in each connected connected.

The notion of familial groups presented here can easily be modified to
handle more network information, including weighted nodes and edges, di-
rected edges, and weighted edge-edit operations. The following chapter will
explore a possible way to incorporate directed and weighted edges into the
theory of familial groups.

53

Chapter 3

Familial Groups for
Hierarchical Organization

3.1 Historical Perspective

In 1994, Krackhardt [$8] provided definitions for a purely hierarchical
organization in which there is one “boss” who oversees any number of sub-
ordinates, each of which possibly overseeing their own set of subordinates.
Krackhardt represented these structures as directed rooted trees, where each
node is directed toward each of its children. He observed that these “bare-
bones” trees are perhaps too “fragile” and called extra edges “redundant”
when they pointed from a boss to a subordinate’s subordinate. Krackhardt
gave four defining properties of this structure which were then used to mea-
sure how close a given directed network was to being perfectly hierarchically
organized.

Recently, Everett and Krackhardt [16] noted that the four defining prop-
erties were not completely independent from each other, and proposed mod-
ifications to the scoring system to measure when a given network exhibits
the desired or expected properties of a hierarchical organization.

In 2002, independently from the works above, attempts to measure hi-
erarchical organizations in networks came in from Ravasz and Barabéasi and
others [12] [1] [123] where the amount of organization in a network was hy-
pothesized to be measurable through a density measure called the clustering
coefficient.

In 2007, Sales-Pardo et al. [126] comment that checking for desired (and
seemingly irrelevant) properties like the clustering coefficient does not yield
an “unsupervised” method to extract these hierarchical organizations. They
also note that hierarchical clustering methods lack in any “sound general
criterion to determine the relevant levels on the hierarchy.”

We introduced familial groups [109] in Section 2.4 whose definition evolved
from imposing certain structural properties in social communities. An im-
mediate benefit of the structure of familial groups was that the individuals

54

3.2. Graph-theoretic Framework for Hierarchical Organization

in identified communities were found to naturally arrange themselves in a
hierarchical organization.

In this chapter, we show that familial groups can be used to define and
characterize the structure of social hierarchy in networks. Furthermore, we
extend the definitions of familial groups to handle directed and weighted
networks.

3.2 Graph-theoretic Framework for Hierarchical
Organization

We say that vertex u points to vertex v is there is a directed edge from
u to v, and we write (u,v) or uv when the context is clear. An out-tree [35]
or an arborescence [130] [16] [10] is a directed rooted tree where every node
points to each of its children. It represents a hierarchical organization of
nodes where an individual node can - for example - pass orders or influence
along its directed edges (that is, to each of its children.) One can interpret
this hierarchical organization as a boss and his/her subordinates.

It makes sense, then, that an edge can be directed from a boss to its sub-
ordinate’s subordinate since demands can typically be passed down a chain
of authority. Krackhardt [35] called these edges redundant? and excluded
these edges from the study of hierarchical structures. Redundancy, however,
serves as an integrity-check in that if an individual z is directed toward all
of its subordinates and their descendants, it reinforces the hypothesis that
x is the root node of the hierarchical organization.

Consider an arborescence T' with root r. The comparability graph of an
arborescence [10], G(T), is a directed graph on the same node set as T in
which (u,v) is an arc in G(T') when v is a descendant of u. In particular,
the root of such a tree is adjacent to and points toward every other node in
the tree. G(T') is the transitive closure of the arborescence T, meaning that
whenever there is a directed path from x to y in T, there is a directed edge
from z to y in G(T).

The underlying graph of a directed graph D is the graph resulting from
D when the orientation of each edge is ignored. The class of graphs which
are a comparability graph of an arborescence is exactly the class of quasi-
threshold graphs (defined in Section 1.3.2).

Yquoting: “More lines than [a tree] creates multiple paths and cycles between points.
In a sense, these multiple paths are redundant in graph-theory terms, and they disrupt
the stoic, bare-bones nature of the pure out-tree structure.

55

3.3. Hierarchical Organization of Individuals in a Network

Theorem 3.1. [1/5] A connected graph is a comparability graph of an
arborescence if and only if it has no induced subgraph isomorphic to a path
on four vertices (a Py) or a cycle on four vertices (a Cy).

3.3 Hierarchical Organization of Individuals in a
Network

Krackhardt [88] gave four characterizing properties of out-trees:

i) The digraph is weakly connected (that is, this condition only requires
connectivity on the underlying graph).

ii) The digraph is graph hierarchic, meaning that if u can reach v with a
directed path, then v cannot reach u.

iii) The digraph is graph efficient, meaning that it has no redundant edges.

iv) Every pair of vertices has a least upper bound, that is, a closest boss
who has authority over both of them.

For each of these four criteria, he gave a real-valued score function from
0 to 1 for any given network, where 0 represents a high degree of violation
of that criteria and 1 representing the expected structure of an out-tree. We
elaborate on the score function for each criteria below. The number of nodes
in a given digraph is n.

i) 1— L., where t is the number of pairs of vertices which are unreachable

2
from each other. This corresponds to a score of 0 if the digraph is an
independent set and 1 if it is weakly connected.

ii) If the strongly-connected components of the digraph are Ci,...,C}
L, (\gﬂ)
G)
which is in a strongly connected component counts as a violation,
summed over all possible pairs. This function is 0 if the entire digraph
is strongly connected and 1 if it acyclic.

then this function is 1 — That is, every pair of vertices

iii) Say that a connected component C; in the underlying graph has n;
nodes. Then a tree structure would expect n; — 1 edges. Let m; be
the number of edges of C;. Then the i** component has m; — (n; — 1)

> i (mi—ni+1)

(%)= (ni—1))

violating edges. The function then is 1— . This function

56

3.3. Hierarchical Organization of Individuals in a Network

evaluates to 0 if the underlying graph is a clique, and to 1 if the
underlying graph is a forest (i.e. a disjoint collection of trees.)

iv) A violating pair is a pair of nodes, u and v, in the same weakly-
connected component such that there is no x for which there is a
directed path from x to u and x to v. The least upper bound z of u
and v is allowed to be either uw or v as well. The score function is 1 — é
where t is the number of violating pairs and z is the total number of
non-adjacent pairs in the same weakly connected component. That is,
for each weakly connected component C' with nc nodes and m¢ edges,
z = ("20) — me. This function is 0 when every pair of nonadjacent
nodes have no directed path joining them. For instance, if every node
is a source or a sink, there are no directed paths of length 2 and this
function evaluates to 0. It evaluates to 1 when, for instance, there is
a vertex which has a directed path to all other nodes in the weakly
connected component, although this is not the only manner in which
it can score 1.

Krackhardt measured these parameters in Erdés-Rényi graphs (see Sec-
tion 4.4) and observed that the four measures seemed to independently be
valued high (~ 1) or low (~ 0).

Later, Everett and Krackhardt [16] showed that these four dimensions
of hierarchical organization are not independent of each other. Specifically,
they showed that condition (ii) followed from the other three conditions.
Weaker, but similar, statements of the four condition were proposed as re-
placement. They also propose that in certain applications, for instance,
where two-way arcs can exist, that only a certain triplet of the four condi-
tions be used.

The 1994 paper [$8] concluded with a cautionary note that these mea-
sures are very sensitive to density and that data-collecting methods may be
prone to including many redundant edges, inadvertently reducing the mea-
sures of hierarchical organization. This suggests that a method of analysis
which filters-out, or at least embraces, redundancy could prove to be more
fruitful in measuring organizational structure.

For any directed graph G = (V, E), the transitive closure of G is the
graph H = (V, EU ET) where a directed edge (u,v) exists in ET if there is
a directed path from u to v in G. Adding all redundant edges, then, is akin
to obtaining a transitive closure. The following observation is immediate:

Observation 3.2. The transitive closure of an out-tree is a comparability
graph of an arborescence.

57

3.4. Familial Groups in Directed Networks

In general, the advantage of adding redundancy to a model is to rein-
force the initial data and to further support any conclusions or predictions
made by the model. We believe the same holds in this case of hierarchical
organization in networks.

3.4 Familial Groups in Directed Networks

Using the method of familial groups in Section 2.4, we could attempt
to extract hierarchical organization in a directed network by ignoring edge
directions, editing to a closest quasi-threshold graph, and then arranging the
individuals in the implicated tree structure and directing edges downward.
But when ignoring initial edge directions, this could result in a hierarchical
structure that is invalid or very inaccurate.

Since a comparability graph of an arborescence is a directed structure
(having a quasi-threshold underlying graph), instead of restricting the local
structure by Pys and Cys, we can impose restrictions on the local directed
structure and define an edit distance with respect to this.

There are some situations in which it makes sense that between any two
nodes u and v, only one directed edge can exist between them. That is, if u
points to v, then v cannot possibly point to u. For example, if u and v exist
in an extended family, u might be a descendant of v or v a descendant of u
(or neither), but it is impossible for both to occur. A single directed edge
can be drawn between them (ancestor pointing to descendant) and it would
be meaningless to have two individuals pointing to each other.

On the other hand, a trust network in which a directed edge (u,v) exists
if v follows advice from u may very well contain edges (u,v) and (v,u)
simultaneously. This can be made into a simple underlying graph by instead
joining directed edge (u,v) if v follows advice from w more often than u
following v. In this case of following each others’ advice equally, from their
perspective, one is no higher than the other in the social hierarchy and so
the edge between them can be removed or ignored and their placing in the
hierarchy will de determined by the other actors in the network.

Again, depending on what desired property is being captured in the
network, ignoring the edge might not be an ideal approach, since v and v
following each other’s advice ten times per week may be more socially sig-
nificant than u following the advice of w once. But in these cases where
cooperation or communication channels are of primary interest, the under-
lying graph structure may be enough to maintain and analyze.

With all these possibilities and considerations, we emphasize that the

58

3.4. Familial Groups in Directed Networks

(a) (b)

Figure 3.1: (left) An out-tree as used by Krackhardt [$8]; (right) the tran-
sitive closure of the left out-tree.

network model is dependent on the application it is modeling and the prop-
erty that the network analyst is interested in. We elaborate on some of these
network models in the following sections.

3.4.1 Directed Networks with a Simple Underlying Graph

In an application where at most one directed edge can exist between a
pair of nodes, the familial group can be defined exactly as a comparability
tree of an arborescence, with edges pointing away from the root vertex and
towards to leaves. Given a directed network, an edge-edit could be:

i) the deletion of a directed edge of cost «
ii) the creation of a directed edge of cost

iii) the reversal of a directed edge of cost

While a reversal of an edge can be regarded as a deletion followed by a
creation, it is not always appropriate to weigh a reversal edit as a4+ 8. We
propose a default weighting of & = § = v = 1 unless the application in the
model suggests otherwise. For instance, adding a redundant edge in order to
complete the transitive graph structure may not necessarily be penalized as
much as deleting a known connection, and so perhaps for those applications,
adding an edge could have a very small (but positive) value ¢ > 0 assigned
to 3.

Figure 3.1(a) depicts the ideal hierarchical structure as described in [33],
and Figure 3.1(b) is the same out-tree shown in (a) but with all additional
“redundant” edges included. Let us assign a name to this structure:

59

3.4. Familial Groups in Directed Networks

(@) (b) ()

Figure 3.2: The forbidden triadic configurations for transitive out-forest
when the underlying network must be simple.

Definition 3.3. A transitive out-tree is the transitive closure of an out-
tree. A disjoint collection of transitive out-trees will be called a transitive
out-forest.

Thus Figure 3.1(b) depicts a transitive out-tree. When data-collecting
methods include measurements for almost all pairs of individuals, we expect
many of these redundant edges to appear in the resulting network model.
Thus we are interested in a closeness score to one of these transitive out-
trees. Note that these directed structures are not exactly characterized as
transitively-oriented quasi-threshold graphs, since reversing all the edges of
Figure 3.1(b) would still be a transitively-oriented quasi-threshold graph
while not having the rooted structure. We are particularly interested in an
orientation that specifically directs edges away from the root and towards
the tree leaves.

Analogous to how familial groups are defined for undirected graphs, we
define a familial group of a directed simple graph G as a (weakly) connected
component of a closest graph G’ which is a disjoint collection of transitive
out-trees.

Definition 3.4. Given a directed network G with simple underlying struc-
ture, the simple directed familial groups (or simply, the familial groups) of G
is the set of transitive out-trees obtained from a closest transitive out-forest.

In order to edit a directed simple graph to a closest transitive out-forest,
we can take a similar approach as in that for familial groups on undirected
graphs and characterize the desired structure in terms of local structure.
The transitive out-tree structure of a familial group, for instance, requires
that if two vertices u; and uy point to v, then either uq points to ug or vice
versa. The forbidden configurations of a transitive out-forest are depicted
in Figure 3.2.

In the framework where an edge deletion costs «, an edge addition costs
B, and an edge reversal costs 7y, we can formulate the parameterized problem
of finding simple directed familial groups of a directed simple graph:

60

3.4. Familial Groups in Directed Networks

Problem 5. TRANSITIVE OUT-TREE EDITING(G, k):

Given a directed graph G = (V, E), is there a set of x edge deletions, y edge
additions and z edge reversals such that the resulting graph is a transitive
out-forest and az + By + vz < k?

As mentioned earlier, a natural definition of this problem would set
a = =~ = 1 unless another interpretation is suggested by the problem
application.

Since the forbidden configurations are finite in number, we can immedi-
ately describe a fixed-parameter tractable algorithm to solve this.

As every pair of vertices has three possible states of having an arc be-
tween them (two directional arcs or no arc at all) there are 27 configurations
of a triplet in total. Although three forbidden configurations are given in
Figure 3.2, when symmetries are counted, there are three forbidden config-
urations of type (a), six forbidden configurations of type (b), two forbidden
configurations of type (c), for a total of 11 forbidden triadic configurations.
A brute-force algorithm would find a forbidden triplet and branch on replace
their adjacencies with one of the 27-11=16 valid configurations and repeat.

Algorithm 4: Transitive out-forest editing algorithm.
Algorithm TRANSOUTEDIT(G, k):
Input: A Graph G = (V, E)
Output: YEs if G can be edited to a transitive out-forest with at
most k edits, and NO otherwise.

while (there exists a forbidden triple of nodes) && (k> 0) do
Branch on the possible ways of editing the triple into a valid

triple as per Table 3.1, and reduce the parameter k accordingly;
end
if k> 0 then
‘ return YES;
end
return NO;

The minimal branching rules are summarized in Table 3.1. Under the
assumption that « = § =« = 1, Algorithm 4 is fixed parameter tractable
and the branching factor for each of the three branching rules are found to
be:

i) T(k) =4T(k — 1) — T(k) = O*(4%)
ii) T(k) =3T(k — 1)+ 4T (k — 2) — T(k) = O*(4%)

61

3.4. Familial Groups in Directed Networks

iii) T(k) = 3T(k — 1) + 3T (k — 2) — T(k) = O*(3.792%)

Theorem 3.5. Transitive out-tree editing using edge additions, deletions
and reversals can be solved in O*(4F).

Configuration Minimal Edge Edits Parameter
del (u,v) k—k-«

u—vand w— v del (w,v) kek=a
add (u,w) k—k-p

add (w,u) k—k-p

del (u,v) k—k—a

del (v, w) k—k—-«

u—vand v = w add (u,w) k—k—p
rev (u,v), add (w,u) || k< k—p—7
rev (v,w), add (w,u) || k< k—05—~
rev (u,v), add (u,w) || k< k—p—7
rev (v,w), add (u,w) || k+ k—0—~

del (u,v) and (v, w) k<« k-2«

del (u,v), (w,u) k<« k-2«

del (v, w), (w,u) k<« k-2«

u—vandv—wand w—u

rev (u,v) k<« k—-~

rev (v, w) k< k—~

rev (w,u) k—Fk—r~

Table 3.1: Branching rules for transitive out-tree editing with the addition,
deletion, and reversal operations.

3.4.2 Transitive out-tree editing without reversal
operations

Following the editing framework of [111] and [112] where the problem of
editing a directed graphs to a transitive directed graph, we consider here the
modified problem of editing with only the addition and deletion operations.
Note that arc reversals can be simulated with an arc deletion followed by
an arc addition in the opposite direction, and so this framework does not
loose expressibility power in terms of the problems it can tackle. Editing
directed graphs to make them transitive is equivalent to forbidding the con-
figuration (b) in Figure 3.2. Weller et al. gave a O*(2.57%)-time algorithm
for TRANSITIVITY EDITING and O*(2F)-time algorithm for TRANSITIVITY
DELETION.

62

3.4. Familial Groups in Directed Networks

Note that Algorithm 4 still solves the modified version of TRANSITIVE
OuT-TREE EDITING with only edge additions and deletions allowed, but
we only have to specify a new set of minimal edits to branch on. We use

a = =1 in Table 3.2 to describe these edits.

Configuration Minimal Edge Edits || Parameter
del (u,v) k—k-—1

u—vand w— v del (w, v) bk —=1
add (u,w) k—k—1

add (w,u) k—k-—1

del (u,v) k—k-—1

u—vand v = w del (v, w) k—k-—1
add (u,w) ke—k-—1

del (u,v), (v,w) k+—k—2

del (u,v), (w,u) k< k—2

u—vand v - wand w — u del (v, w), (w, u) Wi k=2
del (u,v), add (v,u) || k< k—2

del (v,w), add (w,v) || k+ k—2

del (w,u), add (u,w) || k<« k—2

Table 3.2: Branching rules for transitive out-tree editing using only the
addition and deletion operations.

The number of nodes explored in a bounded search tree that uses these
editing rules results in a number of nodes satisfying these recurrences:

i) T(k) =4T(k — 1) — T(k) = O*(4¥)

i) T(k) =3T(k —1) = T(k) = O*(3F)

iii) T(k) = 6T(k —2) — T(k) = O*(2.450%)

We can also consider the related deletion-only problem:

Problem 6. TRANSITIVE OUT-TREE DELETION(G, k):
Given a directed graph G = (V, E), is there a set of k edge deletions such
that the resulting graph is a transitive out-forest?

The minimal deletion sets are summarized in Table 3.3.

63

3.4. Familial Groups in Directed Networks

Configuration Minimal Edge Edits || Parameter
u—vand w— v del (u,v) Mk =1

del (w,v) ke—k-1

u—vand v = w del (u,v) Wk =1

del (v, w) k—k-—1

del (u,v), (v, w) k+k—2

u—vand v = wand w — u del (u,v), (w,u) k-2
del (v, w), (w,u) k< k-2

Table 3.3: Branching rules for transitive out-tree edge-deletion.

Clearly, the first two branching rules create O(2¥) nodes. The third
branching rule results in a recurrence of T'(k) = 3T (k — 2), with an effective
branching factor of 1.733. Thus we have:

Theorem 3.6. TRANSITIVE OUT-TREE DELETION (G, k) can be solved in
O*(2F) time.

3.4.3 Weighted Directed Framework

In the case of weighted networks in which each edge or arc is associated
with a score, we can still naturally define familial groups. Since edge weights
are usually a measure of the strength of the edge (except, perhaps, in net-
works in which the weight is a distance measure) it should make sense then
that deleting an edge should cost the weight of the edge!".

In an undirected setting, familial groups would still be defined in terms
of the forbidden P,s and Cjys, and the weights would only be used in deter-
mining the costs of editing.

In the directed network setting in which data is expected to satisfy tran-
sitivity, we propose that arcs can be added with a minimal cost if it satisfies
transitivity. As mentioned in an earlier section, these edges that observe
transitivity are a form of data redundancy and if v — v and v — w, then it
may make sense to allow u — w for free, or perhaps a very small cost.

An example to motivate this definitions is depicted in Figures 3.3 and 3.4.
We consider 5 NHL hockey teams of one division after having played an
entire 48-game season. The league consists of 30 teams divided into 2 con-
ferences and each conference divided into 3 divisions. The five teams played

0T here are always exceptions to this model, of course. In a network in which edges
are roads or pathways and weighed with the amount of traffic that passes it, deletion or
blocking a road of low traffic or of high traffic could feasibly require the same amount of
work.

64

3.4. Familial Groups in Directed Networks

Figure 3.3: The teams from the North-East Division of the Eastern Con-
ference of the 2012-2013 NHL season. Team x points to team y if = beat
y throughout the regular season more often than y beat x. Each edge is
weighted by the number of more wins had over y when playing against
each other.

all of their games within their conference that season. In Figure 3.3, we
point u to v if u beat v more often than v beat u. The arcs are weighed by
the number of wins v had over v minus the number of wins v had over u. If
two teams, such as MTL and OTT, beat each other equally often, then an
arc joining them would have score 0 and so it is not drawn.

In editing the network into a closest directed out-tree, we find that three
deletions are required to break the directed cycles. Each of those deletions
are of weight 1. There is a set of five arcs that must be added to satisfy tran-
sitivity to complete the out-tree structure, as shown in Figure 3.4. When arc
additions are allowed to be added with small € cost to complete transitivity
requirements, this 3 + 5e edit set is the minimum possible solution. It turns
out that this arrangement correctly predicts the final arrangement of these
five teams after their 48 game season: MTL won the division with 63 points,
BOS had 62 points, and TOR, OTT and BUF earned 57, 56 and 48 points,
respectively.

There is still much work to be done in formalizing when arc additions
can be added with minimal cost. Perhaps a framework could be defined
in which deletions are made to only destroy the configurations (a) and (c)
from Figure 3.2, and then a graph square or even transitive closure could be
applied to add redundant arcs.

We believe the discussion in this thesis shows that there is definite merit
and opportunity to apply the concept of quasi-threshold graphs and tran-

65

3.4. Familial Groups in Directed Networks

Figure 3.4: (Left) The three deletions (dotted lines) with total cost 3 to
destroy transitivity obstructions. (Right) The addition of 5 edges (dashed)
of consistent implication, each costing e. The total weight of deletions and
additions is 3 + Se.

sitive out-trees to weighted directed networks. A complete formalization
would require an implementation and several test cases to justify the defi-
nitions and we leave this as a future work.

66

Chapter 4

Network Measures:
Diameter and Distribution

As social networks are created to analyze a collection of relationships,
a number of attributes of networks (or vertices or edges of a network) have
been defined quantitatively for more meaningful and comparative analysis.
We provide some of the fundamental definitions of social network attributes
here.

The centrality of a vertex or an edge is a measure of how important
that vertex or edge is to the network. This is, of course, vague and can be
fathomed in many different ways, and so there are many types of centrality
measures in regular use. Perhaps the most simplest notion of vertex cen-
trality is the degree centrality, which simply assigns a centrality score to a
vertex equal to its degree. The simplicity of this definition makes its use
rather limited: in Figure 4.1, the two labeled vertices have the highest de-
gree centrality measure but are structurally very different. If, for instance,
these nodes are individuals and an edge between two nodes represents an
email communication between them, then A could be regarded as some sort
of spam machine which only communicates to seemingly unrelated nodes.
On the other hand, B (with the same degree as A) communicates to a group
of individuals who also communicate among each other. This sort of quality
can be captured by counting the number of edges in the neighbourhood of
a vertex, called the clustering coefficient.

Definition 4.1. Clustering Coefficient. In a graph G = (V| E), the
clustering coefficient C,, of a vertex v with open neighbourhood N (v) of size
at least 2 is the ratio of the number of edges in N(v) and the number of
vertex pairs in N(v). That is,

_ Hay:z,ye N(w)}|
(IN (v)\)
2
There is no standard definition for the clustering coefficient of a vertex
of degree 1.

Cy

67

Chapter 4. Network Measures: Diameter and Distribution

Figure 4.1: Nodes A and B are vertices of highest degree (degree = 7).

0 0

Q O 1
0 0

0 0

Figure 4.2: Two networks, each with 6 nodes and 9 edges. The network on
the left has 0 average clustering coefficient while the network on the right
has a high average clustering coefficient.

68

Chapter 4. Network Measures: Diameter and Distribution

It has been observed that in real-world networks, nodes tend to cluster
themselves more than one would expect from a random collection of edges.
That is, the average clustering coefficient in real-world networks is signif-
icantly higher than a random graph on the same vertex set and with the
same number of edges [110].

Note that the degree and clustering coefficient are strictly local properties
in the sense that if Figure 4.1 only represents the part of a large network
to which A or B are adjacent to and that there are thousands of other
nodes attached to the network depicted, the degree-values and clustering
coefficients of A and B are unchanged. If Figure 4.1 represents the entire
network, then A is, in fact, an important actor since four other vertices
rely on A as the only connection into the network. A centrality measure
that captures this importance of a node with respect to the entire network
topology is the betweenness centrality defined by sociologist Linton Freeman
in 1977 [53].

Definition 4.2. Betweenness Centrality. The betweenness centrality of
a node v is g(v) defined as:

o= Y 2

g
sFVFEL st

where o is the number of shortest paths from s to ¢t and og(v) is the
number of shortest paths from s to ¢ that pass through v.

Often, betweenness centrality measures are normalized by dividing all
betweenness centrality values by the largest betweenness centrality value
since a score of, say, 5 means very different things if 5 is the largest value in
the network or if it is overshadowed by a score of 20.

In Figure 4.1 where vertices A and B have equal degree centrality, if
the depicted graph is the entire network, then the normalized betweenness
centralities of the two labeled vertices are g(A) = 1.0 and ¢g(B) = 0.36,
indicating that vertex A is a central communication hub for the vertices
around it.

A similar definition of betweenness for edges has been defined and applied
to a variety of network analysis applications, such as community-finding [62].
Its definition is analogous to that of betweenness for vertices.

Definition 4.3. Edge Betweenness Centrality. The edge betweenness
centrality of an edge uv in a connected graph is g(uv) defined as:

) = 3 7

o
st st

69

4.1. Degree Distribution and Power Law

where og is the number of shortest paths from s to ¢ and og(uv) is the
number of shortest paths from s to ¢ that pass through the edge uv.

Many other definitions of centrality exist to distinguish types of node or
edge importance, for example page rank [51] or closeness centrality [125].

4.1 Degree Distribution and Power Law

Vertex degrees are usually easy to calculate and visualize. The implica-
tion of a node having many connections is meaningful for many aspects of
network analysis, and so it may be premature to quickly dismiss the use of
degree centrality simply because it is a local property that does not consider
the global network topology. Instead, we can gain information about the
general structure of a network by looking at the distribution of degrees in
the network. For a particular network, let P(k) denote the proportion of
nodes having degree k.

Definition 4.4. Power Law. A graph has a power law degree distribution
if
P(k) o< k77 for some constant v > 0.

(Typically, 2 < v < 3). A network having a power law degree distribution
is sometimes called a scale-free network.

A power law degree distribution occurs when there are relatively many
high-degree nodes. A large variety of networks evolving from natural pro-
cesses have been found to exhibit a scale-free structure, notably whenever a
preferential attachment mechanism for network growth is in play (see Sec-
tion 4.4).

4.2 The Small-World Phenomenon

In addition to a power law degree distribution, real world networks are
often observed to exhibit a small world property. That is, two seemingly
unrelated individuals in a network are supposedly connected through a path
of relatively short length.

As an example of this, the network of movie actors has roughly 1.5
million nodes, where two nodes are joined by an edge if they appear in
a movie together. The mathematician Paul Erd6s and the famous actor
Kevin Bacon have very little in common and are fairly unrelated. But when
including documentaries, Paul Erdés was is the biographical film N is a

70

4.3. Graph Diameter

Number (1993) with Tomasz Luczak; Luczak was in The Mill and the Cross
(2011) with Michael York; York was in Transformers: Revenge of the Fallen
(2009) along with Rainn Wilson, who was also in Super (2010) with Kevin
Bacon. Hence Paul Erdés is a distance of at most 4 from Kevin Bacon in
the network of movie actor collaboration.

The small world phenomenon is often also referred to as siz degrees of
separation, hypothesizing that almost everyone coexisting in a network are
separated by a path of at most 6.

As another amusing example, in the network of refereed published papers
where individuals are joined by co-authorship, the author of this thesis is
joined to physicist Albert Einstein by a path of length 5.

With the understanding that naturally-forming networks tend to have a
scale-free topology and thus a significant number of hubs (vertices of large
degree), the small world phenomenon is entirely plausible, much in the same
way that two small airports s and ¢ are likely connected by a length-3 or
length-4 path of direct flights using the hub airports closest to each of s and
t for layovers.

Using the definition of graph diameter from Section 1.2.3, we can rephrase
the small world phenomenon by simply saying that real-world networks tend
to exhibit a diameter very small in comparison to the number of nodes (usu-
ally logarithmic). An example of a graph with large diameter would be a
square grid graph (like a Cartesian grid) on n vertices. Its diameter is
2y/n = Q(n°?), which is polynomial in n. More generally, it has been shown
that a random planar graph on n vertices almost surely has a diameter of
nitoM) [21]. The small diameter observed in social networks is witnessed
by some random models, such as the large component of an Erdds-Rényi
graph (see Section 4.4) in which the diameter is bounded by a logarithmic
function of the number of vertices [13].

4.3 Graph Diameter

A small graph diameter is a fundamental trait of a close-knit community,
as this allows for rapid communication or sharing of resources. Interest-
ingly, terrorist organizations have used this property to conceal their plans
by putting together individuals in their networks who are of relatively-far
distances away from each other. Krebs writes [90] that even Bin Laden de-
scribed his strategy in organizing the World Trade Center attacks by using
individuals in his network who did not know each other. Furthermore, the
groups to work together did not know the other groups. Krebs observes

71

4.3. Graph Diameter

Figure 4.3: A network of 19 individuals, linked by known trusted prior com-
munication, who hijacked and crashed 4 planes in the 9/11 attacks. Diamond
nodes crashed into the Pentagon, square nodes crashed in Pennsylvania, cir-
cle nodes crashed into WTC South, and triangle nodes crashed into WTC
North.

that if a chosen individual is captured or compromised, his social distance
away from the others minimizes the damage to the network. We also note
that if the terrorist network was known beforehand, observing a potential
gathering of those individuals who are mutually-distant may not trigger any
warnings.

In order to coordinate their large project, it is known that brief meetings
between certain long distance pairs took place, creating temporary short-
cuts in the network. Once the coordination was completed, those secret
cross-ties were left to go dormant in effort to be unnoticeable.

Krebs writes that 6 additional “shortcut” edges can be added to this
network through several known documented meetings, and when these ex-
tra edges are added to the network, the diameter of the network changed
from 9 to 6. The original mean path length of 4.75 reduced to 2.79, with
insignificant changes to the overall edge density (from 16% to 19%) and clus-
tering coefficient (from 0.41 to 0.42). Thus information flow in the network
temporarily gained a significant boost while remaining relatively covert.

The selection of these shortcut edges is an interesting problem to look
at, namely, which edges can be added to a network in order to reduce the
graph diameter the most? A similar, but different, problem would ask how
many shortcut edges would have to be added in order to bring the network
diameter down to a certain value. The latter problem is exactly Problem 3
in Section 1.2.3. We show here that this computational problem is fixed-

72

4.3. Graph Diameter

parameter hard.

4.3.1 Diameter Augmentation is W[2]-hard

For any two vertices x,y in a connected graph, the distance between
them dist(x,y) is the number of edges in a shortest path joining them. A
graph G has diameter D if dist(z,y) < D for every pair of vertices z,y. The
DIAMETER-D AUGMENTATION problem takes as input a graph G = (V, E)
and a value k and asks whether there exists a set Fo of new edges so that
the graph G = (V, E U E5) has diameter D. This problem was first shown
NP-hard for D = 3 [128] and was later shown to remain hard for the D = 2
case [95]. Note that the case of D =1 is trivially polynomial-time solvable
as adding an edge between every pair of nonadjacent vertices is necessary.

The proof in [95] reduced a restricted (but still NP-hard [58]) 3-SAT
problem to a relaxed dominating set problem (which they called SEMI-
DOMINATING SET) which was then reduced to DIAMETER-2 AUGMENTA-
TION. We provide a reduction to DIAMETER-2 AUGMENTATION directly
from DOMINATING SET, which not only provides an alternate proof of NP-
hardness but also establishes that DIAMETER-2 AUGMENTATION is W[2]-
hard.

The DOMINATING SET problem is:

Problem 7. DOMINATING SET

INPUT: A graph G = (V, E) and a positive integer k.

TASK: To determine if there exists a set S C V of size at most k such that
for every v € V'\ S there is some s € S where {s,v} is an edge.

Reduction from Dominating Set

We reduce DOMINATING SET to DIAMETER-2 AUGMENTATION via a pa-
rameterized reduction. That is, we give a mapping that sends a yes-instance
(G, k) of DOMINATING SET to a yes-instance (G, k2) of DIAMETER-2 AUG-
MENTATION where k2 depends on k alone. Our mapping corresponds to
ko = k.

Problem 8. DIAMETER-2 AUGMENTATION

INPUT: A graph G = (V, E) and a positive integer k.

TAsk: To determine if there exists a set of at most k edges that can be
added to G so that the resulting graph has diameter 2.

Let (G,k) be an instance of DOMINATING SET, where G = (V, E),
V| = n. Let V.= {v,ve,...,v,}. We construct a graph Gy with two

73

4.3. Graph Diameter

isomorphic copies of G called G = (V,FE) and G' = (V',E’), and let
V' = {vn+t1,Vn42,- -, V2n}, such that for every pair i and j:

/ivj < n, {/Uiavj} €l = {vn+i7vn+j} € E/'

That is, the mapping ¢(v;) = v+, is an isomorphism from G to G’. For
i =1,...n, we will refer to the pair v; and v,4; as twins and denote this
relationship by U;‘F = Up4; and vg i = Ui

The open neighbourhood of a vertex v is the set of vertices adjacent to
v, denoted N (v). The closed neighbourhood of v is N[v] = {v} U N(v). In
our constructed graph Ga, on each vertex v in V, add the edge {v, ¢(u)} for
every u in N[v]. Also add to G the vertex set Y where there is a vertex
y;; € Y for every pair of indices 1 <4, j < 2n, and join y;; to each of v; and
vj. Add to Gy an edge between each pair of vertices in Y (so Y induces a
clique with 2n vertices and (%') edges.)

Finally, we create in G2 a vertex z adjacent to every vertex of Y and
adjacent to no vertex in G1 U Ga, and create a vertex x adjacent to z alone.
(See Fig. 1.)

In summary, given a graph G = (V, E) with V = {vy,...,v,}, we con-
struct Gy = (Va, Es) such that:

— Va={z,2} UY UV UV’ where
- Y={y;:1<4,j <2n}
— V' ={vp41,-.-,02,}, and

— Ey=EUFE U{vip(u):1<i<n,ue Np|}U{yy :Vy,y €Y} U
{viyij, viyiy 1 1 < 0,5 < 2n,0# jEU{zy : Vy € Y} U {z}.

When G has n vertices, G2 has 2n + (22") + 2 € O(n?) vertices, so this
reduction is polynomially-sized.

Note that G5 has diameter at most 3 and also that every pair of vertices
in Gy of distance 3 must be z with some v; € V UV’. It is easy to see
that if a dominating set D of G contained k vertices, then the set of edges
{{z,d},d € D} forms a diameter-2 augmenting set (also of size k) for Gs.
We must prove the converse.

Theorem 4.5. G has a dominating set of size k if and only if Go = (Va, E»)
has an augmenting set of edges S such that H = (Vo, E5 U S) has diameter
2.

74

4.3. Graph Diameter

Figure 4.4: A small example of Gy constructed from G = P;. Only some of
set Y is shown.

Before proving this theorem, we will first show that any augmenting
edge set A for G2 with |A| = k that reduces the diameter of Ga to 2 can
be replaced with another augmenting set A’, also of size k, such that every
edge in A’ has the form {z,v;} for some v; € V.

If an augmenting set of G only contains edges from z to vertices in V'
we will call it proper. We can extract a dominating set of V' (and thus of
G) from a proper diameter-2 augmenting set A’ of Gy simply by taking all
the vertices of V that are adjacent to x in A’.

Say that A is a solution set of edges for DIAMETER-2 AUGMENTATION
on input G2. We will construct a proper augmenting set of at most the same
size as S. After adding the edges in A to Gg, for any vertex v € V UV,
there must be a 2-path (or less) joining x to v. If such a 2-path ever passes
through the vertex z, we can remove edge {z,v} from A and add {x,v} to
A instead. Note that such an edge-swap can never increase the diameter of
the graph. We will provide a sequence of edge-swapping rules to the set A
until we arrive at a proper augmenting set A’.

Rule 1. If A has an edge {z,v} for any v € Gy then remove {z,v} and add
{z,v}.

Rule 2. If S has any edge {z, v,1;} where v,y; € V', remove {z,v,4+;} and
add the edge {z,v;}.

Rule 3. If A has an edge {x,y;;} with v; adjacent to v; then remove {x,y;;}
and add the edge {z,v;}.

To describe the rest of the rules, we partition ¥V U V' into the following

75

4.3. Graph Diameter

dynamic sets. Note that the vertex y;; should be understood to be equivalent
to the node yj;.
) Vo={v:iveVuV zve A}

i) Vo ={vi:v; e VUV Av; ¢ Vy Ay € A}

i) Vit ={v:veVuV, ivgV,uV-}

Clearly, these three sets are disjoint from each other and their union is
exactly VUV’. To arrive at a proper augmenting set, the edges of A joining
vertex x to the set Y will have to be swapped out. The sets V,, V~, VT are
updated after every swap rule is applied. It should be easy to verify that all
of the swapping rules will not increase the diameter of the resulting graph
H = (V,E, U A).

After applying Rules 1-3, all edges in A are of the form xy for some
y € Y or xv for some v € V. We will use additional rules to remove the
edges of the form zy,y € Y.

After applying any of the Rules 4 to 7 (given below), it should be un-
derstood that Rule 3, and then Rule 2, may have to be re-applied in order
to maintain the invariant that all our edges in A join x to something in
Y UV. Rule 1 will not have to be reapplied after applying it initially. Each
rule reduces the number of edges from x to Y, so this process must indeed
terminate.

Rule 4. If A has an edge {z,y;;} with v; € V, then remove {z,y;;} and add
the edge {z,v;}.

Rule 5. If A has edge {z,y;;} and v; is adjacent to some vertex in V,, then
remove {z,y;;} and add the edge {z,v;}.

Rule 6. If A has two edges {x,yq} and {z,y.q} such that v, is adjacent to
v. then remove {z,yq} and {z,y.qs} and add {z,v,} and {z,ypq}.

Proposition 4.6. If no swap rule can be applied, the set V= is empty.

Proof. If there are v;,v; in V'~ such that v;v; € E(G2) then Rule 6 could be
applied, so we have that V'~ is a stable set. If any edge v;v; exists in G for
v; € V7 and v; € V,, this would imply Rule 5 can be applied. Thus there
are no edges in G joining a vertex in V'~ to a vertex in V.

Now consider any vertex v in V' 7: it must have an adjacent twin vertex
(either ¢(v) or ¢~ (v) depending on whether v is in V or V’, respectively)
and call it v”.

If vT is in V,, then Rule 4 has not been exhausted.

If vT is in V'~ as then either Rule 3 or Rule 7 can be applied, depending
on whether the y;; vertex in Ny (x) N Ny (v) is or is not y; ni.

76

4.3. Graph Diameter

So v must be in V*. Every vertex in V7 must have a 2-path to z in
H, but the vertices in V' are not adjacent to any vertex in Ny (z) NY, so
every vertex in V1 must be adjacent to a neighbour of x in V,. Now if v7
is adjacent to some u € V, then so is v, which violates the fact that Rule 3
has been exhausted.

Hence no such v can exist, so V'~ is empty once these rules can no longer
be applied. |

Once the swap rules can no longer be applied, Proposition 4.6 tells us
that all edges in the augmenting set A must be from = to V, C V meaning
we have arrived at a proper augmenting set.

Now we complete the proof of Theorem 4.5:

Proof. Given any augmenting set for the constructed graph Ga, we apply
the swap rules exhaustively until our augmenting set is proper. We can
extract a dominating set of size at most k£ in V7. In the above notation, this
is exactly the set V; when there are no more edge-swap rules that can be
applied. This provides a solution to the dominating set problem on G1, and
so DIAMETER-2 AUGMENTATION is W[2]-hard. |

4.3.2 Generalization

The following theorem appears in [57], along with an alternate proof of
Theorem 4.5.

Problem 9. DIAMETER-t AUGMENTATION(G, k)

INPUT: A graph G = (V, E) and a positive integer k.

TAsk: To determine if there exists a set of at most k edges that can be
added to G so that the resulting graph has diameter at most t.

Theorem 4.7. [57] DIAMETER-t AUGMENTATION(G, k) is W[2]-hard for
every integer t > 2.

4.3.3 Additional Observations

Consider the following problem, which asks if the diameter of a graph
can be improved (i.e. lowered) by adding at most k edges:
Problem 10. DIAMETER IMPROVEMENT
INPUT: A graph G = (V, E) and a positive integer k.
Task: To determine if there exists a set of at most k edges that can be
added to G so that the resulting graph has a smaller diameter than G.

77

4.3. Graph Diameter

The graph G resulting from the reduction from DOMINATING SET to
DIAMETER-2 AUGMENTATION has diameter 3. Finding an augmenting edge
set that improves this graph to diameter 2 will in fact solve the dominating
set problem on the original (pre-reduction) graph. This provides a proof
that DIAMETER IMPROVEMENT is itself W[2]-hard (and NP-complete) even
when restricted to input graphs of diameter 3.

Theorem 4.8. The parameterized problem DIAMETER
IMPROVEMENT (G, k) is W [2]-hard.

Another observation about the structure of the constructed graph in
the reduction is that it will always contain a dominating clique. Clique-
dominated graphs are general enough to include all split graphs. Bertossi [¥]
showed that DOMINATING SET is NP-hard for split graphs. Our reduction
implies W[2]-hardness for diameter augmentation for all clique-dominated
input graphs.

Theorem 4.9. The parameterized problem DIAMETER
AUGMENTATION (G, k) is W[2]-hard even when G has a dominating clique.

Recently, independently from our results, the W[2]-hardness result of
DIAMETER AUGMENTATION and of DIAMETER IMPROVEMENT were proven
with a reduction from SET COVER [52].

The next section gives a polynomial time algorithm to optimally solve
DIAMETER AUGMENTATION for a well-studied class of clique-dominated
graphs.

4.3.4 Diameter Augmentation for P;-sparse Graphs

A Py-sparse graph is a graph G for which every set of 5 vertices of G
contains at most one Py as an induced subgraph. See Section 1.3.4 for more
information on these, and for their characterization in terms of thin and
thick spider graphs (Lemma 1.2).

If the complement G of a graph G is disconnected, then G is necessarily
of diameter at most 2.

When a spider has |K| = |S| = 2, it is both a thin and thick spider.
Consider a thick spider with |K| = |S| > 2: any two vertices in S have a
common neighbour in K, and so it is easy to verify that the diameter of
such thick spiders is 2. Every thin spider has diameter 3.

Solving the diameter augmentation problem for Pj-sparse graphs is thus
reduced to the task of finding an augmenting edge set for thin spiders.

78

4.4. Network Models

Theorem 4.10. Let G = (V, E) be a thin spider with |K| = |S|=n. Then
the minimum augmenting edge set A such that Go = (V, EUA) has diameter
2 is of sizemn — 1.

Proof. We construct the edge set of size n — 1 by choosing k; € K and
creating an edge from k; to each s; for i = 2...n. Adding these edges will
make k; adjacent to every vertex in G, and so the augmented graph has
diameter 2.

To see that there can not be an augmenting set of smaller size, we first
show that any augmenting set solution on the thin spider can be replaced
with another augmenting set solution that contains only edges from S to
K. If any augmenting set A contains an edge {s;, s;}, fix ¢ and consider all
the edges in A of the form {s;,s;} for any t. We can replace each {s;, s:}
with {k;, s} without increasing the diameter. This process can be continued
while there is an edge in A joining two vertices in S.

Next, if the augmenting set joins vertices s; and s; by a 2-path through
a vertex r € R, then the edges {s;,r} and {s;,r} can be replaced with
the two edges {s;,k} and {s;, k} for any k € K. This establishes that any
augmenting set A that turns a thin spider into a graph of diameter 2 can
be replaced by another augmenting set A’ of the same size of A where every
edge of A’ joins a vertex from S to a vertex in K.

Now consider any augmenting set A’ of size n — 2 where every edge of A’
has one endpoint in S and the other endpoint in K. Since there are n — 2
edges, there must be two vertices s, and s, in S which are not incident with
any edge in A’. Their distance must be 3, and so n — 2 edges are insufficient
to improve the diameter. |

Given a Py-sparse graph, one can identify the sets S, K, R in linear time
simply from the degree sequence [20]. This augmenting set of size n — 1 can
therefore easily be constructed in O(m + n) time.

4.4 Network Models

When testing new ideas on networks it is often desirable to generate a
large number of network samples. As mentioned earlier in this chapter, an
expected topological property of social networks is the existence of hubs, and
so randomly-generated networks should include a heavy-tailed distribution
of its vertex degrees.

We note that for applications in which network objects have a location in
some space (such as positions on the earth), random geometric models [11]

79

4.4. Network Models

have been effective in modeling systems such as wireless networks [33] or
disease spreading [9].

4.4.1 The Erdés-Rényi Model

A simple way to randomly generate a network on n nodes is to specify
a probability p and for every two nodes in this network, add an edge be-
tween them with probability p. Each edge is added independently, so the
probability that a particular node v has degree k is

P(des(v) = k) = (" ; l)pku _pik,

When np is a fixed constant ¢, this probability approaches 6‘3—2, as n — o9,
so in this model, the chance that a node has large degree k is quite small.
The clustering coefficient of a vertex in an Erddés-Rényi random graph
is easily calculated: recall Definition 4.1 which states that the (local) clus-
tering coefficient of a vertex v is the number of edges in N(v) divided by
to total number of possible vertex pairs in N(v). Since in this model, every
edge appears independently, the proportion of edges in N(v) that exist has
expected value of exactly p. Typically, for large graph generation, p is chosen
to be O(1/n), so the amount of local clustering in an Erdés-Rényi random
graph is considered too low to model a realistic small-world network.

4.4.2 The Watts-Strogatz Model

In 1998, Watts and Strogatz proposed a model of random graphs to
capture the property of being small-world, as well as to exhibit the kind of
local clustering observed in real networks. The construction is parameterized
by the number of nodes N and the average degree d such that In(N) < d < N
and a rewiring parameter § € [0,1]. For simplicity, d is assumed to be even.

The model begins with n vertices placed in a cyclic order. Each vertex
v is made adjacent to the next g vertices in the cyclic order on each side of
v. Then, for each vertex u, for each edge ux; incident with u, rewire it with
probability 3. To rewire ux;, choose some vertex z; uniformly at random
such that x; # v and uz; is not an edge. As /8 approaches 1, the resulting
network looks more like an Erd&s-Rényi random graph.

As the initial structure (before rewiring) of the graph model creates
many triangles, the clustering coefficient is expected to be high if g is not
too close to 1. It has been empirically shown that the small-world behaviour

80

4.4. Network Models

of Watts-Strogatz networks reveals itself for very small values of 8 (i.e.
B =o(1)), [76] [114].

While this model exhibits the small-world diameter and local clustering
expected from real networks, it falls short in capturing the existence of hubs,
that is, the heavy-tailed distribution in vertex degrees.

4.4.3 The Barabasi-Albert Preferential Attachment Model

Barabéasi and Albert found, in 1999, that the degree distribution of the
World Wide Web (WWW) follows a power law distribution [6], as does a
network of movie actors (with two actors being related by being cast in the
same movie). They also show a power-law behaviour of vertex degrees for
the network built on urban centres where two centres are joined by an edge
if there are high-voltage power lines connecting them, and also the network
of publications where one publication is (one-way) related to another by way
of citation.

Barabasi and Albert identify that two of the important properties these
networks have are growth and preferential attachment. That is, if one were
to model such networks with a randomly generated graph, the model should
allow for a mechanism to add new vertices and for the new edges to be
governed by some rule of preference. For example, an Erdés-Rényi random
graph in which the number n vertices is specified and the probability p than
an edge exists is not sufficient to capture the structural properties of real
networks.

This model is sometimes referred to as the preferential attachment model
or the BA-model. Given a network and integer k, we add a new vertex v to
the network by attaching v to k existing vertices, randomly selected in such a
way that the probability of v being adjacent to an existing w is proportional
to the degree of u.

Barabéasi and Albert showed that this preferential attachment model
exhibits a small diameter and a power-law distribution in its vertex de-
grees. Empirically, the clustering coefficient has been shown to approximate
a power law of the network size, which is uncharacteristic of real networks,
but this still provides a level of clustering that is above that of Erdos-Rényi
graphs.

4.4.4 The Random k-tree Model

While the BA-model has small diameter, a heavy-tailed degree distribu-
tion and some clustering, we show in the following that it does not exhibit

81

4.4. Network Models

quite enough clustering when measured in terms of the number of cliques,
from triangles to larger ones.

One way to look past vertex degree as a measure of structure is to look
at the degree of a pair of vertices. We define a second-order structure called
a d-triangle which counts the degree of a pair of vertices which are joined
by an edge.

Definition 4.11. The embeddedness of an edge e = uwv in a graph G(V, E),
denoted by degs(e), is defined to be the number of common neighbors of u
and v. For an edge e = uv with degg(e) = d, the subgraph consisting of the
vertices u, v, and their d common neighbors is called a d-triangle.

We also say the edge embeddedness of ¢ is d.

We describe one last model here called the k-tree model and compare it
to the BA-model in a number of ways.

Starting with an initial k-clique G¥(k), a sequence of graphs {G*(n),

n > k} is constructed by adding vertices to the graph, one at a time. To
construct G¥(n+1) from G¥(n), add a new vertex v,+1 and connect it to the
k vertices of a k-clique selected uniformly at random from all the k-cliques
in G¥(n). A graph obtained in this manner is called a random k-tree.

One of the purposes of this section is to illustrate how the degree se-
quence of a graph (a “first-order” property) is insufficient to capture many
of the internal structures of real social networks and to suggest the mixed
k-tree and deleted k-tree models as a way to randomly generate the desirable
distributions of first- and higher-order structures.

4.4.5 Cliques and Higher-Order Structures

In our paper [133] the edge-embeddedness and degree distributions were
compared for two social networks. One network was created from a sam-
pling of Facebook communication data and a second network was a random
sampling of the Orkut friendship network.

For the generated samples, it was found that the degree distribution of
Facebook did not have a clear power-law shape while the Orkut network
did exhibit such a trend. The edge embeddedness distribution was found
to behave similarly to the degree distribution on the respective networks.
That is, the edge embeddedness distribution of Facebook did not indicate a
power law while the Orkut network did.

This suggests that when designing a random generation process for social
networks, it is insufficient to generate networks with a power-law distribution
in the degree sequence when the edge embeddedness distribution is ignored.

82

4.4. Network Models

Indeed, the degree distribution tells very little about graphs in general:
the class of graphs which are uniquely defined by degree sequence are the un-
igraphs and these contain threshold ((Py, Cy, 2K9)-free) graphs. The general
graph property of whether a graph is split (partitions into a clique and sta-
ble set) is also determinable by degree sequence, but this is a very stringent
structure. We argue below that going beyond degree distribution and even
beyond edge embeddedness and looking into the distribution of higher-order
structures (communities) is necessary to capture the topology of real-world
networks.

Since there is no standard definition for a social community, we will follow
the definition of Palla et al. [1 18], as their paper reports on the distribution
of community size in real-world networks.

Definition 4.12. A k-clique community in a network is defined as a union
of all k-cliques that can be reached from each other through a series of
adjacent k-cliques, where adjacency means sharing k£ — 1 nodes.

One of the intriguing findings in the study of Palla et al. [118] is that the
size distribution of the k-clique communities follows a power law in several
real-world networks such as the co-authorship networks, word-association
networks, and the protein interaction networks. In Figure 4.5, we reproduce
plots on the size distribution of k-clique communities obtained [115].

: Word A iation N rk
Co-Authorship Network ord Association Netwo
10000 1000
e
©
1000 . 100 o
> () > [
5 100 % ; .
=})
= P g K
o [i 10
w < oo
10 & ‘&
&
e “wow
-
1 W @ ©
1 B ©
1 10 100 1000 10000 1 10 100 1000

Co ity Si
Community Size mmunity Size

Figure 4.5: Example Networks from Palla et al. with power-law community
sizes.

In this section, we show that a simple variant of the random k-tree model
is able to capture the characteristic of the community structure much better
than other existing models such as the BA model.

83

4.4. Network Models

4-Cliqgue Communities in a 3-Tree 3-Clique Communities in a 3-Tree
46,341 nodes; r=10,000 46,341 nodes; r=10,000
10000 100
? e
@
1000
Ll
2
Ll
° @
° 10 °
100 3
Ll
X
-
10 s
@
aa}a @
29
b 2
1 @ i il B o a 1 oe@e a0 @

1 10 100 1000 10000 1 10 100 1000 10000 100000

Figure 4.6: K-Clique Communities in a Random Partial 4-Tree.

Partial random k-tree model: A partial k-tree is a subgraph of a
k-tree. A random partial k-tree G¥(n,r) is a graph obtained by removing
uniformly at random 7 edges in a random k-tree G¥(n).

When a graph is sufficiently dense, it is expected that all the nodes
would exist in one giant K-clique community for relatively small values of
K (such as K = 4). For relatively large values of K such as K equaling the
maximum clique size of a network for instance, the K-clique communities
are simply the max cliques. These two extremes create a trivial community
structure which reveals nothing about the internal clustering of a network.
We are interested in values of K for which there are many distinct K-clique
communities, and not just interested in when many vertices are in a K-
clique community. It is the distribution of the sizes (in terms of the number
of vertices) of the resulting communities that we are interested here, but in
order to have a meaningful distribution, there must also be a large number
of communities.

The study of Palla et al. [1 18] found meaningful k-clique communities in
real-world networks for k = 4.
Using the clique percolation method of Palla et al. [118] to find the K-

clique community sizes, we analyze the K-clique community sizes of G* (n,r)
for K < k + 1 with various values for 7. When comparing k-trees to BA-

84

4.4. Network Models

5-Clique Community Size in a Deleted 4-Tree (r=500) 5-Clique Community Size in a Deleted 4-Tree (r=2000)

1000 1000
¢
© ¢
100 100
©
©
g o . .
g g
i« < [y ¢
10 "w 10
& “w
« “w
¢ ¢ “we
© oo
1 handendi © 1 e o oo ¢
1 10 100 1000 10000 1 10 100 1000 10000
Size of Community Size of Community

Figure 4.7: Power Law Community Size in Partial k-trees.

model graphs of similar density, the clique structure in the BA-model is far
too sparse to compare the community size distributions. We show how easily
partial k-trees can reveal a power law distribution of 4-clique communities
while showing how difficult it is to produce any 4-clique distribution in the
BA-model.

Aside from directly comparing the partial k-tree model to the BA-model,
we look at each model individually as well. For the partial k-tree, we look
for the existence of K-clique communities (for K < k) as r increases. Denote
by m the degree of a new vertex added to a network in the BA-model. We
set m large in the BA-model to see how far m must be taken in order to
find a meaningful K-clique community distribution.

Power-law distributions reveal themselves as straight lines when data is
plotted on log-log axes. All the plots in this section will be on log-log scales.

The power law distribution of community size in random partial k-trees is
immediately visible even for small values of r and becomes more pronounced
as more communities are present. For a k-tree of 2'%% = 46341 nodes,
removing only several hundred edges reveals a power-law distribution in
community size and this remains even for r values past 15,000. We show a
clear power-law distribution of community size in a 3-tree on 2!5 nodes in
figure 4.6. The 4-clique communities become apparent with r values near
500, and the figure shows that with a large number of deletions, » = 10000,
3-clique communities can simultaneously be found in the same network.

Figure 4.7 shows the distribution of 5-clique community size in a partial

85

4.4. Network Models

4-tree on 20000 vertices with varying values of r. The plots show r» = 500
and r = 2000 deletions from the same initial k-tree. While both reveal a
power law, we also observe a giant community in the r = 500 case (the
isolated point in the bottom right of the r = 500 plot.)

3-C|ique Communities 4_C|ique Communites 5-Clique Communities
10000 100 10
a
a
1000
> >
) M) >
§ 100 § 10 § M
g] g g
[in o &
10]
-
1 - - 1 s L 1 - a
1 10 100 1000 10000 1 10 100 1000 1 10 100
Community Size Community Size Community Size

Figure 4.8: K-Clique Communities in BA-model Graphs.

In comparison to the above k-tree models generated with £ = 3 or k =
4, an equally-dense network generated with the BA-model cannot produce
similar clustering. Indeed, when a vertex is generated in the BA-model with
m = 4 is very unlikely that the 4 vertices it attaches to will induce a clique.
In order to see any 4-clique community existence, we had to increase m to
9, and even there the structure was very sparse. We produce plots with
m = 10 in figure 4.8 for networks on 12000 nodes. The BA-model with
m = 10 could not reveal any significant K-clique community structure for
K > 4. In order to observe a significant number of 4-clique communities in
a BA model network, we had to adjust the m parameter to 13 or higher,
but this produces networks of unrelated degree (first-order) measures when
compared to k-trees with k = 4.

As mentioned above, the BA-model network for m=10 revealed little
community structure even for 5-cliques. We generated a BA model network
with m = 20 and since this creates many maximal cliques, the computation
involved for community finding became computationally infeasible for large
numbers of nodes. Using a m = 20 network on 2000 nodes revealed only a
single 10-clique community. The only K-clique community structure found
for K > 5 in this network is shown in figure 4.9.

Following the observations of Palla et al. [1 18] that real-world networks
have a power law distribution of K-clique community size, we give much

86

4.5. A Graph Classes Perspective on Graph Generation

5-Cliqgue Communities 6-Clique Communities 9-Cliqgue Communities
m=20, 2000 nodes m=20, 2000 nodes m=20, 2000 nodes
100 10 10
+

¢
10 *

w

1 > 1 > > 1 L4 L4

1 10 100 1000 4 10 100 1000 1 10 100

Figure 4.9: K-clique communities in a BA-odel graph with m = 20.

evidence here that the partial k-tree model can capture the desired distri-
bution of higher-order structure, and that the strength of the distribution
is easily controlled with adjusting the parameter r. We also found that
the BA-model does not enjoy the luxury of easily adjusting its structure to
properly model a desired community structure.

4.5 A Graph Classes Perspective on Graph
Generation

The process of growing a random graph has shown much importance in
modeling dynamic networks as many networks allow for growth mechanisms,
like people joining a social network or a new paper being added to a library.
The BA-model, using preferential attachment, gives rules for how a new
vertex can attach to a existing network.

We describe a list of graph operations in common use (in the study of
graph classes) for the purpose of growing graphs and reveal implications of
certain models, including the k-tree.

i) Add a new vertex adjacent to no existing vertex

ii) Add a new vertex adjacent to only one existing vertex

)
)

iii) Add a new vertex adjacent to all existing vertices
)

iv) Add a new vertex adjacent to a clique

87

4.5. A Graph Classes Perspective on Graph Generation

v) Add a new vertex that is adjacent only to all the neighbours of an
existing vertex

vi) Add a new vertex that is adjacent only to an existing vertex and all
of its neighbours

Starting with a single vertex and repeatedly applying rule (ii) will always
generate a tree, and every tree can be generated in that way as well. So rule
(ii) completely characterizes a generative model for trees. If we allow any
combination of rules (i) and (ii), then this completely characterizes forests
(a disjoint union of trees.)

A graph is a threshold graph if the set of vertices can be assigned a real
value where, for some fixed threshold value T', two vertices are adjacent in
the graph if and only if the sum of their real values exceeds T'. Threshold
graphs are completely characterized by a generation scheme consisting of
rules (i) and (iii).

One of the early graph-generation methods to model the WWW network
was proposed in [92], known as a copy model. This model is a random
process that repeatedly uses rules (v) and (vi). This rigid copy model was
used in a study of biological networks [24], while a more common use of the
model is to randomly select a subset of the neighbourhood of an existing
vertex chosen uniformly at random. Various forms of the copy model have
been shown to have power-law degree distributions [24] [92].

A graph is chordal if every cycle of size 4 or more has a chord. It is
known that chordal graphs are completely characterized by the generative
scheme defined by rule (iv). We observe that k-trees and mixed k-trees
fall under this category: a new vertex added is adjacent only to a clique.
When the parameter k (or the bounds of k as in the mixed case) are fixed,
these random models do not generate all chordal graphs and so existing
results on randomly generated chordal graphs do not necessarily apply. For
instance, the paper of Bender et al. [7] shows that under a similar chordal
graph generation scheme almost all chordal graphs are split. The authors
do this by showing that, as the number of vertices n grows unboundedly, the
removal of a largest clique in a random chordal graph almost surely leaves
behind isolated vertices (no edges among them.) However, in the k-tree and
mixed k-tree model, the maximum clique is easily seen to be bounded by
k + 1 and the removal of this clique removes (kgl) edges, while an n-vertex
k-tree has a quantity of edges on the order of nk. As n grows unboundedly,
nk — (k;rl) is much larger than 0 and so we contrast the result of [7] by
observing that while almost all chordal graphs are split, almost no k-tree is
split.

88

4.5. A Graph Classes Perspective on Graph Generation

As a future consideration, it would be interesting to investigate the ran-
dom models defined by using various subsets of the vertex-addition rules
given above. Rather than just adding a vertex to a graph, many graph
classes are characterized by combining two smaller graphs (such as cographs,
which are built by disjoint unions and complete joins). Perhaps the notion
of adding a collection of nodes at one time can be used in future graph
models, perhaps as a way of enforcing certain modularity expectations.

89

Chapter 5

Bounded Search Tree
Methods

A lot of research has been devoted to finding fixed-parameter tractable
algorithms for graph modification problems: Guo [70] studied edge dele-
tion to split graphs, chain graphs, threshold graphs and co-trivially perfect
graphs; Kaplan et al. [$1] studied edge-addition problems to chordal graphs,
strongly chordal graphs and proper interval graphs.

Cographs (Section 1.3.3) are an important class of graphs whose study
has lead to a general theory of graph decomposition and modularity.

As cographs are exactly the Py-free graphs, they also provide a general-
ization to Ps-free graphs (a.k.a. cluster graphs, see Section 1.3.1) which are
fundamental to network cluster partitioning methods.

While cographs can be recognized in linear time [31], it is also known
that it is NP-complete to decide whether a graph is a cograph with k extra
edges [13].

Cai [19] showed fixed-parameter tractability for the edge deletion, edge
addition, and edge editing problem to any class of graphs defined by a finite
set of forbidden induced subgraphs. The constructive proof implies that
k-edge-deletion problems to a class of graphs defined by a finite number of
forbidden subgraphs is O(M*p(m + n)) where p is some polynomial and
M is the maximum over the number of edges in each of the forbidden in-
duced subgraphs defining the graph class in question. For k-edge-deletions
to Py-free graphs in particular, Cai’s result implies an algorithm running in
O(3¥(m 4 n)) time. This algorithm would work by finding a P;: abed in a
graph and branching on the 3 possible ways of removing an edge in order to
destroy the P, (that is, removing either the edge {a, b}, {b,c} or {c,d}).

Nikolopoulos and Palios studied the edge-deletion to cograph problem
for a graph G — zy where G is a cograph and zy is some edge of G [117].
Lokshtanov et al. study cograph edge-deletion sets to determine whether
they are minimal, but not a minimum edge-deletion set [98]. To the best of
our knowledge, ours is the first study that specifically addresses the edge-
deletion problem to cographs. We present a bounded search tree algorithm

90

Chapter 5. Bounded Search Tree Methods

that solves k-edge-deletion to cographs in O(2.562% (m-+n)) time by perform-
ing a search until we arrive at a Pj-sparse graph and then optimally solving
the remainder of the search space by exploiting the structure of Pj-sparse
graphs (see Section 1.3.4).

This chapter presents the first non-trivial algorithm for the cograph edge-
deletion problem (running in O(2.562%)) and trivially-perfect edge-deletion
problem (running in O(2.450%) time.) We will give simple algorithms to
find minimum vertex-deletion sets to cographs and trivially perfect graphs
whose runtime of O(3.303%) match the existing best methods. We will also
illustrate how a careful branching strategy and refined analysis technique can
improve the runtime to O(3.115%) for the cograph vertex deletion problem.

The problems studied in this chapter can be unified in the following way:
Given a graph G, we want to delete vertices or delete/add/edit edges in G
until the edited graph is in a class C. Consider some larger superclass £
of C. Modifying a graph to the less-restricted class of £ has two benefits:
the branching rules on the forbidden subgraphs of £ in order to destroy
the forbidden induced subgraphs of C often yields an improved (smaller)
branching factor. Secondly, it may be the case that solving the C-editing
problem on a graph of type £ is polytime solvable.

The first step (phase 1) should be performed by making modifications
required to transform G into class C, but in such a way that will bring the
modified graph into £ first, creating a relaxed stopping condition. If £ is
somewhat close to C, it is conceivable that modifying an L-type graph to
a C-type graph (phase 2) could be optimally solved in polynomial time, or
solved within the same time bound as that required for phase 1.

In this Chapter, we use Pj-sparse graphs for the superclass £ to solve
the edge deletion and vertex deletion problems for cographs as C and quasi-
threshold graphs as C.

These results rely on the structure of Ps-sparse graphs, as quasi-threshold
and cographs are proper subclasses of Py-sparse graphs, while the structure
of Pj-sparse graphs is simple enough to exploit.

The definition of a spider appears in Section 1.3.4.

Lemma 5.1. Let G be a spider with body K and feet S. Then every edge
{k1, ka} with k1, ks € K is in exactly one Py in K U S.

Proof.
A Py cannot contain 3 vertices of K. If G is a thin spider, let each k; be
adjacent to each s;. The edge {k1, ko} is only in the Py {s1, k1, k2, s2}. If G
is a thick spider, let each k; be adjacent to every foot s; where ¢ # j. The
edge {ki,ko} is only in the Py {s1, k2, k1, 2} O

91

5.1. Edge-Deletion Algorithms

Algorithm 5: A meta-algorithm paradigm for graph modification
problems.

Algorithm METAALGORITHM(G):

Input: A Graph G = (V| E) and target class C

Output: A minimally-modifed graph H from G such that H € C

Let £ be an appropriately-chosen superclass of C;
G+ G;

(Phase 1)

while G’ is not in £ do
Find and edit-out a forbidden substructure which defines class C,

ideally one that is contained in a forbidden substructure of £;
end

(Phase 2)
Polynomially and optimally solve the rest of the modification
problem of G’ of class £ to C;

5.1 Edge-Deletion Algorithms

In this section, we give algorithms for two edge-deletion problems.

Problem 11. COGRAPH DELETION (G, k):
Given graph G = (V, E), does there exist a set S of at most k edges such
that (V, E\ S) is a cograph?

Problem 12. TRIVIALLY PERFECT DELETION (G, k):
Given graph G = (V, E), does there exist a set S of at most k edges such
that (V, E'\ S) is a trivially perfect graph?

The idea of the algorithms in this section is to focus on the forbidden sub-
graphs of Pj-sparse graphs so that efficient branching rules can be designed
systematically. The usefulness of this idea depends critically on whether
these problems can be solved polynomially on Pj-sparse graphs. We first
show how to solve the cograph deletion problem on Pj-sparse graphs in
linear time.

92

5.1. Edge-Deletion Algorithms

5.1.1 Computing Cograph Edge-Deletion Sets on P;-sparse
Graphs in Linear Time

We show that a linear time divide-and-conquer algorithm can be designed
to find the minimum cograph deletion set for Pj-sparse graphs.

Definition 5.2. Let G be a graph and G be the complement of G. The
subgraphs induced by the vertex sets corresponding to the connected com-
ponents of G are called the co-components of G. If G is connected, then we
say that G is co-connected.

For a vertex set V;, write G[V;] for the induced subgraph from G on
vertices Vj.

Proposition 5.3. Let G = (V, E) be a Py-sparse graph and M(V') be the
size of a minimum edge-deletion set required to turn G[V] into a Py-free
graph.

i) If G is disconnected with components Vi,...,V;, then

ii) If G is disconnected with co-components V1,...,V;, then

1) If G is a spider with head R, body K and feet S, then

M(RUKUS)=M(R)+ M(KUS).

Proof.

(i) This follows from the fact that a P; is connected and so any Py is in only
one connected component, even after some edge deletions.

(ii) It is easy to verify that an edge joining two vertices in separate co-
components can not be in a P; (or else in the graph complement this would
imply a Py contains vertices in separate connected components as a Py is self-
complementary.) After any edge-deletions within a co-component are made,
the vertex sets of separate co-components are still completely joined, and so
any new P4s will not include any two vertices in separate co-components.

93

5.1. Edge-Deletion Algorithms

(iii) Call a leg edge any edge joining a vertex s € S with a vertex k € K,
a head edge any edge joining some r; € R with some ry € R, a body edge
any edge joining two vertices in K, and call a neck edge any edge joining
some r € R with some k € K.

The structural definition of a spider implies that every vertex in K is
adjacent to every vertex in K U R, even after the removal of any leg edges
and head edges. Thus a P, can never contain an edge {r, k} with » € R and
k € K even after leg and head edge removals. We will show that there is an
optimal solution without body edges.

Consider an edge-deletion set E’ such that G — E’ is a cograph, and
let E” C E’ be the set of body edges and neck edges in E’. Consider the
Pysin G — E' + E” (the Pys created when adding E” back to G — F’.) In
G — E' + E”, K and R are completely joined and K is a clique and so no
Py uses a neck edge. So any Pys in G — E' + E” are strictly in K U S or
strictly in R. Since E’ is a cograph deletion set, the induced graph on R in
G —E'+ E" is Py-free. In KU S, the body edges added back may be in a P
with two leg edges, and if so, this Py will be unique by Lemma 5.1. Adding
the body edges from E” cannot create a P, involving a body edge not in
E”, so we just concentrate on the unique P, that each of these added body
edges may have created. By deleting one of these leg edges for each body
edge that creates a Pj, we create a new deletion set ' — E” + E" where
E" is a set of leg edges and |E"| < |E”|, so this new edge deletion set is a
solution no larger than E’ which does not contain body or neck edges. [

We note that parts (i) and (ii) of Proposition 5.3 apply to any graph G,
and not just Py-sparse graphs.

Lemma 5.4. Let G be a thin spider with body K = {ki,...,kx|} and legs
S = {s1,...,8k(}, and {si,k;} is an edge if and only if i = j. Then a
minimum cograph edge-deletion set for K U S is {{s;,ki},i=1...|K|—1}.

Proof.
It is obvious for |K| = 2, so assume that |K| > 2. Since K is a clique and S
is stable, every P4 in K U S has its endpoints in S. Furthermore, every pair
of vertices in S are in a unique Pj. Deleting any |S|—1 thin legs will clearly
destroy all of the Pys, so this edge-deletion set is indeed a cograph edge-
deletion set. To see that it is of minimum size, assume there is a deletion
set of size |K| — 2 or less in which two legs are not part of the deletion set.
Let these two legs be {s1,k1} and {s9,k2} and call them “permanent” in
this case. Since {s1, k1, ko, s2} is a Py and the edges {s1,k1} and {so, ka}
are not in the deletion-set, it must be that {k;, ko} is in the deletion set.
There at most |K| — 3 other edges in the deletion set. Now {s1, k1, kj, ka}

94

5.1. Edge-Deletion Algorithms

induces a Py for every j = 3...|K|. This means that the permanent edge
{s1,k1} is still in | K| — 2 P4s and every pair of these P4s have distinct edges
aside from {s1,k1}. Thus it is impossible to destroy all of these remaining
Pys with only |K| — 3 additional deletions or less. O

Lemma 5.5. Let G be a thick spider with body K = {k1,...,k x|} and feet
S = {s1,...,8/k(}, and {si, k;} is an edge if and only if i # j. Then a
minimum cograph edge-deletion set for K U S is {{ki,s;},i < j}.

Proof.
Every edge in K U S is in exactly one P;: an edge {k;, k;} is only in the
Py {sj, ki, kj,s;} and any edge {s;, k;} is only in the Py {s;, k;j, ki, s;} so the
number of Pssin KUS is (‘g‘), and since no two of these Pys share an edge, at
least ('gl) deletions are required. Consider the edge set T' = {{k;, sj},i < j}.
When deleting T' from K U S, K is still a clique and S is still a stable
set, and so if there is any P, in (K US) \ T, its endpoints must still be
in S. But after deletion of T, we have that the neighbourhood of s; is
N(s;) = {kit1,-- -,k x|} which means that N(s;) C N(s;) for all i > j, and
so no two vertices in S can be the endpoints of a P;. So T indeed destroys
all the Pys in K U S and since |T'| = ('g'), this is a minimum set. O

Theorem 5.6. Algorithm 6 correctly solves the cograph edge-deletion prob-
lem for Py-sparse graphs and can be implemented in O(m + n) time.

Proof.

The correctness of Algorithm 6 follows from Lemma 5.4, Lemma 5.5 and
Proposition 5.3.

Algorithm 6 can be implemented in linear time, as the spider structure
of Py-sparse graphs can be identified in linear time [79]. Identifying the
connected or co-components can also be done in linear time, as these types
of partitions are special cases of the more general notion of a homogeneous
set or module, and there are a number of modular decomposition algorithms
running in linear time [105], [33]. O

Our algorithm to find cograph edge-deletion sets in Py-sparse graphs is
presented in Algorithm 6. This is an example of a realization of Phase 2 of
the meta-algorithm, Algorithm 5.

5.1.2 A Bounded Search Tree Algorithm for Cograph
Edge-Deletion

The bounded search tree algorithm (Algorithm 7) finds 5-vertex subsets
that induce at least 2 Pys, branches on the possible ways of destroying the

95

5.1. Edge-Deletion Algorithms

Algorithm 6: Cograph edge-deletion algorithm for Py-sparse graphs.
Algorithm SPIDER(G):
Input: A Py-Sparse Graph G = (V, F)
Output: A set 7' C E such that (V, E\ T) is a Py-free graph

if G (or G) is disconnected then

Let C4,...,C; be the components or co-components of G;
T « Ui_,SPIDER(C;);
end

G is a spider with K = {ky,..., kg } and S = {s1,..., 5/ };

if G is a thin spider then

Notation: k; adjacent to s; if and only if ¢ = j;

Add edge {k;, s;} to solution set T for every i = 1,...,|K|—1;
end

if G is a thick spider then

Notation: k; adjacent to s; if and only if ¢ # j;

Add edge {k;, s;} to solution set T" for every pair i < j;

end
Return 7' U SPIDER(R);

Pys, and then finally arrives at a Pj-sparse graph and calls Algorithm 6.
This algorithm either terminates with a call to the subroutine (in the case
that a spider structure is encountered) or detects a cograph structure early,
or else its integer parameter k has been reduced to 0 or less in which case
the number of allowed edge-deletions has been exhausted without reaching
a cograph. This is an example realization of Phase 1 of the meta-algorithm,
Algorithm 5.

Refer to Figure 1.2 for the possible subgraphs the general search al-
gorithm may encounter. We refer to specific edges as they are labeled in
Figure 1.2 for each subgraph. The pseudocode description of the general
search algorithm branches on one of the deletion sets given in the table
below.

Let H be one of the forbidden subgraphs from Figure 1.2. The possible

96

5.1. Edge-Deletion Algorithms

edge-deletion sets to destroy the Pys in H are:

([Subgraph Minimal Edge Deletion Sets
Cs {a,c}, {a,d}, {b,d}, {b,e}, {c,e}
55 {a7d}7 {b}7 {C}
P5 {a7b}v {e,c}, {dae}a {Cvd}v
H= {a,d,f}, {a,c,f}, {b,d,f}, {b,e,f}
4-pan {a,d}, {a,c}, {b,c}, {b,d}, {e}
co-4-pan {b,c}, {d}, {e}
fork {a,b}, {c}, {d}
kite {a,d}, {a,c,f}, {b,d,f}, {b,c}, {e}

It is routine to verify that any edge-deletion set from each of the 7
induced subgraph cases must contain one of the deletion set cases given in
the table. Since every Py in the graph must be destroyed with an edge
deletion, encountering any of these 7 configurations necessitates the need to
apply one of the corresponding deletions.

The runtime of the algorithm is dominated by the size of the search
tree. The spider structure can be identified in linear time. When k is the
parameter measuring the number of edge deletions left to make, the size
T'(k) of the search tree produced by this process is found from each branch
rule separately:

1. C5: five branches, each reducing the parameter by 2 gives T(k) =
5T(k —2) and so T(k) < 2.237F

2. Ps: T(k) =2T(k — 1) + T(k — 2) giving T'(k) < 2.415*

w

Ps: T(k) = 4T (k — 2) + 4T (k — 3) giving T'(k) < 2.383"

-

4-pan: T(k) = T(k — 1) + 4T (k — 2) giving T'(k) < 2.562F

5. co-4-pan: T(k) = 2T(k — 1) + T(k — 2) giving T(k) < 2.415"

6. fork: T(k) = 2T(k — 1) + T(k — 2) giving T(k) < 2.415%

7. kite: T(k) = T(k — 1) + 2T(k — 2) + 2T (k — 3) giving T(k) < 2.270%

The size of the search tree is thus upper-bounded by the worst case of
deleting Pys in a 4-pan: T(k) < 2.562F.

Theorem 5.7. Algorithm 7 correctly solves the cograph k-edge-deletion prob-
lem in O(2.562F(m +n)) time.

97

5.1. Edge-Deletion Algorithms

Proof.

Jamison and Olariu [79] give a linear time recognition algorithm for Py-
sparse graphs. In the case that the graph being tested is not Py-sparse, the
algorithm terminates upon finding a 5-set of vertices isomorphic to one of
the forbidden subgraphs shown in Figure 1.2. In O(m-+n) time on a general
graph, we can find one of the subgraphs in Figure 1.2 or else assert that our
graph is Pj-sparse.

O

5.1.3 A Bounded Search Tree Algorithm for Edge-Deletion
to Trivially Perfect Graphs

In [70], Guo studied the edge-deletion problem for complements of triv-
ially perfect graphs. We know of no prior study of the specific problem of
deleting edges to a trivially perfect graph. A naive solution would find a
subgraph isomorphic to either a P, or a C4 and then branch on the possible
ways of deleting an edge from that subgraph, resulting in a worst-case search
tree of size O(4%). A minor observation that deleting any one edge from a
Cy always results in the other forbidden subgraph, Py, allows us to branch
on the 6 possible ways of deleting any 2 edges from a Cy. This results in a
worst-case search tree of size O(3%) due to the 3 edges in a Pj.

We use our strategy of branching towards a relaxation class of trivially
perfect graphs. The 6 possible ways of deleting 2 edges from Cy yield a

branching factor of \/ék < 2.45F and since removing two edges from any Cy
is necessary to arrive at a (Py,Cy)-free graph, our algorithm will begin by
performing this branching step before running a Py-sparse recognition algo-
rithm. Then we proceed as in the previous section, finding any Pj-sparse
forbidden subgraph and branching on the ways of deleting Pys and Cys in
it. Once no Py-sparse obstruction exists, we solve the problem optimally on
the resulting specialized structure (a Cy-free Py-sparse graph.) The branch-
ing rules become simpler in that only 5 of the 7 graphs in Figure 1.2 need
consideration. In particular, the /-pan that caused the bottleneck of Algo-
rithm 7, is no longer considered and this changes the runtime of the process
from O(2.562%) to O(2.450%).

One main difference in this algorithm from Algorithm 7 is that Cys are
found and destroyed first, and after any of the Pj-sparse deletions are made,
the process restarts with looking for Cys to destroy again. Once the Cys are
destroyed and the resulting graph is Py-sparse, we proceed with removing

98

5.1. Edge-Deletion Algorithms

edges with edge-deletion algorithm for thin or thick spiders (Algorithm 6).

Algorithm 8: Bounded search tree algorithm finding a trivially perfect
edge-deletion set.

Algorithm TRIVIALLYPERFECTEDGEDELETION(G, k)

Input: A Graph G = (V| E) and a positive integer k

Output: A set S of edges of G with |S| < k where (V,E\ S) is
trivially perfect if it exists, otherwise NO

Initialize T' = 0;
if £ <0 then
‘ Return No;
end
if G is trivially perfect then
‘ Terminate here and return S;
end
if There exists H isomorphic to Cy then
For each of the 6 possible pairs of edges, T’
TRIVIALLYPERFECTEDGEDELETION(G — T, k — 2);
G+ G+ T;
end
Apply a Ps-sparse recognition algorithm;
if G is Py-sparse then
T <+ SPIDER(G);
if |S|+|T| < k then
‘ Terminate here and return S U T
end

else
| Return No;

end

end
else
A forbidden graph H from Figure 1.2 exists;
foreach minimal edge-deletion set E' for H do
S+ SUE;
T < COGRAPHDELETION(G — S,k — |S|);
if T == NoO then
‘ S« S\ FE;
end
end
Return No;
end

99

5.1. Edge-Deletion Algorithms

The correctness of decomposing the edge-deletion problem into separate
problems on K U S and R depends a proposition similar to Proposition 5.3.

Proposition 5.8. Let G = (V, E) be a Cy-free graph and M (V') be the size
of a minimum edge-deletion set required to turn G[V] into a (Py,Cy)-free
graph.

i) If G is disconnected with components Cy,...,Cy, then

ii) If G is disconnected, then G is a complete join between a clique and a
smaller Cy-free graph, H, and M(V') = M(V(H)).

1) If G is a spider with head R, body K and feet S, then

M(RUKUS)=M(R)+ M(KUS).
Proof.

Casei): If G has more than one connected component, any edge deletions
made in one component cannot create a Py or a Cy in a different connected
component.

Case ii): Suppose G is disconnected. Let H be a set of at least 2 vertices
inducing a connected component in G. Then H induces a Cj-free graph
in GG since any induced subgraph of a Cy-free graph is Cy-free. Since H is
connected in G, there must be two non-adjacent vertices u, v of H in G. Let
x and y be any two vertices not in H. Since H is a connected component
in G, every vertex in H is adjacent to every vertex outside of H. If z and
y are not adjacent, then uxvyu is a Cy in GG, which is impossible. So any
vertices outside of H must induce a clique in G. It follows, then, that no Py
in G includes a vertex of G\ H, and after any edge deletions in H, no P; or
C4 can include a vertex of G\ H. Hence M (G) = M (H).

Case iii): Notice that no C4 can include a vertex s from S in a spider
even after removals of leg edges and head edges since the neighbourhood
of s induces a clique. Since K is a clique, and every k € K is adjacent to
every r € R, there can not exist a Cy in K U R unless the Cy is completely
contained in R. So no Cy contains an edge from R to K. Therefore, any
edge e = {r,k} with r € R and k € K is not in any Cy in G, and for any
subset of leg edges and head edges E’ the edge e = {r,k} is not in any

100

5.2. Vertex-Deletion Algorithms

C4 in G — E'. Combining this with Proposition 5.3 for P,s establishes the
decomposition.
O

Proposition 5.8 shows us that since all the Cys are destroyed in the
branching stage of TRIVIALLY PERFECTEDGEDELETION(G, k), once we ar-
rive at a Cy-free spider, we are free to delete leg edges without creating a
new Cjy.

The runtime of Algorithm 8 is dominated by the branching rules once
again. Encountering a Cj results in 6 branches which delete 2 edges each.
The resulting recurrence is T'(k) = 67(k — 2) and so T'(k) < 2.450%. Hav-
ing deleted all the Cys, we no longer include the Ps or the 4-pan cases in
our analysis. The runtime analysis for the rest remain unchanged: Cj :
2.237F Py : 2.415%, co-4-pan: 2.415%, fork: 2.415%, kite: 2.270%. The search
tree is thus bounded by the Cy case of size O(2.450%). Finding a Cj directly
is a problem that is currently best-achieved using matrix multiplication [39],
so this entire process as described runs in O(2.450¥n®) where O(n®) is the
time required for matrix multiplication (« < 2.376 [29]).

We can, in fact, modify the algorithm to run linearly in n and m by
observing that a graph is Ps-free and Cy-free if and only if it is a chordal
cograph. By first running a certifying chordal recognition algorithm [135],
we can either deduce that there is no Cy4 or else find a Cy or a C5 or a larger
induced cycle (and thus a Ps) and branch on these subgraphs according to
the rules we gave, and if the graph is chordal then we apply a Pj-sparse
recognition algorithm to find one of the other forbidden induced subgraph,
branch on it, and then re-apply the chordal recognition process.

Theorem 5.9. Finding a trivially perfect k-edge-deletion set can be solved
in O(2.450%(m +n)) time.

5.2 Vertex-Deletion Algorithms

This section shows how our general method can be used to solve vertex-
deletion version of our prior two problems:

Problem 13. COGRAPH VERTEX-DELETION (G, k):

Given graph G = (V, E), does there exist a set S of at most k vertices such
that G — S is a cograph?

Problem 14. TRIVIALLY PERFECT VERTEX-DELETION (G, k):

Given graph G = (V, E), does there exist a set S of at most k vertices such
that G — S is a trivially perfect graph?

101

5.2. Vertex-Deletion Algorithms

5.2.1 Vertex-Deletion to Cographs

Since removing a vertex set S from a graph G = (V| E) is equivalent
to taking the induced subgraph on the vertex set V' \ S, these problems
are also often named maximum induced subgraph problems. In our case of
asking if there is a vertex set of size at most k that can be removed to leave
behind a cograph, this is equivalent to asking if there is an induced cograph
subgraph of size at least |V|—k. Removing a vertex from G can never create
a new induced subgraph in G, and so deleting vertices to destroy induced
subgraphs is commonly modeled as a HITTING SET problem. In this case
in which each Py maps to a 4-set in a HITTING SET instance, we have
the restricted problem of a 4-HITTING SET. Algorithms for such vertex-
deletion problems should always be compared against the state-of-the-art
algorithms of d—HITTING SET if not anything else. d-HITTING SET is a
well-studied NP-complete problem which admits fixed-parameter tractable
algorithms. The first improved analysis of d-HITTING SET by Niedermeier
and Rossmanith [116] give a search tree of size O(3.30%), and a more detailed
and involved analysis by Fernau [49] improves the bound to O(3.148%). This
is the best known bound for 4-HITTING SET to date.

The simple spider structure of P, sparse graphs allows us to describe a
simple algorithm for the vertex-deletion problem to cographs. The runtime
of this simple algorithm matches that of [66] and of [I16]. The algorithm
in [66] used branching rules that were designed by breaking the Pys in every
subgraph of size t. Testing various values of ¢t deduced that rules based
on subgraphs of size 7 yielded the optimal runtime of an algorithm of this
sort, with runtime O(3.30%). Their algorithm builds branching rules from
447 graphs of size 7, while our algorithm only involves seven graphs on 5
vertices (Figure 1.2.)

In the following subsection, we use the analysis technique of [110] to
show that the runtime of our bounded search tree algorithm is O(3.115%),
hence improving on Fernau’s O(3.148%). Our runtime could be improved
further if we were to use the methods of Fernau [19], but such an analysis
is extensive and would sidetrack from the focus of this section.

We describe the subroutine SPIDER VERTEX-DELETION here. The algo-
rithm works in the same way as Algorithm 6, taking as input a Pj-sparse
graph and returning the optimal number of vertices to remove in order to
break all P,s in the graph. For thin spiders, every pair of feet is the end-pair
of a Py, and removing any |S| — 1 vertices from S will destroy all the P;s in
the body and legs. Removing less than |S| — 1 will leave at least two thin
legs and hence a Py, so |S| — 1 is necessary.

102

5.2. Vertex-Deletion Algorithms

Since a set of 4 vertices induces a Py in a graph G if and only if they
induce a P, in G, deleting any |K| — 1 vertices from K in a thick spider
will destroy all the Pys in K U S. In either the thin or thick spider case,
the subroutine is then applied to head R. This concludes the description of
SPIDER VERTEX-DELETION. The correctness of the algorithm is asserted
by the following proposition:

Proposition 5.10. Let G = (V| E) be a spider with head R, body K and
feet S. Let M(V') be the minimum number of vertices required to remove
from G[V'] in order to turn G[V'] into a cograph. Then M(V) = M(R) +
M(SUK).

Proof.
Deleting vertices from a graph can never create a new Py;. We know from
Proposition 5.3 that no P4 includes vertices from both K and R. Deleting
any vertices from K U.S will not destroy Pys in R, and vertex deletions from
R will not destroy any Pys in K US. Hence M (V) = M(R)+ M(SUK). O

Corollary 5.11. The algorithm SPIDER VERTEX-DELETION described above
correctly solves the cograph vertex deletion problem for spiders in linear time.

This implies that SPIDER VERTEX-DELETION serves as an implementa-
tion of Phase 2 of the meta-algorithm, Algorithm 5. Algorithm 9 serves to
fill Phase 1 of the meta-algorithm.

For a general graph, we proceed as in the cograph edge-deletion algo-
rithm. We find Py-sparse obstructions and branch on the possible ways of
deleting vertices to destroy all Pys, repeating until the remaining graph is
Py-sparse. The pseudocode description is given in 9.

The branching rules for the vertex deletions are given in a table as before:

Subgraph | Minimal Vertex Deletion Sets
C5 {1>2}> {173}7 {1a4}’ {175}> {273}7
{2,4}, {2,5}, {3,4}, {3,5}, {4,5}
P5 {175}7 {2}7 {3}7 {4}
o= P5 {1}7 {3}, {4}, {275}
4-pan {2}, {4}, {5}, {1.3}
co-4-pan {3}, {4}, {5}, {1,2}
fork {3}, {4}, {5}, {1,2}
kite {2}, {4}, {5}, {1,3}
The runtime of the algorithm is dominated by the branching steps. The
runtime T'(k) for the Cs case depends on 10 branches, while each of the
other cases have equivalent runtime analysis.

103

5.2. Vertex-Deletion Algorithms

1. C5: ten branches, each reducing the parameter by 2 gives T(k) =
10T (k — 2) and so T(k) < 3.163F

2. All others: T'(k) = 3T(k — 1) + T'(k — 2) giving T'(k) < 3.303"

The runtime of this vertex-deletion algorithm is bounded by O(3.303% (m-+
n)), matching the runtime of the cograph vertex deletion algorithm gener-
ated by automated branching rule design [(0].

Theorem 5.12. Algorithm 9 solves the vertex-deletion problem for cographs
in O(3.303(m + n)) time.

5.2.2 Improvement using Hitting-Set

The 4-HITTING SET algorithm of [116] involves an analysis which counts
when a branch choice can be made on a 3-set. Without counting these
cases, an algorithm for 4-HITTING SET which only makes choices on 4-sets
will have a search tree size of 4¢. By keeping track of when 3-sets are created
in the search process and by branching on 3-sets whenever they are available,
the authors of [116] are able to improve the upper-bound to the size of the
search tree to O(3.30%).

By using a similar strategy of choosing specific Pys to branch on, we
have shown that COGRAPH VERTEX DELETION can be solved in O(3.115%)
time [109].

Fernau [19] gave an improved analysis to the HITTING SET algorithm,
and we believe that a similar analysis would improve our runtime as well.
The details, however, are very involved and lengthy, and would sidetrack us
from our focus on branching strategies here.

Comment 1. We show here that using a similar technique to that in [110]
can improve our search tree size. For an instance (G, k) of cograph vertex-
deletion, we will use an implicit instance of 4-HITTING SET where each set
of 4 vertices inducing a Py in G corresponds to a 4-set. A cograph deletion
set for G will correspond to the hitting set of the set of 4-sets.

We adapt the notion of dominance from HITTING SET to that of Pys: a
vertex v Py-dominates u if v exists in every Py that w is in.

Following the HITTING SET method, we observe that if v Py-dominates
u, then any hitting set that contains u could be replaced with a hitting set
containing v. Using this observation, we mark u in the graph to signify that
it will not be in our solution. When we encounter P,s involving u, the P
only needs to be considered as a 3-set to hit. Marking u in G is equivalent
to removing v in the implicit 4-HITTING SET instance.

104

5.2. Vertex-Deletion Algorithms

Our vertex-deletion algorithm given in the previous subsection applies a
Py-sparse recognition algorithm to find one of the 7 forbidden configurations
from Figure 1. We illustrate how to proceed to the branching step when
encountering a Ps: {v1, va, v3,v4,v5} with v; and vs as the endpoints:

If we put v9 in S, remove vy from the graph GG and reduce the parameter
k by 1. Any set in the hitting set instance H containing vy is removed.
Otherwise (if vy is not in S) we mark ve in G and remove vy from H,
possibly creating some 3-sets. If vs is put in S, reduce k by 1 and remove vs
from the graph, as before. Otherwise (if vs is also not in S) then mark vs
in the graph and remove vs from H. If v4 is in S, reduce k by 1 and remove
any set containing vs. Otherwise (if none of vy, v3, v4 are in S) we add v;
and vy to S, remove them from G and reduce the parameter k by 2.

If we first ensure that Ps-dominated vertices have been removed from
consideration, some vertices in the P; (or analogous forbidden subgraph)
may be marked. We do not need to build branches on cases asking if a
vertex v is in S if v is already marked. If we encounter a P, in one of our
forbidden subgraphs consisting of four marked vertices, we can terminate
that branch of the search tree and backtrack.

When encountering any of the Pj-sparse forbidden subgraphs: Ps, Ps,
kite, fork, 4-pan, co-4-pan, we have in each case 3 vertices whose removal
will break both P4s in the obstruction, or else two vertices which must be
removed together. Call those first 3 vertices the breaking vertices. Our pro-
cess is summarized in the following algorithm:

105

5.2. Vertex-Deletion Algorithms

Algorithm 10: Using hitting-set for cograph vertex-deletion.

Algorithm COGRAPHVERTEXDELETIONHITTINGSET(G, k)
Input: A Graph G = (V, E) and a positive integer k

1. If any 3-set has been created, branch on that 3-set. Repeat until
there are no more 3-sets;

2. If any vertex is Pj-dominated, mark it in G and remove it from the
hitting set. Go to step 1.;

3. Find one of Ps, Ps, kite, fork, 4-pan, co-4-pan.;

4. If there is a P4 all of whose vertices are marked, STOP and
backtrack.;

5. Branch on the (up to 3) unmarked breaking vertices using the
cases as described above. Go to step 1.;

6. If all three breaking vertices are marked, include the other two
vertices in S and go to 1.;

7. If no such subgraph can be found, our graph is an extended
Py-sparse graph (See below.) Solve the remainder optimally without
search.

Let v and v’ be breaking vertices encountered after steps 1 and 2 cannot
be applied any further. If v is not in any other P4 besides the two Pys in the
obstruction graph found in step 3, then v is Py-dominated by v/, but this
cannot happen if steps 1 and 2 are done to exhaustion. So we have that v
must be in another P not involving v". When branching on v, we consider
v € S, in which case v is removed from G, or v ¢ S in which case we remove
v from H, creating at least one 3-set since we established that v must be in
another P, not containing v’.

Step 3 can be performed with a linear-time algorithm recognizing (Ps, Ps,
kite, fork, 4-pan, co-4-pan)-free graphs. These are called eztended Py-sparse
graphs by Giakoumakis and Vanherpe [(1]. This ensures we do not encounter
a (5 at this stage of the process. They showed:

Theorem 5.13. [01] If C is a C5 in an extended Py-sparse graph, then C is
a prime module.

Let C be a (5 in our graph after reaching step 7 of our hitting-set process.
Observe that every 4-set of C induces a P4, so no vertex of C' is contained
in a nontrivial module or else we will have one of the forbidden subgraphs of
extended Py-sparse graphs which we have already destroyed. Further, C can

106

5.2. Vertex-Deletion Algorithms

Figure 5.1: An impossible configuration for a C5 in an extended Pj-sparse
graph.

not be a module in some Py or else that P, extends to one of the forbidden
graphs already destroyed (see Figure 5.1.) It must be that C' is a set of 5
vertices inducing a 5-cycle and not overlapping with any other P,. Since C
does not intersect with any other existing Pys left in G, we are free to choose
any two vertices of C' to add to S and delete from G.

After deleting every C'5 from the extended Pj-sparse graph, we have a
conventional Pj-sparse graph and we proceed with vertex deletions for spi-
ders using SPIDER VERTEX-DELETION described in the previous subsection.

Let T'(k) be the number of leaves in a search tree of our vertex deletion
problem, and let B(k) be the number of leaves in a search tree for this
problem whose root branched on a 3-set. Step 4 of Algorithm 10, can (at
worst) branch on each of the breaking vertices. If the first vertex is put
in S, we reduce k by 1 and so we have a T'(k — 1) branch. If we assume
the first vertex is not in S and select the second vertex to be in S, the
parameter decreases by 1. Since this first vertex is not Pj-dominated (or
else it would have been marked), it must be in another P; and so marking
the it will create at least one 3-set in H, giving a B(k — 1) branch. Along
the same lines, if we choose the third breaking vertex, we arrive at another
B(k —1) branch. In the final case of deleting the two non-breaking vertices,
we create a T'(k — 2) branch. Together this puts an upper bound on 7T'(k) of
T(k—1)+2B(k—1)+T(k —2).

Similarly, when branching on a 3-set, B(k) < T'(k — 1) + 2B(k — 1).
Together, these two recurrences give a simultaneous system from which one
can show B(k) < 3.115% and T(k) < 1.115B(k) with a straightforward
induction proof.

Theorem 5.14. Algorithm 10 solves the cograph vertez-deletion problem in
O(3.115%) time.

The method of analyzing the search tree size created upon the existence
of a 3-set shows that our search tree size is smaller than the O(3.30%) for

107

5.2. Vertex-Deletion Algorithms

4-HitTING SET found by Niedermeier and Rossmanith [116]. Fernau [19]
refines this analysis process by keeping track of the the number of (d — 1)-
sets in d-HITTING SET, arriving at O(3.148%) for 4-hitting set. Specifically,
Fernau’s analysis involves expressions T%(k) for i = 0,1,2,3 where i is the
number of 3-sets in an instance of 4-hitting set (in our case, B(k) is T'(k).)
We are confident that a similar refinement in the analysis of our vertex-
deletion algorithm would reveal further gains, but our presented algorithm
is already shown to have a smaller search space.

5.2.3 Vertex-Deletion for Trivially Perfect Graphs

Given a graph G, our task now is to find the largest induced trivially
perfect subgraph in G. Equivalently, given a value k, we want know whether
we can delete at most k vertices in order to turn the graph Py-free and Cy-
free.

In the edge-deletion version of this problem from the previous section,
we deleted at least 2 edges from all Cys in the branching process since
2 edges is necessary, and this was algorithmically appealing as it decreased
the parameter by 2. The vertex-deletion problem does not share this luxury:
there are 4 vertices in a Cy and only a single vertex removal is required to
turn it into a (Py, Cy)-free graph. This will result in a more complicated
procedure to delete all remaining Cy4s in the Py-sparse graph that remains
after the search process.

We will proceed directly to finding the P4-sparse obstructions and branch-
ing on them to turn each one into a (Py, Cy)-free graph. This yields a worst-
case runtime of O(3.303%), as summarized by the following table for each
obstruction graph H:

Subgraph Minimal Vertex Deletion Sets
c {1,2}, {1,3}, {1,4}, {1,5},
> {2,3}, {24}, {2,5}, {34}, {3,5}, {4,5}
P5 {175}7 {2}7 {3}7 {4}
H = F {172}7 {173}7 {174}’ {175}7 {273}7
- > {2,4}, {2,5}, {3,4}, {3,5}, {4,5}
4-pan {2}, {4}, {1,3}, {1,5}, {3,5}
co-4-pan {3}, {4}, {5}, {1,2}
fork {3}, {4}, {5}, {1,2}
kite {2}, {4}, {5}, {1,3}

The runtime for each of these cases is summarized below:

108

5.2. Vertex-Deletion Algorithms

1. C5: five branches, each reducing the parameter by 2 gives T'(k) =
10T (k — 2) and so T(k) < 3.163F

2. P5: T(k) =3T(k — 1)+ T(k — 2) giving T'(k) < 3.303%

3. Ps: T(k) = 10T (k — 2) giving T'(k) < 3.163"

4. 4-pan: T(k) = 2T(k — 1) + 3T(k — 2) giving T'(k) < 3*

5. co-d-pan: T(k) = 3T(k — 1) + T(k — 2) giving T'(k) < 3.303%
6. fork: T(k) = 3T(k — 1) + T(k — 2) giving T'(k) < 3.303%

7. kite: T'(k) = 3T(k — 1) + T(k — 2) giving T'(k) < 3.303%

After all the forbidden configurations of Ps-sparse graphs have been de-
stroyed, we are left with a Pj-sparse graph from which we must delete ver-
tices to destroy the remainder of the Pss and C4s. While Cys do not exist
in a thin or thick spider, Cys will exist across co-components. Namely, if
Ay and A, are two non-clique co-components, then any two nonadjacent
vertices x1 and y; in A; and any two nonadjacent vertices xo and gy in Ao
will induce a 4-cycle. Since each connected component and co-component
of a Pj-sparse graph must be a spider, every induced 4-cycle must be the
type that crosses non-clique co-components.

In order for this Pj-sparse graph to be Cy free, all but one of the co-
components must be a clique. The only Pys that will be left to delete will
be those strictly in the non-clique co-component. To determine the optimal
way at arriving at this point, let us introduce some notation: for a Ps-sparse
graph G, let Ay, As, ..., A; be the co-components of G. Let w; = w(A4;) be
the size of a maximum clique in A;, and 7; be the size of a minimum cograph
vertex-deletion set, as found by the algorithm SPIDER VERTEX-DELETION.

We seek to find 4 such that deleting all co-components Aj,j # 4 into
cliques, plus SPIDER VERTEX-DELETION(A4;) is a minimum. That is, we
want to find ¢ that minimizes

mi+ YA —wj.
i

For a particular G,) |A4;| = n is fixed, as is > w;. We see that the
expression above is minimized when i is chosen such that |4;| —w; —n; is a
maximuim.

109

5.2. Vertex-Deletion Algorithms

Our algorithm is as follows:
Algorithm 11: Trivially Perfect Vertex-Deletion Algorithm.

Algorithm TRIVIALLYPERFECTVERTEXDELETION(G, k)

Input: A Graph G = (V| E) and a positive integer k

Output: YESs if there exists a set S of at most k vertices so that
G — S is trivially perfect, NO otherwise.

while G is not Py-sparse do
Let H be a Py-sparse obstruction subgraph;
Branch on the possible ways of deleting the Pys and Cys from H;
Let k1 be the number of vertex deletions made in this stage;
end
G is Py-sparse. Let Aq,..., A; be the co-components of G
Fix i to be the lowest index maximizing |A;| — w; — 7;;
for j #i do
Fix a maximum clique of Aj;
Delete any vertex of A; which is not in this maximum clique;
end
Let ko be the number of vertex deletions made in the for-loop;
Let ks be the number of deletions performed in SPIDER
VERTEX-DELETION(A;);
if k1 4+ ko + k3 < k then
return YES;
end
return NO;

Since maximum cliques can be found in linear time on Pj-sparse graphs,
it is clear that this algorithm runs in polynomial time for any fixed k. The
runtime is dominated by the exponential factor from the search tree, which
was shown to be O(3.303%).

Theorem 5.15. Algorithm 11 is a fized-parameter tractable algorithm which
solves the vertez-deletion problem for trivially perfect graphs in O(3.303F).

Of course, a hitting set-style improvement similar to the previous section
could be applied here.

110

5.3. Summary

5.3 Summary

This chapter focused on solving graph modification problems with the
fixed-parameter tractability paradigm of a bounded search tree. Finding
graph structures that are clique relaxations was motivated in Chapter 2.
Each problem studied in this chapter serves as a way of finding a closest
or largest clique-relaxation structure and expressed as graph modification
problems.

We developed new and improved algorithms for many problems here, all
falling within the structure of the meta-algorithm presented as Algorithm 5.

The main contribution (in the author’s opinion) of this chapter is the
systematic modularization of solving modification problems to a graph class
by using a generalization of the target graph class to both: (1) shorten the
depth of search trees and (2) design efficient branching rules that handle
multiple forbidden configurations at once, thereby reducing the branching
factor of search trees.

The specific results in this chapter will be summarized in Chapter 6.

111

5.3. Summary

Algorithm 7: Bounded search tree algorithm computing a cograph
edge-deletion set.

Algorithm COGRAPHDELETION(G, k)

Input: A Graph G = (V, E) and a positive integer k

Output: A set S of edges of G with |S| < k where (V,E\ S) is a
cograph if it exists, otherwise NO

Initialize T = ();
if £ <0 then
‘ Return No;
end
if G is a cograph then
‘ Terminate here and return S;
end
Apply a Ps-sparse recognition algorithm;
if G is Py-sparse then
T + SPIDER(G);
if |T'| < k then
| Terminate here and return S U T
end
else
‘ Return No;
end
nd
Ise
A forbidden graph H from Figure 1.2 exists;
foreach minimal edge-deletion set E' for H do
S+ S UF
T < COGRAPHDELETION(G — S,k — |S]);
if T == No then
‘ S« S\ F;
end

o O

end
Return No // All branches checked with no solution found;
end

112

5.3. Summary

Algorithm 9: Bounded search tree algorithm finding a cograph
vertex-deletion set.

Algorithm COGRAPHVERTEXDELETION(G, k)

Input: A Graph G = (V| E) and a positive integer k

Output: A set S of vertices of G with |S| < k where (V \ S, E) is a
cograph if it exists, otherwise NO

Initialize T = 0;
if £ <0 then
‘ Return No;
end
if G is a cograph then
‘ Terminate here and return S;
end
Apply a Ps-sparse recognition algorithm;
if G is Py-sparse then
T < SPIDERVERTEXDELETION(G);
if |[S|+ |T| < k then
‘ Terminate here and return S U T,
end
nd
Ise
A forbidden graph H from Figure 1.2 exists;
foreach minimal vertex-deletion set V' for H do
S+ SuVv’;
T < COGRAPHVERTEXDELETION(G — S, k — |5]);
if T == NO then
| S+ S\V
end

[eI¢)

end
Return No;
end

113

Chapter 6

Concluding Remarks

This thesis was an attempt to bring in knowledge from the fields of al-
gorithmic graph classes into network analysis, which has been studied by
many disciplines in distinctly different ways. Before this work was done, so-
cial and complex network analysis made use of trees, cluster graphs, chordal
graphs (mostly via treewidth), and only recently have cographs made an
appearance in the study of applied networks (see e.g. [151]). We have used
quasi-threshold graphs here in the study of social communities and hierar-
chical organization, and Ps-sparse graphs have made several appearances in
the associated algorithmic study of these community-detection problems.

We still feel that the vast knowledge of many hundreds of graph classes [10]
(almost 1500 now on http://www.graphclasses.org) have use in defining
the future direction of network analysis. For instance, any pair of graph
classes comparable by set containment could potentially lead to improved
algorithms in the form of Algorithm 5. Additionally, superclasses of cluster
graph or quasi-threshold graphs can always be used as a type of clique-
relaxation for the purposes of defining community structure, and mostly
every class has an interesting structural property that can be used for fur-
ther analysis of the community structure, just as the comparability-graph
equivalence for quasi-threshold graphs serves as a way to find and measure
the hierarchical organization of the individuals.

6.1 Summary of Thesis

This thesis began with a survey of definition from graph theory, graph
classes, and the algorithmic problems studied on graphs. In Chapter 2, we
looked at the problem of finding clique clusters in networks and then we
showed the use of quasi-threshold graphs in defining social community as a
clique relaxation.

In Chapter 3, we showed how to extend the use of quasi-threshold graphs
to the problem of detecting hierarchical organization in directed networks.

In Chapter 4, we briefly surveyed some random network models and ar-
gued that although measures such as the degree distributions are important

114

http://www.graphclasses.org

6.2. The Key of Contributions of this Thesis

in characterizing an accurate network model, we must go further and under-
stand the distribution of higher-order structures, such as community sizes,
to fully capture the the structure of real-world networks.

Chapter 5 builds a general framework for improving search-based al-
gorithms for graph modification problems, and exhibits a number of best-
known algorithms for several problems.

6.2 The Key of Contributions of this Thesis

The specific results that are contained in this thesis are summarized
below.

e We show that CLUSTER DELETION can be solved in polynomial time
on cographs.

e We show that CLUSTER DELETION is NP-hard on a class of graphs
slightly larger than cographs.

e We define a new structure for social community called familial groups
and show that they naturally arise from sociologists’ previous work.

e We show that quasi-threshold editing is NP-complete, settling an open
problem mentioned in 2006 [18], in 2008 [102], and again in 2011 [97].

e We show that the problem of adding edges to a graph in order to make
its diameter equal to 2 is W[2]-hard. We show that it remains hard
even on clique-dominated diameter-3 graphs.

e We implemented and tested familial groups on real-world networks to
show that the communities detected were meaningful and/or correct.

e We showed how one might edit directed and weighted networks to find
familial group communities and hierarchies.

e We performed an empirical study of random BA-model graphs and
showed that the community structure is lacking while random partial
k-trees do exhibit a distribution of community sizes consistent with
the findings of [118].

e Using P,-sparse graphs, designed new algorithms with best-known run-
times for vertex deletion and edge deletion modification problems to
quasi-threshold graphs and cographs.

115

6.2. The Key of Contributions of this Thesis

6.2.1 Future Considerations
Future Work on Modifying to a Cluster Graph

We showed in Section 2.3 that the Cluster-Deletion problem can be
solved in polynomial time when the input graph comes from the class of
cographs, while it is NP-hard on a class of graphs slightly larger than
cographs. Although there is very little difference between these two classes,
it would be interesting to know if one could find a dichotomy theorem that
sharpens the statement as to exactly when cluster deletion is polytime solv-
able with respect to forbidding subgraphs.

We also showed that a greedy maximum clique-finding algorithm would
optimally solve cluster deletion on cograph input. This property could apply
to superclasses of cographs, even where cluster deletion is NP-hard, since
on those classes it might be that detecting maximum cliques would not be
a polynomial-time algorithm. Even with the loss of polytime solvability, it
would be interesting to determine the class of graphs for which obtaining
greedy cliques will solve the cluster deletion problem.

Very recently, Bonomo et al. [15] showed that CLUSTER DELETION is
NP-complete on weighted cographs, in contrast to our result showing it is
polytime solvable on unweighted cographs. They further show that CrLus-
TER DELETION is NP-complete on chordal graphs, even on Ps-free chordal
graphs.

Changing the problem consideration from edge deletions to edge edits
makes the problem far more complex. We do not believe cluster editing has
been studied on a well-known graph class before, and we do not know the
answers to the following problems:

Problem 15. (Open) Given a cograph G and integer k, can we solve CLUSTER
EDITING(G, k) in polynomial time?
A weaker version of this problem is:

Problem 16. (Open) Given a quasi-threshold graph G and integer k, can we
solve CLUSTER EDITING(G, k) in polynomial time?

Future Work on Familial Groups

Despite the theoretical and computational justifications given for the use
of familial groups, there is still work to be done in determining when this
method of network clustering is desirable over other existing methods. For
instance, [123] found that a scale-free topology of complex networks gives ev-
idence of hierarchically-organized nodes, while networks without such struc-

116

6.2. The Key of Contributions of this Thesis

ture (such as those deriving from geographical data) are not hierarchical. It
would be interesting to see if the method of familial groups would be con-
sistent with their findings by yielding meaningful results only in scale-free
networks.

An aspect of (Py, Cy) editing is that the edit set is not unique, and we can
only speculate at this point how varied the found communities would be in
the space of equally-weighted edit solutions. A specific question we can ask
is how one could define the intra-communal rank of individuals differently
so that the importance of a vertex is perhaps measurable in the original
network and not on the found edited graph, which is not unique. Along
this line of reasoning, we wonder if there may be an easy way to predict
the individuals which will end up as leaders of groups after editing to a
quasi-threshold graph.

The computational results shown in Section 2.6 weighed an edge-addition
and edge-deletion equally, for each of the Cy and the P;. But one of the
reasons in justifying the removal of Pys from a community is that two vertices
which are a distance 3 away from each other (that is, beyond the horizon of
observability [55]) should likely be in separate close-knit communities. With
this interpretation, perhaps it makes sense to consider only edge-deletions in
destroying Pys, or maybe weighing the deletions more favorably than edge
additions on those 4 vertices.

Another possible future study is to analyze how much larger the found
communities become when relaxing the Py restriction to a Ps restriction,
and similarly relaxing the C4 to a Cs. Many graph classes defined by these
forbidden induced subgraphs have already been studied, mostly in terms
of their structure, but not necessarily in the context of modifying to such
graphs. For example, while every connected (Py, Cy4)-free graph has at least
one vertex such that every other vertex in the component is adjacent to it, it
is also known that every connected (Ps, C5)-free graph has a clique in it such
that every other vertex is adjacent to some vertex of that clique [34]. As
far as we know, a graph modification problem (via edge deletions or edits)
has not yet been studied for the class of (Ps,C5)-free graphs. There are
many other possible graph classes that can serve as relaxations to P, and
Cy-freeness as well.

The computational problem of editing a graph to a nearest (Py, Cy)-free
graph is still rather new. We showed here that it is in fact NP-complete, but
this does not rule out fast approximation algorithms or integer linear pro-
gramming formulations. Even improved exponential-time exact algorithms
would be of interest, especially kernelization techniques which could reduce
the size of large problem instances.

117

6.2. The Key of Contributions of this Thesis

There have been many studies on inferring global structure from local
analysis. With our definition of forbidding certain 4-vertex graphs, this
opens the door to new structural analysis possibilities, such as probabilistic
modeling techniques used in [27] or [17].

Future Work on Branching Strategies

The algorithms presented in Chapter 5 can all be regarded as instances
of Algorithm 5. All of the algorithms of Chapter 5 are deletion algorithms,
and edge-edit version of analogous algorithms can also follow the paradigm
if (i) all the required branching rules for the minimal edits can be described
and (ii) a polytime algorithm solving the editing problem on input from
an appropriately-chosen superclass can be found. Indeed, shortly after our
result containing algorithms for the cograph vertex and edge deletion and
quasi-threshold edge deletion problems, the same approach (also using Py-
sparse graphs) was successfully used to give an improved algorithm for the
cograph edge editing problem [96]. Indeed, with the vast literature on struc-
tural theorems of graph classes, we would expect that changing the super-
class in Algorithm 5 from Pj-sparse graphs to another simple class would
lead to many more improved search-based FPT algorithms. Perhaps it is
that Py-sparse graphs are “simple” in the fact that they have bounded clique-
width that allows one to polynomially-solve modification to its subclasses,
in which case it might be worthwhile to consider replacing P4-sparse graphs
to a class of larger, but still bounded, cliquewidth. It would be particu-
larly interesting to see an example of a superclass/subclass pair that can be
used in Algorithm 5 where the classes are not defined by a finite induced
subgraph characterization, but either by an infinite number of forbidden
configurations, or even defined by the admittance of certain vertex orders.

Aside from developing FPT algorithms, this search strategy could also be
used to develop faster exponential time algorithms for other problems. For
example, finding a maximum clique is W[1]-hard and a minimum dominating
set is W[2]-hard, but these are both solvable in linear time on cographs. One
can imagine an implementation of an exponential-time algorithm for these
problems which considers adding vertices to its solution set in a manner
that destroys Pys, and once the remaining graph to be searched is P;-free,
the linear-time solver for cographs can be used to efficiently complete that
search branch.

118

Bibliography

[1]

[10]

[11]

T. Vicsek A.-L. Barabasi, E. Ravasz. Deterministic scale-free networks.
Physica A, 299:559-564, 2001. — pages 54

R. D. Alba. A graph-theoretic definition of a sociometric clique. Jour-
nal Mathematical Sociology, 3:113-126, 1973. — pages 21

B. Balasundaram, S. Butenko, I. V. Hicks, and S. Sachdeva. Clique
relaxations in social network analysis: The maximum k-plex problem.
Operations Research, 59(1):133-142, 2011. — pages 20, 21

B. Balasundaram, S. Butenko, and S. Trukhanov. Novel approaches for
analyzing biological networks. Journal of Combinatorial Optimization,
10:23-39, 2005. — pages 21

N. Bansal, A. Blum, and S. Chawla. Correlation clustering. Machine
Learning, 56:89-113, 2004. — pages 10, 21, 22

A.-L. Barabési and R. Albert. Emergence of scaling in random net-
works. Science, 286(5439):509-5122, 1999. — pages 81

E. A. Bender, L. B. Richmond, and N. C. Wormald. Almost all chordal
graphs split. Journal of the Australian Mathematical Society (Series
A), 38:214-221, 4 1985. — pages 88

A. A. Bertossi. Dominating sets for split and bipartite graphs. Infor-
mation Processing Letters, 19(1):37-40, 1984. — pages 78

A. N. Bishop and I. Shames. Link operations for slowing the spread
of disease in complex networks. EPL, 95:18005, 2011. — pages 80

S. Bocker. A golden ratio parameterized algorithm for cluster editing.
J. Discrete Algorithms, 16:79-89, 2012. — pages 11

S. Bocker, S. Briesemeister, and G. W. Klau. Exact algorithms for
cluster editing: Evaluation and experiments. Algorithmica, 60(2):316—
334, 2011. — pages 20

119

Chapter 6. Bibliography

[12]

[13]

[14]

[15]

[21]

S. Bocker and P. Damaschke. Even faster parameterized cluster dele-
tion and cluster editing. Inf. Process. Lett., 111(14):717-721, 2011. —
pages 11, 23

B. Bollobas. The diameter of random graphs. Trans. of the American
Mathematical Society, (1):41-52. — pages 71

A. Bonato, J. Janssen, and P. Pralat. A geometric model for on-
line social networks. Proceedings of the International Workshop on
Modeling Social Media, (4), 2010. — pages 79

F. Bonomo, G. Duran, and M. Valencia-Pabon. Complexity of the
cluster deletion problem on chordal graphs, subclasses of chordal
graphs, and cographs, 2014. — pages 116

A. Brandstadt, V. B. Le, and J. P. Spinrad. Graph classes: a survey.
Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 1999. — pages 2, 22, 114

H. Broersma, E. Dahlhaus, and T. Kloks. Algorithms for the treewidth
and minimum fill-in of HHD-free graphs. In Rolf Moéhring, editor,
Graph-Theoretic Concepts in Computer Science, volume 1335 of Lec-

ture Notes in Computer Science, pages 109-117. Springer Berlin /
Heidelberg, 1997. — pages 23

P. Burzyn, F. Bonomo, and G. Durdn. NP-completeness results
for edge modification problems. Discrete Applied Mathematics,
154(13):1824-1844, 2006. — pages 35, 52, 115

L. Cai. Fixed-parameter tractability of graph modification problems
for hereditary properties. Inf. Process. Lett., 58(4):171-176, 1996. —
pages 9, 22, 39, 90

M.-S. Chang. Algorithms for maximum matching and minimum fill-
in on chordal bipartite graphs. In Tetsuo Asano, Yoshihide Igarashi,
Hiroshi Nagamochi, Satoru Miyano, and Subhash Suri, editors, Algo-
rithms and Computation, volume 1178 of Lecture Notes in Computer
Science, pages 146-155. Springer Berlin / Heidelberg, 1996. — pages
23

G. Chapuy, E. Fusy, O. Giménez, and M. Noy. On the diameter
of random planar graphs. In Proceedings of the 21st International
Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in

120

Chapter 6. Bibliography

22]

[23]

[24]

[25]

[26]

[30]

[31]

[32]

the Analysis of Algorithms, DMTCS Proceedings, volume AM, pages
65—78. — pages 71

J. Chen and J. Meng. A 2k kernel for the cluster editing problem. J.
Comput. Syst. Sci., 78(1):211-220, 2012. — pages 11

F. P. M. Chu. A simple linear time certifying LBFS-based algorithm
for recognizing trivially perfect graphs and their complements. Inf.
Process. Lett., 107:7-12, June 2008. — pages 12, 35

F. Chung, L. Lu, T. G. Dewey, and D. J. Galas. Duplication models
for biological networks. Journal of Computational Biology, 10:677—687,
2003. — pages 88

V. Chvéatal and P. L. Hammer. Aggregation of inequalities in integer
programming. In B. H. Korte P. L. Hammer, E. L. Johnson and
G. L. Nemhauser, editors, Studies in Integer Programming, volume 1
of Annals of Discrete Mathematics, pages 145 — 162. Elsevier, 1977.
— pages 12

V. Chvatal, C. T. Hoang, N. V. R. Mahadev, and D. de Werra. Four
classes of perfectly orderable graphs. J. Graph Theory, 11(4):481-495,
1987. — pages 22

A. Clauset, C. Moore, and M. E. J. Newman. Hierarchical structure
and the prediction of missing links in networks. Nature, 453:98-101,
2008. — pages 47, 118

S. Cook. The complexity of theorem proving procedures. pages 151—
158, 1971. — pages 5

D. Coppersmith and S. Winograd. Matrix multiplication via arith-
metic progressions. J. Symb. Comput., 9(3):251-280, 1990. — pages
101

T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, Cambridge, Mass, 2009. — pages 4

D. G. Corneil, Y. Perl, and L. K. Stewart. A linear recognition algo-
rithm for cographs. SIAM J. Comput., 14:926-934, 1985. — pages 13,
22, 27, 90

B. Courcelle and S. Olariu. Upper bounds to the clique width of
graphs. Discrete Applied Mathematics, 101(1-3):77-114, 2000. —
pages 13

121

Chapter 6. Bibliography

[33]

[36]

[39]

[40]

[41]

[42]

A. Cournier and M. Habib. A new linear algorithm for modular de-
composition. In S. Tison, editor, CAAP, volume 787 of Lecture Notes
in Computer Science, pages 68-84. Springer, 1994. — pages 95

M. B. Cozzens and L. L. Kelleher. Dominating cliques in graphs.
Discrete Mathematics, 86(1-3):101-116, 1990. — pages 117

P. Damaschke. Fixed-parameter tractable generalizations of cluster
editing. In Tiziana Calamoneri, Irene Finocchi, and Giuseppe Italiano,
editors, Algorithms and Complexity, volume 3998 of Lecture Notes in
Computer Science, pages 344-355. Springer Berlin / Heidelberg, 2006.
— pages 11

P. Damaschke. Bounded-degree techniques accelerate some param-
eterized graph algorithms. In J. Chen and F. Fomin, editors, Pa-
rameterized and Eract Computation, volume 5917 of Lecture Notes in
Computer Science, pages 98-109. Springer Berlin / Heidelberg, 2009.
— pages 23

H. A. Dawah, B. A. Hawkins, and M. F. Claridge. Structure of para-
sitoid communities of grass-feeding chalcid wasps. Journal of Animal
Ecology, 64:708-720, 1995. — pages 47

A. Dessmark, J. Jansson, A. Lingas, E.-M. Lundell, and M. Persson.
On the approximability of maximum and minimum edge clique parti-
tion problems. Int. J. Found. Comput. Sci., 18(2):217-226, 2007. —
pages 25

G. Dirac. On rigid circuit graphs. Abhandlungen aus dem Mathema-
tischen Seminar der Universitt Hamburg, 25:71-76, 1961. — pages
15

S. Donnelly and G. Isaak. Hamiltonian powers in threshold and ar-
borescent comparability graphs. Discrete Mathematics, 202(1-3):33 —
44, 1999. — pages 12, 55

R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-
Verlag, 1999. 530 pp. — pages 7

D. A. Mongru Z. N. Oltvai A.-L. Barabési E. Ravasz, A. L. Somera.
Hierarchical organization of modularity in metabolic networks. Sci-
ence, 297:1551-1555, 2002. — pages 54

122

Chapter 6. Bibliography

[43]

E. S. El-Mallah and C. J. Colbourn. Edge deletion problems: prop-
erties defined by weakly connected forbidden subgraphs. Proc. Eigh-
teenth Southeastern Conference on Combinatorics, Graph Theory, and
Computing, Congressus Numerantium 61:275-285, 1988. — pages 9,
13, 35, 90

L. Euler. Solutio problematis ad geometriam situs pertinentis. Com-
ment. Academiae Sci. I. Petropolitanae, 8:128-140, 1736. — pages
1

T. S. Evans. Clique graphs and overlapping communities. J. Stat.
Mech., P12037, 2010. — pages 49

M. G. Everett and D. Krackhardt. A second look at krackhardt’s
graph theoretical dimensions of informal organizations. Social Net-
works, 34(2):159-163, 2012. — pages b4, 55, 57

K. Faust. Triadic configurations in limited choice sociometric net-
works: Empirical and theoretical results. Social Networks, 30(4):273—
282, 2008. — pages 118

M. R. Fellows, J. Guo, C. Komusiewicz, R. Niedermeier, and
J. Uhlmann. Graph-based data clustering with overlaps. Discrete
Optimization, 8(1):2-17, 2011. — pages 22

H. Fernau. Parameterized algorithms for d-hitting set: The weighted
case. Theoretical Computer Science, 411(16):1698-1713, 2010. —
pages 102, 104, 108

S. Fortunato. Community detection in graphs. Physics Reports, 486(3-
5):75-174, 2010. — pages 20

M. Franceschet. PageRank: Stand on the shoulders of giants. CoRR,
abs/1002.2858, 2010. — pages 70

F. Frati, S. Gaspers, J. Gudmundsson, and L. Mathieson. Augmenting
graphs to minimize the diameter. In Algorithms and Computation,
pages 383-393. Springer, 2013. — pages 78

L. C. Freeman. A set of measures of centrality based upon between-
ness. Sociometry, 40:35-41, 1977. — pages 18, 69

L. C. Freeman. Centrality in social networks: Conceptual clarification.
Social Networks, 1:215-239, 1978. — pages 32

123

Chapter 6. Bibliography

[55]

[56]

N. E. Friedkin. Horizons of observability and limits of informal control
in organizations. Social Forces, 62(1):54-77, 1983. — pages 34, 117

Y. Gao, D. R. Hare, and J. Nastos. The cluster deletion problem for
cographs. Discrete Mathematics, 313(23):2763-2771, 2013. — pages
iii, 26

Y. Gao, D. R. Hare, and J. Nastos. The parametric complexity of
graph diameter augmentation. Discrete Applied Mathematics, 161(10-
11):1626-1631, 2013. — pages iii, 8, 77

M. R. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co.,
New York, NY, USA, 1979. — pages 73

F. Gavril. The intersection graphs of subtrees in trees are exactly the
chordal graphs. Journal of Combinatorial Theory, Series B, 16(1):47
— 56, 1974. — pages 16, 22

V. Giakoumakis, F. Roussel, and H. Thuillier. On P4-tidy graphs.
Discrete Math. Theor. Comput. Sci., 1(1):17-41, 1997. — pages 22

V. Giakoumakis and J.-M. Vanherpe. On extended p4-reducible and
extended p4-sparse graphs. Theoretical Computer Science, 180(1-
2):269-286, 1997. — pages 106

M. Girvan and M. E. J. Newman. Community structure in social and
biological networks. Proceedings of the National Academy of Sciences,
99(12):7821-7826, 2002. — pages 18, 42, 49, 69

M. C. Golumbic. Trivially perfect graphs. Discrete Mathematics,
24(1):105-107, 1978. — pages 12

M. C. Golumbic. Foreword 2004: The annals edition. In Mar-
tin Charles Golumbic, editor, Algorithmic Graph Theory and Perfect
Graphs, volume 57 of Annals of Discrete Mathematics, pages xiii—xiv.
Elsevier, 2004. — pages 22

J. Gramm, J. Guo, F. Hiiffner, and R. Niedermeier. Graph-modeled
data clustering: Fixed-parameter algorithms for clique generation. In
Rossella Petreschi, Giuseppe Persiano, and Riccardo Silvestri, editors,
Algorithms and Complexity, volume 2653 of Lecture Notes in Com-
puter Science, pages 636—636. Springer Berlin / Heidelberg, 2003. —
pages 11, 22

124

Chapter 6. Bibliography

[66]

[76]

[77]

J. Gramm, J. Guo, F. Hiiffner, and R. Niedermeier. Automated gener-
ation of search tree algorithms for hard graph modification problems.
Algorithmica, 39(4):321-347, 2004. — pages 102, 104

M. S. Granovetter. The strength of weak ties. American Journal of
Sociology, 78(6):1360-1380, 1973. — pages 33

M. Grotschel, L. Lovéasz, and A. Schrijver. The ellipsoid method and its
consequences in combinatorial optimization. Combinatorica, 1(2):169-
197, 1981. — pages 22, 24

S. Guillemot, C. Paul, and A. Perez. On the (non-)existence of poly-
nomial kernels for P-free edge modification problems. In Venkatesh
Raman and Saket Saurabh, editors, Parameterized and Ezact Com-
putation, volume 6478 of Lecture Notes in Computer Science, pages
147-157. Springer Berlin / Heidelberg, 2010. — pages 13

J. Guo. Problem kernels for NP-complete edge deletion problems:
Split and related graphs. In ISAAC, pages 915-926, 2007. — pages
35, 90, 98

J. Guo. A more effective linear kernelization for cluster editing. Theor.
Comput. Sci., 410(8-10):718-726, 2009. — pages 11

J. Guo, C. Komusiewicz, R. Niedermeier, and J. Uhlmann. A more
relaxed model for graph-based data clustering: s-plex cluster editing.
SIAM J. Discrete Math., 24(4):1662-1683, 2010. — pages 11

P. L. Hammer and B. Simeone. The splittance of a graph. Combina-
torica, 1(3):275-284, 1981. — pages 17

S. Hartung, C. Komusiewicz, and A. Nichterlein. On structural pa-
rameterizations for the 2-club problem. In SOFSEM, pages 233243,
2013. — pages 21

M. B. Hastings. Community detection as an inference problem. Phys.
Rev. E, 74:035102, Sep 2006. — pages 20

B. Hayes. Graph theory in practics: Part ii. American Scientist,
88(2):104-109, 2000. — pages 81

R. B. Hayward, J. P. Spinrad, and R. Sritharan. Improved algorithms
for weakly chordal graphs. ACM Trans. Algorithms, 3, May 2007. —
pages 22

125

Chapter 6. Bibliography

[78]

[79]

[80]

[81]

C. T. Hoang. Perfect graphs, (Ph.D. thesis). School of Computer
Science, McGill University Montreal, 1985. — pages 13, 15

B. Jamison and S. Olariu. Recognizing Pj-sparse graphs in linear time.
SIAM J. Comput., 21(2):381-406, 1992. — pages 13, 14, 15, 95, 98

B. Jamison and S. Olariu. A tree representation for Pj-sparse graphs.
Discrete Appl. Math., 35:115-129, January 1992. — pages 13, 79

H. Kaplan, R. Shamir, and R. E. Tarjan. Tractability of parameterized
completion problems on chordal, strongly chordal, and proper interval
graphs. SIAM J. Comput., 28(5):1906-1922, 1999. — pages 90

R. M. Karp. Reducibility along combinatorial problems. Complexity of
Computer Computations, Proc. Sympos. IBM Thomas J. Watson Res.
Center, Yorktown Heights, N.Y.. New York: Plenum, pages 85—103,
1972. — pages 5,7, 8,9

H. Kenniche and V. Ravelomananana. Random geometrix graphs as
model of wireless sensor networks. Computer and Automation Engi-
neering (ICCAE), 4:103-107, 2010. — pages 80

T. Kloks, D. Kratsch, and C. K. Wong. Minimum fill-in on circle and
circular-arc graphs. J. Algorithms, 28(2):272-289, 1998. — pages 23

D. E. Knuth. The Stanford GraphBase: A Platform for Combinatorial
Computing. Addison-Wesley, Reading, MA, 1993. — pages 46

C. Komusiewicz. Parameterized Algorithmics for Network Analysis:
Clustering € Querying. PhD thesis, 2011. — pages 10, 24

C. Komusiewicz and J. Uhlmann. Cluster editing with locally bounded
modifications. Discrete Applied Mathematics, 160(15):2259 — 2270,
2012. — pages 24

D. Krackhardt. Computational organization theory. chapter Graph
theoretical dimensions of informal organizations, pages 89-111. 1994.
— pages 54, 55, 56, 57, 59

D. Kratsch and J. Spinrad. Between O(nm) and O(n®). SIAM J.
Comput., 36(2):310-325, 2006. — pages 101

V. Krebs. Mapping networks of terrorist cells. Connections, 24(3):43—
52, 2002. — pages 71

126

Chapter 6. Bibliography

[91]

[92]

[93]

[94]

[96]

[98]

[99]

[100]

M. Krivanek and J. Moravek. NP-hard problems in hierarchical-tree
clustering. Acta Informatica, 23(3):311-323, 1986. — pages 10

R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins,
and E. Upfal. Stochastic models for the web graph. In Proceedings
of the 41st Annual Symposium on Foundations of Computer Science,
FOCS ’00, Washington, DC, USA, 2000. IEEE Computer Society. —

pages 88

C. Lekkerkerker and D. Boland. Representation of finite graphs by
sets of intervals on the real line. Fund. Math., 51:45-64, 1962. —
pages 16

J. M. Lewis and M. Yannakakis. The node-deletion problem for hered-
itary properties is np-complete. Journal of Computer and System Sci-
ences, 20(2):219-230, 1980. — pages 13, 16

C. Li, S. T. McCormick, and D. Simchi-Levi. On the minimum-
cardinality-bounded-diameter and the bounded-cardinality-minimum-
diameter edge addition problems. Oper. Res. Lett., 11:303-308, 1992.
— pages 8, 73

Y. Liu, J. Wang, J. Guo, and J. Chen. Cograph editing: Complex-
ity and parameterized algorithms. In B. Fu and D.-Z. Du, editors,
COCOON, volume 6842 of Lecture Notes in Computer Science, pages
110-121. Springer, 2011. — pages 13, 118

Y. Liu, J. Wang, J. Guo, and J. Chen. Complexity and parameter-
ized algorithms for cograph editing. Theoretical Computer Science,
461(0):45 — 54, 2012. 17th International Computing and Combina-
torics Conference (COCOON 2011). — pages 35, 36, 52, 115

D. Lokshtanov, F. Mancini, and C. Papadopoulos. Characterizing
and computing minimal cograph completions. Discrete Appl. Math.,
158(7):755-764, 2010. — pages 90

F. Luccio and M. Sami. On the decomposition of networks in mini-
mally interconnected subnetworks. IEEFE Trans. Circuit Th., 16:184—
188, 1969. — pages 18

R. D. Luce. Connectivity and generalized cliques in sociometric group
structure. Psychometrika, 15:169-190, 1950. — pages 21

127

Chapter 6. Bibliography

[101]

[102]

[103]

[104]

[105]

[106]

[107)

[108]

[109]

[110]

[111]

[112]

D. Lusseau. The emergent properties of a dolphin social network. Pro-
ceedings of the Royal Society of London Series B-Biological Sciences,
270:S186-S188, 2003. — pages 47

F. Mancini. Graph modification problems related to graph classes.
Ph.D. thesis, University of Bergen, 2008. — pages 35, 52, 115

D. Marx. Parameterized Complexity and Approximation Algorithms.
The Computer Journal, 51(1):60-78, 2008. — pages 7

D. Marx. Chordal deletion is fixed-parameter tractable. Algorithmica,
57(4):747-768, 2010. — pages 16

R. M. McConnell and J. Spinrad. Modular decomposition and tran-
sitive orientation. Discrete Mathematics, 201(1-3):189-241, 1999. —
pages 95

R. J. Mokken. Cliques, clubs and clans. Quality and Quantity, 13:161—
173, 1979. — pages 21

J. Nastos and Y. Gao. A note on the hardness of graph diameter
augmentation problems. CoRR, abs/0909.3877, 2009. — pages iii

J. Nastos and Y. Gao. A novel branching strategy for parameterized
graph modification problems. In Proceedings of the 4th international
conference on Combinatorial optimization and applications - Volume
Part II, COCOA’10, pages 332-346. Springer-Verlag, 2010. — pages
iii, 23, 35

J. Nastos and Y. Gao. Bounded search tree algorithms for parame-
terized cograph deletion: Efficient branching rules by exploiting struc-
tures of special graph classes. Discrete Mathematics, Algorithms and
Applications, 4(1), 2012. — pages iii, 54, 104

J. Nastos and Y. Gao. Familial groups in social networks. Social
Networks, 35(3):439-450, 2013. — pages iii, 46

A. Natanzon. Complexity and approximation of some graph modifi-
cation problems. MSc Thesis, Tel Aviv University, 1999. — pages 10,
16, 17, 23

A. Natanzon, R. Shamir, and R. Sharan. Complexity classification of
some edge modification problems. In Proceedings of the 25th Interna-
tional Workshop on Graph-Theoretic Concepts in Computer Science,

128

Chapter 6. Bibliography

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

WG 99, pages 65-77, London, UK, 1999. Springer-Verlag. — pages
16

M. E. J. Newman and M. Girvan. Finding and evaluating community
structure in networks. Physical Review F, 69, 2004. — pages 47

M. E. J. Newman and D. J. Watts. Renormalization group analysis of
the small-work network model. Physics Letters A, 263(4-6):341-346,
1999. — pages 81

R. Niedermeier. Invitation to Fized-Parameter Algorithms. Oxford
Lecture Series in Mathematics and Its Applications, Oxford University
Press, 2006. — pages 7

R. Niedermeier and P. Rossmanith. An efficient fixed-parameter algo-
rithm for 3-hitting set. J. Discrete Algorithms, 1(1):89-102, 2003. —
pages 102, 104, 108

S. D. Nikolopoulos and L. Palios. Adding an edge in a cograph. In
WG, pages 214-226, 2005. — pages 90

G. Palla, I. Derényi, I. Farkas, and T. Vicsek. Uncovering the overlap-
ping community structure of complex networks in nature and society.
Nature, 435:814, 2005. — pages 83, 84, 86, 115

P. A. Pevzner, H. Tang, and M. S. Waterman. An Eulerian path
approach to DNA fragment assembly. Proceedings of the National
Academy of Sciences of the United States of America, 98(17):9748—
9753, 2001. — pages 1

S. Poljak. A note on stable sets and colourings of graphs. Commenta-
tiones Mathematicae Universitatis Carolinae, 15(2):307-309, 1974. —
pages 25

F. Protti, M. D. da Silva, and J. L. Szwarcfiter. Applying modular
decomposition to parameterized cluster editing problems. Theory of
Computing Systems, 44(1):91-104, 2009. — pages 11

F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi. Defin-
ing and identifying communities in networks. Proc. Natl. Acad. Sci.
USA, 101:2658-2663, 2004. — pages 19

E. Ravasz and A.-L. Barabéasi. Hierarchical organization in complex
neworks. Physical Review E, 67:026112, 2003. — pages 54, 116

129

Chapter 6. Bibliography

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

133

[134]

135

B. A. Reed, K. Smith, and A. Vetta. Finding odd cycle transversals.
Oper. Res. Lett., 32(4):299-301, 2004. — pages 17

G. Sabidussi. The centrality index of a graph. Psychometrika,
31(4):581-603, 1966. — pages 70

M. Sales-Pardo, R. Guimera, A. A. Moreira, and L. A. N. Amaral.
Extracting the hierarchical organization of complex systems. Proceed-
ings of the National Academy of Sciences, 104(39):15224-15229, 2007.
— pages 54

S. E. Schaeffer. Graph clustering. Computer Science Review, 1:27-64,
2007. — pages 20

A. A. Schoone, H. L. Bodlaender, and J. van Leeuwen. Diameter
increase caused by edge deletion. Journal of Graph Theory, 11(3):409—
427, 1987. — pages 8, 73

S. B. Seidman and B. L. Foster. A graph theoretic generalization of
the clique concept. J. of Mathematical Sociology, 6:139-154, 1978. —
pages 21

R. Shamir, R. Sharan, and D. Tsur. Cluster graph modification prob-
lems. Discrete Applied Mathematics, 144(1-2):173-182, 2004. — pages
10, 22, 24

P. Smyth and S. White. A spectral clustering approach to finding
communities in graphs. Proceedings of the fifth SIAM international
conference on data mining, 119, 2005. — pages 20

A. Sridharan. Topological features of online social networks. MSc
thesis, Univ. of Victoria, 2011. — pages iii

A. Sridharan, Y. Gao, K. Wu, and J. Nastos. Statistical behavior of
embeddedness and communities of overlapping cliques in online social
networks. CoRR, abs/1009.1686, 2010. — pages iii, 82

R. E. Tarjan. Decomposition by clique separators. Discrete Mathe-
matics, 55(2):221-232, 1985. — pages 16

R. E. Tarjan and M. Yannakakis. Addendum: Simple linear-time algo-
rithms to test chordality of graphs, test acyclicity of hypergraphs, and
selectively reduce acyclic hypergraphs. SIAM J. Comput., 14(1):254—
255, 1985. — pages 101

130

Chapter 6. Bibliography

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

W. T. Tutte. Graph Theory. Cambridge University Press, 2001. —
pages b5

F. Wang, H. Du, E. Camacho, K. Xu, W. Lee, Y. Shi, and S. Shan.
On positive influence dominating sets in social networks. Theoretical
Computer Science, 412(3):265-269, 2011. — pages 7

W. Wang, D. Kim, N. Sohaee, C. Ma, and W. Wu. A PTAS for min-
imum d-hop underwater sink placement problem in 2-D underwater
sensor networks. Discrete Mathematics, Algorithms and Applications,
(1):283-289, 2009. — pages 7

S. Wasserman and K. Faust. Social Network Analysis: Methods and
Applications. Cambridge University Press, 1994. — pages 16

D. J. Watts and S. H. Strogatz. Collective dynamics of ’small-world’
networks. Nature, 393(6684):440-442, 1998. — pages 69

M. Weller, C. Komusiewicz, R. Niedermeier, and J. Uhlmann. On
making directed graphs transitive. In Algorithms and Data Structures,
pages 542-553. Springer, 2009. — pages 62

M. Weller, C. Komusiewicz, R. Niedermeier, and J. Uhlmann. On
making directed graphs transitive. Journal of Computer and System
Sciences, 78(2):559-574, 2012. — pages 62

S. H. Whitesides. A method for solving certain graph recognition and
optimization problems, with applications to perfect graphs. Technical
report, Ithaca, NY, USA, 1982. — pages 16

E. S. Wolk. The comparability graph of a tree. Proc. Amer. Math.
Soc., 3:789-795, 1962. — pages 11, 12

E. S. Wolk. A note on the comparability graph of a tree. Proc. Amer.
Math. Soc., 16:17-20, 1965. — pages 56

J.-H. Yan, J.-J. Chen, and G. J. Chang. Quasi-threshold graphs. Dis-
crete Applied Mathematics, 69(3):247-255, 1996. — pages 33

M. Yannakakis. The node-deletion problem for hereditary properties.
Tech Rep 240., Computer Science Labtratory, Princeton U, Princeton
NJ, 1978. — pages 17

131

Chapter 6. Bibliography

[148] M. Yannakakis. The effect of a connectivity requirement on the com-
plexity of maximum subgraph problems. J. ACM, 26(4):618-630, 1979.
— pages 9

[149] M. Yannakakis. Computing the minimum fill-in is NP-complete. STAM
Journal on Algebraic and Discrete Methods, 2(1):77-79, 1981. — pages
16

[150] W. W. Zachary. An information flow model for conflict and fission in
small groups. Journal of Anthropological Research, 33:452-473, 1977.
— pages 18, 42

[151] E. Zotenko, K. S. Guimaraes, R. Jothi, and T. M. Przytycka. Decom-
position of overlapping protein complexes: A graph theoretical method
for analyzing static and dynamic protein associations. Algorithms for
Molecular Biology, 1(7), 2006. — pages 114

132

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Dedication
	1 Introduction
	1.1 Definitions
	1.1.1 Graphs and Networks
	1.1.2 Complexity Theory

	1.2 Computational Problems on Graphs
	1.2.1 Max Clique
	1.2.2 Dominating Set
	1.2.3 Diameter Augmentation
	1.2.4 Graph Modification Problems

	1.3 Graph Classes
	1.3.1 Cluster Graphs
	1.3.2 Quasi-Threshold Graphs
	1.3.3 Cographs
	1.3.4 P4-sparse Graphs
	1.3.5 Chordal Graphs
	1.3.6 Bipartite and Split Graphs

	2 Social Communities
	2.1 Existing Methods for Cluster Partitioning
	2.1.1 An Induced Subgraph Variation

	2.2 Cliques and Beyond
	2.3 Cluster Deletion
	2.3.1 On the Hardness of Cluster Deletion
	2.3.2 Cluster Deletion on Cographs
	2.3.3 Algorithms

	2.4 Quasi-Threshold Graphs as Communities
	2.4.1 Properties of Familial Groups

	2.5 Hardness of Finding Familial Groups
	2.5.1 Algorithms for Familial Groups
	2.5.2 Intra-communal Ranking

	2.6 Case Studies
	2.6.1 Zachary's Karate Club
	2.6.2 Communities in the Les Misérables Network and Character Importance
	2.6.3 Lusseau's Dolphin Network
	2.6.4 Grassland Species
	2.6.5 College Football Network

	2.7 Summary

	3 Familial Groups for Hierarchical Organization
	3.1 Historical Perspective
	3.2 Graph-theoretic Framework for Hierarchical Organization
	3.3 Hierarchical Organization of Individuals in a Network
	3.4 Familial Groups in Directed Networks
	3.4.1 Directed Networks with a Simple Underlying Graph
	3.4.2 Transitive out-tree editing without reversal operations
	3.4.3 Weighted Directed Framework

	4 Network Measures: Diameter and Distribution
	4.1 Degree Distribution and Power Law
	4.2 The Small-World Phenomenon
	4.3 Graph Diameter
	4.3.1 Diameter Augmentation is W[2]-hard
	4.3.2 Generalization
	4.3.3 Additional Observations
	4.3.4 Diameter Augmentation for P4-sparse Graphs

	4.4 Network Models
	4.4.1 The Erdos-Rényi Model
	4.4.2 The Watts-Strogatz Model
	4.4.3 The Barabási-Albert Preferential Attachment Model
	4.4.4 The Random k-tree Model
	4.4.5 Cliques and Higher-Order Structures

	4.5 A Graph Classes Perspective on Graph Generation

	5 Bounded Search Tree Methods
	5.1 Edge-Deletion Algorithms
	5.1.1 Computing Cograph Edge-Deletion Sets on P4-sparse Graphs in Linear Time
	5.1.2 A Bounded Search Tree Algorithm for Cograph Edge-Deletion
	5.1.3 A Bounded Search Tree Algorithm for Edge-Deletion to Trivially Perfect Graphs

	5.2 Vertex-Deletion Algorithms
	5.2.1 Vertex-Deletion to Cographs
	5.2.2 Improvement using Hitting-Set
	5.2.3 Vertex-Deletion for Trivially Perfect Graphs

	5.3 Summary

	6 Concluding Remarks
	6.1 Summary of Thesis
	6.2 The Key of Contributions of this Thesis
	6.2.1 Future Considerations

	Bibliography

