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Abstract 

The main focus of this thesis is on the motion planning and control of mobile robots in 

dynamic unstructured environments in which the primary challenge is to formulate and deal 

with uncertainty. This thesis contributes to the motion planning problem in three distinct yet 

related aspects that can together present a model predictive approach to enhance autonomy 

of mobile robots in dynamic unknown environments. 

The first contribution of this thesis is to introduce a robust yet probing control algorithm. The 

proposed algorithm is based on the output-feedback tube-based model predictive control 

(MPC). The performance of the algorithm has been enhanced using the partially-closed loop 

strategy. The tube-based approach requires uncertainties to be modeled in the set-theoretic 

framework, whereas the partially closed-loop strategy is modeled in the probabilistic 

framework. A key component of the algorithm is related to proposing the relationship 

between these two different paradigms. The proposed framework utilizes the uncertainty 

fusion in the probabilistic framework and collision avoidance in the set-theoretic framework. 

The efficiency of the proposed algorithm is verified using thorough numerical simulations and 

experiments.  

The second contribution of this thesis is in regards with linearization of stochastic nonlinear 

systems. A statistical linearization method, unscented transform, is proposed to replace the 

analytical linearization method in MPC. The advantage and disadvantage of such replacement 

has been examined through extensive numerical simulations. The numerical simulation 
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indicates that statistical linearization has two important advantages. First, the proposed 

approach is derivative free that is it can be applied to complex systems for which no analytical 

model exists. Second, it is more accurate so that it enhances performance of the planning 

algorithm. However, the tradeoff is that the analytical linearization is computationally less 

expensive.  

The third contribution of this thesis is related to the formulation of the robust tube-based 

MPC scheme for incremental smoothing and mapping known as active iSAM problem in the 

literature. In addition to utilizing a robust MPC scheme, the active iSAM utilizes the 

optimization-based method, iSAM, to solve the simultaneous localization and mapping SLAM 

problem. Extensive numerical simulations have been conducted to verify the performance of 

the algorithm.   
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Chapter 1. Introduction 

1.1 Motivation 

The main motivation of this thesis is to enhance the autonomy of mobile robots in dynamic 

unknown environments. During the past two decades, there has been a continuously 

increasing interest in developing autonomous robots that are able to accomplish complicated 

tasks in structured manufacturing environments; autonomous robotic systems are becoming 

favorable in various applications [6]. Some illustrative examples of this trend includes the 

United States (US) army’s investment in the Defense Advanced Research Projects Agency 

(DARPA) robotic grand challenge, as well as initiatives such as California Partners for 

Advanced Transportation Technology (PATH) and autonomous flight coordination [7, 8].    

Among various aspects of the mobile robot autonomy, motion planning and control in the 

uncertain environment is selected as the main focus of this research. A solution to this 

problem is a precursor to realization of fully autonomous unmanned vehicles for real-world 

applications [9, 10]. In robotics literature, the problem of motion planning involves finding 

the control actions that drive a robot from a given initial state to a desired target [11]. The 

objective of this research is focused on dealing with challenges associated with this problem, 

and is discussed in the proceeding section.  
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1.2 Objectives 

The main objective of this research is to contribute to develop a practical motion planning 

and control scheme for a nonholonomic mobile robot in unknown and dynamic 

environments. Uncertainties in sensing and control signals make the motion planning a 

challenging task. Planning algorithms are subject to different constraints including 

nonholonomic motion, collision avoidance, environment occlusion and dynamicity, and 

actuator saturation. In addition, real-time motion planning requires computationally efficient 

algorithms. In this research, motion control refers to the combination of motion planning and 

kinematic control of a robot [11], which were traditionally solved as separate problems [12]. 

Recently, it has been shown that for nonholonomic systems, integrating the planning and 

kinematic control can increase the overall system performance [13].  

This thesis contributes to the motion planning literature by considering three related, yet 

distinct, problems. The first problem is to investigate whether or not a robust, as well as 

probing, motion planning scheme is feasible. In this context, probing refers to the ability of a 

robot to actively localize itself. The second, and practically important question in robotics, 

addresses which linearization method is the best algorithm for stochastic systems. The last 

question discussed in this thesis is whether the probing robust algorithms developed earlier 

can be modified to be applied to the problem of active SLAM (simultaneous localization and 

mapping). Before elaborating on these questions, the related literature review material is 

presented in the following section. 
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1.3 Literature review 

As mentioned in Section 1.2, the main focus of this research is on motion planning and control 

of robots in uncertain environments. Such a control system is subject to various constraints, 

including motion constraints, control signal saturations, and collision avoidance. Additionally, 

a practical algorithm should be able to handle imperfect information as well. As a well-

established approach, model predictive control (MPC) that is able to handle system 

constraints systematically [14] has been chosen as the proper control scheme. To provide a 

better background, a brief review of the model predictive control as well as the SLAM 

problem is presented. 

1.3.1 Model Predictive Control 

MPC refers to a set of optimal control schemes that can effectively control constrained 

systems [15-17]. The MPC scheme solves the control problem (i.e. computes the control 

action) by developing a control plan over a finite horizon based on the current states, 

prediction of future states, and desired output of a system. The controller executes a part of 

the plan and updates the system states as new measurements become available. Having 

updated the states, the controller sequentially refreshes the plan until the control objective 

is met. In essence, the plan horizon gradually recedes in this recursive process, which is why 

receding horizon control (RHC) is another common name for MPC. An extensive review on 

this topic can be found in previous literature [18, 19]. The MPC scheme can take into account 

explicit state and control action constraints, which can be formulated as chance constrains in 

stochastic systems. This property of MPC has made it a powerful tool for tackling robot 
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motion planning and obstacle avoidance problems which are typically subject to different 

constraints on the system states and control actions [3, 20, 21].  

1.3.2 Stochastic receding horizon control 

Most often, motion planning problems are subject to different constraints on the system 

states and control laws. Obstacles and control action limitations are well-known examples of 

such constraints. The RHC approach has been widely used to address problems involving 

robot localization uncertainty [22, 23]. In unknown environments with probabilistic 

uncertainties, the RHC collision avoidance constrains must be reformulated as chance 

constrains, which ensure that the probability of collision with surrounding obstacles is below 

a given threshold [24, 25]. Blackmore has proposed the RHC-based probabilistic particle 

control to avoid the assumptions related to system linearity and Gaussian noise [26]. The 

collision probability threshold can be assumed to be constant in all iterations or, as discussed 

in previous literature, a risk allocation scheme can be used to assign a variable collision 

probability [27]. An important issue in the RHC motion planning is incorporating the future 

information into the planning algorithm. Ignoring the future information may lead to 

unbounded uncertainties. The unbounded growth of the uncertainty will then require an 

exceedingly conservative planning solution to avoid obstacles [28]. In a similar work, the 

closed-loop covariance of the linear Gaussian system has been discussed [29].  

In all of the stated stochastic RHC motion planning methods, the motion model has been 

assumed to be linear. However, in practice, many vehicles including unmanned aerial vehicles 

(UAVs), mobile robots, and automobiles are usually modeled as nonlinear and nonholonomic 
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systems. During the past decade, while there has been an increasing interest in deterministic 

MPC of nonholonomic systems [30-32] and related stability issues [33-35], the MPC design 

for nonholonomic systems with stochastic constraints should be further studied. This topic 

will be reviewed in more detail in Chapter 3.  

1.3.3 Tube based MPC 

The use of MPC in uncertain environments requires handling of important issues, as a motion 

planning scheme may have several problems [36]. Among these issues, one of the most 

important aspects to consider is that of the robustness of the open-loop implementation of 

MPC, which can easily be compromised by process disturbance and noise. Different 

approaches such as min-max MPC [37], feedback MPC [38], and constraint tightening [24] 

have been proposed to improve robustness. Typically, these solutions are either 

computationally expensive or sometimes inefficient [39, 40]. A computationally viable 

solution with proven robustness is tube-based MPC that is a dual control scheme consisting 

of an open-loop MPC with constraint tightening to plan a nominal trajectory and an inner 

feedback loop to allow for increased robustness in the system trajectory [36]. Intuitively, 

tubes are the sets that contain the state space trajectories at each time instance. Tube-based 

MPC has been proven to be a robust and computationally efficient control method for linear 

systems under different types of uncertainty, including nondeterministic state feedback 

systems [40], nondeterministic output feedback systems [41], and stochastic systems with 

chance constraints [42]. Also, the tube-based method has been successfully applied to the 

state feedback nonlinear systems [36, 40, 43]. Rawlings and Mayne [36] have suggested an 
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implementation of the tube-based MPC for the output feedback control of nonlinear systems. 

In this research, I have adopted and modified their approach for the robust motion planning 

and control of mobile robots with imperfect state information. In this method, the MPC has 

two parts: nominal MPC and ancillary MPC. The nominal MPC is an MPC with constraint 

tightening that plans a nominal trajectory to the desired final target using the estimated 

states. On the other hand, the ancillary MPC guarantees that the estimated states follow the 

trajectory planned by the nominal MPC. In the original implementation discussed [36], the 

constraint tightening is a computationally efficient scheme that relies on a priori heuristic 

information, but this method disregards the existing relationship between state estimation 

and control processes in nonlinear systems and hence it may result in either overly 

conservative or unsafe performance of the system. A modification to the tube-based method 

is discussed in Chapter 2. 

1.3.4 SLAM and Active SLAM 

The last few decades have witnessed increasing demand for the autonomous robots in both 

military and civil applications. As the robotic rescue and covering missions become more 

complicated, one aspect of the SLAM problem becomes more important: active SLAM.  in 

which robot autonomously explore the environment while tries to minimize the SLAM 

uncertainty. While SLAM has been under investigation for multiple decades, active SLAM is a 

relatively new issue which is still considered an open problem.  

SLAM is the ability of the robot to incorporate available information to map the environment 

and locate itself inside the map in the absence of GPS-like devices. Since the seminal paper 
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of Smith et al [44], during the past decade various frameworks, including Extended Kalman 

Filtering (EKF) [45], Particle Filtering [46] , topologic solutions [47], Expectation Maximization 

[48], and soft computing [49], have been used to solve the SLAM framework. For the past 

several decades, filtering methods have been the dominant framework of the SLAM problem 

[50]; until just a few years ago, there has been major shift from the filtering methods to state-

of-the-art optimization methods [51]. The recent optimization-based methods utilize the 

specific structure of SLAM problem that allows for incremental algorithms [52, 53] that can 

provide more accurate and yet real-time solutions. This topic will be revisited in Section 2 

where the iSAM 2.0 method is discussed in more detail.  

The active SLAM, a more recent problem than SLAM, refers to the problem of optimizing the 

robot trajectory to improve the SLAM algorithm performance. Though its general principle 

can be traced back to dual control theory [54], the first experience in the SLAM framework is 

the work by Davison and Murray, in which they used active vision to increase the accuracy of 

the localization of the robot [55]. Later, Sim and Roy (2005) utilized an information-theoretic 

approach by introducing the information surface, to analyze the relation between robot 

trajectory and the SLAM algorithm performance [56]. In a closely related work, Haung et al. 

discussed the MPC look-ahead SLAM algorithm in which an MPC scheme is used to minimize 

the trace of predicted covariance of the EKF [57]. Fang et al have proposed a d-optimal MPC 

scheme for the minimum-time bearing-only SLAM problem [58]. In an inspiring work, Leung 

et al. proposed to use an artificial short-term goal, named attractor point, to the MPC-based 

active SLAM; the attractor point is chosen by a higher-level decision making algorithm, such 

as the exploration algorithm [59, 60]. In order to use the MPC-based active SLAM scheme, a 
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complicated dynamic programming problem must be solved. Ny and Pappas have utilized a 

value iteration method to solve a similar dynamic programming problem [61]. In addition to 

EKF-based methods, particle filtering has been extensively used in various active SLAM 

schemes [62]. Many researchers have utilized reinforced learning algorithms to solve the 

active SLAM problem [63-65]. Among them, Kollar and Roy’s method in previous work has 

suggested that the active SLAM problem can be formulated as a Partial Observable Markov 

Decision Making Process (POMDP). However, solving the resulted POMDP is not practical. 

Therefore, a two-stage algorithm is proposed:  

Stage 1 (Exploration): In this stage, a set of constrained points are chosen to maximize the 

likelihood of completing the map coverage based on a priori knowledge. These points can be 

chosen using the art-gallery algorithms [66, 67]. 

Stage 2 (active localization): In this stage, the robot path is generated by utilizing 

reinforcement learning to pass through the constrained points. Similar to MPC-based 

solutions [57], the results indicate that the a-optimal solution outperforms the d-optimal 

solution. Though not related to the focus of this research, it is worth noting that recently 

Carrillo et al (2012) has proposed a modified d-optimal criterion that outperforms the a-

optimal criterion [68]. Reviewing the existing literature of active SLAM reveals that most of 

the existing methods have two points in common: 

1- They use a receding horizon scheme on the motion planning level. 

2- They utilize filtering based methods. 
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The MPC scheme solved numerically is sensitive to disturbance and noise. Also, while the 

focus on the SLAM society has shifted to the optimization method, the active SLAM literature 

is still focused on the filtering based methods. In this project, the enhancement of the 

performance of the current active SLAM algorithms was trialed by focusing on these points. 

Chapter 4 is dedicated to this issue. 

1.4 Contributions 

In this section, we briefly review the contribution of this dissertation presented in each 

chapter.  

Chapter 2: The main contribution discussed in this chapter is the introduction of a probing 

tube-based MPC algorithm in an integrated motion planning and control algorithm. The 

output-feedback tube-based MPC controller structure [36] has been adopted and further 

improved, and includes a nominal MPC and an ancillary MPC. In this work, we have enhanced 

the probing component of the controller by incorporating a partially closed-loop strategy for 

probing and state constraint tightening. We have developed our algorithm by integrating 

output-feedback tube-based nonlinear MPC and partially closed-loop strategy that use two 

different frameworks to describe uncertainty. Specifically, the uncertainty is modeled as 

nondeterministic (set-theoretic) and probabilistic in tube-based MPC [40] and partially 

closed-loop strategy [28], respectively. To take advantage of the robustness of the tube-

based MPC and at the same time incorporate the future measurements effectively, we have 

developed a relationship between the set-theoretic and stochastic paradigms in linear 

systems to unify the two uncertainty frameworks (see Section 2.3.1); the application of this 



 

10 

 

relationship was further extended to nonlinear systems under certain assumptions. Then we 

have utilized the same relationship, as a heuristic, for the unicycle model which is smoothly 

nonlinear. As a result, we can claim that our proposed approach for constraint tightening has 

been carried out in a more systematic way than of that previously discussed in literature [36]. 

In addition to constraint tightening, the proposed approach allows for the inclusion of an 

active probing term in the controller cost function that can in turn facilitate active localization 

which is an important feature for real-world robotics applications. 

Chapter 3: The main contribution of this chapter is to introduce a new systematic way to 

generalize the linear stochastic MPC methods to nonlinear systems by approximating the 

state transition using an unscented transform that is a statistical linearization method. Our 

linearization approach offers two advantages over the Taylor expansion linearization 

approach. First, statistical linearization outperforms analytical linearization methods in terms 

of prediction and estimation error [69]. Second, there is no need to calculate the Jacobian of 

the system and measurement models. The latter can be a critical advantage when the system 

model is complex, or simply unavailable. Although the unscented transform is 

computationally more expensive, the additional computational complexity is not a burden 

for robotic systems, especially for low dimensional systems [69]. 

Chapter 4: This chapter is dedicated to a robust MPC based active SLAM that utilizes an 

optimization based method to solve the SLAM problem. Among the various methods that 

have been discussed to increase the robustness of MPC, we are interested in the latter 

method: tube-based MPC; due to its practical philosophy and proper structure which suits 
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the robotic applications. In the nonlinear tube based MPC, the controller consists of two MPC 

controller: one nominal MPC which is a conventional MPC with constraint tightening, and an 

ancillary MPC which stabilizes the system around the nominal trajectory. Also, in the 

proposed active SLAM method, the nominal controller utilizes an optimization based SLAM 

scheme, iSAM 2 algorithm, instead of the EKF or PF which are the main focus of the existing 

literature on the active SLAM. The tube-based MPC can be implemented using the set algebra 

efficiently, whereas the iSAM 2 algorithm utilizes Gaussian distributions to model the 

uncertainty. Therefore, an important part of developing the new active SLAM method is to 

find a relationship between set-theoretic and stochastic frameworks. 

1.5 Thesis organization 

Chapter 2 starts with elaborating on different aspects of the motion planning problem. These 

include the robot motion and sensing models, state estimation processes and the motion 

planning formulation in uncluttered deterministic environments. The relationship between 

the set-theoretic and stochastic frameworks and the proposed probing tube-based MPC are 

discussed in Section 2.3. Section 2.4 verifies the proposed method through both simulation 

and experiments with a two wheel differential drive robot. Some concluding remarks have 

been provided in Section 2.5. 

Chapter 3 is dedicated to the unscented MPC. The nonholonomic system model description, 

motion control formulation, and chance constraints will be discussed in Section 3.2. In Section 

3.3., the formulation of the unscented predictive motion control will be discussed. Section 
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3.4 presents the validation of the proposed motion control algorithm through numerical 

simulation. Section 3.5 includes the concluding remarks and future work. 

Chapter 4 is dedicated to the active iSAM algorithm. Before elaborating on the proposed MPC 

based motion planning and control scheme, the overall system setting, assumptions, active 

SLAM scheme, and incremental smoothing and mapping (ISAM 2) methods are discussed in 

Section 4.2. The proposed robust active SLAM method is discussed in Section 4.3. The 

proposed algorithm performance is examined through numerical simulations, which is 

discussed in Section 4.4, and are followed by the concluding remarks in Section 4.6. 
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Chapter 2. Robust yet probing motion planning scheme 

2.1 Overview 

This chapter is dedicated to present the idea of a robust and probing MPC based motion 

planning control scheme. The use of MPC as a motion planning scheme has several problems. 

One problem is that most MPC schemes have limited attractive regions [70], and this is 

particularly limiting in cluttered environments. One possible solution to enlarge attractive 

regions is to extend the horizon, but this solution will remarkably increase the computational 

load, which is not desirable for real-time implementations. We have used a more 

computationally effective approach for expanding the attractive region based on the coarse 

dynamic method [22, 71] to approximate the cost-to-go for MPC.  

Another important problem, discussed in the introduction, is that the robustness of the open-

loop implemented MPC may be affected by process disturbance and noise. In this chapter, 

we have adopted and modified Rawlings and Mayne’s tube-based approach [36] for the 

robust motion planning and control of mobile robots with imperfect state information. As 

mentioned earlier in the introduction, the MPC architecture is composed of two sections: 

nominal MPC and ancillary MPC. The first section, the nominal MPC, is a conventional MPC 

which is used to plan a nominal trajectory from the initial position to the target pose. The 

second section, the ancillary MPC, guarantees that the system trajectory is stabilized about 

the trajectory planned by the nominal MPC.  
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The state estimation and control processes in nonlinear systems are coupled. The relation 

between optimal control and estimation has been discussed in the dual control theory 

literature during the past few decades [54]. In his seminal work, Bar Shalom showed that in 

nonlinear systems, any optimal control action must have three components: the certainty 

equivalent, cautiousness, and probing [72]. The certainty equivalent component controls the 

system irrespective of uncertainty, while the cautiousness component incorporates the 

impact of uncertainty, and finally the probing component minimizes uncertainty using future 

measurements [72]. In general, discarding the probing effect by ignoring future 

measurements previously formulated [36], leads to a so called open-loop optimization within 

the MPC context. This approach may result in an overly conservative controller. This issue has 

been raised in the set-theoretic control as well as probabilistic framework [73, 74]. On the 

other extreme, probing by incorporating all possible future measurements is the fully closed-

loop approach which, in essence, is just a theatrical concept and practically infeasible. A viable 

yet effective solution for incorporating future measurements, which we have used in this 

research, is the partially closed-loop strategy [75]. In this strategy, the most likely 

measurement is assumed as the future measurement. Du Toit has shown that for linear 

Gaussian systems, this assumption introduces the least information gain to the controller 

[28]. This strategy has been used frequently in the active sensing literature [57, 59, 60]. 

The main contribution of this chapter is the introduction of a probing tube-based MPC 

algorithm in an integrated motion planning and control algorithm. We have adopted and 

further improved the output-feedback tube-based MPC controller structure [36] that 

includes a nominal MPC and an ancillary MPC. In this work, we have enhanced the probing 
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component of the controller by incorporating a partially closed-loop strategy. The probing 

component is a component of the control action that actively reduces the uncertainty. We 

have developed our algorithm by integrating output-feedback tube-based nonlinear MPC and 

partially closed-loop strategy that use two different frameworks to describe uncertainty. 

Specifically, the uncertainty is modeled as nondeterministic (set-theoretic) and probabilistic 

in tube-based MPC [40] and partially closed-loop strategy [28], respectively. To take 

advantage of the robustness of the tube-based MPC and at the same time incorporate the 

future measurements effectively, we have developed a relationship between the set-

theoretic and stochastic paradigms in linear systems to unify the two uncertainty frameworks 

(see Section 2.3.1), and then we further extended the application of this relationship to 

nonlinear systems under certain assumptions. Then we have utilized the same relationship, 

as a heuristic, for the unicycle model which is smoothly nonlinear. As a result, we can claim 

that our proposed approach for constraint tightening has been carried out in a more 

systematic way than previously thought [36]. In addition to constraint tightening, the 

proposed approach allows for the inclusion of an active probing term in the controller cost 

function that can in turn facilitate active localization which is an important feature for real-

world robotics applications. 

Before elaborating the proposed algorithm, different aspects of the motion planning problem 

are discussed in the next section. These include the robot motion and sensing models, state 

estimation processes and the motion planning formulation in uncluttered deterministic 

environments. The relationship between the set-theoretic, stochastic frameworks and the 

proposed probing tube-based MPC are discussed in Section 2.3. Section 2.4 verifies the 
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proposed method through both simulation and experiments with a two wheel differential 

drive robot. Some concluding remarks have been provided in Section 2.5. 

2.2 Problem statement 

2.2.1  Deterministic Motion Planning 

The main focus of this research is on motion planning of a unicycle robot shown in Fig. 2-1, 

which is used extensively in the motion planning literature [76-78]. The robot position and 

heading angle 𝑝 = [𝑥, 𝑦, 𝜃]𝑇  are used to define the robot states. Considering linear and 

angular velocities as the robot input,  𝑢 = [𝜗, 𝜔]𝑇, the robot motion model can be defined 

as: 

{
�̇� = 𝜗 cos(𝜃)

�̇� = 𝜗 sin(𝜃)

�̇� = 𝜔

      (2.1) 

In Eq. (2.1), the control signal and disturbances are the deriving signals that act on the system 

in the same way. Without slipping, the robot kinematics satisfies the mobility constraint: 

�̇� sin(𝜃) − �̇� cos(𝜃) = 0,  𝜗 ≥ 0     (2.2) 
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Figure 2-1 Schematic of the two-wheeled mobile robot. 

The typical challenges of motion planning for such a system are the system nonholonomicity 

and control action constraints. The emphasis on nonholonomicity is due to the fact that based 

on the well-known work of Brockett (1983), the nonholonomic robot model is uncontrollable 

for time-invariant smooth feedback control laws [79]. Also, in real situations, saturation of 

the control policies is inevitable. The focus of this research is on the discrete-time control of 

the nonholonomic systems. The discretized equations of motion can be derived from Eq. (1) 

with sampling time T as: 

{
𝑥+ = 𝑥 + 𝜗(sin(𝜃+) − sin(𝜃))/𝜔

𝑦+ = 𝑦 − 𝜗(cos(𝜃+) − cos(𝜃))/𝜔

𝜃+ = 𝜃 + 𝜔𝑇

     (2.3.a) 

if 𝜔→0: 

{
𝑥+ = 𝑥 + 𝜗 cos(𝜃) 𝑇

𝑦+ = 𝑦 + 𝜗 sin(𝜃)𝑇

𝜃+ = 𝜃 + 𝜔𝑇

      (2.3.b) 
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where 𝑥, 𝑦 and 𝜃 are robot position and heading at sample time 𝑘. Also the superscript + 

denotes the value of the variable at sample time 𝑘 + 1.  

In motion planning of autonomous systems, the problem is to drive the robot from the initial 

position 𝑝0 to the final position 𝑝𝑓 under the robot input and state constraints. In the 

deterministic non-cluttered environment, where there is no noise or disturbance and the 

perfect state information is available, the motion planning problem at time 𝑘 can be 

formulated as a dynamic programming problem: 

𝓤∗ = argmin
𝓤

(∑ 𝑙𝑗(𝑝𝑘+𝑗 − 𝑝𝑓 , 𝑢𝑘+𝑗)𝑁−1
𝑗=0 + 𝐹𝑁(𝑝𝑘+𝑁 − 𝑝𝑓))   (2.4.a) 

subject to: 

𝑝+ = 𝑓(𝑝, 𝑢)       (2.4.b) 

𝑢𝑘+𝑗 = 𝕌      (2.4.c) 

𝑝 ∈ ℙ𝑠𝑎𝑓𝑒      (2.4.d) 

𝑝𝑁 ∈ ℙ𝑓      (2.4.e) 

where 𝓤∗ = {𝑢𝑘+𝑗}, 𝑗 = 0 to 𝑁 − 1, is the sequence of optimal control actions over the next 

𝑁 horizon. The stage cost and final cost are denoted by 𝑙𝑗 and 𝐹𝑁, respectively. The stage cost 

𝑙𝑗 is chosen as an Euclidian norm: 𝑙𝑗 =  ‖𝒑𝑘+𝑗 − 𝒑𝑓‖
𝑊1

+ ‖𝒖𝑘+𝑗‖
𝑊2

, where ‖𝐯‖𝐴 =

‖𝐯𝐴𝐯𝑇‖2. The desired output can be shaped by tuning the matrices 𝑊1and 𝑊2 [18, 19]. In 

the receding horizon strategy, the first 𝑀 control actions of 𝓤∗ are applied before the new 
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set of the optimal control actions is calculated, where 𝑁 and 𝑀 are the prediction horizon 

and control horizon, respectively. The constraints of optimization are expressed in Eqs. (2.4.b) 

to (2.4.e). The Eq. (2.4.b) is the motion model of the robot. In Eq. (2.4.c and d), 𝕌 and ℙ𝑠𝑎𝑓𝑒 

are the admissible sets of control actions and safe positions, respectively. The last constraint, 

Eq. (2.4.e) is an optional part of optimization that influences the stability and attractive region 

of the control system [18]. Beside this conventional MPC formulation, Eqs. (2.4) can be 

implemented with both control and state variables as the decision variables using large-scale 

sparse optimization toolboxes for practical use. The algorithm proposed in [80] is an example 

of this deterministic motion planning algorithm with proven stability and robustness. 

The applicability of an oversimplified deterministic motion planning algorithm is limited by 

the assumptions of perfect state information and limited attractive region. The perfect state 

information is an invalid assumption in many real-world applications where positioning is 

noisy. Also, motion planning algorithms with a limited attractive region are impractical in 

cluttered environments.  

2.3 State Estimation and Prediction 

A large portion of the nonlinear state estimation in robotics literature is focused on the 

stochastic Bayesian framework which has been reviewed thoroughly [81]. In this research, 

we use the same framework mainly because of its computational efficiency [82]. A 

computationally efficient nonlinear filtering solution for stochastic Bayesian problems is the 

Extended Kalman Filter (EKF) that is commonly used in robotics applications despite its 
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shortcoming [83]. In the presence of disturbance and unmodeled dynamics, the equation of 

motion can be expressed as: 

𝑝+ = 𝑓(𝑝, 𝑢, δ)      (2.2.5) 

Where δ ∈ ℝ2 is composed of independent translational and rotational disturbances, and 

acts similar to input 𝑢 on the robot. In order to use EKF, the process disturbance δ of Eq. 

(2.2.5) is approximated as a Gaussian white distribution δ𝑝~𝒩(0, 𝑄𝑘) where 𝑄𝑘 is the 

disturbance covariance. We will elaborate on this approximation in the next section. The 

measurement equation can be expressed as: 

𝑦 = ℎ(𝑝, ν)       (2.2.6) 

where ν is the measurement noise and can be approximated with Gaussian white noise, 

ν~𝒩(0, 𝑅𝑘). In our experimental setup, which uses an overhead camera system as the 

measurement tool, the measurement model can be expressed as: 

ℎ(𝑝, ν) = [𝑥, 𝑦, 𝜃]𝑇 + ν     (2.7) 

and the measurement noise covariance 𝑅𝑘 = 𝑅𝑘(𝑟) and 𝑟 = √𝑥2 + 𝑦2.  

Using the a priori position estimation 𝑝𝑘~𝒩(�̂�𝑘|𝑘, Σ𝑘|𝑘), observation at the current time 

𝑦𝑘+1, and the above motion and measurement models, the EKF algorithm can be expressed 

as [81]: 
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Prediction step: 

�̂�𝑘+1|𝑘 =  𝑓(�̂�𝑘|𝑘, 𝑢𝑘)          (2.8) 

Σ𝑘+1|𝑘 = 𝐹𝑘Σ𝑘|𝑘𝐹𝑘
𝑇 + 𝐿𝑘𝑄𝑘𝐿𝑘

𝑇     (2.9) 

Update step:  

𝐾𝑘 = Σ𝑘+1|𝑘𝐻𝑘
𝑇(𝐻𝑘 Σ𝑘+1|𝑘𝐻𝑘

𝑇 + 𝑀𝑘 𝑅𝑘𝑀𝑘 )−1    (2.10) 

�̂�𝑘+1|𝑘+1 = �̂�𝑘+1|𝑘 + 𝐾𝑘(𝑦𝑘+1 − ℎ(�̂�𝑘+1|𝑘, 0))                                               (2.11) 

Σ𝑘+1|𝑘+1 = (𝐼 − 𝐾𝑘𝐻𝑘 )Σ𝑘+1|𝑘     (2.12) 

where 𝐹𝑘 =
𝜕𝑓

𝜕𝑝
|𝑝𝑘|𝑘,𝑢𝑘

, 𝐿𝑘 =
𝜕𝑓

𝜕𝑢
|𝑝𝑘|𝑘,𝑢𝑘

, 𝑀𝑘 =
𝜕ℎ

𝜕ν
|𝑝𝑘+1|𝑘

 and 𝐻𝑘 =
𝜕ℎ

𝜕𝑝
|𝑝𝑘+1|𝑘

.  

The last topic related to the state estimation in nonlinear systems is active probing. In the 

active probing systems, the control law or action is designed to minimize an index related to 

the system uncertainty, e.g. trace or determinant of the covariance matrix. As it is suggested 

in [56], for the robot exploration problem the a-optimal systems, minimizing the covariance 

matrix trace, outperform the d-optimal systems, minimizing the determinant of the 

covariance matrix. 

2.4 Tube-based MPC 

This section details the proposed integrated motion planning and control scheme based on 

the tube-based MPC [36]. The integrated motion planning and control problem is solved using 
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a two-stage MPC consisting of a nominal MPC and an ancillary MPC. The nominal MPC is used 

for motion planning and features probing and also avoid trap situations. On the other hand, 

the proposed ancillary controller stabilizes the kinematic control around the planned 

trajectory and also increases the robustness of the nominal controller. The total control 

action is 𝑢𝑘 = 𝔲𝑘 + 𝓋𝑘, where 𝔲𝑘 is the control action produced by the nominal MPC, and 

𝓋𝑘 is the control action produced by the ancillary MPC.  

2.4.1  Relation between Set-theoretic and Stochastic Frameworks: An Illustrative 

Example 

In order to formulate a robust probing MPC, we established a relationship between the 

stochastic framework [60] and set-theoretic framework [40]. In set-theoretic framework, the 

main algebraic operations of a set are defined as:  

a. Minkowski set addition: 𝐴 ⊕ 𝐵 ≔ {𝑎 + 𝑏|𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} 

b. Set subtraction (erosion):𝐴 ⊖ 𝐵 ≔ {𝑥|{𝑥} ⊕ 𝐵 ⊆ 𝐴} 

c. Set multiplication: 𝐾𝐴 ≔ {𝐾𝑎|𝑎 ∈ 𝐴} 

To illustrate the relationship between set-theoretic and stochastic frameworks, we consider 

the following linear system with deterministic disturbances 𝑤, 

𝑥+ = 𝑎𝑥 + 𝛿       (2.13) 

where 𝛿 ∈ 𝕎 and 𝕎 = [−𝑤, 𝑤]and 𝑥0 = 0. The system state 𝑥𝑘 belongs to the tube 

𝒮𝑘[84][35][30]: 
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𝒮𝑘 = ∑ 𝑎𝑗𝕎𝑘−1
𝑗=0 = 𝕎 ⊕ 𝑎𝕎 ⊕ … ⊕ 𝑎𝑘−1𝕎    (2.14) 

For a process with 𝑁 + 1 steps:  

𝒮𝑁 =
1−𝑎𝑁

1−𝑎
𝕎 = [−

1−𝑎𝑁

1−𝑎
𝑤,

1−𝑎𝑁

1−𝑎
𝑤]     (2.15) 

If 𝛿 is approximated by Gaussian white noise 𝛿𝑝~𝒩(0, 𝑃𝑤)where 𝑃𝑤 is the covariance of the 

distribution. In the stochastic framework, the state distribution can be approximated as:  

𝑥𝑘~𝒩(0, 𝑃𝑘)       (2.16) 

𝑃𝑘 = 𝜎𝑘
2 = ∑ 𝑎𝑗𝑃𝑤𝑎𝑗𝑘−1

𝑗=0      (2.17) 

By comparing Eq. (2.15) and Eq. (2.17), one can see that in both cases the uncertainty 

propagates as a geometric series. In order to approximate the set-theoretic description with 

the stochastic description, we assume that 𝒮𝑁 is a subset of a confidence interval of the state 

distribution in step 𝑁: 

[−
1−𝑎𝑁

1−𝑎
𝑤,

1−𝑎𝑁

1−𝑎
𝑤] ⊆ [−𝐶𝜎𝑁 , 𝐶𝜎𝑁 ]      (2.18) 

where the constant 𝐶 is the confidence interval and 𝜎𝑁 is the standard deviation at time 𝑁; 

the smaller the confidence interval the more conservative the approximation. Eq. (2.18) can 

be written as:  

(
1−𝑎𝑁

1−𝑎
𝑤)

2

≤ 𝐶2𝜎𝑁
2      (2.19) 

Considering Eq. (2.17)  
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(
1−𝑎𝑁

1−𝑎
𝑤)

2

≤ 𝐶2 1−𝑎2𝑁

1−𝑎2
𝑃𝑤     (2.20) 

so 

(1−𝑎𝑁)(1+𝑎)

(1+𝑎𝑁)(1−𝑎)

𝑤2

𝐶2 ≤ 𝑃𝑤       (2.21) 

For stable systems (𝑎 ≤ 1), the greatest noise impact occurs when 𝑎 → 1 that is:   

𝑃𝑤 → 𝑁
𝑤2

𝐶2
       (2.22) 

Figure 2-2 shows how the uncertainties from the stochastic and set-theoretic frameworks 

propagate where 𝑎 = 1, 𝑤 = 1 and 𝐶 = 3. Shown in Figure 2-2, the Monte Carlo simulation 

of the state evolution is close to the nondeterministic set-theoretic framework results. As a 

result, Eq. (2.22) is completely different from the conventional method of approximation of 

a set with a Gaussian noise with equal mean and covariance, which is common in estimation 

literature [85]. More precisely, using the conventional framework the covariance is calculated 

as: 𝑃𝑤 =
𝑤2

3
. Considering these two methods, we will heuristically approximate each 

disturbance independently with a zero mean Gaussian noise, that is: 

𝑃𝑤 = max {𝑁
𝑤2

𝐶2
,

𝑤2

3
}      (2.24) 

An important point to note is whether or not Eq. (2.24) is applicable to the nonlinear system 

described by Eq. (2.3). The result of extensive numerical simulations shown in Fig. 2-4 verifies 

the applicability of the proposed approach to nonlinear systems because the stochastic 

description utilizing Eq. (2.24) successfully over-approximates the set-theoretic description 
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of the uncertainty. In Figure 2-5, the uncertainty has been added as the 5% of the feasible 

control signal. The results are the Monte Carlo simulations of the nonlinear model system, 

described in Eq. (2.3), with the set and probabilistic disturbances. 

The remaining issue in relating the two frameworks is to replace a distribution with an infinite 

support to a bounded set. This can be achieved by truncating the distribution to the region 

corresponding to a confidence level, 𝛽, which satisfies the overall performance of the system 

in a realistic situation. For example, in the linear system example introduced previously, the 

time evolution of the confidence region 𝕏𝛽,𝑘, for 𝛽 = 99.73%,  is compared with the set-

theoretic formulation 𝒮𝑘  in Figure 2-3. The confidence region corresponds to the confidence 

interval 𝐶 selected earlier. As it is shown in Figure 2-3, the tube-based description and 

confidence regions hold a constant relation described as 𝒮𝑘 ⊆ 𝕏𝛽,𝑘 during the process. 

Extending this method to the multivariate situation has been discussed prior to this research 

[86]. Since collision occurs in the 2D geometry, the bivariate distribution is particularly 

important. In this project, we have utilized an over approximation of the confidence region 

instead of the exact confidence region to reduce the computational load. This concept has 

been shown in Figure 2-5 for a bivariate distribution. The basic idea is to over approximate 

the ellipse with a circumscribed circle or rectangle. The ellipse major diameter is an indicator 

of the confidence region and proportional to the square root of the largest eigenvalue of the 

covariance matrix.  This method may be overly conservative, but it is computationally 

efficient. In summary, to approximate distribution 𝑠~𝒩(0, Σ ) with the set 𝕊  the following 

algorithm is used: 
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Figure 2-2 The state uncertainty evaluation using the Monte Carlo simulation (color dots) and the set-theoretic 

framework (black bars) versus time. 

 

Figure 2-3 The time evolution of the confidence region for 𝜷 = 𝟗𝟗. 𝟕𝟑% (blue bars) and the set-theoretic formulation 

(red bars). 
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(a) 

 

(b) 

Figure 2-4 Robot motion with constant rotational and translational velocity with only rotational disturbance (a), 

and with only translational disturbance (b). The nominal path is shown as a blue line, and the stochastic and set-

theoretic uncertainty discretions are shown with blue and red points, respectively. 

 

 

Figure 2-5  The schematic of the confidence region in the plane, the exact confidence region (ellipse), and the 

circumscribed circle and square over approximating it. 
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Algorithm 1:  

- Find the (over)approximation of λ, the largest eigenvalue of Σ  

- 𝕊 is a circle to the radius of 𝑐√λ or a square with the side equal to 2𝑐√λ  

We will now utilize these relationships to introduce a probing robust MPC scheme. The main 

idea is that probing is carried out through a partially closed-loop strategy in the stochastic 

framework, and robustness is guaranteed using a set-theoretic framework. Details of the 

proposed scheme are discussed in the next section. 

2.4.2 Developing Heuristic Relation between Set-theoretic and Stochastic 

Frameworks for Unicycle  

To extend the results of Section 2.4.1 to the unicycle model, consider a general form of the 

linear systems of dimension n: 

𝑥+ = 𝐴𝑥 + 𝛿       (2.25) 

As well as a linear transformation: 

𝑥 = 𝑅𝑧, 𝛿 = 𝑅𝑑      (2.26) 

Where 𝑅 is computed from the eigen-decomposition of the matrix 𝐴: 

𝐴 = 𝑅Λ𝑅−1                                (2.27) 

Where Λ = diag(𝜆1, … , 𝜆𝑛), and 𝜆𝑖 is the ith eigenvalue of 𝐴. The system model based on 𝑧 

can be written as: 
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𝑅𝑧+ = 𝐴𝑅𝑧 + 𝛿      (2.28) 

As well as by left-multiplication of 𝑅−1: 

𝑧+ = Λ𝑧 + 𝑑       (2.29) 

Since matrix Λ is a diagonal matrix, each row in Eq. (2.29) can be regarded as a decomposed 

set of first order linear systems analyzed in Section 2.4.1.  

A similar analysis has been carried out on two systems: 

𝑥+ = 𝐴1𝑥 + 𝛿 and 𝑥+ = 𝐴2𝑥 + 𝛿 where 𝐴1 =  [
1 0
0 0.75

] , 𝐴2 =  [
0.875 0.125

−0.125 0.875
] .  

Also, 𝛿 = [𝛿1, 𝛿2]𝑇 where 𝛿1 = 𝛿2, and 𝛿1 ∈ [−1,1]. The uncertainty propagation in both 

systems is approximated with a probabilistic disturbance. As it is shown in Figure 2-6, the 

exact uncertainty set versus time related to 𝐴1 and 𝐴2 are shown in black squares and red 

rhombic shape, respectively. The stochastic approximation of each system is shown in green 

and blue ellipses, respectively.  

Now consider the unicycle robot model, e.g., Eq. (2.3.b), as:  

𝑝+ = 𝑓(𝑝, 𝑢)       (2.30) 

Under the assumption that disturbance acts as a variation around the nominal trajectory, the 

disturbance linearized model is given by: 

𝑥+ = 𝐼𝑥 + [
cos(𝜃) 𝑇 0
sin(𝜃)𝑇 0

0 𝑇

] [𝛿1, 𝛿2]      (2.31) 
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where 𝛿1 and 𝛿2 are the variation in velocity and rotational velocity, respectively. Now 

consider the following system: 

𝑧+ = 𝐼𝑧 + 𝑇 [

𝛿11

𝛿12

𝛿2

]      (2.32) 

Clearly, the uncertainty in Eq. (2.32) is over-approximation of Eq. (2.31) using the 

transformation Eq. (2.26).  

 

Figure 2-6  The exact uncertainty set versus time related to 𝑨𝟏 and 𝑨𝟐 shown in black rectangles and red rhombic 

shape, respectively. The stochastic approximation of each system is shown in green and blue ellipses, respectively. 

2.4.3  Nominal MPC 

The nominal MPC is the extension of the deterministic motion planning to the cluttered 

dynamic environment in which only imperfect state information is available. In nominal MPC, 

the disturbance is initially approximated with the Gaussian white noise using the heuristics 
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developed earlier. Using this approximation, the future measurement can be incorporated 

using a Kalman filter-like algorithm. For incorporating the future measurements, the Gaussian 

description is computationally more efficient than the set-theoretic description [82]. 

However for collision avoidance, the state uncertainty is converted back to the set-theoretic 

description since integrating a Gaussian distribution over an arbitrary polyhedral set is 

computationally more demanding than adding the equivalent set using the Minkowski set 

addition. To clarify the notation, we need to distinguish between 𝑝𝑘+𝑗|𝑘 which is predicted 

by the overall motion planning scheme and 𝑧𝑘+𝑗|𝑘  which denotes the predicted state based 

on the nominal MPC only. Before describing the nominal motion planning algorithm, we 

focused on the partially closed-loop description of the state evolution. Using the EKF 

formulation we have:  

�̂�𝑘+1|𝑘 =  𝑓(�̂�𝑘|𝑘, 𝔲𝑘)      (2.33) 

Σ−
𝑘+1|𝑘 = 𝐹𝑘Σ𝑘|𝑘𝐹𝑘

𝑇 + 𝐿𝑘𝑄𝑘𝐿𝑘
𝑇     (2.34) 

𝐾𝑘 = Σ−
𝑘+1|𝑘𝐻𝑘

𝑇(𝐻𝑘
 Σ−

𝑘+1|𝑘𝐻𝑘
𝑇 + 𝑀𝑘 𝑅𝑘𝑀𝑘 )−1    (2.35) 

Σ𝑘+1|𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘 )Σ−
𝑘+1|𝑘     (2.36) 

where Σ, 𝐾 and 𝔲𝑘 are the covariance matrix, Kalman gain and the control action produced 

by the nominal MPC algorithm, respectively. Also z𝑘|𝑘 and 𝑝𝑘|𝑘 are identical distributions. As 

it is discussed in [36], 𝔲𝑘 belongs to a subset of 𝕌, 𝔲𝑘 ∈ α𝕌. Also, previous literature [75] has 

provided a detailed discussion on how the Eqs. (2.34-36) limit the growth of the uncertainty 

bound and reduce the overall uncertainty of the state prediction. In other words, 
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incorporating future measurement will modify the uncertainty propagation from what is 

shown in Figure 2-2 and 3. Using Algorithm 1 discussed in the previous section, the prediction 

distribution 𝑠𝑘+𝑗|𝑘~𝒩(0, Σ𝑘+𝑗|𝑘) is replaced with the set 𝕊𝑘+𝑗|𝑘 which corresponds to a 

99.73% confidence interval. Therefore, we have: 

𝑧𝑘+𝑗|𝑘 ∈ �̂�𝑘+𝑗|𝑘⨁ 𝕊𝑘+𝑗|𝑘     (2.37) 

This equation is later used to tighten the optimization constraints. The nominal MPC 

optimization can be formulated as: 

𝖀∗ = argmin
𝖀

(∑ 𝑙𝑗(�̂�𝑘+𝑗|𝑘 − 𝑝𝑓 , 𝔲𝑘+𝑗)𝑁−1
𝑗=0 + 𝐹𝑁(�̂�𝑘+𝑁|𝑘, Σ𝑘+𝑁|𝑘))  (2.38.a) 

subject to 

�̂�+ = 𝑓(�̂�, 𝔲)      (2.38.b) 

𝖚k+j ∈ α𝕌, 0 < α < 1      (2.38.c) 

�̂�𝑘+𝑗|𝑘 ∈ ℙ𝑠𝑎𝑓𝑒 ⊖ 𝕊𝑘+𝑗|𝑘    (2.38.d) 

In Eq. (2.38.c), α tightens the admissible control action set in for the nominal MPC and allows 

the ancillary control to compute the necessary control action to reject the disturbance. The 

Eq. (2.38.d) tightens the constraint equation to ensure the robust feasibility of the 

optimization. The final cost, or cost-to-go, consists of different parts:  

𝐹𝑁(�̂�𝑘+𝑁|𝑘 − 𝑝𝑓 , Σ𝑘+𝑁|𝑘) = 𝐹𝑛𝑜𝑟𝑚(�̂�𝑘+𝑁|𝑘 − 𝑝𝑓) + 𝐹𝐿𝑜𝑛𝑔𝑇𝑒𝑟𝑚(�̂�𝑘+𝑁|𝑘 − 𝑝𝑓) +

𝐹𝑝𝑟𝑜𝑏𝑖𝑛𝑔(Σ𝑘+𝑁|𝑘)   (2.39) 
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The first term 𝐹𝑛𝑜𝑟𝑚(�̂�𝑘+𝑁|𝑘 − 𝑝𝑓) is a cost proportional to the norm square of the estimated 

error, �̂�𝑘+𝑁|𝑘 − 𝑝𝑓. The second term is related to the coarse dynamic planning cost. This term 

is especially important in cluttered environments with concave objects that can develop the 

trapping situation. To compute this term, the environment is discretized to a grid cell. Each 

cell is connected to its neighbors as a graph node if the neighbor node is not occluded by any 

obstacle. The occluded nodes are isolated islands and disconnected from the graph; the graph 

edges have the identical cost. The coarse dynamic cost of each node is proportional to the 

square of the shortest path length, 𝑙𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑝𝑎𝑡ℎ, calculated by the wavefront algorithm [11]. 

The occluded nodes are not in the feasible region, so no value is assigned to them. Once the 

shortest paths, from the entire graph nodes to the target point, are calculated offline, the 

long-term cost of each point can be computed using an online interpolation without solving 

the optimization problem based on the new states. To clarify this concept, the map used in 

simulation, the corresponding shortest paths, and the cost maps are shown in Figure 2-7 (a), 

(b) and (c), respectively.  Shown in Figure 2-7 (c), the long-term cost map is not convex, but it 

has only one unique minimum point. The offline wavefront optimization can be solved using 

a lower frequency or an event-based scheme in the case of dynamic environments. The last 

term of the cost-to-go in Eq. (2.39) is the active probing term. As it was mentioned in the 

introduction, the estimation and control performance indices are coupled in nonlinear 

systems [87]. There are different ways to measure the estimation quality e.g., the trace or 

determinant of the covariance matrix. The trace of the covariance matrix has been used in 

this project as a more consistent measure for estimation quality. Substituting for each cost 

term, we have: 
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𝐹𝑁(�̂�𝑘+𝑁|𝑘, Σ𝑘+𝑁|𝑘) = 𝛾0‖�̂�𝑘+𝑁|𝑘 − 𝑝𝑓‖
2

+ 𝛾1𝑙𝑠ℎ𝑜𝑡𝑒𝑠𝑡𝑝𝑎𝑡ℎ
2 + 𝛾2trace(𝛴𝑘+𝑁|𝑘) (2.40) 

Where 𝛾0, 𝛾1 and 𝛾2 are nonnegative tuning parameters. The result of Eq. (2.38) is the 

sequence of the planned control action 𝖀∗ = {𝔲𝑘
∗ … 𝔲𝑘+𝑁−1

∗ } which produces the optimal 

nominal trajectory 𝒛𝒌
∗ = {�̂�𝑘|𝑘

∗ … �̂�𝑘+𝑁|𝑘
∗

}. In a receding horizon strategy, the optimal 

trajectory is recomputed after the first 𝑀 control action is executed. The ancillary controller 

robustifies robot motion about the optimal nominal trajectory. Details of this controller are 

discussed in the next subsection. 

 

2.4.4  Ancillary controller 

The ancillary controller is to ensure that the robot will follow the optimal nominal trajectory. 

Under the assumption that the control action is the sum of the control actions generated by 

both nominal and ancillary controllers i.e., 𝑢𝑘 = 𝔲𝑘 + 𝓋𝑘,the MPC formulation can be 

represented as: 

𝓥∗ = argmin
𝓥

(∑ ℓ𝑗(�̂�𝑘+𝑗|𝑘 − �̂�𝑘+𝑗|𝑘, 𝓋𝑘+𝑗)𝑁−1
𝑗=0 )   (2.41.a) 

subject to 
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(a) 

 

(b) 

 

(c) 

 

 

Figure 2-7 The map for simulation scenario (a), the shortest path value for the graph nodes (b), and the extracted 

long term cost map (c). 
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�̂�𝑘+j+1|𝑘 = 𝑓(�̂�𝑘+𝑗|𝑘, 𝔲𝑘+𝑗 + 𝓋𝑘+𝑗)      (2.41.b) 

𝓋k+j ∈ (1 − α)𝕌      (2.41.c) 

�̂�𝑘+𝑁|𝑘 = �̂�𝑘+𝑁|𝑘      (2.41.c) 

Where ℓ𝑗 is the stage cost, and 𝓥 = {𝓋𝑘 … 𝓋𝑘+𝑁−1} is the ancillary control action 

sequence, respectively. In general, the stage cost of the ancillary controller is greater than 

the stage cost of the nominal controller. The ancillary controller can work at different 

frequencies. In our implementation, the ancillary controller has a frequency that is 3 times 

higher than the nominal controller. 

If the conditions of the nominal and ancillary controllers are satisfied then 𝑘 → ∞, 

‖�̂�𝑘 − �̂�𝑘‖ → 0 and ‖𝑝𝑓 − �̂�𝑘‖ → 0, which mean that the estimation of the position states 

will merge to the final (desired) value. Simultaneously, by minimizing the covariance trace in 

the nominal controller, the estimation quality is enhanced. The stability conditions for 

deterministic nonlinear tube-based MPC have been discussed [16]. 

In summary, the proposed robust probing MPC algorithm can be summarized as follows: 

Repeat  

Step 1. Compute the cost map that can be used for the long term (initially and 

when necessary). 

Step 2. Generate the nominal trajectory using Eq. (29) (every 𝑀 sample). 

Step 3. Stabilize around the nominal trajectory using Eq. (32).     



 

37 

 

Step 4. Add and apply the control signal produced in Step 1 and Step 2  

until the robot reaches the target.  

The main thesis of this research is that the proposed algorithm is robust yet able to 

incorporate the future measurements. To verify this claim, the proposed integrated motion 

planning and control algorithm has been examined through numerical simulations and 

experiments in the next two sections.  

2.5 Simulation Results 

In order to investigate the feasibility of the proposed algorithm, extensive numerical 

simulations have been carried out. The simulation geometry and robot kinematics have been 

realistically defined based on the Quanser Qbot [88] which is the same robot used in the 

experiments. The scenario is designed to show the abilities of the motion planning and 

control scheme to be computationally efficient and robust. Shown in Figure 2-8, the robot 

must start from the initial point of [−8,0,0]𝑇 and reach the target point [6,0,0]𝑇 . There are 

three obstacles in the pathway composing of a larger horseshoe-shape (concave) object. The 

robot is subject to both measurement noise and process disturbance. The maximum velocity 

and rotational velocity of the robot are 0.5 m/s and 2.5 rad/s, respectively. It is assumed that 

the maximum disturbance of the translational and rotational motions are 0.01 (m/s) and 0.05 

(rad/s), respectively. Also the observation noise covariance is given by:  

𝑅𝑘 = diag(1 + 0.02𝑟, 1 + 0.02𝑟, 1 + 0.05𝑟)𝑅0   (2.42) 
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Where 𝑅0 = diag(0.1,0.1,0.0.5)  and 𝑟 = √𝑥2 + 𝑦2. To analyze the performance of the 

proposed robust probing MPC algorithm, four simulations have been carried out. 

Simulation I: This simulation evaluates the effect of the Euclidian term, long-term and 

probing term on the performance of the nominal MPC. Figure 2-8(a) shows the performance 

with all three terms in the cost-to-go function, whereas in Figure 2-8 (b), (c), (d), each lacks 

the Euclidian term, long-term and probing term, respectively. A comparison of Figure 2-8 (a) 

and (b) shows that the norm cost term smoothens the generated trajectory and reduces the 

steady state errors, whereas comparison of Figure 2-8 (a) and (c) indicates that without the 

coarse dynamic term, the motion planning algorithm converges to a local minimum and not 

to the target point. Furthermore, a comparison between Figure 2-8 (a) and (d) shows that the 

active probing term has a hardly noticeable effect on the path generated, although it was 

anticipated to bring the generated path closer to the origin. However, it should be noted that 

the active probing term will be more significant if the measurement model is nonlinear.  

Simulation II: This simulation helps to understand the effect of the ancillary controller. Monte 

Carlo simulation of the motion planning process is carried out in two different cases: without 

ancillary controller, Figure 2-9 (a), and with ancillary controller, Figure 2-9(b). Each case was 

repeated seventy times. A qualitative comparison of Figure 2-9 (a) and (b) shows that the 

ancillary controller has successfully increased the system robustness, as the results remain 

more consistent in the presence of disturbance and measurement noise. 



 

39 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2-8 The nominal MPC performance with all term (a), without the norm cost (b), without the coarse 

dynamic term (c), and without the probing cost (d). 
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(a) 

 

(b) 

Figure 2-9 The Monte Carlo simulations of the motion planning process; without the ancillary control (a) and with 

ancillary controller (b). 

Simulation III verifies the performance of the proposed method in dynamic environments. 

The long-term cost can be recalculated as the environment changes. To illustrate this 

concept, in this simulation, the third obstacle appears in the middle of the simulation process. 

The results of simulation without and with recalculating the long-term cost are shown in 

Figure 2-10 (a) and (b), respectively. It is not surprising that without recalculating the long-

term cost the robot may be trapped in local minima. Even in that situation shown in Figure 2-

10 (a), the robot is trapped but the path is still safe since there is no collision with the 

obstacles. However, recalculation of the long-term cost, shown in Figure 2-10 (b), enables the 

robot to avoid local minima and hence effectively handles the dynamicity of the environment.  

It should be noted that the offline cost computation using the wavefront algorithm is 

relatively expensive and therefore not suitable for dynamic environments with persistent 

rapid changes [11].  
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(a) 

 

(b) 

Figure 2-10  Coping with dynamic environments (a) without long-term cost recalculation, and (b) with long-term 

cost recalculation.  

Simulation IV verifies the adequacy of the proposed method in tackling occlusion or the 

situation where the knowledge of the robot over its environment evolves over time. Shown 

in Figure 2-11, the robot starts from the starting point and moves towards the target point, 

where it is only aware of the obstacle closest to the starting point. At the point denoted by 

Event 1, the robot becomes aware of two other obstacles initially occluded by the first 

obstacle. Similarly at the point denoted by Event 2, the robot becomes aware of the last 

obstacle which is close to the target point. The planned path clearly shows that the motion 

planning scheme can incorporate incomplete information and at the same time take 

advantage of additional information as it becomes available. 

In summary, it is shown that the nominal controller is able to produce a robust and probing 

motion plan capable of avoiding local minima. Also, the simulation demonstrates that the 
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ancillary controller reduces the disturbance effect on the system and stabilizes the robot 

trajectory about the nominal trajectory.  

 

Figure 2-11  Robot path in occluded environment; robot motions begins from 

2.5.1 Effect of Covariance Trace Optimization on Planning and Estimation Quality 

As it is discussed in Section 2.3.2, by including the covariance trace in the nominal MPC cost 

function, the estimation quality is enhanced. However, in our experiment and simulations, 

the nonlinearity of the measurement model is not significant, and thus insignificant in the 

simulations.  In this appendix, we have designed a new scenario to clarify the effect of this 

term. Hypothetically, we assume that:  

𝑅𝑘 = diag(1 + 0.05𝑟4, 1 + 0.05𝑟4, 1 + 0.05𝑟4)𝑅0    (2.43) 

where 𝑅0 = diag(0.1,0.1,0.05)  and 𝑟 = √𝑥2 + 𝑦2. 
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Also, since there is no obstacle in the simulation, the long term cost of the final cost-to-go is 

ignored. Therefore, the cost function of the planner only consists of the Euclidian and probing 

terms. The results of the planning with and without considering the covariance trace are 

shown in the Figure 2-12 (a-d). Comparison of the robot paths and covariance matrix norms 

without the probing term can be seen in Figure 2-12 (a), and (b), with the probing term; Figure 

2-12 (c) and (d), indicates that the planning algorithm in the second case has improved the 

estimation quality at the price of a longer path and increased computational cost. Shown in 

Figure 2-12, addition of the probing term has enhanced the final value and reduction rate of 

the state uncertainty.  

 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 2-12 The nominal MPC performance without probing term: the robot path (a) and the covariance matrix 

norm (b); and with the active probing term: the robot path (c) and the covariance matrix norm (d).  

 

2.6 Experimental Results 

Real experiments on a robot were conducted to validate the feasibility of the proposed 

integrated motion planning and control system. The main goal of the experiment is to 

examine the performance of the integrated planning and motion control algorithm in a real-

world situation. This includes the low-level unmodeled dynamic, suboptimal optimization 

results and unmodeled uncertainties in sensing and control signals. Before discussing the 

results, the testbed used for the experiments is introduced. 

2.6.1  Experimental Testbed 

The mobile robot used is a Quanser Qbot which is based on the iRobot Create platform. The 

Qbot is a differential drive robot that can be readily integrated with Matlab Simulink. A 
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Pixelink PL-B778G overhead camera is used to provide the exact robot pose as it moves within 

the environment. The experimental testbed developed in our laboratory can efficiently 

integrate different parts of the system regardless of their software platform. For example, 

the overhead camera image acquisition and object tracking software is implemented in C++, 

motion planning and motion execution is programmed in Matlab, and the robot control and 

networking is in Simulink. The interconnectivity of the testbed software is portrayed in Figure 

2-12.  Figure 2-13 shows the actual testbed composed of the overhead camera, Qbot robot 

marked by blue and red circles, and a host computer. 

The optimization in the proposed MPC method is solved using Matlab fmincon function, 

which is not developed for real-time implementation. To address this issue, the maximum 

velocity of Qbot is set to 0.1 𝑚/𝑠, and the sampling time is limited to 1 sec. Also, to reduce 

the computational load, the probing weight is set to zero. An extended EKF is used to reduce 

the observation noise. The prediction and control horizons are set to 15 and 5, respectively. 

2.6.2  Experimental Results  

The environment of the experiment is a 3m×3m flat square. The robot starts from the initial 

pose [𝑥 𝑦 𝜃]𝑇 = [−1 −1 0]𝑇  and moves to the target point [1 1 0]𝑇through two 

obstacles located along the y-axis at = −0.5 , 𝑥 =  0.5 , respectively. The motion planning 

algorithm is unaware of the second obstacle at the beginning of the process. 
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Figure 2-13  Integration of Matlab based motion planning and C++ image acquisition and processing. 

The robot observes the second obstacle as it passes by the first obstacle. Figure 2-15 shows 

the path taken by the robot, as well as the motion plan generated by the proposed motion 

planning method denoted by dashed lines (i.e. tangent to the robot path).  The breakdown 

of the nominal, ancillary and overall control signal for each of the rotational and translational 

control commands are shown in Figure 2-15 and 2-16, respectively..  

In the analysis of the experiment results, a few important points must be considered. Shown 

in Figure 2-15, the planned paths are tangential to the actual path. This is an indicator that 

the motion planning algorithm has sufficient robust performance.  Also, comparison of 
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ancillary signals in Figure 2-16 and 2-17 indicates that the rotation signal is in the saturation 

more often than the translational signal. This means that the rotation is more prone to 

deviate from the planned trajectory. The result is consistent with the performance of the 

Qbot robots which are prone to more disturbances in the rotational maneuvers. 

Another important observation is associated with the time intervals in which both the 

rotational and translational control signals drop to very small values that cannot overcome 

the internal nonlinearities such as internal friction of the robot mechanisms. More precisely, 

the computed control signals at those intervals are about 3 mm/s, which are attenuated by 

the unmodeled friction. One way to solve this problem is to set a threshold value 𝑢𝑚𝑖𝑛, which 

is the control signal at either zero or greater than 𝑢𝑚𝑖𝑛. The drawback of adding a threshold 

value is that the optimization would be mixed integer nonlinear programming (MINP), and 

not proper for practical implementation using the optimization tools used in our work. 

Modeling the effect of friction at low velocities and more computationally efficient 

optimization algorithms is one of the topics of future work.   

2.7 Summary  

This chapter presents a robust integrated motion planning and control scheme. The proposed 

scheme has two parts: a nominal MPC planner and an ancillary MPC controller. To prevent 

overly conservative behavior, future measurement is incorporated into the nominal 

controller by utilizing the partially closed-loop strategy. Incorporation of the future 

measurements not only enables the controller to be probing but also tightens the constraints 

in a systematic way. On the other hand, robustness of the planning algorithm is guaranteed 
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using the tube-based set theoretic framework. In the tube-based approach, the constraints 

are tightened in nominal MPC, and also an ancillary controller guarantees that the robot 

follows the nominal optimal trajectory.  These two frameworks, namely stochastic and set 

theoretic, are related through a relationship developed for the linear systems, but it is shown 

that the approach can be equally effective for nonlinear systems. Extensive numerical 

simulations and experiments with a mobile robot have been carried out to examine the 

proposed algorithm performance and the functionality of its components.  

 

Figure 2-14  The experimental setup including the Qbot robot, the overhead camera and the workstation which is 

used to process the data. 
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Figure 2-15  The experimental scenario: the robot path (black line), the planned paths (blue dashed line), the target 

(red circle) and the robot final pose uncertainty indicator (green circle). 

 

Figure 2-16  The nominal, ancillary and overall rotational control signals. 
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Figure 2-17  The nominal, ancillary and overall translational control signals. 

Based on the simulation results, it can be concluded that global performance of the algorithm 

is closely related to the coarse dynamic term, whereas the steady-state error and the planned 

trajectory smoothness is related to the norm cost. Since the observation equation is 

approximately linear, the active probing term does not have a significant effect on the 

simulation results. However, in the systems with a highly nonlinear observation model, this 

term can significantly improve the performance of the control system. The Monte Carlo 

simulation results indicate that the ancillary motion controller successfully stabilizes the 

robot motion about the nominal planned trajectory. Also, the motion planning algorithm was 

successfully examined in dynamic cluttered environments. In the next stage, the feasibility of 
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real-time implementation is studied. The experimental results show that motion planning can 

be implemented in near real-time and successfully drive the robot to a target point.  
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Chapter 3. Unscented Model Predictive Control of Chance 

Constrained Nonlinear Systems 

3.1 Overview 

MPC-based methods have been used for motion control of mobile robots in the presence of 

localization uncertainty [89, 90] where the system dynamics is usually assumed to be linear. 

However, in practice, the dynamics of unmanned ground and aerial vehicles can be described 

more realistically using nonlinear and nonholonomic systems. Although there are previous 

studies on the application of MPC on both deterministic and stochastic nonlinear systems [17, 

28, 30, 31, 42, 80], these studies have generally used Taylor series expansion for linearization 

[42, 75]. Our main contribution in this chapter is to present a new systematic way to 

generalize the linear stochastic MPC methods to nonlinear systems by approximating the 

state transition using an unscented transform that is a statistical linearization method. Our 

linearization approach offers two advantages over the traditional Taylor expansion 

linearization approach. First, statistical linearization outperforms analytical linearization 

methods in terms of prediction and estimation error [69]. Second, there is no need to 

calculate the Jacobian of the system and measurement models. The latter can be a critical 

advantage when the system model is complex, or simply unavailable. Although the unscented 

transform is computationally more expensive, the additional computational complexity is not 

a burden for robotic systems, especially for low dimensional systems [69].  
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The proposed unscented probabilistic MPC method is applied to the nonholonomic nonlinear 

robot motion control problem. The use of unscented transform allows for approximating the 

nonlinear state transition as a Gaussian distribution. The unscented transform extends the 

closed-form solutions available for linear systems to nonlinear systems. In this way, the 

algorithm tackles both the deterministic nonholonomic constraints and probabilistic collision 

avoidance chance constraints. The preliminary work on the proposed method has been 

briefly discussed [3]. In this Chapter, we have analyzed the advantages and limitations of the 

proposed approach in comparison with the conventional Taylor expansion based MPC.  

The nonholonomic system model description, motion control formulation, and chance 

constraints will be discussed in Section 3.2. In Section 3.3, the formulation of the unscented 

predictive motion control will be discussed. Section 3.4 presents the validation of the 

proposed motion control algorithm through numerical simulation. Section 3.4 includes the 

concluding remarks and future work.  

3.2 Problem Statement  

3.2.1 The nonholonomic system model  

Figure 3-1 shows the schematics of a two-wheeled mobile robot as a well-known nonlinear 

nonholonomic system to formulate the proposed motion control method. The robot states 

are defined using the robot position and rotation angle, 𝑋 = [𝑥, 𝑦, 𝜃]𝑇. The configuration 

space, C, has been considered as the state space; X ∈C= ℝ2 ×S. Considering linear and angular 

velocities as the robot input, 𝑢 = [𝜗, 𝜔], the robot motion model can be defined as: 
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{

�̇� = 𝜗 cos(𝜃)

�̇� = 𝜗 sin(𝜃)

�̇� = 𝜔

     (3.1) 

In Eq. (3.1), the deriving signals include both control signal and disturbances. If the robot 

moves without slipping, the robot kinematics satisfies a nonholonomic constraint: 

�̇� sin(𝜃) − �̇� cos(𝜃) = 0,  𝜗 ≥ 0     (3.2) 

 

Figure 3-1 Schematic of the two-wheeled mobile robot [Figure 2-1 repeated]. 

The control system design for the stated nonholonomic system is a challenging task. The 

emphasis on nonholonomicity is due to the fact that based on the well-known work of 

Brockett (1983), the nonholonomic robot model is considered non-controllable for the time 

invariant feedback control laws [79]. Also, in real situations, saturation of the control policies 

is inevitable. The focus of this research is on the discrete-time control of the nonholonomic 

systems. By discretizing Eq. (2.1) based on the sampling time T, motion equations can be 

approximated as: 
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{
𝑥+ = 𝑥 + 𝜗(sin(𝜃+) − sin(𝜃))/𝜔

𝑦+ = 𝑦 − 𝜗(cos(𝜃+) − cos(𝜃))/𝜔

𝜃+ = 𝜃 + 𝜔𝑇

    (3.3.a) 

If 𝜔→0: 

{
𝑥+ = 𝑥 + 𝜗 cos(𝜃) 𝑇

𝑦+ = 𝑦 + 𝜗 sin(𝜃)𝑇

𝜃+ = 𝜃 + 𝜔𝑇

     (3.3.b) 

Where 𝑥𝑘, 𝑦𝑘, and 𝜃𝑘 compose the state vector 𝑋(𝑘). It can be assumed that in the motion 

control problem, the pose error is defined based on the difference between the final 

destination and the current pose: 

      (3.4) 

Therefore, by assuming  the error dynamics can be defined as: 

{

𝑥𝑒
+ = 𝑥𝑒 − 𝜗 cos(𝜃𝑒) 𝑇

𝑦𝑒
+ = 𝑦𝑒 − 𝜗 sin(𝜃𝑒)𝑇

𝜃𝑒
+ = 𝜙(𝜃𝑒 − 𝜔𝑇)

     (3.5) 

where 𝜙: ℝ → (- ] is any mapping that provides a unique value for all the physically identical 

angles that have different numerical values. Now, the problem is to solve the motion control 

problem for the system defined in Eq. (5) which can be summarized as: 

     (3.6) 

3.2.2 The motion control formulation 

The problem considered in this chapter is to find an optimal sequence of control policies to 

ensure that the robot reaches the goal region in finite time and avoids obstacles during the 
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planning process. The optimality criterion is defined in terms of minimizing a cost function, 

which is usually an indicator of the efficacy of the controller. In the deterministic systems with 

perfect state information, the optimization can be defined as: 

    (3.7) 

subject to 

    (3.8) 

where  is the sequence of control actions over the control horizon  N. The 

optimization result, , is the sequence of the optimal control policies over the 

control horizon N. Also, n denotes the current time sequence. Moreover, Si, Ti, WN are three 

positive definite weight matrices. The robot motion model is introduced to the optimization 

equation as one of the constraints. Eq. 3.8 (a) is the error dynamic. Also, Eqs. (3.8.b and 3.8.c) 

indicate that the robot states and control policies must be inside the feasible region of the 

optimization. In the motion control in unknown dynamic environments, different sources of 

uncertainties are introduced to the problem. These uncertainties may stem from different 

sources [26]: 

 The imperfect state information; i.e. the robot and environment states are known 

as a probability distribution over possible states, 

 The system model approximations and, 
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 Unmodeled disturbances.  

By considering the existing disturbances, the system has to be modeled as: 

     (3.9) 

where  the measurement output, is related to system states and control inputs through a 

zeroth-order Markov chain g(.).  Also,  and  are the motion disturbances and 

measurement noise, respectively. It is assumed that the system dynamics for the control 

input  and disturbance are the same. In order to handle the stated uncertainties, a 

stochastic dynamic programming (SDP) is defined as: 

    (3.10) 

subject to:  

     (3.11) 

E(.) is the conditional expectation value operator, and Ii is the set of information, 

 and . 

In a stochastic environment, Yan and Bitmead have proposed a new stochastic dynamic 

programming (SDP) to solve the motion control problem [24]: 

    (3.12) 
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      (3.13) 

where is defined as the mean of the expected value of the robot states conditioned to the 

available information, . The probabilistic constraint  is a general 

expression for the chance constraints. This constraint will be discussed elaborately in the next 

subsection. 

3.2.3 Constraint tightening  

Since a good example to illustrate the benefit of the Gaussian state distribution is the ability 

to find the closed form solution for the collision avoidance constraints,  we have dedicated 

this subsection to present the closed solution of the collision avoidance chance constraint 

based on methods previously discussed [91]. However, developing the closed form solutions 

for chance constraint is not the focus of this chapter. 

In addition to uncertainty of the robot states, in unknown dynamic environments, the 

information of obstacles and other robots is obtained from an estimation process which is 

inherently uncertain. Therefore, the collision avoidance constraints in Eq. (8) must be 

expressed in terms of chance constraints , where  denotes the free 

space without any obstacles and  denotes a confidence level. In order to satisfy this 

condition, the feasibility region should be tightened. As discussed earlier, if state distributions 

are Gaussian or can be approximated by Gaussian distributions, it is possible to find a closed 

solution for some chance constraints [24]. An example of such chance constraints is the non-

collision chance constraint which is discussed in detail [28]; similarly to this previous work, in 
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this chapter, motion control involves a disk robot with radius  trying to avoid point 

obstacles. The collision condition can be expressed as: 

     (3.14) 

where  and  are the obstacle and robot location. Also  is the disk ball with the 

center of  and radius . The probability of collision can be defined as [28]: 

    (3.15) 

where , the indicator function is defined as: 

     (3.16) 

As it is shown [91], if the robot state and obstacle distributions are Gaussian, the collision 

avoidance chance constraint can be calculated as: 

   (3.17) 

where  is the area of the robot and .  

The inequality of Eq. (3.17) is a deterministic equation that tightens the feasibility region of 

the optimization. An example of constraint tightening in Eq. (3.17) is shown in Figure 3-2. In 

this example, the values of , ,  and  are chosen as , I2, 0.01 and 1, respectively. 

The mean of the obstacle location distribution is shown in a blue point, and the infeasibility 

(collision) regions in deterministic and stochastic cases are shown in the inner red circle and 

outer green circle, respectively.  
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Figure 3-2 The obstacle location mean (the blue dot in the middle), the collision region without considering 

uncertainties (the inner red circle), and  the collision region considering uncertainties (the outer green circle). 

3.3 Unscented Model Predictive Motion control  

As it is discussed in the previous section, collision avoidance constraints are introduced to 

stochastic dynamic programming (SDP) as chance constraints. In this section, we will 

elaborate on the unscented transform that provides Gaussian approximation for state 

distributions, and thus, a closed form solution for the chance constraints. At the end of 

Section 3.3, the final formulation of the unscented predictive motion control will be 

presented. 

3.3.1 Unscented transformed motion equations 

The unscented transform relies on neither analytical approximation methods such as the 

Taylor expansion nor the Monte Carlo random sampling. In this transform, the points are 

extracted deterministically from the input distribution. By mapping these points through 

nonlinear functions, the Gaussian approximation of the output distribution would be 

constructed.  
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Assuming that  is known as an nd-dimensional normal distribution with mean and 

covariance matrix of and , respectively, and the approximated distribution of  is 

constructed by utilizing the sigma points, the 2nd +1 sigma points  are calculated by the 

following rule: 

 

 where  with  and  are scaling parameters of the approximating 

Gaussian distribution [69]. In order to calculate the approximated mean and covariance, each 

sigma point  has two weights: related to the mean and  related to the covariance.  

  (19) 

The parameter  is used to incorporate the knowledge about the distribution, which is 

approximated by the Gaussian distribution. For an exact Gaussian distribution,  is the 

optimal choice [69]. By mapping through the nonlinear function, the estimation mean  

and covariance  of  is estimated as: 

  (20)  
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where Rn+i is the noise covariance of the system disturbance , and also: 

     (21) 

It is possible to summarize Eq. (3.20) as a nonlinear mapping approximating the system 

equation and write it as: 

   (22) 

The mapping h is Gaussian, so, it can be used to find the closed solution of the chance 

constraints. It should be noted that the unscented transform described in this section must 

be modified for the non-additive disturbance. A well-known modification of the unscented 

transform for non-additive disturbance is augmented unscented transform [92].  It should be 

noted that  is the open-loop estimation of  in which future measurement is ignored, 

thus showing that Eq. (3.22) is overly conservative. The idea of incorporating future 

measurements is discussed in the following sections.  

3.3.2 Unscented model predictive motion control using output feedback 

The last piece of the unscented model predictive motion control algorithm is the 

incorporation of the future measurements. The idea of utilizing future measurement 

information can be traced back to the dual control theory [54]. Also, this notion is widely used 

in active sensing literature [57]. Incorporating the future measurement information into the 

model predictive algorithm prevents the control system to be overly conservative while 

preserving the system cautiousness [28]. In the unscented model predictive motion control 

algorithm, the future information is incorporated to the system through the UKF. Assuming 
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that g(.) in Eq. (3.9b) is a nonlinear function with additive noise covariance, Qn+i. In the UKF 

algorithm, incorporating the measurement information commences with computing , 

which is the vector of sigma points of the normal distribution of N( , ). The 

algorithm proceeds as: 

  (23) 

                  (23) 

 

In essence, the future measurement  is a virtual quantity equal to the most likely 

measurement [59, 75]. This assumption does not influence the predicted state means, 

 but reduces the estimation covariance, , and increases the feasibility 

region for the optimization Eq. (3.10). Finally, it is possible to express the unscented 

predictive motion control in its final form: 

 

    (24) 

The cost function in Eq. (3.24) is the certainty equivalent of the cost function of Eq. (3.7), 

whereas Eqs. (3.17, 3.22, and 3.23) are the collision avoidance, state transition, and the 
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uncertainty evolvement constraints, respectively. It should be noted that since the unscented 

transform is a deterministic transform, Eq. (3.24) has the same dimension as the optimization 

in Eq. (3.10). The other important point is that the proposed control approach is an output 

feedback approach. An appropriate observer is required for a complete MPC; the 

convergence and efficiency of the observer is also an important research subject, but it is 

outside the scope of this work. An EKF is used as an observer in our simulations. The overall 

system block diagram is shown in the Appendix to distinguish between the EKF estimator and 

the UKF-like predictive algorithms. Also, the tracking information comes from a virtual filter 

with asymptotic convergence. In the next section, the performance of the proposed 

unscented MPC (UMPC) is examined through different numerical simulations.  

3.4 The Overall System Architecture 

The motion planning algorithm discussed in this chapter is an output feedback predictive 

control scheme for the nonlinear stochastic systems. In the architecture of such a control 

scheme, there are two similar sub-systems with distinct functionalities: a stochastic predictor 

to predict the system state, and a stochastic filtering scheme to estimate the system states. 

This architecture is shown in Figure 3-3. 
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Figure 3-3  The function block diagram of the predictive controller (red), mobile robot (blue), and the state estimator 

(green). 

Based on Figure 3-3, the difference between the UMPC and conventional MPC (CMPC) 

schemes goes back to the stochastic predictor of the inside of the controller, which is a UKF-

like algorithm in UMPC, and EKF-like algorithm in CMPC. However, both schemes utilizes the 

same state estimator, e.g. EKF, in this chapter.  

3.5 Simulation Results and Discussions  

In this section, the accuracy of the unscented transform approximation is compared with an 

analytical approximation in one point. To do so, it is assumed that = N([0,0,0]T,[1 0 0,0 1 

0,0 0 1]) is selected as the initial pose distribution. It is assumed that  and 

. The  distribution is constructed by both the Monte Carlo simulation and 

the unscented transform. Ten thousand particles are used in the Monte Carlo simulation. 

Since the disturbance is not in the additive form, an augmented unscented transform is used 
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[92]. The unscented transform parameters are selected as , , and . The 

results of the mean  and Euclidian norm of the covariance matrix 
 
are shown in Table 

3-1.  

Table 3-1 Approximation of the mean and covariance matrix norm. 

 Monte Carlo simulation Unscented Transform Analytical Linearization  

 [0.0620,-0.0017,-0.0012]T [    0.0677, 0, 0.1] T [0.1, 0, 0.1] T 

 
1.0592 1.0363 1.0010 

 

The comparison between analytical linearization and unscented transform indicates that the 

Mahalanobis distance of the unscented transform approximation is 90 percent of the 

analytical linearization approximation. 

In this section, the performance of the proposed motion control approach is examined for 

different situations and compared to that of the conventional (linearization-based) MPC 

(CMPC) approach, in which the motion model is approximated by an analytical linearization 

method [28]. In the CMCP control scheme, the uncertainty propagation is approximated using 

an analytical linearization, similar to the method used in the EKF algorithm [12]. In the output 

feedback control systems, the state estimation quality plays an important role in the overall 

control system efficiency. As a result, the estimation process outputs are shown for all of the 
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simulations to gain better understanding of the system performance.  The comparison 

between UMPC and CMPC is done both qualitatively by comparing the path as well as 

quantitatively using a fuel index and the relative CPU time. The fuel index is defined as: 

, where the summation operates over the entire control process time. The 

relative CPU time is defined as the ratio of total optimization time of UMPC over the total 

optimization time of CMPC.  

The unscented predictive motion control algorithm is applicable to both linear and nonlinear 

measurement systems. However, it is assumed that the measurement equation is linear: 

    (3.25) 

 is the additive noise signal. The system disturbance and measurement noise are considered 

as a zero mean Gaussian with the covariance matrices of R = I2 and  where I denotes 

the identity matrix. Also R and Q are covariance of the motion disturbance and measurement 

signals, respectively. The numerical values are tentatively close to a typical fast indoor robot 

such as Pioneer LX Research Platform [93].  The sensor model is the simplified model for the 

over-head camera localization systems which is used in UBC ACIS Laboratory and is discussed 

in more details in [1]. However, it is important to evaluate the performance of a controller, 

not necessarily for the numerical value per se, but to analyze the signal to noise ratio of 

control and the measurement signal. The control inputs have a saturation magnitude of 5. 

The collision avoidance confidence level and robot area are selected as  and , 

respectively.  In all cases, the initial robot pose covariance is P0 = I3. The MPC weight matrices 

are chosen as Si = I3, Ti = I3 and WN = 100×I3. Also, it is assumed that the estimation of the 
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location of obstacles, both static and dynamic, is available via an external estimator. In this 

chapter, it is assumed that the uncertainty related to each obstacle location is stationary 

through simulation. 

In the first simulation, the robot motion is planned in absence of any obstacle. In the second 

simulation, the robot travels in a static environment. Finally, in the third case, the robot 

travels in a dynamic environment where an obstacle moves perpendicular to the direction of 

the robot.  

To have a case for comparison, in the first simulation, it is assumed that the robot motion 

control is only influenced by the uncertain initial pose, severe driving signal disturbances, and 

measurement noise. The estimated initial pose is assumed as . The 

executed and estimated robot paths are shown in Figure 3-4.  In the second simulation, it is 

assumed that the robot is initially posed at . The simulation target is to reach 

the origin. The obstacles are stationary and their location estimation is subject to a 

distribution, which is defined as xO = N([-10 0]T, ). The robot paths obtained in the presence 

of an obstacle using the UMPC and CMPC approach is shown in Figure 3-5.  
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Figure 3-4 Robot path in the first case; the robot target is the origin. The path produced by UMPC and CMPC is 

shown in blue and red, respectively. The estimated and true paths are shown with the dotted and solid lines, 

respectively. 

 

Figure 3-5 Simulation II - The robot path is calculated by the UMPC and CMPC from the initial location (-20,0) to 

the destination (0,0) in presence of a stationary obstacle denoted by a green partial ellipse tentatively proportional to 

the covariance of the obstacle location. The path produced by UMPC and CMPC is shown in blue and red, 

respectively. 
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The obstacle is shown in a green ellipse with its size tentatively proportional to the covariance 

of obstacle location. The time evolution of the robot in x-direction and y-direction are shown 

in Figure 3-6 and 3-7, respectively. These figures indicate that UMPC and CMPC perform 

differently to avoid the obstacle. 

In the third simulation, the motion control algorithm is examined in a dynamic environment. 

In general, other moving objects can be treated as cooperative, neutral or adversarial to the 

robot. In this simulation, it is assumed that the other object has its own neutral motion, which 

is perpendicular to the robot path. The robot starts from the same initial pose of the second 

simulation. Also, it is assumed that there is a reliable tracking system (an oracle) that is able 

to provide a proper estimation of the object location. The obstacle location estimation is 

defined as xO = N([-10  1-0.035t]T, ), where t denotes the time. The robot mission is to avoid 

the dynamic object and reach the origin. The robot paths using UMPC and CMPC methods 

are shown in Figure 3-8. Also, the robot motion in x-direction and y-direction are shown in 

Figure 3-9 and 3-10, respectively. 

As it was mentioned earlier, in addition to the planned and executed paths, the fuel index 

and computational time are other important quantities in comparison with the control 

algorithms. The relative values of these quantities (UMPC`s value over CMPC`s value) are 

presented in Table 3-2. 

The results of the first simulation indicate that in the absence of any obstacles the 

performances of the UMPC and CMPC are very similar. This observation is not surprising; 

since the optimal path is close to a straight line and robot states remain in a limited range 
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and therefore system nonlinearity does not have a significant effect. Based on our analysis, 

as the nonlinearity becomes more significant, which is the case for the second and third 

simulations, the performance of UMPC and CMPC will be more distinct. 

 

 

Figure 3-6 Simulation II - The robot motion in x-direction. The performances of the UMPC and CMPC are shown in 

blue and red, respectively. 
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Figure 3-7  Simulation II - The robot motion in y-direction. The performances of the UMPC and CMPC are shown in 

blue and red, respectively. 

 
Figure 3-8  Simulation III - The robot path is calculated by the UMPC and CMPC from the initial location (-20,0) to 

the destination (0,0) in presence of a dynamic obstacle denoted by an ellipse tentatively proportional to the 

covariance of the obstacle location.  
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Figure 3-9  Simulation III - The robot motion in x-direction. The performances of the UMPC and CMPC are shown 

in blue and red, respectively. 

The second simulation examines the obstacle avoidance ability of the proposed UMPC 

method and compares it with that of CMPC, where the obstacle and robot pose are known 

only in terms of an uncertain belief. Both CMPC and UMPC have reached the target and 

avoided the obstacle, as well as maintained the collision probability below 0.01. Similar to 

previous research [24], the collision probabilities are found by: 

  (3.26) 

In this way, the maximum collision probabilities for UMPC and CMPC are 0.0016 and 0.0001, 

respectively, which are both considerably less than the specified threshold. However, it is 

worth to add that a more efficient planning approach is the one that remains closer to the 

desired collision probability and prevent an overly conservative path. Clearly, a safer planning 

can still be achieved by reducing the collision probability to a lower desired threshold.  
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Figure 3-10    Simulation III - The robot motion in y-direction. The performances of the UMPC and CMPC are 

shown in blue and red, respectively. 

The CMPC solution however seems more conservative as the planned path is significantly 

further away from the obstacle. Also, the relative fuel index of UMPC is smaller than that of 

the CMPC. The only drawback is that the UMPC has a higher processing time than CMPC.  

Table 3-2  The relative values of fuel index and CPU time (UMPC`s value over CMPC`s value). 

 Relative fuel index Relative CPU time 

Second case 0.9269 1.12 

Third case 0.9251 1.25 
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The third simulation examines collision avoidance in a dynamic environment. As it is shown 

in Figure 3-8, the obstacle starts moving in the horizontal plane. The solid cyan ellipse is 

tentatively proportional to the covariance of the obstacle. Two different ellipses are used in 

Figure 3-8 to show two important instants of the simulation; first, at the beginning of the 

simulation, and second, while the robot is passing the major axis of the ellipsoid.  By 

comparing the maximum deviation in the y-direction in Figure 3-9 and 3-10, it can be 

concluded that the UMPC approach shows a less conservative performance. Also, similar to 

the static obstacle case, the relative fuel index of UMPC is smaller than CMPC. However, 

UMPC is computationally more expensive. The other criterion for the comparison of the 

UMPC and CMPC is the steady state error. As shown in Figure 3-10 and 3-7, the steady state 

error of the UMPC is smaller than the CMPC. It should be noted that no matter how close the 

robot is to the target, the disturbance does not allow error to remain zero.  

In our analysis, the improved performance of the UMPC can be explained with regards to two 

major factors. First, UMPC can handle the Jacobian free input-output relationship, so the 

system equation can be introduced as the original continuous time, such as Eq. (3.1), instead 

of the discrete time approximation such as Eq. (3.3). The other important factor is the 

established fact (in estimation literature) that unscented transform handles the nonlinearity 

better than the analytical linearization [57] and thus, the UMPC utilizes a better prediction 

scheme.   

An avid reader may wonder why overly conservative planning is not desirable. In modern 

motion planning literature, the risk of failure is considered as a planning resource which can 
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be adopted to create a fine balance between safety and efficiency. More precisely, an 

efficient motion planning algorithm may slightly increase the probability of collision to gain a 

larger profit [29]. The over conservative planning tends to disregard this utility and therefore 

gains a suboptimal outcome.  This concept may be clearer in the context of two robots racing 

to reach a common target while maintaining the probability of collision under 0.01. Although 

an overly conservative planning may result in a remarkably lower collision probability <<0.01, 

a more desirable solution is the one that maintains the probability closer to the desired 0.01 

threshold but yields the shorter path to win the race. The proposed UMPC solution provides 

a mean for manipulating the probability more precisely. 

In summary, the UMPC has important advantages over the CMPC, i.e. it is a Jacobian free 

method, and it is more convenient to be applied to complicated systems. Also, it shows a less 

conservative behaviour, and it has a relatively smaller fuel index. However, these advantages 

come at the price of a higher computational cost.  

3.6 Summary and Future Work 

The use of unscented transform for approximation of state transition is introduced for model 

predictive control (MPC) of nonlinear stochastic systems. The proposed MPC approach is 

applied to the motion control problem of a unicycle in unstructured environments. The 

unscented transform MPC (UMPC) incorporates different types of constraints, including 

kinodynamic and collision avoidance chance constraints where the unscented transform is 

used to find a closed-form solution for the chance constraints. The performance of the 

proposed predictive motion control algorithm is examined and compared to conventional 
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MPC (CMPC) by simulating the unicycle motion control problems in three different scenarios 

including: i) a static environment with no obstacle, ii) a static environment with an obstacle, 

and iii) a dynamic environment with a moving obstacle.  

In summary, the proposed UMPC has several advantages over CMPC. First, the UMPC is a 

derivative or Jacobian free formulation. Second, it can avoid an overly conservative response 

with respect to the motion planning problem, which may lead to planning infeasibility. Finally, 

the proposed approach will result in lower energy consumption, denoted by the fuel index in 

our simulations. However, these advantages come at the price of a higher computational 

cost. Thus, the preference of UMPC over CMPC is a trade-off between the energy versus 

computational efficiencies. More precisely, CMPC will still be a better choice for the problems 

with high computational complexity, whereas UMPC will be desirable to improve the 

controller performance in terms of prediction error as well as energy consumption. 
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Chapter 4. Robust Active iSAM 

4.1 Overview 

Introduced in Chapter 1, SLAM is the ability of a robot to build a map of its surrounding and 

locate itself within the map. The focus of this chapter is on the active SLAM that is the problem 

of optimizing the robot trajectory to improve the performance of the SLAM algorithm. Also, 

it was shown in Chapter 1 that most current active SLAM algorithms commonly use:  

1- An MPC scheme on the motion planning level. 

2- Filtering based methods for SLAM. 

However, as it has been shown in Chapter 2, the MPC scheme solved numerically is sensitive 

to disturbance and noise. Also, modern optimization based SLAM methods have not been 

used in the active SLAM context. In this chapter, a new active SLAM algorithm is suggested 

by focusing on the following two points: i) robustifying the MPC scheme, and ii) the use of 

optimization instead of filtering to solve the SLAM problem. Among the various methods 

introduced that have been discussed to increase the robustness of MPC, we will explore the 

tube-based MPC, which was elaborated in Chapter 2. As it is discussed earlier, in the nonlinear 

tube based MPC, the controller consists of two MPC controllers: one nominal MPC that is a 

conventional MPC with constraint tightening, and one ancillary MPC that stabilizes the 

system around the nominal trajectory. Also, in the proposed active SLAM method, the 

nominal controller utilizes an optimization based SLAM scheme, viz. iSAM 2 algorithm, 
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instead of the common filtering methods such as EKF or particle filtering. The tube-based 

MPC can be implemented using the set algebra efficiently, whereas the iSAM 2 algorithm 

utilizes Gaussian distributions to model the uncertainty. Therefore, an important part of 

developing the new active SLAM method is to relate uncertainty in these two frameworks.  

Before elaborating the proposed MPC based motion planning and control scheme, the 

assumptions and overall system setting, active SLAM scheme, and incremental smoothing 

and mapping (iSAM 2) method are discussed in Section 4.2. The proposed robust active SLAM 

method is discussed in Section 4.3. The proposed algorithm performance is examined through 

numerical simulations discussed in Sections 4.4. Section 4.5 includes the concluding remarks.  

4.2 Problem Formulation 

4.2.1 iSAM 2 algorithm 

In the smoothing and mapping (SAM) algorithm, the estimation algorithm is represented 

graphically using a factored graph. A factored graph is bipartite graph 𝐺, with two sorts of 

nodes, factor nodes 𝑓𝑖 ∈ ℱ, and variables nodes 𝜃𝑗 ∈ Θ. Each edge 휀𝑖𝑗 ∈ ℰ connects a variable 

node to a factor node [94]. Based on the graph 𝐺, the function 𝑓(Θ) can be factored as: 

𝑓(Θ) = ∏ 𝑓𝑖(Θ𝑖)𝑖      (4.1) 

where Θ𝑖  is the set of variables 𝜃𝑗  connected to the factor 𝑓𝑖  through 휀𝑖𝑗. In the SLAM problem, 

Θ consists of landmarks and robot history states. The estimation goal is to find the variable 

set Θ∗ such that: 
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Θ∗ = argmax
Θ

𝑓(Θ)               (4.2) 

Under the assumption of Gaussian noise for the measurement models [44, 45]: 

𝑓𝑖(Θ𝑖) ∝ exp (−
1

2
‖ℎ𝑖(Θ𝑖) − 𝑦𝑖‖Σ𝑖

2 )    (4.3) 

where ℎ𝑖  and 𝑦𝑖 are a nonlinear measurement function and a measurement value, 

respectively. Also, ‖. ‖Σ
2 is the squared Mahalanobis distance with the covariance matrix Σ. 

Using Eq. (4.1) and (4.3), Eq. (4.2) can be written as: 

Θ∗ = argmin
Θ

(− log 𝑓(Θ)) = argmin
Θ

(
1

2
∑ ‖ℎ𝑖(Θ𝑖) − 𝑦𝑖‖Σ𝑖

2
𝑖 )   (4.4) 

The Eq. (4.4) is a nonlinear least squares optimization, which can be solved using Gauss-

Newton or Levenberge-Marquardt methods [95]. A typical SLAM problem leads to a relatively 

large optimization problem, which can be solved only as a batch optimization [96, 97]. 

However, Kaess et al recently proposed a iSAM 2.0 algorithm that utilizes the Bayes tree data 

structure to solve the Eq. (4.4) incrementally [53]. The iSAM2 algorithm utilizes incremental 

variable re-ordering and fluid relinearization to update only the nodes that are affected by 

the new measurement, and thus perform the partial and incremental update of the SLAM 

optimization solution.  In this way, iSAM2 provides both real-time and highly accurate results. 

To solve the optimization problem, the least squares problem is solved through iterative 

linearization around a linearization point:  

argmin
𝚫

(−log (𝑓(𝚫))) = argmin
𝚫

(‖𝐴𝚫 − 𝐛‖2)   (4.5) 
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where 𝐴, 𝚫 and 𝐛 are the Jacobian matrix, the variation vector, and a constants vector, 

respectively. At the end of each iteration, the new linearization point is given as 𝚫 ⊕ 𝚯. The 

operator ⊕ may be the simple addition or the addition suitable for over-parameterized 3D 

representation. The norm in Eq (4.5) is the new representation of the Mahalanobis distance 

as: 

‖𝚫‖Σ
2 = 𝚫𝑇Σ−1𝚫 = 𝚫𝑇Σ−

𝑇

2Σ−
1

2𝚫 = ‖Σ−
1

2𝚫 ‖
2

    (4.6) 

After convergence to Θ∗, the information matrix ℐ can be retrieved as: 

ℐ = 𝐴𝑇𝐴,     (4.7) 

As well as the covariance matrix 𝑃 = ℐ−1. 

4.2.2 Active SLAM problem 

In this work, we will demonstrate the concepts through trajectory planning for a unicycle 

robot shown in Figure 2-1, which a platform commonly used in planning literature [76-78]. 

The robot state vector, 𝑝 = [𝑥, 𝑦, 𝜃]𝑇, consists of the robot location and heading angle. The 

robot kinematic model is defined as: 

{
�̇� = 𝜗 cos(𝜃)

�̇� = 𝜗 sin(𝜃)

�̇� = 𝜔

     (4.8) 

where the robot control input, 𝑢 = [𝜗, 𝜔]𝑇, consists of linear and angular velocities. In the 

no-slip condition, the robot kinematics satisfies the mobility constraint: 
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�̇� sin(𝜃) − �̇� cos(𝜃) = 0,  𝜗 ≥ 0     (4.9) 

 

Figure 4-1 Schematic of the two-wheeled mobile robot [Figure 2-1 repeated]. 

The focus of this research is on the discrete-time control of the nonholonomic systems. The 

discretized equations of motion can be derived from Eq. (4.7) with sampling time T: 

{
𝑥+ = 𝑥 + 𝜗(sin(𝜃+) − sin(𝜃))/𝜔

𝑦+ = 𝑦 − 𝜗(cos(𝜃+) − cos(𝜃))/𝜔

𝜃+ = 𝜃 + 𝜔𝑇

    (4.10.a) 

If 𝜔→0: 

{
𝑥+ = 𝑥 + 𝜗 cos(𝜃) 𝑇

𝑦+ = 𝑦 + 𝜗 sin(𝜃)𝑇

𝜃+ = 𝜃 + 𝜔𝑇

     (4.10.b) 

where 𝑥, 𝑦 and 𝜃 are the robot position and heading at sample time 𝑘. Additionally, the 

superscript + denotes the value of the function at sample time 𝑘 + 1.  Considering the 

disturbance, Eq. (4.10.b) can be expressed as: 

𝑝+ = 𝑓(𝑝, 𝑢, 𝛿)     (4.11) 
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where 𝛿 ∈ 𝔻 ⊂ ℝ2 is the disturbance (which is additive to the control input signal), and 𝛿𝑖 

belongs to a compact set. A typical autonomous robot is equipped with sensors that can be 

modeled as a zero-order Markov chain: 

𝑦 = ℎ(𝑝, 𝕎, 𝜈)     (4.12) 

where 𝜈 is probabilistic noise, often considered as a Normal distribution, and 𝕎 stands for 

the world model e.g., a set of landmarks’ states. The MPC-based active SLAM can be 

expressed as the following mathematical programming:  

𝓤∗ = argmax
𝓤

(𝐽(𝐼𝑁))     (4.13.a) 

subject to: 

𝑝+ = 𝑓(𝑝, 𝑢, 𝛿)      (4.13.b) 

𝑦 = ℎ(𝑝, 𝕎, 𝜈)     (4.13.c) 

𝑢 ∈ 𝕌, 𝛿 ∈ 𝔻, 𝜈~𝒩(0, 𝑅)    (4.13.d) 

𝑝𝑖 ∈ ℙ𝑠𝑎𝑓𝑒 𝑖 = 1, … , 𝑁    (4.13.e) 

where 𝓤∗ = {𝑢𝑘+𝑗}, 𝑗 = 0 to 𝑁 − 1, is the sequence of optimal control actions over the next 

𝑁-step horizon. The objective function 𝐻 can be the information or coverage of the map. The 

variable 𝐼 stands for the available information to the algorithm and it is defined as 𝐼0 = 𝑦0 

and 𝐼𝑖 = {𝐼𝑖−1, 𝑦𝑖, 𝑢𝑖}. In the receding horizon strategy, the first 𝑀 control actions of 𝓤∗ are 

applied before the new set of the optimal control actions, and are calculated where 𝑁 and 𝑀 
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are the prediction horizon and control horizon, respectively. The constraints of optimization 

are expressed in Eqs. (4.13.b) to (4.13.e). In Eq. (4.13.c and d), 𝕌 and ℙ𝑠𝑎𝑓𝑒 are the admissible 

sets of control actions and safe positions, respectively.  

In practice, it is impossible to solve the active SLAM problem in the naïve format of Eq. (4.13). 

In order to solve the active SLAM, we must first break it into smaller problems in the way that 

will be discussed in the next section.  

 

4.2.3 Proposed solution overview 

Many active SLAM algorithms have been designed based on the feature-based map [60]. The 

main reason for this choice is that the collection of information can be formulated easily as a 

constrained optimal control problem. However, the use of a feature-based map in active 

SLAM has several drawbacks, including: 

 The optimization search space is extremely large and impractical to be solved in real 

time [65].  

 A considerable part of the map remains uncovered [60].  

For these reasons, the active SLAM problem will be solved using a hybrid map in this research. 

An occupancy grid map is used to promote the map coverage, and at the same time, a 

feature-based map is used to enhance the accuracy of localization. In fact, similar to [65,  60], 

the algorithm will have two steps: exploration, and active localization.  
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Exploration is defined as the ability of the robot to actively map the environment. In fact, the 

main question in exploration is where to go next to gain the most feasible information. A good 

exploration algorithm is able to map the environment as completely as possible and in a 

timely manner. To solve the exploration problem, Yamauchi has introduced the frontier-

based exploration method [98]. Frontiers, as it is shown in Figure 4-2, are boundary regions 

between open areas and unknown areas. The core idea of frontier-based exploration is that, 

in order to maximize the information gain, the robot should move to boundaries of the known 

region. Typically, there is more than one frontier in the map. Hence, the next fundamental 

question is which frontier, or which point inside the frontier, should be the next target point. 

In Yamauchi’s original algorithm, the closet frontier is selected as the next target. Rocha et al 

has combined the idea of frontier regions and the idea of entropy minimization [99] and 

proposed a gradient-based frontier method [100]. In their approach, frontiers are identified 

by the maximum gradient of the cell entropy. Also, the exploration strategy is to send the 

robot to the highest gradient inside the map.  
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Figure 4-2 A partially explored map; Unknown area is shown in gray, the open area is shown in white, the robot is 

shown as a circle, and the occupied regions (obstacles) are shown in black. The boundaries between the open area 

and unknown area, i.e., frontiers, are shown with dashed lines. 

 

In fact, the exploration level is the decision making level in which the next target point of the 

robot (the attractor point) is determined. Though practically important, this decision making 

process is not the focus of this section. It is assumed that the where-to-go problem is solved 

and that the robot’s next pose is already determined. 

4.2.4 Trajectory Optimization  

The accuracy of the map is strongly related to the accuracy of the localization; the higher the 

accuracy of localization, the higher the accuracy of the map. Specifically, one of the well-

known theoretical facts about simultaneous localization and mapping (SLAM) is that the 
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lower bound of the map accuracy is related to the initial robot pose accuracy [45]. The 

algorithm at this level tries to optimize the robot trajectory to the target point, which is 

determined by the map-covering algorithm to reduce the uncertainty of the localization at 

the same time. 

The overall active SLAM algorithm structure is shown in Figure 4-3. In this figure, the 

exploration level generates the attractor point for the active localization, and the active 

localization produces an optimal trajectory and enhances the exploration quality. The focus 

of this chapter is on the formulation of the robust motion planning for the active SLAM. The 

details of such an algorithm are discussed in the next section.  

 

Figure 4-3 The active SLAM algorithm structure. 

4.3 Robust motion planning for active slam Active iSAM 

The proposed robust motion planning utilizes a tube-based MPC in which the nominal MPC 

is called the active iSAM. The nominal controller has two aims: first, to reach the target point 

set by an exploration algorithm, and second, to enhance the localization accuracy. In the 

active iSAM algorithm, the sensor noise and system disturbance are all approximated with 
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Gaussian white noise using the heuristics developed in Section 4.2. The Gaussian 

approximation facilitates the use of the SLAM algorithm, such as iSAM 2.0 that is used in this 

work. Meanwhile, the set algebra discussed in Section 2.4 is computationally more efficient 

than integrating a Gaussian distribution over an arbitrary polyhedral set, and the collision 

avoidance is described using the set algebra. At this stage, differences must be distinguished 

between 𝑝𝑘+𝑗|𝑘, which is the robot pose predicted by the overall motion planning scheme, 

and 𝑧𝑘+𝑗|𝑘, which denotes the predicted state based on the nominal MPC, such that: 

�̂�𝑘+1|𝑘 =  𝑓(�̂�𝑘|𝑘, 𝔲𝑘)     (4.14) 

where 𝔲𝑘 is the control action produced by the nominal MPC algorithm. The z𝑘|𝑘  and 𝑝𝑘|𝑘 

are identical distributions. As it is discussed in [36], 𝔲𝑘 belongs to a subset of 𝕌, 𝔲𝑘 ∈ α𝕌,

0 < α < 1 . Assuming that the nominal state distribution is predicted as 

𝑧𝑘+𝑗|𝑘~𝒩(�̂�𝑘+j|𝑘, Σ𝑘+𝑗|𝑘), in the set theoretic framework:  

𝑧𝑘+𝑗|𝑘 ∈ �̂�𝑘+𝑗|𝑘⨁ 𝕊𝑘+𝑗|𝑘    (4.15) 

where the set 𝕊𝑘+𝑗|𝑘 corresponds to a 99.73% confidence interval of 𝑠𝑘+𝑗|𝑘~𝒩(0, Σ𝑘+𝑗|𝑘). It 

should be noted that future measurement is incorporated using the partially closed loop 

strategy [28], during which active SLAM closes the loop and reduces the uncertainty. 

Therefore, it can be concluded that 𝕊𝑘+𝑗|𝑘 ⊆ 𝕊𝑘|𝑘. The details of uncertainty reduction using 

the partially closed loop strategy is discussed in prior research [101].  This strategy is used to 

reduce the computational cost of the allowable set for the nominal MPC optimization. The 

nominal MPC can be formulated as: 
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𝖀∗ = argmin
𝖀

(∑ 𝑙𝑗(�̂�𝑘+𝑗|𝑘 − 𝑝𝑓 , 𝔲𝑘+𝑗)𝑁−1
𝑗=0 + 𝐹𝑁(�̂�𝑘+𝑁|𝑘, Σ𝑘+𝑁|𝑘))  (4.16.a) 

subject to: 

�̂�+ = 𝑓(�̂�, 𝔲)      (4.16.b) 

𝖚k+j ∈ α𝕌, 0 < α < 1     (4.16.c) 

�̂�𝑘+𝑗|𝑘 ∈ ℙ𝑠𝑎𝑓𝑒 ⊖ 𝕊𝑘|𝑘    (4.16.d) 

In Eq. (4.16.a), 𝑙𝑗 and 𝐹𝑁 stand for the stage cost and final cost-to-go, respectively. Eqs. (4.16.c 

and 4.16.d) tighten the admissible control action and the state sets. The final cost, or cost-to-

go, consists of different parts:  

𝐹𝑁(�̂�𝑘+𝑁|𝑘 − 𝑝𝑓 , Σ𝑘+𝑁|𝑘) = 𝐹𝑛𝑜𝑟𝑚(�̂�𝑘+𝑁|𝑘 − 𝑝𝑓) + 𝐹𝐿𝑜𝑛𝑔𝑇𝑒𝑟𝑚(�̂�𝑘+𝑁|𝑘 − 𝑝𝑓) +

𝐹𝑝𝑟𝑜𝑏𝑖𝑛𝑔(Σ𝑘+𝑁|𝑘)   (4.17) 

The first term 𝐹𝑛𝑜𝑟𝑚(�̂�𝑘+𝑁|𝑘 − 𝑝𝑓) is an Euclidian norm of the estimated error, �̂�𝑘+𝑁|𝑘 − 𝑝𝑓. 

The second term is related to the coarse dynamic planning cost. Details of Eq. (4.17) is 

discussed in Section 2.2. The only difference in computation of Eq. 4.17 is related to the 

probing term. 

As discussed earlier, in the smoothing and mapping (SAM) algorithm, the estimation 

covariance matrix can be estimated using the Jacobian matrix of the incremental solution to 

the least squares programming, 𝑃 = ℐ−1, where ℐ is calculated using Eq. (4.7). The active 

iSAM algorithm only utilizes the covariance of the robot pose at the step 𝑁, 𝛴𝑘+𝑁|𝑘. Fast 

methods to retrieve such a marginal covariance from the information matrix have been 

discussed [102]. Amongst various ways of measuring the estimation quality, the covariance 
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matrix trace has been selected as a more consistent measure for estimation quality. 

Substituting for each cost term, we have: 

𝐹𝑁(�̂�𝑘+𝑁|𝑘, Σ𝑘+𝑁|𝑘) = ‖�̂�𝑘+𝑁|𝑘 − 𝑝𝑓‖
𝑊0

2
+ 𝛾1𝑙𝑠ℎ𝑜𝑡𝑒𝑠𝑡𝑝𝑎𝑡ℎ

2 + 𝛾2trace(𝛴𝑘+𝑁|𝑘) (4.18) 

where  𝛾1 and 𝛾2 are nonnegative tuning parameters. Also, 𝑊0 is a positive semi-definite 

matrix.  

Since the final cost in Eq. (4.18) requires a closed-form solution to a least-squares 

programming, it is practically impossible to solve the mathematical programming of Eq. (4.16) 

over a continuous decision space. Therefore, the control action is considered to be solved 

over a finite set with the cardinality of 𝒯: 

𝔲𝑘+𝑗  ∈ {𝜋1, … 𝜋𝒯} for 𝑗 = 1, … , 𝑁   (4.19) 

By assuming 𝔲𝑘 to be discrete, the nominal MPC optimization can be solved using dynamic 

programming: 

𝔲𝑘+𝑁−𝑗
∗ = argmin

{𝔲1, … 𝔲𝒯}
(𝔙𝑗−1 + min(𝔙𝑗−2)) for 𝑗 = 2, … , 𝑁  (4.20.a) 

subject to: 

�̂�+ = 𝑓(�̂�, 𝔲)      (4.20.b) 

𝖚k+j ∈ α𝕌, 0 < α < 1     (4.20.c) 

�̂�𝑘+𝑗|𝑘 ∈ ℙ𝑠𝑎𝑓𝑒 ⊖ 𝕊𝑘|𝑘    (4.20.d) 
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and 

𝔲𝑘+𝑁−1
∗ = argmin

{𝔲1, … 𝔲𝒯}
𝔙0    (4.21) 

where 𝔙𝑁−𝑗 = 𝑙𝑗(�̂�𝑘+𝑗|𝑘 − 𝑝𝑓 , 𝔲𝑘+𝑗) + 𝔙𝑁−𝑗−1 and 𝔙0 = 𝐹𝑁(�̂�𝑘+𝑁|𝑘, Σ𝑘+𝑁|𝑘). The result of 

Eq. (35) is the sequence of the planned control action 𝖀∗ = {𝔲𝑘
∗ … 𝔲𝑘+𝑁−1

∗ }, which 

produces the optimal nominal trajectory 𝒛𝒌
∗ = {�̂�𝑘|𝑘

∗ … �̂�𝑘+𝑁|𝑘
∗

}. To ensure the robot 

robust motion around the nominal trajectory, a low-level controller is used. The details of this 

low-level controller are discussed in the following section. 

4.4 Ancillary controller 

The ancillary controller increases the robustness of the system around the nominal trajectory. 

Recalling the fact that the sum of the control actions generated by both nominal and ancillary 

controllers, i.e. 𝑢𝑘 = 𝔲𝑘 + 𝓋𝑘 , we can present the ancillary MPC quadratic programming (QP) 

as: 

𝓥∗ = argmin
𝓥

(∑ ℓ𝑗(�̂�𝑘+𝑗|𝑘 − �̂�𝑘+𝑗|𝑘, 𝓋𝑘+𝑗)𝑁−1
𝑗=0 )   (4.22.a) 

subject to 

�̂�𝑘+j+1|𝑘 = 𝑓(�̂�𝑘+𝑗|𝑘, 𝔲𝑘+𝑗 + 𝓋𝑘+𝑗)     (4.22.b) 

𝓋k+j ∈ (1 − α)𝕌      (4.22.c) 

�̂�𝑘+𝑁|𝑘 = �̂�𝑘+𝑁|𝑘      (4.22.d) 

where ℓ𝑗 is the stage cost and 𝓥 = {𝓋𝑘 … 𝓋𝑘+𝑁−1} is the ancillary control action 

sequence. In general, the ancillary controller is designed to be more aggressive than the 
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nominal controller. The ancillary controller can work at different frequencies. In our 

implementation, the ancillary controller possesses a frequency 3 times higher than the 

nominal controller. 

4.5 The overall motion planning algorithm 

In summary, the proposed robust active SLAM motion planning algorithm can be summarized 

as: 

Step 0. Receive the target point from the exploration algorithm. 

Repeat: 

Step 1. Compute the cost map that can be used for long term (if required), 

Step 2. Generate the nominal trajectory using Eq. (4.20) (every 𝑀 sample), 

Step 3. Stabilize around the nominal trajectory using Eq. (4.22),     

Step 4. Add and apply the control signal produced in Step 1 and Step 2  

until the robot reaches the target.  

If the conditions of the nominal and ancillary controllers are satisfied, then for 𝑘 → ∞, the 

covariance trace in the nominal controller is minimized, and thus the estimation quality 

regarding robot position, 𝑝𝑘 , is enhanced. At the same time ‖𝑝𝑓 − �̂�𝑘‖ → 0, which means 

that the robot converges to the final (desired) value.  

4.6 Simulation results 

As explained earlier, the main difference of the active iSAM and the active localization 

algorithm is due to the probing term in Eq. (4.17). In this section, the focus of the simulations 
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would be on analysis of this term. Two different sets of simulations are carried out. In the first 

set, the nominal MPC performance for active iSAM is examined. In the second set, the effect 

of the ancillary controller has been examined. 

The simulation map includes a grid of point landmark. The data association is considered to 

be solved using the unique identifier for each point. The robot is equipped with both bearing 

and range sensors.  

4.6.1 Nominal MPC  

As explained previously, the main focus of the numerical simulations is on the probing 

behavior of the controller. In the absence of the obstacle, the planner behavior is determined 

by the weight of Euclidian distance versus the probing term.  

In the first simulation, the weight of the probing term is assumed to be zero. This simulation 

provides a benchmark to examine the effect of the probing term. The results of the simulation 

are shown in Figure 4-4 to 4-5. The robot path and the iSAM estimated robot path are shown 

in Figure 4-4.  The robot control inputs, both translational and rotational velocities, are shown 

in Figure 4-5. In the second simulation the Euclidian norm is set to zero, and thus the 

controller cost is only composed of the probing term. The robot path and its estimation, and 

the control inputs are shown in Figure 4-6 to 4-7. In addition to these extreme cases, the third 

simulation is set up with weights that incorporate the effect of both Euclidian and probing 

costs. The robot paths and control input of the third simulations are shown in Figure 4-8 and 

4-9, respectively. 
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The comparison of the planner performance in the three cases reveals the effect of relative 

weight in the cost function. As expected, in the first simulation, the controller tries to 

minimize the Euclidian distance as fast as possible. Since the control action is discrete, the 

robot is not able to reach the target pose. So to maintain the planning cost function at a 

minimum, it starts loitering around the target point. In the second simulation, the robot 

minimizes the probing term by demonstrating loop-closing of the loop. This is compatible 

with the fact that the loop closure reduces the uncertainty in the SLAM process [103]. In the 

third simulation, the cost function is the aggregation of the two previous cases. Therefore, it 

is predicted to observe a similar trend in the robot paths; when the Euclidean term is more 

important, the robot shows exploratory behavior by moving toward the target point. Yet as 

the probing term becomes more important, the robot benefits from the existing information 

by the ability to perform the loop closure. 

4.6.2 The effect of the ancillary controller  

The performance of the ancillary controller has been analyzed using Monte Carlo simulation 

of the controller performance in presence and absence of the ancillary controller. It is  
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Figure 4-4 Planning with Euclidean cost function, the robot and the iSAM estimated paths are shown in blue and 

green, respectively. The true and estimated landmark locations are shown using black and red dots, respectively.  

 

Figure 4-5  The robot control inputs, both translational and rotational velocities, for planning with the Euclidean cost 

function. 



 

96 

 

 

Figure 4-6 Planning with the probing cost function, the robot and the iSAM estimated paths are shown in blue and 

green, respectively. The true and estimated landmark locations are shown using black and red dots, respectively. 

 

Figure 4-7 The robot control inputs, both translational and rotational velocities for planning with the probing cost 

function. 
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Figure 4-8  Planning with both Euclidean and probing cost functions, the robot and the iSAM estimated paths are 

shown in blue and green, respectively. The true and estimated landmark locations are shown using black and red 

dots, respectively. 

 

Figure 4-9 the robot control inputs, both translational and rotational velocities when the cost function consists of 

both probing and Euclidean.  



 

98 

 

assumed that disturbance is a bivariate noise with covariance equal to 5% of the control 

input. The robot paths obtained without and with the ancillary controller are shown in Figure 

4-10 and 4-11, respectively. A qualitative comparison of these two figures indicates that the 

ancillary controller has successfully contributed to the robustness of the controller 

performance. The disturbance has a larger influence on the rotational motion of the robot, 

which is in agreement with the experimental results of Chapter 2. 

 

Figure 4-10 The Monte Carlo simulation of the active iSAM controller without the ancillary controller. 



 

99 

 

 

Figure 4-11 The Monte Carlo simulation of the active iSAM controller with the ancillary controller. 

4.7 Summary 

In this chapter, a new active SLAM method, named active iSAM, has been introduced. The 

proposed method is based on the optimization-based SLAM method, or incremental 

smoothing and mapping, iSAM 2.0. The objective function of the control scheme is composed 

of various terms including probing, Euclidian, and long term cost-to-go that can be tuned to 

achieve the best possible performance of the system depending on the application in hand. 

In this work, the optimization is solved using the dynamic programming method to meet the 

computational load expected in real-time applications.  

This research takes a close look at the effect of the probing and Euclidian terms, as well as 

their combined effect when the two costs are aggregated. Based on numerical simulations, 



 

100 

 

the control scheme with only Euclidian cost function tends to move the robot toward the 

target point in the shortest path. As the robot approaches the target point, it begins to loiter 

around the target point, in order to maintain the minimum possible cost function. The 

probing term, on the other hand, causes the robot to reduce the uncertainty by loop closure. 

When the planner uses the aggregated cost function, the robot path shows a behavior that is 

attributed partially to the Euclidian cost function and partially to the probing term. This 

degree of the similarity to each of these cases depends on which term, Euclidian or probing, 

is more significant from the optimization point of view. 

In addition to introducing the idea of active iSAM, a tube-based scheme has been used to 

robustify the planning scheme. Using an ancillary controller, the control response has become 

more robust and less sensitive to the external disturbances. 
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Chapter 5. Conclusions and Future Work 

The main objective of this thesis is to develop and analyze model predictive control based 

motion planning and control scheme for uncertain environments. Every chapter of this thesis 

deals with one important aspect of this topic. In this chapter, a summary of conclusions and 

future work of each chapter is presented. 

5.1 Conclusions 

Chapter 2 presents a tube-based active localization planning scheme. The proposed scheme 

has two components: a nominal MPC planner and an ancillary MPC controller. To guarantee 

that the controller is both robust and probing, two different frameworks, stochastic and set-

based, have been used to model the uncertainties involved. The stochastic framework has 

been used to incorporate future measurements and maintain the controller probing 

behavior. On the other hand, robustness of the planning algorithm is guaranteed using the 

tube-based set theoretic framework. Chapter 2 focuses on unifying these two frameworks in 

a systematic way rather than ad-hoc heuristics. Extensive numerical simulations and 

experiments with a mobile robot have been carried out to demonstrate the functionality of 

the components of the proposed algorithm and examine its performance.  

Based on the simulation results, it can be concluded that global performance of the algorithm 

is closely related to the coarse dynamic term, whereas the norm cost affects the steady-state 

error and the planned trajectory smoothness. Also, it has been shown that in systems with a 
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highly nonlinear observation model, the probing term can contribute to the information-

seeking performance of the controller. However, the probing term effect reduces as the 

measurement model becomes linear. Using Monte Carlo simulations, the impact of the 

ancillary controller was proven to be successful in increasing the nominal MPS robustness. To 

gain more insight, the algorithm performance was studied in a dynamic cluttered 

environment. Finally, the algorithm performance was examined using the UBC ACIS testing 

platform. The experiment results show that while the motion planning can be implemented 

and drive the robot to a target point successfully, the algorithm performance deteriorate as 

the low-level system dynamics becomes nontrivial.  

Chapter 3 introduces an unscented MPC (UMPC) algorithm. In this algorithm, the state 

transition is computed using the unscented transform instead of the conventional Taylor 

expansion. The UMPC approach is analyzed in the application of the motion control problem 

of a unicycle in unstructured environments. The UMPC is able to incorporate both 

deterministic and stochastic chance constraints. These include motion constraints, collision 

avoidance chance constraints, and control action limitations. A closed-form solution for the 

chance constraints is calculated using the unscented transform approximation. In three 

different scenarios, including: i) a static environment with no obstacle, ii) a static environment 

with an obstacle, and iii) a dynamic environment with a moving obstacle, the UMPC based 

motion control algorithm is compared to the conventional MPC (CMPC) based algorithm.  

As numerical simulations indicate, the proposed UMPC offers several important advantages 

over CMPC. First, as a derivative free algorithm, the UMPC can be easily implemented to 
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complicated systems has no analytical models. Second, by providing more accurate 

approximation, an overly conservative planning can be avoided. Finally, in the case of motion 

planning example, it has been shown that the proposed approach will result in a lower energy 

consumption. However, CMPC is computationally less expensive and still a better choice to 

reduce the computational load.  

Chapter 4 focuses on a novel the active iSAM algorithm of a mobile robot based on an MPC-

based algorithm. The proposed method utilizes the iSAM 2.0, an incremental optimization-

based SLAM algorithm, as the prediction algorithm. The objective function consists of the 

probing, Euclidian, and the cost-to-go terms. This thesis presents an in-depth analysis of the 

aggregation of the probing and Euclidian terms. As it is predicted, the numerical simulation 

indicated that the robot moves toward the shortest path when using a Euclidean objective 

function. As the robot reaches its minimum distance around the target point, it starts to loiter 

in position to maintain the minimum possible cost function. On the other hand, the controller 

uses the result of the optimization based on the objective function consisting of the probing 

term alone. In the meantime, the algorithm tries to minimize the robot localization 

uncertainty attributed to loop closure. When the objective function is composed of both 

Euclidian and probing terms, the controller response may be similar to the controller with 

either Euclidian objective function or the controller with the probing term. The relative 

influence of each term, specified by their weight, determines the combined controller 

response.  
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The proposed active iSAM approach has been implemented as a tube-based scheme. As a 

result of the use of ancillary controller, the system robustness against external disturbance is 

improved.  

5.2 Future work 

In Chapter 2, it has been demonstrated that the unmodeled low-level dynamics deteriorates 

the performance of the proposed integrated motion planning and control algorithm. How to 

properly handle the unmodeled low-level dynamic could be the topic of further studies. One 

suggestion would be to replace the current system model with a detailed model that is able 

to capture the low-level dynamics better. Another possible solution would be to use a 

detailed model only for the ancillary MPC. The advantages of the latter solution is that no 

additional complexity will be added to the Nominal MPC. However, there could be a feasibility 

discrepancy between the nominal and ancillary MPCs which should be discussed in the future 

studies.  

In Chapter 3, the idea of UMPC was introduced, but there remain questions regarding the 

efficiency of the real-time implementation of the UMPC for practical applications. As it has 

been shown in Chapter 3, UMPC is not computationally as efficient as CMPC. Hence, one 

possible direction for the future studies would be to increase the computational efficiency of 

the UMPC algorithm. The unscented transform has a great potential for parallel 

implementation. Therefore, algorithmic optimization of the UMPC to take advantage of the 

parallel implementation is the starting point to increase the UMPC efficiency. Another 

practical issue regarding UMPC is the sampling weights of the unscented transform. To 
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implement UMPC successfully, these weights must be able to capture the underlying 

distribution properties. In our implementation, these weights have to be determined by trial 

and error, or an independent statistical analysis of the disturbance and noise. This issue will 

limit the practicality of UMPC. Therefore, another possible research direction is to develop 

an adaptive UMPC that requires limited a priori knowledge about the process disturbance 

and noise.  

Chapter 4 presented the basis of the active iSAM algorithm. However, there are many aspects 

of this algorithm left for future studies. The experimental study of the active iSAM will provide 

more insight to the algorithm performance and limitations. A basic assumption of this chapter 

is that the data association required for the SLAM algorithm never fails. In practice, data 

association is not a trivial problem. One possible future direction to increase the robustness 

of the SLAM algorithm is to investigate on the relation of the trajectory planning and 

performance of the data association algorithm. Another possible future direction is to 

investigate on the optimization structure of the active iSAM algorithm to optimize the 

computational load of the algorithm. At last, and from practical point of view, the 

combination of the active iSAM algorithm with a frontier based exploration algorithm is 

another important topic for future work.  
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