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Abstract

Monotone operators and firmly nonexpansive mappings are essential to
modern optimization and fixed point theory. Minty first discovered the
link between these two classes of operators; every resolvent of a monotone
operator is firmly nonexpansive and every firmly nonexpansive mapping is
a resolvent of a monotone operator.

This thesis provides an in-depth study of the relationship between firmly
nonexpansive mappings and maximally monotone operators. First, corre-
sponding properties between maximally monotone operators and their re-
solvents are collected. Then a new method of averaging monotone operators
is presented, called the resolvent average, which is based on the convex com-
bination of the resolvents of monotone operators. Several new results are
given concerning the asymptotic regularity of compositions and convex com-
binations of firmly nonexpansive mappings. Finally, the resolvent average
is studied with respect to which properties the average inherits from the
averaged operators.
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Chapter 1

Introduction

The study of firmly nonexpansive mappings and their connection to
monotone operators is motivated by the large number of problems to which
these types of operators have been applied. Signal processing, image restora-
tion, and phase retrieval problems are examples that can be solved using
projection methods, where projections are a type of firmly nonexpansive
operator. The general problem is to find a point = in the intersection of n
convex subsets of a Hilbert space. That is, for convex subsets C,...,C},

n
and C = ) C; # 9,

i=1

Find z € C. (1.1)

Equation (1.1) is referred to as the convez feasibility problem. Numerous
algorithms have been created to solve these types of problems and those
algorithms make use of the operators studied in this thesis. The simplest
example of such an algorithm is the method of alternating projections, where
C1 and (5 are convex sets with C1 N Cy # @ and the update formula is

Tp41 = Po, o Poy,y,

where P denotes the projection operator, discussed in more detail in Chap-
ter 2. The method of alternating projections, and variations thereof, was the
driving force behind the study of compositions and convex combinations of
firmly nonexpansive mappings. The majority of the background theory used
in this thesis can be found in Rockafeller’s Convex Analysis, [58]; Rockafeller
and Wet’s Variational Analysis, [59]; and Bauschke and Combette’s Convex
Analysis and Monotone Operator Theory in Hilbert Spaces, [11].

The rest of this thesis is organized as follows:

Chapter 2 gives notations and background information on operators,
convex analysis, and methods of averaging operators. Chapter 3 covers
known results on nonexpansive mappings and monotone operators.

My contribution begins in Chapter 4, with an in-depth look at which
properties of resolvents correspond to properties of their associated mono-
tone operator. Dual and self-dual properties are also identified. The material
in this chapter is based on [19].



Chapter 1. Introduction

Chapter 5 then introduces the resolvent average, a new method of aver-
aging monotone operators based on the convex combination of the resolvents
of the operators. Basic properties of the resolvent average of monotone op-
erators are gathered and properties specific to positive semidefinite matrices
are also derived. Results in this chapter can be found in [18] and [21]

Chapter 6, based on the paper [20], uses the notions of near equality and
near convexity to study convex combinations of monotone operators and
firmly nonexpansive mappings.

In Chapter 7, it is shown that compositions and convex combinations
of asymptotically regular mappings maintain asymptotic regularity. This
chapter is based on [15].

Chapter 8, based on [21], looks at how properties of monotone operators
and their resolvents extend to the resolvent average. Properties are classified
according to whether they are

(i) dominant, i.e. only one averaged operator needs the property to ensure
the average maintains the property, or

(ii) recessive, i.e. all average operators need to have the property to ensure
the average has the property.

Finally, the key results of this thesis are summarized in Chapter 9.



Chapter 2

Preliminary Detalils

2.1 Normed vector spaces

We work in a variety of spaces throughout this thesis, most commonly
Hilbert and Euclidean spaces, which are both subclasses of the class of Ba-
nach spaces.

Definition 2.1. A Banach space, X, is a complete normed vector space.
Definition 2.2. A Hilbert space, H, is a complete inner product space.

Let H denote a real Hilbert space, with inner product (-, -) and induced
norm || - ||. The n-dimensional Euclidean space, R", is a classic example of
a Hilbert space. The real numbers, nonnegative real numbers, and strictly
positive real numbers are indicated by R, R, and R, respectively. We
also denote the strictly positive integers, 1,2,3,... by N and the rational
numbers by Q. Let I be an index set with I = {1,2,...,m} for some
integer m and let

H™ = {X = (xi)iej ‘ (VZ S I) xT; € H},

denote the Hilbert product space with inner product (X,y) = > .c; Ti¥i-
Clearly, every Euclidean space is a Hilbert space and every Hilbert space
is a Banach space.

Example 2.3. [37, Example 1.19(2)] The space of square summable se-
quences,

oo
KQ(N) = {(@n)nen | Z ‘3771’2 < oo},
n=1
o0
with inner product (z,y) = >  x,y, is a Hilbert space.
n=1

Example 2.4. [32, pg. 2] Let n > 2. Then R"™ with the infinity norm,

[£]loo = max{la1], ..., [zn[},



2.2. Operators

is a Banach space that is not a Hilbert space since ||z|/~ is not induced by
an inner product.

A sequence (zp,)nen in H converges strongly to a point x if

lim |z, —z| =0.
n—oo

This is written x,, — x. The sequence converges weakly to x, or z,, — x, if
for every u € H,

nh—>Holo (Tp,u) = (z,u).

In the space S of N x N real symmetric matrices, Sf denotes the set
of N x N positive semidefinite matrices, and Sﬂ\rf . the set of positive definite
matrices. For A, B € SV, we write B < Aif A— B € Sﬁ and B < A if
A-BeSY,.

Example 2.5. [11, Example 2.4] SV with inner product (A, B) = tr(AB)

N
is a Hilbert space, where tr is the trace function defined by tr A = > a;;.
i=1

A 2 x 2 matrix A is called a rotation matriz if A is of the form
cosf —sinf
A =
(sin@ cos 6 > ’
for some angle . A matrix A is orthogonal if A= = AT where AT denotes
the transpose of A.

Fact 2.6. [/8, 3.7.16] For an invertible matriz A,
(A" = (4"
The symmetric part of an N x N matrix A is

A, = %(AJFAT).

2.2 Operators

2.2.1 Single-valued operators

Let H1 and Ho be real Hilbert spaces with D C Hy. Let T : D — Hy
denote an operator (or mapping) 7" that maps every point = € D to a point
Tx € Hy. The range of T' is

ranT = {y € Ha | Iz € Hy with Tz = y}.
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We set

B(Hi,H2) ={T : H1 — Ha | T is linear and continuous}.

Fact 2.7. [37, 8.25] For T € B(Hi,H2), the adjoint of T is the unique
operator T* that satisfies

(Vo € Hi)(Vy € Ha) (Tm,y) = (z,T7y).
Example 2.8. Let R be the cyclic right-shift operator,
R:H™ —H™: (x1,22,...,Tm) = (T, X1y oy Tp—1)-
Let © = (x1,...,2m) and y = (y1,-..,Ym) € H™, then R* satisfies

<R.’L’,y> = <Z’, R*y> A4 <((I,'m,.’IJ1, s 7xm—1)7 (y17 yQ? e ym)> = <.’E,R*y>
S (2, R'Y) = Y1Tm + Y221 + .. + YmTm—1
S (2, R*y) = z1y2 + T2y3 + - . . + Tm—1Ym + TmY1.

Thus R* is the cyclic left-shift operator
R*:H™ = H™: (21,22, .., Tm) — (T2,T3, ..., Ty, T1).
The kernel of T is kerT'= {zx € H | Tx = 0}.
Fact 2.9. [37, Lemma 8.33(2)] Let T' € B(H1,Hs2). Then
(ker T)* = ranT%,
where (ker T)l denotes the orthogonal complement of ker T, i.e.,
(ker T)* = {u € Hy | (Vo € kerT) (x,u) = 0}.

If Ho C Hy, then T"z denotes the n-fold composition of T'. The identity
mapping is the operator Id : H — H : z — .

Definition 2.10. Let T': H — H. T is Lipschitz continuous with constant
G if

(Ve e H)(Vy e H) [Tz — Tyl < Bz —yl.
If 8 €]0,1], then T is called a Banach contraction.
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Definition 2.11. T is sequentially weakly continuous if for every sequence
(Zn)nen in H such that z, — x, then Tx,, — Tz.

Definition 2.12. A mapping T : H — H is an isometry if
(Ve e H)(Vy e H) [Tz - Tyl = [lz - y|. (2.1)
When T : H — H is linear, the quadratic form q7 : H — R is defined by
qr(z) = % (Tz,x) VreH,
and qrq = q is used interchangeably.

Fact 2.13. [11, Corollary 15.34] Let H1 and Ha be Hilbert spaces and T €
B(H1,H2). ThenranT is closed if and only if ranT™* is closed.

Fact 2.14 (Closed Range Theorem). [37, Theorem 8.18] Let Hi and Ho be
Hilbert spaces and T' € B(Hi,Hz) \ {0}. Then the following are equivalent:

(i) T has closed range;
(ii) There ewists p > 0 such that ||Tz|| > p||z|| for all x € (ker T)*;
(iii) p:=inf{||Tz| | z € (ker T)*, ||z|| = 1} > 0.

Definition 2.15 (Gateaux differentiability). Let T': C — X, with C C H
and X a real Banach space. Let 2z € C be such that (Vy € H)(Fa € Ry y)
[z, +ay] C C. Then T is Gateaur differentiable at x if there exists an
operator DT (z) € B(H,X), called the Gateauzr derivative of T at x, such
that

(VyeH) DT(x)y= lim T +ay) = T(:c)

a—0t «

Remark 2.16. Unless otherwise noted, when differentiability is mentioned
then Gateaux differentiability is assumed.

Definition 2.17 (Fréchet differentiability). Let x € H and let T : U — X,
where U is an open subset of H and X is a real Banach space. Then T
is Fréchet differentiable at x if there exists an operator DT'(z) € B(H, X),
called the Fréchet derivative of T at = such that

|T(x +y) —Te — DT (z)y|| _ 0
0#[[y[| -0 lyll
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Fact 2.18 (Fréchet-Riesz Representation Theorem). [37, Theorem 6.10] Let
f € B(H,R). Then there ezists a unique vector u € H such that

Ve eH) f(z)=(z,u).
Moreover, || f[| = [|u].-

Let C CH, f:C — R and suppose that f is Fréchet differentiable at
x € C. Then by Fact 2.18, there exists a unique vector Vf(z) € H such
that

(Vy e M) Df(x)y=(y,Vf(x)).
We call Vf(z) the Fréchet gradient of f at x. If f is Fréchet differentiable
on C the gradient operator is

Vfi:C—H:xz— Vf(x).

The Gateaux gradient is defined similarly.

2.2.2 Set-valued operators

An operator A : H1 = Ha is set-valued if (Vo € Hy) Ax C Ho. For
set-valued operators,
dom A = {z | Az # o},

and
ran A = U Ax.

r€dom A

A set-valued operator A is characterized by its graph
graA = {(z,u) € H1 x Ha | u € Ax}.
The set-valued inverse A~! of A is defined by
(y,z) € graAd™ & (z,y) € gra A.

The operator A is at most single-valued if Ax is a singleton or Ax = &. The
sum of operators,
A+ B:xw— Ax + Bz,

and therefore gra(A+B) = {(z,u+v) € Hi1xHz | (z,u) € graA and (z,v) €
gra B} and dom(A + B) = dom A Ndom B.
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Definition 2.19. Let A : H == H. Then A is a linear relation if gra A is
a linear subspace of H x H. Similarly, A is an affine relation if gra A is an
affine subspace of H x H, i.e. if

graAd# @ and (VA€ R) grad=AgraAd+ (1 —\)graA.

See [36] for more on linear relations.

Fact 2.20. [36, 1.2.3 and 1.4] Let A, B be linear relations on H. Then A1
and A+ B are linear relations.

Definition 2.21. An operator A : H = H is disjointly injective if

VMreH)(VyeH) z#y = AzNAy =0. (2.2)

2.3 Convex analysis

2.3.1 Convex sets

A subset C of H is convez if for all z,y € C and X €]0,1],
Ax+ (1— ANy eC.

The closure of C is denoted by C. A set C' is sequentially weakly closed if
every weakly convergent sequence (z,)nen in C has its weak limit z also in
C.

The intersection of all the convex sets containing C' is called the convex
hull of C, and is denoted by conv C. The intersection of all affine subspaces
containing C' is likewise called the affine hull of C' and is denoted by aff C'.

A subset C of H is a cone if C = Ry C. That is, x € C'and A > 0
implies Ax € C. A convex cone is a set that is both convex and a cone. The
conical hull of C, cone C, is the intesection of all the cones in H containing
C'. The smallest linear subspace of H containing C' is span C. The interior
of C is the largest open set contained in C,

intC' = {x | 3¢ > 0, B(x,¢e) C C}.
The relative interior of C is
riC ={zxecaff C|3Je>0,B(zx,e)Naff C C C},

where B(z,¢€) is a ball centered at z with radius e.
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Lemma 2.22. Let A and B be subsets of R™ such that A C B and aff A =
aff B. ThenriA CriB.

Proof. This follows directly from the definition. O
Fact 2.23. [58, pg. 44] Let A be a subset of R®. Then A C aff A.

Lemma 2.24. Let A and B be subsets of R" such that A = B. Then
aff A = aff B.

Proof. Let x € aff A, Then © = Aai; + -+ 4+ Apay, for a; € A, \; € R,
m P N

i=1,...,m, and > \; = 1. Clearly, each a; € A = B and by Fact 2.23,
i=1

B C aff B, so = is an affine combination of elements in aff B. Hence x €

aff B. Altogether, aff A C aff B. Similarly, you can show aff B C aff A, and

thus aff A = aff B. O

Fact 2.25 (Rockafellar). Let C' and D be convex subsets of R", and let
A € R. Then the following hold.

(i) 1iC and C are convex.

C#2=r1iC+#0.

Q\
Ql

(iii

(v) affriC = aff C = aff C.

(i)
) T
(iv) 1iC =riC.
)
(vi) riC=1iD & C=D < 1iCCDCC.
(vii) riAC = AriC.
(viii) 1i(C' + D) = 1iC +1i D.

Proof. (1)&(ii): See [58, Theorem 6.2]. (iii)&(iv): See [58, Theorem 6.3].
(v): See [58, Theorem 6.2]. (vi): See [58, Corollary 6.3.1]. (vii): See [58,
Corollary 6.6.1]. (viii): See [58, Corollary 6.6.2]. O
Fact 2.26. [58, Theorem 6.5] Let C; be a convex set in R™ fori=1,...,m

such that ( riC; # @. Then

i=1
=1 =1
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and
m

=1

i=1
Fact 2.27. [59, Proposition 2.40] Let C' # @ be a convex subset of R™. Then
riC' is nonempty and convexr with

ric =C.

Definition 2.28. Let C be a convex subset of H, the indicator function of

C at x is
0 ifxeC,
wo(z) = . (2.3)
+oo ifx ¢ C.

Fact 2.29 (projection). [11, Definition 3.7|Let C' be a nonempty, closed,
convex subset of H and let x € H. Then there exists a unique vector p € C
such that
—p|| = inf ||z — ]|,
|l =pll = inf = =yl
and p is called the projection of x onto the set C, denoted by Pox.

Fact 2.30 (projection characterization). [11, Theorem 3.14] Let C be a
closed convex subset of H. For every x and p in H, p = Pox if and only if

peCand VyeC) (y—p,z—p) <0. (2.4)

Example 2.31. Let 2 € R? and C = {(z1,22) € R? | 21 = x2}. Then
Po(x) = %(m + x9,x1 + x2).

Proof. Let x = (z1,22) and y = (y1,y1) € C. Clearly,

1
p= 5(1171 + x9,x1 + x2) € C,
and
(y —p,x—p)
1 1
= <(y1,y1) - 5(561 + 9,21 + x2), (1, 22) — 5(»’61 + T2, 21 + $2)>
1 1 1
= —yi(z1 — 22) — —(x1 + z2) (21 — 22) — zy1 (21 — 22)
2 4 2
1
— Z(xl + z2)(x2 — 1)
=0.
Thus by Fact 2.30, p = %(ml + x9,x1 + x2) = Po(x). d

10
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Example 2.32. Let A C H™ with A = {X = ()ier ‘ T e 7—[} and x € H™,
then Pax satisfies

Ix — Pax|* = inf [jx —y|?
yEA

2

= inf (21 —y)?+ (@2 —9)°+ -+ (@m—y)?). (25

yeA
Since || - ||? is convex, differentiating (2.5) with respect to y, setting it equal
to zero and solving for y yields

=221 —y) = 2@z —y) = = 2(zm —y) =0

1 m
1=

1+ 1 < 1 <
Thus, PAX = | 72 > Tiy 5 D Tisevvy i 2 Ti | -
i=1 i=1 i=1

Definition 2.33. Let C' be a nonempty convex subset of H and = € H.
Then the normal cone operator to C' at x is

Nozx = .
otherwise.

{{u€H| sup (C —z,u) <0} ifxeC;
1]

Definition 2.34. Let H; and Hs be real Hilbert spaces, let T' € B(H1, Hz),
let x € Hy and y € Ho. Then z is a least-squares solution to the equation
Tz=yif

Tx —y|| = min ||Tz — y||.

Tz~ yll = min |72~ y]|

Fact 2.35. [11, Proposition 3.25] Let H1 and Ho be real Hilbert spaces, let
T € B(Hi,Hz2) be such that ranT is closed, and let y € Ho. Then the
equation Tz = y has at least one least-squares solution. Moreover, for every
x € Hi, the following are equivalent:

i) = is a least-squares solution,

(i)

(11) Tx = PranTy7

(iii) T*Tx = T*y (normal equation).

Definition 2.36 (Moore-Penrose inverse). Let H; and Ha be real Hilbert
spaces, let T' € B(H1, Hz) be such that ran T is closed and for every y € Ha,
set Cy = {x € H1 | T*T'x = T*y}. The Moore-Penrose inverse of T is

TT:H2—>’H1:y»—>PCyO.
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2.3. Convex analysis

See [41] for more on the Moore-Penrose inverse.

Fact 2.37. [11, Proposition 3.28(v)] Let H1 and Ha be real Hilbert spaces,
let T € B(H1,H2) be such that ranT is closed. Then

ranTT = ran T*.

2.3.2 Convex functions

A function f: H — |—o0,+0o0] = RU {+o0} is said to be conver if its
(essential) domain, dom f = {z € H | f(z) < +oo}, is a convex set and
Ve,yeH,0< A <1,

fAz+ (1= Ny) <Af(z)+ (1= f(y), (2.6)

with f being strictly convex if (2.6) becomes a strict inequality whenever
x # y. A function f is proper if

(Vz € H) f(x) > —oo and (Jzg € H) such that f(zg) < +o0.
A function f is lower semi-continuous if for every sequence (zp)nen in H,
T, — = f(x) < hnrr_lgcgff(xn)
The epigraph of f is
epif ={(z,r) e H xR | f(z) <r}.
For a > 0, epi-multiplication is
axf=af(/a).

The lower semi-continuous hull of f is the function whose epigraph is the
closure in H x R of the epigraph of f.

The class of proper lower semi-continuous convex functions from H —
|—00, +00] will be denoted by I'g(#). For f € T'g(H), Of denotes its convex
subdifferential,

Of(x) = {a* € H: f(y) = f(a) + 2",y —a) Yy € H}.

If f is continuous and differentiable at z, then d0f(z) = {V f(x)}, see [63,
Theorem 2.4.4(i)]. The function f* denotes its Fenchel conjugate given by

(V2" € H) f1(27) = sup{{a”, z) — f(2)}.

If f,g € To(H), fOg stands for the infimal convolution of f with g given
by
(Ve € H) (fOg)(z) = inf{f(z1) + g(x2) : 21 + 22 = 2}

12



2.3. Convex analysis

Fact 2.38. [11, Example 16.12] Let C' be a convex subset of H. Then

6LC = NC.

Example 2.39. Set C'= {0} and let z € H. Then by Fact 2.38, we have

aL{O}(I') = N{O}CL'
J{ueH | sup(0,u) <0} if x € {0}
o otherwise.

_{H if £ = 0;

|2 otherwise.

Definition 2.40. Let f : H — ]—o00,+0o0] be proper and let 8 € Ry .
Then f is strongly conver with constant § if (Vo € dom f), (Vy € dom f)
and (VA € 0, 1]),

Oz + (1= XNy) + (1 - A)g\lx =yl < Af(2) + (1= N f ().

Fact 2.41. [11, Proposition 10.6] Let f : H — |—o0, +00] be proper and let
B € Ryy. Then f is strongly convex with constant B if and only if f — Bq
18 Convez.

Fact 2.42. [11, Lemma 2.13| Let (x;);c; and (u;)ier be finite families in H,
and let (oi)ier be a family in R such that ), ;a; = 1. Then the following
holds

<Zaixi,2ajuj> + ZZaiaj <1‘Z — :Uj,u,; — Uj> /2 = ZO@ <w,,ul> .

icl jeI iel jel icl
In particular, || - || is strongly convex and
I ail? = Y el = 3 S awelle — w2 (27)
icl i€l i€l jel

Fact 2.43. [10, Theorem 2.1] Let f € T'o(H) and let B € Ry4. Then the
following are equivalent

(i) f is Fréchet differentiable on H and V f is B-Lipschitz continuous.

13



2.3. Convex analysis

(i) f* is %—stmngly conver.

Definition 2.44. [8, 58] A proper convex function f on RY is essentially
strictly convex if f is strictly convex on every convex subset of dom df.

Definition 2.45. [8, 58] A proper convex function f on R is essentially
smooth if it satisfies the following conditions for C' := int(dom f):

(i) C is not empty;
(ii) f is differentiable throughout C;
(iii) nh_)ngo |V f(xn)| = 400 whenever (z,,)nen is a sequence in C' converging
to a point x € bdry C := C'\ int C.

Definition 2.46. Let f € T'o(RY). Then f is Legendre if f is essentially
smooth and essentially strictly convex.

Fact 2.47. [58, Theorem 26.1] Let f be a closed proper convez function.
Then Of is a single-valued mapping if and only if f is essentially smooth.

Fact 2.48. [58, Theorem 26.3] A closed proper convex function f is essen-
tially strictly convex if and only if f* is essentially smooth.

Definition 2.49. Let f: H — [—00,+00]. Then f is coercive if

lim f(z) = 400,
llz]| =00

and f is supercoercive if

@) _
lefl—-+oo [l]

Fact 2.50. [11, Proposition 12.15] Let f € T'o(#H). Then the infimal convo-

lution,

JOq: H = ]—o00, 4ol : 2> inf (f(y) +alz —y)),
18 conver, real-valued, continuous, and the infimum is uniquely attained.
Remark 2.51. In Fact 2.50 the existence of a minimizer follows from the

supercoercivity of q while the uniqueness follows from the strict convexity
of q. This motivates the next definition.
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2.3. Convex analysis

Definition 2.52 (proximal mapping). [11, Definition 12.23] Let f € T'o(H)
and let x € H. Then prox; z is the unique point in H which satisfies

1 1
win (1) + gllo = 91 ) = Foroxy ) + 3l — pros ol

The operator prox;x : H — H is the prozimal mapping or prozimity opera-
tor of f.

Fact 2.53. [11, Proposition 16.34] Let f € T'o(H) and let z,p € H. Then
p=proxsr < x —p € df(p).

In other words,
prox;z = (Id +0f)~L

Fact 2.54. [59, Exercise 11.27] or [11, Remark 14.4] Let f € T'o(H). Then
prox; = V(f*0q),

where V(f*0q) is the Fréchet gradient of f*Oq.

Example 2.55. Set f = || - ||, then

B (1 — ﬁ) x i fjz|| > 1,
Prox; r =
0 if ||lz|| < 1.

Proof. Set g(y) = |lyll + 3llz — y|[®>. If z = 0, then clearly y = 0 is the
minimizer of g(y). We consider two cases: Case 1: ||z|| < 1. If y = 0,
9(0) = gz It [lyll = ||z[l, we have
1 1
9() = llyll + 5 llll* = (=, 9) + 5 llyl”
1 1
> [yl + Sl = =iyl + 5 lvl®

1 1
= llall + Sl = lellll] + S l21* = =]

Y

1 2
Slall,

so any y such that |ly|] = ||z| is not the minimizer. Clearly if |ly| > ||=||
then g(y) > ¢(0). Finally, if ||y|| = Al|z|| for some A € ]0,1[ we have

1 1
9(y) = llyll + §H$H2 — [lz[l[y] + §Hy||2
1 A2
= Mz[| + §||90||2 — Alz|* + 3HSL‘II2

1
= Mzl = ll21%) + 5 (1 4+ %) ]l
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2.3. Convex analysis

The first term is greater than or equal to zero, while the second term is
greater than 1|z||2. Altogether y = 0 is the minimizer if ||z < 1.

Case 2: ||z > 1. When |z|| > 1, g(z) < g(0). Thus y = 0 is not the
minimizer and since g(y) is convex, differentiating with respect to y and
settling equal to zero will yield the minimizer. Doing this, we have

Y
f ~ &9 =0

@xzy(H;H+1>. (2.8)

Taking norms of each side of (2.8) gives,

1
el = I ( T 1)
W

& llzll =1+ Nyl < llyll = fl=ll - 1.

So if ||z|| > 1, (2.8) becomes y = x (1 = ﬁ) and if [|z]| < 1, y = 0 is the

minimizer. OJ

Fact 2.56. [58, Theorem 16.4] Let f1,--- , fn be proper convex functions on

RN, Then
(AO---Of)" =+ + 1 (2.9)
If the sets ri(dom f;), i = 1,--- ,n have a point in common, then
(fr+-+fo) (@)= inf  (ff(]) + -+ falan)), (2.10)

i+t =x*
where for each x* the infimum is attained.

Fact 2.57. [58, page 108] Let A € SY,. Then

(9a)" =ga-1.

Fact 2.58. [58, Theorem 12.3] Let A € S¥, be an injective linear operator,
a and b € RN and r € R. Set

f(@) = qa(z —a) + (z,b) +r,

Then
[ (@*) = qu-1(z" — b) + (=¥, a) — (a,b) — 1.
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2.4. Averages

Fact 2.59. [58, Theorem 23.5] Let f € T'o(R™). Then
o =(f)".

Fact 2.60. [58, Theorem 25.7] Let C' be a nonempty open convex subset of
RN, and let f be a convex function which is finite and differentiable on C.
Let f1, fa,..., be a sequence of convexr functions finite and differentiable on
C such that Zlingo fi(x) = f(x) for every x € C. Then

li>m Vfi(z)=Vf(x), Vzxel.

In fact, the sequence of gradients V f; converges to V f uniformly on every
compact subset of C'.

2.4 Averages

There are many methods of averaging; this section gathers the definitions
of some methods that will be of interest.

2.4.1 Arithmetic and harmonic averages

The most commonly used averages are the arithmetic, harmonic, and ge-
ometric averages. Let A;, i = 1,...,n be N x N positive semidefinite matri-

ces, \; be strictly positive real coefficients with Y~ A, =1, A = (4y,...,4,),
i=1
and A = (A1,...,\n).

Definition 2.61. (Arithmetic average) The A-weighted arithmetic average
of A is
AA ) = MAL + -+ A (2.11)

Definition 2.62. (Harmonic average) The A-weighted harmonic average of
A is
HAN) = (MAT + -+ 04,07 (2.12)

2.4.2 Geometric mean
For matrices A, B € Sf 1, the geometric mean is defined by
1
AfB = A3 (A 3BA™7)? A3,

There have been several suggestions for how to define the geometric mean
of Ay,..., A, €SY forn >3, [1, 44, 51, 54].
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2.4. Averages

Definition 2.63. (Geometric mean) Let x = (z1,...,2,) € R"” with 2; > 0
for all i =1,...,n. The A-weighted geometric average of x is

G(x, ) = xi\le ez,
The weighted geometric mean always has the following properties:

Fact 2.64. Let x = (21,...,2p) and 'y = (Y1,-.-,Yn) € R" such that
(Vi) 2y > 0,9 >0, and x~ ! = (:rfl,...,xgl). Let \; € Ry such that
n

>> Ai = 1. Then we have
i=1

(i) (harmonic-geometric-arithmetic mean inequality):
()\1:61_1 + o+ )\nx,jl)_l <Gz, A) < Mz + -+ Ay,
Moreover, G(x,A) = Aix1 + -+ Ay, if and only x1 = -+ = xy,.
(ii) (self-duality): [G(z,A)]™' = G(z~1, A).
(iii) If x = (z1,...,21), then G(x,A) = x1.

(iv) gI;f(z :)(azl,xl_l,:cg,:c;l,...,:Cn,xgl) and p = (i,...,i), then
z, 1) =1.

(v) The function x — G(x, X) is concave on Ry x -+ x Ryy.

(vi) If x = y, then G(x,A) > G(y,A).
Proof. (i): See [58, page 29]. (ii)-(iv) and (vi) are simple. (v): See [59,
Example 2.53]. ]
2.4.3 Proximal average

One key tool used later is the prozimal average of convex functions, which
finds its roots in [16, 50, 52], and which has been further systematically
studied in [12-14, 22].

Definition 2.65 (proximal average). Let (Vi) f; € T'o(#H) and \; be strictly
n
positive real numbers with >  A\; = 1. The A-weighted proximal average of

i=1

f=_(f,..., fn) with parameter p > 0 is defined by
Pulf. ) = <A1(f1+,ﬁq)*+/\z(f2+,ﬂq)*+'--+/\n(fn+,ﬁq)*> ~1q. (2.13)
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2.4. Averages

The function P, (f, A) is a proper lower semi-continuous convex function
on H, and it inherits many desirable properties from each underlying func-
tion f;; see [12, 13]. The next fact is a fundamental property of the proximal
average.

Fact 2.66. [12, Theorem 5.1]
(Pu(fa A))* = ,Pufl(.f*a A)

Lemma 2.67. [11, Lemma 2.13(ii)] Let 1, ...2, € RY and \; € Ry such

that > N\i = 1. Then the following identity holds:
i=1

n n n n
1
> Nia(z) — gD i) = 1 DO XNl — >
i=1 i=1 i=1 j=1
Proof. From Fact 2.42, we have
n n 1 n n
1>~ Xl =D Al = 3 DD Nl — gl (2.14)
i=1 i=1 i=1 j=1
Multiplying (2.14) by % on each side gives the desired identity. O
The following reformulation of the proximal average will be useful.

Proposition 2.68. Let fi,..., fn € To(RY) and A1, ..., \, > 0 with
S Ai = 1. Then for every x € RY,

Pu(F N ()
Zmﬁﬂax{MUrnﬂKM%+~+AAn+M®g3}—M«m
(2.15)
. T1
= pamin G AMAGH A Anfn( E;jzlx by Hf _ 7”2
(2.16)

1
— A s Anfu(yn) + = [N o And(Un
A1y1+m+1§nyn_x{ filyn) + -+ A falyn) + M[ 19(y1) + - + Anq(yn)

~q0un + -+ )] (2.17)
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2.4. Averages

1 n n
PP s WP 1f1y1) + - 4 M falyn) + 4#;; jllyi — ysll
(2.18)
—  mi Ty Tny 1 I
- m{ngn:w{mfl(h) +o Anfn(kn) o [Alq(x A1) +
Tn

Proof. Indeed, as
1\" .
(fi + MCI) = fi O(ua),
it is finite-valued everywhere, we write

1 1 1
f=M*x(fi+t—-q)0- 0Ny x (fu+ —q) — —aq,
L L L

by Fact 2.56. That is, for every =z,

€1 T,

r@) =, im0 () ala)

and the infimum is attained, again by Fact 2.56. Hence, replacing inf with
min we get (2.15).
Now rewrite (2.15) as

. I Tn 1 1 T,

—q(z1+-- + wn)} } (2.20)
1
A1y1+-m+lf\lnyn=x{ 1y + -+ Anfalyn) + M[ 19(y1) 4+ And(yn)
—q(My1+ -+ /\nyn)]}‘
Thus, (2.16)—(2.18) follow by using Lemma 2.67. Next, recall that

T=2T1+ "+ Tp,

20



2.4. Averages

and observe that by expanding and simplifying we get

Aoy + - -I—an—%)+'--—|—>\nq(az1+---—|—mn—7)
1

)\ T 2 )\n T, 2
=3 _)\71 +...+? T —

n

B

i—

An

=25 (5 )
=25 (e ”2-2< )5
- §||ocu2 — 2 + Zm(%)

= )\1Q(

)

Tn

thus we have (2.19) by (2.20). O

Fact 2.69 (inequalities). [12, Theorem 5.4]

Afi+ -+ Afn)" SPulfsA) S Mfi 4+ Anf

Fact 2.70. [12, Example 4.5] Let o, . . ., ay, be strictly positive real numbers
and suppose that (Vi) f; = a;q. Then

-1(f,A) = (ZA azq+uq)> —uq=<za,+uq> — g
i=1 "

=1

n —1
- (> Ai a
2ot q— pa.

And thus,
—1
Pu(f,N) = — —u g
,u( ) (; Oéri—,u_1> W q

Fact 2.71. [12, Corollary 7.7] Suppose that at least one function f; is es-
sentially smooth and that \; > 0. Then P,(f, ) is essentially smooth.

Fact 2.72. [12, Theorem 8.5] Let x € RY. Then the function
10, +o0[ = |—o00, +00] : = Pu(f,A)(x) is decreasing. (2.21)
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2.4. Averages

Consequently, lim,,_,o+ P, (f, A)(x) and lim, oo Pu(f, N)(x) exist. In fact,

lim P (£ (@) = S0P (£ A @) = (fi+ ki) (@) (222)
— n>
and

Mli)r}rloo Pu(f,N)(x) = ELI;%PM(f,)\)(x) = ()\1 *x f10- -+ D)\n*fn)(x). (2.23)

We have now covered the building blocks needed for the main focus of
this thesis, nonexpansive mappings and monotone operators. In the next
chapter, we introduce several different notions of “nonexpansiveness” and
monotonicity and cover many of the known results about these kinds of
operators.
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Chapter 3

Nonexpansive Mappings and
Monotone Operators

This chapter contains a collection of known results involving nonexpan-
sive mappings and monotone operators. We begin with the concept of a
nonexpansive mapping.

3.1 Nonexpansive mappings

Definition 3.1. Let D be a nonempty subset of H. A mapping T : D — H
is

(i) monexpansive, or Lipschitz continuous with constant 1, if

(Vz e D)(vy € D) || Tz =Ty < lz - ylf; (3.1)

(ii) strictly nonezpansive if

(Vz € D)(Vy € D) z#y= [Tz —Ty| <z —yl; (32)

(iii) firmly nonexpansive if

(Vz € D)(Vy € D) [Tz —=Ty|*+||(Id =T)z—(1d=T)y|* < [z —y|*;
(3.3)

(iv) a Banach contraction, or Lipschitz continuous with constant 3, if there
exists 4 € [0, 1] such that

(Ve e D)(vy € D) [Tz — Tyl < Blle —yl; (3.4)

(v) strongly nonexpansive if T' is nonexpansive and whenever (z,),ecn and
(Yn)nen are sequences in D such that (z, — yp)nen is bounded and
| zn—ynl| = |Txn—Tyn| — 0, it follows that (zy, —yn)— (Tzn—Tyn) —
0.
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3.1. Nonexpansive mappings

Remark 3.2. Clearly, both firmly nonexpansive and strongly nonexpansive
imply nonexpansive. And in Hilbert spaces, Bruck and Reich showed that
firmly nonexpansive implies strongly nonexpansive, see Fact 3.23. The op-
posite implication does not hold, see Example 3.6. Thus we have

firmly nonexpansive = strongly nonexpansive = nonexpansive.

Fact 3.3. [11, Proposition 4.2] Let D be a nonempty subset of H and
T: D — H. Then the following are equivalent:

(i) T is firmly nonexpansive.
(ii) Id =T is firmly nonexpansive.
(iii) 27" — Id is nonexpansive.
(iv) (Y2 € D)(¥y € D) | Tz — Ty|]? < ( — y, Tz — Ty).
(v) (VxeD)(VYye D) 0< (Tx —Ty,(Id—=T)x — (Id —=T)y).

Example 3.4. The identity mapping is both strongly nonexpansive and
firmly nonexpansive. However, when 7" = —1Id, T is nonexpansive but
it fails to be strongly nonexpansive, and consequently fails to be firmly
nonexpansive.

To see that, let x,y € H. To see that T' = —Id is not strongly nonex-
pansive, set &, = Txp—1 = T"x¢ and y,, = Tyn—1 = T"yo. Then (x, — yp)
is bounded and for all n € N,

Iz = ynll = 1T2n — Tynll = |20 — Ynll — | — 20 +yull = 0.

But,

(T = Yn) — (Txn —Tyn) = (Tn — Yn) = (=Tn + Yn) = 2(Tn — yn)
= 2(T"zo — T"yo),

which only goes to zero if xg = g, so T' is not strongly nonexpansive, and
consequently not firmly nonexpansive.

Example 3.5. [11, Proposition 4.8] Let C' be a nonempty closed convex
subset of H. Then the projection operator P¢ is firmly nonexpansive.

Example 3.6. Let 7,y € R? let C = Rx {0} and D = {z € R? | 21 = x2}.
Clearly, Po(z) = (z1,0) and by Example 2.31 Pp(x) = %(3:1 + z2, 21 + T2).
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3.1. Nonexpansive mappings

By Example 3.5, Po and Pp are firmly nonexpansive. Then consider T'(z) =
PoPp(z) = 3(21 + 22,0) with the points z = (1,2) and y = (1, 3),

2

1 1 1
— 2_||IZ _Z z
| Tx — Ty|| HQ(B,O) 2(4, 0) 1

and

(o= T T) = {(1.2) = (1L3). 5(3.0) - 5(4.0))

_ <(o,—1),(—;,0)> 0,

Thus [Tz — Ty||> > (x —y,Tx —T%), so by Fact 3.3(iv) T is not firmly
nonexpansive.

T is strongly nonexpansive though. Let (zp)neny and (yn)nen be se-
quences in R? such that (2, —y,) is bounded and ||, —yn || — || T2n —Tyn|| —
0. Set zp, = (27, 2%), yn = (V1 ¥%), dn = 2} — ¥} and e, = x5 — y5. Now,

|20 — ynll = |T2n — Tyn|| — 0
& [|zn — ynHz — Tz, — TynH2 —0

1
o (@ — )2+ (@} — ) — (

2
5t~ a3 =) 0

1
<:>di+e%—1(dn+en)2—>0

3 3 1
1
g (2d2 + 2¢2 + (dn, — en)?) — 0.
Thus we have
e2 = 0and (d, —e,)? — 0. (3.5)
And we see that
1 1
(0 —Yn) — (Txy — Tyn) = (dn, en) — (idn + §€nv 0)
1 1
= (§dn — 567“ €n).
Taking the norm,
1 1 1
”(§dn - iena en)H2 = Z(dn - en)2 + 6%7

which goes to zero by (3.5). Thus T is strongly nonexpansive.
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3.2. Fixed points and asymptotic regularity

Remark 3.7. Example 3.6 shows both that strongly nonexpansive does not
imply firmly nonexpansive and that the composition of two firmly nonex-
pansive operators may fail to be firmly nonexpansive.

Definition 3.8. Let D C H with D # @ and T : D — H be nonexpan-
sive. Let @ € ]0,1[. Then T is averaged with constant « if there exists a
nonexpansive operator N : D — H such that 7' = (1 — a) Id +aN.

Fact 3.9. T is firmly nonexpansive if and only if T is 1/2-averaged.
Proof. This follows directly from Fact 3.3(iii). O

Definition 3.10. Let D C Hwith D # @and T : D — H and let 8 € Ry .
Then T is S-cocoercive if BT is firmly nonexpansive. That is,

(ve € D)(Vy € D) (v —y,Ta—Ty) > B| Tz — Tyl

Remark 3.11. T being (-cocoercive is the same as T~ ' being 3 strongly
monotone, see Definition 3.31(iv). Thus f-cocoercive is also referred to as
being (-inverse strongly monotone.

Fact 3.12 (Baillon-Haddad Theorem). [4, Corollaire 10] or [11, Corollary
18.16] Let f : H — R be a Fréchet differentiable convex function and let
B € Ryy. Then Vf is f-Lipschitz continuous if and only if Vf is (1/5)-
cocoercive. In particular, V f is nonexpansive if and only if Vf is firmly
NONETLPANSIVE.

Remark 3.13. For more on the Baillon-Haddad theorem, see [4] and [10].

Definition 3.14. T is cyclically firmly nonexpansive if for every set of points
{z1,...,2,} CH, where n € {2,3,...} and 2,41 = x1, we have

(a;i —Tax;, Tx; — Tx,-+1> >0 (36)

n
=1

)

3.2 Fixed points and asymptotic regularity

Several problems in science and engineering can be formulated as fixed
point problems, where the set of desired solutions is the set of fixed points
of T,

FixT:={z €H |z =Tz} (3.7)
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3.2. Fixed points and asymptotic regularity

If T is firmly nonexpansive and FixT # @, then the sequence of iterates
(T"2)nen (3.8)

converges weakly to a fixed point [29]. The iterates x,+1 = Tx,, for all
n € N, are referred to as Banach-Picard iterates. However, if the mapping
is simply nonexpansive then this result does not hold. For example, T' = —Id
is nonexpansive with Fix T = {0}, but (T"z),en converges only if you begin
at the fixed point x = 0.

Fact 3.15. [11, Corollary 4.15] Let C' be a nonempty closed convexr subset
of H and let T : C' — H be nonexpansive. Then FixT is closed and convex.

Fact 3.16. [62, Lemma 1.8, Corollary 2] Let C' be a closed convex subset of
H and let T : H — H be a firmly nonexpansive mapping such that

ranT C FixT = C.
Then T = Pg.
Proof. Let x € H and y € C. Then,
TrxreranT CCand y=Ty € C =FixT.
Since T is firmly nonexpansive, by Fact 3.3(v)
0<(Tz—Ty,(x—Tx) - (y —Ty))

S 0<(Te —y,x —Tx)

e (y—Tz,x —Tx) <O0.
Thus by Fact 2.30, Tx = Pox. O
Definition 3.17. A mapping T : H — H is asymptotically regular if

(Ve e H) Tz —T""'z —0.

T is weakly asymptotically reqular if the convergence is weak.

Fact 3.18. [3, Theorem 1.2] Let T : H — H be a nonexpansive mapping.
Then (T"x)nen converges weakly to a fized point of T if and only if Fix T #
@ and T is weakly asymptotically regular.

Fact 3.19. [3, Corollary 2.2] Let C be a closed conver subset of H. Let
U:C — H be an averaged nonexpansive mapping. Then FixU = @ if and
only if li_}m |U™z|| = oo for all x in C.

n oo
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3.2. Fixed points and asymptotic regularity

Fact 3.20. [3, Corollary 2.3] Let C be a closed convex subset of H and let
U :C — X be an averaged nonexpansive mapping. Then for each x € C

lim (U"z — U™ z) — v,
n—oo

where v is the element of least norm in ran(Id —U).

Remark 3.21. Facts 3.18 - 3.20 were originally formulated in a Banach space
with additional structure. Details for how those results apply in Hilbert
spaces are provided in Appendix A.

Remark 3.22. Suppose T': H — H is asymptotically regular. Then, for every
r € H,

Tz —T" e -0
< (Id-T)T"x — 0

and hence 0 € ran(Id —T"). The opposite implication fails in general (con-
sider T = —1d), but it is true for strongly nonexpansive mappings, see
Fact 3.24.

The next result illustrates that strongly nonexpansive mappings gener-
alize the notion of firmly nonexpansive mappings. In addition, the class of
strongly nonexpansive mappings is closed under compositions.

Fact 3.23 (Bruck and Reich). [30, Proposition 2.1 and Proposition 1.1] In
a Hilbert space H, the following hold.

(i) Ewvery firmly nonexpansive mapping is strongly nonexrpansive.

(ii) The composition of finitely many strongly nonerpansive mappings is
also strongly nonexpansive.

In contrast, the composition of two (necessarily firmly nonexpansive)
projectors may fail to be firmly nonexpansive, see Example 3.6

The sequences of iterates and of differences of iterates have striking con-
vergence properties as we shall see now.

Fact 3.24 (Bruck and Reich). [30, Corollary 1.5, Corollary 1.4, and Corol-
lary 1.3] Let S: H — H be strongly nonexpansive and let x € H. Then the
following hold.

(i) The sequence (S"x — S™x),en converges strongly to the unique ele-
ment of least norm in ran(Id —S).
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3.3. Monotone operators

(i) If Fix S = &, then ||S"z| — +o0.
(iii) If Fix S # @, then (S"x)nen converges weakly to a fized point of S.

Fact 3.25. [57, Corollary 2] Let D be a subset of H and let T : D — D be
firmly nonexpansive. Set d = injg ly — Tyl||, then for each x € D,
ye

lim || 7"z — T"z| = d.
n—oo

3.3 Monotone operators

We now look at known results for monotone operators.

Definition 3.26. A set-valued operator A : H = H is monotone if
(V(z,u) € graA)(V(y,v) € grad) (v —y,u—wv)>0. (3.9)

A monotone operator A is maximally monotone if there exists no monotone
operator B such that gra A C gra B. That is, for every (z,u) € H x H,

(x,u) € grad < (V(y,v) egrad) (r—y,u—wv)>0. (3.10)
Lemma 3.27. Let A :H — H be linear. Then A is monotone if and only

if
(VzeH) (z,Az)>0.

Proof. Since A is linear it is single-valued, thus (3.9) becomes
Ve e H)VyeH) (x—y, Az — Ay) > 0.
Set z = x — y and by linearity we get

(z,Az) > 0.

Lemma 3.28. Let A: H =H and A€ R, . Then
(x,u) € graA < (z, \u) € gralA.

Proof. Take (z,u) € graA. Then u € Az = A\u € Mz, ie. (x,\u) €
graAA. On the other hand, let (z, A\u) € graAA, then \u € Az = u € Ax.
Altogether, (z,u) € graAd < (x, \u) € graAA. O
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3.3. Monotone operators

Proposition 3.29. Let A : 'H = H be mazimally monotone and A € Ry .
Then AA is maximally monotone.

Proof. Let (z,u) € graAA, then by Lemma 3.28 (z,\"'u) € gra A. Since A
is maximally monotone, (3.10) gives

(z,\"tu) € grad < (V(y, \"1v) € gra A) (z -y, Aty — )\_1U> > 0.
Then for all (y,v) € graAA,
(r —y,u—v) = )\<xfy,)\_1uf)\_lv> > 0.

Conversely, let (x,u) € H x H such that (V(y,v) € gradA) (z —y,u —v) >
0. Then

<:L‘—y,u—v>:)\<x—y,)\_1u—/\_1v> 20:><:L‘—y,/\_1u—)\_1v>20.

That is, for every (z,A\"'u) € H x H and for every (y,\"'v) € graA,
(x —y,A"'u — A"t) > 0. Thus by (3.10), (z, A\ 'u) € gra A and therefore
(x,u) € graAA. O

Fact 3.30 (monotonicity versus convexity). [59, Theorem 12.17] Let H be
finite dimensional and let f € To(H). Then Of is mazimal monotone, and
f is essentially strictly convex if and only if Of is strictly monotone.

Definition 3.31. An operator A : H = H is

(i) paramonotone if it is monotone and

(V(z,u) € graA)(V(y,v) € gra A)
(x —y,u—v) =0= (z,v) € graA.
(ii) strictly monotone if

(V(z,u) € graA)(V(y,v) € graAd) z#y= (x—y,u—v)>0.

(iii) wuniformly monotone with modulus ¢ : Ry — [0, +00] if ¢ is increasing,
vanishes only at zero, and

(V(z,u) € grad)(V(y,v) € grad) (z—y,u—v)>¢([|z—yl).

(iv) strongly monotone with constant 5 € Ry, if A — S1d is monotone.
That is,

(V(z,u) € graA)(V(y,v) € grad) (z—y,u—uv)>plz—y|>
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3.3. Monotone operators

Example 3.32. Let z € R, and 8 € Ry,. Set ¢(z) = Bz2, then it is
clear that every operator that is strongly monotone with constant 3 is also
uniformly monotone with modulus ¢.

Example 3.33. [11, Example 22.3(iv)| Let f : H — |—00, +o0] be proper
and strongly convex with constant 8 € Ry. Then 9f is strongly monotone
with constant (5.

Definition 3.34. Let A: H — H and o € R. A is hemicontinuous if for
every (x,vy,2) € H3,

lim (z, A(x + ay)) = (2, Az) .

a—0t

Fact 3.35. [11, Example 22.9(iii)] Let A : H — H be strongly monotone
and hemicontinuous, and let r € H. Then the equation Ax = r has exactly
one solution.

Now let A be a monotone operator from H = H and denote the associ-
ated resolvent by

Ja = (Id+A4)~% (3.11)
For A > 0, the Yosida \-reqularization of A is,
AA = A"HId —Jy,). (3.12)

The resolvent satisfies the useful resolvent identity,
Ja=1d—J4-1, (3.13)
which allows for the Minty parametrization
graA = {(Jaz,x — Jaz) | v € dom Ja} (3.14)

of the graph of A, which provides the bijection x — (Jaz,x — Jazx) from
dom J4 onto gra A, with inverse (z,u) — = + u. The Yosida regularization
is related to the resolvent through the following identity,

A= AId+AH L= A Id —(Id +24) 7). (3.15)
When A = Jf for some f € I'g(H) then Fact 2.53 yields that

Jor = prox;. 3.16
f f

Minty observed that Jy4 is in fact a firmly nonexpansive operator from
‘H to ‘H and that, conversely, every firmly nonexpansive operator arises this
way:
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3.3. Monotone operators

Fact 3.36. (See [38] and [50].) Let T: H — H and let A: H = H. Then
the following hold.

(i) IfT is firmly nonexpansive, then B := T~ —Id is mazimally monotone
and Jg =1T.

(ii) If A is mazximally monotone, then Ju has full domain, and is single-
valued and firmly nonexpansive, and A = ng —1d.

Definition 3.37. [11, Definition 21.9] Let A : H == H and = € H. Then
A is locally bounded at x if there exists 6 € Ri4 such that A(B(z;0)) is
bounded, where B(x;d) is the closed ball centered at x with radius §.

Fact 3.38. [11, Corollary 21.19] Let A : H == H be maximally monotone.
Then A is surjective if and only if A~' is locally bounded everywhere on H.

Fact 3.39. [11, Corollary 21.21] Let A : H = H be maximally monotone
with bounded domain. Then A is surjective.

Fact 3.40. [11, Proposition 20.22] Let A : H = H be mazimally monotone,
let uw and z be in H and v € Ryy. Then A~™' and x +— u + vA(z + 2) are
mazximally monotone.

Fact 3.41. [11, Example 20.41] Let C be a nonempty closed conver subset
of H. Then N¢ is mazimally monotone.

Fact 3.42. [11, Example 23.4] Let C' be a nonempty closed convexr subset of
H. Then
Ine = Id+Ng) ™ = prox, , = Pc.

Fact 3.43 (Minty’s Theorem). [11, Theorem 21.1] Let A : H = H be
monotone. Then A is mazimally monotone if and only if ran(Id +A) = H.

Remark 3.44. Minty’s Theorem provides a characterization for maximal
monotonicity which allows for determining maximality without having to
show graph inclusions.

Fact 3.45. [11, Proposition 23.11] Let A : H == H be monotone and let
B € Ryy. Then A is strongly monotone with constant B if and only if Ja
is (B 4 1)-cocoercive, in which case J4 is Lipschitz continuous with constant

1/(8+1) €]0,1].

Fact 3.46. [11, Example 20.26] Let T : H — H be nonexpansive and let
a € [—1,1]. Then Id+aT is maximally monotone.
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3.3. Monotone operators

While the sum of two monotone operators is still monotone, the sum of
two maximally monotone operators can fail to be maximally monotone.

Example 3.47. Let H = R? and set C to be the closed unit ball centered
t (—1,0) and D be the closed unit ball centered at (1,0). By Fact 3.41,
both N¢ and Np are maximally monotone and we have

dom N¢c N'dom Np = {(0,0)} # .
But given Fact 3.39 and the fact that
ran(N¢ + Np) = R x {0},
N¢ + Np is not maximally monotone.

The next fact gives some constraint qualifications under which the sum
is maximally monotone.

Fact 3.48 (Rockafellar). [59, Theorem 12.44] and [11, Corollary 24.4] Let
A and B be mazimally monotone on H. Suppose one of the following holds:

(i) dom ANintdom B # @.
(ii) If H=R"Y, ridom ANridom B # @.
Then A + B is mazximally monotone.

Definition 3.49. Let A : H = H and let n € N be such that n > 2.
Then A is n-cyclically monotone if, for every (x1,...,7,41) € H"! and
(uy,...,up) € H",

n
(x1,u1) €grad, ..., (xn,up) € grad, rp41 = 1 = Z (Tip1 — z4,u;) < 0.
i=1

If A is n-cyclically monotone for every integer n > 2, then A is cyclically
monotone. If A is cyclically monotone and there exists no cyclically mono-

tone operator B : ‘H = H such that gra B properly contains gra A, then A
is mazimally cyclically monotone.

Fact 3.50 (Rockafellar). [11, Theorem 22.14] Let A : H == H. Then A is
mazimally cyclically monotone if and only if there exists f € I'o(H) such
that A = 0f.
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3.4. Rectangular monotone operators

Fact 3.51. [5, Theorem 6.6] Suppose H is a real Hilbert space and let
T :H — H. Then T is the resolvent of the maximally cyclically mono-
tone operator A : H = H if and only if T has full domain, T is firmly
nonexpansive, and T s cyclically firmly nonexpansive. That is, for every

set of points {x1,...,xn} where n € N, n > 2 and x,41 = 1, one has
n
Z <£El — TI‘Z‘, Tl‘l - T$i+1> Z 0. (317)
i=1

3.4 Rectangular monotone operators

The notion of rectangularity for monotone operators requires the use of
the Fitzpatrick function.

Definition 3.52 (Fitzpatrick function). (See [40], [31] or [47].) Let A: H =
‘H. Then the Fitzpatrick function associated with A is

FA:'HXH—>[—OO,+OO]:

(z,2*)— sup  ((z,a*)+ (a,2") — (a,a")) (3.18)
(a,a*)egra A
=(z,2*)— inf ((zr—a,z"—a")). (3.19)

(a,a*)egra A

Example 3.53 (energy). [17, Example 3.10] The Fitzpatrick function of
the identity operator is

Fla: H x H = R: (z,2%) = Y|z + 27|

Definition 3.54 (Brézis-Haraux). (See [28].) Let A: X — #H be mono-
tone. Then A is rectangular (which is also known as star-monotone or 3*

monotone), if
dom A x ran A C dom F4. (3.20)

Remark 3.55. If A: H = H is maximally monotone and rectangular, then
one obtains the “rectangle” dom Fy = dom A x ran A, which prompted
Simons [61] to call such an operator rectangular. Such operators are also
referred to as star-monotone in [53] or (BH)-operators in [33].

Proposition 3.56. A monotone operator A: H = H is rectangular if

(V(z,y*) € dom A x ran A) sup  (r —z,2" —y") < 4o0.
(z,2*)egra A
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Proof. This follows from (3.20) and (3.19). O

Fact 3.57 (Rank-Nullity Theorem). [48, (4.4.15)] Let A : RN — RN be an
N x N matriz. Then

dimran A +dimker A = N.

Fact 3.58. Let A : RN — RY be a linear mazimally monotone operator.
Then the following hold:

(i) A is paramonotone if and only if A is rectangular;

(ii) A is paramonotone if and only if rank A = rank Ay if and only if
ran A =ran A;.

Proof. (i) See [9, Remark 4.11] or [24, Corollary 4.11]. (ii) Since A is mono-
tone, we have ran Ay C ran A. Thus, the result follows from [24, Corollary
4.11] and Fact 3.57. O

Fact 3.59. [11, Proposition 24.15] Let A : H =% H be monotone. Then A is
rectangular < A~' is rectangular.

Fact 3.60. [11, Proposition 24.18] Let A and B be monotone operators
from H = H such that (lom ANdom B) x H C dom Fg. Then A+ B is
rectangular.

Example 3.61. (See [28, Example 3] or [2, Example 6.5.2(iii)].) Let A: H =
H be maximally monotone. Then A + Id and (A + Id)~! are maximally
monotone and rectangular.

Proof. Combining Fact 3.60 and Example 3.53, we see that A + Id is rect-
angular. Furthermore, A + Id is maximally monotone by Fact 3.48. Using
Fact 3.59, we see that (Id+A)~! is maximally monotone and rectangu-
lar. O

Proposition 3.62. [17, Proposition 4.2] Let A and B be monotone on H,
and let (z,2*) € H x H. Then Faip(z,2*) < (Fa(z,)OFp(z,-))(z*).

Lemma 3.63. [20, Lemma 3.11] Let A and B be rectangular on H. Then
A+ B is rectangular.
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Proof. Clearly, dom(A+B) = (dom A)N(dom B), and ran(A+ B) C ran A+
ran B. Take z € dom(A + B) and y* € ran(A + B). Then there exist
a* € ran A and b* € ran B such that a* 4+ b* = y*. Furthermore, (z,a*) €
(domA) x (ranA) C dom F4 and (z,b*) € (dom B) X (ran B) C dom Fp.
Using Proposition 3.62 and the assumption that A and B are rectangular,
we obtain

Fyip(z,y*) < Fa(z,a”) + Fp(x,b") < +00. (3.21)
Therefore, dom(A+ B) xran(A+ B) C dom F44p and A+ B is rectangular.
O

Fact 3.64. [24, Theorem 6.1] Let T : H — H be nonexpansive and define
the corresponding displacement mapping by

A=1d-T.
Then the following hold:
(i) A is mazimally monotone.
(ii) A is %-cocoercive, i.e. %A s firmly nonexpansive.
(iii) A is rectangular.
(iv) A™! is strongly monotone with constant .
(v) A~ is strictly monotone.
(vi) A is paramonotone.

Example 3.65. [24, Example 6.2] Let N be a strictly positive integer and
let
R:HYN = HY :(z1,...,2n) = (TN, T1,. .., TN_1),

be the cyclic right-shift operator in #". Since |Rz| = ||| for all z € H, R
is nonexpansive and therefore by Fact 3.64, Id — R is maximally monotone,
rectangular, and paramonotone.

Fact 3.66 (Brézis-Haraux). [2, Theorem 6.5.1(b) and Theorem 6.5.2] Let
A and B be monotone on a Hilbert space H such that A+ B is maximally
monotone. Suppose that one of the following holds.

(i) A and B are rectangular.

(ii) dom A C dom B and B is rectangular.
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Then ran(A + B) = ran A + ran B, int(ran(A + B)) = int(ran A + ran B),
and if H is finite dimensional riconv(ran A + ran B) C ran(A + B).

In this chapter we have seen many properties of firmly nonexpansive
mappings and monotone operators. We have also seen how the two concepts
are linked through the resolvent of a maximally monotone operator. This
will be fundamental to the results in chapters 4-8.
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Chapter 4

Correspondence of
Properties

This chapter contains new results concerning the closely-knit nature of
firmly nonexpansive mappings and maximally monotone operators and is
based on [19].

4.1 Maximally monotone operators and firmly
nonexpansive mappings

The first result in this section provides a comprehensive list of corre-
sponding properties of firmly nonexpansive mappings and maximally mono-
tone operators, building on Minty’s Fact 3.36.

Theorem 4.1. Let T: H — H be firmly nonexpansive, let A: H = H
be maximally monotone, and suppose that T = Ja or equivalently that
A=T7"1—1d. Then the following hold:

(i) ranT = dom A.
(ii) T is surjective if and only if dom A = H.

)
)

(iii) Id =T is surjective if and only if A is surjective.

(iv) T is injective if and only if A is at most single-valued.
)

(v) T is an isometry if and only if there exists z € H such that A: x — z,
in which case T: x — x — 2.

(vi) T satisfies

(Ve e H)(Vy € H)
Te#Ty = ||[Tz—Ty|* < (x —y, Te —Ty) (4.1)
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if and only if A is strictly monotone, i.e.,

(V(z,u) € graA)(V(y,v) € gra A)
r#y = (x—y,u—v) >0. (4.2)
(vil) T s strictly monotone if and only if A is at most single-valued.
(viii) T is strictly firmly nonexpansive, i.e.,
VeeH)VyeH) z#y = ||[Te—Ty||> < (x—y,Tz—Ty) (4.3)
if and only if A is at most single-valued and strictly monotone.
(ix) T is strictly nonexpansive, i.e.,
(Ve eH)(VyeMH) z#y = [[Tz—Tyl < |z -yl (4.4)
if and only if A is disjointly injective, i.e.,

VeeH)(VyeH) z#y = AznNAy=02. (4.5)

(x) T is injective and strictly nonexpansive, i.e.,
VeeH)VyeH) 22y = 0<|Te—Ty| <|z—y (4.6)
if and only if A is at most single-valued and disjointly injective.

(xi) Suppose that e € 10, +oo[. Then (1 + ¢)T is firmly nonexpansive if and
only if A is strongly monotone with constant €, i.e., A — €1d is mono-
tone, in which case T is a Banach contraction with constant (1 +¢)~1.

(xii) Suppose that v € |0,4o00[. Then (14+~)(Id =T) is firmly nonexpansive
if and only if A is y-cocoercive |, i.e.,

(V(z,u) € graA)(V(y,v) € grad) (z—y,u—2v)>7|u—ov|> (4.7)

(xiii) Suppose that B € ]0,1[. Then T is a Banach contraction with constant
B if and only if A satisfies

(V(xz,u) € graA)(V(y,v) € gra A)
1—p?
32

lz = ylI* < 2(z — y,u—v) + u—v|* (48)
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Maximally monotone operators and firmly nonexpansive mappings

(xiv)

(xv)

(xvi)

(xvii)

(xviii)

Suppose that ¢: [0, +o0[ — [0, +00] is increasing and vanishes only at
0. Then T satisfies

(Ve e H)(Vy € H) (Tz—Ty,(z—Tx)— (y —Ty)) > ¢([|Tz—Ty|)
(4.9)
if and only if A is uniformly monotone with modulus ¢, i.e.,

(V(z,u) € gra A)(V(y,v) € grad) (z —y,u—v) > ¢(|lz —yl]).
(4.10)

T satisfies
(Ve e H)(Vy € H)
Tx=T(Tz+y—Ty)

Ty=T(Ty+az—Tx)
(4.11)

Tz - Tyl|* = (& —y,Te — Ty) = {

if and only if A is paramonotone, i.e.

(V(xz,u) € graA)(V(y,v) € gra A)
(x—y,u—v) =0 = {(z,v),(y,u)} CgraAd. (4.12)

(Bartz et al., [5]) T is cyclically firmly nonexpansive, i.e.,

n

Z <£I?Z - Taci, TI'Z - T$l'+1> Z O, (413)
=1

for every set of points {x1,...,xn} C H, where n € {2,3,...} and
Tnt1 = T1, if and only if A is a subdifferential operator, i.e., there

exists f € To(H) such that A = Of.

T satisfies
(Vz e H)(y € H) 1é17f_[ (Tx —Tz,(y —Ty) — (2 — Tz)) > —c0
(4.14)
if and only if A is rectangular, i.e.,
(Vz € dom A)(Vv € ran A) inf  (z—2z,0—w)>—oc0. (4.15)

(z,w)egra A

T is linear if and only if A is a linear relation, i.e., gra A is a linear
subspace of H X H.
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4.1. Maximally monotone operators and firmly nonexpansive mappings

(xix) T is affine if and only if A is an affine relation, i.e., gra A is an affine
subspace of H X H.

(xx) (Zarantonello) ranT = FixT := C if and only if A is a normal cone
operator, i.e., A = Ovc; equivalently, T is a projection (nearest point)
mapping Pc.

(xxi) T is sequentially weakly continuous if and only if gra A is sequentially
weakly closed.

Proof. Let z,y,u,v be in H.
(i): Clear.
(ii): This follows from (i).
(iii): Clear from the Minty parametrization (3.14).
(iv): Assume first that T is injective and that {u,v} C Az. Then

{z+u,z+v} C (Id+A),

and hence
r=T(r+u) =T(x+v).

Since T is injective, it follows that = + v = x 4+ v and hence that u = v.
Thus, A is at most single-valued.

Conversely, let us assume that A is at most single-valued and that Tu =
Tv = x. Then

{u,v} C (Id+A)z = x + Az,

and hence
{u—z,v—2} C Az

Since A is at most single-valued, we have . —x = v — x and so u = v. Thus,
T is injective.
(v): Assume first that 7" is an isometry. Then by (2.1) and (3.3),
1Tz = Ty|* = |z — ylI* > |Tz — Ty|* + | (1d =T)z — (1d =Tyl
Thus,
0> ||(Id -T)x — (Id -T)y||>.
It follows that there exists z € H such that T: w +— w—z. Thus, T7': w —

w + z. On the other hand, 77! = Id+A: w — w + Aw. Hence A: w — z,
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4.1. Maximally monotone operators and firmly nonexpansive mappings

as claimed. Conversely, let us assume that there exits z € H such that
A:wwrs z. Then Id4+A: w— w + 2z and hence

T=Js=Id+A) " we w— 2

Thus, T is an isometry.
(vi): Assume first that T satisfies (4.1), that {(z,u), (y,v)} C gra A, and
that z £ y. Set p=x + u and ¢ = y + v. Then

(SL’,’LL) = (Tpap - Tp)a
and
(y,v) = (T'q,q — Tq).
Since x # y, it follows that T'p # Tq and therefore that

|Tp —Tq|* < (p—q.Tp—Tq),

because T satisfies (4.1). Hence

0<{(p—Tp)—(¢—Tq), Tp—Tq) = (u—v,z—y).

Thus, A is strictly monotone. Conversely, let us assume that A is strictly
monotone and that x = Tu # Tv = y. Then {(z,u—x), (y,v—y)} C gra A.
Since x # y and A is strictly monotone, we have

(@ =y (u—2) = (v=y) >0 |z -yl <(z—yu-v)
& | Tu—To||? < (Tv — Tu,u —v).

Thus, T satisfies (4.1).

(vii): In view of (vi) it suffices to show that 7' is injective if and only
if T' is strictly monotone. Assume first that T is injective and that x # y.
Then Tz # Ty and hence

0<||Tz - Ty|* < (x—y,Tx—Ty).

Thus, T is strictly monotone. Conversely, assume that 7T is strictly monotone
and that x # y. Then (x — y,Txz — Ty) > 0 and hence Tx # Ty. Thus, T
is injective.

(viii): Observe that T is strictly firmly nonexpansive if and only if T is
injective and T satisfies (4.1). Thus, the result follows from combining (iv)
and (vi).
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4.1. Maximally monotone operators and firmly nonexpansive mappings

(ix): Assume first that 7' is strictly nonexpansive, that x # y, and that
u € Az N Ay. Then

z+u€ (Id+A)r and y +u € (Id+A)y;

equivalently,
T(x+u)=z#y="T(y+wu).
Since T is strictly nonexpansive, we have

[z =yl = 1Tz +u) =Ty +u)| <(@+u) = (y+u)]=lz-yl,

which gives a contradiction. Thus, A is disjointly injective. Conversely,
assume that A is disjointly injective, that u # v, and that ||Tu — Tw| =
|lu — v]|. Since T is firmly nonexpansive, we deduce that

u—Tu=v—-Tv.
Assume that x = v — Tw = v — Tv. Then,
Tu=u—zand Tv=v — x;
equivalently,
u€ (Id+A)(u—x) and v € (Id+A)(v — x).
Thus, z € A(Tu) N A(Twv), which contradicts the assumption on disjoint
injectivity of A.
(x): Combine (iv) and (ix).
(xi): Assume first that (1 4 ¢)7" is firmly nonexpansive and that
{(z,u), (y,v)} C graA.
Then z = T'(z +u) and y = T'(y + v). Hence by Fact 3.3(iv),
((@+u) = (y+v),z—y) > (1+e)llz -yl
& (z—yu—v) >z -yl

Thus, A — Id is monotone. Conversely, assume that A — ¢Id is monotone
and that

{(LU,U), (yﬂ))} - graT.
Then {(u,z —u),(v,y —v)} C gra A and hence

(u—v,(z—u) ~ (y—v)) 2 ellu—v]?
& (z—yu—v) > (1+e)|u—v|?
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4.1. Maximally monotone operators and firmly nonexpansive mappings

Thus, (14+¢)T is firmly nonexpansive. Alternatively, this result follows from
Fact 3.45.

(xii): Applying (xi) to Id —T and A1, we see that (1+~)(Id —T) is firmly
nonexpansive if and only if A=! — v Id is monotone, which is equivalent to
A being vy-cocoercive.

(xiii): Assume first that 7" is a Banach contraction with constant 8 and
that {(z,u), (y,v)} C graA. Set p=x+u and y =y + v. Then

(x,u) = (Tp,p —Tp),
(y,v) = (Tq,g - TQ), and
| Tp —Tq|| < Bllp—al,

ie.,

lz = ylI* < B%ll(z +u) — (y+0)|? = B[z —y) + (u—v)|*  (4.16)
= B%(le —yl* +2(x —y,u —v) + [Ju —v[*).

Thus, (4.8) holds. The converse is proved similarly.

(xiv): The equivalence is immediate from the Minty parametrization
(3.14).

(xv): Assume first that 7" satisfies (4.11) and that {(z, u), (y,v)} C gra A
with (z —y,u —v) =0. Set p=x +u and ¢ = y +v. Then

(x,u) = (Tp,p — Tp) and (y,v) = (T'q,q — Tq),
and we have

(Tp—Tq,(p—Tp) — (¢q—Tq)) =0
& | Tp—Tq|* = (p—q,Tp—T4q).

By (4.11),

Tp=T(Tp+q—-Tq) & z=T(r+v)
sSrtver+ Ar & v e Ax.

And similarly,

Tq=T(Tq+p—-Tp)=y=T(y+u)
Sytuecy+ Ay s ue Ay.
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4.1. Maximally monotone operators and firmly nonexpansive mappings

Thus, A is paramonotone. Conversely, assume that A is paramonotone, that
|Tu — Tv||? = (u — v, Tu — Tv), that = Tu, and that y = Tv. Then,

{(:C, U= 33), (ya v = y)} - graA,

and
(z—y,(u—2z)=(v-y)=0.

Since A is paramonotone, we deduce that

v—ycAr s r—y+ve (Id+A)zx
csr=Tx—-y+v)eTu=TTu+v—"Tv).

And similarly,

u—r€Aysy—x+ue (Id+Ay
sy=Ty—z+u) S Tv=TTv+u—Tu).

Thus, T satisfies (4.11).

(xvi): This follows from Fact 3.51.

(xvii): The equivalence is immediate from the Minty parametrization
(3.14).

(xviii): Indeed,

T = J4 is linear < (A4 1d)™! is a linear relation,
< A+ 1d is a linear relation,

< A is a linear relation.

(xix): This follows from (xviii).

(xx): Assume C :=FixT =ranT. Fact 3.15 yields C is a closed convex
set and by Fact 3.16, T' = Po. On the other hand, if A = N¢, then by
Fact 3.42, T'= Jn, = Pc which gives FixT = C and ranT = C. The fact
that N¢o = 0i¢ follows from Fact 2.38.

(xxi): Assume that T is sequentially weakly continuous. Let (2, tn)neN
be a sequence in gra A that converges weakly to (z,u) € H x H. Then
(n + Un)nen converges weakly to x + u. On the other hand, Id —T is
sequentially weakly continuous because T' is. Altogether,

(xn, un)neN = (T(In + un)a (Id _T) (xn + un))neN
— (T'(z+w),(Id =T)(xz + u)).
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But (zp,u,) = (z,u) and thus (z,u) = (T'(z + u), (Id =T)(z + u)) € gra A.
Therefore gra A is sequentially weakly closed. Conversely, let us assume that
gra A is sequentially weakly closed. Let (x,)neny be a sequence in H that
is weakly convergent to x. Our goal is to show that Tz, — Tx. Since T is
nonexpansive, the sequence (T'zy)nen is bounded. After passing to a sub-
sequence and relabeling if necessary, we can and do assume that (T2, )nen
converges weakly to some point y € H. Now (T'zy,, 2, — T2y )nen lies in gra A,
and this sequence converges weakly to (y,z —y). Since gra A is sequentially
weakly closed, it follows that (y,z — y) € gra A. Therefore,

r—ycAysrze (ld+A)y < y="Tx,
which implies the result. O

Example 4.2. Concerning items (xi) and (xiii) in Theorem 4.1, it was previ-
ously known that if A is strongly monotone, then 7' is a Banach contraction,
see Fact 3.45. The converse, however, is false. Consider the case H = R?

and set
0 -1
A= (1 0 ) . (4.17)

Then (Vz € H) (z, Az) = 0 so A cannot be strongly monotone. On the other
hand,

T=Jy=(Id+A)" = % (_11 D (4.18)

is linear and ||Tz||? = %HZ||2, which implies that 7" is a Banach contraction
with constant 1/v/2.

Corollary 4.3. Let A: H — H be continuous, linear, and mazimally mono-
tone. Then the following hold.

(i) If Ja is a Banach contraction, then A is (disjointly) injective.

(ii) If ran A is closed and A is (disjointly) injective, then Ju is a Banach
contraction.

Proof. The result is trivial if # = {0} so we assume that H # {0}. Let x
and y be in H.

(i): Assume that Jy is a Banach contraction, with constant g € [0, 1[. If
B =0, then J4 =0 & A = Nyq, which contradicts the single-valuedness of
A. Thus, 0 < 8 < 1. By Theorem 4.1(xiii),

1-p?

(Ve e H)(Vy € H) 72

|z —y)|? < 2(z —y, Az — Ay) + || Az — Ay|>.
(4.19)
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4.1. Maximally monotone operators and firmly nonexpansive mappings

If = # y, then the left side of (4.19) is strictly positive, which implies that
Az # Ay. Thus, A is (disjointly) injective.

(ii): Let us assume that ran A is closed and that A is (disjointly) injective.
Then ker A = {0} and hence, by Fact 2.14, there exists p € ]0,+oo[ such
that (Vz € H) ||Az|| > pl|z||. Thus,

(VzeH) [z = p?|2]* > 0. (4.20)

Set 3 =1/y/1+p? and z = v —y. Then p? = (1 — 4?)/B? and hence by
(4.20) and Lemma 3.27,

(Ve e H)(Vy € H)
1— B2
32

|z —y||* < [|[Az — Ay||* < 2(z — y, Az — Ay) + || Az — Ay]|>.
(4.21)

Again by Theorem 4.1(xiii), J4 is a Banach contraction with constant g €
10, 1]. O

Example 4.4. Suppose that H = ¢5(N), the space of square-summable
sequences, i.e., z = (x,,) € H if and only if Y00 [2,]? < +o0, and set

A H = H: () = (2an). (4.22)

Then A is continuous, linear, maximally monotone, and ran A is a dense,
proper subspace of H that is not closed. The resolvent T' = J4 is

T:H—=H: (xn) = (FH52n)- (4.23)

Now denote the n*® unit vector in H by e, (i.e. e, has a one at position n
and zeros otherwise). Then [[T'e, — T0|| = 5 le, — 0||. Since ;25 — 1, it
follows that 7" is not a Banach contraction.

Remark 4.5. When A is a subdifferential operator, then it is impossible to
get the behavior witnessed in Example 4.2, as we see next in Proposition 4.6.

Proposition 4.6. Let f € I'o(H) and let € € |0,+00[. Then (1 + ¢) prox;
is firmly nonexpansive if and only if prox; is a Banach contraction with
constant (1 +¢)7 L.
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Proof. Set 3 = (14¢)~'. It is clear that if (1 + ¢) prox; is firmly non-
expansive, then (1 + ¢)prox; is nonexpansive and hence, for z and y in

H

I(1 + &) prox x — (1 + &) prox; y|| < [|lz - y]|
& || prox; @ — prox;y|| < (1+¢) "z —yll,

thus prox; is a Banach contraction with constant 3. Conversely, assume that
prox; is a Banach contraction with constant 5. Since prox; is the Fréchet

gradient mapping of the continuous convex function f*D%H 2 H - R
(see Fact 2.54), the Baillon-Haddad theorem (Fact 3.12) guarantees that
B! prox ¢ 1s firmly nonexpansive. O

Remark 4.7. If n = 2, then (4.13) reduces to

<$1 — Txl,T:zl — T$2> + <LL‘2 - TZ‘Q,T.IQ - Tx1> > 0
<~ <(Id —T)a:l — (Id —T)xQ,Tflfl — T.T2> >0

i.e., to firm nonexpansiveness of T' (see Fact 3.3(v)).

4.2 Duality

There is a natural duality for firmly nonexpansive mappings and maxi-
mally monotone operators; namely,

T+ Id—T and A+ A7L,

respectively. Note that the dual of the dual is the original property, e.g.
Id—(Id—=T) = T. Every property considered in Theorem 4.1 has a dual
property. We have considered all dual properties and we shall explicitly
single those out that we found to have simple and pleasing descriptions.
Among these properties, those that are “self-dual”, that is the property is
identical to its dual property, stand out even more. First, we more explicitly
define the notion of dual properties.

Definition 4.8 (dual and self-dual properties). Let (p) and (p*) be prop-
erties for firmly nonexpansive mappings defined on H. If, for every firmly
nonexpansive mapping 7: H — H,

T satisfies (p) if and only if Id —T satisfies (p*), (4.24)
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4.2. Duality

then (p*) is dual to (p), and hence (p) is dual to (p*). If (p) = (p*), we say
that (p) is self-dual. Analogously, let (¢) and (¢*) be properties of maximally
monotone operators defined on H. If

A satisfies (q) if and only if A1 satisfies (¢*) (4.25)

for every maximally monotone operator A: H = H, then (¢*) is dual to (¢),
and hence (¢) is dual to (¢*). If (¢) = (¢*), we say that (q) is self-dual.

Figure 4.1: Duality of a monotone operator, A, and its associated resolvent,
T =Jy.

Theorem 4.9. Let T: H — H be firmly nonexpansive, let A: H = H be
maximally monotone, and suppose that T = J4 or equivalently that A =
T—' —1d. Then the following are equivalent:

(i) T is surjective.
(ii) A has full domain.
(iii) A~ is surjective.

Thus for mazimally monotone operators, surjectivity and full domain are
properties that are dual to each other. These properties are not self-dual;
for example, A =0 has full domain while A~! = Oiioy does not.
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Proof. (i)<(ii): Theorem 4.1(ii). (ii)<(iii): Obvious. O

Theorem 4.10. Let T: H — H be firmly nonexpansive, let A: H = H be
mazimally monotone, and suppose that T = Ja or equivalently that A =
T—' —1d. Then the following are equivalent:

(i) T is strictly nonexpansive.
(il) A is disjointly injective.
(iii) Id =T is injective.

(iv) A~ is at most single-valued.

Thus for firmly nonexpansive mappings, strict nonexpansiveness and injec-
tivity are dual to each other; and correspondingly for maximally monotone
operators disjoint injectivity and at most single-valuedness are dual to each
other. These properties are not self-dual, T = 0 is strictly nonexpansive,

but Id =T = 1d is not. Correspondingly, A = Ov(oy is disjointly injective but
A~ =0 is not.

Proof. We know that (i)<(ii) by Theorem 4.1(ix). We also know that
(iii)<(iv) by Theorem 4.1(iv) (applied to A~! and Id —T). It thus suf-
fices to show that (ii)<(iv). Assume first that A is disjointly injective and
that {z,y} € A7'u. Then v € Az N Ay. Since A is disjointly injective, we
have x = y. Thus, A~! is at most single-valued. Conversely, assume that
A=l is at most single-valued and that u € Az N Ay. Then {z,y} C A lu
and so x = y. It follows that A is disjointly injective. O

Theorem 4.11. Let T: H — H be firmly nonexpansive, let A: H = H be
mazimally monotone, and suppose that T = Ja or equivalently that A =
T—' —1d. Then the following are equivalent:

(i) T satisfies (4.1) i.e.,
Te#Ty = ||Tx—Ty||> < (x —y, Tz — Ty).
(ii) A is strictly monotone.
(iii) Id =T satisfies

(Ve e H)(Vy e H) (Id—(1d-T))z # (Id—(1d-T))y

= |(Id=T)z — (Id =T)y|*> < (x — y, (Id =T)x — (Id =T)y) .
(4.26)
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(iv) A~! satisfies

(V(z,u) € gra A" )(V(y,v) €grad™) uw#v = (z—y,u—v)>0.
(4.27)

Thus for firmly nonexpansive mappings, properties (4.1) and (4.26) are dual
to each other; and correspondingly for mazximally monotone operators strict
monotonicity and (4.27) are dual to each other. These properties are not
self-dual; T = 0 trivially satisfies (4.1), but Id —0 = Id does not.

Proof. (i)<(ii): Theorem 4.1(vi). (i)« (iii): Indeed, (4.26) and (4.1) are
equivalent as is easily seen by expansion and rearranging. (ii)<(iv): Clear.
O

Theorem 4.12 (self-duality of strict firm nonexpansiveness). Let T': H —
H be firmly nonexpansive, let A: H = H be mazimally monotone, and
suppose that T = J4 or equivalently that A =T~ —1d. Then the following
are equivalent:

(i) T is strictly firmly nonexpansive.
(i)

(iii) Id =T is strictly firmly nonexpansive.

(iv) A~ is at most single-valued and strictly monotone.

A is at most single-valued and strictly monotone.

Consequently, strict firm nonezxpansive is a self-dual property for firmly non-
expansive mappings; correspondingly, being both strictly monotone and at
most single-valued is self-dual for maximally monotone operators.

Proof. Note that T is strictly firmly nonexpansive if and only if

VeeH)(VyeH) z#y = 0< (Tx—Ty,(Id-T)z — (Id-T)y),
(4.28)
which is obviously self-dual. In view of Theorem 4.1(viii), the corresponding
property for A is being both at most single-valued and strictly monotone. [

Theorem 4.12 illustrates the technique of obtaining self-dual properties
by fusing any property and its dual. Here is another example of this type.

Theorem 4.13 (self-duality of strict nonexpansiveness and injectivity). Let
T: H — H be firmly nonexpansive, let A: H = H be maximally monotone,
and suppose that T = Ja or equivalently that A = T—' —1d. Then the
following are equivalent:
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(i) T is strictly nonexpansive and injective.

(ii) A is at most single-valued and disjointly injective.

(iii) Id =T is strictly nonexpansive and injective.

(iv) A~ is at most single-valued and disjointly injective.

Consequently, being both strictly nonexpansive and injective is a self-dual
property for firmly nonexpansive mappings; correspondingly, being both dis-

jointly injective and at most single-valued is self-dual for maximally mono-
tone operators.

Proof. Clear from Theorem 4.1(x). O

Remark 4.14. In Theorem 4.12 and Theorem 4.13, arguing directly (or by
using the characterization with monotone operators via Theorem 4.1), it is
easy to verify the implication

T is strictly firmly nonexpansive

= T is injective and strictly nonexpansive. (4.29)

The converse of implication (4.29) is false in general, see Example 4.15.
In contrast, we see in Corollary 4.17 that when H is finite-dimensional and
T = Jy is a proximal mapping (i.e., A is a subdifferential operator), then
the converse implication of (4.29) is true.

Example 4.15. Consider H = R?, and let A denote the counter-clockwise
rotation by 7/2, which we utilized already in (4.17). Clearly, A is a linear
single-valued maximally monotone operator that is (disjointly) injective, but
A is not strictly monotone. Accordingly, T" = J4 is linear, injective and
strictly nonexpansive, but not strictly firmly nonexpansive.

Lemma 4.16. Suppose that H is finite-dimensional and let f € To(H).
Then the following are equivalent:

(i) Of is disjointly injective.

(ii) (0f)~t = Of* is at most single-valued.

(iii) f* is essentially smooth.
)
)

(iv) f is essentially strictly convez.

(v) Of is strictly monotone.
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(vi) prox; is strictly nonerpansive.
(vii) (Vx € H)(Vy € H) prox;z # prox;y
= | proxx — proxy ylI? < (z -y, PrOX ;T — Proxs y).

Proof. “(i)<(ii)”: Theorem 4.10. “(ii)<(iii)”: Fact 2.47. “(iii)<(iv)”:
Fact 2.48. “(iv)<(v)”: Fact 3.30. “(i)<>(vi)”: Theorem 4.1(ix) and Fact 2.53.
“(v)&(vii)”: Theorem 4.1(vi). O

Lemma 4.16 admits a dual counterpart that contains various characteri-
zations of essential smoothness. The following consequence of these charac-
terizations is also related to Remark 4.14. Recall that for a finite-dimensional
H, a function f € T'g(H) is Legendre if it is both essentially smooth and
essentially strictly convex.

Corollary 4.17 (Legendre self-duality). Suppose that H is finite-dimensional
and let f € To(H). Then the following are equivalent:

(i) Of is disjointly injective and at most single-valued.
(ii) Of is strictly monotone and at most single-valued.
(iii) f is Legendre.

(iv prox; is strictly firmly nonexpansive.

)
)
)
)
(v) proxy is strictly nonexpansive and injective.
(vi) Of* is disjointly injective and at most single-valued.
(vil) Of* is strictly monotone and at most single-valued.
(viii) f* is Legendre.
(ix) proxg. is strictly firmly nonerpansive.
(x) proxy. is strictly nonexpansive and injective.

Proof. Combine Theorem 4.13 and Lemma 4.16 using Fact 2.53. O

Theorem 4.18 (self-duality of paramonotonicity). Let A: H = H be max-
imally monotone, let T: H — H be firmly nonexpansive, and suppose that
T = Ja or equivalently that A = T—' —1d. Then A is paramonotone if
and only if A= is paramonotone; consequently, T satisfies (4.11) if and
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only if Id =T satisfies (4.11) (with T replaced by Id =T ). Consequently, be-
ing paramonotone is a self-dual property for mazimally monotone operators;
correspondingly, satisfying (4.11) is a self-dual property for firmly nonex-
pansive mappings.

Proof. Self-duality is immediate from the definition of paramonotonicity,
and the corresponding result for firmly nonexpansive mappings follows from
Theorem 4.1(xv). O

Theorem 4.19 (self-duality of cyclical firm nonexpansiveness and cyclical
monotonicity).

Let T: H — H be firmly nonexpansive, let A: H = H be maximally mono-
tone, let f € T, and suppose that T = J 4 or equivalently that A = T~ —1d.
Then the following are equivalent:

(i) T is cyclically firmly nonexpansive.

(ii) A is cyclically monotone.

(iii) A=0f.

)
)
)
(iv) Id =T is cyclically firmly nonexpansive.
(v) A= s cyclically monotone.

i) A

(v

Consequently, cyclic firm nonexpansiveness is a self-dual property for firmly
nonexpansive mappings; correspondingly, cyclic monotonicity is a self-dual
property for mazximally monotone operators.

= df*.

Proof. The fact that cyclically maximal monotone operators are subdiffer-
ential operators is due to Rockafellar and well known, see Fact 3.50, as is
the identity (0f)~! = Of*, see Fact 2.59. The result thus follows from
Theorem 4.1(xvi). O

Theorem 4.20 (self-duality of rectangularity). Let T: H — H be firmly
nonexpansive, let A: H = H be mazximally monotone, and suppose that
T = J4 or equivalently that A = T~'—1d. Then the following are equivalent:

(i) T satisfies (4.14).
(ii) A is rectangular.

(iii) Id =T satisfies (4.14).
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(iv) A~ is rectangular.

Consequently, rectangularity is a self-dual property for maximally monotone
operators; correspondingly, (4.14) is a self-dual property for firmly nonex-
pansive mappings.

Proof. 1t is obvious from the definition that either property is self-dual; the
equivalences thus follow from Theorem 4.1(xvii). O

Theorem 4.21 (self-duality of linearity). Let T: H — H be firmly nonez-
pansive, let A: H = H be mazximally monotone, and suppose that T = J4
or equivalently that A = T—' —1d. Then the following are equivalent:

(i) T is linear.

(ii) A is a linear relation.
(iii) Id =T is linear.
(iv) A~ is a linear relation.

Consequently, linearity is a self-dual property for firmly nonexpansive map-
pings; correspondingly, being a linear relation is a self-dual property for
mazximally monotone operators.

Proof. 1t is clear that T is linear if and only if Id —T" is; thus, the result
follows from Theorem 4.1(xviii). O

Theorem 4.22 (self-duality of affineness). Let T': H — H be firmly nonex-
pansive, let A: H = H be mazximally monotone, and suppose that T = Jx
or equivalently that A = T—' —1d. Then the following are equivalent:

(i) T is affine.

(ii) A is an affine relation.
(iii) Id =T is affine.
(iv) A1 is an affine relation.

Consequently, affineness is a self-dual property for firmly nonexpansive map-
pings; correspondingly, being an affine relation is is a self-dual property for
mazximally monotone operators.

Proof. 1t is clear that T is affine if and only if Id —7T is; therefore, the result
follows from Theorem 4.1(xix). O

55



4.3. Reflected resolvents

Remark 4.23 (projection). Concerning Theorem 4.1(xx), note that being a
projection is not a self-dual: indeed, suppose that H # {0} and let T be the
projection onto the closed unit ball. Then Id —T' is not a projection since
Fix(Id -T) = {0} & H = ran(Id -T)).

Theorem 4.24 (self-duality of sequential weak continuity). Let T: H — H
be firmly nonexpansive, let A: H = H be maximally monotone, and suppose
that T = Ja or equivalently that A = T—' —1d. Then the following are
equivalent:

(i) T is sequentially weakly continuous.

)
(ii) gra A is sequentially weakly closed.
(iii) Id =T is sequentially weakly continuous.
(iv) gra A=1 is sequentially weakly closed.
Consequently, sequential weak continuity is a self-dual property for firmly
nonexpansive mappings; correspondingly, having a sequentially weakly closed
graph is a self-dual property for maximally monotone operators.

Proof. Since Id is weakly continuous, it is clear that T is sequentially weakly
continuous if and only if Id =T is; thus, the result follows from Theo-
rem 4.1(xxi). O

The self dual properties of this section are summarized in Table 4.1.

4.3 Reflected resolvents

In the previous two sections, the correspondence between firmly nonex-
pansive mappings and maximally monotone operators was extensively uti-
lized. However, Fact 3.3 provides another correspondence with nonexpansive
mappings:

T is firmly nonexpansive if and only if N = 27T — Id is nonexpansive.
(4.30)

Note that NV is also referred to as a reflected resolvent. The corresponding
dual of N within the set of nonexpansive mappings is simply

~N. (4.31)
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Table 4.1: Summary of self dual properties between monotone operators and
their resolvents.

Monotone Operator Resolvent
Aand A1 T and (Id—T)
At most single-valued and
strictly monotone

Strictly firmly nonexpansive

At most single-valued and Strictly nonexpansive
disjointly injective and injective
Paramonotone Satisfies (4.11)

Cyclically firmly
Cyclically monotone

nonexpansive
Linear relation Linear
Affine relation Affine
. Sequentially weakly
Sequentially weakly closed continuous

EN

ER

Figure 4.2: Duality of a monotone operator A, its associated resolvent, T,
and its reflected resolvent, N = 27" — Id.

Thus, all results have counterparts formulated for nonexpansive map-
pings. These counterparts are most easily derived from the firmly nonex-
pansive formulation, by simply replacing 1" by %Id —i—%N .

Theorem 4.25 (strict firm nonexpansiveness). Let T: H — H be firmly
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4.3. Reflected resolvents

nonexpansive, let N: H — H be nonexpansive, and suppose that N =
2T —1Id. Then T is strictly firmly nonexpansive if and only if N is strictly
nonexrpansive.

Proof. Let x and y be in H. T is strictly firmly nonexpansive if x # y
implies

1Tz = Ty|* + | (1d =Tz — (Id =T)y||* < |z — y|

1 1
< 1d+N)z —(1d +N)yl|* + 7 1(Id =N)a —(1d ~N)yl? < flz -yl

Now expand and simplify to yield the result. O
Remark 4.26.

(i) We know from Theorem 4.12 that strict firm nonexpansiveness is a
self-dual property with respect to monotone operators and firmly non-
expansive mappings. This can also be seen within the realm of nonex-
pansive mappings since N is strictly nonexpansive if and only if —V
is.

(ii) Furthermore, combining Theorem 4.12 with Theorem 4.25 yields the
following: a maximally monotone operator A is at most single-valued
and strictly monotone if and only if its reflected resolvent 2J,4 — Id
is strictly nonexpansive. This characterization was observed by Rock-
afellar and Wets; see [59, Proposition 12.11].

(iii) In passing, we note that when # is finite-dimensional, the iterates of
a strictly nonexpansive mapping converge to the unique fixed point
(assuming it exists). For this and more, see, e.g., [39].

Theorem 4.27 (strong monotonicity). Let A: H = H be mazimally mono-
tone, let N: H — H be nonexpansive, suppose that N = 2J4 — Id and that
e € |0,+00[. Then A is strongly monotone with constant € if and only if
eld+(1+ )N is nonexpansive.

Proof. We know from Theorem 4.1(xi) that A is strongly monotone with
constant ¢ if and only if (1 + ¢)7T is firmly nonexpansive. This is equivalent
to

20+e)T—1d=(1+¢)(2T —1d) +¢1d,

is nonexpansive. O
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Theorem 4.28 (reflected resolvent as Banach contraction). Let A: H =% H
be maximally monotone, let T: H — H be firmly nonexpansive, and let
N:H — H be nonexpansive. Suppose that T = J4, that N = 2T — 1d, and
that B € [0,1]. Then the following are equivalent:

(i) (V(z,u) € graAd)(V(y,v) € graA)
(1= 8%l = yl* + llu = v][*) < 21+ 5%) (2 — y,u — v)
(ii) (Ve e H)(Vy € H)

(1= 8)|lz —yl|* < 4(Tx — Ty, (1d -T)z — (Id -T)y)

(i) (Vz e H)(Vy € H)
[Nz = Nyl|| < Bz =yl
Proof. In view of the Minty parametrization, (3.14), item (i) is equivalent
to
(Ve e H)(vy e H) (1—B)(|ITe =Tyl + [|(z = Tz) — (y = Ty)|*)
<2(1+ %) (Tw — Ty, (x — Tx) — (y — Ty)). (4.32)
Simple algebraic manipulations show that (4.32) is equivalent to (ii), which
in turn is equivalent to (iii). O

It is clear that the properties (i)—(iii) in Theorem 4.28 are self-dual (for
fixed B). The following result is a simple consequence.

Corollary 4.29 (self-duality of reflected resolvents that are Banach con-
tractions). Let A: H = H be mazimally monotone, let T: H — H be firmly
nonexpansive, let N: H — H be nonexpansive, and suppose that T = Jyu
and N = 2T —1Id. Then the following are equivalent:

@iﬁ{ (= y,u = v)

[ = ylI? + [lu — o[

(@), (5, 0))  gra A, () # <y,v>} -0,

(T —Ty,(Id -T)z — (Id =T)y
[l —yll?

(ii) inf{ ) ’{x,y}CH,x;«éy}>0.

(iii) N is a Banach contraction.

Furthermore, these properties are self-dual for their respective classes of op-
erators.
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Remark 4.30. Precisely when A: x — x — z for some fixed vector z € H,
we compute T': z — (z + z)/2 and therefore we reach the extreme case of
Corollary 4.29 where N: z — z is a Banach contraction with constant 0.

Corollary 4.31. Let A: H = H be maximally monotone, let T: H — H
be firmly nonexpansive, let N: H — H be nonexpansive, and suppose that
T=Js and N =2T —1d. Then the following are equivalent:

(i) Both A and A™' are strongly monotone.

(ii) There exists v € |1, 4o0[ such that both T and ~v(Id =T) are firmly
nonexrpansive.

(iii) N is a Banach contraction.

Proof. Let us assume that A and A~! are both strongly monotone; equiv-
alently, there exists ¢ € ]0,+oo[ such that A — ¢Id and A~! — e1d are
monotone. Let {(x,u), (y,v)} C gra A. Then {(u,z), (v,y)} C gra A~! and

(x —y,u—v) >ellz—y|> and (u—v,2 —y) >ellu—v|*. (4.33)

Adding these inequalities yields 2 (x — y,u —v) > e(||z — y||® + [|u — v||?).
Thus, item (i) of Corollary 4.29 holds. Conversely, if item (i) of Corol-
lary 4.29 holds, then both A and A~! are strongly monotone. Therefore,
by Corollary 4.29, (i) and (iii) are equivalent. Finally, in view of Theo-
rem 4.1(xi), we see that (i) and (ii) are also equivalent. O

Additional characterizations are available for subdifferential operators:
Proposition 4.32. Let f € To(H). Then the following are equivalent:
(i) f and f* are strongly convex.

(ii) f and f* are everywhere differentiable, and both Vf and Vf* are
Lipschitz continuous.

(iii) proxy and Id —prox; are Banach contractions.
(iv) 2proxs —1Id is a Banach contraction.

Proof. Tt is well known that for functions, strong convexity is equivalent to
strong monotonicity of the subdifferential operators, see Example 3.33. In
view of Proposition 4.6 and Corollary 4.31, we obtain the equivalence of
items (i), (iii), and (iv). Finally, the equivalence of (i) and (ii) follows from
Fact 2.43. ]
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We now turn to linear relations.

Proposition 4.33. Let A: H — H be a maximally monotone linear rela-
tion. Then the following are equivalent:

(i) Both A and A~! are strongly monotone.
(ii) A is a continuous surjective linear operator on H and

in _(nAz) >0
e (o) [l2]° + 1 4z])> ©

(iii) 2J4 —1Id is a Banach contraction.
If H is finite-dimensional, then (i)—(iii) are also equivalent to
(iv) A: H — H satisfies (Vz € H ~{0}) (2, Az) > 0.

Proof. “(i)<(iii)”: Clear from Corollary 4.31.

“(i)=-(ii)”: By Fact 3.35 A and A~! are single-valued surjective operators
with full domain. Since A and A~! are linear, Fact 3.38 implies that 4 and
A~! are continuous. Thus, (ii) holds.

“(i)«<=(ii)”: (ii) implies that item (i) of Corollary 4.29 holds. Thus, (i)
follows from Corollary 4.29 and Corollary 4.31.

“(ii)=-(iv)”: Clear.

“(ii)«=(iv)”: Since A is injective and H is finite-dimensional, A is bijec-
tive and continuous. To see that the infimum in item (ii) is strictly positive,
note that we may take the infimum over the unit sphere, which is a compact
subset of H. O]

Example 4.34. In Proposition 4.33(iv), if H is infinite dimensional then
the equivalence does not hold. Consider again the case in Example 4.4 where
H=1(*N)and A: H — H: (zn) — (2zy). Then for z € (2(N) \ {0},

= 1
(x, Az) = 2:1 Ewi > 0,
n—=

so (iv) holds. But take the unit vectors e,, and e, ; and we see that

1 2n+1
n+1 n2+4n

1
<en - en+17Aen - Aen+1> = ﬁ +
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4.3. Reflected resolvents

So #8 € Ry, such that (z —y, Az — Ay) > B|lz —y||? Vz,y € £2(N), thus A
is not strongly monotone and thus (i) does not hold. Similarly,
(en, Aey,)

1
inf = D
len]? +[[Aenl? 1+

— 0,

so (ii) does not hold. Finally, we have Te, = Jse, = (niﬂen) and thus

2n
e
n—+1

n—1
e
n—+1

n — ©n n _>17

7 - Tayen |

and so 2T — Id is not a Banach contraction and (iii) does not hold.

We shall conclude this chapter with some comments regarding applica-
tions of the above results to splitting methods. See also [11] for further
information and various variants. Here is a technical lemma, which is well
known and whose simple proof is omitted.

Lemma 4.35. Let T1,...,T, be finitely many nonerpansive mappings from
H to H, and let Ai,..., N\, be in]0,1] such that A\; +---+ X\, = 1. Then the
following hold:

(i) The composition Ty Ty - - - T), is nonexpansive.
(ii) The convex combination \{T1 + - - - + A\, T, is nonexpansive.

(iii) If some T; is strictly nonexpansive, then ThTy --- T, is strictly nonex-
pansive.

(iv) If some T; is strictly nonexpansive, then M1y + -- - + A\, T, is strictly
nonexrpansive.

(v) If some T; is a Banach contraction, then TyTs - - - T, is a Banach con-
traction.

(vi) If some T; is a Banach contraction, then \iTh+- - -+ A\, T, is a Banach
contraction.

Corollary 4.36 (backward-backward iteration). Let A; and Ay be two maz-
imally monotone operators from H to H, and assume that one of these is dis-
jointly injective. Then the (backward-backward) composition Ty Ty is strictly
nonerpansive.

Proof. Combine Theorem 4.1(ix) and Lemma 4.35. O
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Corollary 4.37 (Douglas-Rachford iteration). Let A; and Az be two maz-
imally monotone operators from H to H, and assume that one of these is
both at most single-valued and strictly monotone (as is, e.g., the subdiffer-
ential operator of a convex Legendre function when H s finite-dimensional;
see Corollary 4.17). Denote the resolvents of A1 and As by Th and T3,
respectively. Then the operator governing the Douglas-Rachford iteration,
i.€.,

T:= 12Ty —1d)(2T% — 1d) + 1 1d, (4.34)

1 not just firmly nonexpansive but also strictly nonerpansive; consequently,
Fix T is either empty or a singleton.

Proof. In view of Theorem 4.12 and Theorem 4.25, we see that 277 — Id and
215 —1d are both nonexpansive, and one of these two is strictly nonexpansive.
By Lemma 4.35(iii), (277 — Id)(27% — Id) is strictly nonexpansive. Hence,
by Lemma 4.35(iv), T is strictly nonexpansive. O

Remark 4.38. Consider Corollary 4.37, and assume that A;, where i € {1, 2},
satisfies condition (i) in Corollary 4.29. Then 27;—1d is a Banach contraction
by Corollary 4.29. Furthermore, Lemma 4.35 now shows that the Douglas-
Rachford operator T defined in (4.34) is a Banach contraction. Thus, FixT
is a singleton and the unique fixed point may be found as the strong limit
of any sequence of Banach-Picard iterates for T.

This chapter gave a comprehensive list of how properties of firmly non-
expansive mappings translate to the corresponding maximally monotone
operators. The duality of these properties was also examined, and those
properties that are self-dual were identified. Finally, some applications to
operators occurring in splitting methods, including reflected resolvents, were
given.
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Chapter 5

The Resolvent Average of
Monotone Operators

This chapter is based on the papers [18] and [21]. We begin this chapter
with a new method of averaging monotone operators.

Definition 5.1 (Resolvent average). Let A;,i = 1,...,n be monotone op-
erators, \; > 0 with > ; \; = 1, and g > 0. For A = (4;,...,A,) and
A= (A1,..., ) the resolvent average of A is,

Ru(A,A) i= M (Ar+p 1) 4 A (A 1) T = L (5.1)
The name “resolvent average” is motivated from the fact that when p = 1
(Ri(AN) +1d) 7 =M (A +1d) 7+ A4 +1d) 7, (5.2)

which says that the resolvent of R1(A, A) is the arithmetic average of resol-
vents of the A;, with weight A = (\1,..., ;). The resolvent average pro-
vides a novel averaging technique, and having the parameter p in R, (A, A)
will allow us to take limits which compare the resolvent average with the
arithmetic and harmonic averages.
5.1 Basic properties
In this section, we give some basic properties of R, (A, X).

Proposition 5.2. We have

J;LRH(A,}\) = >\1J,uA1 + - )\an,An, (53)

H(Ru(A,N)) = A HA; + -+ A P A, (5.4)
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Proof. Tt follows from (5.1) that

UR(AN) +1d = [A Ay +1d) ™" + -+ Ay (pA, +1d) 2] 7"

Then (5.3) follows by taking inverses on both sides and using the definition
of the resolvent, (3.11).
By (5.3), we obtain that
(Id=Jur,ax) = A(Id=Jpa,) + -+ A (Id =Jpa,, ).
Dividing both sides by pu,
p 1A = Jur, axny) = A Id =Jua,) + -+ Aap” (I = Jpa,)-
Then apply the definition of the Yosida regularization, (3.12). O

Theorem 5.3. For alli € I, let A; be a monotone operator from H = H.
Then Ru(A, X) is monotone. Moreover,

dom J,»,(an) = domJya, N---NdomJya,, ie., (5.5)
ran(uR, (A, X) +1d) = ran(pA, +1d) N - - - Nran(pAd, + 1d).

Consequently, R, (A, X) is mazimal monotone if and only if (Vi) A; is max-
imal monotone.

Proof. Since A; is monotone, (1A; + Id)~! is firmly nonexpansive, so there
exists a nonexpansive mapping N; such that J, 4, = il i;Id. Then

(MN1+ -+ A\ N,) +1d
2 )
is firmly nonexpansive, since A\{Ny + --- + A\, N, is nonexpansive. This

means that there exists a monotone operator B such that (uB +Id)~! =
AJua; + 0+ Andya,. Then

uB = (MJua, + -+ Andua,) Tt = Id = pR,(A, ),

)\lJ,uAl +---+ )\nJ,uAn =

therefore R, (A,A) = B is monotone. Since Jyr,ax) = Adua, + -+ +
Andua,, this gives

dom Jy,z,(ax) = domJya, N---NdomJya,,

which is (5.5). If each A; is maximal monotone, then pA; is maximal mono-
tone, and thus by Fact 3.43 dom J,4, = H. By (5.5), dom Jurax) = H
and since uR, (A, A) is maximal monotone, so is R,(A, ). On the other
hand, if R,(A,A) is maximal monotone, then dom.J,z (a,x) = H. It fol-
lows from (5.5) that (Vi € I)domJ,4, = H, thus pA; must be maximal
monotone and therefore A; is maximal monotone. O
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Proposition 5.4. For alli € I, let A; be a mazimally monotone operator
from H = H. Let A = (Al,Al_l, o A ACD) X = (ﬁ, ﬁ, e %), and
p=1. Then R, (A, ) =1d.

Proof. This follows directly from the definition of R,(A, ), (5.2), and the
resolvent identity, (3.13). O

Proposition 5.5. Let A = (Aq,...,A1). Then R,(A,X) = Aj.
Proof. We have
Ru(AXN) = (M +-+ M)A+ pt Id)*l)_ —pt1d
= (A1 +p! Id)—l)‘1 —ptld=A 4 d—ptId = Ay,

1

which proves the result. O
For clarification, in the following result we write R, (A1, A1, , Ap, Ap)
for R, (A, ).

Proposition 5.6 (recursion). We have

Ry (At Ay o Ay An) = Ria (R (A1, 25 Auet 255 ) 1= s A )

In particular, for Ay = -+ = A, = % one has

Ry (A1 oo Any 2) = Ry (R (Avs by Anen iy ) 1= 1 40, 1),

Proof. This follows from the definition of R, (A, X). Indeed,

-1
Ru(A ) = [Al(Al + ) T A (A Id)l] —pl1d

)\n—l
1-A,

:[H—An)( ) (I R

A “l1a)!
A (a1

+ A(Ap + pt Id)_l] . pt1d
—1
= |:(1 — )\n) <RN(A1, )\1/(1 — )\n), cee ,Anfl, )\nfl/(l — )\n)) + M_l Id)

-1
+ (A + pt Id)_l] —ptId

~R, (RH (Al, 2 A, fj;l) - An,An,)\n) .

n
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Proposition 5.7 (Minty parametrization of R,(A,)). For all i € I, let
A; be a mazimally monotone operator from H = H. Then for every x € H,
we have

(Juruan (@) = Jur,an (@) =
Myt (2,2 = Ty @) + -+ M(poa, @), 2 = ua, (@), (5.6)
Consequently,
gra yR (A, A) C A\ grapdy + -+ + Ay grapAy,.
In particular,
graRi(A, ) C A\igrady + -+ A\, gra A,.
Proof. As Minty’s parametrization of R, (A, ) is
gra pRu(A,X) = {(Jur,axn) (@), 7 — Jug,an (@) | 2 € H},
then applying (5.3) and
Id=Jur,axn = A(dd —=Jpa,) + -+ Ap(Id =Jpa, ),
we have

graR, (A, )

= {(Z )\iJuAia:,Z)\i(Id—JuAi)x> | e}
i=1 i=1

= {(MJpaz, MAd=Jpa)x) + - + (Andpa, @, An(Id = Jya,)z) | © € H}
= {\ (Juay @, (Id =Jpa,)x) + -+ + A (Jua, @, (Id —Jya,)z) | @ € H}
C ArgrapAy + -+ Ay grapA,.

O]

Theorem 5.8 (self-duality). For alli € I, let A; be a monotone operator
onH and p > 0. Assume that > 7" | Ai =1 with A\; > 0. Then

(Ru(A X)) =R, (AL N), de., (5.7)

—1 —1
KMA1 ) T A (A Id)‘1> — Id] =

—1
<>\1(A11 +pId) T+ A (A + uld)*) —uld.
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Proof. By (3.15) we have,
(Aj + pt1d) ™ = p(Id —(Id +pt A7 H ).
This and the fact that > " | \; = 1 gives
Ru(A, )
= -)\m( Id—(Id+p AT ™) 4 4 App(Id —(Id +p A7) B

—p~t1d
- n n —1

- M(ZAJd-ZAiJ#_lAl)] —p'1d
- i=1 i=1

n -1
= (Id +(- ZAiJulAi_l)> o(p~'1d) — p ' 1d.
i=1

By (3.13) we have,

n -1 n
(Id+ <_ZAiJM_1A'1>> =Id— | Ild+ <_Z/\in—1A.1)
i=1 1=1

Then,

—1\ !

n -1 -1
Ru(AN) = |Id— | Id+ (— Z)\ZJM_IA_1> o(pd) — pt1d
i=1
n -1 -1
1=1

-1

n —1
(S| o
=1
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— N 1 -1
i=1

_ 47!

=1

_ -1

n -1
=— |pld+ ((— Z)\iJulAi_l> o(pt Id))
=1

— [pId+ (M Id+p AT o (ptId) — -
= M(Id+p7t ALY o (p! Id)))fl} )

— [# Id + (—/\1 (n(1d +u‘1A;1))*1 -

—n (u(1d +”1Anl))_1>_1] -1

— N —17"1
—[Mld-i-(—)\l (uId+A1_1) 1_..._An (/LId—I—A;l) 1) :| .

To continue, we write

Ru(A,X)

—1
1

—_[,ud+ ( (nId+A7Y) +---+/\n(uld+A;1)1>)1]

(-

- {uld+(A1 pId+ATH T A, (uldwlnl)_l)_lo(Id)]1

= KMIOH(AI (uId+AT) T+ 0, (uId+A;1)1)_1o(—Id)> o(—Id)}l
( )

- 17!
= {—Mldjt A (pId+ATY) T b A (pld A T }
= (R (AL A)
which gives R, (A,A) = (R,-1(A™1, )\))_1. Taking inverses on both sides
we obtain (5.7). O

Corollary 5.9. Let A; : H = H be monotone operators for alli =1,...,n
Ai be strictly positive real numbers such that Y ;. \i =1, and pp > 0. Set
A= (Ay,...,A,) and A7 = (A7, ... ALY, Then

n

J(,ﬂzH(A,A))*1 = J,rlnu,l(Afl,A) = )\1JM_1A14 o And ot (5.8)
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In particular,
JRl(A)\)—l = )\1JA1—1 + "‘+>\nJA7—ll. (5.9)

Proof. Combine (5.3) with Theorem 5.8. O

5.2 The resolvent average of positive semidefinite
matrices

This section covers results specific to positive definite and positive semidef-
inite N x IN matrices. Recall the following fact for these types of matrices:

Fact 5.10. [42, Corollary 7.7.4.(a)] and [46, Section 16.E] or [26, page 55].
Let A,B € Sf+, we have

A=B & A'zxp! (5.10)

and
A-B & A'<Bl (5.11)

Proposition 5.11. Assume that (V i) A;, B; € Sﬁ and A; = B;. Then
Ru(AA) = Ru(B,X). (5.12)
Furthermore, if additionally some A; = Bj, then R, (A, ) = Ru(B,A).
Proof. Note that V u > 0,
Aj+p ' d = B+ 7t 1d = 0,

so that
0< (A +p 1) < (B +pt1d) 1,

by (5.10). As S¥ and S¥, are convex cones, we obtain that

0< Z )\l(AZ + ,u,_1 Id)_l = Z)\Z(BZ + ,u_l Id)_l. (5.13)
i=1 i=1
Using (5.10) on (5.13), followed by subtracting p~!Id, gives

[ oA+ p 1) T = T [ NB 4 e )T -,
=1 i1

which establishes (5.12). The “furthermore” part follows analogously using
(5.11). 0
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Theorem 5.12. Assume that (V i) A; € SN. Then R,(A,X) € SY¥. Fur-
thermore, if additionally some A; € Sﬂr, then Ru(A,X) € Sf+.

Proof. This follows from Proposition 5.11 (with each B; = 0) and Proposi-
tion 5.5. ]
5.2.1 Inequalities among means

In this section, we derive an inequality comparing the resolvent average
to the arithmetic and harmonic averages when (V i) A; € Sﬁ 4. We start
by computing the proximal average of general linear-quadratic functions
thereby extending Fact 2.70.

Lemma 5.13. Let A; € Sﬁ, bi € RN, r; € R. If each fi = qa, + (bi,-) + 14,
i.e., linear-quadratic, then Va* € RV,

Pu(f, A)(z7)

= qr,(an(z7) + <~”U*7 (Z Ai(Ai + p 1)) T Z Ai(Ai +p! Id)_lbz’>

i=1 i=1

. . —1 —17
" q( i Ai(Ag+pt Id)71)71 <ZZ:; )\Z(AZ Tu Id) bz)
= DA A () = 7). 614
i=1

In particular, if (Vi) f; is quadratic, i.e., b; = 0,7, = 0, then P,(f, ) is
quadratic with

Pulf,A) = dr,an);
If (Vi) fi is affine, i.e., A; =0, then P,(f, ) is affine.
Proof. We have f; +pu~lq = d(As4p-11a) T (bi, ) +7i and applying Fact 2.58
and then expanding we get

(fi+ )" (2%) = qasp-110)-1 (2% — i) — 74
= q(ap-r1a)-1 (%) = (2%, (A + 71 1) 1)
+ a4 p-11a)-1 (bi) — i
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Then ()\1(f1 + /qu)* + -+ )\n(fn + Nilq)*)(x*) =

Z Ai <q(Ai+u1 1y-1 () — (@, (Ai + 7 1) 7)) + 9, 1a)-1 (bi) — Ti)

=gy n(Apt1d)-1 (@F) — <9€*, > Xi(Ai 4 p! Id)_lbi>

i=1
—I-Z)\ Agtp—11d)- (bl) —TZ').

It follows again from Fact 2.58 that

n

PulF: N (@) = 5 aaript1)-1-1 (5 + 3 Xi(Ai+ 5 1) )

=1
—Z)\ QA 1a)-1 (i) — 76) — q-11a(2").

Since

U5 (At 1) -1 (2 D Ai(Ai 4 7 1) )
=1

= qiyr 1>\-(A-+u*11d)*1}*1(x*)
< Z)\ (A; + pt1d)~t 1ZA (A; +pt1d)™ 1b>

=1 =1
n

A (At Mi(Ai + 7 1d) ),
=1

we obtain that

Pu(Fs N (@") = aior n(Ap11d)- 11—t 1a(27)

+ <x*, D XA+ )T (A ! Id)_lbi>
i=1 i=1
T AR, N (At 1d) 1] (Z Ai(A; + pt Id)*lbi)
i=1

*Z)\ Q(Aj+p—11d)- (b)*rz)
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5.2. The resolvent average of positive semidefinite matrices

which is (5.14). The remaining claims are immediate from (5.14) and that
Ru(A,A) =0 when (Vi) A; = 0 by Proposition 5.5. O

We are ready for the main result of this section:

Theorem 5.14 (harmonic-resolvent-arithmetic average inequality and lim-
its).
Let Ay,..., A, € SL. We have

(i)
H(A, ) X Ru(A ) < A(A,N); (5.15)

In particular, R, (A,X) € SY,.
(ii) Ru(A,X) = A(A,X) when pp— 07
(iii) Ru(A,A) = H(A,X) when pu — +oo.
Proof. (i): According to Fact 2.69,
ALfy 4+ A fa)" S PulFA) S Afit o+ Aafa (5.16)

Let fi = qa,. Using (q4,)* = q4-1 (by Fact 2.57) and Lemma 5.13 we have

= A0nAT AT - = AH(AN)- (5.17)
ALfL 4 4 Anfn = Ga At A2 A, = GAAN) (5.18)
Pu(fsN) = ar,an)- (5.19)

Then (5.16) becomes

IHAN) < AR, (AN) < TAAN)-

As qx < qy & X <Y, (5.15) is established. Since A; € SV, A7 €
SN MATY o A4 € ST, we have H(ALA) = (MATY + -
M A~ e SV, thus R, (A, A) € SY, by (5.15). (Alternatively, apply
Theorem 5.12.)

(ii) and (iii): Observe that (Vi) (A * fi)* = Aiff = XNiq,—1 has full
domain. By Fact 2.56, '

(Alfik_’_""i‘)\nf;)*:(Al*fl)D"'D(An*fn)'
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5.2. The resolvent average of positive semidefinite matrices

By Fact 2.72, V2 € RY one has

lim Pu(f,A)(x) = Afi+ -+ Mnfn) (@),

pu—07t

lim Py(F, (@) = (A + -+ M) (2).

H—r—+00

Since (Vi) f;, f are differentiable on RY, so is P,(f, A) by Fact 2.71. Ac-
cording to Fact 2.60, for all z

Mli)r(r)lJr V’P’u(f, )\)(:L') = )\1Vf1($) +oet )\nvfn(m)7 (5'20)
Jim VPU(F @) = VO o M) @) (521)

Moreover, the convergences in (5.20)-(5.21) are uniform on every closed
bounded subset of RY. Now it follows from (5.17)-(5.19) that

VP, A) =Ru(A,N),
v()‘lfl +F )\nfn) = A(A, )\),
VLT A+ 4 Mafi)” = H(AN).

(5.20)—(5.21) becomes

lim Ru(A, Az = A(A, )z, (5.22)
n—0t
uEToo Ru(A, Nz =H(A, Nz, (5.23)

where the convergences are uniform on every closed bounded subset of RY.
Hence (ii) and (iii) follow from (5.22) and (5.23). O

Note that in Theorem 5.14(ii) and (ii), there is no ambiguity since all
norms in finite dimensional spaces are equivalent.

Definition 5.15. A function g: D — SV, where D is a convex subset of SV,
is matriz convex if VA1, Ay € D, VA € [0, 1],

g(AA1L+ (1= N)A2) 2 Ag(Ar) + (1 — N)g(A2).
Matriz concave functions are defined similarly.

It is easy to see that a symmetric matrix valued function g is matrix
concave if and only if V& € RN the function A — gya)(x) is concave.
Similarly, g is matrix convex if and only if A — q44)(7) is convex. Some
immediate consequences of Theorem 5.14 on matrix-valued functions are:
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5.2. The resolvent average of positive semidefinite matrices

Corollary 5.16. Assume that (Vi) A; € SL and Y Ny =1 with A\; > 0.
Then
(AMAL+ -+ A An) T I NAT AL

Consequently, the matriz function X — X~ is matriz convex on SL.

Proof. Apply (5.15) with A = (Afl, AT, O

n

Corollary 5.17. For every p > 0, the resolvent average matriz function
A= Ru(A, ) given by

(A1, Ap) = [M(A + ! Id)—l o (A + p Id)_l]_l _u'd
is matriz concave on Sf+ X - X Sf_i_, (5.24)

For each A = (A1,--+ , \y) with >y A\; = 1 and \; > 0 Vi, the harmonic
average matriz function

(A1, - Ap) = MAT -+ XA T ds matriz concave (5.25)

on SJLF X oo X SL. Consequently, the harmonic average function

1
(w1, 2p) = — is concave (5.26)

at et ay!

OTLR++X"'XR++.

Proof. Set f; = qa,. Then Vo € RY, we have from (2.17)

Put @) =, i (o) dan )

+ (M) +"'+M1/\nq($n))> i)
Since for each fixed (z1,...,zy),
(A1, -+ Ap) = (Aada, (1) + - + Anda, (24)),
is affine, being the minimum of affine functions we have that ¥V the function
(A1, -5 An) = Pulf, A)(2),

is concave. As Py(f,A)(x) = dr,(ax)(z) by Lemma 5.13, this shows that
V2 € RV the function

A= (A1, An) = dr,ax () is concave,
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5.2. The resolvent average of positive semidefinite matrices

so A — R,(A, ) is matrix concave.
Now by Theorem 5.14(iii), R, (A, A) — H(A,A) when p — +oo. This
and (5.24) implies that
A— H(AN),
is also matrix concave. Equation (5.26) follows from (5.25) by setting N =1
and Ay =--- =\, = 1/n. O

Remark 5.18. Corollary 5.16 is well-known, cf. [59, Proposition 2.56]. Equa-
tion (5.26) is also well-known, cf. [27, Exercise 3.17].

The next theorem provides a simplified proof of Theorem 5.8 when the
operators are positive definite matrices.

Theorem 5.19 (self-duality). Let (V i) A; € SJL_ and > 0. Assume that
S A =1 with \; > 0. Then
1

[Ru(AN)] T =R, (AT N), (5.27)

i.e.,
—1 —1
K)\l(Al o AT A (A Id)‘1> —ut Id] =

-1
<>\1(A1‘1 +pId) Tt A (A uld)1> —uld.

In particular, for =1, [Ri(A, X)) =Ri(A7L,N).

Proof. Let f; = qa,. By Fact 2.66, (Pu(f,)\))* = P,-1(f*, A), taking sub-
gradients on both sides, followed by using Fact 2.59, we obtain that

O(Pul£,X)" = (OPu(£. X)) = 0(P,-1(£7.N)).
By Lemma 5.13, Pu(f,A) = dr,ax), Pu-1(FA)) = IR, 1 (A1 2) We have
OPu(f,A) = Ru(A, N),
OPu-1(f*,A) =R,-1 (A1 N).
Hence
[Ru(AN)] T =R, (A7),

as claimed. ]

Remark 5.20. Although the harmonic and arithmetic average lack self-duality,
they are dual to each other:

HAN] = MAT A4, = A4 N,
AAN)] ™ = AT+ A1) T = 1AL ).
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5.2. The resolvent average of positive semidefinite matrices

5.2.2 A comparison to weighted geometric means

To compare the resolvent average with the well-known geometric mean,
we restrict our attention to non-negative real numbers (1 X 1 matrices).
When A =x = (z1,...,2,) with z; € Ry and p = 1, we write

R(z,A) = Ru(AN) = Mz + 1)+ 4 Al + 1)) 7 =1,
and 7! = (1/x1,...,1/z,) when (Vi) 2; € Ry .
Proposition 5.21. Let (Vi) z; > 0,y; > 0. We have
(i) (harmonic-resolvent-arithmetic mean inequality):
(M + - Az ) T SR A) S Mz A4 A (5:28)
Moreover, R(x,A) = M\x1+ -+ A\, if and only if 1 = -+ - = xy,.
(ii) (self-duality): [R(x, )]t = R(z~1A).
(i) If ¢ = (21,...,21), then R(x,A) = z1.

(iv) If x = (.1‘1,:(}1_1,.%'2,372_1,...,.’L‘n,.f(};bl) and X = (ﬁ,...,%), then
R(x,A) =1.

(v) The function x — R(x,X) is concave on Ryy x --- x Ry4.
(vi) If x =y, then R(x,A) > R(y, A).
Proof. (i): For (5.28), apply Theorem 5.14(i) with g = 1. Now
R(x,A) =Mz + -+ A\,
is equivalent to
M@+ D) 4t M@+ D) = Nz 4+ Az + 1, (5.29)
As Yo A =1, (5.29) is the same as

1 1 1

Mot F A = :

Since the function = +— 1/x is strictly convex on R, , we must have
1 == Tnp.

(ii): Theorem 5.19. (iii): Proposition 5.5. (iv): Proposition 5.4. (v):
Corollary 5.17. (vi): Proposition 5.11. O
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5.2. The resolvent average of positive semidefinite matrices

Proposition 5.21 and Fact 2.64 demonstrate that R(x, A) and G(x, A)
have strikingly similar properties. Are they the same?

Example 5.22.

(i) Let A = (3,3). When 2 = (0,1), G(x,A) = 0 but R(z,A) = %, so
Gz, A) # R(z,N).

(ii) Is it right that G(x,A) < R(x, ) for all x € R% | ? The answer is also
no. Assume that G(x,A) < R(x,A), Vo € Ry x Ry ;. Taking the
inverse of both sides, followed by applying the self-duality of G(x, A)
and R(x, A), gives

G, N >RE AN =R L) >G(x A =G(x, N7,

and this gives that G(z,A\)~! = R(x, X\)~! so that G(xz, ) = R(x, ).
This is a contradiction to (i), thus R(z, A) is distinct from G(x, A).
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Chapter 6

Near Equality, Near
Convexity, Sums of
Maximally Monotone
Operators, and Averages of
Firmly Nonexpansive
Mappings

In this chapter, based on [20], we introduce near equality for sets and
show that this notion is useful in the study of nearly convex sets. These
results are the key to study ranges of sums of maximal monotone operators
in the next section. Recall that I denotes an index set

I={1,2,...,m},

for a strictly positive integer m.

6.1 Near equality and near convexity

Definition 6.1 (near equality). Let A and B be subsets of R”. We say that
A and B are nearly equal, if

A=PBand riAd =1iB. (6.1)
and denote this by A ~ B.
Remark 6.2. The following holds:

A~ B = intA =intB. (6.2)

Observe that if int A # @ then there exists © € A such that B(x,e) C A for
some € > 0. This is an n-dimensional convex set in R™ and thus aff A = R"™
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6.1. Near equality and near convexity

and so int A = riA = riB. Thus, B(z,¢) € B and so int A = int B.
Similarly, int B # @ = int A # &, thus int A = @ < int B = @. Altogether,
A~ B = int A =intB.

Proposition 6.3 (equivalence relation). The following hold for any subsets
A, B, C of R™.

(i) A~ A.
(i) A B= B~ A.
(iii) A Band B=C = A= C.

Proposition 6.4 (squeeze theorem). Let A, B, C' be subsets of R™ such that
A~C and ACBCC. Then A~ B=~C.

Proof. By assumption, A = C and 1iA = riC. Thus A = B = C and by

Lemma 2.24, aff(A) = aff(A) = aff(C) = aff(C). Hence aff A = aff B =
aff C' and so, by Lemma 2.22, riA C riB C riC. Since riA = riC, we
deduce that riA =ri B =riC. Therefore, A~ B ~ C. d

The equivalence relation “~” is best suited for studying nearly convex
sets (defined next), as we do have that, e.g., Q = R\ Q!

Definition 6.5 (near convexity). [59, Theorem 12.41] Let A be a subset of
R™. Then A is nearly convez if there exists a convex subset C' of R” such
that C C ACC.

Lemma 6.6. Let A be a nearly convex subset of R™, say C C A C C, where
C is a convex subset of R™. Then

A~ A=r1iA~convA=riconv A= C. (6.3)
In particular, the following hold.
(i) A and ri A are convez.
(ii) If A+ &, thenri A # @.
Proof. We have
CCACconvACC and CCACACC. (6.4)
Since C' ~ C by Fact 2.25(iv), it follows from Proposition 6.4 that

A~ A= convA=C. (6.5)
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6.1. Near equality and near convexity

This implies
ri(riA) =ri(riC) =1iC =r1i A (6.6)
and
riA=11C=C=A (6.7)
by Fact 2.25(iii). Therefore, ri A ~ A. Applying this to conv A, which is

nearly convex, it also follows that riconv A &~ conv A. Finally, (i) holds
because A ~ C while (ii) follows from ri A = ri C' and Fact 2.25(ii). O

Remark 6.7. The assumption of near convexity in Lemma 6.6 is necessary:
consider R with A = Q. Then riQ = @ but Q is obviously not. Thus (6.3)
fails, although (i) still holds.

Lemma 6.8 (characterization of near convexity). Let A C R™. Then the
following are equivalent.

(i) A is nearly convez.

(ii) A= conv A.

)
)

(iii) A is nearly equal to a conver set.

(iv) A is nearly equal to a nearly convex set.
)

(v) riconv A C A.

Proof. “(i)=(ii)”: Apply Lemma 6.6. “(ii)=(v)”: Indeed, riconvA =
riA C A “(v)=(1)": Set C = riconvA. By Fact 2.25(iii), C C A C
conv A = riconvA = C. “(ii)=(iii)”: Clear. “(iii)=>(i)”: Suppose that
A = C, where C is convex. Then, using Fact 2.25(iii), riC =11 A C A C
A =C =riC. Hence A is nearly convex. “(iii)=(iv)”: Clear. “(iv)=-(iii)”:
(The following simple proof was suggested by a referee of [20]) Suppose
A =~ B, where B is nearly convex. Then, applying the already verified im-
plications “(i)=-(ii)” and “(ii)=-(iii)” to the set B, we see that B ~ C for
some convex set C'. Using Proposition 6.3(iii), we conclude that A~ C. O

Remark 6.9. The condition appearing in Lemma 6.8(v) was also used by
Minty [49] and named “almost-convex”.

Remark 6.10. Brézis and Haraux [28] define, for two subsets A and B of R,
A~B & A=B and intA=intB. (6.8)

(i) In view of (6.2), it is clear that A~ B = A~ B.
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6.1. Near equality and near convexity

(ii) On the other hand, A ~ B # A ~ B: indeed, consider R? with
A = Q x {0}, and B = R x {0}. Then intA = int B = @, but
ri A #riB.

(iii) The implications (iii)=-(i) and (ii)=-(i) in Lemma 6.8 fail for ~: indeed,
consider R? with A = (R ~ {0}) x {0} and C' = convA = R x {0}.
Then C'is convex and A ~ C. However, A is not nearly convex because
ri A #riA.

Proposition 6.11. Let A and B be nearly convex subsets of R™. Then the
following are equivalent.

(i
(ii

) A

) A=
(iii) i A =1iB.

)

)

(iv) conv A = conv B.
(v) riconv A = riconv B.

Proof. “(i)=-(ii)”: This is clear from the definition of ~. “(ii)=-(iii)”: 11 4 =
11 A and 1i B = ri B by Lemma 6.6. “(iii)=(iv)”: ri A = conv 4 and ri B =
conv B by Lemma 6.6. “(iv)=-(v)”: riconv A = riconv A and riconv B =
riconv B. “(v)=-(1)”: Lemma 6.6 gives that riconv A = ri A and riconv B =
ri B sothat i A =ri B, riconv A = conv A = A and riconv B = conv B = B

so that A = B. Hence (i) holds. O

The next results generalize Rockafellar’s Fact 2.26 to nearly convex sets.

Lemma 6.12. Let A1 and As be nearly convex sets in R™ such that ri A1 N
ri Ao #£ &. Then A1 N Ay is nearly convex and

I“i(Al N Ag) =r1i A1 NriAs.
Proof. From Lemma 6.8(v) and the definition of the convex hull, we have

ri(conv A7) C Ay C conv Ay
ri(conv Ay) C Ay C conv As.

This implies that

ri(conv A1) Nri(conv Az) € A3 N Ag C conv A; N conv As. (6.9)
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From Lemma 6.6 we have ri A; = riconv A; and ri Ay = riconv A5 and thus
riconv A; Nriconv Ay # @. Then we can apply Fact 2.26 and Lemma 6.6(i)
to get,

ri(conv Ay Nconv Ag) = ri(conv A;) Nri(conv As),

so by (6.9),
ri(conv A1 Nconv Ay) C A1 N Az C conv A Nconv A,.
Thus by Fact 2.27, A1 N Ag is nearly convex and by Lemma 6.6,
A1 N Ay = ri(conv A; N conv Ag).
Using (6.6), this means
ri(A; N Ag) = ri(ri(conv A; N conv Az)) = ri(conv A1 Nconv Ay).  (6.10)

Now we also have, A1 =~ conv A; and A ~ conv Ay by Lemma 6.8(ii). That
and Fact 2.26 yield,

ri A; Nri A = riconv A; Nriconv Ay = ri(conv Ay N conv As). (6.11)
Combining (6.10) and (6.11) we get
ri(A; N Ag) = ri(conv Ay Nconv Ag) = ri Ay Nri Ay,
which proves the result. O

Theorem 6.13. Let A; be a nearly convex set in R™ fori=1,...,m such
m

that (riA; # &. Then
i=1

(2

m
A; is nearly convexr and
=1

m m
ﬂ I‘iAi =ri ﬂ Al
i=1 =1

Proof. Clearly, when m = 1 this holds. When m = 2, by Lemma 6.12 we
have A1 N Ay is nearly convex and

I"i(Al N Ag) =r1iA; NriAs.

m
Thus we proceed via induction and assume that when () ri 4; # @,
i=1

m m m
m riAd; =ri ﬂ A; and ﬂ A; is nearly convex.
i=1 =1 =1
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m+1 m+1
Then consider ()] riA; such that () riA4; # @. We have
=1

i=1 i=

m+1 m
() ridi = (\ridinrid, . # @. (6.12)
i=1 i=1
m+1 m
Since () rid; # @ we must have (| rid; # @. Thus, by the inductive

=1 =1
hypothesis (6.12) becomes,

m+1 m
() ridi =ri()AiNriAp # 2, (6.13)

i=1 =1

m m
and since () 4; is nearly convex we can apply Lemma 6.12 to the sets [ A;
i1 i—1
’ m m+1 ’
and A,,11 toget () AiNAnpn+1 = ) A isnearly convex and (6.13) becomes
i=1

= i=1

m—+1 m m—+1
m riA; =ri <m A; ﬂAm_;,_l) =ri m A;.
=1 =1 =1

O]

Lemma 6.14. Let A1 and Ay be nearly convex sets such that ri Ay Nri As #
@. Then -
A1NAy = A1 N As.

Proof. Clearly we always have
A1 NAy C Ail N Aig

On the other hand, by Fact 2.25(iii) and Fact 2.26,

EﬂfgzriAlﬂriAQ =1iAd; Nrids C A1 N As.
ThusAlﬂAQZAilﬂAig. O]

Theorem 6.15. Let A; be a nearly convex set in R™ fori=1,...,m such
m

that (\ riA; # @. Then
i=1

2

(6.14)

s
=
[
IDE
2|

~
I
-
<.
I
_
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Proof. This clearly holds when m = 1. When m = 2, (6.14) holds by
m

Lemma 6.14. Continuing via induction, we assume that when (] ri A; # &,
i=1
we have

A=) A.

s
IDE

=1 1

»—lﬂ-

Then we consider ﬂ A; such that ﬂ ri A; # @. We have

1= 1=

N

m+1 m
ﬂ = (4 NAni1. (6.15)
=1 =1

m+1
Since ﬂ riA; # O, then clearly ﬂ riA; # @. Thus, by the inductive

=

hypothesw (6.15) becomes

m+1
ﬂ A = ﬂA NApit (6.16)

m m m
Now, by Theorem 6.13, () A; is nearly convex and ri (| A; = [ ri 4; so,

i=1 i=1 i=1

m+1

ri <ﬁ AZ-> Nri A1 = ﬁriAiﬂriAmH = () ridi # 2.
=1 =1 =1

m
Thus, apply Lemma 6.14 to the sets () A; and Ay,+1, and (6.16) becomes,

=1

m+1 m m+1
V7= A0 A= () 4,
i=1 i=1 =1
which proves the desired result. ]

In order to study addition of nearly convex sets, we require the following
result.

Lemma 6.16. Let (A;)icr be a family of nearly convexr subsets of R™, and
let (Mi)ier be a family of real numbers. Then ) ;. ; A\iA; is nearly convez,

and vi(D ;e p NiAs) = D oier MitiAs
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Proof. For every i € I, there exists a convex subset C; of R™ such that
C; C A; CC;. We have

Z XiCi C Z XA C Z NG C Z XiCi, (6.17)
icl icl icl icl

which yields the near convexity of >, ; \id; and > .. NiA = .1 AiC; by
Lemma 6.6. Moreover, by Fact 2.25(vii)&(viii) and Lemma 6.6,

icl icl icl icl icl
(6.18)
This completes the proof. ]

Theorem 6.17. Let (A;)icr be a family of nearly convex subsets of R™, and
let (B;)icr be a family of subsets of R™ such that A; =~ B;, for every i € I.
Then ), cr A; is nearly convex and ) ;1 Ai = Y .1 B;.

Proof. Lemma 6.8 implies that B; is nearly convex, for every ¢ € I. By
Lemma 6.16, we have that ). ; A; is nearly convex and

i) Aj=> rid;=) 1iB;=1) B (6.19)

iel i€l i€l iel
Furthermore,
S A=Y A-YB-Yh 620
il iel i€l i€l
and the result follows. O

Remark 6.18. Theorem 6.17 fails without the near convexity assumption:
indeed, consider R and m = 2, with A1 = As = Q and B; = Bo = R~ Q.
Then A; =~ B;, for every i € I, yet A1 + Ao =Q % R = By + Bs.

Theorem 6.19. Let (4;)icr be a family of nearly convex subsets of R™,
and let (N\;)icr be a family of real numbers. For every i € I, take B; €
{Ai, A;, conv A;, 11 A;, riconv A; } . Then

el iel

Proof. By Lemma 6.6, A; =~ B; for every ¢ € I. Now apply Theorem 6.17.
O
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Corollary 6.20. Let (A;)ier be a family of nearly convex subsets of R™,
and let (N\;)ier be a family of real numbers. Suppose that j € I is such that
Aj #0. Then

(iIlt )\jAj) + Z )\ZE Cint Z NiAq; (622)
icel~{j} il
consequently, if 0 € (int A;) N ﬂiel\{j} A, then 0 € int Y, ; N ;.

Proof. By Theorem 6.19, ri(A;j4; + > icr i NiA;) =r1iY;c; Aidi. Since

(int )\jAj) + Z NiA; Cri ()\jAj + Z )\,-E), (6.23)
ieI~{j} eIN{j}

and (int A\jA;) + > iel{j} A\;A; is an open set, (6.22) follows. In turn, the
“consequently” follows from (6.22). O

We develop a complementary cancelation result whose proof relies on
Radstrom’s cancelation:

Fact 6.21. (See [55].) Let A be a nonempty subset of R™, let E be a
nonempty bounded subset of R™, and let B be a nonempty closed convex
subset of R™ such that A+ EC B+ FE. Then A C B.

Theorem 6.22. Let A and B be nonempty nearly conver subsets of R",
and let E be a nonempty compact subset of R™ such that A+ F ~ B+ FE.
Then A ~ B.

Proof. We have A+ E C A+ E = B+ E = B+ E. Fact 6.21 implies
A C B; hence, A C B. Analogously, B C A and thus A = B. Now apply
Proposition 6.11. 0

Finally, we give a result concerning the interior of nearly convex sets.

Proposition 6.23. Let A be a nearly convexr subset of R". Then int A =
int conv A = int A.

Proof. By Lemma 6.6, A =~ B, where B € {Z, conv A}. Now recall (6.2).
O
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6.2 Maximally monotone operators

Fact 6.24 (Minty). [59, Theorem 12.41] Let A: R™ =% R"™ be maximally
monotone. Then dom A and ran A are nearly convex.

Theorem 6.25. Let A and B be monotone on R™ such that A + B is
mazimally monotone. Suppose that one of the following holds.

(i) A and B are rectangular.
(ii) dom A C dom B and B is rectangular.
Then ran(A + B) is nearly convez, and ran(A + B) ~ ran A + ran B.

Proof. The near convexity of ran(A + B) follows from Fact 6.24. Using
Fact 3.66 and Fact 2.25(iii),

riconv(ran A + ran B) C ran(A + B)
CranA+ranB

C conv(ran A + ran B)

= riconv(ran A + ran B).

Proposition 6.4 and Lemma 6.6 imply ran(A + B) ~ ranA + ran B ~
riconv(ran A + ran B). O

Remark 6.26. Considering A + 0, where A is the rotator by m/2 on R?
which is not rectangular, we see that A + B need not be rectangular under
assumption (ii) in Theorem 6.25.

If we let S; = ran A; and \; = 1 for every i € I in Theorem 6.27, then
we obtain a result that is related to Pennanen’s [53, Corollary 6].

Theorem 6.27. Let (A;)icr be a family of mazimally monotone rectangular
operators on R™ with (;c;ridom A; # @, let (S;)icr be a family of subsets
of R™ such that

(Viel) S;¢€ {ran A;,ran A;, ri(ran Ai)}, (6.24)
and let (N;)ier be a family of strictly positive real numbers. Then Y, o; NiA;

is mazximally monotone, rectangular, and ran) ,.; NiA; =~ ) ;c; \iS; is
nearly convex.
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6.2. Maximally monotone operators

Proof. We have I = {1,...,m}. To see that ,_; \;4; is maximally mono-
tone we proceed using induction on m. When m = 1, since A\; € Ry and
A; is maximally monotone, then \;A; is maximally monotone by Proposi-
tion 3.29. When m = 2, by assumption we have

ridom A; Nridom As # @ = ridom A A1 Nridom AsAs # &.

so by Fact 3.48(ii) A\ A1 + Ay Ay is maximally monotone. Now assume

this holds for A\;A; + ...+ A\ Ay, with () ridom A; # @. Then consider
i=1

MAL A+ A1 Amrr = (MAL A An) F A1 Amgr

By the inductive hypothesis, A\1A; + ... + A\ A, is maximally monotone.
We have

ridom(A1 Ay + - + A\ Ap) Nridom Ay g1 At

=ri <ﬂ dom /\iAi> Nridom Ay, 41 Am+1.  (6.25)

i=1

By Fact 6.24, dom A; A; is nearly convex for all 4 € I, so apply Lemma 6.13
and (6.25) becomes

ridom(A1 Ay + - + A\ Ap) Nridom A1 At

m m+41
= (ﬂ ri dom )\iAZ) Nridom A1 Amy1 = ﬂ ridom \;A; # @.
i=1 i=1
Thus by Fact 3.48(ii), A1 A1+ - -+ Amt14m+1 is maximally monotone. Using
Lemma 3.63 and induction we have Ay A1 + -+ - + Ajpr14mme1 s rectangular.
With Theorem 6.17, Fact 3.48 and Lemma 3.63 in mind, Theorem 6.25(i)
and induction yields ran Zz‘e T NA = Zie ;AiranA; and the near con-
vexity. Finally, as ran A; is nearly convex for every ¢ € I by Fact 6.24,
rany ;.; NA; = ) ;c; AiS; follows from Theorem 6.19. O

The main result of this section is the following.

Theorem 6.28. Let (A;)icr be a family of mazimally monotone rectangular
operators on R"™ such that (),c;ridom A; # @, let (N\i)icr be a family of
strictly positive real numbers, and let j € I. Set

A= XA (6.26)
el

Then the following hold.
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6.3. Firmly nonexpansive mappings

(i) If > ;c; Airan A; = R", then ran A = R™.
(i
(ii
(iv) If0 € (intran A;) N (V;ep ;) ran 4y, then 0 € intran A.

)
) If A; is surjective, then A is surjective.
) If 0 € (;cyran A;, then 0 € ran A.

)

Proof. Theorem 6.27 implies that ran)_,; \iA; = >, ; Airan A; is nearly
convex. Hence

riran A =i ranz ANA; =1 (Z A ran Ai> = Z Airiran A;  (6.27)

icl i€l el

and

ran A = ranz ANA; = Z Airan A; . (6.28)
el el
(i): Indeed, using (6.27),
R" =1riR" = riZAiranAi =riranA Cran A C R™
el
(ii): Clear from (i). (iii): It follows from (6.28) that
0e Z Airan A; C Z Airan A; = ran A.
el el

(iv): By Fact 6.24, ran A; is nearly convex for every ¢ € I. Thus, 0 €
int ) ;; Asran A; by Corollary 6.20. On the other hand, (6.27) implies that

int Z Niran A; Cri Z A;ran A; = riran A.
i€l el

Altogether, 0 € riran A = int ran A because intran A # &. O

6.3 Firmly nonexpansive mappings

In this section, we apply the result of Section 6.2 to firmly nonexpansive
mappings.

Corollary 6.29. Let T: R™ — R"™ be firmly nonexpansive. Then T is maz-
tmally monotone and rectangular, and ranT is nearly conver.

Proof. Combine Example 3.61, Fact 3.36(i), and Fact 6.24. O
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6.3. Firmly nonexpansive mappings

It is also known that the class of firmly nonexpansive mappings is closed
under taking convex combinations. For completeness, we include a short
proof of this result.

Lemma 6.30. Let (T;);cr be a family of firmly nonexpansive mappings on
R™, and let (N\;)ier be a family of strictly positive real numbers such that
YoicrAi = 1. Then Y ;o NiT; is also firmly nonexpansive.

Proof. Set T' =3 _,.; A\iT;. By Fact 3.3, 2T; — Id is nonexpansive for every
i€ 1,502T—1d =}, ; A\i(2T;—1d) is also nonexpansive. Applying Fact 3.3
once more, we deduce that T is firmly nonexpansive. ]

We are now ready for the first main result of this section.

Theorem 6.31 (averages of firmly nonexpansive mappings). Let (T;)ier be
a family of firmly nonexpansive mappings on R™, let (N;)ier be a family of
strictly positive real numbers such that ) ,.;N\i = 1, and let j € I. Set
T =3 ,c; NT;. Then the following hold.

(i) T is firmly nonexpansive and ranT =~ ), ; \;ranT; is nearly convex.

(iii) If 0 € (), ranT;, then O € ranT.
i

)
(i) If T is surjective, then T is surjective.
)
(iv) If 0 € (intranTj) N (e gy ranTi, then 0 € intranT.

Proof. By Corollary 6.29, each T; is maximally monotone, rectangular and
ranT; is nearly convex. (i): Lemma 6.6, Lemma 6.30, and Theorem 6.27.
(ii): Theorem 6.28(ii). (iii): Theorem 6.28(iii). (iv): Theorem 6.28(iv). O

The following averaged-projection operator plays a role in methods for
solving (potentially inconsistent) convex feasibility problems because its
fixed point set consists of least-squares solutions; see, e.g., [7, Section 6],
[23] and [35] for further information.

Example 6.32. Let (C;);cs be a family of nonempty closed convex subsets
of R™ with associated projection operators P;, and let (\;);c; be a family of
strictly positive real numbers such that ), ; A\; = 1. Then

ran Y AP~ Y NG (6.29)

el il

Proof. This follows from Theorem 6.31(i) since (Vi € I) ran P; = C;. O
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6.3. Firmly nonexpansive mappings

Remark 6.33. Let C7 and Co be nonempty closed convex subsets of R"
with associated projection operators P; and P» respectively, and—instead
of averaging as in Example 6.32—consider the composition T' = P, o Py,
which is still nonexpansive. It is obvious that ranT" C ran P, = (s, but
ranT need not be even nearly convex: indeed, in R?, let Cy be the unit ball
centered at 0 of radius 1, and let C1 = Rx{2}. Then ran T is the intersection
of the open upper halfplane and the boundary of C5, which is very far from
being nearly convex. Thus the near convexity part of Corollary 6.29 has no
counterpart for nonexpansive mappings.

Remark 6.34. Let T: R — R™ be firmly nonexpansive. Recall the set of
fized points is denoted by

FixT = {z € R" | 2 = Tz}, (6.30)

and that T is asymptotically regular if there exists a sequence (zy, )nen in R™
such that z,, — Tx, — 0.

If the sequence (x,)nen converges to a point, say Z, then continuity of
T implies that x € FixT.

The next result is a consequence of fundamental work by Baillon, Bruck
and Reich [3] .

Theorem 6.35. Let T: R™ — R" be firmly nonexpansive. Then T is asymp-
totically regular if and only if for every xg € R™, the sequence defined by

(VneN) zp4 =Tz, (6.31)

satisfies Ty — Tpt1 — 0. Moreover, if FixT # @, then (x,)nen converges
weakly to a fized point; otherwise, ||x,| — +oo.

Proof. T is firmly nonexpansive < T is %—averaged, so by Fact 3.20, T"x —
T2 — v where v is the element of minimum norm in ran(Id —7'). Since
T is asymptotically regular, v = 0 and thus x,, — x,+1 — 0. By Fact 3.18, if
FixT # @, then (z,,)neny — @ € FixT. And by Fact 3.19 if Fix T = &, then
|xn| — +oo. O

Here is the second main result of this chapter.

Theorem 6.36 (asymptotic regularity of the average). Let (T;)ier be a
family of firmly nonexpansive mappings on R™, and let (N\;)icr be a family
of strictly positive real numbers such that ) .. A\; = 1. Suppose that T; is
asymptotically regular, for every i € I. Then Y, ; N/T; is also asymptoti-
cally reqular.
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6.3. Firmly nonexpansive mappings

Proof. Set T'= %, ; AiT;. Then

Id-T =Y X(Id-T;).
iel
Since each Id —7; is firmly nonexpansive and 0 € ran(Id —7;) by the asymp-

totic regularity of T;, the conclusion follows from Theorem 6.31(iii). O

Remark 6.37. Consider Theorem 6.36. Even when FixT; # @, for every
i € I, it is impossible to improve the conclusion to Fix) ,.; \iT; # @.
Indeed, in R?, set C; = R x {0} and Cy = epiexp. Set T' = %Pol + %PCQ.
Then FixT; = (1 and Fix Ty, = Oy, yet FixT = @.

The proof of the following useful result is straightforward and hence
omitted.

Lemma 6.38. Let A: R" == R"™ be maximally monotone. Then Jy is
asymptotically regular if and only if 0 € ran A.

We conclude this chapter with an application to the resolvent average of
monotone operators.

Corollary 6.39 (resolvent average). Let (A;)icr be a family of mazimally
monotone operators on R™, let (N\;)icr be a family of strictly positive real
numbers such that ) ,.; \i =1, let j € I, and set

Ri(A ) = <in(1d +Ai)‘1>_1 —1d. (6.32)
el
Then the following hold.
(i) R1(A, ) is mazimally monotone.
(i
(iii) ranR1(A,A) = >

domR1(A,X) = 3, Aidom A;.

jer Airan A;.

(v) If 0 € intran A; N ﬂiel\{j} ran A;, then 0 € intranRq(A, ).

)
)
)

(iv) If 0 € ;e ran 4;, then 0 € ran R (A, ).
)

(vi) If dom A; = R"™, then domR{(A, X) = R".
)

(vii) IfranA; = R", then ranR1(A, X) = R".
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6.3. Firmly nonexpansive mappings

Proof. Observe that

IR (AN = Z Aid A, (6.33)
i€l
and
JRl(A,)\)_l - ZAZJ i_l (634)
el

by using (3.13). Furthermore, using (3.14), we note that

ran Jg,(an) = domRi(A,A) and ranJg (41 =ranRi(A, ).
(6.35)
(i): This follows from (6.33) and Fact 3.36. (ii): Apply Theorem 6.31(i)
to (Ja,)ier, and use (6.33) and (6.35). (ili): Apply Theorem 6.31(i) to
(Id —J 4, )ier, and use (3.13) and (6.35). (iv): Combine Theorem 6.36 and
Lemma 6.38, and use (6.33). (v): Apply Theorem 6.31(iv) to (6.34), and
use (6.35). (vi) and (vii): These follow from (ii) and (iii), respectively. [

Remark 6.40 (proximal average). In Corollary 6.39, one may also start from
a family (f;);es of functions on R™ that are convex, lower semi-continuous,
and proper, and with corresponding subdifferential operators (A;)icr =
(0fi)ier- This relates to the proximal average, P, of the family (f;)icr,
where 9P is the resolvent average of the family (0f;)icr. See [12] for fur-
ther information and references. Corollary 6.39(vii) essentially states that
P is supercoercive provided that some f; is. Analogously, Corollary 6.39(v)
shows that that coercivity of P follows from the coercivity of some function

fi-
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Chapter 7

Compositions and Convex
Combinations of
Asymptotically Regular
Firmly Nonexpansive
Mappings

In this chapter, based on [15], we extend some of the results in Chapter 6
into a Hilbert space setting. Even though the main results are formulated
in the given Hilbert space H, it will turn out that the key space to work in
is the product space,

H™ = {X: (l'i)ief ’ (ViEI) Z; 67‘[}, (71)

where m € {2,3,4,...} and I = {1,2,...,m}. This product space contains
an embedding of the original space H via the diagonal subspace

A = {x=(2)ies } €M} (7.2)

We also assume that we are given m firmly nonexpansive operators
T1,...,Ty; equivalently, m resolvents of maximally monotone operators
Aq, ..., Ap. We now define various pertinent operators acting on H™. We

start with the Cartesian product operators
T: H™ — H™: (x)ier = (Tixi)ier (7.3)

and
A:H™ = H™: (x)ier — (Aizi)ier- (7.4)

Denoting the identity on H" by Id, we observe that

Ja=Td+A) ' =Ty x - x T, = T. (7.5)

95



7.1. Properties of the operator M

Of central importance will be the cyclic right-shift operator
R:H™ = H™: (x1,22,. .., Zm) = (T, 1, -+, Tye1) (7.6)
and for convenience we set
M =Id -R. (7.7)
We also fix strictly positive convex coefficients (or weights) (\;)ier, i.e.,

(VieI) A€lo,1] and Y N =1. (7.8)

i€l

Let us make H™ into the Hilbert product space
H=H" with (x,y)= (zi,u). (7.9)

i€l
Fact 7.1. [11, Proposition 25.4(i)] Set A = {x = (z)ics | € H}.The or-

thogonal complement of A with respect to this standard inner product is

i€l
7.1 Properties of the operator M

In this section, we collect several useful properties of the operator M,
including its Moore-Penrose inverse. To that end, the following result will
be useful.

Proposition 7.2. Let Y be a real Hilbert space and let B be a continuous
linear operator from H to Y with adjoint B* and such that ran B is closed.
Then the Moore-Penrose inverse of B satisfies

Bl =P..groB o Punpg. (7.11)

Proof. Take y € Y. Define the corresponding set of least squares solutions
(see Fact 2.35) by C = B~} (Pan By). By Fact 2.13, since ran B is closed, so
is ran B*; hence, by Fact 2.9 and setting U = (ker B)* we have

U = (ker B)* = ran B* = ran B*.

Thus,
C =By +kerB= Bly+U*.
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7.1. Properties of the operator M

Therefore, since by Fact 2.37 ran Bt = ran B*,
Py(C) = PyB'y = BTy,
as claimed. O

Theorem 7.3. Define

L: At S H:y— Z (7.12)

Then the following hold.
(i) M is continuous, linear, and maximally monotone with domM = H..
(ii) M is rectangular.

(iii) ker M = ker M* = A.

)
)
)
(iv) ranM = ran M* = A~ is closed.
(v) ranL = AL,

)

(vi

Ly + A, ifye A

g, otherwise.

(vii) M_lz?{:i?{:y»—){
(vili) M = Py1oLoP,1 =LoP,..

() M =S (2k = 1) i1,

2m

Proof. (i): Clearly, domM = H and (vx € H) ||Rx|| = ||x||. Thus, R is
nonexpansive and therefore by Fact 3.46, M = Id —R is maximally mono-
tone.

(ii): This is Fact 3.65.

(iii): The definitions of M and R and the fact that R* is the cyclic left
shift operator (see Example 2.8) readily imply that

kerM = {x € H | Mx = 0}
—{xeHM|Id-R =0}
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7.1. Properties of the operator M

which yields 1 = z,,, and z; = x;41 for all ¢ € I. That is, ker M = A.
Similarly, ker M* = A and thus,

ker M = ker M* = A.

(iv), (vi), and (vii): Let y = (y1,...,Ym) € H. Assume first that
y € ranM. Then there exists x = (x1,...,Zy,) such that y1 = 1 — zp,
Yo = To — T1, ..., and Yy, = Ty — Ty—1. 1t follows that Zz‘el y; = 0, i.e.,
y € At by Fact 7.1. Thus,

ranM C AL, (7.13)

Conversely, assume now that y € A+. Now set

m—1 .
m—i_ .
=Ly = i~y .
x y Z - Ry (7.14)
=1
Then
-1 2 3 1
x=" "Ry 4+ "Ry+ " R%+... 4 —R™ Y
m
m—1 m— 2 1
= ——W - Ym) F——Wm Y15 Ym1) F o+ = (Y3, Y1, 2)-
m m m

It will be notationally convenient to wrap indices around, i.e., ym+1 = y1,
Yo = yYm and likewise. We then get
m—1 m — 2

. 1
(Viel) xz;= yi + Yi-1+ -+ —Yiyo (7.15)
m m m

Therefore,

Zwi:mT_lZyﬂrmTﬁZyﬁ‘--Jr% vi

el el il el

el
m(m . 1) m(m—1)
= m : Zyi
el
m—1
“ Ty vl
el
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7.1. Properties of the operator M

Thus x € AL and
ranL C A+, (7.16)

Furthermore, (Vi € I)

m—1 m— 2 1
Ti— Ti—1= m Yi + m yi—1+"'+ayz‘+2

m—1 1
- Tyifl‘i‘“""Ey(i—l)—ﬂ
m—1 —-2)— -1
S E A CECEICEL U
m

m
m—(m—2))—1 1
+ <( ( ) )yz‘+2 — —Yit1
m m
m—1 1 1 1
= Yi— —Yi-1— —Yi—2 = "= —Yitl
m m m m
1
:yz_EZyj:yl
jel

Hence Mx = x — Rx =y and thus y € ran M. Moreover, in view of (iii),
M ly =x+kerM =x+ A. (7.17)

We thus have shown
At CranM. (7.18)

Combining (7.13) and (7.18), we obtain ran M = A~+. We thus have verified
(vi), and (vii). Since ran M is closed, so is ran M*, by Fact 2.13. Thus (iv)
holds.

(viii)&(v): We have seen in Proposition 7.2 that

M’ = Py oM™ 0 Prop M (7.19)
Now let z € . Then, by (iv),

YV = Paanmz = Pp12 € AL
By (vii), M~y = Ly + A. So,

MTZ = PranM*M_lpranMZ = PranM*M_ly
= Pp1(Ly + A) = Py1Ly =Ly
= (L o PAJ_)Z,
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7.1. Properties of the operator M

because ran L. € AL by (7.16). Hence (viii) holds. Furthermore, by (iv)
and Fact 2.37, ranL = ranL o P,1 = ranM! = ranM* = A+ and so (v)
holds.

(ix): Note that P51 = Id —Pa and from Example 2.32,

Pa :mflsz.

Jjel
Hence,
1 .
Py =1d—— J. .
ar =1d—— Z R (7.20)
jel
Thus, by (viii) and (7.12),
m—1 ' 1
M =LoPy=— 3 (m-)R o (1d-— Y R/)
i=1 jel
1 m—1 1 m—1
— ARi—1 : i+j—1
= (m—1i)R poec (m—z)ZR J
=1 =1 ]EI
1 m—1 1 m
i—1
=— 1(m—2)R - — (m—1)leJ+
= Jj=

Using the fact that R™ = R, R™*! = R!, etc., and noting that

m—1 m

d (m iR =) (m— iR,

i=1 i=1

Mf = L ((m— DR 4+ (m ~ 2R - + R™)

%((mf1)(R1+...+Rm)+(mf2)(R2+...+Rm+1)+...
+ (Rm—l 4. +R2(m—1)))
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7.2. Composition

m m—1
Z m—*k m(m—1) 1 N\ kol
- ( m m m Z) R

k=1 i=1
_ i 2m(m —k) 2m(m—1) m(m—1) RA-1
2m?2 2m?2 2m?
k=1
_ i”: m— (2k = 1) pi
2m
k=1
Thus,
- 2k — 1
M= 1d-R)f =Y " (2m J g1, (7.21)
k=1
O

Remark 7.4. Suppose that L: AL — 4 satisfies Mo L = Id |aL. Then

Ly + A, ifye Al

, otherwise.

M_I:H:;?{:yr—){ (7.22)

One may show that M = P, O:EOPAJ_ and that Pu 1 oL =L (see (7.12)).
Concrete choices for L and L are

At S (y1, Y2, Ym) = (Y1, Y1 FY2s Y1 F Y2 Y3t ym); (7.23)

however, the range of the latter operator is not equal to A+ whenever H #
{0}.
Corollary 7.5. The operator A + M is mazimally monotone and

ran(A + M) = AL 4 ran A.

Proof. Since each A; is maximally monotone and recalling Theorem 7.3(i),
we see that A and M are maximally monotone. On the other hand, dom M =
‘H. Thus, by Fact 3.48, A + M is maximally monotone. Furthermore, by
Theorem 7.3(ii) and (iv), M is rectangular and ranM = A*L. The result
therefore follows from Fact 3.66(ii). O

7.2 Composition

We now use Corollary 7.5 to study the composition.
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7.2. Composition

Theorem 7.6. Suppose that (Vi € I) 0 € ran(Id —T;). Then the following
hold.

(i) 0 € ran(A +M).
(i

(
) (Ve >0) (3(b,x) e H xH) ||b|| <e and x =T(b + Rx).

(i) (Ve >0) (I(c,x) € H xH) ||c|]| <e and x = ¢ + T(Rx).
)

(iv) (Ve >0) (IxeH) (Vie )
| Tiz1---Tixy — TiTiq - Tixm, — xi—1 + ]| < (20— 1)e,
where ro = T,.
(v) (Ve >0) Bz €H) ||z — TmTp_1---Tiz| < m2e.

Proof. (i): The assumptions and the Minty parametrization (3.14) imply
that (Vi € I),

0 € ran(Id —7;) < 3x; € H such that (Ja,z;,0) € gra 4;
& 0 €ran A;.

Hence, 0 € ran A. Obviously, 0 € AL. It follows that 0 € A + ran A.
Thus, by Corollary 7.5, 0 € ran(A + M).

(ii): Fix ¢ > 0. In view of (i), there exists x € H and b € H such
that ||b|]] < ¢ and b € Ax + Mx. Hence b + Rx € (Id+A)x and thus
x = Ja(b + Rx) = T(b + Rx).

(iii): Let € > 0. By (ii), there exists (b,x) € H x H such that ||b|| < e
and x = T(b+Rx). Set c = x—T(Rx) = T(b+Rx) — T(Rx) Then, since
T is nonexpansive, ||c|| = || T(b+ Rx) — T(Rx)| < ||b]| <e.

(iv): Take € > 0. Then, by (iii), there exists x € H and ¢ € H such
that ||c|]] < e and x = ¢+ T(Rx). Let i € I. Then z; = ¢; + Tz;—1. Since
llcil| < |le|| < e and T; is nonexpansive, we have

|T5Ti—1 - Thzo — 2| < || TiTio1 -+ Thzo — Tiwia || + [|Tiwi—1 — 4|
<|NTTioy - - - Thwo — T || + €
S|Tioy - Thxo — a1 +¢
< |Ti—1 -+ Thao — Ti—rwi—o|| + | Tic1@i—e — wi—1|| + €
S| T2 - Tixzo — 22| + 2¢.

Continuing similarly, we thus obtain

HT%Ti—l s T1{E0 — 1‘1” < 1€. (7.24)

102



7.2. Composition

Hence,
Hﬂ—l o 'Tll‘() - 357;—1” < (Z - 1)8 (725)

Adding (7.24) and (7.25), and recalling the triangle inequality and the fact
that x,, = xg,

1Tie1 - Thm — TiTio1 - - T — 21 + 4|
<||Tiz1---Thzo — zima|| + (| TiTi-1 - - - Thxo — 2|
< (i—1)e +ie = (2i — 1)g,

as stated.
(v): Let € > 0. In view of (iv), there exists x € H such that

(Viel) HTi—l TNxy, =TT 1Ty, — -1 + sz < (2i—1)e (7.26)
where xg = x,,. Now set,
(Viel) e=Ti—1- Ty —TiTi—1- - Tixym — xim1 + 2.

Then (Vi € I) |le;|| < (2i — 1)e. Set & = xy,. Then

m m
Z e = ZTi—l Ny =TT - Ty — 21 + 25 (7.27)
=1 =1

— =TTy -~ Thz. (7.28)

This, (7.26), and the triangle inequality imply that

m

m
|2 = T D1 -+ Tzl <) lel| <D (20— 1)e = me. (7.29)
=1 =1

This completes the proof. O

Remark 7.7. When m = 2, then Theorem 7.6(v) also follows from [56,
p. 124].

Corollary 7.8. Suppose that (Vi € I) 0 € ran(Id —T;). Then

0 € ran(Id =T Tz -~ - 11).

Proof. This follows from Theorem 7.6(v). O
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Remark 7.9. The converse implication in Corollary 7.8 fails in general: in-
deed, consider the case when H # {0}, m = 2, and v € H \ {0}. Now
set T1: H - H:x— x+vand set To: H — H: 2z — = —v. Then
0 ¢ ran(Id —11) = {—v} and 0 ¢ ran(Id —T») = {v}; however, ToT} = Id
and ran(Id —7»T1) = {0}.

Remark 7.10. Corollary 7.8 is optimal in the sense that even if (Vi € I) we
have 0 € ran(Id —7;), we cannot deduce that 0 € ran(Id —75,T,—1---11):
indeed, suppose that H = R? and m = 2. Set C; := epiexp and Cy :=
R x {0}. Suppose further that T} = Pg, and T = Pc,. Then (Vi € I)
0 € ran(Id —T;); however, 0 € ran(Id —7571) \ ran(Id —7571).

7.3 Asymptotic regularity

In this section we show that the composition of asymptotically regular
mappings is still asymptotically regular. The following results are corollaries
to Bruck and Reich’s Fact 3.24.

Corollary 7.11. Let S: H — H be strongly nonexpansive. Then S is
asymptotically regular if and only if 0 € ran(Id —S).

Proof. “=": Recall that S is asymptotically regular if
(Ve eH) S"z—S""z—0e S —S(S"x) =0
= 0 € ran(Id —S)
“<": Fact 3.24(i). O

Remark 7.12. Under the assumption that 7" is firmly nonexpansive, the
previous result also follows from Fact 3.25.

Corollary 7.13. Set S = T, Tn—1---T1. Then S is asymptotically regular
if and only if 0 € ran(Id —S).

Proof. Since each Tj; is firmly nonexpansive, it is also strongly nonexpansive
by Fact 3.23(i). By Fact 3.23(ii), S is strongly nonexpansive. Now apply
Corollary 7.11. Alternatively, 0 € ran(Id —S) by Corollary 7.8 and again
Corollary 7.11 applies. O

We are now ready for our first main result.

Theorem 7.14. Suppose that each T; is asymptotically regular. Then the
composition T, Ty—1 -+ T1 is asymptotically regular as well.
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Proof. Theorem 7.6(v) implies that 0 € ran(Id —7,,,7},—1---T1). The con-
clusion thus follows from Corollary 7.13. 0

Remark 7.15. (i) When m = 2, then the conclusion of Theorem 7.14 also
follows from [56, p. 124].

(ii) As an application of Theorem 7.14, we obtain the main result of [6],
Example 7.16.

Example 7.16. Let C1,...,C,, be nonempty closed convex subsets of H.
Then the composition of the corresponding projectors, Pc,, Pc,, . -+ Pc, is
asymptotically regular.

Proof. For every 7 € I, the projector Pg, is firmly nonexpansive, hence
strongly nonexpansive, and Fix Po, = C; # &. Suppose that (Vi € I)
T; = Pc,, which is thus asymptotically regular by Corollary 7.11. Now
apply Theorem 7.14. ]

7.4 Convex combination

In this section, we use our fixed weights (\;);cr to turn H™ into a Hilbert
product space different from H considered in the previous sections. Specif-
ically, we set

Y =H" with (x,y)=> (i) (7.30)
i€l

so that [|x||? = 7,c; Ail@s]|?. We also set

Q: H™ — H™: x> (T)icr, where T = Z i (7.31)
el
Fact 7.17. [11, Proposition 28.13] In the Hilbert product space Y, we have
Pa =Q.

Corollary 7.18. In the Hilbert product space Y, the operator Q is firmly
nonexpansive and strongly nonexpansive. Furthermore, FixQ = A # @,
0 € ran(Id —Q), and Q is asymptotically reqular.

Proof. By Fact 7.17, the operator Q is equal to the projector Pa and hence
firmly nonexpansive. Now apply Fact 3.23(i) to deduce that Q is strongly
nonexpansive. It is clear that Fix Q = A and that 0 € ran(Id —Q). Finally,
recall Corollary 7.11 to see that Q is asymptotically regular. O
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Proposition 7.19. In the Hilbert product space Y, the operator T is firmly
nonerpansive.

Proof. Since each T; is firmly nonexpansive, (Vx = (x;)icr € Y) (Vy =
(yi)ier € Y) we have
1 Tyw; — Tyyall® < (@i — v, Tyws — Toya)
which implies,
ITx — Tyl* = Z Al Ty — Tyl
1€l

<Y N (@i — yi, Tiws — Tog)
icl
= (x—y,Tx - Ty).

Thus T is firmly nonexpansive. O

Theorem 7.20. Suppose that (Vi € I) 0 € ran(Id —T;). Then the following
hold in the Hilbert product space Y .

(i) 0 € ran(Id —T).
(ii) T is asymptotically regular.
(ili) Qo T is asymptotically regular.
Proof. (i): This follows because (Vx = (x;)ier)
e = Tx|* = > Aillwi — T
iel
(ii): Combine Fact 3.23(i) with Corollary 7.11.
(iii): On the one hand, Q is firmly nonexpansive and asymptotically
regular by Corollary 7.18. On the other hand, T is firmly nonexpansive

and asymptotically regular by Proposition 7.19 and Theorem 7.20(ii). Al-
together, the result follows from Theorem 7.14. O

We are now ready for the second main result of this chapter, which
concerns convex combinations of asymptotically regular mappings.

Theorem 7.21. Suppose that each T; is asymptotically reqular. Then
> AT
i€l

1s asymptotically reqular as well.
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Proof. Set S = > . .; NT;. Fix g € H and set (Vn € N) 2,11 = Sxp.
Set xg = (x0)ier € H™ and (Vn € N) x,41 = (Q o T)x,,. Then (Vn € N)
Xp, = (zn)icr- Now Qo T is asymptotically regular by Theorem 7.20(iii);
hence, x,, —Xp+1 = (T, — Tp+1)ier — 0. Thus, x,, — 2,41 — 0 and therefore
S is asymptotically regular. O

Remark 7.22. Theorem 7.21 extends Theorem 6.36 from Euclidean to Hilbert
space.

Remark 7.23. Similarly to Remark 7.10, one cannot deduce that if each T;
has fixed points, then ) ..; A\;T; has fixed points as well: indeed, consider
the setting described in Remark 7.10 for an example.

We conclude this chapter by showing that it was necessary to work in
Y and not in H; indeed, viewed in H, the operator Q is generally not even
nonexpansive. The following fact is needed:

Fact 7.24. [11, Proposition 25.4(iii)] In the Hilbert product space H, set
A = {x=(2)ies ’ reH}andj:H - Az (z,...,z). Then

L1
Pax=j (mZ%) .
el

Theorem 7.25. Suppose that H # {0}. Then the following are equivalent
in the Hilbert product space H.

(i
(ii) Q coincides with the projector Pa .
(iii

i
(iv

)
)
) Q is firmly nonexpansive.
) Q is nonexpansive.

Proof. “(i)=(ii)”: Fact 7.24. “(ii)=-(iii)”: Clear. “(iii)=(iv)”: Clear.
“(iv)=(1)”: Take e € H such that |le|| = 1. Set x := (\je)ier and y :=

2
> ier Afe. Then Qx = (y)ier. We compute || Qx| = m||y||? = m (> ;c; A7)
and [|x||> = >,; M. Since Q is nonexpansive, we must have that [|Qx||* <
|Ix||?, which is equivalent to

2
m (Z A%) <N (7.32)

el el
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and to
my A <L (7.33)
el
On the other hand, applying the Cauchy-Schwarz inequality to the vectors
()\i)iel and (1)1'61 i R™ yields

2
1=1*= (Z Ai - 1) < [| et || (Vied|* = my Al (7.34)

i€l el

In view of (7.33) and the Cauchy-Schwarz inequality, (7.34) is actually an
equality which implies that (\;);er is a multiple of (1);c;. We deduce that
(Viel)\i=1/m. O

In this chapter, we have show that the composition 1}, T,,_1---717 and
the convex combination ), ; A;T; of asymptotically regular firmly nonex-
pansive mappings in a Hilbert space are asymptotically regular (Theorem 7.6
and Theorem 7.21). Theorem 7.21 also extended a previous result, Theo-
rem 6.36, into the more general Hilbert space setting. In the next chapter
we continue with the notion of averages “inheriting” properties from the
averaged operators with a look at the resolvent average.
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Chapter 8

Inheritance of Properties of
the Resolvent Average of
Monotone Operators

The resolvent average was previously defined in Chapter 5. In this chap-
ter, based on [21], we determine which properties the average inherits from
the averaged operators and provide new results in monotone operator the-
ory. Specifically, we cover the properties provided in Theorem 4.1, as well
as k-cyclic monotonicity, orthogonality, and difference maps.

Definition 8.1 (inheritance of properties). For all i € I, let A4; : H = H be
maximally monotone operators, and A = (Ay,..., A,). A property (P) is:

(i) Dominant if for some j € I, A; has property (P) implies that R, (A, A)
has property (P);

(i) Recessive if for all ¢ € I, A; has property (P) implies that R, (A, A)
has property (P), but property (P) is not dominant;

(iii) Indeterminant if the property is neither dominant nor recessive.

All of the theorems in this chapter build upon Theorem 5.3, which
showed R, (A, X) maintains monotonicity when all of the averaged oper-
ators are monotone.

8.1 Dominant properties

8.1.1 Single-valuedness of R,(A,\)

Lemma 8.2. For alli € I, let T} be a firmly nonexpansive mapping and let
T =5 c; NT;. Then for every x and y in H, we have
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8.1. Dominant properties

|72 — Tyl
= S MlTe - Tyl? - LS AN T — Ty — Ty + T2 (8.1)
i 1,J

<o = yllP? = llz = Tw —y + Tyl> = Y NNl Tiw — Ty — Tye + Tyy?

Z‘)j
(8.2)
<z —yl* = o = Tz —y + Ty|*. 8.3

Consequently, T is firmly nonexpansive.

Proof. Let x and y be in H. By (2.7) and since each T; is firmly nonexpan-
sive, we have
|ITa = Ty|* = |32, Mi(Tix - Tiy)||?
=Y Xl Tiw — Toy|)* = 332, Ml Tiw — Tiy — Ty + Tyl
<Y Ai(lle =yl? = Iz = Tiz) — (y — To)|1?)
— 3220, ANl Tie — Thy — Ty + Tyy|?
= llz =yl = (X Mill(@ = Tiz) = (y - Tiy)|I?
+ %Z” Aidj || Tow — Tiy — Ty + Tyy|?)
= lla =yl = (I3 Mile — Tz — y + Tiy)|I?
+ 30, ANl T — Ty — Ty + Tyyl|?)
= llo = ylI* = llz — Tz — y + Tyl
=Y XMl Tiw — Ty — Tja + Tyl
i,j

<l|lw =yl = |z — Tz —y + Tyl
and the result follows. O

Corollary 8.3. For all i € I, let T; be firmly nonexpansive on H, X; be
strictly positive real numbers such that ) ;.; N\i = 1, and set T' = Yoy AT
Let © and y be in H such that Tx = Ty. Then (Vi € I) T;x = Tyy. Conse-
quently, if some T; is injective, so is T.
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8.1. Dominant properties

Proof. By Lemma 8.2, we have
0=|Tz—~Tyl* =Y Nl Tiw — Twll* — 3 D ANl Tox — Toy — Ty + Ty
<o = yll? = llz —yl® = > A\l T = Toy — Ty + Ty
i?j
==Y AT — Ty — Tyz + Tyy||* < 0.
4,3

(8.4)

Thus >, ; M| Tix — Ty — Tz +Tjy||? = 0 so we must have (Vi € I)(Vj € I)
Tix — Ty = Tjx — Tyy and therefore

n n
0=Tz-Ty=>» \NTw—Y \NTy=Taz—Ty.
i=1 =1

Thus T;x = T;y and the result follows. ]

Corollary 8.4. For all i € I, let T; be firmly nonexpansive on H, A; be
strictly positive real numbers such that ) ;. X\i = 1, and set T' = Yo AT
Let z,u,v in H be given such that u=T(u+ z) and (Vi € I) v =T;(v + z).
Thenv=T(v+ z) and (Vi € I) T;(u + z) = u.
Proof. 1t is clear that v = T'(v+ 2). Now set t =u+z and y = v+ z in
Lemma 8.2 to deduce

lu—ol® < flu=v? = YNNI Tiu+2) = Tilu+2)|°. (8.5)

i,J

Hence (Vi € I)(Vj € I) Ti(u + z) = Tj(u + z). Since T'(u + z) = u, we must
have

T(u+z):i:)\iﬂ(u—i—z):ﬂ(u—i—z):u.
i=1

Thus (Vi € I) Ti(u+ z) = u. O
We are now ready for the main result of this section.

Theorem 8.5 (single-valuedness is dominant). Foralli € I, let A; : H = H
be mazimally monotone and assume that some A; is at most single-valued.
Then Ru(A, ) is also at most single-valued.

Proof. By Theorem 4.1(iv), a maximally monotone operator is at most
single-valued if and only if its resolvent is injective. Hence J,4; is injec-
tive. By Corollary 8.3 and (5.3), J,z,(a,x) is injective. Hence uR,(A, )
and therefore R, (A, X) is at most single-valued. O
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8.1. Dominant properties

8.1.2 Domain and range

Proposition 8.6 (resolvents are rectangular). Let T: H — H be firmly
nonexpansive. Then T is rectangular.

Proof. Since T is firmly nonexpansive, it is the resolvent of a monotone op-
erator, A, such that T = (Id+A4)~!. From the definition, it follows that
T is rectangular if and only if 77! = Id+A is rectangular. Now by Ex-
ample 3.53, Fla(z,z*) = I[lz + 2*||?. We know that Fa(z,2*) = (z,z*)
if (z,2*) € graA. To show that Id +A is rectangular, we must show that

dom(A +1d) x ran(A + Id) C dom F4 414, which by Fact 3.43 means that
dom A x H C dom Fq 4.

To this end, let (z,u) € dom A x H and take z* € Az. Then Fyy14(x,u)
(Fa(z, ) OF4(z,-))(u) < Fa(z,z*) + Fla(z,u — 2*) < +00. Hence (z,u)
dom F441q4 and thus A + Id is rectangular.

O m IA

Proposition 8.7. Let A: H = H be maximally monotone, and let v > 0.
Then A is rectangular if and only if YA is rectangular.

Proof. Use the definitions and F4(x, z*) = yFa(x,z* /7). O

Proposition 8.8 (surjective). For alli € I, let T; be a firmly nonexpansive.
If some Tj is surjective, then so is T =" ;' | NT;.

Proof. First, consider the case where T' = AT} + A2T5. Without loss of
generality, assume that 77 is surjective. By Proposition 8.6, since T is firmly
nonexpansive, it is a resolvent and hence rectangular. Each T; is rectangular
as well, as is each \;T; by Proposition 8.7. Using Fact 3.66(i),

int ran(\ 71 + AoTh) = int(ran \77 4 ran AoTh),
we see that T is surjective. The case n > 2 now follows inductively. O

Theorem 8.9 (full domain is dominant). For all i € I, let A; be maz-
imally monotone and suppose that for some j € I, domA; = H. Then
domR, (A, X) =H.

Proof. Since dom A; = H, then dom uA; = H. By Theorem 4.1(ii),
dom pA; = H if and only if J,4; is surjective. Then by (5.3) and Propo-

sition 8.8, Jugr,(an) = 2. Aidua, is surjective and thus dom R, (A, A) =
i€l
H. O
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Theorem 8.10 (surjectivity is dominant). For alli € I, let A; be mazimally
monotone and suppose that for some j € I, A; is surjective. Then Ri(A,X)
18 surjective.

Proof. By Theorem 4.1(iii) and (3.13),

Aj is surjective <« Id —J4; is surjective.

& JA;1 is surjective.

Thus, by Corollary 5.9, and Proposition 8.8, Jr, (4,)-1 Is surjective. Ap-
plying Theorem 4.1(iii) and (3.13) again, we have
JRi(an)-1 1s surjective < Id —Jg, (a4, is surjective.
< R1(A, ) is surjective.

8.1.3 Strict monotonicity

Lemma 8.11. For alli € I, let T; be firmly nonerpansive and A; be strictly
positive real numbers such that Y \; = 1. If there exists j € I such that T} is
el
strictly firmly nonexpansive then T = > \/T; is strictly firmly nonexpansive.
i€l

Proof. We know from Lemma 8.2 that T is firmly nonexpansive. To show
T is strictly firmly nonexpansive we need to show that for u,v € domT if
Tu # Tv then ||Tu — Tv||*> < (Tu — Tv,u —v). Suppose to the contrary
that

Tu # Tv and | Tu — Tv||? = (u — v, Tu — Tv). (8.6)

We know from (8.1) and the firm nonexpansiveness of the T; that

|Tw = To)? = | Y Xi(Tou— Tw) > < Y Xil Tiw — Tiol?
el i€l
< Z)‘i (u—v,Tiu—Tw) =(u—v,Tu—Tv). (87)
el

Since ||Tu — Tv||? = (u — v, Tu — Tv), (8.7) yields

|Tu = To|> = | Y N(Tiu = To) > = Y NillTiw = Tyl
iel iel
= Z Xi (Tiw — Tyw,u —v)  (8.8)
el
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Since || - ||? is strictly convex, we have
Tiu— Ty =Tju—Tjv (Viel). (8.9)

Since each T; is firmly nonexpansive, ||Tiu — Tyv||?> < (Tyu — Tyv,u — v) and
the third equality of (8.8) gives

| Tyu — Tyv||? = (Tju — Tv,u —v) (Vi € I). (8.10)
By definition of T', (8.9) and the fact that Tw # T'v we also have
Tu—TU:Z)\i(Tiu—Tiv) =Tju — Tjv # 0.
el

Then || Tju — Tjv||* < (Tju — Tjv,u — v), since T} is strictly firmly nonex-
pansive. But this contradicts (8.10), and thus (8.6) is false. Therefore,

|Tu — Tw|? < (Tw — Tv,u —v) whenever Tu # T,
and hence T is strictly firmly nonexpansive. O

Theorem 8.12 (strict monotonicity is dominant). For all i € I, let A; be
monotone and additionally assume that some A; is strictly monotone. Then
R1(A, ) is strictly monotone.

Proof. By Theorem 4.1(vi), since A; is strictly monotone then J4;, is strictly

firmly nonexpansive, thus by Lemma 8.11 we have Jg (ax) = > ida,
i€l

is strictly firmly nonexpansive. Apply Theorem 4.1(vi) again to see that

R1(A, ) is strictly monotone. O

8.1.4 Banach contraction

Proposition 8.13 (Banach contraction). For all i € I, let T; be a firmly
nonexpansive mapping and A\; € Ry such that > N; = 1. If some T
is a Banach contraction with constant 3, then T = ), ; A\iT; is a Banach
contraction with constant (1 — X\;(1 — f)).

Proof. Suppose that T} is 8-Lipschitz, with 0 < 3 < 1. Let = and y be in
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H. Then
1Tz — Tyll <> Nl Tiw — Ty

i€l

<D Aillz =yl + AiBllz — vl
i#j

= Aillz —yll = A1 = B)|lz —y]
il

=1 =X0=8)llz =yl

O

Theorem 8.14. For alli € I, let A; be maximally monotone operators from
H = H and assume that for some j € I and Ja; is a Banach contraction
with constant B. Then Jg, (ax) i a Banach contraction with constant v =

(1—X;(1—p5)) and Ri1(A,X) satisfies
(V(xz,u) € graR1(A, X)) (V(y,v) € graR1(A,A))

1—’72 2 2
Vgﬂx—M!§2@—ym—v%HW—ﬂh

Proof. Since, J4; is a Banach contraction with constant 3, applying Propo-

sition 8.13 and (5.3), Jr,ax) = > AiJa, is a Banach contraction with
iel

constant v = (1 — Xj(1 — )). Therefore, Theorem 4.1(xiii) yields that

Ri1(A, ) satisfies

(V(z,u) € graR1(A,A)) (V(y,v) € graR1(A,A))

2
gl
vsz—MFSQ@—yw—v%HM—MR

where v = (1 — X\;(1 — 3)). O

8.1.5 Rectangularity and paramonotonicity

While rectangularity and paramonotonicity are not typically dominant
properties, in the special case where the operators are linear on RY, they
are dominant.

Theorem 8.15 (linear rectangularity and paramonotonicity are dominant
on RM). Assume that (Vi € I) A; : RN — RY s linear and at least one
A; is paramonotone (equivalently rectangular). Then Ri(A, X) is linear and
paramonotone (equivalently rectangular).
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Proof. This is Theorem 8.24(iii) combined with Fact 3.58(i). O

8.2 Dominant or recessive properties

In this section we gather the properties that are at least recessive, but
for which there is not yet a proof or counterexample for dominance.

8.2.1 Strong monotonicity

Theorem 8.16. For all i € I, let T; be (1 + ¢;) firmly nonexpansive with

€ >0. ThenT = > \T; is (1+€) firmly nonexpansive, where € = min;er €;.
i€l

Proof. T; is (1 + ¢€) firmly nonexpansive with € > 0 gives
|ITix — Tyl < 1+ )" (T — Ty, x — y) - (8.11)
By the convexity of || - ||?, and (8.11), we have
Tz = Tyl* <Y Xl Tiw — Tyl
i€l
< Nl +e) Tz — Ty, —y)
el
n
<Y A+ e Tiw — Ty, z — y)
i=1
=(1+e)  (Te—Ty,z—vy).
Thus T is (1 + €) firmly nonexpansive, where € = min;er €;. O

Theorem 8.17 (strong monotonicity). For all i € I, let A; be strongly
monotone with constant €;. Then R1(A, ) is strongly monotone with con-
stant € = min;ey €;.

Proof. By Theorem 4.1(xi), Ja, is (1 + ¢;) firmly nonexpansive for all i €

I. Then by Theorem 8.16, > A;J4, is (1 + ¢€) firmly nonexpansive where
el

€ = min;er¢;. Thus by (5.3) and Theorem 4.1(xi), R1(A,A) is € strongly

monotone. Ul
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8.2.2 ~-cocoercive

Theorem 8.18 (y-cocoercive). For alli € I, let A; be maximally monotone
and ~y;-cocoercive for v; > 0 and N\; € Ryy such that > ;| N\; = 1. Then
Ri1(A, ) is y- cocoercive, where v = mi}l Yi-
1€

Proof. By Theorem 4.1(xii), (3.13) and Theorem 4.1(xi),

A; is v;-cocoercive

< (14 7;)(Id —J4,) is firmly nonexpansive;

< (14 ;)J 41 is firmly nonexpansive.

& (Vo e H)(Vy € H)||J 410 — J 4-1y?

< (14t <m — Y, J 12 — JA__1y> .
Then by (8.1), (Vz € H)(Vy € H)

1Y S Nidyz =) Nid -yl (8.12)
icl ' icl ’
< ZAiHJAflfﬁ - ']Afly||2
Ze[ K 1
< Z Ai(1+ ’Yi)_l <:c —y,J 1w — JA__1y>
icl ' '
< Z Ai(1+ 7)71 <x —y,JJ 1z — JA71y>
iel

= (1—{—7)*1 <m—y,Z)\iJAi—1x—Z)\iJAi—1y>, (813)

icl el
where v = mi}l vi- Applying Theorem 4.1(xi), Theorem 5.19, and Theo-
1€
rem 4.1(xii) to (8.13) we have, (Vx € H)(Vy € H)

1D Nid gz =Y Nid yoayll?

icl el
<(A4+m7" <x N DIEEEDS AiJAi1y>
el el
& (14 7)Jr,(a,n)-1 is firmly nonexpansive;
< (1+79)(Id —Jg,(4,n)) is firmly nonexpansive;
< R1(A, A) is y-cocoercive.
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8.3 Recessive properties

8.3.1 Maximality and linearity

Theorem 8.19 (maximal monotonicity is recessive). R, (A, ) is mawi-
mally monotone if and only if for all i € I, A; is mazimally monotone.

Proof. This is a consequence of Theorem 5.3. O

Theorem 8.20 (linear relations are recessive). For all i € I, let A; be a
mazimal monotone linear relation. Then R, (A, ) is a mazimal monotone
linear relation.

Proof. Since each A; is a linear relation, Fact 2.20 shows that A; + Id is a
linear relation and therefore (A; +1d)~! is a linear relation. The maximality
of A; and Fact 3.43 imply that (A; + g~ 'Id)~! is single-valued and full-
domain. Thus, (A4; + x~11d)~! is a linear mapping. Using

(Ru(AN) + 7 1d) ™ = M (A + p ) ™+ A (A + 7t 1)

we see that (R, (A, ) +1d)~! is linear, therefore R, (A, X) +1d is a linear
relation. Then R,(A,A) = (Ru(A,A) +1d) —Id is a linear relation. O

The next example shows that linearity is not a dominant property.

Example 8.21. Set f = || - || and A; = 9f and A2 = 0. Then by (3.16)
and Example 2.55

(1 - L) z, if |lz|| > 1;
Ja,x = prox; x = ll=ll) ’
0, iffall <1,

and we have Jy, = Id. Then Jy4, is not linear and J4, is linear. However,

1— Ak )z, if > 1;
IR (ANT = Aax+ (1= AN)Ja,z = ( Hzll) @ el
(1=Nz, ||z <1,

which is not linear. Thus R1(A, A) is not a linear relation.

8.3.2 Rectangularity and paramonotonicity

Theorem 8.22 (rectangularity is recessive). Assume that for each i € I,
A; - H = H is a rectangular mazimally monotone operator. Then Ri(A, )
s rectangular.
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Proof. By Theorem 4.1(xvii), we need to show (Vz € H)(Vy € H),

inf (JRiANT — TR (AN % (U = TRy (anY) — (2 = Tri(an2)) > —0c.
(8.14)
Using Jr,(a,n) = Doie1 NiJ4;, (8.14) becomes (Vo € H)(Vy € H),

zlgyf{<2)\ (Ja,x — Ja,2), Z)\ JAy Ja. z)]>>—oo.

(8.15)
Since A; is rectangular, by Theorem 4.1(xvii) we have for each i € I,
(Ve e H)(Vy € H) 12;_’[ (Ja,@ — Ja,z, (y — Ja,y) — (2 — Ja,2)) > —o0.

(8.16)
Setting x; = Ja,x — Ja,2, wi = (y — 2) — (Ja,y — Ja,2), and

1
Cij = — <JA1':’U - Jij7 JAiy - ‘]Ajy> + EH(JAZ‘T - Jij) + (JAiy - JAjy)H27

we have (z; — xj,u; — uj) =

((Jayz — Jayx) — (Jayz — Ja,2), —(Jay — Ja,y) + (Ja,z — Ja,2))
— <JA1.{L‘ - JA].ac, Jay — JAjy>
+ ((Jax — Ja,@) + (Jay — Jay), Jaz — Ja,z) — || Ja,z — JAjZ||2

Ja, o —Jax) + (Ja,y — Ja; 2
||t It Ty 2 Ia) g, g
+ H(JAzw - Jij) + (JAiy - JAjy)”2
4
Ja,x —Ja.x) + (Ja,y — Ja, 2
- H( A A;T) ! (Jay—Jay) (Jaz—Ja2) (8.18)
Then for given x,y € H, using Fact 2.42, (8.18) and (8.16),
inf <Z Ni(Ja,x — Ja,z ,lej — (Ja,y — Ja, z)]>
=
Zlgqf{{Z)\ (Ja,o — Ja,2,(y — 2) — (Ja,y — Ja,2))
Ja,x— Ja, Ja,y — Ja, 2
ZZMM2<%‘ B H( AT Ajar);( Y — Ja,y) az—d) ﬂ

i=1 j=1
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n

> inf (D N (Jaw = Jaz (y—2) = (Jay — Ja,2) ZZMJ 2

=1 11]1

Z;/\izigjfiu,qix—,]&z,(y z) — (Ja,y — Ja, %) ZZA )\J 5

11]1

n ] CZ
:Z;/\izlg7f{<JAix—JA127(y—JAiy) (2 — Ja,2)) ZZAA Cij

=1 5=1

Hence (8.15) holds and R;(A, A) is rectangular. O

Remark 8.23. Theorem 8.22 is not true if only one A; is rectangular. See
Example 8.27 for a counterexample.

Theorem 8.24. Let A; be mazimally monotone operators from H = H for
all v € 1. The following hold:

(i) Assume that (Vi € I) A; is paramonotone. Then Ri(A, ) is para-
monotone.

(ii) Assume that at least one A; is paramonotone and at most single-valued.
Then R1(A, X) is paramonotone and at most single-valued.

(i) Assume that (Vi € I) A; is linear and at least one A; is paramonotone.
Then R1(A, X) is linear and paramonotone.

Proof. By Theorem 4.1(xv), we need to show that (Vz € H)(Vy € H),
TR (AN — TRy anyll® = (T — ¥, Jry (a0 — TRy (ANY) (8.19)
N {Jnl(A,,\)af = Jryan (Jri(anT + Y — TR (ANY)

(8.20)
TRy ANY = TRy (AN (TR (AN + T = TRy (ANT)-
Using Jr,(an) = 2iz1 NiJa,, (8.19) becomes
| Z/\ Ja,x— Jay)|? = Z)\ —y, Jaz—Jay). (8.21)
i=1
By the strong convexity of || - ||, (2.7) with @; = Ja, 7 — Ja,y, gives
HZ/\ (Ja,x = Jap)|l® = Z/\ 14,2 = Ta,yll?
=1 =1
" Jax —Jay) — (Ja,xz — Ja,y)|?
s WA = ) Un Il

— £ 2
=1 j=1
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Then it follows from (8.21) and (8.22) that (8.19) is equivalent to

I

" LR |(Ja,x — Ja,y) — (Ja,x — Jay)
> XillJaz = Tayl? =D dx—— : 7 d
2 [ Ja;x = Jayll 22 j 5

= Z N —y, Ja,x — Jayy), (8.23)
i=1

That is,

n

S il az = Tayl® = (@ =y, Jaz — Jay))

i=1
& Jax — Jay) — (Ja.x — Jay)|?
=33 "N a2 = Jay) 2( at = Il (8.24)
i=1 j=1
Since Jy, is firmly nonexpansive, Fact 3.3(iv) gives
(Vi €l HJAzx - JAinQ —(z -y, Jax — ']Aiy> <0 (8.25)
Then because \; > 0, (8.24) and (8.25) indicates that
Viel) |Jaz—Jayl®=(x—y,Jax—Jay), (8.26)
and
(Viel)(Vjel) Jax —Jay=Ja, e —Jay=d (8.27)

where d € H. In particular, multiplying (8.27) by A;, followed by summation,
gives

JRiANT = IR (ANY = d. (8.28)

With these, we are ready to show:
(i) If each A; is paramonotone, then (8.26) and (4.11) gives

(Viel) Jax=Ja(Ja,z+y—Jay),

Viel) Jay=Ja,(Jay+zx—Jax).
In view of (8.27) this is,

(Viel) Jaz=Ja(d+vy), (8.29)

(Vi € I) JAZ.y = JAi(—d—i- a:) (8.30)
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Then multiplying (8.29) and (8.30) by \;, taking summations and using
(8.28) leads to

Z ANid g, x = Z Aida,(d+y) = Jran (JrianT + Y — TR (anY);
=1 =1

Z NiJay = Z Aida,(=d+z) = Jr,(an) (IR (ANY T T — IR (40)T),
=1 =1

which is (8.20). Thus R1(A, A) is paramonotone.
(ii) If at least one A; is paramonotone, say A;, then for this A;, (8.26)
and (4.11) gives
Ja,x = JAi(‘]Ai$ +ty— ‘]Aiy)a

Ja,y = Ja,(Jay +x — Ja,z).

By Theorem 4.1(iv), since A; is at most single-valued then J4, is injective,
therefore
T = JAZ.Z' + Yy — JAiya

y=Jay+x—Jazx. (8.31)

Both of which imply,
r—y=Jar—Jay. (8.32)

Note that (8.27) and (8.32) together signify

(Viel) z—y=Jayz—Jay
which gives us

Viel) z=Jayx+y—Javy,

Viel) y=Jay+x—Jam.
Multiplying both sides by A;, followed by summation, gives

x = Z ANjJa;z+y — Z)\jJAjy = JrianT+Y — IR (ANY:
j=1 j=1

y = Z)\jJAjy +z— Z)\jJij = Jri ANy t T — IR (AT
j=1 j=1

Hence (8.20) follows immediately. Therefore, Rq(A, ) is paramonotone.
By Theorem 8.5 Ri(A, ) is at most single-valued.
(iii) follows from (ii). O
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Remark 8.25. Theorem 8.15 gives an improved version of Theorem 8.22
when each A; is linear and monotone.

Remark 8.26. Example 8.27 demonstrates that Theorems 8.22 and 8.24 are
almost optimal, and they cannot be significantly improved.

Example 8.27. Define 4; : R? — R? to be the normal cone operator of
the set R x {0}. That is,

A1 = Ny {o}-
Let A% :R? — R? be the skew operator such that

Ay = <_01 (1)> and Jy, = (Id +A2)_1 = <

Then by Fact 3.42, J4, is the projector on R x {0},

10

Then for A\ = Ay = % we have,
1 1 -1
Ri(A,A) = (§JA1 + §JA2) —1Id

I
7N 7N T N /‘\\

2 0 2

Clearly, rank R1(A, A) = 2 while rank R1(A,A\)y = 1. AsrankR;(A, ) #
rank R1(A, A)+, Fact 3.58(ii) implies that Ri(A, ) is not paramonotone
and equivalently R;(A, A) is not rectangular.

Ru(AN), — FIAN T RUANT <o 0) ‘

Remark 8.28. Note that in Example 8.27 we have demonstrated the follow-
ing:
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(i) Aj is rectangular and Ag is not rectangular, and we have Ri(A, ) is
not rectangular. Therefore the requirement for all A; to be rectangular
in Theorem 8.22 is optimal.

(ii) A; is paramonotone and Aj is not paramonotone, and we have R1(A, )
is not paramonotone. This implies that Theorem 8.24(i) is optimal.

(iii) A; is paramonotone but A; is not single valued, and R;(A, ) is not
paramonotone. Thus Theorem 8.24(ii) is optimal.

Theorem 8.29. For every i € I suppose there exists z € H such that
A x> zi. Then Ri(A )tz = > \iz;.
i€l

Proof. By Theorem 4.1(v) there exists z; € H such that A;: z — z; if and
only if J4, is an isometry, in which case Jy,: * — = — z;. Then,

JRI(A)\)x = Z /\iJAix

iel
= Z)\Z(:L‘ - Zi) =T — Z)\lzl
i€l iel
Thus Jg,(a,x) is an isometry, so R1(A,A) 1z — > \iz;. O

i€l
8.3.3 k-cyclical monotonicity

Recall that for an operator A : H = H, A is k-cyclically monotone if for

all (x1,u1),...,(xg, ux) € graA and xp41 = x1 one has
k
Z (ui, Ti41 — acz> < 0. (8.33)
i=1

The operator A is cyclically monotone if Yk € {2,3,...}, A is k-cyclically
monotone.

Example 8.30. [5, Example 4.6] Let H = R? and let n € {2,3,...}. Denote
the matrix corresponding to the counter-clockwise rotation by 7/n by R,.

That is,
s : s
cos T —sin’
R, = )
sin - cos T

n

Then R, is maximally monotone and n-cyclically monotone, but R,, is not
(n + 1)-cyclically monotone.
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Lemma 8.31. Let A and B be k-cyclically monotone operators from H =
H. Then

(i) A is k-cyclically monotone for a > 0.

(ii) A+ B is k-cyclically monotone;

(iii) A~! 4s k-cyclically monotone.
Proof. (i): Let (z;,u;) € graaA for i =1,...,k+ 1 with 311 = ;. Then
(25,0 u;) € graA fori=1,...,k+ 1, and we have

k k
Z <$Z‘+1 — :L'Z',’U,Z‘> = OJZ <$i+1 — Ty, a_lui> < 0,
i=1 i=1
by the k-cyclical monotonicity of A. Thus aA is k-cyclically monotone.
(ii): Let (zj,u; +v;) € gra(A+ B) fori = 1,...,k + 1 with x4 = 21,
(xi,u;) € gra A, (x;,v;) € graB. Since A and B are k-cyclic, by definition
we have,

k k

Z (Tiy1 — w4, u;) <0, and Z (Tiy1 — mi,v5) < 0.
=1 =1

Adding these two inequalities yields, Zle (Tiy1 — iy u; +v;) < 0. Thus
A+ B is k-cyclic.

(iii): Let (us,x;) € graA™! for i = 1,... k. Then (Vi) (z;,u;) € gra A.
By the k-cyclical monotonicity of A, one can do the k-cyclical summation
for points arranged in

(Tpr1, upr1) = (21,u1), (Th, Uk ), (Th—1, Ug—1), -+, (T2, u2),
to obtain that
2 k
Z <l‘i_1 — Iy, ul> <0 <& Z <a:, — xi+1,ui+1> <0. (834)
i=k+1 i=1
Now
k k k
(i — i1, uip1) = Z (T4, wip1) — Z (Tig1, wit1)
i=1 i=1 i=1
k k k
= Z <xi,ui+1> - Z <x’ia u7,> = Z <xi7ui+l - uZ> )
i=1 i=1 i=1

N

so (8.34) transpires to Y i, (m;, ui+1 — u;) < 0. Hence A™1 is k-cyclically
monotone. 0
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Fact 8.32. [5, Theorem 6.6] Let T': X — H. Then T is the resolvent of
the maximal monotone and k-cyclic operator A : H = H if and only if T
has full domain, T is firmly nonexpansive, and the mapping Tx — x — Tx

is k-cyclic, i.e., for every set of points {x1,...,x}, where xxy1 = x1, one
has
k
Z (x; = Tay, Tx; — Txipq) > 0.
i=1

Proposition 8.33. Suppose that Ay and As are two mazximal monotone
and k-cyclical mappings from H = H. Further, let a €]0,1[. Then there
exists a k-cyclical monotone operator B such that

(Id+B) ' =ald+A) "L+ (1 —a)(Id+A4y) L. (8.35)
Hence the set of resolvents
{Ja: A is k-cyclically monotone},

1S a convex set.

Proof. Set T = J4, and T = J4,. Then T} and T are firmly nonexpansive
with full domain as they are the resolvents of maximally monotone operators.
Let o €]0,1[, then T := aT} + (1 — )73 is firmly nonexpansive with full
domain, and is thus the resolvent of a maximally monotone operator, B. To
show that B is k-cyclically monotone, by Fact 8.32 we need to show that

k
Z<$Z — (OéTliL‘i + (1 — OZ)TQLUi), (OéTliL‘i + (1 — Q)TQZI;Z’)
=1
— (CleiL'Z‘_H + (1 — Oé)TQI'i+1)> > 0. (8.36)
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For each ¢ we have,

(x; — (aTix; + (1 — @) Toxy), (aTiz; + (1 — a)Tox;)
— (0Thzig1 + (1 — ) Torwiq1))
= o (x; — Tyay, vy — Tixig) + (1 — @) (z; — Toxy, Tox; — Toxiy)
+oa(l —a)(x; — Thay, Tox; — Toxitq)
+a(l —a)(x; — Toxy, Tyx; — Tixi41)
= (o’ + a(l — a)) (z; — Thai, Tiz; — Tixit)
+ ((1 —a)?+a(l - a)) (x; — Tow;, Tox; — Towit1)
+a(l — a) (Tyx; — Towy, (The; — Thwivr) — (Tex; — Toxitq))
=a(x; — Thay, Tix; — Tixip1) + (1 — a) (x; — Toxy, Tow; — Towivq)
+a(l — a) (Tix; — Toxy, (Tha; — Thxivr) — (Tex; — Toxigq)) . (8.37)

By Fact 8.32,

k
x; — Ty, Tix; — Tixiyr) > 0 and Z (x; — Towy, Toxy — Towiy1) > 0.

Fj»

i=1 =1
(8.38)
Since Id is cyclically monotone, then any points x1,. .., x; satisfy
k
Z X, T — Tigp1) > 0,
=1
where xg11 = x;. Thus,
k
Z <T1.CC,‘ — TQCUZ‘, (Tlxi — T1$i+1) — (Tgl’i — T2$i+1)> 2 0. (839)
i=1

Altogether, (8.37), (8.38), and (8.39) yield,

Z(xl — (aTiz; + (1 — a)Toxy), (aThz; + (1 — a)Tox;)
— (aTizip1 + (1 — a)Taziq1)) > 0,

which is (8.36). The convexity of C' := {J4 : A is k-cyclically monotone}
then follows from induction. Clearly, if n = 1 then J4, € C. Assume that
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AMJa, +-+ Ano1da,, € C, then

)\IJA1+"'+)\nJAn
=MJa, + o+ Am1da, A4,
)\1 )\nfl
=(1- A Tay +- o+
( )<A1+---+An1 o Mt At
=(1- /\n)JA + AndAa,

JAn_1> + Anda,

We know that A is k-cylic by the induction assumption, thus apply (8.35)
to get A\iJa, + -+ Ay Ja, € C. O

Theorem 8.34 (k-cyclic monotonicity is recessive). For alli € I, let A; be
mazimal monotone and k-cyclic, then R, (A, X) is k-cyclic. In particular,
Ru(A,N) is cyclic if each A; is cyclic.

Proof. By Theorem 8.33, uR,,(A, ) is k-cyclic since,
Jur,axn) = Mdua, ++ Adua,,
Apply Lemma 8.31(i) with a = ! to get R, (A, A) is k-cyclic. O

To see that k-cyclic monotonicity is not dominant, we look at the fol-
lowing example.

Example 8.35. Let H = R? and set A = (1/2,1/2). Define

cosT —sinZ cost —sin%
Alz(_ 72 7r2> andA2:<. ;:) ﬂ_3>.
sing  cos g sing  cosg
By Example 8.30, A; is 2-cyclically monotone, but not 3-cyclically mono-

tone and Ay is 3-cyclically monotone. Then Ri(A,A) is not 3-cyclically
monotone, as can be verified using (8.33) and the points

(O o (1Y e (O) and e —

The code that can be used to verify this example can be found in Ap-
pendix B.1.
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8.3.4 Displacement mappings

Theorem 8.36. Let T' be a mapping from H to H. Then T o (21d) is a
displacement mapping, i.e.

T o (21d) = Id —N,

for some nonexpansive mapping N : H — H if and only if T is firmly
nonerpansive.

Proof. Assume first that 7' o (21d) = Id —N. Then

T — iz
Tz = (Id —N)(%x) =2- N(%x) _ 22N(2)

As N is nonexpansive, we have (Vo € H)(Vy € H) ||[Nx — Ny|| < |z — y]|.

So,
1 1 1 1
N(zz)=N(zy)l|<|z2-2
¥ (32) - (30) = -
1 1
sl2N(zz)—2N(Zy )| <z -yl
2 2
So 2N o (% Id) is nonexpansive, hence by Fact 3.3(iii) T is firmly nonexpan-

sive.
Conversely, assume T is firmly nonexpansive. Consider

N = (Id-T o (21d)),
we will show NN is nonexpansive.

INz — Ny|* = |[(z = T(22)) - (y = T(2y))|
=z —y) = (T(22) = T(2y)|I”
= llz = yl* = 2{x -y, T(22) - T(2y)) + |T'(2x) - T(2y)|>
= llz = yl* = ((2x - 2y, T(22) — T(2y)) — |T(22) - T(2y)|]*)
< lz —yll?,

since T' is firmly nonexpansive. Thus IV is nonexpansive and

To(21d) = Id —N.
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Theorem 8.37. LetT : H — H be a displacement mapping, i.e. T =1d —N
for some nonexpansive mapping N : H — H. Then T = 2J4 for some
monotone operator A : H = H.

Proof. By Fact 3.3(iii) and Fact 3.36, N = 2J4 — Id for some monotone
operator, A. Then using the resolvent identity we have,

T =1d—(2J4 — 1d) = 2(Id —J4) = 2J4-1.
0

Theorem 8.38. A: H = H is %—strongly monotone if and only if A71 =
Id —N for some nonexpansive mapping, i.e. A~ is a displacement mapping.

Proof. Assume A is %—strongly monotone. Then A = %Id +B for some

monotone operator B, and we have

-1
A7t = (% Id+B)™! = (;(Id +2B)>
= (Id+2B) ' o (21d) = Jop o (21d).

Thus by Theorem 8.36, A~! is a displacement mapping.
On the other hand, assume A~! is a displacement mapping. Then by
Theorem 8.37, A~! = Id —N = 2.Jp for some monotone operator B and

A1 =21d+B) ' & A= (Id+B)o (%Id) _ %IdJrB @m)
1 1
=B <2Id> —A- 1.

Since B is monotone, A is %—strongly monotone. O

Theorem 8.39. Assume that for all i € I, A; is a displacement mapping,
i.e. A; =1d—N; for some nonexpansive N;. Then

Ri(AN) = (MJa, + -4 Mda,) 't —1d,

is a displacement mapping, i.e. R1(A,X) =1d—N for some nonerpansive
mapping N.

Proof. Using Corollary 5.9,

JRiaN) =1 = A ymr o Ay
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By Theorem 8.38, Ai_1 is %—strongly monotone for all ¢ € I, and there-

fore by Theorem 4.1(xi) J,-1 is (1 + &)-firmly nonexpansive. By Theo-
n

rem 8.16, Jig, (a1 = > Aid -1 is (1 + %)—ﬁrmly nonexpansive. Then
i=1 :

Theorem 4.1(xi) gives R1(A,A)~! is 3-strongly monotone and thus Theo-

rem 8.38 yields that R;(A,A) is a displacement mapping. O

8.3.5 Nonexpansive monotone operators

Theorem 8.40 (nonexpansiveness is recessive). For all i € I, let A; be a
nonexpansive monotone mapping, i.e. A; = 2T; —1d and T; = Jp, for some
monotone operator B;. Then Ri(A,X) is nonerpansive and

Ri(A,N) = 2T —1d,

n
where T = Jp, B =Y \;B;, and B; is nonexpansive for all i € I.

=1

Proof. We have
Ja, = (Id+2Jp, —1d)~' = (2Jp,) ' = 1d +B;) o (% Id). (8.40)
Thus Jy, o (21d) = Id +B;, and using Theorem 8.36
B; = —N;, (8.41)

for some nonexpansive mapping NV;. So we have

n

n n 1 1
IR (AN = Z Nida, = Z Ai(Id+B;) o (5 Id) = Z)‘i(ld —Nj)o (5 Id)
i=1 i=1 =1
(8.42)

Or, Jg,(ax) ©(21d) = >~ Xi(Id —N;). On the other hand, by Theorem 8.36
i=1
for some nonexpansive N. Then we have N = Y  \;N;.

i=1
We also have, from (8.43)

(Id+R1 (A, X)) =Td—N)o (% Id)

1 -1
S Id4+Ri(A ) = ((Id —N)o (2Id)> =2(Id—N)~! (8.44)

& Ri(AN) =21d—N)"! —1d. (8.45)
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But N = Y2 \;N; = — > \;B;, thus we have
i=1 i=1

Ri(A ) =2(Id+ > \B;) ™' —1d = 2Jp - 1d,
=1

n
where B = > \;B;. O
i=1

a
b
A is a rotation matriz if and only if AT = A7, i.e. A is an orthogonal
matric.

Lemma 8.41. Let A be a real 2 x 2 matriz of the form A = [ _ab] . Then

a

b

a’+b%> =1, ie. a and b lie on the unit circle. Therefore, converting to polar

coordinates using a = cosf and b = sin 8 gives that A is a rotation matrix.
On the other hand, assume A is a rotation matrix, then

Proof. First, assume AT = A7 and A = { _ab} Then ATA =1d =

A cosa —sina
sina  cosa |’

and

AT A — [ COos sina] [cosa —sina] . [1 0}

—sina cosal |sina  cosa 01
Thus, AT = A~L. O

Example 8.42 (2 x 2 rotation matrices). Let A, and Ay be the 2 x 2
rotation matrices,

A, = [Cosa —sma] A — [COSH —sme} ?

sin¢  cos« sinf cos@

with «,0 € [—7/2,7/2]. Then using mathematical software, it is easy to
verify that Ri(A, ) is a matrix of the form [Z _ab], with Ri(A, AT =
R1(A,X)~! (see Appendix B.2), thus by Lemma 8.41, R1(A, \) is a rotation

matrix.
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Remark 8.43. Example 8.42 shows that the resolvent average of two rotators
is also a rotator. The same is not true of the arithmetic average. Consider,

A= Mo+ (1= NAy = Acosa+ (1 — ) cosé —)\sma—(l—)\)smel

Asina+ (1 —A)sinf  Acosa+ (1 — \)cosb

Then we have

AT A =

2(A — M) cos(a —0) + 222 —2X + 1 0
0 200 = A?)cos(a — ) + 22 =22 + 1|

By Lemma 8.41, A is a rotator if and only if AT A = Id. This implies that
cos(aw — @) = 1. That is, « = 0 + 2kx for k = 0,1,.... So the arithmetic av-
erage of two rotation matrices only produces another rotation matrix under
very specific circumstances.

Remark 8.44. Although we can see that R1(A, ) is a rotation matrix, even
in very simple cases it is difficult to see the relationship between the original
rotation matrices and the resulting rotation matrix. See Figure 8.1 to see
how the angle of rotation varies with certain values of # and «.

Theorem 8.45 (orthogonality is recessive). Let A; be monotone orthogonal
matrices for alli € I. Then R1(A, ) is an orthogonal matriz, i.e. A™1 =
AT,

Proof. By Theorem 5.19, the orthogonality of each A; and Fact 2.6, we have
(Ri(A,N) " =Ri(A71 )

=Ry (AT, N)
= (MId+AT) 4o A (Id+AT) ) T - 1d
— (A (1d” +AT) L AT +45)Y T —1d
= (M(Ad+ADT) 4+ A ((1d+4,,)T) ) T —1d
= (M(Id+Ay)~ )T+---+Am((ldJrAm)*l)T)‘1 ~d
( (A (Id+A7) " 4+ -+ A (Id +Am)*1)T>_1 ~1d
:( L (Id+ A1)~ --~+Am(1d+Am)*1)‘1)T—Id
=R (A, N7
Thus R1(A, A) is orthogonal. O
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-3
—'Y__e_'_ 0L|

Figure 8.1: Resulting angle v of the rotation of R1(A, ) of Example 8.42

Remark 8.46. As you would expect, Theorem 8.45 only holds when pu = 1.
For example, take A; = Id, Az be the 2 x 2 rotation by 7/2, \y = Ao = %
and p = 2, then R, (A, ) is not orthogonal.

Remark 8.47 (Pythagorean triples). As an interesting aside, note that when
we set @ = 7/2 and 6 = 0 in Example 8.42 then any rational value for A
produces a pythagorean triple, i.e. three numbers x, y, and z such that
22 + y? = 22. We begin with the matrix,

1-22 =2\
1+22 14+)2
Ri(4,A) = 22 1-x2
1+22 142
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Substituting A = 7, where a and b are integer values, we have

b%—a? —2ab
2+b2 (l2+b2

Ri(A XN =["“
1( ’ ) 2ab b2 —a?

P R Eu

Theorem 8.45 shows that R1(A, A) maintains orthogonality and by Exam-
ple 8.42 R1(A, A) is a rotation matrix. So the entries correspond to

b2 — q? . 2ab
2 and sin 8 = 2

for some 3 € [0,7/2]. Thus the angles formed in R1(A, A) are the angles in
right triangles with all integer sides such that

cos B =

(v? — a?)® + (2ab)? = (a® +1?)°. (8.46)

In fact, all possible triples can be generated this way. By [60, Theorem 11.1],
all pythagorean triples can be generated by relatively prime integers m and

n such that

x:mz—nQ, Yy = 2mn, z:m2+n2,

then 22 + y? = 22, which is exactly (8.46). The code used to generate this
example can be found in Appendix B.3.

Lemma 8.48. Foralli € I, let A; be monotone, and let some A; be strongly
n
monotone with constant 5 € Ry. Then A = > \;A; is strongly monotone

=1
with constant \;(.

Proof. Since Aj is strongly monotone with constant 3 then A; — BId is
n
monotone. Then ) A\;A; — A;51d is monotone, as it is the sum of monotone

=1
operators. Thus, A is strongly monotone with constant \;/5. O

Lemma 8.49. Let § € Ry,. An operator A is strongly monotone with
constant B < Ao (% Id) 18 strongly monotone with constant g

Proof. Let u € A (%:U) andv € A (%y), then

1 1
(x,u) € grado (2 Id) and (y,v) € graA o <2Id> )

As well,

1 1
(Q:c,u) € gra A and (§y,v) € graA.
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Since A is strongly monotone with constant 3, we have

1 1 1 1
<2x— vau—v> > Bllie - Sull?
1
oL @—yu—u)2 ey
- B

& (r—yu—v)> Syl

Thus Ao (% Id) is strongly monotone with constant g O

Lemma 8.50. Let 5 > 0 and o« > 1. Then A is strongly monotone with
constant B < aA is strongly monotone with constant af3.

Proof. Let (x,u) and (y,v) € graA. Then (z,au) and (y,av) € graaA.
Since A is strongly monotone with constant S,

(x —y,au—av) = oz —y,u—uv) > aflz—y|>
Thus aA is strongly monotone with constant af. O

Lemma 8.51. Assume A is both nonexpansive and strongly monotone with
constant 8. Then A™1 is strongly monotone with constant f3.

Proof. Let (z,u) € graA and (y,v) € graA. Then (u,z) € graA~! and
(v,y) € graA~!. By the strong monotonicity and then nonexpasiveness of
A, we have

(@ —y,u—v) > Bllz —yl* = Bllu— |,

i.e. Al is strongly monotone with constant 3. O

Theorem 8.52. Let A; = 2T; — Id be monotone for all i € I and T; = Jp,
for a monotone operator B;. Additionally, assume some A; = 2T; —1d is a
Banach contraction. Then Rq1(A, ) is a Banach contraction.

Proof. By Corollary 4.31, A; is a Banach contraction < B; and B;l are
strongly monotone. Using Theorem 8.40,

R1(A,N) = 2J5 —1d,
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where B = ) \;B;. Setting N = 2Jz,(a,x) — Id, we have
i=1

N =2(Id+2Jp —1d)"! —1d

— 2(1d+B)o Gm) 1

1
=Id+2Bo (2 Id) —1d

= QZAiBZ» o (;Id) .
=1

Combining Lemma 8.48, Lemma 8.49, and Lemma 8.50 we have N is strongly
monotone. By Theorem 8.40, B; is nonexpansive for all ¢ = 1,...,n there-
n

fore > A\;B; is nonexpansive and we get
i=1
- 1 " 1 T oy
IS xio (50) - X asio () 115 - )

=1 =1

- 1 - 1
& ||2§; \iB; o (295) —~ QZlAiBZ- o <2y> | < llz =yl

i= i=

Thus, N is both nonexpansive and strongly monotone, so by Lemma 8.51,
N~1is strongly monotone. Therefore by Corollary 4.31, 2./ —Id is a Banach
contraction. Now,

2Jy —1d = 2(Id+2Jg, (ax) — Id) " = 1d
=2(2Jg,an)  —1d

= 2(Id +R1(A,N)) o <;Id> ~1d

— 9R1(A,N) o (;Id> .

So 2R1(A,A) o (31d) is a Banach contraction, i.e. there exists 8 € [0,1]
such that for all z,y € H,

2Ri(A.N) o (52) = 2RiAN) o (50) | < Bl

1 1
< [Ra(A,2) 0 (255) ~Ri(A,A) o (2y> I < 5\\; - %H.

Thus R1(A, A) is a Banach contraction. O
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8.4 Indeterminate properties

We conclude this chapter with a couple of examples of properties that
do not satisfy the definition of dominant or recessive.

Example 8.53 (projections are indeterminant). Let A; and As be the pro-
jections in R? onto R x {0} and {0} x R, respectively. That is,

10 0 0
A1<0 O) andAg(O 1)

Then A; and As are both projections, but

Ri(AN) = (Mg, + (1= N)Jy,) ' —1d

A
- 1-X |’
0 pU]

is not a projection, since (R1(A,X))? # R1(A, ) unless A =0 or A = 1.

Example 8.54 (normal cones are indeterminant). Let A; = N¢, and Ay =
N¢, be the normal cones operators of C1 = R x {0} and Cy = {0} x R.

Then,
10 0 0
Ja, = (0 O) and Ja, = <0 1)

A; and Ag are both normal cones, but Ri(A, ) is not a normal cone by
Theorem 4.1(xx), since

A 0
TrRian = | (1-x))

and thus ran Jr, (ax) # Fix Jg,(a,2)-

Remark 8.55. In Examples 8.53 and 8.54 we have shown that the resolvent
average is not necessarily a projection (or normal cone) even if all of the
averaged operators are projections (normal cones).

The classifications of each of the properties considered in this chapter
are summarized in Table 8.1 and Table 8.2.
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8.4. Indeterminate properties

Table 8.1: Summary of completely classified properties of the resolvent av-

erage.

Dominant Properties

Recessive Properties

Single-valuedness
Full domain
Surjectivity

Strict monotonicity
Banach contraction
Linear rectangularity

Linear paramonotonicty

Maximal monotonicity
Linearity
k-cyclic monotonicity
Displacement mappings
Orthogonality
Nonlinear rectangularity
Nonlinear paramonotonicity

Nonexpansiveness

Table 8.2: Summary of incompletely classified and indeterminant properties

of the resolvent average.

Dominant or Recessive
Properties

Indeterminant Properties

Strong monotonicity

Cocoercivity

Projection operators

Normal cone operators
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Chapter 9

Conclusion

9.1 Key results

This thesis has provided a comprehensive study of the relationship be-
tween maximally monotone operators and firmly nonexpansive mappings as
well as defining a new method for averaging monotone operators. The key
results presented are outlined below.

Theorem 4.1 lists the corresponding properties between maximally mono-
tone operators and their associated resolvents. This theorem covers twenty-
one properties of interest in monotone operator theory.

Definition 5.1 describes the resolvent average of monotone operators, a
new average that maintains several desirable properties that the arithmetic
average does not.

Theorem 5.3 demonstrates that the resolvent average is maximally mono-
tone if and only if all of the averaged operators are maximally monotone.
This is a stronger result than for the arithmetic average, which requires the
additional constraint qualifications found in Fact 3.48.

The resolvent average satisfies the beautiful duality presented in Theo-

rem 5.8,
(Ru(A X)) =R, (AL ).

Theorem 5.14 develops an inequality between the arithmetic, resolvent,
and harmonic averages for positive semidefinite matrices,

H(AA) S RL(AAX) < AAN),
and shows the limits
Ru(A,X) — A(A,X) when p — 07,

and
Ru(A,A) = H(A,X) when p — 4o00.

Theorem 6.28 provides results on the range of convex combinations of
rectangular maximally monotone operators on R".
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9.1. Key results

Theorem 6.31 and Theorem 6.36 give results on convex combinations of
firmly nonexpansive mappings in R".

Theorem 7.14 shows that the composition of asymptotically regular map-
pings is again asymptotically regular in a Hilbert space.

Theorem 7.21 derives the asymptotic regularity of a convex combination
of asymptotically regular mappings, extending Theorem 6.36 to a Hilbert
space setting.

Chapter 8 classified properties of monotone operators and/or their re-
solvents as dominant, recessive, or indeterminant. Dominant properties in-
clude:

(i) single valuedness,
(ii) full domain,
(iii) surjectivity,
(iv) strict monotonicity,
(v) Banach contraction,
(vi) linear paramonotonicity (equivalently rectangularity).
Dominant or recessive properties are:
(i) ~y-cocoercive, and
(ii) strong monotonicity.
Recessive properties are:
(i) maximal monotonicity,

(ii) linear relations,

(iii) rectangularity (except as noted above),

(v

(vi

k-cyclic monotonicity,
displacement mappings, and

)
)
)
(iv) paramonotonicity (except as noted above),
)
)
) orthogonality.

(vii

Altogether, these results have expanded on the known theory regarding
maximally monotone operators and firmly nonexpansive mappings.
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9.2. Future work

9.2 Future work

Areas to consider for future research include specializing the inheritance
properties of Chapter 8 to positive semidefinite matrices, similar to Sec-
tion 5.2. Also, of the properties listed in Theorem 4.1, we have shown that
strong monotonicity and being y-cocoercive are at least recessive properties,
but there is no proof or counterexample provided for dominance. Uniform
monotonicity was also not classified as dominant, recessive, or indetermi-
nant and will likely require strong constraint qualifications on the function
¢ in order to do so.

Example 8.42 also leaves room for future research. What is the rela-
tionship between the angle of rotation of the resolvent average of rotation
matrices and the averaged matrices?

Finally, the broadest area of possible future research involves applications
of the resolvent average. The work in the realm of positive semidefinite
matrices has already been thoroughly cited in [43] and [45]. Are there other
applications for the resolvent average in science and engineering?
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3* monotone, see rectangular

adjoint, 5
affine hull, 8
affine relation, 8, 41, 55
affine subspace, 8
arithmetic average, 17
asymptotic regularity, 104
asymptotically regular, 27, 28, 92
weakly, 27
averaged operator, 26, 27
averages
arithmetic, 17
geometric, 18, 77
harmonic, 17
harmonic-resolvent-arithmetic
inequality, 73, 77
proximal, 18
resolvent, 64

backward-backward iteration, 62

Baillon-Haddad theorem, 26, 48

Banach contraction, 5, 23, 39, 46,
47, 59, 60, 114

Banach space, 3, 153

Banach-Picard iterates, 27, 63

cocoercive, 26, 32, 39, 117
coercive, 14, 94
composition
of asymptotically regular map-
pings, 105
of Banach contractions, 62

of firmly nonexpansive map-
pings, 102
of nonexpansive mappings, 62
of strongly nonexpansive map-
pings, 28
concave
matrix, 74
cone, 8
convex, 8
conical hull, 8
convergence
strong, 4
weak, 4
convex
cone, 8
essentially strictly, 14
function, 12
matrix, 74
set, 8
strictly, 12
strongly, 13, 14, 60
convex combination
of asymptotically regular map-
pings, 106
of asypmtotically regular map-
pings, 92
of Banach contractions, 62
of firmly nonexpansive map-
pings, 91
of nonexpansive mappings, 62
convex hull, 8
cyclically firmly nonexpansive, 26,
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34
cyclically monotone, 33, 124-126,
128

disjointly injective, 8, 39, 46, 50,
52, 53

displacement mapping, 36, 54, 129,
130

dominant or recessive property, 116

dominant property, 109

Douglas-Rachford iteration, 63

dual properties, 48

self, 49

epi-multiplication, 12

epigraph, 12

essentially smooth, 14, 52
essentially strictly convex, 14, 52

Fenchel conjugate, 12, 16, 52, 54,
60
of a quadratic, 16
of a subdifferential, 17
firmly nonexpansive, 23
and averaged operators, 26
characterizations, 24
cyclically, 26, 34, 40, 54
strictly, 39, 51
Fitzpatrick function, 34, 35
fixed points, 26, 92
Fréchet gradient, 48
Fréchet derivative, 6
Fréchet gradient, 7, 15

Gateaux derivative, 6
Gateaux gradient, 7
geometric mean, 18
gradient, 7, 15
graph, 7

harmonic average, 17

hemicontinuous, 31
Hilbert space, 3

identity, 5

indeterminant property, 109
indicator function, 10
infimal convolution, 12, 16
inheritance, 109

isometry, 6, 38, 124

kernel, 5

least-squares, 11, 96

Legendre, 14, 53

Legendre function, 14, 53

linear relation, 8, 40, 55, 61
Lipschitz continuous, 5, 23, 32, 60
locally bounded, 32

lower semi-continuous, 12

lower semi-continuous hull, 12

Minty parametrization, 31
Minty’s Theorem, 32
monotone, 29

n-cyclically, 33

cyclically, 33, 54

maximally, 29

paramonotone, 30

strictly, 30, 39, 50-52, 114

strongly, 30, 32, 39, 58, 60, 61,

116

uniformly, 30, 40
monotonicity

of normal cone, 32

of subdifferential, 30
Moore-Penrose inverse, 11, 96

nearly convex, 80
characterization, 81

nearly equal, 79

nonexpansive, 23
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firmly, 23
strictly, 23, 39, 50, 52, 53
strongly, 23, 28

normal cone, 11, 13

normal cone operator, 41, 138

orthogonal complement, 5, 96

paramonotone, 30, 35, 40, 53, 118,
120
projection, 10, 24, 27, 32, 41, 56,
92, 138
proper function, 12
proximal average, 18, 94
proximal mapping, 15, 47, 53, 60,
118
of indicator function, 32
of subdifferential operator, 31

recessive property, 109
rectangular, 34, 35, 40, 54, 112,
118

reflected resolvent, 56, 5861
relative interior, 8
resolvent, 31

of normal cone operator, 32
resolvent average, 64, 93
resolvent identity, 31
right-shift operator, 36, 96
rotation matrix, 4, 52, 124, 132

self-dual, 48

sequentially weakly closed, 8, 41,
56

sequentially weakly continuous, 6,
41, 56

set-valued, 7

inverse, 7

single-valued, 7, 50-53, 111

subdifferential operator, 12, 40, 52—
54, 60

maximal cyclical monotonicity,
33
supercoercive, 14

uniformly convex, 153
uniformly Géateaux differentiable,
154

Yosida regularization, 31
of resolvent average, 64

151



Appendices

152



Appendix A

Uniformly Convex Banach
Spaces

A Banach space is a complete normed linear space, whereas a Hilbert
space is a complete inner product space. Because each Hilbert space has a
norm induced by its inner product, every Hilbert space is a Banach space.
The dual space of an inner product space X is the set X* of all bounded
linear functionals on X. The dual space of a Hilbert space is isomorphic to
the original space [37, Theorem 6.10]. That is, H* = H.

Definition A.1. [32, Equation 11.1] A normed linear space X is uniformly
convez if, for each € > 0, 36 = §(e) > 0 such that

T4y
ol <1, <1, flo =yl >e= |52 <1

Lemma A.2. [parallelogram identity] Let x,y € H. Then
lz =yl + =+ ylI* = 2[|=[* + 2/ly|*
Proof.

lz—yllP+llz+yl>=(x—y,z—y) +{z+y.2+y)
= || = 2(z,y) + [ly]* + =] + 2 (z,y) + |ly|®
= 2[|z||* + 2|jy||*.

Lemma A.3. Every Hilbert space is uniformly conver.

Proof. Let z,y € H such that |z|| < 1, |ly]| < 1 and ||z — y|| > e. By
Lemma A.2 we have

|z +ylI* = 2l + 2[ly)1* — [l= — y[|?
§4—62.
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Appendix A. Uniformly Convex Banach Spaces

Set § =1 — 34 — €2, then
lz+yl?<4-E < Hx;ry” <1-34.

Since the parallelogram identity holds for every Hilbert space, every Hilbert
space is uniformly convex. O

Definition A.4. [34, pg. 126]A normed linear space X has a uniformly
Gateauz differentiable norm if for each y € X and each € > 0, there exists
d(e,y) > 0 such that for every x € X, ||z|| = 1, there is a continuous linear
functional f, on X and

[+ tyll = [l

" fz(y)| < eforall 0 <t <dey).

Fact A.5. [34, pg. 127] Every Hilbert space has a uniformly Gateaux dif-
ferentiable norm.

Fact A.6. [3, Theorem 1.2] Let T be a nonexpansive mapping and let X
be a uniformly convexr Banach space with a weakly sequentially continuous
duality map, then (T"x)nen converges weakly to a fized point of T if and
only if FixT # @ and T is weakly asymptotically regular.

Fact A.7. [3, Corollary 2.2] Let X be a Banach space and C be a closed
convex subset of X. Let U : C'— X be an averaged nonexpansive mapping.
If X is uniformly convex, then FixU = @ if and only if nh_}ngo |U™z| = oo for
all x in C.

Definition A.8. [25] Let C be a nonempty closed convex subset of a Banach
space X and let D be a nonempty subset of C. A retraction from C to D
is a mapping T : C — D such that Tz = z for all x € D.

Definition A.9. [25] A retraction T': C' — D is sunny if it satisfies the
property

T(Tx+Xz—Txz)) = Tx for x € C and X\ > 0 whenever Tz+A(z—Tz) € C.

A retraction T : C' — D is sunny nonexpansive if it it both sunny and
nonexpansive.

Fact A.10. [3, Corollary 2.3] Let X be a Banach space and C be a closed
convex subset of X. Let U : C'— X be an averaged nonexpansive mapping.
Suppose that the norm of X is uniformly Gateauz differentiable while the
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Appendix A. Uniformly Convex Banach Spaces

norm of X* is Fréchet differentiable. If C is a sunny nonexpansive retract
of X, then for each x € C

lim (U"z — U ) — v,
n—oo

where v is the element of least norm in ran(Id —U).

Remark A.11. Sunny nonexpansive retracts are unique, if they exist. If C' is
a nonempty closed convex subset of a Hilbert space H then the projection
operator P¢ is the sunny nonexpansive retraction [25].
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Appendix B

Maple Code

The following sections provide the code that was used to verify examples.
All code was run using Maplesoft’s Maple 15 software.

B.1 Code to verify Example 8.35

> restart: with(LinearAlgebra):

AL [cos () —sin (a)]

>

sin (o)  cos (@)
[ cos () —sin(a) ]
sin (o) cos (@)
cos (f) —sin (9)]
sin (#)  cos(0)
[ cos (f) —sin(0) ]
sin(f) cos ()

> A2::[

]
5

> Al := subs(alpha = (1/2)*Pi, Al);

0 -1

m

> A2 := subs(theta = (1/3)*Pi, A2);
/2 —1/2V3
s e |
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B.2. Code to verify Example 8.42

> R := simplify(MatrixInverse((1/2)*MatrixInverse(Id+A1)
+(1/2)*MatrixInverse(Id+A2))-1d);

_—4+V3  _6+2V3
8+/3 8+v/3
6+2v3  _ —4+/3
8+v/3 8+v/3

> X = |:8:| ; X 1= |:(1):| ; X3 = |:0:| ; X4 =I5

—

r T
() [a] — (aw] [aw] — [a) )
L L

> wuy = Multiply(R, x1);ug := Muitiply(R,:ng);u;z, := Multiply(R, x3);

[ —4+v3 ]
8+3

6+2v3
L 8+v3

[ 64243

8+/3

_ —44V3

L s+v3

> simplify(sum((zip1[1] — zi[1]) * wi[1] + (241[2] — 24[2]) * w;[2],7 =
1..3)); eval f(%);

2—1+2x/§

8+13
0.5063889748

B.2 Code to verify Example 8.42

> restart: with(LinearAlgebra):
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B.2. Code to verify Example 8.42

>

>

>

>

>

AL [cos () —sin (a)]

sin () cos ()
[ cos () —sin(a) ]
sin (o) cos (@)

. [cos () —sin ((9)]
sin (#)  cos(0)

[ cos () —sin(0) ]
sin(f) cos(0)

10
Id =
0 1
10
0 1

JAL := MatrizInverse(Id + Al)
1+cos(a) sin(a)

142 cos(a)+(cos(a))?+(sin(a))? 142 cos(a)+(cos(a))?+(sin(a))?
sin(a) 1-+cos(a)

142 cos(a)+(cos(a))?+(sin(a))? 142 cos(a)+(cos(a))?+(sin(a))?

JA2 := MatrixzInverse(Id + A2)
14-cos(6) sin(6)
1+2 cos(0)+(cos(8))+(sin(6))? 142 cos(0)+(cos())%+(sin(6))>
. sin(6) 1+cos(0)
142 cos(8)+(cos(8))?+(sin(6))? 142 cos(8)+(cos(8))%+(sin(6))?

|

> R := simplify(MatrizInverse(lambdaxJAl+ (1 —lambda)* JA2) —
Id)
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B.3. Code to verify Remark 8.47

[[— (A 4+ cos (8) + cos (a) cos () — X cos (6) + A cos (a) — A cos (a) cos (6)
+A2 cos (0) cos (a) — A sin () sin (A) + A% sin (@) sin (6) — A?)
/ (=X cos (@) cos (0) + A% cos (6) cos (o) — A cos (6) + X cos (@) — 1+ A

+A? sin () sin (8) — A? — cos (a) — A sin (a) sin (6)) ,
—((=A sin () — A sin («) cos (0) — sin (6) — sin (0) cos («) + sin (0) A

+sin () A cos () / (=X cos (@) cos (6) + A% cos (6) cos (o) — A cos (6)

+X cos (@) = 1+ X + A sin (a) sin () — A? — cos (a) — A sin (a)sin (0)))] ,
[(—A sin () — A sin («) cos (0) — sin (6) — sin (0) cos () + sin (6) A

+sin (6) A cos () / (—A cos (a) cos (8) + A2 cos (6) cos (ar) — A cos (6)

+A cos (@) — 1+ X+ A sin (a) sin () — A? — cos (a) — A sin (a) sin (6)) ,

— (A + cos(8) + cos(a) cos(0) — X cos(0) + X cos(a) — A cos(«) cos(0)

+A2 cos(8) cos(a) — A sin(a) sin(8) + A2 sin(a) sin(f) — A2/ (=X cos () cos ()
+A2 cos () cos (o) — A cos (0) + A cos () — 1 + A + A2 sin () sin ()

—X? — cos(a) — A sin(a) sin(6))]]

> R[1, 1-R[2, 2J;

0
> R[L, 2+R[2, 1];
0
> simplify(Multiply(Transpose(R), R))
10
o

B.3 Code to verify Remark 8.47

Define Al, A2, Id and R as in Section B.2.
> R2:= factor(simplify(subs([theta = 0,alpha = (1/2) % Pi|, R)));

_—14)2 _9_A
1+22 1+22
9 _A _—14)2
1+22 1+22

> factor(simpli fy(subs(lambda = a/b, R2)));
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B.3. Code to verify Remark 8.47

—b%+a? -9 ab

- b2 +a2 b2 +(l2
9 ab _ —b%+a?
b2+a2 b2 +CL2
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