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Abstract

The concept of super solutions plays a crucial role in using the con-
straint satisfaction framework to model many AI problems under uncertain,
dynamic, or interactive environments. The availability of large-scale, dy-
namic, uncertain, and networked data sources in a variety of application
domains provides a challenge and opportunity for the constraint program-
ming community, and we expect that super solutions will continue to attract
a great deal of interest. In the first part of this thesis, we study the prob-
abilistic behaviour of super solutions of random instances of Boolean Satis-
fiability (SAT) and Constraint Satisfaction Problems (CSPs). Our analysis
focuses on a special type of super solutions, the (1,0)-super solutions. For
random k-SAT, we establish the exact threshold of the phase transition of
the solution probability for the cases of k = 2 and 3, and we upper and
lower bound the threshold of the phase transition for the case of k ≥ 4.
For random CSPs, we derive a non-trivial upper bound on the threshold of
phase transitions.

Graph colouring is one of the most well-studied problems in graph theory.
A solution to a graph colouring problem is a colouring of the vertices such
that each colour class is a stable set. A relatively new generalization of
graph colouring is cograph colouring, where each colour class is a cograph.
Cographs are the minimum family of graphs containing a single vertex and
are closed under complementation and disjoint union. We define the cog-
chromatic number of a graph G as the minimum number of colours needed
by a cograph colouring of G. Several problems related to cograph colouring
are studied in the second part of this thesis, including properties of graphs
that have cog-chromatic number 2; computational hardness of deciding and
approximating the cog-chromatic number of graphs; and graphs that are
critical in terms of cog-chromatic numbers. Several interesting constructions
of graphs with extremal properties with respect to cograph colouring are also
presented.
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Chapter 1

Introduction

The constraint satisfaction problem (CSP) and graph colouring are im-
portant problems in theoretical computer science and graph theory. Super
solutions and cograph colouring are generalizations to the standard solution
concepts for CSPs and graph colouring respectively. In addition to their
combinatorial interest, these solution concepts also have potential real-world
applications. For example, super solutions can be used to model problems
in Artificial Intelligence (AI) arising in dynamic or uncertain environments.
Cograph colouring, also called cograph partitioning, may provide an alter-
native approach to graph clustering and community structures in network
analysis. Graph clustering [49] studies the problem of finding sets of “re-
lated” vertices in graphs, while the analysis of community structures [44]
deals with how to group nodes in a network into application-specific com-
munities, such as densely connected subgraphs.

1.1 Threshold phenomena of super solutions in
CSPs

Dynamic CSPs have been used to model many problems arising in un-
certain, dynamic, or interactive environments. For a dynamic CSP, it is
desirable to find solutions that can be modified at a low cost in response
to changes in the environment. This requires that a solution is not only
satisfying, but also has a certain degree of robustness or stability. There
are two typical approaches to dynamic CSPs, the reactive approach and the
proactive approach [53]. In the reactive approach, one aims at finding a so-
lution that can be easily “repaired” if it is no longer satisfying in a changed
environment. In the proactive approach, a solution is required to be robust
in the sense that there always exist solutions that are close to it.

The super solution framework [26, 34] is a viable approach to formalize
the notion of a robust or stable solution. An (a, b)-super solution of a CSP
instance is a satisfying solution such that, if the values assigned to any set of
a variables are no longer available, a new solution can be found by reassign-
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1.1. Threshold phenomena of super solutions in CSPs

ing values to these a variables and at most b other variables. The availability
of large-scale, dynamic, uncertain, and networked data sources in many ap-
plication domains provides a challenge and opportunity for the constraint
programming community [45]. To address the challenge, we expect that
concepts of robust and stable solutions, such as fault-tolerant models [48]
and super-solutions [34], will continue to attract a great deal of interest [12].

Threshold phenomena is first observed by Erdös and Rényi in their semi-
nal work on random graphs [20]. Let G(n, p) be a random graph on n vertices
where each edge exists with probability p. A sequence of events En occurs
with high probability (w.h.p.) if limn→∞ P[En] = 1. It has been shown that
for many interesting graph properties P , the probability for G(n, p) to have
P changes drastically at a certain critical value of p. This critical value or
range of p is called the threshold with respect to the property P . For exam-
ple, when p = o( logn

n ), a random graph is disconnected w.h.p., while when

p = ω( logn
n ), a random graph is connected w.h.p. Threshold phenomena are

also found in many other random models. For example, threshold behaviour
of the solution probability of random SAT and CSPs has been intensively
studied theoretically and empirically since 1990s, [2–4, 10, 17, 21, 54].

In general, finding super solutions to SAT and CSPs is NP-complete.
In the AI and theoretical computer science literature, one of the fruitful
approaches to understand the typical-case complexity of a hard problem is to
study the probabilistic behaviour of random instances [4, 27]. By analysing
the threshold phenomena of the solution probability and the correlated easy-
hard-easy pattern of the instance hardness of the standard solution concept
for SAT and CSPs, much insight has been gained on the effectiveness of
many heuristics widely used to tackle these problems [15, 22, 27].

The first part of this thesis focuses on the probabilistic behaviour of super
solutions for random instances of SAT and CSPs. Our analysis focuses on
a special (but highly non-trivial) type of super solutions, the (1,0)-super
solutions. A solution is a (1,0)-super solution if it is resistant to changes
of any one variable. That is, for a (1,0)-super solution σ, there is always
another solution σ′ such that σ′ and σ have different values on one variable.
We denote the problems of finding (1, 0)-super solution for k-SAT and CSPs
by (1, 0)-k-SAT and (1, 0)-CSP respectively. We find exact thresholds for the
phase transition of (1, 0)-super solutions for random 2-SAT and 3-SAT. As
for k ≥ 4, we establish upper and lower bounds on the threshold of random
(1, 0)-k-SAT. We also establish a non-trivial upper bound on the threshold
of random (1, 0)-binary CSPs.
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1.2. Partitioning graphs into cographs

1.2 Partitioning graphs into cographs

Starting from a single vertex, cographs are recursively defined by graph
operations of disjoint union and complementation [40]. There are many
interesting properties of cographs, such as not containing an induced path on
four vertices, the existence of a unique tree representation, and the existence
of a linear-time recognition algorithm. Partitioning graphs into cographs is
a relatively new generalization of the well-known graph colouring problem.
Thus, we call it graph cog-colouring. Colouring graphs into cographs has
been studied in [1, 8, 25, 35]. The first section of [25] provides an interesting
and motivating axiomatization for many generalizations of graph colouring,
including cog-colouring.

Many difficult questions from the study of classic graph colouring have
counterparts worthy of study in the context of graph cog-colouring. Rec-
ognizing graphs that can be partitioned into k cographs is proved to be
NP-complete for any k ≥ 2 in [1]. Define the cog-chromatic number of a
graph G to be the smallest possible k such that G can be partitioned into k
cographs and denote it by c(G). A graph G is k-cog-colourable if c(G) ≤ k
and is k-cog-chromatic if c(G) = k, where k ≥ 1. A variety of bounds
and computational complexity questions regarding the cog-chromatic num-
ber of graphs with different properties and computational complexity ques-
tions have been studied [25]. For example, for any triangle-free graph G,
c(G) ≤ χ(G) ≤ 2 · c(G), where χ(G) is the chromatic number of G. Another
example is that, for any planar graph G with girth at least 11, c(G) ≤ 2.
It is also shown that, deciding cog-chromatic numbers is very hard, even on
very restricted graphs. For example, the following two decision problems
are NP-complete: (1) deciding c(G) ≤ 2 for a planar graph G of maximum
degree 6; (2) deciding c(G) ≤ k, k ≥ 2, for a chordal graph G. However, it
is linear time to decide χ(G) ≤ 2 for any graph G and it is polynomial time
solvable to determine χ(G) for any chordal graph G [23].

The second part of this thesis studies the cog-chromatic number. We first
study 2-cog-colourable graphs. P4-sparse graphs and split-perfect graphs are
shown to be 2-cog-colourable. We also prove that graph colouring is NP-
hard on 2-cog-chromatic graphs. Since the k-cog-colourability is NP-hard to
determine for any k ≥ 2, we try to approximate the cog-chromatic number
for graphs. Though we believe it is computationally hard to approximate
c(G) for a general graph G, we do not have a proof. We consider two
greedy strategies of cograph colouring, one is based on lists of vertices and
the other repeatedly colours a maximum induced cograph in a new colour.
An algorithm of partitioning graphs into at most d∆+1

2 e cographs is found,
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1.3. Overview

where ∆ is the largest degree of vertices in the graph. Finally, we study
how to construct k-cog-chromatic graphs that satisfy several conditions. For
example, we find a way of creating a graph G with O(2k) vertices and c(G) =
k. A graph G is cog-critical if any vertex-deletion decreases its cog-chromatic
number. A cog-critical graph G is k-cog-critical if c(G) = k. We find two
different constructions to create k-cog-critical graphs with arbitrarily many
number of vertices, for any fixed k ≥ 3.

1.3 Overview

In Chapter 2, we analyse a special (but highly non-trivial) type of super
solutions, the (1,0)-super solutions. In Section 2.1, we discuss our obser-
vation on the equivalence between a (1, 0)-k-SAT and a standard satisfying
solution of a properly-constructed (k − 1)-SAT instance, which plays a cru-
cial role in our analysis of the threshold behaviour of (1,0)-super solutions.
In Section 2.4 and Section 2.5, we prove exact thresholds for the phase tran-
sition of (1, 0)-super solutions for random 2-SAT and 3-SAT by making use
of the equivalence presented in Section 2.1. In order to bound the prob-
ability of satisfiable 2-SAT, we use a sufficient condition and a necessary
condition of satisfiability of 2-SAT proposed in [11]. However, our analysis
is more involved than theirs because we have to handle the dependencies
introduced in the translated equivalent SAT instances. For k > 3, we do
not have any sufficient or necessary condition of satisfiability of k-SAT that
are strong enough to be used to prove thresholds. Therefore, we have to dig
deeper and try to study the distributions of (1, 0)-super solutions. The tech-
nique developed in [3] and [4] enables us to have a peek at the distribution
of solutions and design weights on different solutions such that thresholds
can be proved. This technique of weighting solutions is so powerful that
the long standing gap between upper bound and lower bound of thresholds
for satisfiability of k-SAT is almost closed [4]. We apply this technique in
Section 2.6 and establish upper and lower bounds on the threshold of ran-
dom (1, 0)-k-SAT for k ≥ 4. Finally, in Section 2.8, we establish an upper
bound on the threshold of random (1, 0)-binary CSPs. Our analysis of the
threshold for (1, 0)-CSP is very complicated and the results are not very
satisfying. We think that more advanced tools may be needed for analysing
super solutions for random CSPs.

In Chapter 3, we study the problem of partitioning graphs into cographs.
We first study properties of 2-cog-colourable graphs in Section 3.2. We find
that P4-sparse graphs, split-perfect graphs are subclasses of 2-cog-colourable
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1.3. Overview

graphs. We prove that deciding the chromatic number of k-cog-colourable
graphs is NP-complete for any fixed k ≥ 2. In Section 3.3, we try dif-
ferent ways of partitioning 2-cog-colourable graphs into as small number of
cographs as possible. We study the bad performance of greedy colouring and
how to find maximum induced cographs from k-cog-colourable graphs. We
move on to study the size of k-cog-chromatic graphs with the smallest num-
ber of vertices in Section 3.4. We find a construction which is more efficient
than the one in [25] and conjecture that the smallest k-cog-chromatic graph
has O(2k) vertices. Finally and most interestingly, we discuss cog-critical
graphs in Section 3.5. We give two nice ways of constructing k-cog-critical
graphs G with arbitrary number of vertices, for any fixed k ≥ 3.

5



Chapter 2

Super solutions for random
k-SAT and CSPs

In this chapter, we study the probabilistic behaviour of the (1, 0)-super
solution for random k-SAT and random binary CSPs. Let X = {x1, · · · , xn}
be a set of n boolean variables. A literal is a variable or its negation. A
k-clause is a disjunction of k different literals and a k-CNF formula is a
conjunction of some k-clauses. An assignment σ is a mapping σ : X →
{1, 0}n and is said to satisfy a k-CNF formula F if each clause of F contains
at least one literal that evaluates to true under σ. A satisfying assignment
is also called a solution.

According to the definition of (a, b)-super solutions [34], a (1, 0)-super
solution for a k-SAT is a solution such that changing the value assigned to
exactly one variable will not violate any clause. Equivalently, a (1, 0)-super
solution is an assignment such that every clause contains at least two literals
that evaluate to true under the assignment.

2.1 (1, 0)-super solutions for k-SAT

In this subsection, we present a new equivalent condition for a (1, 0)-
super solution, which plays a crucial role in our analysis.

Definition 2.1 (Projection). The projection of a clause C = (l1 ∨ · · · ∨ lk)
is defined to be T (C) = ∧ki=1(∨j 6=ilj)—the conjunction of the (k−1)-clauses
in C. We say that C projects onto T (C) and call clauses in T (C) siblings.
The projection of a CNF formula F is defined to be T (F ) = ∧Ci∈FT (Ci).

For example, the projection of (x1∨x2∨x3) is (x1∨x2)∧(x1∨x3)∧(x2∨x3).
For a k-clause C, its projection has k clauses of size (k − 1) and each such
(k− 1)-clause is a (k− 1) combination from those k literals in C. Thus, if σ
satisfies at least two literals of C, then σ must satisfy at least one literal of
each (k− 1)-clause in the projection of C. Therefore, we have the following
lemma.

6



2.2. Random models of k-SAT

Lemma 2.2. An assignment (1,0)-satisfies F if and only if it satisfies T (F ).

The following theorem complements existing results on the worst-case
complexity of super solutions given in [34].

Theorem 2.3. (1, 0)-k-SAT is in P for k ≤ 3, and is NP-complete other-
wise.

Proof. We can check whether an assignment is a (1, 0)-super solution of a
k-CNF in O(k ·m) time, where m is the number of clauses. Thus, (1, 0)-k-
SAT is in NP for any fixed k. Any instance of (1,0)-3-SAT F can be solved
by solving the 2-SAT instance of T (F ), which is in P. For k ≥ 4, we first
prove the NP-completeness of (1,0)-4-SAT via a reduction from 3-SAT. Note
that, σ satisfies (l1 ∨ l2 ∨ l3) if and only if it (1,0)-satisfies (l1 ∨ l2 ∨ l3 ∨ 1).
For any 3-SAT F , we reduce it into a 4-SAT F ′ as following in three steps.
First, create 4 additional variables, Y = {y1, y2, y3, y4} and a 4-SAT FY of
all the possible

(
4
2

)
clauses, where each clause has exactly two negations of

variables.

FY = (y1 ∨ y2 ∨ y3 ∨ y4) ∧ (y1 ∨ y3 ∨ y2 ∨ y4) ∧ (y1 ∨ y4 ∨ y2 ∨ y3)

∧ (y2 ∨ y3 ∨ y1 ∨ y4) ∧ (y2 ∨ y4 ∨ y1 ∨ y3) ∧ (y3 ∨ y4 ∨ y1 ∨ y2)

Secondly, for each clause ci in F , add c′i = (ci ∨ y1) into F ′. Finally, let
F ′ be the conjunction of F ′ and FY . Note that, any assignment that (1,0)-
satisfies FY must have σ(yi) = 1, 1 ≤ i ≤ 4. Thus, σ is a solution of F
if and only if it is a (1,0)-super solution of F ′. Therefore, (1,0)-4-SAT is
NP-complete. Similar method can be used to reduce any k-SAT instance to
(1, 0)-(k + 1)-SAT instance.

2.2 Random models of k-SAT

We denote by Fk(n,m) the standard random model for k-CNF formulas
on n variables where the m clauses are selected uniformly at random without
replacement from the set of all possible 2k

(
n
k

)
k-clauses. As sometimes it is

hard to directly analyse Fk(n,m) due to the dependence created by selecting
the clauses without replacement, we consider two related models. The first
model selects from all 2k

(
n
k

)
proper clauses with replacement. The second

model selects each literal uniformly and independently with replacement.
Both models may result in improper formula and the second model may have
improper clauses. A clause is proper if it does not have repeated literals.
A formula is proper if it does not have repeated clauses and each clause is

7



2.3. The second moment method

proper. As long as k is fixed, the number of improper clauses and repeated
clauses is o(n) w.h.p. Therefore, with-high-probability properties of (1,0)-
satisfiability hold in Fk(n,m) and two related models simultaneously. For
notational convenience, we denote all three models by Fk(n,m). Also, when
there is no ambiguity from the context, we use Fk(n,m) to denote a random
formula in the model Fk(n,m). When k ≤ 3, we use the first variant of the
model. When k ≥ 4, we use the second variant of the model. Throughout
this chapter, we assume that k is fixed but can be arbitrarily large.

Due to Lemma 2.2, for a fixed k-SAT F from Fk(n,m), the probability
for F to be (1,0)-satisfiable equals the probability for its projection T (F )
to be satisfiable. This, however, does not imply that the probability for a
random formula in Fk(n,m) to be (1, 0)-satisfiable equals the probability
for a random formula in Fk−1(n, km) to be satisfiable. This is because for a
fixed (k−1)-SAT formula F of km clauses, the probability that F is selected
from Fk−1(n, km) is different from the probability that F is the projection
of some formula in Fk(n,m).

2.3 The second moment method

The probabilistic method, initiated by Paul Erdös, is a powerful tool in
combinatorics. Roughly speaking, in order to prove that an object with cer-
tain properties exists, one constructs an appropriate probability space and
shows that a randomly chosen object in this space has the desired properties
with positive probability. Though the probabilistic method only proves the
existence of some object, there are techniques that help design algorithms to
find the satisfying objects [6]. If we can prove that the existence probability
goes to arbitrarily close to 1 when the size of the problem goes to infinity,
we say that the object exists with high probability (w.h.p). The second
moment method is a widely used tool to establish this type of results.

In the context of this section, let X be a nonnegative integer-valued
random variable. Denote by E[X] the expectation of X, and V ar[X] the
variance of X, i.e., V ar[X] = E

[
(X − E[X])2

]
. For notational simplicity in

formulas, µ and σ2 are often used to replace E[X] and V ar[X]. We assume
that σ > 0 and call it the standard deviation. The second moment method
is based on the following two famous theorems.

Theorem 2.4 (Markov’s Inequality, [6]). For any a > 0,

P[X ≥ a] ≤ E[X]

a

8



2.3. The second moment method

Theorem 2.5 (Chebyshev’s Inequality, [6]). For any positive λ,

P[|X − µ| ≥ λσ] ≤ 1

λ2

When X represents the number of desired objects, e.g. solutions of a
problem, we have P[X > 0] = P[X ≥ 1] ≤ E[X]. Therefore, in order to show
that X = 0 w.h.p., we prove that E[X] goes arbitrarily close to 0. On the
other hand, in order to prove X > 0 w.h.p., we prove that P[X = 0] goes
arbitrarily close to 0.

Theorem 2.6. P[X = 0] ≤ V ar[X]

E[X]2

Proof. Substituting λ with µ
σ in the Chebyshev’s Inequality, we have

P[X = 0] ≤ P[|X − µ| ≥ λσ] ≤ 1

λ2
=
σ2

µ2

In order to show X > 0 w.h.p. by the second moment method, there are
two steps. First, prove that E[X] goes to infinity. Second, bound P[X = 0]
with some infinitesimal. This can be done by showing that V ar[X] =
o(E[X]2), according to Theorem 2.6. The relation V ar[X] = o(E[X]2) intu-
itively means that E[X]2 = Θ(E

[
X2
]
). The following inequality is stronger

than the one in Theorem 2.6 and plays an essential role in our analysis.

Lemma 2.7 (Exercise 3.6. [42] ). For any nonnegative integer-valued ran-

dom variable X, if E[X] > 0, then P[X > 0] ≥ E[X]2

E[X2]
.

Proof. Let A be the set of positive values of X, i.e., A = {i|i > 0,P[X = i] >
0}. Then

P[X > 0] · E
[
X2
]

=

(∑
i∈A

P[X = i]

)
·
(∑
i∈A

i2 · P[X = i]

)
=
∑
i∈A

i2 · P[X = i] +
∑

i,j∈A,i 6=j
(i2 + j2) · P[X = i] · P[X = j]

≥
∑
i∈A

i2 · P[X = i] +
∑

i,j∈A,i 6=j
(2 · i · j) · P[X = i] · P[X = j]

=
∑
i∈A

∑
j∈A

i · j · P[X = i] · P[X = j]

= E[X]2.

9



2.4. The threshold for (1,0)-2-SAT

Since E
[
X2
]
> 0, we have P[X > 0] ≥ E[X]2

E[X2]
.

Another easy-to-use lemma is as follows.

Lemma 2.8 (Corollary 4.3.5 of [6]). Let X =
∑n

i=1Xi, where Xi is the
indicator random variable for event Ai. Denote by i ∼ j if i 6= j and the
events Ai, Aj are not independent. If lim

n→∞
E[X] = ∞ and

∑
j∼i
P[Aj |Ai] =

o(E[X]), then X > 0 holds w.h.p.

2.4 The threshold for (1,0)-2-SAT

In order to establish the threshold for a property, we must prove events
describing that property occur w.h.p.

Theorem 2.9. F2(n,m) is (1,0)-satisfiable w.h.p. when m = o(
√
n) and is

(1,0)-unsatisfiable w.h.p. when m = ω(
√
n).

Proof. We say that two clauses are conflicting if some literal in one clause
is the negation of some literal in the other clause. Note that a 2-CNF
formula F is (1,0)-satisfiable if and only if no conflicting clauses exists. Let
F = C1 ∧ · · · ∧ Cm and Xi,j be the indicator variable for the event that Ci
conflicts with Cj . Then,

E[Xi,j ] = P[Xi,j = 1] =
2(2(n− 1)− 1) + 1

22
(
n
2

) =
4n− 5

2n(n− 1)
.

Denote by X =
∑

(i,j)Xi,j the number of conflicting pairs in F , then

E[X] =

(
m

2

)
E[Xi,j ] =

m2

n
(1− o(1)).

When m = o(
√
n), using Markov’s Inequality, we have

lim
n→∞

P[X > 0] ≤ lim
n→∞

E[X] = 0.

Let t =
(
m
2

)
and p = E[Xi,j ], then E[X] = tp. Note that, X2 is composed

of t2 items of Xi,jXi′,j′ . Group these items according to h = |{i, j, i′, j′}|.
We see that E

[
Xi,jXi′,j′

]
equals p when h = 2, and equals p2 otherwise.

Thus, E
[
X2
]

= tp+ (t2 − t)p2. When m = ω(
√
n), using Lemma 2.7,

lim
n→∞

P[X > 0] ≥ lim
n→∞

E[X]2

E[X2]
= lim

n→∞

tp

tp+ 1− p = 1.

10



2.5. The threshold for (1,0)-3-SAT

2.5 The threshold for (1,0)-3-SAT

We use the equivalence (Lemma 2.2) between a (1, 0)-super solution and
a standard solution to study the threshold for the phase transition of (1, 0)-
super solutions of random 3-SAT. Specifically, we upper bound (resp. lower
bound) the probability for F to be (1,0)-unsatisfiable by the probability of
some necessary (resp. sufficient) condition on the unsatisfiability of its pro-
jection T (F ) (a 2-CNF formula). The conditions we shall use are proposed
in [11]. It is important to note that while T (F ) is a 2-CNF formula obtained
from a random 3-CNF formula F3(n,m), T (F ) itself is not distributed as
the random 2-CNF formula F2(n,m). This is the major obstacle we have to
deal with in our analysis.

Theorem 2.10. F3(n, rn) is (1,0)-satisfiable w.h.p. when r < 1/3 and is
(1,0)-unsatisfiable w.h.p. when r > 1/3.

The above result is proved in Lemma 2.12 and Lemma 2.14. In the
proofs, we use F to denote a random formula F3(n, rn), m = rn, and write
N = 23

(
n
3

)
.

2.5.1 Lower bound on the threshold for (1, 0)-3-SAT

A bicycle of length s, s ≥ 2, is a set of s+ 1 2-clauses C0, · · · , Cs over a
set of s boolean variables x1, · · · , xs such that:

1. C0 = (u ∨ l1) and Cs = (ls ∨ v),

2. Ci = (li ∨ li+1), 0 < i < s,

where li is either xi or xi, and u and v are from {xi, xi | 1 ≤ i ≤ s}. The
following Lemma is proved in Theorem 3 of [11].

Lemma 2.11. If a 2-CNF is unsatisfiable, then it contains a bicycle.

Lemma 2.11 gives us a necessary condition of unsatisfiability of a 2-SAT.
Using this necessary condition, we can upper bound the probability for a
3-SAT to be (1,0)-unsatisfiable, and thus establish a lower bound of the
probability for a 3-SAT to be (1,0)-satisfiable.

Lemma 2.12. F3(n, rn) is (1, 0)-satisfiable w.h.p. when r < 1/3.

Proof. For any fixed bicycle B = C0 ∧ · · · ∧ Cs, we consider the number of
3-CNF formulas that contain B in their projection. In order to count this
number, we must know the relationships between clauses in B. Specifically,

11



2.5. The threshold for (1,0)-3-SAT

we need to know whether two clauses could be siblings, i.e., being projected
from the same 3-clause in a 3-CNF formula. Let C = {C1, · · · , Cs−1}. It is
clear that any pair of clauses in C must have 4 different literals. Thus, no
two clauses in C can be siblings. Similarly, no tuple of three clauses from
B can be siblings. However, (C0, Ci) can be siblings, and so are (Cs, Ci),
0 ≤ i ≤ s. Let h be the number of pairs of clauses from B which are siblings.
Denote by g(s, h) the number of 3-CNF formulas with m clauses that have
B in their projection. Let F be such a 3-CNF formula. F needs to select
(s+1−h) 3-clauses so that T (F ) has B. Since B is fixed, h 3-clauses of these
(s+ 1− h) 3-clauses are fixed and each clause of the remaining (s+ 1− 2h)
clauses has two literals fixed. Thus, there are (2(n−2))s+1−2h choices of the
(s+ 1− h) 3-clauses. The remaining m− (s+ 1− h) 3-clauses of F can be
selected from (N − (s+ 1− h)) 3-clauses where N = 23

(
n
3

)
. Therefore,

g(s, h) =

(
N − (s+ 1− h)

m− (s+ 1− h)

)
· (2(n− 2))s+1−2h.

Let p(s) denote the probability that a fixed bicycle of length s is part of
T (F ). Then,

p(s) ≤
(
N

m

)−1

(g(s, 0) + 2s · g(s, 1) + g(s, 2))

≤
(
N

m

)−1

2(s+ 1)

(
N − (s− 1)

m− (s− 1)

)
· (2(n− 2))s−3

≤
(

3r

2(n− 1)

)s−1

· s+ 1

2(n− 2)2
.

Let Ns denote the number of different bicycles of length of s and X be the
number of bicycles in T (F ). It is clear that Ns < ns2s(2s)2. Therefore,

E[X] =
n∑
s=2

Nsp(s) ≤
4n

(n− 2)2

n∑
s=2

s2(s+ 1)(
3rn

n− 1
)s−1.

When r < 1/3,
lim
n→∞

P[X > 0] ≤ lim
n→∞

E[X] = 0.

Thus, X = 0 w.h.p. It follows that F3(n, rn) is (1, 0)-satisfiable w.h.p.

2.5.2 Upper bound on the threshold for (1, 0)-3-SAT

A snake of length t, t ≥ 1, is a conjunction of 2t 2-clauses

C0 ∧ C1 ∧ · · · ∧ C2t−1

12



2.5. The threshold for (1,0)-3-SAT

and has the following structure.

1. Ci = (li ∨ li+1), 0 ≤ i ≤ 2t− 1. l0 = l2t = lt

2. For any 0 < i, j < 2t− 1, li 6= lj and li 6= lj .

The following Lemma is proved in Theorem 4 of [11].

Lemma 2.13. If a 2-CNF contains a snake, then it is unsatisfiable.

Lemma 2.13 gives us a sufficient condition of unsatisfiability of a 2-SAT.
Using this sufficient condition, we can lower bound the probability for a
3-SAT to be (1, 0)-unsatisfiable, and thus establish an upper bound on the
probability for a 3-SAT to be (1, 0)-satisfiable. Specifically, we show that
when r > 1/3, the projection of F3(k, rn) contains a snake of length log3r n
w.h.p.

Lemma 2.14. F3(n, rn) is (1, 0)-unsatisfiable w.h.p. when r > 1/3.

Proof. Let A be a snake of length t, XA be the indicator variable for the
event that A occurs in F . Note that only the two pairs, (C0, Ct−1) and
(Ct, C2t−1), can be siblings. Let s = 2t − 1 and let p(t) be the number of
occurrences of a fixed snake of length t in T (F ). Then,

p(s) =

(
N

m

)−1

(g(s, 0) + 2g(s, 1) + g(s, 2))

≈
(
N

m

)−1

4g(s, 2) ≈ (
3r

2n
)s−1 1

n2
.

Let X denote the number of snakes of length t in T (F ). Then,

E[X] =

(
n

s

)
s! 2sp(s) ≈ (3r)s/n.

When r > 1/3 and t = ω(log3r n), limn→∞ E[X] =∞.
In order to use the second moment method on X, we have to consider

correlations between snakes. To satisfy a clause (li ∨ lj), if li is true, then lj
must also be true. This implication can be represented by two arcs (li, lj),
(lj , li) in a digraph. The digraph of a snake of length t is a directed cycle
lt, l1, l2, · · · , ls, lt. It is clear that two snakes are not independent if and only
if there are some common arcs in their directed cycles. Let B be another

13



2.5. The threshold for (1,0)-3-SAT

snake of length t. Suppose B shares i arcs with A and these arcs contain j
vertices. Then,

P[B|A] =

(N−2t−(2t−i)
m−2t−(2t−i)

)
· (2(n− 2))2t · (2(n− 2))2t−i(

N−2t
m−2t

)
· (2(n− 2))2t

≤
(
m− 2t

N − 2t
· 2(n− 2)

)2t−i
≤
(

3r

2n

)2t−i
.

It is clear that those common i arcs comprise (j − i) directed paths. Fixing
A, there are L1 choices for the shared j vertices to occur in B, and there
are L2 choices for the remaining 2t− j vertices to occur in B.

L1 =

(
2 ·
(

2t

2(j − i)

))2

· (j − i)!≤ 4 · (2t)4(j−i)

L2 ≤
(
n− j + 1

2t− j

)
(2t− j)! ·22t−j ≤ (2(n− j + 1))2t−j

For a given A, let A(i, j) be the set of snakes sharing i arcs and j vertices
with A, and write

p(i, j) =
∑

B∈A(i,j)

P[B|A] = L1L2P[B|A]

≤
(

3r

2n

)2t−i
4(2t)4(j−i) (2(n− j + 1))2t−j .

If i ≤ t, then i+ 1 ≤ j ≤ 2i. If t < i ≤ 2t, then i+ 1 ≤ j ≤ 2t. Let A ∼ B
denote the fact that A and B are dependent.

∑
A∼B

P[B|A] =

2t∑
i=1

min{2i,2t}∑
j=i+1

p(i, j) =

2t∑
j=2

j−1∑
i=j/2

p(i, j)

≤
2t∑
j=2

(2(n− j + 1))2t−j 4

j−1∑
i=j/2

(
3r

2n

)2t−i
(2t)4(j−i)

≤
2t∑
j=2

(2(n− j + 1))2t−j 4 · j
2

(
3r

2n

)2t−j+1

(2t)4

≤
2t∑
j=2

2j

(
3r

2n

)
(2t)4

≤ Θ(1) · 1

n
t6 = o

(
1

n
(3r)2t

)
= o(E[X]).

14



2.6. The threshold for (1,0)-k-SAT

According to lemma 2.8, lim
n→∞

P[X > 0] = 1. Therefore, F is (1,0)-unsatisfiable

w.h.p.

2.6 The threshold for (1,0)-k-SAT

The projection in Definition 2.1 provides a way to translate between
an (1,0)-3-SAT instance and a 2-SAT instance. Because there are easy-to-
use sufficient condition and necessary condition for 2-SAT, we can establish
the thresholds for (1,0)-2-SAT without looking into the distributions of its
(1,0)-super solutions. However, for k > 3, we do not have such sufficient
conditions and necessary conditions we had before. Therefore, we have to
study the distributions of (1,0)-super solutions in order to get the thresholds.
We start with upper bounds on the thresholds for (1,0)-k-SAT.

Theorem 2.15. For all k ≥ 3, Fk(n, rn) is (1, 0)-unsatisfiable w.h.p. when

r > 2k

k+1 ln 2.

Proof. For a fixed assignment σ, a random k-clause is satisfied with proba-
bility 1− 1+k

2k
. Denote by X = X(F ) the number of (1,0)-super solutions of

Fk(n,m). Then

E[X] = 2n(1− 1 + k

2k
)rn =

(
2(1− 1 + k

2k
)r
)n

.

When r > − ln 2
ln(1− 1+k

2k
)
, by Markov’s Inequality, we have

lim
n→∞

P[X ≥ 1] ≤ lim
n→∞

E[X] = 0.

Therefore, F is (1,0)-unsatisfiable w.h.p. Since 2k

k+1 ln 2 > − ln 2
ln(1− 1+k

2k
)
, the

theorem follows.

In the rest of this section, we establish a lower bound on the threshold
for k > 3 and show that the ratio of the lower bound over the upper bound
goes to 1 as k goes to infinity. Our analysis uses the techniques introduced
in [4] for proving lower bounds on the threshold for the phase transition of
standard satisfying solutions of random SAT, but the calculation we have to
deal with is even more complicated. The idea is to use a weighting scheme
on satisfying assignments when using the second moment method to prove
lower bounds on the threshold.
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2.6. The threshold for (1,0)-k-SAT

For a clause c, denote by S(c) the set of (1, 0)-super solutions of c,
S0(c) (resp. S1(c)) the set of assignments that satisfies exactly 0 (resp.
1) literal of c. Define H(σ, c) to be the number of satisfied literals minus
the number of unsatisfied literals under an assignment σ. For an event
A, let 1A be its indicator variable. The weight of σ w.r.t. c is defined
as w(σ, c) = γH(σ,c)1σ∈S(c), 0 < γ < 1 and is determined by k. These
definitions extend naturally to a formula F ,

w(σ, F ) = γH(σ,F )1σ∈S(F ) =
∏
ci

w(σ, ci).

Let X =
∑

σ w(σ, F ). It is clear that X > 0 if and only if F is (1,0)-
satisfiable. We note that by viewing an instance of (1, 0)-k-SAT as a gener-
alized Boolean satisfiability problem (Boolean CSP) and applying the condi-
tions established in [14], random (1, 0)-k-SAT has a sharp threshold. There-
fore, to show X > 0 w.h.p., it is sufficient to prove that P[X > 0] is larger
than some constant.

For a fixed σ and a random k-clause c,

E[w(σ, c)] = E
[
γH(σ,c)

(
1− 1σ∈S0(c) − 1σ∈S1(c)

)]
=

(
γ + γ−1

2

)k
− 2−kγ−k − k2−kγ−k+2 = φ(γ).

Thus, E[X] =
∑

σ

∏
ci
E[w(σ, c)] = (2φ(γ)r)n.

We now consider E
[
X2
]
. Fix a pair of assignments σ, τ such that they

overlap each other on exactly z = αn variables. Consider a random k-clause
c and write

f(α) = E[w(σ, c)w(τ, c)] = E
[
γH(σ,c)+H(τ,c)1σ,τ∈S(c)

]
.

We have the following equations for relevant events

1σ,τ∈S(c) = 1− 1σ 6∈S(c) − 1τ 6∈S(c) + 1σ,τ 6∈S(c),

1σ 6∈S(c) = 1σ∈S0(c) + 1σ∈S1(c),

1σ,τ 6∈S(c) = 1σ∈S0(c),τ∈S0(c) + 1σ∈S0(c),τ∈S1(c)

+ 1σ∈S1(c),τ∈S0(c) + 1σ∈S1(c),τ∈S1(c).

For mathematical expectations, we have

E
[
γH(σ,c)+H(τ,c)1

]
=

(
α(
γ2 + γ−2

2
) + 1− α

)k
,

16



2.6. The threshold for (1,0)-k-SAT

E
[
γH(σ,c)+H(τ,c)1σ 6∈S(c)

]
= 2−k

(
(αγ−2 + 1− α)k+

k(αγ−2 + 1− α)k−1(αγ2 + 1− α)
)
,

E
[
γH(σ,c)+H(τ,c)1σ,τ 6∈S(c)

]
= 2−k

(
αkγ−2k + 2kγ−2k+2αk−1(1− α)+

γ−2k+4(kαk + k(k − 1)αk−2(1− α)2)
)
.

Therefore, the expectation of X2 can be written as

E
[
X2
]

=
∑
σ,τ

E[w(σ, F )w(τ, F )]

=
∑
σ,τ

∏
ci

E[w(σ, ci)w(τ, ci)] = 2n
n∑
z=0

(
n

z

)
f(z/n)rn.

The following lemma from [3] enables us to consider the dominant part
of E

[
X2
]
.

Lemma 2.16. Let h be a real analytic positive function on [0, 1] and define
g(α) = h(α)/(αα(1− α)1−α), where 00 ≡ 1. If g has exactly one maximum
at g(β), β ∈ (0, 1), and g′′(β) < 0, then there exists some constant C > 0
such that for all sufficiently large n,

∑n
z=0

(
n
z

)
h(z/n)n ≤ C × g(β)n.

Let gr(α) = f(α)r/(αα(1−α)1−α). We say that gr(α) satisfies the dom-
inant condition if gr

′′(1/2) < 0 and gr(1/2) is the unique global maximum.
According to lemma 2.16 and φ(γ)2 = f(1/2), if gr(α) satisfies the dominant
condition, then

P[X > 0] >
E[X]2

E[X2]
=

4nf(1/2)rn

E[X2]

>
(2gr(1/2))n

C · (2gr(1/2))n
=

1

C
,

where C is a constant when k is fixed.
If we can find suitable γ and r so that gr(α) satisfies the dominant con-

dition, then we can prove X > 0 w.h.p. Note that the dominant condition
implies f ′(1/2) = 0. The weighting function w(σ, c) defined on an assign-
ment σ and a k-clause c = (l1 ∧ · · · lk) can be viewed as defined on a vector
v in {−1, 1}k, where v(i) = −1 if li evaluates to False under σ and v(i) = 1
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2.6. The threshold for (1,0)-k-SAT

otherwise. According to [4], a necessary condition of f ′(1/2) = 0 is that the
sum of vectors scaled by their corresponding weights is 0, i.e.,∑

v∈{−1,1}k
w(v)v = 0.

Following the idea of [4], the γ which gives the best lower bound r should
also make weights of (1, 0)-satisfying assignments as equal as possible. For
our problem of (1, 0)-k-SAT, γ should satisfy the following equation

k∑
i=2

(
k

i

)
γ2i−k(2i− k) = 0. (2.1)

When k = 4, this equation requires γ = 0, which contradicts our prerequisite
that γ > 0. Thus, the weighting scheme is not meaningful when k = 4.
Therefore, we consider k > 4 first and then solve the k = 4 case in a
different way.

It is too complicated to directly prove that gr(α) satisfies the dominant
condition, at least for small k. Therefore, we plot figures to show how gr(α)
changes when k is fixed. Figure 2.1 shows the case when k = 5. Figures
showing gr(α) of other fixed ks share the same changing pattern with the
case k = 5. For each k, when r is smaller than some r∗k, gr(α) satisfies the
dominant condition and Fr(n, rn) is (1, 0)-satisfiable w.h.p. Thus r∗k is a
lower bound for Fk(n, rn) to be (1, 0)-satisfiable. We do this analysis for k
up to 11 and show the values in Table 2.1. It is clear to observe that the
ratio of the lower bound over the upper bound of thresholds of Fk(n, rn)
goes to 1 as k becomes large.

We still have to solve the case k = 4 separately, where the weighting
scheme, w(σ, c) = γH(σ,c)1σ∈S(c), does not work for any γ > 0. Since 2i− k
is either 0 or positive when k = 4 and i ≥ 2, equation 2.1 cannot hold. Thus,
a compromise is to consider only those assignments which satisfy 2i−k = 0.
Specifically, for each clause of F , exactly two literals are satisfied and exactly
two literals are unsatisfied. And every satisfying assignment has the same
weight, 1. By doing this, the likelihood for an assignment not to be in X is
doubled. Therefore, the upper bound for such solutions becomes 2k−1

1+k ln 2,
half of the upper bound for (1, 0)-4-SAT. The remaining analysis of finding
r∗k that satisfying the dominant condition is similar to the analysis of k > 4.
The r∗4 we found is 0.602.
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Figure 2.1: k = 5, r = 1, 1.2, 1.6, 2, 2.4, 2.8, 3.2 (top down)

Table 2.1: Upper bound and lower bound for (1, 0)-k-SAT

k 4 5 6 7 8 9 10 11

upper bound 2.2 3.6 6.3 11.1 19.7 35.5 64.5 118.3

lower bound 0.6 1.6 3.7 7.8 15.8 30.9 59.3 113.4

2.7 Designing SAT benchmarks by projections

We conducted preliminary experiments by using the uniform k-SAT gen-
erator by Adrian Balint [5] and the SAT solver, MiniSAT [18], to solve 3-
CNF formulas projected from random instances of (1, 0)-4-SAT on n = 500
variables. The experiments were conducted on a 2.5GHz Intel Core i5 pro-
cessor with 8GB memory. The time limit set for the solver are 600 seconds.
Instances that cannot be solved within the time limit are treated as unsat-
isfiable and a running time of 600 seconds is used in calculating the average
time. The results of the solution probability and solution time (measured
in CPU seconds) are plotted in Figure 2.2, where each data point is the
average of 100 randomly generated instances. As depicted in Figure 2.2, the
phase transition of the (1, 0)-super solution is clear and the hardness peak
at the phase transition seems to be as dramatic as (if not more dramatic
than) those of standard random 3-SAT instances.

Our analysis of (1, 0)-super solutions in Sections 2.5 and 2.6 makes use of
the observation that a random (1,0)-k-SAT instance can be projected to an

19



2.7. Designing SAT benchmarks by projections

0

20

40

60

80

100

120

140

160

Av
er

ag
e 

Ti
m

e 
In

 S
ec

on
ds

  (
sq

ua
re

 p
oi

nt
)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y 
Of

 S
ol

va
bi

lit
y 

 (c
irc

le
 p

oi
nt

)

1.2 1.3 1.4 1.5 1.6 1.7
r

Figure 2.2: Experimental results on (1,0)-super solutions of random 4-CNF
formula, where r = m/n is the clause-to-variable ratio and n = 500.

equivalent standard (k− 1)-SAT instance. While the projected (k− 1)-SAT
instance is “random”, its distribution is different from the standard random
(k − 1)-SAT instances, due to the correlations among the projected (k − 1)
clauses. As our experiments shows, the projected (k − 1)-SAT “random”
instances not only have a stylish easy-hard-easy hardness pattern, but also
exhibit a seemingly more dramatic peak of harness at the phase transition.
We note that the idea of projections and some of our analysis extend natu-
rally to the case of (a, 0)-super solutions for a > 1. Given a random instance
F of (a, 0)-k-SAT with 1 < a < k, we can obtain a (k − a)-CNF formula
H by projecting the clauses of F recursively. It can be proved that F has
an (a, 0)-super solution if and only if H has a solution. Again, we note
that while F is a random k-CNF formula, the distribution of H differs from
that of the standard random (k − a)-CNF formula; we expect to see that
clauses in H will have a unique clustering structure that does not exist in a
standard random CNF formula. Therefore, projecting from random (a, 0)-
k-SAT instances provides a promising approach to constructing new classes
of random but structured SAT distributions. Our theoretical analysis and
preliminary experiments on the hardness of such instances suggest that this
class of instances may serve as a suite of SAT benchmarks that interpolate

20



2.8. Super solutions for random binary CSPs

between randomness and structure in a unique way.

2.8 Super solutions for random binary CSPs

A well-studied random model of Constraint Satisfaction Problems (CSP)
is the standard Model B in [24]. Phase transitions for the random binary
CSP under Model B is studied in [50]. In this section, we explore phase
transitions for the (1, 0)-super solution of random binary CSP under Model
B. Random binary CSPs are defined on a domain D of size |D| = d. A
binary CSP C consists of a set of variables X = {x1, · · · , xn} and a set
of binary constraints (C1, · · · , Cm). Each constraint Ci is specified by its
constraint scope, an unordered pair of two variables in X, and a constraint
relation RCi that defines a set of incompatible value tuples in the binary
relation D ×D for the scope variables. An incompatible value tuple is also
called a restriction. The constraint graph of a binary CSP is a graph whose
vertices correspond to the set of variables and edges correspond to the set of
constraint scopes. We use the random CSP model Bd,qn,m defined as follows.

1. Its constraint graph is a random graph G(n,m) where the m edges are
selected uniformly at randomly from all the possible

(
n
2

)
edges.

2. For each edge, its constraint relation is determined by choosing each
value tuple in D × D as a restriction independently with probability
q.

Denote byH(σ1, σ2) the set of variables being assigned different values by
two assignments σ1 and σ2, i.e., H(σ1, σ2) = {xi|σ1(xi) 6= σ2(xi), 1 ≤ i ≤ n}.
Let σ be a fixed assignment and I be a random Bd,qn,m instance. Define the
following three events:

1. S(σ) : σ is a solution for I.

2. Si(σ) : there exists another solution σ′ for I such that H(σ, σ′) = {xi}.

3. T (σ) : σ is a (1, 0)-super solution for I.

According to the relationship between (1, 0)-super solutions and standard
solutions,

P[T (σ)] = P[S(σ)]P[∩1≤i≤nSi(σ)|S(σ)].

Estimating the probability of a (1, 0)-super solution for a random CSP in-
stance is, however, more complicated than estimating the probability of a
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2.8. Super solutions for random binary CSPs

satisfying assignment, largely due to the fact that the events Si(σ), 1 ≤ i ≤
n, are not independent. This is the major hurdle we need to overcome.

Note that in a random CSP instance, the selection of constraints and
the selection of restrictions for each constraint are independent. Let C ⊂
(X × X)m be the collection of all possible sets of m unordered pairs of
variables. For a given set e ∈ C of m unordered pairs, denote by E(e) the
event that e is selected as the set of constraints of the random instance I.
Let mi be the number of constraints xi is involved with. Considering an
assignment σ′, H(σ, σ′) = {xi}, it is clear that

P
[
S(σ′)|S(σ) ∩ E(e)

]
= 1− (1− q)mi .

Let D′ = D \ {σ(xi)}, σ′(xi) = y, p = 1− q, then

P[Si(σ)|S(σ) ∩ E(e)] = P
[
∪y∈D′S(σ′)|S(σ) ∩ E(e))

]
= P

[
∩y∈D′S(σ′)|S(σ) ∩ E(e))

]
= 1− P

[
∩y∈D′S(σ′)|S(σ) ∩ E(e))

]
= 1− (1− (1− q)mi)d−1.

This shows that, conditioned on S(σ) and a fixed set of constraints e, Si(σ)
and Sj(σ) are independent for any i 6= j.

P[T (σ)] = P[∪e∈C (E(e) ∩ S(σ) ∩ (∩1≤i≤nSi(σ)))]

=
∑
e∈C

P[E(e)]P[S(σ)|E(e)]P[∩1≤i≤nSi(σ)|S(σ) ∩ E(e)]

=

((n
2

)
m

)−1

pm
∑
e∈C

n∏
i=1

(
1− (1− pmi)d−1

)
. (2.2)

Let Yσ be an indicator variable of T (σ) and Y =
∑

σ Yσ be the number
of (1, 0)-super solutions. We have

E[Y ] = dn · E[Yσ] = dn · P[T (σ)]. (2.3)

Theorem 2.17. Consider the random CSP Bd,qn,m with d =
√
n and m =

c · n lnn where c is a positive constant. Let p = 1 − q. If c > −1
3 ln p , then

lim
n→∞

E[Y ] = 0 and thus, Bd,qn,m is (1, 0)-unsatisfiable w.h.p.

22



2.8. Super solutions for random binary CSPs

Proof. Subject to
∑n

i=1mi = 2m, the product term on the right hand side
of Equation (2.2), achieves the global maximum when mi = 2m

n , 1 ≤ i ≤ n.
This can be proved by the method of Lagrange multipliers. Let c = c′ ·− 1

ln p .
According to Equation (2.2) and (2.3), we have

E[Y ] ≤ (d · pc lnn · (1− (1− p2c lnn)d−1))n

= (d · nc ln p · (1− (1− n2c ln p)d−1))n

≈ (n1/2−c′ · (1− (1− n−2c′)n
1/2

))n.

For any a, b satisfying 0 ≤ a ≤ 1 and ab < 1, we have (1 − a)b ≥ 1 − ab. If
c′ > 1/3, then

E[Y ] ≤ (n1/2−c′ · n−2c′n1/2)n = (n1−3c′)n.

Therefore, lim
n→∞

E[Y ] = 0.

The case of c ≤ −1
3 ln p is even more difficult to analyse. In the following,

we establish conditions for the expected number of (1, 0)-solutions, E[Y ],
to go to infinity. Note that 1 − (1 − px)d is increasing in terms of x. Let
λ = 2m

n = 2c lnn and t = r lnn. If mi ≤ λ+ t for each 1 ≤ i ≤ n, then

E[Y ] > dnpm
(

1− (1− pλ+t)d−1
)n
≈ n(1+(3c+r) ln p)n.

Consequently, when r < −1
ln p − 3c, lim

n→∞
E[Y ] = ∞. Therefore, for a fixed

c < −1
3 ln p , if we could find an appropriate r such that mi ≤ λ+ t w.h.p., then

we can prove lim
n→∞

E[Y ] = ∞. Since dependencies among mis make it hard

to analyse, we approximate them by the corresponding m′is in the random
model where edges in the constraint graph are selected with replacement,
in which case each m′i is a Binomial random variable with the distribution
Bin(m,n/2). By the Chernoff Bound for Binomial distributions, we have
for any u ≥ 0,

P[mi ≥ λ+ t] ≤ P
[
m′i ≥ λ+ t

]
≤ e−u(λ+t)(1 + p(eu − 1))m.

Therefore,

P[∩1≤i≤nmi ≤ λ+ t] ≥ 1−
∑

1≤i≤n
P[mi > λ+ t]

≥ 1− nP[m1 > λ+ t]

≈ 1− e(−u(2c+r)+(eu−1)2c+1) lnn.
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Consequently, if

1

u
+
eu − 1

u
2c− 2c < r <

−1

ln p
− 3c, r > 0, u ≥ 0,

then w.h.p. mi ≤ λ + t, 1 ≤ i ≤ n, and thus E[Y ] goes to infinity. Since
c = c′ −1

ln p and c′ < 1
3 , the parameter r has to satisfy

−1

ln p
(1− c′(1 +

2(eu − 1)

u
)) >

1

u
.

By setting u = 1, we see that if c < − 1
10

1
ln p and q = 1− p < 0.43, then the

expected number of (1, 0)-super solutions E[Y ] goes to infinity.
Note that what we get in the above passage is just a coarse lower

bound on the thresholds for the (1, 0)-satisfiability of a random instance

of Bd,qn,m. This is because limn→∞ E[X] is only a necessary condition for
limn→∞ P[X > 0] = 1. In order to prove that there is a (1, 0)-super so-
lution, we must use the second moment method to prove Lemma 2.8 or
some other weaker version of it. Also note the significant gap between the
lower bound and the upper bound we have derived in Theorem 2.17 and the
above analysis. This indicates that analysing the threshold phenomena of
(1, 0)-super solutions for random CSPs is a much more challenging task and
requires new analytical ideas.
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Chapter 3

Partitioning of graphs into
cographs

3.1 Graphs and graph colouring

We first introduce some definitions and notations for graphs [7]. A graph
G is an ordered pair, (V (G), E(G)), often written as G(V,E) where V (G) is
a set of vertices and E(G) is a set of unordered pair of vertices. The order
of a graph is the number of its vertices. An unordered pair {u, v} ∈ E(G)
is called an edge of G and is often written as uv. For an edge e = uv, u and
v are called ends of e and u is said to be adjacent to v. Two vertices u and
v in G are called non-adjacent if uv 6∈ E(G). Ends of an edge are said to
be incident with the edge, and vice versa. Two edges are adjacent if they
share an end and are non-adjacent otherwise. A set of pairwise non-adjacent
edges in a graph is called a matching. The neighbourhood of a vertex v in a
graph G, denoted by NG(v), is the set of vertices that are adjacent to v in
G. When G is clear from the context, we simplify the notation as N(v).

A loop is an edge with identical ends (e.g. for some vertex u, {u, u} is
an edge). Two or more edges with the same ends are called parallel edges.
A graph is simple if it has no loops or parallel edges. In the context of this
thesis, we consider simple graphs only. A vertex v is isolated in a simple
graph G if NG(v) = ∅. A path is a simple graph whose vertices can be
arranged into a linear sequence such that ends of each edge are consecutive
in the sequence. Paths with k vertices are written as Pk. Two vertices in
a graph G are connected if there is a path between them in G. A graph is
connected if every two vertices are connected and disconnected otherwise. A
cycle with k vertices, denoted by Ck, is a simple graph whose vertices can
be arranged in a cyclic sequence such that ends of each edge are consecutive
in the sequence. Cycles in simple graphs require at least three vertices. The
length of a path or a cycle is the number of its edges. A path or cycle is odd
(resp. even) if its length is odd (resp. even). An empty graph is graph in
which no two vertices are adjacent and a complete graph is a simple graph
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3.1. Graphs and graph colouring

in which every pair of vertices is adjacent. A complete graph with n vertices
is denoted by Kn.

The complement of a graph G, denoted G, is a graph whose vertex set
is V (G) and whose edges are the pairs of non-adjacent vertices of G. Two
graphs are disjoint if they have no vertex in common. The union of simple
graphs G and H is the graph G∪H with vertex set V (G)∪ V (H) and edge
set E(G) ∪ E(H). If G and H are disjoint, we refer to their union as a
disjoint union and denote it by G + H. A graph G is disconnected if and
only if G is a disjoint union of some connected subgraphs and each such
subgraph is called a connected component of G. Given two disjoint graphs
G and H, the join of G and H, denoted by G⊕H, is a graph with the vertex
set V (G+H) and the edge set E(G+H) ∪ {uv|u ∈ V (G), v ∈ V (H)}.

A graph F is called a subgraph of a graph G if V (F ) ⊆ V (G) and
E(F ) ⊆ E(G). If F is a subgraph of G, then G contains F . A subgraph F of
a graph G is called a proper subgraph of G if V (F ) ⊂ V (G) or E(F ) ⊂ E(G).
For an edge e ∈ E(G), the edge-deletion subgraph, G− e, is the graph with
the same vertex set as G but whose edge set is E(G) \ {e}. For a vertex
v ∈ V (G), the vertex-deletion subgraph, G− v, is the graph with the vertex
set V (G)\{v} and the edge set E(G)\{e|e is incident with v}. A subgraph
obtained by vertex deletions only is called an induced subgraph. If X is a
set of vertex deletions, the resulting subgraph is denoted by G−X or G[Y ]
where Y = V \X. G[Y ] is also known as the subgraph of G induced by Y .
For a graph G and a nonempty set of vertices U ⊆ V (G), U is a stable set of
G if G[U ] is empty and U is a clique of G if G[U ] is complete. A partition of
a set V is a set of nonempty subsets of V such that each element of V is in
exactly one of the subsets. The order of a partition is the number of subsets
in the partition. A bipartition is a partition of order two. A partition of a
graph G is the set of subgraphs induced by all subsets of some partition of
V (G).

Two graphs G and H are isomorphic, written as G ∼= H, if there exists
a bijection θ : V (G) → V (H) such that for every two vertices u, v ∈ V (G),
uv ∈ E(G) if and only if θ(u)θ(v) ∈ E(H). A graph G is called H-free if
there is no induced subgraph of G which is isomorphic to H.

A colouring of a graph G is a function f : V (G)→ S where S is a finite
set. The elements of S are called labels or colours. The vertices that map
to the same colour form a colour class. A colouring is called a k-colouring if
S has size k. For a graph G and two subsets U and U ′ of V (G), U ⊂ U ′, to
extend a colouring σ of G[U ] to G[U ′] is to exhibit a colouring σ′ of G[U ′]
such that σ(v) = σ′(v) for all v ∈ U .

A colouring is H-free if the subgraph induced by each colour class is H-
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3.2. Cographs and the cog-chromatic number

free. An H-free colouring of a graph is equivalent to a partition of the graph
into H-free graphs. A graph is H-free k-colourable if it admits an H-free k-
colouring. The minimum k for which a graph is H-free k-colourable is called
its H-free chromatic number. Following the commonly used terminology, the
chromatic number of a graph G, written as χ(G), is the K2-free chromatic
number of G and a graph is k-colourable means it is K2-free k-colourable.

The following theorem is conjectured in [8] and proved in [1].

Theorem 3.1. Deciding whether a graph admits a G-free k-colouring is
NP-complete for any fixed G with at least 3 vertices and k ≥ 2.

3.2 Cographs and the cog-chromatic number

The set of all cographs (complement reducible graph) is defined recur-
sively using the following rules:

1. A single vertex (K1) is a cograph.

2. The disjoint union of two cographs is a cograph.

3. The complement of a cograph is a cograph.

Cographs form the minimal family of graphs containing K1 and are closed
under complementation and disjoint union. Cographs have arisen in many
disparate areas and rediscovered under different names by different researchers
[40]. A well-known characterization of cographs is that cographs are exactly
the P4-free graphs [51]. The process of deciding whether a graph G is in a
set of graphs G is called recognizing G. There are many algorithms [13, 29]
which recognize cographs in linear time.

Here we will study partitioning graphs into cographs, i.e., P4-free colour-
ing of graphs. We call a P4-free colouring a cog-colouring and the P4-free
chromatic number as the cog-chromatic number, denoted by c(G). For ex-
ample, cographs have cog-chromatic number 1 and P4 has cog-chromatic
number 2. The cog-chromatic number is studied in [25, 46]1. A graph G is
k-cog-colourable if c(G) ≤ k and is k-cog-chromatic if c(G) = k.

In order to study this relatively new graph parameter, c(G), we start
with a study of graphs G with c(G) ≤ 2. These graphs have been called P4-
bipartite in the literature [35]. Following the notation of graph editing [9],
we define cograph+kv to be the set of graphs that have an induced cograph
subgraph obtained by deleting at most k vertices. When k = 1, we omit the

1The cog-chromatic number is called the c-chromatic number in [25]
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3.2. Cographs and the cog-chromatic number

k and denote the set as cograph+v. For notational convenience, we call a
graph G cograph+kv if G is contained in the set cograph+kv.

Weakly chordal graphs (or weakly triangulated graphs) are defined for
k ≥ 5 as Ck-free graphs in [32]. Since cographs are P4-free, all graphs in
cograph+v must be C5-free. Thus, we have the following remark.

Remark 3.2. cograph+v graphs are weakly chordal.

Remark 3.3. cograph+v graphs can be recognized in linear time.

Proof. Run a linear recognition algorithm for cographs on a graph G. If G is
a cograph, we recognize G as cograph+v in linear time. If G is not a cograph,
the algorithm will output an induced P4, say v1v2v3v4. Then, for each vi
in this P4, we run the algorithm on G − vi. If some run recognizes G − vi
as a cograph, then we recognize G as cograph+v in linear time. Otherwise,
none of these four runs recognizes G − vi as a cograph. In this case, if u
is not a vertex from {v1, v2, v3, v4}, then G− u will contain v1v2v3v4, a P4.
Therefore, G is recognized as not being cograph+v in linear time.

Since cograph+v graphs can be recognized in linear time and cographs
are the P4-free graphs, cograph+v might be characterized by a finite set of
forbidden subgraphs. That is, there may be a finite collection of graphs, C,
such that a graph is cograph+v if and only if it is G-free for every graph
G ∈ C. We call a graph non-cograph+v if it is not cograph+v. A graph G is
vertex-minimal with respect to a graph class G if G ∈ G and G− v 6∈ G for
every v ∈ V (G). According to the definition of forbidden subgraph charac-
terizations, C must include all vertex-minimal non-cograph+v graphs. Ob-
serve that the complement of a cograph+v graph is still a cograph+v graph
and the complement of a non-cograph+v graph is still a non-cograph+v
graph. Thus, a graph is a vertex-minimal non-cograph+v graph if and only
if its complement is a vertex-minimal non-cograph+v graph. Therefore, C
is self-complementary, i.e., if G ∈ C, then G ∈ C. Some graphs in the
C are C5, C6, C7, C8, P8 and their complements. However, this list is not
complete and we have been unable to characterize cograph+v in a nice or
uniform way. For example, the graph in Figure 3.1 is a vertex-minimal non-
cograph+v graph but it is hard to come up with a unifying description of
the characterization.

Remark 3.2 and Remark 3.3 imply that cograph+v graphs are easy to
recognize and many problems can be solved efficiently on them. However,
problems related with cograph+kv graphs seem hard to attack as made
precise in the following remark.
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Figure 3.1: A vertex-minimal non-cograph+v graph

Remark 3.4 ([55]). Deciding whether a graph is cograph+kv, where k is an
input parameter, is NP-complete.

P4-bipartite graphs have intersections with many other graph classes.
Intuitively, for a graph G, the more complex the way of vertices of G form
induced P4s is, the harder it is to compute c(G). The P4-structure of a
graph G is the collection of subsets of size 4 of V (G) such that the subgraph
induced by each subset is a P4 in G. Two graphs G and H are P4-isomorphic
if there exists a bijection θ : V (G) → V (H) such that for any four vertices
{u1, u2, u3, u4} ⊆ V (G), u1u2u3u4 is an induced P4 of G if and only if
θ(u1)θ(u2)θ(u3)θ(u4) is an induced P4 of H. Two graphs which are not
isomorphic may be P4-isomorphic (e.g. a triangle and a P3). P4-isomorphic
graphs have the same cog-chromatic number. An interesting result in [33]
shows that, given a collection of subsets of four vertices, H, it is polynomially
solvable to decide whether H is equivalent to the P4-structure of some graph
G.

We now explore relationships between P4-bipartite graphs and other
commonly known graph classes. A graph is P4-sparse if every subgraph
induced by five vertices contains at most one P4. P4-sparse graphs are
shown to to be P4-bipartite in [35]. A graph is split if it can be partitioned
into a stable set and a clique. A graph is split-perfect if and only if it is
P4-isomorphic to a split graph. Since stable sets and cliques are cographs,
split graphs and split-perfect graphs are P4-bipartite.

Remark 3.5. P4-sparse graphs and split-perfect graphs are subclasses of P4-
bipartite graphs.

As for a superclass of 2-cog-colourable graphs, we have not found a well-
known graph class other than the trivial class of k-cog-colourable graphs,
k ≥ 3.

Unlike cographs which are easy to recognize and for which many prob-
lems admit efficient algorithms, Theorem 3.1 shows that it is NP-hard to
determine whether a graph is P4-bipartite. Also, many problems on P4-
bipartite graphs are shown to be NP-complete, such as Maximum Clique
[47] and Hamiltonian Cycle [43]. In the following, we prove that k-
colourability is NP-complete for P4-bipartite graphs.
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Figure 3.2: Reduction from 3-SAT to χ(G) = 3

Theorem 3.6. Let G be an arbitrary P4-bipartite graph. Deciding whether
χ(G) = 3 is NP-complete.

Proof. For an arbitrary graph G, deciding χ(G) = 3 is proved to be NP-
complete in Theorem 8.22 of [38]. The proof there reduces solvability of
3-SAT to 3-colourability of graphs. We show that their reduction from 3-
SAT is always P4-bipartite.

We describe the reduction here briefly and describe a bipartition of
the graph into cographs. Given an instance of 3-SAT with n variables
{x1, · · · , xn} and m clauses {C1, · · · , Cm}, a graph with 2n+ 6m+ 3 vertices
is created. There are 2n vertices that correspond to the 2n literals. For each
clause, six vertices are added. There are three special nodes, “T”, “B”, “F”
that indicate three colours. Figure 3.2 shows the two types of gadgets. The
true-false gadget on the left side forces each vertex that corresponds to some
literal to choose colour either “T” or “F” in any 3-colouring. For each clause
Ci, add six vertices C1

i , · · · , C6
i and connect them to vertices in the way of

the clause-gadget. In the clause-gadget, any 3-colouring must assign colour
“T” to at least one of the three vertices correspond to the three literals.
Thus, clause Ci is satisfied if and only if the clause-gadget is 3-colourable.

Now we prove that G can be partitioned into 2 cographs. Let A1 =
{T,B, F} ∪ {xi, xi|1 ≤ i ≤ n} ∪ {C1

i |1 ≤ i ≤ m} and A2 = {Cji |1 ≤ i ≤
m, 2 ≤ j ≤ 6}. For any four vertices U in A1, G[U ] is either disconnected
or G[U ] has a triangle. Thus, G[A1] is a cograph. G[A2] is a set of disjoint
edges and hence is also a cograph. Therefore, {A1, A2} is a bipartition of G
into two cographs.

30



3.3. Approximating the cog-chromatic number

Let G be an arbitrary P4-bipartite graph and u be a vertex not in V (G).
Since the join of two cographs is a cograph, we have c(G⊕ {u}) = c(G). In
any K2-free colouring σ of G ⊕ {u}, σ(u) 6= σ(v) for any v ∈ V (G). Thus
χ(G ⊕ {u}) = χ(G) + 1. Therefore, we can reduce the problem of deciding
χ(G) = k for P4-bipartite graphs to problem of deciding χ(G) = k + 1 for
P4-bipartite graphs, in polynomial time.

Corollary 3.7. Let G be an arbitrary P4-bipartite graph. Deciding whether
χ(G) = k is NP-complete for any fixed k ≥ 3.

3.3 Approximating the cog-chromatic number

As it is NP-hard to find a best cog-colouring for graphs, we turn now to
finding approximation algorithms that output near-optimum cog-colourings.
The study of approximating the chromatic number, χ(G), plays a very im-
portant role in both graph theory and computational complexity theory.
The study gives rise to the famous theorem of “Probabilistically Checkable
Proof (PCP)” (see Chapter 17 of [28]). The PCP theorem is the cornerstone
of the theory of computational hardness of approximation and gives a finer
classification of problems in NP. In this section, we approximate c(G) for
P4-bipartite graphs G.

3.3.1 Greedy colouring

In the study of the classic graph colouring, greedy colouring using an
order of the vertices is studied. Suppose colours are represented by consecu-
tive positive integers. The algorithm colours vertices according to the given
order and greedily gives the next vertex u the smallest possible colour that
has not been used by vertices which are adjacent to u and precede u in the
order. It is reasonable to consider how well this greedy strategy works for ap-
proximating the cog-chromatic number of a graph. We give the next vertex
in the order the smallest colour such that subgraph induced by each colour
class (defined up to this iteration of the algorithm) is a cograph. Since any
simple graph G with less than four vertices is a cograph, c(G) ≤ dn3 e, where
n = |V (G)|. We construct a P4-bipartite graph below and describe an order
that makes the greedy colouring algorithm use n/3 colours. This implies
that greedy cog-colouring strategy is not a good idea for approximating the
cog-chromatic number.

For k ≥ 2, and 0 ≤ i < k, let v3iv3i+1v3i+2 be a P3. Join each vertex of
{v3i, v3i+1, v3i+2} to each vertex of {v3j+2|j < i}. Let the resulting graph be
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Figure 3.3: Worst case example of greedy P4-free colouring

Gk. Figure 3.3 shows a construction where we label the vertices with their
indices. First, observe that v0v1v2v3 is a P4 in each Gk and hence c(Gk) ≥ 2.
Moreover, note that the subgraph induced by {v3i+2|i < k} is complete and
hence a cograph, and the subgraph induced by {v3i, v3i+1|i < k} is a set of
disjoint edges and hence is also a cograph. Therefore, c(Gk) = 2.

Remark 3.8. Given Gk and an order of V (Gk) that arranges vertices in an
increasing order of their indices. Let Ck = {c0, c1, · · · , ck−1} be a set of k
colours. For any k ≥ 1 and 0 ≤ i < k, the greedy cog-colouring colours
vertices of {v3i, v3i+1, v3i+2} with ci.

Proof. We prove by induction on k.
Base Step (k = 1): Since the graph induced by {v0, v1, v2} is a cograph,

they are coloured c0.
Inductive Step: Suppose for some k ≥ 1, the statement of the remark

is true for all Gj , j ≤ k. Consider Gk+1. Let u be any vertex from
{v3k, v3k+1, v3k+2}. For any i, 0 ≤ i < k, since the subgraph induced by
{v3i, v3i+1, v3i+2, u} is a P4 and each vertex of {v3i, v3i+1, v3i+2} is, by in-
duction, coloured ci, u cannot be coloured ci. Thus, the vertices of {v3k,
v3k+1, v3k+2} are coloured ck and the statement of the remark is true for
Gk+1.

Remark 3.8 implies that the greedy cog-colouring outputs a k-cog-colouring
of Gk if the given order is an increasing order of the indices of vertices. Since
Gk has 3k vertices and is P4-bipartite, the greedy cog-colouring strategy is
not a good algorithm for approximating the cog-chromatic number.
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3.3.2 Maximum induced cograph

In any bipartition of a P4-bipartite graph with n vertices, the larger part
must have at least n/2 vertices. Thus, if we could find a maximum induced
cograph from a P4-bipartite graph G, then we can partition G into at most
log2 n cographs where n = |V (G)|. This is because the number of remaining
vertices decreases by at least half, after giving a maximum cograph a new
colour. In the following, we study the complexity of finding a maximum
induced cograph from P4-bipartite graphs.

A graph G is bipartite if there is a bipartition {X,Y } of G, written as
G[X,Y ], such that both G[X] and G[Y ] are stable sets. A bipartite graph
G[X,Y ] is complete bipartite if every vertex in X is connected to every vertex
in Y . A complete bipartite graph is also known as a biclique. A graph is
bipartite if and only if it does not contain any odd cycle [7].

Lemma 3.9. A connected cograph G is K3-free if and only if G is a biclique.

Proof. “Only If”: If G is not bipartite, then the smallest odd cycle of G has
length larger than or equal to 5, contradicting the assumption that G is a
cograph. Let [X,Y ] be any bipartition of G such that X and Y are stable
sets. Suppose G is not a biclique. Then there exists a pair of vertices u and
v, u ∈ X, v ∈ Y , but uv 6∈ E(G). Let P be the shortest path from u to v and
e = uv. Since G is a connected cograph, P has length of 2, contradicting
the assumption that G[X,Y ] is bipartite. Therefore, if a connected cograph
G is K3-free, then G is a biclique.

“If”: For any biclique G, the length of the shortest path between any
two vertices of G is either 1 or 2. Therefore, G does not contain an induced
P4 in G and G is a connected cograph.

Finding a biclique with the most number of vertices in a bipartite graph
is polynomially solvable as shown in [31]. According to Lemma 3.9, a bipar-
tite graph is a cograph if and only if it is a bicluster, i.e., a disjoint union of
bicliques. Therefore, a cograph with the most number of vertices in a bipar-
tite graph G is a set of maximum bicliques from the connected components
of G.

Corollary 3.10. Finding a maximum induced cograph is polynomially solv-
able for bipartite graphs.

A stable set U of G is maximum if there is no stable set U ′ of G such
that |U ′| > |U |. Given a graph G and a positive integer k, the Stable Set
problem asks whether G has a stable set of size k. The Stable Set problem
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v1 v2

v3

v′1 v′2

v′3

G G′

Figure 3.4: Reduction from Stable Set to Cograph problem

is one of Karp’s 21 NP-complete problems [36]. The following hardness result
is implied by a theorem in [55]. The proof given in [55] is for a much more
general result and is very involved. We prove it for our specific case in a
simpler way.

Lemma 3.11. Finding a maximum induced cograph is NP-hard for general
graphs.

Proof. We prove that deciding whether a graph has a cograph of size k (the
Cograph problem) is NP-complete, via a reduction from the Stable Set
problem. It takes linear time to check whether a subgraph induced by k
vertices is a cograph [29]. Thus, the Cograph problem is in NP. Given
a graph G with n vertices, we create a new graph G′ with 5n vertices as
following. Let G′ be a copy of G. For each v ∈ V (G), denote by v′ the
corresponding vertex of v in G′. For each vertex of v ∈ V (G), create a join
between v′ and a disjoint copy of P4. Figure 3.4 shows an example of this
construction on a triangle. We claim that G has a stable set of size k if and
only if G′ has a cograph of size 3n + k. Denote by P4(v′) the P4 joined to
v′.

“Only If”: Suppose U ⊆ V (G) is a stable set of G with k vertices, let
A = {v′|v ∈ U} ∪ { three vertices which form a P3 in P4(v′)|v ∈ V (G)}.
Each component of G′[A] is a join between K1 and P3. Thus, G′[A] is a
cograph with 3n+ k vertices.

“If”: Suppose the subgraph induced by U ⊆ V (G′) is a cograph of size
3n+ k. Let U = U1 ∪U2, where U1 is a subset of vertices which correspond
to vertices of G and U2 is the subset of vertices from added P4s. We perform
a case analysis according to |U1|.

Case 1: |U1| = k.
Since |U2| = 3n and G′[U2] is a cograph, U2 has exactly 3 vertices from

each added P4. If U1 is not a stable set, then there is a P4, v1v2v3v4 in
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G′, where v2v3 is an edge in G′[U1], v1 and v4 are vertices in P4(v2) and
P4(v3) respectively, contradicting the assumption that G′[U ] is a cograph.
Therefore, {v|v′ ∈ U1} is a stable set of G with size k.

Case 2: |U1| > k.
Since |U2| < 3n, there is a vertex v′ that |U2 ∩ P4(v′)| = l, l ≤ 2. The

following vertex exchange operation of adding vertices to U2 and removing
vertices from U1 reduces the size of U1 by one while preserves the properties
that |U | = 3n + k and G′[U ] is a cograph. When v′ ∈ U1, the exchange
adds 3 − l vertices from P4(v′) to U2 and removes v′ and other arbitrary
2 − l vertices from U1. When v′ 6∈ U1, the exchange adds 3 − l vertices
from P4(v′) to U2 and removes other arbitrary 3− l vertices from U1. After
|U1| − k vertex change operations, |U1| = k and we are in case 1.

Lemma 3.11 shows the complexity of the maximum induced cograph
problem for general graphs. Note that there are many graphs which are not
P4-bipartite. We have the following conjecture.

Conjecture 3.12. Finding a maximum induced cograph is NP-hard for P4-
bipartite graphs.

3.3.3 Approximation algorithms

The degree of a vertex v in a simple graph G, denote by dG(v), is the
size of its neighbourhood NG(v). Denote by ∆(G) the maximum degree of
vertices of G. When G is clear from the context, we simplify notations of
dG(v) and ∆(G) as d(v) and ∆ respectively. A P3-free colouring is trivially
a P4-free colouring. Denote by p3(G) the P3-free chromatic number of a
graph G. The proof technique in the following remark has been used many
times [19, 25].

Remark 3.13. For any graph G, p3(G) ≤
⌈

∆+1
2

⌉
.

Proof. Consider a colouring σ of G using k =
⌈

∆+1
2

⌉
colours that minimizes

the number of monochromatic edges. We claim that σ is a P3-free colouring.
Suppose there is a monochromatic P3, v1uv2, that is coloured all red. Since
dG(u) < 2k, there is at least one other colour, say blue, which is used at
most once by vertices which are adjacent to u. Switch u’s colour from red
to blue and keep colouring of other vertices unchanged. After switching u’s
colour, we decrease the number of monochromatic edges by at least one, con-
tradicting the assumption that σ minimizes the number of monochromatic
edges.
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Algorithm 1 is an implementation of the proof of Remark 3.13. Let
n = |V (G)| and m = |E(G)|. Lines from 3 to 4 are executed at most m
times since each iteration decreases the number of monochromatic edges.
Line 3 checks at most ∆ vertices for each colour and line 2 needs O(n3) time
to enumerate all P3s if G is represented by an adjacency matrix. Thus, the
algorithm finds a P3-free colouring of a graph in O(mn3∆2) time.

Algorithm 1 Partitioning G into P3-free graphs

1: Arbitrarily colour G using k =
⌈

∆+1
2

⌉
colours

2: while There is a monochromatic P3, say v1uv2 do
3: Find a colour x used by at most one vertex in u’s neighborhood
4: Let x be the new colour of u

Theorem 3.14. A P4-bipartite graph with maximum degree ∆ can be par-

titioned into
⌈

∆+1
2

⌉
cographs in polynomial time.

A hypergraph is an ordered pair (V,F), where V is a set of vertices and
F is a family of subsets of V . Each subset in F is called a hyperedge or an
edge of the hypergraph. A hypergraph is k-uniform if each of its hyperedges
has k vertices. A proper colouring of a hypergraph is a colouring of V such
that there is no monochromatic hyperedge. A hypergraph is k-colourable if
it admits a proper colouring which uses k colours. Thus, a cog-colouring of a
graph G(V,E) into cographs is a proper colouring of a 4-uniform hypergraph
H(V,F), where the subgraph induced by each hyperedge of F is a P4 in G. G
is P4-bipartite if and only if H is 2-colourable. A polynomial algorithm that

colours a 2-colourable hypergraph using O(n3/4 log
3
4 n) colours is described

in [37], where n is the number of vertices. Thus, a P4-bipartite graph with n

vertices can be partitioned into O(n3/4 log
3
4 n) cographs in polynomial time.

3.4 Minimum order of k-cog-chromatic graphs

In this section, we study the minimum number of vertices a k-cog-
chromatic graphs must have. The following way of constructing a (k + 1)-
cog-chromatic graph from a k-cog-chromatic graph is given in [25].

Definition 3.15 (3+1 construction). Given a graph G, let G1, G2, G3 be
three disjoint copies of G. The 3 + 1 construction T (G) from G is the union
of G1 ⊕G2, G2 ⊕G3 and G3 ⊕K1.
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Lemma 3.16 (Remark 9 in [25]). c(T (G)) = c(G) + 1.

Proof. Let T (G) = (G1⊕G2)∪ (G2⊕G3)∪ (G3⊕{x}), where x corresponds
to the vertex of K1 in the definition of the 3+1 construction. Let k = c(G)
and Cl = {c1, · · · , cl} be a set of l colours for any l ≥ 1. We categorize the
induced P4s contained in T (G) into two types.

1. Type-1 P4: The four vertices are contained in Gi, for some 1 ≤ i ≤ 3.

2. Type-2 P4: The P4 is u1u2u3x, where ui ∈ V (Gi) for 1 ≤ i ≤ 3.

Note that there are no other types of P4s in T (G) since the subgraph induced
by any set of four vertices of T (G) that includes at least two vertices from
one Gi and a vertex not in Gi either contains a triangle or is disconnected.
We first prove that c(T (G)) ≤ k + 1. Let σ be a k-colouring which cog-
colours G1, G2 and G3 using colours from Ck. Extend σ to colour x with
ck+1. Neither a Type-1 P4 nor a Type-2 P4 is monochromatic under σ.
Thus, σ is a (k + 1)-cog-colouring of T (G).

We now prove that c(T (G)) > k. Suppose there is a k-cog-colouring
σ of T (G) using colours from Ck. For each 1 ≤ i ≤ 3, since c(Gi) = k,
the colour σ(x) must be used by some vertex ui of Gi. Thus, u1u2u3x
is a monochromatic induced P4, contradicting the assumption that σ is a
cog-colouring of T (G).

Therefore, c(T (G)) = k + 1.

Let P be a graph property. A graph G is minimal with respect to P if
G has property P and if any proper subgraph of G does not have property
P. G is minimum with respect to P if G has property P and if any graph
G′ with less than |V (G)| vertices does not have property P.

Let fc(k) be the order of the minimum k-cog-chromatic graphs. It is clear
that fc(1) = 1 and fc(2) = 4, because any graph with at most 3 vertices is
a cograph and P4 is 2-cog-chromatic. Figure 3.5 shows a graph J with 10
vertices that is 3-cog-chromatic (this graph comes from [25]). The authors
conjecture that J is a minimum 3-cog-chromatic graph. That is, fc(3) ≤ 10.
In order to check whether fc(3) = 10, we use “geng”, a computer tool,
described in [41], to generate all possible graphs of 9 vertices. Indeed, every
graph with 9 vertices can be partitioned into 2 cographs. Thus, we confirm
that fc(3) = 10. Starting with graph J in Figure 3.5, for any k > 3, one
obtains a k-cog-chromatic graph after k − 3 iterations of applying the 3+1
construction to the resulting graph of the previous iteration. The resulting
graph has

(
10 · 3k−3 + (3k−3 − 1)/2

)
vertices. Thus, fc(k) = O(3k).
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Figure 3.5: A graph J of c(J) = 3 with 10 vertices

The construction in the following lemma uses fewer vertices than the one
of the 3+1 construction in Lemma 3.16.

Lemma 3.17. Let G1, G2, G3, G4 be four disjoint graphs, H be the union
of G1 ⊕ G2, G2 ⊕ G3 and G3 ⊕ G4. For k ≥ 1, if c(G1) = c(G4) = k and
c(G2) + c(G3) = k + 1, then c(H) = k + 1.

Proof. Let Cl = {c1, · · · , cl} be a set of l colours for any l ≥ 1.
First, we prove that c(H) ≤ k + 1. Let σ be a cog-colouring of G1

and G4 using colours from Ck. We extend σ to cog-colour G2 using colours
{c1, · · · , cx} where x = c(G2) and to cog-colour G3 using colours {cx+1, · · · ,
ck+1}. The only possible induced P4 whose vertices might be given the
same colour must have one vertex from G1, G2, G3 and G4 respectively.
However, such a path cannot be monochromatic because vertices in G2 and
G3 do not have a common colour. Therefore, σ is a cog-colouring of H and
c(H) = k + 1.

Second, we prove that c(H) > k. Suppose there is a k-cog-colouring
σ of H using colours from Ck. Since c(G2) + c(G3) > k, the Pigeon-Hole
Principle guarantees some colour ci must be used by some vertex from V (G2)
and some vertex from V (G3). Since c(G1) = c(G4) = k, ci must also be used
by some vertex from V (G1) and some vertex from V (G4). Thus, we have
a monochromatic P4 of colour ci, contradicting the assumption that σ is a
cog-colouring.

Therefore, c(H) = k + 1.

The following lemma is used to characterize how the number of vertices
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of graphs increases when we use the construction introduced in Lemma 3.17.

Lemma 3.18. Let f : N+ → N+, be such that f(1) < f(2). If f(n) satisfies
the following recurrence equation

f(n) = 2 · f(n− 1) + 2 · f (dn/2e+ 1) , n ≥ 3,

then f(n) = O(2n).

Proof. Since f(n) > 0 for all n, f(n) > f(n − 1) and hence f is strictly

increasing. Let m = dn/2e+ 1 and let g(n) = f(n)
2n , then for n ≥ 4,

g(n) = g(n− 1) + (
1

2
)n−m−1 · g(m) <

(
1 + (

1

2
)n/2−2

)
· g(n− 1).

Taking logarithms on both sides, we have,

ln g(n) < ln g(n− 1) + ln

(
1 + (

1

2
)n/2−2

)
< ln g(n− 1) + (

1

2
)n/2−2

< ln g(3) + 2 ·
n∑
i=0

(
1

2
)i = O(1).

Thus, g(n) = O(1) and f(n) = O(2n).

Theorem 3.19. For all k ≥ 1, the order of minimum k-cog-chromatic
graphs is O(2k), that is, fc(k) = O(2k).

Proof. According to Lemma 3.17, for k ≥ 2,

fc(k) ≤ min
x+y=k

{2 · fc(k − 1) + fc(x) + fc(y)}.

When we choose x, y in such a way that |x− y| ≤ 1, we have

fc(k) ≤
{

2 · fc(k − 1) + fc (bk/2c) + fc (dk/2e) when k is odd
2 · fc(k − 1) + 2 · fc (k/2) when k is even

.

Defining f as in Lemma 3.18 with f(i) = fc(i), i = 1, 2, we have fc(k) ≤ f(k)
and therefore fc(k) = O(2k).

The construction in Lemma 3.17 does not give a tight upper bound
for fc(k). For example, the construction uses 13 vertices to construct a
3-cog-chromatic graph from three 2-cog-chromatic graphs and a single ver-
tex. However, as Figure 3.5 shows, fc(3) ≤ 10. There may be a general
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Figure 3.6: Another view of graph J of c(J) = 3 with 10 vertices

construction, different from but like the one in Lemma 3.17, that for each
k ≥ 1, uses fc(k) vertices. On the other hand, not all extremal graph func-
tions lend themselves to such unified constructions for their corresponding
extremal graphs. The functions may be quite different when constrained to
small inputs as compared to their asymptotic behaviour. Despite this, the
view of the graph J in Figure 3.6 shows we can construct a 3-cog-chromatic
graph from two P4s and two vertices. If we could construct a (k + 1)-cog-
chromatic graph from two k-cog-chromatic graphs and two vertices, we have
fc(k + 1) ≤ 2fc(k) + 2. This view motivates the following conjecture.

Conjecture 3.20. For k ≥ 1, fc(k) = 2k + 2k−1 − 2.

3.5 Cog-critical graphs

In the study of classic graph colouring, a graph G is colour-critical if
χ(H) < χ(G) for any subgraph H of G. Similarly, we call a graph G
cog-critical if c(H) < c(G) for any induced subgraph H of G. A graph
G is k-cog-critical if G is cog-critical and c(G) = k. We consider induced
subgraphs instead of subgraphs when defining cog-critical graphs because
deleting an edge from a graph may increase its cog-chromatic number. For
example, deleting any edge from a C4 results in a P4, while c(P4) > c(C4).

3.5.1 Properties of cog-critical graphs

We study several necessary properties of cog-critical graphs.

Remark 3.21. A cog-critical graph cannot be a join of two graphs.

Proof. Suppose there is a cog-critical graph H = G1 ⊕ G2. Since the join
of any number of graphs is a cograph if and only if the graphs them-
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selves are cographs, we have c(H) ≤ max{c(G1), c(G2)} by joining pairs
of colour classes from cog-colourings of G1 and G2. Moreover, c(H) ≥
max{c(G1), c(G2)} since any cog-colouring of H induces a cog-colouring of
c(Gi), i = 1, 2. Thus, c(H) = max{c(G1), c(G2)}. Suppose c(G1) ≥ c(G2).
For any vertex v in G2, H − v ∼= G1 ⊕ (G2 − v) and hence

c(H − v) = max{c(G1), c(G2 − v)} = c(G1) = c(H),

contradicting the assumption that H is cog-critical.

A module [30] of a graph G(V,E) is a subset X ⊆ V satisfying that
for any vertex v ∈ V \ X, either v is adjacent to every vertex in X or v
is not adjacent to any vertex in X. That is, vertices in X have the same
neighbourhood outside X. V (G), ∅, and a single vertex are trivial modules
of G. Modules which are not trivial are called nontrivial modules.

Given a graph G and U ⊆ V (G), to shrink U is to replace U by a single
vertex and make it adjacent to all the vertices which were adjacent in G to
at least one vertex in U . The resulting graph is denoted by G/U . Let u
be the vertex in G/U that corresponds to the U being shrunk and v be an
arbitrary vertex in U . According to these definitions, if U is a nontrivial
module of G, u is connected to the same vertices in G/U as v is in G−(U \v).
Thus, for any module U of G and any vertex v ∈ U , G/U ∼= G− (U \ v).

Remark 3.22. Every nontrivial module M of a cog-critical graph G satisfies
c(G/M) < c(G).

Proof. Let v be an arbitrary vertex in M . Since G/M ∼= G − (M \ {v}),
c(G/M) = c(G− (M \ {v})) < c(G).

Lemma 3.23. If M is a module of G, then c(G) ≤ c(G/M))+c(G[M ])−1.

Proof. Let M = V (G) \M . For any vertex u ∈M , since

G[M ∪ {u}] = G− (M \ {u}) ∼= G/M,

there is a cog-colouring σ of G[M ∪ {u}] using c(G/M) colours. Suppose u
is coloured red by σ. By extending σ to colour G such that M are coloured
all red, we get a colouring σ′ where all possible monochromatic P4s are
subgraphs of G[M ]. We then use c(G[M ]) − 1 new colours not used by σ′

and red to cog-colour M . The resulting colouring is a cog-colouring of G.
Therefore, c(G) ≤ c(G/M)) + c(G[M ])− 1.

Corollary 3.24. A cog-critical graph G cannot have a nontrivial module M
such that G[M ] is a cograph.
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A restatement of Corollary 3.24 is that no module of a cog-critical graph
can have two vertices. Thus, for any two vertices u, v of a cog-critical graph
G, there must be another vertex x of G such that x is adjacent to exactly
one of uv.

Lemma 3.25. Let M be a nontrivial module of G and let d(M) be the
number of vertices not in M but adjacent to vertices in M . If c(G[M ]) +
d(M) ≤ c(G/M), then c(G) = c(G/M).

Proof. Let N(M) =
⋂
v∈M N(v). Since M is a module, every vertex not

in N(M) is either in M or not adjacent to any vertex in M . Consider a
cog-colouring σ of G/M . As in the proof of Lemma 3.23, σ can be extended
to a cog-colouring of G by introducing c(G[M ])−1 more colours. Suppose σ
colours N(M) with x colours. If x+ c(G[M ]) ≤ c(G/M), then we can reuse
colours that σ used to colour vertices in G/M − N(M). This is possible
because every vertex in G/M − N(M) is not adjacent to any vertex in
M . Thus, we do not need to introduce any new colours and hence c(G) ≤
c(G/M). Note that x ≤ d(M). Therefore, if c(G[M ]) + d(M) ≤ c(G/M),
then x+ c(G[M ]) ≤ c(G/M) and c(G) ≤ c(G/M). Finally c(G) = c(G/M)
because c(G) ≥ c(G/M).

Corollary 3.26. A cog-critical graph G cannot have a nontrivial module M
such that c(G[M ]) + d(M) ≤ c(G/M).

3.5.2 Arbitrarily large k-cog-critical graphs

According to the definition of cog-critical graphs, K1 is the only 1-cog-
critical graph and P4 is the only 2-cog-critical graph. In this section, for
any fixed k ≥ 3, we describe k-cog-critical graphs with an arbitrarily large
number of vertices. The constructions in Lemma 3.16 and Lemma 3.17
both generate cog-critical graphs when the parts of the construction are
cog-critical graphs. Thus, we can use them to create cog-critical graphs
with arbitrary number of vertices. However, both constructions increase the
cog-chromatic number by one while increasing the number of vertices by
two or three times. Therefore, both constructions do not provide arbitrarily
large k-cog-critical graphs with k fixed. In this section, we describe two
different constructions that complete this task. Moreover, we provide a way
to construct arbitrarily large k-cog-critical planar graphs where k = 3 and
4.

Definition 3.27 (J-construction). Let F be a graph with n vertices {v1,
· · · , vn}, and H = {H1, · · · , Hn} be a set of disjoint graphs. Define G to be
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the graph with V (G) = V (F ) ∪ (
⋃n
i=1 V (Hi)) and edges E(G) = E(F ) ∪

(
⋃n
i=1E(Hi ⊕ {vi})). We call G the J-construction from pair (F,H), F the

inner graph of G, and H the set of outer graphs of G.

In Lemma 3.11, the gadget (Figure 3.4) used in the polynomial reduction
is a J-construction where the outer graphs are P4s.

Lemma 3.28. Let F be a (k + 1)-colour-critical graph and each Hi ∈ H be
a k-cog-critical graph. The J-construction G from pair (F,H) is a (k + 1)-
cog-critical graph.

Proof. We first categorize induced P4s in G into two types.

1. Type-1 P4: The four vertices of the P4 are contained in Hi, for some
1 ≤ i ≤ n.

2. Type-2 P4: The P4 contains some edge of F .

Let Cl = {c1, · · · , cl} be a set of l colours for l ≥ 1. We complete the proof
in four claims.

Claim 1: c(G) ≤ k + 1.
Let σ be a K2-free colouring of F using colours from Ck+1. Extend σ to

all of G by obtaining a k-cog-colouring of Hi that uses colours Ck, for each
1 ≤ i ≤ n. Neither a Type-1 P4 nor a Type-2 P4 is monochromatic under
σ, because each Hi is cog-coloured and there is no monochromatic edge in
F . Thus, σ is a (k + 1)-cog-colouring of G and Claim 1 is proved.

Claim 2: c(G) > k.
Suppose σ is a k-cog-colouring of G using colours from Ck. Since F is not

k-colourable, there is a monochromatic edge vivj in E(F ). Suppose vi, vj are
coloured c1. Since c(Hi) = c(Hj) = k, some vertex ui of Hi as well as some
vertex uj of Hj are coloured c1. Thus, uivivjuj is a monochromatic induced
P4, contradicting the assumption that σ is a cog-colouring. Therefore, G is
not k-cog-colourable and Claim 2 is proved.

Claim 3: For any vertex v of F , c(G− v) ≤ k.
Since F is (k+ 1)-colour-critical, there is a K2-free colouring σ of F − v.

Extend σ with any k-cog-colouring of Hi using colours Ck for 1 ≤ i ≤ n.
Neither a Type-1 P4 nor a Type-2 P4 is monochromatic under σ, because
each Hi is cog-coloured and there is no monochromatic edge in F . Thus, σ
is a k-cog-colouring of G− v, and Claim 3 is proved.

Claim 4: For any vertex v in H, c(G− v) ≤ k.
Since v is a vertex in H, v is a vertex of Hi, for some 1 ≤ i ≤ n. Since

F is (k + 1)-colour-critical, k ≥ 1, vi is not an isolated vertex in F . Let
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vj be an arbitrary vertex which is adjacent to vi in F . Let e = vivj , and
let σ be a K2-free colouring of F − e using colours from Ck. Note that e
is monochromatic under σ since otherwise F is k-colourable. Suppose the
colour of vi is c1. We then extend σ to cog-colour Hl with colours from Ck,
l 6= i. Since Hi is k-cog-critical, we can further extend σ to all of G − v,
with any (k− 1)-cog-colouring of Hi− v using the k− 1 colours in Ck \ {c1}.
Then every Type-2 P4 containing vivj cannot be monochromatic under σ,
because none of NG(vi)\{vj} is coloured c1, none of NF (vj)\{vi} is coloured
c1 and this P4 can have at most one vertex from Hj . Every other Type-
2 P4 contains an edge in F with ends of different colours and thus is not
monochromatic. Moreover, there is no monochromatic Type-1 P4 because
every Hj is cog-coloured, j 6= i, and Hi − v is cog-coloured. Thus, σ is a
k-cog-colouring of G and Claim 4 is proved.

By Claims 1 through 4, G is a (k + 1)-cog-critical graph.

Theorem 3.29 (Theorem 5 in [52]). There exists a k-colour-critical graph,
k ≥ 4, with n vertices if and only if n ≥ k and n 6= k + 1. There exists a
k-colour-critical r-uniform hypergraph, k ≥ 3, r ≥ 3, with n vertices if and
only if n ≥ (r − 1)(k − 1) + 1.

Theorem 3.30. For any k ≥ 3 and n > 0, there exists a k-cog-critical
graph G with more than n vertices.

Proof. We prove by induction on k.
Base Step (k = 3): Let F be a cycle of 2n + 1 vertices and H be a set

of 2n + 1 disjoint P4s. Since F is 3-colour-critical and P4 is 2-cog-critical,
according to Lemma 3.28, the J-constructionG from (F,H) is a 3-cog-critical
graph with more than n vertices.

Inductive Step: Suppose the statement of the theorem is true for some k,
k ≥ 3, and we consider the case k+1. According to Theorem 3.29, there is a
(k+ 1)-colour-critical graph F with max{n, k+ 2} vertices. Also, according
to the inductive hypothesis, there is a k-cog-critical graph H with more
than n vertices. Let H be a set of |V (F )| disjoint copies of H. According
to Lemma 3.28, the J-construction G from (F,H) is a (k + 1)-cog-critical
graph with more than n vertices.

A graph is planar if it can be drawn in the plane so that its edges
intersect only at their ends. Such a drawing is called a planar embedding of
the graph. A graph is outerplanar if it has a planar embedding in which
all vertices lie on the boundary of its outer face. If G is outerplanar, then
G⊕K1 is planar.

44



3.5. Cog-critical graphs

Corollary 3.31. For k = 3 and 4, and any n > 0, there is a planar k-cog-
critical graph with more than n vertices.

Proof. Let F be a cycle of 2n+ 1 vertices and H be a set of 2n+ 1 disjoint
P4s. As in the proof of Theorem 3.30, the J-construction G from (F,H) is
3-cog-critical. Note that, G is also outerplanar (for n = 1, see G′ in Figure
3.4). Thus, G is a 3-cog-critical planar graph with more than n vertices.

Let G be a set of four disjoint copies of the graph G in the above para-
graph. Since G is outerplanar and K4 is planar, the J-construction G′ from
(K4,G) is planar. Moreover, K4 is 4-colour-critical and G is 3-cog-critical.
According to Lemma 3.28, G′ is 4-cog-critical. Thus, G′ is a 4-cog-critical
planar graph with more than n vertices.

Since planar graphs are 4-colourable, they are 4-cog-colourable. Thus,
there does not exist a 5-cog-critical planar graph. The existence of 4-cog-
chromatic planar graphs is proved in [25]. Corollary 3.31 provides a construc-
tion of 4-cog-chromatic planar graphs which are also 4-cog-critical. Koester
graph [39] is a 4-regular 4-colour-critical planar graph. However, according
to Remark 3.13, graphs with maximum degree 4 are 3-cog-colourable and
hence there is no 4-regular 4-cog-critical planar graph. It is interesting to
ask whether there is a 4-cog-critical graph with minimum degree 4.

The girth of a graph G with at least one cycle is the length of a shortest
cycle in G. A graph is triangle-free if it does not contain a cycle or its
girth is larger than 3. Planar graphs with girth at least 11 are shown to
be 2-cog-colourable [25]. Moreover, it is NP-complete to decide whether a
triangle-free planar graph is 2-cog-colourable [16]. Thus, it is interesting to
ask whether planar graphs with girth at least 5 are 2-cog-colourable.

Theorem 3.30 relies on the J-construction and the J-construction relies
on the fact there is an arbitrarily large k-colour-critical graphs. In the
following, we describe a new construction that does not rely on the existence
of arbitrarily large k-colour-critical graphs, but instead relies on the fact
that there are arbitrarily large k-colour-critical hypergraphs, as proved by
Theorem 3.29.

Definition 3.32 (D-construction). Let H be a graph on n vertices with
c(H) = k. Let F be an n-uniform (k + 1)-colour-critical hypergraph. For
each edge F ∈ F , let H1

F , H
2
F , H

3
F be three disjoint copies of H and define

HF = (H1
F⊕H2

F )∪(H2
F⊕H3

F ). Let G∗ =
⋃
A,B∈F (HA ⊕HB). For each edge

F ∈ F , let MF be a matching between the vertices of F and V (H1
F ). Let

G be a graph defined by V (G) = V (F) ∪ V (G∗) and E(G) = E(G∗) ∪
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3.5. Cog-critical graphs

(∪F∈FMF ). We call G the D-construction from F and H, denoted by
D(F , H). For each edge F ∈ F , we call HF the satellite graph of F .

We will choose the graph H in our D-construction so that proper k-
colourings of subhypergraphs of F can be extended to (k+1)-cog-colourings
of G. The following definition and lemma provide the needed properties of
H.

Definition 3.33 (Tk graph). Define T2 = P4. For any k > 2, define
Tk = T (Tk−1), where the T (G) is the 3+1 construction from G, defined
in Definition 3.15.

Lemma 3.34. For any k ≥ 2, Tk is k-cog-critical.

Proof. Since c(T2) = 2 and c(Tk+1) = c(Tk) + 1 for any k ≥ 2, proved
by Lemma 3.16, we have c(Tk) = k for any k ≥ 2. We prove that Tk is
cog-critical for any k ≥ 2 by induction on k.

Base Step (k = 2): Since any graph of less than 4 vertices is a cograph,
T2 is cog-critical.

Inductive Step: Suppose Tk is cog-critical for some k ≥ 2. We prove
that Tk+1 is cog-critical. Let Tk+1 = (L⊕M)∪ (M ⊕R)∪ (R⊕{s}), where
L,M ,R are three copies of Tk and s is the single vertex. As in the proof
of Lemma 3.16, every induced P4 of Tk+1 is either of Type-1 (four vertices
contained in one of L, M and R) or Type-2 (s and one vertex from L,M
and R respectively). Let v be an arbitrary vertex of Tk+1. We prove that
c(Tk+1 − v) = k. Let Cl = {c1, · · · , cl} be a set of l colours for any l ≥ 1.
We perform a case analysis on v.

Case 1: v = s.
There is no Type-2 P4 in Tk+1 − v. Since c(Tk) = k, there is a k-

colouring σ that cog-colours L, M and R individually, and hence can be
extended to Tk+1. Thus, every Type-1 P4 is not monochromatic under σ
and c(Tk+1 − v) = k.

Case 2: v ∈ V (A), where A ∈ {L,M,R}.
Without loss of generality, we suppose v ∈ V (L). According to the

inductive hypothesis, L is k-cog-critical and thus there is a (k − 1)-cog-
colouring σ of L − v using colours from Ck−1. Extend σ to cog-colour M
and R using colours from Ck and set σ(s) = ck. There is no monochromatic
Type-1 P4 because σ cog-colours L− v, M and R. Every Type-2 P4 is not
monochromatic because every vertex in L− v is not coloured ck. Thus, σ is
a k-cog-colouring of Tk+1 − v and c(Tk+1 − v) = k.

Therefore, Tk+1 is (k + 1)-cog-critical.
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Let τ be a function with domain D and A ⊆ D. Define τA to be the
restriction of τ to the set A. That is, τA is a function with domain A such
that τA(a) = τ(a) for all a ∈ A. If {A1, · · · , Al} is a partition of D, then τ is
completely determined by {τA1 , · · · , τAl

}. Given a graph G and an induced
subgraph H of G, we simplify the notation of σV (H) as σH , where σ is a
function defined on V (G). A function f : X → Y is constant if all inputs
have the same output. That is, for any x1, x2 ∈ X, f(x1) = f(x2).

Lemma 3.35. For any k ≥ 2, let Ck = {c1, · · · , ck} be a set of k colours.
For any function m : V (Tk)→ Ck, if m is not constant, then Tk has a k-cog-
colouring σ using colours from Ck such that σ(v) 6= m(v) for all v ∈ V (Tk).

Proof. We prove this lemma by induction on k. We call two functions f and
g contrary to each other, denoted by f � g, if they have different values
for every input common to both domains. The σ of the lemma we are
constructing will be contrary to the given m.

Base Step (k=2): Let σ be a colouring of T2 such that σ(v) = c1 if
m(v) = c2 and σ(v) = c2 otherwise. Since T2 is a P4 and m is not constant,
σ is a 2-cog-colouring of T2 and σ � m.

Inductive Step: Let k ≥ 2 and suppose the statement of the lemma is
true for k. We now prove the statement is true for k + 1. Let L,M,R
be the three copies of Tk and s be the single vertex such that Tk+1 =
(L⊕M) ∪ (M ⊕R) ∪ (R⊕ {s}).

Claim: For any m : V (Tk+1) → Ck+1 and any A ∈ {L,M,R}, there is
always a colouring τ such that τA is a k-cog-colouring of A and τA � mA.

Proof of claim: Let A ∈ {L,M,R}. We consider three cases depending
on the size of the range of mA.

Case 1. mA is constant.
Suppose the range of mA is {c1}. Since A is k-cog-critical, there is a

k-cog-colouring τA of A using colours from Ck+1 \ {c1}. It is clear that
τA � mA.

Case 2. The range of mA has more than one but less than k+ 1 colours.
Suppose the range of mA is a subset of Ck. Since A is a copy of Tk,

according to the inductive hypothesis, there is a k-cog-colouring τA of A
using k colours from Ck and τA � mA.

Case 3. The range of mA has k + 1 colours.
Let m′A : V (A)→ Ck be a function such that m′A(v) = mA(v) if mA(v) 6=

ck+1 and m′A(v) = c1 otherwise. Now m′A has range of k ≥ 2 colours from
Ck. According to the inductive hypothesis, there is a k-cog-colouring τA of
A using k colours from Ck such that τA � m′A. For all v with mA(v) 6= ck+1,
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mA(v) = m′A(v) 6= τA(v). For all v with mA(v) = ck+1, mA(v) 6= τA(v)
because τA(v) 6= ck+1. Thus, τA is contrary to mA.

The claim is now proved.
Let σ be a colouring of Tk+1 − s such that σ(v) = τ(v) for every v ∈

V (Tk+1−s). We complete the proof of the inductive step for case k+1 with
a case analysis of the colours used by σL, σM and σR.

Case 1. σL, σM and σR do not use the same k colours.
Without loss of generality, we suppose the colours used by σL is different

from the colours used by σM . Since L and M are both k-cog-critical, the
range of σL and the range of σM have exactly (k − 1) colours in common.
Thus, there are at least two colours, ci and cj , such that ci is used by σL
but not by σM , and cj is used by σM but not by σL. If m(s) 6= ci, we set
σ(s) to ci. If m(s) = ci, we set σ(s) to cj . As in the proof of Lemma 3.16
and since σA is a k-cog-colouring of A for all A ∈ {L,M,R}, every possible
induced P4 of Tk+1 must contain s and have exactly one vertex from L,M
and R respectively. Every such P4 is not monochromatic because either the
vertex from L or the vertex from M is not coloured σ(s). Therefore, σ is a
(k + 1)-cog-colouring of Tk+1. By construction, σ � m.

Case 2: σL, σM and σR all use the same k colours.
Suppose they all use Ck. If m(s) 6= ck+1, we set σ(s) = ck+1. Then σ

is a (k + 1)-cog-colouring of Tk+1 with σ � m. If m(s) = ck+1, there must
be some colour ci 6= ck+1 in the range of m because m is not constant. We
then redefine σ(v) = ck+1 for each v with m(v) = ci, and set σ(s) = ci. For
each A ∈ {L,M,R}, σA is a k-cog-colouring of A because the redefinition
just switches ci with ck+1. As in the proof of Lemma 3.16, every possible
induced P4 of Tk+1 must contain s and have exactly one vertex from L,M
and R respectively. Every such P4 is not monochromatic because s is the
only vertex coloured ci. The resulting σ is a (k + 1)-cog-colouring of Tk+1

and σ � m.
Thus, for any m : V (Tk+1) → Ck+1, if m is not constant, there is a

(k + 1)-cog-colouring σ of Tk+1 such that σ � m.
Therefore the statement of the lemma is true for k + 1.

Corollary 3.36. For any k ≥ 2, let F be an empty graph with |V (Tk)| ver-
tices, H1

F ,H2
F ,H3

F be three disjoint copies of Tk, MF be a matching between
V (F ) and V (H1

F ). For any vertex v ∈ V (F ), let v′ be the vertex in H1
F such

that vv′ ∈ MF . Define HF = (H1
F ⊕ H2

F ) ∪ (H2
F ⊕ H3

F ) ∪ (H3
F ⊕ K1) and

the graph J with V (J) = V (F ) ∪ V (HF ) and E(J) = MF ∪ E(HF ). Let
Ck = {c1, · · · , ck} be a set of k colours. Let τ be a k-colouring of F . If τ is
constant, then for any vertex v ∈ V (J), there is a k-cog-colouring σ of J−v
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such that σF = τ and there is only one monochromatic edge in MF . If τ is
not constant, then there is a k-cog-colouring σ of J such that σF = τ and
there is no monochromatic edge in MF .

Proof. We first prove the first part of the lemma. Suppose τ is constant with
colour, say c1. Let v be a vertex of G. We consider three cases depending
on the part of G to which the v belongs.

Case 1: v ∈ V (F ).
We (k − 1)-cog-colour H1

F − v′ using colours from Ck \ {c1} and set
σ(v′) = c1. We then k-cog-colour H2

F and H3
F with colours from Ck. For

every P4 in J − v, it is either contained in one of {H1
F , H

2
F , H

3
F } or it has an

edge from MF − vv′. Since each one of {H1
F , H

2
F , H

3
F } is cog-coloured and

every edge in MF except vv′ is not monochromatic, we get a k-cog-colouring
of J − v and vv′ is the only monochromatic edge in MF .

Case 2: v ∈ V (H1
F ).

We (k − 1)cog-colour H1
F − v with colours from Ck \ {c1}. We then

k-cog-colour H2
F and H3

F with colours from Ck. For every P4 in J − v, it
is either contained in one of {H1

F − v,H2
F , H

3
F } or it has an edge from MF

different than vv′. Since each one of {H1
F − v,H2

F , H
3
F } is cog-coloured and

vv′ is the only monochromatic edge in MF , J − v is k-cog-colourable.
Case 3: v ∈ V (H2

F ) ∪ V (H3
F ).

Suppose, without loss of generality, v ∈ V (H3
F ). We (k − 1)-cog-colour

H3
F − v with colours from Ck \ {c1} and k-cog-colour H2

F with colours from
Ck. Then, we choose an arbitrary vertex u′ of H1

F , colour u′ with c1 and
(k−1)-cog-colour H1

F −u′ with colours from Ck \{c1}. For every P4 in J−v,
it is either contained in one of {H1

F , H
2
F , H

3
F − v} or it has an edge from MF

different than uu′. Since each one of {H1
F , H

2
F , H

3
F − v} is cog-coloured and

uu′ is the only monochromatic edge in MF , J − v is k-cog-colourable.
Now suppose τ is not constant. Since a colouring of H1

F is a colouring of
Tk, by using τ as the function m in Lemma 3.35, we have a k-cog-colouring
of H1

F ∪MF using colours from Ck such that there is no monochromatic
edge in MF . We can then arbitrarily cog-colour H2

F and H3
F using colours

from Ck. For every P4 in J , it is either contained in one of {H1
F , H

2
F , H

3
F }

or it has an edge from MF . Since {H1
F , H

2
F , H

3
F } are cog-coloured and every

edge in MF is not monochromatic, we get a k-cog-colouring of G with no
monochromatic edge in MF .

Theorem 3.37. Let F be a n-uniform (k + 1)-colour-critical hypergraph,
where n = |V (Tk)|. The graph G = D(F , Tk) is (k + 1)-cog-critical.
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Proof. We first categorize the P4s in G. For any two hyperedges A,B ∈ F ,
A 6= B, HA and HB form a join in G. Thus, there is no P4 which has vertices
in more than two different satellite graphs. If u1u2u3u4 is a P4 with vertices
from two different satellite graphs HA and HB, then u2 ∈ V (HA), u3 ∈
V (HB) and u1, u4 ∈ A ∪ B. If not, then a triangle is formed between the
satellite graphs. Therefore, any P4, say u1u2u3u4 of G, can be either one of
the following three types.

1. Type-1 P4: The four vertices are contained in a MF ∪ HF for some
hyperedge F .

2. Type-2 P4: u1 ∈ A, u4 ∈ A, u2 ∈ V (HA), u3 ∈ V (HB), where A and
B are two different hyperedges.

3. Type-3 P4: u1 ∈ A, u4 ∈ B, u2 ∈ V (HA), u3 ∈ V (HB), where A and
B are two different hyperedges.

Let Ck = {c1, · · · , ck} be a set of k colours. We break up the proof of the
theorem into four claims.

Claim 1: c(G) ≤ k + 1.
Let σ be a proper colouring of F using colours from Ck+1. Since there is

no monochromatic hyperedge under σ, according to Corollary 3.36, we can
extend σ to k-cog-colour G∗ such that ends of each edge in the matchings,
∪F∈FMF , are coloured differently. Thus, a P4 of any type must not be
monochromatic under σ. Therefore, σ is a (k + 1)-cog-colouring of G and
Claim 1 is proved.

Claim 2: c(G) > k.
Suppose, to the contrary, G has a k-cog-colouring σ using colours from

Ck. Since F is (k + 1)-colour-critical, there is at least one monochromatic
hyperedge F in F coloured by σ. Suppose the vertices of F are coloured
c1. Since H1

F , H
2
F , H

3
F are all k-cog-critical graphs, c1 must be used by

some vertex u1 in H1
F , u2 in H2

F and u3 in H3
F . But then xu1u2u3 is a

monochromatic P4, where xu2 ∈ MF for some x ∈ F , a contradiction.
Therefore, c(G) > k and Claim 2 is proved.

Claim 3: For any u ∈ F , c(G− u) ≤ k.
Since F is (k+1)-colour-critical, there is a proper k-colouring σ of F−v.

According to Corollary 3.36, we can extend σ to k-cog-colour G∗ such that
ends of each edge in the matchings are coloured differently. Thus, a P4 of
either type must not be monochromatic under σ. Therefore, σ is a k-cog-
colouring of G and Claim 3 is proved.

Claim 4: For any u ∈ G∗, c(G− u) ≤ k.
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Let A be the hyperedge such that u ∈ V (HA). Since F is (k+ 1)-colour-
critical, there is a proper k-colouring σ of F − A. We then extend σ to
k-cog-colour G∗ − V (HA) using colours from Ck such that ends of edges in
∪F∈F ,F 6=AMF are coloured differently. Because A must be monochromatic
under σ, according to Corollary 3.36, we can extend σ to k-cog-colour MA∪
HA such that there is only one monochromatic edge in MA. For any F ∈ F ,
MF ∪ HF is k-cog-coloured. Thus, P4s of Type-1 are not monochromatic.
Since there is only one monochromatic edge in ∪F∈FMF , P4s of Type-2 and
Type-3 are not monochromatic. Therefore, σ is k-cog-colouring of G and
Claim 4 is proved.

By Claim 1 through 4, G is (k + 1)-cog-critical.

Using Theorem 3.37, we can have a different proof of Theorem 3.30 based
on the D-construction.

Proof. Let k be any fixed integer larger than 2. Then |V (Tk−1)| > 3. For
any n > 0, according to Theorem 3.29, there is a k-colour-critical |V (Tk−1)|-
uniform hypergraph F of max{n, |V (Tk−1)|·k, } vertices. According to Theo-
rem 3.37, the D-construction G from (F , Tk) is k-cog-critical with more than
n vertices.
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Chapter 4

Conclusion

To the best of our knowledge, we have conducted (for the first time)
a probabilistic analysis of super solutions of random instances of SAT and
CSPs. While we have focused on the special (but already challenging) case
of (1,0)-super solutions, some of our analysis extends to the case of (a, 0)-
super solutions for a > 1. For random instances of CSPs, new analytical
methods and ideas are needed to obtain a more detailed characterization of
the behaviour of the super solutions, and we leave this as a future work. It
is also highly interesting to conduct a systematic empirical analysis to fully
understand the hardness of solving random instances of (1, 0)-k-SAT as well
as the hardness of solving the projected standard SAT instances, which
may serve as suite of SAT benchmark with a unique structural properties.
We wonder if our analysis can be extended to random instances of other
problems such as graphical games where solution concepts similar to super
solutions have been used.

For the problem of partitioning graphs into cographs, we have studied
several problems related to cog-chromatic number of graphs which have not
been studied before, as far as we know. For example, the order of minimum
k-cog-chromatic graphs is studied in Section 3.4. Moreover, methods that
construct arbitrarily large graphs with required properties are given in Sec-
tion 3.4 and Section 3.5. We are very interested in answering conjectures
made in Section 3.3 and Section 3.4. For example, does the smallest k-cog-
chromatic graphs have 2k + 2k−1 − 2 vertices? We would also like to spend
more time on studying approximation algorithms for c(G) and the hardness
of approximating c(G), where G is an arbitrary graph.
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