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Abstract

It is well known that the general polynomial

anx
n + an−1x

n−1 + · · ·+ a1x+ a0

cannot be solved algebraically for n ≥ 5; that is, it cannot be solved in terms

of a finite number of arithmetic operations and radicals. We can, however,

associate every irreducible sextic polynomial with a Galois group. The Ga-

lois group of a given polynomial can give us a great deal of information

about the nature of the roots of a polynomial and it can also tell us if the

polynomial itself is algebraically solvable. This leads to the typical problem

in Galois theory: finding the Galois group of a given polynomial.

In this thesis, we investigate the inverse problem: for a specific Galois

group, what irreducible polynomials occur. More specifically, we look at

monic trinomials – polynomials with only three terms, having 1 as the lead-

ing coefficient. The first unresolved case of trinomials are of degree six and

we will look specifically at trinomials of the form

x6 + ax+ b.

We begin by investigating families of these trinomials that will result in

Galois groups having a particular structure. From these families of trino-

mials, we can then make a final determination of individual Galois groups

after eliminating any reducible possibilities.

In the main calculations of this thesis, we investigate two parametric

families of trinomials, one of which is given in [1]. From these families

we completely characterize five of the possible sixteen Galois groups that
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Abstract

can occur for sextic polynomials. In the notation of Butler and Mckay [2],

these groups are 6T1, 6T2, 6T4, 6T5, and 6T6. In the final determination

of these polynomials, rational points are found on genus 2 curves using a

method known as elliptic Chabauty.

We give an introduction to Galois theory followed by a brief explanation

of the methods used to attain our results. We then discuss our results

and proceed to prove them through the use of powerful software such as

MAPLETMand the Magma algebra system [3].

iii



Preface
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Chapter 1

Algebraic Preliminaries

1.1 Homomorphisms, Quotient Rings, and Ideals

We begin with some basic definitions regarding rings and maps.

Definition 1.1. A ring is a triple 〈R,+, ·〉, where R is a set with two binary

operations + and · defined on R such that

i. 〈R,+〉 is an abelian group;

ii. · is associative; and

iii. for all a, b, c,∈ R, the left distributive law

a · (b+ c) = (a · b) + (a · c)

and the right distributive law

(a+ b) · c = (a · c) + (b · c)

hold. We call + addition and · multiplication. We shall write ab instead

of a · b.

Definition 1.2 (Homomorphism). For rings R and S, a map φ : R→ S is

a homomorphism if the following two conditions are satisfied for all a, b ∈ R:

i. φ(a+ b) = φ(a) + φ(b)

ii. φ(ab) = φ(a)φ(b).

Definition 1.3 (Isomorphism). An isomorphism φ : R→ S from a ring R

to a ring S is a homomorphism that is one to one and onto S.
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1.1. Homomorphisms, Quotient Rings, and Ideals

If an isomorphism exists from a ring R to a ring S, then R is said to be

isomorphic to S and we write R ∼= S.

Definition 1.4 (Subring). A subring of a ring R is a subset S of R which

is itself a ring under the operations it inherits from R.

Definition 1.5 (Ideal). A subset I of a ring R is an ideal of R if

i. 〈I,+〉 is a group under the addition operation defined in R and

ii. for all x ∈ I and for all r ∈ R, xr ∈ R.

With the idea of ideals, we can now define a quotient ring. First we must

understand the concept of cosets.

Definition 1.6 (Cosets). Let H be a subgroup of G. The subset aH =

{ah | h ∈ H} is called the left coset of H containing a, whereas the subset

Ha = {ha | h ∈ H} is called the right coset of H containing a.

In the case where addition is the group operation, we write a + H =

{a+ h | h ∈ H} and H + a = {h+ a | h ∈ H} as the left and right cosets of

H containing a, respectively.

Remark 1.1. In the case where G is an abelian group, the left and right

cosets of H containing a are equal.

Definition 1.7 (Quotient ring). If I is an ideal of a ring R, we can form

the quotient ring R/I, consisting of the cosets of I in R considered as a

group under addition, having the properties

i. (I + r) + (I + s) = I + (r + s)

ii. (I + r)(I + s) = I + (rs).

2



1.1. Homomorphisms, Quotient Rings, and Ideals

Definition 1.8 (Kernel of a homomorphism). Let a map φ : R → S be a

ring homomorphism. The subring

φ−1(0s) = {r ∈ R | φ(r) = 0s}

is the kernal of φ where 0s is the zero element in S. We denote the kernel

of φ by Ker(φ).

It should also be noted that the kernel Ker(φ) of a ring homomorphism

φ : R → S is an ideal of R. The concept of an integral domain and a field

will also be useful for later definitions. An integral domain is a ring D with

an additional three properties.

Definition 1.9 (Integral Domain). An integral domain is a ring 〈D,+, ·〉

such that

i. · is commutative;

ii. there exists an element 1 ∈ D such that a1 = 1a = a for all a ∈ D; and

iii. if ab = 0 for a, b,∈ D then either a = 0 or b = 0.

Finally, we can build onto this concept one step further to define a field.

Definition 1.10 (Field). A field is a ring 〈F,+, ·〉 such that F\{0} is an

abelian group under multiplcation.

In this definition, f\{0} means “all non-zero elements of F”. Since

〈f\{0}, ·〉 is an abelian group, for every a ∈ F , we use a−1 ∈ F to denote

the multiplicative inverse of a.

3



1.2. The Ring of Polynomials

1.2 The Ring of Polynomials

We can express a polynomial in x (called an indeterminate) with coeffi-

cients in a ring R as a finite sum

n∑
i=0

aix
i = a0 + a1x+ · · ·+ anx

n,

where ai ∈ R and n is the degree of the polynomial. We say that two polyno-

mials are equal if and only if the corresponding coefficients are equal (where

any omitted powers of x can be taken to have a coefficient of zero). We

define the addition and multiplication operations on polynomials as follows:

If

f =
n∑

i=0

aix
i

and

g =
n∑

i=0

bix
i,

then we define

f + g =
n∑

i=0

(ai + bi)x
i

fg =
n∑

i=0

cix
i

where

ci =
n∑

j+k=i

ajbk.

Under these operations, the set of all polynomials with coefficients in R and

an indeterminate x forms a ring, which we denote by R[x].

Lemma 1.1. If D is an integral domain and x is an indeterminate, then

D[x] is an integral domain.

4



1.3. Factorization of Polynomials

Proof. Let

f = a0 + a1x+ · · ·+ anx
n

and

g = b0 + b1x+ · · ·+ bmx
m

where an 6= 0 and bm 6= 0 and all the coefficients are in D. The coefficient

of tm+n in fg is anbm, which is non-zero since D is an integral domain.

Therefore if f, g are non-zero, then fg is also non zero. Thus, D[x] is an

integral domain.

In particular, if F is a field, then F [x] is an integral domain.

Remark 1.2. F [x] is not a field, as x is does not have a multiplicative

inverse. That is, there is no polynomial f(x) ∈ F [x] such that xf(x) = 1.

1.3 Factorization of Polynomials

Not all polynomials can be factored over a given integral domain or field,

so let us first define what what it means for a polynomial to be reducible.

Definition 1.11 (Reducible Polynomial). A non-constant polynomial f(x)

is said to be reducible over a ring R if it can be expressed as the product of

two or more non-constant polynomials of lesser degree in R[x]. That is,

f(x) = g(x)h(x) f(x), g(x), h(x) ∈ R[x].

If no such factorization is possible, then f(x) is said to be irreducible.

All polynomials of degree 0 or 1 are irreducible, because they cannot be

expressed as a product of polynomials of lesser degree.

5



1.3. Factorization of Polynomials

Definition 1.12 (Roots of a function). Given a function f(x), a root of

f(x) is any value r that gives f(x) = 0 when x = r.

Corollary 1.1 (Factor theorem). Let f(x) be a polynomial in Q[x]. f(x)

has a root a ∈ Q if and only if x− a is a factor of f(x) in Q[x].

Proof. Suppose that f(a) = 0 for some a ∈ Q. By the division algorithm,

f(x) = (x− a)q(x) + r(x)

for some q(x), r(x) ∈ Q[x] with either r(x) = 0 or r(x) having degree less

than 1. In either case we have r(x) = c for some c ∈ F . Thus,

f(x) = (x− a)q(x) + c.

Evaluating at x = a,

f(x) = (a− a)q(a) + c

0 = 0q(a) + c

0 = c

Then f(x) = (x− a)q(x) and x− a is a factor of f(x).

Conversely, if x−a is a factor of f(x) ∈ F [x] where a ∈ Q, it is obvious that

evaluating at x = a will give f(a) = 0 and therefore a is a root of f(x).

We can now establish some criterion that will help determine whether a

specific polynomial is reducible over Q. The Rational Root Test or Rational

Root Theorem gives candidates for the roots of a polynomial (pg 214–215,

[5]).

Theorem 1.1 (Rational Root Test). Let f(x) be a polynomial

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

6



1.3. Factorization of Polynomials

with integer coefficients. Let an and a0 be nonzero. Then any root of f(x)

in the rational numbers Q can be expressed as x = p
q for p, q ∈ Z, q 6= 0,

where p and q satisfy the following two properties:

i. p divides the constant term a0

ii. q divides the leading coefficient an.

We now state Gauss’ Lemma (Proposition 2.4, pg. 19, [6]).

Theorem 1.2. Let f(x) be a polynomial in Z[x] be irreducible over Z. Then

f(x) is also irreducible over Q.

Proof. By way of contradiction, we assume that f(x) ∈ Z[x] is irreducible

over Z, but reducible over Q. That is, f(x) = g(x)h(x) where g(x), h(x)

are polynomials in Q[x] of smaller degree. By multiplying by the product of

denominators of the coefficients of g and h, we can rewrite this equation as

nf = g′h′

where n ∈ Z and g′, h′ are polynomials in Z[x]. We will now cancel out the

prime factors of n one by one, while staying within Z[x].

Suppose that p is a prime factor of n. If we define

g′ = g0 + g1x+ · · ·+ grx
r

h′ = h0 + h1x+ · · ·+ hsx
s

then we claim that either p divides all of the coefficients gi or p divides all

the coefficients hj . Otherwise, there must exist smallest values i and j such

that p - gi and p - hj . However, p does divide the coefficient of xi+j in the

polynomial g′h′, which is

h0gi+j + h1gi+j−1 + · · ·+ hjgi + · · ·+ hi+jg0.

7



1.3. Factorization of Polynomials

By the choice of i and j, the prime p divides every term of this expression,

perhaps with the exception of hjgi. However, we know that p divides the

whole expression, so p|hjgi. But p - hj and p - gi, which gives a contradiction.

This establishes our claim.

Without loss of generality, we may now assume that p divides every

coefficient gi. Then g′ = pg′′ where g′′ is a polynomial in Z[x] of the same

degree as g′ or g. Let n = pn1. Then

pn1f = pg′′h′

so that

n1f = g′′h′.

Repeating this process, we can remove all of the prime factors of n and we

arrive at an equation

f = ḡh̄

where ḡ and h̄ are polynomials in Z[x] that are rational multiples of the

original g and h. But, this contradicts the irreducibility of f(x) over Z.

Hence our assumption that f(x) is reducible over Q is false, and f(x)

must be irreducible over Q.

Another important test for irreducibility is Eisenstein’s Criterion (The-

orem 2.5, pg. 20, [6])

Theorem 1.3 (Eisenstein’s Criterion). Let f(x) be a polynomial

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

with integer coefficients. Suppose that there exists a prime p ∈ Z such that

i. p divides each ai for i 6= n,

8



1.3. Factorization of Polynomials

ii. p does not divide an, and

iii. p2 does not divide a0.

If such a p exists, then f(x) is irreducible over Q.

Proof. Suppose that such a polynomial f(x) exists, which satisfies the above

conditions. By way of contradiction, assume that f is reducible over Q. Then

f(x) = g(x)h(x)

for some non-constant polynomials g(x), h(x) ∈ Q[x]. The reduction map

mod p given by

φp : Z[x]→ Zp[x]

is a homomorphism and thus,

φp (f(x)) = φp (g(x))φp (h(x)) .

But

φp (f(x)) = φp
(
anx

n + an−1x
n−1 + · · ·+ a1x+ a0

)
= αxn

where an ≡ α mod p because p | ai for i 6= n. So

φp (g(x))φp (h(x)) = αxn

and

φp (g(x)) = βxk, φp (h(x)) = γxn−k

for some 0 < k < n and β, γ such that βγ ≡ α mod p. Since Zp[x] is

a unique factorization domain, then p must divide each of the non-leading

9



1.3. Factorization of Polynomials

coefficients of g(x) and h(x). Looking at the constant terms b0 and c0 of

g(x) and h(x) respectively,

b0 = pr

c0 = ps

for some r, x ∈ Z. Then the constant term of f(x) must be

a0 = b0c0

= (pr)(ps)

= p2(rs),

which is a contradiction because p2 - a0.

A brief definition and Theorem are also provided in this section that will

serve as tools when looking at polynomials later in this thesis.

Definition 1.13 (Discriminant of a polynomial). Let f(x) be a polynomial

with roots r1, . . . , rn ∈ C (not necessarily distinct). The discriminant of

f(x) is defined by ∏
1≤i<j≤n

(ri − rj)2.

In other words, the discriminant of a polynomial is equal to the product of

the squares of the differences of the polynomial’s roots. Frequently we denote

a polynomial’s discriminant by D.

Theorem 1.4 (Rolle). (pg. 290 [7]) Let f(x) be a real-valued function that

is continuous on [a, b] and differentiable on (a, b). Then if f(a) = f(b) there

must exist some c ∈ (a, b) such that

f ′(c) = 0.

10



1.4. Algebraic Numbers

1.4 Algebraic Numbers

We will be using algebraic numbers to define extensions of common fields

such as Q. We begin with the idea of an extension field.

Definition 1.14 (Extension field). A field E is an extension field of a field

F if F is a subfield of E.

To understand how polynomials define extension fields, we begin with a

theorem of Kronecker (Theorem 29.3, pg. 266, [8]).

Theorem 1.5 (Kronecker). Let F be a field and let f(x) ∈ F [x] be a non-

constant polynomial. Then there exists an extension field E of F and some

α ∈ E such that f(α) = 0.

We can now define an algebraic number and begin to construct algebraic

number fields.

Definition 1.15 (Algebraic number). Let E be an extension field of F . An

element α ∈ E is algebraic over F if f(α) = 0 for some nonzero f(x) ∈ F [x].

If α is not algebraic over F , then α is transcendental over F . Note that since

any field F is an extension field of itself, any element α ∈ F is algebraic over

F .

Definition 1.16 (Minimal polynomial). Let E be an extension field of F

and let α ∈ E be algebraic over F . The minimal polynomial is the unique

monic polynomial f(x) ∈ F [x] of smallest degree such that f(α) = 0.

In this last definition, the term “monic” means that the leading coefficient

is equal to 1.

11



1.4. Algebraic Numbers

Definition 1.17 (Algebraic number field). An algebraic number field is a

subfield of C of the form Q(α1, α2, . . . , αn) where α1, α2, . . . , αn are algebraic

numbers.

In other words, an algebraic number field is an extension of the field of ra-

tional numbers Q by adjoining finitely many algebraic numbers α1, α2, . . . , αn.

This is the smallest field that contains Q and α1, α2, . . . , αn. If we construct

an algebraic number field from a single algebraic number, Q(α), we call this

a simple extension. A useful Theorem regarding simple extensions is taken

from (Theorem 51.15, pg. 441, [8])

Theorem 1.6 (Primitive Element Theorem). If K = Q(α1, α2, . . . , αn) is

an algebraic number field, then there exists an algebraic number α such that

K = Q(α).

Example 1.1. Let α be a root of the polynomial

x2 − 2

and let β be a root of the polynomial

x2 − 3.

We create an algebraic number field K = Q(α, β) and wish to show that

there exists a primitive element γ = α + β such that K = Q(γ). Obviously

Q(γ) ⊆ Q(α, β). It remains to show that Q(α, β) ⊆ Q(γ). Looking at powers

of γ,

γ2 = (α+ β)(α+ β) = α2 + 2αβ + β2 = 2αβ + 5

γ3 = (2αβ + 5)(α+ β) = 2α2β + 2αβ2 + 5α+ 5β = 11α+ 9β

12



1.4. Algebraic Numbers

we can see that

α =
γ3 − 9γ

2
∈ Q(γ)

and

β =
−(γ3 − 11γ)

2
∈ Q(γ).

Therefore we have Q(α, β) ⊆ Q(γ). Thus,

Q(α, β) = Q(γ).

We can also think of an algebraic number field as a vector space to define

important properties such as degree.

Definition 1.18 (Degree of an algebraic number field). Let K = Q(α) be

an algebraic number field. Then K is an n-dimensional vector space over Q

with basis {1, α, . . . , αn−1} and the degree of K over Q is n. We denote the

degree of K over Q as [K : Q] = n.

Any extension field with a finite degree n is called a finite extension

field. It should also be noted that all finite extension fields of a field F are

algebraic extensions of F .

Example 1.2. Let θ =
√√

7− 2 and K = Q(θ) . We wish to find the

degree [K : Q]. We start by finding the minimum polynomial of θ over Q.

Squaring θ,

θ2 =
√

7− 2

we obtain

θ2 + 2 =
√

7.

Squaring both sides,

θ4 + 4θ2 + 4 = 7.

13



1.4. Algebraic Numbers

Therefore θ is a root of the polynomial

f(x) = x4 + 4x2 − 3,

which is monic. This shows that θ is an algebraic number and that [K :

Q] ≤ 4 since f(x) over Q has degree 4. It remains to determine whether

f(x) is irreducible. Assuming that f(x) is reducible, then f(x−1) must also

be reducible. However,

f(x− 1) = x4 − 4x3 + 10x2 − 12x+ 2

meets Eisenstein’s criterion for p = 2 and is therefore irreducible. By Gauss’

Lemma, since f(x) is irreducible over Z, then f(x) is also be irreducible over

Q. Thus, f(x) is monic and irreducible and f(x) is the minimum polynomial

for θ. Since f(x) has degree 4, then

[K : Q] = 4.

Algebraic number fields are typically classified by their degree. If the

degree of K over Q is n = 2, we say that K is a quadratic field. Similarly,

K is a cubic subfield for n = 3, a quartic field for n = 4, and so on. We will

make reference to sextic fields (n = 6) throughout later chapters.

We can now better understand what the elements of an algebraic number

field look like. For example, the field Q(α) with [Q(α) : Q] = n contains all

elements of the form

a0 + a1α+ a2α
2 + · · ·+ an−1α

n−1

with a0, . . . , an−1 ∈ Q. The elements of the field Q(α1, . . . , αn) can then be

constructed by looking at a series of individual extensions:

Q(α1, . . . , αn) = Q(α1, . . . , αn−1)(αn) = . . . = Q(α1) · · · (αn).
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1.4. Algebraic Numbers

Another useful principle regarding the degree of an extension is sometimes

referred to as The Tower Law (Theorem 31.4, pg. 283 [8]).

Theorem 1.7. If K, E, and F are fields where E is a finite extension of

F and K is a finite extension of E, then

[K : F ] = [K : E][E : F ].

Having explained much of the background theory in algebra, we can now

explain the concepts of Galois theory and the types of problems investigated

by mathematicians studying in Galois theory.
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Chapter 2

Galois Theory

2.1 Introduction to Galois Theory

When analyzing a polynomial, we are often concerned with finding its

roots, or zeros. In the case of the general quadratic polynomial, f(x) =

ax2 + bx+ c with a 6= 0, we are familiar with the formula for the roots,

−b±
√
b2 − 4ac

2a
.

We commonly refer to this equation as the quadratic formula. For polyno-

mials of higher degree, we wish to find similar expressions of the roots in

terms of the coefficients of the polynomial. If it is possible to express the

roots in terms of the coefficients of the polynomial using only algebraic op-

erations (addition, subtraction, multiplication, and division) and radicals,

we say that the polynomial is solvable. In fact, the roots of polynomials of

degree 3 and 4 are also able to be expressed in terms of radicals. However,

mathematicians had tried for years to find the radical formula for polyno-

mials of degree 5 until Niels Henrik Abel proved that the general quintic

polynomial was not solvable (see Historical Note, pg. 56, [8]).

Through Galois theory, we are able to determine whether a given poly-

nomial is solvable by radicals. Each polynomial has a Galois group that is

defined to be solvable or not solvable, and this corresponds to whether the

roots of that polynomial can be expressed in terms of its coefficients using

algebraic operations and radicals.

In the case of quadratic polynomials, every polynomial is solvable. This

is because there is only one possible Galois group of a quadratic polynomial,
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2.2. The Idea Behind Galois Theory

which is a solvable group. We will see examples of various Galois groups

in Chapter 3. Before being able to calculate the Galois group of a given

polynomial, we will need a basic understanding of the underlying theory.

2.2 The Idea Behind Galois Theory

Throughout this chapter, several references will be made to a particular

type of isomorphism, called an automorphism.

Definition 2.1 (Automorphism). An isomorphism of a field onto itself is

an automorphism of the field.

Definition 2.2 (K-Automorphism). Let K be a subfield of L. An automor-

phism φ of L is a K-automorphism of L if

φ(k) = k ∀k ∈ K.

The main importance of theseK-automorphisms is their group structure.

Theorem 2.1. If K is a field extension of L, then the set of all K-automorphisms

of L forms a group under composition of maps.

Proof. Let φ and ψ be K-automorphisms of L. Then φψ is also a K

automorphism, as φψ(k) = φ(k) = k. The identity map on L is obvi-

ously a K-automorphism and finally, φ−1 is also a K-automorphism, as

k = φ−1φ(k) = φ−1(k). Composition of maps is associative, and so the set

of all K-automorphisms of L is a group.

It should also be noted that the identity map from L onto itself is automat-

ically a K-automorphism and therefore the set of all K-automorphisms of

L is non-empty.
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2.3. The Galois Group of a Polynomial

Definition 2.3 (AutQ(K)). Let K be an algebraic number field. We define

AutQ(K) to be the group of automorphisms of K that fix Q under composi-

tion of maps.

We will now introduce two more important properties of certain algebraic

number fields: the idea of normal and separable fields.

Definition 2.4 (Separable). An algebraic number field K is separable if for

each algebraic number α ∈ K, the minimal polynomial of α over K has no

repeated roots.

Definition 2.5 (Splits). Let K be a field and let f(x) ∈ K[x]. If f(x) can

be expressed as a product of linear factors

f(x) = a(x− r1) · · · (x− rn)

where a, r1, . . . , rn ∈ K, then we say that f(x) splits over K.

Definition 2.6 (Normal). An algebraic number field K is normal if for each

algebraic number α ∈ K, the minimal polynomial of α splits over K.

We can now define the Galois group of an algebraic number field.

Definition 2.7 (Galois group). An algebraic number field K is Galois if

it is both separable and normal. In this case, AutQ(K) is called the Galois

group of K and is denoted as Gal(K : Q).

Using these same concepts, we can now define the Galois group of a

polynomial.

2.3 The Galois Group of a Polynomial

Now that we understand the concept of a polynomial splitting over a

given field, we can define the splitting field of a specific polynomial.
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2.3. The Galois Group of a Polynomial

Definition 2.8 (Splitting field). The field E is the splitting field of a poly-

nomial f(x) over F if F ⊆ E and

i. f(x) splits over E and

ii. if F ⊆ E′ ⊆ E and f(x) splits over E′ then E′ = E.

Remark 2.1. The second condition of this last definition is equivalent to

ii∗. E = F (α1, . . . , αn),

where α1, . . . , αn are the roots of f(x) in E.

Just as we defined a separable algebraic number field in the previous

section, we can also say that a polynomial is separable.

Definition 2.9 (Separable polynomial). A polynomial f(x) is called sepa-

rable if it has no repeated roots in a splitting field.

We can also obtain a normal algebraic number field for a specific poly-

nomial through the following theorem.

Theorem 2.2. An field extension E of F is normal and finite if and only

if E is a splitting field for some polynomial over F .

From the definitions and theorems given, we can now see that, given

a separable polynomial f(x), we can construct a splitting field E which is

normal and finite. Since f(x) is a separable polynomial, E contains all the

distinct roots of f(x) and E is separable. If f(x) ∈ Q[x], then E is an

algebraic number field. We can now give a formal definition of the Galois

group of a polynomial.
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2.4. Determining the Galois Group of a Given Polynomial

Definition 2.10 (Galois group of a polynomial). If f(x) is a separable

polynomial over Q, then the Galois group of f(x) over Q is the Galois group

of the splitting field of f(x) over Q. We denote this group as Gal (f(x)).

Every polynomial over Q has a unique Galois group. This is because

we can construct the splitting field of any polynomial over Q by considering

only its irreducible factors. Once we remove any multiple factors, we are

left with a separable polynomial with the same splitting field as the original

polynomial. This leaves us with the splitting field of a separable polynomial

over Q, which is Galois.

Throughout the remainder of this thesis, Galois groups of polynomials

will frequently be referred to as “being isomorphic to” a common group

structure. These groups have notations such as A4, S5, D4, etc. For a list

of common group names and structures, see Appendix A.

2.4 Determining the Galois Group of a Given

Polynomial

Knowing the theory behind Galois groups is necessary, but not always

sufficient to be able to formally determine the Galois group of a given poly-

nomial. As mentioned, the Galois group of a separable polynomial f(x)

over Q with splitting field K is the group of all Q-automorphisms of K. In

practice, we can describe the Galois group Gal (f(x)) another way.

Firstly, it is useful to define an algebraic equation.

Definition 2.11 (Algebraic equation). An algebraic equation is an equation

of the form P = 0 where P is a (possibly multivariate) polynomial with

rational coefficients.
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2.4. Determining the Galois Group of a Given Polynomial

We can now consider a separable polynomial f(x) ∈ Q[x] with roots

x1, . . . , xn. We are interested in permutations of these roots such that any

algebraic equation satisfied by the roots will still be satisfied once the roots

have been permuted. Of the possible n! permutations, many will be elimi-

nated by this required property. The remaining permutations form a group

and this group is Gal (f(x)).

Remark 2.2. Since Gal (f(x)) is a subgroup of the permutations of the n

distinct roots of a separable polynomial f(x), then

|Gal (f(x)) |
∣∣∣ |Sn|,

where Sn is the group of all permutations of n distinct elements.

With this alternate description of the Galois group of a polynomial,

we can now proceed to determine the Galois group of a given polynomial.

We will denote a permutation of the roots in cycle notation in order to

help determine the group structure. An example of cycle notation for the

permutation σ(1) = 2, σ(2) = 1, σ(3) = 4, σ(4) = 3 would be

(1 2)(3 4).

In this example we can clearly see two cycles of length 2. We use this

notation in the following example.

Example 2.1. Consider the polynomial

f(x) = x4 − x2 − 2 = (x2 + 1)(x2 − 2).

We wish to determine Gal (f(x)), the Galois group of f(x) over Q. The four
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2.4. Determining the Galois Group of a Given Polynomial

roots of f(x) are

x1 = i

x2 = −i

x3 =
√

2

x4 = −
√

2

There are a total of 4! = 24 ways of permuting these roots, but we must

eliminate any permutations that do not preserve algebraic equations in terms

of these four roots. For example, one algebraic equation would be

x1 + x2 = 0.

This would allow us to eliminate the permutation

(x1 x2 x3 x4)

because the same equation after permutation would become

x2 + x3 = −i+
√

2

6= 0.

Similarly, the algebraic equation (x1 + x2)
2 + (x3 + x4)

2 would not permit

the permutation (1 3)(2)(4). If we repeat this process, there are only four

permutations which satisfy both equations. These four permutations are:

i. (x1)(x2)(x3)(x4) (the trivial permutation)

ii. (x1 x2)(x3)(x4)

iii. (x1)(x2)(x3 x4)

iv. (x1 x2)(x3 x4)
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2.4. Determining the Galois Group of a Given Polynomial

If we then denote the trivial permutation as 1 and define the permutations

σ = (x1 x2)(x3)(x4), τ = (x1)(x2)(x3 x4), we can see that the fourth permu-

tation is simply στ . From this we can see a clear group structure. We can

then say that

Gal (f(x)) = {1, σ, τ, στ}

∼= Z2 × Z2

With the help of this trivial example, we can better understand the

potential group structures of the Galois groups of polynomials for varying

degree n. We will investigate these groups in the following chapter.
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Chapter 3

Polynomials and their

Known Galois Groups

For a polynomial of degree n, the possible Galois groups of that polyno-

mial are the symmetrical group of order n, Sn and all transitive subgroups

of Sn. By determining this Galois group, we are then able to determine

whether the polynomial is solvable algebraically. We will begin by looking

at a few known examples, particularly monic trinomials of degree n. A

monic trinomial is a polynomial with only three terms and a coefficient of

the highest degree term equal to 1. Finding criteria for the coefficients of

trinomial is easier than working with the general form of a polynomial, but

is still non- trivial.

Since there are no non-trivial subgroups of S2, we will begin by looking

polynomials of degree 3.

3.1 Cubic Polynomials

The first example of nontrivial Galois groups occurs for polynomials of

degree 3. A polynomial of degree 3 is referred to as a cubic polynomial and

has the form

f(x) = ax3 + bx2 + cx+ d

where a 6= 0. There are two possible Galois groups for cubics, S3 and A3,

the alternating group on three elements, as shown in Cohen [9]. It should be

noted that A3 is isomorphic to the C3, the cyclic group of order three. Since
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3.2. Quartic Polynomials

S3 is the most common case, we want to determine criteria for obtaining C3

as a Galois group.

To start, we will reduce the general cubic equation into a cubic trinomial

by eliminating the quadratic term. We begin with the general cubic with

rational coefficients

ax3 + bx2 + cx+ d

and make the substitution x = X − b
3a to get

aX3 +

(
c− b2

3a

)
X − cb

3a
+ d+

2b3

27a2
.

Since each of these coefficients are rational, we have now have a cubic trino-

mial in Q[x]. Also, since we are working over the rational numbers, we can

easily divide by the leading coefficient of the x3 term and obtain a monic

cubic equation.

The main distinction of cubics with a Galois group of C3 is that the

polynomial discriminant is equal to a square in Q. In [10], Seidelmann uses

this fact to give a form for the coefficients of a monic cubic trinomial with

a Galois group of C3. For p, q ∈ Q, the equation

f(x) = x3 − 3(p2 + 3q2)x+ 2p(p2 + 3q2),

where f(x) is not reducible, represents all equations of degree 3 with a Galois

group of C3.

3.2 Quartic Polynomials

When looking at polynomials of degree 4, there are a total of five possible

Galois groups, which are listed in [9]. Again, S4 is the most common case,

followed by A4. In more rare cases, quartic polynomials may have a Galois
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3.2. Quartic Polynomials

group of D4, the dihedral group of order 8; V4, the Klein-4 group; or C4, the

cyclic group of order 4.

In [10], Seidelmann once again gives forms for a quartic polynomial with

each of the four less common Galois groups. Perhaps the most interesting

component of his results is the manner in which he categorizes each group.

His method for finding these forms starts with knowing how the roots of

the polynomial appear in each case. This is particularly significant because

by looking at the forms of these roots it is possible to get an idea of the

actual permutations between the roots. Knowing the forms of the four roots

x0, x1, x2, x3, we can expand a product of linear factors

(x− x0)(x− x1)(x− x2)(x− x3)

to understand what the polynomial itself looks like. From this general form

of the polynomial, we can then impose further conditions if we wish to look

specifically at trinomials.

3.2.1 The Klein-4 Group V4

In the case of quartic polynomials with a Galois group of V4, Seidelmann

recognizes that the general form of the roots is

x0 =
√
e+

√
f + g

√
ef

x1 =
√
e−

√
f − g

√
ef

x2 = −
√
e+

√
f +−

√
ef

x3 = −
√
e−

√
f + g

√
ef

for some e, f, g ∈ Q. Through expansion of linear factors, the quartic poly-

nomial must be of the form

f(x) = x4 − 2x3(e+ f + efg3)− 8efgx+ (e− f − efg3)3 − 4eg2f2.
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3.2. Quartic Polynomials

3.2.2 The Dihedral Group D4

In the case of quartics with a Galois group of D4, Seidelmann gives the

roots in the form

x0 = e
√
f +

√
g +

√
f

x1 = e
√
f −

√
g +

√
f

x2 = −e
√
f +

√
g −

√
f

x3 = −e
√
f −

√
g −

√
f

for some e, f, g ∈ Q. After expanding the product of linear factors, we find

that the quartic polynomial must be of the form

f(x) = x4 − 2(e2f + g)x2 − 4efx+
[
(e2f − g)2 − f

]
.

3.2.3 The Cyclic Group C4

Seidelmann goes on to explicitly give the form of the roots of quartics

with a Galois group of C6, as

x0 = f
√

1 + e2 +

√
g
[
1 + e2 +

√
1 + e2

]
x1 = f

√
1 + e2 −

√
g
[
1 + e2 +

√
1 + e2

]
x2 = −f

√
1 + e2 +

√
g
[
1 + e2 −

√
1 + e2

]
x3 = −f

√
1 + e2 −

√
g
[
1 + e2 −

√
1 + e2

]
for some e, f, g ∈ Q. In the case of this family of quadratics, the polynomial

must be of the form

f(x) = x4−2(1+e2)(f2+g)x2−4fg(1+e2)x+(1+e2)
[
(1 + e2)(f2 − g)2 − g2

]
.
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3.3. Quintic Trinomials

It becomes more evident by looking at the more complicated restrictions of

the polynomial that the cyclic group of order 4 is the most rarely occurring

Galois group of quartics.

3.2.4 The Alternating Group A4 and Symmetric Group S4

Finally, Seidelmann gives an expression for quartics with a Galois group

of A4 as

f(x) = x4
[
e3 − (f2 + 3g2)(3e+ 2f)

]
− 6x2e− 8x

− 3
e2 − 4f2 − 12g2

e2 − (f2 + 3g2)(3e+ 2f)

with e, f, g ∈ Q. In the remaining cases where a quartic polynomial f(x)

does not have any of the above forms, then the Galois group of f(x) is the

symmetric group S4.

3.3 Quintic Trinomials

In the case of polynomials of degree 5, there are five possible Galois

groups that may occur, listed once again in [9]. These groups are the sym-

metric group S5, A5 the alternating group on 5 letters, the Frobenius group

F20, the dihedral group D5, and the cyclic group C5. Of these five possi-

ble groups, only three of the groups are solvable and therefore only their

associated polynomials are solvable. These solvable groups are F20 and its

subgroups D5 and C5. It is also known that the discriminant of a solvable

quintic must be positive, as demonstrated by Dummit [11].

In [11], Dummit gives criteria for the solvability of a quintic in the form of

the existence of a rational root of an associated resolvent sextic polynomial.

This resolvent sextic is given in terms of the coefficients of the original
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3.3. Quintic Trinomials

quintic polynomial. Though it may seem odd to determine the solvability

of a quintic by means of solving a sextic, the existence of a rational root

allows us to use many properties associated with integers. Dummit defines

this resolvent sextic f20(x) using elementary symmetric polynomials. For a

given quintic

f(x) = x5 + px3 + qx2 + rx+ s,

where the x4 term has been eliminated after making a translation to the

general quintic, he gives an expression for f20(x):

f20(x) = x6 + 8rx5 + (2pq2 − 6p2r + 40r2 − 50qs)x4

+ (−2q4 + 21pq2r − 40p2r2 + 160r3 − 15p2qs− 400qrs+ 125ps2)x3

+ (p2q4 − 6p3q2r − 8q4r + 9p4r2 + 76pq2r2 − 136p2r3

+ 400r4 − 50pq3s+ 90p2qrs− 1400qr2s+ 625q2s2 + 500prs2)x2

+ (−2pq6 + 19p2q4r − 51p3q2r2 + 3q4r2 + 32p4r3 + 76pq2r3

− 256p2r4 + 512r5 − 31p3q3s− 58q5s+ 117p4qrs+ 105pq3rs

+ 260p2qr2s− 2400qr3s− 108p5s2 − 325p2q2s2 + 525p3rs2

+ 2750q2rs2 − 500pr2s2 + 625pqs3 − 3125s4)x

+ (q8 − 13pq6r + p5q2r2 + 65p2q4r2 − 4p6r3 − 128p3q2r3 + 17q4r3

+ 48p4r4 − 16pq2r4 − 192p2r5 + 256r6 − 4p5q3s− 12p2q5s

+ 18p6qrs+ 12p3q3rs− 124q5rs+ 196p4qr2s+ 590pq3r2s

− 160p2qr3s− 1600qr4s− 27p7s2 − 150p4q2s2 − 125pq4s2

− 99p5rs2 − 725p2q2rs2 + 1200p3r2s2 + 3250q2r2s2 − 2000pr3s2

− 1250pqrs3 + 3125p2s4 − 9375rs4).

The main benefit of working with trinomials rather than with the general
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3.3. Quintic Trinomials

form of polynomials becomes immediately apparent when we look at the

particular case when f(x) = x5 +Ax+B. In this case f20 is simply

f20(x) = x6 + 8Ax5 + 40A2x4 + 160A3x3 + 400A4x2

+ (512A5 − 3125B4)x+ (256A6 − 9375AB4).

Many of the calculations involved in working with the Galois groups of

polynomials are simplified when we restrict the polynomial to only three

terms. Trinomials provide a great opportunity to explore concepts in Galois

theory without being trivial and many of the results obtained from trinomi-

als can be applied to polynomials with more terms.

In the case of quintic trinomials, Spearman and Williams [12] showed

that there are an infinite number of essentially different, irreducible, solvable

trinomials of the form x5 + ax + b. They gave a parametrization for a and

b in [13] to generate these trinomials, namely

a =
5e4(3− 4εc)

c2 + 1
and b =

−4e5(11ε+ 2c)

c2 + 1
,

with ε = ±1 and rational numbers c and e such that c ≥ 0, and e 6= 0.

Remarkably, there are only five essentially different, irreducible, solvable

trinomials of the form x5 + ax2 + b. These five are also given in [12]:

x5+5x2+3, x5+5x2−15, x5+25x2+300, x5+100x2+1000, x5+250x2+625.

We do not consider possible trinomials here of the forms x5 + ax3 + b

or x5 + ax4 + b, as we can use fairly simple transforms on x to obtain one

of the previous trinomials. For example, replacing x = 1/X in x5 + ax3 + b

and clearing denominators, we obtain

1 + aX2 + bX5.
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3.4. Sextic Trinomials

Then, making this polynomial monic by dividing by b, we have

1

b
+
a

b
X2 +X5.

Now we must only define B = 1/b and A = a/b to obtain

B +AX2 +X5,

which is one of the forms already discussed. Since these transformations

preserve solvability, we need only consider solvable trinomials of the form

x5 + axm + b with m = 1, 2.

3.4 Sextic Trinomials

As expected, increasing the degree of a polynomial will increase its com-

plexity. In the case of quartics or quintics, there were a total of five possible

Galois groups. In the case of sextics, however, the number of possible Galois

groups jumps up to sixteen. We can once again find a list of these groups in

Cohen [9] and we expect S6 to be the most frequently occuring group. This

fact can be easily demonstrated through software such as MAPLETMby cal-

culating the Galois group for randomly chosen sextic polynomials. However,

the frequency of the subgroups of S6 as a Galois group is not known.

Using the experience of working with quintics, it is much more preferable

to work with sextic trinomials rather than general sextics. Again, we can

reduce the possible unique forms of these trinomials to only x6 + ax + b,

x6 + ax2 + b, and x6 + ax3 + b. However, it should be noted that the last of

these three forms can be simplified to a quadratic in x3.

Very little work has been done regarding the categorization of sextic

trinomials with a given Galois group when compared to polynomials of lesser
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3.4. Sextic Trinomials

degree. Because of the complexity of sextic polynomials and the number

of possible Galois groups, it is a wise plan to analyze families of sextic

polynomials having a common trait. The sixteen possible subgroups of S6

that can occur as Galois groups are well known and luckily some subsets of

these groups share common group structures. These structural similarities

make excellent candidates for families of polynomials, so long as we can

develop restrictions on a and b such that trinomials belong to a particular

family. More importantly, if we can express these restrictions in terms of

common variables, we can parametrize the possible values of a and b that

exist in this family. We investigate such parametric families in later chapters.
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Chapter 4

Elliptic Curves, Genus 2

Curves, and Elliptic

Chabauty

A curve is an equation of the form

f(x, y) = 0

where f ∈ K[x, y] for some field K. To classify curves, we define the notion

of its genus.

Definition 4.1 (Genus of a curve). Let f(x, y) = 0 be an algebraic curve

with f(x, y) ∈ Q[x, y], and let P be the set of all singular points on f(x, y) =

0. We define the genus of f(x, y) = 0 with f(x, y) of degree d to be

g =
(d− 1)(d− 2)

2
−
∑
P

δP ,

where δP is the delta-invariant at each singular point.

The genus of a curve and the delta-invariant of each singular point on a curve

can easily be calculated using MAPLETM. Without software, this definition

is helpful as it allows us to determine an upper bound on the genus of a

curve, since the delta-invariant is always a non negative integer measuring

the number of double points at each singular point. We do this by finding

the singular points on a curve by solving the equation

∂

∂x
f(x, y) =

∂

∂y
f(x, y) = 0
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4.1. Elliptic Curves

and then setting δP ≥ 1 for each singular point P .

Remark 4.1. In the case of a nonsingular curve, then the curve f(x, y) = 0

has a genus of exactly

g =
(d− 1)(d− 2)

2

where d is the degree of f(x, y).

The genus of a given curve gives us an idea of how complicated the

curve is. For example, all conics (such as parabolas, ellipses, hyperbolas,

etc.) have genus 0 whereas all elliptic curves have genus 1. This can easily

shown in the case of non singular curves in standard form, where conics

have degree d = 1 or d = 2 and elliptic curves have degree d = 3. Even

stronger than this though, we can say that any curve of genus 0 is birationally

equivalent to a conic and similarly all curves of genus 1 with at least one

rational point are birationally equivalent to an elliptic curve. This birational

equivalence means that there is a bidirectional rational transformation of

variables between a given curve and a curve in a more desirable form. We

will see such transformations in Chapters 5 and 6.

4.1 Elliptic Curves

As mentioned above, an elliptic curve is a special case of an algebraic

curve f(x, y) = 0 having genus 1. We can write any elliptic curve in Weier-

strass form

y2 = x3 + ax+ b,

with a, b ∈ Q.

In this section, we discuss some of the important properties of elliptic

curves, as several of these concepts are used directly in calculation or are
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4.1. Elliptic Curves

able to translate into similar ideas for more complex curves.

Typically when studying an elliptic curve, we are primarily concerned

with rational points (x, y) that lie on the curve. The most important prop-

erty of these points is that they form a group. To understand this group

structure, we must first define an addition function which operates on two

rational points.

Given two rational points P and Q on an elliptic curve E, we can use

method known as “chord-and-tangent” addition to calculate P +Q. Firstly,

we must define the negation of P = (x, y) as

−P = −(x, y) = (x,−y).

We then form a line intersecting P and Q. If P 6= Q, this line is a chord and

it intersects E at a third point, say R. If P = Q, we chose a line through P

which is tangent to the curve E and this line once again intersects the E at

a point R. We can then define “chord-and-tangent” addition as

P +Q = −R.

To properly form a group structure, we must also define an identity

element. For such an element, we use a “point at infinity”. For example, to

add

P + (−P ) = (x, y) + (x,−y),

we must form a line intersecting P = (x, y) and −P = (x,−y). This line of

intersection is vertical and thus intersects E at a third point O, the point

at infinity. Therefore P + (−P ) = (O) and O is the additive identity.

Remark 4.2. In the case of elliptic curves, we define a single point at

infinity, notated here as O. For other types of curves, such as the ones
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discussed in later chapters, we may need to define two points at infinity,

which we can denote by ∞+ and ∞−.

Quite often we transform an equation for an algebraic curve into homo-

geneous form by making a substitution

x =
X

Z
, y =

Y

Z

with Z 6= 0. This also gives rise to a new projective coordinate system

consisting of equivalence classes of triples [X : Y : Z] with X,Y, Z not all

zero. Two triples [X1 : Y1 : Z1], [X2 : Y2 : Z2] are equivalent if there exists a

constant λ ∈ R, λ 6= 0 such that [X2 : Y2 : Z2] = [λX1 : λY1 : λZ1]. We can

then transform a triple [X : Y : Z] to Cartesian coordinates by scaling

[X : Y : Z] =

(
X

Z
,
Y

Z

)
with Z 6= 0 and we define

[X : Y : 0]

to be a point at infinity.

Definition 4.2 (Group of rational points). Let E be an elliptic curve y2 =

x3 + ax + b with a, b ∈ Q. We define Γ to be the group of rational points

(x, y) on E under chord-and-tangent addition.

It is easy to see that this addition operation in Γ is commutative and

so the group defined above is abelian. The following theorem gives a much

more detailed description of the group structure of Γ and it is detailed in

[14].

Theorem 4.1 (Mordell-Weil). Let E be the elliptic curve defined by

y2 = x3 + ax+ b = f(x),
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4.2. Genus 2 Curves and Elliptic Chabauty

with a, b, c ∈ Z and the discriminant of f(x) not equal to zero. Then the

group of rational points (x, y) on E, Γ, is a finitely generated abelian group.

From this theorem, we know that Γ has the structure

Γ ∼= Zp
a1
1
⊕ · · · ⊕ Zpann ⊕ Z⊕ · · · ⊕ Z

∼= T ⊕ Zr

where p1, . . . , pn are prime integers (not necessarily distinct) and a1, . . . , an

are positive integers. We define T to be the torsion subgroup of Γ and r

to be the rank of Γ. The structure of the torsion subgroup describes points

of finite order, whereas the rank tells us if there are points of infinite order

and therefore if there are infinitely many rational points on a given elliptic

curve.

Some of the calculations done in this thesis will require finding rational

points on elliptic curves. Finding the group Γ can typically be done through

software such as Magma [3], which will tell us the structure of the torsion

subgroup as well as the rank of Γ in many cases. While the concept of

Γ applies specifically to elliptic curves, we can construct a similar group

structure for genus 2 curves.

4.2 Genus 2 Curves and Elliptic Chabauty

Most of the difficult calculations in this paper will be related to genus

2 curves and require a method known as elliptic Chabauty, which derives

from [15]. In the study of genus 2 curves, we are typically concerned with

the determination of the rational points on the curve. In the case of genus

0 curves, we have the ability to parametrize all the rational points in terms

of rational functions of a single variable. With genus 1 curves, we have
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the chord-and- tangent method of adding two rational points to obtain a

third, creating a useful group structure of rational points. Unfortunately

with genus 2 (and greater) curves, processes that can determine the rational

points are much more difficult and are not guaranteed to work. Luckily we

have one very useful theorem regarding the number of rational points on

curves of genus greater than 1, given in [16].

Theorem 4.2 (Faltings). Let K be a number field and let C be a non-

singular curve defined over K of genus g ≥ 2 . Then there are finitely many

K-rational points on C.

We frequently denote the set of K−rational points on a curve C as C(K)

and in the case where K = Q, we say that C(Q) is simply the set of rational

points on C. #C(K) can also be used to denote the number of K−rational

points on C.

While helpful, Faltings’ Theorem does not help us to determine the ra-

tional points on a curve, as it does not give an actual numerical bound on

the number of rational points. A more effective bound, given by Coleman in

[17], can be found through the reduction of a curve C modulo p for a prime

p. We reduce a curve C modulo p by reducing each coefficient in f(x, y)

modulo p, provided that p does not divide appear in the denominator of any

coefficient. We then obtain a new curve

C̄ : f̄(x, y),

the reduction of C modulo p, where (f̄) ∈ Zp[x, y]. If the genus of this curve

C̄ over Zp is also equal to 2, then we say that p is a prime of good reduction

for C. Typically primes that are not of good reduction are referred to as

“bad primes”. (As a helpful property, for any curve of the form y2 = f(x),
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where f(x) ∈ Z[x], a “bad prime” p has the property that p | 2disc(f),

where disc(f) is the discriminant of f .) We can then use a theorem proven

by Coleman in [17]:

Theorem 4.3. Let C be a curve of genus 2 defined over Q and let p ≥ 5

be a prime of good reduction for C. If C has rank at most 1 and C̄ is the

reduction of C modulo p, then

#C(Q) ≤ #C(Zp) + 2.

Actually determining the finitely many rational points on a genus 2 curve

typically involves studying the Jacobian of the curve. We will give a few

definitions to better understand the Jacobian of a given curve. The following

definitions are taken from [18] and will help to define the Jacobian and

show its complexity, but will not be explicitly used in this thesis. For a

complete understanding of the Jacobian, other literature such as [18] and

[19] is recommended.

Definition 4.3 (Divisor of a curve). Let C be a curve defined over an

algebraically closed field K. A divisor on C is an element of the group of

points on C defined over K and is equal to a finite linear combination of

points on C defined over K. For notation, we write

A =
∑
P

nPP

where A is a divisor and each P is a point on C defined over K. The

coefficient nP is referred to as the multiplicity of the point P and is equal to

0 for all except finitely many P .

Divisors are frequently denoted in a germanic Fraktur font A,B, etc.

The set of divisors on a curve forms a free abelian group. We can also define

the degree of a divisor.
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Definition 4.4 (Degree of a divisor). The degree of a divisor

A =
∑
P

nPP

is defined to be the sum of the multiplicities of the points within the divisor

∑
P

nP .

Definition 4.5 (Principal divisors). Let f be a nonzero function on a curve

C. A principal divisor, denoted [f ] is determined as follows. The multiplicity

nP of each point P in [f ] is the order to which f vanishes at P in terms of

a local uniformizer.

The set of principle divisors forms a subgroup of the group of divisors

and two divisors differing by principal divisor are in the same divisor class.

We can now give a formal definition of the Jacobian so that we can briefly

look at a couple of its properties.

Definition 4.6 (Jacobian). Given an algebraic curve, the Jacobian is de-

fined to be the group of divisors of degree 0 modulo principle divisors.

An important property of the Jacobian is that it is a finitely generated

abelian group, much like the group of rational points on a elliptic curve

as described earlier. The Jacobian is a very useful structure to look at for

genus 2 curves, as it helps us in the determination of rational points through

Chabauty methods, named after Claude Chabauty [15]. In fact, arithmetic

of higher genus curves is actually arithmetic of their Jacobians and when

we refer to the rank of a higher genus curve, we are referring to the rank its

Jacobian. Unfortunately, Chabauty’s method only works in cases where the

Jacobian’s rank is less than its dimension.
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In the case of a genus 2 curve where the rank of the Jacobian is > 1,

we have to use alternate methods. This is why we use elliptic Chabauty.

Elliptic Chabauty methods work even if the rank is greater than 1 and

theoretically applies to any rank of the Jacobian. Another major advantage

of elliptic Chabauty methods is that we do not need to use the Jacobian in

calculations.

Before using the method of elliptic Chabauty in the following two chap-

ters, we will give a brief description of the method. We start with a hyper-

elliptic curve

y2 = f(x)

of genus 2 where f(x) ∈ Q(x) is a monic polynomial of degree six with

rational coefficients. We then factor f(x) over a number field K to obtain

y2 = F1(x)F2(x),

where F1(x) is a quadratic in K[x] and F2(x) is a quartic in K[x]. Looking

at these two polynomial factors, we find the greatest common divisor of

F1(x) and F2(x) in K[x] modulo squares. If this gcd is equal to 1 modulo

squares, then both

F1(x) = gU2

and

F2(x) = gV 2

for some polynomials U and V , since each of the factors must then be equal

to a square. In these equations,

g = (−1)i0εi11 · · · ε
in
n , i0, . . . , in = 0, 1,

where each ε is a fundamental unit of K. This gives a list of paired equations

where possible rational solutions can be found. Each of these equations is a
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simpler curve than the original problem and many of the possible values of g

can be ruled out through local solvability of the associated two curves. This

test for local solvability can be done through the Magma algebra system

[3] for each of the curve’s “bad primes”. The IsLocallySolvable routine in

Magma then looks for a possible solution through p-adic analysis.

After local solvability, there will likely be only very few remaining pos-

sible values for g that result in equations which are locally solvable. Of

these resulting equations we then pick one for each value of g that gives

the equation of an elliptic curve. If we are fortunate enough at this point

to have the rank of the Mordell-Weil group of this elliptic curve less than

the degree [K : Q], we can then apply elliptic Chabauty to the curve. Once

again, Magma provides routines PseudoMordellWeilGroup and Chabauty for

the calculations. If Magma is successful, we find only finitely many rational

points on these elliptic curves.

These rational points from Magma give us finitely many candidates for

x at which rational points on the original hyperelliptic curve y2 = f(x) may

occur. We must then see if any of these candidates actually translate to

rational points on the original curve. This completes our method.
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Chapter 5

Sextic Trinomials x6 + Ax +B

Defining Sextic Fields with a

Cyclic Cubic Subfield

5.1 Main Theorem

Let f(x) be a polynomial with rational coefficients which is irreducible

over the rational numbers Q. Let Gal(f) denote the Galois group of f(x).

In this chapter, we characterize irreducible trinomials of the form f(x) =

x6 +Ax+B, having a Galois group isomorphic to either A4 the alternating

group on four letters, or A4 × C2 where C2 is the cyclic group of order 2.

These polynomials define sextic fields (as discussed in chapter 1) having a

cyclic cubic subfield and they occur in a parametric family, which enables an

analysis of their Galois groups. While there are 16 possible Galois groups for

irreducible sextic polynomials in Q[x], [9, pp. 323-325], basic group theory

shows that only these three can occur if f(x) defines a sextic field with a

cyclic cubic subfield. These groups are C6 the cyclic group of order 6, A4

or A4 ×C2. In the notation of Butler and Mckay [2], these three groups are

6T1, 6T4, and 6T6 respectively. It has already been shown in [20] that up

to scaling, there exists a single, unique sextic trinomial with Galois group

isomorphic to C6, which was given as

x6 + 133x+ 209.
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For the trinomials discussed in this chapter, we show that only A4 × C2

occurs. Our main theorem is the following, which appears in [4].

Theorem 5.1. Let A and B denote nonzero rational numbers and set

f(x) = x6 +Ax+B

i. f(x) is irreducible over Q and Gal(f) ' A4 × C2 ⇔

A = 4u(u2 + 3)(3u2 + 1)(3u2 + 25)2v5,

B = (u2 − 5)(3u2 + 1)(u4 + 10u2 + 5)(3u2 + 25)2v6,

for rational numbers u and v with u 6= 0,±5 and v 6= 0.

ii. If f(x) is irreducible over Q then Gal(f) ' A4 does not occur.

In the following section, we describe the parametric family of sextic tri-

nomials x6 +Ax+B that define sextic fields with cyclic cubic subfields and

assess the irreducibility of these trinomials. In section 3, we will prove our

theorem characterizing the Galois groups of these polynomials.

5.2 A Parametric Family

We begin with the family of sextic trinomials which appears in [1].

Proposition 5.1. Let A and B denote nonzero rational numbers such that

f(x) = x6 + Ax + B is irreducible over Q. Then f(x) defines a sextic field

containing a cyclic cubic subfield if and only if there exist rational numbers

u and v such that

A = 4u(u2 + 3)(3u2 + 1)(3u2 + 25)2v5,

B = (u2 − 5)(3u2 + 1)(u4 + 10u2 + 5)(3u2 + 25)2v6.
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These restrictions on A and B have been carefully expressed in this way

so as to parametrize A and B in terms of a single variable u with scaling

factor.

In order to completely determine the Galois groups of the polynomials in

this family, we will first need to investigate which of these polynomials, if any,

are irreducible. Such a study frequently requires an analysis of an algebraic

curve as for example in [21]. For our determination, we will require the study

of a genus 2 curve and an application of elliptic Chabauty as discussed in

Chapter 4. We begin with a Lemma establishing a condition for reducibility.

Lemma 5.1. Let A and B denote rational numbers such that

A = 4u(u2 + 3)(3u2 + 1)(3u2 + 25)2v5,

B = (u2 − 5)(3u2 + 1)(u4 + 10u2 + 5)(3u2 + 25)2v6.

for rational numbers u and v. Let f(x) = x6 + Ax+ B. If f(x) is reducible

over Q, then the cubic polynomial

g(x) = x3 − (3u2 + 25)(3u2 + 1)x− 4u(3u2 + 25)(3u2 + 1)

has a rational root.

Proof. Let θ denote a root of f(x) and set K = Q(θ). It was shown in the

proof of the main theorem in [1] that K contains a subfield E defined by

g(x) = x3 − (3u2 + 25)(3u2 + 1)x− 4u(3u2 + 25)(3u2 + 1).

Suppose that f(x) is reducible over Q, yet g(x) is irreducible over Q. Since

the discriminant of g(x) is equal to

4(3u2 + 1)2(3u2 − 5)2(3u2 + 25)2,
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a perfect square in Q, we see that E is a cyclic cubic field and hence E ⊆ R.

The degree of K over Q is divisible by 3 by Theorem 1.7 and less than 6. It

follows that [K : Q] = 3 and so K = E, which implies θ ∈ R for any root θ

of f(x). However, the trinomial f(x) clearly has complex roots, which can

be deduced from Rolle’s Theorem (Theorem 1.4). This contradiction shows

that g(x) must be reducible over Q.

Lemma 5.2. The projective curve y2 = x6 − 3x4 + 51x2 + 15 has the six

points ∞+,∞−, (1, 8), (−1, 8), (1,−8), (−1,−8).

Proof. The method of elliptic Chabauty as discussed in chapter 5 is used

for this determination. We work in the number field defined by a root of

x3 − 3x2 + 51x + 15. This field is K = Q(t), where t3 + 3t + 1 = 0. The

maximal order OK = Z[t], and there is one fundamental unit, ε = t, which

has norm −1. The class number of OK is 1. We have the following prime

ideal factorizations in OK , which are confirmed by MAPLETM:

〈2〉 = ℘2, 〈3〉 = ℘3
3, 〈5〉 = ℘2

51℘52

where ℘2 = 〈2〉, ℘3 = 〈t+ 1〉, ℘51 = 〈1− t〉, and ℘52 =
〈
t2 − t+ 3

〉
. A

scripted ℘ notation is used to distinguish prime ideals from a prime integer

p.

In the equation specified in this Lemma, we make the substitution (x, y) =

(X/Z, Y/Z3), where X,Y, Z ∈ Z and gcd(X,Z) = 1, to obtain

Y 2 = X6 − 3X4Z2 + 51X2Z4 + 15Z6. (5.1)

This substitution now allows us to use many useful properties of integers.

Next we show that X must be odd, for if X were even, then Z would be

odd and equation (5.1) would reduce to

Y 2 ≡ 3(mod4),
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which is impossible. Furthermore, we can see that X is not divisible by 3,

for otherwise Z would not be divisible by 3 and equation (5.1) would reduce

to

Y 2 ≡ 6(mod9),

which is impossible. Finally we can see that X 6≡ ±2Z(mod5) or else (5.1)

reduces to

Y 2 ≡ ±10(mod25),

which is impossible.

We now factor the right hand side of (5.1) over K to obtain

Y 2 =
(
X2 − (4t+ 1)Z2

)
(X4 + 2(2t− 1)X2Z2 + (16t2 − 4t+ 49)Z4). (5.2)

We will now calculate the ideal gcd of the two factors on the right of (5.2)

modulo squares. For notation, we use F2 for the quadratic factor and F4 for

the quartic factor. We begin with 2 identities

F4 − (X2 + (8t− 1)Z2)F2 = 48Z4(1 + t2)

and

(1 + 4t)2F4 − ((−32t2 + 8t− 47)X2 + 15Z2)F2 = 48X4(1 + t2),

which can be obtained through the division algorithm for polynomials. Since

gcd(X,Z) = 1 and as ideals we have

℘51 =
〈
1 + t2

〉
,

we see that the ideal gcd of F2 and F4 divides

〈48〉℘51
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and therefore consists of some powers of (2), ℘3, and ℘51. We will consider

these cases of ideals to determine the power of each ideal in the gcd modulo

squares.

Case i. The power of 〈2〉 in the gcd. We expand F2 to get

F2 = X2 − Z2 − 4tZ2.

We already know that X is odd. Therefore 〈2〉 divides F2 if and only if Z is

odd, in which case we have 8 | (X2 − Z2) so that 〈2〉2 ‖ F2. Turning to F4,

we note that since

F2F4 = Y 2,

then 〈2〉0 or 2 ‖ F2 and we conclude that 〈2〉even ‖ F4. This eliminates the

presence of 〈2〉 in the gcd modulo squares.

Case ii. The power of ℘3 in the gcd. Since

℘3 = 〈t+ 1〉 ,

we have

t ≡ −1(mod℘3).

Hence

F2 = X2 − (4t+ 1)Z2 ≡ X2 + 3Z2(mod℘3)

and so ℘3 | F2 if and only if 3 | X which was ruled out earlier. Therefore

℘3 - gcd(F2, F4)

and is also eliminated from the gcd modulo squares.

Case iii. The power of ℘51 in the gcd. Since we know that

1 + t2 ≡ 0(mod℘51),
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we must have either t ≡ 2(mod℘51) or t ≡ 3(mod℘51). From

t3 + 3t+ 1 ≡ 0(mod℘51),

we are left only with the possibility that

t ≡ 2(mod℘51).

Using this congruence and recalling our expressions for F2 and F4, we deduce

that

F2 ≡ X2 + Z2(mod℘51)

≡ (X + 3Z)(X + 2Z)(mod℘51)

and

F4 ≡ X4 +X2Z2(mod℘51)

≡ X2(X + 3Z)(X + 2Z)(mod℘51).

These two identities show that

℘51 | gcd(F2, F4)⇔ X ≡ ±2Z(mod5),

but these possibilities were already ruled out earlier. Therefore, ℘51 -

gcd(F2, F4) and ℘51 is not a factor in the gcd modulo squares.

Through these three cases, we can see that the ideal gcd of the factors F2 and

F4 is equal to 1 modulo squares. Therefore we can deduce that F2 and F4

must each be equal to a square multiplied by some product of fundamental

units. This gives rise to four pairs of element equations

F2 = gU2, F4 = gV 2
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Table 5.1: Local Solvability of the Quadratic

(i0, i1) locally insolvable at

(0, 1) ℘3

(1, 0) ℘3

with Y = gUV and

g = (−1)i0(t)i1 , i0, i1 = 0, 1.

Next we turn to local solvability. We can rule out two of the above pairs by

testing the quadratic. The results are given in a table.

This leaves only the possibilities

(i0, i1) = (0, 0), (1, 1).

Case 1. (i0, i1) = (0, 0) In this case, the quartic

Y 2 = X4 + 2(2t− 1)X2 + (16t2 − 4t+ 49)

defines an elliptic curve of rank 1 over K, confirmed by the PseudoMordell-

WeilGroup command in Magma [3]. Using the elliptic Chabauty routines in

Magma with p = 17, we find two points at infinity as well as X = 0. This

value X = 0 does not yield a point on the original sextic

y2 = x6 − 3x4 + 51x2 + 15.

Case 2. (i0, i1) = (1, 1). In this case, the quartic

Y 2 = −t(X4 + 2(2t− 1)X2 + (16t2 − 4t+ 49))

also defines an elliptic curve of rank 1 over K, once again using Pseu-

doMordellWeilGroup in Magma. Using the elliptic Chabauty routines in
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Magma again with p = 17, we find two choices for X, namely X = ±1.

These lead to the points

(x, y) = (±1,±8)

Together Case 1 and Case 2 yield all 6 points in the statement of the

Lemma.

We can now use this lemma to assess the reducibility of our family of

trinomials.

Lemma 5.3. Let f(x) = x6 +Ax+B where the nonzero rational numbers

A and B are given by

A = 4u(u2 + 3)(3u2 + 1)(3u2 + 25)2v5

B = (u2 − 5)(3u2 + 1)(u4 + 10u2 + 5)(3u2 + 25)2v6

for nonzero rational numbers u and v. Then f(x) is irreducible over Q.

Proof. Suppose that f(x) is reducible over Q for some nonzero value of u.

Since v is a nonzero scaling factor, we may assume that v = 1. By Lemma

5.1, g(x) must also be reducible over Q where g(x) is given by

g(x) = x3 − (3u2 + 25)(3u2 + 1)x− 4u(3u2 + 25)(3u2 + 1).

Reducibility of g(x) implies the existence of linear factor in Q[x] and there-

fore a rational root. Thus, there exists a rational number r such that

r3 − (3u2 + 25)(3u2 + 1)r − 4u(3u2 + 25)(3u2 + 1) = 0. (5.3)

Viewed as an algebraic curve, (5.3) has genus 2 and is birationally equivalent

to

y2 = x6 − 3x4 + 51x2 + 15

51



5.2. A Parametric Family

via the transformations:

x =
3u2 − 5

r + 6u
,

y = −−75r2 + 3r4 − 2000− 12ur3 − 234r2u2 − 6240u2 − 27u4r2 − 720u4

2r3
,

r =
8x5 − 48x3 − 216x− (24 + 8x2)y

2(−3x4 − 3 + 6x2)
,

u =
−x3 + 9x+ y

−3x2 + 3
.

These transformations can easily be found using MAPLETMand confirmed

by substitution. Since u 6= 0, a simple calculation using (5.3) confirms that

we must have r 6= 0, r 6= −6u so that any point on the first curve contributes

a point on the second curve. By Lemma 5.2, the only finite rational points

on the second curve are (±1,±8). None of these points transfers back to

the first curve as the denominators in the transformations for r and u are

equal to 0 for x = ±1. Hence g(x) has no rational root and therefore f(x)

is irreducible over Q.

Having eliminated the possibility of reducible trinomials in our paramet-

ric family, we can introduce a Lemma which will assist in our determination

of specific Galois groups.

Lemma 5.4. Let u denote a nonzero rational number. Then the quantity

−(3u2 + 1)(u6 − 15u4 − 225u2 − 225)

is not equal to a square in Q.

Proof. Suppose by way of contradiction that for some nonzero rational num-

ber u, the given quantity is equal to a square in Q. We may assume that

u is positive. In this expression we make a substitution u = a/b where a, b
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are nonzero integers with gcd(a, b) = 1. By clearing the denominator b6, we

have

−G1G2 = a square in Q

where

G1 = (3a2 + b2),

G2 = (a6 − 15a4b2 − 225a2b4 − 225b6).

Using division of polynomials we obtain the identities

−27G2 + (9a4 − 138a2b2 − 1979b4)G1 = 212b6

and

G2 − (−1365a4 + 450a2b2 − 225b4)G1 = 212a6.

Using these identities and recalling that gcd(a, b) = 1, we see that if we

define d = gcd(G1, G2), then d = 2k for some nonnegative integer k. If

k > 0, then 2 | G1 so we must have a and b odd and

a ≡ b ≡ 1(mod2),

in which case a calculation shows that

22 ‖ G1 and 24 ‖ G2.

Therefore,

gcd(G1, G2) = 1 or 22

and in either case is equal to a square. It follows that since G1 > 0, both of

G1 and −G2 are squares in Q. Continuing, since a 6= 0, we have

1

a6
G2 = a square in Q.
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In this last equation we set x =
b2

a2
. We can now conclude that

y2 = 225x3 + 225x2 + 15x− 1

with y ∈ Q. This last equation can be viewed as an elliptic curve over Q

and using MAPLETM, we find that it is birationally equivalent to

Y 2 = X3 − 13500X + 540000

via the transformations:

X = 225x+ 75,

Y = 225y,

x =
X

225
− 1

3
,

y =
Y

225
.

Using Magma we find that the rank of this curve is equal to zero and it has

no finite rational points. Therefore we conclude that −G1G2 cannot equal

a square in Q, completing the proof of the Lemma.

5.3 Proof of Theorem

We give the proof of Theorem 5.1.

Proof. As noted at the beginning of the chapter, irreducible trinomials x6 +

Ax + B ∈ Q[x] with Galois group isomorphic to either A4 or A4 × C2 over

Q define sextic fields with a cyclic cubic subfield. By Lemma 5.1, A and B

are given by

A = 4u(u2 + 3)(3u2 + 1)(3u2 + 25)2v5,

B = (u2 − 5)(3u2 + 1)(u4 + 10u2 + 5)(3u2 + 25)2v6,

54



5.3. Proof of Theorem

for rational numbers u and v with u 6= 0 and v 6= 0. It was shown in [20]

that the Galois group of f(x) is C6 if and only if u = ±5. These values of u

yield the unique cyclic sextic trinomial up to scaling which was given in the

introduction of this chapter as

x6 + 133x+ 209.

The remaining choices of u and v, namely u 6= 0, u 6= ±5, v 6= 0, will

produce a trinomial with Galois group isomorphic to either A4 or A4 × C2.

Fortunately, we can distinguish between these possibilities with a useful fact

regarding the the polynomial discriminant of f(x), as given by [9, p. 327].

Cohen states that the Galois group of f(x) is isomorphic to A4 if and only

if its discriminant is equal to a square in Q. The discriminant of f(x) given

by MAPLETM, is equal to

− 26(3u2 + 1)5(u6 − 15u4 − 225u2 − 225)(3u2 + 25)10×

(27u12 + 540u10 + 6075u8 + 29600u6 + 20625u4 + 22500u2 + 5625)2.

The squarefree part of this discriminant is equal to

−(3u2 + 1)(u6 − 15u4 − 225u2 − 225).

It was shown in Lemma 5.4 that for u 6= 0, this quantity is not equal to a

square in Q. Hence the Galois group of x6 +Ax+B cannot be isomorphic

to A4. The only remaining possibility for the Galois group is A4×C2. This

completes the proof of our theorem.
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Chapter 6

Sextic Trinomials x6 + Ax +B

Defining Normal Sextic

Extensions of Number Fields

6.1 Main Theorem and Corollaries

Let f(x) be a polynomial with coefficients in an algebraic number fieldK.

Assume that f(x) is irreducible over K. Let Gal(f) denote the Galois group

of f(x). We are interested in determining those irreducible trinomials f(x) =

x6 +Ax+B, with A,B nonzero elements of K, which define normal sextic

extensions of K. A discussion of the Galois group of a sextic polynomial and

the theory of resolvents used to calculate them is available in Cohen, [9, p.

323], or Jensen, Ledet and Yui [22]. Irreducible polynomials, f(x) ∈ K[x]

defining normal extensions of K can only have two possible Galois groups,

namely C6 the cyclic group of order 6 or S3 the symmetric group on three

letters. These Galois groups are denoted by 6T1 or 6T2, respectively in

the notation of Butler and Mckay [2]. Our determination will establish a

correspondence between these trinomials and the K− rational points on

a genus two curve. As a consequence of Faltings’ theorem [16], there are

finitely many K− rational points on this curve hence finitely many normal

extensions of the type we are interested in. As a bonus, our method will

determine trinomial sextic extensions with Galois group C3 × D3, or 6T5

again referring to [2]. We apply our method to find all trinomials x6+Ax+B
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with one of these three Galois groups over Q. Using the method of elliptic

Chabauty, we determine the rational points on our genus 2 curve in the case

K = Q and find that there is a unique normal trinomial sextic extension

and no occurrence of the Galois groups S3 or C3×D3. The details of elliptic

Chabauty are given by Bruin [23]. Our main results are the following.

Theorem 6.1. Let K be an algebraic number field. If f(x) = x6+Ax+B ∈

K[x] is irreducible over Q and has Galois group C6, S3, or C3 × D3, then

there exist elements u, v and w ∈ K with u 6= 0 and v 6= 0, such that

A = 4u(3u+ 1)v5

B = −u(1− 18u+ u2)v6
(6.1)

and

(3w2 + 144)u2 + (−672 + 4w4 + 210w2)u+ 784 + 27w2 = 0. (6.2)

Corollary 6.1. There is a single normal sextic extension of Q defined by

an irreducible trinomial with rational coefficients. It is Q(θ) where θ is a

root of

x6 + 133x+ 209.

Corollary 6.2. There do not exist trinomials x6 + Ax + B ∈ Q[x] with

Galois group S3 or G18.

Corollary 6.3. Let K be an algebraic number field and suppose that A and

B are nonzero elements of K such that x6 + Ax+B is irreducible over K.

The set of trinomials x6 +Ax+B with Galois group C6, S3, or C3 ×D3 is

finite.

In section 2 of this chapter, some preliminary Lemmas are given to assist

in our determination. In section 3 we study the rational points on a genus

2 curve. In section 4 we prove our theorem and corollaries.
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6.2 Preliminary Results

We begin with a family of trinomials defining sextic fields which contain

a quadratic subfield. This family would seem to be well known, but unable

to find a reference for it we give a short proof.

Lemma 6.1. Let A and B denote nonzero rational numbers such that

f(x) = x6 + Ax+ B is irreducible over K. Then f(x) defines a sextic field

containing a quadratic subfield if and only if there exist rational numbers u

and v with u not equal to a square in Q such that

A = 4u(3u+ 1)v5,

B = −u(1− 18u+ u2)v6.
(6.3)

The quadratic subfield is Q (
√
u) .

Proof. Let θ be a root of f(x) and set L = K(θ) and suppose that L has a

quadratic subfield E containing K. Since the degree [L : E] = 3, the minimal

polynomial g(x) of θ in E[x] has degree 3 and hence has the form

g(x) = x3 + (m+ n
√
t)x2 + (p+ q

√
t) + (r + s

√
t)

for elements m,n, p, q, r, s, t ∈ K with t not equal to a square in K. Clearly

t 6= 0. If we define g(x) by

g(x) = x3 + (m− n
√
t)x2 + (p− q

√
t) + (r − s

√
t)

we see that θ is a root of h(x) = g(x)g(x) ∈ K[x]. The polynomial h(x) is

given explicitly by

h(x) = x6 + 2mx5 + (m2 − n2t+ 2p)x4 + (2mp− 2nqt+ 2r)x3

+ (2mr − 2nst+ p2 − q2t)x2 + (2pr − 2qst)x+ r2 − s2t.
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6.2. Preliminary Results

By uniqueness of the minimal polynomial of θ over K we deduce that f(x) =

h(x). Thus we can equate coefficients of f(x) − h(x) to zero to solve for A

and B. Begin with the coefficient of x5, which yields the equation

2m = 0,

so that m = 0. Substituting m = 0 into f(x) − h(x) and examining the

coefficient of x4, we obtain the equation

n2t

2
= p.

Substituting both m = 0 and p =
n2t

2
into f(x)− h(x) = 0 and examining

the coefficient of x3 gives the equation

−2nqt+ 2r = 0,

so that

r = nqt.

Substituting all of the previous equations into f(x)−h(x) = 0, we note that

the coefficient of x2 yields the equation

t(n4t− 8ns− 4q2)

4
= 0.

Since t 6= 0 we deduce that

(n4t− 8ns− 4q2)

4
= 0.

If n = 0, then it would follow from the previous equation that q = 0. This

would imply from equating the coefficient of x to zero that

A = 0,
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6.2. Preliminary Results

which contradicts the assumption that A 6= 0. Therefore n 6= 0. Hence we

may solve the above equation for s giving

s =
n4t− 4q2

8n
.

Substitution of this value of s into the coefficients of x and the constant

term yields the equations

−3n4t2q − 4q3t+ 4An

4n
= 0.

and
−72n4q2t2 + n8t3 + 16n4t+ 64Bn2

64n2
= 0.

Since n was shown to be nonzero, and A 6= 0 by assumption, the first

equation shows that q 6= 0. Applying a scaling on A and B and a change of

variable on q and t, specifically q → n2q, t→ 4q2u,A→ n5q5A,B → n6q6B

yields the equations

−n5q5(−12u2 − 4u+A) = 0

and

−n6q6(−18u2 + u3 + u+B) = 0.

Cancelling the nonzero factors in each equation and solving for A and B gives

the values of A and B stated in the theorem. Finally we insert a scaling

factor v to get the general polynomial. Conversely, a simple calculation

shows that f(x) factors into a pair of conjugate cubics over K (
√
u), showing

that L contains a quadratic subfield.

Next we give a condition which enables us to determine when x6+Ax+B

defines a normal extension of K, which is given in Dummit and Foote [11,

p.525].
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Proposition 6.1 (Dummit and Foote p. 525). Let K be a field of charac-

teristic zero and f(x) ∈ K[x] with degree n. Then the Galois group of f(x)

is a subgroup of An if and only if the discriminant of f(x) is a square in K.

The previous proposition is now specialized to trinomials x6 +Ax+B.

Lemma 6.2. Let A and B denote nonzero rational numbers such that

f(x) = x6 +Ax+B is irreducible over K. If f(x) defines a relative normal

cubic extension field over a quadratic extension field of K then there exist

nonzero elements u, v in K with u not equal to a square in K such that

A = 4u(3u+ 1)v5

B = −u(1− 18u+ u2)v6

and

−(−112
√
u+ 210u+ 48u

√
u+ 3u2 + 27) = (a+ b

√
u)2

for some elements a and b, belonging to K.

Proof. If f(x) = x6 +Ax+B defines a relative cubic extension field L over

a quadratic extension field of K then by Lemma 6.1, there exist nonzero

elements u, v in K such that

A = 4u(3u+ 1)v5

B = −u(1− 18u+ u2)v6.

We may assume that v = 1, replacing f(x) as necessary by
1

v6
f(vx). One

of the factors of f(x) over K (
√
u) is

x3 + 2
√
ux2 + (2

√
u+ 2u)x+ 4u+ u

√
u−
√
u.

If in addition L/K(
√
u) is normal and of degree 3, we know that the Galois

group of L/K(
√
u) must be isomorphic to A3. Proposition 6.1 shows that
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6.2. Preliminary Results

the discriminant of this cubic must be a square in K (
√
u). This discriminant

is

−u(−112
√
u+ 210u+ 48u

√
u+ 3u2 + 27).

Since u is obviously a square in K(
√
u), we deduce that there must exist

elements a, b ∈ K such that

−(−112
√
u+ 210u+ 48u

√
u+ 3u2 + 27) = (a+ b

√
u)2

thus establishing the Lemma.

The condition given in the previous Lemma can be converted to a genus

2 curve as is shown in the following Lemma.

Lemma 6.3. If f(x) = x6+Ax+B defines a relative normal cubic extension

field over a quadratic extension field of K so that A and B are given by 6.1

with u not equal to a square in K and a, b are elements of K such that

−(112
√
u+ 210u− 48u

√
u+ 3u2 + 27) = (a+ b

√
u)2,

then

(3w2 + 144)u2 + (−672 + 4w4 + 210w2)u+ 784 + 27w2 = 0,

for some element w ∈ K.

Proof. Under the assumptions stated in the lemma, we have

−(−112
√
u+ 210u+ 48u

√
u+ 3u2 + 27) = (a+ b

√
u)2.

Equating the coefficients of 1 and
√
u we deduce the pair of equations

48u+ 2ab− 112 = 0

3u2 + (b2 + 210)u+ 27 + a2 = 0.
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If b = 0 then the first equation yields u = 7/3, which corresponds to w = 0 in

the equation stated in this lemma. If b 6= 0, we use a resultant to eliminate

the variable a to obtain an equation in b and u, then set b = 2w and divide

by 16, obtaining the result stated in this Lemma.

The algebraic curve

(3w2 + 144)u2 + (−672 + 4w4 + 210w2)u+ 784 + 27w2 = 0

from Lemma 6.3 is birationally equivalent to

y2 = x6 + 105x4 + 2400x2 − 19200

via the transformations:

x = w,

y =
(3w2 + 144)u− 336 + 2w4 + 105w2

2w
,

w = x,

u =
336− 2x4 − 105x2 + 2xy

3x2 + 144
.

These transformations can easily be found through MAPLETMand can be

confirmed by substitution.

Lemma 6.4. The projective curve y2 = x6 + 105x4 + 2400x2 − 19200 has

the six points ∞+, ∞−, (4, 224), (−4, 224), (4,−224), (−4,−224).

Proof. This proof uses the method known as elliptic Chabauty. Computa-

tions involved are supported by Magma [3]. We work in the number field

defined by a root of x3 + 105x2 + 2400x − 19200. This field is K = Q(t),
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where t3 − 15t+ 20 = 0. The maximal order OK = Z[t], and there are two

fundamental units which we can take to be

ε1 = 8t2 + 22t− 59, ε2 = −13t2 − 21t+ 161,

both of norm 1.The class number of OK is 1. We have the following prime

ideal factorizations in OK :

〈2〉 = ℘21℘
2
22 = 〈t− 2〉 〈t− 3〉2 , (6.4)

〈3〉 = ℘3
3 =

〈
t2 + 3t− 7

〉3
, (6.5)

〈5〉 = ℘3
5 =

〈
t2 + t− 15

〉3
. (6.6)

Once again, a scripted notation is used to differentiate prime ideals from

prime integers. Assuming a solution (x, y) to the equation specified in this

Lemma, put (x, y) =
(
X/Z, Y/Z3

)
, where X,Y, Z ∈ Z, gcd(X,Z) = 1,

giving

Y 2 = X6 + 105X4Z2 + 2400X2Z4 − 19200Z6. (6.7)

We note that X is not divisible by 3, for otherwise Z would not be divisible

by 3 and equation (6.7) would reduce to

Y 2 ≡ 6(mod9),

which is impossible.

Factoring the right hand side of (6.7) over K gives

Y 2 = F2F4 (6.8)

where

F2 = X2 − (7t2 + 20t− 105)Z2
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and

F4 = X4 + (7t2 + 20t)X2Z2 + (1120t+ 400t2 − 3200)Z4

We will calculate the ideal gcd of the two factors F2 and F4. Begin with the

following two identities.

F4 = (X2 + (14t2 + 40t− 105)Z2)F2 + 15(31t2 + 84t− 225)Z4,

and

4F4 = (−46t2 − 129t+ 332)F2 + (46t2 + 129t− 328)X4.

As ideals, the factorization of the remainders is

℘12
22℘

3
3℘

4
5

〈
Z4
〉

and℘2
21℘3

〈
X4
〉
.

Since the integers X and Z are relatively prime, the only possible prime

ideal divisor of both F2 and F4 is ℘3. From the remark at the start of this

proof, we know that 3 - X so that ℘3 - F2. Hence the ideal gcd of F2 and

F4 modulo squares is equal to 1. Thus we can deduce a pair of element

equations

X2 − (7t2 + 20t− 105)Z2 = gU2,

X4 + (7t2 + 20t)X2Z2 + (1120t+ 400t2 − 3200)Z4 = gV 2,

with

Y = gUV and g = (−1)i0εi11 ε
i2
2 , i0, i1, i2 = 0, 1.

Using local solvability in Magma, we can rule out 6 of the above pairs of

equations by testing the quadratic Y = g(x2−(7t2+20t−105)). We present

the results in a table.
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Table 6.1: Local Solvability of the Quadratic

(i0, i1, i2) locally insolvable at

(0, 0, 1) ℘22

(0, 1, 1) ℘22

(1, 0, 0) ℘21

(1, 0, 1) ℘21

(1, 1, 0) ℘21

(1, 1, 1) ℘21

For the remaining cases (i0, i1, i2) = (0, 0, 0) and (0, 1, 0) working with

the quartics

V 2 = X4 + (7t2 + 20t)X2Z2 + (1120t+ 400t2 − 3200)Z4

and

(ε1V )2 = ε1(X
4 + (7t2 + 20t)X2Z2 + (1120t+ 400t2 − 3200)Z4),

A rational point X/Z satisfying either of these quartics contributes a point

(x, y) with x ∈ Q on one of the elliptic curves

y2 = x(x2 + (7t2 + 20t)x+ (1120t+ 400t2 − 3200))

or

y2 = ε1x(x2 + (7t2 + 20t)x+ (1120t+ 400t2 − 3200))

We find using the PseudoMordellWeilGroup routine in Magma that the

ranks of these elliptic curves are both equal to 1. Using the elliptic Chabauty

procedure in Magma, with prime p = 17 in both cases, successfully deter-

mines the points (x, y) on these curves with x ∈ Q, which give all of the

points on the genus 2 curve stated in this lemma.
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6.3 Proof of Theorem and Corollaries

We give the proof of Theorem 6.1, then the proofs of our corollaries.

Proof. If f(x) = x6 + Ax + B ∈ K[x] is irreducible over K and has Galois

group C6, S3 or C3×D3 then f(x) defines a normal relative cubic extension

of a quadratic extension of K so that A and B are given by 6.1 by Lemma

6.1 and the quadratic extension field of K is K (
√
u). This statement is

obvious for the Galois groups C6 and S3 while for C3×D3 the splitting field

of f(x) over K (
√
u) has degree 9, so is an abelian extension of K (

√
u). We

may assume that the nonzero scaling factor v = 1. From Lemma 6.2 we see

that

−(112
√
u+ 210u− 48u

√
u+ 3u2 + 27) = (a+ b

√
u)2

for some rational numbers a and b. Lemma 6.3 shows that

(3w2 + 144)u2 + (−672 + 4w4 + 210w2)u+ 784 + 27w2 = 0.

for some element w ∈ K, which establishes (6.2).

Next we prove Corollary 6.1.

Proof. Suppose that L/Q is a normal extension defined by an irreducible

trinomial x6 + Ax + B ∈ Q[x]. By Theorem 6.1 equations (6.1) and (6.2),

we have

A = 4u(3u+ 1)v5

B = −u(1− 18u+ u2)v6

and

(3w2 + 144)u2 + (−672 + 4w4 + 210w2)u+ 784 + 27w2 = 0
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6.3. Proof of Theorem and Corollaries

for rational numbers u, v and w. From (6.2) we calculate the discriminant

with respect to u and deduce that

16w2(w6 + 105w4 + 2400w2 − 19200)

is equal to a square in Q. One possibility is w = 0, in which case (6.3)

reduces to

16(3u− 7)2 = 0

so that u = 7/3. Using (6.2) and setting the scaling factor v = 1, we obtain

the trinomial

x6 + 224/3x+ 2240/27,

which has Galois group D3 × D3 (or 6T9 in the notation of Butler and

McKay [2]) and does not define a normal extension of Q. If w 6= 0 then we

must have w6 + 105w4 + 2400w2− 19200 equal to a square in Q and we can

invoke Lemma 6.4, which shows that w = ±4. Appealing to (6.3), we obtain

u = −1/3 or u = −19. The first value of u yields a reducible polynomial,

while the second value of u gives

x6 + 133x+ 209

after scaling, which defines a normal extension with Galois group C6 as seen

in Chapter 5, completing the proof.

Since all trinomials with Galois group C6, S3, or C3×D3 were determined

in the proof of Corollary 6.1, the proof of Corollary 6.2 is immediate. For

Corollary 6.3, the finitude of sextic trinomials under study is guaranteed by

their correspondence with the K− rational points on the genus 2 curve and

the theorem of Faltings.
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Chapter 7

Results and Future Work

7.1 Results

We give our findings from the theorems proved in Chapter 5 and Chapter

6 in the form of a table. Here “T-notation” refers to the notation of Butler

and Mckay [2]. A total of five solvable Galois groups have been completely

categorized for trinomials x6 +Ax+B with A,B ∈ Q.

In the case of trinomials x6 +ax+ b with a, b ∈ Q defining normal sextic

extensions of Q, the trinomial

x6 +
224

3
x+

2240

27

was discovered to have Galois group G36
∼= D3×D3 in Chapter 6. This did

not define a normal sextic extension of Q and we do not claim it to be the

only trinomial of this form to have a Galois group of G36.

Also recall that in the case of our trinomials

f(x) = x6 +Ax+B,

that f(x) has Galois group A4 × C2 if and only if

A = 4u(u2 + 3)(3u2 + 1)(3u2 + 25)2v5,

B = (u2 − 5)(3u2 + 1)(u4 + 10u2 + 5)(3u2 + 25)2v6.

for some u, v ∈ Q with u 6= 0,±5 and v 6= 0. This generates infinitely many

trinomials with Galois group A4×C2 as given in the above table. However,

it must be noted that the occurrence of such a Galois group amongst all

69



7.1. Results

Table 7.1: List of Findings

T-notation Group notation For trinomials x6 +Ax+B, A,B ∈ Q

6T1 C6 x6 + 133x+ 209 (up to scaling)

6T2 S3 Does not occur

6T4 A4 Does not occur

6T5 G18
∼= C3 ×D3 Does not occur

6T6 A4 × C2 Infinitely many

6T10 G36
∼= D3 ×D3 At least x6 + 224/3x+ 2240/27 (up to scaling)

trinomials is very rare. In the case of A and B both integers we find

x6 + 49x− 49

for (u, v) = (1, 1/4),

x6 + 10647x− 13013

for (u, v) = (3, 1/4), and

x6 + 996632x− 1085617

for (u, v) = (2, 1) all have Galois group A4 × C2, showing that an extensive

search is necessary for even a few example polynomials.

As mentioned in Chapter 3, a trinomial x6 + ax+ b with a, b ∈ Q chosen

at random will almost certainly have a Galois group of S6, which can be

calculated in MAPLETM. Any case that yields a result other than S6 (even

if there are infinitely many) is an exceptional result, particularly when it

implies that the polynomial itself is solvable.
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7.2 Future Work

The methods and procedures used in obtaining the main results in this

thesis lend themselves to many future extensions of this work. Firstly

and most obviously, a complete determination of all sixteen possible Ga-

lois groups for trinomials x6 + Ax + B with A,B ∈ Q would provide a

great deal of future work. In order to accomplish this, further criteria would

be needed to establish parametric families of polynomials that would give

a desired selection of Galois groups. From this, further investigation into

these parametrizations through the use of elliptic Chabauty could yield a

complete determination of each individual Galois group.

Secondly, an investigation intro trinomials of other forms, namely x6 +

Ax2 + B, would require similar calculations as those used in this thesis.

These results would translate directly to trinomials of the forms x6+Ax4+B

and x6 +Ax5 +B through a simple transformation. Trinomials of the form

x6+Ax3+B could also be looked at, though they could easily be considered

as quadratics in x3. It would also be theoretically possible to look at sextic

polynomials with an additional number of terms.

Finally, another possible extension of this work would be to analyze

sextic trinomials over fields other than Q. Much of theory used to create

the restrictions on the coefficients of these trinomials can be applied to a

field extension K of Q.
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Appendix A

Common Group Names and

Structures

A.1 The Symmetry Group Sn

The symmetry group Sn is also known as the symmetric group on n

letters. This group consists of all the n! permutations of n elements. Any

two of these permutations can then be combined together in order to form

a single composite permutation.

For instance, the group S5 consists of the 5! = 120 permutations of the

set {1, 2, 3, 4, 5}. The identity permutation would be

I : (1, 2, 3, 4, 5)→ (1, 2, 3, 4, 5).

Other permutations would include

σ : (1, 2, 3, 4, 5)→ (2, 3, 4, 5, 1),

τ : (1, 2, 3, 4, 5)→ (2, 1, 3, 4, 5).

These permutations could then be combined:

στ : (1, 2, 3, 4, 5)→ (1, 3, 4, 5, 2),

σ3 : (1, 2, 3, 4, 5)→ (4, 5, 1, 2, 3).

It should be noted that the order in which the permutations should be

applied is important. In the case of στ , τ should be applied before σ.
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A.2. The Alternating Group An

A.2 The Alternating Group An

To understand the concept of the alternating group on n letters, consider

that any permutation as described in the previous section can be expressed

as a product of transpositions. A transposition is a permutation that leaves

all but two elements fixed; that is, a transposition only interchanges two

elements and leaves all other elements unchanged. If a permutation can be

expressed as a composition of an even number of transpositions, then it is

called an even permutation. A permutation that is not even is called odd;

a permutation must either be called even or odd.

With this concept, we can construct a subgroup of Sn of only the even

permutations. Like in the case of integers, an even permutation combined

with another even permutation gives an even permutation. This subgroup

of Sn is exactly the alternating group An.

Another interesting property of even and odd permutations is that for a

given set of n unique elements, there is an equal number of even and odd

permutations. Thus, the number of permutations contained in An is exactly

n!
2 .

A.3 The Dihedral Group Dn

The dihedral group Dn is also frequently known as the symmetry group

of a regular n−sided polygon. Using this idea, we can understand the group

structure of the dihedral group. We begin by visualizing two identical copies

of a regular n−sided polygon with each vertex uniquely labeled 1, 2, etc.

The second copy can then be manipulated through rotations about its centre

and through mirror images over a bisecting line so that when the two copies
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are placed on top of each other, every vertex is covered by another vertex.

This process creates a mapping all of the labeled vertices on the first copy

of the polygon to the vertices on the second copy. In fact, these mappings

are a subset of the total n! permutations included in Sn and once again form

a group under composition.

In the case of an equilateral triangle, a rotation could be viewed as

ρ : (1, 2, 3)→ (2, 3, 1)

and a mirror image over the line bisecting the angle at vertex 3 could be

viewed as

µ3 : (1, 2, 3)→ (2, 1, 3).

Both of these mappings belong to the group D3.

A.4 The Cyclic Group Cn

A cyclic group has the unique property of being generated by a single

element. Following the same idea of permutations, a cyclic group can be

generated by taking any permutation α on m elements other than the iden-

tity mapping and applying it until the composition results in the identity

mapping. If this α requires n applications to produce the identity map-

ping, then there are a total of n unique permutations generated by α. The

notation for a group generated by alpha is typically 〈α〉.

In the case of the dihedral groupD3, we can visualize the group generated
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by a rotation of an equilateral triangle

ρ : (1, 2, 3)→ (2, 3, 1)

ρ2 : (1, 2, 3)→ (3, 1, 2)

1 = ρ3 : (1, 2, 3)→ (1, 2, 3).

This produces a cyclic group C3 consisting of {1, ρ, ρ2} under composition

of maps.

A.4.1 The Group 〈Zn,+〉

For positive n, the quotient ring Z/nZ ∼= Zn consisting of the n cosets

of Z under addition modulo n is in fact a cyclic group. For all n we can

consider the group 〈1̄〉 where 1̄ denotes the coset containing all integers with

a remainder of 1 when divided by n. It is obvious to see that adding 1̄ to

itself n times results in the coset 0̄, the additive identity.

There is then a one–to–one correspondence between the cyclic group Cn

and Zn and we say that Cn
∼= Zn.

A.5 Other Groups Gn, Fn and Direct Products

Other groups in this thesis will typically be given the notation Gn or

Fn. These groups typically have a more complex structure than the specific

examples given above. In these cases the n denotes the number of distinct

elements in the group. For example, G72 has 72 elements and we write

|G72| = 72.

Some of these groups can also be written using direct product notation

G ×H. We can define elements in this direct of groups as an ordered pair
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consisting of one element from the group G and one element from the group

H. The operation between two of these pairs must then be defined as

(g, h)(g′, h′) = (g · g′, h ∗ h′)

where g, g′ ∈ G, h, h′ ∈ H and · and ∗ are the binary operations defined in

G and H, respectively. It is not necessary for the operations in G and H to

be distinct.
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Appendix B

Magma Code Related to

Chapter 5

print "Initialization";

print "***********************************";

_<x>:=PolynomialRing(Rationals());

PS:=ProjectiveSpace(Rationals(),1);

print "";

print "Set up the number field";

print "***********************************";

K<t>:=NumberField(x^3+3*x+1);

OK:=MaximalOrder(K);

Basis(OK, NumberField(OK));

// [ 1, t, t^2 ]

ClassNumber(OK);

// 1

U,mU:=UnitGroup(OK); U;

// Abelian Group isomorphic to Z/2 + Z

// Defined on 2 generators

// Relations:

// 2*U.1 = 0

[mU(U.2)];

// [ [0, 1, 0] ]
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[mU(U.1), mU(U.2)];

// [ [-1, 0, 0], [0, 1, 0] ]

e1:=t;

[Norm(e1)];

// [ -1 ]

p2:=Factorization(2*OK); p2;

// [ <Principal Prime Ideal of OK

// Generator:

// [2, 0, 0], 1> ]

p21:=p2[1][1];

p3:=Factorization(3*OK); p3;

// [ <Prime Ideal of OK

// Two element generators:

// [3, 0, 0]

// [1, 1, 0], 3> ]

p31:=p3[1][1];

p5:=Factorization(5*OK); p5;

// [ <Prime Ideal of OK

// Two element generators:

// [5, 0, 0]

// [3, 1, 0], 2>,

// <Prime Ideal of OK

// Two element generators:

// [5, 0, 0]

// [9, 1, 0], 1> ]

p51:=p5[1][1];

p52:=p5[2][1];
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print "";

print "Set up the sextic";

print "***********************************";

_<X>:=PolynomialRing(K);

Factorization(X^6-3*X^4+51*X^2+15);

// [ <X^2 - 4*t - 1, 1>,

// <X^2 + (-2*t^2 - 4)*X + 2*t^2 + 7, 1>,

// <X^2 + (2*t^2 + 4)*X + 2*t^2 + 7, 1> ]

print "";

print "Local Solvability";

print "***********************************";

print "";

print "Testing the Quadratic";

print "*********************";

for i0 in [0..1] do

for i1 in [0..1] do

bool:=true;

C:=HyperellipticCurve(g*(X^4+2*(2*t-1)*X^2+(16*t^2-4*t+49)))

where g is (-1)^i0*t^i1;

bp:=BadPrimes(C);

print [i0,i1];

for i in [1..4] do

bool:=bool and IsLocallySolvable(C,bp[i]);

if not IsLocallySolvable(C,bp[i]) then

print "Fails at bad prime:";
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print bp[i];

end if;

end for;

print bool;

print "";

end for; end for;

// [ 0, 0 ]

// true

//

// [ 0, 1 ]

// Fails at bad prime:

// Prime Ideal of OK

// Two element generators:

// [3, 0, 0]

// [1, 1, 0]

// false

//

// [ 1, 0 ]

// Fails at bad prime:

// Prime Ideal of OK

// Two element generators:

// [3, 0, 0]

// [1, 1, 0]

// false

//

// [ 1, 1 ]

// true
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print "";

print "Testing the Quartic";

print "*********************";

for i0 in [0..1] do

for i1 in [0..1] do

bool:=true;

C:=HyperellipticCurve(g*(X^4+2*(2*t-1)*X^2+(16*t^2-4*t+49)))

where g is (-1)^i0*t^i1;

bp:=BadPrimes(C);

print [i0,i1];

for i in [1..4] do

bool:=bool and IsLocallySolvable(C,bp[i]);

if not IsLocallySolvable(C,bp[i]) then

print "Fails at bad prime:";

print bp[i];

end if;

end for;

print bool;

print "";

end for; end for;

// [ 0, 0 ]

// true

//

// [ 0, 1 ]

// Fails at bad prime:

// Prime Ideal of OK
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// Two element generators:

// [3, 0, 0]

// [1, 1, 0]

// false

//

// [ 1, 0 ]

// Fails at bad prime:

// Prime Ideal of OK

// Two element generators:

// [3, 0, 0]

// [1, 1, 0]

// false

//

// [ 1, 1 ]

// true

print "";

print "Case g=1";

print "*********************";

C1:=HyperellipticCurve(X^4+2*(2*t-1)*X^2+(16*t^2-4*t+49));

E1, C1toE1 := EllipticCurve(C1);

boo,G1,m1:=PseudoMordellWeilGroup(E1);

boo;

// true

G1;

// Abelian Group isomorphic to Z/2 + Z/2 + Z

// Defined on 3 generators
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// Relations:

// 2*G1.1 = 0

// 2*G1.2 = 0

print "";

print "Chabauty";

print "*************";

C1toPS:=map<C1->PS|[C1.1,C1.3]>;

E1toPS:=Expand(Inverse(C1toE1)*C1toPS);

N1,V1,R1,W1:=Chabauty(m1,E1toPS,17); N1;V1;

// 4

// { 0, G1.1 + G1.2, G1.2, G1.1 }

R1;

// 4

[EvaluateByPowerSeries(E1toPS,m1(v)): v in V1];

// [ (1 : 0), (0 : 1), (1 : 0), (0 : 1) ]

print "";

print "Case g=-t";

print "*********************";

C2:=HyperellipticCurve(-t*(X^4+2*(2*t-1)*X^2+(16*t^2-4*t+49)));

print "Find rational points:";

RationalPoints(C2: Bound := 10);

// {@ (-1 : -4 : 1), (1 : -4 : 1), (2*t^2 + 7 : 8*t^2 + 28 : 1),

// (-2*t^2 - 7 : 8*t^2 + 28 : 1) @}

pt:=C2![2*t^2+7,8*t^2+28];

E2, C2toE2 := EllipticCurve(C2,pt);
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boo,G2,m2:=PseudoMordellWeilGroup(E2);

boo;

// true

G2;

// Abelian Group isomorphic to Z/2 + Z/2 + Z

// Defined on 3 generators

// Relations:

// 2*G2.1 = 0

// 2*G2.2 = 0

print "";

print "Chabauty";

print "*************";

C2toPS:=map<C2->PS|[C2.1,C2.3]>;

E2toPS:=Expand(Inverse(C2toE2)*C2toPS);

N2,V2,R2,W2:=Chabauty(m2,E2toPS,17); N2;V2;

// 4

// { G2.2 - G2.3, G2.1 + G2.2 - G2.3, G2.1 + G2.2, G2.2 }

R2;

// 32

[EvaluateByPowerSeries(E2toPS,m2(v)): v in V2];

// [ (1 : 1), (-1 : 1), (-1 : 1), (1 : 1) ]
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Magma Code Related to

Chapter 6

print "Initialization";

print "***********************************";

clear;

_<x>:=PolynomialRing(Rationals());

PS:=ProjectiveSpace(Rationals(),1);

print "";

print "Set up the number field";

print "***********************************";

print "** Number field defined by K=Q(t) where t^3-15*t+20=0";

K<t>:=NumberField(x^3 - 15*x + 20);

OK:=MaximalOrder(K);

print "** Has basis:";

Basis(OK, NumberField(OK));

// [ 1, t, t^2 ]

print "** Class number is:";

ClassNumber(OK);

// 1

print "** Find unit group:";

U,mU:=UnitGroup(OK); U;

// Abelian Group isomorphic to Z/2 + Z + Z

88



Appendix C. Magma Code Related to Chapter 6

// Defined on 3 generators

// Relations:

// 2*U.1 = 0

[-mU(U.-3), mU(U.-2)];

// [ [-59, 22, 8], [161, -21, -13] ]

e1:=-59 + 22*t + 8*t^2; e2:=161 - 21*t - 13*t^2;

print "** Two fundamental units are";

print [e1,e2];

// [ 8*t^2 + 22*t - 59,

// -13*t^2 - 21*t + 161 ]

print "** and have norms:";

[Norm(e1),Norm(e2)];

// [ 1, 1 ]

print "** Ideal factorization of <2> in OK:";

p2:=Factorization(2*OK); p2;

// [ <Prime Ideal of OK

// Two element generators:

// [2, 0, 0]

// [2, 1, 0], 1>,

// <Prime Ideal of OK

// Two element generators:

// [2, 0, 0]

// [1, 1, 0], 2> ]

p21:=p2[1][1];

p22:=p2[2][1];

print "** Ideal factorization of <3> in OK:";

p3:=Factorization(3*OK); p3;
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// [ <Prime Ideal of OK

// Two element generators:

// [3, 0, 0]

// [2, 1, 0], 3> ]

print "** Ideal factorization of <5> in OK:";

p5:=Factorization(5*OK); p5;

// [ <Prime Ideal of OK

// Two element generators:

// [5, 0, 0]

// [0, 1, 0], 3> ]

print "";

print "Set up the sextic";

print "***********************************";

_<X>:=PolynomialRing(K);

print "** The sextic X^6 + 105*X^4 + 2400*X^2 - 19200 factors over K as:";

Factorization(X^6 + 105*X^4 + 2400*X^2 - 19200);

// [ <X^2 - 7*t^2 - 20*t + 105, 1>,

// <X^4 + (7*t^2 + 20*t)*X^2 + 400*t^2 + 1120*t - 3200, 1> ]

print "";

print "Local Solvability";

print "***********************************";

print "";

print "Testing the Quadratic";

print "*********************";

print "** Test hyperelliptic curve g*(X^2 - 7*t^2 - 20*t + 105)";
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print "** where g is (-1)^i0*e1^i1*e2^i2";

print "** [i0,i1,i2]";

i0:=0; i1:=0; i2:=0;

for i0 in [0..1] do

for i1 in [0..1] do

for i2 in [0..1] do

bool:=true;

C:=HyperellipticCurve(g*(X^2 - 7*t^2 - 20*t + 105))

where g is (-1)^i0*e1^i1*e2^i2;

bp:=BadPrimes(C);

print [i0,i1,i2];

for i in [1..2] do

bool:=bool and IsLocallySolvable(C,bp[i]);

if not IsLocallySolvable(C,bp[i]) then

print "Fails at bad prime:";

print bp[i];

end if;

end for;

print bool;

print "";

end for; end for; end for;

// [ 0, 0, 0 ]

// true

//

// [ 0, 0, 1 ]

// Fails at bad prime:

// Prime Ideal of OK
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// Two element generators:

// [2, 0, 0]

// [1, 1, 0]

// false

//

// [ 0, 1, 0 ]

// true

//

// [ 0, 1, 1 ]

// Fails at bad prime:

// Prime Ideal of OK

// Two element generators:

// [2, 0, 0]

// [1, 1, 0]

// false

//

// [ 1, 0, 0 ]

// Fails at bad prime:

// Prime Ideal of OK

// Two element generators:

// [2, 0, 0]

// [2, 1, 0]

// false

//

// [ 1, 0, 1 ]

// Fails at bad prime:

// Prime Ideal of OK
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// Two element generators:

// [2, 0, 0]

// [2, 1, 0]

// Fails at bad prime:

// Prime Ideal of OK

// Two element generators:

// [2, 0, 0]

// [1, 1, 0]

// false

//

// [ 1, 1, 0 ]

// Fails at bad prime:

// Prime Ideal of OK

// Two element generators:

// [2, 0, 0]

// [2, 1, 0]

// false

//

// [ 1, 1, 1 ]

// Fails at bad prime:

// Prime Ideal of OK

// Two element generators:

// [2, 0, 0]

// [2, 1, 0]

// Fails at bad prime:

// Prime Ideal of OK

// Two element generators:
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// [2, 0, 0]

// [1, 1, 0]

// false

print "** This eliminates any cases where i0=1";

print "";

print "Testing the Quartic";

print "*********************";

print "** Test hyperelliptic curve g*(X^4 + (7*t^2 + 20*t)*X^2 + 400*t^2

+ 1120*t - 3200)";

print "** where g is (-1)^i0*e1^i1*e2^i2";

print "** [i0,i1,i2]";

i0:=0;i1:=0;i2:=0;

for i0 in [0..0] do

for i1 in [0..1] do

for i2 in [0..1] do

bool:=true;

C:=HyperellipticCurve(g*(X^4 + (7*t^2 + 20*t)*X^2 + 400*t^2 + 1120*t - 3200))

where g is (-1)^i0*e1^i1*e2^i2;

bp:=BadPrimes(C);

print [i0,i1,i2];

for i in [1..#bp] do

bool:=bool and IsLocallySolvable(C,bp[i]);

if not IsLocallySolvable(C,bp[i]) then

print "Fails at bad prime:";

print bp[i];
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end if;

end for;

print bool;

print "";

end for; end for; end for;

// [ 0, 0, 0 ]

// true

//

// [ 0, 0, 1 ]

// true

//

// [ 0, 1, 0 ]

// true

//

// [ 0, 1, 1 ]

// true

print "** Therefore g=1 or g=e1=8*t^2 + 22*t - 59";

print "";

print "Case g=1";

print "*********************";

C1:=HyperellipticCurve(X^4 + (7*t^2 + 20*t)*X^2 + 400*t^2 + 1120*t - 3200);

print "** Find rational points:";

RationalPoints(C1: Bound := 10);

// {@ (4 : 4*t^2 + 20*t - 16 : 1), (-4 : 4*t^2 + 20*t - 16 : 1), (1 : -1 : 0) @}

E1, C1toE1 := EllipticCurve(C1);
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boo,G1,m1:=PseudoMordellWeilGroup(E1);

boo;

// false

print "** Try multiplying quartic by X^2 and substituting X=sqrt(X)

to get a cubic";

C1:=HyperellipticCurve(X^3+(7*t^2+20*t)*X^2+(400*t^2+1120*t-3200)*X);

print "** Find rational points:";

RationalPoints(C1: Bound := 10);

// {@ (0 : 0 : 1), (1 : 0 : 0) @}

E1, C1toE1 := EllipticCurve(C1);

boo,G1,m1:=PseudoMordellWeilGroup(E1);

boo;

// true

G1;

// Abelian Group isomorphic to Z/2 + Z

// Defined on 2 generators

// Relations:

// 2*G1.1 = 0

C1toPS:=map<C1->PS|[C1.1,C1.3]>;

E1toPS:=Expand(Inverse(C1toE1)*C1toPS);

N1,V1,R1,W1:=Chabauty(m1,E1toPS,17); N1;V1;

// 4

// { 0, 2*G1.2, G1.1, -2*G1.2 }

R1;

// 1

[EvaluateByPowerSeries(E1toPS,m1(v)): v in V1];
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// [ (1 : 0), (16 : 1), (0 : 1), (16 : 1) ]

print "";

print "Case g=8*t^2 + 22*t - 59";

print "*********************";

C2:=HyperellipticCurve(e1*(X^4 + (7*t^2 + 20*t)*X^2 + 400*t^2

+ 1120*t - 3200));

print "** Find rational points:";

RationalPoints(C2: Bound := 10);

// {@ (0 : -48*t^2 - 140*t + 320 : 1) @}

pt:=C2![0,-48*t^2-140*t+320];

E2, C2toE2 := EllipticCurve(C2,pt);

boo,G2,m2:=PseudoMordellWeilGroup(E2);

boo;

// true

G2;

// Abelian Group isomorphic to Z/2 + Z

// Defined on 2 generators

// Relations:

// 2*G2.1 = 0

C2toPS:=map<C2->PS|[C2.1,C2.3]>;

E2toPS:=Expand(Inverse(C2toE2)*C2toPS);

N2,V2,R2,W2:=Chabauty(m2,E2toPS,17); N2;V2;

// 2

// { 0, G2.1 }

R2;

// 6
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Appendix C. Magma Code Related to Chapter 6

[EvaluateByPowerSeries(E2toPS,m2(v)): v in V2];

// [ (0 : 1), (0 : 1) ]
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