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Abstract

The multi-branch diversity combining technique has been widely used in wireless com-

munications systems to overcome the adverse effect of multipath fading. The three most

popular diversity combining schemes are selection combining (SC), equal gain combining

(EGC), and maximal ratio combining (MRC). In the performance analysis of multi-branch

diversity combining, the asymptotic technique is an attractive approach to obtain compact

and accurate error rate and outage probability in large signal-to-noise ratio (SNR) regions.

Asymptotic performance can be obtained either in the time domain by finding the probabil-

ity density function (PDF) of the instantaneous output SNR, or in the frequency domain by

finding the moment generating function (MGF) of the square root of the instantaneous output

SNR. In this thesis, the PDF of the instantaneous SNR at the output of selection combiner

and the MGF of the square root of the instantaneous SNR at the output of equal gain com-

biner over arbitrarily correlated Nakagami-m fading channels are derived and used to obtain

asymptotic error rate and outage probability expressions of SC and EGC, respectively. These

expressions provide accurate and rapid estimation of error rates and outage probabilities. The

accuracy of our analytical results is verified by computer simulation. More importantly, our

analytical results provide physical insights into the transmission behavior of EGC and SC

over arbitrarily correlated Nakagami-m fading channels. For instance, it is shown that the

asymptotic error rates over correlated branches can be obtained by scaling the asymptotic

error rates over independent branches with a factor, detm(M), where det(M) is the deter-

minant of matrix M whose elements are the square root of corresponding elements in the

branch power covariance correlation matrix R. A similar relationship can also be found for

the outage probabilities.
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Nathan Nianxin Tang, André Johnson, Vicki Feng Wei, Sapphire Yu Lan, Yeyuan Xiao,

Yuefeng Yao, and Chiun-Shen Liao for sharing their academic experiences and constructive

viewpoints generously with me during our discussions. Special thanks are given to Xuegui

Song for his long-lasting help in research and daily life since 2003. I would also like to

thank my dear friends Kefeng Xu, Xiaosa Zhang, Xiangkui Song, Er’tao Lv, Pengfei Zhou,

and Shuaibin Li for their help.

Finally, I would like to thank my parents, sister, and brothers for their patience, under-

standing and support over all these years. I also want to thank my girlfriend and her parents

for their encouragement and support. All my achievements would not have been possible

without their constant encouragement and support.

xiii



Chapter 1

Introduction

1.1 Background and Motivation

In the 1860s, James Clerk Maxwell proposed Maxwell’s equations, which form the foun-

dation of electromagnetics and make wireless communications possible. However, it was

not until 1895 that Guglielmo Marconi opened the way for modern wireless communica-

tions by transmitting the Morse code for the letter ‘S’ over a distance of approximately one

and a half kilometers utilizing electromagnetic waves [1]. Since then, wireless communica-

tions have become a significant element of modern society. From satellite broadcasting to

wireless Internet to the now ubiquitous cellular telephones, wireless communications have

revolutionized the way societies function. On the one hand, wireless communications have

gained wide popularity around the world. For instance, it is reported that the number of

mobile phone subscribers is on the order of 4 billion currently and will rise to 5.6 billion in

2013 worldwide. On the other hand, wireless communications are faced with a number of

challenges, among which multipath fading is the main cause leading to system degredation.

Multipath fading is mainly caused by the scattering, reflection, refraction, and diffrac-

tion of radiowaves when wireless signals go through complex physical mediums. Multipath

fading leads to a loss of signal power without reducing noise power, and hence causing poor

performance in wireless communication systems. The diversity concept was introduced to

overcome the adverse effects of multipath fading on the performance of wireless communi-

cation systems by providing multiple faded replicas of the same signal at the receiver [2].

The intuition behind this concept is to exploit the low probability of concurrence of deep

1



1.1. Background and Motivation

fades in all the replicas. In the spatial domain, diversity can be realized through multiple-

receiver antennas, i.e., antenna diversity. Multi-branch diversity combining is an effective

antenna diversity technique to combat the detrimental effects of multipath fading in wireless

communications [3]. The three most popular diversity combining schemes are maximal ra-

tio combining (MRC), selection combining (SC), and equal gain combining (EGC). Among

them, MRC is the optimal diversity combiner but with high implementation complexity; SC

and EGC provide comparable performance to MRC with relatively lower complexity.

In the study of diversity combining over correlated fading channels, analytical methods

have been used to obtain accurate expressions for the average error rate and outage probabil-

ity. While exact, the results are often complicated and difficult to apply since they generally

demand one or two fold numerical integration and the exactness for the estimation of the

average error rate and outage probability may be constrained by a selected numerical inte-

gration routine. In addition, these analytical results usually cannot provide useful physical

insights into the transmission characteristics of correlated fading channels [4]. However,

the asymptotic technique is a powerful analytical tool that usually provides compact and ac-

curate estimation for error rate and outage probability in large signal-to-noise ratio (SNR)

regions.

Besides the lower computational complexity, another significant advantage of asymptotic

analysis is that the resulting solutions can often reveal some important insights that can not

be easily obtained otherwise. For instance, Liu et al. observed that the asymptotic error

rates of MRC, EGC, and SC over arbitrarily correlated Rayleigh channels can be obtained

by scaling the asymptotic error rates over independent branches with the determinant of the

normalized channel correlation matrix [5].

2



1.2. Literature Review

1.2 Literature Review

In the study of multi-branch diversity combining, performance analyses over independent

fading channels have been widely published (see references in [2]). However, correlated fad-

ing among several diversity branches exists for many real systems [6], [7] due to the insuf-

ficient separation between the antennas. Therefore, quantitative analysis of the degradation

of diversity systems due to correlated fading is important from both theoretical and prac-

tical standpoints. While a comprehensive theoretical performance analysis for MRC over

various correlated fading channels is available, it is challenging for SC and EGC reception.

This is because, with the exception of the dual-branch case, the cumulative distribution func-

tion (CDF) or probability density function (PDF) at the output of SC and EGC combiners

operating over correlated branches is generally unknown.

A number of researchers have studied the performance of SC and EGC over correlated

fading channels. For SC, most of the existing performance analysis over correlated fading

channels has primarily focused on two or three branches [8–12]. In [13], Zhang and Lu

proposed a general approach for studying L-branch SC in arbitrarily correlated fading. How-

ever, their method requires an L-dimensional integration, and the computation complexity

increases exponentially with L [14]. In [15], Karagiannidis et al. obtained an expression

for the joint CDF of multivariate Nakagami-m random variables (RVs) with exponential cor-

relation, and this result was subsequently applied to the performance analysis of SC over

correlated Nakagami-m fading channels. In another related work, Karagiannidis et al. pro-

posed an efficient approach for evaluating the PDF and CDF of multiple Nakagami-m RVs

with arbitrary correlation by approximating the correlation matrix with a Green’s matrix

[16]. However, their results were expressed in terms of an infinite series whose convergence

can be slow when L is large and when the correlation coefficient is close to one. Recently,

Chen and Tellambura derived the CDF of L-branch SC output SNR in equally correlated

Nakagami-m fading by noting that a set of equally correlated complex Gaussian RVs can be

obtained by linearly combining a set of independent Gaussian RVs [17]. Their technique

3



1.2. Literature Review

was further applied by Zhang and Beaulieu for the performance analysis of generalized SC

in arbitrarily correlated Nakagami-m fading [14]. Analytical solutions presented in [14] and

[17], while exact, are complex and can be difficult to apply because they require double

integration involving the m-th order generalized Marcum Q-function.

The exact performance analysis of EGC over correlated fading channels with arbitrary

diversity order is equally challenging. Chen and Tellambura studied the performance of

EGC in equally correlated Nakagami-m fading channels in [18], where the equally correlated

Nakagami-m fading channels are transformed into a set of conditionally independent chi-

square RVs and the moments of the EGC output SNR are expressed in terms of the Appell

hypergeometric function. This solution, while exact, is complex and can be difficult to apply

because it requires multiple numerical integrations. Karagiannidis analyzed the performance

of EGC by approximating the moment generating function (MGF) of the output SNR, where

the moments are determined exactly only for exponentially correlated Nakagami-m channels

in terms of a multi-fold infinite series [19]. More recently, various simple and accurate

approximations to the PDF of the sum of an arbitrary number of correlated Nakagami-m RVs

are proposed in [20–23], which then are used for analytical EGC performance evaluation. All

of the approaches proposed in [19–23] are complex because they require approximations for

the MGF of the output SNR or the PDF of a sum of arbitrary number of Nakagami-m RVs.

The asymptotic technique described in [24], [25] is a powerful analytical tool to obtain

accurate error rate and outage probability in large SNR regions. Let γ = β γ̄ be the instan-

taneous SNR at the output of the diversity combiner, where β is a RV depending on the

channel statistics and γ̄ is the average SNR at the combiner output. For coherent modu-

lation, the conditional symbol error rate (SER) in terms of γ is pe (γ) = pQ
(√

qγ
)
, where

Q(·) is one-dimensional Gaussian Q-function defined as Q(x) =
∫ ∞

x
1√
2π exp

(−y2/2
)

dy [2,

eq. (4.1)], and p and q are constants related to the modulation formats. In [25], Wang and

Giannakis observed that the conditional SER curve for coherent modulation behaves like

an impulse function when instantaneous SNR is close to zero and the conditional SER is

4



1.3. Thesis Outline

nearly zero for large instantaneous SNR (see Fig. 1.1). For correlated fading channels, the

expression of f (γ) can be difficult to obtain. Since the average SER is defined as

Pe =
∫ ∞

0
pe(γ) f (γ)dγ (1.1)

where f (γ) is the PDF of instantaneous SNR, based on the observation of Wang and Gian-

nakis, one can approximate the unknown PDF of the instantaneous SNR near its origin to

compute the average SER for large values of average SNR. The PDF near zero can be de-

rived from a Taylor series expansion. Finally, one can obtain the asymptotic average SER by

(1.1). This is the fundamental idea of asymptotic techniques for performance analysis over

correlated fading channels. Another approach, which can also yield the same asymptotic

solution, is to calculate the MGF of the instantaneous SNR [25]. The asymptotic technique

is suitable for providing highly accurate estimation for error rate and outage probability in

large SNR regions, and for revealing physical insights into the transmission characteristics

of multi-branch diversity combining over correlated fading channels.

1.3 Thesis Outline

This thesis consists of five chapters. Chapter 1 presents background knowledge of wire-

less communication developments and technologies. In modern wireless communication,

mitigating the detrimental effects of multipath fading is important for any mature wireless

communication system. Multi-branch space diversity is commonly used to improve the error

rate performance of wireless communication systems. However, the analytical expressions

for the error rate of diversity combining systems are often complex and unfeasible for corre-

lated diversity branches. This motivates researchers to apply asymptotic techniques to study

the error rate and outage probability of diversity combining systems in large SNR regions.

Chapter 2 provides detailed technical background for the entire thesis. Firstly, multipath

fading is presented and the three basic and most widely used fading models, namely Raleigh,

5
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as functions of β for γ̄ = 0, 5, and 15 dB.
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Rician and Nakagami-m fadings, are introduced. Secondly, the three most popular diversity

schemes, namely MRC, EGC, and SC, are explained. Thirdly, the asymptotic technique is

reviewed to show how the approximate MGFs or PDFs can be used to calculate the asymp-

totic error rate. Finally, a single integral representation is presented for the joint PDF of

multiple correlated Nakagami-m RVs with specified correlation matrix.

In Chapter 3, we derive a new series representation of the generalized Marcum Q-function

and give a simple accurate approximation for Marcum Q-function Qm(α,β ) when β → 0+.

Utilizing this approximation, we obtain the PDF of the instantaneous SNR at the output of

SC when SNR is near its origin and then derive closed form expressions for asymptotic SER

and outage probability.

In Chapter 4, using the series expansion of the modified Bessel function of the first kind,

we obtain the MGF of the square root of instantaneous SNR at the output of the equal gain

combiner, and then derive the asymptotic average SER and outage probability of EGC over

arbitrarily correlated Nakagami-m channels.

Chapter 5 summarizes the entire thesis and lists our contributions in this thesis. In addi-

tion, future work related to our current research is suggested.
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Chapter 2

Multipath Fading and Diversity

Combining Techniques

In this chapter, we will present some background knowledge concerning multipath fad-

ing, diversity combining techniques, the asymptotic technique, as well as construction of

multiple Nakagami-m random variables with specified correlation matrix.

2.1 Multipath Fading

Radiowave propagation through wireless channels is a complicated process character-

ized by various effects such as multipath fading and shadowing. Multipath fading is due to

the constructive and destructive combination of randomly delayed, reflected, scattered, and

diffracted signal components. This type of fading is relatively fast and therefore is responsi-

ble for short-term signal variations, where both the signal envelope and signal phase fluctuate

over time.

Depending on the relative relation between the symbol period of the transmitted signal

and the coherence time of fading channels, fading can be classified into slow fading and fast

fading [2], [3]. Coherence time is defined as the time period over which we can consider the

fading process to be correlated. Slow fading occurs when the symbol duration is less than the

channel coherence time, and fast fading is the opposite. Similarly, according to the relative

relation between the transmitted signal bandwidth and the channel coherence bandwidth,

fading can also be classified into frequency-nonselective fading and frequency-selective fad-
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ing. Coherence bandwidth is defined as the frequency range over which the fading process is

correlated. If the transmitted signal bandwidth is much smaller than the channel coherence

bandwidth, the fading is considered to be flat, and otherwise it is frequency selective.

In this thesis, we only focus on slow and frequency-nonselective flat fading channels.

When the multipath fading process possesses these properties, it is common to use statistical

distributions to describe the random behavior of the received signal amplitude. Most widely

used statistical models include the Rayleigh, Rician, and Nakagami-m distributions.

2.1.1 Rayleigh Distribution

The Rayleigh distribution is frequently used to model the time varying characteristics

of the received signal amplitude in a wireless channel where there is no direct line-of-sight

(LOS) path between the transmitter and the receiver. It is well known that the envelope of

the sum of two independent and identically distributed (i.i.d.) Gaussian signals with zero

mean and variance σ2 obeys a Rayleigh distribution. The PDF of the Rayleigh distribution

is given by

f (x) =
x

σ2 exp
(
− x2

2σ2

)

=
2x
Ω

exp
(
−x2

Ω

)
, x ≥ 0 (2.1)

where Ω = 2σ2, is the mean square value of the received signal amplitude.

2.1.2 Rician Distribution

When a strong LOS path exists between the transmitter and receiver in addition to many

weaker random multipath signal components, the randomness of the received signal ampli-
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tude is modeled using the Rician distribution whose PDF is given by

f (x) =
2x(K +1)

Ω
exp

(
−K − (K +1)x2

Ω

)
I0

(
2x

√
K(K +1)

Ω

)
, x ≥ 0 (2.2)

where K =A2/(2σ2) is the Rician factor defined as the ratio of the LOS power A2 to the scat-

tered power 2σ2, the average amplitude power is denoted by Ω = E[X2] = A2 +2σ2 where

E [·] denotes the expectation of a RV, and Iv(·) is the vth-order modified Bessel function of

the first kind defined as Iv(x) = ∑∞
k=0

(x/2)v+2k

k!Γ(v+k+1) where Γ(·) is the Gamma function defined as

Γ(x) =
∫ ∞

0 tx−1e−tdt [26, eq. (8.310.1)]. As the strength of the dominant signal diminishes,

i.e. K = 0, the Rician distribution specializes to a Rayleigh distribution. As the value of K

becomes large, the fading effect tends to vanish.

2.1.3 Nakagami-m Distribution

Introduced by Nakagami in the early 1940’s [27], the Nakagami-m distribution is a ver-

satile distribution used to model multipath fading in wireless channels. Empirical data show

that the Nakagami-m fading model often gives the best fit to land-mobile and indoor-mobile

multipath propagation [2]. The PDF of the Nakagami-m distribution is given by

f (x) =
2

Γ(m)

(m
Ω

)m
x2m−1 exp

(
−mx2

Ω

)
, x ≥ 0,m ≥ 1

2
(2.3)

where Ω is the mean square value of the amplitude. The fading severity parameter m is

defined as Ω2/E[(X2−Ω)2]. Beyond its empirical justification, the Nakagami-m distribution

is often used for the following reasons. First, the Nakagami-m distribution can be used

to model fading conditions more or less severe than Rayleigh fading. When m = 1, the

Nakagami-m distribution becomes the Rayleigh distribution. When m = 0.5, it becomes

a one-sided Gaussian distribution. As the value of the parameter m increases, the fading

severity decreases. Second, the Rician distribution can be approximated by the Nakagami
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distribution with K =
√

m2 −m/(m−
√

m2 −m) and m = (K +1)2/(2K +1) for m > 1 [3].

The corresponding squared Nakagami-m fading amplitude has a Gamma PDF as

f (x) =
1

Γ(m)

(m
Ω

)m
xm−1 exp

(
−mx

Ω

)
, x ≥ 0,m ≥ 1

2
. (2.4)

2.2 Diversity Combining Techniques

Diversity techniques were introduced to overcome the detrimental effects of multipath

fading on wireless communication systems. The principle of diversity techniques is that, if

several copies of the same information bearing signal are available and they all experience

independent fading, then the probability that all copies are in deep fading simultaneously is

small. If signal copies are appropriately combined at the receiver end, one can reduce the

effect of multipath fading and improve the performance of wireless communication systems.

There are several known methods to obtain the independent copies of the signal: space

diversity, frequency diversity and time diversity. Among them, space diversity is widely used

because it is simple to implement and requires no additional bandwidth. In this thesis, we

focus only on diversity in the spatial domain with multi-branch reception. The structure of

multi-branch diversity combining is shown in Fig. 2.1 where ri denotes the received signal

in the i-th branch, hi is the channel fading amplitude, ϕi is the corresponding phase, d is the

transmitted data symbol, ni is the complex additive white Gaussian noise (AWGN) in the i-th

branch, and wi is the weighting factor.

The three commonly used multi-branch reception schemes are MRC, SC, and EGC. They

are briefly described in the following subsections.

2.2.1 Maximal Ratio Combining

In the maximal ratio combining mechanism, the weighting factors are the complex conju-

gation of the channel gains, i.e., wi = hie jϕi . Therefore, the combiner eliminates the influence
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Figure 2.1: Multi-branch diversity combining receiver.

of random phase, which is induced by multipath fading, on the output signal. The combiner

amplifies the strong signals and attenuates the weak ones to maximize the instantaneous out-

put SNR at the combiner. Assuming the noise components of the input branches are mutually

independent, the output signal of maximal ratio combiner is

rMRC =
L

∑
i=1

wiri =
L

∑
i=1

h2
i d +hie jϕini (2.5)

and the instantaneous output SNR γMRC is given by

γMRC =
(∑L

i=1 h2
i )

2ES

(∑L
i=1 h2

i )N0
=

L

∑
i=1

h2
i ES

N0
=

L

∑
i=1

γi (2.6)

where ES is the average symbol energy of the transmitted data symbol, N0 is the power

spectral density (PSD) of complex AWGN in the i-th branch, and γi =
h2

i ES
N0

denotes the

instantaneous SNR of the i-th branch.

MRC is the optimal diversity combiner in the sense of maximizing the combiner output

SNR, in the absence of other interfering sources [28]. However, MRC is also known for

having the highest complexity to implement due to the fact that phase-lock and amplitude

12
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weighting must be performed.

2.2.2 Equal Gain Combining

In equal gain combining, the weighting factors have constant amplitude value, but have

opposite phase to the channel gains, i.e., wi = e jϕi , which is known as the co-phasing op-

eration. Therefore, the combiner only eliminates the influence of random phase with equal

weights. Assuming equal noise powers in all branches, the instantaneous output signal of

EGC is given by

rEGC =
L

∑
i=1

wiri =
L

∑
i=1

hid + e jϕini (2.7)

and the instantaneous output SNR γEGC is given by

γEGC =
(∑L

i=1 hi)
2ES

LN0
. (2.8)

In practice, exact estimation of the correct weighting factors for MRC can be difficult.

Hence, EGC becomes a practical combining scheme with lower implementation complexity

than MRC.

2.2.3 Selection Combining

In selection combining, the combiner only picks one best branch out of the L noisy re-

ceived signals ri (i = 1, · · · ,L). The weighting factor for the selected branch is unity and the

other weighting factors are zero. Suppose all branches have the same noise power spectral

density N0. Then the output of SC can be expressed as

rSC = rindex(max{hi}L
i=1)

(2.9)
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where index(yi) denotes the index i corresponding to yi. Then the instantaneous output SNR

γSC is given by

γSC = max{γi}L
i=1 (2.10)

where γi =
h2

i ES
N0

denotes the instantaneous SNR of the i-th branch. Since SC processes only a

single branch, it has a much lower complexity compared to MRC and EGC. However, since

SC ignores information provided by other diversity branches, its performance is poorer than

EGC and MRC. SC can be used with coherent modulations, noncoherent modulations, and

differentially coherent modulations.

2.3 Asymptotic Technique

Let γ = β γ̄ be the instantaneous SNR at the output of the diversity combiner, where β is

a RV depending on the channel statistics and γ̄ is the average SNR at the combiner output.

Suppose the PDF of β can be approximated by a single polynomial term for β → 0+ as

f (β ) = cβ t +o(β t).1

For coherent modulation with conditional SER pe (β ) = pQ
(√

qβ γ̄
)

, the average SER

for large SNR is given by [25]

Pe =
2tcΓ

(
t + 3

2

)
p√

π (t +1)(qγ̄)t+1 +o
(

1
γ̄ t+1

)
. (2.11)

Many coherent modulation schemes, such as binary phase shift keying (BPSK), M-ary phase

shift keying (M-PSK), M-ary pulse amplitude modulation (M-PAM) and M-ary quadrature

amplitude modulation (M-QAM), have conditional SERs of the form pe (β ) = pQ
(√

qβ γ̄
)

,

and the corresponding values of p and q are tabulated in Table 2.1.

To the author’s best knowledge, an asymptotic error rate expression for noncoherent

modulation in large SNR regions has not been derived. We present this result in the following

1We write a function p(x) as o(x) if limx→0+ p(x)/x = 0.
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proposition.

Proposition 1: For noncoherent modulation with conditional symbol error rate of the

form pe (β ) = pexp(−qβ γ̄), the error rate at large SNR can be expressed as

Pe =
cΓ(t +2) p

(t +1)(qγ̄)t+1 +o
(

1
γ̄ t+1

)
(2.12)

where p and q are constants related to specific modulation formats.

The proof of (2.12) is given in Appendix A. The values of p and q for noncoherent mod-

ulations, like binary noncoherent frequency shift keying (BNCFSK) and binary differential

phase shift keying (BDPSK), are tabulated in Table 2.1.

Therefore, to compute the asymptotic SER at large SNR, one needs to determine the

parameters c and t from the PDF of β , or, from the MGF of β when s → ∞. Another

approach is to consider the square root of γ at the output of the diversity combiner. Let

h =
√γ =

√
β γ̄ . From the PDF of β , with a change of variable, it is straightforward to

obtain the PDF of γ as

f (γ) = c
γ t

γ̄ t+1 +o
(

γ t

γ̄ t+1

)
. (2.13)

The PDF of h is

f (h) = 2c
h2t+1

γ̄ t+1 +o
(

h2t+1

γ̄ t+1

)
(2.14)

and the corresponding MGF of h can be expressed as

Mh(s) =
2cΓ(2t +2)
γ̄ t+1s2t+2 +o

(
1

γ̄ t+1s2t+2

)
. (2.15)

Therefore, one can simply obtain the asymptotic SER by extracting the parameters c and t

from (2.13) to (2.15) in the frequency domain.

On the other hand, the asymptotic SER can also be approximated by (see, e.g., [25], [29])

Pe = (Gc · γ̄)−Gd +o
(

1
γ̄Gd

)
(2.16)
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Table 2.1: Parameters p and q for different coherent and noncoherent modulation schemes
Modulation Scheme Conditional SER p q

BPSK Q(
√

2γ) 1 2

M-PSK M ≥ 4 ≈ 2Q
(√

2γ sin π
M

)
2 2sin2 π

M

M-PAM 2(1− 1
M )Q

(√
6γ

M2−1

)
2(1− 1

M ) 6
M2−1

M-QAM 4(1− 1√
M
)Q

(√
3γ

M−1

)
4(1− 1√

M
) 3

M−1

BNCFSK 1
2 exp

(−1
2γ
) 1

2
1
2

BDPSK 1
2 exp(−γ) 1

2 1

where Gc is the coding gain, and Gd is the diversity order. The diversity order Gd determines

the slope of the SER versus average SNR curve, at high SNR, in a log-log scale. Gc (in deci-

bels) determines the shift of the curve in SNR relative to a benchmark SER curve of
(
γ̄−Gd

)
.

Comparing (2.16) with (2.11) and (2.12) respectively, we observe that Gd = t+1 for both co-

herent and noncoherent modulation, Gc = q
[

2tcpΓ(t+ 3
2)√

π(t+1)

]− 1
t+1

for coherent modulation, and

Gc = q
[

cpΓ(t+2)
t+1

]− 1
t+1 for noncoherent modulation.

2.4 Construction of Multiple Correlated Nakagami-m RVs

In this section, we present a framework to obtain a single integral representation for

multiple Nakagami-m distributions with a specified correlation matrix. The joint PDF of

correlated Nakagami-m RVs is expressed explicitly in terms of single integral solutions.

A remarkable feature of these expressions is that the computational complexity reduces to

a single integral computation for an arbitrary number of dimensions. The basic idea for

the construction of multiple correlated Nakagami-m RVs is that a set of equally correlated

complex Gaussian RVs can be obtained by linearly combining a set of independent Gaussian

RVs [30]. The original construction approach was proposed in [17] to obtain the CDF of L-

branch SC output SNR in equally correlated Nakagami-m fading. In [14], this approach was

used to evaluate the performance of diversity combiners with positively correlated branches.
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2.4.1 Construction of Multiple Correlated Nakagami-m RVs

Similar to [17, eq. (5)], [30] for integer m we express the L correlated Nakagami-m RVs

through Lm zero-mean complex Gaussian RVs by

Gil = σi

(√
1−ρiXil +

√
ρiX0l

)
+ jσi

(√
1−ρiYil +

√
ρiY0l

)
(2.17)

for i = 1, · · · ,L and l = 1, · · · ,m, where j2 = −1, 0 ≤ ρi ≤ 1, and X0l , Xil , Y0l and Yil are

independent Gaussian RVs with distribution N (0,1/2). That is, for any u,v ∈ {0,1, · · · ,L},

and l,n ∈ {1, · · · ,m}, E[XulYvn] = 0, E[XulXvn] = E[YulYvn] = δu,vδl,n/2, where δu,v is the

Kronecker delta function.

Let Ri denote the summation of the absolute square of Gil , i.e., Ri = ∑m
l=1 |Gil|2. Then,

it can be shown Ri is the sum of squares of m independent Rayleigh envelopes with central

chi-square distribution χ2m(0,σ2
i /2) [14]. The cross-correlation between Ri and Rk can be

shown to be

ρRi,Rk =
E [RiRk]−E [Ri]E [Rk]√

Var [Ri]Var [Rk]
= ρiρk, i 6= k (2.18)

where Var [·] denotes the variance of a RV. The proof of (2.18) is given in Appendix B.

Let Hi =
√

Ri, then it can be shown H1,H2, · · · ,HL are L correlated Nakagami-m RVs

with identical fading parameter m and mean-square value mσ2
i . The relationship between

the correlation of Hi and Hk and the correlation of Ri and Rk, denoted by ρHi,Hk and ρRi,Rk

respectively, is [27]

ρHi,Hk =
F
(−1

2 ,−1
2 ;m;ρRi,Rk

)−1
ψ (m)−1

(2.19)

where ψ (m) = Γ(m)Γ(m+1)/Γ2(m+1/2) and F(·) is the hypergeometric function defined

as F(a,b;c;z) = Γ(c)
Γ(a)Γ(b) ∑∞

n=0
Γ(a+n)Γ(b+n)

Γ(c+n)
zn

n! [31, eq. (15.1.1)].
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2.4.2 Joint PDF of Multiple Correlated Nakagami-m RVs

Let Z = ∑m
l=1

(
X2

0l +Y 2
0l

)
. When X0l = x0l and Y0l = y0l (l = 1, · · · ,m) are fixed, the real

and imaginary parts of Gil have equal variance of σ2
i (1− ρi)/2 and means σi

√ρix0l and

σi
√ρiy0l , respectively. Therefore, R1,R2, · · · ,RL are independent noncentral chi-square RVs

with distribution χ2m(
√

ρi ∑m
l=1

(
x2

0l + y2
0l

)
,σ2

i (1−ρi)/2) and whose marginal CDF is given

by [29, eq. (2-1-124)]

F (ri|z) = Pr(Ri ≤ ri|z) = 1−Qm

(√
2zρi

1−ρi
,

√
2ri

σ2
i (1−ρi)

)
(2.20)

where Qm (·, ·) denotes the m-th order Marcum Q-function defined as

Qm(α,β ) =
∫ ∞

β x
( x

α
)m−1 e−

x2+α2
2 Im−1 (αx)dx [32]. The joint marginal CDF of R1, · · · ,RL is

given by

F (r1,r2, · · · ,rL|z) =
L

∏
i=1

[
1−Qm

(√
2zρi

1−ρi
,

√
2ri

σ2
i (1−ρi)

)]
. (2.21)

Z = ∑m
l=1

(
X2

0l +Y 2
0l

)
follows a central chi-square distribution χ2m(0,1/2) and its PDF is

given by

f (z) =
zm−1e−z

Γ(m)
, z ≥ 0. (2.22)

Averaging the joint marginal CDF in (2.21) with respect to the PDF of Z, the joint CDF of

R1,R2, · · · ,RL becomes

F (r1,r2, · · · ,rL) =
1

Γ(m)

∫ ∞

0

L

∏
i=1

[
1−Qm

(√
2zρi

1−ρi
,

√
2ri

σ2
i (1−ρi)

)]
zm−1e−zdz. (2.23)

Taking partial derivatives of (2.23) with respect to r1,r2, · · · ,rL, one can obtain the joint PDF
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of R1,R2, · · · ,RL as follows

f (r1,r2, · · · ,rL) =
1

Γ(m)

∫ ∞

0

L

∏
i=1

1
σ2

i (1−ρi)

(
ri

zρiσ2
i

)m−1
2

exp
[
− ri

σ2
i (1−ρi)

]

× Im−1

(
2

1−ρi

√
zρiri

σ2
i

)
zm−1e−

(
1+∑L

i=1
ρi

1−ρi

)
zdz.

(2.24)

Eqns. (2.23) and (2.24) essentially are the joint CDF and PDF of L correlated Gamma RVs

respectively, and will be useful in studying the asymptotic performance of SC.

Using variable transformation, we can obtain the joint PDF of H1,H2, · · · ,HL as

f (h1,h2, · · · ,hL) =
1

Γ(m)

∫ ∞

0

L

∏
i=1

2hi

σ2
i (1−ρi)

(
h2

i

zρiσ2
i

)m−1
2

exp
[
− h2

i

σ2
i (1−ρi)

]

× Im−1

(
2

1−ρi

√
zρih2

i

σ2
i

)
zm−1e−

(
1+∑L

i=1
ρi

1−ρi

)
zdz.

(2.25)

The proof of (2.25) is given in Appendix C. Eqn. (2.25) is the joint the PDF of L correlated

Nakagami-m RVs and will be useful in studying the asymptotic performance of EGC.
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Chapter 3

Asymptotic Performance Analysis of SC

over Arbitrarily Correlated Nakagami-m

Fading Channels

3.1 Introduction

The generalized Marcum Q-function has a long history in signal processing literature,

especially in the analysis of target detection by pulsed radars with single or multiple ob-

servations [32]. This special function is also frequently used in the performance analysis

involving noncoherent and differential detection of multichannel narrowband signals over

fading channels [2], [29]. The generalized Marcum Q-function is given by [32]

Qv(α ,β ) =
∫ ∞

β
x
( x

α

)v−1
e−(x2+α2)/2Iv−1 (αx)dx (3.1)

where α and β are non-negative real numbers, and v is a positive real number. Although v can

take any positive real number, when v is a positive integer m, Qm(α,β ) is the complementary

cumulative distribution function of a noncentral chi-square RV with 2m degrees of freedom

[33].

Because of its importance, the generalized Marcum Q-function has been the subject of

considerable research over the past several decades. The precise computation of Qv(α ,β )

can be difficult especially for large α and v values, because the integral in (3.1) involves the
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modified Bessel function of the first kind [34]. In order to calculate the generalized Marcum

Q-function, power series expansion methods were used in [35–37] and the Neuman series ex-

pansion method was proposed in [38]. Since direct computation of (3.1) is difficult, various

alternative representations of Qv(α,β ) were proposed. For example, several integral forms

of Qv(α,β ) were developed in [39–45] and the references therein. During the past decade,

several upper and lower bounds were proposed for the generalized Marcum Q-function [46–

55]. Most of these bounds were obtained by utilizing the bounds of the integrand in (3.1) or

by changing the integral region via a geometric interpretation of the functions.

In this thesis, using a series expansion of the modified Bessel function of the first kind

Im−1(x) we present a new series representation of Qm(α ,β ) in terms of the incomplete

gamma function γ(m,x) and obtain a simple accurate approximation of Qm(α,β ) when

β → 0+. Utilizing this approximation of Qm(α,β ), we study the asymptotic performance

of selection combining over arbitrarily correlated Nakagami-m channels. Of practical value,

we derive new compact analytical results that can be used to provide rapid and accurate error

rate and outage probability estimation. Of theoretical interest, we reveal some physical in-

sights into the transmission characteristics of SC over correlated Nakagami-m channels, and

in particular, how the branch power covariance coefficient matrix can influence the average

error rate and outage probability in large SNR regions.

The rest of this chapter is organized as follows. In Section 3.2, an alternative series repre-

sentation and a new approximation of Qm(α,β ) when β → 0+ are presented. In Section 3.3,

the PDF of L-branch SC output SNR near its origin over arbitrarily correlated Nakagami-m

fading channels is derived. Section 3.4 derives the asymptotic error rate and outage prob-

ability of SC. Section 3.5 discusses some important insights and provides some numerical

results.
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3.2 A Series Representation of Qm(α,β )

We first present a new series representation of Qm(α ,β ) as follows.

Proposition 2: The generalized Marcum Q-function can be written as

Qm(α,β ) = 1− e−
α2
2

∞

∑
k=0

α2k

Γ(m+ k)k! ·2k γ
(

m+ k,
β 2

2

)
(3.2)

where γ(·, ·) is the incomplete gamma function defined as γ (m,z)=
∫ z

0 tm−1e−tdt [26, (8.350.1)].

Proof: By [33, eq. (5)-(8)], for integer-valued m the generalized Marcum Q-function can

be expressed as

Qm(α,β ) =
∫ ∞

β
x
( x

α

)m−1
e−(x2+α2)/2Im−1 (αx)dx

= 1−
∫ β

0
x
( x

α

)m−1
e−(x2+α2)/2Im−1 (αx)dx. (3.3)

For m-th order modified Bessell function of the first kind, its series expansion can be repre-

sented as [26, (8.445)]

Im (z) =
∞

∑
k=0

1
Γ(m+ k+1)k!

( z
2

)m+2k
. (3.4)

Substituting (3.4) into (3.3), we have

∫ β

0
x
( x

α

)m−1
e−(x2+α2)/2Im−1 (αx)dx

= α1−me−
α2
2

∞

∑
k=0

1
Γ(m+ k)k!

(α
2

)m+2k−1 ∫ β

0
x2m+2k−1e−

x2
2 dx

= e−
α2
2

∞

∑
k=0

α2k

Γ(m+ k)k! ·2k · γ
(

m+ k,
β 2

2

)
(3.5)

and (3.2) follows immediately.

Using the series expression of the incomplete gamma function γ (u,y) = ∑∞
n=0

(−1)nyu+n

n!(u+n)
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3.3. PDF of SC Output SNR Over Correlated Nakagami-m Fading Channels

[26, (8.354.1)], we can rewrite Qm(α,β ) as

Qm(α,β ) = 1− e−
α2
2

∞

∑
k=0

α2k

Γ(m+ k)k! ·2k

∞

∑
n=0

(−1)n
(

β 2

2

)m+k+n

(m+ k+n) ·n!
. (3.6)

An immediate consequence of (3.6) is that when β → 0+, the m-th order Marcum Q-function

Qm(α,β ) can be approximated as

Qm(α,β ) = 1− β 2m

2m ·m!
exp

(
−α2

2

)
+o

(
β 2m) . (3.7)

To demonstrate the accuracy of the above approximation, we calculate the exact values of

Qm(α,β ) using the function NCX2CDF provided by Matlab and compare them with the ap-

proximate values obtained from (3.7) for different values of α and β . The numerical results

are compared in Table 3.1. From Table 3.1, we can observe that the relative error becomes

small when β → 0+, and therefore we conclude that the small argument approximation of

the Marcum Q-function is highly accurate.

3.3 PDF of SC Output SNR Over Correlated Nakagami-m

Fading Channels

3.3.1 System Model

Assume that there are L available diversity branches experiencing frequency-nonselective

and slow Nakagami-m fading with fading parameter m taking the same positive integer value.

Let Hi be the instantaneous channel fading amplitude on the i-th branch, ES be the average

symbol energy of the transmitted data symbol, and let N0 be the PSD of complex AWGN in

the i-th branch. The instantaneous SNR of the i-th diversity branch, γi, is defined as

γi = |Hi|2 ES

N0
(3.8)
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Table 3.1: The exact and approximate values of Qm(α,β ) for different values of α and β
α β Exact value Approximate value Relative error

0.1

0.1 0.999996887986722 0.999987562344010 9.325×10−6

0.05 0.999999805256228 0.999999222646501 5.826×10−7

0.01 0.999999999688286 0.999999998756234 9.32×10−10

0.005 0.999999999980518 0.999999999922265 5.825×10−11

0.001 0.999999999999969 0.999999999999876 9.314×10−14

1

0.1 0.999997569793885 0.999992418366754 5.151×10−6

0.05 0.999999847945917 0.999999526147922 3.217×10−7

0.01 0.999999999756628 0.999999999241837 5.147×10−10

0.005 0.999999999984789 0.999999999952615 3.217×10−11

0.001 0.999999999999976 0.999999999999924 5.151×10−14

5

0.1 0.999999993945953 0.999999999953417 6.007×10−9

0.05 0.999999999622624 0.999999999997089 3.744×10−10

0.01 0.999999999999397 0.999999999999995 5.986×10−13

0.005 0.999999999999962 1.000000000000000 3.741×10−14

0.001 0.9999999999999999 1 1.11×10−16
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3.3. PDF of SC Output SNR Over Correlated Nakagami-m Fading Channels

and the average SNR of the i-th diversity branch, Γi, is given by

Γi = E
[|Hi|2

] ES

N0
. (3.9)

Recall from Chapter 2 that for SC, the instantaneous SNR at the output of the selection

combiner is given by

γSC = max
i=1,··· ,L

γi. (3.10)

3.3.2 PDF of SC Output SNR

We now use the method described in Chapter 2 to construct correlated Nakagami-m RVs

H1,H2, . . . ,HL. Then the instantaneous SNR of the i-th diversity branch is γi = Ri
ES
N0

. Let

R denote the branch power covariance coefficient matrix, whose (ik)-th element (R)ik is

defined as

(R)ik =
E [γiγk]−E [γi]E [γk]√

Var [γi]Var [γk]
. (3.11)

Using (2.18), we can show that

(R)ik =





ρRi,Rk = ρiρk, i 6= k

1, i = k
. (3.12)

This model simplifies to the equally correlated case when ρi = ρk. By the symmetry property

of R, ρi and ρk can be uniquely determined by

ρi =

√
(R)il (R)in

(R)ln
(3.13)

and

ρk =

√
(R)kl (R)kn

(R)ln
(3.14)

when n, l 6= i,n, l 6= k, l 6= n.
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3.3. PDF of SC Output SNR Over Correlated Nakagami-m Fading Channels

If we define M as the matrix whose (ik)-th entry is given by

(M)ik =
√

(R)ik. (3.15)

Express M as a rank-one updated matrix M = S+uuT , where S = diag(1−ρ1, · · · ,1−ρL)

and u = [
√ρ1,

√ρ2, · · · ,√ρL]. Using [56, eq. (6.2.3)], we can obtain the determinant of

matrix M as

det(M) = det(S)
(
1+uT S−1u

)
=

[
1+

L

∑
i=1

ρi

1−ρi

]
L

∏
i=1

(1−ρi) . (3.16)

Following the construction of H1,H2, . . . ,HL described in Chapter 2, we can obtain the

mean square value of Hi as E
[|Hi|2

]
= mσ2

i and the average SNR of the i-th diversity branch

as Γi = mσ2
i

ES
N0

. Since the instantaneous SNR of the i-th diversity branch is γi = Ri
ES
N0

, we

can express γi in terms of as Γi, i.e., γi =
Ri

mσ2
i

Γi. By (3.10), the CDF of the SC output SNR

γSC can be written as

FγSC (γ) = Pr(γsc ≤ γ)

= Pr(γ1 ≤ γ, · · · ,γL ≤ γ)

= Pr
(

R1

mσ2
1

Γ1 ≤ γ , · · · , RL

mσ2
L

ΓL ≤ γ
)

= Pr
(

R1 ≤ mσ2
1

Γ1
γ , · · · ,RL ≤ mσ2

L
ΓL

γ
)
. (3.17)

By the joint CDF of R1,R2, · · · ,RL given in (2.23), we can obtain

FγSC (γ) =
1

Γ(m)

∫ ∞

0

L

∏
i=1

[
1−Qm

(√
2ρiz

1−ρi
,

√
2mγ

Γi (1−ρi)

)]
zm−1e−zdz. (3.18)

Eqn. (3.18) essentially generalizes the results in [17] and [14] to arbitrarily correlated SC

over branches with different average SNR values.

It is seen from (3.18) that the second parameter of the generalized Marcum Q-function
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3.4. Asymptotic Performance Analysis of SC

approaches zero when γ → 0+, or when the CDF is near its origin. Using (3.7), we can

obtain the asymptotic CDF of the SC output SNR as

FγSC (γ) =
mmL

[Γ(m+1)]L detm(M)

γmLγ̄mL

∏L
i=1 Γm

i γ̄mL
+o

(
γmL

γ̄mL

)
. (3.19)

Differentiating (3.19) with respect to γ , we obtain the PDF of instantaneous SNR at the

output of the SC as

fγSC (γ) =
mL ·mmL

[Γ(m+1)]L detm(M)

γmL−1γ̄mL

∏L
i=1 Γm

i γ̄mL
+o

(
γmL−1

γ̄mL

)
. (3.20)

The analytical expression obtained in (3.20) for the PDF of the output SNR near its origin

will be useful in studying the asymptotic error rate performance of SC.

3.4 Asymptotic Performance Analysis of SC

Comparing (3.20) with (2.13) in Chapter 2, we observe that

t = mL−1 (3.21)

and

c =
mL ·mmL

[Γ(m+1)]L detm(M)

γ̄mL

∏L
i=1 Γm

i
. (3.22)

From (3.21), it is obvious that the diversity order Gd is mL.
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3.4.1 Asymptotic Error Rate

The asymptotic SER of SC reception with coherent modulation can thus be expressed

from (2.11) as

PS,C
e =

Γ(2mL+1)mmL p

2mL+1qmLΓ(mL+1) [Γ(m+1)]L detm(M)

1

∏L
i=1 Γm

i
+o

(
1

∏L
i=1 Γm

i

)
. (3.23)

In the special case when m = 1, it can be shown that (3.23) agrees with the asymptotic error

rate of SC reception over arbitrarily correlated Rayleigh channels [5, eq. (7)]2. Similarly, the

asymptotic SER of SC reception with noncoherent modulation can be obtained from (2.12)

as

PS,N
e =

mmLΓ(mL+1) p

kmL [Γ(m+1)]L detm(M)

1

∏L
i=1 Γm

i
+o

(
1

∏L
i=1 Γm

i

)
. (3.24)

3.4.2 Asymptotic Outage Probabilities

The outage probability is defined as

Pout (γth) = Pr(γ < γth) =

∫ γth

0
f (γ)dγ (3.25)

where γth is a predefined outage threshold and f (γ) is the PDF of the instantaneous SNR at

the output of diversity combiner. Substituting (2.13) into (3.25), one obtains the asymptotic

outage probabilities as

Pout (γth) =
c

t +1

(
γth

γ̄

)t+1

+o

(
γ t+1

th
γ̄ t+1

)
. (3.26)

2When m = 1, M is same as the matrix M defined in [5].
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With the values of t and c obtained in (3.21) and (3.22), we obtain

PS
out (γth) =

mmL

(m!)L detm(M)

γmL
th

∏L
i=1 Γm

i
+o

(
1

∏L
i=1 Γm

i

)
. (3.27)

When m = 1, it can be shown that (3.27) agrees with the asymptotic outage probability of

SC reception over arbitrarily correlated Rayleigh channels [5, eq. (14)].

Although we have derived the asymptotic error rate and outage probability expressions

(3.23), (3.24) and (3.27) assuming integer fading parameter values, our numerical results

suggest these analytical expressions are also valid at least for m = 0.5.

3.5 Discussions and Numerical Results

3.5.1 Discussions

Since det(M) = 1 for independent fading channels, we observe from (3.23) and (3.24)

that the asymptotic SER of SC over arbitrarily correlated Nakagami-m fading channels can

be expressed in terms of the asymptotic SER over independent Nakagami-m fading channels

scaled by a factor detm(M), i.e.,

(PSC
e )asym =

(PSC
e,i )asym

detm(M)
(3.28)

where (PSC
e,i )asym denotes the asymptotic SER of SC over independent Nakagami-m fading

branches. In (3.28), the factor detm(M), which is less than unity, can be considered as the

loss factor due to channel correlation. It should be noted that the simple relationship in (3.28)

also holds for MRC over arbitrarily correlated Nakagami-m fading channels [25]. Finally a

relationship similar to (3.28) can also be seen for the outage probability from (3.27).
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3.5.2 Numerical Results

In this subsection, we present some numerical results of coherent BPSK and noncoherent

BDPSK with three-branch SC over correlated Nakagami-m fading channels. We use the

method proposed in [57] to generate correlated Nakagami-m RVs. For all the numerical

results obtained here, we have assumed three-branch diversity reception with Γ1 = Γ2 = Γ3

and γth = 3 dB. We use ρ̃ = [ρ1,ρ2,ρ3] to denote a vector whose elements comprise the

power covariance coefficient matrix. For comparison, we set ρ̃1 = [0.4571,0.2296,0.4571]

and ρ̃2 = [0.3968,0.5265,0.7861]. By (3.12) and (3.15), we obtain

M1 =




1 0.3240 0.4571

0.3240 1 0.3240

0.4571 0.3240 1




and

M2 =




1 0.4571 0.5585

0.4571 1 0.6433

0.5585 0.6433 1



.

It follows that det(M1)= 0.6771 and det(M2)= 0.3937. From (3.28), the determinant in-

equality det(M1) > det(M2) predicts that more highly correlated fading channels will lead

to worse SER performance, as one expects. This is confirmed by the bit error rate (BER)

curves shown in Fig. 3.1 and Fig. 3.2 for m = 0.5 and m = 2 respectively.

Fig. 3.3 and Fig. 3.4 plot the asymptotic and simulated outage probabilities of three-

branch SC with matrices M1 and M2 for m = 0.5 and m = 2 respectively. Figs. 3.1- 3.4

indicate that the analytical asymptotic results have excellent agreement with the simulated

result in large SNR regions. This implies that the analytical asymptotic results can be used

to predict small values of error rate and outage probability accurately for large SNR regions,

where Monte Carlo simulation becomes time-consuming. Note that Fig. 3.1 and Fig. 3.3 also

suggest that (3.23), (3.24) and (3.27) are also valid at least for m = 0.5.
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Figure 3.1: The asymptotic and simulated BERs of BPSK and BDPSK for SC over 3-branch
correlated Nakagami-m channels with matrices M1 and M2 when m = 0.5.
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Figure 3.2: The asymptotic and simulated BERs of BPSK and BDPSK for SC over 3-branch
correlated Nakagami-m channels with matrices M1 and M2 when m = 2.
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Figure 3.3: The asymptotic and simulated outage probabilities of SC over 3-branch corre-
lated Nakagami-m channel with matrices M1 and M2 when m = 0.5.
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Figure 3.4: The asymptotic and simulated outage probabilities of SC over 3-branch corre-
lated Nakagami-m channel with matrices M1 and M2 when m = 2.
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Chapter 4

Asymptotic Performance Analysis of

EGC over Arbitrarily Correlated

Nakagami-m Fading Channels

In this chapter, using an integral representation for the joint PDF of multiple correlated

Nakagami-m RVs obtained in Chapter 2, we derive the MGF of the square root of instanta-

neous SNR at the output of equal gain combiner and obtain the asymptotic average SER and

outage probability of EGC over arbitrarily correlated Nakagami-m channels.

4.1 System Model

Assume that there are L available diversity branches experiencing frequency-nonselective

and slow Nakagamim-m fading with fading parameter m taking the same positive integer

value. Let Hi be the instantaneous channel fading amplitude on the i-th branch, ES be the

average symbol energy of the transmitted data symbol, and let N0 be the PSD of complex

AWGN in the i-th branch. The instantaneous SNR of the i-th diversity branch, γi, is defined

as

γi = |Hi|2 ES

N0
(4.1)

and the average SNR of the i-th diversity branch, Γi, is given by

Γi = E
[|Hi|2

] ES

N0
. (4.2)
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4.2. MGF of Square Root of Instantaneous SNR at the Output of EGC

Recall in Chapter 2 that for EGC, the instantaneous SNR at the output of the equal gain

combiner is given by

γEGC =

(
∑L

i=1 Hi
)2 ES

LN0
. (4.3)

4.2 MGF of Square Root of Instantaneous SNR at the

Output of EGC

We now use the method described in Chapter 2 to construct correlated Nakagami-m RVs

H1,H2, . . . ,HL. Then the joint PDF of H1,H2, . . . ,HL can be expressed as (2.25). Let R

denote the branch power covariance coefficient matrix whose (ik)-th element (R)ik is defined

by (3.11). Define M as the matrix whose (ik)-th entry is given by (3.15), then the determinant

of matrix M can be expressed as (3.16).

Using a series expansion of first kind modified Bessel function in [26, eq. (8.445)], when

x → 0, Im−1 (x) can be written as

Im−1 (x) =
1

Γ(m)

(x
2

)m−1
+o

(
xm−1) . (4.4)

Define HE =
√γEGC. By (4.3), when γEGC → 0, Hi → 0. Substituting (4.4) into (2.25), we

can write the joint PDF of H1,H2, · · · ,HL as

f (h1,h2, · · · ,hL) =
1

detm(M)

L

∏
i=1

2
Γ(m)

1
σ2m

i

[
h2m−1

i +o(h2m−1
i )

]
exp

[
− h2

i

σ2
i (1−ρi)

]
. (4.5)
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Using (4.5), by definition, the MGF of HE can be written as

MHE (s) = EHE

[
e−sHE

]

= EH1,H2,··· ,HL

[
e
− s(H1+H2+···+HL)

√
ES√

LN0

]

=
1

detm(M)

[
2

Γ(m)

]L L

∏
i=1

gi (s)

(4.6)

where gi (s) is given by

gi (s) =
∫ ∞

0

(
m ES

N0

Γi

)m [
h2m−1

i +o(h2m−1
i )

]
exp

[
−

h2
i m ES

N0

Γi(1−ρi)

]
exp

(
−shi

√
ES

LN0

)
dhi.

(4.7)

Using [26, eqs. (3.462) and (9.246)], we can show that when s → ∞, gi (s) can be written as

gi (s) = Γ(2m)

(
mL
Γi

)m[
1

s2m +o
(

1
s2m

)]
. (4.8)

Substituting (4.8) into (4.6), we obtain the MGF of HE as

MHE (s) =
(mL)mL

detm(M)

[
2Γ(2m)

Γ(m)

]L 1

∏L
i=1 Γm

i

[
1

s2mL +o
(

1
s2mL

)]
. (4.9)

The MGF expression obtained in (4.9) will be used in studying the asymptotic error rate and

outage probability of EGC.

4.3 Asymptotic Performance Analysis of EGC

Comparing (4.9) with (2.15) in Chapter 2, we observe that

t = mL−1 (4.10)
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and

c =
2L−1

Γ(2mL)

[
Γ(2m)

Γ(m)

]L (mL)mL

detm(M)

γ̄mL

∏L
i=1 Γm

i
. (4.11)

From (4.10), it is obvious that the diversity order Gd is mL.

4.3.1 Asymptotic Error Rate

The asymptotic SER of EGC reception with coherent modulation can be expressed from

(2.11) as

PE
e =

[Γ(2m)]L (mL)mL p

2mL+1−LΓ(mL+1) [Γ(m)]L detm(M)

1

∏L
i=1 (qΓi)

m +o
(

1

∏L
i=1 Γm

i

)
. (4.12)

In the special case of m = 1, it can be shown that (4.12) agrees with the asymptotic symbol

error rate of EGC reception over arbitrarily correlated Rayleigh channels [5, eq. (5)].

4.3.2 Asymptotic Outage Probabilities

Substituting (4.10) and (4.11) into (3.26), we obtain the outage probability

PE
out (γth) =

2L−1[Γ(2m)]L(mL)mL−1

Γ(2mL) [Γ(m)]L detm(M)

γmL
th

∏L
i=1 Γm

i
+o

(
1

∏L
i=1 Γm

i

)
. (4.13)

When m = 1, it can be shown that (4.13) agrees with the asymptotic outage probability of

EGC reception over arbitrarily correlated Rayleigh channels [5, eq. (13)].

Equations (4.12) and (4.13) are important new results. Although we deduce these results

for integer fading parameter m, our numerical results suggest they are also valid at least for

m = 0.5.
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4.4 Discussions and Numerical Results

4.4.1 Discussions

Since det(M) = 1 for independent fading channels, we observe from (3.23) and (3.24)

that the asymptotic SER of EGC over arbitrarily correlated Nakagami-m fading channels can

be expressed in terms of the asymptotic SER over independent Nakagami-m fading channels

scaled by a factor detm(M), i.e.,

(PEGC
e )asym =

(PEGC
e,i )asym

detm(M)
(4.14)

where (PEGC
e,i )asym denotes the asymptotic SER of EGC over independent Nakagami-m fad-

ing branches. In (4.14) the factor detm(M) can be considered as the loss factor due to channel

correlation. It should be noted that the simple relationship in (4.14) also holds for MRC over

arbitrarily correlated Nakagami-m fading channels [25]. Finally a relationship similar to

(4.14) can also be seen for the outage probability from (3.27).

4.4.2 Numerical Results

In this subsection, we present some numerical results of coherent BPSK with three-

branch EGC over correlated Nakagami-m fading channels. We use the method proposed

in [57] to generate correlated Nakagami RVs. For all the numerical results obtained here, we

have assumed three-branch diversity reception with Γ1 =Γ2 =Γ3 and γth = 3 dB. We use ρ̃ =

[ρ1,ρ2,ρ3] to denote a vector whose elements comprise the power covariance coefficient ma-

trix. For comparison, we set ρ̃1 = [0.3968,0.5265,0.7861] and ρ̃2 = [0.5008,0.6229,0.8264].
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By (3.12) and (3.15), we obtain

M1 =




1 0.4571 0.5585

0.4571 1 0.6433

0.5585 0.6433 1




and

M2 =




1 0.5585 0.6433

0.5585 1 0.7175

0.6433 0.7175 1



.

It follows that det(M1)= 0.3937 and det(M2)= 0.2750. From (4.14), the determinant in-

equality det(M1) > det(M2) predicts that more highly correlated fading channels will lead

to worse SER performance, as one expects. This is confirmed by the BER curves shown in

Fig. 4.1 and Fig. 4.2 for m = 0.5 and m = 2 respectively. As seen from Fig. 4.1 and 4.2, the

asymptotic error rates are accurate for SNR greater than 20 dB.

Fig. 4.3 and Fig. 4.4 plot the asymptotic and simulated outage probabilities of three-

branch EGC with matrices M1 and M2 for m = 0.5 and m = 2 respectively. Figs. 4.1- 4.4

indicate that the analytical asymptotic results have excellent agreement with the simulated

result in large SNR regions. This implies that the analytical asymptotic results can be used

to predict small values of error rate and outage probability accurately for large SNR regions,

where Monte Carlo simulation becomes time-consuming. Note that Fig. 4.1 and Fig. 4.3 also

suggest that (4.12) and (4.13) are also valid at least for m = 0.5.
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Figure 4.1: The asymptotic and simulated BERs of BPSK for EGC over 3-branch correlated
Nakagami-m channels with matrices M1 and M2 when m = 0.5.
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Figure 4.2: The asymptotic and simulated BERs of BPSK for EGC over 3-branch correlated
Nakagami-m channels with matrices M1 and M2 when m = 2.
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Figure 4.3: The asymptotic and simulated outage probabilities of EGC over 3-branch corre-
lated Nakagami-m channel with matrices M1 and M2 when m = 0.5.
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Figure 4.4: The asymptotic and simulated outage probabilities of EGC over 3-branch corre-
lated Nakagami-m channel with matrices M1 and M2 when m = 2.
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Chapter 5

Conclusions

In this chapter, we first summarize the contributions of this work, and then suggest some

future work.

5.1 Summary of Contributions

This thesis makes the following contributions:

1. An asymptotic error rate expression for noncoherent modulation in large SNR regions

has been derived. This expression can be used to estimate the high SNR SER or BER

of various noncoherent modulation schemes, such as BNCFSK and BDPSK.

2. A new series representation of the generalized Marcum Q-function and a simple ap-

proximation for the Marcum Q-function Qm(α,β ) when β → 0+ have been derived.

Numerical results show that the relative error between the exact value obtained by us-

ing the function NCX2CDF and the approximate value becomes small when β → 0+,

and therefore the small argument approximation of the Marcum Q-function is highly

accurate.

3. Closed-form error rate and outage probability expressions are derived for multi-branch

EGC and SC over arbitrarily correlated Nakagami-m fading channels. They can be

used to provide accurate and rapid estimation of error rates and outage probabilities in

large SNR regions, where Monte Carlo simulation becomes time-consuming. These

simple expressions will allow wireless system engineers to estimate the required fading
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margin in link budget analysis without resorting to time-consuming computer simula-

tions.

4. Simple relationships have been established for the asymptotic error rates and outage

probabilities of EGC and SC over arbitrarily correlated and independent Nakagami-m

fading channels. The same relationship also holds for MRC. It has been shown that the

asymptotic error rate and outage probability over correlated branches can be obtained

by scaling the asymptotic error rate and outage probability over independent branches

with a factor, detm(M), where det(M) is the determinant of matrix M whose elements

are the square root of corresponding elements in the branch power covariance correla-

tion matrix R. The factor detm(M) can be considered as the loss factor due to channel

correlation. These significant relationships explain theoretically the observation that

more highly correlated fading channels lead to worse error rate and outage probability

performance.

5.2 Future Work

In this work, it is assumed that all the correlated Nakagami-m fading channels have the

same integer-valued fading parameter m. However, the correlated Nakagami-m fading chan-

nels with different fading parameters can exist in some practical transmission scenarios. Be-

cause of the validity and feasibility of asymptotic techniques for large SNRs, the asymptotic

technique can be extended to the study of the performance of multi-branch diversity combin-

ings over correlated Nakagami-m fading channels with arbitrarily-valued fading parameters.

In addition, so far there exists no method that can accurately generate multiple correlated

Nakagami-m RVs with arbitrary fading parameters and mean square values. In [57], Zhang

proposed a decomposition technique to generate multiple correlated Nakagami-m RVs with

same fading parameters. Zhang’s algorithm is inaccurate when 2m is not an integer. In

our future research, we will develop an accurate method to generate multiple correlated
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Nakagami-m RVs with arbitrary fading parameters and mean square values.
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Appendix A

Derivation of Error Rate for

Noncoherent Modulation

Let A be a small fixed positive number such that when β <A, the PDF of β can be written

as f (β ) = cβ t +o(β t). Then the average SER for noncoherent modulation with conditional

SER pe (β ) = pexp(−qβ γ̄) can be caculated as

Pe =
∫ ∞

0
pe(β ) f (β )dβ

=
∫ ∞

0
pexp(−qβ γ̄) f (β )dβ

= p
∫ A

0
exp(−qβ γ̄) f (β )dβ + p

∫ ∞

A
exp(−qβ γ̄) f (β )dβ

= p
∫ ∞

0

∫ ∞

qβ γ̄
exp(−x)

[
cβ t +o

(
β t)]dxdβ

− p
∫ ∞

A

∫ ∞

qβ γ̄
exp(−x)

[
cβ t +o

(
β t)]dxdβ

+ p
∫ ∞

A
exp(−qβ γ̄) f (β )dβ (A.1)
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where in obtaining the last equality we have used a fact e−x =
∫ ∞

x e−ydy. The first integral in

(A.1) can be written as

p
∫ ∞

0

∫ ∞

qβ γ̄
exp(−x)

[
cβ t +o

(
β t)]dxdβ

= cp
∫ ∞

0

∫ ∞

qβ γ̄
exp(−x)β tdxdβ + p

∫ ∞

0
exp(−qβ γ̄)o

(
β t)dβ

= cp
∫ ∞

0

[∫ x
qγ̄

0
β tdβ

]
exp(−x)dx+o

(
γ̄−(t+1)

)

=
cp

(t +1)(qγ̄)t+1

∫ ∞

0
xt+1 exp(−x)dx+o

(
γ̄−(t+1)

)

=
cΓ(t +2) p

(t +1)(qγ̄)t+1 +o
(

γ̄−(t+1)
)
. (A.2)

Ignoring the term o(β t), the second integral in (A.1) can be expressed as

cp
∫ ∞

A

∫ ∞

qβ γ̄
exp(−x)β tdxdβ

= cp
∫ ∞

Aqγ̄

[∫ x
qγ̄

A
β tdβ

]
exp(−x)dx

= cp
∫ ∞

Aqγ̄

[
β t+1

t +1

] x
qγ̄

A
exp(−x)dx

=
cp

(t +1)(qγ̄)t+1

∫ ∞

Aqγ̄
exp(−x)

[
xt+1 − (Aqγ̄)t+1

]
dx. (A.3)

The integral in (A.3) becomes zero as γ̄ → ∞. Therefore, the second integral can be written

as o
(

γ̄−(t+1)
)

.

For the third integral in (A.1) we have the following relation

p
∫ ∞

A
exp(−qβ γ̄) f (β )dβ ≤ p

∫ ∞

A
exp(−qAγ̄) f (β )dβ

= p · exp(−qAγ̄)
∫ ∞

A
f (β )dβ

≤ p · exp(−qAγ̄) (A.4)
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and

lim
γ̄→∞

exp(−qAγ̄)
γ̄−(t+1)

= lim
γ̄→∞

γ̄ t+1

exp(qAγ̄)
= 0. (A.5)

Therefore, the third integral can be written as o
(

γ̄−(t+1)
)

.

Finally, it follows that the average SER for noncoherent modulation at large SNR can be

expressed as (2.12).
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Derivation of (2.18)

According to (2.17), for i ∈ {1, · · · ,L} and l, p ∈ {1, · · · ,m}, l 6= p, we have the following

expressions

|Gil|2 = σ2
i

[
(1−ρi)X2

il +ρiX2
0l +2

√
ρi(1−ρi)XilX0l

]

+σ2
i

[
(1−ρi)Y 2

il +ρiY 2
0l +2

√
ρi(1−ρi)YilY0l

]
(B.1)

and

|Gil|4
σ4

i
= (1−ρi)

2X4
il +ρ2

i X4
0l +4ρi(1−ρi)X2

il X
2
0l +(1−ρi)

2Y 4
il +ρ2

i Y 4
0l

+4ρi(1−ρi)Y 2
il Y

2
0l +2ρi(1−ρi)X2

il X
2
0l +4(1−ρi)

√
ρi(1−ρi)X3

il X0l

+2(1−ρi)
2X2

ilY
2
il +2ρi(1−ρi)X2

ilY
2
0l +4(1−ρi)

√
ρi(1−ρi)X2

ilYilY0l

+4ρi
√

ρi(1−ρi)X3
0lXil +2ρi(1−ρi)X2

0lY
2
il +2ρ2

i X2
0lY

2
0l

+4ρi
√

ρi(1−ρi)X2
0lYilY0l +4(1−ρi)

√
ρi(1−ρi)XilX0lY 2

il

+4ρi
√

ρi(1−ρi)XilX0lY 2
0l +8ρi(1−ρi)XilX0lYilY0l +2ρi(1−ρi)Y 2

il Y
2
0l

+4(1−ρi)
√

ρi(1−ρi)Y 3
il Y0l +4ρi

√
ρi(1−ρi)YilY 3

0l (B.2)
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and

|Gil|2|Gip|2
σ4

i
= (1−ρi)

2X2
il X

2
ip +ρi(1−ρi)X2

il X
2
0p +2(1−ρi)

√
ρi(1−ρi)X2

il XipX0p
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ilY
2
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ilY
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√
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√
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2
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i X2
0lY

2
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√
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√
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√
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√
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√
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√
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√
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ip +2ρi

√
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For any u ∈ {0,1, · · · ,L}, and l ∈ {1, · · · ,m}, Xul and Yul are independent Gaussian RVs

with distribution N (0,1/2), hence we have E [Xul] = E [Yul] = 0, E
[
X2

ul

]
= E

[
Y 2

ul

]
= 1

2 ,

E
[
X3

ul

]
=E

[
Y 3

ul

]
= 0, and E

[
X4

ul

]
=E

[
Y 4

ul

]
= 3

4 . Taking the expectation with respect to (B.2),

(B.2), and (B.3), we can obtain E
[|Gil|2

]
= σ2

i , E
[|Gil|4

]
= 2σ4

i , and E
[|Gil|2|Gip|2

]
= σ4

i .

Since Ri = ∑m
l=1 |Gil|2 and Rk = ∑m

l=1 |Gkl|2, it follows that E [Ri] = mσ2
i and
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Appendix B. Derivation of (2.18)

E [Rk] = mσ2
k . The mean square of Ri can be calculated as

E
[
R2

i
]
= E



(

m

∑
l=1

|Gil|2
)2


=

m

∑
l=1

E
[|Gil|4

]
+

m

∑
l=1

m

∑
p 6=l
p=1

E
[|Gil|2|Gip|2

]
= m(m+1)σ4

i

(B.4)

and the variance of Ri is given by

Var [Ri] = E
[
R2

i
]−E [Ri]

2 = mσ4
i . (B.5)

Similarly, we have Var [Rk] = mσ4
k .

According to the definition of Ri and Rk, we have

RiRk =
m

∑
l=1

m

∑
p=1

|Gil|2|Gkp|2. (B.6)

Since Xil , X0l , Yil , and Y0l are independent zero mean Gaussian RVs, we can ignore them

when calculating E [RiRk]. By symmetry, we can obtain

E [RiRk] = 2σ2
i σ2

k

m

∑
l=1

m

∑
p=1

E
[
(1−ρi)X2

il

[
(1−ρk)X2

kp +ρkX2
0p +(1−ρk)Y 2

kp +ρkY 2
0p

]]

+2σ2
i σ2

k

m

∑
l=1

m

∑
p6=l
p=1

E
[
ρiX2

0l

[
(1−ρk)X2

kp +ρkX2
0p +(1−ρk)Y 2

kp +ρkY 2
0p

]]

+2σ2
i σ2

k

m

∑
l=1

E
[
ρiX2

0l
[
(1−ρk)X2

kl +ρkX2
0l +(1−ρk)Y 2

kl +ρkY 2
0l
]]

= 2σ2
i σ2

k




m

∑
l=1

m

∑
p=1

1−ρi

2
+2σ2

i σ2
k

m

∑
l=1

m

∑
p6=l
p=1

ρi

2
+2σ2

i σ2
k

m

∑
l=1

ρi +ρk

2




= σ2
i σ2

k
(
m2 +mρiρk

)
. (B.7)

Noting that E [RiRk] = σ2
i σ2

k

(
m2 +mρiρk

)
, E [Ri] = mσ2

i , E [Rk] = mσ2
k , Var [Ri] = mσ4

i , and
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Appendix B. Derivation of (2.18)

Var [Rk] = mσ4
k , by the definition of cross-correlation of Ri and Rk, we can finally obtain

(2.18).

61



Appendix C

Derivation of (2.25)

Using variable transformation, we have

f (h1,h2, · · · ,hL) = f (r1,r2, · · · ,rL) · |J(h1,h2, · · · ,hL)| (C.1)

where | · | is the absolute-value operator and J(h1,h2, · · · ,hL) is the Jacobian of the transfor-

mation, which is defined as

J (h1,h2, · · · ,hL) =




dr1
dh1

· · · dr1
dhL

... . . . ...

drL
dh1

· · · drL
dhL



. (C.2)

In our case, ri = h2
i , dri

dh j
= 2hi when i = j; otherwise, dri

dh j
= 0. Therefore, J(h1,h2, · · · ,hL) =

∏L
i=1 2hi. It is straightforward to obtain (2.25).
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