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ABSTRACT 

 A primary goal in ecology is to understand why localities with similar abiotic 

environmental conditions often exhibit differences in species composition. Previous work 

points to the potential importance of historical or regional processes, such as priority 

effects and dispersal limitation, but the ways in which landscape structure moderates the 

impacts of such processes remain unclear. Using spatially explicit simulations of 

competitive metacommunities, I investigated if spatial autocorrelation of the environment 

(SAE), the degree of clustering of similar environments, in the broader landscape 

interacted with dispersal capacity to affect the predictability of local community 

composition. My study employed a fully crossed factorial design of SAE (random 

configuration to high positive SAE), dispersal capacity (local versus global [control]), 

and fundamental niche scenario (niche-differentiated versus neutral [control]). I 

quantified community composition predictability by measuring Bray-Curtis similarity 

among the same localities of replicate metacommunities. The results showed that in the 

absence of either niche differentiation or spatially restricted dispersal, variation in SAE 

had no impact on the predictability of local community composition. In contrast, in the 

presence of both niche differentiation and spatially restricted dispersal (characteristics of 

many metacommunities in nature), increasingly positive SAE increased community 

composition predictability. This was attributed to the enhancement of landscape 

connectivity facilitating deterministic species-environmental sorting of differentially 

adapted species, which reduced the influence of stochastic community assembly 

processes. Thus, the results suggest that the variation in local species composition often 
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observed among sites with similar environmental conditions could be attributed in part to 

differences in the spatial configuration of environmental conditions within the broader 

landscape. My work has potentially profound implications for basic and applied ecology. 

For example, the results suggest that practitioners should expect the reliability of 

composition-environment correlations to vary depending upon the spatial attributes of the 

ecosystem in question; they should be most useful as predictive tools within ecosystems 

characterized by strongly positive SAE. The results also yield an apparently novel and 

testable prediction: ecosystems characterized by high positive SAE will exhibit more 

repeatable community composition-environment relationships than ecosystems 

characterized by less clustering of similar environmental conditions in the landscape. 
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GLOSSARY 

Community: A group of species in a specified location.   2 

Deterministic-stochastic community assembly continuum: A hypothesis that proposes 

that the relative importance of stochastic and deterministic community assembly varies 

among communities.   8 

Environment amount: The frequency distribution of the amount of optimal abiotic 

environmental conditions per species.   27 

Environment evenness: The relative abundance of optimal abiotic environmental 

conditions per species. The higher the environment evenness, the more the frequency 

distribution of the amount of optimal environmental conditions per species (environment 

amount) resembles a uniform distribution. In this thesis, high environment evenness 

refers to a uniform distribution of environment amount, and low environment evenness 

refers to a Gaussian distribution.   44 

Environmental conditions: Refers to abiotic environmental conditions. The thesis 

research used a continuous gradient of environmental conditions. Because discrete 

habitats were not used, the term habitat is not used when referring to the thesis research. 

However, when referring to other studies (which often use "habitat" in different ways), 

the term habitat is used to mean the strict definition of habitat and also to refer to 

environmental conditions.   1 

Environmental determinism: Refers to the abiotic environmental conditions 

deterministically driving community assembly. Strong environmental determinism means 

there will be high predictability of community composition in localities with particular 

environmental conditions.   3 

Fundamental niche: The evolved physiological tolerance of species to underlying 

abiotic conditions, which dictates which environments are suitable and unsuitable.   29 

Importance of deterministic relative to stochastic community assembly: The degree 

to which a local community is assembled due to stochastic processes (e.g., local 

stochastic extinction) versus deterministic processes (e.g., deterministic species-

environmental sorting). In this thesis, the deterministic process of interest in species-
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environmental sorting; when this process is of high importance, one observes highly 

repeatable (predictable) species composition in local communities that share identical 

environmental conditions.   4 

Landscape composition: Generally defined in landscape ecology as the type and relative 

abundance of landscape elements, i.e., often habitat types, but the thesis research uses the 

term landscape composition to encompass continuous environmental conditions. The 

thesis research holds landscape composition constant (either high or low environment 

evenness) and varies landscape configuration.   10 

Landscape configuration: The spatial arrangement of landscape elements, i.e., often 

habitats, but the thesis research uses the term landscape configuration with respect to the 

arrangement of continuous environmental conditions. The thesis research varies 

landscape configuration: the degree of positive spatial autocorrelation of the 

environment. In this thesis, landscape configuration is used interchangeably with spatial-

environmental structure.   10 

Landscape connectivity: The degree to which the environmental landscape facilitates (or 

impedes) the movement of organisms. The higher the landscape connectivity, the more 

species are able to move through the landscape.   37 

Local stochastic extinction: Stochastic extinction of species in local communities that 

commonly occurs when population sizes are small.   38 

Mass-effect: Involves the dispersal of species into suboptimal environmental conditions 

from an optimal environment. If mass-effect has a large role in structuring local 

community composition, then community composition will be less predictable than if 

species-environmental sorting was the dominate process driving community assembly.   38 

Metacommunity: A set of communities connected by dispersal.   9 

Metaecosystem: A set of ecoystems that are connected via flows of materials, energy, 

and organisms.   60 

Neutral theory: In community ecology, there are various neutral theories that are 

commonly used as null models. A popular neutral theory in community ecology assumes 

that the individuals of all species have the same per capita rates of birth, death, migration, 

and speciation, and community assembly is soley due to stochastic processes.   6 
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Niche differentiation: In this thesis, metacommunities with niche differentiation have 

species with different fundamental niches. These different fundamental niches dictated 

the differential survival probabilities of the species depending on the environmental 

conditions.   34 

Oligarchic dominance: In this thesis, oligarchic dominance refers to the effect of the 

species with the highest amount of optimal environment (oligarchs) deterministically out-

competing other species.   20 

Predictability of community composition: The degree of repeatability of community 

composition. If species-environmental sorting has a strong influence on community 

assembly, then one would observe highly repeatable (predictable) species composition in 

local communities in localities with very similar, or identical, environmental conditions. 

In this thesis, this refers to the ability to predict local species composition given 

environmental conditions. More specifically, it refers to among replicate metacommunity 

comparisons, i.e., local community composition in a metacommunity compared to local 

community composition in another metacommunity.   2 

Priority effects: Arise due to initial colonization events, and increase stochastic 

community assembly. The initial seeding of the local communities in the thesis 

simulations made it so priority effects did not occur.   9 

Propagule dispersal capacity: The distance that propagules disperse from the parent 

organism. Organisms with spatially limited (local) dispersal tend to have propagules fall 

nearby the parent. Organisms with spatially unlimited (global) dispersal have propagules 

disperse from the parent to potentially anywhere in the landscape.   30 

Spatial autocorrelation of the environment: The spatial clustering of environmental 

conditions in the landscape. Positive spatial autocorrelation means that similar conditions 

tend to be clustered together, and negative spatial autocorrelation means similar 

environments tend to be far apart. When there is no spatial autocorrelation of the 

environment, this means that the clustering is no different than a random configuration.   12 

Spatial-environmental structure: The spatial configuration of abiotic environmental 

conditions in the landscape. In this thesis, this term is used synonymously with landscape 

configuration.   20 
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Species-environmental sorting: Arises when differentially adapted species obtain 

optimal abundances at different gradient values that correspond to their species-specific 

adaptations, e.g., tolerance and competitive ability.   6 
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1. GENERAL INTRODUCTION 

1.1. Introduction 

 A fundamental task in ecology is to understand why different species 

compositions arise in locations with extremely similar, or identical, abiotic 

environmental conditions (Ricklefs 1987, Ricklefs and Schluter 1993, Chase 2003, 

Fukami et al. 2005). Obtaining accurate predictions of species composition as a function 

of local environmental conditions has a long history in ecology (Whittaker 1956, Gauch 

and Whittaker 1972, Whittaker 1975). This task is fundamental, for example, for 

developing strategies for environmental monitoring and assessment (Legendre et al. 

2005). The difficulty is that numerous processes acting across scales of space and time 

can blur the otherwise predictable association between species composition and the 

environment (see Chase 2003, Trowbridge 2007, Matthews et al. 2009, Foster et al. 

2011). Understanding the nature and specific impacts of these processes is a common 

goal among ecologists. For example, dispersal limitation is known to detract from 

composition-environment associations, because it impedes access to optimal 

environments by species (see Tuomisto et al. 2003, Gilbert and Lechowicz 2004, Karst et 

al. 2005, Girdler and Barrie 2008, Legendre et al. 2009). However, acquiring direct 

evidence of dispersal limitation, and other potential sources of noise obscuring 

composition-environment relationships, is challenging in practice.  

 A useful approach is to seek out more general conditions promoting the 

predictability of composition-environment relationships. This can be achieved with 
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simulation modeling. This is the strategy I adopt in my thesis research. Specifically, I use 

simulation models to explore the idea that the spatial configuration of environmental 

conditions in the landscape might influence the predictability of community composition 

in localities with particular environmental conditions. Specifically, the goal of my thesis 

research is to address the following research question: does increasing the degree of 

positive spatial autocorrelation of the environment in the broader landscape increase the 

predictability of local community composition?   

 In the sections below, I provide background information on key topics that are 

directly related to the research question. First, community assembly theories, which have 

shaped perspectives on the predictability of community composition, are described: niche 

theory, neutral theory, and historical-regional theory. Next, key landscape structure 

terminology is defined, and a description is provided on how landscape connectivity can 

influence the importance of local environmental determinism (repeatable composition in 

relation to the environmental conditions). Then, in the thesis research section, additional 

background information is given, and the hypotheses and predictions related to the 

research question are discussed. Also, there is a thesis overview, which mentions 

additional simulations and analyses that supplement the main research question.  

1.2. Assembly Theories: Explaining Composition-

Environment Relationships 

 Community assembly theories provide a conceptual framework for understanding 

which factors determine species diversity (including composition and richness) in 

localities with particular environmental conditions (Chase and Leibold 2003). First, I 
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present background on deterministic assembly theory, i.e., niche theory, and the key 

concept of species-environmental sorting. Then, neutral theory  niche theory‟s 

antithesis  is briefly covered to point out the use of neutral models as null models, and 

to introduce the notion that contemporary ecologists view local community composition 

as arising due to the importance of deterministic relative to stochastic community 

assembly. Lastly, a brief description is given about theory that highlights how local 

community composition is influenced by broader scale temporal (historical) and spatial 

(regional) factors. 

1.2.1. Niche Theory 

 Hutchinson (1957) played a major role in the quantification and definition of the 

niche concept (Chase and Leibold 2003). He defined a niche as an n-dimensional 

hypervolume that described the quantity of each limiting factor (n in number) an 

organism needed to survive. In particular, a species‟ fundamental niche was defined as 

the environmental conditions under which a species could exist in the absence of other 

species, i.e., the hypervolume of conditions to which a species has evolved physiological 

tolerance. The part of the fundamental niche in which a species actually resides, a 

restricted region due to interspecific interactions, was called the realized niche. 

 Inspired by Hutchinson‟s work, ecologists in the 1960s and 1970s developed 

what is now called niche theory: a collection of theoretical models that explore which 

and how many species reside in a given community (Chase and Leibold 2003). At this 

time, researchers were convinced that deterministic inter-specific competition for 

resources was a key underlying mechanism driving the assembly of communities (e.g., 
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MacArthur and Levins 1967, Diamond 1975). While there was exploration of other 

factors, such as predation and environmental variability, there was intense focus on 

resource competition and the niche; this resulted in niche and resource competition being 

commonly associated in the ecological literature for decades (Chase and Leibold 2003). 

 After the initial surge of support, niche theory was highly criticized. For example, 

during the 1970s, proponents of null models (e.g., Simberloff 1978, Strong et al. 1979) 

indicated that niche-related studies were often conducted without adequate null 

hypotheses. The lack of appropriate null hypotheses called into question the validity of 

many studies inferring competition and using niche theory. Also, niche theory was 

criticized for not properly taking into account processes occurring at multiple spatial 

scales (Chase and Leibold 2003, Ricklefs 2004). In addition, critics highlighted that 

confusion arose when niche concepts were used in vague ways (Chase and Leibold 

2003). However, many contemporary ecologists are embracing and revamping niche 

theory (Chase and Leibold 2003, Silvertown 2004, Tilman 2004, Schoener 2009). Such 

ecologists are mindful of using appropriate null models, making niche theory more 

relevant at multiple spatial scales, and clearly delineating the particular use of niche 

concepts (Chase and Leibold 2003). 

 An element of niche theory that is prevalent, implicitly or explicitly, in plant 

community ecology is the notion of niche-assembly along environmental gradient (see 

Whittaker 1956, Gauch and Whittaker 1972, Whittaker 1975, Austin 1985, Austin and 

Smith 1989, Chase and Leibold 2003, Leibold et al. 2004, Austin 2005, Karst et al. 

2005), which has been termed species-environment sorting (Foster et al. 2011). Species-

environmental sorting arises when differentially adapted species obtain optimal 
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abundances at different environmental gradient values that correspond to their species-

specific adaptations, e.g., tolerance and competitive ability. In the 1950s to 1990s, the 

occurrence of variation in plant species composition along environmental gradients was 

often viewed as the result of species-environmental sorting (Whittaker 1956, Gauch and 

Whittaker 1972, Whittaker 1975, Austin 1985, Austin and Smith 1989). This view 

assumed species-environmental sorting would cause a close correspondence between a 

particular community composition and particular abiotic environmental conditions. 

1.2.2. Neutral Theory 

 In contrast to deterministic species-environmental sorting, neutral theory assumes 

functional equivalence, which operationally means species have equal fitness in a given 

set of abiotic environmental conditions (see Bell 2001, Hubbell 2001). Under the 

assumption of functional equivalence, community composition arises due to stochastic 

processes, such as local stochastic extinction and stochastic dispersal. While functionally 

equivalent species assemble stochastically with respect to the underlying environmental 

conditions, spatial patterns irrespective of the environment can form in the landscape, 

owning to spatially limited dispersal. Thus, despite a lack of niche differentiation, neutral 

communities nonetheless can exhibit distance-decay in the similarity of local species 

composition (Hubbell 2001, Tuomisto et al. 2003, Legendre et al. 2005). 

  Neutral simulation models have also produced other community patterns, often 

strikingly similar to those observed in the field (e.g., Bell 2001, Hubbell 2001, Bell 

2005). For example, Hubbell‟s (2001) model produced species relative abundance and 

species-area patterns similar to the patterns in surveys of tropical tree communities. In 
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another modeling study, Bell (2005) produced species co-occurrence patterns similar to 

those of systematic plant surveys in an old growth forest and in a highly humanized 

landscape. 

 The results from neutral models (especially Bell 2001, Hubbell 2001) ignited 

intense debate about whether community patterns were predominately shaped by 

stochastic or deterministic processes (see Whitfield 2002). After less than a decade of 

intense “neutral versus niche” debate, heated discussion has been replaced by discourse 

on niche-neutral reconciliation (e.g., Gravel et al. 2006, Hérault 2007). Current 

consensus  is that communities lie along a deterministic-stochastic community assembly 

continuum, with neutral and classical niche theory representing the ends of the 

continuum (Gravel et al. 2006, Leibold and McPeek 2006, Cadotte 2007, Adler et al. 

2007, Mutshinda et al. 2011).  

 An increasingly common use of neutral models is as null models to test 

hypotheses about the drivers of community patterns (see Gotelli and McGill 2006, 

Etienne and Rosindell 2011). Because neutral models have functionally equivalent 

species, the patterns arising from these models can be compared to the output of 

theoretical models, and to data from empirical research, where species have trait 

differences (e.g., Ulrich 2004, Bell 2005). The use of neutral models in this way allows 

researchers to assess whether community patterns arising in the field, and in simulation 

models, can occur due to stochastic community assembly processes alone. Null models 

of this sort are key for increasing our understanding of what factors can give rise to local 

community patterns (Bell 2001, Hubbell 2001, Ulrich 2004, Bell 2005, Gotelli and 

McGill 2006, Etienne and Rosindell 2011).  
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1.2.3. Historical-Regional Theory 

 In the late twentieth century, ecologists expressed the need to examine how local 

community patterns were influenced by both local factors and factors occurring at 

broader temporal (historical) and spatial (regional) scales (Ricklefs 1987, Ricklefs and 

Schluter 1993, Brown 1995). Many historical and regional factors are thought to obscure 

community composition-environment relationships. For example, the historical arrival of 

species into a locality may result in species being in higher abundance in suboptimal 

conditions than expected, a stochastic priority effect (Chase 2003, Trowbridge 2007). 

Also the number of species in the broader landscape (regional species pool size) can 

influence the predictability of local community composition: larger regional species 

pools are thought to create more stochastic community compositions given fixed local 

carrying capacity (Ricklefs and Schluter 1993, Hubbell 2001).   

 Metacommunity ecology brings to the fore the notion that dispersal is a regional 

scale process that influences local community composition in heterogeneous landscapes 

(Holyoak et al. 2005). Metacommunities are a set of communities connected by dispersal 

(Leibold et al. 2004, Holyoak et al. 2005). Dispersal plays a large role in whether 

community composition in metacommunities arises predominately due to deterministic 

species-environmental sorting or due to less predictable assembly via mass-effect. Mass-

effect involves the dispersal of species into suboptimal environmental conditions from 

optimal environment (Mouquet and Loreau 2003). Intermediate rates of dispersal can 

result in strong mass-effect, and low (or very high) rates of dispersal can result in a high 
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strength of deterministic species-environmental sorting (Mouquet and Loreau 2003, 

Holyoak et al. 2005, Gravel et al. 2006, Ruokolainen et al. 2009). Also, the inability of 

species to reach optimal habitat in space, termed dispersal-limitation, can give rise to 

stochastic community composition patterns (Hubbell 2001, Tuomisto et al. 2003, Ozinga 

et al. 2004, Bell 2005, Ozinga et al. 2005). Furthermore, metacommunity modeling 

studies (e.g., Economo and Keitt 2008, Büchi et al. 2009, Economo and Keitt 2010) and 

field studies (e.g., Freestone and Inouye 2006, Minor et al. 2009) suggest that dispersal 

can interact with landscape structure to influence local community composition.  

1.3. Influence of Landscape Structure on the Predictability of 

Community Composition  

1.3.1. Definitions of Key Landscape Structure Terms 

 Generally, landscape ecologists describe landscape structure as having two 

components: landscape composition and landscape configuration (Fahrig and Nuttle 

2003). Landscape composition refers to the type and relative abundance of habitat in the 

landscape, and landscape configuration refers to the spatial arrangement of habitats. 

Disentangling the influence of these two elements of landscape structure is difficult 

because the two are generally correlated (Guerry and Hunter 2002). For example, loss of 

habitat, which influences landscape composition, often results in changes of habitat 

isolation (a configuration feature). Commonly, landscape configuration is discussed in 

terms of discrete habitat patches (Fahrig and Nuttle 2003), but the same logic applies to 
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spatially arranging continuous environmental conditions (Palmer 1992, Büchi et al. 2009, 

Holland et al. 2009).  

 A key element of landscape structure is landscape connectivity, and is defined as 

the degree to which the landscape elements facilitate or impede the movement of 

organisms through the landscape (Taylor et al. 1993). Landscape connectivity is 

influenced by both the composition and the configuration of the landscape elements. If 

suitable habitat patches are in high abundance (landscape composition) and in close 

proximity to one another (landscape configuration), then landscape connectivity will be 

high; species will have accessible “stepping-stones” of suitable habitat across the 

landscape.  

1.3.2. Landscape Connectivity and Species-

Environmental Sorting 

 Species-environmental sorting, which leads to predictable community 

composition in localities, is thought to be influenced by landscape connectivity (Driscoll 

and Lindenmayer 2009, Flinn et al. 2010, Foster et al. 2011). In essence, this work 

suggests that with increasing landscape connectivity, there is increased species-

environmental sorting relative to stochastic community assembly processes. It appears, 

however, that previous work leaves unanswered the question of how for species with 

spatially limited dispersal, landscape configuration and dispersal interact to influence the 

importance of stochastic relative to deterministic community assembly. The objective of 

my thesis is to use metacommunity simulations to ascertain how dispersal interacts with 
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landscape configuration to influence the strength of environmental determinism in 

driving local community composition. 

1.4. Thesis Research 

1.4.1. Explanatory Variable: Spatial Autocorrelation of 

the Environment 

 Spatial autocorrelation of the environment (SAE) refers to the phenomenon of 

spatial clustering of environmental conditions in the landscape, with positive SAE 

meaning that similar conditions tend to be clustered together, and negative SAE meaning 

similar conditions tend to be far apart (Holland et al. 2009). SAE is a key component of 

landscape configuration, and is commonplace in the terrestrial landscape (see Lechowicz 

and Bell 1991, Bell 1992, Bell et al. 1993, Legendre 1993, Schlesinger et al. 1996, 

Robertson et al. 1997, Richard et al. 2000, Stoyan et al. 2000, Karst et al. 2005, Bekele 

and Hudnall 2006, Bridges et al. 2007, Büchi et al. 2009). It also varies among 

ecosystems (c.f. Bell et al. 1993, Bridges et al. 2007), but a thorough comparative 

assessment of this variation appears to be lacking.  

 Despite its ubiquity, it seems that researchers have rarely investigated, or 

speculated, if SAE has an ecological role to play in influencing plant species patterns in 

nature (but see Karst et al. 2005, Dufour et al. 2006, Pinto and MacDougall 2010, 

McGlinn and Palmer 2011). Recently, Pinto and MacDougall (2010) studied the degree 

of habitat-matching of an endangered violet in locations that varied in SAE. This work 
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suggested that with increasingly positive SAE, it was more likely a species would be 

present in its optimal habitat.  

 Metacommunity simulation models have revealed that the degree of positive SAE 

can influence community patterns (Palmer 1992, Malanson 2002, Büchi et al. 2009). In 

one study, Büchi et al. (2009) showed that increasing positive SAE decreased the 

diversity within communities and increased the proportion of species investing in 

reproduction compared to species investing in dispersal or adult survival. In another 

study, Palmer (1992) showed that in comparison to landscapes with positive SAE, low 

and negative SAE promoted species coexistence, and increased species‟ habitat breadth. 

Also, previously there have been ideas that suggest an influence of SAE on the 

predictability of species assembly in metacommunities (see Holyoak et al. 2005). 

However, it appears no metacommunity research has tested if SAE alters the 

predictability of local community composition.   

1.4.2. Research Question, Hypotheses, and Predictions 

  It has long been known that organisms with spatially limited dispersal are more 

likely to land in optimal environments if there is high positive SAE (Bell et al. 1993). 

However, as stated earlier, the influence of SAE on the predictability of community 

composition remains unclear. Recently, SAE was speculated as a potentially important 

factor governing the importance of stochastic relative to deterministic assembly within 

the context of plant communities (Karst et al. 2005, Pinto and MacDougall 2010). From 

this work, stems a prediction: with increasingly positive SAE, plants with spatially 

limited dispersal capacity will have propagules disperse from parent plants more often 
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into optimal environments, increasing the importance of deterministic species-

environmental sorting relative to stochastic community assembly.  

 I hypothesized that for metacommunities composed of species with spatially 

restricted (local) dispersal and differential adaptation to the environmental conditions 

(niche-differentiated), increasing the degree of positive SAE would increase 

deterministic species-environmental sorting relative to stochastic community assembly 

processes. This, in turn, would result in a trend of increasing predictability of local 

community composition with increasing positive SAE. More specifically, a key driver of 

the positive trend was hypothesized to be increased landscape connectivity enabling 

species to assemble deterministically in environmental conditions. For the dispersal 

control, i.e., spatially unrestricted (global) dispersal, I expected no trend in community 

composition predictability with increasing positive SAE because propagules would 

disperse to all environmental conditions regardless of landscape configuration. Neutral 

metacommunities served as controls for the niche-differentiated metacommunities, and I 

expected the neutral metacommunities to have the lowest predictability of community 

composition due to purely stochastic assembly (see Bell 2001, 2005), and to exhibit no 

trend in community composition predictability with increasing positive SAE.   

1.4.3. Overview of Chapters 

 The goal of my thesis research was to address the following research question: 

does increasing the degree of positive spatial autocorrelation of the environment in the 

broader landscape increase the predictability of local community composition? 



13 

 

 Chapter 2 is presented in the form of a manuscript, and describes my 

metacommunity simulation study that was designed to assess the above research 

question. In addition, there is supplementary material for the manuscript, which includes 

supplementary simulations and analyses. This additional material examines how the 

results are influenced by environment evenness, beta diversity resemblance measures, the 

number of time-steps, and demographic parameter combinations. 

 Chapter 3 is the conclusion chapter of the thesis. It returns to the goal of the thesis 

research, puts the research in a broader context, indicates potential significance and 

applications of the research, discusses research strengths and limitations, gives future 

research directions, and ends with a statement of the potential contributions of the thesis. 
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2. DISPERSAL AND SPATIAL-ENVIRONMENTAL 

STRUCTURE INTERACT TO INFLUENCE LOCAL 

ENVIRONMENTAL DETERMINISM OF COMMUNITY 

COMPOSITION   

2.1. Introduction 

 For decades ecologists have sought to understand the key question of why large 

differences in species composition arise in localities despite these locations having very 

similar abiotic environmental conditions (Ricklefs 1987, Ricklefs and Schluter 1993, and 

see Ricklefs 2004 for a historical review). Modeling studies increasingly show that 

community composition in localities depends on the relative importance of a variety of 

factors, including: local environmental determinism, stochastic processes, and processes 

occurring at broader temporal and spatial scales (Chase 2003, Tilman 2004, Gravel et al. 

2006, Ruokolainen et al. 2009, Orrock and Watling 2010). Empirical research supports 

the idea that the higher the strength of local environmental determinism relative to other 

factors, the higher the predictability of local community composition, i.e., whether 

particular species compositions will repeatedly be found in localities with particular 

environmental conditions (e.g., Fukami et al. 2005, Karst et al. 2005, Chase 2007, Chase 

2010, Flinn et al. 2010). 

 Dispersal is an important process influencing community composition because 

ecological communities are often part of a metacommunity, a set of local communities 
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connected by dispersal (Leibold et al. 2004, Holyoak et al. 2005). Recent work (e.g., 

Gravel et al. 2006, Ruokolainen et al. 2009) suggests that dispersal can influence the 

predictability of local community composition in metacommunities residing in 

landscapes with heterogeneous environmental conditions. Unpredictable species 

composition in localities can arise from high dispersal promoting mass-effect, i.e., 

inferior competitors persisting in suboptimal habitat because of dispersal from optimal 

habitat (cf. Mouquet and Loreau 2003). Low dispersal can also promote unpredictable 

local community composition due to dispersal-limitation, i.e., species do not reach 

optimal habitat (see Tuomisto et al. 2003, Ozinga et al. 2004, Legendre et al. 2005). 

 Neutral metacommunity models are increasing our understanding of how patterns 

of local community composition can arise purely due to stochastic dispersal and other 

stochastic processes (Bell 2001, Bell 2005, Economo and Keitt 2008, Economo and Keitt 

2010). Recent work (Economo and Keitt 2008, 2010) indicates that the connectedness of 

landscape elements influences local community composition by these elements acting as 

stepping stones that facilitate the movement of species through the metacommunity. 

Economo and Keitt (2010), for example, show that the composition of local communities 

became more diverse as communities were more connected throughout the entire 

landscape. Neutral models have functionally equivalent species, so these models are most 

relevant to the limiting case where the underlying environmental conditions have no 

influence on species dynamics.  

 Species-environmental sorting refers to the predictable assembly of species in 

localities due to species being differentially adapted to the underlying environmental 

conditions (Whittaker 1956, Gauch and Whittaker 1972, Austin 1985, Leibold et al. 
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2004, Foster et al. 2011). Recent work (Driscoll and Lindenmayer 2009, Flinn et al. 

2010, Foster et al. 2011) highlights the idea that increasing landscape connectivity, the 

degree to which the landscape facilitates the movement of organisms (sensu Taylor et al. 

1993), reduces dispersal limitation, and enables more effective species-environmental 

sorting. Nevertheless, much remains to be learned about how the spatial configuration of 

environmental conditions in the broader landscape influences landscape connectivity and 

the predictability of local community composition.  

 Spatial autocorrelation of the environment (SAE) is the degree of clustering of 

similar environments in the broader landscape, with positive SAE meaning that similar 

environments are clustered (Karst et al. 2005, Holland et al. 2009). Recently, it has been 

speculated that for plant species with spatially restricted dispersal, landscapes exhibiting 

positive SAE will foster deterministic community assembly because propagules will 

disperse from their parent plant into similar optimal environmental conditions (see Karst 

et al. 2005, Pinto and MacDougall 2010). However, there is need for research that 

explicitly examines how the degree of positive SAE influences the predictability of 

community composition. Addressing this question is important for applied and basic 

ecology: given that ecosystems vary in landscape structure (see Bell et al. 1993, Bridges 

et al. 2007) it is important to understand whether this structure influences the degree of 

determinism of community assembly and community composition-environment 

correlations.  

 A previous metacommunity modeling study by Palmer (1992) suggested that 

species-habitat matching increased with increasing SAE. However, this work does not 

examine how local communities residing in particular localities are influenced by 
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metacommunity dynamics that are mediated by landscape structure. Economo and Keitt 

(2010) illustrate with neutral metacommunities the importance of community 

connectivity on community assembly. However, to my knowledge, no metacommunity 

studies have examined if changing the spatial configuration of environmental conditions 

in the landscape influences the importance of deterministic species-environmental sorting 

relative to stochastic community assembly.  

 I employed spatially explicit metacommunity simulations to assess the following 

research question: does increasing the degree of positive SAE in the broader landscape 

increase the predictability of local community composition? I hypothesized that 

increasing positive SAE would increase the importance of species-environmental sorting 

relative to stochastic community assembly processes in metacommunities composed of 

species with spatially restricted (local) dispersal and differential adaptation to the 

environmental conditions (niche-differentiated). I expected the shift in strength of 

species-environmental sorting to result in a positive trend between community 

composition predictability and the degree of positive SAE.  

 Because I sought to understand the interaction of local dispersal with spatial-

environmental structure, a particular experimental approach was required (Fig. 2.1). 

First, a uniform distribution of environment amount (Fig. 2.1a) was used to reduce the 

influence of dominance that can arise with a Gaussian distribution of environmental 

amount (Gravel et al. 2006), whereby the species best adapted to the most common 

environmental conditions dominate regionally (Macía and Svenning 2005). Then, the 

same uniform distribution was spatially configured from a random configuration to high 

positive SAE (i.e., high clustering of similar environmental conditions), so that only 
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landscape configuration varied among landscapes; landscape composition remained fixed 

(Fig. 2.1b). In addition, there was a dispersal control (global dispersal) and a control for 

niche differentiation (functional equivalence) (Fig. 2.1c). Lastly, I quantified community 

composition predictability in the same localities (focal sites) of each replicate 

metacommunity (Fig. 2.1d) to understand how the same localities with the same 

environments would vary in their local community and environment associations 

depending on landscape configuration. 
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Figure 2.1 Schematic of the experimental approach. Environmental conditions were 

created (a), and spatially arranged in the landscape (b). Then, replicate metacommunity 

simulations with the four metacommunity treatments were run on replicate landscapes 

(c). Following this, community composition predictability was quantified by pair-wise 

Bray-Curtis similarity (1 - Bray-Curtis) comparisons of focal sites among replicate 

metacommunities; above, shows one focal site that has an environmental value close to 0 

and community composition that varies depending on the replicate metacommunity (d).  
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2.2. Methods 

2.2.1. Simulation Model 

 My study used a spatially explicit metacommunity simulation model, written in R 

(R Development Core Team). The bulk of the code was written by Jason Pither, but I 

made modifications, e.g., for the creation of landscapes, and decisions about parameter 

values, e.g., number of sampling times. Also, I designed code for using high performance 

computing on WestGrid‟s clusters; the cluster code saved at least two years worth of 

computer processing time. The model generally followed the approach of Bell (2001, 

2005), which is appropriate for modeling sessile organisms, such as plants.  

 Bell‟s model had (i) all species immigrating at the same rate into the 

metacommunity, (ii) species only colonizing marginal communities in the 

metacommunity, and (iii) species undergoing a random walk. Our model modifies these 

three aspects of Bell‟s model. First, our model‟s rate of immigration into the 

metacommunity was directly proportional to dispersal rates among communities in the 

metacommunity, with the probability of immigration weighted depending on the 

metacommunity abundance of the species. Second, the destinations of immigrants 

depended upon the dispersal capacities of the individuals. We consider these two 

modifications to more realistically model immigration because our approach assumes the 

metacommunity is embedded in an area with similar metacommunities. Third, our local 

dispersal of propagules was governed by a modified Gaussian dispersal kernel (Clark et 

al. 1999) given by: 

Prob(d) = 2pd/v[1+(d
2
/v)]

p+1    
(1) 
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where p and v control the shape of the kernel. Prob (d) dictates the distance that 

propagules disperse from parent organisms; with respect to immigration into the 

metacommunity, it is the probability that the individuals disperse d communities into the 

metacommunity. The modification of the dispersal kernel was used to add flexibility of 

dispersal behavior for future studies.  

 Below are the steps of the metacommunity simulation routine and the 

corresponding parameters (see Table 2.1 for a summary). Section numbers are provided 

for methods that are expanded upon in later sections.  

 Step 1: Initially, all communities were seeded with K (community carrying 

capacity) divided by S (number of species in the regional species pool) individuals of 

each species. When S > K, in the sensitivity analyses, communities were seeded with one 

individual per species. The initial even seeding of communities ensured dispersal 

limitation was not a factor governing succession at the outset of the simulation (Gravel et 

al. 2006). The number of communities in a replicate metacommunity was determined by 

the landscape lattice dimension, L, for a square lattice (L x L); each lattice cell 

corresponded to an environmental value and a community.  

 Step 2: After initial seeding, emigration and immigration occurred. In time-step t-

1, the number of emigrant propagules (propagules that dispersed out of the 

metacommunity) was enumerated. This number of individuals, but not necessarily the 

same species, immigrated in time-step t. The probability that an individual of a given 

species immigrated at time t was weighted by the given species‟ total abundance in the 

metacommunity at time-step t-1. In the event of spatially unlimited (global) dispersal, 

immigrants colonized the metacommunity cells at random. On the other hand, in the 



22 

 

presence of spatially limited (local) dispersal, immigrants colonized d lattice units (L) 

inwards from the edge of the metacommunity (Equation 1 and Section 2.2.2.3). Thus, 

most immigrants with local dispersal colonized communities near the edge of the 

landscapes, but some colonized further inwards. 

 Step 3: Following immigration, individuals in the metacommunity produced 

propagules at a probability of b (per capita birth rate).  

 Step 4: These propagules dispersed throughout the landscape with the probability 

u (per capita dispersal rate), which was the same for global and local dispersal (Section 

2.2.2.3). 

  Step 5: Then, individuals died at a probability of z (per capita death rate).  

 Step 6: Next, in the culling stage, if K was exceeded, individuals were culled at 

random in the neutral scenario (Section 2.2.2.2) until the community size, K, was 

reached. On the other hand, for the niche-differentiated scenario, the culling step was the 

stage where niche differences came into play, according to an environmental (niche) 

response function (Equation 2 and Section 2.2.2.2). 

 Step 7: Finally, if a species had zero abundance in the metacommunity at time-

step t-1, a single individual of that species immigrated in time-step t with a probability of 

q (rescue effect); this modeled the small probability that immigrants from populations 

elsewhere in the region could rescue locally extinct species in the metacommunity.  

 While Step 1 only occurred once in a simulation run (initial seeding), Steps 2 to 7 

were repeated for each additional time-step. Depending on the situation, a maximum of 

500 or 2000 time-steps after the initial seeding were run. This meant that simulations 



23 

 

ended at 501 and 2001 time-steps; this number of time-steps parallels the number used by 

other simulation studies (e.g., Gravel et al. 2006, Ruokolainen et al. 2009).  

 

Table 2.1 Summary of the metacommunity simulation routine and parameters. 

Step Event Parameters involved at event 

1 Initial seeding of 

each community in a 

metacommunity 

K (carrying capacity, the number of individuals in a 

community) 

S (regional species richness) 

L (landscape dimension for an L x L square lattice) 

 

2 

 

Immigration 

(emigration) occurs 

 

 

u (per capita dispersal rate)  

d (dispersal distance; for local dispersal only) 

p, v (determine shape of the dispersal kernel; for local 

dispersal only) 

L  

 

3 

 

Individuals produce 

propagules 

 

b (per capita birth rate) 

 

4 

 

Propagules disperse 

 

u   

d  

p, v  

L  

 

5 Individuals die z (per capita death rate) 

 

6 

 

 

 

 

 

 

 

 

7 

Culling stage 

(competition occurs) 

 

 

 

 

 

 

 

Rescue effect 

K (carrying capacity; in communities where exceeded, 

culling occurs) 

 (probability of surviving culling; function of E, , ) 

E (species-specific environmental value; for the niche-

differentiated scenario) 

 (species-specific fundamental niche optimum; for the 

niche-differentiated scenario) 

 (niche width; for the niche-differentiated scenario) 

 

q (rescue effect; may occur if a species goes extinct) 
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2.2.2. Experimental Design 

 The experimental design fully crossed the following treatments: (i) degree of 

positive SAE, (ii) fundamental niche scenario, and (iii) propagule dispersal capacity. 

There were 20 replicate metacommunities per treatment combination, resulting in 320 

simulations for the main experiment. Additional simulations were performed to assess 

the sensitivity of the results to the following: the amount of optimal abiotic 

environmental conditions per species (henceforth, referred to as environment amount), 

beta diversity resemblance measures, time-steps, and demographic parameters 

(Supplementary material).  

2.2.2.1. Degree of Positive Spatial Autocorrelation 

of the Environment 

 This research used continuous variation (Büchi et al. 2009) of environmental 

conditions along a single niche axis, a simplification used by other modeling studies 

(e.g., Palmer 1992, Tilman 2004, Bell 2005, Gravel et al. 2006, Vellend 2008, 

Ruokolainen et al. 2009). The arrangement of the environmental conditions was varied 

from a random configuration to high positive SAE (Fig. 2.1b), and was created with a 

Gaussian random field using a fractal model (“fractal B” model of the GaussRF function, 

Schlather 2009). The rationale for creating fractal-like landscapes is described at length 

by Palmer (1992). As a result of using GaussRF, the initial landscapes had environment 

amount following a Gaussian frequency distribution. In other words, the environmental 

conditions similar to the mean conditions were very abundant, and environmental 
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conditions farther away from the mean were in lower abundance. To avoid the influence 

of oligarchic dominance that would arise with a Gaussian distribution (Gravel et al. 

2006), the spatially configured environmental conditions were replaced with 

environmental conditions from a uniform frequency distribution. To ensure that only 

landscape configuration was modified, the same uniform distribution (this kept landscape 

composition constant) was used for all SAE levels.  

 After replacing the environmental conditions, the SAE was quantified using a 

moving window function. Under the local dispersal scenario, each propagule generally 

dispersed from its natal site to one of the 8 surrounding neighbor sites. Thus, to calculate 

SAE, a 3 x 3 moving window function was used. This function cycled through each site 

in the landscape (landscape edges were not used; this resulted in 1521sites) and 

calculated the variance in environmental conditions of all the neighbor sites compared to 

each central site. Larger moving windows (taking long distance dispersal into account) 

ranked the landscapes in the same order as the 3 x 3 window analysis. Then, the mean of 

all the neighbor variances was calculated to obtain the raw variance value. To standardize 

the variance measure, the raw variance value was divided by the maximum variance 

value (corresponding to the random landscape raw variance value), and this ratio was 

subtracted from one, i.e., 1- (raw variance) / (maximum raw variance). 

2.2.2.2. Fundamental Niche Scenario   

  Metacommunities had species following either a niche-differentiated or neutral 

fundamental niche scenario. The probability ( ) that individuals in the niche-

differentiated scenario survived culling (Step 6 in Table 2.1) in communities was 
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determined by a weighted lottery. The weighting factor was the product of the species-

specific environmental condition value (E) and the relative abundance of the species for 

each community. The Gaussian environmental response (niche) function used to model 

niche-differentiated survival probabilities was:  

(E) = exp[-(E- i)
2
 / 2

2
 ]    (2) 

The positions of species‟ fundamental environmental optima (µ1, µ2, … µS) corresponded 

to the 1
st
 to the S

th
 percentiles of the environmental conditions (Gravel et al. 2006), S 

being the number of species in the regional species pool (25 species at initial seeding, 

Step 1 in Table 2.1). Species‟ niche widths, governed by  (Equation 2 above), were set 

to 0.75 times the standard deviation of the environmental conditions. Gaussian response 

functions are commonly used for the fundamental niches of niche-differentiated species 

in simulation studies (e.g., Palmer 1992, Gravel et al. 2006, Ruokolainen et al. 2009). 

These functions give the “middle species” more optimal environmental conditions if a 

Gaussian frequency distribution of environmental conditions is used (see Palmer 1992). 

In contrast to the niche-differentiated scenario, the neutral scenario had all the species‟ 

niche functions are assigned the value of 1. As a result, under the neutral scenario, the 

probability of surviving culling in a community was based only on the relative 

abundance of species in the community. In other words, for the neutral scenario, there 

were no species-specific differences corresponding to different environmental conditions. 

2.2.2.3. Propagule Dispersal Capacity 

 The simulations had two propagule dispersal capacities: spatially limited (local) 

dispersal and spatially unlimited (global) dispersal. The distance dispersed by the 
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propagules with local dispersal was governed by a modified Gaussian dispersal kernel 

(Clark et al. 1999; refer to Equation 1). The parameter values used within the dispersal 

kernel (see Table 2.2) generally resulted in each propagule colonizing communities 

adjacent to the community of the parent organism, but propagules could disperse a 

maximum distance of 7 communities. The dispersal kernel with these parameter values 

also yielded the frequency that propagules dispersed (rate of dispersal, u, see Table 2.1 

and Table 2.2). The same rate of dispersal was used for global dispersal. Also, both local 

and global dispersal scenarios had the direction of propagule dispersal chosen at random. 

However, unlike with local dispersal, the distance of globally dispersed propagules was 

not dictated by a dispersal kernel, so propagules could potentially disperse anywhere in 

the landscape. In addition to inter-community dispersal (Step 4, Table 2.1), immigration 

and emigration (Step 2, Table 2.1) were dictated by dispersal capacity. The per capita 

immigration and emigration rates under the local and global dispersal scenarios differed; 

rates were lower for metacommunities with local dispersal than with global dispersal. 

The realized immigration and emigration rates were similar to the rates explored in other 

simulation studies (e.g., Bell 2005). 

2.2.3. Sampling the Metacommunity 

 For each replicate metacommunity, I censused the communities located in the 

central 26 x 26 sites (676 sites) of the 40 x 40 lattice landscape. Avoiding the outer 7 

communities reduced the potential impact of edge effects that could arise due to spatially 

random immigration into the metacommunity. A subset of the 676 central communities 

was selected for subsequent analyses, with the criterion being that the local 
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environmental conditions were not extreme, i.e., not less than or equal to -1.5, or greater 

than or equal to 1.5. This exclusion of extreme values avoided the potential confound of 

there being fewer species tolerant of extreme conditions; a potential problem arising 

because of the nature of the distinct preference fundamental niche model that was used 

(cf. Gravel et al. 2006). 

2.2.4. Community Composition Predictability 

 To evaluate community composition predictability, I used the „vegan‟ package in 

R (Oksanen et al. 2010), and code I wrote, to calculate among-replicate Bray-Curtis 

similarity (1 - Bray Curtis). This involved Bray-Curtis similarity comparisons of each 

focal site for each experimental treatment combination (a focal site is illustrated in Fig. 

2.1d; there were n number of focal sites per metacommunity). Given 20 replicates, there 

were 190 pair-wise Bray-Curtis similarity comparisons per focal site. The mean of the 

190 values was calculated for each focal site, resulting in the means for each 

experimental treatment combination. Bray-Curtis similarity values range between a 

minimum value of 0 (least predictable community composition) and a maximum value of 

1 (most predictable community composition). Bray-Curtis similarity values approaching 

1 indicated a high importance of deterministic relative to stochastic community 

assembly, or high community composition predictability. 

 I used Bray-Curtis similarity for the following reasons: it quantifies similarity of 

community composition based on species identity and abundance, it is commonly used 

for comparing community composition (see Anderson et al. 2010), and it has been used 

to assess among-replicate community similarity (e.g., Ruokolainen et al. 2009). Because 
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Bray-Curtis is sensitive to differences in alpha diversity, I also tested my results using 

measures that have been argued to be less dependent on alpha diversity. These were the 

numbers equivalents of Shannon beta diversity (see Jost 2007; for this measure I used the 

R package „vegetarian‟ by Charney and Record 2010), and Morisita Horn similarity 

(Wolda 1981, 1 - Morisita-Horn, which I calculated with the R package „vegan‟). These 

measures had trends similar those with Bray-Curtis similarity (Supplementary material).  

2.2.5. Parameter Values and Analyses for Main Results 

and Supplementary Material 

 Table 2.2 gives the parameter values and analyses used for the simulations. See 

the simulation model section (Section 2.2.1) for further details on these parameters. In 

addition to the main experiment, the parameters and analyses used for additional 

simulations are provided (Supplementary material). 
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         Table 2.2 Overview of model parameters for the main experiment and sensitivity analyses. 

 

          *Provided here are the maximum and minimum values for the 19 sensitivity analyses that varied K, b, and z. See Bell (2005) for more  

  details on the sensitivity analysis procedure. 

             N.B., This table only provides a brief summary; see Methods and Supplementary material sections for more details. 

 

Simulation Model parameters Beta diversity 

resemblance 

measure 

Maximum  

time-steps 

(reported) 

Environment 

evenness 

 S K L u d p v b z q     

               

Main results 

 

25 50 40 0.1 1-

7 

6.5 5.225 0.5 0.3 0.1 0.75 1-Bray-Curtis 2001  

(501) 

High 

(Uniform 

distribution) 

Supplementary 

material A 

25 50,

500 

40 0.1 1-

7 

6.5 5.225 0.5 0.3 0.1 0.75 1-Bray-Curtis 2001 

(501) 

Low 

(Gaussian 

distribution), 

High 

 

Supplementary 

material B 

 

25 

 

50 

 

40 

 

0.1 

 

1-

7 

 

6.5 

 

5.225 

 

0.5 

 

0.3 

 

0.1 

 

0.75 

 

1-Bray-Curtis, 

Numbers equivalents 

of Shannon beta 
diversity, 1-Jaccard,  

1-Morisita Horn 

 

2001 

(1, 501, 2001) 

 

High  

 

Supplementary 

material C* 

 

 

25 

 

11- 

422 

 

40 

 

0.1 

 

1-

7 

 

6.5 

 

5.225 

 

0.07 - 

0.96 

 

0.02 - 

0.50  

 

0.1 

 

0.75 

 

1-Bray-Curtis 

 

501 

 

High 
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2.3. Results 

 Community composition predictability increased with increasing positive SAE 

when there was niche differentiation and local dispersal (Fig. 2.2d). In contrast, there was 

no affect in the absence of either spatially-restricted dispersal or niche differentiation 

(Fig. 2.2a-c). The pattern of increasing community predictability with increasing positive 

SAE was robust to variation in methods, generally occurring even when there was low 

environment evenness (Supplementary material A), different beta diversity resemblance 

measures (Supplementary material B), and various demographic parameter combinations 

(Supplementary material C). The positive relationship occurred early in succession, i.e., 

by 501 time-steps (Fig. 2.2d), and was evident at later time-steps, e.g., 2001 

(Supplementary material B). Figure 2.3 plots the same values as Figure 2.2., but is 

included to illustrate how community composition predictability values varied in relation 

to the environmental conditions.   

 Additional findings are notable. First, the niche-differentiated and global dispersal 

scenario exhibited an intermediate level of community composition predictability 

compared to the niche-differentiated and local dispersal scenario (Fig. 2.2b). Second, 

neutral communities consistently exhibited the lowest community composition 

predictability (Fig. 2.2a, c, Supplementary material). Third, variation in Bray-Curtis 

values was generally much greater in magnitude for the niche-differentiated plus local 

dispersal scenario as compared to the other experimental treatment scenarios (compare 

the spread of the box plots among panels of Fig. 2.2). 
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Figure 2.2 Among-replicate similarity (community composition predictability) with 

increasing positive spatial autocorrelation of the environment. Illustrated are box plots for 

the means of among-replicate similarity for neutral and global dispersal (a), niche-

differentiated and global dispersal (b), neutral and local dispersal (c), and niche-

differentiated and local dispersal (d). The results in each box plot are for the mean 

among-replicate similarity of the inner census with environmental condition values 

between -1.5 to 1.5. Each mean was calculated for each focal site by averaging among-

replicate pair-wise comparisons (190 comparisons, given 20 replicate metacommunities). 

The degree of positive spatial autocorrelation of the environment ranges from random 

(0.0) to medium (0.3, 0.6) to high positive spatial autocorrelation of the environment 

(0.9) as calculated using standardized environmental variance. This plot is at 501 time-

steps.  
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Figure 2.3 Among-replicate similarity (community composition predictability) at the 

same interval of environmental conditions. Illustrated are scatter plots for the means of 

among-replicate similarity for global dispersal (a-d), and local dispersal (e-h). Grey 

crosses show among-replicate similarity when the metacommunity has niche-

differentiation, and black circles are for neutral metacommunities. The trend lines are 

locally weighted smoother lines. The results in each panel are for the mean among-

replicate similarity of the inner census with environmental condition values between -1.5 

to 1.5. Each mean was calculated for each focal site by averaging among-replicate pair-

wise comparisons (190 comparisons, given 20 replicate metacommunities). The degree of 

positive spatial autocorrelation of the environment ranges from random (0.0) to medium 

(0.3, 0.6) to high positive spatial autocorrelation of the environment (0.9) as calculated 

using standardized environmental variance. This plot is at 501 time-steps.  
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2.4. Discussion 

2.4.1. Take Home Message 

 This study highlights that the interaction of dispersal and the spatial configuration 

of the environmental conditions in the landscape can influence whether species 

composition is highly predictable in localities with similar environmental conditions. 

Specifically, this research shows that in the presence of both niche differentiation and 

local dispersal, community composition predictability increases with increasing positive 

SAE (Fig. 2.2d, Fig. 2.3e-h, Supplementary material).  

2.4.2. Processes that Drive Community Composition 

Predictability 

 The increase in community composition predictability with increasing SAE (Fig. 

2.2d, Fig. 2.3e-h, Supplementary material) can be attributed to increased landscape 

connectivity. Initially, species were seeded into all environmental conditions (see Step 1 

of Methods). This ensured that priority effects, which arise due to initial colonization 

events, did not occur in the simulations. The degree to which offspring spread over 

generations from local communities into optimal environmental conditions in the broader 

landscape can be attributed to landscape facilitated movement: with increasing positive 

SAE, the landscape had more connected “stepping-stones” of optimal environmental 

conditions that would better facilitate across generation landscape-level dispersal. With 

increased landscape connectivity, species would more likely build up larger population 

sizes in their optimal environmental conditions, and subsequently there would be an 
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increased importance of deterministic species-environmental sorting (via differential 

survival probabilities; see Equation 2 of the Methods) relative to stochastic community 

assembly processes.  

Various stochastic community assembly processes would have changed in strength 

with variation in SAE. To illustrate this, let us assume positive SAE in the landscape is 

the “norm,” which appears to be the case in many kinds of study systems (see Bell 1992, 

Bell et al. 1993, Bridges et al. 2007). First, with decreasing positive SAE, local stochastic 

extinction would increase. With decreasing positive SAE, optimal environmental 

conditions for each species would be more fragmented, and species would have had 

smaller populations because propagules were not be able to land in optimal 

environmental conditions as often. Thus, these smaller populations would have been 

prone to high rates of local stochastic extinction (Keitt 2003), producing more 

unpredictable local community composition than larger populations residing in 

landscapes with higher positive SAE. Second, mass-effect would have increased in 

prevalence with decreasing positive SAE; mass-effect involves the dispersal of species 

into suboptimal environmental conditions from optimal environmental conditions 

(Mouquet and Loreau 2003). Increased mass-effect would have decreased community 

composition predictability. Third, the action of demographic stochasticity very early on 

in succession, before large populations of species could arise, may have resulted in 

superior competitors being replaced by inferior competitors, subsequently leading to 

communities with higher abundances of inferior species than expected in later time-steps.   

 Given the local dispersal of propagules, local communities would have been 

constantly influenced by neighbor spill-over from its immediate neighbors (8 surrounding 
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communities). Neighbor spill-over in this situation is akin to matrix-to-patch edge effects 

described in habitat fragmentation studies (e.g., Davies et al. 2001), whereby the 

immigration of species from surrounding locations (matrix) influence the community 

composition of a local patch. With increasing positive SAE, on average, each local 

community would have resided in an environment that was on average more similar to 

the environmental conditions of its immediate neighbors, and this would have increased 

the likelihood that neighbor spill-over provided species that were well adapted to the 

environment in which each local community resided. Thus, with increasing positive SAE, 

neighbor spill-over would have increased the likelihood of deterministic species-

environmental sorting relative to stochastic mass-effects. Compared to the other 

landscapes, in the random landscape, neighbor spill-over would have obscured 

composition-environment relationships the most via a local mass-effect. 

 In addition to the main effects of SAE, additional findings are noteworthy. First, 

the finding that global dispersal was an intermediate level of predictability (Fig 2.2b) can 

be explained with the results of Keitt‟s (2003) metapopulation model study that examined 

spatial autocorrelation of a suitable habitat, dispersal, and the maintenance of source-sink 

populations. Keitt found that passive long distance dispersal resulted in individuals often 

ending up in sink habitats, and thus gave rise to a low viability of populations. 

Translating this to the multiple species of my simulations, global dispersal prevented 

species from maintaining large population sizes  essentially dispersal into sinks 

consumed propagules  and thus increased local stochastic extinction, resulting in an 

intermediate level of community composition predictability. Second, the neutral 

community scenarios had the lowest community composition predictability due to the 
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composition of neutral communities arising from purely stochastic assembly processes 

(see Bell 2001, 2005), which would have produced low community composition 

predictability. Third, there was generally a greater magnitude of variation in Bray-Curtis 

values for the niche-differentiated plus local dispersal scenario in comparison to the other 

experimental treatment scenarios. Greater variability of this sort was found in a previous 

study that varied temporal autocorrelation (Ruokolainen et al. 2009). Such a result could 

be because the small-scale clustering of environmental conditions was not the same 

throughout a landscape, which would affect neighbor spill-over. Focal sites surrounded 

by more similar environmental conditions would have had neighbor spill-over that 

promoted more deterministic species-environmental sorting. 

2.4.3. Composition-Environment Relationships Across 

Ecosystems   

 Different ecosystems vary in their spatial-environmental structure. Much research 

has focused on measuring spatial structure within ecosystems (e.g., Lechowicz and Bell 

1991, Schlesinger et al. 1996, Robertson et al. 1997, Richard et al. 2000, Stoyan et al 

2000, Bekele and Hudnall 2006), but a comprehensive comparison of SAE among 

ecosystems that accounts for potential confounding factors (such as grain size and 

sampling effort) appears to be lacking. Given that inherent spatial structure of the 

environment varies among ecosystems (e.g., see Bell et al. 1993, Bridges et al. 2007), my 

research results can be generalized to the following prediction that appears untested: 

ecosystems with high positive SAE will have more predictable composition-environment 

relationships than ecosystems with less clustering of similar environmental conditions. 
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Experiments (field, simulation, and microcosm) and data mining of online databases (to 

do the aforementioned comprehensive comparison) can be used to assess this prediction. 

Furthermore, given my results, practitioners should keep in mind that the reliability of 

composition-environment correlations as tools for management (see Legendre 2005) 

might change depending upon the spatial attributes of the ecosystem of interest; these 

predictive tools may perform best in ecosystems with high positive SAE.   

2.4.4. The Deterministic-Stochastic Community 

Assembly Continuum 

 Communities are thought to lie along a deterministic-stochastic community 

assembly continuum, with niche and neutral models representing the extremes of this 

continuum (Gravel et al. 2006, Leibold and McPeek 2006, Cadotte 2007, Adler et al. 

2007, Mutshinda et al. 2011). Understanding what influences where a community lies on 

this continuum is of key interest to ecologists studying plant community assembly. 

Ecologists often predict that plant species with spatially restricted dispersal capacity will, 

due to dispersal-limitation, assemble more stochastically in localities than plants with 

spatially unrestricted dispersal (see Tuomisto et al. 2003). However, species with 

spatially restricted dispersal capacities can also be predicted to deterministically sort if 

there is spatial clustering of similar environmental conditions because propagules 

encounter favorable environments nearby the parent plants (see Karst et al. 2005). My 

work illustrates that, all else being equal, the degree to which plant communities 

assemble stochastically in a particular locality is influenced by the interaction of dispersal 

with the spatial configuration of the environmental conditions in the broader landscape. 
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 Practitioners would benefit from a better understanding the factors driving where 

communities lie along the deterministic-stochastic community assembly continuum 

because biodiversity conservation, ecosystem management, and ecological restoration 

decisions need to be tailored depending on the role of stochastic relative to deterministic 

community assembly (Legendre et al. 2005). My work highlights a key point that is often 

disregarded in field surveys conducted for management and conservation: even if 

representative environments are present, their spatial configuration can influence the 

predictability of community composition. If variation in SAE influences the predictability 

of community composition, then it is important for restoration workers to assess SAE 

when conducting risk-assessment surveys, and developing restoration plans designed to 

restore particular assemblages of plant species. My work also raises the concern that 

conducting reference environmental assessments without taking into consideration 

environmental configuration has the potential to lead to erroneous conservation planning.  

For example, if representative environments are present, then it might be assumed that 

predictable assemblages will arise, but if these representative environments are arranged 

in a random fashion  such that community assembly in the landscape is highly 

stochastic  taking measures to increase the movement of organisms among optimal 

habitat would be a better conservation strategy than solely protecting particular 

environmental conditions.    

2.4.5. Conclusion 

 This study suggests that the degree of positive SAE in the landscape influences 

landscape connectivity, and other processes, and subsequently influences the 
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predictability of plant community composition. Given the results and that ecologists 

rarely study the influence of landscape geometry on plant community patterns and 

processes (see Dufour et al. 2006, McGlinn and Palmer 2011), I suggest ecologists should 

increasingly investigate the role of SAE on plant community patterns and processes. 

While ecologists often design sampling strategies to remove the effect of SAE (see 

Legendre et al. 2002), or use statistical methods that may not properly account for the 

ecological influence of SAE (Gilbert and Bennett 2010), statistical methods (see Keitt et 

al. 2002) and sampling strategies can be employed to quantify the unique influence of 

SAE on plant communities.  

2.5. Supplementary Material 

 The supplementary material gives the results of additional simulations and 

analyses that complement the main experiment. The additional analyses use 50 sites 

randomly sampled in the inner 26 x 26 cells of the landscape. I used this type of sampling 

because it mimics common field approaches. Also, sampling the inner census between 

environmental values -1.5 and 1.5 gave results similar to the 50 site sampling. As well, 

note that time-step one is after a round of weighted lottery culling, which reduces the 

among-community similarity below 1.0 (Supplementary material B). The additional 

simulations were run using high performance computing on the WestGrid clusters, and 

on the UBCO SARAHS cluster.  

2.5.1. Supplementary Material A: Environment Evenness 

 In nature, it is well known that the abundance of environmental conditions is 

unlikely to follow a uniform distribution. Instead, some environmental conditions will be 
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in higher abundance than others. Similarly, some species will have more optimal 

environmental conditions than the other species (low environment evenness).  

 Given that low environment evenness increases community composition 

predictability (see Gravel et al. 2006), it is important to see if SAE can still play a 

noticeable role in landscapes with low environment evenness. To this end, I ran 

simulation experiments similar to the main experiment, but with environment amount 

following a Gaussian frequency distribution (low environment evenness) rather than a 

uniform distribution (high environment evenness). The Gaussian distribution of 

environmental conditions was overlain on the same landscapes as the uniform 

distribution, creating a very similar pattern of SAE.  

 I examined composition predictability for the following: (i) low environment 

evenness, (ii) high versus low environment evenness for the niche-differentiated and local 

dispersal scenario, and (iii) and high versus low environment evenness given higher 

average species richness in local communities. The third investigation was conducted 

because the main analyses showed a low average species richness in local communities 

for the niche-differentiated and local dispersal scenario (generally 3-6 species) at 501 and 

2001 time-steps, so simulations were run that created communities with higher levels of 

species richness late in succession (generally 9-16 species). Higher richness is more 

realistic for understanding communities. However, these simulations increased 

processing time, so a limited number were run.   
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2.5.1.1. Results 

 Despite low habitat evenness, when positive SAE increased, community 

composition predictability increased for the niche-differentiated and local dispersal 

scenario (Fig. 2.4 -2.7). In general, the supplementary results were similar to the main 

results (Fig. 2.2 and Fig. 2.3e-h). However, the community composition predictability 

values were generally higher for the low environment evenness, i.e., shifted upward along 

the y-axis. 

 

Figure 2.4 Among-replicate similarity (community composition predictability) with 

increasing positive spatial autocorrelation of the environment and low environment 

evenness. Illustrated are box plots for the means of among-replicate similarity for neutral 

and global dispersal (a), niche-differentiated and global dispersal (b), neutral and local 

dispersal (c), and niche-differentiated and local dispersal (d). The results in each box plot 

are for the mean among-replicate similarity of each focal site (n=50 focal site means). 

Each mean was calculated for each focal site by averaging among-replicate pair-wise 

comparisons (190 comparisons, given 20 replicate metacommunities). The degree of 

positive spatial autocorrelation of the environment ranges from random (0.0) to medium 

(0.3, 0.7) to high autocorrelation (0.9) as calculated using standardized environmental 

variance. This plot is at 501 time-steps. 
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Figure 2.5 A comparison of the results given high and low environment evenness. Panel 

(a) is high environment and panel (b) is low evenness. Box plots are for the means of 

among-replicate similarity for the focal sites (n =50) in metacommunities with niche-

differentiation and local dispersal. Means were calculated for each focal site by averaging 

among-replicate pair-wise comparisons (n=190). The degree of positive spatial 

autocorrelation of the environment ranges from random (0.0) to medium (0.3, 0.6 or 0.7) 

to high autocorrelation (0.9). This plot is at 501 time-steps. 
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i) High environment evenness (uniform distribution) 

 
ii) Low environment evenness (Gaussian distribution) 

 
Figure 2.6 Among-replicate similarity (community composition predictability) at the 

same interval of environmental conditions given high and low environment evenness. 

Box plots are for the means of among-replicate similarity for the focal sites (n =50) in 

metacommunities with niche differentiation and local dispersal. Means were calculated 

for each focal site by averaging among-replicate pair-wise comparisons (n=190). 

Illustrated is high (i) and low (ii) environment evenness. The degree of positive spatial 

autocorrelation of the environment ranges from random (0.0) to medium (0.3, 0.6 or 0.7) 

to high autocorrelation (0.9). This plot is at 501 time-steps. 
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Figure 2.7 Among-replicate similarity (community composition predictability) with 

increasing positive spatial autocorrelation of the environment for higher local richness. 

For these simulations, the initial community carrying capacity (K) was 500, and the 

regional species pool (S) was 50. Box plots are of among-replicate similarity for the 

neutral and global dispersal (a), niche-differentiated and global dispersal (b), neutral and 

local dispersal (c), and niche-differentiated and local dispersal (d). The results in each 

box plot are for the mean among-replicate similarity of each focal site (n=50 focal site 

means). Each mean was calculated for each focal site by averaging among-replicate pair-

wise comparisons (n=190 comparisons). The first four plots in each panel are for high 

environment evenness, while the second set of plots is for low environment evenness. 

The degree of positive spatial autocorrelation of the environment ranges from random 

(0.0) to medium (0.3, 0.6) to high autocorrelation (0.9) as calculated using standardized 

environmental variance. This plot is at 501 time-steps.  

2.5.1.2. Discussion 

 There is debate about the relative importance of the spatial configuration versus 

environment amount as drivers of community assembly (Collinge 2009). My results 

support the notion that environment configuration can be an important factor influencing 

community assembly despite the influence of environment amount (see Krawchuk and 
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Taylor 2003). Indeed, the findings show that despite low environment evenness, there 

was still a detectable effect of increasing positive SAE on community composition 

predictability (Fig. 2.4d, Fig. 2.5b, Fig. 2.6, and Fig. 2.7).    

 Above a certain threshold of environment amount (see Flather and Bevers 2002) 

environment configuration will play an insignificant role in influencing community 

assembly. Predicting the presence of such a threshold will require understanding the scale 

at which organisms disperse and integrate environmental variables relative to the 

underlying environment configuration. Additional simulations suggested that the degree 

of fundamental niche-overlap will also influence this threshold: with decreasing niche 

width, the relationship between community composition predictability and the degree of 

positive SAE was more blurred for low compared to high environment evenness (data not 

shown).  

 This blurring arises because when niche width decreases, the degree of 

environment specialization increases, which increases the impact of oligarchic dominance 

(Macía and Svenning 2005) when there is low environment evenness (Gravel et al. 2006). 

In other words, when niche-specialization increases, species with the most optimal 

environment will tend to deterministically out-compete other species, which reduces the 

influence of SAE. Oligarchic dominance also led to the upward shift in the y-values for 

low environment evenness for the niche-differentiated and local dispersal scenario (Fig. 

2.5b), and for the niche-differentiated and global dispersal scenario (Fig. 2.6 and Fig. 

2.7). 



47 

 

2.5.2. Supplementary Material B: Beta Diversity 

Measures and Time-Steps 

  I examined the sensitivity of my results to different beta diversity resemblance 

measures and time-steps because these different factors can influence among-replicate 

community similarity (Ruokolainen et al. 2009). The focus was on changes in 

composition due to relative abundance rather than presence/absence. However, 1-Jaccard 

(a presence/absence beta diversity resemblance measure) was included because 

ecological studies often use presence/absence data, and it has been used to assess 

stochastic versus deterministic assembly (Ruokolainen et al. 2009). The other measures 

consider abundance in the pair-wise comparison of community composition (Anderson et 

al. 2010). Morisita-Horn (Wolda 1981) and number equivalents (Jost 2007) have been 

argued to be less sensitive to alpha diversity. Plots were examined for time-steps 1, 501, 

and 2001 for Bray-Curtis similarity (1 - Bray-Curtis), Shannon beta diversity numbers 

equivalents, Jaccard similarity (1- Jaccard), and Morisita-Horn similarity (1- Morisita-

Horn). Simulations were not run past 2001 time-steps because it was assumed pseudo-

equilibrium had occurred; the same trend occurred much earlier (e.g., 501 time-steps). 

2.5.2.1. Results 

 The trend of community composition predictability increased with increasing 

positive SAE only with niche differentiation and local dispersal was robust to variation in 

beta diversity resemblance measures and late succession time-steps (501 and 2001 time-
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steps). Results are summarized below (Table 2.3). One set of plots (Fig. 2.8i-iii) are 

provided to give an example of the plots examined to create Table 2.3. 

Table 2.3 Summary of the results from varying the beta diversity resemblance measure 

and number of time-steps. The trend of interest was increasing community composition 

with increasing positive spatial autocorrelation of the environment. At time-step 1 (not 

included in this table), there was no trend because it was too early in succession for a 

pattern to emerge.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Beta diversity resemblance measure Time-step Trend found 

 

Bray-Curtis similarity (1- Bray Curtis) 501, 2001 Yes 

 

Number equivalents for Shannon beta diversity  

 

501, 2001 

 

Yes 

 

Jaccard similarity (1- Jaccard) 

 

501, 2001 

 

Yes 

 

Morisita-Horn similarity (1- Morisita-Horn) 

 

501, 2001 

 

Yes 
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i)  Bray-Curtis similarity, time-step 1 

 

 
 

 

ii) Bray-Curtis similarity, time-step 501 
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iii) Bray-Curtis similarity, time-step 2001 

 

 
Figure 2.8 Among-replicate similarity (community composition predictability) with 

increasing positive spatial autocorrelation of the environment at multiple time-steps. The 

time-steps shown are: time-step 1 (i), 501 (ii), and 2001 (iii). Illustrated are box plots of 

among-replicate similarity for neutral and global dispersal (a), niche-differentiated and 

global dispersal (b), neutral and local dispersal (c), and niche-differentiated and local 

dispersal (d). The results in each box plot are for the mean among-replicate similarity of 

each focal site (n=50 focal site means). Each mean was calculated for each focal site by 

averaging among-replicate pair-wise comparisons (190 comparisons, given 20 replicate 

metacommunities). The degree of positive spatial autocorrelation of the environment 

ranges from random (0.0) to medium (0.3, 0.6) to high autocorrelation (0.9) as calculated 

using standardized environmental variance.  

2.5.2.2. Discussion 

 The fact that multiple beta diversity resemblance measures gave the same trend 

(Table 2.3) is important in light of a recent synthesis paper arguing for the use of multiple 

resemblance measures to test hypotheses about beta diversity (Anderson et al. 2010). 

Ruokolainen et al. (2009) found a significant influence of late succession time-steps and 

beta diversity resemblance measures, but my results appeared robust to these factors.  
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2.5.3. Supplementary Material C: Demographic Parameter 

Sensitivity Analyses  

 It is important to check the sensitivity of model output to demographic 

parameters. I used an approach outlined in Bell (2005) to run 19 realizations. I varied K 

(community carrying capacity), b (per capita birth rate), and z (per capita death rate).  

2.5.3.1. Results 

 In general, the results (Table 2.4) showed the same trend as the main experiment: 

with increasing positive SAE, community composition predictability increased for the 

niche-differentiated and local dispersal scenario (Fig. 2.2d, Fig. 2.3e-h). However, some 

of the demographic parameter combinations resulted in no trend.  

Table 2.4 Summary of the results from varying demographic parameters. There were 19 

realizations. The trend of interest was increasing community composition predictability 

with increasing positive spatial autocorrelation of the environment. Below is a tally of the 

number of simulations with the trend of interest, and the parameter range. See Bell (2005) 

for the procedure.  

 

Number showing trend  Birth rate (b) Death rate (z) Community carry capacity (K) 

17* out of 19 0.07 - 0.96 0.02 - 0.50 11- 422 

*In a few instances, the first landscape (random) had a value close to, or just above, the 

second level of positive spatial autocorrelation of the environment.  

2.5.3.2. Discussion 

 The expected trend was not found when birth and death rate were very similar. In 

this case, communities would have behaved in an essentially neutral fashion. This is 

because the species would not have produced large enough population sizes in optimal 

environmental conditions to enable effective deterministic species-environmental sorting.  
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3.  CONCLUSION 

3.1. Goal of Thesis 

 The goal of this thesis was to address on the following research question: does 

increasing the degree of positive spatial autocorrelation of the environment (SAE) in the 

broader landscape increase the predictability of local community composition?  The 

simulations of this thesis showed a trend: community composition predictability 

increased with increasing positive SAE when there was niche differentiation and local 

dispersal. This trend was thought to be largely due to increasing positive SAE increasing 

landscape connectivity which, in turn, increased species-environmental sorting relative to 

stochastic community assembly processes. The trend of interest was robust to variation in 

environment evenness, beta diversity resemblance measures, number of time-steps, and 

demographic parameters. 

3.2. Thesis Work in Light of Recent Research 

3.2.1. Landscape Connectivity and Plant Community 

Patterns 

 The thesis work adds to recent research that seeks to understand the effect of 

landscape connectivity on plant community pattern (Minor et al. 2009, Flinn et al. 2010, 

e.g., Brudvig et al. 2009). For example, Brudvig et al (2009), with the world‟s largest 

corridor experiment, illustrated that the degree to which patches were connected 

influenced the degree of spill-over of reserve species into non-reserve areas. Their work 
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highlights the idea that there is limited space for conservation reserves, so conservation 

efforts need to increasingly take note of ways in which managing protected areas can 

facilitate the preservation of species richness outside of reserves. The thesis work does 

not focus on species richness, but it suggests that plant species composition-environment 

relationships are influenced by landscape connectivity. Minor et al. (2009) noted that 

landscape configuration was related to the likelihood that plant communities that were 

composed of native or invasive exotic species. They suggested that with increasing 

fragmentation of the environment, invasive species would spread more easily than native 

species, leading to homogenization of plant community composition. In contrast, the 

thesis research suggests that community homogenization is inversely related to  

fragmentation of optimal environments. However, the thesis research uses the simplifying 

assumption that species do not possess different invasion traits that would influence their 

species-specific rate of spread through the landscape. 

3.2.2. Caution Regarding Variation Partitioning Analyses 

 Variation partitioning analyses have commonly used as predictive tools for 

applied ecology (Legendre et al. 2005). These analyses are meant to assess field data to 

estimate the relative importance of environmental determinism (environmental control) 

versus dispersal-based, stochastic assembly (ecological drift) (see citations in Legendre et 

al. 2005, Smith and Lundholm 2010). Because ecological drift can produce spatial 

patterns in the landscape, which can create the appearance of environmental structuring, 

variation partitioning analyses were crafted to deal with these spatial patterns and to 

parcel out the variation due to environmental control relative to ecological drift.  



54 

 

 Variation partitioning analyses often treat SAE as a cofounding factor. For 

example, Smith and Lundholm (2010) warn that variation partitioning is strongly 

influenced by SAE. They also discuss some caveats of variation partitioning; there has 

been much controversy over the usefulness of variation partitioning analyses. 

  Gilbert and Bennett (2010) provide evidence that several common uses of 

variation partitioning in conservation and ecology are inappropriate. Their simulation 

work employed a landscape with positive SAE and a random landscape, and they 

illustrated instances where common variation partitioning were not able to properly 

model the importance of stochastic relative to deterministic assembly of communities in 

these landscapes.  

 In light of such recent work, it is likely the role of SAE as a factor influencing the 

predictability of composition-environment relationships has been misrepresented 

previously by researchers using variation partitioning. Variation partitioning is not used 

in this thesis research. A potential implication of the thesis research is increasing the 

awareness of those using variation partitioning analyses (in the appropriate ways) that 

SAE is more than a nuisance; it has ecological significance (see Legendre 1993) as a 

factor influencing processes that shape community composition.  

3.3. Potential Significance  

3.3.1. Basic Ecology 

 The thesis research can potentially add to conceptual developments in 

metacommunity ecology. My work suggests that the importance of stochastic relative to 

deterministic community assembly is influenced by landscape configuration. This notion 
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adds to ideas previously expressed about metacommunities. For example, proponents of 

metacommunity theory have discussed how the distance between discrete patches, and 

differences in the dispersal capacities of the organisms, are expected to influence whether 

a metacommunity is influenced by mass-effect, species-sorting, or patch dynamics 

(Leibold et al. 2005). The results of this thesis suggest a shift between the relative 

importance of mass-effect and species-sorting depends on the spatial structure of the 

environment despite the organisms with the same dispersal capacity. Many plant species 

have spatially limited dispersal, and my research provides ideas about how these species 

may assemble in response to the spatial attributes of the ecosystems in which they reside.  

 This research is also potentially significant for advancing theoretical 

understanding of how metaecosystems could be influenced by landscape configuration. A 

metaecosystem is a set of ecosystems that are connected via flows of materials, energy, 

and organisms; it includes spatial flows among systems beyond just organism dispersal 

(Loreau et al. 2005). My results show that metacommunity dynamics were influenced by 

landscape configuration, and previous theory suggests that metacommunity dynamics can 

influence metaecosystem dynamics (Leibold et al. 2005). Indeed, the flow of organisms 

within the metacommunity of an ecosystem can influence its spatial properties, which in 

turn can influence among ecosystem spatial flows. Given my work, and all else being 

equal, I would expect that metacommunties would have increasingly predictable 

metaecosystem dynamics with increasing positive SAE. This increase in the 

predictability of metaecosystem dynamics could lead to more predictable ecosystem 

structure and function. 
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3.3.2. Applied Ecology 

 The thesis research supports the notion that the strength of composition-

environment relationships are influenced by historical (e.g., initial demographic 

stochasticity) and regional-level (e.g., landscape configuration) factors. Brudvig (2011) 

stresses that a key step forward in restoration ecology is to understand how historical and 

landscape-level factors can influence restoration work at the site level. Restoration tends 

to focus on managing local scale abiotic factors with the aim of creating specific species 

assemblages (Matthews et al. 2009, Brudvig 2011). This local-scale approach may be 

useful for meeting certain restoration targets, but ignoring the influence of historical and 

regional factors can lead to undesirable outcomes.  

 Given that ecosystems vary in SAE (Bell et al.1993, Bridges et al. 2007), it is 

important to evaluate if this variation influences composition-environment relationships. 

To this end, my research provides results that generate a prediction that appears untested: 

ecosystems characterized by higher positive SAE will have more repeatable composition-

environment relationships than ecosystems characterized by less clustering of similar 

environmental conditions. As well, this study suggests that the use of composition-

environment correlations as predictive tools for management (Legendre et al. 2005) will 

vary depending on the SAE of an ecosystem.  

3.3.3. Research Strengths 

 The thesis research has several important strengths. First, the simulations had a 

continuous environmental gradient. As noted by Palmer (1992) and Murphy and Lovett-

Doust (2004), plants likely experience continuous environmental conditions rather than 
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habitat patches. The thesis research also addresses the notion of Cushman et al. (2010) 

that it is important to understand landscape level processes by representing the 

environment as continuous gradients rather than discrete habitat patches. To date, 

research on species-environmental sorting in relation to landscape structure does not 

appear to address the influence of continuous environments on plant species, but instead 

takes a discrete habitat view (e.g., Brudvig et al. 2009, Minor et al. 2009, Flinn et al. 

2010). Second, this study demonstrated the influence of landscape configuration without 

the confounding factor of landscape composition. It is well known that the number and 

relative abundance of environmental conditions will affect community patterns, but how 

landscape configuration on its own influences community patterns appears less well 

studied, especially given it is difficult to untangle the influence of landscape 

configuration from composition in the field (Fahrig and Nuttle 2003). Third, a spatially 

explicit approach was used. A spatially explicit approach is important because the 

composition of plant communities, and other sessile organisms, is a spatially explicit 

phenomenon (Gardner and Engehardt 2008). Despite the critical information that can be 

gained from a spatially explicit approach (see Economo and Keitt 2010), it seems less 

common in metacommunity ecology than a spatially implicit approach perhaps because 

of the difficulties of quantifying spatially explicit dispersal in field studies (Jacobson and 

Peres-Neto 2010), and the increased processing time required for spatially explicit 

simulation modeling and analysis (Gravel et al. 2006). Fourth, this research integrates 

concepts from landscape ecology (e.g., landscape connectivity, landscape structure) into 

metacommunity ecology, which is becoming a trend in some other recent studies (see 
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Economo and Keitt 2008, 2010). It has been stressed that landscape and metacommunity 

ecology theory would benefit from integration (see Holyoak et al. 2005, Collinge 2009).  

3.3.4. Research Limitations 

 There are several important limitations to keep in mind regarding the thesis 

research. First, not as much demographic parameter space was explored as some 

modeling studies. However, sufficient parameter space was explored to show that the 

results were generally robust to changes in demographic parameters. Second, because this 

research only examined the purely spatial effect of environment configuration, the 

simulations did not incorporate “habitat dynamics.” Although it is well known that 

“habitats” (or environmental conditions) have dynamics, fixed habitat heterogeneity is 

also common in nature, and the ecological implications of this type of heterogeneity are 

not well understood (Davies et al. 2009). However, future work could investigate habitat 

dynamics induced by plant resource foraging (see Tilman 1982, 2004). Third, the model 

used in the thesis, like all models, was simplistic. For example, in the model, many well 

known ecological processes, such as facilitation and predation, were not included. Some 

other factors not included were more realistic demography (e.g., demography according 

to age structure), intra-specific density-dependence, or species-specific traits besides 

differential mortality rate during culling. However, similar model simplicity has been 

used by others (e.g., Bell 2005), and it is likely that the results of this thesis are still 

relevant to better understanding community assembly. Fourth, alpha diversity may have 

influenced the results of Bray-Curtis similarity. However, community resemblance 

measures less sensitive to alpha diversity than Bray-Curtis similarity, i.e., Shannon beta 
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diversity (Jost 2007) and Morisita-Horn (Wolda 1981), showed outcomes similar to the 

Bray-Curtis similarity analyses. Fifth, the results are only relevant to plant (or other 

organisms with spatially restricted dispersal) assemblages, in nature if plant species are 

differentially adapted to different environments, and environmental determinism is a 

significant driver of species composition. However, field studies suggest that plant 

species are differentially adapted to environments, and environmental determinism can 

act as a significant driver of species composition depending on the dispersal capacities of 

the plant species relative to the scale of environmental heterogeneity (e.g., Lechowicz 

and Bell 1991, Bell et al. 1993, Richard et al. 2000, Karst et al. 2005, Pinto and 

MacDougall 2010).  

3.3.5. Future Directions 

 Below are several possible future directions. First, future studies could use 

microcosm and field experiments to test if the predictability of community composition 

increases with increasing positive SAE. Although Pinto and MacDougall (2010) 

performed field experiments on one species, an endangered violet, to examine habitat 

occupancy in relation to SAE, they used variation partitioning analyses to infer 

community level effects, rather than community experiments. A study by Flinn et al. 

(2010) was inconclusive about the role of dispersal and landscape structure on the degree 

of species-environmental sorting. However, they did not use experiments, and also used 

variation partitioning methods. It seems no microcosm experiments have tested how SAE 

affects community assembly.  Microbial experiments would be useful for testing 

hypotheses in relation to SAE that are virtually impossible to test with other organisms. 
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 Second, future experiments could incorporate a habitat disturbance treatment in 

addition to the static SAE treatment. It is well known that disturbance influences the 

predictability of community composition by increasing local stochastic extinction (see 

Ruokolainen et al. 2009), but few studies have investigated how landscape configuration 

affects the response of communities to disturbance (Starzomski and Srivastava 2007, 

Büchi et al. 2009). Future experiments would complement previous research that 

examined the effect of temporal autocorrelation (Ruokolainen et al. 2009) and spatial 

autocorrelation of disturbance events (Brown et al. 2011) on community assembly.  

  Third, future research could study the effect of SAE on evolution in 

metacommunities. Previously, modelling showed that evolution in metacommunities was 

influenced by environment evenness (Hubbell 2006), and spatiotemporal environmental 

variation (Loeuille and Leibold 2008), but research is lacking on how SAE affects 

evolution in metacommunities. Environmental variability has been shown to affect the 

evolution of dispersal distance in single species populations (Murrell et al. 2002), but it 

would be useful to explore the evolution of dispersal distance in metacommunities in 

response to SAE. Also, in a future studies, metacommunity simulations could be used to 

test the prediction that increasing the degree of positive SAE decreases the tendency for 

organisms to evolve traits that promote phenotypic plasticity (Bell et al. 1993). Similarly, 

one could test the prediction that increasing positive SAE decreases the likelihood that 

generalists will evolve in communities (Hubbell and Foster 1986, Palmer 1992).  

 Fourth, future studies could examine the environmental texture hypothesis, which 

suggests that the rate of species accumulation during spatially explicit sampling of 

different environments is influenced by the geometry of the environment (McGlinn and 
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Palmer 2011); the lower the fractal dimension (associated with higher positive SAE), the 

more rapidly new species are accumulated. A recent field study by McGlinn and Palmer 

(2011) that tested the environmental texture hypothesis showed that a field site with 

higher positive SAE (low fractal dimension) had a greater accumulation of species than 

the other site. Presently, it appears work addressing the environmental texture hypothesis 

is still scarce, and data from the thesis research‟s simulation model could be gathered to 

evaluate this hypothesis.    

 Lastly, because the thesis research did not incorporate the influence of species on 

the SAE, or the process of facilitation, future simulations could have (i) species modify 

SAE, and (ii) a shift in the relative importance of facilitation and competition along a 

stress gradient. Field observations suggest that plant invasions into desert ecosystems 

may be influenced by the degree of positive SAE, whereby shrubs create “islands of 

fertility” (Schlesinger et al. 1996). Also, in desert ecosystems, facilitation can increase in 

importance relative to competition when environmental stress increases (Brooker et al. 

2008).   

3.3.6. Overall Conclusion 

 This thesis focused on a single research question: does increasing the degree of 

positive spatial autocorrelation of the environment (SAE) in the broader landscape 

increase the predictability of local community composition?  The research results 

illustrate that the answer to this question is yes, and the positive trend can be attributed to 

increased landscape connectivity facilitating increased species-environmental sorting. 
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 Despite the straightforward answer to the research question, the contributions of 

this thesis are potentially profound. As noted above, in addition to potentially important 

implications for basic and applied ecology, the results of the thesis research can be 

generalized to an important testable prediction that currently seems untested: ecosystems 

with high positive SAE will have more predictable community composition-environment 

associations than ecosystems with less clustering of similar environmental conditions.  
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