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Abstract

In this thesis, we completely determine the image of structure sheaves of

zero-dimensional, torus invariant, closed subschemes on the minimal, crepant

resolution Y of the Kleinian quotient singularity X = C2/Z/n, under the

Fourier-Mukai equivalence of categories, between derived category of coher-

ent sheaves on Y and Z/n-equivariant derived category of coherent sheaves

on C2. As a consequence, we obtain a combinatorial correspondence between

partitions and Z/n-colored skew partitions.
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Chapter 1

Introduction

In 1980, McKay [14] found an interesting link between representation theory

and algebraic geometry as a bijection between the set of non-trivial irre-

ducible representations of a finite group G of SL(2,C) and the components

of the exceptional divisor of the minimal resolution Y of the Kleinian singu-

larity X = C2/G. In particular, he showed that the McKay quiver 2.5 coin-

cides with resolution graph 2.3 of Y. Later on, in 1983, Gonzalez-Sprinberg-

Verdier [8] formulated McKay’s result in terms of K-theory. That is, they

geometrically constructed an isomorphism between K(Y ) and KG(C2) ∼=
Rep(G) where KG(C2) is the G-equivariant K-theory on C2 and Rep(G) is

the representation ring of G. Via this isomorphism a non-trivial irreducible

representation corresponds to the structure sheaf of an exceptional com-

ponent 2.5. Using the Chern character isomorphism K(Y ) ∼= H?(Y ), one

recovers the classical McKay correspondence and it is often described as the

following bijection

Geometric basis of H?(Y,Z)←→ Set of irreducible representations of G.

Finally, in 2001, Bridgeland-King-Reid [1] promoted the above corre-

spondence to an equivalence of derived categories

D(Y )
∼−→ DG(C2).

The above equivalence is then given by pulling back and pushing forward to

and from the universal object and this is called the Fourier-Mukai transform.

A key point in Bridgeland-King-Reid is to realize the resolution Y −→ X

as a moduli space, namely Y = GHilb(C2), G-Hilbert scheme which will be

1



Chapter 1. Introduction

described in 2.7.

The main question we would like to answer is to completely classify the

image of the Hilbert scheme of points of the minimal, crepant resolution

Y under the Fourier-Mukai transform. In other words, we want to investi-

gate where the structure sheaves of zero-dimensional closed subschemes of

Y (viewed as objects in D(Y )) go under the equivalence. It has been ex-

tensively studied where certain sheaves go under Fourier-Mukai equivalence

but always in the other direction [12], i.e. it has been computed where cer-

tain sheaves go on the orbifold. Our main result is a complete and explicit

description of the image of the structure sheaves of torus invariant, closed

subschemes of Y in the case where G ∼= Z/n.
We find that the structure sheaves of points on Y do go to sheaves on

C2 (as opposed to more general objects in DZ/n(C2)), but not necessarily

the structure sheave of subschemes. Instead, they all go to quotients of a

certain universal quasi-coherent sheaf which will be constructed in section

3.2.

Our construction induces as interesting combinatorial correspondence

between partitions and certain Z/n-colored skew partition. We illustrate

this correspondence with examples and diagrams in 3.2.3.

2



Chapter 2

Background

2.1 Finite subgroups of SL(2,C)

The following is a concise account of the classification of finite subgroups

of SL(2,C). Throughout, we will assume that G is a finite subgroup of

SL(2,C).

By taking the standard Hermitian inner product on C2 defined by 〈z, w〉 =

z · w and averaging by G, we arrive at a G-invariant Hermitian inner prod-

uct on C2. This implies that G is conjugate to a finite subgroup of SU(2,C).

In fact, this argument shows that the classification of finite subgroups of

SL(2,C) is equivalent to the classification of finite subgroups of SU(2,C).

We define a surjective group homomorphism SU(2,C)−→ SO(3,R) using

the algebra of quaternions H as follows:

Let q = a+bi+cj+dk ∈ H which can be written in the form q = z1+z2j,

where z1 = a + bi and z2 = c + di are complex numbers. Let H1 be the

group of quaternions with norm 1. There is a natural group isomorphism

ϕ : H1 −→ SU(2,C), z1 + z2j 7→

(
z1 z2

−z2 z1

)
Then we identify R3 with pure quaternions bi + cj + dk and define the

action of H1
∼= SU(2) on R3 by

q · q0 7→ q · q0 · q−1, q ∈ H1, q0 ∈ R3

now because the quaternion norm is multiplicative and coincides with Eu-

clidean norm on R3, thus p : H1 → O(3) is a well-defined group homomor-

phism.

3



2.1. Finite subgroups of SL(2,C)

Moreover, write q ∈ H1 as q = cos θ+ sin θq1, where q1 is a pure quater-

nion of norm 1. It is also immediate that the action of q on R3 is the rotation

defined by the axis q1 and the angle θ. Using the definition of SO(3,R), we

can define a surjective homomorphism p : H1 → SO(3,R). The kernel of p

is the center of SU(2,C) which is {±1}.
Hence there is a short exact sequence of groups

1 {±1} SU(2) SO(3)

H1 O(3)

1

ϕ

p

The classification of finite subgroups of SU(2,C) is now equivalent to

the classification of finite subgroups of SO(3,R), since any finite subgroup G

of SU(2,C) is mapped to a finite subgroup of G̃ of SO(3,R), and conversely

any finite subgroup G̃ of SO(3,R) can be lifted to a finite subgroup G

of SU(2,C) by the above diagram. Classification of finite subgroups of

SO(3,R) is very well-known and consists of the three families of groups,

namely, the symmetries of a regular polyhedron (tetrahedral of order 12,

octahedral of order 24 and icosahedral of order 60), the dihedral groups (of

order 2n) and the cyclic groups (of order n.)

By lifting the described subgroups we arrive at

1. Cyclic subgroup Cn of order n.

2. Binary dihedral group of order 4n,

3. Binary tetrahedral group of order 24,

4. Binary octahedral group of order 48,

5. Binary icosahedral group or order 120.

4



2.2. Kleinian singularities

2.2 Kleinian singularities

In this thesis, we are interested in working with quotient varieties C2/G so

we should first define what we mean by C2/G and try to find its defining

equations.

Definition The quotient variety X = C2/G = SpecC[a, b]G is called a

Kleinian singularity (also known as Du Val singularity, a simple surface

singularity or rational double point.)

We will see that X can be embedded in C3 as a hypersurface with an

isolated singularity at the origin, that is, there is only one defining equation

in the ring of invariants for various subgroups.

The action of SL(2,C) on C2 is defined by left multiplication which

induces the same action on subgroups of SL(2,C)(
c d

e f

)
: (a, b) 7→ (ca+ db, ea+ fb)

The induced action on the coordinate ring C[a, b] of C2 is(
c d

e f

)
: p(a, b) 7→ p(fa− db,−ea+ cb)

and we are looking for the ring of invariants i.e. C[a, b]G ⊂ C[a, b].

As an example, when G = Z/n the ring of invariants C[a, b]Z/n can be

computed as follows

Let εn = e2πi/n, then Z/n is acting on C[a, b] by gn =

(
εn 0

0 ε−1
n

)
,

gm · (a, b) 7→ (εna, ε
−1
n b)

The monomials an, bn, ab can be taken as the generators of the ring of in-

variants, therefore, C[a, b]Z/n = C[an, bn, ab]. It can be seen that the only

defining equation in this case is xy − zn = 0 where x = an, y = bn, z = ab.

The actions of other cases are illustrated as follows

5



2.2. Kleinian singularities

1. BD4n is a binary dihedral group of order 4n generated by g2n =(
ε2n 0

0 ε−1
2n

)
, h =

(
0 i

i 0

)
,

g2n · (x, y) 7→ (ε2na, ε
−1
2n b), h · (a, b) 7→ (ib,−ia)

Remark The group generated by g2n =

(
εn 0

0 ε−1
n

)
, h =

(
0 i

i 0

)
, is

conjugate to the cyclic group of order n.

Similarly for

2. BT24 is a binary tetrahedral group of order 24 generated by g2n =(
ε2n 0

0 ε−1
2n

)
, h =

(
0 i

i 0

)
, k = 1

1−i

(
1 i

1 −i

)
3. BO48 is a binary tetrahedral group of order 48 generated by g8 =(

ε8 0

0 ε−1
8

)
, h =

(
0 i

i 0

)
, k = 1

1−i

(
1 i

1 −i

)
4. BI120 is a binary icosahedral group of order 120 generated by g10 =(

ε10 0

0 ε−1
10

)
, h =

(
0 i

i 0

)
, l = 1√

5

(
ε5 − ε45 ε25 − ε35
ε25 − ε35 −ε5 + ε45

)
.

The complete account of finding the defining equations in these cases

have been fully illustrated in [3]. The following table contains the equations

of X for various groups up to conjugacy.

Conjugacy class Equation Dynkin graph

Z/n x2 + y2 + zn = 0 An−1

BD4n x2 + y2z + zn+1 = 0 Dn+2

BT24 x2 + y3 + z4 = 0 E6

BO48 x2 + y3 + yz3 = 0 E7

BI120 x2 + y3 + z5 = 0 E8

Table 2.1: Equations of Kleinian singularities

Explicit generator for the ring of invariants C[a, b]G can be found in [3,

p.7-13] and the above relations can be checked accordingly.

6



2.3. Minimal, crepant resolution and resolution graph

2.3 Minimal, crepant resolution and resolution

graph

Definition A minimal resolution Y of X is a resolution such that every

other resolution factors through Y.

Remark Note that a surface has a unique minimal resolution, however, for

higher dimensional varieties, minimal resolutions are not necessarily unique.

In order to construct a minimal resolution Y, we can find an arbitrary

resolution for X and contract (−1)-curves to produce Y successively. The

exceptional locus of ϕ : Y −→ X consists of (−2)-curves Ei intersecting

transversely. If we associate a vertex to each curve Ei and join two vertices if

and only if the corresponding curves intersect in Y, we arrive at the resolution

graph of X.

It is now worth mentioning here that the McKay’s result [14] gives a nice

correspondence between the resolution graph of a Kleinian singularity C2/G

and the Dynkin diagram of G. The Dynkin diagrams of An−1, Dn+2, E6, E7

and E8 are listed below in Figure 2.1.

Definition A crepant resolution Y −→ X is a resolution which the pullback

of the canonical divisor KX of X coincides with the canonical divisor KY of

Y.

Remark The minimal resolution of X = C2/G exists and is crepant due to

the fact that a 2-form f(a, b)da∧db on C2/G is invariant under the SL(2,C)

action.

Remark 2.4 Toric geometry

The Complete account of Toric geometry can be found in [5].

Throughout, V is an n-dimensional vector space over R. Recall that a

subset C ⊂ V ∼= Rn is convex if given any two elements x1, x2 ∈ C, then

λx1 + (1 − λ)x2 ∈ C for any 0 ≤ λ ≤ 1 and C is a cone if given x ∈ C,

7



2.4. Toric geometry

An−1 · · ·

Dn+2 · · ·

E6

E7

E8

Figure 2.1: ADE Dynkin diagrams

then ax ∈ C for all a ≥ 0. If C ⊂ Rn is a convex cone, then C ∩ Zn is a

semigroup under addition. The convex cone generated by x1, · · · , xk ∈ V is

the smallest convex cone containing x1, · · · , xk and is defined and denoted

by C = 〈x1, · · · , xk〉 = {a1x1 + a2x2 + · · ·+ akxk | ai ≥ 0}.

Definition A convex cone is strongly convex if it does not contain a non-

zero linear subspace and is simplicial if it can be generated by linearly

independent vectors.

Definition Let y∗ ∈ V ? be a linear functional on V. Then y is a support

of a cone C if y(x) ≥ 0 for all x ∈ C, and is written as y|C ≥ 0. Then

Hy = {y = 0} is the support hyper plane of C and Hy ∩ C is called a face

of C. A one-dimensional face is called ray.

Definition The dual cone C∨ of a cone C is the set of all y ∈ V ? with

support of C.

8



2.4. Toric geometry

Definition A cone C ∈ Rn is called rational if it can be generated by

rational elements in Qn.

Remark If C is strongly convex and rational, then it is generated the first

lattice points on its rays.

Lemma 2.4.1 (Gordon). If C ⊂ Rn is a rational cone then the semigroup

S = C ∩ Zn is finitely generated. Consequently, the group ring C[S] is a

finitely generated C-algebra.

Let N ∼= Zn and M = Hom(N,Z) ∼= Zn. Suppose that σ ⊂ NR := N ⊗
R ∼= Rn is a strongly rational cone. For σ∨ the corresponding semigroup σ∨∩
M, the semigroup ring C[σ∨∩M ] and the corresponding variety SpecC[σ∨∩
M ] are denoted by Sσ, Aσ and Uσ, respectively.

Definition A fan ∆ in NR is a finite, non-empty set of rational strongly

convex cones in NR, such that

1. If σ ∈ ∆ and τ ≤ σ (i.e. τ is a face of σ) then τ ∈ ∆.

2. If σ, τ ∈ ∆ then σ ∩ τ ∈ ∆.

Definition The toric variety X(∆) associated to the fan ∆ is

∐
σ∈∆

Uσ/{Uσ1 , Uσ2 glued along Uσ1∩σ2}.

Definition A morphism of cones is ϕ : (N1, σ1) −→ (N2, σ2) where ϕ :

N1 −→ N2 is a group homomorphism and ϕ⊗R : N1⊗R −→ N2⊗R maps

σ1 to σ2. The induced morphism ψ : Uσ1 −→ Uσ2 is called a toric morphism.

Definition A cone σ ⊂ NR generated by 〈v1, · · · , vk〉 is non-singular if

v1, · · · , vk can be extended to a basis of NR.

Remark We will use the fact that if σ is a simplicial cone in NR and

dimσ = n = rkNR, then σ is non-singular if and only if det(v1, · · · , vk) = ±1,

and Uσ is non-singular if and only if σ is non-singular.

9



2.4. Toric geometry

2.4.1 Toric varieties as quotients

Let G be a finite group acting on Cn = SpecC[x1, · · · , xn]. For example, let

G = 〈εn〉 ∼= Z/n acting on C2 by

εn.(x, y) 7→ (εnx, ε
−1
n y)

then X = C2/G = SpecC[x, y]G. Under the action, xayb is invariant if

and only if εanx
aε−bn yb = xayb or a ≡ b (mod n). Let M ′ ⊂ M be the

lattice of invariant monomials, and S′σ = σ ∩M ′. Then C[S′σ] = C[Sσ]G and

U ′σ = SpecC[S′σ] = C2/G.

Suppose that N ′ = Hom(M ′,Z) and consider the following short exact

sequence of abelian groups

0 −→M ′ −→M −→M/M ′ −→ 0

and apply the contravariant left exact functor Hom(−,Z) to get

0 −→ N −→ N ′ −→ Ext1(M ′/M,Z)

that is,

N ⊂ N ′ = {(α, β)| 〈(α, β),m′〉 ∈ Z, ∀m′ ∈M ′} = {(α, β)|nα or α+β or nβ ∈ Z},

since M ′ is generated by (n, 0), (1, 1), (0, n).

Theorem 2.4.2 (Fulton [5, p. 34]). Let (σ,N) be a singular simplicial cone

generated by v1, · · · , vn. Let N ′ ⊂ N be generated as Zv1 + · · · + Zvn, then

(σ,N ′) is non-singular and in fact U ′σ = An. Suppose G = N/N ′, therefore

G acts on An and Uσ = An/G.

2.4.2 Resolution of singularities

One of the important features of working with toric varieties is that we can

easily find the explicit defining equations of a resolution of a singular toric

variety by looking at its singular fan.

10



2.5. The classical McKay correspondence

Let X be a singular variety. Recall that a resolution Y for X is a

proper, birational map f : Y −→ X where Y is a non-singular variety. In

the toric case, let ∆ be a singular fan i.e. there exists a singular cone σ in

∆. Desingularization of ∆ is carried out by the so called subdivision process

[5, p. 45]. Indeed

Theorem 2.4.3 (Fulton [5, p. 48]). Every ∆ has a non-singular subdivision.

In our previous example which we will use it later, the toric fan associated

to the minimal resolution of X consists of n+ 1 rays (then n fans) from the

origin to the points ( jn ,
n−j
n ) for 0 ≤ j ≤ n in C.

Each chart Yi of Y (the resolution) corresponds to the fan Ci generated

by the lattice points ( in ,
n−i
n ), ( i−1

n , n−i+1
n ), where 1 ≤ i ≤ n. Then the

associated toric variety is

Yi = SpecC[x−(n−i)yi, xn−i+1y−(i−1)].

2.5 The classical McKay correspondence

Let G be a finite subgroup of SL(2,C), and let ρ be the 2-dimensional

representation of G induced by the inclusion G ⊂ SL(2,C). Suppose that

{ρ0, ρ1, · · · , ρk} be the set of irreducible representations of G, where ρ0 is

the trivial representation. For any 0 ≤ j ≤ k, the representation ρ ⊗ ρj

decomposes into a direct sum of irreducibles as

ρ⊗ ρj =
k⊕
i=0

aijρi

where aij = dimC HomG(ρi, ρ⊗ ρj).

Definition The McKay quiver of G is a directed multi-graph with vertices

indexed by irreducible representations and the vertex i is connected to j by

exactly aij number of edges.

Proposition 2.5.1 ([14]). Using representation theory, we have

11



2.5. The classical McKay correspondence

1. aij = aji.

2. McKay quiver is a connected quiver.

3. aii = 0.

4. aij ∈ {0, 1}.

In fact, by the above Proposition, we can view the McKay quiver of G

as a simple, undirected graph called McKay graph and denoted by Γ̃G. The

subgraph consisting of non-trivial irreducible representations is denoted by

ΓG.

Theorem 2.5.2 (McKay [14]). With the above notations, the McKay graph

Γ̃G is an extended Dynkin graphs of ÃD̃Ẽ type. Furthermore, the subgraph

ΓG is one of the graphs An, Dn, E6, E7, E8 2.1 which each arises as the res-

olution graph of C2/G.

This result establishes a one-to-one correspondence between the prime

divisors Di of the crepant resolution ϕ : Y −→ X = C2/G and the non-

trivial irreducible representations of G ⊂ SL(2,C).

Knowing that the exceptional divisor classes [Di] define a basis forH2(Y,Z),

then adding the class of a point, we arrive at a basis for H?(Y,Z). Corre-

spondingly, adding the trivial representation, we obtain

Set of irreducible representations of G←→ Basis of H?(Y,Z).

The first geometric interpretation of the McKay theorem at the K-theory

level was given by Gonzalez-Sprinberg and Verdier in 1983 [8]. They asso-

ciated the so called tautological vector bundles on Y to each irreducible

representation of G, which will be described quickly as follows;

Definition For an irreducible representation ρi : G −→ GL(Vi), let Mi

denote the OX -module defined by

Mi := HomC[G](Vi,C[a, b]).

12



2.5. The classical McKay correspondence

Because Mi is a G-invariant C[a, b]-module, the associated OX -module

is a coherent sheaf on X.

Definition Let Fi := ϕ?Mi/TorsOY where TorsOY is the OY -torsions of

ϕ?Mi, then the locally free sheaf Fi is called tautological bundle on Y asso-

ciated to ρi.

By case by case analysis, Gonzalez-Sprinberg and Verdier [8] proved that

the non-trivial tautological vector bundles {Fi} satisfy

c1(Fi) · [Dj ] = deg(Fi|Dj ) = δij ,

where c1(Fi) is the first Chern class of Fi and δij is the Kronecker delta

symbol.

At the K-theory level, they proved that Θ : KG(C2) −→ K(Y ) is an

isomorphism of abelian groups, where KG(C2) is the Grothendieck ring of

G-equivariant coherent sheaves on C2, K(Y ) is the Grothendieck ring of Y

and Θ is defined by

Θ(−) := (πY ?(M⊗ π?C2(−)))G

where πY , πC2 are projections of Y × C2 to Y and C2 respectively, and M
is the structure sheaf of the reduced fiber product (Y ×C2/G C2)red.

Moreover, they showed that for KG
c (C2) the G-equivariant K-theory

with compact support on C2,

KG
c (C2) ∼= Rep(G)

where Rep(G) is the representation ring of G, and the isomorphism is given

by Θ(O0⊗ρi) = [ODi ] where O0 is the skyscraper sheaf of the origin (0, 0) ∈
C2 and ρi is a non-trivial irreducible representation of G [2].

Bridgeland-King-Reid [1] have expanded the geometric interpretation by

enlarging the framework to the derived category of coherent sheaves.
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2.6 On derived category

One of the main motivations in constructing derived category for an abelian

category, such as category of coherent sheaves on a scheme is that for a

morphism of schemes ψ : Y → X we are interested in pulling back ψ?F
and pushing forward ψ?G of sheaves where F is a sheaf of OX -module and

G is a sheaf of OY -module. The issue with these functors is that they are

not exact, that is, the pull back ψ? is right exact but not left exact and

the push forward ψ? is left exact but not right exact. The first remedy

was to introduce right and left ith derived functor Liψ?, R
iψ? respectively,

within the category under consideration. However, there are disadvantages

in developing theories using these objects. The main remedy was to first

enlarge the category by adding more objects and then considering morphisms

which behave perfectly at the cohomology and K-theory levels, in order to

capture as much data as possible.

The construction of derived category D(A) associated to an abelian cat-

egory A will be briefly explained.

Like in many mathematical constructions, the aim is to set up a paradigm

in which capturing more data becomes more efficient and it also helps sim-

plify some previous constructions. Let A be an abelian category. We can

obtain the derived category D(A) in the following steps [7]:

1. Consider the category of chain complexes Kom(A) in A, where its

objects are chain complexes and its morphisms are chain maps.

2. Identify chain homotopic morphisms in Kom(A), to arrive at the ho-

motopy category of chain complexes K(A).

3. Construct D(A) by localizing K(A) at the set of quasi-isomorphisms

in A.

In summary, objects of D(A) are chain complexes and morphisms are chain

maps where two morphisms are equal if and only if they induce isomorphisms

on cohomology groups, i.e. are quasi-isomorphic.
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Some useful examples that we will use later are as follows. The category

of coherent sheaves on Y and the category of coherent sheaves on Y with

compact support are denoted by Coh(Y ), Cohc(Y ) and the category of

coherent sheaves on [C2/G] 3 is denoted by Coh([C2/G]) which is isomorphic

to CohG(C2) the category of G-equivariant coherent sheaves on C2.

Bridgeland-King-Reid [1] result is an equivalence of derived categories

between Db(Coh(Y )) and Db(Coh([C2/G])) where Db is the derived cat-

egory of bounded complexes and the equivalence is given by the so called

Fourier-Mukai transform Φ which we will define and use later.

2.7 Hilbert scheme of points

For a given non-singular, complex variety (manifold) X, the configuration

space of m points moving around in X is an interesting geometric object.

The configuration space of m-ordered points in X is apparently Xm, and the

configuration space of m-unordered points is SymmX := Xm/Sm, the mth

symmetric product of X, where Sm is the symmetric group of m-letters. In

both spaces, points that correspond to m-tuples of points that are not pair-

wise distinct are of special interests. In Xm, they have non-trivial isotropic

groups with respect to Sm-action and in SymmX they are singular (except

for the case where X is one-dimensional.)

The smooth compactifications of the configuration space of m-tuples of

distinct points are important. Fulton-MacPherson [6] constructed a nice

compactification for ordered m-tuples [13].

Let X be a smooth quasi-projective scheme of finite type over C. Let

Z ⊂ X be a zero-dimensional closed subscheme. The length of Z is the

length of the artinian C-algebra H0(Z,OZ), i.e. l(Z) := dimCH
0(OZ). The

Hilbert scheme of m points on X is the set of all zero-dimensional closed

subschemes Z ⊂ X of length m and is denoted by Hilbm(X).

If x ∈ Z is a closed point, the multiplicity of x in Z is defined as

dimC(OZ,x). We can associate the cycle |Z| to any Z which corresponds

to the underlying set counted with multiplicities. That is, |Z| is a point in

SymmX and is defined by
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2.7. Hilbert scheme of points

|Z| :=
∑
x∈X

dimC(OZ,x) · x ∈ SymmX

The Hilbert-Chow morphism is then

ρ : Hilbm(X) −→ SymmX

which sends Z to |Z|.
Briefly, lets discuss why Hilbm(X) has a scheme structure. Let X be

defined as above. A flat family of proper subschemes in X parameterized

by scheme S is a closed subscheme Z ⊂ S × X such that the projection

Z −→ S is flat and proper. For a closed point s ∈ Z, denote the fiber of Z

over s by Zs. Now, given such a family and a morphism f : S′ −→ S, the

family Z ′ := (f × idX)−1(Z) ⊂ S′ ×X is flat and proper over S′. Thus we

have defined a functor

hilb(X) : Schop −→ Set

which associates to S the set of all flat families of proper subschemes in X

parameterized by S, where Sch and Set are categories of schemes and sets,

respectively.

For any proper subscheme Z ⊂ X the Hilbert polynomial of Z is defined

by PZ(n) := χ(OZ ⊗OX(nH)) where H is an ample Cartier divisor and χ

is the Euler characteristic. It can be seen that for a flat family Z ⊂ S ×X
the function s 7→ PZs ∈ Q[T ] where s ∈ S, is locally constant. This means

that given a polynomial P, the functor

hilbP (X) : S −→ {Z ⊂ S×X| Z is proper and flat over S, P (Zs) = P,∀s ∈ S}

is an open and closed subfunctor of hilb(X). In particular, the functor

hilbmX associated to the constant polynomial P = m ∈ N, parameterizes

all zero-dimensional subschemes of length m. In general

Theorem 2.7.1 (Grothendieck [9]). For a quasi-projective (projective) scheme
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2.7. Hilbert scheme of points

X, the functor hilbP (X) is representable by a quasi-projective (projetive)

scheme HilbP (X).

Using Yoneda’s lemma, we can deduce that there exists a universal sub-

scheme

ZP ⊂ HilbP (X)×X,

flat over HilbP (X), such that for any Z ∈ hilbP (X)(S), there is a unique

morphism f : S −→ HilbP (X) with Z ∼= (f × idX)?(ZP ).

Theorem 2.7.2 (Fogarty [4]). Let X be a smooth connected quasi-projective

surface, the the Hilbert scheme Hilbm(X) is smooth and connected of dimen-

sion 2m.

We are interested in Hilbert scheme of points on C2 which has an ele-

mentary description as follows

Hilbm(C2) = {I
ideal
⊂ C[a, b] | dimCC[a, b]/I = m}.

Remark Consider the Hilbert-Chow morphism Hilbm(C2) −→ C2/Sm which

sends a zero-dimensional closed subscheme Z of length m on C2 to its asso-

ciated effective divisor |Z| in C2/Sm. Let Hilb|G|(C2)
G

denote the G fixed

point set of Hilb|G|(C2). In fact, Hilb|G|(C2)
G

parameterizes G-invariant sub-

schemes, so the Hilbert-Chow morphism restricts to a map

Hilb|G|(C2)
G −→ C2/G ⊂ Sym|G|(C2).

This map is a bijection on the set of points parameterizing free orbits of G

and hence is a birational map. Moreover, Hilb|G|(C2)
G

is non-singular by

[11, Lemma 9.1].

If we define GHilb(C2), the G-Hilbert scheme, to be the component of

Hilb|G|(C2)
G

which contains the free orbits of G, we find that

GHilb(C2) −→ C2/G

is a resolution of singularities by [11, Theorem 9.3].
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2.8 Main question

As discussed previously, we have denoted the irreducible component of

Hilb|G|(C2)
G

containing free G-orbits by GHilb(C2). Points of GHilb(C2)

correspond to G-invariant subschemes Z ⊂ C2 with H0(Z,OZ) ∼= Reg,

where Reg is the regular representation ring of G.

We can generalize GHilb(C2) as follows. The scheme whose points cor-

respond to G-invariant subschemes Z ⊂ C2 with H0(Z,OZ) ∼= ρ, for any

representation ρ of G. Precisely,

GHilbρ(C2) = {I
ideal
⊂ C[a, b] | I is G invariant and C[a, b]/I ∼= ρ}.

Therefore, when ρ = Reg, we obtain GHilbReg(C2) = GHilb(C2).

For reasons which will become clear later on, we change our notations

GHilb(C2) and GHilbmReg(C2) to HilbReg([C2/G]) and HilbmReg([C2/G]),

respectively.

As mentioned before, Y, the minimal resolution, can be identified with

GHilb(C2) and is clearly isomorphic to Hilb1(Y ). Therefore, the main ques-

tion we would like to answer is related to a generalization of the described

isomorphism

Hilb1(Y ) ∼= HilbReg([C2/G]).

That is, we would like to study the relation between the Hilbert scheme of

m points of Hilb1(Y ) i.e. Hilbm(Hilb1(Y )) = Hilbm(Y ) and HilbmReg([C2/G]).

From the moduli space point of view, Hilbm(Y ) can be considered as

a subspace of the space of objects of D(Y ) parameterizing one term com-

plexes consisting of the structure sheaves of closed subschemes of length m

on Y. Likewise, HilbmReg([C2/G]) is parameterizing finite substackes of the

quotient stack [C2/G], thus HilbmReg([C2/G]) is also parameterizing some

objects of [C2/G].

We can observe that the birational morphism from Y 99K X induces a

birational morphism
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Φ : Hilbm(Y ) 99K HilbmReg([C2/G])

for m > 1, (we will explain the exact definition of Φ in the next chapter)

because m distinct points of Y away from the exceptional set map to m

distinct points in X\{0} where the preimage of m points of X\{0} is in fact,

m distinct Z/n-orbits in C2 \ {0} under the projection C2 \ {0} −→ X \ {0}.
Now the question is

Question: What is the image of Φ?

In other words, what sort of objects in D[C2/G] are being parameterized

by Φ(Hilbm(Y ))?

We will provide an explicit answer to our question to the case of G = Z/n
in the next chapter.
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Chapter 3

The main results

In this chapter, we will use the described framework and concepts in chap-

ter one to introduce new concepts in order to explicitly answer our main

question.

From now on, G = Z/n. Let X = C2/Z/n = SpecT where T =

C[x, y, z]/(xy− zn) for n ≥ 2, and Y ∼= GHilb(C2) be the minimal (crepant)

resolution of X and let X = [C2/Z/n] be the quotient stack whose coarse

space is X. Let Z ⊂ Y ×X be the universal closed subscheme associated to

the Hilbert scheme Y. We have the following diagram

Ẑ

Y X

X

p̂ q̂

τ π̂

where p̂ is finite and flat, q̂, τ are birational and π̂ is finite.

The Fourier-Mukai transform [1] Φ from D(Y ) the (bounded) derived

category of coherent sheaves on Y, and D(X) the (bounded) derived category

of coherent sheaves on the stack resolution of X, is defined by

Φ = Rq̂? ◦ Lp̂? : D(Y ) −→ D(X)

Note that, since p is already exact we have Lp̂? = p̂? and in our case,

according to Bridgeland-King-Reid [1] Φ is an equivalence of categories.
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Chapter 3. The main results

In this thesis, we will be working with derived category of coherent

sheaves with compact support so from now on by D(Y ) we mean the de-

rived category of coherent sheaves with compact support on Y.

For the computational purposes, we use the equivalence of categories

between D(X) and the (bounded) derived category of Z/n-equivariant co-

herent sheaves on C2, i.e. DZ/n(C2). Thus, not only we can replace X by C2,

but we can also use the fact that Ẑ = [Z/G], where Z is the universal closed

subscheme of Y = GHilb(C2) due to the isomorphism D(Ẑ) ∼= DZ/n(Z), to

replace Ẑ by Z. Then, the above diagram is altered into

Z

Y C2

X

p q

τ π

and

Φ = Rq? ◦ Lp? : D(Y ) −→ DZ/n(C2) ∼= D(X)

We want to study the image of torus invariant structure sheaves of zero-

dimensional subschemes (sheaves supported at points) on Y, considered as

one term complexes in D(Y ), under Φ. As discussed in the previous chapter,

Y has n− 1 exceptional divisors (with n coordinate charts Yi) Ei ∼= P1, and

since Y \ {exceptional divisors} is isomorphic to X \ {0}, the image of those

sheaves (one term complex of sheaves with compact support) supported

completely outside of the exceptional divisors Eis, will be sent into sheaves,

therefore, we are left to investigate the image of sheaves supported on the

exceptional curves.

To simplify the problem, we will consider torus-invariant, zero-dimensional,

length m sheaves supported at the origin of the coordinate chart Yi. We will

use the fact that torus-invariant, zero-dimensional, length m sheaves sup-
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3.1. Coordinates on the universal closed subscheme of the Hilbert scheme

ported at the origin correspond to length m monomial ideals of the ring

of regular functions on each chart and the latter corresponds to the par-

tition of m which is of combinatorial interest. We also go back and forth

between length m torus-invariant, zero dimensional structure sheaves on Yi

and length m torus-invariant, zero-dimensional subschemes of Yi.

Since our computations rely on coordinates, in the first step we should

use toric geometry techniques in order to write the defining equations on

each coordinate chart of Y as follows

3.1 Coordinates on the universal closed

subscheme of the Hilbert scheme

For our computational purposes, we need coordinate charts on the universal

closed subscheme Z. To obtain such coordinates, we prove the following

theorem

Theorem 3.1.1. With the same objects as above, one can isomorphically

replace Z on each chart with (Yi ×X C2)red for 1 ≤ i ≤ n. Equivalently,

Z ∼= (Y ×X C2)red.

Proof. By the definition of the universal closed subscheme, a point in Z is

a pair (Z, p) where Z ⊂ C2 is a G-invariant subscheme with H0(OZ) ∼= Reg

(the regular representation of G) and p ∈ Z.
By the definition of the fiber product, a point in Y ×X C2 is a pair

(y, q) where y ∈ Y, q ∈ C2 and τ(y) = π(q). Since Y ∼= GHilb(C2), a

point y ∈ Y corresponds uniquely to a G-invariant closed subscheme Z ⊂
C2 with H0(OZ) ∼= Reg. The condition τ(y) = π(q) is then the condition

q ∈ Z. Thus, we see that Z and Y ×X C2 coincide pointwise, so to prove

the isomorphism Z ∼= (Y ×X C2)red, it suffices to show that Z is reduced.

Because Z −→ Y is the universal family, Z is flat over Y and thus the

associated points on Z are pulled back from the associated points of Y [16,

p. 632]. Since Y is smooth, the only associated point is itself and so likewise

for Z. Then, since Z is generically reduced, hence is globally reduced.

22



3.1. Coordinates on the universal closed subscheme of the Hilbert scheme

Hence, we have the following diagram

X

Yi C2

(Yi ×X C2)red

By definition of the fiber product, we obtain the defining equations for

Yi ×X C2 as follows.

Let

Si = C[ui, vi]

R = C[a, b]

T = C[x, y, z]/(xy − zn)

where ui = x−(n−i)yi, vi = xn−i+1y−(i−1) and

Yi = SpecSi

C2 = SpecR

X = SpecT

Therefore,

Yi ×X C2 = Spec(Si ⊗T R)

and can be easily seen that

Yi ×X C2 = SpecC[ui, vi, a, b]/(a
n − un−i+1

i vn−ii , bn − ui−1
i vii, uivi − ab)

for 1 ≤ i ≤ n.
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Proposition 3.1.2. With the same above notations

(Yi ×X C2)red ∼= SpecC[ui, vi, a, b]/(a
i − uibn−i, bn−i+1 − viai−1, uivi − ab)

for 1 ≤ i ≤ n.

Proof. First, we show that I ⊂ J ⊂
√
I where

I = (an − un−i+1
i vn−ii , bn − ui−1

i vii, uivi − ab),

and

J = (ai − uibn−i, bn−i+1 − viai−1, uivi − ab).

The inclusion I ⊂ J is obvious because

an − un−i+1
i vn−ii = an−i(ai − uibn−i) + ui(a

n−ibn−i − un−ii vn−ii ),

bn − ui−1
i vii = bi−1(bn−i+1 − viai−1) + vi(a

i−1bi−1 − ui−1
i vi−1

i ),

and

an − un−i+1
i vn−ii , bn − ui−1

i vii

are zero in C[ui, vi, a, b]/J.

For the second inclusion J ⊂
√
I, we claim that

(ai − uibn−i)n, (bn−i+1 − viai−1)n ∈ I.

In fact,

(ai − uibn−i)n =
n∑
k=0

(−1)n−k
(
n

k

)
akiun−ki b(n−i)(n−k).
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When ki > (n− i)(n− k) or k > n− i each monomial can be written in

the form

(ab)(n−i)(n−k)aki−(n−i)(n−k)un−ki = (uivi)
(n−i)(n−k)an(k+i−n)un−ki

in C[ui, vi, a, b]/I. Likewise, when ki ≤ (n − i)(n − k) or k ≤ n − i we can

write each monomial of the form akiun−ki b(n−i)(n−k) into

(ab)kiun−ki b(n−i)(n−k)−ki = (uivi)
kiun−ki bn(n−i−k)

in C[ui, vi, a, b]/I.

Therefore, using the relations an = un−i+1
i vn−ii and bn = ui−1

i vii, we obtain

(ai − uibn−i)n =
∑

0≤k≤n−i
(−1)n−k

(
n

k

)
u
i(n−i+1)
i v

i(n−i)
i

+
∑

n−i<k≤n
(−1)n−k

(
n

k

)
u
i(n−i+1)
i v

i(n−i)
i

= u
i(n−i+1)
i v

i(n−i)
i

n∑
k=0

(−1)n−k
(
n

k

)
= u

i(n−i+1)
i v

i(n−i)
i (1− 1)n

= 0

in C[ui, vi, a, b]/I.

Similarly,

(bn−i+1 − viai−1)n =
n∑
k=0

(−1)n−k
(
n

k

)
bk(n−i+1)vn−ki a(n−k)(i−1),

and when k(ni + 1) > (n − k)(i − 1) or k > i − 1 the monomial can be

rewritten in the form
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bk(n−i+1)−(n−k)(i−1)(ab)(n−k)(i−1)vn−ki = bn(k−i+1)(uivi)
(n−k)(i−1)vn−ki

and when k(ni + 1) ≤ (n− k)(i− 1) or k ≤ i− 1,

(ab)k(n−i+1)an(i−1−n)vn−ki = (uivi)
k(n−i+1)an(i−1−n)vn−ki

in C[ui, vi, a, b]/I. Then using the relations an = un−i+1
i vn−ii and bn =

ui−1
i vii, we arrive at

(bn−i+1 − viai−1)n =
∑

0≤k≤i−1

(−1)n−k
(
n

k

)
u

(i−1)(n−i+1)
i v

i(n−i+1)
i

+
∑

i−1<k≤n
(−1)n−k

(
n

k

)
u

(i−1)(n−i+1)
i v

i(n−i+1)
i

= u
(i−1)(n−i+1)
i v

i(n−i+1)
i (1− 1)n

= 0

in C[ui, vi, a, b]/I.

Now, it is enough to show that J is self-radical i.e. J =
√
J. We will be

using the fact a projective map is flat if and only if the Hilbert polynomial

of its fibers coincide for every fiber [16, corollary 24.7.2] and [15, theorem

1.4]. We will show that the fibers of the map

q : SpecC[ui, vi, a, b]/J −→ SpecC[ui, vi]

are finite sets and thus the Hilbert polynomial of each fiber is constant and

is equal to the length of that fiber.

First of all, q is a finite morphism, therefore, is quasi-finite, i.e. its fibers are

finite sets. It is also projective, because we can embed SpecC[ui, vi, a, b]/J

into ProjC[ui,vi]C[a, b, c] by homogenizing J to J, for example, when i ≤ n−i

J = (aicn−2i − uibn−i, bn−i+1 − viai−1cn−2i+2, uivic
2 − ab).
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To see the number of elements of fibers is constant on every fiber, we

claim that 1, a, · · · , ai−1, b, · · · , bn−i is a C-basis of C[ui, vi, a, b]/J, for fixed

ui, vi. Any monomial element of C[ui, vi, a, b] is of the form albkuri v
s
i . If l ≥ i

or k ≥ n− i+ 1 we can use the relations ai = uib
n−i and bn−i+1 = via

i−1, to

reduce l, k to the cases where l < i and b < n− i+ 1. Furthermore, for fixed

ui, vi the monomial albkuri v
s
i is considered only having a, b variables and if

k ≤ l ≤ i−1, we can replace albk by al−k(uivi)
k using the relation ab = uivi

and by bk−l(uivi)
l when l ≤ k ≤ n− i.

3.2 Main result

As described earlier, let I be a monomial ideal sheaf of a length m sub-

scheme supported at the origin of the coordinate chart Yi where OYi/I is

the structure sheaf of the corresponding torus-invariant, zero dimensional,

closed subscheme of length m supported at the origin of Yi. We have the

following short exact sequence

0 −→ I −→ OYi −→ OYi/I −→ 0

if we apply Φ to the above short exact sequence we will obtain the long

exact sequence

0 −→ h0(Φ(I)) −→ h0(Φ(OYi))
f−→ h0(Φ(OYi/I)) −→

−→ h1(Φ(I)) −→ h1(Φ(OYi)) −→ h1(Φ(OYi/I)) −→ 0

Proposition 3.2.1. Φ(OYi/I) is a sheaf, i.e. one term complex of sheaves.

Proof. The support of OYi/I is zero dimensional, p is a finite morphism also

q maps the finite set Supp(OYi/I) to C2, therefore, Φ(OYi/I) has no higher

cohomology, that is, Rq?(p
?(OYi/I)) = q?(p

?(OYi/I)). Hence, Φ(OYi/I) is

a sheaf.
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3.2.1 Statement of the main result

As we proceed, it is necessary to mention that the ideal sheaves of torus

invariant subschemes of C2 are associated to monomial ideals of C[a, b] and

monomial ideals also correspond to partitions. The illustration of the later

correspondence is the following.

Each partition λ = (λ1, λ2, · · · , λd) (where λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 1)

corresponds to a monomial ideal

Iλ = (vλ1 , uvλ2 , · · · , ud−1vλd , ud)

on the chart Yi. We can associate the so called Ferrer diagram to the mono-

mial C-basis of C[ui, vi]/Iλ. For example, let m = 5 and λ = (3, 2) the

monomial ideal is (v3
i , uiv

2
i , u

2
i ) and its C-basis Ferrer diagram is depicted

below.

1

uivivi

v2
i

ui

v3
i

uiv
2
i

u2
i

Figure 3.1: Ferrer diagram for m = 5 and λ = (3, 2)

Let λ be a partition of m and let Zλ,i ⊂ Yi be a zero-dimensional, torus

invariant, closed subscheme of length m supported at the origin of the chart

Yi with the structure sheaf OZλ,i whose ideal sheaf is determined by λ. We

would like to describe the image under Φ, that is, Φ(OZλ,i) ∈ CohZ/n(C2),

where CohZ/n(C2) is isomorphic to the category of finitely generated Z/n-

invariant, C[a, b]-modules.

Theorem 3.2.2. The image of C[ui, vi] the associated module to OYi under

Φ = q? ◦ p? is the following R-module
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3.2. Main result

Mi :=
⊕
k

tkR/(a
i−1tk − bn−i+1tk−1, ∀k ≥ 1 and aitk − bn−itk−1, ∀k ≤ 0)

where R = C[a, b].

Remark Obviously the above R-module is not finitely generated because

OYi is not of compact support.

The main result is

Theorem 3.2.3.

Φ(OZλ,i) = Mi/Jλ,i

where Jλ,i is the R-submodule of Mi determined combinatorially by λ by the

procedure described in 3.2.3.

3.2.2 Computational technique and proof of the result

The underlying computational technique that we have exploited is demon-

strated in the following diagram

Si-modules

Si ⊗T R-modules

R-modules

p? q?

where T = C[x, y, z]/(xy− zn) and an Si = C[ui, vi]-module is considered as

a C[ui, vi]⊗C[x,y,z]/(xy−zn)C[a, b]-module through the way C[ui, vi] sits inside

C[ui, vi]⊗C[x,y,z]/(xy−zn) C[a, b] by p? and then using the existing relations it

is sent to a C[a, b]-module under q?.

Proof. 3.2.2 Define a surjective R-module homomorphism
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Mi −→ q?(p
?(C[ui, vi]))

sending t0 7→ 1, tk 7→ Φ(vki ) and t−k 7→ Φ(uki ) for k ∈ N. It is well-defined

because of these relations ai = uib
n−i and bn−i+1 = via

i−1. The injectivity

boils down to the fact that the mentioned relations together with uivi = ab

exhaust all the possible relations among ui, vi, a and b as can be seen from

Proposition 3.1.2.

Proof. 3.2.3 Let Iλ,i be the ideal sheaf of OZλ,i , that is, OZλ,i = OYi/Iλ,i.
Let Iλ,i be the associated ideal of Si to Iλ,i. Then, we have the following

short exact sequence of Si-modules

0 −→ Iλ,i −→ Si −→ Si/Iλ,i −→ 0

Since p is a flat morphism, pulling back the above sequence by p preserves

the exactness and it will be

0 −→ Iλ,i ⊗T R −→ Si ⊗T R −→ Si/Iλ,i ⊗T R −→ 0

Now, because q? is not right exact, applying q? to our sequence we will get

0 −→ q?(Iλ,i⊗T R) −→ q?(Si⊗T R) −→ q?(Si/Iλ,i⊗T R) −→ R1q?(Iλ,i⊗T R)

where R1q?(Iλ,i ⊗T R) is the first right derived functor of q?(Iλ,i ⊗T R).

Lemma 3.2.4. R1q?(Iλ,i ⊗T R) = 0.

Proof. In other words, we want to show that R1q?(Iλ,i⊗OX OC2) = 0, which

holds, since q?(Iλ,i ⊗OX OC2) is a quasi-coherent OC2-module on an affine

variety.
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3.2.3 Combinatorial corollary and illustrations

First of all, to get more sense of how we found Mi (the image of C[ui, vi]

under Φ) in 3.2.2 and later the combinatorial consequent, we represent the

Ferrer diagram of Mi. The method we used was thematically the same in

all the coming illustrations.

At the outset, the C-basis of C[ui, vi] is {uri vsi | r, s ≥ 0} with the Ferrer

diagram

1

vi

v2
i

v3
i

ui

uivi

uiv
2
i

uiv
3
i

u2
i

u2
i vi

u2
i v

2
i

u2
i v

3
i

u3
i

u3
i vi

u3
i v

2
i

u3
i v

3
i

· · ·

· · ·

· · ·

· · ·

. .
....

...
...

...

Figure 3.2: Ferrer diagram of C[ui, vi]

under Φ it goes to the Ferrer diagram Figure 3.3. and the discovered rule

which is: we move to the right by multiplication to a and to the up by

multiplication to b.

To understand Φ(OZλ,i) better, first note that the origin of Yi, that is,

C[ui, vi]/(ui, vi) maps to C[a, b]/(ai, bn−i, ab) which its Ferrer diagram is L-

shaped depicted in Figure 3.4.
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t0

ai−1t1 = bn−i+1t0

t1

ait0 = bn−it−1

t−1

...

· · ·

...

· · ·

...

· · ·

. .
.

. .
.

. .
.

Figure 3.3: Ferrer diagram of Mi

1 ui

vi

1 a ai−1

b

bn−i−1

ai

bn−i

ab

· · ·

...

Figure 3.4: Image of the origin

Then, for any monomial ideals I in a chart Yi, to find the image under Φ,
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we first find the Ferrer diagram of the monomial C-basis of C[ui, vi]/I and

stick to the following set of rules:

We start with the box 1 (the origin). Either there is a box attached to

its right hand side or on top of it

1 1

Figure 3.5: Attachment possibilities

and the image will be constructed by attaching the L-shaped image of the

origin to the right hand side of the leftmost box or to the top of it as follows

...

· · ·

...

· · ·

...

· · ·

...

· · ·

Figure 3.6: Attaching rules

and we continue this process for other boxes in the Ferrer diagram of C[ui, vi]/I.

For example, let n = 4, i = 2 and m = 5 with λ = (3, 2). Thus, on Y2,

C[u2, v2]/(u2, v2) is mapped to C[a, b]/(a2, b3, ab) and in order to find the

image of C[u2, v2]/(u2
2, u2v

2
2, v

3
2) we should follow the above rules step by

step.

First, determine the image of the origin
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1 u2

v2

1 u2 u2
2

v2

v2
2

v3
2

u2v2

Figure 3.7: Ferrer diagram of the origin for n = 4, i = 2 and m = 5 with
λ = (3, 2).

then find the Ferrer diagram of the C-basis of C[u2, v2]/(u2
2, u2v

2
2, v

3
2)

1

u2v2v2

v2
2

u2

v3
2

u2v
2
2

u2
2

Figure 3.8: Ferrer diagram of C[u2, v2]/(u2
2, u2v

2
2, v

3
2)

and finally, use the attaching rules to construct the Ferrer diagram of the

image shown below in Figure 3.9. Therefore, the image is

(a4, a2b2, ab5, b8)/(a6, a5b, a4b4, a2b6, ab9, b11)

which is also isomorphic as an R = C[a, b]-module to

M2/Jλ,2

where Jλ,2 is a submodule of M2 with relations coming from the monomials

a6, a5b, a4b4, a2b6, ab9, b11.
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1

a2b2

a4

a5b

ab5

a2b6

b8

ab9

b11

a4b4

a6

Figure 3.9: Image of C[u2, v2]/(u2
2, u2v

2
2, v

3
2)

Moreover, we have established the subsequent combinatorial result

Corollary 3.2.5. The above procedure establishes a correspondence between

partitions of m and Z/n-colored skew partitions of mn.

We color the boxes according to the initial coloring of the image of the

origin as can be seen in the coming example.

Figure 3.10: Z/4-coloring
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Figure 3.11: Z/4-colored skew partition
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Chapter 4

Conclusion

Recall that the question we set out to answer was : “Where do the structure

sheaves of zero-dimensional, closed subschemes on Y go under the Fourier-

Mukai equivalence D(Y ) −→ DG(C2)?”

We have used explicit coordinate charts on Y to fully answer this ques-

tion in the case where G = Z/n and the subschemes are torus invariant. We

have heavily exploited the combinatorics of the C-basis of a monomial ideal

associated to the ideal sheaf of a zero-dimensional, torus invariant closed

subscheme of Yi, in the associated Ferrer diagram. Our method involved

first determining the Ferrer diagram of the image of the origin of each chart

Yi and then by the combinatorial attaching rules, constructing the image

using the Ferrer diagram of the image of the origin. We have also explained

how to construct the image from Ferrer diagrams in an example. Never-

theless, in order to obtain a unifying picture, we have found the universal

R-module Mi on each chart, so that the formulation of our result becomes

easier and later, we have proven that the image is obtained by taking the

quotient of Mi by the ideal determined from our combinatorial rules.

It remains to address our question in the case of general zero-dimensional

closed subschemes of Y or even when G is not necessarily cyclic. One pos-

sible approach is related to Haiman’s result [10] which gives a system of

coordinates for Hilbert scheme in general, and our method could be applied

directly to get a more general result.

Moreover, we believe that our combinatorial outcome has not been pushed

as much as it could. As discussed, the combinatorial Fourier-Mukai gives

us the correspondence between partitions of m and Z/n-colored skew parti-

tions of mn. Also, since Hilbm(Y ) and HilbmReg([C2/Z/n]) are holomorphic

symplectic, their Betti numbers coincide, therefore, they do have the same
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Euler characteristic. Meanwhile, we know that the Euler characteristic is

the number of torus fixed points. Thus, there is a correspondence between m

partitions of total size n and Z/n-colored partitions of size mn with m boxes

of each color. Hence, there should be a set of rules by which given a Z/n-

colored partition of mn with m boxes of each color, one can reconstruct

a Z/n-colored skew partition of mn and vice versa. Our correspondence

comes close to this: we associate to m partitions of size n, m Z/n-colored

skew partitions with a total of m boxes of each color. This suggests that

there should be some way of combining our skew partitions into a single

Z/n-colored partition with m boxes of each color. Discovering this process

is a project for the future.
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