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Abstract

In this paper, a self-contained proof is given to a well-known Harnack in-
equality of second order nondivergent uniformly elliptic operators on Rie-
mannian manifolds with the condition that M− [R(υ)] > 0, following the
ideas of M. Safonov [5]. Basically, the proof consists of three parts: 1)
Critical Density Lemma, 2) Power-Decay of the Distribution Functions of
Solutions, and 3) Harnack Inequality.
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Preface

Chapter 2. Preliminaries is a summary of the introductions on Riemannian
manifolds in Cabré [1] and S. Kim [2].

Chapter 3. Critical Density Lemma follows the results and the proofs also
by Cabré [1] and S. Kim [2] with more comments and explanations for clarity.

In Chapter 4, The ideas of Safonov [5] is followed for a covering lemma on
Riemannian manifolds and a power-decay property of the distribution func-
tions of solutions.

Chapter 5. Harnack Inequality follows the ideas of Cabré [1], Caffarelli [4],
and Caffarelli and Cabré [3].
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Chapter 1

Introduction

There are many results about Harnack inequality on Riemannian manifolds.
First, Yau, S-T [9] proved Harnack inequality for positive harmonic func-
tions on Riemannian manifolds with nonnegative Ricci curvature. Also,
Saloff-Coste [10] and Grigor’yan [11] obtained that the volume doubling
property of measure on manifolds and a kind of weak Poincaré inequalty
give Harnack inequality for solutions of divergence parabolic equations on
Riemannian manifolds. Especially, for the defintion of second-order, linear,
nondivergent uniformly elliptic operators L, Cabré [1] and Stroock [12] can
referred to, and the definition will be noted in Section 2.2.

In this paper, a self-contained proof of Harnack inequality on Riemannian
manifolds with the condition thatM− [R(υ)] > 0 (See Section 2.1), which is
stronger–we cannot guarantee whether it is strictly or not–than nonnegative
Ricci curvature condition, but weaker than nonnegative sectional curvature,
is given. This result was earlier proven by S.Kim [2]; however, S.Kim only
gave the proofs of Critical Density Lemma part and refered to Cabré [1] for
the remaining parts: Power-decay of distribution functions of solutions, and
Harnack inequality.

In fact, Cabré [1] proved Harnack inequality for nondivergent elliptic opera-
tors on Riemannian manifolds with nonnegative sectional curvatures, and S.
Kim [2] proved a similar result with the condition thatM− [R(υ)] > 0. The
difference between the conditions on Riemannian manifolds needs different
proofs only for Critical Density Lemma part; in fact, the essense of S. Kim
[2] improved from Cabré [1] was the computation

Ldy(x) ≤ aL
dy(x)

with aL = (n− 1)Λ

for any x ∈M\ [Cut(y) ∪ {y}] under the geometric condition M− [R(υ)] >
0, and using it to get Critical Density Lemma. On the other hand, Cabré
used

D2dy(x)(ξ, ξ) 6
1

dy(x)
|ξ|2

1



Chapter 1. Introduction

for any x ∈ M\ [Cut(y) ∪ {y}] and any ξ ∈ TxM under the condition of
nonnegative sectional curvature to get the lemma.

The strategy used by Cabré and S.Kim is basically based on the proof of
Harnack inequality in Rn by Caffarelli [4]. In Cabré’s paper, for the proof
of Power-decay of distribution functions of solutions part, he followed Caf-
farelli’s arguments and applied a kind of Calderón-Zygmund decomposition
on Riemannian manifolds with nonnegative sectional curvature condition,
using a result of M. Christ [6] which is highly nontrivial. S. Kim also
directly followed the arguments of Cabré for that part since nonnegative
Ricci curvature condition is sufficient to get the doubling-property of vol-
ume (see Lemma 2.3) essential for the decomposition, and the condition
that M− [R(υ)] > 0 implies the nonnegativity of Ricci curvature (see Sec-
tion 2.1).

For the part, a more elementary approach using a covering lemma by Sa-
fonov (see Lemma 4.2) is applied, and a simpler proof than those of Cabré
and S. Kim is given in this paper; this is a small improvement. In fact,
there is a similar result using a covering lemma, by Aimar and Forzani,
and Toledano [7] in a more general and abstract setting, e.g. homogeneous
spaces. However, our proof is simpler and more direct, focusing on the case
of Riemannian manifolds.

With respect to the parts of Critical Density Lemma and Power-decay
property of distribution functions, Safonov [5] started with Alexandrov-
Bakelman-Pucci estimate whose proof is well-known in Rn, and obtained
a Growth Lemma which is less restrictive for applications and a Double-
section Lemma which make the proof for Harnack simple and direct. How-
ever, it was difficult for us to get a lemma which is silimar to Alexandrov-
Bakelman-Pucci estimate. Thus, except the part for Power-decay property
of distribution functions, we basically followed the ideas and arugments of
Cabré, and S. Kim; that is, our paper can be regarded as a self-contained
exposition of the results of Safonov, Cabré, and S. Kim.
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Chapter 2

Preliminaries

2.1 Riemannian Geometry

Notation

The notation for some concepts on Riemannian manifolds is given as the fol-
lowing. Let M be a smooth n-dimensional complete Riemannian manifold
with a metric g. And the geodesic distance between points x and y on M
is denoted by d(x, y) or dy(x) or dx(y), the Riemannian measure of M by
dV, the tangent space of M at x by TxM, and the Riemannian curvature
tensor by R(X,Y )Z. For convenience, the geodesic distance is sometimes
called just by distance.

Since the geodesic parametrized by the arc-length and exponential map-
ping on Riemannian manifolds will be often used later on, a summary of
them including the concept of cut-points of a point x in M is given.

Exponential Functions

If the exponential map expx : TxM −→M is considered, for any υ ∈ TxM
with |υ| = 1, a function υ(t) = expx(tυ) can be set. Then, υ(t) is the
geodesic parametrized by arc-length, that is, with unit-speed which satisfies
υ(0) = x and υ′(0) = υ. Here, a constant t0 is defined by

t0 = t0(x, υ) = sup { s > 0 | υ(t) is the minimal geodesic from x to υ(s)} .

When t0 < ∞, the point υ(t0) is called the cut point of x along υ(t), and
the set Cut(x) is defined by

Cut(x) = {cut point of x along ω(t) = expx(tω) | ω ∈ TxM and |ω| = 1} .

Then, it is well-known that Cut(x) has zero n-dimensional Riemannian mea-
sure. An another set Gx is defined by

Gx = { tω | 0 6 t < d(x, expx(t0(x, ω)ω)) for ω ∈ TxM with |ω| = 1} .

3



2.1. Riemannian Geometry

Then, it is also well-known that

expx : Gx −→ expx(Gx) is a diffeomorphism.

Also, a concept of second-variation of vector-fields on Riemannian manifolds
is necessary to get a estimate of differential operators acted on the distance
function under a geometric condition (see Lemma 2.1).

Curvatures and Morse Index Form

The Riemannian curvature tensor is defined by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

where ∇ is the Levi-Civita connection. And, for a unit tangent vector v in
TxM, the Ricci transformation R(v) : TxM −→ TxM is defined by

R(v)X = R(X, v)v.

For a given geodesic σ : [0, l] −→ M parametrized by the arc-length, the
Morse index form I(V,W ) is defined by

I(V,W ) =

∫ l

0

{
〈∇σ′V,∇σ′W 〉 − g

〈
R(σ′, V )W,σ′

〉}
dt,

where V,W are piecewise smooth vector fields along σ.

From now on, specific Riemannian manifolds satisfying the following condi-
tion are considered in Chapter 3-5.

Geometric Assumptions

It is noted that

dp is smooth on M\ [Cut(p) ∪ {p}] .

To express the condition of M under which Harnack inequalty is proven in
this paper, the Pucci’s extremal operator for a symmetric endomorphism A
on TxM is introduced:

M− [A, λ,Λ] =M− [A] = λ
∑
κj>0

κj + Λ
∑
κj<0

κj ,

4



2.1. Riemannian Geometry

where κj are the eigenvalues of A. The sufficient condition for Harnack
inequality found by S. Kim [2] was the following:

M− [R(v)] > 0,

for any x ∈M and υ ∈ TxM with |υ| = 1, where R(υ) is the Ricci trans-
formation on TxM in Section 2.1. It is noted that the condition is stronger
than the condition of nonnegative Ricci curvature, i.e. M− [R(v)] > 0 on M
implies that M has nonnegative Ricci curvature. This can be easily checked
by the following:

M− [R(v)] 6 tr (A(x) ◦R(v))

if A(x) is uniformly elliptic (see Section 2.2); especially, when A(x) = λId,
nonnegative Ricci curvature condition for M is satisfied. Moreover, it is also
noted that any Riemannian manifold with nonnegative sectional curvature
trivially satisfies the condition

M− [R(v)] > 0,

thus the condition is stronger than nonnegative Ricci curvature condition;
however, weaker than nonnegative sectional curvature condition. The con-
dition will be always assumed for any Riemannian manifold M in Chapter
3-5.

5



2.2. Differential Operators on Riemannian Manifolds

2.2 Differential Operators on Riemannian
Manifolds

The definitions of some elementary differential operators on Riemannian
manifolds are summarized.

Gradient and Hessian of Functions on Manifolds

It is noted that the Hessian of a function u at a point x in M is defined as
an endomorphism of TxM by

D2u · ξ = Dξ∇u ∀ξ ∈ TxM,

where D denotes the Levi-Civita connection in M and ∇u(x) is the gradient
of u at x.

Second-order Nondivergent Linear Uniformly Elliptic
Operators on Manifolds

First, let A(x) be a positive definite symmetric endomorphism of TxM. It
is assumed that A(x) satisfies the uniformly ellipticity with some positive
constants Λ and λ:

λ |ξ|2 6 g 〈A(x)ξ, ξ〉 6 Λ |ξ|2 ∀x ∈M, ∀ξ ∈ TxM,

where |ξ|2 = g 〈ξ, ξ〉.
Next, a second-order, nondivergent, linear, uniformly elliptic operator L is
defined by

Lu = tr
(
A(x) ◦D2u

)
= tr {ξ 7−→ A(x)∇ξ∇u} ,

where tr is the trace of endomorphism, ◦ is composition of endomorphisms,
and D2u is the Hessian of a function u.

6



2.3. Lemmas on Riemannian Manifolds

2.3 Lemmas on Riemannian Manifolds

This section is basically for some computations in the proof of Lemma 3.2.
All the lemmas in this section directly refer to Cabré [1] and S.Kim [2];
however, some of the proofs are included for clarity.

The following lemma provides a boundness of an elliptic operator L op-
erated on the distance function under a geometric condition.

Lemma 2.1. (S. Kim [2]) Let M satisfy M− [R(υ)] > 0 on M (see Section
2.1.) Let p be a point on M and x ∈M\ [Cut(p) ∪ {p}]. Then, it is obtained
that

Ldp(x) ≤ aL
dp(x)

, where aL = (n− 1)Λ.

Proof. Let σ : [0, l] −→ M be the minimal geodesic parametrized by arc-
length from p = σ(0) to x = σ(l), and choose an orthnormal basis {εj}nj=1 on

TxM satisfying that ε1 = σ′(l) and {εj}nj=1 are eigenvectors of D2dp. Here,

by parallel transport along σ(t), {εj}nj=1 can be extended to {εj(t)}nj=1 with a
parameter t ∈ [0, l]. If the Jacobi fields along σ(t), Vj(t) is defined, satisfying

1) Vj(0) = 0 and Vj(l) = ej ,

2)
[
Vj(t), σ

′(t)
]

= 0,

then it is obtained that〈
D2dp(εj), εj

〉
= 〈∇σ′Vj , Vj〉 (l) = I(Vj , Vj).

Here, since a Jacobi field minimizes the Morse index form among all vector
fields along the same geodesic with the same boundary data, it is obtained
that

I(Vj , Vj) 6 I(
t

l
εj(t),

t

l
εj(t)).

7



2.3. Lemmas on Riemannian Manifolds

Thus, it can be computed that

Ldp(x) =
n∑
j=2

ajj
〈
D2dp(εj), εj

〉
6

n∑
j=2

ajjI(Vj , Vj)

6
n∑
j=2

ajjI(
t

l
εj(t),

t

l
εj(t))

=

n∑
j=2

ajj

∫ l

0

∣∣∣∣1l
∣∣∣∣2 − ∫ l

0
(
t

l
)2

n∑
j=2

ajj
〈
R(σ′, εj)εj , σ

′〉
6

n∑
j=2

ajj

∫ l

0

∣∣∣∣1l
∣∣∣∣2 − ∫ l

0
(
t

l
)2M−

[
R(σ′)

]
,

and since M− [R(υ)] > 0

6
(n− 1)Λ

l
=

(n− 1)Λ

dp(x)
.

This finishes the proof of the lemma.

For the proof of Lemma 3.2, a computation of the Jacobian of the expo-
nential mapping of the gradients of smooth functions on manifolds will be
necessary.

Lemma 2.2. (Cabré [1]) Let v be a smooth function in an open set Ω of
M. For the map φ : Ω −→M defined by

φ(x) = expx∇v(x),

whenever ∇v(x) ∈ Gx for some x ∈ Ω, the following is satisfied

Jac φ(x) = Jac expx(∇v(x)) ·

∣∣∣∣∣detD2(v +
d2
y

2
)(x)

∣∣∣∣∣ ,
where y = φ(x) and Jac expx(∇v(x)) denotes the Jacobian of the exponential
mapping evaluated at ∇v(x) ∈ TxM.

Let d be the exterior differentiation on M in the following proof.

8



2.3. Lemmas on Riemannian Manifolds

Proof. Set a geodesic ζ(t) satisfying ζ(0) = x and ζ ′(0) = ξ and a family of
geodesics with a parameter s is considered by

δs(t) = expζ(t) s∇v(ζ(t)).

Here, it is noted that δ0(t) = ζ(t) and δ1(t) = expζ(t)∇v(ζ(t)). Now, some
Jacobi fields are considered. First, a Jacobi field J(s) along expx s∇v(x) is
defined by

J(s) =
∂

∂t
|t=0 δs(t).

Then, J(s) satisfies

J(0) = ξ, J(1) = d {expx∇v(x)} · ξ and DsJ(0) = D2v(x) · ξ

since Ds
∂δ
∂t |s=0= Dt

∂δ
∂s |s=0= Dt∇v(ζ(t)) = D2v(ζ(t)) · ζ ′(t), where d is

the exterior differentiation on M. Next, an another Jacobi field Jξ(s) along
expx s∇v(x) is set, satisfying

Jξ(0) = ξ and Jξ(1) = 0,

and an another Jacobi field J̃ξ also along expx s∇v(x) by

J̃ξ = J − Jξ,

then J̃ξ naturally satisfies the following:

J̃ξ(0) = 0 and DsJ̃ξ(0) = D2v(x) · ξ −DsJξ(0),

and also

d {expx∇v(x)} · ξ = J(1) = J̃ξ(1) = d expx |∇v(x) ·DsJ̃ξ(0).

Here, consider an another family of geodesics χs(t) = expζ(t) s exp−1
ζ(t) y sat-

isfying
χ0(t) = ζ(t) and χ1(t) = y.

Then, it is obtained that

∂

∂t
|t=0 χs(t) = Jξ(s),

and

−DsJξ(0) = −Ds
∂

∂t
|t=0 χ |s=0= Dt

{
− exp−1

ζ(t) y
}
|t=0

= Dt∇(
d2
y

2
)(ζ(t)) |t=0= D2

d2
y

2
(x) · ξ.

9



2.3. Lemmas on Riemannian Manifolds

Thus, it follows that

DsJ̃ξ(0) = D2(v +
d2
y

2
)(x) · ξ

Note. For Lemma 2.2, any curvature condition is not necessary, but ∇v(x) ∈
Gx should be checked to use it.

The doubling-property of measure under a geometric condition–nonnegative
Ricci curvature–will be used to get a covering lemma(see Lemma 4.2).

Lemma 2.3. (Gromov) Let M be an n-dimensional Riemannian manifold
with nonnegative Ricci curvature. For any balls in M, M satisfies the volume
doubling property:

|B2R(x)| ≤ 2n |BR(x)| .

Proof. Since the proof of this lemma is purely geometric, Chavel [13] is
referred to.

10



Chapter 3

Critical Density Lemma

The following theorem is called Critical Density Lemma since it gives an
important result that a sufficient measure–Critical Density–of a cuf-off set
by a constant in a ball implies the lower-boundness of the function in a
larger ball.

Theorem 3.1. (modified Critical Density) Let u be a nonnegative smooth
function in a ball BR(x0) and satisfy Lu 6 0 in the same ball. Then, u has
the following property:∣∣∣{u ≥ 1} ∩BR

8
(x0)

∣∣∣∣∣∣BR
8

(x0)
∣∣∣ > ξ1 =⇒ inf

BR
4

(x0)
u > β1,

where ξ1 = 1− { nλ

1
2

(
C 1

2
+ aL + Λ

)}n and β1 =
1

57
32 + C 1

2

.

Note. For convenience, every universal constant which depends only on di-
mension n and ellipticity constants λ, Λ is collected in Appendix A.

Remark. 1. C 1
2

is to be given as Cδ with δ = 1
2 in the proof of Theorem 3.1,

Step 1, pp20-22, and aL = (n− 1)Λ is given in Lemma 2.2.
2. It suffices to check that

C 1
2
> nλ

to guarantee that ξ1 > 0, and it is trivial from the definition of Cδ.
3. Theorem 3.1 can be restated as the following:

For any 0 < β1 6
1

57
32 + C 1

2

< 1, there exists a constant ξ1 = ξ1(n, λ,Λ)

such that inf
BR

4
(x0)

u 6 β1 =⇒

∣∣∣{u ≥ 1} ∩BR
8

(x0)
∣∣∣∣∣∣BR

8
(x0)

∣∣∣ 6 ξ1.

11



Chapter 3. Critical Density Lemma

The proof of the theorem is given in the end of this section after some
lemmas which are necessary to prove it. The following lemma is also called
Critical Density Lemma–only the radius of ball where the infimum is taken
is different–, essential for Theorem 3.1, and the proof of it is due to Cabré [1]
and S. Kim [2] on Riemannian manifolds. Here, a detailed proof is included
for clarity. In Rn, Safonov [5] proved a similar result named Growth Lemma
using ABP-estimate, and the lemma has a larger extent of constant β1, that
is, β1 ∈ (0, 1). This benefit comes from the application of the ABP-estimate
on Rn.

Lemma 3.2. (Critical Density) Let u be a nonnegative smooth function in a
ball B4R(x0) and infBR(x0) u 6 1. Then, the following inequality is satisfied:∣∣∣BR

4

∣∣∣ 6 1

(nλ)n

∫
{u6 57

32
}∩B3R(x0)

{(R2Lu+ aL + Λ)+}n dV,

where f+(x) = max{f(x), 0} and aL = (n− 1)Λ.

Proof. From now on, BR will be used in every chapter to notify BR(x0) for
simplicity if there is no risk of confusion. First, a point y in BR

4
is arbitrarily

chosen, and a continuous function wy is defined by

wy(x) = R2u(x) +
1

2
d2
y(x), .

Step 1.

A minimum of wy in B4R is achived at a point z0 in B3R.

It is noted that

inf
BR

wy 6 R2 +

(
R+ R

4

)2
2

= R2 +
25R2

32
=

57R2

32
< 2R2,

and, since u > 0 in B4R, it is obtained that

wy(x) >
(3R−R)2

2
= 2R2 in B4R\B3R.

Thus, it is concluded that the minimum of wy(x) in B3R is achieved at a
point of B3R, and that is also the minimum of wy(x) in B4R. That is,

inf
B4R

wy = inf
B3R

wy = wy(z0) for some z0 in B3R.

12



Chapter 3. Critical Density Lemma

So, the claim of Step 1 is proved.

Here, it is noted that for any y in BR
4

there exists such z0, and a set A

of such z0’s is defined by

A =
{
z ∈ B3R | z is a minimum point of wy(x) in B3R for y ∈ BR

4

}
.

Step 2. The two points on M, y and z0, which were considered in Step 1
have the following relation:

y = expz0 ∇
(
R2u

)
(z0) .

From Step 1, it is easily noted that for ∀z0 ∈ A,

wy (z0) 6 wy (x) = R2u (x) +
1

2
d2
y (x) ∀x ∈ B4R.

First, an arbitrary geodesic γ parametrized by the arc-length is considered,
satisfying γ(0) = z0. Then, for any t,

dy (γ(t)) 6 t+ dy (z0) , thus,

wy(z0) 6 R2u(γ(t)) +
1

2
d2
y(γ(t)) 6 R2u(γ(t)) +

1

2
{t+ dy(z0)}2 .

Here, it is noted that both inequalities become equality when t = 0, that is,
if a function f is set by

f(t) = R2u(γ(t)) +
1

2
{t+ dy(z0)}2 − wy(z0),

then f has its minimum when t = 0. Thus, if f is differentiated with respect
to t at t = 0,

0 6 f ′(t) |t=0 = g
〈
∇(R2u)(γ(t)), γ′(t)

〉
|t=0 + {t+ dy(z0)} |t=0

= g
〈
∇(R2u)(z0), γ′(0)

〉
+ dy(z0).

⇔ g
〈
∇(R2u)(z0),−γ′(0)

〉
6 dy(z0).

Here, since the geodesic γ was arbitrarily chosen only to satisfy γ(0) = z0

with unit-speed, (3) is satisfied for any unit vector υ ∈Mz0 instead of −γ′(0),
that is,

g
〈
∇(R2u)(z0), υ

〉
6 dy(z0) ∀υ ∈Mz0 with |υ| = 1. (3.1)

13



Chapter 3. Critical Density Lemma

Next, an another minimal geodesic η parametrized by arc-length is con-
sidered; however, joining z0 and y by the condition that η(0) = z0 and
η(dy(z0)) = y. Then, it is obtained that

dy(z0) = dy(η(t)) + t for 0 6 t 6 dy(z0), thus,

wy(z0) 6 wy(η(t)) = R2u(η(t)) +
1

2
d2
y(η(t)) = R2u(η(t)) +

1

2
{dy(z0)− t}2 .

Here, it is also noted that this inequality become equality when t = 0, that
is, if a function h is defined by

h(t) = R2u(η(t)) +
1

2
{dy(z0)− t}2 − wy(z0),

then h has its minimum when t = 0. Thus, by differentiation, it is computed
that

0 6 h′(t) |t=0 = g
〈
∇(R2u)(η(t)), η′(t)

〉
|t=0 + {dy(z0)− t} |t=0

= g
〈
∇(R2u)(z0), η′(0)

〉
− dy(z0).

⇔ g
〈
∇(R2u)(z0), η′(0)

〉
> dy(z0). (3.2)

Here, since |η′(0)| = 1, from (3.1) and (3.2) it is concluded that

g
〈
∇(R2u)(z0), η′(0)

〉
= dy(z0)

⇒ ∇(R2u)(z0) = dy(z0)η′(0).

Then by the definition of exponential mapping on Riemannian manifold

⇒ expz0 ∇(R2u)(z0) = η(dy(z0)) = y.

So, the claim of Step 2 is proved.

If a smooth map ψ : B3R −→ M is defined by ψ(z) = expz∇(R2u)(z),
then we have proved that for any y ∈ BR

4
there is at least one z ∈ A such

that ψ(z) = y. Thus, by virtue of the area formula it is obtained that

|BR
4
| 6

∫
A

Jac ψ(z) dV(z).

14



Chapter 3. Critical Density Lemma

And, from Step 1, it is easily noted that

A ⊂
{
u 6

57

32

}
∩B3R.

Hence, for the proof of this lemma, it suffices to show

Step 3.

Jac ψ(z) 6
1

(nλ)n
{(R2Lu(z) + aL + Λ)+}n for any z ∈ A.

Let z1 ∈ A and take y1 ∈ BR
4

such that wy1(z1) = infB3R
wy1 , that is,

y1 = ψ(z1) = expz1 ∇
(
R2u

)
(z1). Here, there are two different cases: 1) z1

is not a cut point of y1, or 2) z1 is a cut point of y1.

Case 1) This is the easier case. If z1 is not a cut point of y1–i.e. ∇(R2u)(z1) ∈
Gz1–, then by Lemma 2.2 it is attained that

Jac ψ(z1) 6

∣∣∣∣∣detD2

(
R2u+

d2
y1

2

)
(z1)

∣∣∣∣∣ = |detD2wy1(z1)|.

Here, it is used that
Jac expx(υ) 6 1

for any x ∈ M and υ ∈ Gx. Li [17] (see Bishop Comparison Theorem), S.
Kim [2] can be referred to for details, and the sketch of it is the following:

1)Let J(r, ψ)dψ be the area element of the geodesic sphere ∂Br(x),

2)J(r, ψ)dψ = rn−1A(r, ψ)dψ where A(r, ψ) is the Jacobian of the map,

expx at rψ ∈ TxM,

3)By the Laplace Comparison Theorem under nonnegative Ricci curvature

condition (see Schoen[15] and Schoen and Yau[16]), it is obtained that

∆dp(x) 6
n− 1

dp(x)
,

4)In Li[17], it is computed that
J ′(r, ψ)

J(r, ψ)
= ∆r, and by 3) ∆r 6

n− 1

r
,

5)From 4) it is obtained that A(r, ψ) is nondecreasing with respect to r,

6)Since lim
r→0

A(r, ψ) = 1, it is concluded that A(r, ψ) 6 1.

15



Chapter 3. Critical Density Lemma

Since wy1 achieves its minimum at z1, D2wy1(z1) > 0. Therefore, by using
the well-known inequality

detA ·detB 6

{
tr (A ◦B)

n

}n
where A,B are symmetric and nonnegative,

it is concluded that

Jac ψ(z1) 6 detD2wy1(z1)

=
1

detA(z1)
detA(z1) · detD2wy1(z1)

6
1

λn
detA(z1) · detD2wy1(z1)

6
1

(nλ)n
[
tr
{
A(z1) ◦D2wy1(z1)

}]n
=

1

(nλ)n
{Lwy1(z1)}n

=
1

(nλ)n
{R2Lu(z1) + L(

d2
y1

2
)(z1)}n

6
1

(nλ)n
{(R2Lu(z1) + aL + Λ)+}n,

where, in the last step, by Lemma 2.1 it is computed that

L(
d2
y1

2
) = dy1Ldy1 + 〈A∇dy1 ,∇dy1〉 6 aL + Λ|∇dy1 |2,

where

∇dy1(z) = − exp−1
z y1∣∣exp−1
z y1

∣∣ if z 6= y1.

Thus, the claim of Step 3 for the case of when z1 is not a cut point of y1 is
proved.

Case 2) When z1 is a cut point of y1, we can reduce this kind of critical
situation to the previous non-critical case by using upper barrier technique
due to Calabi [14] as the followings:

(Upper Barrier Technique) Since y1 = expz1 ∇(R2u)(z1), z1 is not a
cut point of ys = ψs(z1) := expz1 ∇(sR2u)(z1) for 0 6 ∀s < 1. By continu-
ity, Jac ψ(z1) = lims→1 Jac ψs(z1). As before,

Jac ψs(z1) 6

∣∣∣∣∣detD2

(
sR2u+

d2
ys

2

)
(z1)

∣∣∣∣∣ .
16



Chapter 3. Critical Density Lemma

Since

lim inf
s→1

∣∣∣∣∣detD2

(
sR2u+

d2
ys

2

)
(z1)

∣∣∣∣∣ = lim inf
s→1

∣∣∣∣∣detD2

(
R2u+

d2
ys

2

)
(z1)

∣∣∣∣∣
= lim inf

s→1
|detD2wys(z1)|,

it only remains to prove that

lim inf
s→1

|detD2wys(z1)| 6 1

(nλ)n
{(R2Lu+ aL + Λ)+}n.

Here, since it cannot be guaranteed that D2wys(z1) is nonnegative, the above
inequality between determinant and trace to D2wys(z1) is not directly ap-
plied. By the way, since

dys(y1)→ 0 as s→ 1,

by passing to the limit as s→ 1, the inequality can be applied to

D2wys(z1) +Ndys(y1)Id for some N

instead of D2wys(z1), only if it is possible to check that

D2wys(z1) +Ndys(y1)Id is nonnegative.

Here, let −k2(k > 0) be a lower bound of sectional curvature along the
minimal geodesic connecting z1 and y1. Then, the nonnegative definiteness
of D2wys(z1) + Ndys(y1)Id is clear if it is noted that Hessian comparison
theorem (see Schoen [15], and Schoen and Yau [16]) states that

D2dys(z1) 6 k coth(k dys(z1)) Id 6 N Id

uniformly in s ∈ (1
2 , 1) for some N , and an auxilary function is considered

by

R2u(z) +
1

2
{dys(z) + dys(y1)}2 = wys(z) + dys(y1)dys(z) +

1

2
dys(y1)2

which is smooth near z1 and has a local minimum at z1, so that its Hessian
at z1 is nonnegative. Thus, the following is obtained

0 6 D2wys(z1) + dys(y1)D2dys(z1) 6 D2wys(z1) +Ndys(y1)Id.

17



Chapter 3. Critical Density Lemma

Now the previously mentioned relation between determinant and trace is
applied to this nonnegative definite endomorphism for s ∈ (1

2 , 1), and it is
obtained that

0 6 lim inf
s→1

|detD2wys(z1)|

= lim inf
s→1

∣∣det
{
D2wys(z1) +Ndys(y1)Id

}∣∣
6

1

λn
lim inf
s→1

detA(z1) · det
{
D2wys(z1) +Ndys(y1)Id

}
6

1

λn
lim inf
s→1

[
tr
{
A(z1) ◦

(
D2wys(z1) +Ndys(y1)Id

)}
n

]n
=

1

(nλ)n
lim inf
s→1

[
tr {A(z1) ◦D2wys(z1)}

]n
since dys(y1) −→ 0 as s −→ 0

=
1

(nλ)n
lim inf
s→1

{Lwys(z1)}n

=
1

(nλ)n
lim inf
s→1

{
R2Lu(z1) + L

(
d2
ys

2

)
(z1)

}n
,

and by the same computation with the last line of Case 1)

6
1

(nλ)n
{(R2Lu(z1) + aL + Λ)+}n.

This finishes the proof of the theorem.

Remark. 1. It is noted that any ball B3R+ε(x0) for any ε > 0 instead of
B4R(x0) might be used since it makes no change in the proof; just the fact
that a little bit bigger than B3R(x0) is sufficient.
2. The condition that u > 0 in B4R\B3R is enough for the proof instead
of the condition that u > 0 in B4R. 3. Under an additional condition of
Lu 6 0 a different statement of Lemma 3.2, which looks similar to the result
of Theorem 3.1, can be obtained:

If u is nonnegative, smooth in B4R and infBR u 6 1, then(
1
4

3

)n
|B3R| =

∣∣∣BR
4

∣∣∣ 6 1

(nλ)n

∫
{u6 57

32
}∩B3R

{(R2Lu+ aL + Λ)+}n dV,

and also if Lu 6 0 in B3R, which is a condition of Theorem 3.1

6
1

(nλ)n
(aL + Λ)n

∣∣∣∣{u 6
57

32

}
∩B3R

∣∣∣∣ .
18



Chapter 3. Critical Density Lemma

Thus, under the additional condition that Lu > 0 in B3R we get the following
inequality similar to Theorem 3.1:

⇐⇒
∣∣{u 6 57

32

}
∩B3R

∣∣
|B3R|

>

{
nλ

12(aL + Λ)

}n
⇐⇒

∣∣{u > 57
32

}
∩B3R

∣∣
|B3R|

6 1−
{

nλ

12(aL + Λ)

}n
.

Since L is linear and constants are independent of the radius of ball R, this
implies that

Corollary 3.3. Let u be a nonnegative smooth function in a ball BR and
satisfy Lu 6 0 in the same ball. Then, u has the following property:∣∣∣{u ≥ 1} ∩BR

2

∣∣∣∣∣∣BR
2

∣∣∣ > ξ0 =⇒ inf
BR

6

u > β0,

where ξ0 = 1− { nλ

12 (aL + Λ)
}n and β0 =

32

57
.

Remark. 1. It is noted that any ball BR
2

+ε for any ε > 0 may be used instead

of BR.
2. It is mentioned that the main difference between Theorem 3.1 and Corol-
lary 3.3 is the following:

1) Theorem 3.1: the radius of the ball where infima are taken is bigger

than the radius of the ball where measure is computed.

2) Corollary 3.3: the radius of the ball where infima are taken is smaller

than the radius of the ball where measure is computed.

Thus, to prove Theorem 3.1 it suffices to find a proper auxiliary function
v, so that v might reduce the radius of the ball on which the measure is
computed, that is, where the integration is done. Then, the situation of
Corollary 3.3 might change into that of Theorem 3.1. Here, we can consider
an application of Lemma 3.2 to a modified function u+v instead of u, where
v roughly satisfies the following:

R2Lv + aL + Λ 6 0 a.e. in B3R\BδR,
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Chapter 3. Critical Density Lemma

where BδR is a smaller ball than BR on which the infimum was taken. Then,
it is obtained that

1

(nλ)n

∫
{u+v6 57

32
}∩B3R(x0)

{(R2L(u+ v) + aL + Λ)+}n dV,

when Lu 6 0 in B4R

=
1

(nλ)n

∫
{u+v6 57

32
}∩B3R(x0)

{(R2Lv + aL + Λ)+}n dV,

=
1

(nλ)n

∫
{u+v6 57

32
}∩BδR(x0)

{(R2Lv + aL + Λ)+}n dV.

It is also noted that in order to apply Lemma 3.2 to u+v, it would be better
for v to basically satisfy the following:

1) For u+ v > 0 in B4R\B3R, v > 0 in B4R\B3R when u > 0 in B4R\B3R,

2) For inf
BR

(u+ v) 6 1 in BR, v 6 0 in BR when inf
BR

u 6 1 in BR.

Now the above strategy is implemented in detail.

Proof. of Theorem 3.1.
Step 1. For 0 < δ < 1, there is a continuous function vδ in B4R satisfying
the following properties:

1) vδ is smooth in B4R\Cut(x0),

2) R2Lv + aL + Λ 6 0 a.e. in B3R\BδR,
3) v > 0 in B4R\B3R,

4) v 6 0 in BR,

5) R2Lv 6 Cδ a.e. in B3R, and

6) − vδ 6 Cδ in B4R,

where Cδ depends only on δ.

A function vδ is defined by

vδ(x) = Iδ(
dx0(x)

R
)
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Chapter 3. Critical Density Lemma

where Iδ is a smooth increasing function on R+ satisfying that

1) I ′δ(0) = 0, (3.3)

2) Iδ(r) = (
3

2
)β − (

3

r
)β for r > δ. (3.4)

with β to be chosen later.
It is trivial that vδ is continuous on B4R. Also, vδ is smooth in B4R\Cut(x0)
since dx0 is smooth in M\(Cut(x0)∪{x0}) and I ′δ(0) = 0. Thus, −vδ should
be bounded from above by some constant C1,δ. From (3.4), 3) and 4) of
the above claim are also trivial. For the remained 2) and 5), we need to
compute Lvδ under the condition of the smoothness of vδ in B4R\Cut(x0):

Lvδ =
1

R
I ′δ(ρ)Ldx0 +

1

R2
I ′′δ (ρ)g 〈A∇dx0 ,∇dx0〉

=
1

R2

I ′δ(ρ)

ρ
dx0Ldx0 +

1

R2
I ′′δ (ρ)g 〈A∇dx0 ,∇dx0〉 ,

where for δ 6 ρ < 3 it is noted that

i) I ′δ(ρ) =
β

3
(
3

ρ
)β+1,

ii) I ′′δ (ρ) = −β(β + 1)

32
(
3

ρ
)β+2,

iii) λ 6 g 〈A∇dx0 ,∇dx0〉 6 Λ,

iv) dx0Ldx0 6 aL.

Thus, in B3R\ {BδR ∪ Cut(x0)}, it is also obtained that

Lvδ 6
1

R2

I ′δ(ρ)

ρ
dx0Ldx0 +

1

R2
I ′′δ (ρ)g 〈A∇dx0 ,∇dx0〉

6
1

R2

β

32
(
3

ρ
)β+2aL −

1

R2

β(β + 1)

32
(
3

ρ
)β+2λ

6
1

R2

β

32
(
3

ρ
)β+2 (aL − (β + 1)λ)

6
1

R2

β

9
(
3

δ
)β+2 (aL − (β + 1)λ) .

Here, since 3
δ > 1 and aL−(β+1)λ < 0 for a sufficient large β, the last term

can be made smaller than −(aL+Λ)
R2 by choosing a large β. Thus, 2) of the

claim is proven. Moreover, in B4R\Cut(x0), basically it is computed that

Lvδ 6
aL
R2

sup
0<ρ<4

∣∣∣∣I ′δ(ρ)

ρ

∣∣∣∣+ sup
0<ρ<4

Λ

R2

∣∣I ′′δ (ρ)
∣∣ = C2,δ <∞.
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Thus, 5) of the claim is obtained with Cδ = max {C1,δ, C2,δ, nλ} where nλ
is taken to guarantee that Cδ > nλ in Remark 2 of Theorem 3.1, and the
proof of the claims of Step 1 is finished.

Since the above vδ is guaranteed to be smooth only in B4R\Cut(x0), but
might not be smooth in B4R itself, an approximating process by smooth
functions to vδ in B4R is necessary in order to apply Lemma 3.2.

Step 2. There exist a smooth bump function ξ such that

i) 0 6 ξ 6 1 in M,

ii) ξ ≡ 1 in B3R,

iii) supp(ξ) ⊂ B4R,

and a sequence of smooth functions {wk} in M satisfying the followings:

i) wk −→ ξvδ uniformly in M,

ii) D2wk −→ D2vδ a.e. in B3R,

iii) D2wk 6 C Id in M for some C independent of k.

In regard to the proof of this step, Cabré [1] is referred to for simplicity
since its arguments just consist of applications of an approximation of the
identity and partition of unity.

Step 3.

If Lemma 3.2 is applied to u+ wk, then Theorem 3.1 is proven.

First, if u+wk is approximated by u+wk+εk
1+2εk

with a sequence {εk} converging
to 0, then it might assumed that u+wk satisfies the hypotheses of Theorem
3.1:

1) u+ wk be a nonnegative smooth function in a ball B4R(x0),

2) inf
BR(x0)

u+ wk 6 1.

This is because a proper sequence {εk} −→ 0 can be chosen by the following
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steps:

1) For x ∈ BR, that is, wk(x) −→ vδ(x) 6 0,

a sufficiently large k1 is picked such that wk(x) > 0 for all k 6 k1,

and a sequence is set by ε1,k = sup
BR

wk > wk(x) for k 6 k1

and ε1,k = 0 for k > k1

=⇒ inf
BR

u+ wk + ε1,k
1 + 2ε1,k

6
1 + 2ε1,k
1 + 2ε1,k

= 1,

2) For x ∈ B4R\B3R, that is, wk(x) −→ vδ(x) > 0,

a sufficiently large k2 is chosen such that wk(x) 6 0 for all k 6 k2,

and a sequence is defined by ε2,k = sup
B4R\B3R

(−wk) > −wk(x) for k 6 k1

and ε2,k = 0 for k > k2

=⇒
u+ wk + ε2,k

1 + 2ε2,k
> 0 in B4R\B3R,

3) A sequence is set by εk = max {ε1,k, ε2,k} .

It is also noted that

1) For any ε > 0, there is a sufficiently large k such that{
u+ wk 6

57

32

}
∩B3R ⊂

{
u+ vδ 6

57

32
+ ε

}
∩B3R,

2)
{(
R2L(u+ wk) + aL + Λ

)+}n
is uniformly bounded in M

since D2wk 6 C Id.

Thus, by applying the Lebesgue dominated convergence theorem as k −→∞
and Lemma 3.2, and with the conditions of vδ in Step 1 and Lu 6 0, the
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following inequalities are computed:∣∣∣BR
4

∣∣∣ 6 1

(nλ)n

∫
{u+vδ6

57
32
}∩B3R(x0)

{(R2L(u+ vδ) + aL + Λ)+}n dV

=
1

(nλ)n

∫
{u+vδ6

57
32
}∩B3R(x0)

{(R2L(vδ) + aL + Λ)+}n dV

=
1

(nλ)n

∫
{u+vδ6

57
32
}∩BδR(x0)

{(R2L(vδ) + aL + Λ)+}n dV

6
1

(nλ)n

∫
{u+vδ6

57
32
}∩BδR(x0)

{(Cδ + aL + Λ)+}n dV

6

(
Cδ + aL + Λ

nλ

)n ∣∣∣∣{u+ vδ 6
57

32

}
∩BδR(x0)

∣∣∣∣
6

(
Cδ + aL + Λ

nλ

)n ∣∣∣∣{u 6
57

32
+ Cδ

}
∩BδR(x0)

∣∣∣∣
Here, the inequality can be expressed like below:

⇐⇒
∣∣{u 6 57

32 + Cδ
}
∩BδR

∣∣
|BδR|

>

{
nλ

4δ(Cδ + aL + Λ)

}n
⇐⇒

∣∣{u > 57
32 + Cδ

}
∩BδR

∣∣
|BδR|

6 1−
{

nλ

4δ(Cδ + aL + Λ)

}n
.

Thus, since L is linear and all the constants are independent of the radius
of ball R, by letting δ = 1

2 the proof of (Theorem 3.1) is finished:

If u is a nonnegative smooth function in a ball BR(x0) and satisfy Lu 6 0
in the same ball. Then, u has the following property:∣∣∣{u ≥ 1} ∩BR

8
(x0)

∣∣∣∣∣∣BR
8

(x0)
∣∣∣ > ξ1 =⇒ inf

BR
4

(x0)
u > β1,

where ξ1 = 1− { nλ

1
2

(
C 1

2
+ aL + Λ

)}n and β1 =
1

57
32 + C 1

2

.
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Chapter 4

Power Decay of the
Distribution Functions of
Solutions

This is a chapter to get a power-decay property of distribution functions of
solutions of nondivergent uniformly elliptic partial differential operators.

Theorem 4.1. (Power-decay) Let BR be a ball in M and L be as defined in
Section 2.2. Let u be a nonnegative smooth function in a ball BR satisfying
Lu 6 0 in the same ball. Then, for any nonnegative integer k, u has the
following property :∣∣∣{u ≥Mk} ∩BR

8

∣∣∣∣∣∣BR
8

∣∣∣ > ξk =⇒ inf
BR

8

u > 1,

where M =
1

β1
=

57

32
+ C 1

2
and ξ =

1

1 + 1−ξ1
5n

.

The proof of this theorem is given in the end of this chapter, and Appendix
A can be referred to for any universal constants.

Now a covering lemma on Riemannian manifold is proven, and it will be
used to prove Power decay of the distribution functions of nonnegative su-
persolutions of L.

Lemma 4.2. (Covering) Let M be a Riemannian manifold, A is an mea-
surable set on M with respect to the Riemannian measure on M, and B0 =
BR(x0) is a ball containing A on M. A positive number δ is chosen so that

|A| < δ|B0| where | · | denotes the Riemannian measure on M.

A family of balls, S is set by

S =

{
B | B ⊂ B0 and

|B ∩A|
|B|

> δ

}
where B are balls on M.
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Chapter 4. Power Decay of the Distribution Functions of Solutions

Also, an another set Γ is defined by Γ = ∪B∈SB. Then, A ⊂ Γ a.e. x and
|Γ| ≥ (1 + c1)|A| where c1 = c1(δ, n) = 1−δ

5n .

Proof. The proof of Safonov [5] in Rn is followed with languages of Rieman-
nian geometry. A function φA is defined by

φA(x, r) =
|Br(x) ∩A|
|Br(x)|

.

Step 1.
A ⊂ Γ a.e. x.

First, it is mentioned that a similar covering lemma in metric spaces equipped
with a measure satisfying a doubling property, which implies the Lebesgue
differentiation theorem in those spaces, was proved in Coifman and Weiss
[8]. Then, we can apply the Lebesgue differentiation theorem on Riemma-
nian manifolds with nonnegative Ricci curvature, which is a metric space
equipped with the doubling property of measure, to the charateristic func-
tion of A, χA. If x /∈ Γ, then we can find a sequence of small balls Si which
contain x, shrink to one point, and satisfy

|Si ∩A|
|Si|

< δ < 1.

Thus, by the Lebesque differentiation theorem on Riemannian manifolds
applied to χA,

χA(x) = lim
diam(Si)→0

1

|Si|

∫
Si

χA,

and also

= lim
diam(Si)→0

|Si ∩A|
|Si|

< δ.

for a.e. x /∈ Γ. Thus, for a.e. x /∈ Γ, x /∈ A, that is A ⊂ Γ a.e.x.

For every Br(x) ∈ S , since |Br(x) ∩ A| ≥ δ|Br(x)| and |A| < δ|B0|, by
the continuity of φA(x, r) as a function of x and r, a ball Br̃(x̃) can be
chosen such that φA(x̃, r̃) = δ. In detail, this can be done by finding an
interpolation ball between B0 = BR(x0) and Br(x). The interpolation ball
Bt with a parameter t is defined by

Bt = Btr+(1−t)R(γ(t))
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Chapter 4. Power Decay of the Distribution Functions of Solutions

where γ(t) is the minimal geodesic conneting x0 and x, and satisfying
γ(0) = x0 and γ(1) = x. Here, it is noted that B0 = BR(x0), B1 = Br(x),
and

Step 2.
B1 ⊂ Bt ⊂ B0 for any t ∈ [0, 1].

This is because

for p ∈ B1, d(p, γ(t)) 6 d(p, x) + d(x, γ(t))

< r + d(x, γ(t)) since p ∈ B1

6 r + (1− t)d(x, x0) since γ(t) is the minimal

geodesic satisfying γ(0) = x0 and γ(1) = x

< r + (1− t)(R− r) since Br(x) ⊂ BR(x0)

= tr + (1− t)R
=⇒ p ∈ Bt,

and

for q ∈ Bt, d(q, x0) 6 d(q, γ(t)) + d(γ(t), x0)

< tr + (1− t)R+ d(γ(t), x0) since q ∈ Bt
6 tr + (1− t)R+ td(x, x0) since γ(t) is the minimal

geodesic satisfying γ(0) = x0 and γ(1) = x

< tr + (1− t)R+ t(R− r) = R

=⇒ q ∈ B0.

Here, an another function ψ is set by

ψ(t) =
|Bt ∩A|
|Bt|

with the condition that ψ(0) < δ and ψ(1) > δ. Then, by the continuity of
ψ, there exists a number 0 < t0 ≤ 1 such that ψ(t0) = δ. Thus, the above x̃
and r̃ can be picked by

x̃ = γ(t0) and r̃ = t0r + (1− t0)R,

and a refinement of S , S̃ can be considered by

S̃ =
{
Bt0 = Bt0r+(1−t0)R(γ(t0)) | Br(x) ⊂ S

}
,
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where γ(t) and t0 are taken by the above process for each ball Br(x) in S .

Then, for every B ∈ S̃ it is trivial that

|B ∩A|
|B|

= δ,

so S̃ is called as a refinement of S . And a set Γ̃ is defined by

Γ̃ = ∪
B∈S̃

B.

Then, by the claim of Step 2 and a trivial fact that Γ̃ ⊂ Γ, it is obtained
that Γ = Γ̃. Thus, a modified way for the construction of Γ is attained.

Step 3.

|Γ̃|
|A|

> 1 +
(1− δ)

5n
.

With the above S̃ , a Vital Covering of A can be considered; that is, there
exist distjoint balls Bi = Bri(xi) ∈ S̃ such that

A ⊂ ∪iB5ri(xi).

Here, by virtue of the doubling property of measure, it is computed that

|A| 6 |∪iB5ri(xi)| 6
∑
i

|B5ri(xi)| = 5n
∑
i

|Bri(xi)|.

Then, since

1) B′is are disjoint,

2) B′is satisfy
|Bi ∩A|
|Bi|

= δ,

it is obtained that

|Γ̃−A| >
∑
i

|(Γ̃−A) ∩Bi| =
∑
i

|Bi −A| = (1− δ)
∑
i

|Bi| >
(1− δ)

5n
|A|.

Thus, it follows that

|Γ̃|
|A|

= 1 +
|Γ̃/A|
|A|

> 1 +
(1− δ)

5n
.

This proves the theorem with a constant c1 = c1(n, δ) = 1−δ
5n .
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Note. The condition of Riemannian manifold is considered only for the
Lebesgue Differentiation Theorem, and the doubling property of Rieman-
nian measure. So, its proof is basically the same with that in Rn, and
this lemma essentially simplify our proof of Harnack inequality on Rieman-
nian manifolds, comparing with the proof of Cabré who used a Calderon-
Zygmund decomposition theorem in Riemannian manifolds.

The above covering lemma explains a uniform growth, which is essential for
the proof of Theorem 4.1, of the measure of cut-off sets by increasing lower
bounds. Thus, if it is iterated, uniform increments of the measures of cut-off
sets is obtained successively. The following are details of that idea.

Proof. of Theorem 4.1.
For convenience, it is recalled that

M =
1

β1
=

57

32
+ C 1

2
and ξ =

1

1 + 1−ξ1
5n

,

where ξ1 = 1− { nλ

1
2

(
C 1

2
+ aL + Λ

)}n.
When k = 0, this is trivial since∣∣∣{u ≥ 1} ∩BR

8

∣∣∣∣∣∣BR
8

∣∣∣ > 1 =⇒
∣∣∣{u ≥ 1} ∩BR

8

∣∣∣ =
∣∣∣BR

8

∣∣∣
⇐⇒ inf

BR
8

u > 1.

It suffices to prove that for any positive integer k,∣∣∣{u ≥Mk} ∩BR
8

∣∣∣∣∣∣BR
8

∣∣∣ > ξk =⇒

∣∣∣{u ≥Mk−1} ∩BR
8

∣∣∣∣∣∣BR
8

∣∣∣ > ξk−1

because then it is concluded by induction that∣∣∣{u ≥Mk} ∩BR
8

∣∣∣∣∣∣BR
8

∣∣∣ > ξk =⇒ · · · =⇒
∣∣∣{u > 1} ∩BR

8

∣∣∣ =
∣∣∣BR

8

∣∣∣
⇐⇒ inf

BR
8

u > 1.
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First, it is assumed that ∣∣∣{u ≥Mk} ∩BR
8

∣∣∣∣∣∣BR
8

∣∣∣ > ξk.

Here, let Γ = BR
8
∩ {u ≥Mk} for simplicity, then it is assumed that

|Γ| > ξk
∣∣∣BR

8

∣∣∣ .
Next, a covering of Γ, which consists of small balls contained in BR

8
, is con-

sidered; moreover, simultaneously whose sufficient portions intersect with Γ;
that is, a colletion of such balls F is defined by

F =

{
B ⊂ BR

8
| |Γ ∩B|
|B|

> ξ1

}
, where ξ1 is from Theorem 3.1.

Then, by Theorem 3.1 and linearity of L, it is obtained that for any B ∈ F

inf
B
u >Mk

(
1

57
32 + C 1

2

)
= Mk−1 since M =

57

32
+ C 1

2
.

Thus, if Γ1 := ∪B∈FB is considered, by Lemma 4.2 it is noted that

1) Γ ⊂ Γ1 almost every x in BR
2
.

2) Γ1 ⊂
{
x ∈ BR

8
| u(x) >Mk−1

}
= {u ≥Mk−1} ∩BR

8
.

3) |Γ1| > (1 +
1− ξ1

5n
) |Γ| > (1 +

1− ξ1

5n
)ξk
∣∣∣BR

8

∣∣∣ = ξk−1
∣∣∣BR

8

∣∣∣
since ξ =

1

1 + 1−ξ1
5n

.

From 2) and 3), it is obtained that∣∣∣{u ≥Mk−1} ∩BR
8

∣∣∣∣∣∣BR
8

∣∣∣ > ξk−1

and finish the proof.
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A variant of Theorem 4.1 as a power decay expression is given for an appli-
cation in the next section.

Corollary 4.3. ( b
td

-expression) Let u be a nonnegative smooth function
in a ball BR satisfying Lu 6 0 in the same ball. Moreover, suppose that
infBR

8

u 6 1. Then, for any number t > 1, u has the following property :∣∣∣{u ≥ t} ∩BR
8

∣∣∣∣∣∣BR
8

∣∣∣ 6
b

td
,

where b =
1

ξ
= (1 +

1− ξ1

5n
) and d = logM

1

ξ
.

Note. Appendix A is referred to for any universal constants.

Proof. The contrapositive statement of (Theorem 4.1) is considered:

inf
B
u 6 1 =⇒

∣∣{u >Mk} ∩B
∣∣

|B|
6 ξk,

where B = BR
8

.

Then, for any Mk 6 t < Mk+1,

|{u > t} ∩B|
|B|

6

∣∣{u >Mk} ∩B
∣∣

|B|

6 ξk =
ξk+1

ξ
= b ξk+1 with b =

1

ξ

, and if let d = logM
1
ξ ⇐⇒

1
ξ = (Md), it is obtained

t < Mk+1 ⇐⇒ 1

ξk+1
= (Md)k+1 > td ⇐⇒ ξk+1 <

1

td
.

Thus, it is computed
|{u > t} ∩B|

|B|
6

b

td
.

and finish the proof.
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Chapter 5

Harnack Inequality

This is a chapter to prove Harnack inequality.

Theorem 5.1. (Harnack Inequality) Let M be a smooth n-dimensional com-
plete Riemannian manifold which satisfies M− [R(v)] > 0, and u be a non-
negative smooth solution of Lu = 0 in a ball BR(x0) on M . Then u has the
following property:

sup
BR

2
(x0)

u ≤ C inf
BR

2
(x0)

u,

where C is a universal constant depending only on λ,Λ, n, and aL.

The geometric assumption of M, M− [R(v)] > 0, is mentioned for clarity,
and the proof of Harnack inequality is given in the end of this chapter after
some auxiliary lemmas.

Lemma 5.2. (a Lower Bound) Let u be a nonnegative smooth function in
a ball BR(x0) and satisfy Lu = 0 in the same ball. Moreover, suppose that
infBR

8
(x0) u 6 1. Then, for k > k̃ (see Remark of Lemma 5.2), u has the

following property:

If there is x1 ∈ BR
8

(x0) such that 1) d(x1, ∂BR
8

(x0)) > rk =
P

(LNk)
d
n

,

2) u(x1) > LNk−1,

then sup
Brk (x1)

u > LNk,

where L = 2b
1
d = 2 + 2{ 2nλ

5
(
C 1

2
+ aL + Λ

)}n, N =
L

L− 1
2

> 1,

P = 2R

{
2db

1− b
Ld

} 1
n

, k̃ is mentioned in the following remark.
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Remark. If, in fact, rk = P

(LNk)
d
n
> R

8 , then the above lemma is meaningless;

so, in the beginning it is necessary to check that

rk =
P

(LNk)
b
n

6
R

8
for sufficiently large k. (5.1)

We check that (5.1) is true for some k̃:

rk =
P

(LNk)
b
n

6
R

8

⇔ 2R

(
2db

1− b
Ld

) 1
n 1

(LNk)
b
n

6
R

8

⇔ 16
2db

1− b
Ld

6 LdNkd

⇔ 16
2dbLd

Ld − b
6 LdNkd

⇔ 162dbLd 6 Nkd
(
Ld − b

)
.

Now, since b, d, L, and N > 1 are constants and Ld− b > 0, it is trivial that
there exists a large k̃ satisfies the claim.

Proof. The idea of Caffarelli [4] is followed for the proof. Suppose that there
is a point x1 satisfying the hypotheses of this lemma, but supBrk (x1) u 6

LNk, then a contradition finishes the proof. First, a function w is defined
by

w(x) =
LNk − u(x)

LNk − LNk−1
.

Step 1. ∣∣∣{w > t} ∩B rk
8

(x1)
∣∣∣∣∣∣B rk

8
(x1)

∣∣∣ 6
b

td
for any positive number t.

This trivially comes from Corollary 4.3 since w satisfies the following prop-
erties:

1) w(x) is nonnegative smooth function in Brk(x1),

2) Lw 6 0 in Brk(x1),

3) w(x1) =
LNk − u(x1)

LNk − LNk−1
6
LNk − LNk−1

LNk − LNk−1
= 1 =⇒ inf

Brk (x1)
w 6 1.
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Step 2.2R

{
2db

1− b
Ld

} 1
n

=

P 6 R

{
2db

1− b
Ld

} 1
n

, thus a contradiction happens.

First, an estimate for the measure of the ball B rk
8

(x1) can be computed:

∣∣∣B rk
8

(x1)
∣∣∣ 6 ∣∣∣∣{u 6

LNk

2

}
∩B rk

8
(x1)

∣∣∣∣︸ ︷︷ ︸
(1)

+

∣∣∣∣{u >
LNk

2

}
∩B rk

8
(x1)

∣∣∣∣︸ ︷︷ ︸
(2)

(5.2)

Here, (1) and (2) can be computed by Step 1 and Corollary 4.3, respectively:

(1) =
∣∣∣{w > L} ∩B rk

8
(x1)

∣∣∣ 6 b

Ld

∣∣∣B rk
8

∣∣∣
since B2

rk
8

(x1) ⊂ BR(x0) and u(x) 6 LNk

2 ⇐⇒ w(x) = LNk−u(x)
LNk−LNk−1 >

LNk

2

LNk−LNk−1 =
N
2

N−1 = L because N = L
L− 1

2

,

(2) 6

∣∣∣∣{u >
LNk

2

}
∩BR

8
(x0)

∣∣∣∣ 6 b

(LN
k

2 )d

∣∣∣BR
8

∣∣∣
since B rk

8
(x1) ⊂ BR

8
(x0) and infBR

8
(x0) u 6 1.

Next, it is obtained that

(5.2) =⇒ (1− b

Ld
)
∣∣∣B rk

8

∣∣∣ 6 b

(LN
k

2 )d

∣∣∣BR
8

∣∣∣ ,
=⇒ (1− b

Ld
)wn(

rk
8

)n 6
2db

(LNk)d
wn(

R

8
)n, where rk =

P

(LNk)
d
n

,

=⇒ (1− b

Ld
)

Pn

(LNk)d
6

2db

(LNk)d
Rn,

=⇒ P 6 R

{
2db

1− b
Ld

} 1
n

.

Thus, the claim of Step 2 is proved, and a contradiction happens.
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Now it is concluded that if u satisfies all of the hypotheses of this lemma
and all constants are defined as above, then u should satisfy that

sup
Brk (x1)

u > LNk.

This finishes the proof.

Remark. 1. L may be an arbitrary constant satisfying

1) L >
1

2
since N =

L

L− 1
2

> 0,

2) L > b
1
d since 1− b

Ld
> 0.

Thus, L can be defined by L = 2b
1
d = 2 + 2{ 2nλ

5

(
C 1

2
+aL+Λ

)}n > 2.

2. P = 2R

{
2db

1− b

Ld

} 1
n

depends on the radius of the ball; however, another

constants are independent of R. Thus, it is necessary to recognize the reason
why we can get a universal constant independent of R in the following lemma
in spite of such P . This independency of constants is essential to obtain
Harnack inequality.

Lemma 5.3. (almost Harnack) Let u be a nonnegative smooth function in
a ball BR and satisfy Lu = 0 in the same ball. Moreover, suppose that
infBR

8
(x0) u 6 1. Then, u has the following property in B R

16
(x0):

sup
B R

16
(x0)

u 6 C0, where C0 is a universal constant.

Proof. Since rk = P

(LNk)
d
n

in Lemma 5.2, a sufficiently large positive integer

k0 > k̃ (see Remark of Lemma 5.2) can be chosen such that∑
k>k0

2rk 6
R

16
. (5.3)

A Claim
sup

B R
16

(x0)
u < LNk0−1 = C0.
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Suppose that the claim is false, that is, there exist a point xk0 ∈ B R
16

(x0)

such that u(xk0) > LNk0−1.
First, since Brk0 (xk0) ⊂ B R

16
+ R

16
(x0) = BR

8
(x0) by (5.3), in virtue of Lemma

5.2, an another point xk0+1 ∈ Brk0 (xk0) ⊂ BR
8

(x0) can be picked such that

1) sup
Brk0

(xk0 )
u = u(xk0+1) > LNk0 ,

2) Brk0+1
(xk0+1) ⊂ BR

8
(x0) by (5.3) again.

In detail, 2) comes from the fact that, for any integer k > k0,

d(x0, xk) 6 d(x0, xk0) +
∑
k>k0

d(xk, xk+1)

6
R

16
+
∑
k>k0

2rk 6
R

16
+
R

16
6
R

8
.

Next, the same process can be iterated to construct a sequence of points
{xk}k>k0 in BR

8
(x0) such that, for any k > k0,

1) sup
Brk (xk)

u = u(xk+1) > LNk,

2) Brk+1
(xk+1) ⊂ BR

8
(x0) also by (5.3).

This implies that

u(xk) −→ ∞ in BR
8

(x0) as k −→∞;

however, it is contradictory to the condition that u is smooth in BR(x0), so
that, u is bounded in BR

8
(x0). Thus, it is concluded that if u satisfies all

the condition in this lemma, then

sup
B R

16
(x0)

u < C0 = LNk0−1, where k0 satisfies
∑
k>k0

2rk =
∑
k>k0

2
P

(LNk)
d
n

6
R

16
.

Finally, to guarantee that C0 is a universal constant which is independent
of u and the radius R, it is recalled that

L = 2b
1
d , N =

L

L− 1
2

> 1, and P = 2R

{
2db

1− b
Ld

} 1
n

.
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Remark. The previous lemma is almost a Harnack inequality since it is easy
to get a Harnack inequality from it by the following simple argument:
Let u be a nonnegative smooth function in a ball BR and satisfy Lu = 0 in
the same ball. Here, an auxiliary function is defined by

ũ(x) =
u(x)

infB R
16

(x0) u+ ε
for an arbitrarily given ε > 0,

then ũ(x) naturally satisfies all the hypotheses of Lemma 5.3 since

inf
BR

8 (x0)

ũ =
infBR

8 (x0)
u

infB R
16

(x0) u+ ε
6 1,

so that we have

sup
B R

16
(x0)

u 6 C0

{
inf

B R
16

(x0)
u+ ε

}
6 C0 inf

B R
16

(x0)
u since ε > 0 is arbitrary.

Now the proof of a different statement of Harnack inequality, Theorem 5.1,
is given below.

Proof. of Theorem 5.1.
It suffices to prove that

u(x) 6 C u(y) for any x and y in BR
2

(x0) for a universal constant C.

Let x and y be any two points in BR
2

(x0), and consider the minimal geodesic

from x to y , κ(t), which is parametrized by the arc-length satisfying

κ(0) = x, κ(l) = y, and l < R = the diameter of BR
2

(x0).

Then, a colletion of small balls
{
Bj = B R

2·16
(xj) = B R

32
(xj)

}
can be con-

structed by the following steps:

1) A positive integer i is chosen such that

t0 = 0 < t1 =
R

32
< t2 = 2

R

32
< · · · < ti = i

R

32
< tm+1 = l 6 (i+ 1)

R

32

, then i
R

32
< l =⇒ i <

32l

R
< 32.

2) Let x0 = x, xj = κ(tj), and xi+1 = κ(ti+1) = y on the geodesic curve.
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Then, the balls successively intersect each other since κ(t) is a unit-speed
curve, so that, by using the above remark of (Lemma 6.3) iteratively, it is
concluded that

u(x) = u(x0) 6 C0u(x1) 6 · · · 6 C0
iu(xi+1) = C0

iu(y) < C0
32u(y).

This finishes the proof with a universal constant C = C0
32.
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Appendix A

Some Universal Constants

All the constants depend only on dimension n and differential operator L:

1) (Lemma 2.2: Upper Boundness of Ldp) aL = (n− 1)Λ,

(in the proof of Theorem 3.1, Step 1, pp20-22) C 1
2

= Cδ with δ =
1

2
,

2) (Theorem 3.1: Critical Density)

ξ1 = 1− { nλ

1
2

(
C 1

2
+ aL + Λ

)}n, and β1 =
1

57
32 + C 1

2

,

3) (Theorem 4.1: Power Decay)

M =
57

32
+ C 1

2
, ξ =

1

1 + { 2nλ

5

(
C 1

2
+aL+Λ

)}n ,

4) (Corollary 4.3:
b

td
-expression)

b = 1 + { 2nλ

5
(
C 1

2
+ aL + Λ

)}n, d = log(
57
32

+C 1
2

)(1 + { 2nλ

5
(
C 1

2
+ aL + Λ

)}n),

5) (Corollary 5.2: Lower Bound)

L = 2 + 2{ 2nλ

5
(
C 1

2
+ aL + Λ

)}n, N =
L

L− 1
2

> 1, P = 2R

(
2db

1− b
Ld

) 1
n

,

6) (Theorem 5.1: Harnack Inequality)

C = L32N32(k0−1), where k0 satisfies
∑
k>k0

1

Nk
6

L

64
n
d

(
2db

1− b

Ld

) 1
d

.
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