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Abstract 

Previous work has shown that many populations of birds residing in British Columbia are declining 

in number. However, given the size and remoteness of many parts of the province, direct sampling 

of BC’s bird communities throughout the province is unlikely. Remote sensing has been shown to be 

an attractive option in these types of situations, providing environmental data in remote areas at 

spatial scales appropriate for a provincial level of analysis. Additionally, the spatial coverage of 

remotely sensed data allows for species occurrences to be estimated in un-sampled locations using 

models derived from areas where sampling has occurred. 

The overall objectives of this thesis are twofold, and were tested in two separate studies. First, the 

ability of remotely sensed environmental variables to predict the distribution of coastal bird 

species for the entire BC coast was investigated. Second, multiple environmental regionalization 

schemes were evaluated with regard to their ability to delineate avian Beta diversity across the 

province, and were compared to a regionalization built using species data directly. 

In Chapter 3, the distributions of 60 species of birds were estimated along the BC coast. Distribution 

models were built using species occupancy data linked to oceanic, terrestrial, and anthropogenic 

remotely sensed variables, as well as interpolated climate indices and spatial variables, in both 

single and ensemble models. The use of these four different types of environmental variables 

improved the distribution models’ ability to estimate species occurrence, as did the use of ensemble 

modeling and the inclusion of spatial variables. Significant changes in the amount of occupied 

habitat by year were detected in 16 species for the eight year study period.   

In Chapter 4, four environmental conservation regionalization schemes were compared using 

analysis of similarity (ANOSIM) tests to assess their ability to delineate Beta diversity. A new, 

species-based regionalization was then created to act as an ideal scenario, and was subsequently 

tested against each environmental regionalization scheme. These analyses demonstrated that all 
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environmental regionalization schemes delineated significant patterns in Beta diversity, with the 

Bird Conservation Regions scoring highest in ANOSIM testing overall and being the most similar to 

the species-based regionalization. 
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Glossary 

ANN: Artificial Neural Networks. A machine learning algorithm for estimating probability of 
occurrence. 

ANOSIM: Analysis of Similarity. A non-parametric test for assessing differences across groupings 
using distance metrics. 

AUC: Area under the receiver-operator characteristic curve. A statistic measuring the goodness of 
fit of a presence/absence model. 

BCR: Bird Conservation Regions. Developed by the North American Bird Conservation Initiative as 
a regionalization for North America primarily for avian conservation. 

BEC: Biogeoclimatic Ecosystem Classification. A classification system for British Columbia 
developed for forestry purposes employing abiotic and biotic information. 

Beta diversity: The amount of species turnover (shared vs. unique species) experienced between 
two locations. 

Community: The assemblage of species at a particular location. 

CWS: Coastal Waterbird Survey. A coastal bird survey conducted by Bird Studies Canada at various 
locations along the British Columbia coast. 

CTA: Classification Tree Analysis: A recursive binary splitting algorithm used to estimate 
probability of occurrence. 

Ensemble model: An algorithm which uses a combination of individual model outputs to estimate 
probability of occurrence. 

GA: Grand Adjacent. An ANOSIM test using all within region distances and only between regions 
distances where regions are adjacent in space. 

GAM: Generalized Additive Model. A semi-parametric model used for estimating probability of 
occurrence. 

GBM: Boosted Regression Trees. A machine learning algorithm employing regression and decision 
trees which estimates probability of occurrence. 

GLM: Generalized Linear Model. A parametric linear model used for estimating probability of 
occurrence. 

GO: Grand Overall. An ANOSIM test using all within region distances and all between regions 
distances. 

Jaccard’s distance: A distance metric which measures the amount of shared and unique species 
between two pairwise sites. One indicates no species are shared, while zero indicates all species are 
shared. 
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Kriging: A method which uses a measurement of the spatial autocorrelation of a metric to estimate 
the metric at un-sampled locations. 

MARS: Multivariate Adaptive Regression Splines. A regression method which fits multiple linear 
segments to a non-linear curve to estimate probability of occurrence. 

Population: The individuals of a particular species occupying a particular region at one point in 
time. 

Probability of occurrence: The likelihood that a species will occupy a particular location, ranging 
from zero (zero likelihood) to one (absolute likelihood). 

RA: Regional Adjacent: An ANOSIM test which uses one particular region’s within distances and the 
between distances of all adjacent regions. 

RF: Random Forest. A binary recursive splitting algorithm used for estimating probability of 
occurrence. 

RO: Regional Overall. An ANOSIM test which uses one particular region’s within distances and all 
between regions distances. 

SDM: Species Distribution Model. An estimate of a species’ presence and absence in space and/or 
time. 

Thematic resolution: The number of regions within a regionalization. 
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1. INTRODUCTION 

Globally, species are being lost at an increasing rate (Sala et al., 2000; Dirzo and Raven, 2003). Land 

conversion - which is projected to increase as the global human population grows - is currently the 

largest cause of species extirpation (Foley, 2005). However, climate change is now recognized as a 

significant threat to species worldwide, and is projected to increase throughout the 21st century 

potentially surpassing land conversion as the major threat to our planet’s species assemblages 

(Gaston et al., 2003; Dawson et al., 2011). Avian communities, the subject of this thesis, appear to be 

following a similar pattern of decline (Gaston et al., 2003; Norris and Harper, 2004). Land use 

change has been implicated as the major driver of the bird species declines (Gaston et al., 2003; 

Norris and Harper, 2004; Drever and Martin, 2010). However, climate change (Thomas et al., 2003) 

and invasive species (Clavero et al., 2009), as well as more specific threats such as mountain pine 

beetle in British Columbia (Drever et al., 2008), have also been identified as potential threats. In 

response to these threats, the North American Bird Conservation Initiative (NABCI) was established 

in 1998 (North American Bird Conservation Initiative, 1999). The primary goal of the NABCI is to 

coordinate the conservation of North American bird species across their ranges irrespective of 

political boundaries. 

An initial step in conserving avian communities is answering a simple question – what species of 

birds occur where? Having an understanding of the distribution of bird species across a land base is 

critical for implementing conservation plans (Guisan and Thuiller, 2005; Araújo and Guisan, 2006), 

assessing habitat availability (Betts et al., 2006), and estimating how range shifts may occur under 

future climate scenarios (Pearson and Dawson, 2003; Thomas et al., 2004; Hamman and Wang, 

2006). Once species distributions are relatively well known, conservation strategies can be 

implemented, with the goal of protecting populations across a land base (Margules and Pressey, 

2000). Both concepts, species distributions and conservation, are tested here as the subject of this 

thesis.   
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1.1 Species Distribution Modeling 

Many areas do not have reasonable estimates regarding species distributions (Araújo and Guisan, 

2006). This can be due to the remoteness of an area or because an area is difficult to access. A lack 

of resources available to researchers can also limit the amount of sampling conducted across a land 

base. Because of these constraints, species distribution models are becoming more common in 

biogeography and ecology when direct sampling is prohibitive (Guisan and Zimmerman, 2000; Elith 

and Leathwick, 2009). Species distribution models estimate the probability of a species occurring at 

a given location based on their affinity for certain environmental characteristics (Guisan and 

Thuiller, 2005). These probabilities can then be converted into binary presence/absence values by 

employing a rule which states that above “X” probability, the species is predicted to be present.  

The British Columbia coast offers a good example of an area where modeling can be an effective 

tool for estimating species distributions. Many sections of the coast are extremely remote and have 

no road access (Cannings and Cannings, 1996), meaning that direct sampling must be by boat or 

aircraft, both of which are expensive options. By estimating species distributions through modeling, 

knowledge can be gained regarding what species occur where along the coast. While these models 

do not offer truth, with model accuracy assessments and post-hoc evaluation of the agreement of 

individual species models with known species distributions, they can be an effective initial 

prediction from which further work can proceed.  

1.2 Avian Protected Areas Planning  

Biodiversity protection has been used as a major driver of conservation planning (Rands et al., 

2010). One of the most common methods of protecting biodiversity has been establishing reserve 

systems to provide habitat and separate species from threats present elsewhere (Margules and 

Pressey, 2000; Rodrigues and Brooks, 2007). For a reserve system to be successful it should meet 

two criteria: (1) it should represent a region’s species assemblages and (2) it should ensure that the 
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species it protects persist through time (Margules and Pressey, 2000). Because a full data set for all 

species within an area never truly exists, biodiversity surrogates must be employed to represent a 

region’s communities during the planning phase of a reserve network (Margules et al., 2002). 

Environmental surrogates, such as habitat type, habitat heterogeneity and climate have been 

employed with varying levels of success to delineate conservation regions within regionalization 

schemes. The goal of such regionalizations is to delineate homogenous groups of species within 

each region, which can then be conserved within a reserve system. 

The North American Bird Conservation Initiative was developed as a plan for conserving avian 

populations across the continent regardless of political boundaries. One of the cornerstones of the 

plan was the delineation of the North American Bird Conservation Regions (BCR), which are, 

ideally, spatially contiguous regions which divide the continent into relatively homogenous 

communities of birds (North American Bird Conservation Initiative, 1999). These regions would 

then act as planning units for avian community conservation at the continental scale. The BCRs 

have been used in both Canada (NABCI Canada, 2012) and the United States (NABCI U.S. 

Committee, 2009) as a basis for planning bird conservation strategies. 

1.3 Research objectives 

The overall objective of this thesis was to evaluate how two existing citizen-science avian data sets 

can be used to improve our knowledge regarding bird species distributions and conservation 

throughout BC.  Two research questions were posed to meet this objective, one pertaining to 

species distributions and another addressing avian conservation: 

1. Can remotely sensed environmental indicators be used to estimate coastal bird 

distributions along the BC coast? 

2. Which environmental regionalization schemes are most useful for avian conservation? 
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Chapter 2 describes the study region, including the entire province of BC as well as its coastal areas, 

and both avian community data sets in detail. It also describes the remotely sensed environmental 

products used in Chapter 3, and the environmental regionalization schemes used in Chapter 4. 

Chapter 3 addresses Research Question 1, where coastal bird presence/absence data is used in 

multiple species distribution models with remotely sensed (and interpolated) environmental 

variables to evaluate and predict species distributions along the BC coast. Model type, variable type 

and the inclusion of spatial covariates are all tested in a single model framework. Additionally, I 

demonstrate how the distribution models can be used to generate products which can be used in 

conservation planning scenarios. 

Chapter 4 addresses Research Question 2, where multiple environmental regionalization schemes 

are tested to determine their ability to delineate avian Beta diversity across BC. Additionally, I 

outline how species data can be used to define regions within a regionalization directly, and use this 

species-based regionalization as an ideal scenario for comparison with the environmental 

surrogacy approach. 

Lastly, Chapter 5 summarizes the conclusions arrived at in this thesis, the potential conservation 

applications of the work detailed here, and provides suggestions for future research. 
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2. BRITISH COUMBIA AND DATA SETS USED 

2.1 British Columbia 

The questions addressed in this thesis will be focused within the Province of British Columbia (BC), 

Canada. BC lies on the west coast of Canada and as such, is heavily influenced by the Pacific Ocean 

(Cannings and Cannings, 1996). The province generally experiences warm, dry summers and wet, 

cold winters; however, climate is quite variable across the province’s landscape, with the coast 

generally being warmer and wetter and the interior being drier and cooler (Pojar and Meidinger, 

1991). Topographically, the province is more variable than any other province in Canada, 

containing two major mountain ranges, vast plateaus and extensive plains (Pojar and Meidinger, 

1991). Plant communities vary from high alpine meadows to grasslands to desert shrub-steppe 

(Parish et al., 1996); however, the majority of the province is forested as either coniferous or mixed 

coniferous and broadleaf forests (Pojar and Meidinger, 1991). This diversity of ecosystem types 

results in a wide variety of species occurring within the province – to date the BC Breeding Bird 

Atlas has documented 316 breeding species of birds in the province.  

BC contains the entire Canadian Pacific coast, which is over 25 000 km long, making up 

approximately 10% of Canada’s coast, and represents some of the province’s most remote 

locations. The south coast has relatively high levels of anthropogenic activity due to its proximity to 

Vancouver and Victoria (the two largest coastal cities in BC); the central and north coasts have 

lower levels of human influence. The province’s coast is considered to be a temperate marine 

climate due to its moderate temperatures, high levels of precipitation, and tight coupling with 

Pacific conditions (Klock and Mullock, 2001). The majority of the BC coast is highly productive 

coniferous forest, with some oak woodlands occurring in the southern portions (Pojar and 

Meidinger, 1991). 
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2.2 Avian Species Data 

2.2.1 BC Coastal Bird Data 

The Coastal Waterbird Survey (CWS) data set, used in Chapter 3, is a citizen-science data set 

collected by Bird Studies Canada (for a more detailed survey description, see Crewe et al., 2012). 

Survey design involves a volunteer visiting a coastal site once monthly and recording all bird 

species encountered as well as their abundance. Surveyors record all detections out to 500 m 

offshore, as well as any birds using the onshore environment. The survey focuses on the September 

to April period, with some surveys being conducted year-round. The survey began in 1999 and 

continues today, with the number of locations per year ranging from approximately 100 sites to 

over 300 (Figure 2.1). The CWS data set is freely available to researchers. 
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Figure 2.1: The British Columbia coast with the 2012 Coastal Waterbird Survey sites shown (survey sites vary by 
year depending on volunteer availability). 

2.2.2 BC Breeding Bird Data 

The BC Breeding Bird Atlas data set (http://www.birdatlas.bc.ca/), used in Chapter 4, is a five year 

project undertaken by Bird Studies Canada which is due for completion in 2012, and involves 

surveying 100 km2 cells throughout the province for evidence of breeding birds. To date, over 200 

000 records document all breeding evidence, highest breeding evidence, rare and unique species, 

and raw point count data, as well as information on survey effort, measured as hours spent 

surveying each cell. Species data are recorded as presence/absence for the 316 breeding species 

detected across 3547 sampled cells (Figure 2.2). This data set is also freely available to researchers. 
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Figure 2.2 British Columbia with the BC Breeding Bird Atlas cell centroids shown (3547 cells in total). 

2.3 Environmental Variables 

Five categories of data were used in the study described in Chapter 3: oceanic, terrestrial, 

atmospheric, anthropogenic and spatial. Oceanic and atmospheric data were gathered by year and 

averaged for each winter at each survey site. Terrestrial and anthropogenic data were assumed to 

be more static in nature, and therefore one mean value per site was used to represent every year in 

the data set. Due to the highly mobile nature of coastal birds, any data occurring within three km of 

a survey site was used during the averaging of the oceanic variables, while any terrestrial data 

within two km of a survey site was used (Guisan and Thuiller, 2005). Atmospheric data was 

referenced from site centroids.  
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The oceanic data, selected as direct estimates of sea surface temperature (Lobb and Buckley, 2012), 

oceanic sediments (Esaias et al., 1998), and productivity (Moses et al., 2009) were Level 2 variables 

derived from the MODIS sensors. All data from day of year 335 to 91 were averaged by survey 

polygon, matching the time frame for the avian data. The high temporal resolution of MODIS 

allowed for up to 90 scenes to be composited by winter for the length of the BC coast. The 

atmospheric variables were interpolated using the ClimateWNA version 7.0 program developed by 

Wang et al. (2006), which provided estimates of mean winter temperatures and precipitation 

conditions by site. The terrestrial variables estimated site productivity, broken up into overall 

productivity, minimum productivity, and seasonality measured using the Dynamic Habitat Index 

(DHI) data set (Coops et al., 2008), and land cover richness using the Earth Observation for 

Sustainable Development of Forests (EOSD) data set (Wulder et al.,  2007; Wulder et al.,  2008). The 

anthropogenic variables estimated the distance of each site from human influences (cities and 

roads) using the nighttime lights data and Canadian road atlas data (Andrew et al., 2012). Lastly, 

the spatial variables used were a site’s latitude and longitude measured at its centroid.  
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Table 2.1: The 22 spatial, environmental, and anthropogenic variables used as predictor variables in the single 
and ensemble Species Distribution Models. 

Category Variable Description Time 
Frame 

Citation 

Spatial Latitude Longitudinal coordinate of site 
centroid 

NA NA 

 Longitude Latitudinal coordinate of site centroid NA NA 

Terrestrial Mean DHI Mean yearly vegetation productivity 
(fPAR) 

2000-
2005 

Coops et al. (2008) 

 Min DHI Minimum yearly vegetation 
productivity (fPAR) 

2000-
2005 

Coops et al. (2008) 

 Cov DHI Seasonality of productivity (fPAR) 2000-
2005 

Coops et al. (2008) 

 Landcover 
Richness 

Number of different Land Cover 
Classes (EOSD) 

2000 Wulder et al. (2007, 
2009) 

Anthropogenic Distance to 
Road 

Distance to the nearest road from pixel 
centroid 

2008 Andrew et al. (2012) 

 Distance to 
City 

Distance to nearest light source from 
pixel centroid 

2000 Andrew et al. (2012) 

Atmospheric tmax Maximum Winter Temperature By year Wang et al. (2006) 

 tmin Minimum winter Temperature By year Wang et al. (2006) 

 tave Mean winter temperature By year Wang et al. (2006) 

 ppt Total winter precipitation By year Wang et al. (2006) 

 pas Total winter precipitation as snow By year Wang et al. (2006) 

Oceanic pic Calcite concentration By year Esaias et al. (1998) 

 poc Particulate organic carbon 
concentration 

By year Esaias et al. (1998) 

 cdom index Colored dissolved organic matter By year Esaias et al. (1998) 

 ipar Instantaneous Photosynthetically 
active radiation  

By year Esaias et al. (1998) 

 par Photosynthetically active radiation  By year Esaias et al. (1998) 

 nflh Normalized fluorescence activity By year Esaias et al. (1998) 

 chlor a Chlorophyll-a concentration By year Moses et al. (2009) 

 Kd 490 Diffuse attenuation coefficient (water 
turbidity) 

By year Esaias et al. (1998) 

 sst Mean winter sea surface temperature By year Lobb and Buckley 
(2012) 
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2.4 Environmental Regionalization Schemes 

Four different environmental regionalizations (Figure 2.3), described below, were tested in the 

study described in Chapter 4. Each regionalization incorporates information from at least one of the 

three themes identified by Mackey et al. (2008) as useful for creating biogeographical 

regionalizations. 

2.4.1 The North American Bird Conservation Regions 

The North American Bird Conservation Initiative (http://www.bsc-eoc.org/nabci.html/) was 

created in 1998 as a partnership between governments, industry and environmental organizations 

in North America to improve avian conservation (North American Bird Conservation Initiative, 

1999). One of the major developments from this initiative was the North American Bird 

Conservation Regions (BCR), which aimed to create biologically meaningful conservation regions 

containing distinct bird communities around which tailored conservation strategies could be 

developed, without consideration of political boundaries. The delineation of these regions was 

based on existing land classifications as well as expert opinion. As such, the BCRs incorporate 

information from Mackey et al.’s (2008) species composition and ecosystem drivers themes. 

2.4.2 The Canadian Ecoregions 

Ecozones/Ecoregions are contiguous parcels of land which are expected to contain similar biotic 

and abiotic conditions, with Ecoregions being the finer of the two thematically (Bailey et al., 1985; 

Olsen et al., 2001). The classification is based on mapped environmental, geological and climate 

variables, as well as expert opinion. Ecoregions have been used to identify representation targets 

for conservation (Olson and Dinerstein, 1998; Wiersma and Urban, 2005), and are also used as the 

primary regionalization scheme for conservation organizations such as The Nature Conservancy 

(Groves et al., 2000). The Ecoregions of Canada were delineated by the National Ecological 

Framework for Canada (Ecological Stratification Working Group, 1995) and are subdivisions of the 
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Canadian Ecozones. Ecoregions are characterized by distinct assemblages of landforms, climate, soil 

and human uses; therefore, the information used to delineate the Ecoregions falls under the 

ecosystem drivers theme (Mackey et al., 2008). 

2.4.3 The BC Biogeoclimatic Zones 

The British Columbia Biogeoclimatic zones (BEC) were developed in the 1960s (Pojar et al., 1987) 

and are under a constant state of refinement. The BEC system uses local soil, vegetation, 

topography, and climate data to delineate distinct ecosystems, with vegetation being most 

influential (British Columbia Forest Service, 2012). Similar to Ecozones, the classification is 

hierarchical, with BEC zones being the broadest; however, BEC zones are not required to be 

contiguous, and consequently, unlike the Ecoregions, are able to reflect the zonation of 

environmental conditions along elevation gradients. The version of BEC used in this study defines 

14 zones for BC. The BEC system incorporates information from both the species composition and 

ecosystem drivers themes (Mackey et al., 2008). 

2.4.4 Remotely Sensed Unique BC Ecosystems 

Fitterer et al. (2012) created a regionalization scheme for BC by modeling 10 remotely sensed 

physical (elevation and soil wetness), available energy (solar insulation and snow melt) and 

vegetation productivity (fraction of photosynthetically active radiation) variables in a two-step 

hierarchical clustering framework, creating a unique ecosystem classification for the province. This 

regionalization scheme incorporates information from both the ecosystem drivers and ecosystem 

responses themes (Mackey et al., 2008). The resulting regionalization scheme can be produced at 

variable thematic resolutions based solely on environmental variables without any spatial 

continuity requirements.  
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Figure 2.3: The four environmental regionalization schemes tested in Chapter 4.  
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3. APPLYING LAND AND OCEAN BASED REMOTE SENSING PRODUCTS 
IN COASTAL SPECIES DISTRIBUTION MODELS 

3.1 Introduction 

Coastal ecosystems are complex, occurring at the interface between land and water, be it oceans or 

large freshwater bodies (Wilkinson et al., 1997). This complexity is reflected in coastal biotic 

communities, with many species using both terrestrial and aquatic resources to fulfill different 

portions of their life history requirements. Coastal bird communities are an excellent example of 

this, with many species exploiting both terrestrial resources, such as nesting or roosting sites 

(Burger et al., 2010), and aquatic resources such as access to prey (Janssen et al., 2011). With the 

additional effect of microclimate conditions affecting thermoregulatory capabilities (Carrascal and 

Diaz, 2006; Gutierrez et al., 2012), it becomes apparent that many different environmental 

variables may govern coastal bird community composition. 

Many of the world’s coastlines are extremely remote, compounding the problem of understanding 

coastal environmental conditions and their effects on species composition by making direct 

sampling infeasible, and as a result, indirect estimates of communities may be the only option 

available to researchers (Guisan and Thuiller, 2005). The British Columbia (BC) coastline is 

spatially extensive, rugged, and remote; to date, no community of terrestrial animals has been 

modeled for the length of its coast. Coastal birds, in particular, have been identified as a community 

which has experienced significant declines in many species along a portion of the BC coast (Bower, 

2009; Crewe et al., 2012), and have been suggested as a candidate community to assess coastal 

ecosystem health (Bower, 2009; Lopez et al., 2010; Wiegand et al., 2010).  

Species distribution models (SDMs), which predict a species’ occurrence based on environmental 

and spatial correlates, are becoming more common in many fields of natural sciences (Guisan and 

Zimmerman, 2000; Guisan and Thuiller, 2005; Araújo and Guisan 2006; Thuiller, 2007; Elith and 

Leathwick, 2009). The growth in the use of SDMs can be attributed to multiple factors – the 
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increase in available, spatially expansive environmental and species data (Guisan and Zimmerman, 

2000), and the development of increasingly sophisticated modeling techniques allowing for more 

accurate distribution models (Marmion et al., 2009). 

The effectiveness of different modeling techniques has been the subject of much evaluation without 

clear consensus (Austin, 2002; Araújo and New, 2007; Elith and Graham, 2009; Marmion et al., 

2009). The evaluation of different SDM techniques is of paramount importance, as effective 

distribution models can inform situations where species data are unavailable, historical records are 

lacking, or when estimating species occurrences under future scenarios (Pearson and Dawson, 

2003; Elith and Leathwick, 2009; but see Fitzpatrick and Hargrove, 2009). A more recent 

development is that of ensemble modeling, which employs multiple different model types under the 

assumption that different techniques have different strengths, and a combination of models may be 

more able to model a species across its range than any one single technique alone (Araújo and New, 

2007; Marmion et al., 2009).  

A large focus of current SDM development has been on future projections under varying climate 

scenarios; however, SDMs show promise for modeling spatially difficult areas as well as different 

temporal states (Randin et al., 2006; Elith and Leathwick, 2009). Since SDMs are correlative models 

where relationships between a species occurrence and environmental conditions are estimated, 

they require environmental data with full coverage of a given study area, as well as species data. 

Many of the world’s coastlines are inaccessible to traditional forms of environmental data 

collection; however, remotely sensed products can provide environmental data, irrespective of 

spatial location, for SDMs ranging from terrestrial productivity (Coops et al., 2008) to oceanic sea 

surface temperature (Haines et al., 2007). Remote sensing, due to its ability to provide terrestrial, 

oceanic, and anthropogenic data in remote locations, may be uniquely positioned to provide this 

wide range of environmental information required for estimating species occurrence in complex 
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environments, with the added advantage of most often being freely available to researchers. The 

synthesis and testing of these four environmental categories has not, to our knowledge, been 

evaluated. The inclusion of spatial variables in distribution models has also received attention, with 

some suggesting that their inclusion delineates the modeling of realized niches from fundamental 

niches due to the use of observational species data (Guisan and Zimmerman, 2000; Araújo and 

Guisan, 2006), while others have argued that the niche concept has little applicability in species 

distribution modeling (McInerny and Etienne, 2012).  

Scientific questions surrounding range size and species richness (Jetz and Rahbek 2002), habitat 

loss and fragmentation (Betts et al., 2006), and the effects of different climate change scenarios 

(Pearson and Dawson, 2003; Thomas et al., 2004; Hamman and Wang, 2006) have all been 

addressed using SDM techniques. Equally, SDMs are becoming more common in applied 

conservation situations, guiding conservation policy, reserve design, and protected areas planning 

(Wilson et al., 2005; Rodriguez et al., 2007; Schuster and Arcese, 2012). SDMs lend themselves well 

to estimating common indices used in systematic conservation planning, such as species richness 

and Beta diversity (Tuomisto, 2010a, b) due to their binomial species occurrence outputs. 

Additionally, species distribution models can be used as guides to assess species representation in a 

protected areas network, again due to the presence/absence estimates generated by the models.  

The goals of this Chapter are to examine the feasibility of using freely available remotely sensed and 

interpolated environmental data to model the distribution of coastal bird species, while also 

examining which SDM techniques are most appropriate in this setting. Our research questions are:  

1) Can current SDM techniques – employing terrestrial, aquatic, anthropogenic, and climatic data – 

accurately model coastal species’ distributions, and if so which model types are most effective? 2) 

How does model performance vary across species groupings such as functional feeding groups or 

primary habitat type? 3) How do model predictions vary spatially? 4) Which categories of 
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environmental data are most important for estimating coastal bird species? and 5) How might these 

models be used to inform systematic conservation planning? 

3.2 Methods 

3.2.1 Study Location 

The scope of this study was the entire BC coast (for a detailed location description see Section 2.1; 

Figure 2.1). 

3.2.2 Coastal Bird Data 

The bird species data used here was derived from the Coastal Waterbird Survey data set (for a 

detailed data description see Section 2.2.1). Species abundances were recorded in three locations, 

on-shore (on land), near-shore (0-100 m from the shoreline), and offshore (100-500 m from the 

shoreline). Abundance data with multiple visits within each winter was converted into 

presence/absence by species by considering a species present if it was sampled in any of the four 

surveys conducted by winter in any number. Absences were modeled as true absences given the 

four repeat visits per winter, resulting in 970 survey sites across eight years. To avoid issues with 

randomly selecting zero presences in the model verification data set, species were modeled only if 

they were present in a minimum of 5% samples within the entire study period, which lead to 60 

species being modeled.  

Species were classified by functional feeding group using published literature where available 

(Bower, 2009; Conover, 1983; de Graaf et al., 1985; Greenhalgh, 1952; Pierotti and Annet, 1991; 

Sydeman et al., 2001; see Appendix 1 for functional feeding group assignments by species), or the 

Cornell Lab of Ornithology Online Bird Guide (http://birds.cornell.edu/onlineguide/), to assess 

variable importance and model fit (model AUC) across functional feeding groups. Species were also 

coarsely classified by primary habitat use (land, shore, or water; Appendix 1) and by primary 
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detection location (on-shore, near-shore, or off-shore) to test whether model performance varied 

due to these factors.  

The 60 modeled species represent a diverse group, with open ocean foragers such as grebes 

(Family: Podicipedidae) and cormorants (Phalacrocorax spp.), coastal birds such as sandpipers 

(Family: Scolopacidae), to more diverse families such as gulls (Family: Laridae). The time frame 

used in this study began in December 2002 and continued to March of 2010. The survey window of 

December 1st to March 31st coincided with the time when the majority of overwintering coastal 

birds used the BC coast, but before most migratory species using the pacific flyway might be 

present in survey sites. Environmental data availability dictated the start and end study years 

(oceanic data was not available until 2002, and atmospheric data ended in 2010). 

3.2.3 Environmental Data 

As discussed earlier, different species of coastal birds use coastal resources in various ways. As 

such, the environmental variables employed here were selected as broad scale measures of 

environmental conditions governing nutrition, habitat, thermoregulation, human influences, and/or 

spatial effects. 

Environmental data (described in Section 2.3; Table 2.1) were linked spatially (and temporally for 

the oceanic and atmospheric data) to the CWS sites as well as the entire BC coast, which was 

divided up into sections varying from two to five km in length, matching the size distribution of the 

survey sites. Due to the difficult nature of remote sensing coastlines for oceanic variables, not all 

survey polygons or coastal polygons were able to be linked to oceanic variables, meaning certain 

areas could not be modeled each year. The yearly coastal coverage ranged from 63.3% in 2002 to 

75.0% in 2008. 
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3.2.4 Species Distribution Models 

Species distribution models were developed using the Biomod2 package (Thuiller et al., 2009) for R 

statistical software version 2.15.1 (R Core Development Team, http://www.r-project.org/). The 

data were partitioned first into training and verification data using an 80/20 split (see Marmion et 

al. (2009) for a more detailed outline of data partitioning for ensemble models). I acknowledge here 

that the verification data set does not represent an independent model validation data set as 

recommended by Araújo and Guisan, (2006); however, alternatives were not available given the 

uniqueness of the data set. 

Seven individual models were built: Generalized Additive Models (GAM), Generalized Linear 

Models (GLM), Boosted Regression Trees (GBM), Multivariate Adaptive Regression Splines (MARS), 

Classification Tree Analysis (CTA), Artificial Neural Networks (ANN) and Random Forests (RF).  

3.2.4.1 Generalized Additive Models (GAM) 

GAM is an extension of GLM (see Section 3.2.4.2) that is similar in approach, but which is classified 

as non-parametric (Yee and Mitchell, 1991). GAM uses a link function to describe the relationship 

between predictor and response variables; however, the link is determined by the data and not 

given beforehand (Guisan et al., 2002). A smoothing spline was used here with the response data 

defined as binomial (Hastie, 1992). Forward stepwise AIC was used as the model selection criteria 

to achieve parsimony. 

3.2.4.2 Generalized Linear Models (GLM) 

GLM has been used extensively in the past to analyze and estimate ecological relationships. It is a 

parametric, linear model, similar to that of linear regression. However, GLM can incorporate non-

normal relationships between predictor and explanatory variables, non-constant variance 

structures, and transformations to represent non-linear relationships (Guisan et al., 2002; Venables 

et al., 2002). This is done by specifying a link function and a data distribution. GLM then uses a 
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maximum likelihood procedure to converge on parameters estimates used in the final model 

(Venables et al, 2002). A binomial distribution and a logit link function were employed here due to 

the presence/absence data, with maximum iterations set at 200. As was the case for GAMs, forward 

stepwise AIC was used as the model selection criteria to achieve parsimony. 

3.2.4.3 Boosted Regression Trees (GBM) 

GBM is a relatively new method for estimating species distributions and is a machine learning 

approach combining regression techniques and classifications trees in one model framework (Elith 

et al., 2008). GBM can handle many data types, missing data, and correlated response variables. 

GBM uses two algorithms: regression trees and boosting. Regression trees involve recursive binary 

splitting of the data, fitting classification trees which are insensitive to outliers and differing scales 

of predictor variables. However, classification trees have difficulty modeling linear responses, and 

are typical out performed by GAM and GLM (Elith et al., 2008). Boosting addresses this issue, by 

building multiple trees, each which is selected in a forward stagewise procedure (stagewise 

implying that the previous models are unchanged) as the tree which reduces model residual error 

most (Leathwick et al., 2006). Similar to GLM, a link function can be defined a priori to 

accommodate many response types, with binomial being used here. A learning rate, which 

determines the importance of each new model to the overall model, of 0.001 and a bag fraction of 

0.5, which controls the amount of data to be used in each iteration, were set for all GBM models 

(Thuiller et al., 2009). 

3.2.4.4 Multivariate Adaptive Regression Splines (MARS) 

MARS is another relatively new model type for fitting distribution models. It involves fitting 

multiple regression segments allowing for complex, non-linear relationships to be estimated 

(Friedman, 1991; Leathwick et al., 2005). Breaks are identified which are optimized using stepwise 
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cross-validation, which also determines which variables are retained in the final model. A binomial 

distribution was used here to describe the presence/absence data (Thuiller et al., 2009).   

3.2.4.5 Classification Tree Analysis (CTA) 

CTA involves recursive binary splitting which aims to separate the response data into two groups 

with maximum internal homogeneity (Thuiller et al., 2003). Trees are then pruned backwards by 

eliminating splits which are deemed less important by their relative contribution to variance 

explained. Like other classification tree approaches, CTA does not require a prior knowledge 

regarding distribution types, and can handle multiple forms of data.  

3.2.4.6 Artificial Neural Networks (ANN) 

ANN is a machine learning algorithm which can incorporate non-normal, non-linear and noisy data 

in a single model framework (Lek and Guegan, 1999). ANN constructs models based on predictor 

variables with known results (Lek et al., 1996). Predictor variables are fed through a number of 

hidden layers in a uni-directional manner (Lek et al., 1996). The nodes, or connections between 

predictor and hidden layers, are analyzed, and if the final output provides the wrong result, the 

network weights are adjusted until the prediction of the model is more likely to be correct (Lek and 

Guegan, 1999). A single hidden layer was used here (Thuiller et al., 2009). 

3.2.4.7 Random Forests (RF) 

Random forests is a classification tree approach which has shown to be highly effective at modeling 

ecological relationships. It builds on traditional CTA by creating many trees where at each node, 

only a subset of all predictor variables are available for use for binary partitioning (Cutler et al., 

2007). The final model can include thousands of trees, which are then averaged to provide one 

overall model (Prasad et al., 2006). A maximum of 1000 trees was used here.  
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3.2.4.8 Ensemble Models 

The individual models were then combined into ensemble models using the two techniques found 

to be most promising by Marmion et al. (2009) - mean and weighted mean. The mean ensemble 

algorithm uses a simple mean of estimated occurrence probabilities; however, the weighted mean 

algorithm requires a fit statistic to be calculated to assign weights to the best models. To achieve 

this, the build data were randomly divided using a second 80/20 split with the larger set used to 

build individual models and the smaller set as individual model verification. This procedure was 

repeated ten times for each single model resulting in 70 models built for each species from which 

ensemble models were calculated. This second, iterative split also acted as a form of sub-sampling 

within the data, helping to address any potential spatial biases which existed by randomly selecting 

build data during each model run. Predicted probabilities generated by each model were converted 

into binary/presence absence predictions (or kept for calculating the standard deviation of 

prediction probabilities by site, see below) using a threshold which maximized model AUC scores. 

The area under the receiver-operator characteristic curve (AUC) was used in all evaluations of 

model fit (Marmion et al., 2009; O’Hanley, 2009; Seo et al., 2009; but see Lobo et al., 2008). Models 

were built with and without latitude and longitude covariates to examine the effects of their 

inclusion. Both ensemble models were projected onto the entire coast for each year of the study 

period where full environmental data were available. 

The standard deviation (SD) was calculated by site using the seven individual model’s predicted 

probabilities for each of their ten runs, resulting in an n = 70 for each site. This produced estimates 

of the variability of model predictions by site, with a low SD indicating agreement between 

individual models regarding the predicted probability of occurrence for a given species at each site. 

An overall SD for each site was calculated (due to multiple years of predictions) as the mean SD of 

all models across all species, resulting in one overall estimate of prediction variability by site.  
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3.2.5 Statistical Analysis 

All statistical analyses were carried out in R statistical software. Model performance (AUC values) 

was analyzed using a two-way, fixed effects ANOVA with interaction, with model type and the 

inclusion of spatial covariates as the fixed effects. Data was transformed using a Blom rank-based 

inverse normal transformation (Blom, 1958) to meet assumptions of ANOVA. Multiple t-tests with a 

Bonferroni correction were employed post-hoc to test for differences where appropriate. The 

weighted mean ensemble model performance (untransformed model AUC) was also analyzed by 

functional feeding group, primary habitat type, and primary detection location using one-way 

ANOVA and post-hoc t-tests. 

Assessing individual variable importance in ensemble models is complicated due to their reliance 

on multiple single models, which may or may not include all, some, or none of the same 

environmental and/or spatial variables. As such, variable importance was determined for each 

species’ ensemble models using a “leave-one variable out” approach where models were built 

without each variable (repeated 10x per model) and evaluated against the ensemble model using a 

Pearson’s correlation coefficient (r) (Thuiller, 2009). The assumption is that the more different a 

model is due to the removal of a particular variable (measured by correlating the full model with 

the model lacking variable “x”) the more influential that particular variable is. Variables were 

ranked using a 1 – r calculation, so that the most important variables would score highest. If a 

model did not change due to the removal of a variable, its r would equal 1, and it would score 0 for 

variable importance.  

The SD of predicted occurrence probabilities was modeled against average and minimum distance 

to survey site to assess whether model prediction variability changed with regard to its proximity 

to survey locations. Non-linear least squares “half-max” asymptotic equations were used to 

represent these relationships, with model fit measured using root mean-squared error (RMSE). 
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Simple linear regression was used to analyze change in available habitat through time by species, 

with available habitat defined as the amount of habitat predicted to be occupied by the weighted 

mean ensemble model for a given species. The proportion of predicted occupied habitat, expressed 

as a percentage of total habitat measured for a given year, was used to compensate for unequal 

spatial coverage between years (as discussed earlier, coastal coverage ranged from 63.3%-75.0%).  

Species richness, calculated as the sum of all predicted presences for a given location, was 

evaluated against both anthropogenic variables again using non-linear least squares “half-max” 

asymptotic equations. A natural logarithm transformation was then applied to species richness and 

both anthropogenic variables to meet assumptions of linear regression, and both anthropogenic 

variables were employed as predictors of species richness in single and multiple linear regression 

models. Local Beta diversity, which is an estimate of site uniqueness (Whittaker, 1972), was 

estimated using Jaccard’s distance (Andrew et al., 2012), with pairwise comparisons being 

calculated between a site and any other site occurring within 20 km measured from the site 

centroid. Species richness and Beta diversity were averaged through time by site, and compared 

against one another using simple linear regression.  

All statistical tests employed an alpha level of 0.05, save linear regression assessing change in 

occupied habitat through time, which employed an alpha value of 0.1 due to a lack of data 

availability (the 8 year study yield only 1 data point per year for occupied habitat estimates, for a 

total of 8 estimates). 
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3.3 Results 

3.3.1 Species Distribution Models 

Table 3.1: The frequency of modeled AUC values by model type (n=60 in all cases except n=59 for ANN). MEAN = 
mean ensemble model, WMEAN = weighted mean ensemble model. 

AUC Value GLM GBM GAM CTA ANN MARS RF MEAN WMEAN 

>0.9 1 4 1 1 0 1 1 4 4 
>0.8 7 30 15 11 7 21 7 31 32 

>0.7 27 21 20 18 13 28 27 22 21 

>0.6 21 5 22 18 28 7 19 3 3 

>0.5 4 0 2 11 11 3 5 0 0 

 

Species distribution models were run as single predictive models and ensemble models, both with 

and without spatial covariates, to test the effects of single vs. ensemble modeling as well as the 

inclusion of spatial data (Figure 3.1; see Appendix 1 for individual species scores). Weighted mean 

was the most successful model type when considering AUC score ranges, with four models having 

an AUC above 0.9, and another 32 models above 0.8 (Table 3.1), and was therefore used in all model 

projections. When using the industry standard for acceptable models (AUC scores above 0.7; 

Marmion et al., 2009) both ensemble models produced 57 (out of 60 models, or 95%) species 

distribution models which would be classified as acceptable.  

Both model type and the inclusion of spatial covariates were significant determinants of 

transformed mean AUC values (P<.001 in both cases). The interaction between spatial covariates 

and model type was found to be non-significant (P=.11). The inclusion of spatial covariates 

significantly improved model AUC values (P<.001). The two ensemble model types (mean and 

weighted mean) were found to have significantly higher transformed AUC values than all single 

models save boosted regression trees (Table 3.2) with weighted mean also producing the highest 

mean AUC value. Weighted mean ensemble model AUC values ranged from 0.645 for herring gull 

(Larus smithsonianus) to 0.976 for sanderling (Calidris alba).  
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Figure 3.1: Untransformed AUC values by model type and spatial covariate inclusion. Error bars indicate 95% 
confidence intervals (n=60 in all cases except n=59 for ANN). MEAN = mean ensemble model, WMEAN = weighted 
mean ensemble model, sp = spatial variables. 

Table 3.2: Post-hoc paired t-tests with a Bonferroni correction evaluating differences in mean transformed model 
AUC values (P values presented; n=60 in all cases except n=59 for ANN). MEAN = mean ensemble model, WMEAN 
= weighted mean ensemble model. 

Model Type ANN CTA GAM GBM GLM MARS MEAN RF 

CTA 1 - - - - - - - 
GAM <0.001 <0.001 - - - - - - 

GBM <0.001 <0.001 <0.001 - - - - - 

GLM 0.001 0.015 1 <.001 - - - - 

MARS <0.001 <0.001 1 0.028 0.453 - - - 

MEAN <0.001 <0.001 <0.001 1 <0.001 <0.001 - - 

RF 1 1 0.083 <0.001 0.985 <0.001 <0.001 - 

WMEAN <0.001 <0.001 <0.001 1 <0.001 <0.001 1 <0.001 

 

The weighted mean ensemble model’s mean AUC values (used because it was found to have the 

highest overall AUC values) did not differ significantly based on primary detection location (P = 

0.246) or primary habitat type (P = 0.067, Figure 3.2 A), but was shown to have significant 

differences across functional feeding groups (P = 0.007, Figure 3.2 B). Post-hoc t-tests revealed a 



27 
 

significant difference in mean AUC between insectivores and piscivores (P = 0.016) and near-

significant difference between insectivores and carnivores (P = 0.076). No other functional feeding 

groups were found to differ. 

 

Figure 3.2: The weighted mean ensemble model AUC values grouped by (A) primary habitat type, and (B) 
functional feeding group. Error bars indicate 95% confidence intervals. Sample sizes are n = 9, 7, 44 respectively 
for habitat type, and n = 9, 7, 8, 5, 12, 19 respectively for functional feeding group. 

3.3.2 Model Prediction Variability in Space 

Model prediction variability at a particular site was found to be related to the distance of that site 

from CWS survey locations (Figure 3.3). Average site SD was more strongly related to average 

distance to survey (RMSE = 0.016 SD) than minimum distance to survey (RMSE = 0.023 SD). Figure 

3.3 (A) predicts a 47% increase in the SD of predicted site probabilities when average distance to 

survey site increased from 100 to 300 Km, while Figure 3.3 (B) predicted a 63% increase in SD 

when the minimum distance to a survey site increased from 0 to 50 Km. Both predict an asymptote 

in this relationship between 0.28 and 0.29 SD. 
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Figure 3.3: The average standard deviation (SD) of predicted probabilities by site – average distance to survey 
location (A) and minimum distance to survey location (B) model relationships. Average distance to site half-max 
= 113.7 km, asymptote = 0.29 SD. Minimum distance to site half-max = 8.1 km, asymptote = .28 SD. 

Model prediction variability was found to be lowest in the southern portion of the BC coast (Figure 

3.4 A) and highest in the central and north coast regions (Figure 3.4 C). Model prediction variability 

was also found to increase towards the terminal end of many coast fjords (Figure 3.4 B, C). 

Minimum SD was found to be 0.13, while maximum SD was 0.31. 
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Figure 3.4: The average standard deviation (Average SD) of predicted probabilities by site, as well as the Coastal 
Waterbird Survey (CWS) survey sites along the BC coast. Insert A focuses on the southern coast region, insert B 
on the costal fjords founds along the central coast, and insert C on the north coast and Haida Gwaii. 



30 
 

3.3.3 Environmental Associations 

 

Figure 3.5: Most influential variable selection frequency, separated by primary habitat type (A and C; land, shore 
or water birds) or functional feeding group (B and D).  Graphs A and B include spatial variables (latitude and 
longitude), while C and D only consider environmental variables. See Appendix 1 for functional feeding group 
and habitat use classifications by species. 

The spatial covariates were the most important variables in every functional feeding group, except 

insectivores, where anthropogenic variables were also selected as most important (Figure 3.5; see 

Appendix 2 for variable loadings by species). The most important environmental variable type after 

spatial was anthropogenic in all functional feeding groups except carnivores. Each environmental 

variable type was, however, selected as most important in at least two species distribution models. 

Similarly, spatial variables were most often selected as most important across primary habitat type. 

Interestingly, and as would be expected, oceanic variables were never selected as most important 

for species classified as land or shore dwelling species.  
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3.3.4 Conservation Applications 

 

Figure 3.6: Mean species richness and Beta diversity for the entire study period. A missing coastal site indicates 
no oceanic data was available for that location for any year during the study period (coastal coverage = 89.4%). 

Of the 60 species examined, there were 16 detected changes in occupied habitat throughout the 

eight year study period (see Appendix 1 for each species’ rate of change). Predicted occupied 

habitat of 11 species significantly declined, while occupied habitat for five species increased. Mean 

species richness varied from 6.75 to 47.75 species, while mean Beta diversity varied from 0.04 to 

0.80 (Figure 3.6). Mean species richness and mean Beta diversity were strongly negatively 

associated (P<.001, R2=.61; Beta=0.75-0.015*richness).  

Species richness was modeled against both anthropogenic variables to examine the effects of 

human activities. Richness tended to increase in a non-linear fashion as human influence decreased; 

however, the influence of road networks on coastal bird richness became less pronounced after 
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approximately 30 km, while the effects of cities was more constant even in more remote locations 

(Figure 3.7). Richness was estimated to be lowest in areas proximal to human development in the 

south portion of the coast, and highest in the remote central coast region. Log transformations on 

species richness and both anthropogenic variables produced highly significant correlations in both 

cases (P < .001), with (log) distance to roads explaining (r2) 14% of variation in (log) species 

richness, and (log) distance to cities explaining (r2) 13% of variation in (log) species richness. 

Collectively, the log transformed anthropogenic variables explained (R2) 34% of the variation in 

(log) species richness in multiple linear regression. 

 

Figure 3.7: The species richness – distance to road (A) and distance to cities (B) model relationships. Distance to 
road half-max = 10.7 km, asymptote = 41.1 species. Distance to city half-max = 458.8 km, asymptote = 65.7 
species. 

3.4 Discussion 

The effects of modeling species distributions using single and ensemble models, as well as the 

inclusion of spatial variables was tested to determine how to best estimate coastal bird 
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distributions. Information regarding model variability, coastal bird species distributions, available 

habitat, species richness and Beta diversity was inferred from these models. 

3.4.1 Single vs. Ensemble Species Distribution Models  

Both model type and the inclusion of spatial covariates were tested to determine their effects on 

coastal bird distribution model AUC values. Species distribution model AUC values were found to 

vary significantly depending on which model was used. The two ensemble models found to be most 

effective by Marmion et al., (2009) produced significantly better AUC values than any single model, 

except boosted regression trees, which agrees with the multiple studies that have also 

demonstrated how ensemble algorithms can improve model fit (Araújo et al., 2005; Pearson et al., 

2006; Araújo and New, 2007). Boosted regression trees have also been found to be highly effective 

at fitting distribution models (Elith et al., 2006, 2008; Elith and Graham, 2009; Capelle et al., 2010) 

making its inclusion amongst the top performing model types not entirely surprising and supports 

its future use as a single model. More unusual, however, was the poor performance of the Random 

Forest model, which is also commonly among the most powerful single model types employed in 

SDMs (Breiman, 2001; Marmion et al., 2009). Both classification models (RF and CTA) were among 

the least effective models, being outperformed by all other model types save ANN. An important 

difference between classification techniques and approaches involving regression in some form (i.e. 

GLM, GAM, GBM, and MARS) is that regression may be able to estimate a species response curve 

more accurately beyond the range of data than classification techniques (Thuiller et al., 2004).  

The inclusion of spatial covariates also significantly improved model AUC values. SDMs lacking 

spatial explicit factors have been described as potential habitat models (or fundamental niche 

models) due to their lack of consideration for dispersal limitation, competition and other biotic 

factors, while models including spatial variables have been referred to as potential geographical 

distributions (or realized niche models) since these models include spatially explicit factors (Guisan 
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and Zimmerman, 2000; Araújo and Guisan, 2006). Since SDMs based on observation data model 

realized niches (Pearson and Dawson, 2003; Pearson et al., 2006), models which incorporate spatial 

covariates may have an advantage due to their inclusion of spatial variables that address potential 

dispersal limitation (Guisan and Thuiller, 2005), as was the case here. Commonly, a spatial variable 

such as latitude may also act as surrogate for an un-described environmental variable such as 

temperature or productivity. The importance of spatial variables in this study may, at least in part, 

owe itself to the environmental variables not fully describing the environmental conditions at each 

site (Cottenie, 2005). 

No difference was detected for the weighted mean ensemble model’s AUC values across major 

habitat type or detection location of a species. However, mean AUC values were found to vary 

owing to functional feeding group, with insectivores having a significantly larger mean AUC than 

piscivores, and potentially carnivores although this test was non-significant. The insectivorous 

birds in this study are all considered shorebirds, which typically have very strong affinities for 

certain types of coastal habitats, in particular coastal mudflats. These habitats are fairly rare along 

the BC coast, and it could be that the models were able to identify these habitats well using spatial 

variables such as latitude, longitude, and the anthropogenic metrics, allowing for higher mean AUC 

results. Additionally, the ease of detection of these species, owing to their large flock sizes and 

onshore habitat usage may have increased model accuracy by providing better detection of 

presences and absences versus some of the more offshore species. Shorebird were found to have 

the highest mean AUC by primary habitat type, while land birds were found to have the lowest 

mean AUC. This may reflect the generalist nature of multiple species included in the land bird 

category (bald eagles (Haliaeetus leucocephalus), common ravens (Corvus corax), and northwestern 

crows (Corvus caurinus) for example) making detecting strong environmental associations, which 

tends to improve correlative models, difficult. 
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3.4.2 Spatial Variability of Model Predictions 

The variability of model predictions was found to be highly related to the distance of a particular 

site from survey locations. This may be due, in part, to environmental conditions occurring on the 

relatively un-sampled north and central coast which were outside the range represented by the 

sampled locations on the south coast. Attempting to project models built mainly on data at sites 

which do not reflect the full range of variability for a study region can lead to more variable, and 

erroneous, model predictions (Elith and Graham, 2009; Elith and Leathwick, 2009). Randin et al. 

(2006) examined SDM transferability in space and found that model predictive ability (using GLM 

and GAM single models) was significantly reduced when transferring models to new regions, most 

likely due to overfitting of the models to their training data. Both the results described here, as well 

as those of Randin et al. (2006), underscore the need for careful analysis when projecting models 

into un-sampled locations. A strength of the approach used here is the large number of models 

considered as well as the multiple iterations of each model. Although model predictions became 

more variable with increasing distance from survey locations, with multiple (70) model predictions, 

the mean of these predictions (the resulting probability calculated for both ensemble models) 

provides a reasonable estimate of a site’s actual probability of occurrence, provided the predicted 

probabilities are not biased in one direction. 

If users of SDMs are particularly concerned with model variability at its effects on the predictive 

abilities of ensemble models, a more conventional method of assigning presence or absence may be 

to use the confidence intervals (which can be derived from the SD or directly using BIOMOD2) of 

ensemble predictions rather than the mean. As an example, a species could be assigned as present if 

the entire range of the 95% confidence interval falls above the given cut-off value, or absent if the 

entire 95% confidence interval is below. The limitation of this approach would be some ambiguous 

predictions where the 95% confidence interval spans the cut-off value. 
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The model variability-distance relationship can also be used to empirically determine to what 

distance model projection can be considered accurate. Users could set a percentage increase in 

model variability that they are willing to tolerate (as an example a 50% increase in SD from the 

model intercept SD occurring at the minimum distance value) and allow projections out to this 

distance. In this case, that distance would be any site within 300 Km, on average, of all other sites 

(using the average distance relationship). This approach would require, however, an arbitrary 

decision regarding the increase in model variability users are willing to accept. Ultimately, model 

accuracy is the desired metric to assess when projecting spatially, which requires a second data set 

with occurrence records in certain un-sampled locations. 

Interestingly, model predictions became more variable towards the terminal end of multiple coastal 

fjords. This is most likely due to the difficulty of obtaining oceanic environmental estimates along 

complex and narrow sections of coast (discussed in section 3.4.3). In many cases only one to five 

data points were obtained for coastal sites located towards the end of fjords, contrasted against 30 -

90 data points for more open ocean sites, resulting in less accurate estimates of mean oceanic 

conditions at those sites and increased model prediction variability. 

3.4.3 Ensemble Model Environmental Variable Selection 

Environmental variables were selected to represent a wide range of environmental conditions due 

to the diverse community of species being considered, with each variable being selected as a direct 

estimate of local environmental conditions dictating habitat or nutritional availability, or 

thermoregulatory constraints. Each category of environmental variables was selected as most 

important in multiple models, supporting our hypothesis that a wide range of environmental 

correlates should be employed when modeling a community such as coastal birds. Further, I argue 

that distribution models should consider and incorporate this new, freely available, suite of 
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remotely sensed variables which cover additional dimensions of the environment beyond 

terrestrial vegetation productivity (such as the Normalised Difference Vegetation Index (NDVI)). 

The Dynamic Habitat Index (derived from the MODIS constellation) and EOSD Land Cover (derived 

from Landsat 7 data) have both been shown to be useful predictors of both single species 

distributions and species richness (Coops et al., 2009a; Coops et al., 2009b), and both were selected 

as important covariates in multiple models, as was the ClimateNWA data, derived from recent 

global circulation and PRISM models (Daly et al., 2002; Wang et al., 2006). Lippitt et al. (2008) 

argued that SDMs must incorporate anthropogenic effects due to their ability to influence species 

distributions, and our findings agree, as anthropogenic variables were selected as the most 

important environmental category more often than any other. The high temporal repeat of the 

oceanic and atmospheric data, which is another advantage when considering remotely sensed data, 

also allowed for model improvement. The near daily repeat of MODIS provided a large quantity of 

oceanic data by winter which was linked to species data along with the interpolated climate data. 

This was a unique application of MODIS aquatic environmental estimates and their inclusion as 

important variables (Figure 3.2) in multiple species models supports their use in future coastal 

SDM scenarios. 

The SDMs built here do share some of the common shortcomings of many distributional studies. We 

acknowledge that our models incorporate verification data as opposed to validation data (Araújo 

and Guisan, 2006). Given the data available, the data split, coupled with the iterative splitting of the 

training data did provide high quality model verification. The CWS survey locations also presented 

a challenge, being clustered along certain sections of coast (Figure 2.1). Again, the iterative splitting 

of the training data acted as a form of subsampling, helping address spatial bias (Araújo and Guisan, 

2006). The largest single challenge for producing accurate distribution predictions here was the 

difficulty obtaining oceanic environmental products in a coastal setting. As described earlier, at 
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most only 75% of the coast was able to be modeled during any given year, restricting our ability to 

get full assessments of any species entire coastal BC distribution. This issue may be more 

pronounced among species which select for sheltered inlets, fjords, and other sections of coast 

which form complex shapes, as these are the most difficult areas for oceanic remote sensing to 

gather data. Presence of land in a pixel, shallow water, excessive wave action, and sun glint can all 

affect the MODIS sensor’s ability to accurately estimate oceanic variables, leading to pixels being 

masked when one of these conditions occur. This difficulty leads to a loss of useable data, 

particularly when considering water which is in close proximity to a coastline. An interpolation 

method such as kriging might offer a solution in situations such as is presented here, but was not 

tested.  

3.4.4 Conservation Applications and Individual Species Models 

The distribution models produced in this study have similar use to those described elsewhere, such 

as: protected areas planning (Hernandez et al., 2006), species at risk assessments (Engler et al., 

2004), and examination of range shifts (Pearson and Dawson, 2003; Pearson et al., 2006), with one 

important addition. Because habitat occupancy was able to be estimated by year, trend assessments 

through time were possible. These % changes in occupied habitat through time analyses were done 

more to demonstrate the power of this approach for monitoring rather than actual trend detection, 

but the results are notable. Significant changes in occupied habitat were detected in 16 out of 60 

species, with 11 species percent habitat decreasing and five increasing. These findings agree with 

those of Crewe et al., (2012) in their assessment of coastal bird populations in the Georgia Basin. It 

should be noted that our analysis was for the entire coast however, and habitat and population 

trends are not always linked. Also, an analysis of overall habitat should include an assessment of 

habitat quality, which was not done here.  



39 
 

A comparison of trends between change in occupied habitat estimated here and Bower’s (2009) 

estimates of changes in waterbird abundance in the Pacific northwest yielded 13 species where 

both studies detected significant changes (% occupied habitat in this study vs. abundance in Bower 

(2009)) in the same direction, or no significant changes, and 20 species where findings differed. 

Significant declines detected in both studies were for: black scoter (Melanitta Americana), 

bufflehead (Bucephala albeola), and lesser scaup (Aythya affinis). Disagreement between models in 

most cases (14 out of 20) involved similar estimates of the direction of change (+ vs. -); however, 

significance was found in one circumstance and not the other. The short time frame of this study 

may have limited its ability to detect long term changes in habitat when compared with Bower 

(2009) which analyzed changes from 1979 to 2005. 

Although species richness and Beta diversity have commonly been found to be positively related 

(Gering and Crist, 2002) the negative relationship found here between mean species richness and 

mean Beta diversity is expected when considering a small group of species (60). As richness 

increased in an area along the coast, the likelihood that sites within that area shared species 

increased, and since rarities were not considered here, once species richness reached a maximum, 

sites must have shared all species, meaning Beta diversity was equal to zero. Jost (2007) described 

the same phenomenon when using data sets with relatively low levels of species richness, and the 

inevitability of having similar species present in two plots when richness counts are both high 

compared to the rest of the data set. Despite this, the mean species richness and Beta diversity 

products as well as their relationship can provide useful conservation information, as sites falling 

above the fitted linear relationship – indicating higher estimated Beta diversity than expected given 

that sites’ species richness – can be identified for further investigation or conservation. 

Additionally, the averaging through time for each of these products allowed for better coastal 

coverage than in any one year (89% compared with a maximum of 75% in 2008). 
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SDMs are only useful after careful scrutiny of their ecological relevance, usually involving an 

examination of the variables selected for model building and their consistency with known species 

ecology and life history requirements (Elith and Leathwick, 2009). Here, we acknowledge that 

certain models may be more applicable than others. The western grebe (Aechmophorus 

occidentalis), which is a species that has experienced significant declines over the past 50 years 

(Bower, 2009), produced a model where the three most important variables were particulate 

organic carbon, average winter temperature, and average winter precipitation respectively. 

Western grebes are piscivores, and the importance of particulate organic carbon in the model could 

be viewed as providing a food source for their prey species. The model accuracy for the western 

grebe was poor however (AUC=.66). The associations found in this model are plausible given the 

species ecology. Despite the attractiveness of an SDM in this circumstance, the usefulness of this 

particular model is questionable given its poor fit.  

Dunlin (Calidris alpina), which are a species of ecological significance in southern BC coast (Butler 

and Vermeer, 1994), were modeled with a relatively high degree of accuracy (AUC=0.84). Dunlin 

tend to arrive on the BC coast in mid-October, with approximately 30 000 - 60 000 individuals 

overwintering in the Fraser river delta in southern BC (Shepherd, 1997). The distribution estimates 

provided here reflects their known distribution fairly well, with the majority of sites where dunlin 

were estimated to be present occurring in southern BC on or near the Fraser River Delta, with a 

second grouping of presence sites occurring in Haida Gwaii where dunlin are also known to occur. 

The most important variable in the dunlin model was longitude which most likely represents their 

selection for mud flats along the BC coast, which are few. Distance to cities was the second most 

important variable, which again may act as a proxy measure for distance to mud flats as most are 

concentrated in the Fraser river delta which is also close to multiple cities. It is unlikely that this 

species actually selects for habitat near cities directly, therefore, while the model does a fair job at 
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representing dunlin’s coastal distribution, the ecological knowledge which can be gained from the 

model is limited.  

A good example of a species where model fit and environmental associations both seem to indicate 

the model is both accurate and represents real ecological relationships is the northern shoveler 

(Anas clyptea) model. The ensemble models both produced an AUC of .872, while the three most 

important variables were particulate inorganic carbon, distance to city, and mean productivity. The 

northern shoveler is an omnivorous waterbird, supporting its association with particulate 

concentrations in water, and is known to associate with cities. Other species SDMs, such as the 

rhinoceros auklet (Cerorhinca monocerata, AUC=.79), horned grebe (Podiceps auritus, AUC=.82), 

pacific loon (Gavia pacifica, AUC=.82) , glaucous-winged gull (Larus glaucescens, AUC=.89), and 

barrow’s goldeneye (Bucephala islandica, AUC=.91) – all of which experienced significant declines 

in abundance throughout the Georgia basin over the same time frame as this study (Crewe et al., 

2012) – may also be more appropriate for conservation applications, but again, only after careful 

scrutiny of the environmental associations in each model.  
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4. ASSESSING CONSERVATION REGIONALIZATION SCHEMES: 
EMPLOYING SPECIES DATA TO AUGMENT THE ENVIRONMENTAL 
SURROGACY APPROACH 

4.1 Introduction 

The decline of global biodiversity has been well documented (IPCC, 2007; Pereira et al., 2010) and 

as a result biodiversity has become a major driver of conservation planning (Knight et al., 2007; 

Rands et al., 2010). Generally, the method most often used for protecting biodiversity has been 

establishing reserve systems, which provide habitat for target species and separate them from 

threats present elsewhere (Margules and Pressey, 2000; Rodrigues and Brooks, 2007). For a 

reserve system to be successful, it should meet two criteria: it should (1) represent a region’s 

biodiversity and (2) ensure that the biodiversity it protects persists through time (Margules and 

Pressey, 2000). 

To address the first criteria, representation, a conservation strategy will often begin by sub-dividing 

the land base into conservation units/regions/land cover types which are expected to delineate 

environmental conditions, and thus distinct communities of target species (Leathwick et al., 2003; 

Oliver et al., 2004; Olson et al., 2001). Since species data are typically not available with adequate 

spatial coverage at the local scale most relevant for conservation planning, environmental proxies 

are commonly employed with the goal of representing distinct species assemblages (Margules et al., 

2002). 

Once a conservation regionalization scheme has been developed, a reserve system can be designed 

with specific regional site prioritization (Belbin, 1993). This strategy employs the concept of 

complementarity – that multiple reserves located within different regions of a planning area will be 

able to fully represent a large portion of that area’s biodiversity (Howard et al., 1998; Pressey et al., 

1993; Rodrigues and Brooks, 2007). If the regionalization scheme is effective at delineating distinct 

communities of target species, then the resulting reserve system should conserve the full suite of 
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species without large amounts of redundancy occurring (Reyers et al., 2002). However, if the 

regionalization is ineffective at delineating distinct faunal communities, the reserve system risks 

missing important species and/or requiring more land than is necessary for full species 

representation (Fox and Beckley, 2005). 

Considerations when developing a conservation regionalization should also include thematic 

resolution (i.e., the number of regions within a regionalization) (Pearson and Carroll, 1999; Pharo 

and Beattie, 2001). With too fine a thematic resolution, the area requirements for a reserve system 

may be excessively large with high levels of redundancy between reserves (Andrew et al., 2011). 

Conversely, a regionalization scheme with an excessively coarse thematic resolution risks missing 

species protected in a reserve system due to difficulties representing the full variability of large, 

heterogeneous regions (Pressey and Logan, 1994; Wiens, 1989). 

A range of methods have been proposed for developing conservation regionalization schemes, each 

of which employs their own suite of environmental variables and rules for delineation, leading to 

inconsistent partitioning of the landscape (Bailey et al., 1985; Leathwick et al., 2003; Mackey et al., 

2008; Pressey and Logan, 1994; Oliver et al., 2004; Olson et al., 2001). Complicating issues further, 

the effectiveness of these schemes to act as a surrogate for delineating distinct communities of 

target species has been called into question due to problems surrounding community spatial 

autocorrelation and regionalizations not capturing environmental variables which are meaningful 

to community composition (Bonn and Gaston, 2005; Kirkpatrick and Brown, 1994; Lombard et al., 

2003; but see Trakhtenbrot and Kadmon, 2005).  

As the goal of a regionalization is to delineate distinct ecological communities (Margules et al., 

2002), it follows that the core areas of each region should have low levels of species turnover, or 

Beta diversity (Whittaker, 1972), while the border areas should experience higher levels of Beta 

diversity, since these should be areas of transition between communities. For this reason, Beta 
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diversity metrics such as Jaccard’s and Euclidean distance have been used in multiple studies to 

evaluate different methods for delineating land bases into distinct groups of species (Anderson et 

al., 2011; Andrew et al., 2011; Tuomisto, 2010b).  

An alternative approach to developing environmental regionalization schemes, which is becoming 

more feasible with the increase in available, spatially expansive community data, is to delineate 

regions within a regionalization scheme based on where community Beta diversity values are 

highest. A species-based approach allows for the delineation of regions of distinct communities 

using observed species data without relying on environmental surrogates. Such a species-based 

regionalization scheme could act as a best case scenario for comparison with environmental 

regionalization schemes. 

Data sets such as bird and butterfly atlases, which focus on a particular taxon for one period in time 

and one region (i.e., a state or province), and breeding bird surveys are allowing different 

approaches for developing conservation regionalization schemes to be examined against one 

another in an empirical manner. As such, the primary goals of this paper are: first, to analyze the 

performance of different types of environmental regionalization schemes, and second, to develop a 

regionalization scheme built using Beta diversity gradients for comparison with the previously 

tested environmental regionalizations. The following questions were asked with regard to 

conservation regionalization schemes: (1) from a selection of regionalization schemes employing 

environmental surrogates, which most effectively delineates Beta diversity? (2) Which 

environmental regionalization scheme is most similar to a regionalization scheme built using 

species data directly? (3) Which thematic resolution optimizes Beta diversity delineation within the 

study region? These questions were addressed within British Columbia, Canada, using data 

collected for the BC Breeding Bird Atlas project. 
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4.2 Methods 

4.2.1 Bird Community Data 

4.2.1.1 The BC Breeding Bird Atlas 

The bird species data used here was obtained from the BC Breeding Bird Atlas data set (for a 

detailed data description see Section 2.2.2; Figure 2.2). Highest breeding evidence data from 2008-

2011 were used for this study (2012 data are not yet available) as they summarize the most 

conclusive evidence of breeding from the all breeding evidence data set, producing one 

presence/absence value for each species within each cell. 

4.2.1.2 Bird Community Data Analysis 

Citizen science data sets are known to contain biases due to uneven sampling effort (Andrew et al., 

2011; Moerman and Estabrook, 2006), sampling intensity (Schulman et al., 2007) and surveyor skill 

(Ahrends et al., 2011). The confounding effects of variable sampling effort (measured as hours 

spent surveying each cell) and intensity (the number of adjacently sampled cells – including 

diagonals) on observations of bird community composition were tested using partial Canonical 

Correspondence Analysis (pCCA) (Borchard et al., 1992; Palmer, 1993; Ter Braak, 1986) to evaluate 

the amount of variation in Atlas data explained by different regionalizations which was also 

explained by sampling covariates. Survey effort recordings were missing from 827 cells, which 

were therefore excluded from these analyses, leaving 2720 cells. Effort and intensity were 

partitioned out individually and collectively during the pCCA analyses to test their ability to explain 

community composition, as well as shared explanatory power with each regionalization scheme 

tested. Additionally, simple linear regression was used to evaluate if per-region performance (see 

section 2.3.1) was influenced by sampling coverage by region. 
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4.2.2 Environmental Regionalization Schemes 

Four environmental regionalization schemes (Figure 2.3) and one spatial regionalization scheme 

were tested, each of which represents a different method for partitioning a land base using 

environmental, spatial and abiotic variables at varying thematic resolutions (number of regions 

within a regionalization) and with differing spatial constraints (contiguous regions vs. non-

contiguous regions; Table 1). 

4.2.2.1 The North American Bird Conservation Regions 

The BCR system is described in Section 2.4.1. There are five spatially contiguous BCRs contained 

within BC, largely corresponding to the Ecozones put forward by the National Ecological 

Framework for Canada (Ecological Stratification Working Group, 1995) – described in more detail 

in the following section. The BCRs have been used in planning exercises by Environment Canada 

(NABCI Canada, 2012) and the United States Fish and Wildlife Service (NABCI U.S. Committee, 

2009), among others. To our knowledge, the BCR system has not been assessed to determine how 

effective it is at delineating distinct North American bird communities, which is surprising, given 

that this was the original purpose of the project.  

4.2.2.2 The Canadian Ecoregions 

The Canadian Ecoregions are described in Section 2.4.2. There are 44 spatially contiguous 

Ecoregions in British Columbia. Tests of the effectiveness of Ecoregions for delineating distinct 

communities of organisms have been mixed. McDonald et al. (2005) found little evidence that 

Ecoregions are effective at delineating distinct bird, mammal or tree species. Supporting evidence, 

however, has been found for bumblebees (Williams, 1996), birds (Williams et al., 1999) and 

butterflies (Andrew et al., 2011). 
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4.2.2.3 The BC Biogeoclimatic Zones 

The BEC system is described in Section 2.4.3. To our knowledge, BEC has not been tested for its 

ability to delineate distinct communities of organisms, although similar types of regionalizations 

have been developed recently (see Mackey et al., 2008).  

4.2.2.4 Remotely Sensed Unique BC Ecosystems 

The unique BC ecosystems regionalization is described in Section 2.4.4. The thematic resolutions 

tested were: 5, 7, 10, 14 and 17 classes produced at a 10 km spatial resolution to match the avian 

community data.  

4.2.2.5 Spatial Grids 

Proximity in space is known to be a significant determinant of community composition (Nekola and 

White, 1999) and as such communities typically are less similar as the distance between them 

increases (Andrew et al., 2012). It is common for species composition to be spatially autocorrelated 

due to autocorrelation in abiotic conditions and/or dispersal limitation (Legendre, 1993; Nekola 

and White, 1999). In fact, it has been argued that community spatial autocorrelation is necessary 

for community functioning and should be considered a positive, rather than a statistical nuisance 

(Legendre, 1993). 

To examine the effects of space on community structure, eight square grids ranging from 100 to 

800 km resolution were developed and used as regionalization schemes that did not explicitly 

consider environment variables (Andrew et al., 2011). This allowed for a repeatable comparison of 

the effects of thematic resolution on community spatial structure without any consideration of 

environmental effects. 
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Table 4.1: A summary of each environmental regionalization scheme and selected remotely sensed and grid 
system regionalization schemes. Thematic resolution refers to the number of regions within each regionalization 
scheme containing >2 sampled Atlas cells. Cell number refers to the minimum or maximum number of sampled 
cells within a particular region for each regionalization. 

Regionalization 
Scheme 

Thematic 
Resolution 

Mean Region Size 
(Km2) 

Min. Pixel 
Number 

Max. Pixel 
Number 

Contiguous 
Regions 

BCR 5 188947 242 1566 Yes 
Ecoregion 44 21471 6 392 Yes 

BEC 14 67481 29 647 No 

Beta 12 78728 112 556 Yes 

RS 5 5 188947 52 1877 No 

RS 17 17 55573 7 635 No 

100 Km Grid 5 188947 2 82 Yes 

800 Km Grid 121 7808 24 1319 Yes 

4.2.3 Community Analyses 

Each conservation regionalization scheme was tested on its ability to delineate Beta diversity using 

the Analysis of Similarity test (ANOSIM) developed by Clark (1993), while Jaccard’s distance 

(identified as a suitable dissimilarity measure by Anderson et al., (2011); Tuomisto, 2010; see 

formula below), which is a measure of species not shared between sites in a pairwise comparison 

and does not consider joint absences, was used to represent overall Beta diversity.  

                    
(   )  (   )

(   )
 

ANOSIM tests whether values (Jaccard’s distance in this case) contained within regions are 

significantly different than those from between regions. This is done in a non-parametric fashion: 

first, by rank ordering all Jaccard’s distances from both within and between regions, and second, by 

taking the difference of mean within region rank and mean between region rank, standardized by 

sample size (See formula below). The ANOSIM test produces an R statistic ranging from -1 to 1. A 

value of 1 indicates that all within region distances were ranked lower than all between region 

distances, while -1 indicates the opposite. A value of 0 indicates no difference in mean rank for 

within or between region distances.  
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(                                              )

 (   )  
 

The ANOSIM test is desirable as it makes no assumptions regarding the distribution of distances 

and provides an R statistic which allows for regional comparisons beyond significant/non-

significant results. Significance was tested by permuting the data 1000 times and evaluating the 

calculated R statistic against the randomly generated distribution of R statistics (α=.05; see formula 

below). 

  (     (                        ) (               ) 

 Four different ANOSIM tests were performed based on Andrew et al.’s (2011) analysis of 

regionalization schemes using butterfly community data. The first two, termed “Grand” ANOSIMs, 

analyzed the ability of each regionalization scheme as a whole to partition British Columbia into 

regions of distinct avian communities. Grand Overall (GO) tested all regional within and between 

distances, providing one ANOSIM R statistic for each regionalization. Similarly, Grand Adjacent (GA) 

produced a single R statistic for each regionalization using all within region distances, but restricted 

between region distances to regional pairs that are adjacent in physical or environmental space.  

Not all regions within a regionalization are expected to perform equally, however, which prompted 

the two additional sets of tests, termed “Regional” ANOSIMs, of individual regions within each 

regionalization scheme. The Regional Overall (RO) test evaluated a given region’s within distances 

against all between region distances to analyze each region’s contribution to overall Beta diversity 

delineation. Lastly, the Regional Adjacent (RA) test evaluated a region’s within distances against the 

between distances shared with its neighboring regions in physical or environmental space, 

assessing regional redundancy when considering only the regions expected to be most similar to it. 
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4.2.4 BC Avian Conservation Regions Delineation  

4.2.4.1 Beta Diversity Spatial Modeling 

Since Jaccard’s distance is a pairwise comparison of sites located at two different points in space, a 

single Beta diversity value calculated between sites cannot be located spatially. Modeling Beta 

diversity at a point in space requires averaging pairwise Beta diversity values between that point 

and multiple other points. This study used the average pairwise Jaccard’s distances between each 

cell and its direct neighbors – including diagonals – within a 3x3 moving kernel (Figure 4.1). Beta 

diversity was only estimated for cells with at least two neighbors (yielding a total of 3377 cells used 

to map average Beta diversity). 

 

Figure 4.1: Schematic diagram of the averaging kernel calculating local mean Beta diversity. 

Due to gaps in the spatial coverage of the Atlas data, interpolation was required prior to delineation 

of the land base along Beta diversity gradients. The map of local average Beta diversity was tested 

for spatial autocorrelation using a semi-variogram, which estimates the similarity of points 



51 
 

(semivariance) within a given distance. Eight different model fits were iteratively tested, with the 

lowest Root Mean Squared Error model selected for (model = exponential, range = 200 km, sill = 

.023, RMSE = 2.56x10-3; see Figure 4.2). Universal kriging was then carried out to estimate Beta 

diversity of all non-sampled cells (6070 non-sampled cells were estimated) (Olea, 1974; Pearson 

and Carroll, 1999). Beta diversity contours were identified using the isolines tool in ArcGIS 10.0 

(ESRI, 2011). 

 

Figure 4.2: The experimental semi-variogram of local mean Jaccard’s distance values with the fitted exponential 
model (range=200 km, sill=.023, RMSE= 2.56x10-3). 

4.2.4.2 Species-Based Conservation Regions Delineation 

A new, species-based, spatially contiguous conservation regionalization scheme was developed 

using the Beta diversity map (Figure 4.3) and the thematic resolution indicated as optimal in the 

testing of Fitterer et al.’s (2012) environmental regionalization schemes and the spatial grid 

regionalization schemes (12 regions were delineated; see section 4.3.2). Regions were delineated 

manually along zones of high turnover, identified using Beta diversity isolines (Figure 4.3). The 

performance of the species-based regionalization scheme was then compared to the environmental 

regionalizations using all four ANOSIM models.  
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Figure 4.3: (A) The kriged local Beta diversity values using the modeled semi-variogram (Figure 4.2), (B) the 
derived high Beta diversity (.8, .85, .9) and low Beta diversity (.45, .5, .55) isolines, and (C) the Beta diversity 
regions derived using the high Beta diversity isolines (shown). 

4.2.5 Statistical Analyses 

All ANOSIM tests as well as the averaging kernel were written by the authors in R version 2.15.1 (R 

Core Development Team, http://www.r-project.org/). Functions in the “vegan” add-on package 

were used to calculate Jaccard’s distances and to perform pCCA (Oksanen et al., 2008). Universal 

kriging was carried out using functions in the add-on package “gstat” (Pebesma, 2004). All 

statistical tests, except where indicated as different, employed an alpha level of 0.05. 

4.3 Results  

4.3.1 BC Breeding Bird Atlas Analyses 

Survey effort (Figure 4.4) and intensity (mean = 5.3 neighbouring sites, SD = 1.3) explained low yet 

significant variation in the BC breeding bird atlas data through pCCA (1.49% variation explained, 

pCCA P < 0.005; data not shown). Effort (hours surveyed) explained 0.78% of community variation, 

while intensity (n neighboring sites), 0.91%. On average, the estimated ability of environmental 
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regionalizations to represent avian communities was 88.34% (SD = 7.21%) uncontaminated by the 

effects of sampling effort and intensity. Given the low explanatory power of effort and intensity and 

lack of shared explanatory power between these covariates and the regionalization schemes, all 

survey points, regardless of recorded effort in the ANOSIM analyses were used during further 

testing.   

 

Figure 4.4: Frequency distribution of hours of effort across the 3547 sample Atlas cells. 

4.3.2 ANOSIM Analyses 

All regionalizations that incorporated measures of ecological variation (i.e., excluding the purely 

spatial grid regions) delineated highly significant patterns in Beta diversity (P < .001) (Figure 4.5). 

When considering all within and between distances (GO), the Ecoregions were the most effective at 

delineating Beta diversity (R = .27), followed closely by the regions constructed using Beta diversity 

values (R = .26). However, when restricting between distances to neighboring regions (GA), the 

regions constructed using Beta diversity values were most effective at delineating patterns in Beta 

diversity (R = .20), followed by the Bird Conservation Regions (R = .18) and the remotely sensed 

regions at a thematic resolution of 14 (R = .17). A peak in ANOSIM R values was evident for the 
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remotely sensed regionalizations – consistent between GO and GA tests – occurring between 10 and 

14 regions, indicating an optimal environmental thematic resolution in this range. 

 

Figure 4.5: The Grand Overall (GO) and Grand Adjacent (GA) ANOSIM tests for (A) all environmental 
regionalization schemes and (B) the remotely sensed regions at varying thematic resolutions (all 
regionalizations delineated highly significant patterns in Beta diversity, P<.001). Also, the percentage of 
significant regions are shown (α=.05) for the Regional Overall (RO) and Regional Adjacent (RA) tests for both(C) 
the environmental regionalizations and (D) the remotely sensed regions at varying thematic resolutions. 

The relative performance of regionalizations when considering the proportion of statistically 

significant regions within each regionalization scheme (RO/RA) was similar to the R value results of 

the overall tests (GO/GA) in some cases, but not all (Figure 4.5). In three out of four cases for the 

environmental regionalizations, the RA test produced more statistically significant regions than the 
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RO test, which contrasts with the GO and GA findings where the GO values were larger in all four 

cases. A similar pattern to the GO/GA test was produced in the remotely sensed RO and RA tests; 

however, there were two peaks in ANOSIM R values at thematic resolutions of 7 and 14. The BEC 

zones produced the highest proportion of statistically significant regions in the RO test (93%), 

while all regions (100%) were significant for both the BEC and Bird Conservation Regions in the RA 

test. The per-region ANOSIM R values varied widely in both the RO and RA tests, from slightly 

negative (R > -0.1) to strongly positive (R > 0.6) (Figure 4.6).  

 

Figure 4.6: Maps of the Bird Conservation Regions (BCR) and Beta diversity derived regions (Beta) showing per-
region ANOSIM R values for both the Regional Overall (RO) and Regional Adjacent (RA) tests. Diagonal lines 
indicate a non-significant ANOSIM R value. 

When comparing the purely spatial schemes, the 100 km grid regionalization scheme had the 

highest recorded R statistic of any regionalization for the GO test (R = .34), with declining R statistic 

values for the GO test as thematic resolution became coarser (Figure 4.7). When considering 
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neighbors only (GA), the pattern was more variable with a slight increase in R statistic values as the 

thematic resolution coarsened. There was a large increase in R statistic values for both the GO 

(37%) and GA (48%) tests at 500 km (Figure 4.7 A) which corresponded to a thematic resolution of 

12 regions. 

 

Figure 4.7: (A) ANOSIM R values for both the Grand Overall (GO) and Grand Adjacent (GA) tests for all gird 
regionalizations (all regionalizations delineated highly significant patterns in Beta diversity, P<.001). (B) The 
percentage of significant regions for each grid regionalization for both the Regional Overall (RO) and Regional 
Adjacent (RA) tests. 

In contrast to the Grand tests for the grid system, the per-region tests (RO and RA) showed an 

increase in the number of statistically significant regions with decreasing thematic resolution for 

both the RO and RA tests (Figure 4.7 B). The RA test produced a larger increase from 100 to 800 km 

(40% to 100%), while the overall test was more consistent (63% to 79%) across different thematic 

resolutions. 

4.3.3 Regional Coverage and Beta diversity delineation 

To test whether spatial coverage of a region had an effect on a region’s ability to delineate Beta 

diversity, the proportion of each region sampled by atlas cells was compared with per-region 

ANOSIM R values (RO/RA) for all environmental regionalization schemes, as well as the species-

based regionalization scheme, using simple linear regression (Figure 4.8). Six of the eight 
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regionalization schemes revealed positive relationships between sampling coverage and ANOSIM R 

values, which was strongest for the BEC regionalization.  

 

Figure 4.8: Linear models of the proportion of each region sampled by atlas cells (ranging from 0 or no coverage 
to 1 or complete coverage) for the Bird Conservation Regions (BCR), Ecoregions (ECR), Biogeoclimatic zones 
(BEC), and Beta diversity derived regions (Beta) regressed against the regions Regional Overall (RO) and 
Regional Adjacent (RA) ANOSIM R values.  Graphs lacking lines indicate a non-significant relationship. *P<.1, 
**P<.01, ***P<.001. 

4.4 Discussion 

Our results indicate that patterns of Beta diversity within bird communities are structured both 

environmentally and spatially. All environmental and spatial regionalization schemes were able to 

capture significant patterns in Beta diversity, with the BCR system being most effective overall. 

4.4.1 Evaluating Environmental Regionalizations Against a Species-Based Ideal 

Scenario 

The results of our ANOSIM analyses support the use of environmental regionalization schemes in 

conservation planning. The Ecoregions performed virtually identically to the species-based 

regionalization in the GO test; however, the species-based regionalization had an ANOSIM R value 

more than twice the Ecoregions or BEC zones in the GA tests. The regionalization that performed 

most similarly to the species-based regionalization across all tests was the BCR system, showing a 
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similar, moderate decline which was actually less than the species-based regionalization from GO to 

GA tests versus the more dramatic declines in the Ecoregions and BEC zones. This is encouraging, 

considering the amount of avian conservation planning currently underway in North America 

which employs the BCR system, and relates to Ferrier’s (2002) third strategy of testing 

regionalization schemes in data rich environments for improved regional conservation planning. 

While the assessment of the species-based regionalization may seem circular, in that data used to 

produce the Beta diversity map were then used during its assessment, the number of pairwise 

comparisons considered during the creation of the species-based regionalization scheme (17 958 

pairwise comparisons) made up 0.30 % of the total pairwise comparisons used in the “Grand” 

ANOSIM tests (over 6.2 million pairwise comparisons). Essentially, the ANOSIM tests considered 

regional dissimilarities as a whole, while the species-based delineation identified areas of abrupt 

species turnover in physically adjacent sites (i.e., regional contents vs. regional boundaries).  

Caution should be applied, however, when interpreting the ANOSIM results on a per-region basis, 

as proportional coverage was shown to be significantly related to regional ANOSIM R values for 

most regionalizations. It is possible that volunteers preferentially sampled more desirable birding 

areas that harbor more distinct species assemblages, in which case the observed patterns reflect 

true spatial variation. If this relationship does represent a bias in the data, one option could be to 

adjust conservation targets based on deviations from expected ANOSIM RO and RA values (i.e. 

residual values by region in the models shown in Figure 4.7) for a given level of regional sampling 

coverage. 

4.4.2 Spatial and Environmental Structuring of Avian Beta Diversity 

All environmental regionalizations delineated highly significant patterns in Beta diversity, with the 

spatially contiguous environmental regionalizations performing best when considering the overall 

tests. This agrees with the findings of Andrew et al. (2011) that the Ecozones/Ecoregions system 
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was most efficient at delineating butterfly Beta diversity at the national scale, and contrasts with 

McDonald et al. (2005) who found that Ecoregions did not delineate Beta diversity effectively. The 

Ecoregions/BCR approach to regionalizations and their incorporation of multiple environmental 

variables agrees with several studies which suggest that multiple environmental inputs best 

represents diversity as a whole (Bonn and Gaston, 2005; Sarkar et al., 2005). However, the BEC 

system, which does not require contiguity within each region and produced the lowest overall 

ANOSIM R values, actually produced the highest percentage of non-redundant regions. The 

environmental findings of this study agree with the numerous studies which indicate that avian 

communities are structured to some degree by environmental factors which can be linked to plant 

communities, including: species richness and vegetation productivity (Bailey et al., 2004; Coops et 

al., 2009; Hawkins, 2004; Luck, 2007) and to plant structural complexity (Kissling et al., 2008).  

The testing of the remotely sensed regionalization was able to address one of the questions poised 

in Andrew et al. (2011) – whether increases in environmental variables were needed for improved 

remotely sensed regionalizations. Andrew et al. (2011) found that a regionalization scheme 

constructed along five remotely sensed variables (Coops et al., 2008) resulted in slightly poorer 

performance in the Grand ANOSIM tests than the remotely sensed regionalization of the present 

study, which was defined along twice as many variables but at the same thematic resolution. 

However, there are differences in study scale and taxa between the studies which may influence 

these patterns. Results from our other comparisons indicated that an increase in environmental 

variables does not necessarily improve the ability of remote sensing to produce regionalization 

schemes. Instead, our results indicate that the spatial structuring of faunal communities plays a 

significant part in community delineation, leading to the increased ANOSIM R values resulting from 

the spatially contiguous environmental regionalizations (in agreement with Andrew et al. (2011)). 

A remotely sensed regionalization scheme that explicitly incorporates spatial covariates may 

address this issue and warrants further study.  



60 
 

While the spatial dependence of ecological communities is a well described phenomenon, its role in 

planning conservation regionalization schemes has not been investigated in much depth (but see 

Andrew et al., 2011; Oliver et al., 2004). Ferrier et al. (2007) clearly describe the decay of similarity 

between sites owing to spatial separation irrespective of ecological dissimilarity. Our results 

support this concept and the importance of spatial structuring to conservation, with the 100 km 

grid regionalization scheme being most able to delineate Beta diversity of any scheme in the GO 

test, while all grid sizes delineated highly significant patterns of Beta diversity for both the GO and 

GA tests. This clearly indicates that avian communities are structured spatially, and I therefore 

argue that regionalization schemes that do not explicitly incorporate space are lacking a potentially 

critical variable in their creation, likely decreasing their ability to represent distinct groups of 

species.  

4.4.3 Thematic Resolution 

Thematic resolution and its effects within regionalization schemes involve a trade-off between 

regional distinctiveness and internal heterogeneity (Andrew et al., 2011). As thematic resolution 

becomes coarser, internal heterogeneity tends to increase (Wiens, 1989) while regional 

redundancy will decrease. Striking a balance becomes difficult; however, our results indicate that 

estimating an optimal thematic resolution is possible for a given study area. By testing thematic 

resolution in two ways, considering only environment and no space (the remotely sensed unique 

ecosystems at varying thematic resolutions) and space without environmental considerations (the 

grid system at varying thematic resolutions), I identified the thematic resolution at which ANOSIM 

R values were maximized for both the GO and GA tests. The grid ANOSIM R values had a marked 

increase at 500 km, which corresponds to a thematic resolution of 12 regions, while the RS regions 

were maximized between 10 and 14 regions for these tests. The agreement between the RO and RA 

tests was less pronounced, with the grid regionalization showing a distinct increase in the 
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percentage of significant regions as thematic resolution coarsened, while the remotely sensed 

regionalizations were more variable.  

A notable result of this study is the consistency found between the bird communities analyzed here 

and the butterfly communities tested in Andrew et al. (2011) when considering the shape of the 

curves for the GO and GA grid tests. In both studies a decreasing pattern in GO ANOSIM R values 

was observed, with a distinct increase at a particular grid size, corresponding to an increase in GA 

values as well (Figure 6, and see Figure 4 in Andrew et al., 2011). This increase was at 400 km for 

butterflies, and 500 km for birds, and I suggest that this scale difference is due to the increased 

vagility of bird species over butterflies, and could explain why these patterns fall out over larger 

scales. Additionally, this difference between birds and butterflies highlights the specificity of 

thematic resolution with regard to taxa, and evaluations of thematic resolution should be 

conducted with this limitation in mind.   
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5. CONCLUSIONS 

5.1 Key Findings 

The work here outlines how citizen-science data sets can be used to explore ecological relationships 

and improve conservation planning. Two research questions were addressed using these freely 

available avian data sets. Chapter 3 outlined how remote sensing, coupled with interpolated climate 

indices and spatial variables, can effectively estimate species distributions in a complex coastal 

environment. Chapter 4 assessed different environmental regionalization schemes for their ability 

to delineate Beta diversity, and outlined how a second type of regionalization, built using species 

data directly, can also be used to assess the environmental surrogacy approach. 

In Chapter 3, ensemble models were found to be most effective at fitting SDMs against all single 

model types except boosted regression trees, which supports their continued use as a method for 

improving species distribution estimates when compared with traditional, single model 

approaches. The incorporation of spatial covariates significantly improved model fit, indicating that 

their inclusion is an important consideration when building species distribution models, and 

supports the concept of realized niche modeling in distribution models. No difference in model 

performance was detected across primary habitat type or primary detection location; however, 

mean AUC was found to vary across functional feeding groups. Model prediction variability was 

found to be highly dependent on average distance from survey sites, supporting the use of 

ensemble models with multiple iterations to estimate mean probability of occurrence. Model 

variability was also found to increase towards the ends of coastal fjords, highlighting the challenges 

of using oceanic remote sensing in coastal locations.  

Each environmental predictor was selected as most important in, at minimum, two separate species 

models. Therefore, it can be argued that when modeling a large and diverse group of species, a wide 

range of environmental variables is necessary to describe the diverse habitat requirements of the 
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community in question. When working at the provincial scale, remotely sensed data was shown to 

provide effective estimates of many of the environmental variables necessary to build accurate 

species distribution models. Additionally, the use of remote sensing, with many repeat observations 

of an area per season, allowed for species data to be linked temporally to environmental data, 

which enabled species distributions and the amount of occupied habitat by species to be estimated 

by year. This approach identified 16 species (out of 60) which were estimated to have experienced 

significant changes in occupied habitat, with 11 estimated declines and five estimated increases in 

available habitat. 

In summary: 

 Ensemble models offer improved distribution estimates when compared with most single 

model types 

 The inclusion of spatial variables improves model estimates across all model types 

 Ensemble model performance varied by functional feeding group, indicating that this 

approach may be more appropriate for species with certain life-history characteristics 

(insectivorous shorebirds) than others 

 Model predictions become more variable away from survey site locations 

 A wide range of environmental variables are necessary to model multiple species 

 Remotely sensed environmental variables offer an effective means to build species 

distribution models at the BC coast scale 

 By linking environmental and species data by year, occupied habitat for each species can be 

estimated allowing for inferences to be made with regard to habitat changes through time 

In Chapter 4, all four of the environmental regionalization schemes tested (BCRs, Ecoregions, BEC 

zones and remotely sensed regions) delineated highly significant patterns in Beta diversity, 

supporting their use in conservation planning, with the BCR system performing most similarly to 



64 
 

the species-based system when considering the GO and GA test results. When using the species-

based regionalization as a benchmark, the BCR system would have to be considered the most 

effective environmental regionalization due to this similarity. Spatially contiguous regionalizations 

were superior to non-contiguous regionalizations in ANOSIM testing, indicating that space should 

be incorporated into a regionalization scheme explicitly by requiring regions to be contiguous 

parcels of land. This was supported by the spatial grid system, which also delineated significant 

patterns in Beta diversity. Additionally, the spatial grid system was used to test various thematic 

resolutions for delineation of Beta diversity values alongside remotely sensed regionalizations, 

allowing for an optimized resolution to be determined for British Columbia. Common spatial and 

environmental patterns were observed between avian and butterfly communities, reinforcing the 

findings of Andrew et al. (2011) and emphasizing the need for spatial consideration during the 

conservation regionalization scheme development process.  

In summary: 

 All environmental regionalization schemes effectively delineate Beta diversity, with the Bird 

Conservation Regions performing most similarly to the species-based regionalization 

 The thematic resolution of a regionalization is an important consideration when during 

development, and as was outlined, can be tested empirically 

 Regions within a regionalization should be spatially contiguous 

 There are potential common patterns between birds and butterflies which warrant further 

investigation 

5.2 Conservation Applications 

The research outlined in this thesis has the potential to be used in multiple avian conservation 

situations. Chapter 3 outlined how the species distribution models can be applied in systematic 

conservation planning, using both the species richness and Beta diversity indices. The integration of 
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oceanic and terrestrial reserve networks is increasingly being explored, and the models developed 

here could be integrated into systematic conservation planning along the BC coast. Coastal 

waterbirds may be uniquely positioned to act as a community, for which data exists, that requires 

both oceanic and terrestrial habitats. As such, their use in a reserve system which aims to conserve 

both oceanic and terrestrial habitat seems logical.  

The ability to estimate available habitat by year and the continued supply of remotely sensed 

environmental variables could allow for a monitoring system to be developed which tracks 

available habitat by year for each species included in the modeling process. Caution should be 

exercised here however, as certain models were found to better estimate distributions than others 

(see dulin vs. western grebe), and certain species-environment associations were more plausible 

than others (see northern shoveler vs. dunlin). No differences in model performance were detected 

by functional feeding group, primary habitat type, and primary detection location, indicating the 

models are applicable across a wide range of species. The model variability-distance to survey sites 

locations allows for model users to assess the models ability to project in space, and could be used 

to set a limit on how far models can be projected away from survey locations. 

In Chapter 4, the BCR system performed most similarly to the species-based regionalization, 

supporting its future use in avian conservation. However, the optimal resolution for BC was found 

to be finer than that of the BCRs, and further refinement of this regionalization system should 

incorporate an analysis of thematic resolution. Ultimately, all regionalizations delineated highly 

significant patterns in Beta diversity, and could be considered candidates for acting as conservation 

regionalization scheme in an avian conservation network. 

5.3 Future Research 

As more broad scale species data sets become freely available to researchers, the opportunity to 

answer questions at large scales will increase. Remote sensing offers a unique platform to gather 
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data at these large scales, with the added advantage of being repeated in time. As remote sensing 

archives increase in duration, the opportunity to develop time series analyses of both 

environmental conditions and species distributions will increase. Ultimately, models that monitor 

species distributions through time may allow for large scale monitoring of habitat availability 

where direct sampling is prohibitive. 

The research outlined in Chapter 3 was largely related to the process of modeling species 

distributions at the coastal scale; however, many potential ecological questions remain. How 

consistent are the patterns in occupancy across time? Are certain species predicted to exhibit high 

site fidelity while others are more variable in their predicted site selection? How consistent is 

model fit along the BC coast/ does model fit vary in space? Model validation with a second, 

independent data set and/or by experts in coastal bird distributions along the BC coast could 

answer many of these questions and should be further investigated. The continued development of 

the Coastal Waterbird Survey data set would allow for model refinement, with a focus on obtaining 

data in un-sampled areas along the central and north coast. Unfortunately, this may prove difficult 

given the nature of volunteer surveyors residing largely in, or near, urban areas.  

The research described in Chapter 4 identified an interesting pattern in ANOSIM R values 

decreasing due to decreased thematic resolution until a spike at a particular value, which was 

shared by the avian community tested here and the butterfly community examined by Andrew et 

al., (2012). While this peak occurred at larger spatial scales for birds when compared with 

butterflies, the shape of the response was very similar. Testing this in other taxa, and/or in other 

environments may shed light on whether this represents an ecological pattern, or is simply 

coincidental. 

Ultimately, the continued use of citizen science data sets coupled with remotely sensed and spatial 

data will allow for more refined scientific questions to be addressed at large spatial scales. 
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APPENDIX 1 

Species distribution AUC values for models including spatial covariates, by species, as well as each 
species % change in habitat P value and slope as well as habitat designation. 

Species Habitat 
Designation 
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Aechmophorus 
occidentalis 

water 0.55 0.63 0.61 0.52 0.55 0.55 0.60 0.66 0.66 0.18 0.00 

Anas acuta water 0.76 0.85 0.85 0.81 0.67 0.85 0.79 0.87 0.87 0.44 0.01 

Anas americana water 0.68 0.80 0.83 0.76 0.64 0.78 0.75 0.83 0.83 0.06 0.01 

Anas carolinensis water 0.79 0.81 0.80 0.75 0.62 0.81 0.74 0.84 0.84 0.29 0.00 

Anas clypeata water 0.83 0.88 0.59 0.54 0.77 0.91 0.77 0.87 0.87 0.49 0.00 

Anas penelope water 0.77 0.82 0.76 0.53 0.62 0.80 0.74 0.83 0.83 0.84 0.00 

Anas 
platyrhynchos 

water 0.63 0.73 0.64 0.68 0.61 0.66 0.73 0.73 0.74 0.13 0.01 

Anas strepera water 0.77 0.72 0.62 0.57 0.70 0.56 0.64 0.77 0.77 0.52 -0.01 

Aphriza virgata shore 0.74 0.73 0.56 0.55 0.64 0.75 0.60 0.79 0.79 0.44 0.00 

Ardea herodias land 0.62 0.72 0.70 0.64 0.60 0.74 0.60 0.72 0.72 0.02 -0.01 

Arenaria 
melanocephala 

land 0.78 0.82 0.79 0.77 0.78 0.78 0.76 0.83 0.83 0.27 0.01 

Aythya affinis water 0.55 0.76 0.75 0.53 0.61 0.75 0.64 0.82 0.82 0.01 -0.01 

Aythya marila water 0.74 0.83 0.80 0.73 0.63 0.78 0.76 0.83 0.83 0.34 0.00 

Brachyramphus 
marmoratus 

water 0.69 0.82 0.70 0.67 0.60 0.75 0.66 0.80 0.80 0.26 0.00 

Branta bernicla water 0.74 0.85 0.81 0.80 0.60 0.86 0.77 0.87 0.87 0.02 -0.01 

Branta 
canadensis 

water 0.70 0.77 0.69 0.76 0.51 0.74 0.74 0.77 0.77 0.72 0.00 

Bucephala 
albeola 

water 0.81 0.84 0.70 0.54 0.81 0.84 0.64 0.85 0.85 0.09 -0.01 

Bucephala 
clangula 

water 0.67 0.75 0.69 0.68 0.66 0.75 0.66 0.76 0.76 0.58 0.00 

Bucephala 
islandica 

water 0.84 0.91 0.88 0.88 0.80 0.88 0.85 0.91 0.91 0.71 0.00 

Buteo 
jamaicensis 

land 0.69 0.77 0.69 0.62 0.73 0.72 0.65 0.82 0.82 0.51 -0.01 

Calidris alba shore 0.77 0.99 0.93 0.65 0.75 0.89 0.65 0.97 0.98 0.04 -0.02 

Calidris alpina shore 0.75 0.85 0.84 0.80 0.57 0.81 0.75 0.85 0.85 0.51 0.00 

Ceoohus 
columba 

water 0.71 0.84 0.79 0.75 0.66 0.78 0.78 0.84 0.84 0.13 0.00 

Cerorhinca 
monocerata 

water 0.71 0.80 0.65 0.65 0.75 0.75 0.52 0.79 0.79 0.31 0.00 

Charadrius 
vociferus 

shore 0.63 0.77 0.79 0.54 0.65 0.77 0.69 0.78 0.78 0.24 -0.01 

Chroicocephalus 
philadelphia 

water 0.70 0.66 0.61 0.68 0.70 0.72 0.57 0.68 0.69 0.59 0.00 

Circus cyaneus land 0.92 0.88 0.83 0.90 0.87 0.90 0.92 0.88 0.88 0.96 0.00 
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Clangula 
hyemalis 

water 0.69 0.85 0.78 0.78 0.58 0.78 0.80 0.83 0.83 0.18 0.02 

Corvus caurinus land 0.61 0.76 0.69 0.64 0.62 0.74 0.78 0.77 0.77 0.07 0.03 

Covus corax land 0.70 0.76 0.77 0.67 0.69 0.77 0.69 0.79 0.79 0.00 0.01 

Cygnis 
buccinator 

water 0.83 0.86 0.88 0.62 0.70 0.83 0.63 0.88 0.88 0.01 0.01 

Gavia immer water 0.78 0.85 0.80 0.78 0.54 0.82 0.78 0.85 0.85 0.80 0.00 

Gavia pacifica water 0.71 0.81 0.78 0.75 0.72 0.74 0.80 0.82 0.82 0.38 0.00 

Gavia stellata land 0.79 0.85 0.77 0.70 0.71 0.81 0.70 0.83 0.84 0.11 0.01 

Haematopus 
bachmani 

shore 0.69 0.83 0.79 0.80 0.71 0.84 0.76 0.83 0.83 0.08 0.00 

Haliaeetus 
leucocephalus 

land 0.63 0.70 0.67 0.59 0.56 0.67 0.61 0.71 0.71 0.50 0.00 

Histrionicus 
histrionicus 

water 0.80 0.88 0.89 0.84 0.76 0.89 0.85 0.91 0.91 0.12 -0.01 

Larus califronicus water 0.59 0.68 0.67 0.64 0.68 0.66 0.67 0.71 0.71 0.47 0.00 

Larus canus water 0.67 0.80 0.77 0.78 0.65 0.77 0.70 0.80 0.80 0.66 0.00 

Larus 
delawarensis 

water 0.87 0.90 0.82 0.83 0.80 0.86 0.77 0.89 0.89 0.13 -0.01 

Larus 
glaucescens 

water 0.88 0.91 0.65 0.81 0.81 0.81 0.75 0.89 0.89 0.95 0.00 

Larus 
occidentalis 

water 0.62 0.79 0.66 0.49 0.64 0.56 0.49 0.77 0.77 0.15 0.01 

Larus 
smithsonianus 

water 0.61 0.63 0.62 0.65 0.66 0.61 0.65 0.65 0.65 0.05 -0.02 

Larus thayeri water 0.77 0.84 0.79 0.81 0.73 0.80 0.76 0.84 0.84 0.11 0.00 

Lophodytes 
cucullatus 

water 0.71 0.78 0.71 0.75 0.70 0.75 0.75 0.78 0.78 0.79 0.00 

Megaceryle 
alcyon 

land 0.68 0.73 0.72 0.65 0.53 0.71 0.66 0.75 0.75 0.35 0.00 

Melanitta 
americana 

water 0.73 0.85 0.83 0.76 0.63 0.81 0.80 0.86 0.86 0.08 0.00 

Melanitta fusca water 0.70 0.86 0.83 0.80 0.68 0.82 0.82 0.86 0.86 0.16 0.00 

Melanitta 
perspicillata 

water 0.76 0.84 0.83 0.77 0.81 0.79 0.81 0.86 0.86 0.01 -0.02 

Mergus 
merganser 

water 0.62 0.72 0.69 0.72 0.67 0.69 0.63 0.71 0.71 0.07 -0.01 

Mergus serrator water 0.66 0.69 0.70 0.67 0.65 0.66 0.64 0.71 0.72 0.26 0.00 

Phalacrocorax 
auritus 

water 0.72 0.79 0.84 0.69 0.64 0.77 0.79 0.83 0.84 0.48 0.00 

Phalacrocorax 
pelagicus 

water 0.70 0.82 0.74 0.79 0.67 0.84 0.81 0.83 0.83 0.35 0.00 

Phalacrocorax 
penicillatus 

water 0.59 0.73 0.69 0.57 0.62 0.74 0.62 0.76 0.76 0.76 0.00 

Pluvialis 
squatarola 

shore 0.77 0.88 0.85 0.81 0.72 0.86 0.71 0.90 0.90 0.01 0.01 

Podiceps auritus water 0.68 0.81 0.76 0.82 0.61 0.74 0.79 0.82 0.82 0.29 0.01 

Podiceps 
grisegena 

water 0.73 0.82 0.82 0.73 0.77 0.79 0.81 0.85 0.86 0.26 0.00 

Podilymbus 
podiceps 

water 0.73 0.75 0.63 0.69 0.55 0.73 0.52 0.80 0.80 0.03 -0.02 

Tringa 
melanoleuca 

shore 0.82 0.91 0.73 0.89 0.81 0.89 0.86 0.92 0.93 0.98 0.00 
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Uria aalge water 0.61 0.76 0.66 0.60 0.50 0.67 0.54 0.75 0.75 0.56 0.00 

 

Species Distribution AUC values for models not including spatial covariates, by species, as well as 
species Functional Feeding Group designation. 

Species Functional 
Feeding 
Group 
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Aechmophorus 
occidentalis 

piscivore 0.79 0.77 0.50 0.57 0.72 0.83 0.58 0.82 0.82 

Anas acuta herbivore 0.81 0.84 0.78 0.53 0.69 0.84 0.69 0.87 0.87 

Anas americana herbivore 0.66 0.72 0.71 0.69 0.64 0.67 0.72 0.75 0.75 

Anas carolinensis herbivore 0.74 0.81 0.77 0.74 0.75 0.77 0.83 0.84 0.84 

Anas clypeata omnivore 0.67 0.71 0.70 0.56 0.68 0.53 0.57 0.70 0.70 

Anas penelope herbivore 0.68 0.66 0.72 0.59 0.67 0.62 0.52 0.72 0.72 

Anas 
platyrhynchos 

herbivore 0.69 0.65 0.63 0.56 0.56 0.62 0.59 0.74 0.75 

Anas strepera omnivore 0.64 0.67 0.71 0.58 0.55 0.58 0.52 0.70 0.70 

Aphriza virgata carnivore 0.84 0.90 0.88 0.66 0.72 0.84 0.73 0.91 0.91 

Ardea herodias piscivore 0.70 0.82 0.77 0.73 0.68 0.78 0.76 0.83 0.83 

Arenaria 
melanocephala 

piscivore 0.70 0.76 0.68 0.67 0.72 0.74 0.69 0.75 0.76 

Aythya affinis omnivore 0.84 0.82 0.86 0.64 0.67 0.79 0.73 0.86 0.86 

Aythya marila omnivore 0.77 0.81 0.74 0.69 0.80 0.75 0.79 0.83 0.83 

Brachyramphus 
marmoratus 

piscivore 0.73 0.88 0.76 0.66 0.60 0.71 0.65 0.89 0.89 

Branta bernicla herbivore 0.65 0.73 0.67 0.58 0.67 0.71 0.65 0.73 0.73 

Branta 
canadensis 

herbivore 0.73 0.77 0.81 0.71 0.78 0.77 0.74 0.80 0.80 

Bucephala 
albeola 

benthivore 0.84 0.80 0.49 0.81 0.61 0.68 0.72 0.82 0.82 

Bucephala 
clangula 

benthivore 0.58 0.69 0.64 0.67 0.68 0.67 0.63 0.72 0.72 

Bucephala 
islandica 

benthivore 0.73 0.79 0.82 0.82 0.59 0.72 0.75 0.83 0.83 

Buteo 
jamaicensis 

carnivore 0.75 0.77 0.80 0.66 0.71 0.81 0.69 0.80 0.80 

Calidris alba insectivore 0.74 0.81 0.68 0.69 0.70 0.76 0.80 0.80 0.80 

Calidris alpina insectivore 0.70 0.79 0.77 0.79 0.61 0.72 0.78 0.82 0.82 

Ceoohus columba piscivore 0.63 0.59 0.56 0.52 0.63 0.65 0.50 0.69 0.69 

Cerorhinca 
monocerata 

piscivore 0.70 0.59 0.62 0.60 0.55 0.57 0.49 0.66 0.67 

Charadrius 
vociferus 

insectivore 0.77 0.82 0.78 0.74 0.78 0.72 0.78 0.84 0.84 
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Chroicocephalus 
philadelphia 

piscivore 0.68 0.73 0.59 0.61 0.64 0.80 0.68 0.73 0.73 

Circus cyaneus carnivore 0.58 0.61 0.58 0.59 0.58 0.58 0.62 0.64 0.64 

Clangula 
hyemalis 

benthivore 0.67 0.84 0.77 0.73 0.74 0.81 0.81 0.84 0.85 

Corvus caurinus omnivore 0.69 0.81 0.74 0.75 0.73 0.71 0.69 0.82 0.82 

Covus corax omnivore 0.79 0.78 0.62 0.78 0.76 0.78 0.69 0.78 0.79 

Cygnis buccinator herbivore 0.70 0.75 0.75 0.69 0.68 0.71 0.65 0.76 0.76 

Gavia immer piscivore 0.58 0.61 0.64 0.52 0.50 0.61 0.57 0.67 0.67 

Gavia pacifica piscivore 0.72 0.70 0.73 0.60 0.57 0.65 0.52 0.73 0.73 

Gavia stellata piscivore 0.71 0.73 0.72 0.55 0.69 0.73 0.60 0.76 0.77 

Haematopus 
bachmani 

carnivore 0.66 0.75 0.70 0.61 0.64 0.77 0.66 0.74 0.74 

Haliaeetus 
leucocephalus 

carnivore 0.73 0.81 0.76 0.72 0.67 0.81 0.82 0.83 0.83 

Histrionicus 
histrionicus 

benthivore 0.71 0.75 0.74 0.66 0.60 0.72 0.71 0.79 0.79 

Larus califronicus omnivore 0.70 0.77 0.75 0.64 0.69 0.72 0.70 0.78 0.78 

Larus canus omnivore 0.73 0.76 0.75 0.76 0.67 0.72 0.73 0.78 0.78 

Larus 
delawarensis 

omnivore 0.67 0.67 0.69 0.54 0.61 0.62 0.62 0.72 0.72 

Larus 
glaucescens 

omnivore 0.66 0.79 0.70 0.66 0.73 0.78 0.67 0.79 0.79 

Larus 
occidentalis 

omnivore 0.64 0.76 0.61 0.60 0.49 0.68 0.58 0.76 0.76 

Larus 
smithsonianus 

carnivore 0.58 0.60 0.60 0.52 0.58 0.53 0.57 0.66 0.66 

Larus thayeri omnivore 0.81 0.73 0.74 0.53 0.69 0.85 0.61 0.82 0.82 

Lophodytes 
cucullatus 

benthivore 0.77 0.81 0.81 0.70 0.73 0.85 0.82 0.85 0.85 

Megaceryle 
alcyon 

piscivore 0.68 0.74 0.63 0.63 0.66 0.66 0.74 0.75 0.75 

Melanitta 
americana 

benthivore 0.75 0.82 0.76 0.73 0.76 0.75 0.74 0.83 0.83 

Melanitta fusca benthivore 0.80 0.78 0.79 0.69 0.75 0.69 0.62 0.79 0.80 

Melanitta 
perspicillata 

benthivore 0.76 0.81 0.68 0.52 0.70 0.75 0.62 0.82 0.82 

Mergus 
merganser 

piscivore 0.71 0.79 0.74 0.68 0.66 0.69 0.62 0.78 0.78 

Mergus serrator piscivore 0.77 0.77 0.75 0.53 0.70 0.68 0.65 0.80 0.80 

Phalacrocorax 
auritus 

piscivore 0.82 0.89 0.88 0.78 0.80 0.86 0.83 0.90 0.90 

Phalacrocorax 
pelagicus 

piscivore 0.68 0.68 0.71 0.49 0.75 0.59 0.50 0.78 0.79 

Phalacrocorax 
penicillatus 

piscivore 0.63 0.63 0.63 0.60 0.51 0.59 0.65 0.66 0.66 

Pluvialis 
squatarola 

insectivore 0.72 0.81 0.47 NA 0.60 0.94 0.66 0.84 0.85 

Podiceps auritus piscivore 0.74 0.77 0.77 0.69 0.76 0.71 0.72 0.80 0.80 

Podiceps 
grisegena 

piscivore 0.68 0.75 0.59 0.54 0.50 0.58 0.63 0.76 0.76 
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Podilymbus 
podiceps 

carnivore 0.87 0.86 0.77 0.61 0.89 0.81 0.75 0.87 0.87 

Tringa 
melanoleuca 

insectivore 0.87 0.88 0.83 0.84 0.74 0.81 0.66 0.88 0.88 

Uria aalge piscivore 0.58 0.67 0.57 0.58 0.55 0.67 0.71 0.70 0.71 

 

APPENDIX 2 

Model variable loadings by species, showing the 3 most important variables for the weighted-mean 
ensemble model determined through Pearson’s correlation and a leave-one out model approach. 

Species Variable 1 Variable 2 Variable 3 

Aechmophorus occidentalis poc tave ppt 

Anas acuta lon d2ct poc 

Anas americana d2ct lon dhi_cov 

Anas carolinensis lon d2ct lat 

Anas clypeata pic d2ct dhi_mean 

Anas penelope lon poc Kd_490 

Anas platyrhynchos d2ct lon tmin 

Anas strepera pic poc chlor_a 

Aphriza virgata lat tmin lon 

Ardea herodias d2ct lon ipar 

Arenaria melanocephala lon d2ct tmin 

Aythya affinis d2ct lon lat 

Aythya marila lon d2ct tmin 

Brachyramphus marmoratus lat dhi_mean d2ct 

Branta bernicla lon poc d2ct 

Branta canadensis lon d2ct m_dhi_cov 

Bucephala albeola dhi_cov dhi_mean d2rd 

Bucephala clangula d2ct lon lat 

Bucephala islandica lon lat dhi_mean 

Buteo jamaicensis dhi_min lon lat 

Calidris alba lon d2ct dhi_mean 

Calidris alpina lon d2ct tmin 

Ceoohus columba lat d2ct lon 

Cerorhinca monocerata lat chlor_a ppt 

Charadrius vociferus d2ct lon lat 

Chroicocephalus philadelphia dhi_mean dhi_min dhi_cov 

Circus cyaneus lon tave tmax 

Clangula hyemalis lon lat d2ct 

Corvus caurinus lat m_d2ct lon 

Covus corax eosd_rich chlor_a d2ct 

Cygnis buccinator lat lon tmin 
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Gavia immer lon d2ct tmin 

Gavia pacifica lon d2ct dhi_min 

Gavia stellata lon dhi_min ppt 

Haematopus bachmani lon lat dhi_min 

Haliaeetus leucocephalus lon lat dhi_mean 

Histrionicus histrionicus lat lon d2ct 

Larus califronicus lon d2ct tmin 

Larus canus d2ct dhi_cov dhi_min 

Larus delawarensis lon lat poc 

Larus glaucescens d2ct dhi_mean pas 

Larus occidentalis poc lon lat 

Larus smithsonianus lon dhi_mean d2ct 

Larus thayeri lon d2ct lat 

Lophodytes cucullatus lat lon tave 

Megaceryle alcyon lon d2ct dhi_mean 

Melanitta americana lon d2ct dhi_cov 

Melanitta fusca lon d2ct tmin 

Melanitta perspicillata d2ct lon tmin 

Mergus merganser lon dhi_mean m_dhi_min 

Mergus serrator lon dhi_cov d2ct 

Phalacrocorax auritus d2ct lat lon 

Phalacrocorax pelagicus d2ct lon lat 

Phalacrocorax penicillatus lat lon d2rd 

Pluvialis squatarola lon d2ct lat 

Podiceps auritus lon d2ct dhi_min 

Podiceps grisegena lon d2ct lat 

Podilymbus podiceps d2ct ppt poc 

Tringa melanoleuca d2ct lon lat 

Uria aalge lat d2ct tave 

 


