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Abstract

In this thesis the exactly divergence-free finite element method developed in [13] and [14]

is studied. This method is first reviewed in the context of Stokes problem. An interior

penalty discontinuous Galerkin approach is formulated and analysed in the framework of

[13], [14] and [37]. Then we extend the method to non-isothermal flow problems, in partic-

ular, to a generalised Boussinesq equation. Following [34], the method is formulated and

the numerical analysis is reviewed. Numerical examples are implemented and presented,

which verify the theoretical error estimates and the exactly divergence-free property.
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Preface

In this dissertation, the theoretical analysis in Chapter 1 is a review and synthesis of

the work in [13], [14] and [37]. And the numerical experiments in Section 2.5 are carried

out independently by the author T. Qin. The Chapter 2 is a summary and review of the

paper [34] which is a collaboration with R. Oyarzúa and D. Schötzau. The formulation

of the method is an extension of the work in [14]. The theoretical analysis is attributed

to Oyarzúa and Schötzau. The author formulated the fixed-point iteration in Section 3.7

and extended the code to the generalized Boussinesq equation in Section 3.8. All the

numerical experiments in this thesis are conducted with the deal.II finite element library

[5]. A journal paper related with the work in Chapter 2 has been submitted to and

accepted by the IMA Journal of Applied Mathematics.
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Chapter 1

Introduction

When simulating incompressible flow with finite element methods, the exact satisfaction

of the incompressibility constraint ∇ ·u = 0 is highly desirable. It yields provable energy-

stable methods without the need to modify nonlinear terms in the underlying differential

equations as is done in the classical methods for the incompressible Navier-Stokes equa-

tions in [40] and [41]. In contrast, failure to satisfy the constraint exactly can cause

undesired instabilities especially in nonlinear problems, for example in collision flows in

cross-shaped domains [32], and in the context of rotation-free forces acting on elastic

materials [4]. In recent decades, many efforts have been made in designing efficient meth-

ods that are exactly divergence-free for incompressible flow problems in both conforming

and the nonconforming setting. We mention here only [39, 42, 9, 22] and the references

therein. In particular, in 2007, Cockburn, Kanschat and Schötzau developed and anal-

ysed a new exactly divergence-free element method for the incompressible Navier-Stokes

problem, which is based on using divergence-conforming elements for the velocities and

discontinuous elements for the pressure. The local approximation space pair V × Q is

chosen to satisfy the inclusion ∇ · V ⊆ Q. As shown in [14] and motivated by [13],

this method is proved to be energy-stable, optimally convergent, locally conservative and

yields exactly divergence-free velocity approximations. In [21], this method was further

extended to an incompressible magnetohydrodynamics problem. In the first part of this

thesis, this method is reviewed in the context of the analysis of the Stokes problem for

quadrilateral meshes. Specifically, we follow [14] and employ the interior penalty discon-

tinuous Galerkin (IPDG) method [1] to enforce the H1-conformity of the velocity field.

The local approximation space pair for the velocity and pressure is chosen to be the

Raviart-Thomas element and the tensor product polynomial spaces (these are defined in

Section 2.2) respectively, with equal approximation order k. The a priori error estimate

is reviewed under the framework of [37] and is tested by numerical experiments.

The second part is devoted to extending this exactly divergence-free method to non-
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isothermal flow problems. The simulation of non-isothermal flows is receiving more and

more attention in many scientific and engineering branches such as the simulation of the

convection process of the mantle in geophysical studies [29], the simulation of cooling

processes in the device design and that of the polymer melting processes in industrial

practice [26, 30], to name a few. Due to the importance of the model, numerical meth-

ods for this type of problem have been actively developed, see [15, 19, 17, 18] and the

references therein. But none of them share the property of being exactly divergence-free

in contrast to the method under consideration. In the second part of this thesis, we fol-

low the work in [34] and consider the generalised Boussinesq equation, which couples the

steady incompressible Navier-Stokes equation and a convection-diffusion equation through

a nonlinear temperature-dependent viscosity and through a buoyancy term acting in the

opposite direction of the gravity. The nonlinearity is addressed with a fixed-point ap-

proach. We extend the IPDG method from the first part as well as follow the work in

[14] to discretize the linearized incompressible Navier-Stokes equation in each iteration.

For the convection-diffusion equation, the standard conforming method is employed. The

crucial aspect in the theoretical analysis is the construction of a suitable lifting of the tem-

perature boundary data into the computational domain. A more restrictive assumption

has to be made on the size of the solution. In the end of both parts, numerical experiments

are conducted with the deal.II finite element library with the goal of verifying theoretical

error estimates and the exactly divergence-free property.
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Chapter 2

Divergence-Free Elements for the

Stokes Problem

2.1 Introduction

In this chapter we recall and review the exactly divergence-free elements developed in [13]

and [14] for the Stokes problem of incompressible fluid flow:

−νΔu+∇p = f , in Ω (2.1a)

∇ · u = 0, in Ω (2.1b)

u = g, on Γ = ∂Ω, (2.1c)

where Ω is the computational domain in R2 and ν > 0 denotes the kinematic viscosity,

u the velocity, p the pressure and f ∈ (L2(Ω))2 the unit external volumetric force acting

on the fluid. Furthermore the boundary datum g ∈ H1/2(Γ)2 satisfies the compatibility

condition: ∫
Γ
g · n ds = 0. (2.2)

The exact satisfaction of the divergence constraint (2.1b) is a highly desirable property

in the simulation of incompressible flows. It yields energy-stable methods without the

need to modify nonlinear terms in the underlying differential equations as is done in the

context of the incompressible Navier-Stokes equations in [40] and [41]. Not enforcing this

constraint exactly may result in instabilities when simulating the incompressible steady

flow problems, especially when a rotation-free part occurs in the external force vector

or in a nonlinear convection term; see [32]. However, most of the stable finite element

pairs, such as the Taylor-Hood element [24] and the MINI element [2] do not satisfy the

divergence constraint exactly.
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In the context of conforming finite element methods, in 1985, Scott and Vogelius [39]

constructed inf-sup stable and exact divergence-free pairs by using continuous Pk ele-

ments, which are polynomials of maximal degree k, for the approximation of the velocity

and the discontinuous Pk−1 elements for the pressure. This pair is also employed in [32]

as a comparison with the Taylor-Hood element to illustrate the importance of mass con-

servation in incompressible fluid simulation. Since ∇ ·Vh ⊆ Qh, it is obvious to see the

exact divergence-free property. But this pair is proved to be stable on triangular grids

without singular vertices with the polynomial degree satisfying k ≥ 4. For smaller k, the

meshes need to be Hsieh-Clough-Tocher or Powell-Sabin triangulations; see the review pa-

per by Zhang [42]. Recently, Guzmán and Neilan overcame this difficulty and constructed

finite element pairs for the Stokes problem on general triangular meshes that are inf-sup

stable, optimally convergent and divergence-free; see [22] for 2D and [23] for 3D. The

idea is to enrich the H(div; Ω)-conforming elements locally with divergence-free rational

shape-functions. These additional functions will help to enforce the continuity. For ap-

proaches with exactly divergence-free velocity approximation in the isogeometric analysis

we refer to [9] which is based on a B-spline generalization of the Raviart-Thomas elements

and to [4] for the application in the context of elasticity of nearly incompressible materials.

In this chapter, we will use a discontinuous Galerkin approach to exactly enforce the con-

straint (2.1b). This approach for Navier-Stokes equations was first introduced in [13] and

[14] in the context of local discontinuous Galerkin (LDG) methods. The resulting methods

are locally conservative, energy-stable, optimally convergent and exactly divergence-free.

As pointed in [13], we adopt here the interior penalty approach for the viscous term. In

this chapter, we review the formulation and analysis of this method by solving the model

Stokes problem with Raviart-Thomas elements of order k for the velocity approximation

and tensor product polynomials of degree k for the pressure.

2.2 Preliminaries and Notations

In order to formulate and analyse the DG methods, we introduce the following notations

that will be used throughout this thesis.

Let Ω denote a polygonal domain in R2 with Lipschitz boundary Γ = ∂Ω. Suppose

we have a quasi-uniform and regular (see [11]) triangulation Th of the domain Ω into ele-

ments {K}. We denote the elemental diameter by hK and, as usual, define the meshsize

h = maxK∈Th hK . We further denote by EI
h the set of all interior edges of Th and by EB

h

the set of all boundary edges. We set Eh = EI
h ∪ EB

h .
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The standard definitions are used for the Lebesgue and Sobolev spaces Lp(Ω) andW r,p(Ω),

where r ≥ 0 and p ∈ [1,∞], with the norms ‖ · ‖Lp(Ω) and ‖ · ‖W r,p(Ω), respectively. We

write Hr(Ω) instead of W r,2(Ω) and denote the associated seminorms by | · |r,Ω. For

vector-valued function, we denote Hr(Ω) = Hr(Ω)2 and Lr(Ω) = Lr(Ω)2. Moreover, we

will use the vector-valued Hilbert spaces

H(div; Ω) = {v ∈ (L2(Ω))2,∇ · v ∈ L2(Ω)}

with the norm

‖v‖2div,Ω = ‖v‖20,Ω + ‖∇ · v‖20,Ω
On the reference element K̂, for nonnegative integers k and l, the spaces Qk,l(K̂) consist

of polynomials of degree at most k and l in the first and second variables, respectively.

When k = l, the notation Qk(K̂) is adopted instead of Qk,k(K̂). And we use Pk(K) and

Pk(e) to denote the space of polynomials of maximal degree k defined in any element K

and any edge e, respectively. We assume that each element K ∈ Th is the image of the

reference element K̂ = (−1, 1)2 under the invertible affine mapping FK : K̂ → K, with

FK(x̂) = BK x̂+ bK , BK ∈ R2×2, bK ∈ R2.

To define the DG method, we introduce notations associated with traces. Let K+ and

K− be two adjacent elements of Th. Let x be an arbitrary point of the interior edge

e = ∂K+ ∩ ∂K− ∈ EI
h . Let φ be a piecewise smooth scalar-, vector-, or matrix-valued

function and let us denote by φ± the traces of φ on e taken from within the interior of

K±. Then, we define the mean value {{·}} at x ∈ e as

{{φ}} :=
1

2
(φ+ + φ−).

where φ can be any piecewise smooth scalar-, vector- or tensor-valued function. Further,

we define the jumps [[·]] at x ∈ e as

for e ∈ EI
h :

[[q]] := (q+ − q−)nK+, [[v]] := (v+ − v−)⊗ nK+, [[v]] := (v+ − v−) · nK+,

for e ∈ EB
h :

[[q]] := qn, [[v]] := v ⊗ n, [[v]] := v · n,

Here, q is any scalar-valued function, v is a vector-valued one and nK denotes an outward

unit normal vector on the boundary ∂K of element K and (v ⊗ n)ij = vinj .
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We end this section by a summation identity from [3], which will be used to transform

the local formulation the DG methods to the global one:∑
K∈Th

∫
∂K

qv · n ds =

∫
Eh
{{v}} · [[q]] ds+

∫
EI
h

{{q}} [[v]] ds (2.3)

2.3 Divergence-Free Elements for the Stokes Problem

2.3.1 The Stokes Problem

For simplicity and without loss of generality, from this section on, we take ν = 1. We

introduce the solution spaces V and Q which are defined to be

V = H1(Ω), Q = L2
0(Ω) =

{
q ∈ L2(Ω) :

∫
Ω
q dx = 0

}
(2.4)

The weak formulation of (2.1) is to find (u, p) ∈ V ×Q with u|Γ = g such that{
A(u,v) +B(v, q) = (f ,v)

B(u, q) = 0
(2.5)

for all (v, q) ∈ H1
0(Ω)× L2

0(Ω) where the bilinear forms A(·, ·) and B(·, ·) are defined as

A(u,v) =

∫
Ω
∇u : ∇v dx, B(u, p) = −

∫
Ω
p∇ · udx (2.6)

The well-posedness of (2.5) is ensured by the continuity of A(·, ·) and B(·, ·), the coercivity
of A(·, ·), and the following inf-sup condition

inf
0�=q∈L2

0(Ω)
sup

0 �=v∈H1
0 (Ω)d

−
∫
Ω q∇ · v

|v|1‖q‖0
≥ γ > 0 (2.7)

with an inf-sup constant γ only depending on Ω; see [8].

2.3.2 Discrete Spaces

We will use the following discrete spaces when formulating the DG method.

Uh = {v ∈ L2(Ω)2 : v|K ∈ Qk+1(K), K ∈ Th} (2.8)

Vh = {v ∈ H(div; Ω) : v|K ∈ RTk(K), K ∈ Th; v · n = gh on Γ} (2.9)

V0
h = {v ∈ H(div; Ω) : v|K ∈ RTk(K), K ∈ Th; v · n = 0 on Γ} (2.10)

Qh = {q ∈ Q : q ∈ Qk(K), K ∈ Th} (2.11)
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Figure 2.1: The illustration for the distribution of dofs of the RT0 (left) and RT1 (right)
elements

where gh is the L2 projection of g · n into the space Pk(e), or equivalently,∫
e
g · nφds =

∫
e
ghφds, ∀φ ∈ Pk(e), ∀e ∈ EB

h (2.12)

We will see the reason for this definition in following sections, especially in the proofs

of Proposition 2.3.3 (the divergence-free property) and Theorem 2.4.7 (the a priori error

estimate).

On the reference element K̂ = (−1, 1)2, the Raviart-Thomas space of order k (RTk)

is defined (see [8, Section 3.2]) by

RTk(K̂) = Qk+1,k(K̂)×Qk,k+1(K̂)

with the corresponding interpolation operator Π̂k satisfying Π̂ku ∈ RTk and⎧⎪⎨⎪⎩
∫
K̂(Π̂kû− û) · v̂ = 0, ∀v̂ ∈ Qk−1,k(K̂)×Qk,k−1(K̂)

∫
γm

(Π̂kû− û) · n̂ q̂ dŝ = 0, ∀q̂ ∈ Pk(γm), m = 1, ..., 4

(2.13)

where γm, m = 1, ..., 4 are the boundary edges of K̂. In Figure 2.1, we take the RT0(K̂)

and RT1(K̂) elements as examples to illustrate the distribution of the degrees of freedom

(dofs) of the Raviart-Thomas element. The arrows on the boundary represent the dofs

related with the normal component. And the number in the cell is the number of dofs

located inside the cell.

On a general physical element K, it’s easy to check that the affine transformation FK

7



does not preserve the degrees of freedom
∫
γm

u · n q ds, for q ∈ Pk(γm). The Piola trans-

formation, which is defined as

PK û =
1

detBK
BK û ◦ F−1

K , (2.14)

overcomes this difficulty. It was first introduced in the continuum mechanics to map vec-

tors between Eulerian and Lagrangian coordinates while preserving the total flux over

the boundary, i.e.,
∫
∂Ĝ v̂ · n̂ dŝ =

∫
∂G v · n ds, where Ĝ is a reference volume (Lagrangian

coordinate) and G is the deformed one (Eulerian coordinate); see [12].

In general, we have following properties of the Piola transformation.

Lemma 2.3.1 For q ∈ H1(K̂), v̂ ∈ H(d̂iv, K̂) and q := q̂ ◦ F−1
K , v = P(v̂), the Piola

transformation preserves the following quantities:∫
K
v · ∇q dx =

∫
K̂
v̂ · ∇̂q̂ dx̂, (2.15)∫

K
∇ · v q dx =

∫
K̂
∇̂ · v̂q̂ dx̂ (2.16)∫

∂K
v · n q ds =

∫
∂K̂

v̂ · n̂q̂ dŝ (2.17)

Proof: For the affine transformation, the proof is very simple. We add it here for

completeness. An application of the chain rule gives the following result

∇ = B−T
K ∇̂ (2.18)

Then we have ∫
K
v · ∇q dx =

∫
K̂

(
1

detBK
BK û

)
· (B−T

K ∇̂q̂) detBK dx̂

=

∫
K̂
(BK

−1BK) : û⊗ ∇̂q̂ dx̂

=

∫
K̂
û · ∇̂q̂ dx̂.

For the equation (2.16), first, we notice that

∇v = B−T
K ∇̂

(
1

detBK
BK v̂

)
=

1

detBK
B−T

K ∇̂v̂BT
K .

8



Since the trace is invariant under a similarity transformation, we further have

∇ · v =
1

detBK
∇̂ · v̂. (2.19)

Then equation (2.16) follows by a simple substitution.

At last, it is easy to see that equation (2.17) can be obtained by divergence theorem and

equations (2.15) and (2.16).

Remark From the proof above we see that in Piola transformation, the factor 1
detBK

is

introduced to cancel out the scaling factor. And the matrix BK is for balancing the factor

B−T
K appearing in the gradient operator in (2.18).

From the last identity we see that the Piola transformation preserves the normal trances

in H−1/2(∂K̂), which makes it a suitable transformation for the H(div) spaces. Therefore

we can define the RTk(K) space as PK(RTk(K̂)). For more properties of both the RTk

element and the Piola transformation, one can refer to [8].

For nonnegative integer k, l, the tensor product polynomial spaces Qk,l(K) on the physical

element K are defined via the affine mapping FK as

Qk,l(K) := {q : q(x, y) = q̂ ◦ F−1
K (x, y), q̂ ∈ Qk,l(K)} (2.20)

and when k = l, we denote Qk(K) = Qk,k(K). Then it is obvious to get Vh ⊆ Uh and

V0
h ⊆ Uh.

We end this section by an important relationship between RTk(K) and Qk(K), which,

we will see, plays a key role in ensuring the exact divergence-free property.

Proposition 2.3.2 For affine elements K ∈ Th, the local approximation space pair RTk(K)

and Qk(K) satisfies the following inclusion:

∇ ·RTk(K) ⊆ Qk(K) (2.21)

Proof: First on the reference element K, by the definition of RTk(K̂) it is obvious to

see that

∇̂ ·RTk(K̂) = Qk(K̂) (2.22)

In the proof of the last proposition we have obtained

∇ · v =
1

detBK
∇̂ · v̂, (2.23)

9



for v ∈ RTk(K). Due to (2.22), we know that there exists a polynomial q̂ ∈ Qk(K̂) such

that ∇̂ · v̂ = q̂. Then by the definition of Qk(K), we have

∇ · v =
1

detBK
q̂ ◦ F−1

K ∈ Qk(K)

which implies the conclusion.

2.3.3 Formulation of the interior penalty DG Method

We denote (uh, ph) ∈ Vh × Qh to be the numerical approximation. First, we follow the

procedure in [3] and discretize each component of the viscous term with the symmetric

interior penalty method [1]. Then we get the elliptic form

Ah(uh,v) =

∫
Ω
∇huh : ∇hvdx

+
κ0
h

∫
EI
h

[[uh]] : [[v]] ds−
∫
EI
h

[[uh]] : {{∇hv}} ds −
∫
EI
h

[[v]] : {{∇huh}} ds

+
κ0
h

∫
EB
h

uh · v ds −
∫
EB
h

(uh ⊗ n) : ∇hv ds−
∫
EB
h

(v ⊗ n) : ∇huh ds (2.24)

for v in V0
h. The penalty parameter κ0 is chosen sufficiently large but independent of h.

The broken gradient operator ∇h is defined as ∇hv|K = ∇v.

Pressure Gradient

For the pressure gradient, integration by parts over a single element K gives∫
K
v · ∇phdx =

∫
∂K

(nK · v)p̂h ds−
∫
K
(∇ · v)ph ds, v ∈ V0

h (2.25)

The function p̂h is the numerical trace, which, as in [13], is taken to be

p̂h = {{ph}}, for e ∈ EI
h ; p̂h = ph, for e ∈ EB

h . (2.26)

By summing (2.25) over K ∈ Th and employing the key summation formula (2.3), we can

get ∫
Ω
v · ∇hph =

∫
Eh
{{v}} · [[p̂h]] +

∫
EI
h

[[v]] {{p̂h}} −
∫
Ω
(∇h · v)ph dx (2.27)

Since v belongs to V0
h which is H(div) conforming with a zero normal component on the

boundary and the numerical trace p̂h is single-valued on edges, we can simplify (2.27) into∫
Ω
v · ∇hph = −

∫
Ω
ph∇h · v dx (2.28)
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and if we define

Bh(v, q) := −
∫
Ω
(∇ · v)q dx, (2.29)

we have ∫
Ω
v · ∇ph dx = Bh(v, ph) (2.30)

Incompressibility Constraint

By testing the incompressibility constraint (2.1b) against a smooth function v ∈ V0
h over

any element K ∈ Th and by integrating by parts, we have the flux form as below

0 =

∫
K
q∇ · uh dx = −

∫
K
uh · ∇q dx+

∫
∂K

ûp
h · nKq ds (2.31)

where ûp
h is the numerical trace related with the incompressibility constraint. The fol-

lowing proposition states that if we pick the simplest form for ûp
h and with the inclusion

condition (2.21), the approximate velocity is exactly divergence-free with the incompress-

ibility constraint only weakly enforced.

Proposition 2.3.3 Take the numerical traces ûp
h to be

ûp
h = {{uh}} on EI

h, ûp
h = g on EB

h (2.32)

Then

1. For uh ∈ Vh and q ∈ Qh, (2.31) can be rewritten into

−Bh(uh, q) = 0 (2.33)

2. If uh ∈ Vh satisfies (2.33) for all q ∈ Qh, then uh is exactly divergence-free, i.e.

∇ · uh ≡ 0, in Ω (2.34)

Proof: 1) By the summation identity (2.3) we can sum (2.31) over K ∈ Th and get

0 = −
∫
Ω
uh · ∇hq dx+

∫
Eh
{{ûp

h}} · [[q]] +
∫
EI
h

[[
ûp
h

]]
{{q}}

= −
∫
Ω
u · ∇hq dx+

∫
Eh

ûp
h · [[q]] ds (2.35)
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Then a second integration by parts of the first term gives

0 = −
(
−
∫
Ω
q∇ · uh dx+

∫
Eh
{{uh}} · [[q]] +

∫
EI
h

[[uh]] {{q}}
)

+

∫
Γ
ûp · [[q]] ds (2.36)

=

∫
Ω
q∇ · uh −

∫
Eh

ûp · [[q]]−
∫
EI
h

0 · {{q}}+
∫
Eh

ûp
h · [[q]]

= −Bh(uh, q) (2.37)

2) The inclusion condition (2.21), the divergence theorem, the essential boundary condition

in Vh and the compatibility condition (2.2) give us

∇ · uh|K ∈ Qk(K) (2.38)∫
Ω
∇ · uh dx =

∫
Γ
uh · n ds =

∫
Γ
g · n ds = 0. (2.39)

These imply that ∇h · uh ∈ Qh, which combined with the fact that

−Bh(uh, q) =

∫
Ω
q∇h · uh dx = 0, ∀q ∈ Qh

implies

∇ · uh ≡ 0

The interior penalty DG method for the Stokes problem now consists in finding (uh, ph) ∈
Vh ×Qh which satisfies

Ah(uh,v) +Bh(v, ph) = Fh(v) (2.40a)

−Bh(uh, q) = 0 (2.40b)

for all (v, q) ∈ V0
h ×Qh and the linear forms are defined as

Ah(u,v) =

∫
Ω
∇hu : ∇hvdx

+
κ0
h

∫
EI
h

[[u]] : [[v]]−
∫
EI
h

[[u]] : {{∇hv}} −
∫
EI
h

[[v]] : {{∇hu}}

+
κ0
h

∫
EB
h

u · v −
∫
EB
h

(u⊗ n) : ∇hv −
∫
EB
h

(v ⊗ n) : ∇hu (2.41)

Bh(v, q) = −
∫
Ω
q∇ · v dx (2.42)

Fh(uh) =

∫
Ω
f · vdx −

∫
EB
h

(g ⊗ n) : ∇hv ds+
κ0
h

∫
EB
h

g · vds (2.43)
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2.4 Theoretical Analysis

We first introduce the full space

U(h) := H1(Ω)2 +Uh (2.44)

endowed with the DG norm

‖v‖21,h :=
∑
K∈Th

‖∇v‖20,K +
∑
e∈Eh

∫
e
κ0h

−1|[[v]]|2 ds. (2.45)

where κ0 is the penalty parameter independent of h. We also introduce the following

subsets of U(h):

V0(h) := H1(Ω)2 +V0
h (2.46)

V(h) := H1(Ω)2 +Vh (2.47)

To facilitate the analysis of the method we need to introduce an auxiliary space Σh defined

by

ΣK := {τ ∈ L2(Ω)2×2 : τ ∈ Qk+1(K)2×2, K ∈ Th} (2.48)

Obviously, we have ∇Uh ⊆ Σh.

In [3], lifting operators, which lift the edge terms into the cell, are introduced in or-

der to cast all the existing DG methods for elliptic problems into a unified framework. In

[37], these operators are further applied to build a unified framework for analysing several

DG methods for the saddle-point problems. The idea is to recast the DG methods into a

perturbed form with the help of the lifting operators and then derive the abstract error

estimates which is a variant of the Strang’s lemma. The estimates of jump terms over the

edges are converted to those of lifting operators.

Here, we follow [37], for e ∈ Eh we introduce the lifting operator Le : V(h) → Σh

defined by ∫
Ω
Le(v) : τ dx =

∫
e
[[v]] : {{τ}} ds, ∀τ ∈ Σh. (2.49)

Globally, we define L : V(h) → Σh as

L :=
∑
e∈Eh

Le
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Then, we define a perturbed form Ãh(·, ·) basing on the bilinear form Ah(·, ·) in (2.41):

for u, v ∈ V(h), V0(h)

Ãh(u,v) :=

∫
Ω
[∇hu : ∇hv − L(u) : ∇hv − L(v) : ∇hu] dx

+ κ

∫
Eh

[[u]] : [[v]] ds. (2.50)

We notice that when restricted to the discrete space Vh, we have

Ãh(u,v) = Ah(u,v), ∀u, v ∈ Vh, V
0
h.

Hence, using the perturbed form does not change the discrete variational problem (2.40).

2.4.1 Stability Results

Let’s first review some useful stability results of the bilinear forms, upon which the proof

of the well-posedness and the analysis of the a priori error is based. The first result is

related to the boundedness and coercivity of the bilinear form Ah(·, ·).

Proposition 2.4.1 For the perturbed form Ãh(·, ·), there exist constant c1 and c2 such

that

|Ãh(u,v)| ≤ c1‖u‖1,h‖v‖1,h, ∀u ∈ V(h), ∀v ∈ V0
h

Ãh(v,v) ≥ c2‖v‖21,h, ∀u ∈ V0
h

Proof: Since V0
h, Vh ⊆ Uh = {v ∈ L2(Ω)2 : v|K ∈ Qk+1(K),K ∈ Th}, this proposition

is a direct consequence of [37, Lemma 7.5, Lemma 7.6].

The next proposition is about the boundedness of Bh(v, q).

Proposition 2.4.2 The form Bh is continuous

|Bh(v, q)| ≤
√
2‖v‖1,h‖q‖0 ∀(v, q) ∈ Vh

0 × L2(Ω) (2.51)

and the velocity-pressure pair V0
h ×Qh is inf-sup stable

inf
q∈Qh

sup
v∈V0

h

Bh(v, q)

‖v‖1,h‖q‖0
≥ β > 0 (2.52)

for a constant β independent of the mesh size.
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Proof: For the continuity, by the definition of Bh(·, ·) and ∇h and the Cauchy-Schwarz

inequality, we have

|Bh(v, q)| =
∣∣∣∣∫

Ω
∇h · v q dx

∣∣∣∣ =
∣∣∣∣∣∣
∑
K∈Th

∫
K
∇ · v q

∣∣∣∣∣∣
≤
∑
K∈Th

‖∇ · v‖0,K‖q‖0,K

≤

⎛⎝∑
K∈Th

‖∇ · v‖20,K

⎞⎠ 1
2
⎛⎝∑

K∈Th

‖q‖20,K

⎞⎠ 1
2

≤

⎛⎝∑
K∈Th

∫
K
2

d∑
i=1

(∂ivi)
2

⎞⎠ 1
2

‖q‖0

≤
√
2

⎛⎝∑
K∈Th

|∇v|21,K

⎞⎠ 1
2

‖q‖0

≤
√
2‖v‖1,h‖q‖0

The proof of the inf-sup condition can be found in [37, Theorem 6.12].

It is easy to verify that the stability results in this section imply the unique solvabil-

ity of the approximation problem (2.40).

2.4.2 Error Estimates

The a priori error estimate is based on an abstract error estimate and some standard

approximation results. We make the regularity assumption that the exact solution (u, p)

of the Stokes system (2.1) satisfies

(u, p) ∈ Hs+1(Th)2 ×Hs(Th), s ≥ 1 (2.53)

and u|Γ = g where Hr(Th), for r > 0, is the broken Sobolev space with the definition

Hr(Th) = {v ∈ L2(Ω) : v|K ∈ Hr(K), K ∈ Th} (2.54)

Abstract Error Estimate

We follow [37] and [13] and first present the abstract error estimate in terms of the ex-

pression

Rh(u, p;v) := sup
0 �=v∈V0

h

|Rh(u, p;v)|
‖v‖1,h

(2.55)
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where the residual Rh(u, p;v) is defined as

Rh(u, p;v) = Ãh(u,v) +Bh(v, p) − Fh(v) (2.56)

for v ∈ V0
h.

We need to emphasize that, due to the introduction of the perturbed form Ãh, we can not

conclude that Rh(u, p;v) = 0 in general. The reason for this is that the term L(v) : ∇hu

is inconsistent since ∇hu �∈ Σh. In the next proposition, we will see that the residual is

actually optimally convergent.

Proposition 2.4.3 Assume that the exact solution (u, p) of the Stokes system (2.1) sat-

isfy (2.53). Let Q and Q be the L2 projections onto Σh and Qh, respectively. Then the

residual in Rh(u, p;v) is given by

Rh(u, p;v) =

∫
Eh
{{∇u−Q(∇u)}} : [[v]] ds, ∀v ∈ V0

h (2.57)

Moreover, we have that

Rh(u, p)
2 ≤ Ch2min(s,k)‖u‖2s+1 (2.58)

with a constant C > 0 independent of h.

Proof: The proof can be found in [37, Proposition 8.1].

In the next proposition we present the abstract error estimate which is a variant of Strang’s

lemma.

Proposition 2.4.4 Let (u, p) ∈ V × Q be the exact solution of the Stokes problem and

(uh, ph) ∈ Vh ×Qh the approximate solution of the DG problem (2.40). We have

‖u− uh‖1,h ≤ Cu

[
inf

v∈Vh

‖u− v‖1,h + inf
q∈Qh

‖p− q‖0 +Rh(u, p)

]
(2.59)

‖p − ph‖0 ≤ Cp

[
inf
q∈Qh

‖p− q‖0 + ‖u− uh‖1,h +Rh(u, p)

]
(2.60)

where Cu, Cp > 0 only depend on the stability parameters.

Proof: The proof can be found in [37, Proposition 4.1] and is based on the stability

results of the bilinear forms Ah(·, ·) and Bh(·, ·).

To prove the a priori estimate we need the following standard results:
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Lemma 2.4.5 [8, Proposition 3.6] Let K be an affine element and W (K) = {v ∈
Lr(K))|∇ ·v ∈ L2(Ω)}, r > 2. The interpolant operator mapping ρK : W (K) → RTk(K)

is defined to be ρKv = Π̂kv̂ ◦P−1
K where v̂ = v ◦PK . There exists a constant c depending

only on k and on the shape of K, such that, for any v ∈ Hs+1(K), we have

‖v − ρKv‖0,K ≤ ch
min{s,k}+1
K |v|s+1,K (2.61)

‖v − ρKv‖1,K ≤ ch
min{s,k}
K |v|s+1,K (2.62)

The last lemma will help us deal with jump terms in the definition of the ‖ · ‖1,h, as we

will see in the proof of Theorem 2.4.7.

Lemma 2.4.6 [36, Lemma 1.2.14] For any function u ∈ H1(Th), we have

‖u‖0,∂K ≤ C(h
1/2
K |u|1,K + h

−1/2
K ‖u‖0,K) (2.63)

where K is any element in Th and constant C > 0 independent of meshsize.

Then based on this we are ready to state the apriori error estimate result

Theorem 2.4.7 (a priori error estimate) Let (u, p) be the exact solution of the Stokes

problem satisfying the regularity assumption (2.53) and (uh, ph) ∈ Vh × Qh the finite

element approximation. We have the following error estimates

‖u− uh‖h ≤ Chmin{s,k}‖u‖s+1 (2.64)

‖p − ph‖0 ≤ Chmin{s,k}‖u‖s+1 (2.65)

where the constant C > 0 independent of h.

Proof: By the standard approximation estimates for the L2-projection (see [20, Ap-

pendix A]) and Proposition 2.4.3 we have

inf
q∈Qh

‖p− q‖0 ≤ Chmin{s,k+1}‖q‖s (2.66)

Rh(u, p) ≤ Chmin{s,k}‖u‖s+1 (2.67)

According to the abstract error estimates (2.59) and (2.60), it then remains to bound the

infimum infv∈Vh
‖u−v‖1,h. We take v = Πu, whereΠ is the global interpolation operator

mapping from H(div,Ω) ∩ (Lr(Ω))d r > 2, into RTk(Ω,Th) := {v ∈ H(div,Ω), v|K ∈
RTk(K)} by setting

Πu|K = ρKu
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where ρK is the local interpolant operator defined in Lemma 2.4.5. By (2.12), the defi-

nition of the Raviart-Thomas interpolation operator Π̂ in (2.13) and the property of the

Piola transformation (2.17), it is not hard to see that Πu ∈ Vh.

If we set ξu = u − Πu, then by Lemma 2.4.5, Cauchy-Schwarz inequality and by ap-

plying Lemma 2.4.6 to each component we can get

‖ξu‖21,h =
∑
K∈Th

|ξu|21,K +

∫
E
κ| [[ξu ⊗ n]] |2 ds

≤
∑
K∈Th

‖ξu‖21,K +
∑
K∈Th

∫
∂K

κ0h
−1
K |ξu ⊗ n|2 ds

≤ Ch2min{s,k}‖u‖2s+1 +
∑
K∈Th

κ0h
−1
K ‖ξu‖20,∂K

≤ Ch2min{s,k}‖u‖2s+1 +
∑
K∈Th

C(hK |ξu|21,K + h−1
K ‖ξu‖20,K)

≤ Ch2min{s,k}‖u‖2s+1 +
∑
K∈Th

Ch
2min{s,k}+1
K ‖u‖2s+1,K

≤ Ch2min{s,k}‖u‖2s+1

which implies

inf
v∈Vh

‖u− v‖h ≤ ‖eξ‖h ≤ Chs‖u‖s+1 (2.68)

Then by combining the abstract error estimates and the approximation results (2.67),

(2.66) we can get the a priori error estimates (2.64),(2.65).

2.5 Numerical Experiment

In this section numerical experiments are conducted with the deal.II finite element library

[5]. We test the method with the Kovasznay Flow [28]; see also the numerical experiments

in [13] and [14]. The computational domain is taken to be

Ω =

[
−1

2
,
3

2

]
× [0, 2]

and is covered by a uniform rectangular mesh. At level l, the meshsize is h = 2−l. We

prescribe the analytical solution

u1(x, y) = 1− eλx cos(2πy),

u2(x, y) =
λ

2π
eλx sin(2πy).

p(x, y) = −1

2
e2λx − p̄
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where

λ =
−8π2

ν−1 +
√
ν−2 + 16π2

The viscosity ν is taken to be 1 and the corresponding right hand side is

f =

⎛⎜⎝ (λ2 − 4π2)eλx cos(2πy)− λe2λx

(2πλ− λ3

2π )e
λx sin(2πy)

⎞⎟⎠
In this experiment the penalty parameter is chosen to be

κ0 = 2k(k + 3)

As emphasized in [14], the normal component of the inhomogeneous Dirichlet boundary

condition is interpolated in a strong way on a set of quadrature points on which the RTk

moments are integrated exactly. The L2-norm error for the pressure and the velocity as

k cycle ‖ep‖0 ‖eu‖0 ‖eu‖1,h ‖∇ · uh‖∞

k=1

4 4.543e-01 1.08 8.733e-03 1.99 1.631e+00 1.64 1.705e-13
5 1.928e-01 1.24 2.227e-03 1.97 6.964e-01 1.23 5.116e-13
6 7.071e-02 1.45 5.660e-04 1.98 3.254e-01 1.10 1.020e-12
7 2.339e-02 1.60 1.431e-04 1.98 1.571e-01 1.05 3.197e-12

k=2

1 1.945e+00 - 6.433e-02 - 6.954e+00 - 5.826e-13
2 3.307e-01 2.56 7.889e-03 3.03 1.225e+00 2.50 1.070e-12
3 4.675e-02 2.82 9.562e-04 3.04 3.099e-01 1.98 2.727e-12
4 6.343e-03 2.88 1.166e-04 3.04 7.919e-02 1.97 5.177e-12
5 8.816e-04 2.85 1.436e-05 3.02 2.005e-02 1.98 1.013e-11
6 1.290e-04 2.77 1.780e-06 3.01 5.047e-03 1.99 3.980e-11

k=3

1 3.627e-01 - 5.738e-03 - 4.281e-01 - 1.495e-12
2 3.243e-02 3.48 3.689e-04 3.96 4.260e-02 3.33 4.182e-12
3 2.424e-03 3.74 2.318e-05 3.99 4.698e-03 3.18 7.731e-12
4 1.799e-04 3.75 1.450e-06 4.00 5.471e-04 3.10 2.009e-11
5 1.421e-05 3.66 9.070e-08 4.00 6.481e-05 3.08 5.423e-11

k=4

1 5.201e-02 - 3.950e-04 - 3.961e-02 - 2.087e-12
2 2.312e-03 4.49 1.219e-05 5.02 2.846e-03 3.80 5.684e-12
3 8.393e-05 4.78 3.782e-07 5.01 1.824e-04 3.96 1.695e-11
4 2.943e-06 4.83 1.177e-08 5.01 1.143e-05 4.00 2.846e-11
5 1.068e-07 4.78 3.670e-10 5.00 7.144e-07 4.00 6.732e-11

Table 2.1: Numerical results for Kovasznay flow (ν = 1)

well as the error in DG-norm for the velocity are listed in Table 2.5.1 for polynomials of
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Figure 2.2: The convergent plots for the numerical errors
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degree k = 1, ..., 4. The convergence plots are presented in Figure 2.2. We observe optimal

orders of convergence for the error of the velocity in both norms, while for the pressure the

orders of convergence in the L2-norm are much better than expected in Theorem 2.4.7.

This is also observed in [14]. The reason for this is that the abstract error estimate for the

pressure (2.60) is bounded by the error of the velocity in ‖ · ‖1,h norm, which is of order

O(hk). However, in L2-norm, the optimal approximation order of the space Qk should

be O(hk+1). Therefore, an order between O(hk) and O(hk+1) is observed. Moreover, the

divergence of the approximate velocity in the L∞-norm is evaluated at a set of (k + 1)2

quadrature points in each element K. We see from the last column in the Table 2.5.1 that

the approximate velocity is exactly divergence-free.
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Chapter 3

Non-isothermal Problem

3.1 Introduction

When a fluid is subjected to a temperature change, its material properties, such as density

and viscosity, changes accordingly. If these changes are large enough to have a substantial

influence on the flow field, the flow is considered to be non-isothermal. The numerical

simulation of the non-isothermal incompressible flow has received much attention recently

in both natural sciences and engineering branches. Relevant industrial applications in-

clude polymer processing, cooling processes, the design of heat exchangers and chemical

reactors; see e.g. [30], [26] and [35]. Moreover, in geophysics, the convection processes in

the Earth’s mantle are well described by incompressible fluid flow driven by temperature-

induced small density differences; see [29]. The numerical simulation of these processes is

a key piece in understanding the dynamics, composition, history and interaction between

the mantle and the lithosphere.

In the last decade many finite element methods have been developed and analysed for

such problems. In [15], a mixed finite element method is developed for the non-isothermal

Stokes-Oldroyd equations. For the same problem, a dual mixed finite element is con-

structed and analysed in [19], which has properties analogous to finite volume methods,

namely, local conservation of momentum and mass. In [18] a conforming finite element

method is presented and analysed for approximating time-dependent non-isothermal in-

compressible flow problems. The time is disretized by the backward Euler method. But

none of these methods have the exactly divergence-free property as our approach does.

In this chapter, we first illustrate how the non-isothermal effects are introduced into

the equations by reviewing two classical physical models. Then we review the work of

[34] which extends the exactly divergence-free element developed in [13] and [14] to a

generalized Boussinesq system. The model problem couples the stationary incompressible
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Navier-Stokes equation and a convection-diffusion equation. The coupling is through a

temperature-dependent viscosity, which is also nonlinear, and through a buoyancy term

acting in the opposite direction of gravity.

We extend the IPDG method described in Chapter 1 to this coupled system and by

doing so, the exactly divergence-free constraint is preserved on the discrete level. The

formulation of the numerical method and the a priori error estimate are first reviewed.

Then numerical examples are implemented to verify the theoretical results.

3.2 Physical Models

In this section, we briefly discuss the physical approximations that introduce the non-

isothermal effects into incompressible flow models. The first one is the constitute relation

of the Oldroyd-B type for modelling the viscoelastic problems. The second one is the

Boussinesq approximation for linearizing buoyancy effect when considering the buoyancy

driven flows. These two modelling techniques are introduced separately in the context of

two different models.

3.2.1 Model I: Non-Isothermal Stokes-Oldroyd System

The viscoelastic problem occurs in a variety of applications, including polymer process-

ing. The complexity of the governing equations makes both the mathematical analysis

and the associated numerical methods especially difficult. The current effort is to model

viscoelastic flows as the solution of a modified Stokes problem; see [6, 10]. In [15], the

non-isothermal Stokes problem is modified in the same way as in [6].

We consider a fluid flowing in a bounded and connected domain Ω ∈ R2, whose boundary

is denoted by Γ and we assume the stationary and creeping flow hypothesis. Let the

velocity be denoted by u, pressure by p, extra stress tensor by σ, rate of strain tensor by

D(u) = 1
2 (∇u + ∇uT ) and temperature by T . In the Oldroyd-B model the extra stress

tensor is split into the Newtonian solvent part σs = αsD(u) and the non-Newtonian

polymer part σp, i.e.

σ = σs + σp.

σp is given by

σp +We
∂aσp

∂t
= 2αD(u); a ∈ [−1, 1], α ∈ (0, 1) (3.1)

where We is the Weissenberg number and the derivative
∂aσp

∂t is defined by

∂τ

∂t
= τ t + (u · ∇)τ + ga(τ ,∇u), a ∈ [−1, 1] (3.2)
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and

ga(τ ,∇u) = σω(u)− ω(u)σ − a(D(u)σ + σD(u)).

This is a variation of the upper-convected time derivative (see [27]), which is the material

derivative of the tensor property in the coordinate system rotating and stretching with

the fluid.

In the limit case We = 0 we can get the Oldroyd-Stokes problem

−∇ · [(2αp + 2εαs)D(u)] +∇p = f1 in Ω

∇ · u = 0 in Ω

u = g1 on Γ

(3.3)

where αp and αs are the polymetric viscosity and the solvent one respectively and ε > 0

is a small parameter that makes the effect of αs much smaller than that of αp.

Many flows of interest in polymetric melt processing are non-isothermal. We follow

the derivation in [15] for the non-isothermal Oldroyd-Stokes system. By introducing

temperature-dependent coefficients αp(T ) and αs(T ) and by combining the Oldroyd-Stokes

system (3.3) and a convection-diffusion equation for the temperature, we can obtain

−∇ · [(2αp(T ) + 2εαs(T )D(u)] +∇p = f1 in Ω

∇ · u = 0 in Ω

−ηΔT + u · ∇T = f2 in Ω

u = g1 on Γ

T = g2 on Γ

(3.4)

where η is the thermal conductivity coefficient, f1 is the body force, f2 the heat source.

The dependence of the polymer and solvent viscosity on the temperature is given by the

Arrhenius equations (see [25]):

αp(T ) = a1 exp

(
b1
T

)
, αs(T ) = a2 exp

(
b2
T

)
, b1 �= 0. (3.5)

The constants ai, bi, i = 1, 2 are chosen such that

0 < αs ≤ 1, 0 < αs < 1
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3.2.2 Model II: Buoyancy Driven Flows

If the fluid density varies with temperature, a flow can be induced in the presence of gravity.

This is known as buoyancy-driven flow. Many flow phenomena are driven by buoyancy,

and such flows are especially important in the modelling of the convection processes in the

Earth’s mantle; see [38] . When the viscous friction forces in the fluids are large compared

to buoyancy forces, for example when simulating the mantle, the motion of the fluid is

slow and inertial terms can be neglected; see [29] and the book [38]. Combining this with

the steady-state assumption, we obtain governing equations in the following form

−∇ · (2αD(u)) +∇p = g ρ(T ) in Ω

∇ · u = 0 in Ω

−∇ · η∇T + u · ∇T = f2 in Ω

u = g1 on Γ

T = g2 on Γ

(3.6)

where α is the viscosity, g the gravity acceleration, ρ(T ) the temperature-dependent den-

sity. Other notations are the same as those in last section.

The standard assumption made to simplify the analysis of the system above is the Boussi-

nesq approximation, in which the density differences are neglected, except in the buoyancy

term, where they appear in terms multiplied by g. If all accelerations involved in the flow

are small compared to g, the dependence of the density on T in the buoyancy term can

be assumed to be linear:

ρ(T )− ρ0 = −ρ0β(T − T0).

Here, T0 is a reference temperature, e.g., the temperature on a boundary, and β is the

coefficient of expansion for the fluid. The corresponding buoyancy force is then given as

fB = −ρ0gβ(T − T0).

Then the nonlinear equation of the conservation of momentum can be linearized into

−∇ · (2αD(u)) +∇p = gρ0(1− β(T − T0))− ρ0gβT

If we express the gravity in the potential form g = −∇φ and introduce the effective

pressure peff = p+ φρ0(1− β(T − T0)), the equation above can be further rewritten as

−∇ · (2αD(u)) +∇peff = −ρ0gβT.
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3.3 Model Problem

In this section, to ease the mathematical analysis, we consider the following generalized

model problem, which captures all the non-isothermal effects, with zero heat source and

homogeneous velocity field on the boundary:

−∇ · (α(T )∇u) + u · ∇u+∇p = jT in Ω (3.7a)

∇ · u = 0 in Ω (3.7b)

−∇ · (η(T )∇T ) + u · ∇T = 0 in Ω (3.7c)

u = 0 on Γ (3.7d)

T = gT on Γ (3.7e)

where Ω is the computational domain in R2 and T is the temperature, u the velocity, p

the pressure, j ∈ L2(Ω) is a constant vector in the opposite direction of the gravity accel-

eration. The boundary datum gT is assumed to be in C(Γ̄). For the rest of this chapter,

we will use the same notations for the mesh, function spaces and numerical traces as those

defined in Chapter 1.

The temperature-dependent parameters α(T ) and η(T ) denote the effective viscosity and

heat conductivity, respectively. We assume they are Lipschitz continuous and bounded,

that is

|α(T1)− α(T2)| ≤ Lα|T1 − T2|, |η(T1)− η(T2)| ≤ Lη|T1 − T2| (3.8)

for all values of T1 and T2, with the Lipschitz constants Lα, Lη > 0. And there exist

constants α1, α2, η1, η2 > 0, such that

0 < α1 ≤ α(T ) ≤ α2, 0 < η1 ≤ η(T ) ≤ η2 (3.9)

for all T .

The variational formulation of the problem (3.7) is to find (u, p, T ) ∈ H1(Ω)2 × L2
0(Ω) ×

H1(Ω) with T |Γ = gT , such that

A(u,v;T ) +B(v, p) +ON (u,v;u) −D(T,v) = 0 (3.10a)

−B(u, q) = 0 (3.10b)

C(T, S;T ) +OH(T, S;u) = 0 (3.10c)
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for all (v, q, S) ∈ H1
0 (Ω)

2 × L2
0(Ω)×H1

0 (Ω), and where the bilinear and linear forms are

A(u,v;O) =

∫
Ω
α(O)∇u : vdx B(v, q) =

∫
Ω
(∇h · u)q dx

ON (u,v;w) =

∫
Ω
(w · ∇)u · v dx OH(T, S;u) =

∫
Ω
(u · ∇T )S dx

D(T,v) =

∫
Ω
T j · v dx C(T, S;O) =

∫
Ω
η(O)∇T · ∇S dx

3.3.1 Stability Results

First, let us review some stability results of the forms appearing in (3.10) from [34].

Boundedness and Continuity

Due to the assumption (3.9), we have the following continuity properties:

|A(u,v; ·) ≤ α2‖u‖1,Ω‖v‖1,Ω, u,v ∈ H1(Ω)2, (3.11)

|C(T, S; ·)| ≤ η2‖T‖1,Ω‖S‖1,Ω, T, S ∈ H1(Ω), (3.12)

|B(v, q)| ≤ CB‖v‖1,Ω‖q‖0,Ω, v ∈ H1(Ω)2, q ∈ L2(Ω). (3.13)

Moreover, from the Lipschitz continuity of α and η in (3.8) and Hölder’s inequality, the

following Lipschitz continuity properties hold for the form A and C: for T1, T2 ∈ H1(Ω),

u ∈ W 1,∞(Ω), T ∈ W 1,∞(Ω), we have

|A(u,v;T1)−A(u,v;T2)| ≤ LA‖u‖W1,∞(Ω)‖T1 − T2‖1,Ω‖v‖1,Ω, v ∈ H1(Ω) (3.14)

|C(T, S;T1)− C(T, S;T2)| ≤ LT ‖T‖W 1,∞(Ω)‖T1 − T2‖1,Ω‖S‖1,Ω, S ∈ H1(Ω) (3.15)

Due to Hölder’s inequality and the standard Sobolev embeddings, the trilinear forms ON

and OH have the following bounds:

|ON (u,v;w)| ≤ CN‖w‖1,Ω‖u‖1,Ω‖v‖1,Ω, w,u,v ∈ H1(Ω) (3.16)

|OH(T, S;w)| ≤ CH‖w‖1,Ω‖T‖1,Ω‖S‖1,Ω, w ∈ H1(Ω), T, S ∈ H1(Ω) (3.17)

Also, we have the bound on D

|D(T,v)| ≤ CD‖j‖0,Ω‖T‖1,Ω‖v‖1,Ω, θ ∈ H1(Ω), v ∈ H1(Ω) (3.18)

Coercivity and Inf-sup condition

Next, we review the coercivity of the linear forms. By the Poincaré inequality and the

bounds in (3.9), we have

A(u,u; ·) ≥ αA‖u‖21,Ω, v ∈ H1
0(Ω), (3.19)

C(T, T ; ·) ≥ αC‖T‖1,Ω, T ∈ H1
0 (Ω) (3.20)
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To discuss the coercivity of the forms OH and ON , we need to introduce the kernel

X = {v ∈ H1(Ω) : B(v, q) = 0, ∀q ∈ L2
0(Ω)} = {v ∈ H1(Ω) : ∇ · v ≡ 0} (3.21)

Then integration by parts gives us,

ON (u,u;w) = 0, w ∈ X, v ∈ H1(Ω) (3.22)

OH(T, T ;w) = 0, w ∈ X, T ∈ H1(Ω) (3.23)

Finally the bilinear form B satisfies the continuous inf-sup condition

sup
v∈H1

0(Ω)\{0}

B(v, q)

‖v‖1,Ω
≥ β‖q‖0,Ω, ∀q ∈ L2

0(Ω) (3.24)

with an inf-sup constant β > 0 only depending on Ω; see [20].

3.3.2 Unique Solvability

In this section, we review the results related to the existence and uniqueness of the solution

to the system (3.7). To that end, it’s enough to study the reduced problem on the kernel

X which is defined in (3.21). The reduced problem consists of finding (u, p) ∈ V×H1(Ω)

such that T |Γ = gT and

A(u,v;T ) +ON (u,v;u) −D(T,v) = 0, (3.25a)

C(T, S;T ) +OH(T, S;u) = 0 (3.25b)

for all (v, T ) ∈ X×H1
0 (Ω).

First, we have the following equivalence property; see [20], which justifies our consid-

eration of the reduced problem.

Lemma 3.3.1 If (u, p, T ) ∈ H1(Ω) × L2
0Ω ×H1(Ω) is a solution of (3.10), then u ∈ X

and (u, T ) is also a solution of (3.25). Conversely, if (u, T ) ∈ X×H1(Ω) is a solution of

(3.25), then there exists a unique pressure p ∈ L2
0(Ω) such that (u, p, T ) is a solution of

(3.28).

The next theorem ensures the solvability of the reduced problem (3.25).

Theorem 3.3.2 (Solvability) Assume (3.9) and (3.8). Then for any j ∈ L2(Ω), there

exists a lifting T1 ∈ H1(Ω) of g1 ∈ H1/2(Γ) satisfying T1|Γ = g1, such that the prob-

lem (3.10) has a solution (u, T ) ∈ H1
0(Ω) × H1(Ω), where T = T1 + T0 and T0 ∈ H1

0 .

Furthermore, there exist constants Cu and CH depending only on ‖j‖0,Ω and the stability

constants αA, αC , α2, η2, CD, such that

‖u‖1,Ω ≤ Cu‖T1‖1,Ω ‖T‖1,Ω ≤ CH‖T1‖1,Ω (3.26)
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Under additional smoothness and smallness assumptions on the solutions, the following

uniqueness theorem holds.

Theorem 3.3.3 Let (u, T ) ∈ [X × W1,∞] be a solution to problem (3.25), and assume

there exists a sufficiently small constant 0 < M < min{ αA
CSC∞+K , αC

Lα+K }, where K =

(CTC∞ + Lα)/2, such that

max{‖j‖0,Ω, ‖u‖W1,∞‖T‖W 1,∞} < M. (3.27)

Then, the solution is unique.

Proof: The proof can be found in [34, Theorem 2.3], which is motivated by a similar

argument in [6] for Stokes-Oldroyd problems.

3.4 Discrete Problem

To formulate the discontinuous Galerkin method, we first introduce the following discrete

spaces

Vh := {v ∈ H(div; Ω) : v|K ∈ RTk(K), ∀K ∈ Th, v · n = 0, on Γ}
Qh := {q ∈ L2

0(Ω) : q|K ∈ Qk(K), ∀K ∈ Th}
Eh := {S ∈ C0(Ω̄) : S|K ∈ Qk(K), ∀K ∈ Th; S = gTh , on Γ}
E0

h := {S ∈ C0(Ω̄) : S|K ∈ Qk(K), ∀K ∈ Th; S = 0, on Γ}
Λh := {ξ ∈ C(Γ̄) : ξ|e ∈ Qk(e), e ∈ EB

h }

where gTh ∈ Λh is the approximate boundary datum which will be defined in Section ??.

We have used the same element pair for the approximation of the velocity and the pres-

sure. And the temperature is approximated with the standard conforming method.

By following the discretization of the viscous term, pressure gradient and the incom-

pressibility constraint in Chapter 1 and by using the standard upwind form in [31] for the

nonlinear convection term defined by

ON
h (u,v;w) =

∑
K∈Th

∫
K
(w · ∇)u · v dx+

∑
K∈Th

∫
∂K\∂Ω

1

2
(w · nK − |w · nK |)(ue − u) · v ds

and conforming discretization for the convection-diffusion equation (3.10c), we define the

DG method as: find (uh, ph, Th) ∈ Vh ×Qh ×Eh, such that

Ah(uh,v;Th) +ON
h (uh,v;uh) +Bh(v, ph)−Dh(Th,v) = 0 (3.28a)

−Bh(uh, q) = 0 (3.28b)

C(Th, S;Th) +OH(Th, S;uh) = 0 (3.28c)
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for all (v, q, S) ∈ V0
h ×Qh × E0

h, where

Ah(u,v;O) =

∫
Ω
α(O)∇hu : ∇hv dx−

∫
Ω
(∇h · v)p dx

+
κ0
h

∫
EI
h

α(T )[[u]] : [[v]] ds

−
∫
EI
h

α(O)[[u]] : {{∇hv}} ds −
∫
EI
h

α(O)[[v]] : {{∇hu}} ds

+
κ0
h

∫
EB
h

α(O)u · v ds

−
∫
EB
h

α(O)(u ⊗ n) : ∇hv ds−
∫
EB

α(O)(v ⊗ n) : ∇hu ds (3.29)

ON
h (u,v;w) =

∑
K∈Th

∫
K
(w · ∇)u · v dx

+
∑
K∈Th

∫
∂K\∂Ω

1

2
(w · nK − |w · nK |)(ue − u) · v ds

−
∫
∂Ω

1

2
(w · nK − |w · nK |)(u · v) ds (3.30)

Bh(v, q) =

∫
Ω
(∇h · u)q dx (3.31)

Dh(v, T ) =

∫
Ω
T j · v dx (3.32)

C(T, S;O) =

∫
Ω
η(O)∇T · ∇S dx (3.33)

OH(T, S;w) =

∫
Ω
(w · ∇T )S dx (3.34)

For the boundary datum gT , we assume

gT ∈ C(Γ̄). (3.35)

For continuous function in C(Ω̄), we can define the Larange interpolation operator I :

C(Ω̄) → Eh. Its restriction to the boundary nodes is denoted by IΓ : C(Γ̄) → Λh. We

take the discrete boundary datum to be gTh = IΓgT .

Since we have employed the same approximation spaces for the velocity and pressure

and the same incompressibility form Bh(·, ·) as in Chapter 1, we should expect the exact

satisfaction of the incompressibility constraint ∇ · uh ≡ 0 to be preserved. Actually, we

have the following proposition:
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Proposition 3.4.1 The approximate velocity uh ∈ Vh obtained by (3.28) is exactly

divergence-free, i.e., it satisfies

∇ · uh ≡ 0 (3.36)

Proof: The proof is exactly the same as that of Proposition 3.3 in Chapter 1.

As discussed in [13], an important consequence of Proposition 3.4.1 is the provable energy-

stability of the numerical method (3.28), without modifying the convective terms in the

incompressible Navier-Stokes equation. Moreover, the exact conservation of mass is of

great importance in the simulation of the incompressible flow and nearly incompressible

materials; see [32] and [4].

3.5 Stability

In this section, we review the stability results in [34, Section 3.3] for the linear forms

appearing in the discrete problem (3.28) and adapt them to the RTk −Qk space pair.

3.5.1 Preliminaries

We restrict the discussion in the broken Sobolev spaces

Hr(Th) = {v ∈ L2(Ω) : v|K ∈ Hr(K), K ∈ Th}, r = 1 or 2 (3.37)

endowed with the norms

‖v‖21,h =
∑
K∈Th

‖∇hv‖20,K +
∑
e∈Eh

κ0h
−1
e ‖[[v]]‖20,e, v ∈ H1(Th) (3.38)

‖v‖22,h = ‖v‖21,h +
∑
K∈Th

h2k|v|22,K , v ∈ H2(Th) (3.39)

For K ∈ Th, q ∈ Qk(K), by the standard inverse estimate (see e.g. [7, Lemma 4.5.3]), we

have |q|2,K ≤ Ch−1|q|1,K . Then it’s easy to see that

‖v‖2,h ≤ C‖v‖1,h, v ∈ Vh (3.40)

In the analysis of the stability, we need the following embedding result for d = 2 (see [20,

Lemma 6.2]): For v ∈ H1(Th) and ∀p ∈ [1,∞), there exists a constant C > 0 such that

‖v‖Lp(Ω) ≤ C‖v‖1,h (3.41)

Moreover, we need the broken C1(Th)-space given by

C1(Th) = {u ∈ H1(Th) : u|K ∈ C1(K), K ∈ Th} (3.42)
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equipped with the broken W1,∞-norm

‖u‖W1,∞(Th) = max
K∈Th

‖u‖W1,∞(K) (3.43)

At last, we assume the convective velocity w ∈ H0(div
0,Ω), where the space H0(div

0,Ω)

is defined to be

H0(div
0,Ω) := {w ∈ H(div; Ω) : ∇ ·w = 0, w · n = 0} (3.44)

3.5.2 Continuity

Since we employ conforming elements for the convection-diffusion equation (3.62c), the

continuity of C(Th, S; ·) and the Lipschitz continuity of C(·, ·;T ) are direct consequences

of (3.12) and (3.15). For the elliptic form Ah, since we have the Qk(K)-version trace

inequality [37, Lemma 7.1]

‖q‖0,γm ≤ Ch
−1/2
K ‖q‖0,K , ∀q ∈ Qk(K). (3.45)

as well as the inverse estimate (3.40), we proceed in the standard argument in [3] to obtain

the following result.

Lemma 3.5.1 (Boundedness of Ah) For the form Ah defined in (3.29), there holds

|Ah(u,v; ·)| ≤ C‖u‖2,h‖v‖1,h, u ∈ H2(Th), v ∈ Vh, (3.46)

|Ah(u,v; ·)| ≤ C̃A‖u‖1,h‖v‖1,h, u, v ∈ Vh (3.47)

The Lipschitz contiuity of Ah(·, ·;T ) is presented in the next lemma

Lemma 3.5.2 (Lipschitz continuity of Ah) Let T1, T2 ∈ H1(Ω), u ∈ H1
0(Ω) and v ∈

Vh, then there holds

|Ah(u,v;T1)−Ah(u,v;T2)| ≤ LAh
�Lα‖T1 − T2‖1,Ω‖u‖1,∞(Th)‖v‖1,h (3.48)

Proof: The proof can be found in [34, Lemma 3.3].

Moreover, we have the boundedness of Bh and Dh:

Lemma 3.5.3 We have the following bounds for the forms Bh and Dh.

|Bh(v, q)| ≤ C̃B‖v‖1,h‖q‖0,Ω, v ∈ H1(Th), q ∈ L2
0(Ω), (3.49)

|Dh(S,v)| ≤ C̃D‖j‖0,Ω‖S‖1,Ω‖v‖1,h, v ∈ H1(Th), S ∈ H1(Ω) (3.50)
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Proof: Equation (3.49) is a straightforward application of the Cauchy-Schwarz inequal-

ity. For the estimate of Dh, by Hölder’s inequality and the embedding inequality (3.41),

we have

|Dh(S,v)| ≤ ‖j‖0,Ω‖Sv‖0Ω ≤ ‖j‖0,Ω‖S‖L4,Ω‖v‖L4,Ω ≤ C̃D‖j‖0,Ω‖S‖1,Ω‖v‖1,h

At last, we review the continuity results for the convection forms ON
h and OH .

Lemma 3.5.4 Let w1, w2 ∈ H0(div
0; Ω), u ∈ H2(Ω) and v ∈ Vh. Then we have

|ON
h (u,v;w1)−ON

h (u,v;w2)| ≤ LON
h
‖w1 −w2‖1,h‖u‖1,h‖v‖1,h (3.51)

Proof: Please refer to [13, Proposition 4.2].

For the conforming convective form OH(T, S;w), in the case that w ∈ H0(div
0; Ω), we

have the following variant of the result in (3.17) .

Lemma 3.5.5 Let w ∈ H0(div
0; Ω) and T, S ∈ H1(Ω), we have

|OH(T, S;w)| ≤ C̃H‖T‖1,Ω‖w‖1,h‖S‖1,Ω (3.52)

Proof: The proof can be found in [34, Lemma 3.5], which involves the application of

integration by parts, Hölder’s inequality and the embedding result in (3.41).

3.5.3 Coercivity and inf-sup condition

In this section we review the coercivity results of the forms Ah, C, ON
h and OH as well as

the inf-sup condition for Bh.

Lemma 3.5.6 For S ∈ E0
h and v ∈ Vh we have the following results

C(S, S; ·) ≥ αC‖S‖1,Ω (3.53)

Ah(v,v; ·) ≥ α̃A‖v‖1,h (3.54)

Proof: Since E0
h ∈ H1

0 (Ω), the first inequality is a direct consequence of (3.20). By

noticing that the perturbed form Ãh = Ah when restricted to the discrete space Vh, the

second one follows the covercivity result, Proposition 2.4.1 in Chapter 1.

For the convective terms ON
h and OH we have the following positivity results.
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Lemma 3.5.7 Let w ∈ H0(div
0; Ω). Then we have

ON
h (u,u;w) =

1

2

∑
e∈EI

h

∫
e
|w · n|| [[u⊗ n]] |2 ds ≥ 0, u ∈ Vh, (3.55)

OH(T, T ;w) = 0, T ∈ H1(Ω) (3.56)

Proof: Since w ∈ H0(div
0; Ω) and if we replace v with u in (3.30), we can integrate the

cell terms by parts and obtain∑
K∈Th

∫
K
(w · ∇)u · u dx =

∑
K∈Th

∫
K

1

2
w · ∇|u|2 dx =

1

2

∑
K∈Th

∫
∂K

|u|2w · n ds

=
1

2

(∫
EI
h

{{|u|2}} [[w]] ds+

∫
Eh
{{w}} ·

[[
|u|2

]]
ds

)

=
1

2

∫
EI
h

{{w}} ·
[[
|u|2

]]
ds

=
1

2

∫
EI
h

w · n1(|u1|2 − |u2|2) ds

Here we have used ∇ · w = 0 in Ω, the summation identity, w · n = 0 on Γ and the

continuity of w · n across the inner edges. And we choose the unit normal vector n1 on

each inner edge such that w · n1 ≥ 0.

Moreover, the other edge terms in the ON
h (u,u;w) can be rewritten into∑

K∈Th

∫
∂K\∂Ω

1

2
(w · nK − |w · nK |)(ue − u) · u dx =

∑
e∈EI

h

∫
e
(w · n)(ue − u) · u dx.

It is obvious that w ·n ≤ 0. Then in order to be consistent with our choice of the normal

direction above, we add the subindex as below∑
K∈Th

∫
∂K\∂Ω

1

2
(w · nK − |w · nK |)(ue − u) · u dx

=
∑
e∈EI

h

∫
e
(w · n2)(u1 − u2) · u2 dx

=−
∫
EI
h

(w · n1)(u1 · u2 − |u2|2) dx
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Then we can sum the cell terms and the edge terms together and arrives at

ON
h (u,u;w) =

1

2

∫
EI
h

w · n1(|u1|2 − |u2|2) ds −
∫
EI
h

(w · n1)(u1 · u2 − |u2|2) dx

=
1

2

∫
EI
h

(w · n1)|u1 − u2|2 ds

=
1

2

∫
EI
h

|w · n|| [[u⊗ n]] |2 ds ≥ 0

The positivity of ON can be very easily obtained by integration by parts and the proper-

ties of the space H0(div
0; Ω).

We end this section with the inf-sup condition of the bilinear form B(·, ·):

inf
q∈Qh

sup
v∈Vh\{0}

B(v, q)

‖v‖1,h‖q‖0,Ω
≥ β (3.57)

where the inf-sup constant β > 0 is independent of h. This condition is same as the one

in Chapter 1. The proof can be found in [37].

3.6 Error Analysis

In this section, we review the a priori error estimate for the DG method (3.28). Under

suitable smoothness and smallness assumptions, we derive the estimate in a straightfor-

ward way without introducing the lifting operators; see [3].

3.6.1 Assumptions

Smoothness assumption:

Let (u, p, T ) be the exact solution of (3.7), we assume

for k = 1 : u ∈ C1(Ω̄) ∩H2(Ω)2 ∩X, p ∈ H1(Ω), T ∈ W 1,∞(Ω) ∩H2(Ω)

for k = 2 : u ∈ Hk+1(Ω)2 ∩X, p ∈ Hk(Ω), T ∈ Hk+1(Ω)

(3.58)

Smallness assumption:

max{‖j‖0,Ω, ‖u‖W 1,∞(Ω), ‖T‖W 1,∞(Ω)} ≤ M (3.59)

for a sufficiently small number M .
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3.6.2 Main result

We are ready to present the error estimate result

Theorem 3.6.1 Let (u, p, T ) be a solution of (3.7) and (uh, ph, Th) be the approximate

solution to (3.28). Under the smoothness assumption (3.58), smallness assumption (3.59)

and the assumption on the boundary datum, we have the following estimate:

‖u− uh‖2,h + ‖θ − θh‖1,Ω ≤ Chk(‖u‖k+1,Ω + ‖T‖k+1,Ω), (3.60)

‖p− ph‖0,Ω ≤ Chk(‖p‖k,Ω + ‖u‖k+1,Ω + ‖T‖k+1,Ω) (3.61)

where C > 0 is a generic constant which is independent of h.

Proof: In section 3.5, we have obtained the same set of stability results for our choice of

the velocity-pressure element pair as those in [34, Section 5]. We can follow the same line

in the proof of [34, Theorem 5.1] and with the standard approximation results to arrive

at the conclusion. We omit the details here.

3.7 Fixed-point Iteration

The nonlinear nature of the problem requires us to invoke iterative methods and solve

a linearized problem in each iteration. Here we follow [14] and [21] and employ the

fixed-point method. We start from a initial guess T0 and u0
h which are the solutions of

a Stokes problem and a Laplace problem, respectively. Provided we have obtained the

approximate velocity, pressure and temperature xn
h = (un

h, p
n
h, T

n
h ) from the nth iteration,

then the following linearized problem will be solved for xn+1
h = (uh, ph, Th)

Ah(uh,v;T
n
h ) +ON

h (uh,v;u
n
h) +Bh(v, ph)−Dh(T

n
h ,v) = 0 (3.62a)

−Bh(uh, q) = 0 (3.62b)

C(Th, S;T
n
h ) +OH(Th, S;u

n
h) = 0 (3.62c)

for all test functions (v, q, S), which is a decoupled system consisting of a Oseen equation

and a convection-diffusion equation. The iteration is terminated once the difference of the

entire coefficient vector coefficients between two consecutive iterates is sufficiently small,

i.e.

‖coeffn+1 − coeffn‖l2 ≤ tol (3.63)

where ‖ · ‖l2 is the standard l2 norm over RNdofs and ”tol” is the fixed tolerance which is

taken to be 10−8 in the following experiments.
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3.8 Numerical Experiments

In this section we present the numerical results for the coupled system (3.7). The code

is developed with the deal.II finite element library [5]. Since the goal is to confirm the

optimal convergence rates for our method and the exactly divergence-free approximate

velocity, we employ the direct linear solver provided by the UMFPACK [16].

3.8.1 Smooth Solution

The computational domain is taken to be

Ω = (−1, 1)2

and is decomposed uniformly into rectangular mesh. At the lth level, the meshsize is

h = 2−l. The test solution is taken to be

u1 = sin(y)

u2 = sin(x)

p = 1 + sin(xy)

T = 1 + cos(xy)

And we take the temperature-dependent parameters to be

α(T ) = exp(−T ), η(T ) = exp(T ) (3.64)

and the vector j = (0, 1)T . Appropriate right hand side functions are assigned to balance

the equation and discretized in the discrete problem. In the numerical methods, the

penalty parameter is chosen as

κ0 = (k + 1)2

where k is the approximation order.

Initial Guess

For the fixed-point iteration described in Section 3.7, we take the initial guess to be

x0
h = 0. In this way, in the first iteration, we actually solve a decoupled Stokes problem

and a Laplace problem.

Since the boundary values of u = gu is inhomogeneous, the essential boundary condi-

tion uh · n = gu
h · n in Vh must be enforced strongly in each iteration. To this end,

we follow the discussion in Chapter 1 for the enforcement of inhomogeneous boundary

conditions for the Stokes problem.

37



Numerical Results

The numerical results of are presented in Table 3.8.1 and Table 3.8.2 as well as in the

convergent plots Figure 3.1, 3.2. The expected optimal convergence rates for the error of

the velocity as well as the temperature in the L2-norm are observed. While for the pressure,

just like the results for the Stoke’s problem, the convergence order is still between O(hk)

and O(hk+1). In Table 3.8.1, the errors for the velocity in the DG norm and for the

temperature in the H1 norm are presented. The convergence order O(hk) is observed.

Moreover, the exactly divergence-free property is verified by evaluating ‖∇ · uh‖∞ over a

set of quadrature points. At last, the residual plot for the case of k = 1 is presented in

Figure 1. We see that the iteration numbers increase moderately as we refine the mesh

and the residuals decrease in a linear fashion. For k > 1, in our experiment, the same

phenomenon is observed.

k l ‖ep‖0 ‖eT ‖0 ‖eu‖0

1

1 9.86e-02 - 7.16e-02 - 6.75e-02 -
2 3.50e-02 1.49 1.92e-02 1.90 2.12e-02 1.67
3 1.32e-02 1.41 4.96e-03 1.95 5.02e-03 2.08
4 4.62e-03 1.52 1.25e-03 1.98 1.21e-03 2.06
5 1.53e-03 1.60 3.14e-04 2.00 3.09e-04 1.97

2

1 1.044e-02 - 6.328e-03 - 1.101e-02 -
2 1.611e-03 2.70 6.998e-04 3.18 1.306e-03 3.08
3 2.389e-04 2.75 8.498e-05 3.04 1.600e-04 3.03
4 3.735e-05 2.68 1.055e-05 3.01 1.975e-05 3.02

3

1 6.910e-04 - 1.520e-04 - 4.713e-04 -
2 7.407e-05 3.22 1.009e-05 3.91 3.295e-05 3.84
3 7.033e-06 3.40 6.455e-07 3.97 2.049e-06 4.01
4 6.318e-07 3.48 4.083e-08 3.98 1.242e-07 4.04

4
1 6.456e-05 - 1.201e-05 - 4.212e-05 -
2 2.375e-06 4.76 3.402e-07 5.14 1.121e-06 5.23
3 9.623e-08 4.63 1.057e-08 5.01 3.270e-08 5.10

Table 3.1: Numerical results I: IPDG for the non-isothermal problem (3.7) with fixed-point
iteration
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(c) convergent plot for‖eT‖0

Figure 3.1: The convergent plots for the numerical errors
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Figure 3.2: The convergent plots for the numerical errors
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k l ‖eT‖1,Ω ‖eu‖1,h ‖∇ · uh‖∞

1

1 2.201e-01 - 5.982e-01 - 1.443e-15
2 9.332e-02 1.24 2.831e-01 1.08 5.329e-15
3 4.267e-02 1.13 1.315e-01 1.11 1.199e-14
4 2.079e-02 1.04 6.195e-02 1.09 2.931e-14
5 1.030e-02 1.01 2.927e-02 1.08 6.584e-14

2

1 4.108e-02 - 1.591e-01 - 4.732e-15
2 9.169e-03 2.16 4.546e-02 1.81 1.521e-14
3 2.223e-03 2.04 1.199e-02 1.92 2.429e-14
4 5.513e-04 2.01 3.060e-03 1.97 5.556e-14

3

1 1.451e-03 - 7.545e-03 - 1.484e-14
2 1.805e-04 3.01 9.239e-04 3.03 3.040e-14
3 2.240e-05 3.01 1.077e-04 3.10 6.105e-14
4 2.791e-06 3.00 1.206e-05 3.16 1.131e-13

4
1 1.703e-04 - 9.295e-04 - 4.174e-14
2 9.917e-06 4.10 6.241e-05 3.90 7.412e-14
3 5.981e-07 4.05 4.010e-06 3.96 1.645e-13

Table 3.2: Numerical results II: IPDG for the non-isothermal problem (3.7) with fixed-
point iteration

Figure 3.3: The residual plot for k = 1, l = 1, ..., 4
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3.9 Conclusions and future directions

In this chapter we first review the formulation and the error analysis in [34] for the exactly

divergence-free finite element methods [14], with an H(div) conforming element for the

approximate velocity, for a generalised Boussinesq equation [33]. Numerical experiments

based on a fixed-point iteration are implemented which verify the theoretical results, espe-

cially the error estimates and the exactly divergence-free property. Future work involves:

• More numerical experiments. In this project, only smooth functions in the 2D unit-

square domain with Dirichlet boundary conditions is considered. We need to further

test the code on singular solutions and more realistic examples in general domains

with mixed boundary conditions such as the staircase flows, contraction flows and

flows in 3D.

• Efficient nonlinear iteration methods and linear solvers. The first-order fixed point

iteration can be replaced with the more efficient Newton’s method, while in doing

so, the convection term need to be discretized wisely. Even though the direct solvers

are super stable, as the mesh is refined or the dimension increased to 3D, the storage

requirement for the increasingly large system matrix will be a bottle-neck for the

efficiency of the method. Iterative methods need to be considered and efficient

preconditioners need to be designed in order to accelerate the convergence.

• More effort in theoretical analysis. As emphasized in [34], the uniqueness of the

approximate solution is still a open problem. Even for the existence and the error

estimate, very restrictive regularity assumptions (3.58), (3.35) and smallness as-

sumption (3.59) have to be made. It would be another challenge to get rid of these

assumptions, while preserving the same optimal error estimates.
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divergence-free solutions of the Navier-Stokes equations. Journal of Scientific Com-

puting, 31:61–73, 2007.

[15] C. Cox, H. Lee, and D. Szurley. Finite element approximation of the non-isothermal

Stokes-Oldroyd equations. International Journal of Numerical Analysis and Mod-

elling, 1:1–18, 2007.

[16] T. A. Davis. Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal

method. ACM Transactions on Mathematical Software, 30:196–199, 2004.

[17] C. e. P., J. Thomas, S. Blancher, and R. Creff. The steady Navier-Stokes/energy sys-

tem with temperature-dependent viscosity-Part 1: Analysis of the continuous prob-

lem. International Journal for Numerical Methods in Fluids, 56:63–89, 2008.
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