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Abstract  
 
Pathogenic mutations in amyloid-β precursor protein (APP) and presenilins (PS) 

genes cause familial Alzheimer’s disease (FAD). FAD is an uncommon form of 

Alzheimer’s disease (AD) with early onset (before age 65) and a rapid progression 

but its neuropathology is indistinguishable from the sporadic AD. Amyloid plaque 

is the unique hallmark of AD, which consists primarily of 40- and 42-residue 

amyloid β protein (Aβ40 and Aβ42) with the more hydrophobic Aβ42 as its major 

component. Aβ is derived from APP through sequential cleavages by β-secretase 

and γ-secretase. According to the “Amyloid hypothesis”, Aβ accumulation 

initiates the pathogenic cascades leading to AD, including the formation of 

neurofibrillary tangles, activation of astrocytes and neuronal loss. It has been well 

established that pathogenic mutations in both APP and PS genes contribute to AD 

pathogenesis via impaired generation of Aβ. This powerful genetic discovery 

lends great credence to the “Amyloid hypothesis”, given that APP is the precursor 

of Aβ and PS acts as the enzyme to generate Aβ. The thorough understanding of 

the mechanism of these pathogenic mutations could lead to decipher the AD 

conundrum.  Until now, all pathogenic APP mutations are autosomal dominant 

mutations except for APPA673V. We discovered that APPA673V structurally 

facilitates β-cleavage at Asp-1 site while inhibited the general APP processing 

including all α-/β-/γ-cleavages possibly due to the intensified lysosome-dependent 

degradation. The overall effect of APPA673V on the production of Aβ makes the 

homozygous state necessary for APPA673V to produce enough Aβ to initiate AD 

pathogenesis. Mutations in PS genes are another major cause of FAD. As another 

substrate of γ-secretase apart from APP, Notch plays a fundamental role in 

neurodevelopment and neurodegeneration. It has been well established that 
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pathogenic PS mutations impaired Notch signaling. PS1∆S169 is a recently 

discovered PS1 mutation in a Chinese FAD family. We extensively characterized 

the function of PS1∆S169 in mammalian cells and transgenic mice and found that 

PS1∆S169 promoted AD pathogenesis via altering γ-cleavage of APP without 

impairing Notch processing, excluding the contribution of Notch signaling to AD 

pathogenesis. Our study highlights the possibility of developing specific γ-

secretase inhibitors, which may spare Notch signaling in AD therapy.  
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Preface 
 
Immediately after completing a postgraduate training with Master degree in 

Neurology, I joined Dr. Weihong Song’s research team to study the molecular 

pathogenesis of Alzheimer’s disease. I was fortunate to be introduced to a project 

to study a novel pathological Presenilin 1 (PS1) mutation — PS1∆S169 identified in 

a Chinese AD family. From January of 2008, Dr. Fang Cai, a post doctorate and 

lab manager, and I worked on reexamining all the sequences of gDNA samples 

from this family and confirmed the segregation of PS1∆S169 with the early-onset of 

AD in this FAD family with FAD. In chapter 3, with the assistance of Dr. Cai, I 

generated a construct harboring PS1∆S169 and started the characterization of this 

novel mutation in vitro. I generated the stable cell lines expressing different PS1 

variants, including PS1∆S169. The cell lines 20E2 and HAW, the plasmids 

pcDNA4-PS1WT, pcDNA4-PS1Y115H, and pcDNA4-PS1C410Y as well as Notch 

constructs were previously generated in Dr. Song’s laboratories. Shortly after the 

confirmation of the effect of PS1∆S169 on APP processing in vitro, Dr. Cai and I 

started establishing transgenic mice that overexpressed PS1∆S169 in 2008. Working 

together with Dr. Cai, we generated a construct expressing PS1∆S169 under the 

mouse neuron specific promoter Thy1. The construct was sent to British 

Columbia Preclinical Research Consortium for pronuclear microinjection to 

generate transgenic mice. Dr. Cai designed the primers to genotype the first 

generation of founder of the heterozygous PS1∆S169 transgenic founder mice. 

Then, PS1∆S169 transgenic mice were bred and crossed with APP23 mice and Ms. 

Haiyan Zou, a former technician in our laboratory, did most of the genotyping 

work. Dr. Cai did most work in copy number determination.  In chapter 4, I 
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assisted the work of genotyping and copy number determination and did more 

than 70% of the behavior tests. Dr. Cai, Daochao Huang and Yi Yang performed 

the remaining 30% behavior tests. Daochao Huang was a former visiting scholar 

and Yi Yang is the graduate student in our laboratory. Dr. Cai and I also carried 

out all the mice tissue collection work. Dr. Cai trained me on how to perform a 

histopathological analysis of mice brain under standardized procedures for the 

detection of neuritic plaques in brain sections (Ly PPT, Cai F., Song W. (2011) 

Detection of Neuritic plaques in Alzheimer’s disease mouse model. Journal of 

Visual Experiment. E2831).   

 

Since my project was mainly focusing on FAD-associated mutations, in the 

middle of my PhD training (in April of 2011) , Dr. Song gave me another project 

on the recessive APP mutation – APPA673V (Chapter 2). Under the supervision of 

Dr. Song I worked on this project, which included the generation and 

characterization of constructs and stable cell lines. Dr. Zhe Wang, a postdoctorate 

in our laboratory, and I worked together in studying the maturation and 

degradation of APP in chapter 2.  Mingming Zhang, a graduate student in our 

research team, and I performed toxicity assays of AβA2V in primary neurons.  

 

In Chapter 1, a large proportion of Section 1.4 concerning γ-secretase has been 

submitted for review for publication. I wrote the first draft and am the first-author 

on the manuscript. Mingming Zhang and Dr. Cai provided the assistance and co-

write the final version of manuscript. All procedures in Chapter 4 were approved 

by the University of British Columbia Animal Care Committee (Protocols A05-

1888, A10-0040, and A06-0007).
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Chapter 1 
 
 
General introduction  
 
 

1.1 Dementia and Alzheimer’s disease.  

The world’s population has been ageing rapidly in the past century due to 

significant improvements on health care and nutrition. Dementia is a global 

cognitive dysfunction syndrome due to brain disease, with the aging as its well-

established risk factor. In 2010, the worldwide population with dementia was 

estimated at 35.6 million and is projected to double every 20 years, to 65.7 

million in 2030 and 115.4 million in 2050, equivalent to one new case every 

four seconds (International, 2012). Worldwide dementia cost in 2010 was 

estimated to have been US$604 billion and its burden was not only on the 

economy but also had dramatic impact on the patients and their families—

medically, psychologically and emotionally (London, 2010). The behavioral 

and psychological symptoms of dementia profoundly affect the quality of life of 

dementia patients and of their families.  

 

The commonest subtypes of dementia in the order of frequency are Alzheimer’s 

disease (AD), vascular dementia (VaD), dementia with Levy bodies (DLB), 

dementia in Parkinson’s disease and frontotemporal dementia (FTD) (London, 

2009). The population prevalence of different subtypes of dementia differs 

among studies, given the different recruitment criteria. A recent community-

based study provided information on the relative prevalence of a wider range of 
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subtypes: AD (41%), VaD (32%), DLB (8%), dementia in Parkinson’s Disease 

(3%) and FTD (3%) (Stevens et al., 2002).  The boundaries between these 

dementia subtypes have been promiscuous and the mixed forms often co-exist, 

although each subtype is characterized by their own pathological features: the 

amyloid plaques and neurofibrillary tangles and brain atrophy in AD; the multi-

infarct evidence in VaD, Lewy bodies in DLB and the early involvement of the 

frontal temporal lobe in FTD. Apart from pathological features, different 

dementia subtypes are also characterized by their own set of clinical symptoms: 

AD is featured by difficulty in remembering names and recent events clinically; 

DLB is featured by initial symptoms such as sleep disturbances, visual 

hallucinations and muscle rigidity; FTD is featured by changes in personality, 

behavior and language problems; and dementia in Parkinson’s Disease (PD) is 

featured by typical PD symptoms meeting the diagnosis of PD (Alzheimer's, 

2012).  

 

 Alzheimer’s disease (AD) is the most common type of dementia. On 

November 4, 1906, Dr. Alois Alzheimer described Alzheimer’s disease publicly 

for the first time using the case of his patient, Auguste Deter, who had extensive 

atrophy of cortex and two unique brain deposits – one located in the nerve cells 

(“neurofilbrillary tangles” in modern terminology) and the other was located 

extracellularly (now known as “amyloid plaque”). Emil Kraepelin, a German 

psychiatrist, suggested naming the syndrome of “presenile dementia” as 

Alzheimer Disease. In 1911, Dr. Alzheimer published an article that was more 

detailed, describing cases of Johann F. and a number of other patients with 

“Alzheimer’s disease”. The patients usually began with difficulty in forming 

new memory, accompanied by apathy or depression; in later stages, 
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disorientation, behavior change, impairment on judgment and language, and 

deficits in motor system were observed.   

 

Alzheimer’s disease (AD) is a heterogeneous clinico-pathogogical entity. The 

diagnosis of AD is classified into four categories: definite AD, probably AD, 

possible AD and unlikely AD (McKhann et al., 2011). Because of the limited 

application of autopsy and biopsy, most AD patients actually are possible AD 

patients, if typical, progressive cognitive impairment and the absence of other 

dementia diseases are established clinically. Definite AD requires meeting the 

probably AD criteria while having neuropathological evidence via autopsy or 

biopsy. The presence of both neuritic plaques and neurofibrillary tangles in the 

neocortex is the typical neuropathological evidence, suggesting high likelihood 

of Alzheimer’s disease. In addition to plaques and tangles, neuron degeneration 

and synaptic loss are also characteristic neuropathology of AD.   

 

1.1.1  Pathological features of AD.  

Amyloid plaques, neurofibrillary tangles, neuronal loss and brain atrophy are 

the main pathological features of AD.  Among them, amyloid plaques are 

unique for AD, whereas neuronal loss or synaptic loss is best correlated with the 

severity of clinical symptoms. According to the classical “amyloid hypothesis”, 

the temporal sequence of these pathological features is the deposition of Aβ, 

and then the increased tau phosphorylation and tangles formation, both of which 

are toxic and induce synaptic loss and neuron death (Hardy and Selkoe, 2002). 

However, the temporal sequence of these pathological features is still 

controversial. Synaptic pathologies were reported in AD transgenic mice before 

plaque formation, indicating that the Aβ oligomers or the intracellular Aβ might 

have already induced synaptic toxicity before the plaque formation. Back in 
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early 1990s, Braak et al. defined the progression stages of plaques and tangles 

according to their spatiotemporal pattern in AD patients.  Compared with 

plaques, the spatiotemporal progression of tangles is stereotypical and 

predictable: tangles appear firstly in the transentorhinal region (stage I); then 

CA1 region of the hippocampus (stage II); then limbic structure like subiculum 

of the hippocampal formation (stage III); next the amygdala, thalamus and 

claustrum (stage IV); finally spread to all isocortical areas (stage V). Despite 

being less predictable, the spatiotemporal progression of plaques still could be 

divided into 3 stages: the isocortical stage, the limbic stage and the subcortical 

stage (Braak and Braak, 1991). Clinicopathological studies indicated that the 

amount and distribution of tangles correlate better with the severity and the 

duration of AD than the plaques (Arriagada et al., 1992, Bierer et al., 1995, 

Giannakopoulos et al., 2003).  

 

Amyloid plaque is the unique pathological feature for AD, which is defined as 

the extracellular deposits of amyloid β. It should be of note that amyloid 

plaques are heterogeneous in terms of either the microscopic morphology or the 

composition. The amyloid plaques meeting the diagnosis criteria of AD are 

dense-core plaques or neuritic plaques. The dense-core plaques are amyloid 

deposits with compact core positive for Thioflavin-S or Congo-Red staining, 

which are typically surrounded by dystrophic neuritis as well as the activated 

astrocytes and microglial cells; whereas the so-called “diffuse plaques” are 

amyloid deposits with ill-defined contours and negative for Thioflavin-S or 

Congo-Red staining (Serrano-Pozo et al., 2011). Diffuse plaques are often 

found in the general elderly population, while the dense-core plaques are 

usually exclusively present in AD population. The composition of amyloid 

plaques is also heterogeneous. Apart from various other non-amyloid 



 
General introduction 

5 
 
 
 
 

  

components in amyloid plaques (proteoglycans, inflammatory molecules, metal 

ions, APOE, low density lipoprotein receptor-related protein, see review 

(Atwood et al., 2002), a spectrum of Aβ peptides has been isolated from the 

brains of AD patients. This large spectrum of Aβ peptides can be resulted from 

heterogeneous γ-cleavages as well as the multiple modification and proteolysis 

during the many years when Aβ peptides reside in these extracellular amyloid 

plaques. The neuropathologies are undistinguishable between FAD and 

sporadic AD. Of note, cotton wool plaques (CWP) are more frequently 

observed in presenilin mutations-associated FAD patients and firstly reported in 

FAD-associated PS1 deletion mutation of exon 9 (Crook et al., 1998a). CWPs 

are characterized by large size (up to 100µm), high immunoactivity for Aβ42, 

eosinophilic, lack of thioflavin-S positive dense cores, poor neuritic response 

and the displace of surrounding tissues; however, CWPs are not diffuse plaques 

and the underlying mechanism is not clear.  

 

1.1.2  Mutations in APP, PS1&PS2 genes and FAD. 

Although more than 95% AD are sporadic with onset after age 65, dramatic 

progress in the field has come from a number of genetic studies on familial 

Alzheimer’s disease (FAD) (Campion et al., 1999). FAD is defined as an 

uncommon form of Alzheimer’s disease that usually strikes before the age of 65 

and is inherited in an autosomal dominant manner. Mutations in three genes 

account for the early onset of FAD — Amyloid-β precursor protein (APP), 

Prensenilin 1 (PS1) and Presenilin 2 (PS2) (Table 1.1). 

(http://www.molgen.ua.ac.be/admutations/Default.cfm?MT=1&ML=1&Page=

MutByQuery&Query=tblContexts.ID=3&Selection=Gene%20=%20APP).  
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Table 1.1 Genetic factors contributing to Alzheimer’s disease. 
 

1.1.3  Genetic risk factors and sporadic AD. 

The rare mutations in APP and PS genes are causing the early-onset of FAD. Is 

there any established genetic factors contributing to the high risk of late-onset 

of sporadic AD? Genes involved in the formation of plaques and tangles (APP, 
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PS1/PS2 and MAPT), have therefore long been considered as putative 

candidates for higher susceptibility of sporadic AD. The contribution of APP, 

PS1/PS2 and MAPT in sporadic AD remains questionable, although MAPT is 

established as a risk factor in Parkinson’s disease (PD) (Simon-Sanchez et al., 

2009), progressive supranuclear palsy (PSP) and corticobasal degeneration 

(CBD) (Houlden et al., 2001a, Pittman et al., 2005). In PD, SNCA and LRRK2 

genes not only contribute to dominant familial PD, but also impose higher risk 

to sporadic PD (Ross and Farrer, 2010). However, it lacks strong evidence to 

support that common variations in APP and PS1/PS2 genes contribute to higher 

risk in sporadic AD (Guyant-Marechal et al., 2007, Reiman et al., 2007, Gerrish 

et al., 2012).  One possible explanation is that the function of APP and 

Presenilins is so essential for the normal processing of APP that single 

nucleotides polymorphism (SNP) has dramatic effect on their functional 

performance.   

 

Until recently, apolipoprotein E4ε isoform (APOE4ε) is the only established 

genetic risk factor for the sporadic form of AD (Corder et al., 1993, Saunders et 

al., 1993, Strittmatter et al., 1993). APOE is the major apolipoprotein and 

cholesterol carrier in the brain and synthesized predominantly by astrocytes and 

to some extend by microglia (Pitas et al., 1987, Uchihara et al., 1995). The 

frequency of APOE4ε is about 15% in general population but is about 40% in 

sporadic AD patients. Compared with those without APOE4ε alleles, individual 

with one APOE4ε allele are 3 to 4 times more likely to develop AD (Corder et 

al., 1993, Strittmatter et al., 1993). With the advances in microarray technology, 

numerous genome-wild association studies (GWAS) are undergoing in a non-

hypothesis-biased manner, aiming at identifying additional AD susceptibility 

loci that are common in the general population. It has been implicated that the 
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following loci are low-risk factors in sporadic AD: CLU, PICALM, CR1, BIN1, 

MS4A, CD2AP, CD33, EPHA1, and ABCA7 (Harold et al., 2009, Lambert et 

al., 2009, Hollingworth et al., 2011, Naj et al., 2011) (Table 1.1).  Recently, two 

groups independently report heterozygous rare variants in TREM2 associated 

with high risk of sporadic AD (Guerreiro et al., 2013, Jonsson et al., 2013). The 

frequency of the variants in TREM2 is 1~2% in sporadic AD patients but only 

0.05% in general population. TREM2 encodes a single-pass type I membrane Ig 

super family protein, which is involved in activating immune responses in 

macrophages and dendritic cells in central nervous system. The increased 

predisposition of AD in TREM2 variants implicates the inflammation does play 

an essential role in AD pathogenesis, probably via influencing the clearance of 

Aβ and its deposits or modulating the neuronal toxicity of Aβ. 

 

1.2 Amyloid hypothesis. 

Neuritic plaques and neurofibrillary tangles (NTFs) are two hallmarks of AD 

(Katzman, 1986).  Neuritic plaques are also known as senile plaques or amyloid 

plaques, which are mainly extracellular deposits of amyloid beta protein (Aβ). 

Neuritic plaques consist primarily of 42-residue amyloid proteins (Aβ42), 

which are derived from proteolytic processing of beta amyloid precursor protein 

(APP) (Glenner and Wong, 1984b, Iwatsubo et al., 1994).  Neurofibrillary 

tangles (NFTs) are intraneuronal inclusions composed of hyperphosphorylated 

forms of the microtubule-associated protein – Tau (Grundke-Iqbal et al., 1986, 

Kosik et al., 1986, Goedert et al., 1988, Iqbal et al., 1989). Unlike neuritic 

plaques, which is the unique pathological feature of AD, NFTs are detected in a 

whole spectrum of neurodegenerative tauopathies including Pick’s disease, 

progressive supranuclear palsy, corticobasal degeneration, Parkinson’s disease, 

frontotemporal dementia and frontotemporal dementia with Parkinsonism on 



 
General introduction 

9 
 
 
 
 

  

chromosome 17 (FTDP-17) (De Strooper, 2010). For instance, FTDP-17 is 

caused by mutations in the MAPT gene, which encodes a microtubule-binding 

protein — Tau (Hutton et al., 1998). The formation of NTFs is promoted by the 

hyper-phosphorylation of tau, which could be influenced by multiple factors 

such as the Aβ-induced hyper-phosphorylation of tau (Ittner and Gotz, 2011). 

Several parallel studies have suggested that neurofibrillary tangles of wild-type 

tau found in AD brains are likely to form after changes in Aβ metabolism and 

initial extracellular amyloid plaque formation (Hardy et al., 1998, Lewis et al., 

2001), indicating the primary role of Aβ in AD.  

 

The amyloid hypothesis was first proposed since it was discovered that patients 

with Trisomy 21 (Down Syndrome) have inevitably developed AD 

neuropathology (Olson and Shaw, 1969). Subsequent identification of AD-

associated mutations in APP gene further bolsters the notion that APP plays a 

central role in AD pathogenesis (Goate et al., 1991, Hardy, 1992, Hendriks et 

al., 1992, Mullan et al., 1992a, Prasher et al., 1998). In addition to the effect of 

APP mutations on the production of Aβ, mutations in Presenilin 1/Presenilin 2 

genes and the polymorphism on APOE4 also contribute to abnormal Aβ 

metabolism. The mutual target of all established AD genetic factors strongly 

suggest that the abnormal accumulation of Aβ, particularly the more 

hydrophobic and aggregation-prone Aβ42, initiates neuronal dysfunction and 

death, neurofibrillary degeneration and microglial activation, leading to 

neurodegeneration in AD (Fig 1.1) (Hardy and Selkoe, 2002).  

 

Although the amyloid hypothesis offered a comprehensive framework to 

elucidate AD pathogenesis, the exact underlying mechanism is still lacking and 
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several research results argue against this theory. For instance, amyloid plaques 

are also present in normal seniors and the severity of AD symptoms is 

correlated better with neurofibrillary tangles but not the amyloid burden (Terry 

et al., 1991, Arriagada et al., 1992, Gomez-Isla et al., 1997). Recent studies also 

indicate that AD symptoms have a correlation with soluble Aβ oligomers and 

the classical amyloid plaques appear to be reservoirs for the toxic, smaller, 

metastable Aβ species (Lue et al., 1999, McLean et al., 1999, Wang et al., 1999, 

Naslund et al., 2000).  

 

The causative role of Aβ and amyloid plaques in AD pathogenesis is arguable. 

Given the large number of pathogenic mutations in presenilin and its abundant 

substrates, the “presenilin hypothesis” was proposed (Shen and Kelleher, 2007). 

This theory emphasized the importance of presenilins in AD pathogenesis, 

based on the obvious neurodegeneration deficit in presenilins conditional- 

knockout mice. Nevertheless, as Aβ is the sole target of all genetic factors 

(Table 1.1), the amyloid hypothesis is still dominating the studies on AD 

pathogenesis (Fig 1.1). This dissertation explores how amyloid cascades have 

been affected by mutations in APP or Presenilin 1 genes. 
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Figure 1.1 The amyloid hypothesis of Alzheimer’s disease.  
The genetic factors of early onset FAD and risk factors of sporadic AD converge to an increase 
in Aβ42 production, which induces sequential pathogenic events leading to AD. Aβ oligomers 
could directly initiate a toxic cascade rather than being deposited as plaques. Adapted from 
Hardy and Selkoe, 2002. 
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1.2.1  Amyloid-beta precursor protein (APP).  

Amyloid beta protein (Aβ), the core component of neuritic plaque, is derived 

from amyloid-beta precursor protein (APP) by sequential cleavages of β- and γ-

secretase (Glenner and Wong, 1984b, a, Goldgaber et al., 1987, Kang et al., 

1987, Robakis et al., 1987, Tanzi et al., 1987, Weidemann et al., 1989, Sun et 

al., 2012). The APP gene is located on Chromosome 21, coding for a 

ubiquitously expressed type I transmembrane protein, for which several 

isoforms can be derived from alternative splicing of mRNA (Fig 1.2). 

APP770/751 (containing 770/751 amino acids) are mainly expressed in non-

neuronal cells, whereas APP695, lacking the Kunitz protease inhibitor (KPI) 

region, is dominant in neurons (Kitaguchi et al., 1988, de Sauvage and Octave, 

1989) (Bendotti et al., 1988, Arai et al., 1991, Konig et al., 1992, Sandbrink et 

al., 1994). APP and APP-like proteins (APL1 and APL2) belong to the same 

protein family (Wasco et al., 1992, Sprecher et al., 1993, Wasco et al., 1993) 

and conserved homologs of APP have been found in C. elegans (Daigle and Li, 

1993) and Drosophila (Luo et al., 1992).  
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Figure 1.2 The structure of amyloid-beta precursor protein (APP).   
This diagram shows the amino acid sequence of APP and the distribution of FAD-associated 
mutations. The smaller blue circles represent abridged sequence between E1 (exon1) and E16 
(exon16). All bigger colored circles not yellow represent the FAD-associated mutations and 
purple circles represent only one mutation identified at this locus and orange circles represent 
more than one mutations identified at this locus. Green triangles and green bars represent 
secretase cleavage sites as indicated in this diagram. The following legends elaborate all APP 
mutations with their names and the original papers.  
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APP is a type I transmembrane protein with a relatively large 

extracellular/luminal domain at the NH2 terminus and a short cytoplasmic 

domain at the COOH terminus (Fig 1.2).  During its transport from ER to 

plasma membrane, APP undergoes N- and O- glycosylation (Weidemann et al., 

1989). Further sulfation and phosphorylation take place at the late Golgi 

apparatus and at the plasma membrane (Hung and Selkoe, 1994, Suzuki et al., 

1994, Walter et al., 1997).  The majority of APP is detected in the Golgi, 

whereas the plasma membrane associated APP accounts for only 10% of the 

total APP protein (estimation based on overexpression experiment in cell 

culture); and from the plasma membrane, APP is rapidly undergoes internalized 

for following recycling and degradation (Sisodia, 1992) (Fig 1.3).  

 

 

Figure 1. 3 The intracellular APP Trafficking.  
Nascent wild type APP (black bars) undergoes multiple modifications in classical secretory 
pathway from ER to Golgi. Only a small proportion of APP is delivered to the plasma 
membrane to be processed by α-secretase. Some plasma membrane APP undergoes endocytosis 
where the β-cleavages occur. Aβ generation is believed to occur in endocytic organelles such as 
endosomes. Adapted from Thinakaran, 2006. 
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Since its discovery, multiple physiological functions have been linked to APP 

(Mattson, 1997); however, its specific role remains to be elucidated. We 

introduce three well-explored functions of APP here. Firstly, APP has been 

proposed to be a trophic molecule. Dating back to 1989, know-down of APP 

was linked to the slow growth of fibroblast induced by an antisense APP 

construct, which could be reversed by APP treatment (Saitoh et al., 1989).  

Later it was reported that APP promoted neuronal maturation (Hung et al., 1992) 

as the memory-enhancing effect of APP could be blocked by 

intracerebroventribular injection of anti-APP antibody in adult rats (Meziane et 

al., 1998). Subsequently, N-terminal residues 28-123 of APP were reported to 

display a similar structure as that of well-known cysteine-rich growth factors 

(Rossjohn et al., 1999).  The following studies specified that the trophic effect 

of APP was due to one of its secreted derivative—sAPPα. sAPPα was reported 

to have the ability to induce neuronal stem cells into astrocytes in vitro (Kwak 

et al., 2006). In the subventricular zone of adult mice brains, sAPPα, together 

with EGF, promoted the proliferation of EGF-responsive neural stem cells 

(Caille et al., 2004). Secondly, APP has been proposed to be a cell adhesion 

factor, which is reasonable since substrate adhesion has been involved in 

neurotrophic proliferation. A RHDS motif within the C-terminal of sAPP was 

found to contribute to cell adhesion function via integrin-like receptors and APP 

was required for the migration of neuronal precursors to the cortical plate 

(Ghiso et al., 1992, Yamazaki et al., 1997, Young-Pearse et al., 2007). Last but 

not least, APP has been proposed to be a cell-surface receptor. Both APP and 

Notch undergo the same γ-cleavage at the transmembrane domain to generate 

the APP intracellular domain (AICD) and the Notch intracellular domain 

(NICD), respectively. Considering the role of NICD in fundamental cell 

signaling, the function of AICD in cell signaling pathways has been well 
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explored but still lacks convincing support. Since AICD was found to form a 

transcriptionally active complex with Fe65 and Tip60 (Cao and Sudhof, 2001), 

several downstream candidate genes have been proposed: KAI1 (a tumor 

suppressor gene), neprilysin (a neutral endopeptidase with Aβ-degrading 

activity), LRP1, and the EGF receptor (Baek et al., 2002, Pardossi-Piquard et al., 

2005, Liu et al., 2007, Zhang et al., 2007b). Considering the various phenotypes 

of presenilin activity, it would be very interesting if AICD were really as 

transcriptionally active as NICD. However, all of these pathways still lack in 

vivo evidence.  

 

APP-deficient animals lack typical phenotype, unlike presenilin-deficient or 

Notch-deficient animals. APP-deficient mice only exhibited reactive gliosis and 

decreased locomotor activity (Zheng et al., 1995). The mild phonotype might be 

due to an overlapping effect of other two APP protein family members – 

APLP1 and APLP2. Aplp2-/Aplp1-, App- /Aplp2- double mutants and App- / 

Aplp1-/Aplp2- exhibited early postnatal lethality (Herms et al., 2004, Anliker 

and Muller, 2006). Further studies of these animals revealed that APP/APLP 

was specifically involved in synapse formation – reduction in apposition of pre- 

and postsynaptic elements of the junctional synapses; effect on active zone size, 

synaptic vesicle density, and number of docked vesicles per active zone; 

aberrant localization of the choline transporter at neuromuscular junctions 

(Wang et al., 2005, Yang et al., 2005, Wang et al., 2007).  

 

1.2.2  APP processing and Aβ generation. 

APP undergoes posttranslational proteolytic processing by α-, 

β- and γ-secretases (Fig 1.4). The majority of APP is constitutively processed in 
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the non-amyloidogenic pathway via α-secretase cleavage, which occurs inside 

the Aβ sequence to yield a secretory product, thereby precluding Aβ production 

(Esch et al., 1990).  In the amyloidogenic pathway, APP undergoes sequential 

cleavage by β- and γ-secretases to generate Aβ.  

 

 

Figure 1.4 APP processing pathways.  
Under physiological conditions, the majority of APP undergoes the non-amyloidogenic pathway. 
α-secretase processes APP within the Aβ domain. This cleavage abolishes Aβ generation and 
produces C83 fragments. Predominant β-scretase processes APP at the Glu-11 site to generate 
C89 fragments as the major product.  In the amyloidogenic pathway, β-scretase processes APP 
at the Asp-1 site to generate C99 fragments, which become the substrate to γ-scretase for Aβ 
generation. The cleavage sites for each α-, β- and γ-secretase are indicated.  

 

A transmembrane aspartic protease BACE1 was identified as β-secretase 

(Hussain et al., 1999, Sinha et al., 1999, Vassar et al., 1999, Yan et al., 1999), 

which processes APP at Asp+1 and Glu+11 of the Aβ domain, to generate a 

major product C89 and a minor product C99 fragment (Vassar et al., 1999, Li et 

al., 2006). The C99 fragment is further processed by γ-secretase at the 
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intramembrane Val-40 and Ala-42 sites to generate Aβ40 and Aβ42 (De 

Strooper et al., 1998, Yu et al., 2000b, Francis et al., 2002a, Goutte et al., 

2002a, Edbauer et al., 2003b, Kimberly et al., 2003b, Takasugi et al., 2003) (Fig 

1.5). 

 

 

Figure 1.5 Amyloid beta protein (Aβ).  
Amyloid beta protein (Aβ) is a peptide of 36–43 amino acids that has been processed from APP. 
The most common forms of Aβ are Aβ40 and Aβ42, both of which are the γ-cleavage product 
of APP C99 fragment. Aβ40 is the major γ-secretase product of C99, whereas Aβ42 is the 
predominant component of neuritic plaques. Numerous mutations in APP and PS genes 
contribute to AD pathogenesis by affecting the production of Aβ or the aggregation property of 
Aβ. 
 

Amyloid plaques consist of insoluble fibrous Aβ aggregates characterized by a 

cross-beta sheet quaternary structure and typically identified histologically by a 

change in the fluorescence intensity of planar aromatic dyes such as thioflavin T 

or Congo red. Aβ was a typical amyloid protein and was first purified from 
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twisted beta-pleated sheet fibrils in cerebrovascular amyloidosis in AD-

associated amyloid plaques (Glenner and Wong, 1984a,b); and this 4.2-kDa 

peptide, 40 or 42 amino acids in length, was speculated to have come from a 

larger precursor. In 1987, a full length APP with 695 residues was cloned, 

containing the amyloid β sequence, which encompassed 28 amino acids of the 

ectodomain and 11 to 14 amino acids of the transmembrane domain of APP 

(Kang et al., 1987, Podlisny et al., 1987, Robakis et al., 1987, Tanzi et al., 1987) 

Aβ is the direct product of C99 fragment of APP derived from a sequential 

proteolytic cleavage of APP in the amyloidogenic pathway (Fig 1.4 and Fig 

1.5). Aβ can exist in various assembly states, including monomers, dimers, 

trimers, tetramers, dodecamers, higher-order oligomers and protofibrils, as well 

as mature fibrils, which can form microscopically-visible amyloid plaques in 

brain tissues (Glabe, 2008). Recent studies suggest that it is Aβ oligomers rather 

than fibrils or deposits that initiate the abnormalities in synaptic functions and 

neural network activity (Cleary et al., 2005a, Lesne et al., 2006, Cheng et al., 

2007, Shankar et al., 2007, Selkoe, 2008, Shankar et al., 2008b, Tomiyama et 

al., 2010). Even though the preparations of Aβ in these studies were not strictly 

comparable, the essential role of Aβ oligomers in the amyloid cascade 

hypothesis could be implicated. 

 

1.2.3  Aβ — A two-edged sword: physiological and pathological roles. 

Aβ could be detected in the CSF of normal individuals and in neuron culture 

media (Haass et al., 1992, Tamaoka et al., 1997), indicating a physiological role 

of Aβ in the central nervous system. Studies on primary neurons suggested that 

the inhibition of endogenous Aβ production increases neuronal cell death, 

which could be mitigated by the addition of physiological level (pM) of Aβ40 



 
General introduction 

20 
 
 
 
 

  

but not other forms of Aβ (Plant et al., 2003).  Moreover, the production of Aβ 

and its extracellular secretion are strictly regulated by neuronal activity both in 

vitro and in vivo (Kamenetz et al., 2003, Cirrito et al., 2005).  Increased 

neuronal activity promotes Aβ generation and Aβ in turn negatively regulates 

neuronal activity to stabilize hyperactive neurons (Kamenetz et al., 2003). This 

synaptic activity-dependent modulation of Aβ production was mediated by 

clathrin-dependent endocytosis of surface APP at presynaptic terminals, 

endosomal proteolytic cleavage of APP, and Aβ release at synaptic terminals 

(Cirrito et al., 2005). These findings supported the notion that Aβ 

physiologically takes part in the neuronal function.  

 

Another edge of the “Aβ sword” is the contribution of Aβ to AD pathogenesis. 

As discussed in the last section, Aβ oligomers, but not amyloid plaques, are 

believed to be the culprit in AD. Excessive Aβ production promotes LTD-

induced postsynaptic depression and loss of dendritic spines (Snyder et al., 

2005, Shankar et al., 2007, Li et al., 2009), induces glutamatergic synaptic 

transmission and causes synaptic loss (Hsia et al., 1999, Mucke et al., 2000, 

Walsh et al., 2002). Considering that synaptic loss is one of pathological 

features of AD and is well correlated with cognitive decline (DeKosky and 

Scheff, 1990), the toxic effect of Aβ oligomers on synapse could be the 

fundamental basis of AD pathogenesis. A working model to fit both 

physiological and pathological roles of Aβ was proposed by Palop &Mucke 

(Palop and Mucke, 2010) (Fig 1.6). This model elaborated on how Aβ directly 

elicited synaptic damage downstream of the amyloid cascade hypothesis, and 

emphasized that maintaining a delicate balance of Aβ is crucial in having 
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functional neural network. 

 

Figure 1. 6 Aβ  in Synaptic modulation.  
Hypothetical relationship between Aβ level and synaptic activity. Intermediate levels of Aβ 
enhance synaptic activity presynaptically, whereas abnormally high or low levels of Aβ impair 
synaptic activity by inducing postsynaptic depression or reducing presynaptic efficacy, 
respectively. Adapted from Palop and Mucke, 2010. 

 

1.2.4  Aβ oligomer and the toxicity. 

The central role of Aβ in AD pathogenesis is unequivocal, however, the 

mechanism underlying the toxicity of Aβ is still in debate. First and foremost, 

what is the real toxic substance: the plaques or other substance undiscovered? 

Given the poor correlation of plaques and the cognitive impairment in AD 

patients, researchers propose that the Aβ oligomers may be the long-term-

searching toxic substance of Aβ. Back in 1991, it had been found that in vitro 

Aβ monomer could be converted into toxic oligomers in buffer (Pike et al., 

1991). However, until now, the terminology of the toxic Aβ oligomer has been 

still ambiguous and lack of accurate definition.  The Aβ oligomers are prepared 

either in in vitro buffer or derived directly from brain extract via various 
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methods. The various procedures in the preparation or extraction result in 

various forms of Aβ oligomers: Aβ-derived diffusible ligands (ADDL), Aβ*56, 

AβO, annular protofibrils (APF), SDS-stable dimers and trimers, SDS-stable 

amylospheroid (ASPD) (Lambert et al., 1998, Walsh et al., 2002, Kayed et al., 

2003, Cleary et al., 2005b, Lesne et al., 2006, Shankar et al., 2008a, Noguchi et 

al., 2009, Lasagna-Reeves et al., 2011). The biological effects of these 

oligomers include LTP impairment, NMDAR-dependent synaptotoxicity, 

increased tau phosphorylation, disturbance in Ca2+ hemostasis, NMDAR-

independent cytotoxicity in primary neurons and cognitive impairment in mice 

(Walsh et al., 2002, Hoshi et al., 2003, Cleary et al., 2005b, Demuro et al., 

2005, Lesne et al., 2006, Shankar et al., 2008a, Zempel et al., 2010).  It should 

be clarified that the so-named SDS-resistant Aβ oligomers, which are 

frequently used in most of related literature, are quite confusing. It has been 

proven that SDS itself could induce the formation of oligomers, thus SDS-

involved method is not reliable to distinguish and analyze different forms of 

oligomers (Bitan et al., 2005, Hepler et al., 2006). Last but not the least, it 

should be bear in mind that a dynamic equilibrium is eternal between the 

amyloid plaques and Aβ oligomers. With the deep exploration, it would be 

more clear about the relationship between these two and which is the real toxic 

substance or the toxic group in AD pathogenesis (Benilova et al., 2012).  

 

1.3 BACE1 and β-secretase in Alzheimer’s disease. 

Beta-site APP-cleaving enzyme 1 (BACE1) has been identified as the β-

secretase that produces C99, the direct precursor of Aβ (Hussain et al., 1999, 

Sinha et al., 1999, Vassar et al., 1999, Yan et al., 1999). BACE2 is the homolog 

of BACE1 (Saunders et al., 1999, Yan et al., 1999, Sun et al., 2005). Despite 
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about 45% homologous sequence, BACE2 has distinct transcriptional 

regulation and functions compared with BACE1. BACE2 is not β-secretase; 

rather, it is a novel θ-secretase that cleaves APP within the Aβ sequence at 

Phe20 θ site, further downstream of the Leu17 α-secretase cleavage site and thus 

precludes the amyloid pathway (Sun et al., 2006b). BACE1 gene is located on 

chromosome 11q23.3, and codes for a type I membrane-associated aspartyl 

protease with 501 amino acids. As a low abundance protein, BACE1 is 

expressed in relatively high levels in the brain and pancreas (Vassar et al., 1999, 

Marcinkiewicz and Seidah, 2000). BACE1 pre-mRNA undergoes complex 

alternative splicing, resulting in various isoforms that contribute to the different 

BACE1 activities in the brain and pancreas (Mowrer and Wolfe, 2008). 

BACE1-501 is the major isoform with the highest β-secretase activity and 

mainly localizes in the endosome and the Golgi network (Vassar et al., 1999, 

Bodendorf et al., 2001, Tanahashi and Tabira, 2001, Ehehalt et al., 2002). Post-

translational modifications are necessary for BACE1 protein maturation and 

activity.  After removal of the N-terminal pro-peptide in the trans-Golgi 

network, which is the hallmark of BACE1 maturation (Bennett et al., 2000, 

Capell et al., 2000, Creemers et al., 2001), BACE1 is further glycosylated at 

Asn -153, -172, -223 and -354 (Capell et al., 2000, Haniu et al., 2000, Huse and 

Doms, 2000).  

 

1.3.1  Tight regulation of BACE1 gene expression.  

Tightly controlled BACE1 gene expression plays an essential role in regulating 

APP processing pathways. Under physiological conditions, only a minority of 

APP undergoes β-secretase cleavage and a very small amount of Aβ is 

produced. Unlike the robust expression of APP and Presenilin in neuronal and 
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non-neuronal cells driven by a strong housekeeping gene-like promoter (Song 

and Lahiri, 1998a, b), BACE1 gene transcription was markedly lower, resulting 

from weak BACE1 promoter activity (Li et al., 2006). In addition, at the 

translation initiation level, multiple ATGs in the 5’untranslated region (UTR) of 

BACE1 gene are shown to suppress its translation initiation (Rogers et al., 

2004).  As well leaky scanning and reinitiating mechanism are found to be 

involved in the inhibition of the physiological fourth AUG-initiated BACE1 

translation (Zhou and Song, 2006). Taken together, a weak promoter and 

suppression of translation initiation synergistically result in weak BACE1 

protein expression in normal conditions. Considering the relatively robust APP 

and Presenilin expression, BACE1 could be viewed as a rate-limiting enzyme in 

the APP amyloidogenic pathway and limited BACE gene expression is 

responsible for the small amount of Aβ production under physiological 

conditions.  

 

BACE1 gene expression is up-regulated in AD. The human BACE1 gene 

promoter region contains a set of putative transcription factor-binding sites, 

including GC box, HSF-1, PU-box, AP1, AP2, lymphokine response element, 

nuclear factor-kappa B (NF-κB) p65 and hypoxia-inducible factor 1 (Hif-1) 

(Christensen et al., 2004, Ge et al., 2004, Sun et al., 2006a, Chen et al., 2011). 

Later in vitro and in vivo studies validate that hypoxia could up-regulate 

BACE1 expression by acting on the Hif-1 response element in its promoter 

region (Sun et al., 2006a, Xue et al., 2006, Zhang et al., 2007a), and hypoxia 

treatment significantly promoted neuritic plaque formation as well as memory 

impairment in APP transgenic mice (Sun et al., 2006a). In summary, mounting 

evidence points to BACE1 being the rate-limiting factor in the Aβ production 
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pathway, including the tight control of BACE1 gene expression on different 

levels and the existence of multiple influencing factors like Hif-1 in hypoxia. 

As a β-secretase product and the immediate substrate of Aβ, the yield of C99 

was strictly regulated to prevent Aβ generation and the resulting AD 

pathogenesis under normal conditions. 

 

1.3.2  BACE1 processes APP at major Glu-11 and minor Asp-1 sites.  

BACE1 processes APP at two sites – Glu-11 and Asp-1 (numbering according 

to the Aβ sequence), to generate C89 and C99 respectively (Vassar et al., 1999, 

Li et al., 2006).  Further processing of C89 in the transmembrane region by γ-

secretase leads to a truncated Aβ with 30-32 amino acids; whereas C99 is the 

immediate substrate for Aβ generation. Any factors, facilitating C99 

production, will promote Aβ generation and promote amyloidogenic 

pathogenesis, according to the “Amyloid hypothesis” (Fig 1.5).  

 

Any factor that increases general BACE1 activity or shifts cleavage from Glu-

11 to Asp-1 site could contribute to Aβ generation and amyloid pathogenesis 

(Deng et al., 2013). As discussed in the last section, the expression of BACE1 is 

under strict regulation at both the transcriptional and translational levels, which 

results in the majority of APP being processed by α-secretase in the non-

amyloidogenic pathway under normal conditions (Esch et al., 1990, Oltersdorf 

et al., 1990, Sisodia et al., 1990). Under pathogenic conditions where the 

expression of BACE1 is up-regulated even slightly, a significant proportion of 

APP processing will be shifted to the amyloidogenic pathway.  It was 
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documented that the activity of BACE1 increased with aging (Russo et al., 

2000, Fukumoto et al., 2002, Holsinger et al., 2002, Yang et al., 2003, 

Fukumoto et al., 2004). Previous studies of our laboratories demonstrated that 

BACE1 expression could be modulated by hypoxia, consistent with the 

observation of the increased BACE1 levels in sporadic AD (Sun et al., 2006a). 

In the case of Down syndrome, BACE1 level is up-regulated by abnormal 

trafficking and maturation (Sun et al., 2006c).  In another scenario, any factors 

shifting the β-cleavage site from Glu-11 to Asp-1 would also contribute to AD 

pathogenesis. Recently our laboratories demonstrated that Glu-11 was the major 

cleavage site of BACE1 in wild type APP with C89 as the predominant product, 

whereas the major cleavage site of BACE1 in Swedish APP mutant was Asp-1 

with C99 as the predominant product (Deng et al., 2013). Clearly, Swedish APP 

contributed to AD pathogenesis by shifting the β-cleavage site from Glu-11 to 

Asp-1. The underlying mechanism of the shift in cleavage sites was unknown.  

 

1.3.3  BACE1 and AD therapy. 

BACE1 has been the therapeutic target of AD since its discovery. Unlike the 

embryonic lethal phenotype of Presenilin -/- mice, BACE1-/- mice were viable 

and fertile (Luo et al., 2001, Roberds et al., 2001); however, knocking out 

BACE1 induces hypomyelination in both of the central and peripheral nervous 

systems (Willem et al., 2006, Hu et al., 2008). Apart from APP, BACE1 has 

other substrates with important functions, including Neuregulin1/3(Willem et 

al., 2006, Hu et al., 2008), sodium channel Nav1.1 b2 subunit (Wong et al., 

2005, Kim et al., 2007), low density lipoprotein receptor related protein (LRP) 

(von Arnim et al., 2005), interleukin-1 receptor II (Kuhn et al., 2007) and APP-

like proteins 1 and 2 (APLP1/APLP2) (Eggert et al., 2004, Li and Sudhof, 2004, 



 
General introduction 

27 
 
 
 
 

  

Pastorino et al., 2004). Aβ is produced under normal conditions at low amounts 

(Haass et al., 1992, Tamaoka et al., 1997), indicating a physiological role of Aβ 

in the central nervous system. Thereby, the application of BACE1 inhibitor to 

treat AD could have side effects, including hypomyelination, behavioral 

abnormalities and others. Another alternative for BACE1 manipulation is to 

regulate its preferential cleavage site. Since the Swedish APP mutation changes 

the major β-cleavage site in APP from Glu-11 to Asp-1 with predominant C99 

fragment generation, it is possible to regulate the major cleavage site of 

BACE1. In chapter 2, we will determine the effect of a recessive APP mutation 

on the preferential cleavage of β-secretase and explore the underlying 

mechanism.  

 

1.4 γ-secretase complex.  

γ-secretase originally is known as the enzyme responsible for the last step of Aβ 

generation (Selkoe et al., 1996). γ-cleavage takes place within the hydrophobic 

transmembrane domain (TMD), and this process is termed regulated 

intramembrane proteolysis (RIP) (Brown et al., 2000). The first molecule, 

which was discovered to possess γ-secretase activity, was presenilin (PS1 and 

PS2), first cloned in 1995 through positional cloning strategies in FAD kindred 

(Levy-Lahad et al., 1995a, Rogaev et al., 1995, Sherrington et al., 1995). In 

1998, De Strooper and colleagues discovered that PS1 knockout mice showed a 

markedly reduced activity in γ-secretase cleavage of APP (De Strooper et al., 

1998) and parallel studies confirmed a complete elimination of γ-secretase 

activity in PS1/PS2 knockout cell (Herreman et al., 2000, Zhang et al., 2000a), 

establishing the γ-secretase activity of presenilins.  
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1.4.1  Presenilins. 

Presenilins have two homologs, PS1 and PS2, with 67% identical sequences 

(Levy-Lahad et al., 1995a). mRNA of both presenilins is ubiquitously detected 

in many human and mouse tissues, including brain, heart, kidney and muscle 

(Lee et al., 1996). PS1 and PS2 are highly conserved and functionally redundant 

with SEL-12 as their homolog in Caenorhabditis elegans (Levitan and 

Greenwald, 1995). 

 

PS1 is a multi-transmembrane protein with a nine-transmembrane topology 

(Fig.1.7) (Laudon et al., 2005, Spasic et al., 2006), and is abundantly present in 

the ER and trans-Golgi network (Walter et al., 1996, Culvenor et al., 1997, 

Annaert et al., 1999, Kim et al., 2000). Under physiological conditions, the 

majority of PS1 undergoes endoproteolysis within a large hydrophobic loop on 

the cytoplasmic side to generate a N-terminal fragment (NTF) and a C-terminal 

fragment (CTF) (Thinakaran et al., 1996a).  The endoproteolytic cleavage takes 

place at heterogeneous sites from amino acids 292 to 299 (Podlisny et al., 1997, 

Shirotani et al., 1997, Jacobsen et al., 1999). While some studies reported that 

the cleavage is performed by an independent protease known as the 

“presenilinase” (Campbell et al., 2003, Nyabi et al., 2003), growing evidence 

supports the hypothesis that presenilin undergoes autoendoproteolysis (Wolfe et 

al., 1999b, Edbauer et al., 2003a, Xia, 2003, 2008, Ahn et al., 2010b, Fukumori 

et al., 2010). Endoproteolysis might be important to activate γ-secretase by 

converting it to a presenilin NTF/CTF heterodimer via removing the auto-

inhibitory effect of the large hydrophobic loop (Knappenberger et al., 2004, 

Fukumori et al., 2010). However, it is not clear whether endoproteolysis is an 

absolute requirement for presenilins maturation since some presenilin mutants 
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were enzymatically active in the absence of endoproteolysis, as are the cases in 

FAD-associated PS1ΔE9 and PS2 M292D (Jacobsen et al., 1999, Steiner et al., 

1999).  

 

Figure 1.7 Presenilin 1 structure.  
This diagram shows the amino acid sequence of PS1 and the distribution of FAD-associated 
mutations. Blue circles represent the FAD-associated mutations and red circles represent the two 
catalytic active aspartates. 

 

The most outstanding function of presenilins is the processing of numerous type 

I transmembrane proteins within the intramembrane domain as a component of 

γ-secretase (Wakabayashi and De Strooper, 2008).  Corresponding to its γ-

secretase function, most FAD-associated PS mutations have been reported to 

result in increased level of the more hydrophobic Aβ species — Aβ 42 either in 

patients’ plasma samples or the fibroblasts derived from FAD patients 

(Scheuner et al., 1996). Besides, substantiating evidence suggested that 

presenilins were involved in multiple functions independent of its γ-secretase 
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activity: presenilins were involved in β-catenin regulation via interacting with 

and stabilizing β-catenin (Zhang et al., 1998, Yu et al., 2000a, Meredith et al., 

2002); presenilins regulated protein trafficking and turnover by targeting 

proteins such as β1-integrins (Zou et al., 2008),  telencephalin (Esselens et al., 

2004), epidermal growth factor receptor (Repetto et al., 2007), via defective 

protein-degradation organelles like endosomes or via the lysosome-autophagy 

pathway(Lee et al., 2010, Jang et al., 2011, Zhang et al., 2012); presenilins took 

part in calcium homeostasis of ER via debatable mechanisms such as regulating 

the ER calcium release channels like inositol 1,4,5-trisphosphate receptor (IP3R) 

(Kasri et al., 2006, Cheung et al., 2008) and ryanodine receptor (RyR) (Chan et 

al., 2000), stimulating the sarcoendoplasmic reticulum calcium APTase 

(SERCA) and acting as ER low-conductance calcium leaking channels for ER 

to maintain the normal function of ER (Tu et al., 2006, Nelson et al., 2007); last 

but not least, presenilins were recently found to regulate neurotransmitter 

release via a proposed effect on calcium homeostasis (Zhang et al., 2009, Pratt 

et al., 2011). 

 

1.4.2  γ-Secretase complex assembly. 

γ-secretase is essential for the cleavage of APP C99 to generate Aβ (Scheuner et 

al., 1996). γ-secretase is a multi-unit enzymatic complex, including presenilin 

NTF/CTF heterodimer, nicastrin, Aph-1 and Pen-2 (Yu et al., 2000b, Francis et 

al., 2002b, Goutte et al., 2002b, Edbauer et al., 2003a, Kimberly et al., 2003a, 

Takasugi et al., 2003). Presenilin was the first molecule identified to be 

associated with γ-secretase in vivo and in vitro. PS1 knockout-out mice 

displayed a markedly reduced amount of γ-cleavage of APP (De Strooper et al., 

1998) and double knockout of PS1 and PS2 in mice completely abolished γ-
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secretase activity (Herreman et al., 2000, Zhang et al., 2000a). Using anti-PS 

antibody, Yu et al identified nicastrin, an integral transmembrane protein with a 

large N-terminal domain, as the second γ-secretase component (Yu et al., 

2000b). However, the expression of both presenilins and nicastrin does not 

suffice to restore γ-secretase activity, indicating the existence of other 

components. Further gene-screening studies on the glp-1 (Notch homolog) 

deficient phenotype of C.elegans discovered Aph-1 and Pen-2 as the third and 

fourth components of γ-secretase (Francis et al., 2002a, Goutte et al., 2002a). 

Mammalian Aph-1 is a 30kDa multi-transmembrane protein similar to 

presenilin, whereas mammalian Pen-2 is a 12kDa hairpin-like transmembrane 

protein. Co-expression of presenilin, Aph-1, Pen-2 and nicastrin increases γ-

secretase activity in transfected cells and the four proteins together are 

sufficient to reconstitute γ-secretase activity in yeast (Kimberly et al., 2003b, 

Luo et al., 2003).  

 

Previous studies demonstrated that the minimal molecular weight of the γ-

secretase complex was around 200-250 kDa, implying that a 1:1:1:1 

stoichiometry of PS/Nicastrin/Aph-1/Pen-2 is present in the γ-secretase 

complex (Kimberly et al., 2003b). Though it is widely accepted that all four 

molecules form the minimal γ-secretase complex assembly, a recent report 

suggested that a PS/Pen-2/Aph-1 complex is sufficient for the catalytic activity 

in the absence of Nicastrin (Zhao et al., 2010). Another study demonstrated that 

PS1ΔE9 alone had partial γ-secretase activity and PS1ΔE9/Pen-2 was sufficient 

to restore full γ-secretase activity (Ahn et al., 2010a). These studies highlight 

the complexity of γ-secretase complex assembly. Given the stoichiometry of the 
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γ-secretase complex and the existence of PS and Aph-1 homologs, there are at 

least six different forms of the γ-secretase complex that could be assembled 

(Shirotani et al., 2004, Shirotani et al., 2007). PS1-involved complex or PS2-

involved complex processed APP C99 differentially and showed distinct 

susceptibility to certain γ-secretase inhibitors (Mastrangelo et al., 2005, 

Bentahir et al., 2006), indicating that different γ-secretase complexes could 

possibly have very distinct functions.  

 

1.4.3  Structure of γ-Secretase complex. 

Presenilins form the catalytic core of the γ-secretase complex. Presenilins and 

signal peptides peptidases (SPPs), both belong to aspartyl intramembrane 

cleaving proteases (I-CLiPs) (Wolfe and Kopan, 2004). The two catalytic 

aspartate residues (Asp257 in transmembrane 6 (TM6) and Asp385 in TM7) are 

located at NTF and CTF of presenilins, respectively. Mutations in either two 

aspartates could abolish the enzymatic activity of the γ-secretase complex 

(Wolfe et al., 1999b). With a large and highly glycosylated ectodomain, 

nicastrin has been implicated as a site for the initial recognition of substrates 

(Shah et al., 2005). Electronic microscopic analysis and single particle imaging 

of γ-secretase revealed the existence of an intramembrane water-accessible 

cylindrical chamber in γ-secretase with a low-density cavity on the extracellular 

side (Lazarov et al., 2006, Osenkowski et al., 2009). Parallel substituted 

cysteine accessible method (SCAM) and cross-link experiments confirmed that 

TM6, TM7 and TM9 of PS formed the intramembrane chamber with two 

catalytic aspartates residing oppositely on TM6 and TM7, respectively (Fig.1.8) 

(Sato et al., 2006b, Tolia et al., 2006b, Sato et al., 2008b, Takagi et al., 2010, 

Watanabe et al., 2010). Constitutive autoendoproteolysis of PS removes the 
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inhibitory allosteric effect of the large hydrophobic loop in the catalytic 

chamber of PS, thereby eliminating the loop’s inhibitory allosteric effect 

(Knappenberger et al., 2004, Fukumori et al., 2010). γ-secretase components 

directly interacted with one another (Kaether et al., 2004, Steiner et al., 2008), 

where Nct/Aph-1 subunits and Pen-2 tightened the relatively loose PS 

TM6/TM7/TM9 intramembrane cavity, and rearrange the PALP motif of TM9 

such that it is closer to the catalytic center to render the enzyme activity to the 

γ-secretase (Takeo et al., 2012) (Fig.1.8).  

 

Figure 1.8 γ-secretase complex and formation of the catalytic pore of PS1. 
PS1 TMDs were shown as columns with numbers. Without any subunits, PS forms a relatively 
open pore structure within the membrane. Upon the binding of other subunits, the catalytic 
structure is activated by the structural changes of PS TMDs, and the PALP motif moves to the 
proximity to the catalytic center. Two stars represent the two catalytic aspartate residues: Asp257 
and Asp385. 

 

Recently, Shi and coworkers reported the crystal structure of a presenilin/SPP 

homologue (PSH) from the archaeon Methanoculleus marisnigri JR1 and 

predicted the structure of presenilin based on the conserved sequence between 

the two homologues (Li et al., 2013). They confirmed the existence of the water 

permissible cavity but also revealed some differences in TM7 and TM9 

compared with the NMR structure of PS1 CTF. The elegant work by Shi and 
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his team has shed light on the elucidation of the crystal structure of presenilins.   

 

1.4.4  APP and Notch as classical substrates. 

γ-secretase preferentially processes the type I integral membrane protein after  

the shedding of the ectodomain (Struhl and Adachi, 2000). It is intriguing that 

many of γ-secretase’s classical substrates also participate in multiple signaling 

pathways, such as cell adhesion and migration, neuritis outgrowth and synapse 

formation, and many of these events are often disrupted during AD 

pathogenesis (Bossy-Wetzel et al., 2004).  Over 80 substrates have been linked 

to γ-secretase, including APP, Notch, neuregulin, ErbB4, E-cadherins and N-

cadherins, CD44 and growth hormone receptor (Song et al., 1999b, Zhang et al., 

2000b, Ni et al., 2001, Kim et al., 2002, Lammich et al., 2002, Marambaud et 

al., 2002, May et al., 2002, Marambaud et al., 2003, Haapasalo and Kovacs, 

2011).  

 

APP and Notch are the two most well known γ-secretase substrates. γ-secretase 

was named for its ability to process APP at the γ-cleavage site to generate Aβ, 

which is currently believed to play an essential role in the “amyloid cascades” 

during AD pathogenesis. Notch is a type I transmembrane cell surface receptor 

that mediates cell fate decisions in both vertebrates and invertebrates 

(Artavanis-Tsakonas et al., 1995, Kopan et al., 1996). After being cleaved by 

furin, cell surface Notch receptors bind to the DSL (Delta/Serrate/LAG-2) 

family ligands on the surface of neighboring cells, and the transmembrane-

intracellular fragment of Notch undergoes further proteolysis to release the 
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Notch intracellular domain (NICD) from the membrane to the nucleus to 

activate target genes (Struhl et al., 1993, Kidd et al., 1998). Presenilin has been 

shown to play an important role in Notch signaling. PS-deficient mice with a 

disruption of PS genes exhibit Notch-knockout phenotype (Shen et al., 1997, 

Wong et al., 1997). Knocking-out of PS abolishes intramembrane γ-secretase 

cleavage of Notch to release NICD (De Strooper et al., 1999, Song et al., 1999a, 

Zhang et al., 2000a) and FAD-associated PS mutations impair NICD generation 

(Song et al., 1999a). Although impaired Notch-signaling is involved in synaptic 

plasticity and late-onset cognitive decline (Sestan et al., 1999, Presente et al., 

2001, Presente et al., 2002, Wang et al., 2004, Salama-Cohen et al., 2006), the 

contribution of Notch signaling to AD pathogenesis remain to be elucidated.  

 

1.4.5  γ-secretase cleavages at ε-site and γ-site. 

γ-secretase can process substrates at multiple cleavage sites.  γ-secretase cleaves 

the transmembrane domain of APP at two positions: the γ-site to generate Aβ 

and the downstream ε-site to produce the APP intracellular domain (AICD) 

(Weidemann et al., 2002) . Cleavage at the γ-site is heterogeneous, producing 

Aβ of 39-43 residues, whereas cutting at the ε-site produces almost exclusively 

a 50-residue AICD. The same phenomenon occurs in Notch processing, 

involving heterogeneous cleavages at the S4 site (γ-site) to generate Nβ, and 

homogeneous cleavage at the S3 site (ε-site) to generate NICD (Okochi et al., 

2002).  Recent studies supported that ε-cleavage occurs prior to γ-cleavage (Qi-

Takahara et al., 2005a, Sato et al., 2005, Kakuda et al., 2006). Qi-Takahara and 

colleagues were the first to detect the Aβ49, the proteolytic counterpart to 

AICD50-99 (Qi-Takahara et al., 2005a). Subsequently, the same group 

demonstrated that ε-cleavage occurs first to produce Aβ48 and Aβ49 for γ-
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cleavage later, based on the presence of the induction period for the generation 

of tripeptides/tetrapeptides detected by liquid chromatography tandem mass 

spectrometry (LC-MS/MS) in a cell-free γ-secretase system (Takami et al., 

2009). Meanwhile, various Aβ species (ranging from 49- to 40-amino acids) 

and corresponding tripeptides released from the trimming procedure have been 

identified using LC-MS/MS, confirming the sequential cleavage by γ-secretase 

at the ε-site then the γ-site (Funamoto et al., 2004, Qi-Takahara et al., 2005a, 

Takami et al., 2009).  

 

1.4.6  γ-secretase inhibitors (GSIs) and modulators (GSMs).  

As γ-secretase is the essential enzyme to generate Aβ, γ-secretase inhibitors has 

always been a popular research target for the potential treatment of AD. The 

development of γ-secretase inhibitor had started before the discovery of γ-

secretase, and the first inhibitor turned out to be the aspartyl protease inhibitor 

(Higaki et al., 1995, Wolfe et al., 1998, Wolfe et al., 1999a). Since then several 

classes of γ-secretase inhibitors have been developed: the transition-stage 

analog inhibitor of aspartyl proteases with L-685,458 as representative (Li et al., 

2000, Shearman et al., 2000); a substrate-based helical peptide GSI with D-

peptide and L-peptide as representative (Das et al., 2003, Bihel et al., 2004); 

helical peptide type γ-secretase inhibitors with DAPT and Compound E as 

representatives (Seiffert et al., 2000, Dovey et al., 2001). The major challenge 

faced in the development of γ-secretase inhibitors is how to circumvent its 

inhibitory effect on the Notch signaling pathway.  In vivo studies have 

demonstrated that GSIs lead to toxicity due to impairment in Notch signaling, 

including gastrointestinal bleeding and immunosuppression (Searfoss et al., 

2003, Wong et al., 2004). Semigacestat (LY-450,139), which was a compound 
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modified from compound E, had failed in Phase III clinical trials because of 

causing severe gastrointestinal toxicity, immunnomodulation and skin cancer.   

 

Thus, γ-secretase modulators (GSMs) have attracted interest due to its Notch-

sparing ability. One typical category is a subset of NSAIDs (non-steroid anti-

inflammatory drug), including ibuprofen, sulindac sulfide and indomethacin. 

They selectively lower Aβ42 without affecting the ε-cleavage, in other words, 

sparing the NICD generation (Weggen et al., 2001). However, not all NSAIDs 

could be pharmaceutically categorized as GSMs because their GSM functions 

do not appear to be relevant to cyclooxygenase property (Peretto et al., 2005) 

and the underlying mechanism remains unclear. Another category of potential 

GSMs, specifically regulating APP processing but not Notch (Gleeve), is ATP 

and other nucleotides and γ-secretase activating protein (GSAP) (Netzer et al., 

2003, Fraering et al., 2005, He et al., 2010). These studies point to the possible 

existence of an allosteric site in γ-secretase that allows small molecules to 

regulate substrate selectivity. However, no γ-secretase inhibitors have been 

proven safe for clinical use so far. The essential issue is the lack of a precise 

structure of the γ-secretase complex and a precise working model that can 

determine substrate selectivity.  

 

1.5 Familial Alzheimer’s disease (FAD)-associated mutations. 

Genetically, there are four known genes associated with AD pathogenesis: APP, 

PS1, PS2 and APOE. Apart from APOE, whose polymorphism (APOE ε4) is 

established as a genetic risk factor for sporadic late-onset AD, mutations in the 
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other three genes are linked to early-onset FAD with an autosomal-dominant 

inheritance pattern. Although more than 95% of AD cases are sporadic form, 

progress on AD etiology has mainly come from the genetic studies of FAD- 

associated mutations. 

1.5.1  FAD-associated APP mutations. 

APP was first linked to familial Alzheimer’s disease (FAD) via Down 

Syndrome (DS), because APP was located in chromosome 21 and the genetic 

deficit of Down syndrome, also known as Trisomy 21, was due to the presence 

of an extra copy of chromosome 21(Glenner and Wong, 1984a).  DS patients 

often develop characteristic AD symptoms and neuropathological features later 

in life.  Although changes such as enhanced BACE1 maturation (Podlisny et al., 

1987, Sun et al., 2006c) have been found in DS and may have contributed to 

amyloid pathogenesis in Down syndrome, the presence of an extra copy of APP 

gene per se may be the biggest risk factor for DS. Later studies verified that 

APP gene locus duplication and missense mutation resulted in an autosomal-

dominant form of FAD (Podlisny et al., 1987, Goate et al., 1991, Rovelet-

Lecrux et al., 2006b, Sleegers et al., 2006b). To date, there are more than 30 

APP point mutations discovered on 17 amino acid sites (Fig 1.2). APP 

mutations promote AD pathogenesis via affecting APP processing or altering 

the aggregation property of Aβ  (AD Mutations Database, Table 1.2).  
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 Table 1.2 Summary of FAD-associated mutations in APP gene. 
 

The age of onset of FAD-associated APP mutations varies from early 40s to 

early 60s (Roks et al., 2000, Grabowski et al., 2001). It was reported that the 

polymorphism on the APOE gene contributed to the variation of age of onset in 

FAD (St George-Hyslop et al., 1994). Cerebral amyloid angiopathy and seizure 

are the two most varied features of FAD-associated APP mutations. The most 

remarkable clinical feature of APP mutations is the high incidence of cerebral 

amyloid angiopathy (CAA) (Van Broeckhoven et al., 1990, Rovelet-Lecrux et 

al., 2006a). CAA is often correlated with cerebral hemorrhage, stroke-like 

events, seizure and leukoencephalopathy, which are the cardinal clinical 

phenotypes of FAD caused by APP mutation (Van Broeckhoven et al., 1990, 

Grabowski et al., 2001, Sleegers et al., 2006a, Basun et al., 2008).  
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1.5.2  FAD-associated PS1 mutations. 

Linkage studies indicated that FAD also segregated with chromosome 14 

(Mullan et al., 1992b, Schellenberg et al., 1992, St George-Hyslop et al., 1992, 

Van Broeckhoven et al., 1992) and chromosome 1 (Levy-Lahad et al., 1995b). 

PS1 and PS2 are identified as the causative genes, which are located in 

chromosome 14 and chromosome 1, respectively (Levy-Lahad et al, 1995; 

Rogaev et al, 1995; Sherrington et al, 1995).  Since then, more than 170 familial 

AD-related mutations in PS1 and 14 mutations in PS2 genes have been 

identified (AD Mutations Database).  

 

FAD-associated presenilin mutations result in typical AD, where the clinical 

and pathological features are indistinguishable from the sporadic AD. The age 

of onset for FAD caused by PS1 mutations ranges from 24 to 65 years old, with 

an average age of onset of 41.7 years, about 10 years earlier than that by APP 

mutations (51.2 years) (Raux et al., 2005). The unique clinical and 

histopathological features of PS1 mutations include spastic pareparesis, 

myoclonus, extrapyramidal signs, Levy body and cotton wool plaques (CWP) 

(Kwok et al., 1997, Lopera et al., 1997, Crook et al., 1998a, Houlden et al., 

2001b). CWP is described as large, non-cored, diffuse amyloid plaques, which 

is composed primarily of Aβ42 with a lack of surrounding neuritic dystrophy 

and glial activation (Tabira et al., 2002). CWP is often associated with spastic 

pareparesis (SP) (Karlstrom et al., 2008), both of which are reported in a subset 

of PS1 mutants like PS1 M233T, PS1 R278T and PS1 ΔE9 (Kwok et al., 1997, 

Crook et al., 1998b). The mechanism underlying these unique clinical and 

pathological phenotypes is unknown. 
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Increased Aβ42/40 ratio is a common feature in PS1 mutations but the 

underlying mechanism is equivocal. By both in vitro (Borchelt et al., 1996, 

Scheuner et al., 1996) and in vivo transgenic mice (Jankowsky et al., 2004a) 

assays, Aβ42 is found to be the preferred product of PS1 mutants. However, 

given the wide spread of these known mutations throughout the whole coding 

sequence of PS1 gene, how these mutations shifts the γ-cleavage site is still 

elusive. 

 

1.6 Overall goal of this research 

APP and PS mutations are helpful tools for researchers to elucidate the AD 

etiology. In sporadic AD, there are too many uncertainties that make the already 

intricate AD pathogenesis more complex, for instance, aging, hypoxia, 

inflammatory disease, hypertension, diabetes, cerebral vascular disease, etc.; 

whereas FAD, with early-onset, provides informative clues to disentangle the 

conundrum in specific scenarios, like FAD-associated mutations in APP or PS 

genes. The overall goal of my dissertation is to dissect two recently discovered 

mutations – APPA673V and PS1∆S169, by characterizing these two mutations and 

exploring how they affect Aβ generation and their contribution to cognitive 

impairment and memory deficit using transgenic mice models.  

 

1.6.1  Examine the pathogenic effect of APPA673V on AD pathogenesis.  

In 2009, Di Fede and colleagues reported the first recessive FAD-associated 

APP mutation – APPA673V (Di Fede et al., 2009), intensively challenging the 

hypothesis that all APP point mutations are inherited in an autosomal-dominant 

pattern. They demonstrated that the A673V mutation promoted Aβ generation 
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and AβA673V in the homozygous state was more amyloidogenic than its 

heterozygous state with AβWT, both of which contributed to the recessive 

inheritance pattern in this APP-mutated FAD family. Considering that the 

A673V mutation site is only one amino acid away from the APP Swedish 

mutation (KM670/671NL) but has a distinct inheritance pattern, we are 

interested in how this A673V mutation would influence APP processing 

compared with Swedish mutation. We hypothesize that APPA673V contributes to 

its recessive inheritance via affecting APP processing, especially at the β-

secretase cleavage site. In my dissertation, we examine the effect of APPA673V 

mutation on APP processing and Aβ production, as well as the underlying 

mechanisms. We find that APPA673V contributed to AD pathogenesis via 

comprehensive effect on APP processing, especially the β-secretase and γ-

secretase cleavages.  

 

1.6.2  Study of the effects of PS1∆S169 on APP and Notch processing.  

Mutations in the PS1 gene are accounting for the majority of FAD cases. APP 

and Notch are the most important substrates of γ-secretase with PS as the 

catalytic subunit. APP is the precursor of Aβ, while Notch signaling is involved 

in fundamental neurodevelopment and neurodegeneration. Since most FAD-

associated PS mutations impair both APP and Notch processing, the 

contribution of Notch signaling to AD pathogenesis has always been in debate. 

Most recently, a new PS1 deletion mutation of locus 169 serine was identified 

in a Chinese FAD family with typical AD symptoms developed in their early 

40s (Guo et al., 2010a). In my dissertation, we thoroughly examine the effect of 

PS1∆S169 on APP and Notch processing. We hypothesize that PS1∆S169 

specifically promotes indicative Aβ42/40 ratio via affecting the γ-cleavage of 
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APP and retains its enzymatic activity on ε-cleavage for NICD (Notch 

Intracellular Domain) production. In chapter 3 of this thesis, the effect of 

PS1∆S169 on APP and Notch processing will be explored in vitro under different 

scenarios.  

 

1.6.3  Examining the effect of PS1∆S169 on plaque formation and memory 

deficits in vivo. 

Pathogenic PS1 mutations are not only affect APP processing by increasing 

Aβ42/40 ratio in vitro (Borchelt et al., 1996, Scheuner et al., 1996), but also 

advance neuritic plaque formation and increase the plaque load in bigenic 

APP/PS1 mice (Jankowsky et al., 2004a). We investigate the effect of PS∆S169 

on APP processing in vitro and determine the effect of PS∆S169 on amyloid 

plaque formation and cognitive functions. We hypothesize that PS1∆S169 could 

promote neuritic plaque formation, and progressively exacerbate cognitive 

impairment in APP23 mice. In chapter 4 of this thesis, APP23/PS1∆S169 

transgenic mice will be studied histopathologically and behaviorally.



   

 

 
 

44 
 
 
 
 
 

  

Chapter 2 
 
 
APP A673V recessive mutation 
promotes Aβ generation by promoting 
β-cleavage at Asp-1 site and enhancing 
lysosomal degradation of APP  
 
 

2.1 Introduction. 

The mutation in the APP gene was the first genetic factor identified to cause 

autosomal dominant FAD (Goate et al., 1991). Recently, the first recessive APP 

mutation (A673V) has been reported in an Italian family, intensively challenging 

the conception that all APP mutations are inherited in an autosomal-dominant 

pattern (Di Fede et al., 2009). Genetic studies have revealed that both parental 

linkages of the homozygous proband were A673V heterozygous carriers. The 

heterozygous carriers with the A673V mutation did not have any AD symptoms 

between the ages of 21 and 88; whereas the homozygous proband developed 

dementia symptoms at the age of 36 and his homozygous sister also showed 

multi-domain mild cognitive impairment (MCI). The proband died at age 46 and 

the following neuropathological study detected both neuritic plaques and 

neurofibrillary tangles and confirmed the diagnosis of AD (Giaccone et al., 2010). 

The neuropathological study also revealed some distinct features of this APP 

recessive mutation. The diameter of neuritic plaque was up to 120uM with a high 

content of Aβ40 and cerebral amyloid angiopathy (CAA) was present and 
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striking. APP A673V mutation stood out from numerous other APP dominant 

mutations for its unique recessive inheritance pattern and distinct neuropathology. 

 

 
Figure 2.1 Schematic diagram of APP Swedish mutation and A673V mutation. 
Red bar represents the Aβ region. Big green arrow represents the major β-cleavage at Asp-1 site 
(Aβ numbering). Small red arrow represents the minor β-cleavage at Glu-11 site. Swedish 
mutation (yellow letters) occurs just before the Asp-1 site of β-secretase but outside of the Aβ 
sequence. APP A673V mutation occurs at one amino acid after the Asp-1 site of β-secretase and 
within the Aβ sequence.  The small peach bar represents the last two amino acids of Aβ42, 
indicating the heterogeneous γ-cleavages at the C-terminal of APP with Aβ40 or Aβ42 as 
alternative products.  
 

 

APP Swedish mutation (KM670/671NL) is a well investigated and a typically 

dominant APP mutation with full penetrance in the heterozygous state (Mullan et 

al., 1992a, Felsenstein et al., 1994a). Swedish mutation has also been established 

as an example to show the effect of APP mutation on β-cleavage. Swedish 

mutation (KM670/671NL) contains two amino acids alteration juxtaposed to the 

BACE1 Asp-1 cleavage site, promoting BACE1 to process APP at this site to 

generate more APP C-terminal fragment 99 (C99), which is the immediate 

precursor of Aβ (Citron et al., 1992, Felsenstein et al., 1994b, Lo et al., 1994, 

Haass et al., 1995, Thinakaran et al., 1996b) (Fig 2.1). Given that a higher level of 

C99 is directly correlated with an increase in the more hydrophobic Aβ42 



 
 

Chapter 2 
 

46 
 
 
 
 

  

production (Yin et al., 2007), an up-regulation of C99 production in Swedish 

mutation provides for an abundance of precursors for Aβ42 generation. 

Transgenic mice expressing an APP Swedish mutation are widely used in AD 

research as animal models, e.g. APP23 (Tg.AD147.71H). APP23 mice 

specifically express human APP751 bearing Swedish mutation in neurons under 

the control of mouse Thy1.2 promoter and would develop amyloid plaques in the 

neocortex and hippocampus as early as 6 months old (Sun et al., 2006a).  

 

APPA673V mutation occurs one amino acid after the Asp-1 site of Aβ sequence 

(Fig 2.1). Although APPA673V mutation and Swedish mutation (KM670/671NL) 

are very close to each other, being only one amino acid apart, they show distinct 

inheritance patterns. It is intriguing how this A673V mutation influences APP 

processing differently from the Swedish mutation. In this chapter, we examined 

the effect of APPA673V mutation on APP processing and Aβ production and further 

explore the underlying mechanism. We found that APPA673V contributed to AD 

pathogenesis by comprehensively influencing on the metabolism of APP.  

 

2.2 Methods. 

2.2.1  Materials. 
Dulbeccoo’s modified eagle medium (DMEM), fetal bovine serum (FBS), sodium 

pyruvate, L-glutamine, Penicillin-Streptomycin, geneticin, zeocin and 

lipofectamin 2000 were purchased from Life Sciences Technologies. Rabbit anti-

C20 recognized the last twenty amino acids on the C-terminal end of APP were 

made in-house. β-actin was detected using monoclonal antibody AC-15 (Sigma). 

IRDyeTM 680- labeled goat anti-rabbit and IRDyeTM 800CM-labeled goat anti-

mouse secondary antibodies were obtained from LI-COR Biosciences.  
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2.2.2  cDNA constructs. 
With pcDNA4-APP695WT (wild type) as template, pcDNA4-APPA673V was 

generated via site-directed mutagenesis. Using customary T7 (Invitrogen) as 

forward primer and a designed primer containing a A673V mutation  

(5’-TCGGAATTCTACATCCATCTTCAC) as reverse primer, an APP fragment 

containing A673V mutation was generated and cloned back between the HindIII 

and EcoRI sites in pcDNA4-APPWT. To generate inducible plasmids pIND-

APPWT, pIND-APPA673V and pIND-APPSWE, full length APP variants were cut 

from pcDNA4-APPWT, pcDNA4-APPA673V and pcDNA4-APPSWE with HindIII 

and XbaI and cloned into pIND (SP1)/Hygro mammalian expression vector 

(Invitrogen) between the HindIII and XbaI sites, respectively. Plasmid pVgRXR 

expresses the heterodimeric ecdysone receptor (VgEcR) and the retinoid X 

receptor (RXR) (Invitrogen). It is documented that KK sequence in extreme C-

terminal tail can act as endoplasmic reticulum (ER) retention signal in 

transmembrane protein (Nilsson et al., 1989). APPWT-ER and APPA673V-ER were 

generated with pcDNA4 forward primer T7 and a reverse primer coding KKQN 

instead of QMQN in the C-terminal tail of APP  

(5’-GCCTCTAGACTAGTTCTGCTTCTTCTCAAAGAACTTGTAGGTTGG), 

with pcDNA4-APPWT and pcDNA4-APPA673V as template, respectively. 

APPWT/F615P and APPA673V/F615P were generated with a pair of primers containing 

F615P mutation  

(5’-GTTCATCATCAAAAATTGGTGCCCTTTGCAGAAGATGTGGGTTC and  

5’-GAACCCACATCTTCTGCAAAGGGCACCAATTTTTGATGATGAAC), 

with pcDNA4-APPWT and pcDNA4-APPA673V as template, respectively.  The N-

terminal 19 peptides (MLPGLALLLLAAWTARALE) of APP serve as signal 

sequence. With pcDNA4-APP695WT as template, a fragment containing the signal 

peptide was amplified with forward T7 primer and reverse primer coding the C-

terminal sequence of signal peptide and the N-terminal sequence of C99 

(5’- GTCGGAATTCTGCATCCTCCAGCGCCCGAGCCGTCC). The amplified 
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fragment was cloned back between the HindIII and EcoRI sites in pcDNA4-

C99WT or pcDNA4-C99A2V to generate C99Sig-WT and C99Sig-A2V, respectively.  

 

2.2.3  Cell lines, cell culture and transfection. 
HEK293 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) 

containing 10% fetal bovine serum (FBS), 1mM sodium pyruvate, 2 mM  

L-glutamine, 50U/mL penicillin G sodium and 50µg/mL streptomycin sulfate 

(Invitrogen). NN cells are PS1-/-/PS2-/- mouse embryonic fibroblast (MEF) and 

N2A cells are mouse neuroblastoma cell line. Stable cell lines were maintained in 

media containing zeocin (50µg/mL). All cells were maintained at 37°C in an 

incubator containing 5% CO2. For transfection, cells were grown to 70% 

confluence and transfected with 2µg plasmid DNA/35 mm plate using 4uL of 

Lipofectamine 2000 Reagent (Invitrogen) according to the manufacturer's 

instructions.  

 

2.2.4  APP-inducible expression and Ponasterone A treatment. 
To establish APP-inducible cell lines using the ecdysone-inducible mammalian 

expression system, the cDNA of human APPWT, APPA673V or APPSWE, were cloned 

into an inducible vector pIND (SP1)/Hygro to generate pIND-APPWT,  

pIND-APPSWE and pIND-APPA673V, respectively. pIND (SP1)/Hygro contains 

modified ecdysone response elements and SP1 enhancers, and activation of the 

APP gene transcription is dependent on the binding of a heterodimer of VgEcR 

and RXR receptors in the presence of a ligand such as ecdysone analog 

ponasterone A. HEK293 cells were transfected with pVgRXR and pIND-APP 

then treated with inducer Ponasterone A or vehicle control. Under different 

dosages of Ponasterone A treatment, the full length of APP variants could be 

expressed at different levels under control in HEK293 cells. The basal levels of 

the APP holo-protein were very low in the absence of Ponasterone A. Ponasterone 
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A, an ecdysone analog, was obtained from Invitrogen and dissolved in ethanol. 

HEK293 cells with transient overexpression of APP variants were treated with 

inducer Ponasterone A to induce APP expression at 0, 0.5µM, 1.0µM, or 3.0µM 

for 24 h.  

 

2.2.5  Immunoblot analysis. 
Cells were lysed in RIPA lysis buffer (1% Triton X100, 1% sodium deoxycholate, 

4% SDS, 0.15M NaCl, 0.05M Tris-HCl, pH 7.2) supplemented with 200 mM 

sodium orthovanadate, 25 mM β-glycerophosphate, 20 mM sodium 

pyrophosphate, 30 mM sodium fluoride, 1 mM phenylmethanesulfonyl fluoride 

(PMSF), and a complete mini protease inhibitor cocktail tablet (Roche 

Diagnostics). The samples were diluted in 4×SDS-sample buffer, boiled, resolved 

by SDS-PAGE on 8% tris-glycine or 16% tris-tricine gels, then transferred to 

ImmobilonTM –FL phlyvnylidene fluoride (PVDF) membranes (Millipore). For 

immunoblot analysis, membranes were blocked for 1h in phosphate-buffered 

saline (PBS) containing 5% non-fat dried milk followed by overnight incubation 

at 4°C in primary antibodies diluted in the blocking medium. Rabbit antibody C20 

(1:2000) was used to detect APP and its C-terminal fragment (CTF) products. 

Internal control β-actin was detected using monoclonal antibody AC-15 (Sigma). 

The membranes were rinsed in PBS with 0.1% Tween-20 and incubated with 

IRDye 800CW-labelled goat anti-mouse or anti-rabbit antibodies in PBS with 

0.1% Tween-20 at 22°C for 1 h, and visualized on the Odyssey system (LI-COR 

Biosciences). All quantification was performed using LI-COR Odyssey system 

and Image J.  

 

2.2.6  Aβ40/42 enzyme linked-immunosorbent assay (ELISA). 
HEK293 cells expressing the human wild type APP, Swedish mutant and A673V 

mutant were maintained in cell culture media supplemented with 5% FBS. After 

24h, conditioned medium was collected and protease inhibitors and AEBSF 
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(ROCHE Diagnostics) were added to prevent degradation of Aβ peptides. The 

concentration of Aβ40 and Aβ42 were detected using β-amyloid 1-40 or β-

amyloid 1-42 Colorimetric ELISA kit (Invitrogen) according to manufacturer’s 

instructions. 

 

2.2.7  L-685,458, Monensin, cycloheximide (CHX), chloroquine (CHL) and 
MG132 treatment. 
L-685,458 (Sigma) is a potent, structurally novel γ-secretase inhibitor, equipotent 

inhibitor of both Aβ40 and Aβ42 production. L-685,458 was dissolved in DMSO 

and applied to cell culture medium at 1µM final concentration for 3h. Monensin 

(Sigma) is a drug known to block the transport from the medial to the trans 

cisternae of the Golgi stacks. To block APP in TGN, HEK293 were treated with 

monensin at 1µM overnight. Cycloheximide (CHX, from Sigma) is an antibiotic 

produced by S. griseus. Its main biological activity is translation inhibition in 

eukaryotes, resulting in cell growth arrest and cell death. To determine the APP 

degradation rate, HEK293 were treated with CHX at 100µg/ml for different time 

course. Chloroquine (CHL, from Sigma) is lysosomal degradation inhibitor and 

MG132 (from Millipore) is a potent, reversible, and cell-permeable proteasome 

inhibitor. To determine the effect of APP mutations on APP degradation, HEK293 

were treated with CHL at 10µM and MG132 at 1µM overnight, respectively.  

 

2.2.8  Primary neuronal culture, Aβ toxicity treatment and LDH assay.  
Hippocampal and neocortical tissues for primary cultures originating from 

C57BL/6J mice embryos at 14 days of gestation were dissected and gently 

digested with trypsin (0.025% EDTA; Invitrogen). The cells were suspended in 

neurobasal medium supplemented with B27 (Invitrogen) and plated at a density of 

1–2 ×105 cells/well onto poly-D-lysine (0.01 mg/ml; Sigma)-coated 24-well 

plates. The cultures were maintained at 37 °C in a humidified atmosphere 

containing 5% CO2 and used for experiments after 10 days. Aβ42WT and Aβ42A2V 
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are synthesized in EZBiolab company. Aβ42WT and Aβ42A2V were prepared in  

37°C water bath for 96 hours for aging before treatment. Lactate dehydrogenase 

(LDH) was used to evaluate the viability of the cells according to the instructions 

(Sigma). Trypan blue solution was used to stain the dead cells according to the 

instructions (Sigma).  

 

2.3 Results. 

2.3.1  APPA673V recessive mutation moderately increased Aβ  generation. 

We introduced the A673V mutation into human wild type APP695 isoform by site 

directed mutagenesis and expressed wild type or mutant APP in transiently 

transfected HEK293 cells. The expression levels of wild type and mutant full 

length APP were determined by Western blotting, and HEK293 cells expressing 

similar amounts of APP were subjected to further analysis. Conditioned media 

were analyzed using Aβ ELISA assay. Compared to APPWT, APPA673V and 

APPSWE increased the C99 levels to 155.6%±8.9% and 244.2%±22.8%, 

respectively (p<0.05) (Fig 2.2 A, B). The following Aβ ELISA assay 

demonstrated that APPA673V and APPSWE increased the Aβ40 levels to 4.48±0.03 

folds and 34.8±9.5 folds as compared with APPWT, respectively (p<0.05) (Fig 2.2 

C). Compared to APPSWE, the lower levels of C99 and Aβ in APPA673V suggested 

that APPA673V was not as malignant as APPSWE; however, on the other hand, 

APPA673V did increase C99 and Aβ levels compared to APPWT, indicating the 

amyloidogenic property of APPA673V. It seems like that Aβ has to be high enough 

to meet the threshold in order to trigger AD pathogenesis. In the heterozygous 

state with only one copy of A673V, there is not sufficient Aβ to initiate AD 

pathogenesis, which accounts for the recessive inheritance pattern of this 

mutation.  
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Figure 2.2 Effects of APP A763V mutation on APP processing and Aβ  generation.  
(A) APPWT, APPA673V or APPSWE were introduced into HEK293; the holo APP protein and its 
CTFs in cell lysate were detected by rabbit polyclonal antibody C20 that recognized the last 20 
residues of APP C-terminals. (B) The levels of C99 were quantified and normalized to that in 
APPWT. (C) Aβ ELISA (Invitrogen) assay was performed to measure Aβ40 levels in the 
conditioned cell culture medium. The levels of Aβ40 in APPA673V and APPSWE were normalized to 
that in APPWT. Values represent mean±SEM, n=6, *p<0.05, **p<0.01 by one-way ANOVA with 
post-hoc tests.  

 

2.3.2  APPA673V recessive mutation promoted C99 production by shifting the 

major β-secretase site from Glu-11 to Asp-1 site. 

β-secretase cleaved APP at two sites — Asp-1 and Glu-11 — to generate the 

corresponding products: sAPPβ606 (numbered according to APP695 isoform) and 

C89 at Glu-11 site and sAPPβ596 and C99 at Asp-1 site (Vassar et al., 1999, Deng 

et al., 2013). In HEK293 cells with low BACE1 activity, the majority of APP 

undergoes α-secretase pathway with C83 being predominant from of APP CTFs; 

in 293B2 cells that stably overexpress BACE1, the majority of APP undergoes β-

secretase pathway with C89 and C99 being predominant forms of APP CTFs, 

which makes the effect of APP mutants on β-cleavage easier to be detected. 

Whether C89 or C99 being the predominant form is dependent on different APP 



 
 

Chapter 2 
 

53 
 
 
 
 

  

mutants. In wild type APP, the predominant β-secretase product is C89, whereas 

in the Swedish APP the predominant β-secretase product is C99 (Fig 2.3 A, lane 1 

and 3) (Deng et al., 2013). Since APPA673V mutation is close to the β−secretase 

Asp-1 site (APP D672) like the Swedish mutation (KM670/671NL, APPSWE), we 

investigated the effect of APPA673V mutation on the β-secretase cleavage of APP 

and compared it with APPWT and APPSWE. To determine the predominant β-

secretase product in different APP variants, we transiently expressed APPWT, 

APPA673V and APPSWE in 293B2 cells (Fig 2.3 A). In 293B2 cells with 

overexpression of BACE1, the predominant APP CTFs were β-secretase product 

— C99 or C89 — in all APPWT, APPA673V and APPSWE, not C83 (Fig 2.3 A, D). 

Compared to C99 levels in APPWT, APPA673V and APPSWE increased the levels of 

C99 to 2.37±0.39 and 2.04±0.51 folds, respectively (p<0.05). The levels of C89 in 

APPWT, APPA673V and APPSWE were 2.23±0.44, 0.71±0.11 and 1.41±0.32 folds, as 

compared with the C99 levels in APPWT, respectively (p<0.05); and the levels of 

C83 in APPWT, APPA673V and APPSWE were 1.39±0.17, 0.47±0.11 and 0.94±0.20 

folds, as compared with the C99 levels in APPWT, respectively (p<0.05) (Fig 2.3 

D). It is noteworthy that APPA673V did not shed more C99 than APPSWE in the 

presence of BACE1 overexpression, which we will discuss in detail in Discussion 

section. To determine the shifting effect of APP mutants on β-cleavage, we 

specifically evaluated the C99/C89 ratio in different APP variants. The C99/C89 

in both APPA673V and APPSWE were normalized to that in APPWT. APPA673V 

significantly increased C99/C89 to 7.51±0.17 folds whereas APPSWE increased 

C99/C89 to 3.15±0.06 folds (p<0.05), indicating that APPA673V had stronger effect 

on the preferential cleavage of β-secretase at Asp-1 site (Fig 2.3 E).  

 

293B2 cells are stably overexpressing BACE1 with high β-secretase activity. We 

next investigated whether the effect of A673V mutation on β-cleavage was 

dependent of β-secretase activity. We expressed APPWT, APPA673V and APPSWE in 
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transiently transfected HEK293 cells to investigate the effect of A673V mutation 

on β-cleavage under conditions with much lower β-secretase activity. In HEK293 

cells, the predominant APP CTFs were α-secretase product — C83 — in all 

APPWT, APPA673V and APPSWE (Fig 2.3 B, F). Compared to C99 levels in APPWT, 

APPA673V and APPSWE increased the levels of C99 to 1.55±0.39 and 2.37±0.71 

folds, respectively (p<0.05) (Fig 2.3 F). The C99/C89 in both APPA673V and 

APPSWE were normalized to that in APPWT. APPA673V significantly increased 

C99/C89 to 6.15±0.55 folds whereas APPSWE increased C99/C89 to 2.02±0.09 

folds (p<0.05) (Fig 2.3 G). These data indicated that the effect of A673V mutation 

on CTFβ production is independent of β-secretase activity.  

 

APP CTFs can be further processed by γ-secretase. To eliminate the effect of γ-

secretase, we expressed APPWT, APPA673V and APPSWE in transiently transfected 

NN cells, which are PS1-/-PS2-/- mouse embryonic fibroblast cells (Fig 2.3 C, H). 

Without the effect of γ-secretase, APPA673V consistently increased C99/C89 to 

4.38±0.75 folds whereas APPSWE increased C99/C89 to 2.15±0.58 folds, with 

normalization to that in APPWT (p<0.05) (Fig 2.3 I). Taken together, the A673V 

mutation demonstrated stronger effect than Swedish mutation to shift major β-

secretase cleavage site from Glu-11 to Asp-1 site independent of the β-secretase 

activity and γ-secretase cleavage. It is noteworthy that APPA673V generated 

significantly less α-secretase product C83, compared with wild type APP and 

Swedish APP in all three 293B2, HEK293 and NN cells (Fig 2.3 D, E, F), which 

we will discuss in detail in discussion section. 
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Figure 2.3 APPA673V shifted the major β-secretase product from C89 to C99 in 293B2 cells 
with BACE1 overexpression.  
(A) 293B2 cells were transiently transfected with pcDNA4-APPWT, pcDNA4-APPA673V or 
pcDNA4-APPSWE. The holo APP and CTFs in cell lysate were detected by C20 antibody.  
(D, E) Quantification of (A) by Image J and C83, C89 and C99 levels were normalized to C99 
levels in APPWT; C99/C89 ratio was normalized with that in APPWT. (B) HEK293 cells were 
transiently transfected with pcDNA4-APPWT, pcDNA4-APPA673V or pcDNA4-APPSWE. (F, G) 
Quantification of (B) by Image J and C83, C89 and C99 levels were normalized to C99 levels in 
APPWT; C99/C89 ratio was normalized with that in APPWT. (C) NN (PS1-/-PS2-/-) cells were 
transiently transfected with pcDNA4-APPWT, pcDNA4-APPA673V or pcDNA4-APPSWE. (H, I) 
Quantification of (C). C83, C89 and C99 levels were normalized to C99 level in APPWT; C99/C89 
ratio was normalized with that in APPWT. Values represent mean±SEM, n=6, *p<0.05, by one-way 
ANOVA with post-hoc tests. 
 
 

2.3.3  APPA673V recessive mutation modulated γ-secretase activity.   

The recessive A673V mutation is located within the Aβ region (A2V) (Fig 2.1). 

Therefore, C99 derived from APPA673V is designated as C99A2V (numbered 
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according to the Aβ sequence). It is well established that APP mutations close to 

active sites of γ-cleavage in the C-terminal of the Aβ region can modulate γ-

cleavage. However, the ‘Flemish’ mutation (A692G), which is located in the 

middle of Aβ, has an unexpected effect on γ-cleavage (Tian et al., 2010), 

suggesting that the interaction between γ-secretase and C99 may also occur at 

sites far from the active sites of γ-secretase. To investigate the effect of A673V 

mutation on γ-cleavage, C99A2V and C99WT were each overexpressed in HEK293 

cells and the cells were treated with the γ-secretase inhibitor L-685, 458 (Sigma) 

or a vehicle control (see Methods). C99 variants and their proteolytic product C83 

by endogenous α-secretase were detected by Western blotting with C20 antibody. 

As expected, the pharmaceutical blocking of γ-secretase activity resulted in a 

significant increase of C99 in both C99WT and C99A2V, but the increase in C99A2V 

(171.8%±12.8%) was significantly less than C99WT (303.6%±31.7%) (p<0.05; Fig 

2.4 A, B). Meanwhile, Aβ ELISA assay was performed to determine any secreted 

Aβ production in cell culture medium. Consistent with the increase of C99 levels, 

the Aβ40 levels in C99A2V was only 36.0%±3.5% of that in C99WT (p<0.05; Fig 

2.4 C).  

 

APP is a type I transmembrane protein with a signal peptide and both APP and 

C99 have the transmembrane domain. To ensure the correct insertion of C99 into 

the membrane of the endoplasmic reticulum and the similar secretary pathway 

like endogenous C99, the signal peptide of APP was fused to the N-terminus of 

C99WT and C99A2V (C99Sig-WT and C99Sig-A2V), which was cleaved during 

membrane insertion by signal peptidase (Dyrks et al., 1992, Dyrks et al., 1993, 

Lichtenthaler et al., 1999). Our preliminary data indicated that, with the signal 

peptide, the expression levels of C99Sig were greatly increased, likely due to the 

reduced degradation of incorrectly inserted proportion of C99 (data not shown). 

Thus, C99Sig was transiently transfected into HEK293 cells in the reduced amount 
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of plasmid DNA (0.1 and 0.25µg), not the routine 2µg plasmid DNA/35 mm 

plate. Consistent with result in C99 without signal peptide, inhibition of γ-

secretase greatly increased the accumulation of both C99Sig-WT and C99Sig-A2V in 

cell lysate, and the increase in C99Sig-A2V (129.3%±19.3%) was still significantly 

less than C99Sig-WT (285.4%±36.9%) (p<0.05; Fig 2.4 D, E). These data 

demonstrated that both C99A2V and C99Sig-A2V are less efficiently processed by γ-

secretase.  

 

 
Figure 2.4 Effects of A673V mutant C99 (C99A2V) on γ-secretase activity.  
(A) C99WT or C99A2V were co-transfected with EGFP into HEK293 with treatment of γ-secretase 
inhibitor L-685,458 (Sigma) or vehicle control. EGFP was used as internal control to ensure the 
same transfection efficiency, which was detected via anti-GFP antibody. β-Actin was used as 
internal control to ensure the same amount of cell lysate applied for analysis. Cell lysate was 
harvested to determine the accumulation of C99 via Western blotting. Because C99 was substrate 
of γ-secretase as well as α-secretase (Lichtenthaler et al., 1997, Lichtenthaler et al., 1999), both 
C99 and C83 can be detected in cell lysate by C20 antibody. (B) The increased folds of C99 levels 
after L-685,458 treatment in (A) were quantified and compared between C99WT and C99A2V. (C) 
Conditioned cell culture medium was collected to determine the amount of Aβ40 in HEK293 with 
C99WT and C99A2V overexpression via Aβ ELISA assay (Invitrogen). The amount of Aβ40 in 
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C99A2V was normalized to that in C99WT. (D) Different amount of C99Sig-WT and C99Sig-A2V were 
co-transfected with equal amount of EGFP into HEK293 with treatment of γ-secretase inhibitor L-
685,458 or vehicle control. EGFP and β-Actin were used as internal control to ensure the same 
transfection efficiency and the same amount of cell lysate in analysis, respectively. (E) The 
increased folds of C99Sig levels after L-685,458 treatment in (A) were quantified and compared 
between C99Sig-WT and C99Sig-A2V. Values represent mean±SEM, n=3, *p<0.05, by student t-test. A 

 

2.3.4  APPA673V demonstrated a higher C99/C89 ratio than Swedish APP 

independently of its expression level. 

APPA673V is a recessive mutation that requires two mutated alleles to initiate AD 

pathogenesis, whereas in the case of Swedish APP one allele is sufficient to lead 

to AD when patients are in their early 50s. There is a possibility that the 

expression level of APPA673V could affect β-secretase processing. We found that 

APPA673V  robustly shifted the major β-cleavage site, resulting in a high C99/C89 

ratio. To investigate whether different APPA673V expression levels could affect the 

β-secretase processing, we used an inducible APP expression system under the 

control of ponasterone A to achieve the expression of APP expression at different 

amounts. To assess inducible APP processing, APPWT, APPA673V or APPSWE were 

introduced to 293B2 cells that strongly express BACE1, and the expression of 

APP variants was triggered by ponasterone A at 0.5, 1.0, or 3.0 µM for 24 hours. 

Ponasterone A, an ecdysone analog, would bind to the ecdysone receptor and 

activate APP gene transcription. While holo APP expression was barely 

detectable in 293B2cells treated with the vehicle control, ponasterone A treatment 

resulted in a linear increase of holo APP expression in a similar way among 

APPWT, APPA673V and APPSWE (p>0.05) (Fig 2.5 A, B, C, D). Ponasterone A 

treatment had no effect on β-actin protein levels, indicating a specific effect of 

Ponasterone A on inducible expression of APP. After 24h of ponasterone A 

treatment, cell lysates were examined by Western blotting to determine the 

amount of APP CTFs by C20 antibody. Despite of the increasing holo-APP and 

total CTFs corresponding to the increasing concentration of ponasterone A (Fig 
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2.5 A, B, C), APPA673V consistently displayed the highest C99/C89 ratio 

(3.41±0.33) as compared to APPWT (0.45±0.03) and APPSWE (1.42±0.09) (p<0.05)  

(Fig 2.5 E), indicating that the effect of A673V mutation on β-cleavage shift from 

Glu-11 to Asp-1 was independent of the expression levels of APP.  

 

 

Figure 2.5 Dose-dependent inducible expression of APP variants in 293B2 cells.  
293B2 cells were transfected with pIND-APPWT (A), pIND-APPA673V  (B) or pIND-APPSWE (C), 
respectively, then treated with vehicle solution control or ponasterone A at 0, 0.5, 1.0 or 3.0 µM 
for 24h. Cells were collected at the same endpoint and were lysed in RIPA-DOC buffer. Cell 
lysates were analyzed by 9% Tris-glycine to detect for full length APP or 16%Tris-tricine to detect 
for APP CTFs by C20 antibody. BACE1 was detected by 9E10 that would recognize the MycHis 
tag. Monoclonal anti-β-actin antibody (AC-15) was used to detect β-actin. (D) Full length APP 
expression levels were quantified and plotted to represent Ponasterone A dosage-dependent 
expression of APP (Quantification by Image J). (E) C99/C89 ratio under different APP expression 
levels was quantified and plotted (Quantification by Image J). Values represent mean±SEM, n=3, 
*p<0.05, by two-way ANOVA and one-way ANOVA with post-hoc tests. All experiments were at 
least triplicated. 
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2.3.5  APPA673V structurally facilitated β-secretase cleavage at Asp-1 site in 

both the endoplasmic reticulum and trans Golgi network. 

APP is preliminarily glycosylated in the endoplasmic reticulum (ER) upon 

synthesis then anterograde transported to the Golgi apparatus for further 

modification such as sulfation and phosphorylation. A proportion of the fully 

modified APP (or mature APP, mAPP) is subsequently delivered to the cell 

surface where the α-cleavages occur (Parvathy et al., 1999); whereas β-secretase 

mediated cleavages appear to occur in the trans Golgi network or in the 

endosomal/lysosomal system following the endocytosis of APP from the plasma 

membrane (Koo and Squazzo, 1994, Tienari et al., 1997). Therefore, it is 

conceivable that BACE1 mostly, if not exclusively, cleaves mAPP; and nascent 

APP or immature APP (imAPP) is not a substrate of BACE1. According to this 

hypothesis, APP with an ER retention signal fused to the COOH-terminus 

(APPER) cannot be processed by BACE1; in other words, APPER does not produce 

C89 or C99. However, we found that both APPA673V and APPSWE with the ER 

retention signal can be cleaved into C99, whereas APPWT with the ER retention 

signal cannot (Fig 2.6 A). Given that all APP variants are synthesized in the ER, 

imAPP in the ER represents the default forms and structures of APP proteins. Our 

results indicated that both APPA673V and APPSWE are structurally favored by 

BACE1 cleavage at the Asp-1 site. We also compared the processing of APPWT 

and APPA673V in trans Golgi network (TGN) with monensin treatment (see 

Methods). When the downstream metabolism of APP was blocked and trapped in 

TGN, APPA673V markedly increased C99 production whereas the C99 in APPWT 

was barely detected under low exposure conditions (Fig 2.6 B).  When APP is 

trapped in specific organelles such as ER and TGN, the effect of altered 

trafficking of APP mutations on APP processing is excluded and the abnormal 

APP processing results from the altered structure imposed by the mutations. The 

enhanced production of C99 in APPA673V in both ER and TGN implicated that 
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APPA673V structurally, highly facilitated β-cleavage at Asp-1 site and enhanced the 

production of C99, resulting in high C99/C89 ratio.  

 

 

Figure 2.6 APPA763V promoted the production of C99 in both ER and TGN. 
(A) APPWT, APPA673V or APPSWE with ER retentional signal (APPWT-ER, APPA673V-ER or  
APPSWE-ER) were introduced into HEK293 with BACE1 overexpression; the holo APP protein and 
its CTFs in cell lysate were detected by antibody C20. BACE1 was detected by 9E10 that would 
recognize the MycHis tag. C99 was produced in both APPSWE-ER and APPA673V-ER by BACE1, 
whereas C99 was not detected in APPWT. (B) APPWT or APPA673V were introduced into HEK293 
cells and treated with 10µM monensin or vehicle control overnight. Cell lysate was harvested to 
determine the APP CTFs by C20 antibody. After treatment of monensin, C99 production in 
APPA673V was great increased whereas the C99 in APPWT was barely detected under low exposure 
conditions. All experiments were at least triplicated.  
 

 

2.3.6  Modified APPA673V underwent faster lysosome-dependent degradation 

than APPWT.  

It is documented that the half-life of APP is about 60min and the majority of APP 

is processed by α-secretase or undergoes lysosomal degradation (Caporaso et al., 

1994). While we were investigating the processing of APPA673V, we found that 

APPA673V produced far less α-secretase product (C83) than APPWT (Fig 2.3). This 

raised the possibility that there is not enough fully modified APP (or mature APP, 

mAPP) for α-cleavages, as we mentioned that mAPP is the substrate of α-

secretase. Consistent with this finding, APPA673V displayed significantly less 

modified form (53%±5%; p<0.05), which is supposed to be the form of APP on 

the plasma membrane, as compared with APPWT; whereas the modified form of 
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APPSWE was not significantly affected (p>0.05) (Fig 2.7 A, B). The lower levels 

of the modified from of APPA673V (mAPPA673V) was not likely due to slower ER 

exiting rate of nascent APPA673V, because the reduction of nascent APPA673V in ER 

(imAPPA673V), resulting from the protein translation inhibition by cycloheximide 

(CHX), was indistinguishable from that of APPWT (p>0.05) (Fig 2.7 C, D), 

indicating that nascent APPA673V exited ER normally. Thus the reduced modified 

form of APPA673V (mAPPA673V) was possibly caused by alterations in downstream 

APP metabolism like faster degradation.  

 

A large proportion of mAPP was processed by α-secretase at plasma membrane. 

The F615P mutation was documented to increase the levels of the mAPP by 

inhibiting α-secretase cleavage, increasing mAPP to 356.3%±12.1%, as compared 

to APPWT (p<0.05) (Fig 2.7 E), which thus greatly increased the sensitivity to 

detect any alteration in mAPP (Jager et al., 2009). We introduced F615P mutation 

in both APPWT and APPA673V (APPWT/F615P and APPA673V/F615P) and repeated the 

CHX experiment. As expected, upon CHX treatment, modified APPWT (mAPPWT) 

kept increasing to 315.3%±3.7% until 40 minute then decreased to 231.6%±8.1% 

at 60 minute; whereas modified APPA673V (mAPPA673V) kept increasing to 

211.2%±4.7% until 20 minute then quickly decreased to 117.3%±7.3% at 60 

minute, as compared with the levels of their each mAPP at 0 minute (p<0.05) (Fig 

2.7 F, G), suggesting a stronger non-secretase degradation pathway of modified 

APPA673V. To determine the affected degradation pathway of mAPPA673V, we 

treated cells expressing either APPWT/F615P or APPA673V/F615P with proteasome 

inhibitor (MG132) or lysosome inhibitor (CHL), respectively. While MG132 had 

little effect on both APPWT and APPA673V (p>0.05), CHL dramatically enhanced 

mAPP in both APPWT and APPA673V (Fig 2.7 H, I). Upon CHL treatment, 

mAPPWT increased to 1.4±0.09% folds whereas mAPPA673V increased to 

3.57±0.19 folds (p<0.05), as compared with vehicle control, indicating that both 
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mAPPWT and mAPPA673V undergo lysosome–dependent degradation but the 

degradation of mAPPA673V is faster (Fig 2.7 H, I). Given that both α- and β-

secretase mainly cleave the modified APP (but not exclusively in the case of 

APPA673V and APPSWE, see Fig 2.6 A), the faster lysosome-dependent degradation 

of modified APPA673V results in less substrate for α- and β-cleavages and less 

accumulation of overall CTFs. These data demonstrated that APPA673V altered the 

metabolism of APP such as lysosome-dependent degradation and the faster 

degradation of APPA673V resulted in less APPA673V for other metabolism pathway, 

such as α- and β-secretase pathways.  
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Figure 2.7 APPA763V underwent stronger lysosome-dependent degradation. 
(A) APPWT and APPA673V were introduced into HEK293 cells. The nascent APP (imAPP) and 
modified APP (mAPP) in cell lysate were resolved in 8% glycine SDS-PAGE gel and detected via 
C20 antibody. (B) The ratio of imAPP/mAPP in (A) was quantified and normalized to that in 
APPWT. (C, D) APPER, APPWT or APPA673V were introduced into HEK293 with CHX treatment for 
15, 30 or 45 minutes. Both nascent APP (imAPP) and modified APP (mAPP) were resolved in 8% 
glycine SDS-PAGE gel and detected via C20 antibody. With ER retention signal, APPER exhibited 
no modified APP; upon CHX treatment, imAPP in APPWT-ER (gray line) underwent significant 
slower degradation compared with APPWT (black line) and APPA673V (green line). Upon CHX 
treatment, both APPWT and APPA673V underwent degradation at similar rate. (E) APPWT-ER, 
APPWT/F615P or APPWT were introduced into HEK293 to determine the accumulation of modified 
APP. APPER was APP with additional ER retentional signal and did not undergo normal 
modification. APPWT/F615P demonstrated greatly increased accumulation of modified APP 
compared with APPWT. (F, G) APPWT/F615P and APPA673V/F615P were introduced into HEK293 cells 
with CHX treatment for 20, 40 or 60 minutes. The nascent APP (imAPP) and modified APP 
(mAPP) in cell lysate were resolved in 8% glycine SDS-PAGE gel and detected via C20 antibody. 
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Upon CHX treatment, imAPPWT/F615P and imAPPA673V/F615P demonstrated a similar degradation 
rate; whereas mAPPA673V/F615P displayed faster degradation compared with mAPPWT/F615P; (H, I) 
APPWT/F615P and APPA673V/F615P were introduced into HEK293 cells with MG132 or CHL treatment 
overnight. The nascent APP (imAPP) and modified APP (mAPP) in cell lysate were resolved in 
8% glycine SDS-PAGE gel and detected via C20 antibody. MG132 treatment did not induced 
significant accumulation of mAPP in APPWT/F615P and APPA673V/F615P; with treatment of CHL, 
APPA673V/F615P displayed more accumulation of mAPP compared to APPWT/F615P. Values represent 
mean±SEM, n=3, *p<0.05, by two-way ANOVA and one-way ANOVA with post-hoc tests. 

  

2.3.7  The toxicity of AβA2V on primary neurons.   

Unlike APPSWE that produces AβWT, APPA673V has an alanine to valine mutation 

within the Aβ domain (Di Fede et al., 2009), which may affect the toxicity of Aβ. 

To assess the toxicity of Aβ42A2V, we treated E14 primary neurons with either 

Aβ42WT or Aβ42A2V. Vehicle control, soluble Aβ42WT, aged Aβ42WT or aged 

Aβ42A2V were applied to primary neurons in 96-well plates at 1µM. After 24 

hours of treatment, living cells were labeled by trypan blue and counted (Fig 2.8 

A). Both aged Aβ42WT or aged Aβ42A2V induced more neuronal death (61%±2% 

and 74% ± 1%, respectively) than soluble Aβ42WT (41%±2%; p<0.05); however, 

aged Aβ42A2V appeared to be even more toxic than Aβ42WT, because cells 

challenged with Aβ42 A2V displayed the lowest viability (Fig 2.8 B). To further 

confirm these results, we treated the primary neurons with vehicle control, soluble 

Aβ42WT, aged Aβ42WT or aged Aβ42A2V at much higher concentrations (100uM 

and 500uM) for 24h, and then performed LDH leakage assay to evaluate cell 

damage. As compared with 1% triton-100 positive control, Aβ42A2V induced LDH 

levels to 82%±2% and 68%±3% at both concentrations, respectively; whereas 

Aβ42WT only increased LDH levels to 52%±1% and 45%±1% respectively, 

indicating that Aβ42A2V was more toxic to primary neurons (p<0.05) (Fig 2.8 C, 

D).  
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Figure 2.8 Aβ42A2V was more cytotoxic than Aβ42WT.  
Primary neurons (E14) were cultured for 10 days before Aβ application. (A) Cells were treated 
with vehicle control, soluble Aβ42WT, aged Aβ42WT or aged Aβ42A2V at 1µM for 24 hrs. 10% 
trypan blue were then added. The number of living cells and dead cells were manually counted. 
(B) Quantification of (A).  (C, D) Primary neurons were treated with vehicle control, soluble 
Aβ42WT, aged Aβ42WT or aged Aβ42A2V at 100µM (C) or 500µM (D) for 24 hrs. LDH kit 
(Promega) was used to detect cell membrane breakage. Cells treated with 1% triton-100 were 
positive control. LDH leakage of all four groups was normalized with 1% triton-100 positive 
control. Values represent mean±SEM, n=6, *p<0.05, by two-way ANOVA and one-way ANOVA 
with post-hoc tests. 

 

2.4 Discussion. 

Due to the complexity of sporadic AD pathogenesis, it is difficult to explore the 

underlying mechanism. FAD-associated APP mutants have provided great 

insights into AD pathogenesis and have served as powerful tools for AD 

researchers. C99 is the precursor of Aβ and a β-secretase product. It has been well 

established that Swedish APP contributes to AD pathogenesis via promoting C99 

generation (Deng et al., 2013). In the cases of the Swedish mutation and APPA673V, 
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C99/C83 ratio does not accurately define the effect of APP mutants to shift APP 

processing from non-amyloidogenic pathway to an amyloidogenic pathway (Di 

Fede et al., 2009). C99/C83 defines the competition between α- and β-secretase. 

The increase of C99/C83 can be interpreted as the result of increased β-secretase 

activity at the expense of the α-secretase activity. However, the Swedish mutation 

increases the production of C99 and decreases C89, another β-secretase product; 

whereas the levels of C83 of Swedish mutation are comparable with that of the 

wild type APP. The pathogenic effect of APP mutants, like the Swedish on the β-

secretase, should be determined and quantified using C99/C89 as an indicator (Fig 

2.3).  

 

We found that APPA673V robustly shifted the major β-cleavage site from Glu-11 to 

Asp-1, with an even higher C99/C89 than Swedish APP. It seems like that 

APPA673V had a stronger amyloidogenic effect than the Swedish mutation, which 

was paradoxical concerning the recessive inheritance pattern of APPA673V. 

However, only when the overall β-cleavage is a constant, C99/C89 is proportional 

to the severity of amyloidogenesis. In other words, the production of C99 was not 

only determined by the β-cleavage preference but also by the overall β-cleavage 

efficiency (or the activity of β-secretase). Our data demonstrated that the C99 

production in APPA673V was not more than Swedish mutation even in 293B2 cells 

with robust overexpression of BACE1, and in HEK293 and in NN cells with 

endogenous levels of BACE1, the C99 production in APPA673V was less than 

Swedish mutation (Fig 2.2 and Fig 2.3). BACE1 is highly expressed in pancreases 

and cortex but is still tightly regulated at both transcriptional and translational 

levels (Vassar et al., 1999, Li et al., 2006, Zhou and Song, 2006, Sun et al., 2012). 

We do not know the exact level of β-secretase activity in brain relative to in vitro 

cell lines but we estimate that β-secretase activity in brain falls between that of 
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HEK293 and 293B2 cells. Thus, we conclude that the production of C99 of 

APPA673V in brain is less than Swedish but more than wild type APP.  

 

We further explored why β-secretase highly preferentially cleaved APPA673V at 

Asp-1 site. APP mutations affect its processing via either structural transformation 

of the active cleavage sites (Sauder et al., 2000) or altering the intracellular 

trafficking (Felsenstein et al., 1994b, Haass et al., 1995, Thinakaran et al., 1996b). 

To eliminate the trafficking factors, we trapped APP in particular organelles thus 

any altered processing of APP should result from the structural effect. We used 

ER retention signal or monensin treatment to trap APP in ER or TGN and found 

that both APPA673V and APPSWE can be processed to C99 in ER and TGN, whereas 

APPWT cannot (Fig 2.6). Our data demonstrated that, at least with respect to the 

increased C99/C89 in APPA673V and APPSWE, the structural transformation around 

the Asp-1 β-cleavage site is responsible for shifting the prime β-secretase site of 

BACE1 from Glu-11 to Asp-1 site, with C99 as predominant β-secretase product 

in APPA673V and APPSWE. Sauder et al. reported that several hydrophobic residues 

in BACE1 formed an active pocket with the residues around Asp-1 site, like 

Leu671 in APPSWE, which affected the preference cleavage of BACE1 in APP 

(Sauder et al., 2000). Consistent with this study, our data supports that both 

APPA673V and APPSWE facilitate β-cleavage at Asp-1 site via structural 

transformation but APPA673V exhibited stronger facilitating effect than APPSWE.  

 

In addition, as reported in section 2.3.2, we also noticed that both the α-secretase 

(C83) and the overall β-secretase product (C89 and C99) of APPA673V were 

significantly less than APPWT and APPSWE (Fig 2.3). We explored the underlying 

mechanism and found that APPA673V underwent faster lysosomal-dependent 

degradation, resulting that the remaining APPA673V does not suffice for all other 

metabolism pathways, which nicely explains why there was a general inhibitory 
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effect on APP processing — the markedly reduced α- and total β-products in 

APPA673V. Though β-secretase preferentially cleaves APPA673V at Asp-1 site via 

structural facilitation, the faster lysosome-dependent degradation of APPA673V 

reduces the substrate for β-cleavages, which results in mild increase in C99 

production and contributes the recessive inheritance of APPA673V. 

 

 

Compared with Swedish mutation, APPA673V is not only located closely to the 

Glu-11 β-secretase cleavage site but also within the C99 region (C99A2V). APP 

mutations located within the C99 region can affect γ-cleavage via enhancing 

Aβ42 generation and are usually located around the γ-secretase cleavage site, like 

APPV717I (London mutation) (Goate et al., 1991, De Jonghe et al., 2001). Though 

C99A2V occurred far from the γ-cleavage site, C99A2V demonstrated a significant 

inhibitory effect on γ-cleavage with a reduced Aβ40 generation (Fig 2.4). It 

should be noted that we also determined the amount of Aβ42 in C99A2V. 

According to our preliminary data, the generation of Aβ42A2V was also decreased 

as compared with Aβ42WT and the Aβ42/40 in C99A2V ratio was not higher than 

that in C99WT (data not shown). Nevertheless, in addition to the effect on β-

cleavages, the inhibitory effect of APPA673V on γ-cleavage makes another 

contribution to the recessive inheritance of APPA673V, both of which makes 

APPA673V require another mutated allele to produce enough Aβ to initiate AD 

pathogenesis. 

 

 

APPA673V is also located within the Aβ domain--AβA2V. Di Fede et al. reported 

that AβA2V in the homozygous state was more amyloidogenic than the equimolar 

mixture of AβWT and AβA2V, which contributed to the recessive inheritance pattern 

in this recessive FAD family (Di Fede et al., 2009). The aggregation tendency of 
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Aβ40A2V was explored by CD Spectrum (Circular Dichroism Spectrum) and 

atomic force microscopy analysis. Both indicated that Aβ mixture 

(Aβ40WT/Aβ40A2V) prevented aggregate formation but pure AβA2V promoted the 

formation. It is reported that the aggregation of Aβ42 plays a essential role in 

plaque formation and Aβ40 had a protective role in AD pathogenesis (Yankner et 

al., 1990, Yang et al., 1995, Zou et al., 2003). Thus the aggregation tendency of 

Aβ40 may be not appropriately correlated with AD pathogenesis as Aβ42. That is 

why Aβ42 was applied in primary neurons treatment in our study. We found that 

Aβ42A2V was more toxic to primary neurons compared to Aβ42WT (Fig 2.8), but 

the data of Aβ42 mixture (Aβ42/Aβ42A2V) was not less toxic than AβWT (data not 

shown). Nonetheless, no matter the aggregation tendency of Aβ or the toxicity of 

Aβ, both are highly dependent on the physiological microenvironment in the brain. 

The Aβ experiments from our laboratory and Di Fide’s , which were performed in 

vitro, might not reflect the real conditions in the brain.  

 

2.5 Conclusion. 

In conclusion, APPA673V facilitates β-cleavage at Asp-1 site while inhibited the 

general APP processing including all α-/β-/γ-cleavages, due to the intensified 

lysosome-dependent degradation. The overall effect of APPA673V on the 

production of Aβ necessitates the homozygous state of APPA673V to produce 

enough Aβ to initiate AD pathogenesis.  

 

  



   

 

 
 

71 
 
 
 
 
 

  

 

Chapter 3 
 
 

PS1∆S169 impairs γ-cleavage of APP 
but reserves functional ε-cleavage of 
Notch 
 
 

3.1 Introduction. 

Mutations in Presenilin1 (PS1) are major causes of Familial Alzheimer’s Disease 

(FAD). Unlike FAD-associated APP mutations, which usually cluster around the 

Aβ domain, PS1 mutations are scattered throughout the entire sequence of this 

multiple transmembrane protein, including the cytoplasmic domain, luminal 

domain, and the transmembrane domain. A central and unresolved conundrum in 

the AD field is how these variously located PS1 mutations lead to the same 

physiological consequence — initiating AD pathogenesis via altered γ-secretase 

activity. Given that γ-secretase is the necessary enzyme for Aβ generation, 

understanding how these PS1 mutations lead to similar consequences could have 

important implications in AD therapy.  

 
  
As mentioned above, γ-secretase is the enzyme responsible for the transmembrane 

cleavage of C-terminal fragments derived from APP, and Aβ is produced from 

APP by sequential cleavage of β- and γ-secretase. γ-secretase is a protein complex 
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with presenilin as its catalytic core and Nicastrin, Aph-1 and Pen-2 as assistant 

subunits.  γ-secretase processes its substrates via several sequential cleavages  

(Fig 3.1); the transmembrane domain of APP is cleaved at two positions: the γ-

site, which liberates the N-terminus of Aβ, and the ε-site, which liberates the C-

terminus of the APP intracellular domain (AICD) and is located C-terminally to 

the γ-site (Weidemann et al., 2002). The site of γ-cleavage within the C-terminal 

fragments of APP is not exact, resulting in a heterogeneous collection of Aβ 

peptides ranging in size from 39 to 43 residues. Contrarily, cleavage at the ε-site 

almost exclusively produces a 50-residue AICD. Although the underlying 

mechanism remains unknown, all clinical PS1 mutations increase the relative 

amount of Aβ42 versus Aβ40, both in vitro and in vivo (Borchelt et al., 1996, 

Duff et al., 1996, Scheuner et al., 1996, Murayama et al., 1998). Thus, the 

Aβ42/Aβ40 ratio is now widely used as a pathogenic indicator of PS mutations. 

 

A similar γ-cleavage pattern is also observed for Notch, including heterogeneous 

cleavage within the transmembrane domain at the S3 site (γ-site) to generate Nβ, 

and homogeneous cleavage further downstream at the S4 site (ε-site) to generate 

NICD (Okochi et al., 2002). Some PS1 mutations can inhibit cleavage at ε-site of 

Notch, as seen in certain FAD-associated PS1 mutations, which impair NICD 

generation in Notch signaling (Song et al., 1999a). While the central role of APP 

cleavage by γ-secretase has been well established in AD pathogenesis, the 

impaired Notch signaling seen in FAD-associated PS mutations is still in doubt.  
 

Recently, a novel PS1 deletion, PS1∆S169, was discovered in a Chinese family; 

patients with this mutation developed FAD in their early 40s (Guo et al., 2010b). 

In Chapter 3, we examine the effect of PS1∆S169 on APP and Notch processing. 

We found that PS1∆S169 impairs APP processing but does not affect Notch 
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proteolysis or signaling, suggesting a mechanism by which PS1∆S169 contributes to 

the early on-set of AD in affected members of this family.  
 

 
Figure 3.1 Sequential cleavages of γ-secretase.  
Top: APP cleavage. γ-secretase first cleaves APP C99 at the ε-site to release AICD, which exists 
as a 50-residue exclusively. Heterogeneous cleavage at the γ-site generates an Aβ peptide ranging 
from 39 to 43 residues. Bottom: the same working model occurs in Notch processing at the S3 and 
S4 sites. Adapted from Wolfe, 2007. 

 

3.2 Methods. 

3.2.1  Materials.  

Dulbeccoo’s modified eagle medium (DMEM), fetal bovine serum (FBS), sodium 

pyruvate, L-glutamine, Penicillin-Streptomycin, geneticin, zeocin and 

lipofectamin 2000 were purchased from Life Sciences Technologies. Rabbit anti-
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C20 antibody, which recognizes the last twenty amino acids of the C-terminal end 

of APP and rabbit anti-PS1 N-terminal antibody PS1N, were both made in-house. 

β-actin was detected using monoclonal antibody AC-15 (Sigma). IRDyeTM 680 

labeled goat anti-rabbit and IRDyeTM 800CM labeled goat anti-mouse secondary 

antibodies were obtained from LI-COR Biosciences. pcDNA4-Myc-His(A) 

expression vector was obtained from Invitrogen. 

 

3.2.2  cDNA constructs.  

PS1WT, PS1C410Y, and PS1Y115H were cut at HindIII and XbaI sites from  

pRK7-PS1WT, PS1C410Y, or PS1Y115H, respectively; and cloned into pcDNA4-

MycHis (A) (Invitrogen) (Song et al., 1999a). PS1∆S169 was also cloned into 

pcDNA4-Myc-His (A) expression vector, using a PCR site-directed mutagenesis 

approach with a pair of complementary primers containing the 3bp deletion 

coding serine (5’- GCCTGGCTTATTATATCT CTATTG as the forward primer 

and 5’-GAA CAGCAACAATAGAGATATAAT as the reverse primer). The 

sequence of PS1∆S169 was confirmed by Bigdye® Terminator v3.1 Cycle 

sequencing kit in both directions. Notch cleavage was examined using 

mNotch1ΔE m/v (NΔE), which expressed a truncated form of mouse Notch1, and 

undergoes constitutive γ-secretase proteolysis in the absence of ligand (Song et 

al., 1999a). Expression plasmid ICV, which expresses the truncated form of NΔE 

from the cleavage site (1744) to the Myc-tag end, was used as a fragment marker 

corresponding to the Notch-1 intracellular domain (NICD) (Schroeter et al., 1998, 

Song et al., 1999a).   

!
3.2.3  Cell culture and transfection.  

HEK293 cells were cultured in DMEM containing 10% FBS, 1mM sodium 

pyruvate, 2 mM L-glutamine, 50 U/mL penicillin G sodium, and 50 µg/mL 

streptomycin sulfate (Invitrogen). NN (PS1-/-/PS2-/-) cells were cultured in 
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HEK293 media supplemented with 1mM MEM non-essential amino acids 

solution, and 1µM β-mecapitolethenol (Invitrogen).  Stable cell lines were 

maintained in media containing Zeocin or G418 (Geneticin). The HAW cell line 

stably expressed a wild type APP695 in HEK293 cells (Qing et al., 2004b). All 

cells were maintained at 37°C in an incubator containing 5% CO2. For 

transfection, cells were grown in 35mm plates to 70% confluence and transfected 

with 2µg plasmid DNA using 4µL of Lipofectamine 2000 Reagent (Invitrogen) 

according to the manufacturer's instructions. 

!

3.2.4  Immunoblot analysis.  

Cells were lysed in RIPA lysis buffer (1% Triton X100, 1% sodium deoxycholate, 

4% SDS, 0.15M NaCl, 0.05M Tris-HCl, pH 7.2) supplemented with 200 mM 

sodium orthovanadate, 25 mM β-glycerophosphate, 20 mM sodium 

pyrophosphate, 30 mM sodium fluoride, 1 mM phenylmethanesulfonyl fluoride 

(PMSF), and a complete mini protease inhibitor cocktail tablet (Roche 

Diagnostics). The samples were diluted in 4× SDS-sample buffers, resolved by 

SDS-PAGE on 9% tris-glycine or 16% tris-tricine gels, and transferred to 

ImmobilonTM –FL phlyvnylidene fluoride (PVDF) membranes (Millipore). For 

immunoblot analysis, membranes were blocked for 1 h in phosphate-buffered 

saline (PBS) containing 5% non-fat dried milk followed by overnight incubation 

at 4°C in primary antibodies diluted in the blocking medium. Rabbit antibody C20 

(1:2000) was used to detect APP and its C-terminal fragment (CTF) products. 

Rabbit anti-PS1 loop antibody PS1N (1:2000) was used to detect full length PS1 

and its N-terminal fragment (NTF). Internal control β-actin was detected using 

monoclonal antibody AC-15 (Sigma). The membranes were rinsed in PBS with 

0.1% Tween-20 and incubated with IRDye 800CW-labelled goat anti-mouse or 

anti-rabbit antibodies in PBS with 0.1% Tween-20 at 22°C for 1 h, and visualized 
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on the Odyssey system (LI-COR Biosciences). All quantification was performed 

suing LI-COR Odyssey system and Image J.  

 

3.2.5  Aβ40/42 Enzyme linked-immunosorbent assay (ELISA). 

Stable cells lines were maintained in cell culture media supplemented with 5% 

FBS. After 24h, conditioned medium was collected and protease inhibitors and 

AEBSF (ROCHE Diagnostics) were added to prevent degradation of Aβ peptides. 

The concentration of Aβ40 and Aβ42 were detected using β-amyloid 1-40 or β-

amyloid 1-42 Colorimetric ELISA kit (Invitrogen) according to manufacturer’s 

instructions. 

 

3.3 Results. 

3.3.1  Generation of PS1∆S169 and other PS1 mutants.  

Although PS1 mutations can be scattered throughout its amino acid sequence, 

most mutations are in the transmembrane domains and hydrophobic loops. 

PS1∆S169 resides in transmembrane domain 3 (TM3) (Fig 3.2). pcDNA4-PS1WT, 

pcDNA4-PS1Y115H and pcDNA4-PS1 C410Y have previously been generated in our 

laboratory. To compare PS1∆S169 with other PS1 mutations, we generated PS1∆S169 

and 9 other representative PS1 mutations via site-directed mutagenesis (PS1L85P, 

PS1M139V, PS1S169P, PS1S170F, PS1G206S, PS1M233T, PS1Y256S, PS1T291P, PS1T354I) (Fig 

3.2). To generate PS1∆S169, we used PS1WT as a template and primers containing 

the 3bp deletion coding serine to generate a full length PS1∆S169 PCR product, 

which was then cloned into pcDNA4 between the HindIII and XbalI sites. 

PS1∆S169 was generated with  

5’- GCCTGGCTTATTATATCTCTATTG and  

5’-GAA CAGCAACAATAGAGATATAAT as forward and reverse primers. 

Following the same strategy, PS1L85P was generated with  

5’-AAGCATGTGATCATGCCCTTTGTC and  
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5’- GTCACAGGGACAAAGGGCATGA as forward and reverse primers; 

PS1M139V was generated with 5’- CTGAATGCTGCCATCGTGATCAGT and 

5’- AACAATGACACTGATCACGATGGC as forward and reverse primers; 

PS1S169P was generated with 5’- GCCTGGCTTATTATACCATCTC and  

5’- CAGCAACAATAGAGATGGTATAAT as forward and reverse primers; 

PS1S170F was generated with 5’- TGGCTTATTATATCATTTCTATTG and  

5’- GAACAGCAACAATAGAAATGATAT as forward and reverse primers; 

PS1G206S was generated with 5’- CTGATCTGGAATTTTAGTGTGGTG and  

5’- TCATTCCCACCACACTAAAATTCC as forward and reverse primers; 

PS1M233T was generated with 5’- ATGATTAGTGCCCTCACGGCCCT and  

5’- ATAAACACCAGGGCCGTGAGGG as forward and reverse primers; 

PS1Y256S was generated with 5’-GGCTGTGATTTCAGTATCTGATTTAG and  

5’- CAGCCACTAAATCAGATACTG as forward and reverse primers;  

PS1T291P was generated with 5’- CTCATTTACTCCTCACCAATGGTG and  

5’- CCAACCACACCATTGGTGAGG as forward and reverse primers;  

PS1T354I was generated with 5’- GCCTCATCGCTCTATACCTGAG and  

5’- GCTCGTGACTCAGGTATAGAGC as forward and reverse primers. The 

coding sequence of these PS1 mutants was confirmed via BigDye 3.1 sequencing 

(Fig 3.3). 
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Figure 3.2 Presenilin 1 structure and the locus of PS1∆S169.  
This diagram shows the amino acid sequence of PS1 and the distribution of the FAD-associated mutations (blue and red circles). Green circles indicate the two aspartates 
residues, which are essential for catalytic activity. Red circles indicate the representative PS1 mutations, which were selected for comparison with PS1ΔS169 in this dissertation.
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Figure 3.3 Generation of PS1mutants constructs.  
(A) Strategy for the generation of PS1 mutants via site-directed mutagenesis: using the cloning of 
PS1ΔS169 as an example, primers PS1-E6-del-F and PS1-E6-del-R were designed to create the 
PS1ΔS169 deletion mutation. Primers T7 and primer BGHR were the customized primers used for 
pcDNA4-mycHis (A). Site-directed mutagenesis PCR was performed as indicated in the schematic 
diagram with pcDNA4-PS1WT used as the template. (B-K) Sequencing results of the PS1 mutants 
constructs: PS1∆S169, PS1L85P, PS1M139V, PS1S169P, PS1S170F, PS1G206S, PS1M233T, PS1L271V, PS1T291P, 

PS1T354I (r.m., reverse complementary sequence).  

 

3.3.2  PS1∆S169 underwent normal endoproteolysis.  

Under physiological conditions, presenilin undergoes endoproteolysis to generate 

N-terminal fragment (NTF) and C-terminal fragment (CTF). Presenilin holo-

protein has a short half-life of about 30 minutes and is therefore barely detectable; 

after endoproteolysis, the NTF and CTF moieties constitute the functional 
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catalytic core of γ-secretase, with the half-life of 12h (Thinakaran, 2001). During 

endoproteolysis, the hydrophobic loop between exon8 and exon9 is removed, a 

necessary step required to activate wild type PS (Thinakaran et al., 1996a). 

Consequently, PS1∆E9, a PS1 mutant that lacks the hydrophobic loop, is active 

even in the holo protein form (Wolfe et al., 1999b). Intriguingly, some FAD-

associated PS1 mutations exhibit impaired endoproteolysis, resulting in an 

accumulation of holo-PS1 protein and a reduction in active NTF/CTF derivatives 

(Thinakaran et al., 1996a). These observations point to a role of the hydrophobic 

loop in determining the γ-secretase activity. To investigate the endoproteolysis of 

PS1∆S169, expression plasmids, containing PS1WT, PS1∆S169, PS1L85P, PS1Y115H, 

PS1M139V, PS1S169P, PS1S170F, PS1G206S, PS1M233T, PS1Y256S, PS1T291P, PS1T354I, 

PS1C410Y, were transiently transfected into the NN cells, which is PS1-/-/PS2-/- cell 

line lacking endogenous wild type PS1. 

 

 

The 50kDa holo PS protein and its 30 kDa NTF were detected via PS1N antibody 

(Fig 3.4 A). Only PS1T291P and PS1C410Y displayed impaired endoproteolysis, 

reducing NTF levels to 45.5%±4.1% and 34.5%±5.2% (p<0.05) of that seen in 

PS1WT, respectively. In contrast, PS1Y115H and PS1M139V increased the 

endoproteolysis levels to 133.3%±8.4% and 130.5%±6.2% (p<0.05) as compared 

with wild type PS1, respectively (Fig 3.4 B). PS1∆S169 and other PS1 mutants 

underwent normal endoproteolysis without significantly affecting NTF 

generation. These results demonstrated that the S169 deletion did not affect the 

endoproteolysis of PS1. 
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Figure 3.4 PS1∆S169 undergoes normal endoproteolysis.  
NN cells was transiently transfected with pcDNA4-PS1WT, PS1∆S169, PS1L85P, PS1Y115H,  
PS1M139V, PS1S169P, PS1S170F, PS1G206S, PS1M233T, PS1Y256S, PS1T291P, PS1T354I and PS1C410Y. PS1 in 
cell lysate was detected by rabbit anti-PS1 antibody PS1N. (A) In NN cells transfected with empty 
vector, both full length PS1 and its NTF could not be detected. With the introduction of PS1 
variants, there was an accumulation of full length, holo PS1 at 50kD. PS1 variants underwent 
varying degrees of endoproteolysis to generate different level of NTF at 30kDa. (B) Quantification 
of (A) by Image J. The NTFs level in each of the PS1 mutants were normalized to that in PS1WT. 
The values represent mean±SEM. n=3, *p<0.05 by one-way ANOVA with post-hoc tests.  
 

3.3.3  PS1∆S169 demonstrated impaired APP cleavage activity and an 

increased Aβ42/40 ratio.  

Aβ42, a polypeptide derived from APP by sequential β- and γ- cleavages, is 

proposed to initiate the amyloid pathogenic cascade. It has been reported that the 

most investigated FAD-associated PS mutations increase the Aβ42/40 ratio, either 

by promoting Aβ42 production or reducing Aβ40 generation. To explore the 

effect of PS1∆S169 on APP processing, we generated PS-stable cell lines in HAW 

and NN cells. HAW is a HEK293 cell line, which stably expresses wild type APP, 

and can be used to investigate APP processing and Aβ generation (Sun et al., 

2006a, Deng et al., 2013). NN is the PS1-/-/PS2-/-mouse embryonic fibroblast cell 
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line, which has the unique advantage of having no endogenous PS (Song et al., 

1999a). PS1WT, PS1∆S169, PS1C410Y or PS1Y115H were transiently introduced into 

HAW and NN cell line and stable cell lines were selected using Zeocin 

(800µg/ml) (Invitrogen). HAWPS was HAW cell line stably expressing PS1 

variants, while NNPS referred to NN cells expressing stably PS1 variants. As 

most endogenous PS undergoes endoproteolysis, the holo-protein of PS can barely 

be detected in HAW cells. After the stable introduction of exogenous PS1, holo-

PS1 variants were detected at 50 kDa in HAWPS cells (Fig 3.5 A). In NNPS cells, 

the introduction of PS1 variants rescued the PS deficiency in NN cells, and the 

PS1 NTFs were clearly detected at 30kDa by antibody PS1N. In both HAWPS 

and NNPS cells, PS1∆S169 underwent normal endoproteolysis similar to wild type 

PS1 (Fig 3.5 A, E), supporting our previous finding in section 3.3.2.  

 

The conditioned media of HAWPSs cells was collected after 24h of culture and 

Aβ was measured by ELISA assay. Compared with PS1WT, PS1C410Y and PS1Y115H 

reduced the production of Aβ40 to 32.1%±4.6% and 30.6%±5.2% (p<0.01), 

respectively; however Aβ42 production of PS1C410Y and PS1Y115H appeared 

unaffected. In contrast, PS1∆S169 decreased the production of both Aβ40 and Aβ42 

to 24.7%±3.8% and 67.1%±4.2% (p<0.01), respectively (Fig 3.5B, C). Despite 

this, the overall effect on Aβ42/40 ratio was the same, PS1∆S169, PS1C410Y and 

PS1Y115H all increased Aβ42/40 ratio over that seen in PS1WT to 280.3%±26.2%, 

274.1%±14.1% and 286.1%±25.5% (p<0.01), respectively (Fig 3.5 D). We 

further investigated APP processing in NNPSs cell lines, in which the effect of 

endogenous wild type presenilins was eliminated. APPWT was transiently 

introduced into NNPS cells to examine APP processing. Without endogenous 

PS1, APP CTFs were accumulated in NN cells (Fig 3.5 F, lane 1); when 

introduced wild type PS1, APP CTFs levels were reduced to 31.6%±2.8% 

(p<0.01) in NNPSWT cells as compared with NN cells, indicating that PS1WT 
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greatly rescued the γ-secretase processing of APP in NN cells. In NNPS∆S169 and 

NNPSC410Y cells, APP CTFs levels were reduced to 74.3%±4.5% and 

71.4%±4.2% (p<0.05) (Fig 3.5 F, G) as compared with the CTFs levels in NN 

cells, but the rescuing effect was weaker than PS1WT. The combined analysis of 

the Aβ and APP CTF assays indicate that PS1∆S169 impairs γ-cleavage of APP, 

particularly at the Aβ40 generation site.  

 

 
Figure 3.5 PS1∆S169 promoted accumulation of APP CTFs and increased Aβ42/40 ratio via 
impaired γ–secretase activity in PS1 stable cell lines.  
HAW cells are HEK293 cells which stably overexpress human APPWT (Qing et al., 2004a), and 
NN cells are PS1/PS2 double-knockout (PS1–/–/PS2–/–) mice embryonic fibroblast cells (MEF) 
(Song et al., 1999b). PS1 stable cell lines were generated by introducing pcDNA4-PS1WT, 
pcDNA4-PS1∆S169, pcDNA4-PS1C410Y or pcDNA4-PSY115H into HAW or NN cells and selecting 
the positive, stably transfected cells with Zeocin (Invitrogen). PS1 was detected by rabbit anti-PS1 
antibody PS1N (Song et al., 1999a). APP was detected by rabbit anti-APP antibody C20 (Qing et 
al., 2004a). Monoclonal anti-β-actin antibody (AC-15) was used to detect β–actin. (A) In 
HAWPSWT, HAWPS ∆S169, HAWPSC410Y, HAWPS Y115H cell lines, accumulation of full length PS1 
was robustly increased compared with HAW. PS1∆S169 underwent endoproteolysis similar to 
PS1WT. (B, C, D) Conditioned media from HAWPS cell lines were collected to determine Aβ 
production. PS1∆S169, PS1C410Y and PS1Y115H produced significantly less Aβ40 than PS1WT. 
PS1∆S169 also generated significantly less Aβ42 than PS1WT. When the Aβ42/40 ratio was 
examined, all PS1 mutations lead to a significant increase in the Aβ42/40 ratio. (E) In NNPSWT, 
NNPS∆S169, NNPSC410Y cells, full length PS1 and PS1 NTFs were robustly detected at 50kDa and 
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30kDa separately. (F) In NNPSWT, NNPS∆S169, NNPSC410Y cells with wild type APP 
overexpression, APP CTFs were detected via C20 antibody. (G) The levels of APP CTFs were 
quantified using Image J. Compared with NNPSWT, NNPS∆S169 and NNPSC410Y exhibited less 
effect on rescuing the accumulation of APP CTFs in NN. Values represent mean±SEM, n=5, 
*p<0.05, **p<0.01, ***p<0.001 by one-way ANOVA with post-hoc tests. 
 

3.3.4  PS1∆S169 cleaved Notch with normal enzymatic efficiency. 

APP and Notch were first two identified substrates cleaved by γ-secretase. While 

Aβ42, generated from APP by γ-secretase, is believed to initiate the amyloid 

pathogenic cascade; whether altered Notch cleavage also contributes to AD 

pathogenesis is still not clear. Notch was first implicated in AD in several studies 

of PS-deficient mice and stem cells. PS-deficient mice were embryonic lethal and 

displayed CNS and skeletal defects reminiscent of the Notch-knock out phenotype 

(Shen et al., 1997, Wong et al., 1997). Later studies confirmed that Notch was a 

substrate of presenilins (De Strooper et al., 1999, Song et al., 1999a) and FAD-

associated PS mutations inhibited NICD production(Song et al., 1999a). Notch 

signaling is one of the most conserved cell signaling pathways in metazoans, and 

is fundamental in neuroproliferation and differentiation in both embryonic 

development and adult brain; it still remains elusive how the impairment in Notch 

processing caused by FAD-PS mutations contributes to AD pathogenesis. 

Furthermore, as PS is a pharmaceutical target for AD therapy, a major obstacle for 

γ-secretase inhibitor development is how to avoid inhibition of Notch cleavage.  

 

In 1999, Song et al. discovered that FAD-associated PS1 mutations reduced 

proteolysis of a truncated form of Notch1, mNotch1ΔE m/v (NΔE), which 

undergoes proteolysis constitutively in the absence of receptors (Song et al., 

1999a). Here, I employed NΔE to assess the effect of PS1∆S169 on Notch 

processing by transiently co-overexpressing PS1∆S169 and NΔE in HEK293 cells. 

48h post transfection, cell lysates were resolved by 10% SDS–PAGE and 

immunoblotted with 9E10 antibody against the C-terminal Myc-tag of NΔE. The 

cleaved form of NΔE (NICD) was analyzed in different PS1 variants (PS1WT, 
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PS1∆S169 and PS1C410Y). Quantification of the results showed that compared with 

PS1WT, PS1C410Y only produced 36.6% ± 1.3% NICD (p<0.001); whereas PS1∆S169 

and PS1WT were indistinguishable in terms of NICD generation (Fig 3.6 A, B). To 

confirm these findings, a stable NΔE stable expressing cell line in HEK293, 

designated V2, was created in HEK293 cells. PS1WT, PS1∆S169, PS1 Y115H and 

PS1C410Y were introduced into V2 cells to determine the NICD generation in 

different PS1 variants. Consistent with the transient overexpression results, no 

significant differences were seen in the amount of NICD generated by 

overexpression of PS1∆S169 and PS1WT in V2 cells; whereas PS1 Y115H and 

PS1C410Y significantly reduced NICD levels to 67.6% ± 7.4% and 52.7% ± 5.2%  

(p<0.05) (Fig 3.6 C, D).  These data indicate that S169 deletion in PS does not 

affect γ-cleavage of Notch. 

 

 
Figure 3.6 PS1∆S169 retained its enzymatic activity in Notch signaling.  
(A) pcDNA4-PS1WT, pcDNA4-PS1∆S169 or pcDNA4-PS1C410Ywere transiently introduced into 
HEK293 cells with pcDNA3-mNotch1ΔE m/v (NΔE). pcDNA3-ICV1744 was introduced into 
HEK293 as gel marker for NICD. Cell lysates were analyzed by Western Blot. NΔE and ICD 
(NICD) were detected by anti-mouse antibody 9E10. (B) Quantification from (A) by Image J. In 
comparison with PS1WT, PS1C410Y generated significantly less NICD. The levels of NICD in 
PS1∆S169 was similar to that in PS1WT. (C) NΔE stable cell line (V2) was generated by introducing 
pcDNA3-NΔE into HEK293 cells and selecting positive colonies with G418 (Sigma). pcDNA4-
PS1WT, pcDNA4-PS1∆S169, pcDNA4-PS1C410Y or pcDNA4-PS1Y115Hwere transiently introduced 
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into V2 cells to analyze the Notch processing efficiency of PS1. Empty vehicle was used as a 
negative control. (D) Quantification from (C) by Image J.  PS1∆S169 had no effect on NICD (ICV) 
production, whereas PS1 C410Y produced significantly less NICD than PS1WT. Values represent 
mean±SEM, n=5, *p<0.05, **p<0.01, ***p<0.001 by one-way ANOVA with post-hoc tests. 
 

3.4 Discussion. 

It has been almost two decades since presenilin was found to linked to early-onset 

of AD, yet the underlying mechanism of action is still unknown. PS1∆S169 is a PS1 

deletion mutation newly discovered in a Chinese family.  PS1∆S169 is located in 

TM3, and two missense mutations are also known to occur at this location – 

PS1S169P and PS1S169L (Taddei et al., 1998, Ezquerra et al., 1999). Both PS1S169P 

and PS1S169L are characterized with very early-onset AD (mean age of onset is 32 

years), rapid progressiveness (mean age of death is 38 years) and the presence of 

generalized myoclonic jerks and seizures. Except for the early age of onset  (as 

early as 43 in PS1∆S169 family), other phenotypes of PS1∆S169 were not 

distinguishable from typical sporadic AD (Guo et al., 2010a). The serine at the 

site 169 of PS1 showed high phylogenetic conservation across different species, 

suggesting that the position is highly conserved and functionally important.  

 

During normal maturation, presenilin undergoes endoproteolysis to generate 

NTFs and CTFs (Thinakaran et al., 1996a). Although it is difficult to study the 

crystallization structure of presenilin and the γ-secretase complex, it is proposed 

that endoproteolysis confers γ-secretase activity to presenilin by removing the 

cytoplasmic hydrophobic loop (Knappenberger et al., 2004, Fukumori et al., 

2010). While mutations like PS1∆E9, PS1M146L and PS1A246E fail to undergo 

endoproteolysis, mutations like PS1H163R undergoes endoproteolysis normally 

(Okochi et al., 1997). Thus, the current consensus is that not all clinical PS 

mutations impair endoproteolysis, but mutations with significant endoproteolysis 

deficits usually demonstrate more severe impairments of γ-secretase activity. To 

investigate the effect of PS1∆S169 on its endoproteolysis, we compare PS1∆S169 
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with 12 other pathogenic PS1 mutations occurring within the transmembrane 

domain or specific locus near the functional site, such as PS1T291P near the 

endoproteolysis site. Consistent with previous studies, deficits in endoproteolysis 

were not an obligatory phenomenon in clinical PS1 mutations, and PS1∆S169 

underwent normal endoproteolysis.  

 

APP is the most important substrate of PS1. The effect of PS1∆S169 on APP 

processing was investigated in different scenarios. Aβ42/40 ratio was analyzed in 

cell lines that stably expressed of both wild type APP and different PS1 variants.  

As mentioned in 3.3.3, an increased Aβ42/40 ratio is a pathogenic indicator of 

clinical PS mutations. While we found that an overall increase in Aβ42/40, this 

resulted from various mechanisms, depending on the PS1 mutations studied. 

Some mutations, like PS1C410Y, specifically impaired the production of Aβ40 

without significantly affecting on Aβ42 generation; other mutations produced 

more Aβ42, with or without an accompanying reduction in Aβ40; while others 

impaired production of both Aβ40 and Aβ42, but reduced Aβ42 to a lesser 

degree. We found that PS1ΔS169 had a significantly increased Aβ42/40 ratio 

compared with wild type PS1, due to deficits in the generation of both Aβ40 and 

Aβ42. The impaired γ-secretase activity of PS1ΔS169 was also verified using NNPS 

stable cell lines, the PS1-/-/PS2-/- mouse fibroblast cells lacking endogenous wild 

type PS but overexpressing the mutant PSs of interest. We transiently introduced 

wild type APP into NNPSs stable cell lines and investigated the effect of PS1ΔS169 

on the accumulation of APP CTFs.  Consistent with the Aβ generation, PS1∆S169 

demonstrated impaired γ-secretase activity as indicated by an increased 

accumulation of APP CTFs compared with wild type PS1 (Fig 3.5).  

 

γ-Secretase processes its substrates at two distinct sites: the ε-site generates ICDs 

(like NICD), and the γ-site generates Aβ, for example. It has recently been 
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reported that γ-secretase complex cleavage at the ε- and γ-sites seem to be 

independently regulated under different pH, temperature, and salt concentration 

condition (Quintero-Monzon et al., 2011). A kinetic study on ICD-production of 

FAD-associated PS1 mutants also demonstrated that cleavage efficiency at the ε-

site varies among PS1 mutants, and PS1M139V even displays normal ε-cleavage of 

APP, Notch, and Erb4. This suggests that inefficient processing at the ε-site is not 

an essential contributor to AD pathogenesis (Chavez-Gutierrez et al., 2012). 

These studies are consistent with our finding that PS1ΔS169 specifically affected 

enzymatic activity at the γ-site.  

 

Although several FAD-associated PS1 mutations demonstrate impaired Notch 

processing, it is hotly debate whether Notch contributes to AD pathogenesis, and 

if it does, how much. Two recent studies on Notch conditional knock-out mice 

drew distinct conclusions concerning the contribution of Notch signaling to adult 

brain function. One suggested that Notch signaling was involved in synaptic 

plasticity via the Arc pathway (Alberi et al., 2011), while the another suggested 

that Notch signaling could be absent at least in excitable glutamate neurons 

(Zheng et al., 2012). Our study demonstrated that pathogenic PS1∆S169 could 

process Notch normally, suggesting that aberrations in Notch signaling are not 

essential in AD pathogenesis. However, we could not exclude the role of Notch 

signaling in AD, or explain how Notch signaling contributes to the clinical variety 

of FAD-associated PS1 mutations.  

 

Various PS1 mutations could have differential effects pathologically and 

clinically. Pathologically, PS1 mutations demonstrate atypical histopathological 

features, such as cotton wool plaque (CWP) and spastic paralysis (Rogaeva et al., 

2003). Clinically, patients with some PS1 mutations suffer from myoclonic jerks, 

like PS1S169L and PS1S169P. The molecular mechanisms underlying these processes 

are unknown, however, it is possible that variously affected Notch signaling is one 
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of the reasons. Moreover, PS1 mutations increased Aβ42/40 through different 

mechanisms (such as PS1ΔS169 promoting Aβ42/40 via disproportionally 

inhibiting both Aβ; see above for details). The differing amount of Aβ40 may also 

contribute to the variable consequences of PS1 mutations.  

 

3.5 Conclusion. 

PS1ΔS169 was a recently discovered pathogenic PS1 mutation in a Chinese family 

with an average age of AD on-set of 45 years. We studied the effect of PS1ΔS169 

on APP and Notch processing in vitro. With respect to APP processing, PS1ΔS169 

increased Aβ42/40 via disproportionally impaired γ-cleavage. In the case of Notch 

processing, PS1ΔS169 retained its enzymatic activity, resulting in normal NICD 

generation. Our in vitro study suggested that PS1ΔS169 contributed AD 

pathogenesis via its impaired γ-secretase processing of APP.  
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Chapter 4 
 
 

PS1∆S169 promotes AD pathogenesis  
in vivo 
 
 

4.1  Introduction. 

Animal models are valuable tools to validate the pathogenic mechanism seen in in 

vitro studies, and to evaluate potential therapeutic interventions. The best animal 

models have pathogenic process and progression similar to the human disease. In 

the case of AD, transgenic mice should develop amyloid plaques and 

neurofibrillary tangles, as well as functional cognitive deficits. Moreover, both the 

neuropathological and behavioral features should progress with aging.  

 

APP protein is highly conserved across species; the human APP sequence is 

approximately 96% identical to murine APP. Despite this, rats and mice do not 

develop amyloid pathology with age and the underlying mechanism for this still 

unclear. It is hypothesized that the three amino acids difference in the rodent Aβ 

sequence (Selkoe, 1989), the short lifespan of rodents relative to humans 

(Jankowsky et al., 2004b), and the differences in β-secretase processing of mouse 

APP (Cai et al., 2001), may be involved. Thus, to create an animal model that 

mimics the amyloid pathology seen in human AD, transgenic mice were 

developed which express human APP (Table 4.1).  Unfortunately, neurofibrillary 

tangles are still absent in APP or APP/PS transgenic mice. This obstacle was 
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overcome by introducing MAPT (microtubule-associated protein tau) mutants into 

the APP/PS transgenic mouse background (Table 4.1). These triple transgenic 

mice develop both amyloid plaques and neurofibrillary tangles (Oddo et al., 

2003). Although APP/PS/MAPT triple transgenic mice fully recapitulate plaques 

and tangles, it should be of note that MAPT mutations have never been found in 

AD patients. There are still no transgenic mice that fully and precisely mimic the 

comprehensive feature of AD.  

 

In regards to cognitive deficits, most AD transgenic mice display impaired 

cognitive function with age. The severity and progression of cognitive decline is 

dependent on multiple factors, including the different transgenes introduced, the 

expression level of those transgenes, the promoter used, the background strain of 

the mouse, the transgenic method used, and so on. Our lab maintains APP23 

transgenic mice, which are C57BL/6J mice carrying human APP751 cDNA with 

the Swedish double mutation at positions 670/671 (KM>NL) under control of the 

murine Thy-1.2 expression cassette (Sturchler-Pierrat et al., 1997, Sun et al., 

2006a). To further confirm the pathological effect of PS1ΔS169 on APP processing 

in an animal model, we generated APP23/ PS1ΔS169 double transgenic mice and 

examined the pathogenic effect of PS1ΔS169 on APP processing and the cognitive 

function. 
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Table 4.1 Summary of AD transgenic mouse models. 
APP: amyloid precursor protein; Aβ: amyloid beta; EC: extracellular; IN: intracellular; NR: not reported; PDGF: platelet-derived growth factor; PrP: 
prion protein; PS: presenilin. Adapted from (Morrissette et al., 2009)
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4.2 Methods. 

4.2.1  Genomic DNA isolation  

Mouse genomic DNA was extracted from ear punch biopsies by overnight 

digestion in 300µL of proteinase K lysis buffer. The next day, 300µL of 1:1 

phenol: chloroform was added, followed by vortex. Samples were centrifuged 

to separate the aqueous and organic layers, and the aqueous layer was carefully 

removed to a fresh 1.5 mL eppendorf tube. DNA was precipitated with 

isopropanol, and the pellet was washed twice with 70% ethanol, dried, and 

dissolved in 50µL TE buffer (pH 7.4). The quality and quantity of mouse 

genomic DNA was determined by spectrophotometry at OD260.  

 

4.2.2  Transgenic mouse generation.  

All animal experiment protocols were approved by the University of British 

Columbia Animal Care and Use committee. All transgenic mice used in this 

study were of the C57BL/6J genetic background, and as stated previously, 

APP23 transgenic mice carried human Swedish mutant APP 751 (see section 

4.1). PS1ΔS169 was cloned into neuron-specific Thy1-promotor-containing 

vector and the resulting plasmids were confirmed by sequencing. Linearized 

mini-gene constructs were purified using a Gel Extraction Kit (QIAEX). 

Prepared DNA was microinjected into fertilized oocytes (CBA X C57Bl/6 F2) 

and survivors were transferred into pseudo-pregnant recipient female mice (CD-

1/ICR). We analyzed 36 pups and identified 3 positive founder mice via PCR. 

APP23/PS1ΔS169 mice were generated by crossing heterozygous APP23 mice 

with heterozygous Thy1-PS1ΔS169 mice. The presence of both APP23 and 

PS1ΔS169 was confirmed by genotyping with primers. Genotyping PCR primers 

for PS1 were 5’-CACCACAGAATCCAAGTCGG (Thy1-E2 forward) and 5’-
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GGTATCTTCTGTGAATGGGG (PS1-D-Tg reverse), with the target band 

being 420bp. Genotyping PCR primers for APP gene were 5’-

CACCACAGAATCCAAGTCGG (Thy1-E2 forward) and 5’-

CTTGACGTTCTGCCTCTTCC (App1082 reverse), with the target band being 

around 1.3kb.  

 

4.2.3. Real-time PCR and copy number estimation.  

Thy1-PS1ΔS169 plasmid DNA was extracted by Qiagen Hispeed plasmid midi kit 

(CAT#12643), linearized and quantified by gel electrophoresis. Then a series of 

10-fold dilutions of Thy1-PS1ΔS169 plasmid DNA were mixed into  

10 ng/µL of genomic DNA from non-transgenic mice to create a standard curve 

of real-time PCR data from known amounts of DNA template. Custom TaqMan 

Assays (ABI) were used to generate primers and probes for the mouse β-actin 

and human PS1 genes. The following primer pairs and probes were used: for the 

mouse β-actin assay: forward primer:  

(5’- AGCAAGACAAGATGGTGAATGGT); reverse primer:  

(5’- CCCTGTGGTTGTCAGAGCAA); probe:  

(5’-FAM-GAGCTCTCTGGGTGCTGGGATTCCC-NFQ). For human PS1 

assay: forward primer: (5’- CACCACAGAATCCAAGTCGG); reverse primer: 

(5’-CCGTCTGTCGTTGTGCTCC); probe:  

(5’-FAM-GGATCTCGAGGCCACCATGACAGAG- NFQ). Real-time PCR 

was performed on ABI PRISM 7000. Ct values were generated from an assay 

specific to the human PS1 and mouse β-actin genes. Genomic DNA samples 

from Thy1-PS1ΔS169 transgenic mice or copy number standards were analyzed 

in a 25µL reaction volume; all reactions were performed in triplicate. Copy 

number estimates were derived from Ct values of the standard curve samples. 

The standard curve was created by drawing a scatter plot chart with Ct values 
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for each standard on the X axis, and the known logarithmic copy number of 

each standard on the Y axis (see Figure 4.2). Three genomic DNA samples 

from different Thy1-PS1ΔS169 transgenic mice, which shared a common founder, 

were used to determine the copy number of the human PS1 gene in these mice.  

 

4.2.4  Body weight measurement and Rotorad test.  

Mice were transferred via a specified transferring box from their home cage to a 

plastic box that was previously zeroed on the weighing scale. Body weight was 

recorded manually when the value on the scale stabilized. Mice were placed on 

a standard mouse rotarod with single station (ENV-576M, Med Associates Inc., 

USA). The shaft diameter was 3.2cm, lane width of 5.7cm, fall height of 16.5 

cm, and divider diameter of 24.8cm. The rod was accelerated from 20 to 20,000 

rpm over a 300 sec period. Latency to fall was measured manually. Mice were 

returned to their home cage and the second round test was repeated 

approximately 30min later. The average of two trials was taken as a measure of 

balance and motor coordination.  

 

4.2.5  Neuritic Plaque Staining.  

Mice were euthanized after the behavioral tests, and half of the brain was fixed 

and sectioned with a Leica cryostat (Deerfield, IL) to 30 µm thickness. Every 

sixth slice with the same reference position was mounted onto slides for 

staining. Slices were immunostained with biotinylated mono- clonal 4G8 

antibody (Signet Laboratories, Dedham, MA) at 1:1000 dilutions. 

Approximately 24 slices were stained for each mouse. Plaques were visualized 

by the avidin-biotin-peroxidase complex (ABC) and diaminobenzidine (DAB) 

method, and counted under microscopy with 40×magnification. Plaques were 
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quantitated by average plaque count per slice for each mouse, and the data were 

analyzed by student t-test. Thioflavin S staining of plaques was performed with 

1% thioflavin S, and the green fluorescence- stained plaques were visualized 

with fluorescent microscopy (Ly et al., 2011). 

 

4.2.6  Morris Water Maze.  

The water maze test was performed in a pool 1.5 m in diameter; the platform 

was 10 cm in diameter. The procedure consists of 1 day of visible platform tests 

and 4 days of hidden platform tests, plus a probe trial 24 h after the last hidden 

platform test. In visible platform tests, mice were tested for five contiguous 

trials, with an intertrial interval of 30 min; both the position of the platform and 

the start position varied with each trial.  In hidden platform tests, mice were 

trained for six trials, with an inter-trial interval of 1 h; the platform was placed 

in the southeastern quadrant of the pool, and the start position varied with each 

trial. Tracking of animal movement was achieved with an HVS 2020 Plus 

image analyzer (HVS Image). In the probe trial, the platform was removed and 

mice were allowed to swim for 60 sec in the pool. The percentage of time spent 

in the third quadrant was analyzed. Escape latency and path length to reach the 

platform were analyzed as a measure of spatial learning and memory (Bromley-

Brits et al., 2011).  

 

4.2.7  Contextual fear conditioning.  

We used a simplified contextual fear conditioning paradigm in our study. On 

day1, mice were placed in the conditioning chamber for 5min. The walls of the 

chamber were made of plexiglass and steel. The floor of the chamber was made 

of stainless steel rods, which were 2mm in diameter, spaced 5mm apart, and 
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connected to a shock generator. From the beginning of the 3rd min, mice 

received an unconditioned foot-shock stimulus (1mA, 50Hz) for 3s.  24h later, 

mice were placed into the same chamber for 4min without the foot-shock. In 

both trails, freezing behavior was recorded on a second-by-second basis Freeze 

FrameTM (ActiMetrics Software). Freezing was defined a stereotypical 

crouching posture combined with the absence of all movements, excluding 

respiratory-related movements (Blanchard and Blanchard, 1969). Total test time 

was divided into 60 sec bins. The conditioned response was measured by 

analyzing the fold-increase in the percentage of time spent freezing on Day2 

and dividing by the average of the first 3 bins (0-120 sec, pre-shock) of Day1.  

 

4.3 Results. 

4.3.1  Generation and characterization of APP23/PS1ΔS169 double 

transgenic mice.  

To investigate the effect of PS1ΔS169 on AD pathogenesis in vivo, we first 

generated heterozygous PS1ΔS169 mice in a C57BL/6J background strain via 

pronuclear injection method. Transgenic mice were identified by PCR with 

primers targeting the human PS1ΔS169, which was expressing under the control 

of the neuron-specific Thy-1 promoter (see methods). APP23/PS1ΔS169 double 

transgenic mice were established by crossing APP23 and PS1ΔS169 transgenic 

mice.  PCR was performed to target the cDNA of the human APP Swedish 

mutant and human PS1ΔS169 genes. In APP23/PS1ΔS169 mice, both human APP 

fragment (655bp) and PS1 fragment (305bp) were detected in cortical brain 

tissue (Fig 4.1 A). Furthermore, immunoblot analysis showed that 

APP23/PS1ΔS169 mice expressed far more PS1 NTF than APP23 mice, which 

only had endogenous mouse PS expression, confirming the expression of 
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PS1ΔS169 (Fig 4.1 B). We also determined the difference in body weight and 

motor ability between APP23 mice and APP23/PS1ΔS169 mice. APP23 mice and 

APP23/PS1ΔS169 mice displayed similar body weight at 3 months (23.45±0.97 

and 25.38±0.98g, respectively, p>0.05) and 6 months (28.93±1.04 and 

29.63±1.22g, respectively, p>0.05) (Fig 4.1 C, D). APP23 mice and 

APP23/PS1ΔS169 mice also displayed similar performance in the rotorad test at 3 

months (223.1±14.5 and 204.3±15.6s, respectively, p>0.05) and 6 months 

(220.8±15.4 and 210.3±15.3s, respectively, p>0.05) of age (Fig 4.1 E, F). These 

data demonstrated that APP23 mice and APP23/PS1ΔS169 mice are generally 

comparable and can be trained and tested in later cognitive behavior tests.  

 

 
Figure 4.1 Establishment and characterization of APP23/PS1∆S169 double transgenic mice.  
(A) Tail tips from APP23/PS1∆S169 transgenic mice were collected under anesthesia (see 
Methods) and DNA was extracted via the phenol-chloroform method. Equal amounts of 
genomic DNA were used as template in a PCR reaction system with human APP or human PS 
primers (see Methods). (A) The targeted fragment sizes were 655bp for human APP human 
APP and 305bp for PSEN1∆S169. (B) PS1∆S169 expression was detected in the cortex of  
APP23/ PS1∆S169 transgenic mice compared to APP23 control, as shown by an accumulation of 
PS1 NTF at 30kDa. (C, D) APP23/PS1∆S169 and APP23 mice had similar body weights at 3 
months of age. (E, F) APP23/PS1∆S169 and APP23 mice showed similar performance in the 
rotorad test at 3months and 6 months of age.  
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4.3.2  APP23/PS1ΔS169 mice carry two copies of the human PS1ΔS169. 

The effect of the transgene in transgenic mice is not only decided by the 

transgene itself but also by the levels of its expression. In PS1 transgenic mice, 

it is not optimal to have very high copy number of PS1 gene since the extra 

copies of PS1 gene might compensate or conceal some pathogenic effect of PS1 

mutant. It is also a concern that high expression of PS1 gene would greatly 

accelerate the originally slow pathogenic progression. Thus, it is important to 

determine the copy number of PS1ΔS169 in APP23/PS1ΔS169 mice. 

Copy number was determined by real-time PCR on samples taken from three 

PS1ΔS169 transgenic mice, which were from the same founder (see Methods). 

We plotted the standard curve to determine the copy numbers of β-actin gene 

and PS1ΔS169 gene with the real-time PCR results from standard curve samples, 

respectively (Fig 4.2 and Table 4.2). According to the standard curve of 

PS1ΔS169, we evaluated that APP23/PS1ΔS169 mice carried 2 copies of the human 

PS1ΔS169 gene (Table 4.2). 

 

 
 
Figure 4.2 Standard curves for absolute quantitation of PS1ΔS169 copy number in 
APP23/PS1ΔS169 mice.  
(A) Scatterplot chart for the mouse β-actin gene, which was used as an internal control. (B) 
Scatterplot chart for the human PS1 gene. Triplicate experiments provided copy number 
standards with high reproducibility (R2 = 0.9999, R2 = 0.9965) for estimating the copy number 
of samples. 
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Table 4.2 Original Ct values for Copy number estimation. 
 
 

4.3.3  APP processing and Aβ  generation in APP23/ PS1∆S169 double 

transgenic mice. 

We first analyzed the APP processing and Aβ generation in APP23/PS1∆S169 

mice and APP23 mice. The cortical tissue of APP23/PS1∆S169 mice was 

homogenized in lysis buffer and APP CTFs were determined by Western 

blotting. We found that APP23/PS1∆S169 mice did significantly reduce the 

accumulation of APP CTFs under equal human APP expression levels, 

compared with APP23 mice (Fig 4.3 A). This is not conflict with our in vitro 

data, showing that PS1∆S169 exhibited impaired γ-secretase activity. Because of 

the dosage effect, the extra 2 copy of PS1∆S169 in APP23/PS1∆S169 mice might 

compensate its deficits, although PS1∆S169 is a pathogenic mutation with 

impaired APP processing. Aβ42 is proposed to initiate the aggregation of Aβ, 
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all pathogenic PS1 mutations demonstrated increased Aβ42/40 ratio. Brain 

cortical tissue of APP23 and APP23/PS1∆S169 mice was prepared according to 

Aβ ELLISA Kit instructions (Invitrogen). APP23/PS1∆S169 mice had 

significantly increased Aβ42/40 ratio to 2.43 ± 0.61 folds (p < 0.05), as 

compared with APP23 mice (Fig 4.3 B). These date demonstrated that 

APP23/PS1∆S169 promoted the generation of the more hydrophobic Aβ42 

peptide in vivo.   

 

 
Figure 4.3 APP processing and Aβ  generation in APP23/PS1∆S169 and APP23 mice. 
(A) Brain cortical tissue was collected from APP23 and APP23/PS1∆S169 mice and homogenized 
in RIPA-DOC lysis buffer. APP CTFs and full length APP were detected with C20 antibody; 
human PS1 NTF was detected with PS1N antibody. (B) Brain cortical tissue of APP23 and 
APP23/PS1∆S169 mice was prepared according to Aβ ELISA Kit instructions (Invitrogen), and 
the Aβ level was determined. The values represent mean±SEM. N=6, *p<0.05, by student t-test.  
 
 

4.3.4  PS1∆S169 promoted neuritic plaque formation in the transgenic mice. 

Although endogenous APP is expressed in mouse brain, the lack of a critical Aβ 

region in murine APP prevents amyloid plaque formation in mice. To mimic the 

most characteristic pathology of human AD, human APP is introduced into 

mouse brain to initiate plaque deposition. APP23 transgenic mice specifically 

express human Swedish mutant APP in neurons. Although APP23 mice develop 

amyloid plaques in the hippocampus and neocortex as early as 6 months of age, 



Chapter 4 
 

102 
 
 
 
 

  

significant plaque deposition is not observed until 12 months of age (Sturchler-

Pierrat et al., 1997, Sun et al., 2006a).  To test whether PS1ΔS169 could promote 

plaque deposition, APP23/PS1ΔS169 and age-matched control APP23 mice were 

sacrificed after behavioral tests at 3 and 6 months.  

 

Amyloid plaques were detected by 4G8 immunostaining and confirmed by 

staining with thioflavin S (Fig 4.4). From 3 months to 5 months, no plaques 

were detectable in either APP23/PS1ΔS169 or APP23 mice (data not shown). At 6 

months, amyloid plaques were detected in APP23/PS1ΔS169 mice, but not in 

APP23 mice (Fig 4.4 A, B). APP23/PS1ΔS169 mice had an average plaque 

number per slice of 9.45 (9.45±1.09 per slice, p<0.05; Fig 4.4 C), compared to 

the 0 plaque per slice seen in APP23 mice, suggesting that PS1ΔS169 

significantly accelerated plaque formation in the APP23/PS1ΔS169 mice from 6 

months. At 12 months, amyloid plaques could be detected in APP23 mice; 

however, APP23/PS1ΔS169 mice exhibited significantly more plaque formation 

in the same hippocampal region (Fig 4.4). APP23/PS1ΔS169 mice had 2.64 fold 

more plaques than APP23 mice  (36.5 ± 4.79 vs. 14.55 ± 2.29 per slice; p < 

0.001; Fig 4.4 D), indicating that PS1ΔS169 continued to promote the plaque 

formation at 12 months of age. Thioflavin S staining method also confirmed 

that PS1ΔS169 accelerated plaque formation and increased plaque number in 

APP23/PS1ΔS169 mice (Fig 4.4 B). 



Chapter 4 
 

103 
 
 
 
 

  

 
Figure 4.4 PS1∆S169 significantly promoted amyloid plaque formation in the transgenic 
mice.  
(A) APP23/PS1∆S169 and APP23 transgenic mice at 6 and 12 months of age were euthanized 
after behavioral tests, and the brains were dissected, fixed, and sectioned. Amyloid plaques 
were detected with Aβ-specific monoclonal antibody 4G8 via the DAB method. Plaques were 
visualized by microscopy with 40×magnification. a and c showed representative brain sections 
from APP23 mice at 6 and 12 months of age, respectively; b and d showed representative brain 
sections from APP23/PS1∆S169  mice in 6 and 12 months of age, respectively. Black arrows point 
to plaques. (B) Amyloid plaques were further confirmed using thioflavin S fluorescent staining 
and visualized by microscopy at 40×magnifications.  There were more amyloid plaques in 
APP23/PS1∆S169 mice (b and d) compared with age-matched APP23 mice (a and c). White 
arrows point to green fluorescent neuritic plaques. (C) Quantification of amyloid plaques in 
APP23 and APP23/ PS1∆S169 mice at 6 months of age. Numbers represented mean ± SEM; n = 
10 each; **, p < 0.005 by Student’s t-test. (D) Quantification of amyloid plaques in APP23 and 
APP23/ PS1∆S169 mice at 12 months of age. Numbers represented mean ± SEM; n = 10 each; *, 
p < 0.01 by Student’s t-test.  
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4.3.5  APP23/PS1∆S169 double transgenic mice exhibited age-dependent 

memory impairment at 3 months of age.  

To investigate whether PS1ΔS169 affected learning and memory in AD 

pathogenesis in an age-dependent manner, Morris water maze and fear 

conditioning tests were performed at 3 months and 6 months of age.  At 3 

months, APP23 controls and APP23/PS1ΔS169 mice had a similar escape latency 

(30.46 ± 2.11s, n=21 and 31.51 ± 2.18s, n=15, respectively; p > 0.05; Fig 4.5 A) 

and path length (6.02 ± 0.58s, n=2 and 6.53 ± 0.45, n =15, respectively; p> 

0.05; Fig 4.5 B) in the visible platform tests of the Morris water maze, 

indicating that both groups of mice had similar motility and vision. In the 

hidden platform and probe trials which followed, no significant differences 

were seen in escape latency, path length, and number of times the mouse 

crossed the hidden platform area (Fig 4.5 C, D, E; p > 0.05). However, in the 

contextual fear conditioning test, the APP23/PS1ΔS169 mice froze significantly 

less on Day 2 (14.8 ± 3.45%) compared with APP23 mice (23.7 ± 3.26%) 

(p<0.05; Fig 4.5 F), suggesting that PS1ΔS169 promoted the memory deficits in 

APP23 mice at 3 months of age. 
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Figure 4.5 PS1∆S169 negatively affects fear conditioning, but not water maze performance 
of APP23 mice at 3 months of age.  
A Morris water maze test consists of 1 day of visible platform tests and 4 day of hidden 
platform tests, plus a probe trial 24 h after the last hidden platform test. Animal movement was 
tracked and recorded by a HVS 2020 Plus image analyzer. APP23/PS1∆S169 (n=15) and APP23 
transgenic mice (n=21) were tested at 3 months of age. (A) During the first day of visible 
platform tests, APP23/PS1∆S169 and APP23 mice exhibited a similar latency to escape onto the 
visible platform. p > 0.05 by Student’s t test. (B) APP23/PS1∆S169 and APP23 mice had similar 
swimming distances before escaping onto the visible platform in the visible platform test.  
p > 0.05 by Student’s t test. (C) In hidden platform tests, mice were trained with 5 trials per day 
for 4 days. APP23/PS1∆S169 and APP23 mice showed a similar latency to escape onto the hidden 
platform, p > 0.05 by two-way ANOVA; (D) APP23/PS1∆S169 and APP23 mice had a similar 
swimming length to escape onto the hidden platform. p> 0.05 by two-way ANOVA. (E) In the 
probe trial on the 6th day, APP23/PS1∆S169 and APP23 mice traveled similar times into the third 
quadrant, where the hidden platform was previously placed. p> 0.05 by Student’s t-test. (F) In 
the contextual fear conditioning test (see Methods), on day1, APP23/PS1∆S169 and APP23 mice 
demonstrated indistinguishable freezing level immediately after foot shock; p > 0.05 by 
Student’s t-test. On day 2 (24 h later), APP23/PS1∆S169 mice demonstrated significantly reduced 
freezing levels compared with APP23 mice in the same contextual cage without shock; p < 0.05 
by Student’s t-test.  
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APP23 and APP23/PS1ΔS169 mice were also subjected to the Morris water maze 

and contextual fear conditioning tests at 6 months of age. On day1 of the visible 

platform test, APP23 and APP23/PS1ΔS169 mice had a similar escape latency 

(27.81 ± 1.86 s, n =14 and 32.47 ± 2.90s, n =12, respectively; p > 0.05)  

(Fig 4.6 A) and path length (5.94± 0.39s, n =14 and 6.38 ± 0.57s, n =12, 

respectively; p > 0.05) (Fig 4.6 B), suggesting normal motility and vision. In the 

hidden platform tests on day 2-5, APP23/PS1ΔS169 mice showed significant 

deficits compared with APP23 controls. The escape latency on the third and 

fourth days of APP23/PS1ΔS169 mice (38.01 ± 2.75 s and 36.07 ± 2.96s, n =12, 

respectively; p < 0.05) was longer than APP23 mice (29.69 ± 2.44 s and 22.85 ± 

2.13s, n =14, respectively; p < 0.05) (Fig 4.6 C). APP23/PS1ΔS169 mice also 

swam significantly longer distances (6.44 ± 0.65s and 5.49± 0.37s, n =12, 

respectively; p < 0.05) to reach the platform as compared with APP23 mice 

(5.43 ± 0.4s and 4.16 ± 0.36s, n =14, respectively; p < 0.05) (Fig 4.6 D). In the 

probe trial on the last day of testing, the platform was removed and the number 

of times the mice passed the platform’s previous position was measured. 

APP23/PS1ΔS169 mice made significantly fewer passes compared with controls 

(1.45 ± 0.15 and 3.63 ± 0.37, respectively; p < 0.005; Fig 4.6 E). These data 

indicated that APP23/PS1ΔS169 mice have significantly worse memory deficits 

compared with APP23 mice. In the contextual fear conditioning test, the 

APP23/PS1ΔS169 mice froze significantly less on Day 2 (13.4 ± 2.91%) 

compared with APP23 mice (27.9 ± 3.8%) (Fig 4.6 F). Together with the 

behavioral performance of 3 months old mice, the impaired performance of 6 

months old APP23/PS1ΔS169 mice in the Water maze and fear conditioning tasks 

indicated that PS1ΔS169 continues to exacerbate memory deficits of 6 months old 

APP23 mice in an age-dependent manner. 
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Figure 4.6 PS1∆S169 exacerbates memory deficits in APP23 mice at 6 months of age.  
APP23 transgenic mice (n=14) and APP23/PS1∆S169 (n=12) were tested at 6 months of age. (A, 
B) On day 1, APP23/ PS1∆S169 and APP23 mice exhibited a similar escape latency and 
swimming path length to escape onto the visible platform. p > 0.05 by Student’s t-test. (C, D) In 
hidden platform tests on day 2 to 5, APP23/PS1∆S169 mice showed a longer escape latency and 
swimming path length to escape onto the hidden platform. p < 0.01 by ANOVA. (E) In the 
probe trial on the sixth day, APP23/PS1∆S169 mice traveled into the third quadrant, where the 
hidden platform was previously placed, significantly less times than controls. *, p < 0.01 by 
Student’s t-test. (F) On day1 of the contextual fear conditioning test, APP23/PS1∆S169 and 
APP23 mice demonstrated indistinguishable freezing levels immediately after foot shock. p > 
0.05 by Student’s t-test. 24h later, APP23/ PS1∆S169 mice demonstrated significantly reduced 
freezing level compare with APP23 mice in the same contextual cage without shock at Day2. p 
< 0.05 by Student’s t-test.  
 

 

4.4 Discussion. 

To investigate the effect of PS1∆S169 on AD pathogenesis in vivo, we generated 

PS1∆S169 transgenic mice and crossed them with APP23 transgenic mice. The 

APP23 mice overexpress human APP-751 cDNA harboring the human Swedish 
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mutation (KM670/671NL) under control of a neuron-specific mouse Thy-1 

promoter. In APP23 mice, Swedish APP is expressed 7-fold higher than 

endogenous mouse APP, with higher levels obtained in the deep cortical layers 

and the hippocampus, and lower in other brain regions such as the thalamus 

(Sturchler-Pierrat et al., 1997). From 6 months of age, small amounts of 

amyloid plaques can be detected in the cerebral cortex of APP23 mice, and the 

size and number of plaques progresses with age (Sturchler-Pierrat et al., 1997).   

 

Pathogenic PS1 mutants have enhanced Aβ deposition and plaque formation in 

APP23 mice due to increased Aβ42 production, like PS1M146L. This effect was 

not the result of elevated PS levels, because introduction of wild type PS would 

not alter the Aβ42/40 ratio or promote plaque formation (Duff et al., 1996). It 

has been reported that, compared with APP transgenic mice, APP/PS1mutant 

mice have an increased Aβ 42/40 ratio, earlier plaque formation, and more rapid 

progression of memory deficits (Borchelt et al., 1997, Citron et al., 1997, 

Holcomb et al., 1998, Lamb et al., 1999). In chapter 4, we found that as 

compared with APP23 littermates, APP23/PS1∆S169 mice developed plaques 

sooner (6 months) and displayed a more severe plaque load by 12 months of 

age. Using Morris water maze and contextual fear conditioning tests, we found 

that PS1∆S169 promoted the memory impairment of APP23 mice starting from 3 

months of age. The time interval between plaque detection and abnormal 

performance in behavioral tests could be interpreted as the toxicity of soluble or 

oligomerized Aβ prior to plaque formation (Haass and Selkoe, 2007).   

 

A good animal model should be able to mimic the onset and progression of the 

disease. Taking C57BL/6J as an example, 6 months old mice are equivalent to 

30 years old humans, and 12 months equivalent to 42.5 years old humans (Fox, 
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2006). APP23/PS45 double transgenic mice overexpress both Swedish APP and 

PS1G384A. The APP23/PS45 transgenic mice maintained in our laboratories 

develop plaque pathology in the neocortex and hippocampus as early as 1 

month of age, equivalent to 12.5 years in a human. A human-equivalent age of 

onset of 12.5 years is too young even for FAD, and this discrepancy in age of 

onset may not accurately characterize the real picture of AD pathogenesis, 

which often occurs in an aging body. APP23/PS45 mice develop plaques at 1 

month of age because the PS1G384A transgene is artificially overexpressed at a 

very high level, which could give rise to false results due to the robust 

overexpression.  APP23/PS1ΔS169 mice showed plaques development from 6 

months of age (no plaque detection in 4 and 5 months of age, data not shown), 

equal to approximately 30 of human years; this is much closer to findings in 

human PS1 mutations. Moreover, animal models such as APP23/PS45 are not 

suitable for testing therapeutics testing due to the rapid development of plaques. 

Because APP23/PS1ΔS169 mice develop plaques at a much slower rate, these 

mice would be better animal model to observe the slow effect of drug 

treatments.  

  

One potential pitfall in our study was that we used transgenic mice instead of 

knock-in (KI) mice.  To make our mice comparable to APP23/PS45 mice and to 

shorten the research time, we utilized pronuclear injection method to 

overexpress human PS1∆S169 gene in brain. It was previously shown that 

overexpressed human PS1 could replace endogenous murine PS1 and act as the 

predominant γ-secretase, resulting from competition for limiting cellular factors 

(Thinakaran et al., 1997). Although APP23/PS1ΔS169 mice carried only 2 copies 

of the human PS1ΔS169 gene, the effect of the endogenous wild type mouse PS1 

could not be excluded. The virtue of KI mice is the elimination of endogenous 
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target genes and the similar transgene expression level, as compared with 

physiological levels. Thus, KI mice could reflect the effect of PS1∆S169 on APP 

processing and plaque pathology more accurately.  

 

The limitations in relating the animal studies to the human disease need specific 

attention. According to the European statistical report on the (2010), mouse is 

accounting for 59% of the total number of animals used for experimental and 

other scientific purpose. However, mouse is not an appropriate model for 

neurodegenerative model, strictly. First and foremost, the short lifespan of mice 

is around 2 years, which is quite short relative to humans (Jankowsky et al., 

2004b); whereas aging is the well-established risk factor for most 

neurodegenerative disease.  Second, it is very hard to mimic the pathogenesis of 

complex disease (e.g. AD) in mice model with such short lifespan in the 

simplified experimental conditions. Third, the pure genetic ground of transgenic 

mice simplifies experimental conditions but poses the obstacle to apply the 

results to the following clinical trials in human patients. Taken AD as an 

example, it is currently accepted that FAD and sporadic AD are the same 

disease in different forms. While FAD is considered as Mendelian, the late-

onset sporadic AD is non-mendelian Alzheimer’s disease. Sporadic AD is 

classified as a complex disease, resulting from the comprehensive effect of 

multiple factors, such as complex genetic background and environment. 

However, the majority of AD transgenic mice are established based on the FAD 

studies, like our APP23/PS1ΔS169 mice. A therapeutics, which is significant 

efficient in APP23/PS1ΔS169 mice, might has insignificant effect in AD patients, 

such as semagascestat (Lanz et al., 2006, Bateman et al., 2009).  
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4.5 Conclusion. 

In chapter 4, we confirmed the impaired processing of APP by PS1ΔS169 in 

APP23/PS1ΔS169 transgenic mice. Compared with APP23 mice, APP23/PS1ΔS169 

mice have an advanced plaque formation time and increased plaque load. 

Behaviorally, PS1ΔS169 mice displayed enhanced memory deficits in fear 

conditioning at 3 months of age, and impaired performance in Morris water 

maze at 6 months of age, indicating that PS1ΔS169 also promotes the cognitive 

impairment seen in aging APP23 mice.  
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Chapter 5 
 
 
Discussions and future directions 
 
 

5.1 Revisiting the “Amyloid hypothesis”. 

The “amyloid hypothesis” is the central dogma in current AD field (Hardy and 

Selkoe, 2002). Despite the debate on whether its steady-state form (plaque) or 

its metastable form (oligomers) is the real toxic species, Aβ itself is established 

as the culprit of AD pathogenesis (Haass and Selkoe, 2007). However, since it 

was proposed, “amyloid hypothesis” has been strongly challenged by several 

lines of evidence. First, if Aβ is the cause of AD, why is amyloid 

plaques/amyloid load poorly correlated with cognitive function decline in AD 

patients? Second, how should we explain the substantial amyloid deposition in 

approximately 20%-30% of cognitively normal elderly (Aizenstein et al., 2008)? 

Third, what mechanism underlies the reduced Aβ42 in the cerebrospinal fluid 

(CSF), which has been established as a biomarker for AD diagnosis (Motter et 

al., 1995, Galasko et al., 1998)? Last but not the least, how should we interpret 

the failure in all of the amyloid-β-centric therapeutic approaches that reached 

Phase III clinical trials? For instance, Eli Lilly and Company had recently 

announced to discontinue the phase III trial of semagascestat (LY450139), the 

first blood-brain barrier permeable γ-secretase inhibitor.  In phase III, 

semagascestat displayed worse cognitive performance as well as daily activities 
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compared with the placebo controls; moreover, semagascestat also brought 

intolerable side effects like skin cancer (Cummings, 2010).  

 

5.1.1  Possible explanations to the paradox in the  “Amyloid hypothesis”.  

The aggregation of Aβ is a dynamic procedure, progressively going from 

monomers to dimers/trimers, and then through oligomers and protofibrils to the 

final formation of plaques. Given the mounting evidence in support of the 

toxicity of soluble amyloid oligomers, it is proposed that the amyloid plaques 

act as the inert reservoir, whereas the oligomers are the real culprit that initiates 

AD pathogenesis. Moreover, some studies demonstrated that the intracellular 

Aβ accumulation precedes its extracellular deposition (Oddo et al., 2003, 

LaFerla et al., 2007), indicating the contribution of  “the toxicity of intracellular 

Aβ” in AD pathogenesis. If  “amyloid oligomers” and “intracellular Aβ” are the 

actual toxic amyloids, it explains why the number of amyloid plaques is poorly 

correlated with the cognitive impairment in AD patients.  

 

Besides, recent therapeutic studies shed some light on the exact role of Aβ in 

the complex pathogenesis of AD. It was reported that the cognitive decline 

continues in the Aβ vaccination despite the effective clearance of plaques 

(Holmes et al., 2008). Similarly, amyloid imaging via Pittsburgh compound B 

(PIB) binding PET scan confirmed that the amyloid burden changed little once 

significant cognitive impairment occurred (Wang et al., 2002, Sojkova et al., 

2011, Villemagne et al., 2011). The reduction of Aβ42 in cerebrospinal fluid 

(CSF) is widely used as a biomarker in AD diagnosis, which is inversed related 

with the increased PIB bind (Fagan et al., 2006). Further studies find similar 

amyloid load between MCI (mild cognitive impairment) and AD, and thus 
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postulated that the majority amyloid deposition occurred before significant 

cognitive decline (Shaw et al., 2009, De Meyer et al., 2010, Jack et al., 2010). 

These clinical findings indicated that Aβ is more likely to act as a trigger than a 

driver, which is not consistently required throughout the whole AD 

pathogenesis. Again, the “amyloid-trigger” scenario also explains the poor 

correlation of amyloid load and cognitive decline in AD patients, as mentioned 

above.  

 

5.1.2  “Amyloid hypothesis” and novel risk factors in late-onset sporadic 

AD.  

While FAD is considered as Mendelian, the late-onset sporadic AD is non-

mendelian Alzheimer’s disease. Sporadic AD is classified as a complex disease, 

resulting from the comprehensive effect of multiple factors, such as complex 

genetic background and environment.  The advances in GWAS in sporadic AD 

postulate an alternate hypothesis to the amyloid-centric dogma. The SORL1, 

also known as a neuronal apolipoprotein E receptor, was reported to be 

associated with both familial and sporadic AD (Rogaeva et al., 2007). Earlier 

studies implicated that SORL1 was involved in the regulation of the 

endocytosis of APP.  Meanwhile, PICALM, coding a protein involved in 

clathrin-mediated endocytosis, was found as a risk factor for sporadic AD 

(Harold et al., 2009). As mentioned in chapter 1, the classical theory on APP 

trafficking proposed that the majority of Aβ was produced in the endocytosis 

pathway (Andersen et al., 2005). Taken together, it is possible that the abnormal 

endocytosis of APP plays a role in AD pathogenesis. Besides, the new findings 

on TREM2 emphasized the role of inflammation in AD pathogenesis (Guerreiro 

et al., 2013, Jonsson et al., 2013). All these novel discoveries in sporadic AD 
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support AD as a complex disease and also provide a new therapeutic target for 

AD treatment.  

 

5.1.3  Linking early-onset FAD with late-onset sporadic AD.  

One of the conundrums in AD field is connecting the findings in FAD with 

sporadic AD cases. FAD-associated mutations are the most powerful evidence 

in support of the “amyloid hypothesis”. APP is the precursor of Aβ, whereas PS 

is the enzyme responsible for the generation of the more hydrophobic Aβ42. In 

early-onset FAD, mutations on APP and Presenilins, both of which 

synergistically promotes the production of the more aggregation-prone Aβ42, 

building a full “amyloid story” that embraces both the substrate (APP) and the 

enzyme (γ-secretase) in amyloid pathway. Although patients with FAD-

associated mutations develop AD symptoms around 10 years earlier than 

sporadic AD, FAD and sporadic AD are undistinguishable both clinically 

pathologically. It is currently accepted that FAD and sporadic AD are the same 

disease in different forms.   

 

But strikingly, as is mentioned above, there is no successful case in the clinical 

trials based on the discoveries from the studies of FAD. Taking semagascestat 

as an example, it was reported a significant reduced amyloid deposition in 

PDAPP transgenic mice and lower level of newly synthesized Aβ in human 

volunteers (Lanz et al., 2006, Bateman et al., 2009). However, the phase III 

clinical trial of semagascestat demonstrated worse cognitive performance than 

controls. Using stable isotope labeled kinetic (SILK) techniques, the clearance 

of Aβ was reduced in sporadic AD, which is a distinguishable mechanism 

compared with the abnormal production of Aβ in FAD. Thus, it is proposed that 
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abnormal Aβ generation is the culprit in FAD, whereas in sporadic AD it is the 

disturbed clearance of Aβ.  

 

According to the “amyloid-trigger” scenario mentioned in 5.1.1, once the 

pathogenesis is initiated by Aβ, it is hard to reverse the whole progression. Thus 

the most important thing in AD therapeutics is timing, timing and timing. The 

best timing is probably before the amyloid deposition or the development of 

MCI clinically. Maybe that is why there has been no successful amyloid-centric 

therapeutics and the ideal subjects should be the populations with higher risk 

but no signs of MCI. With the appropriate subjects, the therapeutics based on 

FAD studies, like robust γ-secretase inhibitor, should take effect in treating the 

sporadic cases.  

 

5.2  The significance of the research. 

The overall goal of the studies on AD is to find the approaches to prevent the 

onset of this disease or ameliorate the symptoms. Why millions of funding 

investments on the studies of the only 5% FAD cases? The first reason is that 

there are too many contributors in sporadic AD, although it is accounting for 95% 

of AD cases. From the pharmaceutical perspective, it is very hard to develop an 

effective drug only targeting a small piece of the disease pathogenesis. The 

second reason is that the limited established genetic factors in FAD greatly 

narrow down the drug targets to several potential ones – APP (substrate) and 

Presenilins (enzyme). To meet the demands, this dissertation aims to elucidate 

how mutations in the APP and PS genes affect APP processing and the resulting 

amyloidogenesis in vitro and in vivo as well as the potential to develop the 

effective therapeutics for AD.  
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5.2.1  The comprehensive effect of APPA673V on the metabolism of APP.  

APP is synthesized in ER and delivered through the classical secretory pathway. 

Along its trafficking pathway, APP undergoes serial modifications including N- 

and O-glycosylation in the ER and Golgi compartments respectively 

(Weidemann et al., 1989, Suzuki et al., 2006). This process is also called APP 

maturation; the N-glycosylated APP in ER is defined as immature APP 

(imAPP), whereas the O-glycosylated APP in the Golgi is mature APP (mAPP). 

It has been documented that only mature APP is a substrate for later secretase 

cleavages (Tomita et al., 1998).  

 

It has been established that the Swedish APP mutation contributes to AD 

pathogenesis by promoting β-cleavage at the Asp-1 site, predominantly 

producing C99 production, as opposed to the C89 production seen in wild type 

APP (Deng et al., 2013). However, the underlying mechanism of this shift is not 

clarified. There are two plausible working mechanisms. First, the trafficking 

pathway of APP might be altered by the Swedish mutation. For decades, it has 

been proposed that the trafficking of APPSWE and APPWT are distinguishable. In 

wild type APP, α-cleavages occur on the plasma membrane and β-cleavages 

and Aβ generation occur in the endocytic organelles such as endosomes; 

whereas in the Swedish mutation, APP can be processed by β-secretase and 

generates Aβ in the medial Golgi and compartments close to the plasma 

membrane in the secretory pathway of delivering APP to the plasma membrane 

(Lo et al., 1994, Haass et al., 1995, Thinakaran et al., 1996b). Second, the 

structure of APP might be altered by the Swedish mutation. Given that the locus 

the Swedish mutation (KM670/671NL) is near the Asp-1 site of β-cleavage, 

another possibility is that the two mutated residues (NL) confer structural 

transformation to APP, which facilitate the β-secretase cleavage at Asp-1 site. 
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Sauder et al. reported that several hydrophobic residues in BACE1 form an 

active pocket with the residues around Asp-1 site, like Leu671 in APPSWE, 

which contributes to the preference cleavage of BACE1 in the Swedish APP 

(Sauder et al., 2000). Antibodies against the region around Glu-11 site have 

been shown to block β-cleavage at this site without significantly affecting its 

trafficking (Arbel et al., 2005, Paganetti et al., 2005, Thomas et al., 2006, 

Boddapati et al., 2011, Thomas et al., 2011). These studies imply that the 

structure of APP plays an important role in determining the processing.  

 

Although we are still in need of the stronger genetic evidence, APPA673V is the 

first recessive APP mutation to be proposed, based on current available genetic 

and molecular evidence. Our study confirms the possibility that APPA673V is a 

recessive mutation but in a novel working mechanism: firstly, the immature 

APPA673V in ER as well as the mature (modified) APPA673V in TGN can be 

processed to C99, whereas APPWT cannot, indicating that the structure of 

APPA673V facilitates the β-secretase cleavage regardless of the maturation. 

Secondly, APPA673V undergoes faster lysosome-dependent degradation, possibly 

because the structural transformation makes APPA673V a better substrate for 

lysosome-dependent degradation. The two findings not only support that 

APPA673V is a recessive mutation, but also provide potential the potential 

pharmaceutical strategy. More specifically, an antibody against alanine at APP 

673 could be developed to regulate amyloidogenesis.  

 

5.2.2  The effect of PS1ΔS169 on APP processing and Notch signaling.  

PS1ΔS169 was a recently discovered pathogenic PS1 mutation in a Chinese FAD 

family, and this thesis thoroughly studied and confirmed the amyloidogenic 

effect of PS1ΔS169 both in vitro and in vivo in chapter 3 and chapter4. Our study 
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confirmed the pathogenic effect of PS1ΔS169 on APP processing, and mimicked 

its amyloidogenic effect in transgenic mice, establishing a potential AD animal 

model for later studies on AD pathogenesis. Furthermore, we demonstrated that 

PS1ΔS169 preserved the processing of Notch, indicating that the structural 

alteration imposed by PS1ΔS169 specifically affected Aβ generation. This not 

only excluded the arguable contribution of impaired Notch signaling to AD 

pathogenesis, but also offered the potential for researchers to develop specific γ-

secretase inhibitors that spare Notch signaling in future.  

 

In the development of γ-secretase inhibitors, the biggest obstacle is to 

circumvent their side effects on Notch-signaling.  As we discussed in chapter 1, 

it was a technological challenge to decipher its crystal structure using traditional 

methods, because PS1 is a multiple transmembrane protein that requires 

assistant subunits to assemble the γ-secretase complex. The current 

understanding of the structure of presenilins comes from indirect methods such 

as cysteine mutagenesis with cross-linking of chemical probes, which proposed 

that the PS1 transmembrane domain was important in constituting the catalytic 

pore of γ-secretase in the hydrophobic environment (Sato et al., 2006a, Tolia et 

al., 2006a, Sato et al., 2008a, Tolia et al., 2008). PS1ΔS169 is located in the 

transmembrane domain and demonstrated reserved processing of Notch, and 

thus the clarification of the structure of PS1ΔS169 shed light on developing 

specific γ-secretase inhibitors that spare Notch signaling. 
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5.3 Limitations of the research. 

5.3.1  Lack of strong genetic evidence for APPA673V  being as the recessive 

mutation.  

Di Fede et al. discovered the homozygous APPA673V mutation in an Italian 

family by the analyzing the entire coding sequence of PSEN1, PSEN2, and the 

genes encoding the microtubule-associated protein tau, progranulin, prion 

protein and huntingtin (Di Fede et al., 2009). However, it lacks the linkage 

disequilibrium study in this family and the SNP analysis in normal controls. 

Back in 1993, Peacock et al. reported that heterozygous APPA673V was a novel 

polymorphism in APP gene in a patient who had ischemic cerebrovascular 

disease but on no evidence of AD (Peacock et al., 1993). Recently, a novel 

mutation on the same locus of APPA673V was reported – APPA673T (Jonsson et 

al., 2012). This group analyzed the whole genome sequence of 1775 Icelanders 

and found that APPA673T protected against AD pathogenesis. Given such 

multifaceted behavior of the polymorphism in this locus, the genetic evidence is 

quite weak based on a single consanguineous sib-pair that shares much of the 

genome “identical-by-decent’, not only the APP gene. Further analysis such as 

linkage disequilibrium and exclusion of SNPs should be included as we 

discussed in 5.3.1.  

 

5.3.3  Lack of evidence of APP trafficking in neuronal model.   

Neuron is a highly polarized and specialized cell type, characterized with 

multiple specialized structures (dendrites and axons) and microdomains 

(presynaptic and postsynaptic region) with distinguishable functions. It is no 

exaggeration to say that neurons are the most complicated and also most 

powerful cells in nature.  For our concerns, simple delivery of protein from 
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somite to the presynaptic region of the long axon is unbelievably complicated. 

APP was reported to be involved in anterograde axon transport as a kinesin-1 

receptor(Lazarov et al., 2005). All the molecular studies we have done are 

based on non-neuronal cell types like HEK293. The caveats are that the 

“behaviors” of APP is different between HEK293 cells and neurons. Earlier 

studies indicated that Madi-Darby canine kidney (MDCK) cells, a prototypical 

epithelial cell line, shared similar mechanism to sort the surface protein, in a 

polarized fashion (Dotti and Simons, 1990, Lo et al., 1994). Thus, the 

trafficking of APP could be analyzed in MDCK cells. Indeed, the best way 

should be generating knock-in transgenic mice of APP A673V, and the primary 

neurons could be extracted to see the difference.  

 

5.3.4  Limitations in the investigation of the effect of PS1ΔS169 on ε-cleavage.  

In chapter 2, we investigated the effect of PS1ΔS169 on ε-cleavage on Notch. In 

addition to APP and Notch, PS has numerous other substrates, such as N-

cadherin and Erb4. Previous work had found that FAD- associated PS1 

mutations have various effects on the ε-cleavage of different substrates, despite 

displaying consistently impaired γ-cleavage (Chavez-Gutierrez et al., 2012). For 

example, PS1ΔE9 demonstrated significantly impaired APP, Notch and E-

cadherin ICDs generation in in vitro γ-secretase activity assays, but displayed 

increased Erb4 ICDs generation, indicating that the effect of FAD-associated 

PS1 mutations on ε-cleavage are quite heterogeneous and substrate-dependent. 

To compile an integrated story of the effect of PS1ΔS169 on γ-secretase, it would 

be beneficial to investigate the effect of PS1ΔS169 on other substrates in addition 

to APP and Notch.  
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5.3.5  Development of PS1ΔS169 knock-in transgenic mice.  

In Chapter 4, we generated transgenic mice that overexpress PS1ΔS169 with copy 

number of approximately 2. One limitation of PS1ΔS169 overexpressing 

transgenic mice is that the effect of wild type mouse PS1 and the second copy 

of PS1ΔS169 could not be excluded, especially when exploring the effect of 

PS1ΔS169 on Notch signaling. The best solution to this problem is to generate 

PS1ΔS169 knock-in transgenic mice. The gene knock-in method is defined as 

insertion of cDNA encoding for a specific protein back to its original locus on 

the genome chromosome. This method is superior to other methods, because the 

protein expression level is comparable with the endogenous protein, and 

substitution of the endogenous protein excludes the confounding effect of the 

endogenous protein. Those superior qualities of the knock-in method greatly 

reduce the false-positive errors seen in the traditional transgenic method.  

 

 

5.4 Potential application and future research. 

The ultimate goal in studies of AD is to prevent the onset of AD or to treat the 

disease. In the study of APPA673V, apart from further genetically characterizing 

of APPA673V, therapeutic strategy could be developed based on the unique 

features of APPA673V. In the study of PS1ΔS169, the effect of PS1ΔS169 on Notch 

should be tested in animal model, to further confirm the normal Notch signaling 

and following behavior in vivo. Moreover, the therapeutic strategy could be 

developed based on the effect of PS1ΔS169 on structure of presenilin. 
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5.4.1  Linkage disequilibrium analysis of the family carrying APP A673V 

mutation and PCR-restriction endonuclease length polymorphism analysis 

(PCR-RLFP) of normal controls.  

To exclude A673V as a polymorphism, PCR-restriction endonuclease length 

polymorphism analysis (PCR-RLFP) using a mismatch primer pair will be used. 

In brief, DNA samples are amplified using a pair of the forward primer: 5�-

GAAGTGAAGATGGATGTAGAATTC -3� (underline: mismatch position) 

and reverse primer: 5�-GTCATGTCGGAATTCTACATCCAT -3�), 

followed by PCR-RLFP using HpyCH4V. The allele of the A673V variant 

gains an artificial HpyCH4V site. In the PCR-RLFP using Bgl II, if the A673V 

variant is not be found in 200 normal Italian control subjects (400 normal 

alleles), we could exclude the possibility of A673V being as a SNP.  

 

5.4.2  Alanine at APP 673 as the potential therapeutic target.  

Recently, a novel mutation on the same locus of APPA673V have been reported – 

APPA673T (Jonsson et al., 2012). This group analyzed the whole genome 

sequence of 1775 Icelanders and found that APPA673T protected against AD 

pathogenesis. It is a very intriguing phenomenon that mutations at the same 

locus can exhibit completely opposite effects on disease pathogenesis, and 

furthermore that one of them on this locus was the only recessive FAD-

associated mutation.  

 

The alanine (A) at APP 673 is replaced with valine (V) in APPA673V, whereas 

with threonine (T) in APPA673T. Both alanine and valine are hydrophobic amino 

acids with side chains, but the side chain of valine is bigger; threonine is a 

hydrophilic amino acid with a polar uncharged side chain. Jonsson et al. (2012) 
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reported that sAPPβ and Aβ generation were reduced in APPA673T. It may be 

that the more hydrophilic residue at this locus makes APP undergo the less 

amyloidogenic pathway. We hypothesize that alanine in locus APP 673 was 

important for the regulation of APP processing, possibly by altering the 

structure of APP at functional sites. Next, the effect of APPA673T on APP 

metabolism needs to be confirmed and if possible, the structural differences 

between APPA673T and APPA673V should be analyzed. These findings could be 

used to develop a small peptide, which could specifically bind to the alanine at 

APP 673 to prevent Aβ generation by affecting its processing and metabolism.  

 

5.4.3  Analyzing the ε-cleavage of PS1ΔS169 on APP and other γ-secretase 

substrate in cell-free system. 

Our present study on PS1ΔS169 examined the two most interesting γ-secretase 

substrates: APP and Notch. We found that Aβ generation and NICD production 

are differentially regulated by PS1ΔS169. In chapter 1.4, we noted that Ihara and 

colleagues (2008) have provided compelling evidence for the sequential 

cleavages in the transmembrane domain of γ-secretase substrates, namely, ε-

cleavage and subsequent γ-cleavage (Sato et al., 2003, Qi-Takahara et al., 

2005b, Kakuda et al., 2006, Yagishita et al., 2008). The transmembrane 

cleavage by γ-secretase is actually an enzyme catalysis event, which can be 

achieved in an in vitro assay with both enzyme and substrate in solution 

(PS1ΔS169 and APP or Notch in our case). It was reported that the intrinsic 

pathogenic properties of PS1 mutations are retained in the cell-free γ-secretase 

activity assay (Ahn et al., 2010b). Characterizing the enzyme kinetics of 

PS1ΔS169 could yield robust mechanistic insights into how this mutation affects 

the basic function of PS1.  
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In future research, we would like to analyze the catalytic efficiency of PS1ΔS169 

for ε-cleavages on Notch and γ-cleavage of APP. Due to the quantification 

needs of this assay and the relatively large size of APP and Notch, APP-C99 

and truncated Notch (which is similar in size to APP-C99) will be used in this 

assay. The PS1ΔS169 -comprising γ-secretase extract and the substrates (APP-

C99 and truncated Notch) will be incubated in optimized conditions, and the 

resulting products will be assessed by SDS-PAGE as well as Coomassie 

staining. The characterization of the catalytic efficiency of PS1ΔS169 on ε-

cleavage will give further compelling evidence to support the reserved ε-

cleavage in PS1ΔS169.  

 

5.4.4  To determine the effect of PS1ΔS169 on Notch processing in C. elegans.    

Presenilins are crucial for Notch signaling. However, knock-out of PS2 was not 

sufficient to induce the typical Notch deficient phenotype in PS2 knock-out 

transgenic mice (Herreman et al., 1999), indicating that Notch signaling is 

highly redundant to meet its fundamental developmental requirements. Most 

FAD-associated PS mutations still only partially impair Notch processing 

activity. Thus it has been difficult to define and evaluate impaired Notch 

signaling in AD pathogenesis in human and transgenic mice. Alternatively, 

since both Notch and PS are conserved in metazoans, researchers turned to 

simpler organisms such as Drosophila and Caenorhabditis elegans (C.elegans) 

to investigate the effect of FAD-associated PS1 mutations on Notch signaling in 

vivo.  

 

In collaboration with Dr. Catherine Rankins’s lab, we chose C.elegans as an 

animal model to investigate the effect of PS1ΔS169 on Notch signaling. C.elegans 
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is an excellent model system due to its short generation time, clear genetic map 

and well-established genetic manipulation approaches. LIN-12 is the C.elegans 

Notch homolog, while SEL-12 (suppressor/enhancer of LIN-12) is the PS 

homolog. A SEL-12 defective strain reduced LIN-12 activity with an egg-

laying defective (Egl) phenotype (Levitan and Greenwald, 1995), which could 

be rescued by expression of wild-type human presenilins; in contrast, six 

different FAD-linked mutations reduced this rescuing ability to various degrees. 

Since our in vitro results indicated normal Notch proteolysis in PS1ΔS169, we 

predict that expression of PS1∆S169 in a SEL-12 defective strain could rescue the 

Egl phenotype in a similar manner as wild type human PS1. 

 

In C.elegans, pathogenic PS1 mutants exhibit an impaired ability to rescue the 

Egl phenotype when compared with wild type PS1. Notably, some PS1 mutants 

showed a dose-dependent rescuing ability, such as PS1ΔE9, which exhibited 

almost full rescuing (similar to wild type PS1) with high dosages and significant 

impairments with low dosages (Levitan and Greenwald, 1995). Thus, we will 

choose different microinjection dosage to distinguish the dosage effect 

(20µg/ml & 2µg/ml). Based on our in vitro study that PS1ΔS169 retains its Notch 

cleavage activity in mammalian cells, we anticipate that PS1ΔS169 could rescue 

the Egl phenotype even at low dosages (2µg/ml). This finding would fully 

support the hypothesis that PS1ΔS169 functions normally in Notch processing in 

vitro and in vivo. Since our in vitro study used a constitutively active form of 

Notch (NΔE) to investigate the effect of PS1ΔS169 rather than Notch itself, it is 

possible that we may not see normal Notch processing in PS1ΔS169 in C.elegans. 

Nevertheless, if PS1ΔS169 does function normally in Notch signaling in 

C.elegans, we still need to take into consideration that C.elegans is less 

complex than mammals, and all results should be critically examined.  
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5.4.5  TM3-targeted γ-secretase inhibitor.    

Most γ-secretase inhibitors target presenilins. Inhibition of Notch signaling by 

nonselective γ-secretase inhibitors has been a potential limiting issue for the 

clinical development of γ-secretase inhibitors as an AD treatment. Hence, a 

major issue for γ-secretase inhibitors is the development of selective inhibitors , 

which could reduce Aβ peptide production without significantly interfering 

with the processing of other substrates of γ-secretase, especially Notch. 

 

Our present study demonstrated that PS1ΔS169 displays separate catalytic 

efficiencies at the ε- and γ-sites, with normal Notch signaling. The serine 169 

residue is located in the third transmembrane domain (TM3) of PS1, and our 

findings are in agreement with a report that TM3 is involved in the 

determination of a selective γ-secretase inhibitor (Zhao et al., 2008). Utilizing 

an alanine scanning mutagenesis method, Zhao and colleagues found that 

PS1S169A specifically affected some class of γ-secretase inhibitors, such as 

ELN318463. They found that PS1S169A significantly increased the potency of 

this inhibitor, indicating that the serine 169 residue was important in the 

inhibitor/PS interaction. Thus, it would be informative to elucidate the structural 

differences between PS1ΔS169 and wild type PS1, to clarify the working 

mechanism of PS1 mutations, and to aid development of Notch-sparing γ-

secretase inhibitor. The ideal approach would be to analyze the crystal structure 

of PS1ΔS169, however, given its multi-transmembrane structure and the multi-

subunits of γ-secretase, it has been difficult to analyze the crystal structure of 

presenilin. Recently, the Shi laboratories reported the crystal structure of a 

presenilin/SPP homologue (PSH) from the archaeon Methanoculleus marisnigri 

JR1, and made predictions of presenilin’s structure based on the conserved 
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sequence between the two homologues (Li et al., 2012). Since serine 169 was 

one of the conserved residues between human PS1 and PSH (corresponding to 

alanine 80 on PSH), we could design a PSHΔA80 mutation corresponding to the 

PS1ΔS169 mutation and analyze the crystal structure of PSHΔA80 instead. The 

structural difference between PSHΔA80 and wild type PSH would give direct 

clues to help develop specific γ-secretase inhibitors.  
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