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Abstract

The rates of nucleotide substitution can be different from genes to genes.

Moreover, different regions of the same gene can have different rates of mu-

tation as well. Many attempts have been tried to allow for the variable rates

across different nucleotide sites. A rate factor coming from the continuous

distribution has been introduced to deal with the problem. However, for

computation reasons, this method can only scale to less than a dozen se-

quences. Later studies use a discrete gamma distribution to approximate

the gamma distribution.

The main contribution of our work is that we propose a discrete distri-

bution over the rate factor which is more flexible while preserving attractive

computational properties. We make inference about the rate factor and its

distribution via an Expectation Maximization (EM) algorithm. We evaluate

our method by both simulations and a real dataset. From the real dataset, it

reflects that the method is useful for large phylogenies with even thousands

of sequences. We analyze the identifiability of our model for a pair of DNA

sequences under certain conditions. We also prove for certain types of rate

matrices, this model is non-identifiable.
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Chapter 1

Introduction

1.1 Motivation

Phylogenetics is the study of the evolutionary relationships among groups

of organisms. Continuous time Markov chains (CTMC) are at the core of

modern phylogenetic methods to model the evolutionary process of DNA

sequences. Several different DNA models have been proposed such as the

JC69 Model by Jukes and Cantor (1969), the K80 Model by Kimura (1980)

and so on. If DNA sequences are available for several species, we can make

inference about the phylogeny of these species via the maximum likelihood

method and obtain estimates of the parameters such as the topology of the

tree, the transition matrix and the branch lengths.

If there is no rate variation, all sites share the same rate matrix Q de-

scribing the instantaneous rate of different kinds of substitutions with dif-

ferent bases. However, it has been discovered that the mutation rates of

different regions of the same gene can be different as shown by Graur and

Li (2000). To account for the rate variation over sites, several approaches

have been proposed. Yang (1993) proposed a rate factor coming from the

gamma distribution. A rate factor γ is a parameter assigned to each site

to adjust the rate variation by multiplying it to the rate matrix Q for this

site. However, for computational reasons, this method can only scale to less
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1.1. Motivation

than a dozen sequences. To simplify the computation, Yang (1994) uses

the “discrete gamma distribution” to approximate the continuous gamma

distribution, but he points out there is overestimation or underestimation of

the shape parameter of the gamma distribution given different tree topolo-

gies. Moreover, there is no direct biological reasons to favour the gamma

distributions of the rate factor. We propose a new model to allow the rate

variation which is more flexible while preserving attractive computational

properties.

We assume a discrete distribution over the rate factor without other re-

strictions. We make inference about the rates and their distribution via an

EM algorithm for both pairs of sequences as well as trees with large phy-

logenies. We evaluate the method with a real dataset. It reflects that the

method is practical for large phylogenies with even thousands of sequences.

When doing simulations to check whether the EM algorithm can recover

the rate factor and its distribution used to generate the dataset, we find that

different rate factors and distributions can give a similar likelihood of the

same generated dataset. We are motivated to study the identifiability of the

model. In the context of phylogenetics, a model is non-identifiable if different

set of parameters including tree topologies, branch lengths and evolutionary

parameters can produce the same likelihood. Many people contributed to

investigate the identifiability of models with the rate factor coming from a

continuous distribution like the gamma distribution with mean one. Steel

(2009) used the F81 Model and discovered that the shape parameter of the

gamma distribution and the topology of the tree are not identifiable. Wu

and Susko (2010) proved the identifiability of general time reversible (GTR)

models. Allman, Ané, and Rhodes (2008) proved that the four-state GTR +

Γ model is identifiable given the joint distribution of at least triples of taxa.

2



1.2. Outline

However, few attempts are done in the literature to study the identifiability

of the rate scalar from a discrete distribution.

The reason leads to that is the difficulty in obtaining the solution of the

rate factor and its distribution of the inverse moment generating function.

For the gamma distribution with mean one, its inverse moment generating

function is only determined by the shape parameter. In our work, we prove

the non-identifiability of the JC69 Model and the F81 Model of a pair of

DNA sequences in the context of four distinct category modes. We also

prove the non-identifiability of other DNA evolution models with two or

three distinct eigenvalues under certain conditions. The identifiability of

the models under tree structures is still an open question.

1.2 Outline

In Chapter 2, we review some popular Markov models of DNA sequence

evolution in the framework of CTMC. After introducing the rate matrices

for different DNA evolution models, we illustrate how to deal with unequal

evolution rates of different sites.

In Chapter 3, we introduce how to calculate the likelihood for a pair

of homologous DNA sequences without rate variations and also with rate

heterogeneity. Moreover, we also provide how to calculate the likelihood of

a given tree in those two situations.

In Chapter 4, we propose a discrete distribution of the rate factor to

deal with rate heterogeneity. We explain how to make inference of the rate

factor and its distribution via an EM algorithm for a pair of homologous

DNA sequences and generalize it to a tree.

In Chapter 5, we summarize the previous work and results about the

3



1.2. Outline

identifiability of models assuming the rate factor coming from a gamma

distribution. We also analyze the identifiability of our model assuming a

discrete distribution. We prove the non-identifiability of the JC69 Model

and the F81 Model of a pair of DNA sequences in the context of four dis-

tinct category modes. We also prove the non-identifiability of other DNA

evolution models under certain conditions. The identifiability of the models

under tree structures is still an open question for future work.

In Chapter 6, we evaluate our EM algorithm with a real dataset with

1028 DNA sequences. It reflects that our algorithm is computationally at-

tractive for trees with large phylogenies.

In the conclusion and future work part, we summarize the results of the

thesis and discuss possible future work.

4



Chapter 2

Introduction to common

DNA Evolution Models

2.1 Introduction

In this chapter, we review some popular Markov models of DNA sequence

evolution in the framework of continuous time Markov chains (CTMC).

Since the time of divergence between different pairs of homologous DNA

sequences descending from a common ancestral sequence can widely vary,

different branch lengths are introduced to represent the expected number of

nucleotide substitutions between sequences. Time homogeneity is assumed

in the continuous time Markov chains model so that the instantaneous rate

matrix can be used to describe the substitution process. The difference be-

tween these models lies in the parameters describing the rates of different

substitutions. The JC69 Model assumes equal transition rates, for example,

the probability of a nucleotide A to change into other nucleotides G, T or

C is the same while the K80 Model considers that the probability between

purines such as a nucleotide A to change into G is larger than the changes

between purines and pyrimidines such as a nucleotide A to change into T or

C because of the similarity in the structure of A and G.

After introducing the rate matrices for different models, we also intro-

5



2.2. Models and Data Structure

duce how to deal with rates variations of different sites by introducing a rate

factor multiplying the rate matrix of each site proposed by Yang (1993). To

simplify the calculation, Yang (1994) uses the “discrete gamma distribution”

model to approximate the continuous gamma distribution.

2.2 Models and Data Structure

2.2.1 Data Structure

The data comes from DNA sequences from homologous regions for species

i ∈ {1, 2, . . . , n1}. Let X = {xij} be the aligned nucleotide sequences, where

i ∈ {1, 2, . . . , n1}, j ∈ {1, 2, ..., n2}. Then n2 is the number of nucleotides

per sequence. Each column of the data matrix xj = {x1,j , ..., xn1,j} spec-

ifies the nucleotides for the n1 sequences at the jth site. The site is the

position of a nucleotide in DNA sequences. Each row of the data matrix

xi = {xi,1, ..., xi,n1} represents all the nucleotides of the ith DNA sequence.

X =


x1,1 x1,2 · · · x1,n2

x2,1 x2,2 · · · x2,n2

...
...

. . .
...

xn1,1 xn1,2 · · · xn1,n2


2.2.2 Model of DNA Evolution in the framework of CTMC

In the framework of CTMC, Ω = {A,G, T,C} represents the state space

consisting four kinds of nucleotides in DNA sequences. Each individual

entry refers to the probability that the state i will change into the state j,

where i, j ∈ Ω. P (t) is the transition matrix, where t is the branch length

representing the expected number of nucleotide substitution for a pair of

6



2.2. Models and Data Structure

homologous DNA sequences descending from a common ancestral sequence.

P (t) =


pAA(t) pAG(t) pAC(t) pAT (t)

pGA(t) pGG(t) pGC(t) pGT (t)

pCA(t) pCG(t) pCC(t) pCT (t)

pTA(t) pTG(t) pTC(t) pTT (t)


The instantaneous rates of change from one state to another is reflected

by Q where Q = dP (t)
dt with P0 = I. In turn, Pt = etQ =

∑
j

(tQ)j

j! ,

Q =


∗ θAG θAT θAC

θGA ∗ θGT θGC

θTA θTG ∗ θTC

θCA θCG θCT ∗

 .

The diagonal elements are specified to make sure the sum of each row

in the Q matrix is zero. The Q matrix will also be constrained by multiply-

ing each element of the matrix by a same factor µ = −1/
∑

i{A,C,G,T} πiQii,

where πi is the stationary distribution of the rate matrix. This normalization

ensures a branch length of one yields one expected change per nucleotide.

2.2.3 Rate Matrices of Different Models

JC69 Model proposed by Jukes and Cantor (1969)

Q =


∗ µ

4
µ
4

µ
4

µ
4 ∗ µ

4
µ
4

µ
4

µ
4 ∗ µ

4

µ
4

µ
4

µ
4 ∗
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2.2. Models and Data Structure

In this model, the stationary distribution is π = (1
4 ,

1
4 ,

1
4 ,

1
4) and µ is the

standardization factor, where µ = −4
3 .

K80 Model proposed by Kimura (1980)

Q =


∗ κ 1 1

κ ∗ 1 1

1 1 ∗ κ

1 1 κ ∗


In this model, the standardization factor µ = 1/4 (κ+ 2). The κ in the ma-

trix is the ratio of transition and transversion which are two types of DNA

substitution mutations. Transitions are interchanges between both purines

including A and G or both pyrimidines including C and T. Transversions are

interchanges between purines and pyrimidines. Purines are two-ring struc-

ture while pyrimidines are one-ring structures. As a result, it is typically

assumed that transitions are more likely to happen than transversions i.e.

κ > 1.

F81 Model proposed by Felsenstein (1981)

Q =


∗ πC πA πG

πT ∗ πA πG

πT πC ∗ πG

πT πC πA ∗


This model allows for different base frequencies for four different states A,

G, T and C. The stationary distribution is {πA, πG, πT , πC}, where the stan-

dardization factor µ is 1/
(
1− π2

A − π2
C − π2

G − π2
T

)
.

8



2.2. Models and Data Structure

HKY85 Model proposed by Hasegawa, Kishino, and Yano (1985)

Q =


∗ κπC πA πG

κπT ∗ πA πG

πT πC ∗ κπG

πT πC κπA ∗


The model does not assume equal base frequencies for the four different

states and accounts for the difference between transitions and transversions

with one parameter κ in the rate matrix Q, where the normalization constant

µ is 1/(2(πA + πG)(πC + πT ) + 2κ(πAπG + πCπT )).

In this thesis, we are using the HKY85 Model in the simulation study

since it can incorporate rate variations considering different base frequencies

and the bias in transitions over transversions shown by many genes. But in

the real dataset, we are using the K80 model since it is more simple than

HKY85 model and we assume a uniform distribution of the four states of

{A,G, T,C}.

2.2.4 Models considering Rate Variation between Different

Nucleotide Sites

According to Graur and Li (2000), the rate of nucleotide substitution τ

is defined as the number of substitution per site per year. If no rate variation

across nucleotide sites is introduced, the rates of substitution are the same

for all sites on the DNA sequences according to the Q matrix. For example,

assuming there are 1000 sites on a pair of DNA sequences, then on all these

sites, the rate for a nucleotide to change from A to G is the same. However,

this assumption may not hold. We cite a table from Graur and Li (2000) as

9



2.2. Models and Data Structure

Table 2.1 to illustrate that the numbers of nucleotide substitutions per site

(K) on regions of genes can be different.

Table 2.1: Numbers of nucleotide substitutions per site (K) between cow

and goat β− and γ−globin genes and between cow and goat β−globin pseu-

dogenes cited from Graur and Li (2000)

Region Ka

5’ flanking region 5.3 ± 1.2

5’ untranslated region 4.0 ± 2.0

Fourfold degenerate sites 8.6 ± 2.5

Introns 8.1 ± 0.7

3’ untranslated region 8.8 ± 0.2

Pseudogenes 9.1 ± 0.9

The rates in the table are in units of substitutions per site per 109 years.

From the table, it reflects that the rates of nucleotide substitution are dif-

ferent in different regions. These regions are classified according to different

functions that they perform during transcription and translation. Tran-

scription is the synthesis of a RNA molecule based on a DNA template and

translation is the process of the produced RNA during transcription con-

veying information to the ribosomes to create proteins.

If the rates of change are different for distinct sites, then some sites

evolve more quickly than others. In this situation, Yang (1993) proposed a

rate factor γi for the ith site where γi comes from the gamma distribution.

10



2.2. Models and Data Structure

Then the rate matrix for the ith site is

Qi = γi ×


∗ κπC πA πG

κπT ∗ πA πG

πT πC ∗ κπG

πT πC κπA ∗


However, instead of making inference of γi for each site,Yang (1993)

proposed that all possible rates could be integrated out for each site when

calculating the likelihood which will be covered in the next chapter.

It has been noted that using the gamma distribution is very computa-

tionally expensive and in order to improve that, Yang (1994) proposed the

“discrete gamma distribution” to approximate the continuous gamma dis-

tribution.

This project relaxes the assumption of equal rates of substitution for all

sites by multiplying Q with one category of a rate factor γ = (γ1, . . . , γk).

However, we only assume γ comes from a discrete distribution.

Definition 1. We define the rate factor γ = (γ1, . . . , γk) with a discrete

distribution f = (f1, f2, . . . , fk) as a parameter assigned to each site to adjust

the rate variation by multiplying one category of γ to the rate matrix Q for

this site, where fk denotes the probability for this site to take the kth category

of γ.

Then for a specific site, the rate matrix for this site is γj × Q, where

j ∈ {1, . . . , k}. For different sites, different elements of γ are taken so that

the rates are variable on diffferent sites. For example, if for the first 50 sites

on a pair of homologous DNA sequences, the rate of substitution is slower

than the next 50 sites on the same pair of sequences. Then we consider the

rate matrix for the first 50 sites is γ1×Q and γ2×Q for the second 50 sites

11



2.2. Models and Data Structure

where γ1 6= γ2. Then the probability for a nucleotide with state A to change

into G is exp(γ1Qt){A→G} for a site within the first 50 sites. The probability

for a nucleotide with state A to change into G is exp(γ2Qt){A→G} for a site

within the second 50 sites.

12



Chapter 3

Likelihood Methods

3.1 Introduction

In this chapter, we introduce how to calculate the likelihood of a pair of

DNA sequences under two situations. Identical rates are considered first and

rate heterogeneity is introduced later. The computation of the likelihood for

a pair of sequences serves as a basis for more complicated situations. After

that, we explain how to calculate the likelihood of a given tree. However, in

real cases, we need to make inference of the topology of the tree first. The

details of how to infer the topology of the tree and the branch lengths of the

tree are introduced by Felsenstein (2004).

3.2 Likelihood for a pair of DNA sequences

3.2.1 Without Rate Heterogeneity

Considering two homologous DNA sequences represented by xT = (x1, x2,

. . . , xn) and yT = (y1, y2, ..., yn), we first study how to calculate the likeli-

hood for this pair of sequences. The parameters are θ = (Q, t), where Q is

the instantaneous transition rate matrix and t is the branch length between

this pair of sequences.

13



3.2. Likelihood for a pair of DNA sequences

For a single site i on both sequences x and y, the likelihood is

L(θ) = P (Xi = xi)(e
Qt)xi→yi ,

where xi, yi ∈ {A,G, T,C}, P (Xi = xi) is the base frequency π = (πA, πC , πG, πT )

which can be derived from the eigenvector of QT . If xi = A, then P (Xi =

xi) = πA.

For n sites on the sequences, under the assumption of independence

across different sites, the likelihood is

L(θ) =
n∏
i=1

P (Xi = xi)(e
Qt)xi→yi

The incomplete log likelihood for n sites on one sequence is

l(θ) =
n∑
i=1

log
(
P (Xi = xi)(e

Qt)xi→yi
)
.

3.2.2 With Rate Heterogeneity

If different sites evolve at different rates, a rate factor γ is introduced.

Recall that in Section 2.2.4 in Chapter 2, we have defined that the rate

matrix for the ith site is γi ×Q, where γi is the rate factor for the ith site.

In the literature, most authors assume the rate factor γ follows a continuous

distribution like the gamma distribution or log normal distribution. The

parameters are θ = (Q, t, γ). Assuming g(γ) is the prior density function for

γ, the likelihood for this pair of sequences is

L(θ) =

n∏
i=1

∫ ∞
0

P (Xi = xi)(e
γiQt)xi→yig(γi)d(γi). (3.1)

In this case, we do not estimate the rate at each site, if a single rate is

assumed for each site, then the number of unknowns increases quickly as

the number of sites increases. As a result, as shown in Equation 3.1, we

14



3.3. Likelihood for Trees

integrate out all the possible rates for each site and take it as the whole

contribution of this site to the whole likelihood.

3.3 Likelihood for Trees

3.3.1 Without Rate Heterogeneity

Felsenstein (1981) has introduced the “pruning” method to economize

the computation of the likelihood of the tree. In the field of computer sci-

ence, this method is known under the name of “dynamic programming”.

The details of how to implement this method to a tree is covered in Chapter

16 of Felsenstein (2004). We will introduce this method briefly.

Figure 3.1: Tree Topology

We first illustrate how to calculate the likelihood for the tree in Figure

3.1 for only one site. Assuming for the ith site, the states of DNA at the

15



3.3. Likelihood for Trees

three tips X4, X1 and X2 are A, G and C respectively. From the tips to

the root of the tree, the algorithm calculates the conditional likelihood of

a subtree recursively given the state of this node in the current generation

by combining the conditional likelihood of its immediate child in the left

lineages and also the one in the right lineages of the same node.

Using the small tree, we illustrate how this algorithm works. The depth

of the tree is two. Let Lixk(A) denote the probability of observing all the tips

given the state of the node xk has state A at the ith site. As assumed, at the

tips, the state ofX2 in the ith site is C. Then (Lix2(A), Lix2(C), Lix2(G), Lix2(T ))

= (0, 1, 0, 0), (Lix2(A), Lix2(C), Lix2(G), Lix2(T )) = (0, 0, 1, 0), (Lix4(A), Lix4(C),

Lix4(G), Lix4(T )) = (1, 0, 0, 0). For an internal node X3, we illustrate how to

calculate Lix3(A) as an example.

Lix3(A) =

(∑
x

Prob(X1 = x|A, t1)Lix1(x)

)

×

(∑
y

Prob(X2 = y|A, t2)Lix2(y)

)

=

(∑
x

exp(t1Q)A→xL
i
x1(x)

)

×

(∑
y

exp(t2Q)A→yL
i
x1(y)

)
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3.3. Likelihood for Trees

As a result, Lix3(C), Lix3(G), Lix3(T )) can be calculated in the same way.

Lix5(r) =

(∑
s

Prob(X3 = s|r, t1)Lix3(s)

)

×

(∑
q

Prob(X4 = q|r, t4)Lix4(q)

)

=

(∑
s

exp(t3Q)r→sL
i
x3(s)

)

×

(∑
q

exp(t4Q)r→qL
i
x4(q)

)

Assuming the stationary distribution for the four states is π = (πA, πC , πG, πT ),

then the likelihood of this tree for the ith site is

Li =
∑
r

πrL
i
x5(r).

Denote the log-likelihood for the ith site as li = log(Li). By assuming

independence of different sites, the log-likelihood for this tree is l =
∑n

i=1 l
i.

3.3.2 With Rate Heterogeneity

However, it seems impractical that each site evolves at the same rate.

Yang (1993) proposes the rate factor coming from a gamma distribution on

each site. Below we provide how to calculate the likelihood of the previous

tree in Figure 3.1 with the assumption that the rate follows the gamma

distribution with mean one. Denote the prior density function for the rate

γ as g(γ). The difference of computing the likelihood when considering rate

heterogeneity lies in its impossibility of “dynamic programming”. Same as

in Section 3.3.1, we explain how to calculate the likelihood of the tree in

Figure 3.1 for only one site first. It is assumed the states of X4, X1 and X2
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3.3. Likelihood for Trees

are A, G and C respectively. The likelihood of the tree in Figure 3.1 for this

site is

∑
p

∑
q

πpProb(A|X5 = p, t4)Prob(X3 = q|p)Prob(G|q, t1)Prob(C|q, t2)

=
∑
p

∑
q

πp

∫ ∞
0

πpg(γ) exp(t4Qγ)p→A exp(t3Qγ)p→q exp(t1Qγ)q→G

exp(t2Qγ)q→Cdγ (3.2)

From Equation 3.2, we can see that if the number of the internal nodes

is w, the computation complexity is 4w since “dynamic programming” can

not be applied. The computation time of this method increases explosively

as the number of species increases. As mentioned in the original paper, this

method can only deal with tree topologies with no more than four species

with a microcomputer.

In order to deal with the intense computation, Yang (1994) proposed

the “discrete gamma distribution” to simplify the problem. By assuming

equal probability of the rate in each category, Yang (1994) uses the mean

or median in each category to represent all the rates in the same category.

Assuming we use k categories of “discrete gamma distribution” to replace

the continuous gamma distribution, where (γ1, γ2, . . . , γk) is the mean of

each category. We use Lix5(r) to illustrate how to use the “discrete gamma

18



3.3. Likelihood for Trees

distribution” to approximate the continuous case, where r is the state of X5.

Lix5(r) =

(∑
s

Prob(X3 = s|r, t1)Lix3(s)

)

×

(∑
q

Prob(X4 = q|r, t4)Lix4(q)

)

=
k∑
j=1

1

k

(∑
s

exp(γjt3Q)r→sL
i
x3(s)

)

×

(∑
q

exp(γjt4Q)r→qL
i
x4(q)

)

As to how to calculate the mean of each category, readers can refer to

the paper of Yang (1994) for details.

However, in both the continuous and the discrete cases, the author re-

stricts the mean of the gamma distribution to one, then only the shape

parameter α of the gamma distribution needs to be estimated. Since with

the fixed number of species at the tips, a tree can have several different

topologies. The process of maximizing the likelihood of a tree with a given

topology is repeated for each of the possible topology until a maximum tree

is found. By maximizing the likelihood of the tree over the branch lengths

and α, an estimate of α can be obtained.

Both the continuous and discrete gamma distributions of the rate fac-

tor have their own limitations. Yang (1996) reviewed that by assuming the

continuous gamma distribution of the rate factor, the algorithm is practical

for no more than six sequences. By using the discrete gamma distribution,

Yang (1994) has pointed out that α̂ can be very different based on different

tree topologies where α̂ is the estimate of the shape parameter α of the

gamma distribution. For example, α̂ tends to be larger given the maximum

likelihood tree while α̂ seems the smallest from a star tree most of the times.
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3.3. Likelihood for Trees

The difference gets larger especially when there are many species. As a re-

sult, we are motivated to relax the restriction of the specific distribution of

γ because of the intense computation of the continuous gamma distribution

and the overestimation or underestimation of the shape parameter α from

the discrete gamma distribution given different tree structures. Finally, we

propose a discrete distribution of the rate factor without any other restric-

tions which will be covered by the Chapter 4.
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Chapter 4

Estimating the Rate Factor γ

via an EM Algorithm

4.1 Introduction

In this chapter, we first introduce how to use an EM (Expectation Max-

imization) algorithm to estimate the rate factor and its distribution. We

first introduce how to implement the method to a pair of DNA sequences.

Then we explain how to estimate γ and its distribution for a tree.

4.2 Learn γ and f via an EM Algorithm for a

pair of DNA sequences

4.2.1 The likelihood for a pair of DNA sequences

When having two DNA sequences represented by xT = (x1, x2, . . . , xn)

and yT = (y1, y2, . . . , yn) which are the observed data, we will first study

how to calculate the likelihood for this pair of sequences while the rate fac-

tor following a discrete distribution is introduced. Assuming that different

nucleotide sites are independent within each DNA sequence, the rate factor

is denoted as γT = (γ1, γ2, . . . , γk) which is used to scale the original rate

matrix Q and a latent variable Z is introduced to imply which category the
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4.2. Learn γ and f via an EM Algorithm for a pair of DNA sequences

rate for a particular site belongs to. The latent variable Z is the missing

data. The complete data includes the observed sequences x, y and z which

is the realization of the latent variable Z. The prior distribution of Z is

f = (f1, f2, . . . , fk). The parameters to be estimated are θ = (γ, f) given

the data from pairs of DNA sequences.

For a single site i on both sequences x and y, the likelihood is

L(θ) =
k∑
j=1

P (Zi = j)(eγjQt)xi→yiP (Xi = xi),

where xi, yi ∈ {A,G, T,C}, i ∈ {1, 2, . . . , n} and P (Xi = xi) is the base

frequency which can be derived from the eigenvector of QT .

For n sites on the sequences, under the assumption of independence

across different sites, the likelihood is

L(θ) =
n∏
i=1

k∑
j=1

P (Zi = j)(eγjQt)xi→yiP (Xi = xi).

The incomplete log-likelihood for n sites on one sequence is

l(θ) =
n∑
i=1

log

 k∑
j=1

P (Zi = j)(eγjQt)xi→yiP (Xi = xi)

 .

Since this incomplete log likelihood is hard to deal with, an EM algorithm

is introduced. In order to utilize the EM algorithm, we need to calculate

the complete log likelihood for this pair of DNA sequences first.

For the ith site on the DNA sequence, zi represents which category the

rate γ takes. The complete likelihood for a pair of sequences with n sites

given γ is

L(θ;x, y, z) =

n∏
i=1

k∏
j=1

f
1(zi=j)
j (eγjQt)1(zi=j)

xi→yi P (Xi = xi).
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4.2. Learn γ and f via an EM Algorithm for a pair of DNA sequences

The complete log-likelihood given the parameters γ will be

l(θ;x, y, z) =

n∑
i=1

k∑
j=1

1(zi = j) log
(
fj(e

γjQt)xi→yiP (Xi = xi)
)
.

Denote P (X = x) = πx as the prior probability, the complete log-

likelihood will be

l(θ;x, y, z) =
n∑
i=1

k∑
j=1

1(zi = j) log
(
fjπxi(e

γjQt)xi→yi
)
.

The expected complete log-likelihood is

E(l(θ;x, y, Z)|X = x, Y = y) =

n∑
i=1

k∑
j=1

E(1(Zi = j)|Xi = xi, Yi = yi)

log(fjπxi(e
γjQt)xi→yi)

When we have N pairs of DNA sequences, the expected complete log-

likelihood is

E(l(θ;x, y, Z)|X = x, Y = y)

=
N∑
m=1

nm∑
i=1

k∑
j=1

E(1(Zm,i = j)|Xm,i = xm,i, Ym,i = ym,i) log(fjπxm,i(e
γjQt)xm,i→ym,i)

The number of sites in different pairs of sequences can be different which

is denoted by nm.

4.2.2 Learn γ and f via an EM Algorithm

In this section, we explain how to learn the parameters γ = (γ1, . . . , γk)

and update the posterior distribution f = (f1, . . . , fk) for the latent variable

Z given the DNA sequence data. When there are more than one pair of

sequences, it needs to sum over all the sites on all pairs of DNA sequences
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4.2. Learn γ and f via an EM Algorithm for a pair of DNA sequences

to obtain the expected complete log-likelihood. For simplicity, we assume

there is one pair of DNA sequences here.

E step of EM algorithm

Eθt−1(l(θ;x, y, Z)|X = x, Y = y)

=
n∑
i=1

k∑
j=1

Eθt−1(1(Zi = j)|Xi = xi, Yi = yi) log(fjπxi(e
γjQt)xi→yi)

=

n∑
i=1

k∑
j=1

Pθt−1(Zi = j|Xi = xi, Yi = yi) log(fjπxi(e
γjQt)xi→yi)

=
n∑
i=1

k∑
j=1

Pθt−1(Zi = j,Xi = xi, Yi = yi)

Pθt−1(Xi = xi, Yi = yi)
log(fjπxi(e

γjQt)xi→yi)

Assuming θt−1 = (γt−1, f t−1) has been learned from (t−1)th step, where

γt−1 = (γt−1
1 , . . . , γt−1

k ) and f t−1 = (f t−1
1 , . . . , f t−1

k ). Then in the tth step,

both γj and fj will be updated, where j = 1, 2, . . . , k.

The exectation term E(1(Zi = j)|Xi = xi, Yi = yi) is taken with respect

to the old parameters γt−1 = (γt−1
1 , . . . , γt−1

k ) and the observed data xi, yi.

The goal of the E step is to compute E(l(θ;x, y, Z)|X = x, Y = y). In the M

step, since there is no analytical solution of γ, E(l(θ;x, y, Z)|X = x, Y = y)

is optimized with respect to γ

Eθt−1(l(θ;x, y, Z)|X = x, Y = y)

=
n∑
i=1

k∑
j=1

e(γt−1
j Qt)

xi→yif
(t−1)
j∑k

j=1 e
(γt−1
j Qt)

xi→yif
(t−1)
j

log(fjπxi(e
γjQt)xi→yi). (4.1)

M step of the EM algorithm

Updating fj

The posterior distribution f = (f1, . . . , fk) of latent variable Z is updated
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4.2. Learn γ and f via an EM Algorithm for a pair of DNA sequences

in the following way in the tth step assuming f (t−1) and γ(t−1) have been

obtained.

Denote

At−1
j =

e(γt−1
j Qt)f

(t−1)
j∑k

j=1 e
(γt−1
j Qt)f

(t−1)
j

(4.2)

as a 4 × 4 matrix, j = 1, 2, . . . , k. The element in the ith row and kth

column of At−1
j represents the posterior probability of Z = j meaning that

γ takes the jth category given the site changes from state i to state k of two

homologous sequences from a common ancestor in the (t− 1)th iteration.

There are four states A,G, T,C in the DNA sequence. As a result there

are 16 kinds of transitions between these states including A→A, A→G, A

→T and so on. For a pair of sequences with n sites, the number of each

kind of transition will be counted and these numbers form a 4 × 4 matrix

B. The element in matrix B records the number of this kind of transition

corresponding to the element appearing in the Q matrix. That means the

row and column order of {A, G, T, C} in B is the same as rate matrix Q

and At−1
j . For example, if the element in the first row and second column

in Q denotes the rate for a state to change from A to C, then the element

in the first row and second column in B denotes the number of transitions

from A to C for n sites on this pair of DNA sequences.

Let B ·At−1
j denote the dot product of two matrix, where (l,m) denote

the dimension of matrix B · At−1
j . Then fj , j = 1, 2 . . . , k is updated as for

a pair of sequences with n sites as follows

f
(t)
j =

∑
l,m

(B ·At−1
j )

l,m
/n. (4.3)

The sum of all elements in B ·At−1
j is the expected weighted number of

sites for γ to take the jth category, j = 1, . . . , k.
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4.2. Learn γ and f via an EM Algorithm for a pair of DNA sequences

Updating γ

To update γ in the tth step, we choose γ such that a local maximum of

Equation 4.1 can be obtained when the gradient of γ is a zero vector and

the Hessian matrix of γ is negative definite.

In order to deal with getting the gradient of Equation 4.1 with respect

to γ, we first introduce Theorem 1 to illustrate how to get the derivative of

a particular element of matrix exponential.

Theorem 1.

lim
tn→t

(etnQ)i,j − (etQ)i,j
tn − t

= (QetQ)i,j

Theorem 1 states that if we get derivative with respect to t for the el-

ement in the ith row and jth column of the matrix (etA) is equivalent to

getting derivative with respect to t for the whole matrix and then take the

element in the ith row and jth column. This result is obtained by Wilcox

(1967) and we provide a standard proof of Theorem 1 in Appendix A.

With Theorem 1, we can get the gradient and Hessian matrix with re-

spect to γ.

Review in Equation 4.1 and Equation 4.2, we have that

Eθt−1(l(θ;x, y, Z)|X = x, Y = y)

=

n∑
i=1

k∑
j=1

(e(γt−1
j Qt))xi→yif

(t−1)
j∑k

j=1 (e(γt−1
j Qt))xi→yif

(t−1)
j

log(fjπxi(e
γjQt)xi→yi),

At−1
j =

e(γt−1
j Qt)f

(t−1)
j∑k

j=1 e
(γt−1
j Qt)f

(t−1)
j

,

then,

Eθt−1(l(θ;x, y, Z)|X = x, Y = y) =
n∑
i=1

k∑
j=1

(At−1
j )xi→yi log(fjπxi(e

γjQt)xi→yi).(4.4)
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4.2. Learn γ and f via an EM Algorithm for a pair of DNA sequences

In order to find the local maximum of Equation 4.4, the gradient of

Equation 4.4 with respect to γ is desired. Denote E(l(θ;x, y, Z)|X = x, Y =

y) as W (γ), where γ = (γ1, γ2, . . . , γk) and getting the derivative of W (γ)

is only with respect to γ. Assume γm is one element of γ, m = 1, 2, . . . , k.

Under the assumption that γi and γj are independent when i 6= j, it can be

obtained that

∂W (γ)

∂γm
=
∑n

i=1(At−1
j )xi→yi

fm(tQ·exp(γmtQ))xi→yi
(e(γmQt))xi→yi

fm

=
∑n

i=1(At−1
j )xi→yi

(tQ·exp(γmtQ))xi→yi
(e(γmQt))xi→yi

. (4.5)

Finally we have,

∂W (γ)

∂γ
=

(
∂W (γ)

∂γ1
,
∂W (γ)

∂γ2
. . . ,

∂W (γ)

∂γk

)T
. (4.6)

How to calculate each element of ∂W (γ)
∂γ is defined in Equation 4.5.

Next, the Hessian matrix of W (γ) with respect to γ is deducted. Under

the assumption that γi and γj are independent when i 6= j, the Hessian

matrix is an diagonal matrix. For any γm ∈ γ, where m ∈ 1, 2, . . . , k, we

have

∂2W (γ)

∂2γm
=

n∑
i=1

(At−1
j )xi→yi

( ∂
∂γm

[tQ exp(γmtQ)]xi→yi(exp(γmtQ))xi→yi

exp(γmtQ)2
xi→yi

−
[tQ · exp(γmtQ)]xi→yi

∂
∂γm

(exp(γmtQ))xi→yi

exp(γmtQ)2
xi→yi

)
=

n∑
i=1

(At−1
j )xi→yi

(
[tQ · tQ · exp(γmtQ)]xi→yi exp(γktQ)xi→yi

exp(γmtQ)2
xi→yi

− [tQ · exp(γmtQ)]xi→yi [tQ · exp(γmtQ)]xi→yi
exp(γmtQ)2

xi→yi

)
. (4.7)

The Hessian matrix is an k × k diagonal matrix with the mth diagonal

element defined in Equation 4.7.
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4.3. Likelihood for a tree with multiple DNA sequences

Based on the gradient and Hessian matrix, γ satisfies that the gradient

at this vector is zero and the Hessian matrix is negative positive. This can

be obtained by using optim() function in R to minimize the negative log

likelihood and specifying the gradient and Hessian matrix.

When there are multiple sequences, for the expected log likelihood, gra-

dient and Hessian matrix, we just sum over all the sites on all pairs of

sequences.

The iteration to update γ and fj ends when γt−1 and γt are quite close,

for example, ||γt − γt−1||≤ 10−5.

4.3 Likelihood for a tree with multiple DNA

sequences

We have covered how to obtain the likelihood for a pair of DNA sequences

with multiple sites. Now we concentrate on how to get the likelihood of a

tree. We begin with the simplest tree with three DNA sequences. There are

three tips and two internal nodes in this situation. The topology of the tree

is shown in Figure 4.1.

In this tree, X1, X2 and X4 are three DNA sequences at tips of the

tree representing three different species. For any single site on X1, X2

or X4, we have already known the state of this site. The state space is

Ω = {A,G, T,C}, X3 and X5 are annotated since they are internal nodes.

For any single site on an internal node, it can take A, G, T or C which is not

known to us. The notations of t1, t2, t3 and t4 represent the branch lengths

in the tree.

First we show how to get the likelihood of this tree given the DNA se-

quence data at X1, X2 and X4. Independence among different nucleotide

28



4.3. Likelihood for a tree with multiple DNA sequences

Figure 4.1: Tree Topology

sites is assumed within each DNA sequence. The rate factor γT = (γ1, γ2, . . . , γk)

is defined the same as in the previous section. A latent variable Z is intro-

duced to imply which category of the rate factor a particular site takes.

The distribution of Z is f = (f1, f2, . . . , fk). The stationary distribution for

{A, G, T, C} is π = (πA, πG, πT , πC). The parameters to be estimated are

θ = (γ, f) given the DNA sequences from X1, X2, and X4 at the tips.

For a single site i on both the ancestral and descendent sequences, the

likelihood is

L(θ) =

k∑
z=1

∑
p∈Ω
x5=p

∑
q∈Ω
x3=q

fzπp exp(γzQt4)p→x4 · exp(γzQt3)p→q

exp(γzQt1)q→x1 exp(γzQt2)q→x2 ,

where Ω = {A,G, T,C} and πp is the stationary frequency which can be

derived from the eigenvector of QT .
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4.3. Likelihood for a tree with multiple DNA sequences

For n sites on the sequences, under the assumption of independence

across different sites, the likelihood is

L(θ) =
n∏
i=1

k∑
z=1

∑
p∈Ω
x5=p

∑
q∈Ω
x3=q

fzπp exp(γzQt4)p→x4 · exp(γzQt3)p→q

exp(γzQt1)q→x1 exp(γzQt2)q→x2

The incomplete log-likelihood for n sites of this tree is

l(θ;x1, x2, x4)

=

n∑
i=1

log

( k∑
z=1

∑
p∈Ω
x5i=p

∑
q∈Ω
x3i=q

fzπp exp(γzQt4)p→x4i · exp(γzQt3)p→q

exp(γzQt1)q→x1i exp(γzQt2)q→x2i

)
This incomplete log-likelihood is hard to deal with since we need to

marginalize all the internal nodes and latent variables, an EM algorithm is

introduced for trees with multiple DNA sequences as well.

4.3.1 Complete Likelihood for Multiple DNA sequences

The complete likelihood for this tree with n nucleotide sites is

L(γ, z;x1, x2, x4)

=

n∏
i=1

k∏
j=1

∏
x5i∈Ω

∏
x3i∈Ω

(
fjπp exp(γjQt4)x5i→x4i · exp(γjQt3)x5i→x3i

exp(γjQt1)x3i→x1i exp(γjQt2)x3i→x2i

)(1(zi=j,X5i=p,X3i=q))

(4.8)
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4.3. Likelihood for a tree with multiple DNA sequences

Then the complete log-likelihood is

l(γ, z;x1, x2, x4)

=

n∑
i=1

k∑
j=1

∑
x5i∈Ω

∑
x3i∈Ω

1(zi = j,X5i = p,X3i = q)× log(fjπp

exp(γjQt4)p→x4i · exp(γjQt3)p→q exp(γjQt1)p→x1i

exp(γjQt2)q→x2i) (4.9)

Denote E(l(γ, Z;x1, x2, x4)|X1 = x1, X2 = x2, X4 = x2) as W (γ), then

the expected complete log-likelihood is

W (γ)

=
n∑
i=1

k∑
j=1

∑
x5i∈Ω

∑
x3i∈Ω

E(1(Zi = j,X5i = p,X3i = q)|X1i = x1i, X2i = x2i, X4i = x4i)

× log(fjπp exp(γjQt4)p→x4i exp(γjQt3)p→q exp(γjQt1)q→x1i exp(γjQt2)q→x2i)

(4.10)

In order to simplify the calculation of function W (γ), we separate each

term of

log(fjπp exp(γjQt4)p→x4i exp(γjQt3)p→q exp(γjQt1)q→x1i exp(γjQt2)q→x2i)

into

log(fj), log(πp), log(exp(γjQt4)p→x4i), log(exp(γjQt3)p→q), log(exp(γjQt1)q→x1i),

log(exp(γjQt2)q→x2i)).

The following proposition reveals the details of how to calculate Equa-

tion 4.10 efficiently.
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4.3. Likelihood for a tree with multiple DNA sequences

Proposition 1. Assume there are n latent variables X1, X2, . . . , Xn, v1, v2,

. . . , vn are functions that v1 only depends on X1, v2 only depends on X2, . . .

and vnonly depends on Xn. The denote a subset {1, 2, . . . , n1} of {1, 2, . . . , n}

as S. Then

∑
x1

∑
x2

. . .
∑
xn

E (1(X1 = x1, X2 = x2, . . . , Xn = xn)) log(v1v2 . . . vn1)

=
∑
S

E (1(X1 = x1, X2 = x2, . . . , Xn = xn1)) log(v1v2 . . . vn1) (4.11)

Proof. The proof of Proposition 1 is simple. Denote S0 = {1, 2, . . . , n}.

Since S = {1, 2, . . . , n1}, S1 = S0\S, then

∑
x1

∑
x2

. . .
∑
xn

E (1(X1 = x1, X2 = x2, . . . , Xn = xn)) log(v1v2 . . . vn1)

=
∑
S

∑
S1

E (1(X1 = x1, X2 = x2, . . . , Xn = xn)) log(v1v2 . . . vn1)

=
∑
S

E (1(X1 = x1, X2 = x2, . . . , Xn1 = xn1)) log(v1v2 . . . vn1)

In order to calculate W (γ), we separate the expected complete log-

likelihood into several parts by partition the term in the product inside

the log function and utilize Proposition 1 to calculate each of the following

term and then sum them together.

Some of the latent variables can be summed over in the previous term
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4.3. Likelihood for a tree with multiple DNA sequences

to simplify the calculation.

n∑
i=1

k∑
j=1

∑
p∈Ω
x5i=p

∑
q∈Ω
x3i=q

E(1(Zi = j,X5i = p,X3i = q)|X1i = x1i, X2i = x2i, X4i = x4i)

× log(fj)

=
k∑
j=1

n∑
i=1

E(1(Zi = j)|X1i = x1i, X2i = x2i, X4i = x4i)× log(fj) (4.12)

n∑
i=1

k∑
j=1

∑
p∈Ω
x5i=p

∑
q∈Ω
x3i=q

E(1(Zi = j,X5i = p,X3i = q)|X1i = x1i, X2i = x2i, X4i = x4i)

× log(πp)

=

k∑
j=1

n∑
i=1

∑
p∈Ω
x5i=p

E(1(Zi = j,X5i = p)|X1i = x1i, X2i = x2i, X4i = x4i) log(πp)

(4.13)

n∑
i=1

k∑
j=1

∑
p∈Ω
x5i=p

∑
q∈Ω
x3i=q

E(1(Zi = j,X5i = p,X3i = q)|X1i = x1i, X2i = x2i, X4i = x4i)

× log(exp(γjQt4)p→x4i)

=
k∑
j=1

n∑
i=1

∑
p∈Ω
x5i=p

E(1(Zi = j,X5i = p,X4i = x4i)|X1i = x1i, X2i = x2i, X4i = x4i)

log(exp(γjQt4)p→x4i) (4.14)
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4.3. Likelihood for a tree with multiple DNA sequences

n∑
i=1

k∑
j=1

∑
p∈Ω
x5i=p

∑
q∈Ω
x3i=q

E(1(Zi = j,X5i = p,X3i = q)|X1i = x1i, X2i = x2i, X4i = x4i)

× log(exp(γjQt3)p→q)

=

k∑
j=1

n∑
i=1

∑
p∈Ω
x5i=p

∑
q∈Ω
x3i=q

E(1(Zi = j,X5i = p,X3i = q)|X1i = x1i, X2i = x2i, X4i = x4i)

log(exp(γjQt3)p→q) (4.15)

n∑
i=1

k∑
j=1

∑
p∈Ω
x5i=p

∑
q∈Ω
x3i=q

E(1(Zi = j,X5i = p,X3i = q)|X1i = x1i, X2i = x2i, X4i = x4i)

× log(exp(γjQt3)q→x1i)

=

k∑
j=1

n∑
i=1

∑
q∈Ω
x3i=q

E(1(Zi = j,X3i = q,X1i = x1i)|X1i = x1i, X2i = x2i, X4i = x4i)

log(exp(γjQt1)q→x1i) (4.16)

n∑
i=1

k∑
j=1

∑
p∈Ω
x5i=p

∑
q∈Ω
x3i=q

E(1(Zi = j,X5i = p,X3i = q)|X1i = x1i, X2i = x2i, X4i = x4i)

× log(exp(γjQt3)q→x2i)

=

k∑
j=1

n∑
i=1

∑
q∈Ω
x3i=q

E(1(Zi = j,X3i = q,X2i = x2i)|X1i = x1i, X2i = x2i, X4i = x4i)

log(exp(γZiQt2)q→x2i (4.17)

Then W (γ) is the sum of Equation 4.12, Equation 4.13, . . . and Equation

4.17.
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4.3. Likelihood for a tree with multiple DNA sequences

Equation 4.17 reflects that the indicator function only depends on the

states of the ith site of the ancestral and its direct descendant sequences.

For example,

n∑
i=1

k∑
j=1

∑
p∈Ω
x5i=p

∑
q∈Ω
x3i=q

E(1(Zi = j,X5i = p,X3i = q)|X1i = x1i, X2i = x2i, X4i = x4i)

log(exp(γjQt2)q→x2i)

=

k∑
j=1

n∑
i=1

∑
q∈Ω
x3i=q

E(1(Zi = j,X3i = q,X2i = x2i)|X1i = x1i, X2i = x2i, X4i = x4i)

log(exp(γjQt2)q→x2i)

When we are interested in calculating∑k
j=1

∑n
i=1

∑
p∈Ω
x5i=p

∑
q∈Ω
x3i=q

E(1(Zi = j,X5i = p,X3i = q)|X1i = x1i, X2i =

x2i, X4i = x4i) log(exp(γjQt2)q→x2i), where X3 is the ancestral sequence

and X2 is X3’s descendant sequence. The states of internal nodes X5 can

be summed over so that X5 does not appear in
∑k

j=1

∑n
i=1

∑
q∈Ω
x3i=q

E(1(Zi =

j,X3i = q,X2i = x2i)|X1i = x1i, X2i = x2i, X4i = x4i) log(exp(γjQt2)q→x2i).

After separating the expected complete log-likelihood into several parts

by partition each term in the product inside the log function, the indicator

function only depends on a pair of ancestral and descendant node of interest

which are X3i and X2i since all unknown states of other internal nodes

can be summed over. Moreover, 1(Zi = j,X3i = q,X2i = x2i) depends

only on Zi, X3i, X2i which appears in the term that multiplies it which is

log(exp(γjQt2)x3i→x2i).

Then to calculate
∑k

j=1

∑n
i=1

∑
p∈Ω

∑
q∈ΩE(1(Zi = j,X5i = p,X3i =

q)|X1i = x1i, X2i = x2i, X4i = x4i) log(exp(γjQt3)p→q), we define a matrix

E and a matrix L for computation convenience because we would like to

35



4.3. Likelihood for a tree with multiple DNA sequences

denote this term as a sum of the dot product of each row in E and the

corresponding row in L.

E =


∑n

i=1E(1(Zi = 1, xai = A, xdi = A)|data) . . .
∑n

i=1E(1(Zi = 1, xai = G, xdi = G)|data)
...

...
...∑n

i=1E(1(Zi = k, xai = A, xdi = A)|data) . . .
∑n

i=1E(1(Zi = k, xai = G, xdi = G)|data)

 ,

where xai denotes the ith site on the ancestral sequence and xdi denotes the

ith site on the descendant sequence. We can just arrange

log(exp(γziQt3))

into a k × 16 matrix L.

L =


log(exp(γ1Qt)A→A) . . . log(exp(γ1Qt)G→G)

...
. . .

...

log(exp(γkQt)A→A) . . . log(exp(γkQt)G→G)



As a result, to calculate the expected complete likelihood of the tree in

Figure 1, we can divide it into three parts. The first part is

k∑
j=1

n∑
i=1

E(1(Zi = j)|x1i, x2i, x4i) log(fj),

which can be obtained by summing over all the internal nodes.

The second part is

k∑
j=1

n∑
i=1

∑
p∈Ω

E(1(Zi = j,X5i = p)|x1i, x2i, x4i) log(πp).

To calculate it, we need to know the assumed location of the root of

the tree and which is the root’s direct child. By summing over the possible

states of the descendant node, we can obtain this term.
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In the third part, we compute the expected complete log-likelihood be-

tween each pair of ancestral and its direct desendant sequences and then

sum them together. Now we introduce how to learn the parameters of γ

and its distribution f .

When we perform the real data analysis, we add a penalty term which

is the sum of γ2 to the complete log-likelihood. The reason is that if any

category of γ is so large then exp(γQt) will go to the stationary distribution.

In that case, even if γ increases, the likelihood will not increase dramatically.

As a result, we add the penalty term to constrain it.

4.4 Expectation Maximization to learn γ and f

for Trees

According to Equation 4.10, we have the expression of how to calculate

the expected complete log-likelihood.

4.4.1 E step

E(l(γ, Z;x1, x2, x4)|X1 = x1, X2 = x2, X4 = x4)

=

n∑
i=1

k∑
j=1

∑
p∈Ω
x5i=p

∑
q∈Ω
x3i=q

E(1(Zi = j,X5i = p,X3i = q)|X1i = x1i, X2i = x2i, X4i = x4i)

× log(fjπp exp(γjQt4)p→x4i exp(γjQt3)p→q exp(γjQt1)q→x1i exp(γjQt2)q→x2i)

(4.18)
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4.4. Expectation Maximization to learn γ and f for Trees

E(1(Zi = j,X5i = p,X3i = q)|X1i = x1i, X2i = x2i, X4i = x4i))

=
P (Zi = j,X5i = p,X3i = q,X1i = x1i, X2i = x2i, X4i = x4i)∑k

j=1

∑
p∈Ω

∑
q∈Ω P (Zi = j,X5i = p,X3i = q,X1i = x1i, X2i = x2i, X4i = x4i)

(4.19)

P (Zi = j,X5i = p,X3i = q,X1i = x1i, X2i = x2i, X4i = x4i)

= fjπp exp(γjQt4)p→t4 exp(γjQt3)p→q exp(γjQt1)q→x1 exp(γjQt2)q→x2

(4.20)

Eθt−1 (1(Zi = j,X5i = p,X3i = q)|X1i = x1i, X2i = x2i, X4i = x4i)

=
Pθt−1(Zi = j,X5i = p,X3i = q,X1i = x1i, X2i = x2i, X4i = x4i)∑k

j=1

∑
p∈Ω

∑
q∈Ω Pθt−1(Zi = j,X5i = p,X3i = q,X1i = x1i, X2i = x2i, X4i = x4i)

where

Pθt−1(Zi = j,X5i = p,X3i = q,X1i = x1i, X2i = x2i, X4i = x4i)

= f t−1
j πp exp(γt−1

j Qt4)p→t4 exp(γt−1
j Qt3)p→q exp(γt−1

j Qt1)q→x1 exp(γt−1
j Qt2)q→x2

Eθt−1(l(γ, Z;x1, x2, x4)|X1 = x1, X2 = x2, X4 = x4)

=

n∑
i=1

k∑
j=1

∑
p∈Ω
x5i=p

∑
q∈Ω
x3i=q

Pθt−1(Zi = j,X5i = p,X3i = q,X1 = x1, X2 = x2, X4 = x4)∑k
j=1

∑
p∈Ω

∑
q∈Ω Pθt−1(Zi = j,X5i = p,X3i = q,X1 = x1, X2 = x2, X4 = x4)

log(fjπp exp(γjQt4)p→t4 exp(γjQt3)p→q exp(γjQt1)q→x1 exp(γjQt2)q→x2)

(4.21)

4.4.2 M step

Updating γ

In the M step, Eθt−1(l(γ;x1, x2, x4, Z)|X1, X2, X4) is optimized with re-

spect to γ. Both γ and fj are updated.

38



4.4. Expectation Maximization to learn γ and f for Trees

To learn parameters γ in the tth iteration, a local maximum with respect

to γ can be obtained when the gradient of γ is a zero vector and the Hessian

matrix of γ is negative definite. In order to get the gradient of γ, we need

to know how to get derivatives with respect to γj in the following term:

exp(γjQt4)p→x4 exp(γjQt3)p→q exp(γjQt1)q→x1 exp(γjQt2)q→x2 .

To achieve that, we can prove the following theorem

Theorem 2.

∂

∂γ
(exp(γQ1)m→n exp(γQ2)a→b)

= [
∂

∂γ
(exp(γQ1))]m→n exp(γQ2)a→b + exp(γQ1)m→n[

∂

∂γ
(exp(γQ2))]a→b

= (Q1 exp(γQ1))m→n exp(γQ2)a→b + exp(γQ1)(Q2 exp(γQ2))a→b

We provide a standard proof of this theorem in the Appendix.

In order to get the gradient with respect to γj , we first define

Ai,j,p,q

= E(1(Zi = j,X5i = p,X3i = q)|X1i, X2i, X4i)

=
P (Zi = j,X5i = p,X3i = q,X1i = x1i, X2i = x2i, X4i = x4i)∑k

j=1

∑
p∈Ω

∑
q∈Ω P (Zi = j,X5i = p,X3i = q,X1i = x1i, X2i = x2i, X4i = x4i)

.

(4.22)
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E(l(γ, Z;x1, x2, x4)|X1 = x1, X2 = x2, X4 = x4)

=
n∑
i=1

k∑
j=1

∑
p∈Ω
x5i=p

∑
q∈Ω
x3i=q

E(1(Zi = j,X5i = p,X3i = q)|X1i = x1i, X2i = x2i, X4i = x4i)

× log(fjπp exp(γjQt4)p→x4i exp(γjQt3)p→x3i exp(γjQt1)q→x1i exp(γjQt2)q→x2i)

=

n∑
i=1

k∑
j=1

∑
p∈Ω

∑
q∈Ω

Ai,j,p,q × log(fjπp exp(γjQt4)p→x4i exp(γjQt3)q→q exp(γjQt1)q→x1i

exp(γjQt2)q→x2i)

Eθt−1(l(γ, Z;x1, x2, x4)|X1 = x1, X2 = x2, X4 = x4)

=
n∑
i=1

k∑
j=1

∑
p∈Ω
x5i=p

∑
q∈Ω
x3i=q

Eθt−1(1(Zi = j,X5i = p,X3i = q)|X1i = x1i, X2i = x2i, X4i = x4i)

× log(fjπq exp(γjQt4)p→x4i exp(γjQt3)p→q exp(γjQt1)q→x1i exp(γjQt2)q→x2i)

=
n∑
i=1

k∑
j=1

∑
p∈Ω
x5i=p

∑
q∈Ω
x3i=q

A
(t−1)
i,j,p,q × log(fjπp exp(γjQt4)p→x4i exp(γjQt3)p→q exp(γjQt1)q→x1i

exp(γjQt2)q→x2i)

When we get derivatives with γ, denoteWθt−1(γ) as Eθt−1(l(γ;x1, x2, x4)|X1 =
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x1, X2 = x2, X4 = x4).

∂Wθt−1(γ)

∂γj
=

∂

∂γj

n∑
i=1

k∑
j=1

∑
p∈Ω
x5i=p

∑
q∈Ω
x3i=q

A
(t−1)
j,p,q × log(fjπp exp(γjQt4)p→x4i

exp(γjQt3)p→q exp(γjQt1)q→x1i exp(γjQt2)q→x2i)

=
n∑
i=1

∑
p∈Ω
x5i=p

∑
q∈Ω
x3i=q

A
(t−1)
i,j,p,q ×

∂

∂γj
log(fjπp exp(γjQt4)p→x4i

exp(γjQt3)p→q exp(γjQt1)q→x1i exp(γjQt2)q→x2i)

=

n∑
i=1

∑
p∈Ω

∑
q∈Ω

A
(t−1)
i,j,p,q

(
t4Q exp(γjQt4)p→x4

exp(γjQt4)p→x4
+
t3Q exp(γjQt3)p→q

exp(γjQt4)p→q

+
t1Q exp(γjQt1)q→x1

exp(γjQt1)q→x1
+
t2Q exp(γjQt2)q→x2

exp(γjQt2)q→x2

)
(4.23)

Recall that for a pair of sequence with n nucleotide sites, xi, yi ∈ {A,G, T,C}

∂Wθt−1(γ)

∂γj
=
∑n

i=1(At−1
j )xi→yi

(tQ·exp(γjtQ))xi→yi
(exp(γjQt))xi→yi

. (4.24)

When we have a tree,
∂Wθt−1 (γ)

∂γj
is a sum over all pairs of the ancestor

and its direct child sequences over all sites multiplying its corresponding

posterior distribution A
(t−1)
i,j,p,q from the E step.
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Chapter 5

Identifiability of the Model

5.1 Introduction

In the context of phylogenetics, a model is non-identifiable if different

set of parameters including tree topologies, branch lengths and evolutionary

parameters can produce the same likelihood.

Section 5.2 is a review of the previous work on the identifiability of mod-

els with the rate factor following the gamma distribution. We discuss the

relationship of the previous work and our work.

We illustrate how the identifiability of θ = (γ, f) is transformed into

the problem of determining the uniqueness of the solution to a set of non-

linear equations in Section 5.3. The number of equations is equal to the

number of different eigenvalues of Q. In Section 5.4, we prove that if the

rate matrix comes from the F81 family, then the model is unidentifiable

which carries over to the case where the rate factor follows a gamma dis-

tribution. In Section 5.5, by applying Wu and Susko (2010)’s result, we

prove the non-identifiability of γ and f under certain conditions. Finally,

we have shown some simulation results to provide empirical support of the

non-identifiability of HKY85 model.
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5.2 Review

Bryant, Galtier, and Poursat (2005) have reviewed both the identifiabil-

ity of transition matrices for independent and identically distributed sites

and models with rate variation by introducing a rate factor γ. The defini-

tion of the rate factor can be referred to Section 2.2.4. They review that

if different sites evolve at the same rate, pairwise comparisons of sequences

are not able to reconstruct the transition matrices and that the distribution

of at least triples of sites is sufficient to reconstruct the transition matrices.

Moreover, for models allowing rate variations, the topology and the tran-

sition rate matrices are identifiable under certain conditions. They can be

identified when the distribution of γ is completely known. Assuming the

rate factor follows a gamma distribution, Steel (2009) uses the F81 Model

and discovers that the shape parameter of the gamma distribution and the

topology of the tree are unidentifiable. Different shape parameters and tree

topologies can produce the same pairwise distribution between all pairs of

taxa. However, this is not a general case. Allman et al. (2008) proves that

the four-state GTR + Γ model is identifiable given the joint distribution

of at least triples of taxa by assuming the rate factor follows the gamma

distribution. The reason why gamma distribution is favoured is its simple

form of the inverse of moment generating function. It is still of interest

whether pairwise distributions are sufficient to discover the identifiability of

the model. Wu and Susko (2010) proves that several different conditions

when the parameters can be identified. As long as the rate matrix Q has at

least two different non-zero eigenvalues and two non-zero pairwise distances,

the rate matrix Q, pairwise distances and shape parameter α can be iden-

tified simultaneously. This conclusion applies to a general time reversible
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(GTR) model since it has three non-zero distinct eigenvalues. It also ex-

plains why the F81 model is non-identifiable since it only has one non-zero

eigenvalue. Moreover, Wu and Susko (2010) provides a theorem stating that

the rate matrix, pairwise distance and any arbitrary distribution of the rate

factor are identifiable if the rate matrix has at least two distinct non-zero

eigenvalues, the expectation of the rate factor is one and the pairwise distri-

bution is available for any distribution. This theorem also serves as a basis

for our model when analyzing the identifiability for pairwise sequences when

the rate matrix Q has at least two non-zero distinct eigenvalues.

Instead of relying on the number of distinct eigenvalues of the rate ma-

trix Q, Mossel and Roch (2011) have developed a new technique to study the

identifiability of large trees. Without the assumption of the gamma distri-

bution of the rate factor, they imply large phylogenies are identifiable with

the constraint that the expectation of the rate factor is one. They achieve

that by binning sites with similar rates into groups and using a bin with

abundant sites to estimate the distance between any two leaves in order to

recover the true tree.

In our case, we introduce the rate factor γ = (γ1, γ2, ..., γk) and the la-

tent categorical variable Z to specify which category γ takes. We assume

a discrete distribution over γ which is f = (f1, f2, . . . , fk). The parameters

in our model include γ = (γ1, γ2, . . . , γk) and f = (f1, f2, . . . , fk). The iden-

tifiability of θ = (γ, f) is of particular interest when the rate matrix Q is

known as well as the topology of the tree or one pairwise distance.

In this chapter, we have studied the identifiability of θ = (γ, f) for a

pair of sequences. We prove that for the F81 model and the JC69 model,

θ = (γ, f) is unidentifiable due to the only one non-zero eigenvalues of the

rate matrix Q. We apply Wu and Susko (2010)’s conclusions to our sit-

44



5.3. Identifiability of γ with two categories

uation. We relax the constraint that the expectation of the rate factor is

one. We prove that the eigenvalues of the rate matrix are identified if it is

unknown but the pairwise distance and the distribution of the rate scalar

are unidentifiable for GTR models.

5.3 Identifiability of γ with two categories

For simplicity, we first study the identifiability for only one pair of se-

quences. We derive the log-likelihood for a pair of sequences with n sites

is

l(θ) =
n∑
i=1

log

 k∑
j=1

P (Zi = j)(eγjQt)xi→yiP (X = xi)


=

n∑
i=1

log

 k∑
j=1

fj(e
γjQt)xi→yiπxi

 (5.1)

with the assumption of independence across different sites. A latent cat-

egorical variable Z is introduced to imply which category the rate for a

particular site belongs to. The distribution of Z is f = (f1, f2, . . . , fk). The

parameters to be estimated are θ = (γ, f) given the data from pairs of DNA

sequences.

To further simplify the problem, consider k = 2. Assume γ = (γ1, γ2)

where γ1 < γ2 and f = (f1, f2), which is θ = (γ1, γ2, f1, f2) and l(θ) = l0.

If a model for a pair of sequences is identifiable then there does not exist

θ∗ = (γ∗1 , γ
∗
2 , f
∗
1 , f

∗
2 ) (where γ∗1 < γ∗2) other than θ such that l(θ∗) = l0.

Assuming θ∗ = (γ∗1 , γ
∗
2 , f
∗
1 , f

∗
2 ) exists to make l(θ∗) = l(θ0), for any
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xi, yi ∈ {A,G, T,C}, then

πxif1 exp(γ1Qt)xi→yi + πxif2exp(γ2Qt)xi→yi

= πxif
∗
1 exp(γ∗1Qt)xi→yi + πxif

∗
2 exp(γ∗2Qt)xi→yi , (5.2)

where πxi can be cancelled on both sides of the equation. Then it is simpli-

fied as

f1 exp(γ1Qt)xi→yi + f2 exp(γ2Qt)xi→yi

= f∗1 exp(γ∗1Qt)xi→yi + f∗2 exp(γ∗2Qt)xi→yi . (5.3)

Suppose eQ = Xdiag(ed1 , . . . , edp)X−1, where d1, . . . , dp are the p dis-

tinct eigenvalues of Q and p ≤ 4. It is also known that

eγQt = Xdiag(eγd1t, . . . , eγdpt)X−1.

In order to make Equation 5.3 to hold, we only need to make sure that

M1 = M∗1 ,

where

M1 = X


f1e

d1γ1t + f2e
d1γ2t

f1e
d2γ1t + f2e

d2γ2t

. . .

f1e
dpγ1t + f2e

dpγ2t

X−1,

M∗1 = X


f∗1 e

d1γ∗1 t + f∗2 e
d1γ∗2 t

f∗1 e
d2γ∗1 t + f∗2 e

d2γ∗2 t

. . .

f∗1 e
dpγ∗1 t + f∗2 e

dpγ∗2 t

X−1.
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5.4. Non-identifiability of F81 Model

To analyze the identifiability of the model, we are interested to know

whether there is θ∗ = (γ∗1 , γ
∗
2 , f
∗
1 , f

∗
2 ) 6= θ = (γ1, γ2, f1, f2) such that the

following system of nonlinear equations holds.



f1e
d1γ1t + f2e

d1γ2t = f∗1 e
d1γ∗1 t + f∗2 e

d1γ∗2 t

f1e
d2γ1t + f2e

d2γ2t = f∗1 e
d2γ∗1 t + f∗2 e

d2γ∗2 t

· · ·

f1e
dpγ1t + f2e

dpγ2t = f∗1 e
dpγ∗1 t + f∗2 e

dpγ∗2 t

(5.4)

(5.5)

(5.6)

Theorem 3. Denote (d1, d2, . . . , dp) as p distinct eigenvalues of the rate

matrix Q and t as the branch length. For a pair of DNA sequences, if there

is a unique solution θ = (γ, f) to the system of Equations meaning that (γ∗ =

γ, f∗ = f), then the model is identifiable, otherwise, it is unidentifiable.

In the previous system of equations, there are p equations in total where

p is the number of distinct eigenvalues of rate matrix Q satisfying p ≤ 4.

It reflects that the identifiability of the model depends on the number of

different eigenvalues of the rate matrix Q.

5.4 Non-identifiability of F81 Model

Proposition 1. F81 family of rate matrices have one eigenvalue 0 with

algebraic multiplicity 1 and the other eigenvalue -1 with algebraic multiplicity

3.

Proof. By denoting the the diagonal elements as * to make sure the sum of
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5.4. Non-identifiability of F81 Model

the each row in the Q matrix is zero, where

Q =


∗ πC πA πG

πT ∗ πA πG

πT πC ∗ πG

πT πC πA ∗

 ,

the characteristic polynomial of χ(λ) of the 4× 4 matrix is∣∣∣∣∣∣∣∣∣∣∣∣

∗ − λ πC πA πG

πT ∗ − λ πA πG

πT πC ∗ − λ πG

πT πC πA ∗ − λ

∣∣∣∣∣∣∣∣∣∣∣∣
.

By doing elementary transformations, χ(λ) can be transformed into

χ(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣

∗ − λ πC 0 πG

πT ∗ − λ 0 πG

πT πC −(1 + λ) πG

πT πC πA + πA
πG

(1 + λ− πG) ∗ − λ

∣∣∣∣∣∣∣∣∣∣∣∣
.

Similarly, we get

χ(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣

−(1 + λ) πC 0 πG

πT + πT
πC

(1 + λ− πC) ∗ − λ 0 πG

0 πC −(1 + λ) πG

0 πC πA + πA
πG

(1 + λ− πG) ∗ − λ

∣∣∣∣∣∣∣∣∣∣∣∣
.
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5.4. Non-identifiability of F81 Model

By Laplace expansion along the first column, we get

χ(λ) = −(1 + λ)

∣∣∣∣∣∣∣∣∣
−(1 + λ− πc) 0 πG

(
1 + 1+λ−πC

πC

)
πC −(1 + λ) 0

πC πA

(
1 + 1+λ−πG

πG

)
−(1 + λ)

∣∣∣∣∣∣∣∣∣
−πT

(
1 +

1 + λ− πC
πC

) ∣∣∣∣∣∣∣∣∣
πC 0 0

πC −(1 + λ) 0

πC πA

(
1 + 1+λ−πG

πG

)
−(1 + λ)

∣∣∣∣∣∣∣∣∣
= −(1 + λ)

(
−(1 + λ− πC)(1 + λ)2 + πA(1 + λ)2 + πG(1 + λ)2

)
−πT (1 + λ)3

= −(1 + λ)3 (πA + πG + πC − (1 + λ))− πT (1 + λ)3

= −(1 + λ)3 (1− πT − (1 + λ))− πT (1 + λ)3

= (1 + λ)3 (λ+ πT )− πT (1 + λ)3

= λ (1 + λ)3 . (5.7)

As a result, χ(λ) has two distinct eigenvalues: λ1 = 0 with algebraic multi-

plicity 1 and λ2 = −1 with algebraic multiplicity 3.

Theorem 4. Let X and Y be two DNA sequences, Q be any F81 rate matrix

of the following form

Q =


∗ πC πA πG

πT ∗ πA πG

πT πC ∗ πG

πT πC πA ∗

 .

Denote γ = (γ1, γ2) as the rate factor, where γ1 < γ2 and f = (f1, f2) as the

distribution for the latent variable Z specifying which category γ takes. The
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5.4. Non-identifiability of F81 Model

branch length t for this pair of sequence is assumed to be 1. Assuming Q is

known, the parameter θ = (γ, f) is unidentifiable.

Proof. Assuming the model is identifiable, θ∗ = (γ∗1 , γ
∗
2 , f
∗
1 , f

∗
2 ) must be

equal to θ = (γ1, γ2, f1, f2). For F81 models, we have d1 = 0, d2 = −1.

 f1e
0×γ1t + f2e

0×γ2t = f∗1 e
0×γ∗1 t + f∗2 e

0×γ∗2 t

f1e
(−1)×γ1t + f2e

(−1)γ2t = f∗1 e
(−1)×γ∗1 t + f∗2 e

(−1)×γ∗2 t

(5.8)

(5.9)

which is  f1 + f2 = f∗1 + f∗2

f1e
−γ1t + f2e

−γ2t = f∗1 e
−γ∗1 t + f∗2 e

−γ∗2 t

(5.10)

(5.11)

By setting f1 = f∗1 = f2 = f∗2 = 0.5, γ∗1 = 1
2γ1, t=1, we get γ∗2 =

− log(e−γ1 + e−γ2 − e−0.5γ1). This means there is a distinct solution θ∗ =

(1
2γ1,− log(e−γ1 + e−γ2 − e−0.5γ1), f1, f2) which contradicts our assumption

that no θ∗ exists. We conclude that the model is unidentifiable.

Example 1. To illustrate Theorem 4, we provide one rate matrix from F81

family and assume πA = 0.4, πC = 0.3, πT = 0.2 and πG = 0.1, f1 = 0.5,

f2 = 0.5, γ1 = 1, γ2 = 2, t = 1 and

Q =


∗ πC πA πG

πT ∗ πA πG

πT πC ∗ πG

πT πC πA ∗

 =


−0.8 0.3 0.4 0.1

0.2 −0.7 0.4 0.1

0.2 0.3 −0.6 0.1

0.2 0.3 0.4 −0.9

 .

The eigenvalues of Q are equal to -1 with algebraic multiplicity 3 and 0

with algebraic multiplicity 1. After setting f∗1 = 0.5, γ∗1 = 0.5, f∗2 = 0.5,
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5.5. Identifiability of Models with at least 3 different eigenvalues

γ∗2 = − log(e−1 + e−2 − e−0.5), we get


f1 + f2 = f∗1 + f∗2 = 1

0.5e−1 + 0.5e−2 = 0.5∗e−0.5 + 0.5elog(e−1+e−2−e0.5)

= 0.5∗e−1 + 0.5e−2.

(5.12)

(5.13)

Following from Equation 5.4 to Equation 5.6, this model is unidentifiable

since θ = (1, 2, 0.5, 0.5) and θ∗ = (0.5,− log(e−1 +e−2−e−0.5), 0.5, 0.5) have

the same likelihood for a pair of sequences.

Corollary 1. Let X and Y be two DNA sequences, Q be any JC69 rate

matrix of the following form,

Q =


∗ µ

4
µ
4

µ
4

µ
4 ∗ µ

4
µ
4

µ
4

µ
4 ∗ µ

4

µ
4

µ
4

µ
4 ∗

 .

Assuming γ = (γ1, γ2) (where γ1 < γ2) is the rate scalar and f = (f1, f2)

is its distribution, the rate matrix Q and the branch length are known, the

parameter θ = (γ, f) is unidentifiable.

Proof. JC69 rate matrices are special cases of F81 rate matrices by setting

πA = πG = πT = πC = µ
4 , the result follows from Theorem 4.

5.5 Identifiability of Models with at least 3

different eigenvalues

In this section, from the F81 model, θ = (γ, f) is unidentifiable since

there are only two equations and there are four unknown quantities (γ∗1 , γ
∗
2 , f
∗
1 ,
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5.5. Identifiability of Models with at least 3 different eigenvalues

f∗2 ). As a result, we can find multiple θ∗ = (γ∗1 , γ
∗
2 , f
∗
1 , f

∗
2 ) to satisfy the con-

ditions. However, it is of interest to explore whether the model is identifiable

when the rate matrix Q has three distinct eigenvalues or four eigenvalues.

When Q has three different eigenvalues, there will be three equations and

four unknown quantities (γ∗1 , γ
∗
2 , f
∗
1 , f

∗
2 ) so that the number of equations is

still smaller than the number of unknown quantities. When Q has four dif-

ferent eigenvalues, there will be four equations and four unknown quantities

(γ∗1 , γ
∗
2 , f
∗
1 , f

∗
2 ) so that the number of equations is equal to the number of

unknown quantities. We prove the non-identifiability of the GTR model

under certain conditions on the basis of Wu and Susko (2010)’s work.

5.5.1 F84 Model

Recall that in the F1984 model, the rate matrix is given by

Q =


∗ (1 + k/πY )πC πA βπG

(1 + k/πY )πT ∗ πA πG

πT πC ∗ (1 + k/πR)πG

πT πC (1 + k/πR)πA ∗

 .

The three eigenvalues are λ1 = 0, λ2 = −µ, λ3 = λ4 = −(1 + k)µ, where µ

is 1/(4πTπC(1 + k/πY ) + 4πAπG(1 + k/πY ) + 4πY πR).

To analyze the identifiability of the F1984 model, we are interested in

finding whether there is θ∗ = (γ∗1 , γ
∗
2 , f
∗
1 , f

∗
2 ) 6= θ = (γ1, γ2, f1, f2) such that

the following nonlinear equations hold. If θ∗ exists, then the model is uniden-

tifiable.
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5.5. Identifiability of Models with at least 3 different eigenvalues


f1 + f2 = f∗1 + f∗2

f1e
−µγ1t + f2e

−µγ2t = f∗1 e
−µγ∗1 t + f∗2 e

−µγ∗2 t

f∗1 e
−(1+k)µγ∗1 t + f∗2 e

−(1+k)µγ∗2 t = f∗1 e
−(1+k)µγ∗1 t + f∗2 e

−(1+k)µγ∗2 t

(5.14)

(5.15)

(5.16)

5.5.2 HKY85 Model

Hasegawa et al. (1985) prove that in HKY85 model, Q has four distinct

eigenvalues. If Q is as below, the ratio of α and β is the ratio of transition

and tranversion. There are four distinct eigenvalues of the rate matrix
∗ απC βπA βπG

απT ∗ βπA βπG

βπT βπC ∗ απG

βπT βπC απA ∗

 ,

where λ1 = 0, λ2 = −β, λ3 = −(πY β + πRα), λ4 = (πY α+ πRβ).

The identifiability of HKY85 model lies in whether we are able to find

θ∗ = (γ∗1 , γ
∗
2 , f
∗
1 , f

∗
2 ) 6= θ = (γ1, γ2, f1, f2) such that the following nonlinear

equations hold.



f1 + f2 = f∗1 + f∗2

f1e
−λ2γ2t + f2e

−λ2γ2t = f∗1 e
−λ2γ∗1 t + f∗2 e

−λ2γ∗2 t

f∗1 e
−λ3γ∗1 t + f∗2 e

−λ3γ∗2 t = f∗1 e
−λ3γ∗1 t + f∗2 e

−λ3γ∗2 t

f1e
−λ4γ1t + f2e

−λ4γ2t = f∗1 e
−λ4γ∗1 t + f∗2 e

−λ4γ∗2 t

(5.17)

(5.18)

(5.19)

(5.20)

These conditions also apply to GTR models since they also have four

distinct eigenvalues as HKY85 model.

We cite Wu and Susko (2010)’s proved Theorem 5 as below to address

the identifiability issue for our model.
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5.5. Identifiability of Models with at least 3 different eigenvalues

Theorem 5. Consider the GTR model with unknown rate matrix Q, which

has an unknown non-zero stationary frequencies. The rate factor γ is de-

scribed by an arbitrary distribution ω, Eω(γ) = 1. If pairwise distributions

are available for any distance, then the rate distribution, the pairwise dis-

tance d and the rate matrix Q are identifiable.

The details of proof for Theorem 5 are provided by Wu and Susko (2010).

In our case, the rate factor γ comes from an arbitrary discrete distribution

without the constraint of Eω(γ) = 1 so we generalize Theorem 5 into Theo-

rem 6.

Theorem 6. For any GTR model with unknown rate matrix Q, which has at

least two distinct eigenvalues and unknown non-zero stationary frequencies.

The rate factor γ is described by an arbitrary distribution ω. If pairwise

distributions are available for any distance, the eigenvalues of the rate matrix

Q are identifiable but the rate distribution and the pairwise distance are

unidentifiable. However, if two choices of distance, rate distribution (d, ω)

and (d̃, ω̃) can lead to the same pairwise distribution, the following equation

holds

d× Eω(γ) = d̃× Eω̃(γ̃).

Proof. The proof can be obtained using the same technique when Wu and

Susko (2010) proved their “Theorem 2” in the original paper. For reader’s

convenience, we used the same notations as the original paper. Assuming

the rate factor γ has a distribution ω, then the moment generating function

is

M(t) = Eω(etγ)

for any t ≤ 0. Assuming (d, ω,Q) and (d̃, ω̃, Q̃) are two different choices of

the pairwise distance, distribution of the rate factor and rate matrix. As
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5.5. Identifiability of Models with at least 3 different eigenvalues

denoted before, M and M̃ are the two moment generating functions corre-

sponding to γ and γ̃. The rate matrix Q has n distinct eigenvalues λi where

i ∈ {1, 2, . . . , n}. Moreover, Q can be represented asXdiag(λ1, λ2, . . . , λn)X−1

and Q̃ can be represented as X̃diag(λ̃1, λ̃2, . . . , λ̃n)X̃−1. Let c1 denote

Eω(γ), c2 denote Eω̃(γ̃) and c denote the ratio of c1 and c2. From the

properties of moment generating functions, we have

M ′(0)

M̃ ′(0)
=
Eω(γ)

Eω̃(γ̃)
=
c1

c2
= c.

It follows from the proof of Theorem 2 in the original paper of Wu and

Susko (2010) that for any v ≤ 0, we have M(v) = M̃(cv). When the

pairwise distribution is the same for two choices of (d, µ,Q) and (d̃, µ̃, Q̃),

then

d̃ = λ̃i
−1
M̃−1(M(λid)).

Since M(v) = M̃(cv), then

d̃ = λ̃i
−1
M̃−1(M(λid)) = c

λi

λ̃i
d,

λ̃i
λi

= c× d

d̃
= c× k.

From the proof of Theorem 1(a) by Wu and Susko (2010), since the un-

known stationary distribution Π can be obtained using the 1-taxa marginal-

ization and the rate matrices are scaled so that trace(ΠQ) = −1, then,

−1 = trace
(

ΠX̃diag(λ̃1, λ̃2, . . . , λ̃p)X̃
−1
)

= trace
(
ΠXdiag(λ1, λ2, . . . , λp)X

−1
)

= −ck,

so that

ck =
Eω(γ)

Eω̃(γ)
× d

d̃
= 1,

where λi = λ̃i for any i ∈ {1, 2, . . . , n}.
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5.6. Simulation Results

5.6 Simulation Results

To study the identifiability of γ and its distribution f , we select HKY85

model since it has three distinct nonzero eigenvalues. We are interested to

see if the rate matrix is known, whether it is possible to recover the distri-

bution of parameters γ using a pair of sequences.

Using the HKY85 model, the rate matrix is

Q = µ ∗


∗ πC κπG πT

πA ∗ πG κπT

κπA πC ∗ πT

πA κπC πG ∗

 .

The normalization constant is µ = 1/
{∑

i{A,C,G,T} πiQii

}
. After set-

ting κ = 5 and the stationary distribution as π = (πA, πC , πG, πT ) =

(0.4, 0.3, 0.2, 0.1), we obtain the rate matrix as below

Q0 =



A C G T

A −0.89 0.19 0.63 0.06

C 0.25 −0.70 0.13 0.32

G 1.27 0.19 −1.52 0.06

T 0.25 0.95 0.13 −1.33

.

We generate a pair of sequences with 50000 sites from the previous

HKY85 model with Q0 as the rate matrix and the branch length is 0.2.

The rate factor is γ = (0, 1) and its distribution is f = (0.2, 0.8). This

means that among 50000 sites, approximately 20 percent of the sites stay

unchanged and 80 percent of the sites change according to the rate matrix

Q0. Using the EM algorithm to learn γ and f for a pair of sequences, as-
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5.6. Simulation Results

suming we know Q0, we are interested to see whether we can recover the

reference held-out parameters γ = (0, 1) and its distribution f = (0.2, 0.8)

using the generated dataset. If the estimate of γ and f is close to γ and

f , it is promising that γ and its distribution f are identifiable provided

that the rate matrix is known. If the estimate of γ̂ and f̂ are very dif-

ferent from γ and f , but these two choices of parameters can produce the

same or very similar likelihood, this will provide some empirical support for

the non-identifiability for HKY85 model. We replicate simulating sequences

with γ = (0, 1) and f = (0.2, 0.8), then make inference about γ and f with

different initial values of γ and f denoted as γinitial and finitial. For 500

times, the average of γ̂ and f̂ are summarized as below.

Table 5.1: Estimating γ and f with γinitial and finitial

γinitial finitial γ̂ f̂ SD(γ̂) SD(f̂)

(0, 1) (0.2, 0.8) (0, 0.96) (0.178, 0.822) (0, 0.069) (0.048, 0.048)

(0, 0.5) (0.5, 0.5) (0, 1.01) (0.208, 0.792) (0, 0.093) (0.059, 0.059)

(0.4, 0.5) (0.5, 0.5) (0.546, 1.011) (0.497, 0.503) (0.176, 0.201) (0.002, 0.002)

(0.2, 0.8) (0.5, 0.5) (0.510, 1.04) (0.485, 0.515) (0.179, 0.197) (0.007, 0.007)

(0.2, 0.8) (0.3, 0.7) (0.417, 0.935) (0.293, 0.707) (0.260, 0.136) (0.008, 0.008)

When the initial values γinitial and finitial are equal to the reference held-

out parameters γ and f , the estimated parameters γ̂ and f̂ are close to the

parameters we use to simulate the data. The standard error of γ̂ and f̂

represents the variation of γ̂ and f̂ out of 500 replications. When only one
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5.6. Simulation Results

category of γinitial is the same as γ which is zero, γ̂ and f̂ are still close to

γ and f . When γinitial and finitial are very different from γ and f , γ̂ and f̂

are no longer close to γ and f . Moreover, f̂ highly depends on finitial which

is reflected from the last three rows of Table 5.1.

To investigate the identifiability of the problem, we are interested to

check whether the negative log-likelihood given γ̂ and f̂ are the same as the

negative log-likelihood given γ and f .

Table 5.2: Average of nllk of the generated dataset given different estimates

γ̂ f̂ ¯nllk<γ̂,f̂>
¯nllk<γ,f> Range Times

(0.417, 0.935) (0.29, 0.71) 88839 88841 (-7.30, 0.03) 494

(0.510, 1.04) (0.49, 0.51) 88855 88856 (-8.70, 0.06) 492

(0.546, 1.011) (0.50, 0.50) 88850 88852 (-6.99, 0.05) 491

(0, 1.011) (0.21, 0.79) 88825 88826 (-6.75, 1.70) 421

(0, 0.96) (0.18, 0.82) 88839 88834 (-6.28, 2.42) 411

In Table 5.2, “Average of nllk” represents the average of negative log-

likelihood out of 500 replications. “Times” denotes the number of times that

the negative log-likelihood of the generated dataset given γ̂ and f̂ is smaller

than the one given γ and f used to generate the dataset. “Range” denotes

the range of the difference between the negative log-likelihood given (γ̂, f̂)

and (γ, f).

Based on these simulations, we conjecture that γ and f are not identifi-

able in this setup. We also produce two pictures to help visualize that. We

generate a pair of sequences with γ = (0.6, 1) and f = (0.2, 0.8).
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5.6. Simulation Results

Figure 5.1: negative log-likelihood given γ by grid search
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Figure 5.2: level plot of negative log-likelihood given γ by grid search
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5.6. Simulation Results

Figure 5.1 shows the negative log-likelihood given different rate factors.

In this figure, “gamma1” denotes the first category of γ and “gamma2”

denotes the second category of γ. It shows on the bottom of the plot, the

plane is flat which is coloured by “red”. To check this, we produce Figure

5.2 by projecting the 3-d plot to a 2-d plane. From the curve in the plot, it

reflects that different combinations of the two categories of γ could produce

similar negative log-likelihood. This also serves as the empirical support

that the HKY85 model for a pair of sequences might not be identifiable.
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Chapter 6

Data Analysis

6.1 Data Description

The dataset comes from the original paper by Shang, Xu, Ozer, and

Gutell (2012). There are 1028 ribosomal RNA sequences. Each sequence

has 4907 sites of 16S gene and is sampled from eucarya mitochondria. The

topology and branch lengths of the tree are first estimated by maximum

likelihood methods.

Let X = {xij} be the aligned nucleotide sequences, where i ∈ {1, 2, . . . ,

1028}, j ∈ {1, 2, ..., 4907}. Each column of the data matrix xj = {x1,j , ...,

x1028,j} specifies the nucleotides for the 1028 sequences at the jth site. Each

row of the data matrix xi = {xi,1, ..., xi,4907} represents all the nucleotides

of the ith DNA sequence.

X =


x1,1 x1,2 · · · x1,4907

x2,1 x2,2 · · · x2,4907

...
...

. . .
...

x1028,1 x1028,2 · · · x1028,4907


However, a considerable fraction of xij are considered missing. In phyloge-

netics, missing data are not usually due to missing measurements, but are

rather artificially introduced as a preprocessing step called sequence align-

ment. In order to match the sequences with the same length, part of the
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6.1. Data Description

missing data denoted as “-” in some sequences are “deletions or “insertions”

in which nucleotides are deleted or inserted. Below we show a histogram of

the percentage of the sites with different numbers of missing data.
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Figure 6.1: percentage of sites with different numbers of missing data

For sixty percent of the sites, the states of more than 1000 sequences

on each of this site is missing. For example, when we check the data, on

the 4907th site, only the state of one sequence is known and the states of

all other sequences at this site are missing. This kind of sites are not used
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6.2. Exploratory Data Analysis

when analyzing the data.

6.2 Exploratory Data Analysis

Here we explore whether the rates at different sites are the same or not.

We use the sites with the least missing data in the original dataset. In total,

there are 44 sites at which only the states of two sequences out of 1028

sequences are missing.

In this chapter, we use the K80 model. It is assumed that the stationary

frequencies of the nucleotides πx are uniform and the ratio of transition over

transversion κ is equal to 1.5. Then the rate matrix Q used in this dataset

is

Q =


∗ πC κπG πT

πA ∗ πG κπT

κπA πC ∗ πT

πA κπC πG ∗

 =


−0.875 0.25 0.375 0.25

0.25 −0.875 0.25 0.375

0.375 0.25 −0.875 0.25

0.25 0.375 0.25 −0.875

×µ,

where µ = 1.142857.

We would like to explore whether the rates at these sites are the same or

not. We calculate the likelihood for each of these sites under different rate

factors with one category ranging from 0.01 to 1 with step size 0.01. We

denote the rate factor as γ and show three figures of the log-likelihood with

respect to the rate factor at three different sites.

The patterns of the three figures are similar since they are all unimodal

and the log-likelihood increases as γ increases first and decreases after a

certain point. We provide a histogram of the estimate of γ by grid search

for the selected sites. The histogram reflects that the distribution of γ̂ at
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Figure 6.2: log-likelihood w.r.t γ at site “1”
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Figure 6.3: log-likelihood w.r.t γ at site “2”
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Figure 6.4: log-likelihood w.r.t γ at site “3”

which the maximum likelihood is achieved by grid search method. Note that

more than sixty percent of the sites evolve slowly relative to the other ones.

6.3 Data Analysis via an EM Algorithm

The fixed quantities include the topology of the tree and the branch

lengths. The parameters to be estimated are the rate factor γ and its dis-

tribution f . Without introducing the rate factor, the likelihood of the tree

is -381560.755. Using an EM algorithm with a penalty term which is the

sum of γ2, we provide the results as below. As to the details of the penalty

terms, please refer to Chapter 4. We get the estimates by removing the sites

where the states of 1027 sequences are missing for a single site since those
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Figure 6.5: Histogram of γ̂MLE by grid search

sites only have the state of one sequence so that it does not provide much

information.
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6.3. Data Analysis via an EM Algorithm

Table 6.1: Estimating γ and f with different γinitial and finitial with part of

alignments

γinitial finitial γ̂ f̂ nllk{γ̂,f̂}

0.5 1 0.381 1 321374

1 1 0.381 1 321374

(0.4, 1.4) (0.5, 0.5) (0.236, 3.531) (0.488, 0.512) 303971

(0.16, 0.6, 1.2) (1
3 ,

1
3 ,

1
3) (0.116, 0.926,

2.602)

(0.238, 0.420,

0.342)

290146

(0.12, 0.15,

0.6, 0.9)

(1
4 ,

1
4 ,

1
4 ,

1
4) (0.038, 0.160,

0.591, 3.148)

(0.087, 0.125,

0.380, 0.408)

287676

(0.12, 0.15,

0.6, 0.9, 1.2)

(1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5) (0.389, 0.152,

0.393,0.961,

2.727)

(0.087, 0.104,

0.166, 0.271,

0.372)

285772

In order to perform the model selection, we calculate the the Akaike in-

formation criterion (AIC) and Bayesian information criterion (BIC) for the

five models.
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6.3. Data Analysis via an EM Algorithm

Table 6.2: AIC and BIC for different Models

#of categories AIC BIC

1 642756 642782

2 607948 607988

3 580302 580368

4 575366 575413

5 571562 571681

Since both the AIC and BIC keep increasing for the five models as the number

of parameters increases, we suspect it under-penalize model complexity. The reason

is that the dependence between sequences violates the assumption of AIC and BIC

so that a new model selection method is needed. To find a new model selection

method is part of our future work.
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Chapter 7

Conclusions and Future

Work

In this thesis, we propose a new computationally attractive model. Using an

EM algorithm, we can model the rates over sites on DNA sequences with a discrete

distribution for thousands of sequences. We also analyze the identifiability for

the rate factor coming from a discrete distribution for the first time. We prove

a general condition of the identifiability of our model. Based on that, we prove

the non-identifiability of F81 model. We also prove the non-identifiability of GTR

model under certain conditions.

For future work, we are interested to explore new model selection methods to

evaluate our models. Moreover, we would like to propose new methods to estimate

the rate matrix Q and the rate factor γ and its distribution simultaneously. Finally,

we are interested to analyze the identifiability of large phylogenies.
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Appendix A

First Appendix

Theorem 1.

lim
tn→t

(etnQ)i,j − (etQ)i,j
tn − t

= (QetQ)i,j

Proof. If A = [aij ] is a p×pmatrix, the matrix exponential of A is eA =
∑∞

j=0A
j/j!.

Assume A has p distinct eigenvalues d1, d2, . . . , dp so that X is the p × p matrix

where the jth column is a right eigenvector of unit length corresponding to dj .

Since A = XDX−1,

etA = Xdiag(ed1t, . . . , edpt)X−1

etA =


x11e

d1t x12e
d2t . . . x1pe

dpt

x21e
d1t x22e

d2t . . . x2pe
dpt

...
...

. . .
...

xp1e
d1t xp2e

d2t . . . xppe
dpt




x∗11 x∗12 . . . x∗1p

x∗21 x∗22 . . . x∗2p
...

...
. . .

...

x∗p1 x∗p2 . . . x∗pp


where

X−1 =


x∗11 x∗12 . . . x∗1p

x∗21 x∗22 . . . x∗2p
...

...
. . .

...

x∗p1 x∗p2 . . . x∗pp

 X =


x11 x12 . . . x1p

x21 x22 . . . x2p
...

...
. . .

...

xp1 xp2 . . . xpp



(etA)i,j =

p∑
k=1

xike
dktx∗ki =

p∑
k=1

xikx
∗
kie

dkt

lim
tn→t

(etnQ)i,j − (etQ)i,j
tn − t

=
∂(etA)i,j

∂t
=
∂(
∑p

k=1 xikx
∗
kie

dkt)

∂t
=

p∑
k=1

xikx
∗
kidke

dkt
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Appendix A. First Appendix

AetA = Xdiag(d1, d2, . . . , dp)X−1Xdiag(ed1t, . . . , edpt)X−1

= Xdiag(d1, . . . , dp)diag(ed1t, . . . , edpt)X−1

=


x11d1 x12d2 . . . x1pdp

x21d1 x22d2 . . . x2pdp
...

...
. . .

...

xp1d1 xp2d2 . . . xppdp




ed1t 0 . . . 0

0 ed2t . . . 0
...

...
. . .

...

0 0 . . . ednt




x∗11 x∗12 . . . x∗1p

x∗21 x∗22 . . . x∗2p
...

...
. . .

...

x∗p1 x∗p2 . . . x∗pp



=


x11d1e

d1t x12d2e
d2t . . . x1pdpe

dpt

x21d1e
d1t x22d2e

d2t . . . x2pdpe
dpt

...
...

. . .
...

xp1d1e
d1t xp2d2e

d2t . . . xppdpe
dpt




x∗11 x∗12 . . . x∗1p

x∗21 x∗22 . . . x∗2p
...

...
. . .

...

x∗p1 x∗p2 . . . x∗pp


Then

(AetA)ij =

p∑
k=1

xikx
∗
kidke

dkt =
∂(
∑p

k=1 xikx
∗
kie

dkt)

∂t
= lim

tn→t

(etnQ)i,j − (etQ)i,j
tn − t
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Appendix B

Second Appendix

Theorem 1.

∂

∂γ
(exp(γQ1)m→n exp(γQ2)a→b)

= [
∂

∂γ
(exp(γQ1))]m→n exp(γQ2)a→b + exp(γQ1)m→n[

∂

∂γ
(exp(γQ2))]a→b

= (Q1 exp(γQ1))m→n exp(γQ2)a→b + exp(γQ1)(Q2 exp(γQ2))a→b

The proof of this theorem is provided in the Appendix.

Proof. It has been proved that,

lim
tn→t

(etnQ)i,j − (etQ)i,j
tn − t

= (QetQ)i,j

When we get derivative wrt t for the element in the ith row and jth column of the

matrix (etA)ij is equivalent to getting derivative wrt t for the matrix first and then

take the element in the ith row and jth column of the matrix. Then

∂

∂γ
(exp(γQ1)m→n exp(γQ2)a→b)

= (
∂

∂γ
exp(γQ1)m→n) exp(γQ2)a→b + exp(γQ1)m→n(

∂

∂γ
exp(γQ2)a→b)

= (
∂

∂γ
exp(γQ1))m→n exp(γQ2)a→b + exp(γQ1)m→n(

∂

∂γ
exp(γQ2))a→b (B.1)
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