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Abstract

With new, highly sensitive telescopes, increased computational power, and im-

proved search algorithms, the present century has seen a great increase in the dis-

covery of pulsars in globular clusters. These are typically fast-spinning ‘millisec-

ond’ pulsars, and more often than not they are members of binary systems. Unlike

in the Galactic field, millisecond pulsars in globular clusters are often found in ec-

centric systems because of disruptions and exchanges due to the high stellar density

of the cluster environment.

A long-standing problem is that of characterizing our sensitivity to pulsars in

binary systems, particularly those with non-zero eccentricity. A pulsar’s orbital

motion modulates its observed pulse period, making its detection through stan-

dard Fourier analysis difficult or impossible. A common technique to mitigate this

problem is the ‘acceleration search’, which corrects for uniform line-of-sight ac-

celeration, but not higher-order variations. This is often a valid approximation,

and many pulsars have been found this way. However, it is not clear where such a

search breaks down.

This is a problem with a many-dimensional phase space that includes all of

the binary parameters, the pulsar parameters, and the various search inputs. Past

studies have approached the problem analytically, and have made valuable insights;

however, until recently they have been restricted to circular orbits, and have not

accounted for pulsar brightness or signal digitization.

Here I approach the problem empirically. I simulate 1.8 million pulsars in

a variety of orbital configurations and explore the frequency of pulsar recovery

across various dimensions of the phase space. I find in particular that, at very short

orbital periods, high eccentricities make binary systems easier to detect.
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Chapter 1

Introduction

1.1 What is a pulsar?
The first pulsar was discovered serendipitously in 1967 (Hewish et al., 1968). A

very fast, steady series of radio-frequency pulses was observed from a particular

point on the sky, evidently originating in deep space. Following this discovery,

many more pulsars were found in quick succession, and before long it was agreed

upon that they were highly magnetized, rapidly rotating neutron stars (Gold, 1969;

Pacini, 1968); radio emission beamed from the stars’ magnetic poles was sweeping

across our line of sight like a lighthouse beam, and this was the reason it was

observed as regular radio pulses. This remains our basic description of pulsars

nearly half a century later.

Neutron stars were proposed by Baade & Zwicky (1934) as theoretical compact

products of supernovae, and the first direct evidence for their existence was in the

discovery of pulsars. Pulsars are a class of neutron star, though not every neutron

star can be observed as a pulsar. It is very likely that there are many neutron stars

with beamed radio emission that simply never points towards Earth, any many

without such emission at all.

A very good description of the modern pulsar model is laid out in Lorimer &

Kramer (2005), and much of the information in this section can be found there and

in references within—where necessary, I provide additional references. Neutron

stars are formed in core-collapse supernovae. When an evolved massive star is no
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longer able to create energy through nuclear fusion in its core (i.e., the core nuclei

are iron), the hydrostatic equilibrium between radiative expansion and gravitational

collapse breaks down, and an enormous amount of mass rapidly falls inward. Be-

cause multiple electrons cannot exist in identical states, electrons are forced to

occupy higher and higher energy states as the volume is compressed. This creates

an outward electron degeneracy pressure, which is the pressure that withholds a

white dwarf star from collapse. If there is sufficient stellar mass to compress the

core beyond this state, then electrons and protons form neutrons via inverse beta

decay, and an analagous neutron degeneracy pressure withholds further collapse.

If the compression can proceed no further, we are left with a neutron star, with a

radius of about 10 km. Further collapse would produce a black hole or perhaps

another exotic object such as a quark star, though the latter remains speculative.

While the physics of neutron star interiors remains a subject of debate, much

has been observationally established about their masses and exteriors. The Chan-

drasekhar limit of 1.4 M� has often been used as a canonical neutron star mass,

though it has become clear that one ‘typical mass’ is not sufficient to describe

the current distribution of measurements, with the mass distribution increasingly

appearing multi-modal and dependant upon formation scenario (e.g., Özel et al.,

2012; Schwab, Podsiadlowski & Rappaport, 2010). Their masses do tend to be

scattered in a small range about this value, nonetheless; thus far they have been

measured between 1.25 and 2 M� (Demorest et al., 2010; Kramer et al., 2006).

The Chandrasekhar limit is the mass beyond which a white dwarf star should theo-

retically no longer be able to withstand gravitational pressure, so it is not surprising

that neutron stars are not found well below this mass (though a neutron star’s mea-

sured mass will be less than that of a white dwarf that collapses to form it, due to

its higher gravitational binding energy, as discussed by, e.g., Podsiadlowski et al.

(2005)). The analagous upper-limit mass for neutron stars is not well-determined,

but it might be as high as about 3 M�, depending upon the correct neutron star

equation of state.

Neutron stars spin fast and have strong magnetic fields. Angular momentum

conservation and magnetic field compression during core collapse can basically

account for these properties. Because of the magnetic field, there is a corotating

magnetosphere, extending no further than the light cylinder (Figure 1.1), the dis-
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Figure 1.1: The basic pulsar model. Magnetic field lines that extend beyond the light
cylinder cannot close on the neutron star’s opposite pole, as corotation would
require them to move faster than the speed of light. Particles streaming along
these “open” field lines are thought to play a part in the formation of the radio
beams.
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tance beyond which anything corotating with the star would exceed the speed of

light; a faster-spinning star has a tighter light cylinder. Field lines that originate

nearer the star’s equator turn back and close before reaching this distance. Field

lines that originate closer to the poles, however, extend beyond the light cylinder

and do not close on the star’s opposite pole. It is in these polar cap regions that a

process involving the streaming of charged particles is thought to be responsible

for the beamed radio emission observed in pulsars.

We are able to observe a pulsar’s beamed emission as a series of short pulses

because of a misalignment between the magnetic and spin axes; this causes the

beams aligned with the magnetic axis to be swept about, and if at least one of the

beams points towards the Earth once per sweep, we see a series of pulses, much

like the brief flashes of a lighthouse beam. Probably some neutron stars have their

spin and magnetic axes aligned, but even if radio beams are emitted, we would not

see these as pulsars.

1.2 Millisecond pulsars
A pulsar’s emission is powered by its rotational energy, and this leads to a gradual

slowing of the pulsar’s spin rate. The youngest pulsars have lower spin periods (P)

and higher period derivatives (Ṗ), while older pulsars spin more slowly (periods

from hundreds of milliseconds up to a few seconds) and their rotational speeds de-

cay more slowly. This is shown on the P-Ṗ diagram of pulsars shown in Figure 1.2,

where diagonal lines show characteristic ages, defined as τc = P/2Ṗ. The main

cluster of points on this plot represents these “typical” pulsars, but there is another

distinct cluster at much lower spin periods and period derivatives. These are the

millisecond pulsars (MSPs), whose positions on the diagram do not correspond to

their ages, as they are old pulsars that have had their spin rates increased through

mass-accretion; looking at the plot, it is immediately striking how many of the pul-

sars in this region are members of binary systems. It has been widely thought for

some time that these binary systems were at one time much like the accreting sys-

tems known as low-mass X-ray binaries (LMXBs) (e.g., Kiziltan & Thorsett, 2010;

Phinney & Kulkarni, 1994). Recently, direct links between MSPs and LMXBs

have even been established, with the 3.93-ms globular cluster pulsar J1824−2452I
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(Papitto et al., 2013, in press) apparently switching between rotation-powered and

accretion-powered emission, and the 1.69-ms field pulsar J1023+0038 (Archibald

et al., 2009) showing evidence for a recent accretion disk. The angular acceler-

ation that occurs during this accretion is often called spinning up, and MSPs are

sometimes referred to as recycled pulsars because of this process. The spin-up line,

drawn as a thick black line in Figure 1.2, represents the minimum period allowed

by Eddington-limited accretion.

Tidal forces in an accreting binary system also tend to circularize the orbit,

so that binary systems with MSPs typically have very low eccentricities (e). An

exception in the Galactic field is PSR J1903+0327, an MSP in a binary system with

a main-sequence star that has a high eccentricity of 0.44 (Champion et al., 2008).

Initial possible explanations included the system having been formed in and ejected

from a globular cluster; alternatively, Freire et al. (2011) and Portegies Zwart et al.

(2011) both suggest that the system previously had a third body, that which spun up

the pulsar, which was later ejected due to chaotic three-body interactions. Such a

scenario could have resulted in the ejection of the MSP from the system instead of

the donor star, and may thus explain the presence of isolated MSPs in the Galaxy.

Whatever the explanation for its own properties, it is clear that J1903+0327 is not

a typical system.

It is in globular clusters, however, that a population of eccentric MSP systems

exists; in these clusters, very high stellar densities greatly increase the probability

for close encounters that disturb binaries.

1.3 Globular clusters and their MSPs
Globular clusters are gravitationally bound systems of hundreds of thousands of

stars. They orbit in the Galaxy’s halo, formed early in the history of the Universe,

and contain some of the oldest stars ever observed. It has long been thought that all

of the stars in a globular cluster formed at the same time, and while star-formation

clearly ceased early in the clusters’ formation, the discovery of multiple distinct

main sequences with different helium abundances in some clusters has shown that

this idea is not quite true (e.g., D’Antona et al., 2005; Milone et al., 2012). It ap-

pears as though there can be a few generations of star-formation, with the chemical
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Figure 1.2: The pulsar P-Ṗ diagram, featuring all known pulsars except those in
globular clusters, because the Doppler effect due to their intra-cluster accel-
eration makes it difficult or impossible to accurately establish intrinsic P and
Ṗ values. A point is placed based on the pulsar’s spin period and its deriva-
tive. Dashed lines show constant characteristic age and constant magnetic field
strength. Pulsars known to be members of binary systems are shown as red open
circles and magnetars are shown as green stars. Note that the millisecond pul-
sars, in the lower-left region of this diagram, are typically members of binary
systems. Pulsar radio beams are thought to “shut off” with slow rotation speed
and low magnetic field strength, hence the lack of points in the lower right por-
tion of the diagram. The thick black line is the spin-up line, below which we
expect all of the recycled pulsars. The points in this diagram are not corrected
for Shklovskii or Galactic-acceleration contributions to Ṗ. Based on Figure
1.13 from Lorimer & Kramer (2005); data from the ATNF pulsar database at
http://www.atnf.csiro.au/people/pulsar/psrcat/ (Manchester et al., 2005).
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content of each generation slightly different from the last due to contamination

from stellar winds and supernovae. Richer et al. (2013) have even measured dy-

namical differences between stellar generations in 47 Tucanae. Even with this

interesting complication, the nearly uniform age of a globular cluster’s population

provides valuable insights into stellar evolutionary models. The most massive stars

have long since evolved beyond the main sequence, becoming white dwarfs, neu-

tron stars, or black holes. Of more than 150 known globular clusters in orbit about

the Milky Way (Harris, 1996), 144 pulsars are currently known to reside in 28 of

them.1

Most of the pulsars found in globular clusters are MSPs, which is perhaps not

very surprising; if a cluster’s neutron stars were formed billions of years ago when

the early-type stars were running out of fuel for nuclear fusion, enough time has

passed that we would expect “normal” pulsars to have spun down and ceased radio

emission, and those in binary systems have had time to accrete matter and be spun

up to MSP speeds. Adding to this, the high stellar densities in globular clusters

can lead to binary systems losing or exchanging companions—such exchanges are

thought to be responsible for a number of the pulsar systems that are observed in

clusters. It is also the likely reason that MSP systems in globular clusters, unlike

those in the Galactic disk, frequently have high eccentricities, with 8 currently

known that have P < 20 ms and e > 0.2.

Exchange scenarios are also thought to be responsible for the high density (per

unit mass) of LMXBs in globular clusters compared to the Galactic disk, with

primordial neutron stars capturing main sequence companions that subsequently

evolve off of the main sequence and accrete onto the neutron stars (Clark, 1975).

Thus, despite the very old age of cluster populations, pulsars are still being actively

recycled.

1.4 Why are unusual MSP binaries interesting?
There is much scientific interest in finding neutron stars in globular clusters, partic-

ularly in eccentric systems. Eccentric systems are scientifically valuable because

the orbit’s shape introduces a reference direction into the system: the longitude of

1http://www.naic.edu/∼pfreire/GCpsr.html
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periastron. With this reference direction present and easily measured through pul-

sar timing, we also gain the ability to measure whether it changes with time, and at

what rate. While the orbital trajectories of an ideal, classical two-point-mass sys-

tem are static, various physical phenomena, including general relativistic effects,

can cause the longitude of periastron to precess. General-relativistic precession is a

function of the total mass of the two bodies; it is one of five major ‘post-Keplerian’

(PK) parameters that can in principle be measured in a relativistic system (e.g.,

Damour & Deruelle, 1985, 1986), a measurement of any two of which allows both

masses to be determined. Each further PK parameter then provides an indepen-

dent measurement of the two masses and acts as a test of general relativity or other

theories of gravity.

A famous example of the use of PK parameters is the double-pulsar system

PSR J0737−3039A/B, the only case so far in which both neutron stars could be

observed as pulsars: an MSP with period 22.7 ms and a slow pulsar with period

2.77 s. In this system, all five PK parameters (and a sixth contraint in the mass

ratio) were used to constrain the two masses, and all contraints proved mutually

consistent (Kramer et al., 2006). The double-pulsar system has a short orbital pe-

riod (2.5 hours) and an eccentricity of 0.088, which is a significant eccentricity for

a recycled system, and is probably due to the supernova explosion that created the

second pulsar (Burgay et al., 2003). Because of the possibility of binary exchange

scenarios, there are more ways in which a double-pulsar system can form in a

globular cluster than in the field, and an exchange is probably the only way to form

a double-MSP binary. An eccentric MSP-MSP binary would provide an excellent

astrophysical laboratory for high-precision measurements of orbital precession and

other general relativistic effects.

Another scientifically valuable system would be a pulsar in orbit with a black

hole. A close orbit with such a companion could provide very precise tests of

gravity (thanks to the high mass) and black hole physics. Such systems have yet to

be discovered, but globular clusters may be the best places to find them, and they

might have very high (& 0.9–0.99) eccentricities (Sigurdsson, 2003).
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1.5 Pulsar surveys of globular clusters
Significant efforts have been made to find globular cluster pulsars, with increas-

ing success in the last decade thanks to improvements in computing and search

algorithms, upgrades to the 305-metre Arecibo telescope in Puerto Rico, and the

construction of new high-sensitivity instruments, especially the 100-metre NRAO

Green Bank Telescope (GBT) in West Virginia. While a typical survey for field

pulsars consists of many adjacent telescope pointings that are each only a few min-

utes in duration, globular cluster pulsar surveys operate quite differently; because

of its small angular size on the sky, a globular cluster typically fits entirely within

the beam of a radio telescope. This is convenient, as it is necessary to point a tele-

scope at a single cluster for several hours in order to get sufficient signal-to-noise

from such distant sources. Here I give a brief overview of some of the most recent

searches and their discoveries.

In 2001 and 2002, Hessels et al. (2007) surveyed the 22 globular clusters ob-

servable with Arecibo and within a distance of 70 kpc from the Sun. They took

data using the Wideband Arecibo Pulsar Processor (WAPP) backend in the L-band

frequency range, generally with a sampling time of 64 µs. 11 new MSPs were

found in M3, M5, M13, M71, and NGC 6749, all but one of which are in binary

systems.

Nearly half of the pulsars currently known in globular clusters have been found

since 2005 with the GBT. Many of these are in the cluster Terzan 5, with 21 MSP

discoveries reported by Ransom et al. (2005), and the discovery of the fastest-

spinning pulsar yet known, PSR J1748−2446ad, with a spin period of only 1.40 ms

(Hessels et al., 2006). These were found in data taken with the Pulsar Spigot back-

end (Kaplan et al., 2005). This system acquired data with 3-level sampling. The

data were then correlated and accumulated and each cumulative sample was saved

with 16-bit precision with a time resolution of 81.92 µs. To date, 34 pulsars have

been found in Terzan 5 (e.g., Lynch et al., 2013), and 18 of these are in binary

systems, 7 of which have high eccentricities.

Bégin (2006) and collaborators searched for pulsars in the globular clusters

M28, NGC 6440 and NGC 6441, and one observation each in NGC 6522 and

NGC 6624, using data taken on the GBT, again mostly with the Spigot backend.
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23 new MSPs were discovered in these searches: 11 in M28 (7 in binaries, 2 with

high eccentricities), 5 in NGC 6440 (3 in binaries, 1 with high eccentricity), 3 in

NGC 6441 (1 in a binary), 2 in NGC 6522, and 3 in NGC 6624. The eccentric bina-

ries that were found have periods from 8–30 days, while many of the non-eccentric

binaries have periods less than 1 day. The eight new pulsars in NGC 6440 and

NGC 6441 were followed up in Freire et al. (2008), those in NGC 6624 are dis-

cussed in Lynch et al. (2012), those in M28 will be reported in Bégin et al (in prep.),

and the best information currently available for the new pulsars in NGC 6522 is in

the online catalogue of globular-cluster pulsars referred to in Section 1.3.

All of the above surveys used the PRESTO2 software package to reduce and

search the telescope data, using a method known as acceleration searching. This

allows the detection of a periodic signal whose origin is accelerating due to or-

bital motion, and will be described in more detail in Chapter 2. Without such a

technique, many of these pulsars’ fast orbits would keep them from being detected.

1.6 Investigating search biases
A major challenge of these surveys is in characterizing our sensitivity to various

configurations of binary systems. In short, pulsars are detected as periodic signals

in time-series data, and the varying Doppler shift caused by a pulsar’s orbital mo-

tion dilutes the signal’s power across a range of frequencies so that it is not strongly

peaked at the pulsar’s rotation frequency. This effect gets worse as the fraction of

the pulsar’s orbit contained in the data becomes larger, and so it’s a problem that

particularly affects our ability to find short-period binaries.

Various attempts have been made to characterize our sensitivity to pulsars in

binary systems (e.g., Johnston & Kulkarni, 1991; Jouteux et al., 2002), all taking

an analytical approach. Until very recently (Bagchi, Lorimer & Wolfe, 2013), all

of these assumed circular orbits in order to make the problem tractable. They have

also needed to come up with a metric by which to judge whether or not a system is

“detected.”

I take an empirical “brute force” approach to this problem; I have written code

to generate large quantities of simulated survey data based on the GBT Spigot

2http://www.cv.nrao.edu/∼sransom/presto/
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searches, and I run this data through standard search algorithms. Upon determining

which systems are found and which are not, the results can be histogrammed to

see which parameters or combinations of parameters lead to a significant drop in

pulsar-recovery.

In Chapter 2, I briefly discuss pulsar-observing. I then explain the acceleration

search method and the software package PRESTO, which implements it. At the end

of the chapter, I discuss previous efforts to characterize our sensitivity to pulsars

in binary systems, including a brief explanation of their methods and their short-

comings. In Chapter 3, I describe the software I wrote to simulate large quantities

of time series data and how this was run. In Chapter 4, I show the results obtained

with this software and discuss them in the context of previous results as well as the-

oretical ideas concerning cluster pulsars. I end with a brief discussion of potential

future directions for this work in Chapter 5.
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Chapter 2

Background

2.1 Pulsar observations

2.1.1 Pulse profiles and TOAs

When one observes a known pulsar, data are acquired at a telescope for some du-

ration, and the signal is dedispersed and folded at the pulsar’s rotation period. This

means cutting the time series up into segments that each contain one rotation of

the neutron star and stacking these to obtain a high signal-to-noise pulse profile:

an “image” of one pass of the beam across our line of sight. While individual

pulses vary dramatically in profile shape (in cases where they are bright enough

to be seen above the noise level), a pulsar’s average profile is very steady in most

cases; clearly there are short-timescale variations that cancel out when the signal is

averaged. Thus, a pulsar’s “standard profile” may be constructed by stacking many

pulses to reduce the noise to a low level.

A well-constructed standard profile can then be matched to future observations

that have been folded in order to measure the precise time at which the pulsar

passed through a particular point in its rotation—the peak of its pulse profile, for

instance. This surprisingly powerful piece of data is known as a time of arrival

(TOA), and I will discuss its application shortly.
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2.1.2 Dispersion measure

The vast space between stars is populated by free electrons that act as a dispersing

medium. This is the ionized component of the interstellar medium (ISM) and its

effect is a frequency-dependent delay in the TOAs of the pulses as seen at Earth.

Since any observation has some finite bandwidth, it is always necessary to correct

for this dispersion, otherwise the broad-band profiles are smeared out. The con-

ceptually simple way of doing this is to split the full band into narrow subbands,

each of which has a relatively negligible level of dispersion smearing. These bands

can then be rotated into alignment before being summed to obtain the full signal.

This is known as incoherent dedispersion. A more sophisticated method, coherent

dedispersion (Hankins & Rickett, 1975), removes dispersion effects completely

by convolving the signal (whose amplitude and phase are both recorded) with the

inverse of the ISM transfer function.

The amount by which the signal needs to be corrected can be characterized by a

single number, the dispersion measure (DM). The DM is a measure of the column

density of electrons along the line of sight to the pulsar. This turns out to be a

useful property: using a model of the electron distribution in the Galaxy (Cordes

& Lazio, 2002), a pulsar’s DM can be used to estimate its distance. This is not

extremely accurate in practice, but it is often the only distance estimate available.

Conversely, if we have independent measurements of the distances to a number

of pulsars, their DM values can be used to help construct a model of the Galactic

electron distribution.

2.1.3 Pulsar timing

While this work does not use the technique of pulsar timing itself, a brief discussion

on the subject is warranted since the technique will be mentioned and pulsar-timing

software is used for some important calculations.

Although pulsar timing involves very complicated many-parameter models, the

principles behind it are quite simple. A pulsar spins (and spins down) with pre-

dictable regularity, and yet there are apparent variations in its spin-rate as seen by

an Earthbound observer. There are many distinct sources for these variations both

local and distant, mostly due to the Doppler effect, and we see a superposition of
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all of them. The goal of pulsar timing, then, is to account for all of these variations

in a model whose parameters (when fit to data) contain a wealth of information

about the behaviour of the observed system.

The data that are needed for this are pulse TOAs. These are precise times at

which the pulsar is known to be at some chosen fiducial point in its rotation, for

instance the peak of the pulse profile, and are obtained by taking several minutes

of data and folding to get a high signal-to-noise pulse profile. There is no need

(nor is it possible) to have such a measurement for every single rotation; we just

need to “check in” occasionally to see if the rotation phase is where the model

predicts that it should be, and to make minor adjustments if necessary. As long

as the time between two TOAs is short enough that the current model is wrong

by only a small fraction of the rotation period, phase connection is maintained

and we can be confident that every rotation that took place between TOAs has been

correctly accounted for. If simply adjusting parameters cannot account for the data,

additional parameters may be needed. Pulsar timing becomes a game of looking

for patterns in fit residuals and recognizing which parameters need to be added to

remove those patterns.

Distant sources of pulse-period variations include a periodically varying Doppler

effect from motion within a binary system and delays due to the signal traversing

strong gravitational fields, while local causes come from the Earth’s rotation and its

motion within the Solar System, which need to be corrected using accurate Solar

System ephemerides and a good model of the Earth’s rotation.

A commonly-used software package for pulsar timing is TEMPO1 (and its suc-

cessor, TEMPO22). It takes TOAs and parameter estimates as inputs and performs

a fit using those parameters. TEMPO also has a ‘prediction mode’ that uses a set

of parameters (including binary system elements) to predict the observed spin fre-

quency and the phase at a particular point in time and at a particular telescope or

the Solar System barycentre. This is done using a polynomial expansion, and the

output is a set of polynomial coefficients, or polycos. This is the TEMPO function

that is used as part of the data-simulation routine in this work.

1http://tempo.sourceforge.net
2http://tempo2.sourceforge.net
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2.2 PRESTO and acceleration searching
PRESTO is a software package designed primarily to detect pulsar signals in time

series data. It performs many functions, both closely and peripherally related to this

goal, including detecting and removing radio-frequency interference (RFI); dedis-

persing and barycentring data; acceleration, single-pulse, and sideband pulsar-

searching; pulsar candidate sifting and folding; and, through various utilities, visu-

alizing, manipulating, and analyzing data. Ransom (2001) provides an overview of

PRESTO, while Ransom, Eikenberry & Middleditch (2002) describe the accelera-

tion search in particular, which is the primary method employed in globular cluster

pulsar surveys with the GBT, and is therefore the method that is tested in this work.

A typical pulsar search using PRESTO follows a series of steps. Raw telescope

data contain information over time but also over frequency, the range of the lat-

ter depending on the observing bandwidth. Ideally any signals present above the

noise level are cosmic in origin, but of course there is always radio-frequency in-

terference (RFI). The PRESTO script rfifind masks out the most obvious RFI,

which it identifies as a signal that is not persistent either in time or across the fre-

quency band—either of these indicates that the signal does not come from a pulsar.

PRESTO currently handles raw data from various machines at the GBT, Arecibo,

Parkes, and Jodrell Bank, as well as the pulsar standard SIGPROC format and sim-

ple floating-point time series.

Before searching for pulsar signals, the data are barycentred—the arrival times

of the data corrected to the Solar System barycentre—and the frequency dimension

is collapsed by de-dispersing over a range of DM values one wishes to search,

generating a one-dimensional time series for each step in DM. It is beneficial to

first create a topocentric (non-barycentred) time series at DM = 0, however, as

another check for RFI. Even if a signal is found in this time series that appears

very pulsar-like, it must be terrestrial in origin or else its signal would be dispersed

and undetectable in a DM = 0 time series.

Once a set of de-dispersed, barycentred time series is made, a Fourier transform

is carried out on each of them. One of the strengths of PRESTO is its ability to

efficiently calculate the fast Fourier transform (FFT) of very long high-resolution

time series that may be much too large to work with in their entirety in computer
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memory.

Having thus prepared the data, the accelsearch script carries out the actual

search, known as an acceleration search. Because a pulsar signal is typically a re-

peated narrow spike, much of the power in Fourier space is in harmonics rather than

the fundamental frequency. Harmonic-summing is performed in order to recover

this power, and the user can specify whether to sum 1, 2, 4, 8, or 16 harmonics. A

signal from a source that is accelerated due to motion in a binary system will have

harmonics that drift across Fourier bins (linearly if the acceleration is constant),

with higher harmonics drifting proportionally further than lower harmonics. For a

particular search, one specifies the maximum number of Fourier bins the highest

harmonic is allowed to drift; if this is set to zero, a standard Fourier-domain search

is conducted rather than an acceleration search. When this value is set higher, pul-

sars undergoing stronger linear accelerations may be detected. However, the time it

takes to perform a search increases linearly with the number of harmonics summed

and with the number of bins we allow the highest harmonic to drift.

Once the acceleration search is complete, we are left with a list of pulsar candi-

dates and their properties. Additional functions in PRESTO are used to sift through

these and to match candidates at neighbouring DM values that may be the same

source.

2.3 Detectability studies
It has been evident for many years that we are not equally sensitive to all regions

of parameter space when it comes to searching for pulsars in binary systems, but

characterizing our sensitivity has presented an ongoing challenge. Here I briefly

cover a few significant efforts that have been made.

An early approach to the problem can be found in Johnston & Kulkarni (1991).

Motivated by early globular cluster searches and the expectation for many cluster

pulsars to be in short-period binary systems, they approach the problem analyti-

cally, defining a stationary pulsed signal as a sum of Fourier components whose

power spectrum is straightforward to calculate. They consider a time-varying dis-

tance to the source that can be expanded in a Taylor series, providing a velocity

term, an acceleration term, and higher derivatives. They show that the acceleration
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and higher-order terms produce time-dependent phase errors that cause a reduction

in the amplitude of the signal’s harmonics in the power spectrum. The extent to

which these amplitudes are reduced is taken as a measure of how difficult these

systems are to detect.

To quantify the reduction in detectability, they define the function

γ(α1,α2,T ) =
1
T

∣∣∣∣∫ T

0
exp
[

imωp

c

×
(

v0t +
a0t2

2!
+

j0t3

3!
+ . . .−α1t2−α2t

)]
dt
∣∣∣∣ , (2.1)

where T is the observation length, m is the harmonic number of the power spectrum

peak under consideration, and ωp is the angular frequency of the pulsar. c and i

are the speed of light and
√
−1 respectively, and v0, a0, and j0 are the line-of-sight

velocity, acceleration, and jerk (first derivative of acceleration) respectively at time

t = 0. γ takes values between 0 and 1.

γ2 is the ratio of the peak height of the mth harmonic in the power spectrum

when the signal is accelerated compared to when it has a constant velocity. α1 and

α2 are free parameters. The authors test the effectiveness of a standard Fourier

analysis (no acceleration search) by setting α1 = 0, and α2 is chosen to maximize

γ . α2 can be thought of as a mean velocity over the integration time T . For testing

the effectiveness of an acceleration search, both α1 and α2 are varied to maximize

γ . The authors wrote code that maximizes γ for circular orbits with chosen bi-

nary parameters such as inclination angle, orbital period, and companion mass, as

well as integration time T , and they run this over a grid of orbital and spin period

values. They take γ = 0.5 as their detection threshold, acknowledging that this is

arbitrary, as a strong signal reduced to a fraction of its strength may still be much

easier to detect than an undiminished weak signal. Regardless, they are able to

demonstrate that a pulsar signal is reduced most severely for fast-spinning pulsars

in tight binaries.

Jouteux et al. (2002) define their own set of γ functions for various search meth-

ods, including the standard Fourier analysis and the acceleration search. These

functions carry a meaning similar to the γ of Equation 2.1, in that they repre-

sent the loss of signal strength due to source acceleration, with a larger value of
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γ (closer to 1 than 0) implying a better-recovered signal. Their main comparison

is between the acceleration search method and their proposed ‘partial coherence

recovery technique’ (PCRT). A method implemented in PRESTO known as a ‘side-

band search’ is based on the same principles, which involve taking advantage of

the binary periodicity. So, unlike the acceleration search, which breaks down if the

time series contains whole orbits or even an appreciable fraction of an orbit, the

PCRT method works best if the time series covers several orbits.

While interesting insights are made in both of these studies, there are notable

limitations owing both to computing power and the analytical expressions used.

Neither can test for the effect of pulse amplitude compared to the noise level of the

time series, and both are restricted to circular orbits for the purpose of tractabil-

ity. In Johnston & Kulkarni (1991), the amount of additional calculation required

to handle eccentric orbits would have been unfeasible with the computing power

available. Jouteux et al. (2002) describe the Fourier response of their signal using

simple Bessel functions, which would not be possible had they used non-circular

orbits. Recently, the non-circular-orbit problem was addressed by Bagchi, Lorimer

& Wolfe (2013), who extend the methods of Johnston & Kulkarni (1991) to include

orbital eccentricities.

Bagchi, Lorimer & Wolfe (2013) define γ1m and γ2m, identical to Equation 2.1

with and without α1 = 0, respectively, and γ3m, which includes an additional t3

term, testing the idea of a ‘jerk search’, which corrects not just a linear accelera-

tion of the source, but also the first derivative of that acceleration (this is rarely used

in practice as it greatly increases the processing time). The subscript m is simply a

notational clarification, denoting the harmonic under examination. The extension

to eccentric systems significantly increases the calculation required to determine

the line-of-sight terms in these expressions; in particular, Kepler’s equation must

be solved iteratively to find the true anomaly at each point in time. Furthermore, a

weighted-average γnm is calculated over the integration time in each case, account-

ing for the varying amounts of time spent at different points in an eccentric orbit.

This extension to eccentric systems means that more parameters need to be set,

namely the eccentricity and argument of periastron, though tools are provided by

the authors to test the signal degradation for any given set of parameters.

The results of the new study are consistent with those of Johnston & Kulkarni
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(1991), but the inclusion of arbitrary eccentricties makes them more robust. In each

case, the importance of a higher-order search, such as an acceleration search com-

pared to a straightforward Fourier analysis, is greater when searching for faster-

spinning pulsars.

I have approached the problem of characterizing our sensitivity over the param-

eter space empirically, rather than analytically. In keeping with the recent survey

practices, particularly those of the GBT, I use PRESTO’s accelsearch function

to search large quantities of artificial survey data made up of noise and randomly-

generated binary-system pulsar signals. While past studies use γ2 as their best

analytical stand-in for the fraction of pulsars recovered, here I am able to use the

recovered fraction directly, and the amplitude of individual pulses is a variable pa-

rameter. In the next chapter, I discuss my methods for generating the artificial data

and searching it with PRESTO.
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Chapter 3

Methods

In this chapter I outline the basic ingredients of my simulated survey data, how

they are generated, and how they are searched using the PRESTO software.

3.1 Parameters of the artificial pulsars
I generate pulsars in binary systems by drawing parameters from a set of chosen

distributions. These distributions are listed in Table 3.1 with those that are non-

uniform illustrated in Figure 3.1. The inclination angle i is actually drawn from a

distribution that is uniform in cos i, as this is the actual distribution of orbits that are

oriented completely at random. For the companion mass, most of the distribution is

uniform between 0.05 and 3 M�, since pulsar companions tend to be white dwarfs

Table 3.1: The distributions from which pulsar parameters are selected. Those that
are not uniform are illustrated and explained in Figure 3.1.

Parameter Range Uniform?
Period (P) 1–20 ms yes
Eccentricity (e) 0–1 yes
Binary period (Pb) 10–1440 minutes yes
Longitude of periastron (ω) 0–360 degrees yes
Inclination angle (i) 0–90 degrees no
Companion mass (m2) 0.5–10 M� no
Pulse amplitude 0.01–0.1 no
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Figure 3.1: Distributions for three of the parameters randomly chosen when gener-
ating pulsars. These are the only three that are not uniformly distributed. The
inclination angle i is actually uniform in cos i, as is the case for any completely
random distribution of orbit orientations. The companion mass is split between
two uniform distributions with 80% between 0.05 and 3 M� and 20% between 3
and 10 M�. The pulse amplitude distribution decreases from 0.01 to 0.1 because
the detection of lower-amplitude pulsars is more interesting.
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or neutron stars, but 20% of the distribution is uniform between 3 and 10 M�,

for companions that are non-degenerate stars or black holes. This distribution was

simply chosen out of a desire for better statistics in the lower-mass range.

The orbital periods are distributed between 10 minutes and 1 day. The shortest

pulsar orbital period currently known is that of PSR J1311−3430, at 94 minutes

(Pletsch et al., 2012). Because short-period compact objects spiral inwards due

to the emission of gravitational radiation, neutron stars should exist in extremely

short-period binaries, although it is not clear to what point they would continue to

behave as pulsars. A lower limit of 10 minutes is taken as plausible while suffi-

ciently below the current observed limit.

The fastest-spinning pulsar is PSR J1748−2446ad with a spin period of 1.40 ms

(Hessels et al., 2006), so 1 ms is taken as a suitable lower limit for the spin period

distribution. The upper limit of 20 ms is a period sometimes taken as that be-

low which pulsars may be considered millisecond pulsars (though recycled pulsars

slower than this are often still referred to as MSPs).

Once the parameters for a particular pulsar are selected, they are saved in a

TEMPO-style parameter file, or parfile. Use of these parfiles allows me to take

advantage of TEMPO’s prediction mode for performing orbital calculations.

3.2 The pulse profile
A simulated pulse profile is generated as a closely-spaced superposition of 1 to

5 narrow Gaussian curves, in order to mimic the structure observed in real pulse

profiles; the peaks are scaled so that the maximum point of the superposition is at

unit height. The profile is then a function with values between 0 (the baseline) and

1 (the peak) whose height can be returned as a function of phase, which is also a

value between 0 and 1. Each profile is associated with a TEMPO parfile, containing

the pulsar’s rotational and binary parameters.

The placement of the Gaussian curves proceeds as follows. An overall ‘width

scale’ W is chosen from a truncated normal distribution with mean 1.0 and standard

deviation 0.2, constrained between 0.1 and 1.9. The width (Gaussian σ ) of each

curve is chosen from a normal distribution with mean 0.01W and standard devia-

tion 0.001W . The position in phase of a particular curve is chosen from a normal
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Figure 3.2: A set of twelve randomly-generated pulse profiles constructed as de-
scribed in the text. Profiles such as these are made for every pulsar generated.
The horizontal axis in each frame is rotation phase and runs from 0 to 1. The
vertical axis is dimensionless pulse amplitude, with the baseline at 0 and the
peak of the pulse at 1.

distribution with mean 0.5 and standard deviation 0.02W . The first curve placed

is given a height of 1. The height of each subsequent curve is set by multiplying

the previously placed curve’s height by the square of a uniform random number

between 0 and 1. Once all of the Gaussian curves are set, they are scaled so that

the maximum point of their superposition (i.e., the pulse profile) has a height of 1.

All of this simply comes from tuning numbers to obtain what look to be reasonably

consistent and realistic pulse profiles with some random variation. A set of sample

profiles is shown in Figure 3.2.
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3.3 The time series
Artificial time series are created with a time resolution of 81.92 µs, the same as

the resolution in the GBT globular cluster surveys. They are 1000 s (12.2 million

data points) long. Typically, in real surveys, long (several-hour) globular cluster

observations are made, but the time series are split up into overlapping segments

of about this length in order to find pulsars in tight binaries. By generating these

shorter time series directly, I am able to spend my computation time on a much

larger set of artificial pulsars than if I generated long time series and split them

up. There is certainly an orbital-phase dependence to the difficulty of detecting

a pulsar in an eccentric orbit, as will be seen in Chapter 4, and the reader should

bear in mind that in a real survey with long observations, a pulsar in a short orbit

that is highly accelerated along the line of sight in one ∼1000 s time series may be

accelerated much less in another from the same long observation. To ensure that

orbital phase is realistically sampled, at the start of a time series each pulsar is at

a uniformly random mean anomaly between 0 and 360◦. This means that a pulsar

in an eccentric orbit is more likely to be near apastron than periastron, due to the

relative durations spent at each point in the orbit.

The effects of DM are ignored in these time series, or to put it another way,

all of the pulsars are assumed to have the same single DM to which the telescope

data would have been de-dispersed. This is not far from the real situation when

observing globular clusters, since all of the pulsars in the beam are at almost the

same distance from us, and therefore have almost the same DM. Thus, I can add

noiseless pulsar signals directly to an array of white noise.

If I wished to construct a noisy time series containing a set of signals belong-

ing to pulsars that are inertial relative to the reference frame (the Solar System

barycentre), I could simply add the appropriately-scaled repeated pulse profile to a

time series of noise. At each time step, the code would check precisely how much

time had passed, find the rotational phase of the pulsar at that moment (trivial for

an inertial pulsar), and get the value of the pulse signal at that phase. I might want

to take a typical pulsar spin-down into account, but over a single observation its

effect on the spin period would be negligible.

However, matters become much more complicated when the pulsar orbits an-
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other body. The apparent spin period is modulated about the intrinsic period ac-

cording to a varying Doppler shift, which can be determined by the pulsar’s veloc-

ity along the line of sight to the Solar System at any given time. The tricky step

is calculating the instantaneous line-of-sight velocity, whose periodic behaviour

depends upon the orbit’s shape and orientation, and at a far more precise level,

on general relativistic effects too, which cause the orbit to deviate from a simple

Keplerian ellipse. All of these factors can be accounted for by using TEMPO’s

prediction mode.

The particular binary system model that is used is the DD (Damour & Deruelle,

1986) theory-independent relativistic model, although I calculate and include all of

the post-Keplerian parameters with the appropriate general relativistic equations,

effectively making it equivalent to the DDGR variation of the DD model (Taylor

& Weisberg, 1989), in which general relativity is assumed to be correct. I did

this because of an error (subsequently fixed) in the DDGR code that sometimes

caused the program to crash when making predictions for systems with very high

eccentricities.

Given a set of parameters for a pulsar system (including a reference epoch

for the parameters), a start time for the range of validity of the expansion, and the

length of the range of validity, a set of polynomial coefficients, or polycos, is output

that can be used to calculate the rotation phase φ as

φ = φre f +60 f0∆T + c1 + c2∆T + c3∆T 2 + . . . (3.1)

at a particular time T , where ∆T = (T − Tmid)× 1440. Here f0 (the reference

rotation frequency) is in units of hertz and T and Tmid (the midpoint of the chosen

range of validity) are in days, so the factors of 60 and 1440 scale everything to

minutes. This is an arbitrary choice of units, of course, as φ itself is dimensionless.

The coefficients cn are the polycos themselves and are determined by the same

kind of many-parameter model TEMPO uses in pulsar timing—in this case, the

parameters are simply input, not fit.

I use 12 polycos per segment, where a segment is the range of validity of the

polycos, which is taken to be the whole time series if the pulsar has a long enough

orbit, but which I never allow to be greater than one-fifth the length of the orbit.
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When necessary, multiple sets of polycos are generated throughout a time series.

To keep memory-usage at a manageable level, time series are made in chunks of

size 222 (4.2 million) points, each chunk appended to a file on disk before generat-

ing the next.

Pulsar signals are superposed onto white noise, with the pulse amplitude de-

fined relative to the noise level. This amplitude is proportional to the signal-to-

noise ratio (SNR) that appears in the pulsar radiometer equation (Dewey et al.,

1985; Hessels et al., 2007),

Smin =
(SNR)βTsys

G
√

n∆νtobs

(
w

P0−w

)1/2

, (3.2)

which is used to estimate the flux density detection threshold for a survey. Typically

the SNR here is the cutoff below which a candidate is not considered. The β term

is a correction factor to account for the signal digitization, and is taken to be 1.2

for the 3-level sampling of the Arecibo and GBT surveys (Hessels et al., 2007).

Tsys is the system temperature and G is the telescope gain which converts between

temperature and flux density. These are 20 K and 2.0 K/Jy respectively for the

GBT survey, and 40 K and 10.5 K/Jy for Arecibo. The number of orthogonal

polarizations summed is n, which is 2 for both surveys. The observing bandwidth

∆ν is 600 MHz for the GBT (Ransom et al., 2005) and 100 MHz for Arecibo,

and the observation length is tobs. The pulse period and pulse width are P0 and w.

Equation 3.2 produces a value with dimensions of flux density.

To convert the amplitudes of my simulated pulses into flux density, I begin with

Equation 7.1 from Lorimer & Kramer (2005),

SNR =
1

σp
√weq

nbins

∑
i=1

(pi− p̄), (3.3)

where σp is the noise level in the folded pulse profile, and thus σp = σr
√

tobs/P0,

where σr is the noise level in the raw time series. The equivalent width weq is

the width of a top hat function with the same integrated area and peak height as

the pulse profile, in bins. Thus, if wp = w/P0 is the width as a fraction of the

full rotation period (wp = 0.03 is the average value in my simulation), weq = wp×
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P0/tsamp, where tsamp is the sampling rate (81.92 µs). The last term is simply a

sum of the amplitudes of the bins across the profile. If we imagine again the top

hat function with the pulse’s peak height h and width wp, we can replace this term

with wpP0
tsamp

h. Combining all of these we get

SNR =

√
tobswp

tsamp

h
σr

, (3.4)

noticing that the last term h/σr is equivalent to the peak pulse amplitude as a frac-

tion of the time series noise level, as I have defined my amplitudes.

Pulse-to-pulse fluctuations are not modeled; individual pulses are equivalent in

shape to the average summed pulse profile. The rotation phase at each time step is

efficiently calculated using the Numerical Python1 polynomial evaluation. ∆T in

Equation 3.1 is input as a precise array of times, and φ is returned as an array of

phases, which is then used as input to obtain an array of signal strengths between

0 and 1. This array is scaled as needed and added to the time series array, and this

process is repeated for each pulsar. The final array is saved in the PRESTO time

series format (a simple array of 4-byte numbers), and a corresponding time series

information file is generated, containing the start time of the data, the number of

bins, the time resolution, and a flag indicating that the data are barycentred.

3.4 Creating and searching a large quantity of data
I generate these data on a parallel-processing system, using 36 CPUs: there are 3

nodes that each consist of 12 CPUs. For every run of the program, each CPU gen-

erates 10 time series 1000 s in length, with each time series randomly containing

up to 20 pulsars. A time series has a corresponding directory containing the TEMPO

parfiles for all of its pulsars. These time series are then searched using PRESTO’s

accelsearch function. As explained in Section 2.2, the number of harmonics

to be summed and the number of Fourier bins the highest harmonic can drift must

both be input. Here the first 8 harmonics are summed and the maximum drift is set

at 300 bins. Frequencies between 1 and 10,000 Hz are searched.

1http://www.numpym.org/
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Figure 3.3: An example of a PRESTO candidate (upper plots and text) and the profile
of the artificial pulsar that is detected here (lower plot). The uppermost PRESTO
plot is the summed profile and the plot below that shows the persistence of
the signal over time, both plotted over two rotations in phase. The plot to the
right is the significance of the signal in period-vs-period-derivative space. The
amplitude of this pulsar is 8.5% of the noise level, which is quite high in the
amplitude distribution.
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The product of an acceleration search is a list of pulsar candidates. This list is

parsed and used to fold the time series using the frequency and frequency derivative

of each candidate. We are thus left with a set of folded PRESTO candidate files, or

pfd files, which PRESTO can display graphically. The graphical candidate for one

of the artificial pulsars is shown in Figure 3.3 along with the pulsar’s generated

profile. Slight differences between the input and candidate profiles arise from the

noise and the coarser binning of the candidate. While not indicated in the figure,

the amplitude of this pulsar is 8.5% the noise level, which is quite high in the

distribution (Table 3.1), so that a pulse every ∼17 ms in a 1000 s time series leads

to a folded signal ∼20× the height of the noise in the upper-left plot. A similar

pulsar with an amplitude of 1% the noise level (the low end of the distribution)

would have a folded profile at 2–3× the noise level.

3.5 Matching candidates
At this stage, I have many time series, for each time series I have a set of parfiles

containing the information about the pulsars contained within, and I have a set of

candidates found by PRESTO. The goal is to figure out which of the pulsars were

actually found—i.e., to determine which of the pulsars are among the candidates.

In a real survey, a human expert would look through the candidate plots and

mark those that look like pulsars for further investigation. It is possible in this

scenario for a candidate that represents a real pulsar to be disregarded as random

noise or RFI. In this work, I consider a pulsar that has been recognized by PRESTO

as a candidate as ‘detected’ and ignore the possibility of human failure beyond

this point, since it would be very difficult to properly account for this in any kind

of realistic way. The enormous number of candidates produced also prohibits my

looking at each one individually.

There are certain to be candidates that, while present due to an injected pulsar

signal, show up not at the actual pulse period but rather at some harmonic ratio of

the period. In an effort to reduce false positives, I do not attempt to identify these;

instead, I assume that these pulsars will also show up as candidates at their true

periods (modulated by binary motion).

The matching process proceeds as follows for each time series.
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• A list of the parfiles associated with the time series is created. For each entry,

polycos are generated to determine the apparent spin period at the start of the

time series, which in general is not the same as the spin period listed in the

parfile because of the pulsar’s line-of-sight velocity in a binary system. Each

entry contains the pulsar label and this apparent period.

• A list of the candidates associated with the time series is created. Each entry

contains the candidate label and the spin period of the candidate.

• For each candidate, a list of pulsars for which |1− P′P
PC
| < 10−5 is created,

where P′P and PC are the apparent pulsar period and the candidate period,

respectively. This is usually either an empty list or a list containing 1 item.

• Taking the best match from each candidate’s list (the match with the smallest

value of |1− P′P
PC
|), make a list of the pulsars that were detected.

This is done for each time series, and a database of all of the pulsars is created,

along with many of the parameters contained in their parfiles and whether or not

they were detected. In total, I generated 1,782,261 pulsars, of which 1,039,258

were detected. I will explain these results in detail in Chapter 4.
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Chapter 4

Results and Discussion

4.1 Detections across parameter space
Of 1.8 million pulsars generated, about 60% were detected in the acceleration

searches described in Chapter 3. These results are shown as histograms of the frac-

tion of pulsars recovered, displaying the detection distribution over one or two pa-

rameters while marginalizing over the remaining parameters. The colour-mapping

in the 2-dimensional histograms is chosen so that regions with more than 50% of

pulsars detected are in blue and regions with less than 50% detected are in red. For

ease of communication, I will often refer to blue and red regions as “detected” and

“undetected” respectively, even though the colours represent a continuous range

between 0 and 1.

One of the motivating goals of this simulation is to observe the effects of non-

zero eccentricities on the detectability of pulsars in short-period binary systems.

As seen in Figure 4.1, the detected pulsars actually push down to shorter orbital

periods at higher eccentricities. This is because, while an eccentric system is very

highly accelerated near periastron when compared to the acceleration of a non-

eccentric system with the same orbital period, it moves through this portion of its

orbit very quickly and spends most of its time undergoing relatively little acceler-

ation. This phase-dependence of eccentric orbits is evident in Figure 4.2, which

shows the fraction of pulsars detected as a function of mean anomaly and eccen-

tricity. The detectability of pulsars at periastron (mean anomaly 0) begins to drop
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Figure 4.1: Pulsar detections across eccentricity and orbital period. Because of the
relatively long time spent on the slow, distant portion of its orbit, a pulsar in a
high-eccentricity system can be found at somewhat shorter orbital periods than
one in a circular orbit. In this and all subsequent 2-dimensional histograms, the
red-blue colour gradient represents the fraction of pulsars recovered.

Figure 4.2: Orbital phase dependence of detectability. Pulsars with higher-
eccentricity orbits are not detected at periastron (mean anomaly 0) due to very
high accelerations there but are easier to detect at other mean anomalies than
less eccentric systems.
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Figure 4.3: Another look at the orbital phase dependence. Each of the four panels
integrates one quarter of the total eccentricity range in order to show a pro-
gression from low to high eccentricities. While pulsars near periastron (mean
anomaly 0) become increasingly difficult to detect at higher eccentricities, those
at other orbital phases are detected at ever-shorter orbital periods. An eccentric
binary system spends very little time at periastron, so this explains the slight
improvement in detections seen at high eccentricities in Figure 4.1.

noticeably at e ≈ 0.3, reaching almost zero by e ≈ 0.7. To understand the high-

eccentricity behaviour in Figure 4.1, we can look at the three parameters (e, Pb,

and mean anomaly) of Figures 4.1 and 4.2 simultaneously.

Figure 4.3 plots detections as a function of mean anomaly and orbital period

integrated over four eccentricity ranges. The phase-eccentricity relationship seen in

Figure 4.2 is apparent as the increasing spike of the undetected region at periastron.
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Figure 4.4: Pulsar detections as a function of GBT survey flux density. The grey
region surrounding the black line represents the statistical uncertainty in the
histogram due to the sample size. The sample size decreases linearly towards
higher amplitudes.

However, as the central spike increases, the wings of this region are pushed down to

lower orbital periods, meaning that shorter-period binaries are detected there. This

improvement over most of the orbit leads to the overall increase in the detectability

of short-orbit pulsars with increasing eccentricity.

The amplitude of the pulses are scaled to units of flux density using Equations

3.2 and 3.4 with the GBT survey parameters. This is plotted in Figure 4.4, where

it is seen that the lowest amplitude pulses are not found at all; there is a steep

increase in detectability at low flux densities, but by ∼0.01 mJy, brightness makes

little difference. As discussed in Section 3.1, brighter pulsars are generated less

frequently in this simulation, so the high-amplitude region of Figure 4.4 has greater

uncertainty.

When eccentricity is introduced, a symmetry is broken: the orbit has a well-

defined periastron, and we may ask how the position of periastron affects de-

tectability. A histogram across longitude of periastron ω and eccentricity e is
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Figure 4.5: Detections across longitude of periastron ω and eccentricity e. To in-
crease the contrast, this is only for orbital periods < 0.2 days (above which the
effect of ω is weaker), and the greyscale is mapped only onto the range of values
present in the plot. Gaussian smoothing is also applied, with σ of 3 bins. The
change in behaviour at e≈ 0.7 is discussed in the text.

shown in Figure 4.5. The effect of ω is quite small, but it is more noticeable at

short orbital periods, so I only include pulsars with Pb < 0.2 days. To increase the

contrast, I also use a greyscale colour map, only spanning the values present in

the histogram, and apply Gaussian smoothing to reduce noise. If we look back at

Figure 4.1, it is no surprise that pulsars at the bottom of the histogram in Figure

4.5 are poorly detected in this Pb range. The interesting feature of Figure 4.5 is the

change in the pattern of ω-dependence at higher eccentricities.

Up to e ≈ 0.7, pulsars with ω at 90◦ or 270◦ are easiest to detect—these are

orbits whose major axis is oriented along the line of sight. Above this eccentricity,

however, the easiest detections shift symmetrically to values above and below 90◦

and 270◦ until, at the highest eccentricities, the situation is completely reversed:

pulsars in systems with ω at 90◦ or 270◦ are the hardest to detect, while those with

ω at 0 or 180◦ are easiest. These latter systems have their minor axis oriented

along the line of sight, and at such high eccentricties, the minor axis is very small

relative to the major axis, so that highly eccentric systems with ω at 0 or 180◦ move
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Figure 4.6: Detections across binary mass function and orbital period. The upper-
right region of the plot is beyond the range of the parameters used to generate
these pulsars.

and accelerate almost entirely transverse to the line of sight, resulting in very little

radial Doppler-shifting behaviour. At lower eccentricities, the greatest acceleration

changes, near periastron, are largely along the line of sight.

Detection levels also depend on the mass of the pulsar’s companion and the

inclination angle of the orbit. There is a degeneracy in these parameters’ effects

on the pulsar’s Doppler shift, and so they are often combined into the binary mass

function f (m1,m2) = (m2 sin i)3(m1+m2)
−2, where m1 and m2 are the pulsar mass

and the companion mass, respectively. The pulsar mass m1 is taken to be 1.4 M�
here. A larger mass function (due to a more massive companion or a greater incli-

nation angle) leads to greater difficulty detecting pulsars with short orbital periods,

as seen in Figure 4.6. For a given orbital period, a pulsar with a more massive com-

panion experiences greater acceleration throughout its orbit, and thus the variations

in acceleration with time are more severe. In addition to the acceleration variations,

pulsars with the largest mass functions in this simulation would at times be under-

going line-of-sight accelerations that shift their Fourier signals across more bins

than the 300 allowed for in the acceleration search.
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Figure 4.7: Detections across spin and orbital period. This is a qualitatively simi-
lar plot to those of Johnston & Kulkarni (1991) and Bagchi, Lorimer & Wolfe
(2013), who plot their analytical γ detectability functions against these two pa-
rameters.

4.2 Comparisons with recent analytical work
Here I make some qualitative comparisons with the recent work of Bagchi, Lorimer

& Wolfe (2013).

Plotting detections against spin and orbital period, as in the log-log histogram

of Figure 4.7, we see results similar to those of Bagchi, Lorimer & Wolfe (and

Johnston & Kulkarni 1991) when they assume the use of an acceleration search. In

their plots of the detectability parameter γ across spin and orbital period, detections

are reduced most severely for faster-spinning pulsars in shorter orbits, which is the

behaviour seen here. The poorly-detected region below orbital period 0.1 days is

cut off in Figure 4.7 so that the axes begin at the same values as the spin-orbit γ

plots of these previous works.

In Figure 4.8 I divide this histogram into four eccentricity ranges. As Bagchi,

Lorimer & Wolfe observe, eccentricity has little effect except at high values, where

it results in a larger region of phase space becoming easier to detect. This improve-

ment in the orbital period parameter is also seen in Figure 4.1.
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Figure 4.8: Improvement in detections on the spin-orbit histogram with increasing
eccentricity. The integrated eccentricity ranges are shown at the top of each
panel. The axes and colour scheme are the same as in Figure 4.7. As noted by
Bagchi, Lorimer & Wolfe, e has little effect except at high values.

Bagchi, Lorimer & Wolfe find that increases in inclination angle or companion

mass make a larger portion of phase space difficult to detect, and we see this here

in Figure 4.6 with the binary mass function.

While these observations are made primarily by examining the behaviour of

their γ1m parameter, which assumes no acceleration search, the increase in com-

panion mass can be seen in their paper to worsen the γ2m (acceleration search)

phase space, and observationally, an increase in inclination angle is like an in-

crease in the companion mass. Bagchi, Lorimer & Wolfe do not test how the γ2m

phase space changes with variations in eccentricity. They do note that an increase

(between 0 and 90◦) in the longitude of periastron ω makes a larger portion of the

γ1m phase space difficult to detect with e = 0.5, which is opposite to the behaviour

seen at e = 0.5 in Figure 4.5 in this work, where pulsar detection improves as ω

increases from 0 to 90◦. This is a qualitative difference between a standard Fourier

search and an acceleration search. The former is negatively affected by line-of-

sight acceleration, even if that acceleration is varying quite slowly, while the latter

is, to a large degree, immune to the effects of a slowly-varying acceleration. It is a

rapid change in acceleration, i.e., a large line-of-sight jerk, that negatively affects

acceleration search results.

Using expressions for the line-of-sight acceleration and jerk from Bagchi, Lorimer

& Wolfe (their Equations 26 and 27, respectively), I perform a crude test to demon-

strate this point. Over a grid of e and ω values, I find the mean acceleration and

jerk across the complete orbit (in mean anomaly, so that it is a time average), with

the results shown in Figure 4.9. For each step in e, I divide the acceleration or jerk
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Figure 4.9: Line-of-sight acceleration (left) and jerk (right) averaged over the time of
a complete orbit on a grid of e and ω values. Details on scaling are given in the
text. Whiter values are lower and considered better for detection, via standard
Fourier search in the left plot and via acceleration search in the right plot. Note
the similarity of the righthand plot to Figure 4.5.

by its average value across ω at that step so that the much larger values at high

e do not obscure the behaviour at low e. Thus, both plots in Figure 4.9 show the

relative variations in acceleration or jerk over ω , but not the variations over e. The

greyscale is chosen so that whiter regions have lower values and are thus deemed

easier to detect; the attempted detection is assumed to be via a standard Fourier

search in the left plot, and via an acceleration search in the right plot. While there

is very little variation across the e = 0.5 region of the left plot, the maxima are at

90◦ and 270◦, so this agrees with the increased difficulty of detection at 90◦ seen by

Bagchi, Lorimer & Wolfe The plot on the right is similar in appearance to Figure

4.5, supporting my observations.

4.3 Conclusions
Binary pulsar detectability has long been a well-known problem with a daunting

range of parameters. Past studies have taken an analytical approach to character-

izing our coverage of the expansive phase space, and here I have supplemented

these studies with an empirical approach, one tailored in particular to recent glob-

ular cluster surveys, and covering a broad range of parameters including orbital
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Figure 4.10: Globular cluster pulsars discovered with the Arecibo and Green Bank
telescopes, plotted over my detection levels for comparison.

eccentricity. The results are consistent with those of Johnston & Kulkarni (1991)

and Bagchi, Lorimer & Wolfe (2013), the latter being the first analytical study to

account for orbital eccentricity. Like that study, I find that pulsars in short-period

binary systems are actually easier to detect when they orbit at very high eccentric-

ities.

Comparing my spin-orbital-period detection plot with binary globular cluster

pulsars that have been found in Green Bank and Arecibo telescope surveys (Figure

4.10), it does not appear as though discoveries are pushing down to the orbital-

period detection limits, at least for MSPs in eccentric orbits. While it is difficult

to draw strong conclusions based on the relatively little information here, this may

reflect a lack of very eccentric orbits with orbital periods in this range. For instance,

if the eccentricity is the result of a binary exchange scenario, it is expected that the

semimajor axis of the resulting binary system will scale as the ratio of the mass of
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the neutron star to that of its replaced companion (Heggie, Hut & McMillan, 1996;

Ivanova et al., 2008). Since neutron star companions tend to have masses lower

than the neutron star, this will often lead to an increase in semimajor axis following

the exchange, and thus an increase in orbital period unless the new companion is

much more massive than the old one.

Faucher-Giguère & Loeb (2011) expect that a high-density environment with

exchanges resulting in black-hole-MSP binaries would lead to highly eccentric or-

bits with periods as fast as ∼5 minutes, slightly lower even than the minimum

orbital periods I examine here. However, it is not known how many stellar-mass

black holes are retained in globular clusters, if any.
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Chapter 5

Future Work

The data generated in this simulation take quite a long time to create and search,

even with a 36-CPU system. With sufficient time, the present work could be ex-

panded in several ways. It would be interesting to run the acceleration search with

some variation in both the number of harmonics summed and the maximum drift

in Fourier bins in order to see the particular effects these search parameters have

on the behaviour across various orbital parameters. Even testing a few values of

each could increase the total computing time by a factor of 10 or more. It would

be possible to make improvements in speed elsewhere to partially compensate for

this, such as including more pulsars per time series. It is likely that some improve-

ments in computational efficiency could also be made. Testing multiple values of

time series length and time resolution might also be of interest, but would again be

computationally time-consuming. Such extensions could help guide future surveys

in terms of how they acquire and search their data.

In spite of some limitations, this work represents a first attempt to explore this

problem’s parameter space empirically, It has provided results that are intuitively

sensible, yet difficult to arrive at analytically. While at present this serves primarily

as a description of a phase space that modern surveys have worked within, with

some fairly minor expansions and sufficient computing time, these results could be

used to help direct the course of future surveys.
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Özel F., Psaltis D., Narayan R., Santos Villarreal A., 2012, ApJ, 757, 55 → pages
2

Pacini F., 1968, Nature, 219, 145 → pages 1

Phinney E. S., Kulkarni S. R., 1994, Ann. Rev. Astr. Ap., 32, 591 → pages 4

Pletsch H. J. et al., 2012, Science, 338, 1314 → pages 22

Podsiadlowski P., Dewi J. D. M., Lesaffre P., Miller J. C., Newton W. G., Stone
J. R., 2005, MNRAS, 361, 1243 → pages 2

Portegies Zwart S., van den Heuvel E. P. J., van Leeuwen J., Nelemans G., 2011,
ApJ, 734, 55 → pages 5

Ransom S. M., 2001, PhD thesis, Harvard University → pages 15

Ransom S. M., Eikenberry S. S., Middleditch J., 2002, AJ, 124, 1788 → pages 15

Ransom S. M., Hessels J. W. T., Stairs I. H., Freire P. C. C., Camilo F., Kaspi
V. M., Kaplan D. L., 2005, Science, 307, 892 → pages 9, 26

Richer H. B., Heyl J., Anderson J., Kalirai J. S., Shara M. M., Dotter A., Fahlman
G. G., Rich R. M., 2013, ApJ, 771, L15 → pages 7

Schwab J., Podsiadlowski P., Rappaport S., 2010, ApJ, 719, 722 → pages 2

Sigurdsson S., 2003, in Astronomical Society of the Pacific Conference Series,
Vol. 302, Radio Pulsars, Bailes M., Nice D. J., Thorsett S. E., eds., p. 391 →
pages 8

Taylor J. H., Weisberg J. M., 1989, ApJ, 345, 434 → pages 25

45


	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgments
	1 Introduction
	1.1 What is a pulsar?
	1.2 Millisecond pulsars
	1.3 Globular clusters and their MSPs
	1.4 Why are unusual MSP binaries interesting?
	1.5 Pulsar surveys of globular clusters
	1.6 Investigating search biases

	2 Background
	2.1 Pulsar observations
	2.1.1 Pulse profiles and TOAs
	2.1.2 Dispersion measure
	2.1.3 Pulsar timing

	2.2 presto and acceleration searching
	2.3 Detectability studies

	3 Methods
	3.1 Parameters of the artificial pulsars
	3.2 The pulse profile
	3.3 The time series
	3.4 Creating and searching a large quantity of data
	3.5 Matching candidates

	4 Results and Discussion
	4.1 Detections across parameter space
	4.2 Comparisons with recent analytical work
	4.3 Conclusions

	5 Future Work
	Bibliography

